Science.gov

Sample records for activation cytokine production

  1. Whole Blood Activation Results in Altered T Cell and Monocyte Cytokine Production Profiles by Flow Cytometry

    NASA Technical Reports Server (NTRS)

    Crucian, Brian E.; Sams, Clarence F.

    2001-01-01

    An excellent monitor of the immune balance of peripheral circulating cells is to determine their cytokine production patterns in response to stimuli. Using flow cytometry, a positive identification of cytokine producing cells in a mixed culture may be achieved. Recently, the ability to assess cytokine production following a whole-blood activation culture has been described. In this study, whole blood activation was compared to traditional PBMC activation and the individual cytokine secretion patterns for both T cells, T cell subsets and monocytes was determined by flow cytometry. RESULTS: For T cell cytokine assessment (IFNg/IL-10 and IL-21/L-4) following PMA +ionomycin activation: (1) a Significantly greater percentages of T cells producing IFNgamma and IL-2 were observed following whole-blood culture and (2) altered T cell cytokine production kinetics were observed by varying whole blood culture times. Four-color analysiS was used to allow assessment of cytokine production by specific T cell subsets. It was found that IFNgamma production was significantly elevated in the CD3+/CD8+ T cell population as compared to the CD3+/CD8- population following five hours of whole blood activation. Conversely, IL-2 and IL-10 production were Significantly elevated in the CD3+/CD8- T cell population as compared to the CD3+/CD8+ population. Monocyte cytokine production was assessed in both culture systems following LPS activation for 24 hours. A three-color flow cytometric was used to assess two cytokines (IL-1a/IL-12 and TNFa/IL-10) in conjunction with CD14. Nearly all monocytes were stimulated to produce IL-1a, IL-12 and TNFa. equally well in both culture systems, however monocyte production of IL-10 was significantly elevated in whole blood culture as compared to PBMC culture. IL-12 producing monocytes appeared to be a distinct subpopulation of the IL-1a producing set, whereas IL-10 and TNFa producing monocytes were largely mutually exclusive. IL-10 and TNFa producing

  2. Inhibition of Th2 cytokine production in T cells by monascin via PPAR-γ activation.

    PubMed

    Hsu, Wei-Hsuan; Lee, Bao-Hong; Hsu, Ya-Wen; Pan, Tzu-Ming

    2013-08-28

    Yellow pigment monascin (MS) is a secondary metabolite isolated from Monascus -fermented products and has numerous physiological activities. However, the potential use of MS for immunomodulation remains unclear. We showed that MS and the synthetic peroxisome proliferator-activated receptor (PPAR)-γ ligand rosiglitazone (RG) significantly inhibited the production of Th2 cytokines, including IL-4, IL-5, and IL-13, in PMA/ionomycin-activated mouse EL-4 T cells. Moreover, we showed that this was due to cellular PPAR-γ translocation. These results indicate that MS and RG promote PPAR-γ-DNA interactions and suggest that the regulatory effects of MS and RG on Th2 cytokine production could be abolished with PPAR-γ antagonist treatment. MS and RG also suppressed Th2 transcription factor translocation (e.g., GATA-3 and nuclear factor of activated T cells) by preventing the phosphorylation of protein kinase C and signal transducer and activator of transcription 6. PMID:23848565

  3. Neutrophil oxidative burst activates ATM to regulate cytokine production and apoptosis.

    PubMed

    Harbort, C J; Soeiro-Pereira, Paulo Vitor; von Bernuth, Horst; Kaindl, Angela M; Costa-Carvalho, Beatriz Tavares; Condino-Neto, Antonio; Reichenbach, Janine; Roesler, Joachim; Zychlinsky, Arturo; Amulic, Borko

    2015-12-24

    Neutrophils play an essential role in the initial stages of inflammation by balancing pro- and antiinflammatory signals. Among these signals are the production of proinflammatory cytokines and the timely initiation of antiinflammatory cell death via constitutive apoptosis. Here we identify ataxia-telangiectasia mutated (ATM) kinase as a modulator of these neutrophil functions. Ataxia-telangiectasia (AT) is a pleiotropic multisystem disorder caused by mutations in the gene-encoding ATM, a master regulator of the DNA damage response. In addition to progressive neurodegeneration and high rates of cancer, AT patients have numerous symptoms that can be linked to chronic inflammation. We report that neutrophils isolated from patients with AT overproduce proinflammatory cytokines and have a prolonged lifespan compared with healthy controls. This effect is partly mediated by increases in activation of p38 MAP kinase. Furthermore, we show that the oxidative burst, catalyzed by nicotinamide adenine dinucleotide phosphate oxidase, can activate ATM in neutrophils. Finally, activation of ATM and DNA damage signaling suppress cytokine production and can abrogate the overproduction of IL-8 in ROS-deficient cells. This reveals a novel mechanism for the regulation of cytokine production and apoptosis, establishing DNA damage as a downstream mediator of immune regulation by reactive oxygen species. We propose that deficiencies in the DNA damage response, like deficiencies in the oxidative burst seen in chronic granulomatous disease, could lead to pathologic inflammation. PMID:26491069

  4. Neutrophil oxidative burst activates ATM to regulate cytokine production and apoptosis

    PubMed Central

    Harbort, C. J.; Soeiro-Pereira, Paulo Vitor; von Bernuth, Horst; Kaindl, Angela M.; Costa-Carvalho, Beatriz Tavares; Condino-Neto, Antonio; Reichenbach, Janine; Roesler, Joachim; Zychlinsky, Arturo

    2015-01-01

    Neutrophils play an essential role in the initial stages of inflammation by balancing pro- and antiinflammatory signals. Among these signals are the production of proinflammatory cytokines and the timely initiation of antiinflammatory cell death via constitutive apoptosis. Here we identify ataxia-telangiectasia mutated (ATM) kinase as a modulator of these neutrophil functions. Ataxia-telangiectasia (AT) is a pleiotropic multisystem disorder caused by mutations in the gene-encoding ATM, a master regulator of the DNA damage response. In addition to progressive neurodegeneration and high rates of cancer, AT patients have numerous symptoms that can be linked to chronic inflammation. We report that neutrophils isolated from patients with AT overproduce proinflammatory cytokines and have a prolonged lifespan compared with healthy controls. This effect is partly mediated by increases in activation of p38 MAP kinase. Furthermore, we show that the oxidative burst, catalyzed by nicotinamide adenine dinucleotide phosphate oxidase, can activate ATM in neutrophils. Finally, activation of ATM and DNA damage signaling suppress cytokine production and can abrogate the overproduction of IL-8 in ROS-deficient cells. This reveals a novel mechanism for the regulation of cytokine production and apoptosis, establishing DNA damage as a downstream mediator of immune regulation by reactive oxygen species. We propose that deficiencies in the DNA damage response, like deficiencies in the oxidative burst seen in chronic granulomatous disease, could lead to pathologic inflammation. PMID:26491069

  5. Activation of natural killer cells and cytokine production in humans by bacterial extracts (OM-85 BV).

    PubMed

    Wybran, J; Libin, M; Schandene, L

    1990-01-01

    The influence of Broncho-Vaxom (BV) on different immune parameters was investigated in vitro on human peripheral blood mononuclear cells (PBMC). It was found that BV enhances the natural killer (NK) activity of PBMC and increases their spontaneous and phytohemagglutin (PHA)-induced production of tumor-necrosis factor--alpha and interleukin-2 as well as the PHA-stimulated production of interferon-gamma. These immunostimulating actions of BV on NK activity and cytokine production can contribute to the understanding of the enhancement of the body's defense mechanisms against respiratory tract infections. PMID:2117183

  6. Activation of natural killer cells and cytokine production in man by bacterial extracts.

    PubMed

    Wybran, J; Libin, M; Schandene, L

    1989-01-01

    Broncho-Vaxon (OM-85 BV) is a bacterial extract of eight bacterias usually involved in the respiratory tract infections. Since Broncho-Vaxom is clinically active in decreasing the incidence of such infections, its immunological effect was investigated, in vitro, using peripheral blood mononuclear cells (PBMC). The experimental data indicate that Broncho-Vaxom can modulate various immune functions. It was shown, using a radioimmunoassay for these cytokines, that Broncho-Vaxom will spontaneously enhance TNF alpha and IL-2 production whereas it has no action on IF gamma production. However, when the PBMC are stimulated with PHA, an increased production for IF gamma, TNF alpha and IL-2 was observed suggesting that, under appropriate conditions, Broncho-Vaxom enhances the production of these cytokines. In other experiments, Broncho-Vaxom was shown to markedly increase the natural killer activity of PBMC. All these results demonstrate that Broncho-Vaxom is an immunomodulator affecting multiple immunological mechanisms including the activation of natural killer cells, of monocytes and of T cells through direct mechanisms or through the cytokine cascade. PMID:2503554

  7. Selective effects of Lactobacillus casei Shirota on T cell activation, natural killer cell activity and cytokine production

    PubMed Central

    Dong, H; Rowland, I; Tuohy, K M; Thomas, L V; Yaqoob, P

    2010-01-01

    Modulation of host immunity is an important potential mechanism by which probiotics confer health benefits. This study was designed to investigate the effects of a probiotic strain, Lactobacillus casei Shirota (LcS), on immune function using human peripheral blood mononuclear cells (PBMC) in vitro. In addition, the role of monocytes in LcS-induced immunity was also explored. LcS promoted natural killer (NK) cell activity and preferentially induced expression of CD69 and CD25 on CD8+ and CD56+ subsets in the absence of any other stimulus. LcS also induced production of interleukin (IL)-1β, IL-6, tumour necrosis factor (TNF)-α, IL-12 and IL-10 in the absence of lipopolysaccharide (LPS). In the presence of LPS, LcS enhanced IL-1β production but inhibited LPS-induced IL-10 and IL-6 production, and had no further effect on TNF-α and IL-12 production. Monocyte depletion reduced significantly the impact of LcS on lymphocyte activation, cytokine production and natural killer (NK) cell activity. In conclusion, LcS activated cytotoxic lymphocytes preferentially in both the innate and specific immune systems, which suggests that LcS could potentiate the destruction of infected cells in the body. LcS also induced both proinflammatory and anti-inflammatory cytokine production in the absence of LPS, but in some cases inhibited LPS-induced cytokine production. Monocytes play an important role in LcS-induced immunological responses. PMID:20456417

  8. Potassium humate inhibits complement activation and the production of inflammatory cytokines in vitro

    SciTech Connect

    van Rensburg, C.E.J.; Naude, P.J.

    2009-08-15

    The effects of brown coal derived potassium humate on lymphocyte proliferation, cytokine production and complement activation were investigated in vitro. Potassium humate increased lymphocyte proliferation of phytohaemaglutinin A (PHA) and pokeweed mitogen (PWM) stimulated mononuclear lymphocytes (MNL) in vitro from concentrations of 20 to 80 {mu} g/ml, in a dose dependant manner. On the other hand potassium humate, at 40 {mu} g/ml, significantly inhibited the release of TNF-alpha, IL-1 beta, IL-6 and IL-10 by PHA stimulated MNL. Regarding complement activation it was found that potassium humate inhibits the activation of both the alternative and classical pathways without affecting the stability of the red blood cell membranes. These results indicate that the anti-inflammatory potential of potassium humate could be partially due to the inhibition of pro-inflammatory cytokines responsible for the initiation of these reactions as well as inhibition of complement activation. The increased lymphocyte proliferation observed, might be due to increased IL-2 production as previously been documented.

  9. Effect of polyclonal activators on cytokine production by blood cells and by malignant breast cancer cells.

    PubMed

    Kunts, T A; Karpukhina, K V; Mikhaylova, E S; Marinkin, I O; Varaksin, N A; Autenshlyus, A I; Lyakhovich, V V

    2016-01-01

    The production of cytokines by peripheral blood cells and biopsy specimens of tumors stimulated by polyclonal activators (PAs) was evaluated in 34 patients with invasive ductal breast carcinoma using enzyme-linked immunosorbent assay (ELISA). Positive correlation between the stimulation index of polyclonal activators (SIPA) for IL-18 production by the tumor and the relative content of poorly differentiated cells was revealed. The latter, in turn, was positively correlated with the numbers of normal and pathologic mitoses and the degree of malignancy. Cancer cells can produce IL-18, which is involved in the process of angiogenesis, stimulates invasion and metastasis. Decrease in SIPA for the production of IL-6 and GCSF by peripheral blood cells could serve as an indicator of malignant progression in invasive ductal breast carcinoma. PMID:27021370

  10. Whole Blood Activation Results in Enhanced Detection of T Cell and Monocyte Cytokine Production by Flow Cytometry

    NASA Technical Reports Server (NTRS)

    Sams, Clarence F.; Crucian, Brian E.

    2001-01-01

    An excellent monitor of the immune balance of peripheral circulating cells is to determine their cytokine production patterns in response to stimuli. Using flow cytometry a positive identification of cytokine producing cells in a mixed culture may be achieved. Recently, the ability to assess cytokine production following a wholeblood activation culture has been described. We compared whole blood culture to standard PBMC culture and determined the individual cytokine secretion patterns for both T cells and monocytes via flow cytometry. For T cells cytokine assessment following PMA +ionomycin activation: (1) a significantly greater percentages of T cells producing IFNgamma and IL-2 were observed following whole-blood culture; (2) altered T cell cytokine production kinetics were observed by varying whole blood culture times. In addition, a four-color cytometric analysis was used to allow accurate phenotyping and quantitation of cytokine producing lymphocyte populations. Using this technique we found IFNgamma production to be significantly elevated in the CD3+/CD8+ T cell population as compared to the CD3+/CD8- population following five hours of whole blood activation. Conversely, IL-2 and IL-10 production were significantly elevated in the CD3+/CD8- T cell population as compared to the CD3+/CD8+ population. Monocyte cytokine production was assessed in both culture systems following LPS activation for 24 hours. A three-color flow cytometric was used to assess two cytokines in conjunction with CD 14. The cytokine pairs used for analysis were IL-1a/IL-12, and IL-10ITNFa. Nearly all monocytes were stimulated to produce IL-1a, IL-12 and TNFalpha equally well in both culture systems. Monocyte production of IL-10 was significantly elevated following whole blood culture as compared to PBMC culture. IL-12 producing monocytes appeared to be a distinct subpopulation of the IL-1a producing set, whereas IL-10 and TNFa producing monocytes were largely mutually exclusive. IL-10 and

  11. Airway epithelial cells activate Th2 cytokine production in mast cells via IL-1 and thymic stromal lymphopoietin

    PubMed Central

    Nagarkar, Deepti R.; Poposki, Julie A.; Comeau, Michael R.; Biyasheva, Assel; Avila, Pedro C.; Schleimer, Robert P.; Kato, Atsushi

    2012-01-01

    Background Airway epithelial cells are important regulators of innate and adaptive immunity. Although mast cells are known to play a central role in manifestations of allergic inflammation and are found in the epithelium in Th2-related diseases, their role is incompletely understood. Objectives The objective of this study was to investigate the role of airway epithelial cells in production of Th2 cytokines in mast cells. Methods Normal human bronchial epithelial cells (NHBE) were stimulated with TNF, IL-4, IFN-γ, IL -17A and dsRNA alone or in combination. Human mast cells were stimulated with epithelial cell-derived supernatants, or co-cultured with NHBE. Th2 cytokine responses were blocked with neutralizing antibodies. Results Supernatants from IL-4 and dsRNA stimulated NHBE significantly enhanced Th2 cytokine production from mast cells. The combination of IL-4 and dsRNA itself or supernatants from NHBE stimulated with other cytokines did not activate mast cells, suggesting that mast cell responses were induced by epithelial cell factors that were only induced by IL-4 and dsRNA. Epithelial supernatant-dependent Th2 cytokine production in mast cells was suppressed by anti-IL-1 and anti-TSLP, and was enhanced by anti-IL-1Ra. Similar results were observed in co-culture experiments. Finally, we found dsRNA-dependent production of IL-1, TSLP, and IL-1Ra in NHBE was regulated by Th cytokines, and their ratio in NHBE correlated with Th2 cytokine production in mast cells. Conclusions Pathogens producing dsRNA, such as respiratory viral infections, may amplify local Th2 inflammation in asthmatics via the production of TSLP and IL-1 by epithelial cells and subsequent activation of Th2 cytokine production by mast cells in the airways. PMID:22633328

  12. Beta-glucan activates microglia without inducing cytokine production in Dectin-1-dependent manner.

    PubMed

    Shah, Vaibhav B; Huang, Yongcheng; Keshwara, Rohan; Ozment-Skelton, Tammy; Williams, David L; Keshvara, Lakhu

    2008-03-01

    Microglia are the resident mononuclear phagocytic cells that are critical for innate and adaptive responses within the CNS. Like other immune cells, microglia recognize and are activated by various pathogen-associated molecular patterns. beta-glucans are pathogen-associated molecular patterns present within fungal cell walls that are known to trigger protective responses in a number of immune cells. In an effort to better understand microglial responses to beta-glucans and the underlying response pathways, we sought to determine whether Dectin-1, a major beta-glucan receptor recently identified in leukocytes, plays a similar role in beta-glucan-induced activation in microglia. In this study, we report that Dectin-1 is indeed expressed on the surface of murine primary microglia, and engagement of the receptor with particulate beta-glucan resulted in an increase in tyrosine phosphorylation of spleen tyrosine kinase, a hallmark feature of the Dectin-1 signaling pathway. Moreover, phagocytosis of beta-glucan particles and subsequent intracellular production of reactive oxygen species were also mediated by Dectin-1. However, unlike in macrophages and dendritic cells, beta-glucan-mediated microglial activation did not result in significant production of cytokines or chemokines; thus, the interaction of microglial Dectin-1 with glucan elicits a unique response. Our results suggest that the Dectin-1 pathway may play an important role in antifungal immunity in the CNS. PMID:18292498

  13. Smoke exposure of human macrophages reduces HDAC3 activity, resulting in enhanced inflammatory cytokine production.

    PubMed

    Winkler, Aaron R; Nocka, Karl N; Williams, Cara M M

    2012-08-01

    Chronic obstructive pulmonary disease (COPD) is a debilitating condition resulting from exposure to pollutants such as cigarette smoke. Pulmonary macrophages secrete a plethora of inflammatory mediators that are increased in the lungs of COPD patients, but whether this phenotype results directly from smoke exposure remains unknown. Using an in vitro model for alveolar macrophages (AM) derived from human peripheral blood monocytes with granulocyte-macrophage stimulating factor (GM-MØ), we analyzed the mechanistic connection between cigarette smoke exposure and histone deacetylase (HDAC) regulation, hypothesized to be a contributing factor in COPD pathophysiology. Here we show that acute smoke exposure inhibits HDAC enzymatic activity in GM-MØ. Analysis of mRNA and total cellular proteins for expression of class I (1, 2, 3 and 8), class II (4, 5, 6, 7, 9, 10), and class IV (11) HDAC revealed no effect of smoke exposure, whereas nuclear HDAC3 protein content was reduced. To better understand the physiological significance of reduced HDAC3 activity, we utilized siRNA to knockdown HDAC1, 2 and 3 individually. Interestingly, siRNA-mediated reduction of HDAC3 resulted in increased production of IL8 and IL1β in response to LPS stimulation, while HDAC2 knockdown had no effect on either cytokine. Lower nuclear content of HDAC3 in the context of equivalent total HDAC protein levels following smoke exposure may reflect increased nuclear export of HDAC3, allowing increased nuclear factor kappa b (NF-κB ) driven cytokine expression that can contribute to inflammation. PMID:22613758

  14. Propolis Ethanol Extract Stimulates Cytokine and Chemokine Production through NF-κB Activation in C2C12 Myoblasts

    PubMed Central

    Washio, Kohei; Kobayashi, Mao; Saito, Natsuko; Amagasa, Misato; Kitamura, Hiroshi

    2015-01-01

    Myoblast activation is a triggering event for muscle remodeling. We assessed the stimulatory effects of propolis, a beehive product, on myoblasts. After an 8 h treatment with 100 μg/mL of Brazilian propolis ethanol extract, expression of various chemokines, including CCL-2 and CCL-5, and cytokines, such as IL-6, increased. This propolis-induced cytokine production appears to depend on NF-κB activation, because the IKK inhibitor BMS-345541 repressed mRNA levels of CCL-2 by ~66%, CCL-5 by ~81%, and IL-6 by ~69% after propolis treatment. Supernatant from propolis-conditioned C2C12 cells upregulated RAW264 macrophage migration. The supernatant also stimulated RAW264 cells to produce angiogenic factors, including VEGF-A and MMP-12. Brazilian green propolis therefore causes myoblasts to secrete cytokines and chemokines, which might contribute to tissue remodeling of skeletal muscle. PMID:26604971

  15. Stearic acid induces proinflammatory cytokine production partly through activation of lactate-HIF1α pathway in chondrocytes

    PubMed Central

    Miao, Hongming; Chen, Liang; Hao, Lijun; Zhang, Xuan; Chen, Yujuan; Ruan, Zhihua; Liang, Houjie

    2015-01-01

    The biomechanics stress and chronic inflammation in obesity are causally linked to osteoarthritis. However, the metabolic factors mediating obesity-related osteoarthritis are still obscure. Here we scanned and identified at least two elevated metabolites (stearic acid and lactate) from the plasma of diet-induced obese mice. We found that stearic acid potentiated LDH-a-dependent production of lactate, which further stabilized HIF1α protein and increased VEGF and proinflammatory cytokine expression in primary mouse chondrocytes. Treatment with LDH-a and HIF1α inhibitors notably attenuated stearic acid-or high fat diet-stimulated proinflammatory cytokine production in vitro and in vivo. Furthermore, positive correlation of plasma lactate, cartilage HIF1α and cytokine levels with the body mass index was observed in subjects with osteoarthritis. In conclusion, saturated free fatty acid induced proinflammatory cytokine production partly through activation of a novel lactate-HIF1α pathway in chondrocytes. Our findings hold promise of developing novel clinical strategies for the management of obesity-related diseases such as osteoarthritis. PMID:26271607

  16. [Activation of peripheral T lymphocytes in children with epilepsy and production of cytokines].

    PubMed

    Yang, Jie; Hu, Chongkang; Jiang, Xun

    2016-09-01

    Objective To study the state of peripheral T lymphocytes and cytokine levels in children with epilepsy. Methods Twenty children with epilepsy and 20 healthy age-matched children were recruited and their peripheral blood was collected. The activation of T lymphocytes was evaluated by detecting the expressions of CD25, CD69 and cytotoxic T lymphocyte-assicated antigen 4 (CTLA4). The function of T lymphocytes was evaluated by detecting the expressions of interferon γ (IFN-γ), tumor necrosis factor α (TNF-α), IL-17A and IL-6. The activation of regulatory T cells (Tregs) was evaluated by detecting the expression of IL-10. Results Children with epilepsy had higher expressions of CD25, CD69 and CTLA-4 in T lymphocytes than the controls did. The expressions of IFN-γ, TNF-α, IL-17A and IL-6 in T lymphocytes of children with epilepsy were higher than those of the controls. Frequency of Tregs producing IL-10 was higher in children with epilepsy as compared with the controls. Conclusion Peripheral T lymphocytes of children with epilepsy are activated and produce cytokines. PMID:27609580

  17. The Retinoic Acid Receptor-α mediates human T-cell activation and Th2 cytokine and chemokine production

    PubMed Central

    Dawson, Harry D; Collins, Gary; Pyle, Robert; Key, Michael; Taub, Dennis D

    2008-01-01

    Background We have recently demonstrated that all-trans-retinoic acid (ATRA) and 9-cis-retinoic acid (9-cis RA) promote IL-4, IL-5 and IL-13 synthesis, while decreasing IFN-γ and TNF-α expression by activated human T cells and reduces the synthesis of IL-12p70 from accessory cells. Here, we have demonstrated that the observed effects using ATRA and 9-cis RA are shared with the clinically useful RAR ligand, 13-cis retinoic acid (13-cis RA), and the retinoic acid receptor-α (RAR-α)-selective agonist, AM580 but not with the RAR-β/γ ligand, 4-hydroxyphenylretinamide (4-HPR). Results The increase in type 2 cytokine production by these retinoids correlated with the expression of the T cell activation markers, CD69 and CD38. The RAR-α-selective agonist, AM580 recapitulated all of the T cell activation and type 2 cytokine-inducing effects of ATRA and 9-cis-RA, while the RAR-α-selective antagonist, RO 41–5253, inhibited these effects. Conclusion These results strongly support a role for RAR-α engagement in the regulation of genes and proteins involved with human T cell activation and type 2 cytokine production. PMID:18416830

  18. Inhibition of NF-kB activation and cytokines production in THP-1 monocytes by 2-styrylchromones.

    PubMed

    Gomes, Ana; Capela, João P; Ribeiro, Daniela; Freitas, Marisa; Silva, Artur M S; Pinto, Diana C G A; Santos, Clementina M M; Cavaleiro, José A S; Lima, José L F C; Fernandes, Eduarda

    2015-01-01

    Nuclear factor kappa B (NF-kB) is one of the most important transcription factors whose modulation triggers a cascade of signaling events, namely the expression of many cytokines, enzymes, chemokines, and adhesion molecules, some of which being potential key targets for intervention in the treatment of inflammatory conditions. The 2-styrylchromones (2-SC) designation represents a well-recognized group of natural and synthetic chromones, vinylogues of flavones (2-phenylchromones). Several 2-SC were recently tested for their anti-inflammatory potential, regarding the arachidonic acid metabolic cascade, showing some motivating results. In addition, several flavones with structural similarities to 2-SC have shown NF-kB inhibitory properties. Hence, the aim of the present work was to continue the investigation on the interference of 2-SC in inflammatory pathways. Herein we report their effects on lipopolysaccharide (LPS)-induced NF-kB activation and consequent production of proinflammatory cytokines/chemokine, using a human monocytic cell line (THP-1). From the twelve 2-SC tested, three of them were able to significantly inhibit the NF-kB activation and to reduce the production of the proinflammatory cytokines/chemokine. The compound 3',4',5-trihydroxy-2- styrylchromone stood up as the most active in both assays, being a promising candidate for an anti-inflammatory drug. PMID:25665653

  19. Inhibitors of mitogen-activated protein kinases differentially regulate costimulated T cell cytokine production and mouse airway eosinophilia

    PubMed Central

    Chialda, Ligia; Zhang, Meixia; Brune, Kay; Pahl, Andreas

    2005-01-01

    Background T cells play a dominant role in the pathogenesis of asthma. Costimulation of T cells is necessary to fully activate them. An inducible costimulator (ICOS) of T cells is predominantly expressed on Th2 cells. Therefore, interference of signaling pathways precipitated by ICOS may present new therapeutic options for Th2 dominated diseases such as asthma. However, these signaling pathways are poorly characterized in vitro and in vivo. Methods Human primary CD4+ T cells from blood were activated by beads with defined combinations of surface receptor stimulating antibodies and costimulatory receptor ligands. Real-time RT-PCR was used for measuring the production of cytokines from activated T cells. Activation of mitogen activated protein kinase (MAPK) signaling pathways leading to cytokine synthesis were investigated by western blot analysis and by specific inhibitors. The effect of inhibitors in vivo was tested in a murine asthma model of late phase eosinophilia. Lung inflammation was assessed by differential cell count of the bronchoalveolar lavage, determination of serum IgE and lung histology. Results We showed in vitro that ICOS and CD28 are stimulatory members of an expanding family of co-receptors, whereas PD1 ligands failed to co-stimulate T cells. ICOS and CD28 activated different MAPK signaling cascades necessary for cytokine activation. By means of specific inhibitors we showed that p38 and ERK act downstream of CD28 and that ERK and JNK act downstream of ICOS leading to the induction of various T cell derived cytokines. Using a murine asthma model of late phase eosinophilia, we demonstrated that the ERK inhibitor U0126 and the JNK inhibitor SP600125 inhibited lung inflammation in vivo. This inhibition correlated with the inhibition of Th2 cytokines in the BAL fluid. Despite acting on different signaling cascades, we could not detect synergistic action of any combination of MAPK inhibitors. In contrast, we found that the p38 inhibitor SB203580

  20. Vanillic Acid Inhibits Inflammatory Pain by Inhibiting Neutrophil Recruitment, Oxidative Stress, Cytokine Production, and NFκB Activation in Mice.

    PubMed

    Calixto-Campos, Cássia; Carvalho, Thacyana T; Hohmann, Miriam S N; Pinho-Ribeiro, Felipe A; Fattori, Victor; Manchope, Marília F; Zarpelon, Ana C; Baracat, Marcela M; Georgetti, Sandra R; Casagrande, Rubia; Verri, Waldiceu A

    2015-08-28

    Vanillic acid (1) is a flavoring agent found in edible plants and fruits. It is an oxidized form of vanillin. Phenolic compounds form a substantial part of plant foods used as antioxidants with beneficial biological activities. These compounds have received considerable attention because of their role in preventing human diseases. Especially, 1 presents antibacterial, antimicrobial, and chemopreventive effects. However, the mechanisms by which 1 exerts its anti-inflammatory effects in vivo are incompletely understood. Thus, the effect of 1 was evaluated in murine models of inflammatory pain. Treatment with 1 inhibited the overt pain-like behavior induced by acetic acid, phenyl-p-benzoquinone, the second phase of the formalin test, and complete Freund's adjuvant (CFA). Treatment with 1 also inhibited carrageenan- and CFA-induced mechanical hyperalgesia, paw edema, myeloperoxidase activity, and N-acetyl-β-D-glucosaminidase activity. The anti-inflammatory mechanisms of 1 involved the inhibition of oxidative stress, pro-inflammatory cytokine production, and NFκB activation in the carrageenan model. The present study demonstrated 1 presents analgesic and anti-inflammatory effects in a wide range of murine inflammation models, and its mechanisms of action involves antioxidant effects and NFκB-related inhibition of pro-inflammatory cytokine production. PMID:26192250

  1. Human MAIT-cell responses to Escherichia coli: activation, cytokine production, proliferation, and cytotoxicity

    PubMed Central

    Dias, Joana; Sobkowiak, Michał J.; Sandberg, Johan K.; Leeansyah, Edwin

    2016-01-01

    Mucosa-associated invariant T cells are a large and relatively recently described innate-like antimicrobial T-cell subset in humans. These cells recognize riboflavin metabolites from a range of microbes presented by evolutionarily conserved major histocompatibility complex, class I-related molecules. Given the innate-like characteristics of mucosa-associated invariant T cells and the novel type of antigens they recognize, new methodology must be developed and existing methods refined to allow comprehensive studies of their role in human immune defense against microbial infection. In this study, we established protocols to examine a range of mucosa-associated invariant T-cell functions as they respond to antigen produced by Escherichia coli. These improved and dose- and time-optimized experimental protocols allow detailed studies of MR1-dependent mucosa-associated invariant T-cell responses to Escherichia coli pulsed antigen-presenting cells, as assessed by expression of activation markers and cytokines, by proliferation, and by induction of apoptosis and death in major histocompatibility complex, class I-related–expressing target cells. The novel and optimized protocols establish a framework of methods and open new possibilities to study mucosa-associated invariant T-cell immunobiology, using Escherichia coli as a model antigen. Furthermore, we propose that these robust experimental systems can also be adapted to study mucosa-associated invariant T-cell responses to other microbes and types of antigen-presenting cells. PMID:27034405

  2. Upregulated LINE-1 Activity in the Fanconi Anemia Cancer Susceptibility Syndrome Leads to Spontaneous Pro-inflammatory Cytokine Production.

    PubMed

    Brégnard, Christelle; Guerra, Jessica; Déjardin, Stéphanie; Passalacqua, Frank; Benkirane, Monsef; Laguette, Nadine

    2016-06-01

    Fanconi Anemia (FA) is a genetic disorder characterized by elevated cancer susceptibility and pro-inflammatory cytokine production. Using SLX4(FANCP) deficiency as a working model, we questioned the trigger for chronic inflammation in FA. We found that absence of SLX4 caused cytoplasmic DNA accumulation, including sequences deriving from active Long INterspersed Element-1 (LINE-1), triggering the cGAS-STING pathway to elicit interferon (IFN) expression. In agreement, absence of SLX4 leads to upregulated LINE-1 retrotransposition. Importantly, similar results were obtained with the FANCD2 upstream activator of SLX4. Furthermore, treatment of FA cells with the Tenofovir reverse transcriptase inhibitor (RTi), that prevents endogenous retrotransposition, decreased both accumulation of cytoplasmic DNA and pro-inflammatory signaling. Collectively, our data suggest a contribution of endogenous RT activities to the generation of immunogenic cytoplasmic nucleic acids responsible for inflammation in FA. The additional observation that RTi decreased pro-inflammatory cytokine production induced by DNA replication stress-inducing drugs further demonstrates the contribution of endogenous RTs to sustaining chronic inflammation. Altogether, our data open perspectives in the prevention of adverse effects of chronic inflammation in tumorigenesis. PMID:27428429

  3. Inhibitory effects of diallyl disulfide on the production of inflammatory mediators and cytokines in lipopolysaccharide-activated BV2 microglia

    SciTech Connect

    Park, Hye Young; Kim, Nam Deuk; Kim, Gi-Young; Hwang, Hye Jin; Kim, Byung-Woo; Kim, Wun Jae; Choi, Yung Hyun

    2012-07-15

    Diallyl disulfide (DADS), a main organosulfur component responsible for the diverse biological effects of garlic, displays a wide variety of internal biological activities. However, the cellular and molecular mechanisms underlying DADS' anti-inflammatory activity remain poorly understood. In this study, therefore, the anti-inflammatory effects of DADS were studied to investigate its potential therapeutic effects in lipopolysaccharide (LPS)-stimulated BV2 microglia. We found that pretreatment with DADS prior to treatment with LPS significantly inhibited excessive production of nitric oxide (NO) and prostaglandin E{sub 2} (PGE{sub 2}) in a dose-dependent manner. The inhibition was associated with down-regulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. DADS also attenuated the production of pro-inflammatory cytokines and chemokines, including interleukin-1β (IL-1β), tumor necrosis factor (TNF)-α, and monocyte chemoattractant protein-1 (MCP-1) by suppressing the expression of mRNAs for these proteins. The mechanism underlying this protective effect might be related to the inhibition of nuclear factor-kappaB, Akt and mitogen-activated protein kinase signaling pathway activation in LPS-stimulated microglial cells. These findings indicated that DADS is potentially a novel therapeutic candidate for the treatment of various neurodegenerative diseases. -- Highlights: ► DADS attenuates production of NO and PGE2 in LPS-activated BV2 microglia. ► DADS downregulates levels of iNOS and COX-2. ► DADS inhibits production and expression of inflammatory cytokines and chemokine. ► DADS exhibits these effects by suppression of NF-κB, PI3K/Akt and MAPKs pathways.

  4. Leukotriene E4 activates human Th2 cells for exaggerated proinflammatory cytokine production in response to prostaglandin D2.

    PubMed

    Xue, Luzheng; Barrow, Anna; Fleming, Vicki M; Hunter, Michael G; Ogg, Graham; Klenerman, Paul; Pettipher, Roy

    2012-01-15

    PGD(2) exerts a number of proinflammatory responses through a high-affinity interaction with chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) and has been detected at high concentrations at sites of allergic inflammation. Because cysteinyl leukotrienes (cysLTs) are also produced during the allergic response, we investigated the possibility that cysLTs may modulate the response of human Th2 cells to PGD(2). PGD(2) induced concentration-dependent Th2 cytokine production in the absence of TCR stimulation. Leukotrienes D(4) and E(4) (LTE(4)) also stimulated the cytokine production but were much less active than PGD(2). However, when combined with PGD(2), cysLTs caused a greater than additive enhancement of the response, with LTE(4) being most effective in activating Th2 cells. LTE(4) enhanced calcium mobilization in response to PGD(2) in Th2 cells without affecting endogenous PGD(2) production or CRTH2 receptor expression. The effect of LTE(4) was inhibited by montelukast but not by the P2Y(12) antagonist methylthioadenosine 5'-monophosphate. The enhancing effect was also evident with endogenous cysLTs produced from immunologically activated mast cells because inhibition of cysLT action by montelukast or cysLT synthesis by MK886, an inhibitor of 5-lipoxygenase-activating protein, reduced the response of Th2 cells to the levels produced by PGD(2) alone. These findings reveal that cysLTs, in particular LTE(4), have a significant proinflammatory impact on T cells and demonstrate their effects on Th2 cells are mediated by a montelukast-sensitive receptor. PMID:22174450

  5. Erythropoietin exerts direct immunomodulatory effects on the cytokine production by activated human T-lymphocytes.

    PubMed

    Todosenko, N M; Shmarov, V A; Malashchenko, V V; Meniailo, M E; Melashchenko, O B; Gazatova, N D; Goncharov, A G; Seledtsov, V I

    2016-07-01

    The effect of erythropoietin-β (Epo-β) on the functional profile of activated human T-lymphocytes remains largely unknown, which hinders clinical application of Epo as an immunomodulatory agent. We studied the direct impact of Epo on the activation status of human T lymphocytes following activation by particles loaded with antibodies (Abs) against human CD2, CD3, and CD28. T cell activation was assessed by the surface expression of CD38 activation marker. Epo did not significantly affect activation status of both CD4(+) and CD4(-) T cells, as well as of naive (CD45RA(+)CD197(+)), central memory (CD45RA(-)CD197(+)), effector memory (CD45RA(-)CD197(-)), and terminally-differentiated (CD45RA(+)CD197(-)) T cells. However, Epo markedly augmented production of IL-2, IL-4 and IL10 by activated T cells with concomitant reduction in IFN-γ secretion. Taken together, our data showed that Epo could directly down-regulate pro-inflammatory T cell responses without affecting T cell activation status. PMID:27208431

  6. Fumigaclavine C, an fungal metabolite, improves experimental colitis in mice via downregulating Th1 cytokine production and matrix metalloproteinase activity.

    PubMed

    Wu, Xue-Feng; Fei, Ming-Jian; Shu, Ren-Geng; Tan, Ren-Xiang; Xu, Qiang

    2005-09-01

    In the present paper, the effect of Fumigaclavine C, a fungal metabolite, on experimental colitis was examined. Fumigaclavine C, when administered intraperitoneally once a day, significantly reduced the weight loss and mortality rate of mice with experimental colitis induced by intrarectally injection of 2, 4, 6-trinitrobenzene sulfonic acid (TNBS). This compound also markedly alleviated the macroscopic and microscopic appearances of colitis. Furthermore, Fumigaclavine C, given both in vivo and in vitro, showed a marked inhibition on the expression of several inflammatory cytokines, including IL-1beta, IL-2, IL-12alpha, IFN-gamma, TNF-alpha as well as MMP-9 in sacral lymph node cells, colonic patch lymphocytes and colitis tissues from the TNBS colitis mice. Meanwhile, the compound caused a dose-dependent reduction in IL-2 and IFN-gamma from the lymphocytes at the protein level and MMP-9 activity. These results suggest that Fumigaclavine C may alleviate experimental colitis mainly via down-regulating the production of Th1 cytokines and the activity of matrix metalloproteinase. PMID:16023606

  7. Acute Hypoxia Decreases E. coli LPS-Induced Cytokine Production and NF-κB Activation in Alveolar Macrophages*

    PubMed Central

    Matuschak, George M.; Nayak, Ravi; Doyle, Timothy M.; Lechner, Andrew J.

    2010-01-01

    Reductions in alveolar oxygenation during lung hypoxia/reoxygenation (H/R) injury are common after gram-negative endotoxemia. However, the effects of H/R on endotoxin-stimulated cytokine production by alveolar macrophages are unclear and may depend upon thresholds for hypoxic oxyradical generation in situ. Here TNF-α and IL-β production were determined in rat alveolar macrophages stimulated with E. coli lipopolysaccharide (LPS, serotype O55:B5) while exposed to either normoxia for up to 24 h, to brief normocarbic hypoxia (1.5 h at an atmospheric PO2 = 10 ± 2 mm Hg), or to combined H/R. LPS-induced TNF-α and IL-β were reduced at the peak of hypoxia and by reoxygenation in LPS + H/R cells (P < 0.01) compared with normoxic controls despite no changes in reduced glutathione (GSH) or in PGE2 production. Both TNF-α mRNA and NF-κB activation were reduced by hypoxia that suppressed superoxide anion generation. Thus, dynamic reductions in the ambient PO2 of alveolar macrophages that do not deplete GSH suppress LPS-induced TNF-α expression, IL-β production, and NF-κB activation even as oxyradical production is decreased. PMID:20470909

  8. Activation of T cell death-associated gene 8 regulates the cytokine production of T cells and macrophages in vitro.

    PubMed

    Onozawa, Yoshiko; Fujita, Yoshifumi; Kuwabara, Harumi; Nagasaki, Miyuki; Komai, Tomoaki; Oda, Tomiichiro

    2012-05-15

    An orphan G-protein-coupled receptor, T cell death-associated gene 8 (TDAG8) which has been reported to be a proton sensor, inhibits the production of pro-inflammatory cytokines induced by extracellular acidification. Recently, we have found that TDAG8 knockout mice showed significant exacerbation in various immune-mediated inflammation disease models. To elucidate the role of TDAG8, we screened an in-house library to find compounds which have a profile as a TDAG8 agonist using a cyclic adenosine 5'-monophosphate assay. Among the screening hits, we focused on (3-[(2,4-dichlorobenzyl)thio]-1,6-dimethyl-5,6-dihydro-1H-pyridazino[4,5-e][1,3,4]thiadiazin-5-one) (named BTB09089). BTB09089 did not act on other proton sensing G-protein-coupled receptors such as G-protein-coupled receptor 4 (GPR4) nor ovarian cancer G-protein-coupled receptor 1 (OGR1). Moreover, BTB09089 increased cAMP level in the splenocytes from wild-type littermates but not from TDAG8-deficient mice. Thus, BTB09089 was found to be a TDAG8 specific agonist. We then investigated the effects of BTB09089 on T cells and macrophages in vitro. In splenocytes, BTB09089 suppressed the production of IL-2 stimulated with anti-CD3 and anti-CD28 antibodies. In peritoneal exuded macrophages induced by thioglycollate, BTB09089 suppressed the production of TNF-α and IL-6 while it increased that of IL-10 when stimulated with lipopolysaccharide. These effects were observed in cells from wild type mice, but not those from TDAG8 knockout mice. These results indicate that activation of TDAG8 attenuates immune-mediated inflammation by regulating the cytokine production of T cells and macrophages. PMID:22445881

  9. Nicotinic receptor activation negatively modulates pro-inflammatory cytokine production in multiple sclerosis patients.

    PubMed

    Reale, Marcella; Di Bari, Maria; Di Nicola, Marta; D'Angelo, Chiara; De Angelis, Federica; Velluto, Lucia; Tata, Ada Maria

    2015-11-01

    Acetylcholine (ACh) and its receptors of muscarinic and nicotinic types are involved in the modulation of immune and inflammatory responses. In present work we have characterized the nicotinic receptors expression in PBMC of RR-MS patients and healthy donors (HD) and their ability to modulate pro-inflammatory cytokines. Here we report that the IL-1β e IL-17 levels are significantly increased in serum of RR-MS patients in respect to HD and that the PBMC stimulation with PHA caused a significant increase in pro-inflammatory cytokine levels both in RR-MS and HD subjects, with higher increase of protein release in RR-MS patients than in HD. The PBMC treatment with PHA plus nicotine produced a significant decrease of IL-1β e IL-17 both as transcript and as protein, confirming that the PBMC of the patients respond to the cholinergic stimulation more than PBMC of HD. By real time PCR and western blot analysis we have also demonstrated that in particular α7 receptor subtype appeared expressed at comparable levels both in RR-MS patients and HD. The PHA stimulation results to inhibit the α7 subunit expression while the nicotine causes a significant increase in α7 transcripts but only in MS patients. The data obtained highlight the role of α7 receptor subtype in the modulation of anti-inflammatory cytokines also in MS. Moreover the ability of nicotine to up-regulate the expression of α7 receptor subtype in RR-MS patients, indicates that nicotinic receptor stimulation may contribute to down-modulate the inflammation occurred in MS by a positive feedback control of its expression. PMID:26209886

  10. T-cell activation is enhanced by targeting IL-10 cytokine production in toll-like receptor-stimulated macrophages

    PubMed Central

    Walk, Ryan M; Elliott, Steven T; Blanco, Felix C; Snyder, Jason A; Jacobi, Ashley M; Rose, Scott D; Behlke, Mark A; Salem, Aliasger K; Vukmanovic, Stanislav; Sandler, Anthony D

    2012-01-01

    Toll-like receptor (TLR) agonists represent potentially useful cancer vaccine adjuvants in their ability to stimulate antigen-presenting cells (APCs) and subsequently amplify the cytotoxic T-cell response. The purpose of this study was to characterize APC responses to TLR activation and to determine the subsequent effect on lymphocyte activation. We exposed murine primary bone marrow-derived macrophages to increasing concentrations of agonists to TLRs 2, 3, 4, and 9. This resulted in a dose-dependent increase in production of not only tumor necrosis factor–alpha (TNF-α), a surrogate marker of the proinflammatory response, but also interleukin 10 (IL-10), a well-described inhibitory cytokine. Importantly, IL-10 secretion was not induced by low concentrations of TLR agonists that readily produced TNF-α. We subsequently stimulated lymphocytes with anti-CD3 antibody in the presence of media from macrophages activated with higher doses of TLR agonists and observed suppression of interferon gamma release. Use of both IL-10 knockout macrophages and IL-10 small-interfering RNA (siRNA) ablated this suppressive effect. Finally, IL-10 siRNA was successfully used to suppress CpG-induced IL-10 production in vivo. We conclude that TLR-mediated APC stimulation can induce a paradoxical inhibitory effect on T-cell activation mediated by IL-10.

  11. Lactobacillus acidophilus induces cytokine and chemokine production via NF-κB and p38 mitogen-activated protein kinase signaling pathways in intestinal epithelial cells.

    PubMed

    Jiang, Yujun; Lü, Xuena; Man, Chaoxin; Han, Linlin; Shan, Yi; Qu, Xingguang; Liu, Ying; Yang, Shiqin; Xue, Yuqing; Zhang, Yinghua

    2012-04-01

    Intestinal epithelial cells can respond to certain bacteria by producing an array of cytokines and chemokines which are associated with host immune responses. Lactobacillus acidophilus NCFM is a characterized probiotic, originally isolated from human feces. This study aimed to test the ability of L. acidophilus NCFM to stimulate cytokine and chemokine production in intestinal epithelial cells and to elucidate the mechanisms involved in their upregulation. In experiments using intestinal epithelial cell lines and mouse models, we observed that L. acidophilus NCFM could rapidly but transiently upregulate a number of effector genes encoding cytokines and chemokines such as interleukin 1α (IL-1α), IL-1β, CCL2, and CCL20 and that cytokines showed lower expression levels with L. acidophilus NCFM treatment than chemokines. Moreover, L. acidophilus NCFM could activate a pathogen-associated molecular pattern receptor, Toll-like receptor 2 (TLR2), in intestinal epithelial cell lines. The phosphorylation of NF-κB p65 and p38 mitogen-activated protein kinase (MAPK) in intestinal epithelial cell lines was also enhanced by L. acidophilus NCFM. Furthermore, inhibitors of NF-κB (pyrrolidine dithiocarbamate [PDTC]) and p38 MAPK (SB203580) significantly reduced cytokine and chemokine production in the intestinal epithelial cell lines stimulated by L. acidophilus NCFM, suggesting that both NF-κB and p38 MAPK signaling pathways were important for the production of cytokines and chemokines induced by L. acidophilus NCFM. PMID:22357649

  12. Oral Administration of p-Hydroxycinnamic Acid Attenuates Atopic Dermatitis by Downregulating Th1 and Th2 Cytokine Production and Keratinocyte Activation

    PubMed Central

    Lee, Hyun-Su; Choi, Eun-Ju; Lee, Kyung-Sik; Kim, Hye-Ran; Na, Bo-Ra; Kwon, Min-Sung; Jeong, Gil-Saeng; Choi, Hyun Gyu; Choi, Eun Young; Jun, Chang-Duk

    2016-01-01

    Atopic dermatitis (AD) is a complex disease that is caused by various factors, including environmental change, genetic defects, and immune imbalance. We previously showed that p-hydroxycinnamic acid (HCA) isolated from the roots of Curcuma longa inhibits T-cell activation without inducing cell death. Here, we demonstrated that oral administration of HCA in a mouse model of ear AD attenuates the following local and systemic AD manifestations: ear thickening, immune-cell infiltration, production of AD-promoting immunoregulatory cytokines in ear tissues, increased spleen and draining lymph node size and weight, increased pro-inflammatory cytokine production by draining lymph nodes, and elevated serum immunoglobulin production. HCA treatment of CD4+ T cells in vitro suppressed their proliferation and differentiation into Th1 or Th2 and their Th1 and Th2 cytokine production. HCA treatment of keratinocytes lowered their production of the pro-inflammatory cytokines that drive either Th1 or Th2 responses in AD. Thus, HCA may be of therapeutic potential for AD as it acts by suppressing keratinocyte activation and downregulating T-cell differentiation and cytokine production. PMID:26959360

  13. Oral Administration of p-Hydroxycinnamic Acid Attenuates Atopic Dermatitis by Downregulating Th1 and Th2 Cytokine Production and Keratinocyte Activation.

    PubMed

    Lee, Hyun-Su; Choi, Eun-Ju; Lee, Kyung-Sik; Kim, Hye-Ran; Na, Bo-Ra; Kwon, Min-Sung; Jeong, Gil-Saeng; Choi, Hyun Gyu; Choi, Eun Young; Jun, Chang-Duk

    2016-01-01

    Atopic dermatitis (AD) is a complex disease that is caused by various factors, including environmental change, genetic defects, and immune imbalance. We previously showed that p-hydroxycinnamic acid (HCA) isolated from the roots of Curcuma longa inhibits T-cell activation without inducing cell death. Here, we demonstrated that oral administration of HCA in a mouse model of ear AD attenuates the following local and systemic AD manifestations: ear thickening, immune-cell infiltration, production of AD-promoting immunoregulatory cytokines in ear tissues, increased spleen and draining lymph node size and weight, increased pro-inflammatory cytokine production by draining lymph nodes, and elevated serum immunoglobulin production. HCA treatment of CD4+ T cells in vitro suppressed their proliferation and differentiation into Th1 or Th2 and their Th1 and Th2 cytokine production. HCA treatment of keratinocytes lowered their production of the pro-inflammatory cytokines that drive either Th1 or Th2 responses in AD. Thus, HCA may be of therapeutic potential for AD as it acts by suppressing keratinocyte activation and downregulating T-cell differentiation and cytokine production. PMID:26959360

  14. AUTOTAXIN DOWNREGULATES LPS – INDUCED MICROGLIA ACTIVATION AND PRO-INFLAMMATORY CYTOKINES PRODUCTION

    PubMed Central

    Awada, Rana; Saulnier-Blache, Jean Sébastien; Grès, Sandra; Bourdon, Emmanuel; Rondeau, Philippe; Parimisetty, Avinash; Orihuela, Ruben; Harry, G. Jean; d’Hellencourt, Christian Lefebvre

    2014-01-01

    Inflammation is essential in defense against infection or injury. It is tightly regulated, as over-response can be detrimental, especially in immune-privileged organs such as the central nervous system (CNS). Microglia constitutes the major source of inflammatory factors, but are also involved in the regulation of the inflammation and in the reparation. Autotaxin (ATX), a phospholipase D, converts lysophosphatidylcholine into lysophosphatidic acid (LPA) and is upregulated in several CNS injuries. LPA, a pleiotropic immunomodulatory factor, can induce multiple cellular processes including morphological changes, proliferation, death and survival. We investigated ATX effects on microglia inflammatory response to lipopolysaccharide (LPS), mimicking gram-negative infection. Murine BV-2 microglia and stable transfected, overexpressing ATX-BV-2 (A+) microglia were treated with LPS. Tumor necrosis factor α (TNFα), interleukin (IL)-6 and IL-10 mRNA and proteins levels were examined by qRT-PCR and ELISA, respectively. Secreted LPA was quantified by a radioenzymatic assay and microglial activation markers (CD11b, CD14, B7.1 and B7.2) were determined by flow cytometry. ATX expression and LPA production were significantly enhanced in LPS treated BV-2 cells. LPS induction of mRNA and protein level for TNFα and IL-6 were inhibited in A+ cells, while IL-10 was increased. CD11b, CD14, and B7.1 and B7.2 expressions were reduced in A+ cells. Our results strongly suggest deactivation of microglia and an IL-10 inhibitory of ATX with LPS induced microglia activation. PMID:25053164

  15. Immunomodulatory effect of mushrooms on cytotoxic activity and cytokine production of intestinal lamina propria leukocytes does not necessarily depend on β-glucan contents.

    PubMed

    Lee, Jae-Sung; Oka, Kohsuke; Watanabe, Osamu; Hara, Hiroshi; Ishizuka, Satoshi

    2011-06-15

    We evaluated the effects of seven mushroom extracts (Grifola frondosa, Pholiota nameko, Panellus serotinus, Hypsizygus marmoreus, Pleurotus cornucopiae, Armillaria mellea, and Flammulina velutipes) on cytotoxic activity and cytokine production of lamina propria leukocytes (LPLs) isolated from rat small (S) and large (L) intestinal mucosa. Boiling water extracts from seven species of mushrooms showed no direct cytotoxicity against the YAC-1 target cells. However, prominent increases of cytotoxicity were observed in S- and L-LPLs co-cultured with P. serotinus extract. Cytokine production (TNFα, IFNγ, IL-12 p70, and IL-4) of S- and L-LPLs was stimulated in response to P. cornucopiae extract. Mushroom extracts contributed to target cell adhesion and/or cytokine production in the effector cells. The promotion of cytotoxic activity in S- and L-LPLs was not necessarily related to β-glucan content of the mushroom. PMID:25213921

  16. Velutin reduces lipopolysaccharide-induced proinflammatory cytokine TNFa and IL-6 production by inhibiting NF-Kappa B activation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent studies have shown that some flavonoids are modulators of proinflammatory cytokine expression. Velutin, an uncommon flavone isolated from acai (Euterpe oleraceas) berry, was tested for the effects in reducing LPS-induced TNFa and IL-6 production in RAW 264.7 peripheral macrophages and periton...

  17. Effect of space flight on cytokine production

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Gerald

    Space flight has been shown to alter many immunological responses. Among those affected are the production of cytokines, Cytokines are the messengers of the immune system that facilitate communication among cells that allow the interaction among cells leading to the development of immune responses. Included among the cytokines are the interferons, interleukins, and colony stimulating factors. Cytokines also facilitate communication between the immune system and other body systems, such as the neuroendocrine and musculoskeletal systems. Some cytokines also have direct protective effects on the host, such as interferon, which can inhibit the replication of viruses. Studies in both humans and animals indicate that models of space flight as well as actual space flight alter the production and action of cytokines. Included among these changes are altered interferon production, altered responsiveness of bone marrow cells to granulocyte/monocyte-colony stimulating factor, but no alteration in the production of interleukin-3. This suggests that there are selective effects of space flight on immune responses, i.e. not all cytokines are affected in the same fashion by space flight. Tissue culture studies also suggest that there may be direct effects of space flight on the cells responsible for cytokine production and action. The results of the above study indicate that the effects of space flight on cytokines may be a fundamental mechanism by which space flight not only affects immune responses, but also other biological systems of the human.

  18. Impact of Short-Term Systemic Hypoxia on Phagocytosis, Cytokine Production, and Transcription Factor Activation in Peripheral Blood Cells

    PubMed Central

    Fritzenwanger, Michael; Jung, Christian; Goebel, Bjoern; Lauten, Alexander; Figulla, Hans R.

    2011-01-01

    Hypoxia frequently associated with certain physiologic and pathologic conditions influences numerous cellular functions. Because the effects of short-term hypoxia are incompletely understood, we examined phagocytosis and cytokine production as well as the activation of the transcription factors HIF-1 and NFκB in peripheral blood cells of healthy volunteers exposed to an oxygen concentration equivalent to that found at a height of 5500 m. Furthermore, we analysed plasma HIF-1 and serum concentrations of various HIF-1-dependent genes. Results showed that short-term hypoxia increased phagocytosis in neutrophils without affecting monocyte phagocytosis. Hypoxia decreased basal TNFα concentration in monocytes and basal interferon γ concentration in CD4+ T lymphocytes. In contrast, plasma HIF and serum VEGF concentrations were not affected by hypoxia, although serum EPO concentration was raised. In PBMC, hypoxia increased cytosolic HIF-1 concentration without affecting nuclear HIF-1 concentration and led to a rise in the nuclear NFκB in PBMC. Our results show that short-term hypoxia affects immune functions in healthy individuals. Furthermore, we speculate that the effects of hypoxia are not due to HIF-1, but are caused by the activation of NFκB . PMID:21765619

  19. Progesterone and estradiol exert an inhibitory effect on the production of anti-inflammatory cytokine IL-10 by activated MZ B cells.

    PubMed

    Bommer, I; Muzzio, D O; Zygmunt, M; Jensen, F

    2016-08-01

    The main message of this work is the fact that female sex hormones, progesterone and estradiol, whose levels significantly rise during pregnancy, inhibit the production of anti-inflammatory cytokine IL-10 with no apparent effect on pro-inflammatory cytokine TNF-α by activated MZ B cells. This is an important piece of information and helps to better understand how the maternal immune system controls the balance between immune tolerance and immune activation during pregnancy leading to the simultaneously acceptance of the semi-allogeneic fetus and the proper defense of the mother against pathogens during this critical period of time. PMID:27317920

  20. Effect of elevated serum prolactin concentrations on cytokine production and natural killer cell activity.

    PubMed

    Clodi, M; Svoboda, T; Kotzmann, H; Deyssig, R; Woloszczuk, W; Zielinski, C C; Luger, A

    1992-12-01

    In vitro and in vivo studies in rodents and human suggested an immunostimulatory effect of prolactin. The aim of the present study was to determine the impact of chronically elevated serum prolactin concentrations on the immune system in patients with prolactinomas. For this purpose parameters of the humoral and cellular immune system were studied in seven patients with prolactinomas on two occasions (1) when their serum prolactin concentration had been normalized through treatment with dopamine agonists and (2) when their serum prolactin concentration was high. Serum concentrations of immunoglobulines, interleukin 1, 3 and 6, TNF-alpha, interferon-gamma and the soluble interleukin 2 receptor, leukocyte subsets and the natural killer cell activity were found to be within the normal range on both occasions, i.e. at normal and at high serum prolactin concentrations. The assumption could be made that long-lasting elevation of serum prolactin concentration induces adaptive changes when the acute stimulatory effects of prolactin on several parameters of the immune system have subsided. PMID:1369584

  1. Exosomes from HIV-1-infected Cells Stimulate Production of Pro-inflammatory Cytokines through Trans-activating Response (TAR) RNA.

    PubMed

    Sampey, Gavin C; Saifuddin, Mohammed; Schwab, Angela; Barclay, Robert; Punya, Shreya; Chung, Myung-Chul; Hakami, Ramin M; Zadeh, Mohammad Asad; Lepene, Benjamin; Klase, Zachary A; El-Hage, Nazira; Young, Mary; Iordanskiy, Sergey; Kashanchi, Fatah

    2016-01-15

    HIV-1 infection results in a chronic illness because long-term highly active antiretroviral therapy can lower viral titers to an undetectable level. However, discontinuation of therapy rapidly increases virus burden. Moreover, patients under highly active antiretroviral therapy frequently develop various metabolic disorders, neurocognitive abnormalities, and cardiovascular diseases. We have previously shown that exosomes containing trans-activating response (TAR) element RNA enhance susceptibility of undifferentiated naive cells to HIV-1 infection. This study indicates that exosomes from HIV-1-infected primary cells are highly abundant with TAR RNA as detected by RT-real time PCR. Interestingly, up to a million copies of TAR RNA/μl were also detected in the serum from HIV-1-infected humanized mice suggesting that TAR RNA may be stable in vivo. Incubation of exosomes from HIV-1-infected cells with primary macrophages resulted in a dramatic increase of proinflammatory cytokines, IL-6 and TNF-β, indicating that exosomes containing TAR RNA could play a direct role in control of cytokine gene expression. The intact TAR molecule was able to bind to PKR and TLR3 effectively, whereas the 5' and 3' stems (TAR microRNAs) bound best to TLR7 and -8 and none to PKR. Binding of TAR to PKR did not result in its phosphorylation, and therefore, TAR may be a dominant negative decoy molecule in cells. The TLR binding through either TAR RNA or TAR microRNA potentially can activate the NF-κB pathway and regulate cytokine expression. Collectively, these results imply that exosomes containing TAR RNA could directly affect the proinflammatory cytokine gene expression and may explain a possible mechanism of inflammation observed in HIV-1-infected patients under cART. PMID:26553869

  2. Antitumor activity of the protein and small molecule component fractions from Agrocybe aegerita through enhancement of cytokine production.

    PubMed

    Liang, Yi; Liu, Hong-Hong; Chen, Yi-Jie; Sun, Hui

    2014-04-01

    A water soluble extract from the medicinal mushroom Agrocybe aegerita has been shown to stimulate splenocyte proliferation, cytotoxic activity, and tumor rejection effect in tumor-bearing mouse models. In the present study, the crude extract was separated into a protein component fraction (Yp), mainly containing lectins and serine proteinase, and a small molecule component fraction (Ys), mainly containing triethylene glycol, α-bisabolol, n-hexadecanoic acid, and so on. The antitumor activity of the fractions was investigated in a tumor-bearing BALB/c mouse model. Repeat administration of Yp and Ys significantly inhibited tumor growth (P<.001), but little toxicity was observed. Moreover, the protein fraction Yp performed better than Ys in both antitumor and lifespan-prolonging activity. The cytokine expression levels in serum and splenocytes from extract-treated mice were selectively screened by enzyme-linked immunosorbent assay and quantitative real-time polymerase chain reaction, and the results showed that Yp upregulated the mRNA level of Th2 cytokine interleukin-10 (P<.01), and Ys increased the mRNA level of granulocyte-macrophage colony-stimulating factor (P<.01) and anti-inflammatory cytokine transforming growth factor-β (P<.01). All these data suggest that Yp and Ys can inhibit tumor growth via different mechanisms, which promotes the understanding of antitumor properties of medicinal fungi. PMID:24593676

  3. Silica nanoparticles activate purinergic signaling via P2X7 receptor in dendritic cells, leading to production of pro-inflammatory cytokines.

    PubMed

    Nakanishi, Kana; Tsukimoto, Mitsutoshi; Tanuma, Sei-Ichi; Takeda, Ken; Kojima, Shuji

    2016-09-01

    We examined the mechanism of SNP-mediated stimulation of IL-1β and IL-18 production via P2R-mediated pathways in mouse bone marrow dendritic cells (mBMDCs). Examination of uptake of SNPs with diameters of 30, 70, and 300nm (SNP30, SNP70, and SNP300, respectively) by lipopolysaccharide-matured mBMDCs revealed that significant uptake of SNP30 occurred within as short a time as 1h. Production of IL-1β and IL-18 by cells exposed to SNPs increased dose-dependently, and was highest in cells exposed to SNP30. The SNP30-induced cytokine production was significantly inhibited by ATPase (apyrase) and by P2X7 receptor antagonist (A438079). ATP release was also highest in SNP30-exposed cells. Treatment of mBMDCs with exogenous ATP induced release of high levels of IL-1β and IL-18, and this release was also significantly inhibited by apyrase and A438079. The order of effectiveness of the three SNPs for inducing intracellular reactive oxygen species (ROS) production accorded well with those of cytokine production and ATP release. ROS production was inhibited by diphenyleneiodonium chloride (DPI). SNPs, especially SNP30, activate purinergic signaling in matured mBMDCs by inducing ATP release via P2X7 receptor. ATP induces ROS production via NADPH oxidase, and ROS activate inflammasomes, leading to caspase-1-dependent processing of pro-cytokines and release of IL-1β and IL-18. PMID:27311643

  4. Filarial Lymphatic Pathology Reflects Augmented Toll-Like Receptor-Mediated, Mitogen-Activated Protein Kinase-Mediated Proinflammatory Cytokine Production ▿ †

    PubMed Central

    Babu, Subash; Anuradha, R.; Kumar, N. Pavan; George, P. Jovvian; Kumaraswami, V.; Nutman, Thomas B.

    2011-01-01

    Lymphatic filariasis can be associated with the development of serious pathology in the form of lymphedema, hydrocele, and elephantiasis in a subset of infected patients. Toll-like receptors (TLRs) are thought to play a major role in the development of filarial pathology. To elucidate the role of TLRs in the development of lymphatic pathology, we examined cytokine responses to different Toll ligands in patients with chronic lymphatic pathology (CP), infected patients with subclinical pathology (INF), and uninfected, endemic-normal (EN) individuals. TLR2, -7, and -9 ligands induced significantly elevated production of Th1 and other proinflammatory cytokines in CP patients in comparison to both INF and EN patients. TLR adaptor expression was not significantly different among the groups; however, both TLR2 and TLR9 ligands induced significantly higher levels of phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein (MAP) kinases (MAPK) as well as increased activation of NF-κB in CP individuals. Pharmacologic inhibition of both ERK1/2 and p38 MAP kinase pathways resulted in significantly diminished production of proinflammatory cytokines in CP individuals. Our data, therefore, strongly suggest an important role for TLR2- and TLR9-mediated proinflammatory cytokine induction and activation of both the MAPK and NF-κB pathways in the development of pathology in human lymphatic filariasis. PMID:21875961

  5. DNAs from Brucella strains activate efficiently murine immune system with production of cytokines, reactive oxygen and nitrogen species.

    PubMed

    Tavakoli, Zahra; Ardestani, Sussan K; Lashkarbolouki, Taghi; Kariminia, Amina; Zahraei Salehi, Taghi; Tavassoli, Nasser

    2009-09-01

    Brucellosis is an infectious disease with high impact on innate immune responses which is induced partly by its DNA. In the present study the potential differences of wild type and patients isolates versus attenuated vaccine strains in terms of cytokines, ROS and NO induction on murine splenocytes and peritoneal macrophages were investigated. This panel varied in base composition and included DNA from B. abortus, B. melitensis, B.abortus strain S19 and melitensis strain Rev1, as attenuated live vaccine. Also we included Escherichia coli DNA, calf thymus DNA (a mammalian DNA), as controls. These DNA were evaluated for their ability to stimulate IL-12, TNF-alpha, IL-10, IFN-gamma and ROS production from spleenocytes as well as NO production from peritoneal macrophages. Spleen cells were cultured in 24 well at a concentration of 106 cells/ ml with subsequent addition of 10 microg/ml of Brucella or Ecoli DNAs. These cultures were incubated at 37 degrees C with 5% CO2 for 5 days. Supernatants were harvested and cytokines, ROS and NOx were evaluated. It was observed that TNF-alpha was induced in days 1,3,5 by all Brucella strains DNAs and E. coli DNA, IL-10 only was induced in day 1, IFN- gamma was induced only in day 5 and IL-12 not induced. ROS and NOx were produced by all strains; however, we observed higher production of NOx which were stimulated by DNA of B. melitensis. PMID:20124603

  6. Evaluation of a topical herbal drug for its in-vivo immunomodulatory effect on cytokines production and antibacterial activity in bovine subclinical mastitis

    PubMed Central

    Bhatt, Vaibhav D.; Shah, Tejas M.; Nauriyal, Dev S.; Kunjadia, Anju P.; Joshi, Chaitanya G.

    2014-01-01

    Background: Antibiotics have been in use in the treatment of bovine mastitis since decades; however, their use is associated with cost issues and human health concern. Use of herbal drugs does not generally carry these disadvantages. Many plants/herbs have been evaluated in the treatment of bovine mastitis with additional property of immunomodulation in affected mammary gland. Aim: To evaluate a topical herbal drug in two breeds of cattle for its in-vivo immunomodulatory effect on cytokines production and antibacterial activity in bovine subclinical mastitis. Materials and Methods: The response to treatment was evaluated by enumerating somatic cell count (SCC), determining total bacterial load, and studying the expression of different cytokines (interleukin [IL]-6, IL-8, IL-12, granulocyte macrophage-colony stimulating factor, interferon (IFN)-γ and tumor necrosis factor [TNF]-α). Results: The pre- and post-treatment SCC in mastitic quarters statistically did not differ significantly, however, total bacterial load declined significantly from day 0 onwards in both the breeds. Highly significant differences (P < 0.01) were observed in all the cytokines on day 0, 5, and 21 postlast treatment in both the breeds. The expression level of all the cytokines showed a significant increase on day 5, while a decrease was noticed on day 21 in both the breeds of cattle. The comparison of cytokine expression profiles between crossbred and Gir cattle revealed a significant difference in expression of IL-6 and TNF-α. However, other cytokines exhibited a similar pattern of expression in both breeds, which was non-significant. Conclusion: The topical herbal drug exhibited antibacterial and immunomodulatory activities in subclinical mastitis and thus the work supports its use as alternative herbal therapy against subclinical udder infection in bovines. PMID:25558168

  7. Store-Operated Ca2+ Release-Activated Ca2+ Channels Regulate PAR2-Activated Ca2+ Signaling and Cytokine Production in Airway Epithelial Cells.

    PubMed

    Jairaman, Amit; Yamashita, Megumi; Schleimer, Robert P; Prakriya, Murali

    2015-09-01

    The G-protein-coupled protease-activated receptor 2 (PAR2) plays an important role in the pathogenesis of various inflammatory and auto-immune disorders. In airway epithelial cells (AECs), stimulation of PAR2 by allergens and proteases triggers the release of a host of inflammatory mediators to regulate bronchomotor tone and immune cell recruitment. Activation of PAR2 turns on several cell signaling pathways of which the mobilization of cytosolic Ca(2+) is likely a critical but poorly understood event. In this study, we show that Ca(2+) release-activated Ca(2+) (CRAC) channels encoded by stromal interaction molecule 1 and Orai1 are a major route of Ca(2+) entry in primary human AECs and drive the Ca(2+) elevations seen in response to PAR2 activation. Activation of CRAC channels induces the production of several key inflammatory mediators from AECs including thymic stromal lymphopoietin, IL-6, and PGE2, in part through stimulation of gene expression via nuclear factor of activated T cells (NFAT). Furthermore, PAR2 stimulation induces the production of many key inflammatory mediators including PGE2, IL-6, IL-8, and GM-CSF in a CRAC channel-dependent manner. These findings indicate that CRAC channels are the primary mechanism for Ca(2+) influx in AECs and a vital checkpoint for the induction of PAR2-induced proinflammatory cytokines. PMID:26238490

  8. Coagulase-negative staphylococci isolated from two cases of toxic shock syndrome lack superantigenic activity, but induce cytokine production.

    PubMed

    Lina, G; Fleer, A; Etienne, J; Greenland, T B; Vandenesch, F

    1996-01-01

    Two strains of Staphylococcus epidermidis isolated from patients with toxic shock symptoms have been reported to carry genes related to S. aureus enterotoxins B and C by dot-blot hybridisation, although the corresponding superantigenic toxins were not detected immunologically. We here show that these strains produce no superantigens capable of stimulating proliferation of human mononuclear leukocytes or rabbit splenocytes, and that no DNA homologous to the seb or sec genes can be detected by PCR. However, stimulation of human monocytes by whole killed bacteria induced dose-dependent production of the cytokines TNF alpha, IL-1 beta and IL-6, which may be responsible for the clinical symptoms in these patients. PMID:8821402

  9. Bispecific and trispecific killer cell engagers directly activate human NK cells through CD16 signaling and induce cytotoxicity and cytokine production

    PubMed Central

    Gleason, Michelle K.; Verneris, Michael R.; Todhunter, Deborah A.; Zhang, Bin; McCullar, Valarie; Zhou, Sophia X.; Panoskaltsis-Mortari, Angela; Weiner, Louis M.; Vallera, Daniel A.; Miller, Jeffrey S.

    2012-01-01

    This study evaluates the mechanism by which bispecific and trispecific killer cell engagers (BiKEs and TriKEs) act to trigger human NK cell effector function and investigates their ability to induce NK cell cytokine and chemokine production against human B-cell leukemia. We examined the ability of BiKEs and TriKEs to trigger NK cell activation through direct CD16 signaling, measuring intracellular Ca2+ mobilization, secretion of lytic granules, induction of target cell apoptosis and production of cytokine and chemokines in response to the Raji cell line and primary leukemia targets. Resting NK cells triggered by the recombinant reagents led to intracellular Ca2+ mobilization through direct CD16 signaling. Co-culture of reagent-treated resting NK cells with Raji targets resulted in significant increases in NK cell degranulation and target cell death. BiKEs and TriKEs effectively mediated NK cytotoxicity of Raji targets at high and low effector-to-target (E:T) ratios and maintained functional stability after 24 and 48 hours of culture in human serum. NK cell production of IFN-γ, TNF-α, GM-CSF, IL-8, MIP-1α and RANTES was differentially induced in the presence of recombinant reagents and Raji targets. Moreover, significant increases in NK cell degranulation and enhancement of IFN-γ production against primary ALL and CLL targets were induced with reagent treatment of resting NK cells. In conclusion, BiKEs and TriKEs directly trigger NK cell activation through CD16, significantly increasing NK cell cytolytic activity and cytokine production against tumor targets, demonstrating their therapeutic potential for enhancing NK cell immunotherapies for leukemias and lymphomas. PMID:23075808

  10. Intracellular cytokine production and cognition in healthy older adults.

    PubMed

    Simpson, Ellen E A; Hodkinson, Claire F; Maylor, Elizabeth A; McCormack, Jacqueline M; Rae, Gordon; Strain, Sean; Alexander, H Denis; Wallace, Julie M W

    2013-10-01

    Elevated concentrations of the pro-inflammatory cytokines IL-1β and IL-6 have been associated with impaired cognitive performance. There are, however, few studies that have examined the relationship between cytokine production and specific aspects of cognition in healthy older individuals. Two-colour flow cytometry was used to determine intracellular cytokine production by activated monocytes, and neuropsychological tests were performed using the Cambridge Neuropsychological Test Automated Battery (CANTAB) in 93 apparently healthy men and women aged 55-70 years. A series of hierarchical regression analyses was carried out to examine the contribution of IL-1β and IL-6 (% expression and production (antibody binding capacity (ABC))) to recognition, attention and working memory, after controlling for socio-demographic variables (age, sex and social class). IL-1β% expression and IL-6 production predicted aspects of working memory. Recognition memory was found to be sensitive to the affects of age and social class. The current study suggests that higher intracellular cytokine production by activated monocytes may be predictive of lower cognitive performance in working memory in healthy older individuals. These findings indicate that utilization of models for in vivo cytokine production upon immune challenge may be useful in studying specific aspects of memory affected during inflammatory responses, for example in individuals at risk for cognitive decline owing to age-related inflammatory disorders. PMID:23664267

  11. Changes in proinflammatory cytokine activity after menopause.

    PubMed

    Pfeilschifter, Johannes; Köditz, Roland; Pfohl, Martin; Schatz, Helmut

    2002-02-01

    There is now a large body of evidence suggesting that the decline in ovarian function with menopause is associated with spontaneous increases in proinflammatory cytokines. The cytokines that have obtained the most attention are IL-1, IL-6, and TNF-alpha. The exact mechanisms by which estrogen interferes with cytokine activity are still incompletely known but may potentially include interactions of the ER with other transcription factors, modulation of nitric oxide activity, antioxidative effects, plasma membrane actions, and changes in immune cell function. Experimental and clinical studies strongly support a link between the increased state of proinflammatory cytokine activity and postmenopausal bone loss. Preliminary evidence suggests that these changes also might be relevant to vascular homeostasis and the development of atherosclerosis. Better knowledge of the mechanisms and the time course of these interactions may open new avenues for the prevention and treatment of some of the most prevalent and important disorders in postmenopausal women. PMID:11844745

  12. Vascular Leakage in Dengue Hemorrhagic Fever Is Associated with Dengue Infected Monocytes, Monocyte Activation/Exhaustion, and Cytokines Production

    PubMed Central

    Chunhakan, Sirichan; Butthep, Punnee; Yoksan, Sutee; Tangnararatchakit, Kanchana; Chuansumrit, Ampaiwan

    2015-01-01

    The vascular leakage was shown by the increment of hematocrit (Hct), dengue viral infected monocyte, monocyte status, and cytokines production in patients infected with dengue virus. Dengue viral antigens were demonstrated in monocytes (CD14+) from peripheral blood mononuclear cells. The increased levels of Hct, interleukin- (IL-) 10, and tumor necrosis factor-alpha (TNF-α) were detected in dengue fever (DF), dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) patients as compared with other febrile illnesses (OFIs). The highest levels of Hct and IL-10 were detected in DSS patients as compared with other groups (P < 0.05) especially on one day before and after defervescence. The unstimulated and lipopolysaccharide- (LPS-) stimulated monocytes from DSS patients showed the significantly decreased of intracellular IL-1β and TNF-α. In addition, the lowest level of mean fluorescence intensity (MFI) of CD11b expression on monocytes surface in DSS patients was also demonstrated. Furthermore, the negative correlations between IL-10 levels and intracellular IL-1β and MFI of CD11b expression in unstimulated and LPS-stimulated monocytes were also detected. Nevertheless, not only were the relationships between the prominent IL-10 and the suppression of intracellular monocyte secretion, namely, IL-1β, TNF-α, demonstrated but also the effect of vascular leakage was observed. PMID:25722892

  13. In vitro activation of cord blood mononuclear cells and cytokine production in a remote coastal population exposed to organochlorines and methyl mercury.

    PubMed

    Bilrha, Houda; Roy, Raynald; Moreau, Brigitte; Belles-Isles, Marthe; Dewailly, Eric; Ayotte, Pierre

    2003-12-01

    Remote coastal populations that rely on seafood for subsistence often receive unusually high doses of organochlorines and methyl mercury. Immunosuppression resulting from prenatal exposure to organochlorines has been reported in wildlife species and humans. In this study, we assessed lymphocyte activation and associated cytokine secretion in 47 newborns from a remote maritime population living on the Mid and Lower North Shore regions of the St. Lawrence River (Québec, Canada; subsistence fishing group) and 65 newborns from nearby urban settings (reference group). Cord blood samples were collected for organochlorine and mercury analyses and also to isolate cord blood mononuclear cells (CBMCs) for the in vitro assessment of cytokine production and expression of surface markers after mitogenic stimulation (CD4(+)CD45RO(+), CD8(+)CD45RO(+), CD3(+)CD25(+), and CD8(+)HLA-DR(+)). Blood mercury and plasma concentrations of polychlorinated biphenyls (PCBs), 1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene (p,p'-DDE), and hexachlorobenzene (HCB) were significantly higher in the subsistence fishing group than in the reference group (p < 0.001). No difference was observed between the two groups regarding subsets of lymphocytes showing markers of activation. In vitro secretion of cytokines by CBMCs after mitogenic stimulation was lower in the subsistence fishing group than in the reference group (p < 0.05). Moreover, we found an inverse correlation between tumor necrosis factor-alpha (TNF-alpha) secretion and plasma PCB, p,p'-DDE, and HCB concentrations (p < 0.05). Our data support a negative association between TNF-alpha secretion by CBMCs and prenatal organochlorine exposure. If the relationship between organochlorine and TNF-alpha secretion is causal, it would suggest a role for this important proinflammatory cytokine in mediating organochlorine-induced immunotoxicity in infants developmentally exposed to these compounds. PMID:14644672

  14. Involvement of major components from Sporothrix schenckii cell wall in the caspase-1 activation, nitric oxide and cytokines production during experimental sporotrichosis.

    PubMed

    Gonçalves, Amanda Costa; Maia, Danielle Cardoso Geraldo; Ferreira, Lucas Souza; Monnazzi, Luis Gustavo Silva; Alegranci, Pâmela; Placeres, Marisa Campos Polesi; Batista-Duharte, Alexander; Carlos, Iracilda Zeppone

    2015-02-01

    Sporotrichosis is a chronic infection caused by the dimorphic fungus Sporothrix schenckii, involving all layers of skin and the subcutaneous tissue. The role of innate immune toll-like receptors 2 and 4 in the defense against this fungus has been reported, but so far, there were no studies on the effect of cell wall major components over the cytosolic oligo-merization domain (NOD)-like receptors, important regulators of inflammation and responsible for the maturation of IL-1β and IL-18, whose functions are dependents of the caspase-1 activation, that can participate of inflammasome. It was evaluated the percentage of activation of caspase-1, the production of IL-1β, IL-18, IL-17, IFN-γ and nitric oxide in a Balb/c model of S. schenckii infection. It was observed a decreased activity of caspase-1 during the fourth and sixth weeks of infection accompanied by reduced secretion of the cytokines IL-1β, IL-18 and IL-17 and high production of nitric oxide. IFN-γ levels were elevated during the entire time course of infection. This temporal reduction in caspase-1 activity coincides exactly with the reported period of fungal burden associated with a transitory immunosuppression induced by this fungus and detected in similar infection models. These results indicate the importance of interaction between caspase-1, cytokines IL-1β and IL-18 in the host defense against S. schenckii infection, suggesting a participation the inflammasome in this response. PMID:25205196

  15. IRAK-M expression limits dendritic cell activation and proinflammatory cytokine production in response to Helicobacter pylori.

    PubMed

    Shiu, Jessica; Czinn, Steven J; Kobayashi, Koichi S; Sun, Yezhou; Blanchard, Thomas G

    2013-01-01

    Helicobacter pylori (H. pylori) infects the gastric mucosa and persists for the life of the host. Bacterial persistence may be due to the induction of regulatory T cells (Tregs) whichmay have protective effects against other diseases such as asthma. It has been shown that H. pylori modulates the T cell response through dendritic cell reprogramming but the molecular pathways involved are relatively unknown. The goal of this study was to identify critical elements of dendritic cell (DC) activation and evaluate potential influence on immune activation. Microarray analysis was used to demonstrate limited gene expression changes in H. pylori stimulated bone marrow derived DCs (BMDCs) compared to the BMDCs stimulated with E. coli. IRAK-M, a negative regulator of TLR signaling, was upregulated and we selectedit for investigation of its role in modulating the DC and T cell responses. IRAK-M(-/-) and wild type BMDC were compared for their response to H. pylori. Cells lacking IRAK-M produced significantly greater amounts of proinflammatory MIP-2 and reduced amounts of immunomodulatory IL-10 than wild type BMDC. IRAK-M(-/-) cells also demonstrated increased MHC II expression upon activation. However, IRAK-M(-/-) BMDCs were comparable to wild type BMDCs in inducing T-helper 17 (TH17) and Treg responses as demonstrated in vitro using BMDC CD4+ T cells co-culture assays,and in vivo though the adoptive transfer of CD4(+) FoxP3-GFP T cells into H. pylori infected IRAK-M(-/-) mice. These results suggest that H. pylori infection leads to the upregulation of anti-inflammatory molecules like IRAK-M and that IRAK-M has a direct impact on innate functions in DCs such as cytokine and costimulation molecule upregulation but may not affect T cell skewing. PMID:23776703

  16. MACROPHAGE ACTIVATION SYNDROME AND CYTOKINE DIRECTED THERAPIES

    PubMed Central

    Grom, Alexei A.

    2014-01-01

    Macrophage activation syndrome (MAS) is an episode of overwhelming inflammation that occurs most commonly in children with systemic juvenile idiopathic arthritis. It is characterized by expansion and activation of T lymphocytes and hemophagocytic macrophages, and bears great similarity to hemophagocytic lymphohistiocytosis (HLH). This disorder has substantial morbidity and mortality, and there is frequently a delay in recognition and initiation of treatment. Here, we will review what is known about the pathogenesis of MAS and in particular its similarities to HLH. The development of MAS is characterized by a cytokine storm, with the elaboration of numerous proinflammatory cytokines. We will examine the evidence for various cytokines in the initiation and pathogenesis of MAS, and discuss how new biologic therapies may alter the risk of MAS. Finally we will review current treatment options for MAS, and examine how cytokine-directed therapy could serve as novel treatment modalities. PMID:24974063

  17. Fenoterol inhibits LPS-induced AMPK activation and inflammatory cytokine production through β-arrestin-2 in THP-1 cell line

    SciTech Connect

    Wang, Wei; Zhang, Yuan; Xu, Ming; Zhang, You-Yi; He, Bei

    2015-06-26

    The AMP-activated protein kinase (AMPK) pathway is involved in regulating inflammation in several cell lines. We reported that fenoterol, a β{sub 2}-adrenergic receptor (β{sub 2}-AR) agonist, had anti-inflammatory effects in THP-1 cells, a monocytic cell line. Whether the fenoterol anti-inflammatory effect involves the AMPK pathway is unknown. In this study, we explored the mechanism of β{sub 2}-AR stimulation with fenoterol in a lipopolysaccharide (LPS)-induced inflammatory cytokine secretion in THP-1 cells. We studied whether fenoterol and β-arrestin-2 or AMPKα1 subunit knockdown could affect LPS-induced AMPK activation, nuclear factor-kappa B (NF-κB) activation and inflammatory cytokine secretion. LPS-induced AMPK activation and interleukin 1β (IL-1β) release were reduced with fenoterol pretreatment of THP-1 cells. SiRNA knockdown of β-arrestin-2 abolished the fenoterol inhibition of LPS-induced AMPK activation and interleukin 1β (IL-1β) release, thus β-arrestin-2 mediated the anti-inflammatory effects of fenoterol on LPS-treated THP-1 cells. In addition, siRNA knockdown of AMPKα1 significantly attenuated the LPS-induced NF-κB activation and IL-1β release, so AMPKα1 was a key signaling molecule involved in LPS-induced inflammatory cytokine production. These results suggested the β{sub 2}-AR agonist fenoterol inhibited LPS-induced AMPK activation and IL-1β release via β-arrestin-2 in THP-1 cells. The exploration of these mechanisms may help optimize therapeutic agents targeting these pathways in inflammatory diseases. - Highlights: • β{sub 2}-AR agonist fenoterol exerts its protective effect on LPS-treated THP-1 cells. • Fenoterol inhibits LPS-induced AMPK activation and IL-1β production. • β-arrestin2 mediates fenoterol-inhibited AMPK activation and IL-1β release. • AMPKα1 is involved in LPS-induced NF-κB activation and IL-1β production.

  18. Flexible cytokine production by macrophages and T cells in response to probiotic bacteria: a possible mechanism by which probiotics exert multifunctional immune regulatory activities.

    PubMed

    Shida, Kan; Nanno, Masanobu; Nagata, Satoru

    2011-01-01

    Probiotics have been reported to be efficacious against cancers, infections, allergies, inflammatory bowel diseases and autoimmune diseases, and it is important to explain how such multifunctional activities are realized. Lactobacillus casei Shirota (LcS) is one of these multifunctional probiotics, and its ability to augment the host immune system has been extensively examined. We have shown that the cell wall structure of this probiotic strain is responsible for potently inducing IL-12 production. In addition, we have recently found that LcS differentially controls the inflammatory cytokine responses of macrophages and T cells in either Peyer's patches or the spleen. Other studies revealed that LcS-induced IL-12 production by macrophages is modified when other bacteria or their cell components are simultaneously present. These findings can provide a theoretical basis for understanding the multifunctional activities of specific probiotics. PMID:21637028

  19. Phosphorylation of Mitogen- and Stress-Activated Protein Kinase-1 in Astrocytic Inflammation: A Possible Role in Inhibiting Production of Inflammatory Cytokines

    PubMed Central

    Shi, Jinlong; Ni, Lanchun; Huang, Qingfeng; Xia, Liang; Nie, Dekang; Lu, Xiaojian; Chen, Jian; Shi, Wei

    2013-01-01

    Purpose It is generally accepted that inflammation has a role in the progression of many central nervous system (CNS) diseases, although the mechanisms through which this occurs remain unclear. Among mitogen-activated protein kinase (MAPK) targets, mitogen- and stress-activated protein kinase (MSK1) has been thought to be involved in the pathology of inflammatory gene expression. In this study, the roles of MSK1 activation in neuroinflammation were investigated. Methods The bacterial lipopolysaccharide (LPS)-induced brain injury model was performed on Sprague-Dawley rats. The dynamic expression changes and the cellular location of p-MSK1 in the brain cortex were detected by Western blot and immunofluorescence staining. The synthesis of inflammatory cytokines in astrocytes was detected by enzyme-linked immunosorbent assay (ELISA). Results Phosphorylated MSK1 (p-MSK1 Thr-581) was induced significantly after intracerebral injection of LPS into the lateral ventricles of the rat brain. Specific upregulation of p-MSK1 in astrocytes was also observed in inflamed cerebral cortex. At 1 day after LPS stimulation, iNOS, TNFα expression, and the astrocyte marker glial fibrillary acidic protein (GFAP) were increased significantly. Also, in vitro studies indicated that the upregulation of p-MSK1 (Thr-581) may be involved in the subsequent astrocyte inflammatory process, following LPS challenge. Using an enzyme-linked immunosorbent assay (ELISA), it was confirmed that treatment with LPS in primary astrocytes stimulated the synthesis of inflammatory cytokines, through MAPKs signaling pathways. In cultured primary astrocytes, both knock-down of total MSK1 by small interfering RNAs (siRNA) or specific mutation of Thr-581 resulted in higher production of certain cytokines, such as TNFα and IL-6. Conclusions Collectively, these results suggest that MSK1 phosphorylation is associated with the regulation of LPS-induced brain injury and possibly acts as a negative regulator of

  20. MicroRNA-122 Inhibits the Production of Inflammatory Cytokines by Targeting the PKR Activator PACT in Human Hepatic Stellate Cells

    PubMed Central

    Nakamura, Masato; Kanda, Tatsuo; Sasaki, Reina; Haga, Yuki; Jiang, Xia; Wu, Shuang; Nakamoto, Shingo; Yokosuka, Osamu

    2015-01-01

    MicroRNA-122 (miR-122) is one of the most abundant miRs in the liver. Previous studies have demonstrated that miR-122 plays a role in inflammation in the liver and functions in hepatic stellate cells (HSCs), which reside in the space of Disse. Here, we showed that the transient inhibition of PKR-activating protein (PACT) expression, by miR-122 or siRNA targeting of PACT, suppressed the production of proinflammatory cytokines, such as interleukin (IL)-6, monocyte chemoattractant protein-1 (MCP-1) and IL-1β, in human HSC LX-2. Sequence and functional analyses confirmed that miR-122 directly targeted the 3′-untranslated region of PACT. Immunofluorescence analysis revealed that miR-122 blocked NF-κB-nuclear translocation in LX-2 cells. We also showed that conditioned medium from miR-122-transfected LX-2 cells suppressed human monocyte-derived THP-1 cell migration. Taken together, our study indicates that miR-122 may downregulate cytokine production in HSCs and macrophage chemotaxis and that the targeting of miR-122 may have therapeutic potential for preventing the progression of liver diseases. PMID:26636761

  1. MicroRNA-122 Inhibits the Production of Inflammatory Cytokines by Targeting the PKR Activator PACT in Human Hepatic Stellate Cells.

    PubMed

    Nakamura, Masato; Kanda, Tatsuo; Sasaki, Reina; Haga, Yuki; Jiang, Xia; Wu, Shuang; Nakamoto, Shingo; Yokosuka, Osamu

    2015-01-01

    MicroRNA-122 (miR-122) is one of the most abundant miRs in the liver. Previous studies have demonstrated that miR-122 plays a role in inflammation in the liver and functions in hepatic stellate cells (HSCs), which reside in the space of Disse. Here, we showed that the transient inhibition of PKR-activating protein (PACT) expression, by miR-122 or siRNA targeting of PACT, suppressed the production of proinflammatory cytokines, such as interleukin (IL)-6, monocyte chemoattractant protein-1 (MCP-1) and IL-1β, in human HSC LX-2. Sequence and functional analyses confirmed that miR-122 directly targeted the 3'-untranslated region of PACT. Immunofluorescence analysis revealed that miR-122 blocked NF-κB-nuclear translocation in LX-2 cells. We also showed that conditioned medium from miR-122-transfected LX-2 cells suppressed human monocyte-derived THP-1 cell migration. Taken together, our study indicates that miR-122 may downregulate cytokine production in HSCs and macrophage chemotaxis and that the targeting of miR-122 may have therapeutic potential for preventing the progression of liver diseases. PMID:26636761

  2. Comparative characterization of cytokine production by concanavalin A-activated splenocytes from BALB/c and C57BL/6 mice after cold exposure.

    PubMed

    Makarova, O V; Trunova, G V; Diatroptov, M E; Serebryakov, S N; Kondashevskaya, M V; Malaitsev, V V

    2005-02-01

    The level of cytokines produced by ConA activated splenocytes was studied in male BALB/c and C57Bl/6 mice after single and repeated cold exposure (-20 degrees C, 3 min). Single cold exposure significantly decreased IL-2, -3, -4, -5, -10, -12, IFN-gamma production in BALB/c mice and decreased IL-2 content and increased TNF-alpha level in C57Bl/6 mice. Repeated cold exposure normalized the content of IL-2, -4, -10, -12, and IFN-gamma in BALB/c mice, which reflects the development of adaptive immune reactions. In C57Bl/6 mice IL-2, -3, -5, -10, -12, and IFN-gamma production remained significantly decreased, which attested to dysadaptive processes. PMID:16027812

  3. Search for potent modulators of cytokine production by macrophages.

    PubMed

    Nikitin, A A; Abidov, M T; Kovalevskaya, E O; Kalyuzhin, O V

    2004-09-01

    We compared the effects of Tamerit, Polyoxidony, and Licopid on spontaneous and lipopolysaccharide-stimulated production of interleukin-1 and tumor necrosis factor by mouse peritoneal macrophages in vitro. The test preparations were equally potent in stimulating nonactivated cells. Licopid produced a costimulatory effect on macrophages primed with endotoxin. Tamerit in different doses suppressed cytokine production by cells. Polyoxidony in low doses activated, but in high doses suppressed this process. PMID:15665918

  4. Cytokine production capacity in depression and anxiety.

    PubMed

    Vogelzangs, N; de Jonge, P; Smit, J H; Bahn, S; Penninx, B W

    2016-01-01

    Recent studies have suggested that immune function may be dysregulated in persons with depressive and anxiety disorders. Few studies examined the expression of cytokines in response to ex vivo stimulation of blood by lipopolysaccharide (LPS) to study the innate production capacity of cytokines in depression and anxiety. To investigate this, baseline data from the Netherlands Study of Depression and Anxiety (NESDA) were used, including persons (18-65 years; 66% women) with current (that is, past month; N=591) or remitted (N=354) DSM-IV depressive or anxiety disorders and healthy controls (N=297). Depressive and anxiety symptoms were measured by means of the Inventory of Depressive Symptomatology (IDS) and the Beck Anxiety Inventory (BAI). Using Multi-Analyte Profiling technology, plasma levels of 13 cytokines were assayed after whole blood stimulation by addition of LPS. Basal plasma levels of C-reactive protein, interleukin-6 and tumor necrosis factor-α were also available. A basal and a LPS summary index were created. Results show that LPS-stimulated inflammation was associated with increased odds of current depressive/anxiety disorders (odds ratio (OR)=1.28, P=0.009), as was the case for basal inflammation (OR=1.28, P=0.001). These associations were no longer significant after adjustment for lifestyle and health (OR=1.13, P=0.21; OR=1.07, P=0.45, respectively). After adjustment for lifestyle and health, interleukin-8 was associated with both remitted (OR=1.25, P=0.02) and current (OR=1.28, P=0.005) disorders. In addition, LPS-stimulated inflammation was associated with more severe depressive (β=0.129, P<0.001) and anxiety (β=0.165, P<0.001) symptoms, as was basal inflammation. Unlike basal inflammation, LPS-stimulated inflammation was still associated with (anxiety) symptom severity after adjustment for lifestyle and health (IDS: interleukin (IL)-8, MCP-1, MMP2; BAI: LPS index, IL-6, IL-8, IL-10, IL-18, MCP-1, MMP2, TNF-β). To conclude, lifestyle and health

  5. Modulation of Cytokine Production and Transcription Factors Activities in Human Jurkat T Cells by Thymol and Carvacrol

    PubMed Central

    Gholijani, Nasser; Gharagozloo, Marjan; Kalantar, Fathollah; Ramezani, Amin; Amirghofran, Zahra

    2015-01-01

    Purpose: Thymol and carvacrol, two main components of thyme, have shown anti-inflammatory effects. The aim of this study was to assess the effects of these components on Jurkat leukemia cells as an in vitro T cell model and their molecular mechanisms of activity. Methods: Cells were cultured in the presence of components and subsequently stimulated with phorbol-12-myristate-13-acetate (PMA)/calcium ionophore for evaluating interleukin (IL)-2 and interferon (IFN)-γ production. The activation of T cell transcription factors that included nuclear factors of activated T cells (NFATs), activator protein-1 (AP-1; c-Jun/c-Fos), and nuclear factor (NF)-κB were examined by Western blot analysis. Results: Thymol and carvacrol at 25 µg/ml significantly reduced IL-2 levels from 119.4 ± 8pg/ml in control cells treated only with PMA/Calcium ionophore and the solvent to 66.9 ± 6.4pg/ml (thymol) and 32.3 ± 3.6pg/ml (carvacrol) and IFN-γ from 423.7 ± 19.7pg/ml in control cells to 311.9 ± 11.6pg/ml (thymol) and 293.5 ± 16.7pg/ml (carvacrol). Western blot analyses of nuclear extracts showed that the same concentrations of components significantly reduced NFAT-2 to 44.2 ± 2.7% (thymol) and 91.4 ± 2.3% (carvacrol) of the control (p<0.05), and c-Fos to 31.2 ± 6.2% (thymol) and 27.6 ± 3.1% (carvacrol) of the control (p<0.01). No effects on NFAT-1, c-Jun and phospho-NF-κBp65 levels were observed. Conclusion: Thymol and carvacrol could contribute to modulation of T cell activity by reducing IL-2 and IFN-γ production possibly through down regulation of AP-1 and NFAT-2 transcription factors suggesting their potential usefulness for reduction of T cell overactivity in immune-mediated diseases. PMID:26793612

  6. Resveratrol Suppresses Cytokine Production Linked to FcεRI-MAPK Activation in IgE-Antigen Complex-Exposed Basophilic Mast Cells and Mice.

    PubMed

    Han, Seon-Young; Choi, Yean-Jung; Kang, Min-Kyung; Park, Jung Han Yoon; Kang, Young-Hee

    2015-01-01

    A complicated interplay between resident mast cells and other recruited inflammatory cells contributes to the development and progression of allergic inflammation entailing the promotion of T helper 2 (Th2) cytokine responses. The current study examined whether resveratrol suppressed the production of inflammatory Th2 cytokines in cultured rat basophilic leukemia RBL-2H3 cells. Cells pre-treated with resveratrol nontoxic at 1–25 μM were sensitized with anti-dinitrophenyl (anti-DNP), and subsequently stimulated by dinitrophenyl-human serum albumin (DNP–HSA) antigen. Resveratrol dose-dependently diminished the secretion of interleukin (IL)-3, IL-4, IL-13 as well as tumor necrosis factor (TNF)-α by the antigen stimulation from sensitized cells. It was found that resveratrol mitigated the phosphorylation of p38 MAPK, ERK, and JNK elevated in mast cells exposed to Fc epsilon receptor I (FcεRI)-mediated immunoglobulin E (IgE)-antigen complex. The FcεRI aggregation was highly enhanced on the surface of mast cells following the HSA stimulation, which was retarded by treatment with 1–25 μM resveratrol. The IgE-receptor engagement rapidly induced tyrosine phosphorylation of c-Src-related focal adhesion protein paxillin involved in the cytoskeleton rearrangement. The FcεRI-mediated rapid activation of c-Src and paxillin was attenuated in a dose-dependent manner. In addition, the paxillin activation entailed p38 MAPK and ERK-responsive signaling, but the JNK activation was less involved. Consistently, oral administration of resveratrol reduced the tissue level of phosphorylated paxillin in the dorsal skin of DNP–HSA-challenged mice. The other tyrosine kinase Tyk2-STAT1 signaling was activated in the dorsal epidermis of antigen-exposed mice, which was associated with allergic inflammation. These results showed that resveratrol inhibited Th2 cytokines- and paxillin-linked allergic responses dependent upon MAPK signaling. Therefore, resveratrol may possess the

  7. Shiga Toxins Activate the NLRP3 Inflammasome Pathway To Promote Both Production of the Proinflammatory Cytokine Interleukin-1β and Apoptotic Cell Death

    PubMed Central

    Lee, Moo-Seung; Kwon, Haenaem; Lee, Eun-Young; Kim, Dong-Jae; Park, Jong-Hwan; Tesh, Vernon L.; Oh, Tae-Kwang

    2015-01-01

    Shiga toxin (Stx)-mediated immune responses, including the production of the proinflammatory cytokines tumor necrosis-α (TNF-α) and interleukin-1β (IL-1β), may exacerbate vascular damage and accelerate lethality. However, the immune signaling pathway activated in response to Stx is not well understood. Here, we demonstrate that enzymatically active Stx, which leads to ribotoxic stress, triggers NLRP3 inflammasome-dependent caspase-1 activation and IL-1β secretion in differentiated macrophage-like THP-1 (D-THP-1) cells. The treatment of cells with a chemical inhibitor of glycosphingolipid biosynthesis, which suppresses the expression of the Stx receptor globotriaosylceramide and subsequent endocytosis of the toxin, substantially blocked activation of the NLRP3 inflammasome and processing of caspase-1 and IL-1β. Processing and release of both caspase-1 and IL-1β were significantly reduced or abolished in Stx-intoxicated D-THP-1 cells in which the expression of NLRP3 or ASC was stably knocked down. Furthermore, Stx mediated the activation of caspases involved in apoptosis in an NLRP3- or ASC-dependent manner. In Stx-intoxicated cells, the NLRP3 inflammasome triggered the activation of caspase-8/3, leading to the initiation of apoptosis, in addition to caspase-1-dependent pyroptotic cell death. Taken together, these results suggest that Stxs trigger the NLRP3 inflammasome pathway to release proinflammatory IL-1β as well as to promote apoptotic cell death. PMID:26502906

  8. Mechanisms Underlying the Anti-Inflammatory Effects of Clinacanthus nutans Lindau Extracts: Inhibition of Cytokine Production and Toll-Like Receptor-4 Activation.

    PubMed

    Mai, Chun W; Yap, Kok S I; Kho, Mee T; Ismail, Nor H; Yusoff, Khatijah; Shaari, Khozirah; Chin, Swee Y; Lim, Erin S H

    2016-01-01

    Clinacanthus nutans has had a long history of use in folk medicine in Malaysia and Southeast Asia; mostly in the relief of inflammatory conditions. In this study, we investigated the effects of different extracts of C. nutans upon lipopolysaccharide (LPS) induced inflammation in order to identify its mechanism of action. Extracts of leaves and stem bark of C. nutans were prepared using polar and non-polar solvents to produce four extracts, namely polar leaf extract (LP), non-polar leaf extract (LN), polar stem extract (SP), and non-polar stem extracts (SN). The extracts were standardized by determining its total phenolic and total flavonoid contents. Its anti-inflammatory effects were assessed on LPS induced nitrite release in RAW264.7 macrophages and Toll-like receptor (TLR-4) activation in TLR-4 transfected human embryonic kidney cells (HEK-Blue(TM)-hTLR4 cells). The levels of inflammatory cytokines (TNF-α, IFN-γ, IL-1β, IL-6, IL-12p40, and IL-17) in treated RAW264.7 macrophages were quantified to verify its anti-inflammatory effects. Western blotting was used to investigate the effect of the most potent extract (LP) on TLR-4 related inflammatory proteins (p65, p38, ERK, JNK, IRF3) in RAW264.7 macrophages. All four extracts produced a significant, concentration-dependent reduction in LPS-stimulated nitric oxide, LPS-induced TLR-4 activation in HEK-Blue(TM)-hTLR4 cells and LPS-stimulated cytokines production in RAW264.7 macrophages. The most potent extract, LP, also inhibited all LPS-induced TLR-4 inflammatory proteins. These results provide a basis for understanding the mechanisms underlying the previously demonstrated anti-inflammatory activity of C. nutans extracts. PMID:26869924

  9. Mechanisms Underlying the Anti-Inflammatory Effects of Clinacanthus nutans Lindau Extracts: Inhibition of Cytokine Production and Toll-Like Receptor-4 Activation

    PubMed Central

    Mai, Chun W.; Yap, Kok S. I.; Kho, Mee T.; Ismail, Nor H.; Yusoff, Khatijah; Shaari, Khozirah; Chin, Swee Y.; Lim, Erin S. H.

    2016-01-01

    Clinacanthus nutans has had a long history of use in folk medicine in Malaysia and Southeast Asia; mostly in the relief of inflammatory conditions. In this study, we investigated the effects of different extracts of C. nutans upon lipopolysaccharide (LPS) induced inflammation in order to identify its mechanism of action. Extracts of leaves and stem bark of C. nutans were prepared using polar and non-polar solvents to produce four extracts, namely polar leaf extract (LP), non-polar leaf extract (LN), polar stem extract (SP), and non-polar stem extracts (SN). The extracts were standardized by determining its total phenolic and total flavonoid contents. Its anti-inflammatory effects were assessed on LPS induced nitrite release in RAW264.7 macrophages and Toll-like receptor (TLR-4) activation in TLR-4 transfected human embryonic kidney cells (HEK-BlueTM-hTLR4 cells). The levels of inflammatory cytokines (TNF-α, IFN-γ, IL-1β, IL-6, IL-12p40, and IL-17) in treated RAW264.7 macrophages were quantified to verify its anti-inflammatory effects. Western blotting was used to investigate the effect of the most potent extract (LP) on TLR-4 related inflammatory proteins (p65, p38, ERK, JNK, IRF3) in RAW264.7 macrophages. All four extracts produced a significant, concentration-dependent reduction in LPS-stimulated nitric oxide, LPS-induced TLR-4 activation in HEK-BlueTM-hTLR4 cells and LPS-stimulated cytokines production in RAW264.7 macrophages. The most potent extract, LP, also inhibited all LPS-induced TLR-4 inflammatory proteins. These results provide a basis for understanding the mechanisms underlying the previously demonstrated anti-inflammatory activity of C. nutans extracts. PMID:26869924

  10. Differential regulation of cytokine production by nitric oxide.

    PubMed Central

    Marcinkiewicz, J; Chain, B M

    1993-01-01

    Nitric oxide (NO) has recently been identified as a potent and pleiotropic intracellular mediator produced by and acting on many cells of the body. Although considerable attention has been devoted to the regulation of NO by inflammatory cytokines, and also to the role of NO as an important effector molecule in immune function, there is very little information on the role of this mediator in modulating T-cell-dependent cytokine production. In this study we show that physiological levels of NO (either produced by activated macrophages or by the addition of exogenous NO donors) can selectively down-regulate interleukin-3 (IL-3) production by spleen cells from contact-sensitized mice, while leaving IL-2 activity unaffected. Thus NO may have an important role as an immunomodulatory as well as effector molecule in the immune system. PMID:8244457

  11. Leptin activation of mTOR pathway in intestinal epithelial cell triggers lipid droplet formation, cytokine production and increased cell proliferation.

    PubMed

    Fazolini, Narayana P B; Cruz, André L S; Werneck, Miriam B F; Viola, João P B; Maya-Monteiro, Clarissa M; Bozza, Patrícia T

    2015-01-01

    Accumulating evidence suggests that obesity and enhanced inflammatory reactions are predisposing conditions for developing colon cancer. Obesity is associated with high levels of circulating leptin. Leptin is an adipocytokine that is secreted by adipose tissue and modulates immune response and inflammation. Lipid droplets (LD) are organelles involved in lipid metabolism and production of inflammatory mediators, and increased numbers of LD were observed in human colon cancer. Leptin induces the formation of LD in macrophages in a PI3K/mTOR pathway-dependent manner. Moreover, the mTOR is a serine/threonine kinase that plays a key role in cellular growth and is frequently altered in tumors. We therefore investigated the role of leptin in the modulation of mTOR pathway and regulation of lipid metabolism and inflammatory phenotype in intestinal epithelial cells (IEC-6 cells). We show that leptin promotes a dose- and time-dependent enhancement of LD formation. The biogenesis of LD was accompanied by enhanced CXCL1/CINC-1, CCL2/MCP-1 and TGF-β production and increased COX-2 expression in these cells. We demonstrated that leptin-induced increased phosphorylation of STAT3 and AKT and a dose and time-dependent mTORC activation with enhanced phosphorilation of the downstream protein P70S6K protein. Pre-treatment with rapamycin significantly inhibited leptin effects in LD formation, COX-2 and TGF-β production in IEC-6 cells. Moreover, leptin was able to stimulate the proliferation of epithelial cells on a mTOR-dependent manner. We conclude that leptin regulates lipid metabolism, cytokine production and proliferation of intestinal cells through a mechanism largely dependent on activation of the mTOR pathway, thus suggesting that leptin-induced mTOR activation may contribute to the obesity-related enhanced susceptibility to colon carcinoma. PMID:26017929

  12. Blueberries reduce pro-inflammatory cytokine TNF-alpha and IL-6 production in mouse macrophages by inhibiting NF Kappa B activation and the MAPK pathway

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blueberries (BB) have been reported to attenuate atherosclerosis in apoE deficient (ApoE-/-) mice. The aim of this study was to evaluate the effects of BB in reducing pro-inflammatory cytokine production in mouse macrophages. ApoE-/- mice were fed AIN-93G diet (CD) or CD formulated to contain 1% fre...

  13. In vitro exposure to the herbicide atrazine inhibits T cell activation, proliferation, and cytokine production and significantly increases the frequency of Foxp3+ regulatory T cells.

    PubMed

    Thueson, Lindsay E; Emmons, Tiffany R; Browning, Dianna L; Kreitinger, Joanna M; Shepherd, David M; Wetzel, Scott A

    2015-02-01

    The herbicide atrazine (2-chloro-4-[ethylamino]-6-[isopropylamino]-s-triazine) is the most common water contaminant in the United States. Atrazine is a phosphodiesterase inhibitor and is classified as an estrogen disrupting compound because it elevates estrogen levels via induction of the enzyme aromatase. Previous studies have shown that atrazine exposure alters the function of innate immune cells such as NK cells, DC, mast cells, and macrophages. In this study we have examined the impact of in vitro atrazine exposure on the activation, proliferation, and effector cytokine production by primary murine CD4(+) T lymphocytes. We found that atrazine exposure significantly inhibited CD4(+) T cell proliferation and accumulation as well as the expression of the activation markers CD25 and CD69 in a dose-dependent manner. Interestingly, the effects were more pronounced in cells from male animals. These effects were partially mimicked by pharmacological reagents that elevate intracellular cAMP levels and addition of exogenous rmIL-2 further inhibited proliferation and CD25 expression. Consistent with these findings, atrazine exposure during T cell activation resulted in a 2- to 5-fold increase in the frequency of Foxp3(+) CD4(+) T cells. PMID:25433234

  14. The Retinoic Acid Receptor-a Mediates Human T-Cell Activation and Th2 Cytokine Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have recently demonstrated that all-trans-retinoic acid (ATRA) and 9-cis-retinoic acid (9-cis RA) promote IL-4, IL-5 and IL-13 synthesis, while decreasing IFN-g and TNF-a expression by activated human T cells and reducing the synthesis of IL-12p70 from accessory cells. Here, we have demonstrated ...

  15. Absence of the Adaptor Protein PEA-15 Is Associated with Altered Pattern of Th Cytokines Production by Activated CD4+ T Lymphocytes In Vitro, and Defective Red Blood Cell Alloimmune Response In Vivo

    PubMed Central

    Kerbrat, Stéphane; Vingert, Benoit; Junier, Marie-Pierre; Castellano, Flavia; Renault-Mihara, François; Dos Reis Tavares, Silvina; Surenaud, Mathieu; Noizat-Pirenne, France; Boczkowski, Jorge; Guellaën, Georges; Chneiweiss, Hervé; Le Gouvello, Sabine

    2015-01-01

    TCR-dependent and costimulation signaling, cell division, and cytokine environment are major factors driving cytokines expression induced by CD4+ T cell activation. PEA-15 15 (Protein Enriched in Astrocyte / 15kDa) is an adaptor protein that regulates death receptor-induced apoptosis and proliferation signaling by binding to FADD and relocating ERK1/2 to the cytosol, respectively. By using PEA-15-deficient mice, we examined the role of PEA-15 in TCR-dependent cytokine production in CD4+ T cells. TCR-stimulated PEA-15-deficient CD4+ T cells exhibited defective progression through the cell cycle associated with impaired expression of cyclin E and phosphoRb, two ERK1/2-dependent proteins of the cell cycle. Accordingly, expression of the division cycle-dependent cytokines IL-2 and IFNγ, a Th1 cytokine, was reduced in stimulated PEA-15-deficient CD4+ T cells. This was associated with abnormal subcellular compartmentalization of activated ERK1/2 in PEA-15-deficient T cells. Furthermore, in vitro TCR-dependent differentiation of naive CD4+ CD62L+ PEA-15-deficient T cells was associated with a lower production of the Th2 cytokine, IL-4, whereas expression of the Th17-associated molecule IL4I1 was enhanced. Finally, a defective humoral response was shown in PEA-15-deficient mice in a model of red blood cell alloimmunization performed with Poly IC, a classical adjuvant of Th1 response in vivo. Collectively, our data suggest that PEA-15 contributes to the specification of the cytokine pattern of activated Th cells, thus highlighting a potential new target to interfere with T cell functional polarization and subsequent immune response. PMID:26317969

  16. Absence of the Adaptor Protein PEA-15 Is Associated with Altered Pattern of Th Cytokines Production by Activated CD4+ T Lymphocytes In Vitro, and Defective Red Blood Cell Alloimmune Response In Vivo.

    PubMed

    Kerbrat, Stéphane; Vingert, Benoit; Junier, Marie-Pierre; Castellano, Flavia; Renault-Mihara, François; Dos Reis Tavares, Silvina; Surenaud, Mathieu; Noizat-Pirenne, France; Boczkowski, Jorge; Guellaën, Georges; Chneiweiss, Hervé; Le Gouvello, Sabine

    2015-01-01

    TCR-dependent and costimulation signaling, cell division, and cytokine environment are major factors driving cytokines expression induced by CD4(+) T cell activation. PEA-15 15 (Protein Enriched in Astrocyte / 15 kDa) is an adaptor protein that regulates death receptor-induced apoptosis and proliferation signaling by binding to FADD and relocating ERK1/2 to the cytosol, respectively. By using PEA-15-deficient mice, we examined the role of PEA-15 in TCR-dependent cytokine production in CD4(+) T cells. TCR-stimulated PEA-15-deficient CD4(+) T cells exhibited defective progression through the cell cycle associated with impaired expression of cyclin E and phosphoRb, two ERK1/2-dependent proteins of the cell cycle. Accordingly, expression of the division cycle-dependent cytokines IL-2 and IFNγ, a Th1 cytokine, was reduced in stimulated PEA-15-deficient CD4(+) T cells. This was associated with abnormal subcellular compartmentalization of activated ERK1/2 in PEA-15-deficient T cells. Furthermore, in vitro TCR-dependent differentiation of naive CD4(+) CD62L(+) PEA-15-deficient T cells was associated with a lower production of the Th2 cytokine, IL-4, whereas expression of the Th17-associated molecule IL4I1 was enhanced. Finally, a defective humoral response was shown in PEA-15-deficient mice in a model of red blood cell alloimmunization performed with Poly IC, a classical adjuvant of Th1 response in vivo. Collectively, our data suggest that PEA-15 contributes to the specification of the cytokine pattern of activated Th cells, thus highlighting a potential new target to interfere with T cell functional polarization and subsequent immune response. PMID:26317969

  17. Cytokine production by cell cultures from bronchial subepithelial myofibroblasts.

    PubMed

    Zhang, S; Howarth, P H; Roche, W R

    1996-09-01

    Myofibroblasts have been previously described beneath the bronchial epithelium and were found to increase in number proportional to the accumulation of extracellular matrix in the bronchial lamina reticularis in asthma. The aim of this study was to assess further the contribution of these structural cells to allergic inflammation in the bronchial mucosa through their cytokine expression. Cell cultures were established from the lamina reticularis of human bronchial biopsies from asthmatic and non-asthmatic subjects. Cytokine secretion was measured by ELISA in supernatants of cultures with or without tumour necrosis factor-alpha (TNF-alpha). The mRNA levels for granulocyte-macrophage colony-stimulating factor (GM-CSF) in the cultures were examined by ribonuclease protection assays (RPAs). Bronchial myofibroblasts grown from bronchial biopsies were capable of producing GM-CSF, interleukin-6 (IL-6), interleukin-8 (IL-8), and stem cell factor (SCF) constitutively. The GM-CSF production by myofibroblasts was significantly increased in response to TNF-alpha simulation with a corresponding increase in GM-CSF mRNA expression. The enhancement of GM-CSF production by TNF-alpha in myofibroblasts was blocked by the inhibition of RNA synthesis. Prednisolone abolished the GM-CSF production. This study provides evidence for the role of bronchial myofibroblasts in the regulation of inflammatory cell recruitment and activation by interaction in the cytokine network in the bronchial mucosa. PMID:8943823

  18. Vinpocetine Reduces Carrageenan-Induced Inflammatory Hyperalgesia in Mice by Inhibiting Oxidative Stress, Cytokine Production and NF-κB Activation in the Paw and Spinal Cord

    PubMed Central

    Ruiz-Miyazawa, Kenji W.; Zarpelon, Ana C.; Pinho-Ribeiro, Felipe A.; Pavão-de-Souza, Gabriela F.; Casagrande, Rubia; Verri, Waldiceu A.

    2015-01-01

    Vinpocetine is a safe nootropic agent used for neurological and cerebrovascular diseases. The anti-inflammatory activity of vinpocetine has been shown in cell based assays and animal models, leading to suggestions as to its utility in analgesia. However, the mechanisms regarding its efficacy in inflammatory pain treatment are still not completely understood. Herein, the analgesic effect of vinpocetine and its anti-inflammatory and antioxidant mechanisms were addressed in murine inflammatory pain models. Firstly, we investigated the protective effects of vinpocetine in overt pain-like behavior induced by acetic acid, phenyl-p-benzoquinone (PBQ) and formalin. The intraplantar injection of carrageenan was then used to induce inflammatory hyperalgesia. Mechanical and thermal hyperalgesia were evaluated using the electronic von Frey and the hot plate tests, respectively, with neutrophil recruitment to the paw assessed by a myeloperoxidase activity assay. A number of factors were assessed, both peripherally and in the spinal cord, including: antioxidant capacity, reduced glutathione (GSH) levels, superoxide anion, tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β) levels, as well as nuclear factor kappa B (NF-κB) activation. Vinpocetine inhibited the overt pain-like behavior induced by acetic acid, PBQ and formalin (at both phases), as well as the carrageenan-induced mechanical and thermal hyperalgesia and associated neutrophil recruitment. Both peripherally and in the spinal cord, vinpocetine also inhibited: antioxidant capacity and GSH depletion; increased superoxide anion; IL-1β and TNF-α levels; and NF-κB activation. As such, vinpocetine significantly reduces inflammatory pain by targeting oxidative stress, cytokine production and NF-κB activation at both peripheral and spinal cord levels. PMID:25822523

  19. Vinpocetine reduces carrageenan-induced inflammatory hyperalgesia in mice by inhibiting oxidative stress, cytokine production and NF-κB activation in the paw and spinal cord.

    PubMed

    Ruiz-Miyazawa, Kenji W; Zarpelon, Ana C; Pinho-Ribeiro, Felipe A; Pavão-de-Souza, Gabriela F; Casagrande, Rubia; Verri, Waldiceu A

    2015-01-01

    Vinpocetine is a safe nootropic agent used for neurological and cerebrovascular diseases. The anti-inflammatory activity of vinpocetine has been shown in cell based assays and animal models, leading to suggestions as to its utility in analgesia. However, the mechanisms regarding its efficacy in inflammatory pain treatment are still not completely understood. Herein, the analgesic effect of vinpocetine and its anti-inflammatory and antioxidant mechanisms were addressed in murine inflammatory pain models. Firstly, we investigated the protective effects of vinpocetine in overt pain-like behavior induced by acetic acid, phenyl-p-benzoquinone (PBQ) and formalin. The intraplantar injection of carrageenan was then used to induce inflammatory hyperalgesia. Mechanical and thermal hyperalgesia were evaluated using the electronic von Frey and the hot plate tests, respectively, with neutrophil recruitment to the paw assessed by a myeloperoxidase activity assay. A number of factors were assessed, both peripherally and in the spinal cord, including: antioxidant capacity, reduced glutathione (GSH) levels, superoxide anion, tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β) levels, as well as nuclear factor kappa B (NF-κB) activation. Vinpocetine inhibited the overt pain-like behavior induced by acetic acid, PBQ and formalin (at both phases), as well as the carrageenan-induced mechanical and thermal hyperalgesia and associated neutrophil recruitment. Both peripherally and in the spinal cord, vinpocetine also inhibited: antioxidant capacity and GSH depletion; increased superoxide anion; IL-1β and TNF-α levels; and NF-κB activation. As such, vinpocetine significantly reduces inflammatory pain by targeting oxidative stress, cytokine production and NF-κB activation at both peripheral and spinal cord levels. PMID:25822523

  20. Suppressor of cytokine signaling 3 inhibits head kidney macrophage activation and cytokine expression in Scophthalmus maximus.

    PubMed

    Zhang, Min; Xiao, Zhi-zhong; Sun, Li

    2011-02-01

    Proteins of the suppressor of cytokine signaling (SOCS) family function as inducible feedback inhibitors of cytokine signaling via the JAK/STAT pathway. Although several SOCS isoforms have been identified in teleosts, their immunological functions remain largely unknown. In this study, we identified in turbot Scophthalmus maximus a SOCS homologue (named SmSOCS3) of the mammalian SOCS3 type. The deduced amino acid sequence of SmSOCS3 contains 205 residues and shares extensive overall identities (60-82%) with those of known fish SOCS3. In silico analyses revealed that, like typical SOCS3, SmSOCS3 possesses a kinase inhibitor region (KIR), a Src homology 2 (SH2) domain, and a SOCS box domain. Under physiological conditions SmSOCS3 expression was detected, in increasing order, in blood, brain, heart, kidney, liver, spleen, muscle, and gill. Experimental infection of turbot with a bacterial pathogen induced significant SmSOCS3 expression in kidney, spleen, liver, and gill in time-dependent manners. Examination of SmSOCS3 expression in head kidney (HK) macrophages showed that SmSOCS3 transcription was significantly upregulated in the presence of purified recombinant TNF-α. On the other hand, SmSOCS3 overexpression in HK macrophages inhibited the transcription of TNF-α as well as IL-1β and CC-chemokine. In addition, SmSOCS3 overexpression significantly reduced macrophage respiratory burst activity, nitric oxide production, and bactericidal activity. Taken together, these results suggest that SmSOCS3 is a cytokine-inducible suppressor of pro-inflammatory cytokine signaling in HK macrophages and that regulated expression of SmSOCS3 is required for optimal innate immune response against bacterial infection. PMID:20869394

  1. Loss of PIDD limits NF-κB activation and cytokine production but not cell survival or transformation after DNA damage.

    PubMed

    Bock, F J; Krumschnabel, G; Manzl, C; Peintner, L; Tanzer, M C; Hermann-Kleiter, N; Baier, G; Llacuna, L; Yelamos, J; Villunger, A

    2013-04-01

    Activation of NF-κB (nuclear factor of kappa light chain gene enhancer in B cells) in response to DNA damage is considered to contribute to repair of genetic lesions, increased cell survival and cytokine release. The molecular mechanisms orchestrating this cytoplasmic event involve core components of the nuclear DNA damage response machinery, including ATM-kinase (ataxia telangiectasia mutated kinase) and PARP-1 (poly (ADP-ribose) polymerase 1). The physiological consequences of defective NF-κB activation in this context, however, remain poorly investigated. Here we report on the role of the 'p53-induced protein with a death domain', PIDD, which appears rate limiting in this process, as is PARP-1. Despite impaired NF-κB activation, DNA damage did not increase cell death or reduce clonal survival of various cell types lacking PIDD, such as mouse embryonic fibroblasts or stem and progenitor cells of the hematopoietic system. Furthermore, lymphomagenesis induced by γ-irradiation (IR) was unaffected by deficiency for PIDD or PARP-1, indicating that loss of DNA damage-triggered NF-κB signalling does not affect IR-driven tumorigenesis. However, loss of either gene compromised cytokine release after acute IR injury. Hence, we propose that NF-κB's most notable function after DNA damage in primary cells is related to the release of cytokines, thereby contributing to sterile inflammation. PMID:23238565

  2. Mechanism of suppression of phagocytic and metabolic activity of neutrophils and production of proinflammatory cytokines during chronic poisoning with organophosphorus compounds.

    PubMed

    Zabrodskii, P F; Grishin, V A; Borodavko, V K

    2013-08-01

    Experiments on albino outbred rats showed that chronic poisoning with organophosphorus compounds (Russian VX, and sarin) for 30 days in a total dose of 0.3 DL50 (0.01 DL50 daily) is followed by a decrease in phagocytic and metabolic activity of neutrophils. The reduction of functional activity of monocyte phagocytic system was stipulated by the stimulation of N-cholinergic receptors of these cells. These changes were accompanied by a decrease in blood concentration of proinflammatory cytokines (TNF-α, IL-1β, and IL-6). PMID:24143369

  3. Low level exposure to monomethyl arsonous acid-induced the over-production of inflammation-related cytokines and the activation of cell signals associated with tumor progression in a urothelial cell model

    SciTech Connect

    Escudero-Lourdes, C.; Medeiros, M.K.; Cardenas-Gonzalez, M.C.; Wnek, S.M.; Gandolfi, J.A.

    2010-04-15

    Human bladder cancer has been associated with chronic exposure to arsenic. Chronic exposure of an immortalized non-tumorigenic urothelial cell line (UROtsa cells) to arsenicals has transformed these cells to a malignant phenotype, but the involved mechanisms are not fully understood. Chronic inflammation has been linked with cancer development mainly because many pro-inflammatory cytokines, growth factors as well as angiogenic chemokines have been found in tumors. In this study the chronology of inflammatory cytokines production was profiled in UROtsa cells chronically exposed to the toxic arsenic metabolite, monomethylarsonous acid [50 nM MMA(III)] to know the role of inflammation in cell transformation. Acute 50 nM MMA(III) exposure induced over-production of many pro-inflammatory cytokines as soon as 12 h after acute exposure. The same cytokines remain over-regulated after chronic exposure to 50 nM MMA(III), especially after 3 mo exposure. At 3 mo exposure the sustained production of cytokines like IL-1, IL-6, IL-8 and TNF is coincident with the appearance of characteristics associated with cell transformation seen in other arsenic-UROtsa studies. The sustained and increased activation of NFkappaB and c-Jun is also present along the transformation process and the phosphorylated proteins p38 MAPK and ERK 1/2 are increased also through the time line. Taken together these results support the notion that chronic inflammation is associated within MMA(III)-induced cell transformation and may act as a promoting factor in UROtsa cell transformation.

  4. Control of Cytokine Production by Human Fc Gamma Receptors: Implications for Pathogen Defense and Autoimmunity

    PubMed Central

    Vogelpoel, Lisa T. C.; Baeten, Dominique L. P.; de Jong, Esther C.; den Dunnen, Jeroen

    2015-01-01

    Control of cytokine production by immune cells is pivotal for counteracting infections via orchestration of local and systemic inflammation. Although their contribution has long been underexposed, it has recently become clear that human Fc gamma receptors (FcγRs), which are receptors for the Fc region of immunoglobulin G (IgG) antibodies, play a critical role in this process by controlling tissue- and pathogen-specific cytokine production. Whereas individual stimulation of FcγRs does not evoke cytokine production, FcγRs cell-type specifically interact with various other receptors for selective amplification or inhibition of particular cytokines, thereby tailoring cytokine responses to the immunological context. The physiological function of FcγR-mediated control of cytokine production is to counteract infections with various classes of pathogens. Upon IgG opsonization, pathogens are simultaneously recognized by FcγRs as well as by various pathogen-sensing receptors, leading to the induction of pathogen class-specific immune responses. However, when erroneously activated, the same mechanism also contributes to the development of autoimmune diseases such as rheumatoid arthritis and systemic lupus erythematosus. In this review, we discuss control of cytokine production as a novel function of FcγRs in human innate immune cells in the context of homeostasis, infection, and autoimmunity and address the possibilities for future therapeutic exploitation. PMID:25759693

  5. Differential Modulation of Lipopolysaccharide-Induced Inflammatory Cytokine Production by and Antioxidant Activity of Fomentariol in RAW264.7 Cells

    PubMed Central

    Seo, Dong-Won; Yi, Young-Joo; Lee, Myeong-Seok

    2015-01-01

    Medicinal mushrooms have been used worldwide to treat cancer and modulate the immune system. Over the last several years, there has been increasing interest in isolating bioactive compounds from medicinal mushrooms and evaluating their health beneficial effects. Fomes fomentarius is used in traditional oriental medicine and is known to possess antioxidant, anti-inflammatory, antidiabetic, and antitumor effects. In the present study, we isolated fomentariol from Fomes fomentarius and investigated its anti-inflammatory effect in murine macrophages (RAW264.7 cells) stimulated with lipopolysaccharides. Fomentariol inhibited the production of nitric oxide and intracellular reactive oxygen species triggered by lipopolysaccharides. Interestingly, fomentariol differentially regulated cytokine production triggered by lipopolysaccharides. Fomentariol effectively suppressed the production of interleukin-1β and interleukin-6 but not tumor necrosis factor-α. The inhibitory effect of fomentariol against nitric oxide, interleukin-1β, and interleukin-6 production was possibly mediated by downregulation of the extracellular signal-regulated kinase signaling pathway. Taken together, our results suggest that fomentariol differentially modulated inflammatory responses triggered by lipopolysaccharides in macrophages and is one of the bioactive compounds that mediate the physiological effects of Fomes fomentarius. PMID:26839505

  6. Regulation of Inflammatory Cytokine Production by MKP-5 in Macrophages.

    PubMed

    Hömmö, Tuija; Pesu, Marko; Moilanen, Eeva; Korhonen, Riku

    2015-08-01

    Mitogen-activated protein kinases (MAPKs) include p38 MAPKs, c-Jun N-terminal kinases (JNKs) and Extracellular signal-regulated kinases (ERKs), and they regulate many cell processes, such as cell division, differentiation and release of inflammatory mediators. MAPK activity is controlled by mitogen-activated protein kinase phosphatases (MKPs), a phosphatase family with 11 members. MKP-1 is the most studied member of MKP family, and it is one of the anti-inflammatory factors induced by glucocorticoids. Less is known about the other MAPK phosphatases although they hold a promise as anti-inflammatory drug targets. In this study, we investigated the effect of MKP-5 on MAPK phosphorylation and cytokine production in J774 mouse macrophages. We used MKP-5 siRNA and an MKP-5 inhibitor (AS077234-4) to modulate MKP-5 function. We found that MKP-5 controlled p38 MAPK phosphorylation, but not that of JNK or ERK. In addition, the production of IL-6 and TNF was suppressed by MKP-5 in macrophages. Our results introduce a novel concept that compounds able to enhance MKP-5 expression and/or activity hold anti-inflammatory potential, because MKP-5 down-regulates the release of inflammatory mediators by controlling p38 MAPK activity. PMID:25615285

  7. Cytokine Activation by Antibody Fragments Targeted to Cytokine-Receptor Signaling Complexes.

    PubMed

    Kuruganti, Srilalitha; Miersch, Shane; Deshpande, Ashlesha; Speir, Jeffrey A; Harris, Bethany D; Schriewer, Jill M; Buller, R Mark L; Sidhu, Sachdev S; Walter, Mark R

    2016-01-01

    Exogenous cytokine therapy can induce systemic toxicity, which might be prevented by activating endogenously produced cytokines in local cell niches. Here we developed antibody-based activators of cytokine signaling (AcCS), which recognize cytokines only when they are bound to their cell surface receptors. AcCS were developed for type I interferons (IFNs), which induce cellular activities by binding to cell surface receptors IFNAR1 and IFNAR2. As a potential alternative to exogenous IFN therapy, AcCS were shown to potentiate the biological activities of natural IFNs by ∼100-fold. Biochemical and structural characterization demonstrates that the AcCS stabilize the IFN-IFNAR2 binary complex by recognizing an IFN-induced conformational change in IFNAR2. Using IFN mutants that disrupt IFNAR1 binding, AcCS were able to enhance IFN antiviral potency without activating antiproliferative responses. This suggests AcCS can be used to manipulate cytokine signaling for basic science and possibly for therapeutic applications. PMID:26546677

  8. Short-term heating reduces the anti-inflammatory effects of fresh raw garlic extracts on the LPS-induced production of NO and pro-inflammatory cytokines by downregulating allicin activity in RAW 264.7 macrophages.

    PubMed

    Shin, Jung-Hye; Ryu, Ji Hyeon; Kang, Min Jung; Hwang, Cho Rong; Han, Jaehee; Kang, Dawon

    2013-08-01

    Garlic has a variety of biologic activities, including anti-inflammatory properties. Although garlic has several biologic activities, some people dislike eating fresh raw garlic because of its strong taste and smell. Therefore, garlic formulations involving heating procedures have been developed. In this study, we investigated whether short-term heating affects the anti-inflammatory properties of garlic. Fresh and heated raw garlic extracts (FRGE and HRGE) were prepared with incubation at 25 °C and 95 °C, respectively, for 2 h. Treatment with FRGE and HRGE significantly reduced the LPS-induced increase in the pro-inflammatory cytokine concentration (TNF-α, IL-1β, and IL-6) and NO through HO-1 upregulation in RAW 264.7 macrophages. The anti-inflammatory effect was greater in FRGE than in HRGE. The allicin concentration was higher in FRGE than in HRGE. Allicin treatment showed reduced production of pro-inflammatory cytokines and NO and increased HO-1 activity. The results show that the decrease in LPS-induced NO and pro-inflammatory cytokines in RAW 264.7 macrophages through HO-1 induction was greater for FRGE compared with HRGE. Additionally, the results indicate that allicin is responsible for the anti-inflammatory effect of FRGE. Our results suggest a potential therapeutic use of allicin in the treatment of chronic inflammatory disease. PMID:23583806

  9. Anti-inflammatory activity of betalain-rich dye of Beta vulgaris: effect on edema, leukocyte recruitment, superoxide anion and cytokine production.

    PubMed

    Martinez, Renata M; Longhi-Balbinot, Daniela T; Zarpelon, Ana C; Staurengo-Ferrari, Larissa; Baracat, Marcela M; Georgetti, Sandra R; Sassonia, Rogério C; Verri, Waldiceu A; Casagrande, Rubia

    2015-04-01

    We have recently developed betalain-rich beetroot (Beta vulgaris) dye (betalain) to be used in food products. Betalain (30-300 mg/kg) intraperitoneal (i.p.) treatment diminished carrageenan (100 µg/paw)-induced paw edema and neutrophil migration to the paw skin tissue. Betalain (100 mg/kg) treatment by subcutaneous or per oral routes also inhibited the carrageenan-induced paw edema. Importantly, the post-treatment with betalain (100 mg/kg, i.p.) significantly inhibited carrageenan- and complete Freund's adjuvant (10 µl/paw)-induced paw edema. Betalain (100 mg/kg) also reduced carrageenan (500 µg/cavity)-induced recruitment of total leukocytes, including mononuclear cells and neutrophils, as well as increasing vascular permeability in the peritoneal cavity. Furthermore, betalain significantly reduced carrageenan-induced superoxide anion, tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-1β levels in the peritoneal fluid, as well as augmenting IL-10 levels. Therefore, this compound presents prominent anti-inflammatory effect on carrageenan-induced paw edema and peritonitis by reducing the production of superoxide anion and the cytokines TNF-α and IL-1β, in addition to increasing IL-10 levels. These results suggest that betalain shows therapeutic potential that could be utilized in the treatment of inflammation-associated diseases. PMID:25173360

  10. Activation of kynurenine pathway in ex vivo fibroblasts from patients with bipolar disorder or schizophrenia: cytokine challenge increases production of 3-hydroxykynurenine.

    PubMed

    Johansson, Anne-Sofie; Owe-Larsson, Björn; Asp, Linnéa; Kocki, Tomasz; Adler, Mats; Hetta, Jerker; Gardner, Renee; Lundkvist, Gabriella B S; Urbanska, Ewa M; Karlsson, Håkan

    2013-11-01

    Accumulating data suggest a causative link between immune stimulation, disturbed metabolism of tryptophan, and pathogenesis of bipolar disorder and schizophrenia. The goal of this study was to examine the production of kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK) and the expression of kynurenine pathway enzymes involved in their synthesis and metabolism in cultured skin fibroblasts obtained from patients with bipolar disorder, schizophrenia or from healthy control individuals. The assessment was performed under basal conditions or following treatment with interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, or their combinations, in cells exposed to exogenous kynurenine. In both groups of patients, the baseline production of KYNA and 3-HK was increased, as compared to control subjects. Case-treatment analyses revealed significant interactions between bipolar case status and IL-1β, IL-6, IFN-γ + TNF-α, or IFN-γ + IL-1β, as well as between schizophrenia case status and IL-1β, IFN-γ + TNF-α, or IFN-γ + IL-1β, in terms of higher 3-HK. Noteworthy, no case-treatment interactions in terms of KYNA production were found. Observed changes did not appear to correlate with the expression of genes encoding kynurenine aminotransferases (KATs), kynureninase (KYNU) or kynurenine-3-monooxygenase (KMO). The single nucleotide polymorphisms (SNPs), rs1053230 and rs2275163, in KMO influenced KYNA levels yet did not explain the case-treatment discrepancies. In conclusion, our present findings indicate the utility of skin-derived fibroblasts for kynurenines research and support the concept of kynurenine pathway alterations in bipolar disorder and schizophrenia. The increase in ratio between neurotoxic 3-HK and neuroinhibitory/neuroprotective KYNA following exposure to cytokines may account for altered neurogenesis and structural abnormalities characteristic for both diseases. PMID:24012176

  11. High efficiency cell-specific targeting of cytokine activity

    NASA Astrophysics Data System (ADS)

    Garcin, Geneviève; Paul, Franciane; Staufenbiel, Markus; Bordat, Yann; van der Heyden, José; Wilmes, Stephan; Cartron, Guillaume; Apparailly, Florence; de Koker, Stefaan; Piehler, Jacob; Tavernier, Jan; Uzé, Gilles

    2014-01-01

    Systemic toxicity currently prevents exploiting the huge potential of many cytokines for medical applications. Here we present a novel strategy to engineer immunocytokines with very high targeting efficacies. The method lies in the use of mutants of toxic cytokines that markedly reduce their receptor-binding affinities, and that are thus rendered essentially inactive. Upon fusion to nanobodies specifically binding to marker proteins, activity of these cytokines is selectively restored for cell populations expressing this marker. This ‘activity-by-targeting’ concept was validated for type I interferons and leptin. In the case of interferon, activity can be directed to target cells in vitro and to selected cell populations in mice, with up to 1,000-fold increased specific activity. This targeting strategy holds promise to revitalize the clinical potential of many cytokines.

  12. α-1-Antitrypsin is an endogenous inhibitor of proinflammatory cytokine production in whole blood

    PubMed Central

    Pott, Gregory B.; Chan, Edward D.; Dinarello, Charles A.; Shapiro, Leland

    2009-01-01

    Several observations suggest endogenous suppressors of inflammatory mediators are present in human blood. α-1-Antitrypsin (AAT) is the most abundant serine protease inhibitor in blood, and AAT possesses anti-inflammatory activity in vitro and in vivo. Here, we show that in vitro stimulation of whole blood from persons with a genetic AAT deficiency resulted in enhanced cytokine production compared with blood from healthy subjects. Using whole blood from healthy subjects, dilution of blood with RPMI tissue-culture medium, followed by incubation for 18 h, increased spontaneous production of IL-8, TNF-α, IL-1β, and IL-1R antagonist (IL-1Ra) significantly, compared with undiluted blood. Dilution-induced cytokine production suggested the presence of one or more circulating inhibitors of cytokine synthesis present in blood. Serially diluting blood with tissue-culture medium in the presence of cytokine stimulation with heat-killed Staphylococcus epidermidis (S. epi) resulted in 1.2- to 55-fold increases in cytokine production compared with S. epi stimulation alone. Diluting blood with autologous plasma did not increase the production of IL-8, TNF-α, IL-1β, or IL-1Ra, suggesting that the endogenous, inhibitory activity of blood resided in plasma. In whole blood, diluted and stimulated with S. epi, exogenous AAT inhibited IL-8, IL-6, TNF-α, and IL-1β significantly but did not suppress induction of the anti-inflammatory cytokines IL-1Ra and IL-10. These ex vivo and in vitro observations suggest that endogenous AAT in blood contributes to the suppression of proinflammatory cytokine synthesis. PMID:19197072

  13. Modulation of Innate Cytokine Responses by Products of Helicobacter pylori

    PubMed Central

    Meyer, Frank; Wilson, Keith T.; James, Stephen P.

    2000-01-01

    The gastric inflammatory and immune response in Helicobacter pylori infection may be due to the effect of different H. pylori products on innate immune mechanisms. The aim of this study was to determine whether bacterial components could modulate cytokine production in vitro and thus contribute to Th1 polarization of the gastric immune response observed in vivo. The effect of H. pylori recombinant urease, bacterial lysate, intact bacteria, and bacterial DNA on proliferation and cytokine production by peripheral blood mononuclear cells (PBMCs) from H. pylori-negative donors was examined as a model for innate cytokine responses. Each of the different H. pylori preparations induced gamma interferon (IFN-γ) and interleukin-12p40 (IL-12p40), but not IL-2 or IL-5, production, and all but H. pylori DNA stimulated release of IL-10. Addition of anti-IL-12 antibody to cultures partially inhibited IFN-γ production. In addition, each bacterial product inhibited mitogen-stimulated IL-2 production by PBMCs and Jurkat T cells. The inhibitory effect of bacterial products on IL-2 production correlated with inhibition of mitogen-stimulated lymphocyte proliferation, although urease inhibited IL-2 production without inhibiting proliferation, suggesting that inhibition of IL-2 production alone is not sufficient to inhibit lymphocyte proliferation. The results of these studies demonstrate that Th1 polarization of the gastric immune response may be due in part to the direct effects of multiple different H. pylori components that enhance IFN-γ and IL-12 production while inhibiting both IL-2 production and cell proliferation that may be necessary for Th2 responses. PMID:11035734

  14. Inhibition of cytokine production by a tumor cell product.

    PubMed Central

    Farram, E; Nelson, M; Nelson, D S; Moon, D K

    1982-01-01

    Supernatants from cultured mouse and human tumour cells, but not mouse or guinea-pig fibroblasts, inhibited the production of a lymphokine, macrophage chemotactic factor, by PHA-stimulated mouse spleen cells. The supernatants affected spleen cells from old, but not young, mice. They were most active if added at the start of the spleen cell culture and did not act by binding phytohaemagglutinin (PHA). The active material had an approximate molecular weight, on membrane filtration, of 1000-10,000 and could be bound to and eluted from Con A-Sepharose. Tumour supernatant factor(s) of similar molecular weight inhibited the production of interleukin 1 (lymphocyte activating factor) in response to lipopolysaccharide by stimulated thioglycollate-induced peritoneal exudate macrophages, but not by Corynebacterium parvum-activated macrophages. Similar tumour-produced material has been found to inhibit the early phase of delayed-type hypersensitivity reactions in older mice. It is suggested that this effect is due, at least in part, to inhibition of interleukin 1 production leading to inhibition of lymphokine production. PMID:7047385

  15. Production of MMP-9 and inflammatory cytokines by Trypanosoma cruzi-infected macrophages.

    PubMed

    de Pinho, Rosa Teixeira; da Silva, Wellington Seguins; de Castro Côrtes, Luzia Monteiro; da Silva Vasconcelos Sousa, Periela; de Araujo Soares, Renata Oliveira; Alves, Carlos Roberto

    2014-12-01

    Matrix metalloproteinases (MMPs) constitute a large family of Zn(2+) and Ca(2+) dependent endopeptidases implicated in tissue remodeling and chronic inflammation. MMPs also play key roles in the activation of growth factors, chemokines and cytokines produced by many cell types, including lymphocytes, granulocytes, and, in particular, activated macrophages. Their synthesis and secretion appear to be important in a number of physiological processes, including the inflammatory process. Here, we investigated the interaction between human and mouse macrophages with T. cruzi Colombian and Y strains to characterize MMP-9 and cytokine production in this system. Supernatants and total extract of T. cruzi infected human and mouse macrophages were obtained and used to assess MMP-9 profile and inflammatory cytokines. The presence of metalloproteinase activity was determined by zymography, enzyme-linked immunosorbent assay and immunoblotting assays. The effect of cytokines on MMP-9 production in human macrophages was verified by previous incubation of cytokines on these cells in culture, and analyzed by zymography. We detected an increase in MMP-9 production in the culture supernatants of T. cruzi infected human and mouse macrophages. The addition of IL-1β or TNF-α to human macrophage cultures increased MMP-9 production. In contrast, MMP-9 production was down-modulated when human macrophage cultures were treated with IFN-γ or IL-4 before infection. Human macrophages infected with T. cruzi Y or Colombian strains produced increased levels of MMP-9, which was related to the production of cytokines such as IL-1β, TNF-α and IL-6. PMID:25448360

  16. Diclofenac enhances proinflammatory cytokine-induced phagocytosis of cultured microglia via nitric oxide production

    SciTech Connect

    Kakita, Hiroki; Aoyama, Mineyoshi; Nagaya, Yoshiaki; Asai, Hayato; Hussein, Mohamed Hamed; Suzuki, Mieko; Kato, Shin; Saitoh, Shinji; Asai, Kiyofumi

    2013-04-15

    Influenza-associated encephalopathy (IAE) is a central nervous system complication with a high mortality rate, which is increased significantly by the non-steroidal anti-inflammatory drug diclofenac sodium (DCF). In the present study, we investigated the effects of DCF on brain immune cells (i.e. microglia) stimulated with three proinflammatory cytokines, namely tumor necrosis factor-α, interleukin-1β, and interferon-γ. Similar to previous findings in astrocytes, all three cytokines induced the expression of inducible NO synthase (iNOS), as well as NO production, in microglia. The addition of DCF to the culture system augmented iNOS expression and NO production. Immunocytochemical analysis and the phagocytosis assay revealed that cytokine treatment induced morphological changes to and phagocytosis by the microglia. The addition of DCF to the culture system enhanced microglial activation, as well as the phagocytic activity of cytokine-stimulated microglia. Inhibitors of nuclear factor (NF)-κB inhibited iNOS gene expression in cytokine-stimulated microglia with or without DCF, suggesting that the NF-κB pathway is one of the main signaling pathways involved. The iNOS inhibitor N{sup G}-monomethyl-L-arginine (L-NMMA) reduced both cytokine-induced phagocytosis and phagocytosis induced by the combination of cytokines plus DCF. Furthermore, the NO donor sodium nitroprusside induced phagocytosis, indicating that NO production is a key regulator of microglial phagocytosis. In conclusion, DCF acts synergistically with proinflammatory cytokines to increase the production of NO in microglia, leading to phagocytic activity of the activated microglia. These findings, together with previous observations regarding astrocytes, may explain the significant increase in mortality of IAE patients treated with DCF. - Highlights: ► Influenza-associated encephalopathy (IAE) is associated with a high mortality rate. ► Hyperimmunization in the brain is believed to be responsible for

  17. Investigation of Macrophage Differentiation and Cytokine Production in an Undergraduate Immunology Laboratory

    ERIC Educational Resources Information Center

    Berkes, Charlotte; Chan, Leo Li-Ying

    2015-01-01

    We have developed a semester-long laboratory project for an undergraduate immunology course in which students study multiple aspects of macrophage biology including differentiation from progenitors in the bone marrow, activation upon stimulation with microbial ligands, expression of cell surface markers, and modulation of cytokine production. In…

  18. HIV-1 Tat Protein Induces Production of Proinflammatory Cytokines by Human Dendritic Cells and Monocytes/Macrophages through Engagement of TLR4-MD2-CD14 Complex and Activation of NF-κB Pathway

    PubMed Central

    Leghmari, Kaoutar; Serrero, Manutea; Delobel, Pierre; Izopet, Jacques; BenMohamed, Lbachir; Bahraoui, Elmostafa

    2015-01-01

    We recently reported that the human immunodeficiency virus type-1 (HIV-1) Tat protein induced the expression of programmed death ligand-1 (PD-L1) on dendritic cells (DCs) through a TLR4 pathway. However, the underlying mechanisms by which HIV-1 Tat protein induces the abnormal hyper-activation of the immune system seen in HIV-1 infected patients remain to be fully elucidated. In the present study, we report that HIV-1 Tat protein induced the production of significant amounts of the pro-inflammatory IL-6 and IL-8 cytokines by DCs and monocytes from both healthy and HIV-1 infected patients. Such production was abrogated in the presence of anti-TLR4 blocking antibodies or soluble recombinant TLR4-MD2 as a decoy receptor, suggesting TLR4 was recruited by Tat protein. Tat-induced murine IL-6 and CXCL1/KC a functional homologue of human IL-8 was abolished in peritoneal macrophages derived from TLR4 KO but not from Wt mice, confirming the involvement of the TLR4 pathway. Furthermore, the recruitment of TLR4-MD2-CD14 complex by Tat protein was demonstrated by the activation of TLR4 downstream pathways including NF-κB and SOCS-1 and by down-modulation of cell surface TLR4 by endocytosis in dynamin and lipid-raft-dependent manners. Collectively, these findings demonstrate, for the first time, that HIV-1 Tat interacts with TLR4-MD2-CD14 complex and activates the NF-κB pathway, leading to overproduction of IL-6 and IL-8 pro-inflammatory cytokines by myeloid cells from both healthy and HIV-1 infected patients. This study reveals a novel mechanism by which HIV-1, via its early expressed Tat protein, hijacks the TLR4 pathway, hence establishing abnormal hyper-activation of the immune system. PMID:26090662

  19. The Role of Intracellular Receptor NODs for Cytokine Production by Macrophages Infected with Mycobacterium leprae

    PubMed Central

    Kang, Tae Jin

    2011-01-01

    The nucleotide-oligomerization domain (NOD) proteins are members of the NOD-like receptor (NLR) family, which are intracellular and cytoplasmic receptors. We analyzed the role of NODs for cytokine production by macrophages infected with intracellular pathogen M. leprae, the causative agent of leprosy. Production of pro-inflammatory cytokines such as IL-1β and TNF-α was inhibited in the presence of cytochalasin D, an agent blocking phagocytosis, suggesting that intracellular signaling was, partially, required for macrophage activation to M. leprae infection. Next, we investigated the role of NOD1 and NOD2 proteins on NF-κB activation and cytokine expression. Treatment with M. leprae significantly increased NF-κB activation and expression of TNF-α and IL-1β in NOD1- and NOD2-transfected cells. Interestingly, their activation and expression were inhibited by cytochalasin D, suggesting that stimulation of NOD proteins may be associated with the enhancement of cytokine production in host to M. leprae. PMID:22346786

  20. STK11/LKB1 Deficiency Promotes Neutrophil Recruitment and Proinflammatory Cytokine Production to Suppress T-cell Activity in the Lung Tumor Microenvironment.

    PubMed

    Koyama, Shohei; Akbay, Esra A; Li, Yvonne Y; Aref, Amir R; Skoulidis, Ferdinandos; Herter-Sprie, Grit S; Buczkowski, Kevin A; Liu, Yan; Awad, Mark M; Denning, Warren L; Diao, Lixia; Wang, Jing; Parra-Cuentas, Edwin R; Wistuba, Ignacio I; Soucheray, Margaret; Thai, Tran; Asahina, Hajime; Kitajima, Shunsuke; Altabef, Abigail; Cavanaugh, Jillian D; Rhee, Kevin; Gao, Peng; Zhang, Haikuo; Fecci, Peter E; Shimamura, Takeshi; Hellmann, Matthew D; Heymach, John V; Hodi, F Stephen; Freeman, Gordon J; Barbie, David A; Dranoff, Glenn; Hammerman, Peter S; Wong, Kwok-Kin

    2016-03-01

    STK11/LKB1 is among the most commonly inactivated tumor suppressors in non-small cell lung cancer (NSCLC), especially in tumors harboring KRAS mutations. Many oncogenes promote immune escape, undermining the effectiveness of immunotherapies, but it is unclear whether the inactivation of tumor suppressor genes, such as STK11/LKB1, exerts similar effects. In this study, we investigated the consequences of STK11/LKB1 loss on the immune microenvironment in a mouse model of KRAS-driven NSCLC. Genetic ablation of STK11/LKB1 resulted in accumulation of neutrophils with T-cell-suppressive effects, along with a corresponding increase in the expression of T-cell exhaustion markers and tumor-promoting cytokines. The number of tumor-infiltrating lymphocytes was also reduced in LKB1-deficient mouse and human tumors. Furthermore, STK11/LKB1-inactivating mutations were associated with reduced expression of PD-1 ligand PD-L1 in mouse and patient tumors as well as in tumor-derived cell lines. Consistent with these results, PD-1-targeting antibodies were ineffective against Lkb1-deficient tumors. In contrast, treating Lkb1-deficient mice with an IL6-neutralizing antibody or a neutrophil-depleting antibody yielded therapeutic benefits associated with reduced neutrophil accumulation and proinflammatory cytokine expression. Our findings illustrate how tumor suppressor mutations can modulate the immune milieu of the tumor microenvironment, and they offer specific implications for addressing STK11/LKB1-mutated tumors with PD-1-targeting antibody therapies. PMID:26833127

  1. Delineation of Diverse Macrophage Activation Programs in Response to Intracellular Parasites and Cytokines

    PubMed Central

    Zhang, Shuyi; Kim, Charles C.; Batra, Sajeev; McKerrow, James H.; Loke, P'ng

    2010-01-01

    Background The ability to reside and proliferate in macrophages is characteristic of several infectious agents that are of major importance to public health, including the intracellular parasites Trypanosoma cruzi (the etiological agent of Chagas disease) and Leishmania species (etiological agents of Kala-Azar and cutaneous leishmaniasis). Although recent studies have elucidated some of the ways macrophages respond to these pathogens, the relationships between activation programs elicited by these pathogens and the macrophage activation programs elicited by bacterial pathogens and cytokines have not been delineated. Methodology/Principal Findings To provide a global perspective on the relationships between macrophage activation programs and to understand how certain pathogens circumvent them, we used transcriptional profiling by genome-wide microarray analysis to compare the responses of mouse macrophages following exposure to the intracellular parasites T. cruzi and Leishmania mexicana, the bacterial product lipopolysaccharide (LPS), and the cytokines IFNG, TNF, IFNB, IL-4, IL-10, and IL-17. We found that LPS induced a classical activation state that resembled macrophage stimulation by the Th1 cytokines IFNG and TNF. However, infection by the protozoan pathogen L. mexicana produced so few transcriptional changes that the infected macrophages were almost indistinguishable from uninfected cells. T. cruzi activated macrophages produced a transcriptional signature characterized by the induction of interferon-stimulated genes by 24 h post-infection. Despite this delayed IFN response by T. cruzi, the transcriptional response of macrophages infected by the kinetoplastid pathogens more closely resembled the transcriptional response of macrophages stimulated by the cytokines IL-4, IL-10, and IL-17 than macrophages stimulated by Th1 cytokines. Conclusions/Significance This study provides global gene expression data for a diverse set of biologically significant pathogens and

  2. Production and function of cytokines in natural and acquired immunity to Candida albicans infection.

    PubMed Central

    Ashman, R B; Papadimitriou, J M

    1995-01-01

    Host resistance against infections caused by the yeast Candida albicans is mediated predominantly by polymorphonuclear leukocytes and macrophages. Antigens of Candida stimulate lymphocyte proliferation and cytokine synthesis, and in both humans and mice, these cytokines enhance the candidacidal functions of the phagocytic cells. In systemic candidiasis in mice, cytokine production has been found to be a function of the CD4+ T helper (Th) cells. The Th1 subset of these cells, characterized by the production of gamma interferon and interleukin-2, is associated with macrophage activation and enhanced resistance against reinfection, whereas the Th2 subset, which produces interleukins-4, -6, and -10, is linked to the development of chronic disease. However, other models have generated divergent data. Mucosal infection generally elicits Th1-type cytokine responses and protection from systemic challenge, and identification of cytokine mRNA present in infected tissues of mice that develop mild or severe lesions does not show pure Th1- or Th2-type responses. Furthermore, antigens of C. albicans, mannan in particular, can induce suppressor cells that modulate both specific and nonspecific cellular and humoral immune responses, and there is an emerging body of evidence that molecular mimicry may affect the efficiency of anti-Candida responses within defined genetic contexts. PMID:8531890

  3. Immunomodulatory capacity of fungal proteins on the cytokine production of human peripheral blood mononuclear cells.

    PubMed

    Jeurink, Prescilla V; Noguera, Cristina Lull; Savelkoul, Huub F J; Wichers, Harry J

    2008-08-01

    Immunomodulation by fungal compounds can be determined by the capacity of the compounds to influence the cytokine production by human peripheral blood mononuclear cells (hPBMC). These activities include mitogenicity, stimulation and activation of immune effector cells. Eight mushroom strains (Agaricus blazei, Coprinus comatus, Flammulina velutipes, Ganoderma lucidum, Grifola frondosa, Volvariella volvacea, Lentinus edodes, and Pleurotus ostreatus) were tested for the immunomodulating activity of the isolated protein fractions and polysaccharides fractions present in mycelia and culture liquid. The fungal proteins and polysaccharides have been investigated for their in vitro effect on the cytokine profile (IFN-gamma, IL-4, IL-10, IL-12 and TNF-alpha) of unstimulated or hPBMC stimulated with the polyclonal stimulations PMA/Ca-I, ConA or LPS. In addition to their influence on the cytokine profile, the hemagglutination activity of the fungal proteins on rabbit red blood cells was determined. Proteins from V. volvacea and G. lucidum showed immunomodulating activity without the presence of any mitogen, however, neither of them decreased the production of IL-4 and IFN-gamma in combination with a stimulus. All used stimuli resulted in an induction of IL-12 in the presence of the protein extracts, suggesting a direct effect on monocytes. This effect might lead to the indirect immunomodulation of T cell activation and cytokine production. In addition, both protein extracts showed more hemagglutination activity after trypsin treatment of the rabbit red blood cells, indicating the presence of carbohydrate-binding proteins, like lectins and FIPs. In conclusion, the protein extracts of V. volvacea and G. lucidum contain immunomodulating activity by acting directly on monocytes and thereby modulating T cell activation. Further purification of the fungal extracts is needed to clarify whether there are FIPs or lectins present that are responsible for this immunomodulating activity

  4. Increased circulating pro-inflammatory cytokines and imbalanced regulatory T-cell cytokines production in chronic idiopathic urticaria.

    PubMed

    Dos Santos, Juliana Cristina; Azor, Mayce Helena; Nojima, Viviane Yoshimi; Lourenço, Francinelson Duarte; Prearo, Erica; Maruta, Celina Wakisaka; Rivitti, Evandro Ararigbóia; da Silva Duarte, Alberto José; Sato, Maria Notomi

    2008-10-01

    The immunologic characterization of chronic idiopathic urticaria (CIU), mainly regarding cytokine profile needs more investigation. We examined circulating inflammatory cytokine levels, T-cell induced secretion, and cytokine mRNA expression in patients with CIU subjected to the intradermal autologous serum skin test (ASST). Increased levels of circulating pro-inflammatory cytokines, such as TNF-alpha, IL-1beta, IL-12p70, and IL-6 have been observed in most of patients with CIU, together with an enhancement of IL-2 secretion following T-cell stimulation. Highlighting the inflammatory profile in CIU found in ASST positive, is the enhanced B-cell proliferative responsiveness and increased IL-17 secretion levels. ASST-positive patients also exhibited impaired IL-4 secretion associated with increased IL-10 production. Altered cytokine expression in patients with ASST-negative, was the down-modulation of spontaneous IL-10 mRNA expression levels in peripheral blood mononuclear cells. Our findings support the concept of immunologic dysregulation in CIU, revealing a systemic inflammatory profile associated with disturbed cytokine production by T cells, mainly related to IL-17 and IL-10 production. PMID:18586117

  5. Sulfasalazine and mesalamine modulate beryllium-specific lymphocyte proliferation and inflammatory cytokine production.

    PubMed

    Dobis, Dave R; Sawyer, Richard T; Gillespie, May M; Newman, Lee S; Maier, Lisa A; Day, Brian J

    2010-10-01

    Occupational exposure to beryllium (Be) results in Be sensitization (BeS) that can progress to pulmonary granulomatous inflammation associated with chronic Be disease (CBD). Be-specific lymphocytes are present in the blood of patients with BeS and in the blood and lungs of patients with CBD. Sulfasalazine and its active metabolite, mesalamine, are clinically used to ameliorate chronic inflammation associated with inflammatory bowel disease. We tested whether sulfasalazine or mesalamine could decrease Be-stimulated peripheral blood mononuclear cell (PBMC) proliferation in subjects with CBD and BeS and Be-induced cytokine production in CBD bronchoalveolar lavage (BAL) cells. CBD (n = 25), BeS (n = 12) and healthy normal control (n = 6) subjects were enrolled and ex vivo proliferation and cytokine production were assessed in the presence of Be and sulfasalazine or mesalamine. Be-stimulated PBMC proliferation was inhibited by treatment with either sulfasalazine or mesalamine. Be-stimulated CBD BAL cell IFN-γ and TNF-α cytokine production was decreased by treatment with sulfasalazine or mesalamine. Our data suggest that both sulfasalazine and mesalamine interfere with Be-stimulated PBMC proliferation in CBD and BeS and dampens Be-stimulated CBD BAL cell proinflammatory cytokine production. These studies demonstrate that sulfasalazine and mesalamine can disrupt inflammatory pathways critical to the pathogenesis of chronic granulomatous inflammation in CBD, and may serve as novel therapy for human granulomatous lung diseases. PMID:19901345

  6. Molecular cloning of a Poria cocos protein that activates Th1 immune response and allays Th2 cytokine and IgE production in a murine atopic dermatitis model.

    PubMed

    Lu, Ya-Ting; Kuan, Yen-Chou; Chang, Hui-Hsin; Sheu, Fuu

    2014-04-01

    Edible fungus Poria cocos (Schw.) Wolf is a cooking material that has myriad health benefits. However, its active constituents have not been well-defined. We previously purified an immunomodulatory protein, PCP, from P. cocos and described its biochemical features and its ability to activate primary macrophage via TLR4. In this study, we cloned the gene of PCP and demonstrated its ability to activate Th1 response in cell cultures and in mice. The complete cDNA sequence of PCP consisted of 807 bp, which included a 579 bp coding sequence that encoded 194 amino acids. With the addition of co-stimulatory CD3/CD28 signals, PCP significantly increased the surface expression of CD44 and CD69 on effector T cells. PCP could also up-regulate T-bet and STAT4 expressions and IFN-γ and IL-2 secretions. Oral administration of PCP suppressed the production of both total and OVA-specific IgG1 in serum and enhanced the amounts of serum and OVA-specific IgG2a and Th1-related cytokine production in BALB/c splenocytes. In addition, oral administration of PCP significantly reduced IL-4 and IgE expressions in a murine model of atopic dermatitis. In conclusion, these results provide evidence that PCP could regulate mammalian immune cells and reveal their pharmaceutical potential in developing therapeutic strategies against Th2-mediated immune disorders. PMID:24625278

  7. Sirtuin inhibition attenuates the production of inflammatory cytokines in lipopolysaccharide-stimulated macrophages

    SciTech Connect

    Fernandes, Claudia A.; Fievez, Laurence; Neyrinck, Audrey M.; Delzenne, Nathalie M.; Bureau, Fabrice; Vanbever, Rita

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer Lipopolysaccharide-stimulated macrophages were treated with cambinol and sirtinol. Black-Right-Pointing-Pointer Cambinol and sirtinol decreased lipopolysaccharide-induced cytokines. Black-Right-Pointing-Pointer Cambinol decreased NF-{kappa}B activity but had no impact on p38 MAPK activation. Black-Right-Pointing-Pointer Sirtuins are an interesting target for the treatment of inflammatory diseases. -- Abstract: In several inflammatory conditions such as rheumatoid arthritis or sepsis, the regulatory mechanisms of inflammation are inefficient and the excessive inflammatory response leads to damage to the host. Sirtuins are class III histone deacetylases that modulate the activity of several transcription factors that are implicated in immune responses. In this study, we evaluated the impact of sirtuin inhibition on the activation of lipopolysaccharide (LPS)-stimulated J774 macrophages by assessing the production of inflammatory cytokines. The pharmacologic inhibition of sirtuins decreased the production of tumour necrosis factor-alpha (TNF-{alpha}) interleukin 6 (IL-6) and Rantes. The reduction of cytokine production was associated with decreased nuclear factor kappa B (NF-{kappa}B) activity and inhibitor kappa B alpha (I{kappa}B{alpha}) phosphorylation while no impact was observed on the phosphorylation status of p38 mitogen-activated kinase (p38 MAPK). This work shows that sirtuin pharmacologic inhibitors are a promising tool for the treatment of inflammatory conditions.

  8. Persistence of local cytokine production in shigellosis in acute and convalescent stages.

    PubMed Central

    Raqib, R; Lindberg, A A; Wretlind, B; Bardhan, P K; Andersson, U; Andersson, J

    1995-01-01

    Shigella infection is accompanied by an intestinal activation of epithelial cells, T cells, and macrophages within the inflamed colonic mucosa. A prospective study was carried out to elucidate the cytokine pattern in Shigella infection linked to development of immunity and eradication of bacteria from the local site and also to correlate the cytokine profile with histological severity. An indirect immunohistochemical technique was used to determine the production and localization of various cytokines at the single-cell level in cryopreserved rectal biopsies from 24 patients with either Shigella dysenteriae type 1 (n = 18) or Shigella flexneri (n = 6) infection. The histopathological profile included presence of chronic inflammatory cells with or without neutrophils and microulcers in the lamina propria, crypt distortion, branching, and less frequently crypt abscesses. Patients had significantly higher (P < 0.005) numbers of cytokine producing cells for all of the cytokines studied, interleukin-1 alpha (IL-1 alpha), IL-1 beta, IL-1ra, tumor necrosis factor alpha (TNF-alpha), IL-6, IL-8, IL-4, IL-10, gamma interferon, TNF-beta, and transforming growth factor beta 1-3, in the biopsies than the healthy controls (n = 13). The cytokine production profile during the study period was dominated by IL-1 beta, transforming growth factor beta 1-3, IL-4, and IL-10. Significantly increased frequencies of cytokine-producing cells (P < 0.05) were observed for IL-1, IL-6, gamma interferon, and TNF-alpha in biopsies with severe inflammation in comparison with those with mild inflammation. During the acute stage of the disease, 20 of 24 patients exhibited acute inflammation in the rectal biopsies and the cellular infiltration was still extensive 30 days after the onset of diarrhea, although the disease was clinically resolved. In accordance with the histological findings, cytokine production was also upregulated during the convalescent phase; there was no significant difference (P

  9. Regulation of Signal Transducer and Activator of Transcription and Suppressor of Cytokine-Signaling Gene Expression in the Brain of Mice with Astrocyte-Targeted Production of Interleukin-12 or Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Maier, Joachim; Kincaid, Carrie; Pagenstecher, Axel; Campbell, Iain L.

    2002-01-01

    Interleukin (IL)-12 and interferon (IFN)-γ are implicated in the pathogenesis of immune disorders of the central nervous system (CNS). To define the basis for the actions of these cytokines in the CNS, we examined the temporal and spatial regulation of key signal transducers and activators of transcription (STATs) and suppressors of cytokine signaling (SOCS) in the brain of transgenic mice with astrocyte production of IL-12 or in mice with experimental autoimmune encephalomyelitis (EAE). In healthy mice, with the exception of STAT4 and STAT6, the expression of a number of STAT and SOCS genes was detectable. However, in symptomatic transgenic mice and in EAE significant up-regulation of STAT1, STAT2, STAT3, STAT4, IRF9, and SOCS1 and SOCS3 RNA transcripts was observed. Although the increased expression of STAT1 RNA was widely distributed and included neurons, astrocytes, and microglia, STAT4 and STAT3 and SOCS1 and SOCS3 RNA was primarily restricted to the infiltrating mononuclear cell population. The level and location of the STAT1, STAT3, and STAT4 proteins overlapped with their corresponding RNA and additionally showed nuclear localization indicative of activation of these molecules. Thus, in both the glial fibrillary acidic protein-IL-12 mice and in EAE the CNS expression of key STAT and SOCS genes that regulate IL-12 (STAT4) and IFN-γ (STAT1, SOCS1, and SOCS3) receptor signaling is highly regulated and compartmentalized. We conclude the interaction between these positive and negative signaling circuits and their distinct cellular locations likely play a defining role in coordinating the actions of IL-12 and IFN-γ during the pathogenesis of type 1 immune responses in the CNS. PMID:11786421

  10. Potent Inhibitors of Pro-Inflammatory Cytokine Production Produced by a Marine-Derived Bacterium

    PubMed Central

    Strangman, Wendy K.; Kwon, Hak Cheol; Broide, David; Jensen, Paul R.; Fenical, William

    2009-01-01

    Cytokines produced through the Antigen Presenting Cell (APC)–T-cell interaction play a key role in the activation of the allergic asthmatic response. Evaluating small molecules that inhibit the production of these pro-inflammatory proteins is therefore important for the discovery of novel chemical structures with potential anti-asthma activity. We adapted a mouse splenocyte cytokine assay to screen a library of 2,500 marine microbial extracts for their ability to inhibit TH2 cytokine release and identified potent activity in a marine-derived strain CNQ431, identified as a Streptomyces species. Bioactivity guided fractionation of the organic extract of this strain led to the isolation of ten new 9-membered bis-lactones, splenocins A-J (1–10). The new compounds display potent biological activities, comparable to that of the corticosteroid dexamethasone, with IC50 values from 2–50 nanomolar in the splenocyte cytokine assay. This study provides the foundation for the optimization of these potent anti-inflammatory compounds for development in the treatment of asthma. PMID:19323483

  11. Mechanisms associated with defective TH1 cytokine production in HIV infection.

    PubMed

    Rodriguez, N; Yano, N; Eylar, E; Yamamura, Y

    1997-11-01

    Qualitative and quantitative changes in immune functions of different T-cell subsets associated with infection by human immunodeficiency virus type 1 (HIV-1) were analyzed by flow cytometric assessment of intracytoplasmic cytokines. The T(H)1 cytokines, interleukin-2 (IL-2) and interferon-gamma (IFN-gamma), were produced by both CD4 and CD8 T-cell subsets. When normal peripheral blood mononuclear cells (PBMC) were activated in culture, both cytokines were produced predominantly by CD4 (CD4) cell and only a minor fraction of normal CD8 cells produced these cytokines. In the cultures of PBMC from HIV-1-infected individuals (HIV+PBMC), more HIV+CD8 cells produced IL-2 and IFN-gamma. Production of IFN-gamma by HIV+CD4 cells was markedly reduced, while IL-2nd tumor necrosis factor-alpha (TNF-alpha) production by HIV+CD4 remained relatively intact until the disease progressed further. Normal CD4 cells which were isolated by using a cell sorter, FACSCalibur was still able to produce IL-2 and TNF-alpha. But for full production of IFN-gamma, normal CD4 required some accessory cells, the identity of which could not yet be established. PMID:9449527

  12. Diclofenac enhances proinflammatory cytokine-induced nitric oxide production through NF-{kappa}B signaling in cultured astrocytes

    SciTech Connect

    Kakita, Hiroki; Aoyama, Mineyoshi Hussein, Mohamed Hamed; Kato, Shin; Suzuki, Satoshi; Ito, Tetsuya; Togari, Hajime; Asai, Kiyofumi

    2009-07-01

    Recently, the number of reports of encephalitis/encephalopathy associated with influenza virus has increased. In addition, the use of a non-steroidal anti-inflammatory drug, diclofenac sodium (DCF), is associated with a significant increase in the mortality rate of influenza-associated encephalopathy. Activated astrocytes are a source of nitric oxide (NO), which is largely produced by inducible NO synthase (iNOS) in response to proinflammatory cytokines. Therefore, we investigated whether DCF enhances nitric oxide production in astrocytes stimulated with proinflammatory cytokines. We stimulated cultured rat astrocytes with three cytokines, interleukin-1{beta}, tumor necrosis factor-{alpha} and interferon-{gamma}, and then treated the astrocytes with DCF or acetaminophen (N-acetyl-p-aminophenol: APAP). iNOS and NO production in astrocyte cultures were induced by proinflammatory cytokines. The addition of DCF augmented NO production, but the addition of APAP did not. NF-{kappa}B inhibitors SN50 and MG132 inhibited iNOS gene expression in cytokine-stimulated astrocytes with or without DCF. Similarly, NF-{kappa}B p65 Stealth small interfering RNA suppressed iNOS gene expression in cytokine-stimulated astrocytes with or without DCF. LDH activity and DAPI staining showed that DCF induces cell damage in cytokine-stimulated astrocytes. An iNOS inhibitor, L-NMMA, inhibited the cytokine- and DCF-induced cell damage. In conclusion, this study demonstrates that iNOS and NO are induced in astrocyte cultures by proinflammatory cytokines. Addition of DCF further augments NO production. This effect is mediated via NF-{kappa}B signaling and leads to cell damage. The enhancement of DCF on NO production may explain the significant increase in the mortality rate of influenza-associated encephalopathy in patients treated with DCF.

  13. Human umbilical cord-derived mesenchymal stem cells suppress proliferation of PHA-activated lymphocytes in vitro by inducing CD4(+)CD25(high)CD45RA(+) regulatory T cell production and modulating cytokine secretion.

    PubMed

    Yang, Hongna; Sun, Jinhua; Li, Yan; Duan, Wei-Ming; Bi, Jianzhong; Qu, Tingyu

    2016-04-01

    Bone marrow-derived mesenchymal stem cells (MSCs) are promising candidate cells for therapeutic application in autoimmune diseases due to their immunomodulatory properties. Unused human umbilical cords (UC) offer an abundant and noninvasive source of MSCs without ethical issues and are emerging as a valuable alternative to bone marrow tissue for producing MSCs. We thus investigated the immunomodulation effect of umbilical cord-derived MSCs (UC-MSCs) on human peripheral blood mononuclear cells (PBMCs), T cells in particular, in a co-culture system. We found that UC-MSCs efficiently suppressed the proliferation of phytohaemagglutinin (PHA)-stimulated PBMCs (p<0.01). Kinetic analysis revealed that UC-MSCs primarily inhibited the division of generation 3 (G3) and 4 (G4) of PBMCs. In addition, UC-MSCs augmented the expression of CD127(+) and CD45RA(+) but reduced the expression of CD25(+) in PBMCs stimulated by PHA (p<0.05). Furthermore, UC-MSCs inhibited PHA-resulted increase in the frequency of CD4(+)CD25(+)CD127(low/-) Tregs significantly (p<0.01) but augmented PHA-resulted increase in the frequency of CD4(+)CD25(high)CD45RA(+) Tregs to about three times in PBMCs. The levels of anti-inflammatory cytokines, PEG2, TGF-β, and IL-10 were greatly up-regulated, accompanied by a significant down-regulation of pro-inflammatory IFN-γ in the co-culture (p<0.01). Our results showed that UC-MSCs are able to suppress mitogen-induced PBMC activation and proliferation in vitro by altering T lymphocyte phenotypes, increasing the frequency of CD4(+)CD25(high)CD45RA(+) Tregs, and modulating the associated cytokine production. Further studies are warranted to investigate the therapeutic potential of UC-MSCs in immunologically-diseased conditions. PMID:26774852

  14. T-cell immunity and cytokine production in cosmonauts after long-duration space flights

    NASA Astrophysics Data System (ADS)

    Morukov, B.; Rykova, M.; Antropova, E.; Berendeeva, T.; Ponomaryov, S.; Larina, I.

    2011-04-01

    Long-duration spaceflight effects on T-cell immunity and cytokine production were studied in 12 Russian cosmonauts flown onto the International Space Station. Specific assays were performed before launch and after landing and included analysis of peripheral leukocyte distribution, analysis of T-cell phenotype, expression of activation markers, apoptosis, proliferation of T cells in response to a mitogen, concentrations of cytokines in supernatants of cell cultures. Statistically significant increase was observed in leukocytes', lymphocytes', monocytes' and granulocytes' total number, increase in percentage and absolutely number of CD3 +CD4 +-cells, CD4 +CD45RA +-cells and CD4 +CD45RA +/CD4 +CD45RО + ratio, CD4 +CD25 +Bright regulatory cells ( p<0,05) in peripheral blood after landing. T-lymphocytes' capacity to present CD69 and CD25 on its own surfaces was increased for the majority of crewmembers. Analysis of T-cell response to PHA-stimulation in vitro revealed there were some trends toward reduced proliferation of stimulated T-lymphocytes. There was an apparent post flight decrease in secreted IFN-g for the majority of crewmembers and in most instances there was elevation in secreted IL-10. It revealed depression of IFN-g/IL-10 ratio after flight. Correlation analysis according to Spearman's rank correlation test established significant positive correlations ( p<0.05) between cytokine production and T-cell activation (CD25+, CD38+) and negative correlation ( p<0.05) between cytokine production and number of bulk memory CD4+T-cells (CD45RO+). Thus, these results suggest that T-cell dysfunction can be conditioned by cytokine dysbalance and could lead to development of disease after long-duration space flights.

  15. Notch signaling enhances FcεRI-mediated cytokine production by mast cells through direct and indirect mechanisms.

    PubMed

    Nakano, Nobuhiro; Nishiyama, Chiharu; Yagita, Hideo; Hara, Mutsuko; Motomura, Yasutaka; Kubo, Masato; Okumura, Ko; Ogawa, Hideoki

    2015-05-01

    Th2-type cytokines and TNF-α secreted by activated mast cells upon cross-linking of FcεRI contribute to the development and maintenance of Th2 immunity to parasites and allergens. We have previously shown that cytokine secretion by mouse mast cells is enhanced by signaling through Notch receptors. In this study, we investigated the molecular mechanisms by which Notch signaling enhances mast cell cytokine production induced by FcεRI cross-linking. FcεRI-mediated production of cytokines, particularly IL-4, was significantly enhanced in mouse bone marrow-derived mast cells by priming with Notch ligands. Western blot analysis showed that Notch signaling augmented and prolonged FcεRI-mediated phosphorylation of MAPKs, mainly JNK and p38 MAPK, through suppression of the expression of SHIP-1, a master negative regulator of FcεRI signaling, resulting in the enhanced production of multiple cytokines. The enhancing effect of Notch ligand priming on multiple cytokine production was abolished by knockdown of Notch2, but not Notch1, and FcεRI-mediated production of multiple cytokines was enhanced by retroviral transduction with the intracellular domain of Notch2. However, only IL-4 production was enhanced by both Notch1 and Notch2. The enhancing effect of Notch signaling on IL-4 production was lost in bone marrow-derived mast cells from mice lacking conserved noncoding sequence 2, which is located at the distal 3' element of the Il4 gene locus and contains Notch effector RBP-J binding sites. These results indicate that Notch2 signaling indirectly enhances the FcεRI-mediated production of multiple cytokines, and both Notch1 and Notch2 signaling directly enhances IL-4 production through the noncoding sequence 2 enhancer of the Il4 gene. PMID:25821223

  16. Group 2 Innate Lymphoid Cells Express Functional NKp30 Receptor Inducing Type 2 Cytokine Production.

    PubMed

    Salimi, Maryam; Xue, Luzheng; Jolin, Helen; Hardman, Clare; Cousins, David J; McKenzie, Andrew N J; Ogg, Graham S

    2016-01-01

    Group 2 innate lymphoid cells (ILC2) are important in effector functions for eliciting allergic inflammation, parasite defense, epithelial repair, and lipid homeostasis. ILC2 lack rearranged Ag-specific receptors, and although many soluble factors such as cytokines and lipid mediators can influence ILC2, direct interaction of these cells with the microenvironment and other cells has been less explored. Natural cytotoxicity receptors are expressed by subsets of group 1 ILC and group 3 ILC and thought to be important for their effector function, but they have not been shown to be expressed by ILC2. Therefore, we sought to investigate the expression and functional properties of the natural cytotoxicity receptor NKp30 on human ILC2. A subset of ex vivo and cultured ILC2 express NKp30 that upon interaction with its cognate activatory ligand B7-H6 induces rapid production of type 2 cytokines. This interaction can be blocked by NKp30 blocking Ab and an inhibitory ligand, galectin-3. Higher expression of B7-H6 was observed in lesional skin biopsies of patients with atopic dermatitis, and incubation of keratinocytes with proinflammatory and type 2 cytokines upregulated B7-H6, leading to increased ILC2 cytokine production. NKp30-B7-H6 interaction is a novel cell contact mechanism that mediates activation of ILC2 and identifies a potential target for the development of novel therapeutics for atopic dermatitis and other atopic diseases. PMID:26582946

  17. Group 2 innate lymphoid cells express functional NKp30 receptor inducing type 2 cytokine production1

    PubMed Central

    Salimi, Maryam; Xue, Luzheng; Jolin, Helen; Hardman, Clare; Cousins, David J.; McKenzie, Andrew N.J.; Ogg, Graham S.

    2016-01-01

    Group 2 innate lymphoid cells (ILC2) are important in effector functions for eliciting allergic inflammation, parasite defence, epithelial repair and lipid homeostasis. ILC2 lack rearranged antigen-specific receptors, and while many soluble factors such as cytokines and lipid mediators can influence ILC2, direct interaction of these cells with microenvironment and other cells has been less explored. Natural cytotoxicity receptors are expressed by subsets of ILC1 and ILC3 and thought to be important for their effector function, but have not been shown to be expressed by ILC2. Therefore, we sought to investigate the expression and functional properties of the natural cytotoxicity receptor NKp30 on human group 2 innate lymphoid cells. A subset of ex vivo and cultured ILC2 express NKp30 that upon interaction with its cognate activatory ligand B7-H6 induces rapid production of type 2 cytokines. This interaction can be blocked by NKp30 blocking antibody and an inhibitory ligand, galectin-3. Higher expression of B7-H6 was observed in lesional skin biopsies of patients with atopic dermatitis; and incubation of keratinocytes with pro-inflammatory and type 2 cytokines upregulated B7-H6 leading to increased ILC2 cytokine production. NKp30-B7-H6 interaction is a novel cell contact mechanism that mediates activation of ILC2 and identifies a potential target for the development of novel therapeutics for atopic dermatitis and other atopic diseases. PMID:26582946

  18. Triggering Dectin-1-Pathway Alone Is Not Sufficient to Induce Cytokine Production by Murine Macrophages

    PubMed Central

    Walachowski, Sarah

    2016-01-01

    β-glucans (BG) are abundant polysaccharides of the Saccharomyces cerevisiae cell wall (Sc CW), an industry byproduct. They have immuno-stimulatory properties upon engagement of dectin-1 (Clec7a), their main receptor on particular immune cells, and they actually become of great interest because of their preventive or therapeutic potentials. Zymosan, a crude extract of Sc CW was studied as a prototypic BG, despite its miscellaneous PAMPs content. Here, we examined the response of murine wild type or Clec7a-/- bone marrow-derived macrophages (BMDM) to products with increasing BG content (15, 65 or 75%) and compared their effects with those of other dectin-1 ligands. The enrichment process removed TLR ligands while preserving dectin-1 activity. The most enriched extracts have very low NFκB activity and triggered low amounts of cytokine production in contrast with crude products like zymosan and BG15. Furthermore, MyD88-/- BMDM did not produce TNFα in response to crude Sc CW extracts, whereas their response to BG-enriched extracts was unaffected, suggesting that BG alone are not able to initiate cytokine secretion. Although Sc CW-derived BG stimulated the late and strong expression of Csf2 in a dectin-1-dependent manner, they remain poor inducers of chemokine and cytokine production in murine macrophages. PMID:26840954

  19. β-Glucan attenuates TLR2- and TLR4-mediated cytokine production by microglia

    PubMed Central

    Shah, Vaibhav B.; Williams, David L.; Keshvara, Lakhu

    2015-01-01

    Microglia, the resident immune cells of the brain, are activated in response to any kind of CNS injury, and their activation is critical for maintaining homeostasis within the CNS. However, during inflammatory conditions, sustained microglial activation results in damage to surrounding neuronal cells. β-Glucans are widely recognized immunomodulators, but the molecular mechanisms underlying their immunomodulatory actions have not been fully explored. We previously reported that β-glucans activate microglia through Dectin-1 without inducing significant amount of cytokines and chemokines. Here, we show that particulate β-glucans attenuate cytokine production in response to TLR stimulation; this inhibitory activity of β-glucan is mediated by Dectin-1 and does not require particle internalization. At the molecular level, β-glucan suppressed TLR-mediated NF-κB activation, which may be responsible for the diminished capacity of microglia to produce cytokines in response to TLR stimulation. Overall, these results suggest that β-glucans may be used to prevent or treat excessive microglial activation during chronic inflammatory conditions. PMID:19393720

  20. beta-Glucan attenuates TLR2- and TLR4-mediated cytokine production by microglia.

    PubMed

    Shah, Vaibhav B; Williams, David L; Keshvara, Lakhu

    2009-07-24

    Microglia, the resident immune cells of the brain, are activated in response to any kind of CNS injury, and their activation is critical for maintaining homeostasis within the CNS. However, during inflammatory conditions, sustained microglial activation results in damage to surrounding neuronal cells. beta-Glucans are widely recognized immunomodulators, but the molecular mechanisms underlying their immunomodulatory actions have not been fully explored. We previously reported that beta-glucans activate microglia through Dectin-1 without inducing significant amount of cytokines and chemokines. Here, we show that particulate beta-glucans attenuate cytokine production in response to TLR stimulation; this inhibitory activity of beta-glucan is mediated by Dectin-1 and does not require particle internalization. At the molecular level, beta-glucan suppressed TLR-mediated NF-kappaB activation, which may be responsible for the diminished capacity of microglia to produce cytokines in response to TLR stimulation. Overall, these results suggest that beta-glucans may be used to prevent or treat excessive microglial activation during chronic inflammatory conditions. PMID:19393720

  1. Cytokine production in peripheral blood cells of patients with differentiated thyroid cancer: elevated Th2/Th9 cytokine production before and reduced Th2 cytokine production after radioactive iodine therapy.

    PubMed

    Simonovic, Snezana Zivancevic; Mihaljevic, Olgica; Majstorovic, Ivana; Djurdjevic, Predrag; Kostic, Irena; Djordjevic, Olivera Milosevic; Teodorovic, Ljiljana Mijatovic

    2015-01-01

    Cytokines play a key role in the regulation of cells of the immune system and also have been implicated in the pathogenesis of malignant diseases. The aim of this study was to evaluate cytokine profiles in patients with differentiated thyroid cancer (DTC) before and 7 days after radioactive iodine (131-I) therapy. Cytokine levels were determined in supernatants obtained from phytohemagglutinin-stimulated whole blood cultures of 13 patients with DTC and 13 control subjects. The concentrations of selected cytokines: Th1-interferon gamma (IFN-γ), interleukin 2 (IL-2) and tumor necrosis factor alpha (TNF-α); Th2-interleukin 4 (IL-4), interleukin 5 (IL-5), interleukin 13 (IL-13) and interleukin 10 (IL-10); Th9-interleukin-9 (IL-9); and Th17-interleukin 17 (IL-17A) were measured using multiplex cytokine detection systems for Human Th1/Th2/Th9/Th17/Th22. We have shown that peripheral blood cells of DTC patients produce significantly higher concentrations of Th2/Th9 cytokines (IL-5, IL-13 and IL-9) than control subjects. The 131-I therapy led to reduced secretion of Th2 cytokines (IL-4, IL-5 and IL-13). Despite this, the calculated cytokine ratios (Th1/Th2) in DTC patients before and 7 days after 131-I therapy were not different from those in healthy subjects. DTC patients have significantly higher concentrations of Th2/Th9 cytokines (IL-5, IL-13 and IL-9) than control subjects. There is no influence of hypothyroidism or stage of disease on cytokine production in DTC patients before 131-I therapy. The radioactive 131-I therapy leads to reduced secretion of Th2 cytokines (IL-4, IL-5 and IL-13). Additional studies are needed to determine the significance of these findings. PMID:25297452

  2. IL-10 Dependent Suppression of Type 1, Type 2 and Type 17 Cytokines in Active Pulmonary Tuberculosis

    PubMed Central

    Kumar, Nathella Pavan; Gopinath, Venugopal; Sridhar, Rathinam; Hanna, Luke E.; Banurekha, Vaithilingam V.; Jawahar, Mohideen S.; Nutman, Thomas B.; Babu, Subash

    2013-01-01

    Background Although Type 1 cytokine responses are considered protective in pulmonary tuberculosis (PTB), their role as well as those of Type 2, 17 and immunoregulatory cytokines in tuberculous lymphadenitis (TBL) and latent tuberculosis (LTB) have not been well studied. Aim and Methods To identify cytokine responses associated with pulmonary tuberculosis (TB), TB lymphadenitits and latent TB, we examined mycobacterial antigen-specific immune responses of PTB, TBL and LTB individuals. More specifically, we examined ESAT-6 and CFP-10 induced Type 1, Type 2 and Type 17 cytokine production and their regulation using multiplex ELISA. Results PTB individuals exhibited a significantly lower baseline as well as antigen-specific production of Type 1 (IFNγ, TNFα and IL-2); Type 2 (IL-4) and Type 17 (IL-17A and IL-17F) cytokines in comparison to both TBL and LTB individuals. TBL individuals exhibited significantly lower antigen-specific IFNγ responses alone in comparison to LTB individuals. Although, IL-10 levels were not significantly higher, neutralization of IL-10 during antigen stimulation resulted in significantly enhanced production of IFNγ, IL-4 and IL-17A in PTB individuals, indicating that IL-10 mediates (at least partially) the suppression of cytokine responses in PTB. Conclusion Pulmonary TB is characterized by an IL-10 dependent antigen-specific suppression of Type 1, Type 2 and Type 17 cytokines, reflecting an important association of these cytokines in the pathogenesis of active TB. PMID:23544075

  3. Herbal medicine IMOD suppresses LPS-induced production of proinflammatory cytokines in human dendritic cells

    PubMed Central

    Mirzaee, Saeedeh; Drewniak, Agata; Sarrami-Forooshani, Ramin; Kaptein, Tanja M.; Gharibdoost, Farhad; Geijtenbeek, Teunis B. H.

    2015-01-01

    Traditional medicines that stimulate or modulate the immune system can be used as innovative approaches to treat immunological diseases. The herbal medicine IMOD has been shown to strongly modulate immune responses in several animal studies as well as in clinical trials. However, little is known about the mechanisms of IMOD to modulate immunity. Here we have investigated whether IMOD modulates the immunological function of human dendritic cells (DCs). IMOD alone did not induce DC maturation nor production of cytokines. Notably, IMOD decreased the production of pro-inflammatory cytokines IL-6, IL-12 p70, and TNFα by LPS-activated DCs at both mRNA and protein levels in a dose dependent manner. In contrast, treatment with IMOD did not affect LPS induced-production of the anti-inflammatory cytokine IL-10. Furthermore, IMOD inhibited T cell activation/proliferation by LPS-treated DCs and skewed T-cells responses toward the T helper type 2 polarization. These data strongly indicate that IMOD has a potent immunomodulatory ability that affects TLR signaling and thereby modulates DC function. Insight into the immunomodulatory effect of herbal medicine IMOD may provide innovative strategies to affect the immune system and to help combat various diseases. PMID:25870561

  4. Selective modulation of lipopolysaccharide-induced death and cytokine production by various muramyl peptides.

    PubMed Central

    Parant, M A; Pouillart, P; Le Contel, C; Parant, F J; Chedid, L A; Bahr, G M

    1995-01-01

    Pretreatment of animals with the adjuvant muramyl dipeptide enhances both the production of circulating tumor necrosis factor and the sensitivity to the lethal effect of a lipopolysaccharide (LPS) challenge. The present study examined the capacity of various adjuvant muramyl dipeptide derivatives to potentiate responsiveness to LPS administration. Cytokine levels in serum were determined at various time intervals after LPS administration by bioassays and immunoassays; the cytokines examined were tumor necrosis factor, interleukin-1, interleukin-6, and gamma interferon. The time course of cytokine response was not modified by the pretreatment, but most of the levels were strongly enhanced. However, of the four compounds which were found to be potent priming agents, only two caused an increased sensitivity to LPS lethality, showing that elevated titers of cytokines in serum were not correlated with host sensitization. Interestingly, previous studies have shown that these two compounds also display neurobiological properties, implying a possible role of the central nervous system in LPS lethality. However, two hydrophilic derivatives with low activity as priming agents were capable of decreasing the toxicity of LPS when given after the challenge in galactosamine-sensitized mice. These results illustrate the diversity of responses elicited by immunological priming. They raise unanswered questions on the importance of endogenous mediators in the pathophysiological alterations during toxic shock. PMID:7806345

  5. Oxidative products from alcohol metabolism differentially modulate pro-inflammatory cytokine expression in Kupffer cells and hepatocytes.

    PubMed

    Dong, Daoyin; Zhong, Wei; Sun, Qian; Zhang, Wenliang; Sun, Xinguo; Zhou, Zhanxiang

    2016-09-01

    Pro-inflammatory cytokines play a vital role in the pathogenesis of alcoholic steatohepatitis. The present study was to determine the role of alcohol-induced oxidative stress in modulating cytokine production. A rat model of alcohol consumption was used to determine alcohol-induced hepatic cytokine expression. Chronic alcohol exposure caused lipid accumulation, oxidative stress, and inflammation in the livers of Wistar rats. The role of oxidative stress in regulating cell type-specific cytokine production was further dissected in vitro. Lipopolysaccharide (LPS) dose-dependently upregulated TNF-α, MIP-1α, MCP-1, and CINC-1 in Kupffer cells-SV40, whereas TNF-α dose-dependently induced CINC-1, IP-10, and MIP-2 expression in H4IIEC3 hepatoma cells. An additive effect on cytokine production was observed in both Kupffer cells-SV40 and hepatocytes when combined hydrogen peroxide with LPS or TNF-α, respectively, which was associated with NF-κB activation and histone H3 hyper-acetylation. Unexpectedly, an inhibitory effect of 4-hydroxynonenal on cytokine production was revealed in LPS-treated Kupffer cells-SV40. Mechanistic study showed that 4-hydroxynonenal significantly enhanced mRNA degradation of TNF-α, MCP-1, and MIP-1α, and decreased the protein levels of MCP-1 in LPS-stimulated Kupffer cells-SV40 through reducing the phosphorylation of mRNA binding proteins. This study suggests that Kupffer cells and hepatocytes express distinct pro-inflammatory cytokines/chemokines in response to alcohol intoxication, and oxidative products (4-hydroxynonenal) differentially modulate pro-inflammatory cytokine/chemokine production via NF-κB signaling, histone acetylation, and mRNA stability. PMID:27314544

  6. Hydrogen sulfide attenuates cytokine production through the modulation of chromatin remodeling

    PubMed Central

    RIOS, ESTER C.S.; SZCZESNY, BARTOSZ; SORIANO, FRANCISCO G.; OLAH, GABOR; SZABO, CSABA

    2015-01-01

    Hydrogen sulfide (H2S) is an endogenous gaseous biological mediator, which regulates, among others, the oxidative balance of cells under normal physiological conditions, as well as in various diseases. Several previous studies have reported that H2S attenuates inflammatory mediator production. In this study, we investigated the role of H2S in chromatin modulation in an in vitro model of lipopolysaccharide (LPS)-induced inflammation and evaluated its effects on inflammatory cytokine production. Tamm-Horsfall protein 1 (THP-1) differentiated macrophages were pre-treated with sodium hydrosulfide (NaHS) (an H2S donor) at 0.01, 0.1, 0.5 or 1 mM for 30 min. To stimulate cytokine production, the cells were challenged with bacterial LPS (1 μg/ml) for 1, 4, 8 or 24 h. Histone H3 acetylation was analyzed by chromatin immunoprecipitation (ChIP), cytokine production was measured by ELISA and histone deacetylase (HDAC) activity was analyzed using a standard biochemical assay. H2S inhibited the production of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in a concentration-dependent manner; it was most effective at the two highest concentrations used. This effect was associated with a decrease in histone H3 acetylation at the IL-6 and TNF-α promoters in the cells exposed to H2S or H2S + LPS. The findings of the present study suggest that H2S suppresses histone acetylation, which, in turn, inhibits chromatin openness, leading to a decrease in the gene transcription of various pro-inflammatory cytokines. Therefore, this mechanism may contribute to the previously demonstrated anti-inflammatory effects of H2S and various H2S donors. PMID:25873160

  7. Photodynamic therapy induced production of cytokines by latent Epstein Barr virus infected epithelial tumor cells

    NASA Astrophysics Data System (ADS)

    Koon, H. K.; Lo, K. W.; Lung, M. L.; Chang, C. K. C.; Wong, R. N. S.; Mak, N. K.

    2007-02-01

    Photodynamic therapy (PDT) is a method to treat cancer or non-cancer diseases by activation of the light-sensitive photosensitizers. Epstein Barr virus (EBV) has been implicated in the development of certain cancers such as nasopharyngeal carcinoma and B cell lymphoma. This study aims to examine the effects of EBV infection on the production of pro-inflammatory cytokines and chemokines in cells after the photosensitizer Zn-BC-AM PDT treatment. Epithelial tumor cell lines HONE-1 and latent EBV-infected HONE-1 (EBV-HONE-1) cells were used in this study. Cells were treated with the photosensitizer Zn-BC-AM for 24 hours before light irradiation. RT-PCR and quantitative ELISA methods were used for the evaluation of mRNA expression and production of cytokines, respectively. Results show that Zn-BC-AM PDT increases the production of IL-1a and IL-1b in EBV-HONE-1. Over a 10-fold increase in the production of IL-6 was observed in the culture supernatant of Zn-BC-AM PDT-treated HONE-1 cells. PDT-induced IL-6 production was observed in HONE-1 cells. EBV-HONE-1 has a higher background level of IL-8 production than the HONE-1. The production of IL-8 was suppressed in EBV-HONE-1cells after Zn-BC-AM PDT. Our results indicate that the response of HONE-1 cells to Zn-BC-AM PDT depends on the presence of latent EBV infection. Since IL-8 is a cytokine with angiogenic activity, Zn-BC-AM PDT may exert an anti-angiogenic effect through the suppression of IL-8 production by the EBV-infected cells.

  8. Host Intracellular Signaling Events and Pro-inflammatory Cytokine Production in African Trypanosomiasis

    PubMed Central

    Kuriakose, Shiby M.; Singh, Rani; Uzonna, Jude E.

    2016-01-01

    Pathogens, such as bacteria, viruses, and parasites, possess specific molecules or proteins that are recognized by several host innate immune receptors, leading to the activation of several intracellular signaling molecules and pathways. The magnitude and quality of these events significantly affect the outcome of infection. African trypanosomes, including Trypanosoma congolense, are capable of manipulating the host immune response, including the activity of macrophages, which are the key immune cells that contribute to the immunopathogenesis of African trypanosomiasis. Although it is known that immune hyperactivation and excessive pro-inflammatory cytokine production are the hallmarks of African trypanosomiasis, the mechanisms through which these events are triggered are poorly defined. However, it is known that macrophages may play a significant role in these processes, because phagocytosis of trypanosomes by macrophages initiates intracellular signal transduction cascades that lead to the release of pro-inflammatory cytokines and alteration in cell function. This review highlights recent progress in our understanding of the innate immune receptors, signaling pathways, and transcription factors involved in T. congolense-induced pro-inflammatory cytokine production in macrophages. It will reveal the existence of complex signaling events through which the parasite modulates the host immune response, thus identifying novel targets that could aid in designing strategies to effectively control the disease. PMID:27242788

  9. Host Intracellular Signaling Events and Pro-inflammatory Cytokine Production in African Trypanosomiasis.

    PubMed

    Kuriakose, Shiby M; Singh, Rani; Uzonna, Jude E

    2016-01-01

    Pathogens, such as bacteria, viruses, and parasites, possess specific molecules or proteins that are recognized by several host innate immune receptors, leading to the activation of several intracellular signaling molecules and pathways. The magnitude and quality of these events significantly affect the outcome of infection. African trypanosomes, including Trypanosoma congolense, are capable of manipulating the host immune response, including the activity of macrophages, which are the key immune cells that contribute to the immunopathogenesis of African trypanosomiasis. Although it is known that immune hyperactivation and excessive pro-inflammatory cytokine production are the hallmarks of African trypanosomiasis, the mechanisms through which these events are triggered are poorly defined. However, it is known that macrophages may play a significant role in these processes, because phagocytosis of trypanosomes by macrophages initiates intracellular signal transduction cascades that lead to the release of pro-inflammatory cytokines and alteration in cell function. This review highlights recent progress in our understanding of the innate immune receptors, signaling pathways, and transcription factors involved in T. congolense-induced pro-inflammatory cytokine production in macrophages. It will reveal the existence of complex signaling events through which the parasite modulates the host immune response, thus identifying novel targets that could aid in designing strategies to effectively control the disease. PMID:27242788

  10. A miRNA upregulated in asthma airway T cells promotes TH2 cytokine production

    PubMed Central

    Simpson, Laura J.; Patel, Sana; Bhakta, Nirav R.; Choy, David F.; Brightbill, Hans D.; Ren, Xin; Wang, Yanli; Pua, Heather H.; Baumjohann, Dirk; Montoya, Misty M.; Panduro, Marisella; Remedios, Kelly A.; Huang, Xiaozhu; Fahy, John V.; Arron, Joseph R.; Woodruff, Prescott G.; Ansel., Karl M.

    2014-01-01

    MicroRNAs (miRNAs) exert powerful effects on immune function by tuning networks of target genes that orchestrate cell behavior. We sought to uncover miRNAs and miRNA-regulated pathways that control the TH2 responses that drive pathogenic inflammation in asthma. Profiling miRNA expression in human airway-infiltrating T cells revealed miR-19a elevation in asthma. Modulating miR-19 activity altered TH2 cytokine production in both human and mouse T cells, and TH2 cell responses were markedly impaired in cells lacking the entire miR-17∼92 cluster. miR-19 promotes TH2 cytokine production and amplifies PI(3)K, JAK-STAT, and NF-κB signaling by direct targeting of PTEN, SOCS1, and A20. Thus, miR-19a up regulation in asthma may be an indicator and a cause of increased TH2 cytokine production in the airways. PMID:25362490

  11. Basal protein phosphatase 2A activity restrains cytokine expression: role for MAPKs and tristetraprolin.

    PubMed

    Rahman, Md Mostafizur; Rumzhum, Nowshin N; Morris, Jonathan C; Clark, Andrew R; Verrills, Nicole M; Ammit, Alaina J

    2015-01-01

    PP2A is a master controller of multiple inflammatory signaling pathways. It is a target in asthma; however the molecular mechanisms by which PP2A controls inflammation warrant further investigation. In A549 lung epithelial cells in vitro we show that inhibition of basal PP2A activity by okadaic acid (OA) releases restraint on MAPKs and thereby increases MAPK-mediated pro-asthmatic cytokines, including IL-6 and IL-8. Notably, PP2A inhibition also impacts on the anti-inflammatory protein - tristetraprolin (TTP), a destabilizing RNA binding protein regulated at multiple levels by p38 MAPK. Although PP2A inhibition increases TTP mRNA expression, resultant TTP protein builds up in the hyperphosphorylated inactive form. Thus, when PP2A activity is repressed, pro-inflammatory cytokines increase and anti-inflammatory proteins are rendered inactive. Importantly, these effects can be reversed by the PP2A activators FTY720 and AAL(s), or more specifically by overexpression of the PP2A catalytic subunit (PP2A-C). Moreover, PP2A plays an important role in cytokine expression in cells stimulated with TNFα; as inhibition of PP2A with OA or PP2A-C siRNA results in significant increases in cytokine production. Collectively, these data reveal the molecular mechanisms of PP2A regulation and highlight the potential of boosting the power of endogenous phosphatases as novel anti-inflammatory strategies to combat asthmatic inflammation. PMID:25985190

  12. Cytokine production by mononuclear cells following stimulation with a peptide-containing, endotoxin-free Escherichia coli extract.

    PubMed

    Thomsen, A; Loppnow, H

    1995-05-01

    The beneficial effects of the E. coli extract Colibiogen inj. N (Cb) observed in therapy of inflammatory bowel diseases, allergies, or gastrointestinal tumors are possibly mediated by the induction of cytokines in human leukocytes or vascular cells. Thus, the induction of the cytokines interleukin 1 (IL1), IL6 and tumor necrosis factor (TNF) in human mononuclear cells (MNC) and vascular cells was investigated in vitro. Various administration forms of the extract (including Cb-inj. N, Cb-oral, and Cb-infantibus N) induced the release of IL1 and IL6 from MNC. The compounds stimulated TNF production less potently, possibly due to a lower sensitivity of the TNF assay system, as compared to the IL1 and IL6 detection system. The MNC produced the cytokines with a kinetics similar to that observed with other stimuli. Monospecific antibodies abolished the respective cytokine activity in the biological assays. Addition of submaximal amounts of endotoxin potently enhanced the IL1- and IL6-inducing activity of the bacterial extract, indicating synergism of the extract and endotoxin. These results provide evidence that cytokines produced by MNC following administration of the tested bacterial extract may contribute to the regulation of the immune response during therapy of gastrointestinal tumors. At present the in vivo production of cytokines following treatment with the bacterial extract tested is under investigation in a phase III study. PMID:7612070

  13. Staphylococcal Enterotoxin B Primes Cytokine Secretion and Lytic Activity in Response to Native Bacterial Antigens

    PubMed Central

    Mason, Kevin M.; Dryden, Tricia D.; Bigley, Nancy J.; Fink, Pamela S.

    1998-01-01

    Superantigens stimulate T-lymphocyte proliferation and cytokine production, but the effects of superantigen exposure on cell function within a complex, highly regulated immune response remain to be determined. In this study, we demonstrate that superantigen exposure significantly alters the murine host response to bacterial antigens in an in vitro coculture system. Two days after exposure to the superantigen staphylococcal enterotoxin B, splenocytes cultured with Streptococcus mutans produced significantly greater amounts of gamma interferon (IFN-γ) and interleukin-12 than did sham-injected controls. The majority of IFN-γ production appeared to be CD8+ T-cell derived since depletion of this cell type dramatically reduced the levels of IFN-γ. To study host cell damage that may occur following superantigen exposure, we analyzed cytotoxicity to “bystander” fibroblast cells cultured with splenocytes in the presence of bacterial antigens. Prior host exposure to staphylococcal enterotoxin B significantly enhanced fibroblast cytotoxicity in the presence of bacteria. Neutralization of IFN-γ decreased the amount of cytotoxicity observed. However, a greater reduction was evident when splenocyte-bacterium cocultures were separated from the bystander cell monolayer via a permeable membrane support. Increased cytotoxicity appears to be primarily dependent upon cell-cell contact. Collectively, these data indicate that overproduction of inflammatory cytokines may alter the activity of cytotoxic immune cells. Superantigen exposure exacerbates cytokine production and lytic cell activity when immune cells encounter bacteria in vitro and comparable activities could possibly occur in vivo. PMID:9784507

  14. Expression analysis of cannabinoid receptors 1 and 2 in B cells during pregnancy and their role on cytokine production.

    PubMed

    Wolfson, M L; Muzzio, D O; Ehrhardt, J; Franchi, A M; Zygmunt, M; Jensen, F

    2016-08-01

    The endocannabinoid system consists in a family of lipids that binds to and activates cannabinoid receptors. There are two receptors so far described, the cannabinoid receptor 1 (CB1) and 2 (CB2). In the context of pregnancy, the endocannabinoid system was shown participates in different key aspects of reproductive events. B-lymphocytes are pleiotropic cells belonging to the adaptive arm of the immune system. Besides immunoglobulin production, B-lymphocytes were recently shown to be actively involved in antigen presentation as well as cytokine production, thus playing a central role in immunity. In this study we first aimed to characterize the expression of CB1 and CB2 receptors in B cells during pregnancy and then analyze the impact of their activation in term of cytokine production by B cells from pregnant and non-pregnant mice. We observed that the expression of CB1 and CB2 receptors in B-lymphocytes is differentially regulated during pregnancy. While CB2 expression is down regulated CB1 is augmented in B-lymphocytes of pregnant mice. Additionally, the treatment of activated B-lymphocytes with specific CB1 and CB2 agonists, showed a different response in term of cytokine production. Particularly, CB1 against boosted the production of the anti-inflammatory cytokine IL-10 by activated B-lymphocytes from pregnant mice. PMID:27163857

  15. Correlating macrophage morphology and cytokine production resulting from biomaterial contact

    PubMed Central

    Lee, Hyun-Su; Stachelek, Stanley J.; Tomczyk, Nancy; Finley, Matthew J.; Composto, Russell J.; Eckmann, David M.

    2012-01-01

    The morphological and inflammatory responses of adherent macrophages are correlated to evaluate the biocompatibility of surfaces. Monocyte derived macrophage, THP-1, and THP-1 cells expressing GFP-actin chimeric protein were seeded onto glass, polyurethane (PU), and glass surface modified with quaternary ammonium salt functionalized chitosan (CH-Q) and hyaluronic acid (HA). Using confocal microscopy, the surface area, volume and 3-D shape factor of adherent macrophages was quantified. For comparison, functional consequences of cell-surface interactions that activate macrophages and thereby elicit secretion of a pro-inflammatory cytokine were evaluated. Using an enzyme linked immune sorbent assay, tumor necrosis factor-alpha (TNF-α) was measured. On glass, macrophages exhibited mainly an amoeboid shape, exhibited the largest surface area, volume, and 3-D shape factor and produced the most TNF-α. On PU, macrophages displayed mainly a hemispherical shape, exhibited an intermediate volume, surface area and 3-D shape factor, and produced moderate TNF-α. In contrast, on CH-Q and HA surfaces, macrophages were spherical, exhibited the smallest volume, surface area, and 3-D shape factor, and produced the least TNF-α. These studies begin to validate the use of GFP-actin modified MDM as a novel tool to correlate cell morphology with inflammatory cell response. PMID:22847892

  16. Correlating macrophage morphology and cytokine production resulting from biomaterial contact.

    PubMed

    Lee, Hyun-Su; Stachelek, Stanley J; Tomczyk, Nancy; Finley, Matthew J; Composto, Russell J; Eckmann, David M

    2013-01-01

    The morphological and inflammatory responses of adherent macrophages are correlated to evaluate the biocompatibility of surfaces. Monocyte-derived macrophage (MDM), THP-1, and THP-1 cells expressing GFP-actin chimeric protein were seeded onto glass, polyurethane (PU), and glass surface modified with quaternary ammonium salt functionalized chitosan (CH-Q) and hyaluronic acid (HA). Using confocal microscopy, the surface area, volume and 3D shape factor of adherent macrophages was quantified. For comparison, functional consequences of cell-surface interactions that activate macrophages and thereby elicit secretion of a proinflammatory cytokine were evaluated. Using an enzyme linked immune sorbent assay, tumor necrosis factor-alpha (TNF-α) was measured. On glass, macrophages exhibited mainly an amoeboid shape, exhibited the largest surface area, volume, and 3D shape factor and produced the most TNF-α. On PU, macrophages displayed mainly a hemispherical shape, exhibited an intermediate volume, surface area and 3D shape factor, and produced moderate TNF-α. In contrast, on CH-Q and HA surfaces, macrophages were spherical, exhibited the smallest volume, surface area, and 3D shape factor, and produced the least TNF-α. These studies begin to validate the use of GFP-actin-modified MDM as a novel tool to correlate cell morphology with inflammatory cell response. PMID:22847892

  17. Thioredoxin Ameliorates Cutaneous Inflammation by Regulating the Epithelial Production and Release of Pro-Inflammatory Cytokines

    PubMed Central

    Tian, Hai; Matsuo, Yoshiyuki; Fukunaga, Atsushi; Ono, Ryusuke; Nishigori, Chikako; Yodoi, Junji

    2013-01-01

    Human thioredoxin-1 (TRX) is a 12-kDa protein with redox-active dithiol in the active site -Cys-Gly-Pro-Cys-. It has been demonstrated that systemic administration and transgenic overexpression of TRX ameliorate inflammation in various animal models, but its anti-inflammatory mechanism is not well characterized. We investigated the anti-inflammatory effects of topically applied recombinant human TRX (rhTRX) in a murine irritant contact dermatitis (ICD) induced by croton oil. Topically applied rhTRX was distributed only in the skin tissues under both non-inflammatory and inflammatory conditions, and significantly suppressed the inflammatory response by inhibiting the production of cytokines and chemokines, such as TNF-α, Il-1β, IL-6, CXCL-1, and MCP-1. In an in vitro study, rhTRX also significantly inhibited the formation of cytokines and chemokines produced by keratinocytes after exposure to croton oil and phorbol 12-myristate 13-acetate. These results indicate that TRX prevents skin inflammation via the inhibition of local formation of inflammatory cytokines and chemokines. As a promising new approach, local application of TRX may be useful for the treatment of various skin and mucosal inflammatory disorders. PMID:24058364

  18. Docosahexaenoic diet supplementation, exercise and temperature affect cytokine production by lipopolysaccharide-stimulated mononuclear cells.

    PubMed

    Capó, Xavier; Martorell, Miquel; Sureda, Antoni; Batle, Juan Miguel; Tur, Josep Antoni; Pons, Antoni

    2016-09-01

    Acute exercise induces changes in peripheral mononuclear cells' (PBMCs) capabilities to produce cytokines. The aim was to investigate the effect of docosahexaenoic acid (DHA) diet supplementation on cytokine production, by lipopolysaccharide (LPS)-stimulated PBMCs after exercise, and the in vitro influence of temperature. Fifteen male soccer players were randomly assigned to a placebo or an experimental group. The experimental group consumed an almond-based beverage enriched with DHA (1.16 g DHA/day) for 8 weeks, whereas the placebo group consumed a similar non-enriched beverage. Blood samples were taken before and after the nutritional intervention in basal conditions and 2 h after acute exercise. Nutritional intervention significantly increased the DHA content in erythrocytes only in experimental group (from 34 ± 3.6 to 43 ± 3.6 nmols DHA/10(9) erythrocytes). Exercise significantly increased Toll-like receptor 4 (TLR4) in PBMCs but only in the placebo group (203 %). Exercise also significantly increased IL6, IL8, VEGF, INFγ, TNFα, IL1α, IL1β, MCP1, and EGG production rates by LPS-stimulated PBMCs, and this response was attenuated by DHA supplementation. Temperature but not DHA also affected the pattern of cytokine production increasing IL6, IL8, IL1β, and MCP1 synthesis. The higher change was evidenced in IL1β increasing the production rate at 39.5 °C from 3.19 ± 0.77 to 22.4 ± 6.1 pg/h 10(6) PBMC in placebo and from 2.36 ± 0.11 to 10.6 ± 0.38 pg/h 10(6) PBMC in the supplemented group. The profile of affected cytokines differs between temperature and exercise, suggesting a different PBMC activation pathway. DHA diet supplementation only attenuated cytokine production after exercise and not that induced by temperature. PMID:27139422

  19. Cripto-1 modulates macrophage cytokine secretion and phagocytic activity via NF-κB signaling.

    PubMed

    Zhang, Dong-mei; Bao, Yong-Li; Yu, Chun-Lei; Wang, Yi-meng; Song, Zhen-Bo

    2016-02-01

    Cripto-1 is an oncogenic protein belonging to the epidermal growth factor–Cripto-1/FRL-1/Cryptic family. It has important roles in tumor formation and metastasis, but its effects on the immune system are unclear. In the present study, we investigated the effects of Cripto-1 overexpression on macrophage activities and examined the underlying mechanisms. A cell line stably overexpressing Cripto-1 was developed. The culture supernatant from this cell line was collected and used to condition macrophages (RAW264.7, THP-1, and primary mouse macrophages) for various times. Exposure to this supernatant significantly increased the mRNA and protein expression levels of the anti-inflammatory cytokine interleukin (IL)-10 and of three pro-inflammatory cytokines (tumor necrosis factor-α, IL-6, and IL-1β), but did not affect the expression of transforming growth factor-β, another anti-inflammatory cytokine. Exposure to this supernatant also enhanced macrophage phagocytosis of chicken erythrocytes and yeast cells. Similar effects were observed in macrophages stimulated with purified Cripto-1 protein. Mechanistic experiments revealed that Cripto-1 activated nuclear factor (NF)-κB signaling by inducing IκB kinase phosphorylation and p65 nuclear translocation. Pretreatment with ammonium pyrrolidine dithiocarbamate, a specific NF-κB inhibitor, inhibited Cripto-1-induced cytokine secretion and phagocytosis of macrophages. Taken together, our present findings suggest that Cripto-1 enhances macrophage phagocytic activity and upregulates the production of anti- and pro-inflammatory cytokines via the NF-κB signaling pathway. PMID:26476731

  20. Methyl Protodioscin from the Roots of Asparagus cochinchinensis Attenuates Airway Inflammation by Inhibiting Cytokine Production

    PubMed Central

    Lee, Ju Hee; Lim, Hun Jai; Lee, Chan Woo; Son, Kun-Ho; Son, Jong-Keun; Lee, Sang Kook; Kim, Hyun Pyo

    2015-01-01

    The present study was designed to find pharmacologically active compound against airway inflammation from the roots of Asparagus cochinchinensis. The 70% ethanol extract of the roots of A. cochinchinensis (ACE) was found to inhibit IL-6 production from IL-1β-treated lung epithelial cells (A549) and the major constituent, methyl protodioscin (MP), also strongly inhibited the production of IL-6, IL-8, and tumor necrosis factor- (TNF-) α from A549 cells at 10–100 μM. This downregulating effect of proinflammatory cytokine production was found to be mediated, at least in part, via inhibition of c-Jun N-terminal kinase (JNK) and c-Jun activation pathway. When examined on an in vivo model of airway inflammation in mice, lipopolysaccharide- (LPS-) induced acute lung injury, ACE, and MP significantly inhibited cell infiltration in the bronchoalveolar lavage fluid by the oral treatment at doses of 100–400 mg/kg and 30–60 mg/kg, respectively. MP also inhibited the production of proinflammatory cytokines such as IL-6, TNF-α, and IL-1β in lung tissue. All of these findings provide scientific evidence supporting the role of A. cochinchinensis as a herbal remedy in treating airway inflammation and also suggest a therapeutic value of MP on airway inflammatory disorders. PMID:26379748

  1. Methyl Protodioscin from the Roots of Asparagus cochinchinensis Attenuates Airway Inflammation by Inhibiting Cytokine Production.

    PubMed

    Lee, Ju Hee; Lim, Hun Jai; Lee, Chan Woo; Son, Kun-Ho; Son, Jong-Keun; Lee, Sang Kook; Kim, Hyun Pyo

    2015-01-01

    The present study was designed to find pharmacologically active compound against airway inflammation from the roots of Asparagus cochinchinensis. The 70% ethanol extract of the roots of A. cochinchinensis (ACE) was found to inhibit IL-6 production from IL-1β-treated lung epithelial cells (A549) and the major constituent, methyl protodioscin (MP), also strongly inhibited the production of IL-6, IL-8, and tumor necrosis factor- (TNF-) α from A549 cells at 10-100 μM. This downregulating effect of proinflammatory cytokine production was found to be mediated, at least in part, via inhibition of c-Jun N-terminal kinase (JNK) and c-Jun activation pathway. When examined on an in vivo model of airway inflammation in mice, lipopolysaccharide- (LPS-) induced acute lung injury, ACE, and MP significantly inhibited cell infiltration in the bronchoalveolar lavage fluid by the oral treatment at doses of 100-400 mg/kg and 30-60 mg/kg, respectively. MP also inhibited the production of proinflammatory cytokines such as IL-6, TNF-α, and IL-1β in lung tissue. All of these findings provide scientific evidence supporting the role of A. cochinchinensis as a herbal remedy in treating airway inflammation and also suggest a therapeutic value of MP on airway inflammatory disorders. PMID:26379748

  2. Dharmendra antigen but not integral M. leprae is an efficient inducer of immunostimulant cytokine production by human monocytes, and M. leprae lipids inhibit the cytokine production.

    PubMed

    Nakamura, C; Fukutomi, Y; Kashiwabara, Y; Oomoto, Y; Kojima, M; Hayashi, H; Onozaki, K

    1997-03-01

    Killed integral Mycobacterium leprae, Mitsuda antigen, and chloroform-treated M. leprae, Dharmendra antigen (Dh-Ag), have been used for the classification of leprosy patients based on cell-mediated immunity. Heat-killed M. leprae also were used as a component of the Convit vaccine. Human blood monocytes were stimulated with M. leprae or Dh-Ag and their cytokine-inducing ability was compared. Monocytes were cultured in the presence of fresh human serum because of the efficiency of cytokine induction and the phagocytosis of M. leprae have been shown to be optimal in the presence of fresh serum. M. leprae and Dh-Ag were equally phagocytosed by monocytes. Dh-Ag was more potent than M. leprae in the induction of immunostimulatory/proinflammatory cytokines, interleukin-1 (IL-1), IL-6 and tumor necrosis factor (TNF). In contrast, a comparable level of IL-1ra, an immunosuppressive cytokine, was induced by M. leprae and Dh-Ag. The lipids extracted from M. leprae induced none of these cytokines by monocytes. Nevertheless, when monocytes were pretreated with the lipids followed by stimulation with Dh-Ag, productions of IL-1, IL-6 and TNF were all inhibited in a dose-dependent manner. However, the lipids did not inhibit the cytokine production induced by other stimuli including BCG and lipopolysaccharide. Moreover the lipids did not affect the production of IL-1ra. These results suggest that the lipids from M. leprae are responsible for the poor cytokine-inducing ability of M. leprae, thus favoring their infection. These results also suggest that Dh-Ag rather than integral M. leprae may be useful as a vaccine candidate because Dh-Ag is able to induce a large amount of cytokines from monocytes. PMID:9207755

  3. Histone lysine methyltransferase Ezh1 promotes TLR-triggered inflammatory cytokine production by suppressing Tollip.

    PubMed

    Liu, Yiqi; Zhang, Qian; Ding, Yuanyuan; Li, Xia; Zhao, Dezhi; Zhao, Kai; Guo, Zhenhong; Cao, Xuetao

    2015-03-15

    Histone modifications play critical roles in the regulation of gene expression; however, their roles in the regulation of the innate response remain to be fully investigated. Using transcriptome analysis of mouse immature dendritic cells (DCs) and LPS-induced mature DCs, we identified that Ezh1 was the most upregulated histone methyltransferase during DC maturation. In this study, we investigated the role of Ezh1 in regulating the innate immune response. We found that silencing of Ezh1 significantly suppressed TLR-triggered production of cytokines, including IL-6, TNF-α, and IFN-β, in DCs and macrophages. Accordingly, TLR-activated signaling pathways were impaired in Ezh1-silenced macrophages. By transcriptome analysis of Ezh1-silenced macrophages, we found that Toll-interacting protein (Tollip), one well-known negative regulator of TLR signaling, was upregulated. Silencing of Tollip rescued TLR-triggered cytokine production in Ezh1-silenced macrophages. The SET domain of Ezh1 is essential for its enhancing effect on the TLR-triggered innate immune response and downstream signaling, indicating that Ezh1 promotes a TLR-triggered innate response through its lysine methyltransferase activity. Finally, Ezh1 was found to suppress the transcription of Tollip by directly targeting the proximal promoter of tollip and maintaining the high level of trimethylation of histone H3 lysine 27 there. Therefore, Ezh1 promotes TLR-triggered inflammatory cytokine production by suppressing the TLR negative regulator Tollip, contributing to full activation of the innate immune response against invading pathogens. PMID:25687760

  4. Cytokine release syndrome after blinatumomab treatment related to abnormal macrophage activation and ameliorated with cytokine-directed therapy.

    PubMed

    Teachey, David T; Rheingold, Susan R; Maude, Shannon L; Zugmaier, Gerhard; Barrett, David M; Seif, Alix E; Nichols, Kim E; Suppa, Erica K; Kalos, Michael; Berg, Robert A; Fitzgerald, Julie C; Aplenc, Richard; Gore, Lia; Grupp, Stephan A

    2013-06-27

    Blinatumomab is a CD19/CD3-bispecific T-cell receptor-engaging (BiTE) antibody with efficacy in refractory B-precursor acute lymphoblastic leukemia. Some patients treated with blinatumomab and other T cell-activating therapies develop cytokine release syndrome (CRS). We hypothesized that patients with more severe toxicity may experience abnormal macrophage activation triggered by the release of cytokines by T-cell receptor-activated cytotoxic T cells engaged by BiTE antibodies and leading to hemophagocytic lymphohistiocytosis (HLH). We prospectively monitored a patient during blinatumomab treatment and observed that he developed HLH. He became ill 36 hours into the infusion with fever, respiratory failure, and circulatory collapse. He developed hyperferritinemia, cytopenias, hypofibrinogenemia, and a cytokine profile diagnostic for HLH. The HLH continued to progress after discontinuation of blinatumomab; however, he had rapid improvement after IL-6 receptor-directed therapy with tocilizumab. Patients treated with T cell-activating therapies, including blinatumomab, should be monitored for HLH, and cytokine-directed therapy may be considered in cases of life-threatening CRS. This trial was registered at www.clinicaltrials.gov as #NCT00103285. PMID:23678006

  5. Cytokine Production Assays Reveal Discriminatory Immune Defects in Adults with Recurrent Infections and Noninfectious Inflammation

    PubMed Central

    van de Veerdonk, Frank L.; Joosten, Leo A. B.; Simon, Anna; van Crevel, Reinout; Kullberg, Bart-Jan; Gyssens, Inge C.; van der Meer, Jos W. M.; van Deuren, Marcel; Netea, Mihai G.

    2014-01-01

    Cytokine production assays have been primarily used in research settings studying novel immunodeficiencies. We sought to determine the diagnostic value of cytokine production assays in patients with recurrent and/or severe infectious diseases (IDs) without known immunodeficiencies and unclassified noninfectious inflammatory disorders (NIIDs). We retrospectively examined cytokine production in whole-blood and peripheral blood mononuclear cell samples from 157 adult patients. A cytokine production rate of <5% of that of healthy controls was considered defective. While monocyte-derived cytokine (tumor necrosis factor alpha [TNF-α], interleukin-1β [IL-1β], and IL-6) production was rarely affected, 30% of all included patients had deficient production of interferon gamma (IFN-γ), IL-17A, or IL-22. Twenty-five percent of the NIID patients displayed defective IFN-γ production, whereas IL-17A production was generally unaffected. In the group of ID patients, defective IFN-γ production was found in 19% and 14% of the patients with viral and bacterial infections, respectively, and in 38%, 24%, and 50% of patients with mycobacterial, mucocutaneous, and invasive fungal infections, respectively. Defective IL-17A and IL-22 production was mainly confined to ID patients with mucocutaneous fungal infections. In conclusion, cytokine production assays frequently detect defective Th1 responses in patients with mycobacterial or fungal infections, in contrast to patients with respiratory tract infections or isolated bacterial infections. Defective IL-17A and IL-22 production was primarily found in patients with fungal infections, while monocyte-derived cytokine production was unaffected. Thus, lymphocyte-derived cytokine production assays are helpful in the diagnostic workup of patients with recurrent infections and suspected immunodeficiencies and have the potential to reveal immune defects that might guide adjunctive immunomodulatory therapy. PMID:24872512

  6. Caspase 3 inactivates biologically active full length interleukin-33 as a classical cytokine but does not prohibit nuclear translocation

    SciTech Connect

    Ali, Shafaqat; Nguyen, Dang Quan; Falk, Werner; Martin, Michael Uwe

    2010-01-15

    IL-33 is a member of the IL-1 family of cytokines with dual function which either activates cells via the IL-33 receptor in a paracrine fashion or translocates to the nucleus to regulate gene transcription in an intracrine manner. We show that full length murine IL-33 is active as a cytokine and that it is not processed by caspase 1 to mature IL-33 but instead cleaved by caspase 3 at aa175 to yield two products which are both unable to bind to the IL-33 receptor. Full length IL-33 and its N-terminal caspase 3 breakdown product, however, translocate to the nucleus. Finally, bioactive IL-33 is not released by cells constitutively or after activation. This suggests that IL-33 is not a classical cytokine but exerts its function in the nucleus of intact cells and only activates others cells via its receptor as an alarm mediator after destruction of the producing cell.

  7. Laquinimod dampens hyperactive cytokine production in Huntington's disease patient myeloid cells.

    PubMed

    Dobson, Lucianne; Träger, Ulrike; Farmer, Ruth; Hayardeny, Liat; Loupe, Pippa; Hayden, Michael R; Tabrizi, Sarah J

    2016-06-01

    Huntington's disease (HD) is a neurodegenerative condition characterized by pathology in the brain and peripheral tissues. Hyperactivity of the innate immune system, due in part to NFκB pathway dysregulation, is an early and active component of HD. Evidence suggests targeting immune disruption may slow disease progression. Laquinimod is an orally active immunomodulator that down-regulates proinflammatory cytokine production in peripheral blood mononuclear cells, and in the brain down-regulates astrocytic and microglial activation by modulating NFκB signalling. Laquinimod had beneficial effects on inflammation, brain atrophy and disease progression in multiple sclerosis (MS) in two phase III clinical trials. This study investigated the effects of laquinimod on hyperactive proinflammatory cytokine release and NFκB signalling in HD patient myeloid cell cultures. Monocytes from manifest (manHD) and pre-manifest (preHD) HD gene carriers and healthy volunteers (HV) were treated with laquinimod and stimulated with lipopolysaccharide. After 24 h pre-treatment with 5 μM laquinimod, manHD monocytes released lower levels of IL-1β, IL-5, IL-8, IL-10, IL-13 and TNFα in response to stimulation. PreHD monocytes released lower levels of IL-8, IL-10 and IL-13, with no reduction observed in HV monocytes. The effects of laquinimod on dysfunctional NFκB signalling in HD was assessed by inhibitor of kappa B (IκB) degradation kinetics, nuclear translocation of NFκB and interactions between IκB kinase (IKK) and HTT, in HD myeloid cells. No differences were observed between laquinimod-treated and untreated conditions. These results provide evidence that laquinimod dampens hyper-reactive cytokine release from manHD and preHD monocytes, with a much reduced effect on HV monocytes. Evidence suggests targeting CNS and peripheral immune disruption may slow Huntington's disease (HD) neurodegenerative processes. The effects of laquinimod, an orally active immunomodulator, on

  8. Interactions between rnacrophage cytokines and eicosanoids in expression of antitumour activity

    PubMed Central

    Ben-Efraim, Shlomo

    1992-01-01

    Cytokines and eicosanoid products of macrophages play an essential role in expression of antitumour activity of macrophages either in a cell-to-cell contact system between the effector and the target cell or as cell-free soluble products. In this review the relationship between three main monokines, namely TNF-α, IL-1 and IL-6 and the interrelationship between these monokines and eicosanoids (PGE2, PGI2, LTB4, LTC4) in their production and in expression of antitumour activity is discussed. Emphasis is given to the effect of tumour burden on production of the monokines and of the eicosanoids and on the production of these compounds by the tumour cells. Finally, the therapeutic implications drawn from animal studies and clinical trials is discussed. PMID:18475475

  9. Complement activation and cytokine response by BioProtein, a bacterial single cell protein.

    PubMed

    Sikkeland, L I B; Thorgersen, E B; Haug, T; Mollnes, T E

    2007-04-01

    The bacterial single cell protein (BSCP), BioProtein, is dried bacterial mass derived from fermentation of the gram negative bacteria Methylococcus capsulatus, used for animal and fish feed. Workers in this industry suffer frequently from pulmonary and systemic symptoms which may be induced by an inflammatory reaction. The aim of the present study was to examine the effect of BSCP on inflammation in vitro as evaluated by complement activation and cytokine production. Human serum was incubated with BSCP and complement activation products specific for all pathways were detected by enzyme-linked immunosorbent assay (ELISA). Human whole blood anti-coagulated with lepirudin was incubated with BSCP and a panel of 27 biological mediators was measured using multiplex technology. BSCP induced a dose-dependent complement activation as revealed by a pronounced increase in alternative and terminal pathway activation (fivefold and 20-fold, respectively) at doses from 1 microg BSCP/ml serum and a similar, but less extensive (two- to fourfold) increase in activation of the lectin and classical pathways at doses from 100 and 1000 microg BSCP/ml serum, respectively. Similarly, BSCP induced a dose-dependent production of a number of cytokines, chemokines and growth factors in human whole blood. At doses as low as 0 x 05-0 x 5 microg BSCP/ml blood a substantial increase was seen for tumour necrosis factor (TNF)-alpha, interleukin (IL)-1-beta, IL-6, interferon (IFN)-gamma, IL-8, monocyte chemoattractant protein (MCP)-1, macrophage inflammatory protein (MIP)-1alpha, MIP-1beta, IL-4, IL-9, IL-17, IL-1Ra, granulocyte-colony-stimulating factor (G-CSF) and vascular endothelial growth factor (VEGF). Thus, BSCP induced a substantial activation of all three initial complement pathways as well as a pronounced cytokine response in vitro, indicating a potent inflammatory property of this agent. PMID:17302729

  10. Suppressed Type 1, Type 2, and Type 17 Cytokine Responses in Active Tuberculosis in Children ▿ †

    PubMed Central

    Kumar, N. Pavan; Anuradha, R.; Suresh, R.; Ganesh, R.; Shankar, Janani; Kumaraswami, V.; Nutman, Thomas B.; Babu, Subash

    2011-01-01

    Type 1 cytokine responses are known to play an important role in immunity to tuberculosis (TB) in children, although little is known about other factors that might be important. In addition, children are more prone to developing extrapulmonary manifestations of TB than adults. To identify the immune responses important both in control of infection and in extrapulmonary dissemination, we examined mycobacterium-specific cytokine responses of children with pulmonary TB (PTB) and extrapulmonary TB (ETB) and compared them with those of healthy control children (HC). No significant differences were found in the cytokine responses either with no stimulation or following mycobacterial-antigen (Ag) stimulation between children with PTB and ETB. On the other hand, children with active TB compared with HC showed markedly diminished production of type 1 (gamma interferon [IFN-γ] and tumor necrosis factor alpha [TNF-α]), 2 (interleukin 4 [IL-4] and IL-13), and 17 (IL-17A, IL-21, and IL-23)-associated cytokines with no stimulation and in response to mycobacterial antigens. This was not associated with significantly altered production of IL-10 or transforming growth factor β (TGF-β). Among children with ETB, those with neurologic involvement exhibited more significantly diminished Ag-driven IFN-γ and IL-17 production. Pediatric TB is characterized by diminished type 1, 2, and 17 cytokine responses, with the most profound diminution favoring development of neurologic TB, suggesting a crucial role for these cytokines in protection against pediatric tuberculosis. PMID:21955625

  11. Active immunization by a dengue virus-induced cytokine.

    PubMed Central

    Chaturvedi, U C; Mukerjee, R; Dhawan, R

    1994-01-01

    Dengue type 2 virus (DV)-induced cytotoxic factor (CF) is capable of reproducing various pathological lesions in mice that are seen in human dengue. The present study was undertaken to investigate the protective effect of active immunization of mice with CF. Mice were immunized with 5 microgram of CF and prevention of CF-induced increase in capillary permeability and damage to the blood-brain barrier were studied at weekly intervals, up to 48 weeks, by challenging with 3 microgram of CF. Maximum protection against increase in capillary permeability and damage to the blood-brain barrier was observed in week 4 after immunization. A breakthrough in the protection occurred with higher doses of CF in a dose-dependent manner. Challenge with a lethal intracerebral (i.c.) dose of DV showed significantly prolonged mean survival time and delayed onset of symptoms of sickness in the immunized mice compared with the normal mice, but the titre of the virus in the brain was similar in the two groups. On i.p. challenge with the virus the protection against damage to the blood-brain barrier was 86 +/- 7% at week 4 and 17 +/- 4% at week 26 after immunization. Sera obtained from the immunized mice showed the presence of CF-specific antibodies by ELISA, Western blot, and by neutralization of the cytotoxic activity of CF in vitro. The present study describes successful prevention of a cytokine-induced pathology by specific active immunization. PMID:8187327

  12. Phototherapy-treated apoptotic tumor cells induce pro-inflammatory cytokines production in macrophage

    NASA Astrophysics Data System (ADS)

    Lu, Cuixia; Wei, Yanchun; Xing, Da

    2014-09-01

    Our previous studies have demonstrated that as a mitochondria-targeting cancer phototherapy, high fluence low-power laser irradiation (HF-LPLI) induces mitochondrial superoxide anion burst, resulting in oxidative damage to tumor cells. In this study, we further explored the immunological effects of HF-LPLI-induced apoptotic tumor cells. When macrophages were co-incubated with apoptotic cells induced by HF-LPLI, we observed the increased levels of TNF-α secretion and NO production in macrophages. Further experiments showed that NF-κB was activated in macrophages after co-incubation with HF-LPLI-induced apoptotic cells, and inhibition of NF-κB activity by pyrrolidinedithiocarbamic acid (PDTC) reduced the elevated levels of TNF-α secretion and NO production. These data indicate that HF-LPLI-induced apoptotic tumor cells induce the secretion of pro-inflammatory cytokines in macrophages, which may be helpful for better understanding the biological effects of cancer phototherapy.

  13. Necroptosis suppresses inflammation via termination of TNF- or LPS-induced cytokine and chemokine production

    PubMed Central

    Kearney, C J; Cullen, S P; Tynan, G A; Henry, C M; Clancy, D; Lavelle, E C; Martin, S J

    2015-01-01

    TNF promotes a regulated form of necrosis, called necroptosis, upon inhibition of caspase activity in cells expressing RIPK3. Because necrosis is generally more pro-inflammatory than apoptosis, it is widely presumed that TNF-induced necroptosis may be detrimental in vivo due to excessive inflammation. However, because TNF is intrinsically highly pro-inflammatory, due to its ability to trigger the production of multiple cytokines and chemokines, rapid cell death via necroptosis may blunt rather than enhance TNF-induced inflammation. Here we show that TNF-induced necroptosis potently suppressed the production of multiple TNF-induced pro-inflammatory factors due to RIPK3-dependent cell death. Similarly, necroptosis also suppressed LPS-induced pro-inflammatory cytokine production. Consistent with these observations, supernatants from TNF-stimulated cells were more pro-inflammatory than those from TNF-induced necroptotic cells in vivo. Thus necroptosis attenuates TNF- and LPS-driven inflammation, which may benefit intracellular pathogens that evoke this mode of cell death by suppressing host immune responses. PMID:25613374

  14. Dose-Dependent Suppression of Cytokine production from T cells by a Novel Phosphoinositide 3-Kinase Delta Inhibitor

    PubMed Central

    Way, Emily E.; Trevejo-Nunez, Giraldina; Kane, Lawrence P.; Steiner, Bart H.; Puri, Kamal D.; Kolls, Jay K.; Chen, Kong

    2016-01-01

    There remains a significant need for development of effective small molecules that can inhibit cytokine-mediated inflammation. Phosphoinositide 3 kinase (PI3K) is a direct upstream activator of AKT, and plays a critical role in multiple cell signaling pathways, cell cycle progression, and cell growth, and PI3K inhibitors have been approved or are in clinical development. We examined novel PI3Kdelta inhibitors, which are highly selective for the p110delta isoform of in CD3/CD28 stimulated T-cell cytokine production. In vitro generated CD4+ T effector cells stimulated in the presence of a PI3Kdelta inhibitor demonstrated a dose-dependent suppression of cytokines produced by Th1, Th2, and Th17 cells. This effect was T-cell intrinsic, and we observed similar effects on human PBMCs. Th17 cells expressing a constitutively activated form of AKT were resistant to PI3Kdelta inhibition, suggesting that the inhibitor is acting through AKT signaling pathways. Additionally, PI3Kdelta inhibition decreased IL-17 production in vivo and decreased neutrophil recruitment to the lung in a murine model of acute pulmonary inflammation. These experiments show that targeting PI3Kdelta activity can modulate T-cell cytokine production and reduce inflammation in vivo, suggesting that PI3Kdelta inhibition could have therapeutic potential in treating inflammatory diseases. PMID:27461849

  15. Borrelia burgdorferi Induces the Production and Release of Proinflammatory Cytokines in Canine Synovial Explant Cultures

    PubMed Central

    Straubinger, Reinhard K.; Straubinger, Alix F.; Summers, Brian A.; Erb, Hollis N.; Härter, Luc; Appel, Max J. G.

    1998-01-01

    Canine synovial membrane explants were exposed to high- or low-passage Borrelia burgdorferi for 3, 6, 12, and 24 h. Spirochetes received no treatment, were UV light irradiated for 16 h, or were sonicated prior to addition to synovial explant cultures. In explant tissues, mRNA levels for the proinflammatory cytokines tumor necrosis factor alpha (TNF-α), interleukin-1α (IL-1α), IL-1β, and IL-8 were surveyed semiquantitatively by reverse transcription-PCR. Culture supernatants were examined for numbers of total and motile (i.e., viable) spirochetes, TNF-like and IL-1-like activities, polymorphonuclear neutrophil (PMN) chemotaxis-inducing activities, and IL-8. During exposure to synovial explant tissues, the total number of spirochetes in the supernatants decreased gradually by ∼30%, and the viability also declined. mRNAs for TNF-α, IL-1α, IL-1β, and IL-8 were up-regulated in synovial explant tissues within 3 h after infection with untreated or UV light-irradiated B. burgdorferi, and mRNA levels corresponded to the results obtained with bioassays. During 24 h of coincubation, cultures challenged with untreated or UV light-irradiated spirochetes produced similar levels of TNF-like and IL-1-like activities. In contrast, explant tissues exposed to untreated B. burgdorferi generated significantly higher levels of chemotactic factors after 24 h of incubation than did explant tissues exposed to UV light-treated spirochetes. In identical samples, a specific signal for IL-8 was identified by Western blot analysis. High- and low-passage borreliae did not differ in their abilities to induce proinflammatory cytokines. No difference in cytokine induction between untreated and sonicated high-passage spirochetes was observed, suggesting that fractions of the organism can trigger the production and release of inflammatory mediators. The titration of spirochetes revealed a dose-independent cytokine response, where 103 to 107 B. burgdorferi organisms induced similar TNF

  16. INDUCTION OF CYTOKINE PRODUCTION IN CHEETAH (ACINONYX JUBATUS) PERIPHERAL BLOOD MONONUCLEAR CELLS AND VALIDATION OF FELINE-SPECIFIC CYTOKINE ASSAYS FOR ANALYSIS OF CHEETAH SERUM.

    PubMed

    Franklin, Ashley D; Crosier, Adrienne E; Vansandt, Lindsey M; Mattson, Elliot; Xiao, Zhengguo

    2015-06-01

    Peripheral blood mononuclear cells (PBMCs) were isolated from the whole blood of cheetahs (Acinonyx jubatus ; n=3) and stimulated with lipopolysaccharides (LPS) to induce the production of proinflammatory cytokines TNF-α, IL-1β, and IL-6 for establishment of cross-reactivity between these cheetah cytokines and feline-specific cytokine antibodies provided in commercially available Feline DuoSet® ELISA kits (R&D Systems, Inc., Minneapolis, Minnesota 55413, USA). This study found that feline-specific cytokine antibodies bind specifically to cheetah proinflammatory cytokines TNF-α, IL-1β, and IL-6 from cell culture supernatants. The assays also revealed that cheetah PBMCs produce a measurable, cell concentration-dependent increase in proinflammatory cytokine production after LPS stimulation. To enable the use of these kits, which are designed for cell culture supernatants for analyzing cytokine concentrations in cheetah serum, percent recovery and parallelism of feline cytokine standards in cheetah serum were also evaluated. Cytokine concentrations in cheetah serum were approximated based on the use of domestic cat standards in the absence of cheetah standard material. In all cases (for cytokines TNF-α, IL-1β, and IL-6), percent recovery increased as the serum sample dilution increased, though percent recovery varied between cytokines at a given dilution factor. A 1:2 dilution of serum resulted in approximately 45, 82, and 7% recovery of TNF-α, IL-1β, and IL-6 standards, respectively. Adequate parallelism was observed across a large range of cytokine concentrations for TNF-α and IL-1β; however, a significant departure from parallelism was observed between the IL-6 standard and the serum samples (P=0.004). Therefore, based on our results, the Feline DuoSet ELISA (R&D Systems, Inc.) kits are valid assays for the measurement of TNF-α and IL-1β in cheetah serum but should not be used for accurate measurement of IL-6. PMID:26056884

  17. Shikonin Inhibits Inflammatory Cytokine Production in Human Periodontal Ligament Cells.

    PubMed

    Shindo, Satoru; Hosokawa, Yoshitaka; Hosokawa, Ikuko; Ozaki, Kazumi; Matsuo, Takashi

    2016-06-01

    Shikonin, which is derived from Lithospermum erythrorhizon, a herb used in traditional medicine, has long been considered to be a useful treatment for various diseases in traditional oriental medicine. Shikonin has recently been reported to have several pharmacological properties, e.g., it has anti-microbial, anti-tumor, and anti-inflammatory effects. The aim of this study was to examine whether shikonin is able to influence the production of interleukin (IL)-6, IL-8, and/or chemokine C-C motif ligand (CCL)20, which contribute to the pathogenesis of periodontal disease, in human periodontal ligament cells (HPDLC). The production levels of IL-6, IL-8, and CCL20 in HPDLC were determined using an ELISA. Western blot analysis was used to detect nuclear factor kappa B (NF-κB) pathway activation in HPDLC. Shikonin prevented IL-1β- or tumor necrosis factor (TNF)-α-mediated IL-6, IL-8, and CCL20 production in HPDLC. Moreover, we found that shikonin suppressed the phosphorylation and degradation of inhibitor of kappa B-alpha (IκB-α) in IL-1β- or TNF-α-stimulated HPDLC. These findings suggest that shikonin could have direct beneficial effects against periodontal disease by reducing IL-6, IL-8, and CCL20 production in periodontal lesions. PMID:27072015

  18. MTMR3 risk allele enhances innate receptor-induced signaling and cytokines by decreasing autophagy and increasing caspase-1 activation

    PubMed Central

    Lahiri, Amit; Hedl, Matija; Abraham, Clara

    2015-01-01

    Inflammatory bowel disease (IBD) is characterized by dysregulated host:microbial interactions and cytokine production. Host pattern recognition receptors (PRRs) are critical in regulating these interactions. Multiple genetic loci are associated with IBD, but altered functions for most, including in the rs713875 MTMR3/HORMAD2/LIF/OSM region, are unknown. We identified a previously undefined role for myotubularin-related protein 3 (MTMR3) in amplifying PRR-induced cytokine secretion in human macrophages and defined MTMR3-initiated mechanisms contributing to this amplification. MTMR3 decreased PRR-induced phosphatidylinositol 3-phosphate (PtdIns3P) and autophagy levels, thereby increasing PRR-induced caspase-1 activation, autocrine IL-1β secretion, NFκB signaling, and, ultimately, overall cytokine secretion. This MTMR3-mediated regulation required the N-terminal pleckstrin homology-GRAM domain and Cys413 within the phosphatase domain of MTMR3. In MTMR3-deficient macrophages, reducing the enhanced autophagy or restoring NFκB signaling rescued PRR-induced cytokines. Macrophages from rs713875 CC IBD risk carriers demonstrated increased MTMR3 expression and, in turn, decreased PRR-induced PtdIns3P and autophagy and increased PRR-induced caspase-1 activation, signaling, and cytokine secretion. Thus, the rs713875 IBD risk polymorphism increases MTMR3 expression, which modulates PRR-induced outcomes, ultimately leading to enhanced PRR-induced cytokines. PMID:26240347

  19. Mutational Separation of Aminoacylation and Cytokine Activities of Human Tyrosyl-tRNA Synthetase

    PubMed Central

    Kapoor, Mili; Otero, Francella J.; Slike, Bonnie M.; Ewalt, Karla L.; Yang, Xiang-Lei

    2009-01-01

    SUMMARY Aminoacyl-tRNA synthetases are known for catalysis of aminoacylation. Significantly, some mammalian synthetases developed cytokine functions possibly linked to disease-causing mutations in tRNA synthetases. Not understood is how epitopes for cytokine signaling were introduced into catalytic scaffolds without disturbing aminoacylation. Here we investigate human tyrosyl-tRNA synthetase, where a catalytic-domain surface helix—next to the active site—was recruited for IL-8-like cytokine signaling. Taking advantage of our high-resolution structure, the reciprocal impact of rational mutations designed to disrupt aminoacylation or cytokine signaling was investigated with multiple assays. The collective analysis demonstrated a protective fine–structure separation of aminoacylation from cytokine activities within the conserved catalytic domain. As a consequence, disease-causing mutations affecting cell signaling can arise without disturbing aminoacylation. These results with TyrRS also predict the previously unknown binding conformation of IL-8-like CXC cytokines. PMID:19477417

  20. Mutational separation of aminoacylation and cytokine activities of human tyrosyl-tRNA synthetase.

    PubMed

    Kapoor, Mili; Otero, Francella J; Slike, Bonnie M; Ewalt, Karla L; Yang, Xiang-Lei

    2009-05-29

    Aminoacyl tRNA synthetases are known for catalysis of aminoacylation. Significantly, some mammalian synthetases developed cytokine functions possibly linked to disease-causing mutations in tRNA synthetases. Not understood is how epitopes for cytokine signaling were introduced into catalytic scaffolds without disturbing aminoacylation. Here we investigate human tyrosyl-tRNA synthetase, where a catalytic-domain surface helix, next to the active site, was recruited for interleukin-8-like cytokine signaling. Taking advantage of our high resolution structure, the reciprocal impact of rational mutations designed to disrupt aminoacylation or cytokine signaling was investigated with multiple assays. The collective analysis demonstrated a protective fine-structure separation of aminoacylation from cytokine activities within the conserved catalytic domain. As a consequence, disease-causing mutations affecting cell signaling can arise without disturbing aminoacylation. These results with TyrRS also predict the previously unknown binding conformation of interleukin-8-like CXC cytokines. PMID:19477417

  1. Combination of Cytokine Responses Indicative of Latent TB and Active TB in Malawian Adults

    PubMed Central

    Hur, Yun-Gyoung; Gorak-Stolinska, Patricia; Ben-Smith, Anne; Lalor, Maeve K.; Chaguluka, Steven; Dacombe, Russell; Doherty, T. Mark; Ottenhoff, Tom H.; Dockrell, Hazel M.; Crampin, Amelia C.

    2013-01-01

    Background An IFN-γ response to M. tuberculosis-specific antigens is an effective biomarker for M. tuberculosis infection but it cannot discriminate between latent TB infection and active TB disease. Combining a number of cytokine/chemokine responses to M. tuberculosis antigens may enable differentiation of latent TB from active disease. Methods Asymptomatic recently-exposed individuals (spouses of TB patients) were recruited and tuberculin skin tested, bled and followed-up for two years. Culture supernatants, from a six-day culture of diluted whole blood samples stimulated with M. tuberculosis-derived PPD or ESAT-6, were measured for IFN-γ, IL-10, IL-13, IL-17, TNF-α and CXCL10 using cytokine ELISAs. In addition, 15 patients with sputum smear-positive pulmonary TB were recruited and tested. Results Spouses with positive IFN-γ responses to M. tuberculosis ESAT-6 (>62.5 pg/mL) and TB patients showed high production of IL-17, CXCL10 and TNF-α. Higher production of IL-10 and IL-17 in response to ESAT-6 was observed in the spouses compared with TB patients while the ratios of IFN-γ/IL-10 and IFN-γ/IL-17 in response to M. tuberculosis-derived PPD were significantly higher in TB patients compared with the spouses. Tuberculin skin test results did not correlate with cytokine responses. Conclusions CXCL10 and TNF-α may be used as adjunct markers alongside an IFN-γ release assay to diagnose M. tuberculosis infection, and IL-17 and IL-10 production may differentiate individuals with LTBI from active TB. PMID:24260295

  2. Multiple effects of TRAIL in human carcinoma cells: Induction of apoptosis, senescence, proliferation, and cytokine production

    SciTech Connect

    Levina, Vera; Marrangoni, Adele M.; DeMarco, Richard; Gorelik, Elieser; Lokshin, Anna E.

    2008-04-15

    TRAIL is a death ligand that induces apoptosis in malignant but not normal cells. Recently the ability of TRAIL to induce proliferation in apoptosis-resistant normal and malignant cells was reported. In this study, we analyzed TRAIL effects in apoptosis sensitive MCF7, OVCAR3 and H460 human tumor cell lines. TRAIL at low concentrations preferentially induced cell proliferation. At 100 ng/ml, apoptotic death was readily observed, however surviving cells acquired higher proliferative capacity. TRAIL-stimulated production of several cytokines, IL-8, RANTES, MCP-1 and bFGF, and activation of caspases 1 and 8 was essential for this effect. Antibodies to IL-8, RANTES, and bFGF blocked TRAIL-induced cell proliferation and further stimulated apoptosis. For the first time, we report that high TRAIL concentrations induced cell senescence as determined by the altered morphology and expression of several senescence markers: SA-{beta}-gal, p21{sup Waf1/Cip1}, p16{sup INK4a}, and HMGA. Caspase 9 inhibition protected TRAIL-treated cells from senescence, whereas inhibition of caspases 1 and 8 increased the yield of SLP cells. In conclusion, in cultured human carcinoma cells, TRAIL therapy results in three functional outcomes, apoptosis, proliferation and senescence. TRAIL-induced proapoptotic and prosurvival responses correlate with the strength of signaling. TRAIL-induced cytokine production is responsible for its proliferative and prosurvival effects.

  3. The role of stress mediators in modulation of cytokine production by ethanol

    SciTech Connect

    Glover, Mitzi; Cheng Bing; Fan Ruping; Pruett, Stephen

    2009-08-15

    Acute ethanol exposure in humans and in animal models activates the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic nervous system (SNS); the resultant increases in concentration of neuroendocrine mediators contribute to some of the immunosuppressive effects of ethanol. However, the role of these mediators in the ethanol-induced inhibition of inflammatory responses is not clear. This is complicated by the fact that most inflammatory stimuli also activate the HPA axis and SNS, and it has not been determined if ethanol plus an inflammatory stimulus increases these stress responses. Addressing this issue is the major focus of the study described herein. Complementary approaches were used, including quantitative assessment of the stress response in mice treated with polyinosinic-polycytidylic acid (poly I:C, as an inflammatory stimulus) and inhibition of the production or action of key HPA axis and SNS mediators. Treatment of mice with ethanol shortly before treatment with poly I:C yielded a significant increase in the corticosterone response as compared to the response to poly I:C alone, but the increase was small and not likely sufficient to account for the anti-inflammatory effects of ethanol. Inhibition of catecholamine and glucocorticoid production by adrenalectomy, and inhibition of catecholamine action with a sustained release antagonist (nadalol) supported this conclusion and revealed that 'excess' stress responses associated with ethanol treatment is not the mechanism of suppression of pro-inflammatory cytokine production, but stress-induced corticosterone does regulate production of several of these cytokines, which has not previously been reported.

  4. Therapeutic activity of multiple common γ-chain cytokine inhibition in acute and chronic GVHD.

    PubMed

    Hechinger, Anne-Kathrin; Smith, Benjamin A H; Flynn, Ryan; Hanke, Kathrin; McDonald-Hyman, Cameron; Taylor, Patricia A; Pfeifer, Dietmar; Hackanson, Björn; Leonhardt, Franziska; Prinz, Gabriele; Dierbach, Heide; Schmitt-Graeff, Annette; Kovarik, Jiri; Blazar, Bruce R; Zeiser, Robert

    2015-01-15

    The common γ chain (CD132) is a subunit of the interleukin (IL) receptors for IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21. Because levels of several of these cytokines were shown to be increased in the serum of patients developing acute and chronic graft-versus-host disease (GVHD), we reasoned that inhibition of CD132 could have a profound effect on GVHD. We observed that anti-CD132 monoclonal antibody (mAb) reduced acute GVHD potently with respect to survival, production of tumor necrosis factor, interferon-γ, and IL-6, and GVHD histopathology. Anti-CD132 mAb afforded protection from GVHD partly via inhibition of granzyme B production in CD8 T cells, whereas exposure of CD8 T cells to IL-2, IL-7, IL-15, and IL-21 increased granzyme B production. Also, T cells exposed to anti-CD132 mAb displayed a more naive phenotype in microarray-based analyses and showed reduced Janus kinase 3 (JAK3) phosphorylation upon activation. Consistent with a role of JAK3 in GVHD, Jak3(-/-) T cells caused less severe GVHD. Additionally, anti-CD132 mAb treatment of established chronic GVHD reversed liver and lung fibrosis, and pulmonary dysfunction characteristic of bronchiolitis obliterans. We conclude that acute GVHD and chronic GVHD, caused by T cells activated by common γ-chain cytokines, each represent therapeutic targets for anti-CD132 mAb immunomodulation. PMID:25352130

  5. Gram-Positive and Gram-Negative Bacteria Do Not Trigger Monocytic Cytokine Production through Similar Intracellular Pathways

    PubMed Central

    Rabehi, Lila; Irinopoulou, Théano; Cholley, Béatrice; Haeffner-Cavaillon, Nicole; Carreno, Marie-Paule

    2001-01-01

    Toll-like receptors (TLRs) are involved in human monocyte activation by lipopolysaccharide (LPS) and Staphylococcus aureus Cowan (SAC), suggesting that gram-positive and gram-negative bacteria may trigger similar intracellular events. Treatment with specific kinase inhibitors prior to cell stimulation dramatically decreased LPS-induced cytokine production. Blocking of the p38 pathway prior to LPS stimulation decreased interleukin-1α (IL-1α), IL-1ra, and tumor necrosis factor alpha (TNF-α) production, whereas blocking of the ERK1/2 pathways inhibited IL-1α, IL-1β, and IL-1ra but not TNF-α production. When cells were stimulated by SAC, inhibition of the p38 pathway did not affect cytokine production, whereas only IL-1α production was decreased in the presence of ERK kinase inhibitor. We also demonstrated that although LPS and SAC have been shown to bind to CD14 before transmitting signals to TLR4 and TLR2, respectively, internalization of CD14 occurred only in monocytes triggered by LPS. Pretreatment of the cells with SB203580, U0126, or a mixture of both inhibitors did not affect internalization of CD14. Altogether, these results suggest that TLR2 signaling does not involve p38 mitogen-activated protein kinase signaling pathways, indicating that divergent pathways are triggered by gram-positive and gram-negative bacteria, thereby inducing cytokine production. PMID:11402003

  6. Microarray kit analysis of cytokines in blood product units and segments

    PubMed Central

    Weiskopf, Richard B.; Yau, Rebecca; Sanchez, Rosa; Lowell, Clifford; Toy, Pearl

    2009-01-01

    BACKGROUND Cytokine concentrations in transfused blood components are of interest for some clinical trials. It is not always possible to process samples of transfused components quickly after their administration. Additionally, it is not practical to sample material in an acceptable manner from many bags of components before transfusion, and after transfusion, the only representative remaining fluid of the component may be that in the “segment,” as the bag may have been completely transfused. Multiplex array technology allows rapid simultaneous testing of multiple analytes in small volume samples. We used this technology to measure leukocyte cytokine levels in blood products to determine (1) whether concentrations in segments correlate with those in the main bag, and thus, whether segments could be used for estimation of the concentrations in the transfused component; and (2) whether concentrations after sample storage at 4C for 24 hrs do not differ from concentrations before storage, thus allowing for processing within 24 hrs, rather than immediately after transfusion. STUDY DESIGN AND METHODS Leukocyte cytokines were measured in the supernatant from bags and segments of leukoreduced red blood cells, non-leukoreduced whole blood, and leukoreduced plateletphereses using the ProteoPlex Human Cytokine Array kit (Novagen). RESULTS Cytokine concentrations in packed red blood cell and whole blood, or plateletphereses stored at 4°C did not differ between bag and segment samples (all p>0.05). There was no evidence of systematic differences between segment and bag concentrations. Cytokine concentrations in samples from plateletphereses did not change within 24 hrs storage at 4°C. CONCLUSION Samples from either bag or segment can be used to study cytokine concentrations in groups of blood products. Cytokine concentrations in plateletphereses appear to be stable for at least 24 hrs of storage at 4°C, and, thus, samples stored with those conditions may be used to

  7. Interferon-γ constrains cytokine production of group 2 innate lymphoid cells.

    PubMed

    Kudo, Fujimi; Ikutani, Masashi; Seki, Yoichi; Otsubo, Takeshi; Kawamura, Yuki I; Dohi, Taeko; Oshima, Kenshiro; Hattori, Masahira; Nakae, Susumu; Takatsu, Kiyoshi; Takaki, Satoshi

    2016-01-01

    Group 2 innate lymphoid cells (ILC2s) produce a significant amount of interleukin-5 (IL-5), which supports eosinophil responses in various tissues; they also produce IL-13, which induces mucus production and contributes to tissue repair or fibrosis. The ILC2s are activated by alarmins, such as IL-33 released from epithelia, macrophages and natural killer T (NKT) cells in response to infection and allergen exposure, leading to epithelial injury. We examined gene expression in lung ILC2s and found that ILC2s expressed Ifngr1, the receptor for interferon-γ (IFN-γ). Interferon-γ severely inhibited IL-5 and IL-13 production by lung and kidney ILC2s. To evaluate the effects in vivo, we used α-galactosylceramide (α-GalCer) to induce NKT cells to produce IL-33 and IFN-γ. Intraperitoneal injection of α-GalCer in mice induced NKT cell activation resulting in IL-5 and IL-13 production by ILC2s. Administration of anti-IFN-γ together with α-GalCer significantly enhanced the production of IL-5 and IL-13 by ILC2s in lung and kidney. Conversely, cytokine production from ILC2s was markedly suppressed after injection of exogenous IL-33 in Il33(-/-) mice pre-treated with α-GalCer. Hence, IFN-γ induced or already present in tissues can impact downstream pleiotropic functions mediated by ILC2s, such as inflammation and tissue repair. PMID:26425820

  8. DMSO Represses Inflammatory Cytokine Production from Human Blood Cells and Reduces Autoimmune Arthritis.

    PubMed

    Elisia, Ingrid; Nakamura, Hisae; Lam, Vivian; Hofs, Elyse; Cederberg, Rachel; Cait, Jessica; Hughes, Michael R; Lee, Leora; Jia, William; Adomat, Hans H; Guns, Emma S; McNagny, Kelly M; Samudio, Ismael; Krystal, Gerald

    2016-01-01

    Dimethyl sulfoxide (DMSO) is currently used as an alternative treatment for various inflammatory conditions as well as for cancer. Despite its widespread use, there is a paucity of data regarding its safety and efficacy as well as its mechanism of action in human cells. Herein, we demonstrate that DMSO has ex-vivo anti-inflammatory activity using Escherichia coli- (E. coli) and herpes simplex virus-1 (HSV-1)-stimulated whole human blood. Specifically, we found that between 0.5%- 2%, DMSO significantly suppressed the expression of many pro-inflammatory cytokines/chemokines and prostaglandin E2 (PGE2). However, a significant reduction in monocyte viability was also observed at 2% DMSO, suggesting a narrow window of efficacy. Anti-inflammatory concentrations of DMSO suppressed E. coli-induced ERK1/2, p38, JNK and Akt phosphorylation, suggesting DMSO acts on these signaling pathways to suppress inflammatory cytokine/chemokine production. Although DMSO induces the differentiation of B16/F10 melanoma cells in vitro, topical administration of DMSO to mice subcutaneously implanted with B16 melanoma cells was ineffective at reducing tumor growth, DMSO was also found to block mouse macrophages from polarizing to either an M1- or an M2-phenotype, which may contribute to its inability to slow tumor growth. Topical administration of DMSO, however, significantly mitigated K/BxN serum-induced arthritis in mice, and this was associated with reduced levels of pro-inflammatory cytokines in the joints and white blood cell levels in the blood. Thus, while we cannot confirm the efficacy of DMSO as an anti-cancer agent, the use of DMSO in arthritis warrants further investigation to ascertain its therapeutic potential. PMID:27031833

  9. DMSO Represses Inflammatory Cytokine Production from Human Blood Cells and Reduces Autoimmune Arthritis

    PubMed Central

    Elisia, Ingrid; Nakamura, Hisae; Lam, Vivian; Hofs, Elyse; Cederberg, Rachel; Cait, Jessica; Hughes, Michael R.; Lee, Leora; Jia, William; Adomat, Hans H.; Guns, Emma S.; McNagny, Kelly M.; Samudio, Ismael; Krystal, Gerald

    2016-01-01

    Dimethyl sulfoxide (DMSO) is currently used as an alternative treatment for various inflammatory conditions as well as for cancer. Despite its widespread use, there is a paucity of data regarding its safety and efficacy as well as its mechanism of action in human cells. Herein, we demonstrate that DMSO has ex-vivo anti-inflammatory activity using Escherichia coli- (E. coli) and herpes simplex virus-1 (HSV-1)-stimulated whole human blood. Specifically, we found that between 0.5%– 2%, DMSO significantly suppressed the expression of many pro-inflammatory cytokines/chemokines and prostaglandin E2 (PGE2). However, a significant reduction in monocyte viability was also observed at 2% DMSO, suggesting a narrow window of efficacy. Anti-inflammatory concentrations of DMSO suppressed E. coli-induced ERK1/2, p38, JNK and Akt phosphorylation, suggesting DMSO acts on these signaling pathways to suppress inflammatory cytokine/chemokine production. Although DMSO induces the differentiation of B16/F10 melanoma cells in vitro, topical administration of DMSO to mice subcutaneously implanted with B16 melanoma cells was ineffective at reducing tumor growth, DMSO was also found to block mouse macrophages from polarizing to either an M1- or an M2-phenotype, which may contribute to its inability to slow tumor growth. Topical administration of DMSO, however, significantly mitigated K/BxN serum-induced arthritis in mice, and this was associated with reduced levels of pro-inflammatory cytokines in the joints and white blood cell levels in the blood. Thus, while we cannot confirm the efficacy of DMSO as an anti-cancer agent, the use of DMSO in arthritis warrants further investigation to ascertain its therapeutic potential. PMID:27031833

  10. AIDS dementia is associated with massive, activated HIV-1 infection and concomitant expression of several cytokines.

    PubMed Central

    Nuovo, G. J.; Alfieri, M. L.

    1996-01-01

    BACKGROUND: We recently showed that acquired immunodeficiency syndrome (AIDS) dementia is associated with activated infection of microglia, neurons, and astrocytes by HIV-1. However, it is doubtful whether infection per se is responsible for the dramatic symptoms associated with AIDS dementia. The purpose of this study was to determine the histologic distribution of messenger RNAs (mRNAs) of several cytokines that have been implicated in AIDS pathogenesis and to correlate this expression pattern with the in situ localization of polymerase chain reaction (PCR)-amplified HIV-1 nucleic acids in the central nervous system (CNS). MATERIALS AND METHODS: HIV-1 DNA was detected by PCR in situ hybridization. HIV-1 RNA and cytokine expression, including tumor necrosis factor alpha (TNF), inducible nitric oxide synthetase (iNOS), and macrophage inflammatory protein alpha (MIP-1 alpha) and MIP-1 beta mRNA were detected by reverse transcriptase (RT) in situ PCR. RESULTS: Amplified viral DNA was detected in each of the seven HIV-1-positive cases and in none of the five negative controls. In people with AIDS dementia, many HIV-1 DNA-positive cells were detected in regions of the CNS that corresponded to clinical symptomatology. In AIDS patients with minimal CNS involvement, rare HIV-1-infected microglial cells were noted. Viral RNA was detected primarily in cases of AIDS dementia. TNF, iNOS, MIP-1 alpha and MIP-1 beta expression localized to tissues from AIDS dementia cases where HIV-1 infected cells were plentiful. Colocalization experiments showed that these cytokines were transcribed mostly by viral-negative cells. CONCLUSIONS: These results suggest that two key elements in AIDS dementia are massive productive viral infection, involving microglia, neurons, and astrocytes, and concomitant stimulation of cytokine transcription in the neighboring uninfected cells. Images FIG. 1 FIG. 2 FIG. 3 FIG. 4 PMID:8784788

  11. An ethyl acetate fraction of Moringa oleifera Lam. Inhibits human macrophage cytokine production induced by cigarette smoke.

    PubMed

    Kooltheat, Nateelak; Sranujit, Rungnapa Pankla; Chumark, Pilaipark; Potup, Pachuen; Laytragoon-Lewin, Nongnit; Usuwanthim, Kanchana

    2014-01-01

    Moringa oleifera Lam. (MO) has been reported to harbor anti-oxidation and anti-inflammatory activity and useful in the treatment of inflammatory diseases. However, despite these findings there has been little work done on the effects of MO on immune cellular function. Since macrophages, TNF and related cytokines play an important pathophysiologic role in lung damage induced by cigarette smoke, we examined the effects of MO on cigarette smoke extract (CSE)-induced cytokine production by human macrophages. An ethyl acetate fraction of MO (MOEF) was prepared from fresh leaves extract of Moringa and shown to consist of high levels of phenolic and antioxidant activities. Human monocyte derived macrophages (MDM) pre-treated with varying concentrations of MOEF showed decreased production of TNF, IL-6 and IL-8 in response to both LPS and CSE. The decrease was evident at both cytokine protein and mRNA levels. Furthermore, the extract inhibited the expression of RelA, a gene implicated in the NF-κB p65 signaling in inflammation. The findings highlight the ability of MOEF to inhibit cytokines (IL-8) which promote the infiltration of neutrophils into the lungs and others (TNF, IL-6) which mediate tissue disease and damage. PMID:24553063

  12. Cytokine production of the neutrophils and macrophages in time of phagocytosis under influence of infrared low-level laser irradiation

    NASA Astrophysics Data System (ADS)

    Rudik, Dmitry V.; Tikhomirova, Elena I.; Tuchina, Elena S.

    2006-08-01

    Influence of infrared low-level laser irradiation (LLLI) on induction of synthesis of some cytokines such as interleykin-1 (Il-1), tumor necrosis factor-α (TNF-α), interferon-γ (INF-γ), interleykin-8 (Il-8) and interleykin-4 (Il-4) by the neutrophils and macrophages in time of bacterial cells phagocytosis that was searched. As the object of analysis we used peritoneal macrophages from white mice and neutrophils from peripheral blood of healthy donors. We used the laser diod with spectrum maximum of 850 nm with doses 300, 900 and 1500 mJ (exposition -60, 180 and 300 s respectively; capacity - 5 mW). We carried out the Enzyme-Linked Immunospot Assay (ELISA) to determine cytokine content during phagocytosis after 3 h and 6 h. We found dynamics in production of the cytokines, which was different for the neutrophils and macrophages. We showed that the infrared LLLI has significant stimulating activity on the proinflammatory cytokines production by neutrophils and macrophages. Moreover we revealed dynamics changing in the Il-8 and Il-4 production.

  13. Antioxidant Defenses of Francisella tularensis Modulate Macrophage Function and Production of Proinflammatory Cytokines.

    PubMed

    Rabadi, Seham M; Sanchez, Belkys C; Varanat, Mrudula; Ma, Zhuo; Catlett, Sally V; Melendez, Juan Andres; Malik, Meenakshi; Bakshi, Chandra Shekhar

    2016-03-01

    Francisella tularensis, the causative agent of a fatal human disease known as tularemia, has been used in the bioweapon programs of several countries in the past, and now it is considered a potential bioterror agent. Extreme infectivity and virulence of F. tularensis is due to its ability to evade immune detection and to suppress the host's innate immune responses. However, Francisella-encoded factors and mechanisms responsible for causing immune suppression are not completely understood. Macrophages and neutrophils generate reactive oxygen species (ROS)/reactive nitrogen species as a defense mechanism for the clearance of phagocytosed microorganisms. ROS serve a dual role; at high concentrations they act as microbicidal effector molecules that destroy intracellular pathogens, and at low concentrations they serve as secondary signaling messengers that regulate the expression of various inflammatory mediators. We hypothesized that the antioxidant defenses of F. tularensis maintain redox homeostasis in infected macrophages to prevent activation of redox-sensitive signaling components that ultimately result in suppression of pro-inflammatory cytokine production and macrophage microbicidal activity. We demonstrate that antioxidant enzymes of F. tularensis prevent the activation of redox-sensitive MAPK signaling components, NF-κB signaling, and the production of pro-inflammatory cytokines by inhibiting the accumulation of ROS in infected macrophages. We also report that F. tularensis inhibits ROS-dependent autophagy to promote its intramacrophage survival. Collectively, this study reveals novel pathogenic mechanisms adopted by F. tularensis to modulate macrophage innate immune functions to create an environment permissive for its intracellular survival and growth. PMID:26644475

  14. Effects of the Commercial Flame Retardant Mixture DE-71 on Cytokine Production by Human Immune Cells

    PubMed Central

    Mynster Kronborg, Thit; Frohnert Hansen, Juliana; Nielsen, Claus Henrik; Ramhøj, Louise; Frederiksen, Marie; Vorkamp, Katrin; Feldt-Rasmussen, Ulla

    2016-01-01

    Introduction Although production of polybrominated diphenyl ethers (PBDEs) is now banned, release from existing products will continue for many years. The PBDEs are assumed to be neurotoxic and toxic to endocrine organs at low concentrations. Their effect on the immune system has not been investigated thoroughly. We aimed to investigate the influence of DE-71 on cytokine production by peripheral blood mononuclear cells (PBMCs) stimulated with Escherichia Coli lipopolysaccharide (LPS) or phytohaemagglutinin-L (PHA-L). Material and Methods PBMCs isolated from healthy donors were pre-incubated with DE-71 at various concentrations and subsequently incubated with the monocyte stimulator LPS, or the T-cell activator PHA-L. Interferon (IFN)-γ, interleukin (IL)-1β, IL-2, IL-4, IL-6, IL-8, IL-10, tumor necrosis factor (TNF)-α, IL-17A, and IL-17F were quantified in the supernatants by Luminex kits. Results At non-cytotoxic concentrations (0.01–10 μg/mL), DE-71 significantly enhanced secretion of IL-1β, IL-6, CXCL8, IL-10, and TNF-α (p<0.001–0.019; n = 6) from LPS-stimulated PBMCs. IFN-γ, TNF-α, IL-17A, and IL-17F (p = <0.001–0.043; n = 6) secretion were enhanced from PHA-L-stimulated PBMCs as well. Secretion of IL-1β, IL-2, IL-10, IL-8 and IL-6 was not significantly affected by DE-71. Conclusions We demonstrate an enhancing effect of DE-71 on cytokine production by normal human PBMCs stimulated with LPS or PHA-L ex vivo. PMID:27128973

  15. IL-10 reduces Th2 cytokine production and eosinophilia but augments airway reactivity in allergic mice.

    PubMed

    van Scott, M R; Justice, J P; Bradfield, J F; Enright, E; Sigounas, A; Sur, S

    2000-04-01

    We investigated the effects of interleukin (IL)-10 administration on allergen-induced Th2 cytokine production, eosinophilic inflammation, and airway reactivity. Mice were sensitized by intraperitoneal injection of ragweed (RW) adsorbed to Alum and challenged by intratracheal instillation of the allergen. Sensitization and challenge with RW increased concentrations of IL-10 in bronchoalveolar lavage (BAL) fluid from undetectable levels to 60 pg/ml over 72 h. Intratracheal instillation of 25 ng of recombinant murine IL-10 at the time of RW challenge further elevated BAL fluid IL-10 concentration to 440 pg/ml but decreased BAL fluid IL-4, IL-5, and interferon-gamma levels by 40-85% and eosinophil numbers by 70% (P < 0.0001). Unexpectedly, the same IL-10 treatment increased airway reactivity to methacholine in spontaneously breathing mice that had been sensitized and challenged with RW (P < 0.001). IL-10 treatment in naive animals or RW-sensitized mice challenged with PBS failed to increase airway reactivity, demonstrating that IL-10 induces an increase in airway reactivity only when it is administered in conjunction with allergic sensitization and challenge. The results demonstrate that IL-10 reduces Th2 cytokine levels and eosinophilic inflammation but augments airway hyperreactivity. Thus, despite its potent anti-inflammatory activity, IL-10 could contribute to the decline in pulmonary function observed in asthma. PMID:10749743

  16. Molecular mechanisms involved in the regulation of cytokine production by muramyl dipeptide

    PubMed Central

    Windheim, Mark; Lang, Christine; Peggie, Mark; Plater, Lorna A.; Cohen, Philip

    2007-01-01

    MDP (muramyl dipeptide), a component of peptidoglycan, interacts with NOD2 (nucleotide-binding oligomerization domain 2) stimulating the NOD2–RIP2 (receptor-interacting protein 2) complex to activate signalling pathways important for antibacterial defence. Here we demonstrate that the protein kinase activity of RIP2 has two functions, namely to limit the strength of downstream signalling and to stabilize the active enzyme. Thus pharmacological inhibition of RIP2 kinase with either SB 203580 [a p38 MAPK (mitogen-activated protein kinase) inhibitor] or the Src family kinase inhibitor PP2 induces a rapid and drastic decrease in the level of the RIP2 protein, which may explain why these RIP2 inhibitors block MDP-stimulated downstream signalling and the production of IL-1β (interleukin-1β) and TNFα (tumour necrosis factor-α). We also show that RIP2 induces the activation of the protein kinase TAK1 (transforming-growth-factor-β-activated kinase-1), that a dominant-negative mutant of TAK1 inhibits RIP2-induced activation of JNK (c-Jun N-terminal kinase) and p38α MAPK, and that signalling downstream of NOD2 or RIP2 is reduced by the TAK1 inhibitor (5Z)-7-oxozeaenol or in TAK1-deficient cells. We also show that MDP activates ERK1 (extracellular-signal-regulated kinase 1)/ERK2 and p38α MAPK in human peripheral-blood mononuclear cells and that the activity of both MAPKs and TAK1 are required for MDP-induced signalling and production of IL-1β and TNFα in these cells. Taken together, our results indicate that the MDP–NOD2/RIP2 and LPS (lipopolysaccharide)–TLR4 (Toll-like receptor 4) signalling pathways converge at the level of TAK1 and that many subsequent events that lead to the production of pro-inflammatory cytokines are common to both pathways. PMID:17348859

  17. Effects of FK506 and cyclosporin A on cytokine production studied in vitro at a single-cell level.

    PubMed Central

    Andersson, J; Nagy, S; Groth, C G; Andersson, U

    1992-01-01

    Mononuclear cells obtained from human blood were mitogen or antigen activated in vitro in the presence or absence of FK506 or cyclosporin A (CsA). Cytokine production was studied at a single-cell level by ultraviolet (UV) microscopy of fixed permeabilized cells using cytokine-specific monoclonal antibodies (mAb). Phenotypic characterization of the monokine-producing cells was achieved by two-colour immunofluorescent staining. Cytokine production after antigen activation with Staphylococcus aureus enterotoxin A (SEA) was significantly reduced. FK506 or CsA inhibited SEA-induced tumour necrosis factor-alpha (TNF-alpha) production both in monocytes (P less than 0.01) and in lymphocytes (P less than 0.001), at a drug concentration of 1-25 ng/ml for FK506 and 100-500 ng/ml for CsA. Lymphocyte synthesis of interleukin-2 (IL-2), interferon-gamma (IFN-gamma) and TNF-beta after SEA activation was also significantly reduced by either of the drugs. In contrast, endotoxin-induced monokine production (TNF-alpha and IL-6) after lipopolysaccharide (LPS) stimulation was unaffected by FK506 or CsA even when added in concentrations as high as 1000 ng/ml. When the cells were stimulated by phorbol ester (phorbol 12-myristate 13-acetate, PMA) plus calcium ionophore (ionomycin), FK506 and CsA inhibited, in a dose-dependent manner, the production of IL-2, IL-4, IL-5, IFN-gamma and TNF-alpha. The 50% inhibitory concentration (IC50) for FK506 or CsA on the cellular synthesis of the various cytokines varied between 0.6 and 1.0 ng/ml and 20 and 60 ng/ml, respectively. Further stimulation by addition of anti-CD28 mAb to the cultures resulted in an augmented IL-2 and IFN-gamma production which was resistant to both FK506 and CsA. This report delineates extensive similarities between the two drugs in mechanisms of immunosuppression by blockade of identical interleukin production. Depending on the mode of cell activation the two drugs inhibited not only cytokine production in lymphocytes but

  18. Characterization of cytokine production in infectious mononucleosis studied at a single-cell level in tonsil and peripheral blood.

    PubMed Central

    Andersson, J; Andersson, U

    1993-01-01

    Cytokine profile and production was studied at a single-cell level in cells obtained from 14 patients with acute infectious mononucleosis (IM), with less than 7 days of symptomatic disease, by use of cytokine-specific MoAbs and indirect immunofluorescence technique. In producer cells, all the studied cytokines, except IL-1, accumulated in the Golgi system, which resulted in a characteristic morphology of the staining. Less than one in a thousand mononuclear cells obtained directly from IM blood and stained within 2 h of sampling produced IL-2, interferon-gamma (IFN-gamma), IL-4, IL-5, IL-6, IL-10, GM-CSF, tumour necrosis factor-alpha (TNF-alpha) or TNF-beta, spontaneously. However, these cells were induced to cytokine synthesis by T cell receptor ligation in vitro using immobilized anti-CD3 MoAbs for 2-3 h restimulation under conditions which did not activate normal cells. By this approach 168 +/- 120 cells/10,000 peripheral blood mononuclear cells produced IFN-gamma as compared with 10 +/- 8 cells/10,000 non-stimulated cultured cells obtained from IM patients (P < 0.001) and 1/10,000 cells obtained from healthy controls, respectively. No induced production of IL-2, IL-3, IL-4, IL-5, IL-10, GM-CSF or TNF-beta was detected in IM cells obtained from peripheral blood by this restimulation. In contrast, a spontaneous cytokine production was evident in tonsil material obtained from four IM patients tonsilectomized because of respiratory obstruction. From this site 160 +/- 40 cells/10,000 cells produced IL-2, 40 +/- 30 cells IL-6, 30 +/- 30 cells TNF-beta and 35 +/- 25 cells IFN-gamma, respectively. No such spontaneous IL-2, IL-6, TNF-beta or IFN-gamma production was evident in control cells obtained from patients tonsilectomized because of chronic tonsil hyperplasia. Images Fig. 1 PMID:8467566

  19. Polybrominated Diphenyl Ethers Enhance the Production of Proinflammatory Cytokines by the Placenta

    PubMed Central

    Peltier, Morgan R.; Klimova, Natalia G.; Arita, Yuko; Gurzenda, Ellen M.; Murthy, Amitasrigowri; Chawala, Kiranpreet; Lerner, Veronica; Richardson, Jason; Hanna, Nazeeh

    2012-01-01

    Polybrominated diphenyl ether(s) (PBDE) are ubiquitous environmental contaminants that bind and cross the placenta but their effects on pregnancy outcome are unclear. It is possible that environmental contaminants increase the risk of inflammation-mediated pregnancy complications such as preterm birth by promoting a proinflammatory environment at the maternal-fetal interface. We hypothesized that PBDE would reduce IL-10 production and enhance the production of proinflammatory cytokines associated with preterm labor/birth by placental explants. Second trimester placental explants were cultured in either vehicle (control) or 2 μM PBDE mixture of congers 47, 99 and 100 for 72 h. Cultures were then stimulated with 106 CFU/ml heat-killed Escherichia coli for a final 24 h incubation and conditioned medium was harvested for quantification of cytokines and PGE2. COX-2 content and viability of the treated tissues were then quantified by tissue ELISA and MTT reduction activity, respectively. PBDE pre-treatment reduced E. coli-stimulated IL-10 production and significantly increased E. coli-stimulated IL-1β secretion. PBDE exposure also increased basal and bacteria-stimulated COX-2 expression. Basal, but not bacteria-stimulated PGE2, was also enhanced by PBDE exposure. No effect of PBDE on viability of the explants cultures was detected. In summary, pre-exposure of placental explants to congers 47, 99, and 100 enhanced the placental proinflammatory response to infection. This may increase the risk of infection-mediated preterm birth by lowering the threshold for bacteria to stimulate a proinflammatory response(s). PMID:22749501

  20. Interleukin-18 Increases TLR4 and Mannose Receptor Expression and Modulates Cytokine Production in Human Monocytes

    PubMed Central

    Dias-Melicio, Luciane Alarcão; Fernandes, Reginaldo Keller; Rodrigues, Daniela Ramos; Golim, Marjorie Assis; Soares, Angela Maria Victoriano Campos

    2015-01-01

    Interleukin-18 is a proinflammatory cytokine belonging to the interleukin-1 family of cytokines. This cytokine exerts many unique biological and immunological effects. To explore the role of IL-18 in inflammatory innate immune responses, we investigated its impact on expression of two toll-like receptors (TLR2 and TLR4) and mannose receptor (MR) by human peripheral blood monocytes and its effect on TNF-α, IL-12, IL-15, and IL-10 production. Monocytes from healthy donors were stimulated or not with IL-18 for 18 h, and then the TLR2, TLR4, and MR expression and intracellular TNF-α, IL-12, and IL-10 production were assessed by flow cytometry and the levels of TNF-α, IL-12, IL-15, and IL-10 in culture supernatants were measured by ELISA. IL-18 treatment was able to increase TLR4 and MR expression by monocytes. The production of TNF-α and IL-10 was also increased by cytokine treatment. However, IL-18 was unable to induce neither IL-12 nor IL-15 production by these cells. Taken together, these results show an important role of IL-18 on the early phase of inflammatory response by promoting the expression of some pattern recognition receptors (PRRs) that are important during the microbe recognition phase and by inducing some important cytokines such as TNF-α and IL-10. PMID:25873755

  1. Impact of antidepressants on cytokine production of depressed patients in vitro.

    PubMed

    Munzer, Alexander; Sack, Ulrich; Mergl, Roland; Schönherr, Jeremias; Petersein, Charlotte; Bartsch, Stefanie; Kirkby, Kenneth C; Bauer, Katrin; Himmerich, Hubertus

    2013-11-01

    The interplay between immune and nervous systems plays a pivotal role in the pathophysiology of depression. In depressive episodes, patients show increased production of pro-inflammatory cytokines such as interleukin (IL)-1β and tumor necrosis factor (TNF)-α. There is limited information on the effect of antidepressant drugs on cytokines, most studies report on a limited sample of cytokines and none have reported effects on IL-22. We systematically investigated the effect of three antidepressant drugs, citalopram, escitalopram and mirtazapine, on secretion of cytokines IL-1β, IL-2, IL-4, IL-6, IL-17, IL-22 and TNF-α in a whole blood assay in vitro, using murine anti-human CD3 monoclonal antibody OKT3, and 5C3 monoclonal antibody against CD40, to stimulate T and B cells respectively. Citalopram increased production of IL-1β, IL-6, TNF-α and IL-22. Mirtazapine increased IL-1β, TNF-α and IL-22. Escitalopram decreased IL-17 levels. The influence of antidepressants on IL-2 and IL-4 levels was not significant for all three drugs. Compared to escitalopram, citalopram led to higher levels of IL-1β, IL-6, IL-17 and IL-22; and mirtazapine to higher levels of IL-1β, IL-17, IL-22 and TNF-α. Mirtazapine and citalopram increased IL-22 production. The differing profile of cytokine production may relate to differences in therapeutic effects, risk of relapse and side effects. PMID:24257035

  2. In vitro cytokine induction by TLR-activating vaccine adjuvants in human blood varies by age and adjuvant.

    PubMed

    van Haren, Simon D; Ganapathi, Lakshmi; Bergelson, Ilana; Dowling, David J; Banks, Michaela; Samuels, Ronald C; Reed, Steven G; Marshall, Jason D; Levy, Ofer

    2016-07-01

    Most infections occur in early life, prompting development of novel adjuvanted vaccines to protect newborns and infants. Several Toll-like receptor (TLR) agonists (TLRAs) are components of licensed vaccine formulations or are in development as candidate adjuvants. However, the type and magnitude of immune responses to TLRAs may vary with the TLR activated as well as age and geographic location. Most notably, in newborns, as compared to adults, the immune response to TLRAs is polarized with lower Th1 cytokine production and robust Th2 and anti-inflammatory cytokine production. The ontogeny of TLR-mediated cytokine responses in international cohorts has been reported, but no study has compared cytokine responses to TLRAs between U.S. neonates and infants at the age of 6months. Both are critical age groups for the currently pediatric vaccine schedule. In this study, we report quantitative differences in the production of a panel of 14 cytokines and chemokines after in vitro stimulation of newborn cord blood and infant and adult peripheral blood with agonists of TLR4, including monophosphoryl lipid A (MPLA) and glucopyranosyl lipid Adjuvant aqueous formulation (GLA-AF), as well as agonists of TLR7/8 (R848) and TLR9 (CpG). Both TLR4 agonists, MPLA and GLA-AF, induced greater concentrations of Th1 cytokines CXCL10, TNF and Interleukin (IL)-12p70 in infant and adult blood compared to newborn blood. All the tested TLRAs induced greater infant IFN-α2 production compared to newborn and adult blood. In contrast, CpG induced greater IFN-γ, IL-1β, IL-4, IL-12p40, IL-10 and CXCL8 in newborn than in infant and adult blood. Overall, to the extent that these in vitro studies mirror responses in vivo, our study demonstrates distinct age-specific effects of TLRAs that may inform their development as candidate adjuvants for early life vaccines. PMID:27081760

  3. Allergens stimulate store-operated calcium entry and cytokine production in airway epithelial cells

    PubMed Central

    Jairaman, Amit; Maguire, Chelsea H.; Schleimer, Robert P.; Prakriya, Murali

    2016-01-01

    Aberrant immune responses to environmental allergens including insect allergens from house dust mites and cockroaches contribute to allergic inflammatory diseases such as asthma in susceptible individuals. Airway epithelial cells (AECs) play a critical role in this process by sensing the proteolytic activity of allergens via protease-activated receptors (PAR2) to initiate inflammatory and immune responses in the airway. Elevation of cytosolic Ca2+ is an important signaling event in this process, yet the fundamental mechanism by which allergens induce Ca2+ elevations in AECs remains poorly understood. Here we find that extracts from dust mite and cockroach induce sustained Ca2+ elevations in AECs through the activation of Ca2+ release-activated Ca2+ (CRAC) channels encoded by Orai1 and STIM1. CRAC channel activation occurs, at least in part, through allergen mediated stimulation of PAR2 receptors. The ensuing Ca2+ entry then activates NFAT/calcineurin signaling to induce transcriptional production of the proinflammatory cytokines IL-6 and IL-8. These findings highlight a key role for CRAC channels as regulators of allergen induced inflammatory responses in the airway. PMID:27604412

  4. Allergens stimulate store-operated calcium entry and cytokine production in airway epithelial cells.

    PubMed

    Jairaman, Amit; Maguire, Chelsea H; Schleimer, Robert P; Prakriya, Murali

    2016-01-01

    Aberrant immune responses to environmental allergens including insect allergens from house dust mites and cockroaches contribute to allergic inflammatory diseases such as asthma in susceptible individuals. Airway epithelial cells (AECs) play a critical role in this process by sensing the proteolytic activity of allergens via protease-activated receptors (PAR2) to initiate inflammatory and immune responses in the airway. Elevation of cytosolic Ca(2+) is an important signaling event in this process, yet the fundamental mechanism by which allergens induce Ca(2+) elevations in AECs remains poorly understood. Here we find that extracts from dust mite and cockroach induce sustained Ca(2+) elevations in AECs through the activation of Ca(2+) release-activated Ca(2+) (CRAC) channels encoded by Orai1 and STIM1. CRAC channel activation occurs, at least in part, through allergen mediated stimulation of PAR2 receptors. The ensuing Ca(2+) entry then activates NFAT/calcineurin signaling to induce transcriptional production of the proinflammatory cytokines IL-6 and IL-8. These findings highlight a key role for CRAC channels as regulators of allergen induced inflammatory responses in the airway. PMID:27604412

  5. Cytokine Production (IL-1α, IL-1β, and TNFα) and Endothelial Cell Activation (ELAM-1 and HLA-DR) in Reactive Lymphadenitis, Hodgkin's Disease, and in Non-Hodgkin's Lymphomas

    PubMed Central

    Ruco, Luigi P.; Pomponi, Donatella; Pigott, Rod; Stoppacciaro, Antonella; Monardo, Francesca; Uccini, Stefania; Boraschi, Diana; Tagliabue, Aldo; Santoni, Angela; Dejana, Elisabetta; Mantovani, Alberto; Baroni, Carlo D.

    1990-01-01

    Cryostat sections of 58 lymph nodes were immunostained with a polyclonal rabbit serum against IL-1α, and with monoclonal antibodies directed to IL-1α (Vmp18), IL-1β (Vhp20 and BRhC3), and tumor necrosis factor α (TNFα) (B154.7). Furthermore the presence of cytokine-containing cells was correlated with the expression of endothelial leukocyte adhesion molecule (ELAM-1; 29F2) and of human leukocyte antigen (HLA-DR) (OKIa-1)by endothelial cells. Cells containing IL-1 and/or TNFα were detected mainly inpathologic conditions characterized by reactive or neoplastic expansion of the lymph node paracortex. Cells positive for IL-1 were detected in 16 of 21 cases of Hodgkin's disease,in 4 of 4 cases of T-NHL, and in 5 cases of diffuse or mixed lymphadenitis. Interleukin-1α was detected in macrophages, interdigitating reticulum cells (IDRCs), endothelial cells, and neoplastic Hodgkin's and Reed-Sternberg (H-RS) cells. Cells positive for IL-1 β were much fewer and consisted mainly of macrophages. Hodgkin's Reed-Sternberg cells were negative for IL-1β even after in vitro stimulation with bacterial endotoxin. Tumor necrosis factor α (TNFα) was present in macrophages and H-RS cells. Endothelial leukocyte adhesion molecule-1 expression by endothelial venules was detected in 17 of 20 cases of Hodgkin's disease, in 2 of 4 cases of T-NHL, and in 5 of 5 cases of diffuse lymphadenitis. In these pathologic conditions, HLADR antigens also were expressed frequently by endothelial cells. Cytokine-containing cells and ELAM-1-positive high endothelial venules (HEV) were extremely rare in lymph nodes involved by follicular lymphadenitis (12 cases) or B-NHL (16 cases). In cases of reactive or neoplastic B-cell proliferations, HLA-DR-positive HEVs still were present often. Our results indicate that IL-1/TNFα production at tissue level is often associated with ELAM-1 expression by HEVs, but is less well correlated with expression of HLA-DR antigens by endothelial cells. ImagesFigure 1

  6. PCT-233, a novel modulator of pro- and anti-inflammatory cytokine production

    PubMed Central

    BISSONNETTE, E Y; PROULX, L-I; TURMEL, V; DROUIN, R; PURCELL, M

    2004-01-01

    Plant extracts have been implicated in various immunoregulatory effects that are poorly understood. Thus, we investigated the modulatory activity of PureCell Complex (PCT)-233, an active molecular complex from mesophyll tissue of Spinacia oleacea on the inflammatory process. Alveolar macrophages (AM) were treated with PCT-233 and/or budesonide, a well-known anti-inflammatory agent, before or after being stimulated with lipopolysaccharides (LPS). Pro- and anti-inflammatory cytokine production, tumour necrosis factor (TNF) and interleukin (IL)-10, respectively, were measured in cell-free supernatants at different times after the treatment. PCT-233 increased unstimulated AM release of both TNF and IL-10, whereas heat- and light-inactivated PCT-233 stimulated only the release of TNF without affecting IL-10 production, suggesting that different mechanisms are involved in the modulation of TNF and IL-10 release by PCT-233. The presence of LPS did not modify PCT-233-stimulated TNF production, but the ratio TNF/IL-10 production by LPS-stimulated AM was reduced significantly in the presence of PCT-233. Pretreatment of AM with PCT-233 and budesonide before LPS stimulation reduced TNF production at both protein and mRNA levels, whereas IL-10 production was increased. Moreover, TNF/IL-10 ratio was reduced further with the combination PCT-233/budesonide. Interestingly, AM treatment with PCT-233 and budesonide 18 h after LPS stimulation did not modulate TNF release significantly but it did increase IL-10 production, and a synergistic effect was observed with the combination PCT-233/budesonide. These exciting data suggest that PCT-233 possesses some anti-inflammatory properties, even when added during the inflammatory process, and could potentiate the effect of other anti-inflammatory agents. PMID:15008976

  7. Forced expression of stabilized c-Fos in dendritic cells reduces cytokine production and immune responses in vivo

    SciTech Connect

    Yoshida, Ryoko; Suzuki, Mayu; Sakaguchi, Ryota; Hasegawa, Eiichi; Kimura, Akihiro; Shichita, Takashi; Sekiya, Takashi; Shiraishi, Hiroshi; Shimoda, Kouji; Yoshimura, Akihiko

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer Dendritic cells expressing stabilized c-Fos produced less inflammatory cytokines. Black-Right-Pointing-Pointer Dendritic cells expressing stabilized c-Fos activated T cells less efficiently. Black-Right-Pointing-Pointer Transgenic mice expressing stabilized c-Fos were resistant to EAE model. -- Abstract: Intracellular cyclic adenosine monophosphate (cAMP) suppresses innate immunity by inhibiting proinflammatory cytokine production by monocytic cells. We have shown that the transcription factor c-Fos is responsible for cAMP-mediated suppression of inflammatory cytokine production, and that c-Fos protein is stabilized by IKK{beta}-mediated phosphorylation. We found that S308 is one of the major phosphorylation sites, and that the S308D mutation prolongs c-Fos halflife. To investigate the role of stabilized c-Fos protein in dendritic cells (DCs) in vivo, we generated CD11c-promoter-deriven c-FosS308D transgenic mice. As expected, bone marrow-derived DCs (BMDCs) from these Tg mice produced smaller amounts of inflammatory cytokines, including TNF-{alpha}, IL-12, and IL-23, but higher levels of IL-10, in response to LPS, than those from wild-type (Wt) mice. When T cells were co-cultured with BMDCs from Tg mice, production of Th1 and Th17 cytokines was reduced, although T cell proliferation was not affected. Tg mice demonstrated more resistance to experimental autoimmune encephalomyelitis (EAE) than did Wt mice. These data suggest that c-Fos in DCs plays a suppressive role in certain innate and adaptive immune responses.

  8. Cytokine-release kinetics of platelet-rich plasma according to various activation protocols

    PubMed Central

    Roh, Y. H.; Kim, W.; Park, K. U.

    2016-01-01

    Objectives This study was conducted to evaluate the cytokine-release kinetics of platelet-rich plasma (PRP) according to different activation protocols. Methods Two manual preparation procedures (single-spin (SS) at 900 g for five minutes; double-spin (DS) at 900 g for five minutes and then 1500 g for 15 minutes) were performed for each of 14 healthy subjects. Both preparations were tested for platelet activation by one of three activation protocols: no activation, activation with calcium (Ca) only, or calcium with a low dose (50 IU per 1 ml PRP) of thrombin. Each preparation was divided into four aliquots and incubated for one hour, 24 hours, 72 hours, and seven days. The cytokine-release kinetics were evaluated by assessing PDGF, TGF, VEGF, FGF, IL-1, and MMP-9 concentrations with bead-based sandwich immunoassay. Results The concentration of cytokine released from PRP varied over time and was influenced by various activation protocols. Ca-only activation had a significant effect on the DS PRPs (where the VEGF, FGF, and IL-1 concentrations were sustained) while Ca/thrombin activation had effects on both SS and DS PRPs (where the PDGF and VEGF concentrations were sustained and the TGF and FGF concentrations were short). The IL-1 content showed a significant increase with Ca-only or Ca/thrombin activation while these activations did not increase the MMP-9 concentration. Conclusion The SS and DS methods differed in their effect on cytokine release, and this effect varied among the cytokines analysed. In addition, low dose of thrombin/calcium activation increased the overall cytokine release of the PRP preparations over seven days, relative to that with a calcium-only supplement or non-activation. Cite this article: Professor J. H. Oh. Cytokine-release kinetics of platelet-rich plasma according to various activation protocols. Bone Joint Res 2016;5:37–45. DOI: 10.1302/2046-3758.52.2000540 PMID:26862077

  9. Ceftiofur impairs pro-inflammatory cytokine secretion through the inhibition of the activation of NF-{kappa}B and MAPK

    SciTech Connect

    Ci Xinxin; Song Yu; Zeng Fanqin; Zhang Xuemei; Li Hongyu; Wang Xinrui; Cui Junqing Deng Xuming

    2008-07-18

    Ceftiofur is a new broad-spectrum, third-generation cephalosporin antibiotic for veterinary use. Immunopharmacological studies can provide new information on the immunomodulatory activities of some drugs, including their effect on cytokine productions. For this reason, we investigated the effect of ceftiofur on cytokine productions in vitro. We found that ceftiofur can downregulate tumor necrosis factor-{alpha} (TNF-{alpha}), interleukin-1{beta} (IL-1{beta}), and interleukin-6 (IL-6), but did not affect interleukin-10 (IL-10) production. We further investigated signal transduction mechanisms to determine how ceftiofur affects. RAW 264.7 cells were pretreated with 1, 5, or 10 mg/L of ceftiofur 1 h prior to treatment with 1 mg/L of LPS. Thirty minutes later, cells were harvested and mitogen activated protein kinases (MAPKs) activation was measured by Western blot. Alternatively, cells were fixed and nuclear factor-{kappa}B (NF-{kappa}B) activation was measured using immunocytochemical analysis. Signal transduction studies showed that ceftiofur significantly inhibited extracellular signal-regulated kinase (ERK), p38, and c-jun NH{sub 2}-terminal kinase (JNK) phosphorylation protein expression. Ceftiofur also inhibited p65-NF-{kappa}B translocation into the nucleus. Therefore, ceftiofur may inhibit LPS-induced production of inflammatory cytokines by blocking NF-{kappa}B and MAPKs signaling in RAW264.7 cells.

  10. Redistribution, Hyperproliferation, Activation of Natural Killer Cells and CD8 T Cells, and Cytokine Production During First-in-Human Clinical Trial of Recombinant Human Interleukin-15 in Patients With Cancer

    PubMed Central

    Conlon, Kevin C.; Lugli, Enrico; Welles, Hugh C.; Rosenberg, Steven A.; Fojo, Antonio Tito; Morris, John C.; Fleisher, Thomas A.; Dubois, Sigrid P.; Perera, Liyanage P.; Stewart, Donn M.; Goldman, Carolyn K.; Bryant, Bonita R.; Decker, Jean M.; Chen, Jing; Worthy, Tat'Yana A.; Figg, William D.; Peer, Cody J.; Sneller, Michael C.; Lane, H. Clifford; Yovandich, Jason L.; Creekmore, Stephen P.; Roederer, Mario; Waldmann, Thomas A.

    2015-01-01

    Purpose Interleukin-15 (IL-15) has significant potential in cancer immunotherapy as an activator of antitumor CD8 T and natural killer (NK) cells. The primary objectives of this trial were to determine safety, adverse event profile, dose-limiting toxicity, and maximum-tolerated dose of recombinant human IL-15 (rhIL-15) administered as a daily intravenous bolus infusion for 12 consecutive days in patients with metastatic malignancy. Patients and Methods We performed a first in-human trial of Escherichia coli–produced rhIL-15. Bolus infusions of 3.0, 1.0, and 0.3 μg/kg per day of IL-15 were administered for 12 consecutive days to patients with metastatic malignant melanoma or metastatic renal cell cancer. Results Flow cytometry of peripheral blood lymphocytes revealed dramatic efflux of NK and memory CD8 T cells from the circulating blood within minutes of IL-15 administration, followed by influx and hyperproliferation yielding 10-fold expansions of NK cells that ultimately returned to baseline. Up to 50-fold increases of serum levels of multiple inflammatory cytokines were observed. Dose-limiting toxicities observed in patients receiving 3.0 and 1.0 μg/kg per day were grade 3 hypotension, thrombocytopenia, and elevations of ALT and AST, resulting in 0.3 μg/kg per day being determined the maximum-tolerated dose. Indications of activity included clearance of lung lesions in two patients. Conclusion IL-15 could be safely administered to patients with metastatic malignancy. IL-15 administration markedly altered homeostasis of lymphocyte subsets in blood, with NK cells and γδ cells most dramatically affected, followed by CD8 memory T cells. To reduce toxicity and increase efficacy, alternative dosing strategies have been initiated, including continuous intravenous infusions and subcutaneous IL-15 administration. PMID:25403209

  11. Distinct TLR-mediated cytokine production and immunoglobulin secretion in human newborn naïve B cells.

    PubMed

    Pettengill, Matthew A; van Haren, Simon D; Li, Ning; Dowling, David J; Bergelson, Ilana; Jans, Jop; Ferwerda, Gerben; Levy, Ofer

    2016-08-01

    Neonatal innate immunity is distinct from that of adults, which may contribute to increased susceptibility to infection and limit vaccine responses. B cells play critical roles in protection from infection and detect PAMPs via TLRs, that, when co-activated with CD40, can drive B-cell proliferation and Ab production. We characterized the expression of TLRs in circulating B cells from newborns and adults, and evaluated TLR- and CD40-mediated naïve B-cell class-switch recombination (CSR) and cytokine production. Gene expression levels of most TLRs was similar between newborn and adult B cells, except that newborn naïve B cells expressed more TLR9 than adult naïve B cells. Neonatal naïve B cells demonstrated impaired TLR2- and TLR7- but enhanced TLR9-mediated cytokine production. Significantly fewer newborn naïve B cells underwent CSR to produce IgG, an impairment also noted with IL-21 stimulation. Additionally, co-stimulation via CD40 and TLRs induced greater cytokine production in adult B cells. Thus, while newborn naïve B cells demonstrate adult-level expression of TLRs and CD40, the responses to stimulation of these receptors are distinct. Relatively high expression of TLR9 and impaired CD40-mediated Ig secretion contributes to distinct innate and adaptive immunity of human newborns and may inform novel approaches to early-life immunization. PMID:27252169

  12. Colchicine Acutely Suppresses Local Cardiac Production of Inflammatory Cytokines in Patients With an Acute Coronary Syndrome

    PubMed Central

    Martínez, Gonzalo J; Robertson, Stacy; Barraclough, Jennifer; Xia, Qiong; Mallat, Ziad; Bursill, Christina; Celermajer, David S; Patel, Sanjay

    2015-01-01

    Background Interleukin (IL)-1β, IL-18, and downstream IL-6 are key inflammatory cytokines in the pathogenesis of coronary artery disease. Colchicine is believed to block the NLRP3 inflammasome, a cytosolic complex responsible for the production of IL-1β and IL-18. In vivo effects of colchicine on cardiac cytokine release have not been previously studied. This study aimed to (1) assess the local cardiac production of inflammatory cytokines in patients with acute coronary syndromes (ACS), stable coronary artery disease and in controls; and (2) determine whether acute administration of colchicine inhibits their production. Methods and Results Forty ACS patients, 33 with stable coronary artery disease, and 10 controls, were included. ACS and stable coronary artery disease patients were randomized to oral colchicine treatment (1 mg followed by 0.5 mg 1 hour later) or no colchicine, 6 to 24 hours prior to cardiac catheterization. Blood samples from the coronary sinus, aortic root (arterial), and lower right atrium (venous) were collected and tested for IL-1β, IL-18, and IL-6 using ELISA. In ACS patients, coronary sinus levels of IL-1β, IL-18, and IL-6 were significantly higher than arterial and venous levels (P=0.017, <0.001 and <0.001, respectively). Transcoronary (coronary sinus-arterial) gradients for IL-1β, IL-18, and IL-6 were highest in ACS patients and lowest in controls (P=0.077, 0.033, and 0.014, respectively). Colchicine administration significantly reduced transcoronary gradients of all 3 cytokines in ACS patients by 40% to 88% (P=0.028, 0.032, and 0.032, for IL-1β, IL-18, and IL-6, respectively). Conclusions ACS patients exhibit increased local cardiac production of inflammatory cytokines. Short-term colchicine administration rapidly and significantly reduces levels of these cytokines. PMID:26304941

  13. Dysregulated Cytokine Production by Dendritic Cells Modulates B Cell Responses in the NZM2410 Mouse Model of Lupus

    PubMed Central

    Sang, Allison; Zheng, Ying-Yi; Yin, Yiming; Dozmorov, Igor; Li, Hao; Hsu, Hui-Chen; Mountz, John D.; Morel, Laurence

    2014-01-01

    The breakdown in tolerance of autoreactive B cells in the lupus-prone NZM2410-derived B6.Sle1.Sle2.Sle3 (TC) mice results in the secretion of autoantibodies. TC dendritic cells (DCs) enhance B cell proliferation and antibody secretion in a cytokine-dependent manner. However, the specific cytokine milieu by which TC DCs activate B cells was not known. In this study, we compared TC and C57BL/6 (B6) control for the distribution of DC subsets and for their production of cytokines affecting B cell responses. We show that TC DCs enhanced B cell proliferation through the production of IL-6 and IFN-γ, while antibody secretion was only dependent on IL-6. Pre-disease TC mice showed an expanded PDCA1+ cells prior to disease onset that was localized to the marginal zone and further expanded with age. The presence of PDCA1+ cells in the marginal zone correlated with a Type I Interferon (IFN) signature in marginal zone B cells, and this response was higher in TC than B6 mice. In vivo administration of anti-chromatin immune complexes upregulated IL-6 and IFN-γ production by splenic DCs from TC but not B6 mice. The production of BAFF and APRIL was decreased upon TC DC stimulation both in vitro and in vivo, indicating that these B cell survival factors do not play a role in B cell modulation by TC DCs. Finally, TC B cells were defective at downregulating IL-6 expression in response to anti-inflammatory apoptotic cell exposure. Overall, these results show that the TC autoimmune genetic background induces the production of B cell-modulating inflammatory cytokines by DCs, which are regulated by the microenvironment as well as the interplay between DC. PMID:25093822

  14. A Novel Compound C12 Inhibits Inflammatory Cytokine Production and Protects from Inflammatory Injury In Vivo

    PubMed Central

    Pan, Yong; Li, Jianling; Zhang, Yali; Ye, Faqing; Yang, Shulin; Zhang, Hui; Li, Xiaokun; Liang, Guang

    2011-01-01

    Inflammation is a hallmark of many diseases. Although steroids and cyclooxygenase inhibitors are main anti-inflammatory therapeutical agents, they may cause serious side effects. Therefore, developing non-steroid anti-inflammatory agents is urgently needed. A novel hydrosoluble compound, C12 (2,6-bis(4-(3-(dimethylamino)-propoxy)benzylidene)cyclohexanone), has been designed and synthesized as an anti-inflammatory agent in our previous study. In the present study, we investigated whether C12 can affect inflammatory processes in vitro and in vivo. In mouse primary peritoneal macrophages, C12 potently inhibited the production of the proinflammatory gene expression including TNF-α, IL-1β, IL-6, iNOS, COX-2 and PGE synthase. The activity of C12 was partly dependent on inhibition of ERK/JNK (but p38) phosphorylation and NF-κB activation. In vivo, C12 suppressed proinflammatory cytokine production in plasma and liver, attenuated lung histopathology, and significantly reduced mortality in endotoxemic mice. In addition, the pre-treatment with C12 reduced the inflammatory pain in the acetic acid and formalin models and reduced the carrageenan-induced paw oedema and acetic acid-increased vascular permeability. Taken together, C12 has multiple anti-inflammatory effects. These findings, coupled with the low toxicity and hydrosolubility of C12, suggests that this agent may be useful in the treatment of inflammatory diseases. PMID:21931698

  15. Influence of Phthalates on Cytokine Production in Monocytes and Macrophages: A Systematic Review of Experimental Trials

    PubMed Central

    Hansen, Juliana Frohnert; Bendtzen, Klaus; Boas, Malene; Frederiksen, Hanne; Nielsen, Claus H.; Rasmussen, Åse Krogh; Feldt-Rasmussen, Ulla

    2015-01-01

    Background Phthalates are a group of endocrine disrupting chemicals suspected to influence the immune system. The aim of this systematic review is to summarise the present knowledge on the influence of phthalates on monocyte and macrophage production and secretion of cytokines, an influence which could affect both pro- and anti-inflammatory abilities of these cells. Strategy and Results A systematic search was performed in Medline, Embase and Toxline in June 2013, last updated 3rd of August 2014. Criteria used to select studies were described and published beforehand online on Prospero (http://www.crd.york.ac.uk/NIHR_PROSPERO, registration number CRD42013004236). In vivo, ex vivo and in vitro studies investigating the influence of phthalates on cytokine mRNA expression and cytokine secretion in animals and humans were included. A total of 11 reports, containing 12 studies, were found eligible for inclusion. In these, a total of four different phthalate diesters, six primary metabolites (phthalate monoesters) and seven different cytokines were investigated. Though all studies varied greatly in study design and species sources, four out of five studies that investigated di-2-ethylhexyl phthalate found an increased tumour necrosis factor-α secretion/production from monocytes or macrophages. A summary of cytokine measurements was not possible since few studies were comparable in study design and due to insufficient reporting of raw data for most of the included studies. Conclusion Results from this review have suggested that at least one phthalate (di-2-ethylhexyl phthalate) has the ability to enhance tumour necrosis factor-α production/secretion from monocytes/macrophages in vitro, but also observed ex vivo. Influence of other phthalates on other cytokines has only been investigated in few studies. Thus, in vitro studies on primary human monocytes/macrophages as well as more in vivo studies are needed to confirm or dispute these findings. PMID:25811352

  16. Blueberries inhibit proinflammatory cytokine TNF-alpha and IL-6 production in macrophages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blueberries (BB) have been reported to attenuate atherosclerosis in apoE deficient (ApoE-/-) mice. However, the underlying mechanisms are not fully understood. In this study, the effect of BB on proinflammatory cytokine production in macrophages was investigated. ApoE-/- mice were fed AIN-93G diet (...

  17. The Highway to Hell: A RIP Kinase-Directed Shortcut to Inflammatory Cytokine Production.

    PubMed

    Hildebrand, Joanne M; Murphy, James M

    2016-07-19

    RIPK1 and RIPK3 are well-known signaling traffic cops in innate immunity. In this issue of Immunity, Degterev and colleagues show that when they blow the whistle on bacterial infection, they quickly point a white-gloved hand down the express route to inflammatory cytokine production. PMID:27438758

  18. Glycine regulates the production of pro-inflammatory cytokines in lean and monosodium glutamate-obese mice.

    PubMed

    Alarcon-Aguilar, F J; Almanza-Perez, Julio; Blancas, Gerardo; Angeles, Selene; Garcia-Macedo, Rebeca; Roman, Ruben; Cruz, Miguel

    2008-12-01

    Fat tissue plays an important role in the regulation of inflammatory processes. Increased visceral fat has been associated with a higher production of cytokines that triggers a low-grade inflammatory response, which eventually may contribute to the development of insulin resistance. In the present study, we investigated whether glycine, an amino acid that represses the expression in vitro of pro-inflammatory cytokines in Kupffer and 3T3-L1 cells, can affect in vivo cytokine production in lean and monosodium glutamate-induced obese mice (MSG/Ob mice). Our data demonstrate that glycine treatment in lean mice suppressed TNF-alpha transcriptional expression in fat tissue, and serum protein levels of IL-6 were suppressed, while adiponectin levels were increased. In MSG/Ob mice, glycine suppressed TNF-alpha and IL-6 gene expression in fat tissue and significantly reduced protein levels of IL-6, resistin and leptin. To determine the role of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) in the modulation of this inflammatory response evoked by glycine, we examined its expression levels in fat tissue. Glycine clearly increased PPAR-gamma expression in lean mice but not in MSG/Ob mice. Finally, to identify alterations in glucose metabolism by glycine, we also examined insulin levels and other biochemical parameters during an oral glucose tolerance test. Glycine significantly reduced glucose tolerance and raised insulin levels in lean but not in obese mice. In conclusion, our findings suggest that glycine suppresses the pro-inflammatory cytokines production and increases adiponectin secretion in vivo through the activation of PPAR-gamma. Glycine might prevent insulin resistance and associated inflammatory diseases. PMID:18930730

  19. Anti-human cytomegalovirus activity of cytokines produced by CD4+ T-cell clones specifically activated by IE1 peptides in vitro.

    PubMed Central

    Davignon, J L; Castanié, P; Yorke, J A; Gautier, N; Clément, D; Davrinche, C

    1996-01-01

    The control of latent cytomegalovirus (CMV) infections by the immune system is poorly understood. We have previously shown that CD4+ T cells specific for the human CMV major regulatory protein IE1 are frequent in latently infected healthy blood donors. In order to learn about the possible role of these cells, we have developed IE1-specific CD4+ T-cell clones and, in this study, analyzed their epitope specificity and function in vitro. We measured their cytokine production when stimulated with specific IE1 peptides or whole recombinant IE1 protein. Their cytokine profiles, as deduced from gamma interferon (IFN-gamma), tumor necrosis factor alpha (TNF-alpha), and interleukin-4 (IL-4) and IL-6 production, were of the Th0- and Th1-like phenotypes. Supernatants from IE1-specific clones producing IFN-gamma and TNF-alpha were shown to inhibit CMV replication in U373 MG cells. This effect was due, as found by using cytokine-specific neutralizing antibodies, mostly to IFN-gamma, which was secreted at higher levels than TNF-alpha. To better assess the anti-CMV activity of cytokines, recombinant IFN-gamma and TNF-alpha were used and shown to have a synergistic effect on the inhibition of CMV replication and protein expression. Thus, IE1-specific CD4+ T cells display in vitro anti-CMV activity through cytokine secretion and may play a role in the control of in vivo latent infections. PMID:8642638

  20. Muramyl dipeptide enhances thermal injury-induced inflammatory cytokine production and organ function injury in rats.

    PubMed

    Liang, Hui; Song, Xue-Min; Wu, Xiao-Jing; Li, Jian-Guo; Han, Yi; Wang, Yan-Lin; Li, Hui; Zhang, Zong-Ze; Le, Lin-Li; Xu, Yang

    2014-08-01

    The bacterial infection following thermal injury is a very important factor of excessive inflammatory response and multiple organ damage. Muramyl dipeptide (MDP) is the key structure of gram-positive bacteria and gram-negative bacteria triggering the innate immune system. The aim of the present study was to determine the effect of MDP on thermal injury-induced inflammatory responses, organ function injury, and mortality in rats. Fifty male Sprague-Dawlay rats were randomly divided into three groups: normal control group, scald group, and MDP group. Scald group only suffered 20% total body surface area third-degree thermal injury. Muramyl dipeptide 5 mg·kg was administered through the femoral vein at 24 h after thermal injury in the MDP group. Plasma inflammatory cytokine levels were measured by enzyme-linked immunosorbent assay. An additional 90 male Sprague-Dawley rats were randomly divided into three groups to observe the survival rate in 72 h. Plasma levels of interleukin-6, interleukin-10, interferon-γ, and high-mobility group box 1; the white blood cell counts; the serum concentrations of alanine aminotransferase, aspartate aminotransferase, total bilirubin, creatine kinase isoenzyme-MB, blood urea nitrogen, and creatinine; and the activity of lung tissue myeloperoxidase significantly increased after thermal injury alone. Compared with the scald group, MDP led to more serious inflammatory responses and organ function damage and higher mortality (P < 0.05, respectively). These data indicate that MDP exacerbates thermal injury-induced inflammatory cytokine production, accompanied by multiple organ dysfunction syndrome and high mortality in rats. PMID:24667616

  1. Chemically Modified N-Acylated Hyaluronan Fragments Modulate Proinflammatory Cytokine Production by Stimulated Human Macrophages*

    PubMed Central

    Babasola, Oladunni; Rees-Milton, Karen J.; Bebe, Siziwe; Wang, Jiaxi; Anastassiades, Tassos P.

    2014-01-01

    Low molecular mass hyaluronans are known to induce inflammation. To determine the role of the acetyl groups of low molecular mass hyaluronan in stimulating the production of proinflammatory cytokines, partial N-deacetylation was carried out by hydrazinolysis. This resulted in 19.7 ± 3.5% free NH2 functional groups, which were then acylated by reacting with an acyl anhydride, including acetic anhydride. Hydrazinolysis resulted in bond cleavage of the hyaluronan chain causing a reduction of the molecular mass to 30–214 kDa. The total NH2 and N-acetyl moieties in the reacetylated hyaluronan were 0% and 98.7 ± 1.5% respectively, whereas for butyrylated hyaluronan, the total NH2, N-acetyl, and N-butyryl moieties were 0, 82.2 ± 4.6, and 22.7 ± 3.8%, respectively, based on 1H NMR. We studied the effect of these polymers on cytokine production by cultured human macrophages (THP-1 cells). The reacetylated hyaluronan stimulated proinflammatory cytokine production to levels similar to LPS, whereas partially deacetylated hyaluronan had no stimulatory effect, indicating the critical role of the N-acetyl groups in the stimulation of proinflammatory cytokine production. Butyrylated hyaluronan significantly reduced the stimulatory effect on cytokine production by the reacetylated hyaluronan or LPS but had no stimulatory effect of its own. The other partially N-acylated hyaluronan derivatives tested showed smaller stimulatory effects than reacetylated hyaluronan. Antibody and antagonist experiments suggest that the acetylated and partially butyrylated lower molecular mass hyaluronans exert their effects through the TLR-4 receptor system. Selectively N-butyrylated lower molecular mass hyaluronan shows promise as an example of a novel semisynthetic anti-inflammatory molecule. PMID:25053413

  2. The Anti-inflammatory Effect of GV1001 Mediated by the Downregulation of ENO1-induced Pro-inflammatory Cytokine Production

    PubMed Central

    Choi, Jiyea; Kim, Hyemin; Kim, Yejin; Jang, Mirim; Jeon, Jane; Hwang, Young-il; Shon, Won Jun; Song, Yeong Wook; Lee, Wang Jae

    2015-01-01

    GV1001 is a peptide derived from the human telomerase reverse transcriptase (hTERT) sequence that is reported to have anti-cancer and anti-inflammatory effects. Enolase1 (ENO1) is a glycolytic enzyme, and stimulation of this enzyme induces high levels of pro-inflammatory cytokines from concanavalin A (Con A)-activated peripheral blood mononuclear cells (PBMCs) and ENO1-expressing monocytes in healthy subjects, as well as from macrophages in rheumatoid arthritis (RA) patients. Therefore, this study investigated whether GV1001 downregulates ENO1-induced pro-inflammatory cytokines as an anti-inflammatory peptide. The results showed that GV1001 does not affect the expression of ENO1 in either Con A-activated PBMCs or RA PBMCs. However, ENO1 stimulation increased the production of pro-inflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, and these cytokines were downregulated by pretreatment with GV1001. Moreover, p38 mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB were activated when ENO1, on the surface of Con A-activated PBMCs and RA PBMCs, was stimulated, and they were successfully suppressed by pre-treatment with GV1001. These results suggest that GV1001 may be an effective anti-inflammatory peptide that downregulates the production of pro-inflammatory cytokines through the suppression of p38 MAPK and NF-κB activation following ENO1 stimulation. PMID:26770183

  3. The Anti-inflammatory Effect of GV1001 Mediated by the Downregulation of ENO1-induced Pro-inflammatory Cytokine Production.

    PubMed

    Choi, Jiyea; Kim, Hyemin; Kim, Yejin; Jang, Mirim; Jeon, Jane; Hwang, Young-Il; Shon, Won Jun; Song, Yeong Wook; Kang, Jae Seung; Lee, Wang Jae

    2015-12-01

    GV1001 is a peptide derived from the human telomerase reverse transcriptase (hTERT) sequence that is reported to have anti-cancer and anti-inflammatory effects. Enolase1 (ENO1) is a glycolytic enzyme, and stimulation of this enzyme induces high levels of pro-inflammatory cytokines from concanavalin A (Con A)-activated peripheral blood mononuclear cells (PBMCs) and ENO1-expressing monocytes in healthy subjects, as well as from macrophages in rheumatoid arthritis (RA) patients. Therefore, this study investigated whether GV1001 downregulates ENO1-induced pro-inflammatory cytokines as an anti-inflammatory peptide. The results showed that GV1001 does not affect the expression of ENO1 in either Con A-activated PBMCs or RA PBMCs. However, ENO1 stimulation increased the production of pro-inflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, and these cytokines were downregulated by pretreatment with GV1001. Moreover, p38 mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB were activated when ENO1, on the surface of Con A-activated PBMCs and RA PBMCs, was stimulated, and they were successfully suppressed by pre-treatment with GV1001. These results suggest that GV1001 may be an effective anti-inflammatory peptide that downregulates the production of pro-inflammatory cytokines through the suppression of p38 MAPK and NF-κB activation following ENO1 stimulation. PMID:26770183

  4. Role of proinflammatory cytokines on lipopolysaccharide-induced phase shifts in locomotor activity circadian rhythm.

    PubMed

    Leone, M Juliana; Marpegan, Luciano; Duhart, José M; Golombek, Diego A

    2012-07-01

    We previously reported that early night peripheral bacterial lipopolysaccharide (LPS) injection produces phase delays in the circadian rhythm of locomotor activity in mice. We now assess the effects of proinflammatory cytokines on circadian physiology, including their role in LPS-induced phase shifts. First, we investigated whether differential systemic induction of classic proinflammatory cytokines could explain the time-specific behavioral effects of peripheral LPS. Induction levels for plasma interleukin (IL)-1α, IL-1β, IL-6, or tumor necrosis factor (TNF)-α did not differ between animals receiving a LPS challenge in the early day or early night. We next tested the in vivo effects of central proinflammatory cytokines on circadian physiology. We found that intracerebroventricular (i.c.v.) delivery of TNF-α or interleukin IL-1β induced phase delays on wheel-running activity rhythms. Furthermore, we analyzed if these cytokines mediate the LPS-induced phase shifts and found that i.c.v. administration of soluble TNF-α receptor (but not an IL-1β antagonistic) prior to LPS stimulation inhibited the phase delays. Our work suggests that the suprachiasmatic nucleus (SCN) responds to central proinflammatory cytokines in vivo, producing phase shifts in locomotor activity rhythms. Moreover, we show that the LPS-induced phase delays are mediated through the action of TNF-α at the central level, and that systemic induction of proinflammatory cytokines might be necessary, but not sufficient, for this behavioral outcome. PMID:22734572

  5. Lactobacillus reuteri modulates cytokines production in exhaled breath condensate of children with atopic dermatitis.

    PubMed

    Miniello, Vito Leonardo; Brunetti, Luigia; Tesse, Riccardina; Natile, Miria; Armenio, Lucio; Francavilla, Ruggiero

    2010-05-01

    We measured the concentration of interferon-gamma and interleukin-4 in the exhaled breath condensate of children with atopic and nonallergic dermatitis receiving a probiotic supplementation (Lactobacillus reuteri ATCC 55730) or placebo for 8 weeks. We demonstrated that the levels of these cytokines increased and decreased respectively only in atopic subjects receiving active treatment. Our data suggest that the oral administration of a specific probiotic strain in patients with atopic dermatitis can modulate in vivo the cytokine pattern at a different site from intestine. PMID:20639717

  6. Interactions between Adipocytes and Breast Cancer Cells Stimulate Cytokine Production and Drive Src/Sox2/miR-302b-Mediated Malignant Progression.

    PubMed

    Picon-Ruiz, Manuel; Pan, Chendong; Drews-Elger, Katherine; Jang, Kibeom; Besser, Alexandra H; Zhao, Dekuang; Morata-Tarifa, Cynthia; Kim, Minsoon; Ince, Tan A; Azzam, Diana J; Wander, Seth A; Wang, Bin; Ergonul, Burcu; Datar, Ram H; Cote, Richard J; Howard, Guy A; El-Ashry, Dorraya; Torné-Poyatos, Pablo; Marchal, Juan A; Slingerland, Joyce M

    2016-01-15

    Consequences of the obesity epidemic on cancer morbidity and mortality are not fully appreciated. Obesity is a risk factor for many cancers, but the mechanisms by which it contributes to cancer development and patient outcome have yet to be fully elucidated. Here, we examined the effects of coculturing human-derived adipocytes with established and primary breast cancer cells on tumorigenic potential. We found that the interaction between adipocytes and cancer cells increased the secretion of proinflammatory cytokines. Prolonged culture of cancer cells with adipocytes or cytokines increased the proportion of mammosphere-forming cells and of cells expressing stem-like markers in vitro. Furthermore, contact with immature adipocytes increased the abundance of cancer cells with tumor-forming and metastatic potential in vivo. Mechanistic investigations demonstrated that cancer cells cultured with immature adipocytes or cytokines activated Src, thus promoting Sox2, c-Myc, and Nanog upregulation. Moreover, Sox2-dependent induction of miR-302b further stimulated cMYC and SOX2 expression and potentiated the cytokine-induced cancer stem cell-like properties. Finally, we found that Src inhibitors decreased cytokine production after coculture, indicating that Src is not only activated by adipocyte or cytokine exposures, but is also required to sustain cytokine induction. These data support a model in which cancer cell invasion into local fat would establish feed-forward loops to activate Src, maintain proinflammatory cytokine production, and increase tumor-initiating cell abundance and metastatic progression. Collectively, our findings reveal new insights underlying increased breast cancer mortality in obese individuals and provide a novel preclinical rationale to test the efficacy of Src inhibitors for breast cancer treatment. PMID:26744520

  7. Early stage drug treatment that normalizes proinflammatory cytokine production attenuates synaptic dysfunction in a mouse model that exhibits age-dependent progression of Alzheimer's disease-related pathology.

    PubMed

    Bachstetter, Adam D; Norris, Christopher M; Sompol, Pradoldej; Wilcock, Donna M; Goulding, Danielle; Neltner, Janna H; St Clair, Daret; Watterson, D Martin; Van Eldik, Linda J

    2012-07-25

    Overproduction of proinflammatory cytokines in the CNS has been implicated as a key contributor to pathophysiology progression in Alzheimer's disease (AD), and extensive studies with animal models have shown that selective suppression of excessive glial proinflammatory cytokines can improve neurologic outcomes. The prior art, therefore, raises the logical postulation that intervention with drugs targeting dysregulated glial proinflammatory cytokine production might be effective disease-modifying therapeutics if used in the appropriate biological time window. To test the hypothesis that early stage intervention with such drugs might be therapeutically beneficial, we examined the impact of intervention with MW01-2-151SRM (MW-151), an experimental therapeutic that selectively attenuates proinflammatory cytokine production at low doses. MW-151 was tested in an APP/PS1 knock-in mouse model that exhibits increases in AD-relevant pathology progression with age, including increases in proinflammatory cytokine levels. Drug was administered during two distinct but overlapping therapeutic time windows of early stage pathology development. MW-151 treatment attenuated the increase in microglial and astrocyte activation and proinflammatory cytokine production in the cortex and yielded improvement in neurologic outcomes, such as protection against synaptic protein loss and synaptic plasticity impairment. The results also demonstrate that the therapeutic time window is an important consideration in efficacy studies of drugs that modulate glia biological responses involved in pathology progression and suggest that such paradigms should be considered in the development of new therapeutic regimens that seek to delay the onset or slow the progression of AD. PMID:22836255

  8. Aberrant cytokine production by non-malignant cells in the pathogenesis of myeloproliferative tumors and response to JAK inhibitor therapies

    PubMed Central

    Belver, Laura; Ferrando, Adolfo A.

    2015-01-01

    SUMMARY Kleppe, Kwak, and collegues use detailed cytokine profiling analyses to investigate the role of aberrant pro-inflammatory cytokine secretion in the pathogenesis of myeloproliferative neoplasms (MPN). Their analyses implicate constitutive activation of STAT3 in both malignant and non-malignant bone marrow cell populations as a driver of aberrant cytokine secretion and as a cellular target mediating the therapeutic activity of ruxolitinib. PMID:25749974

  9. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis.

    PubMed

    Koopman, Frieda A; Chavan, Sangeeta S; Miljko, Sanda; Grazio, Simeon; Sokolovic, Sekib; Schuurman, P Richard; Mehta, Ashesh D; Levine, Yaakov A; Faltys, Michael; Zitnik, Ralph; Tracey, Kevin J; Tak, Paul P

    2016-07-19

    Rheumatoid arthritis (RA) is a heterogeneous, prevalent, chronic autoimmune disease characterized by painful swollen joints and significant disabilities. Symptomatic relief can be achieved in up to 50% of patients using biological agents that inhibit tumor necrosis factor (TNF) or other mechanisms of action, but there are no universally effective therapies. Recent advances in basic and preclinical science reveal that reflex neural circuits inhibit the production of cytokines and inflammation in animal models. One well-characterized cytokine-inhibiting mechanism, termed the "inflammatory reflex," is dependent upon vagus nerve signals that inhibit cytokine production and attenuate experimental arthritis severity in mice and rats. It previously was unknown whether directly stimulating the inflammatory reflex in humans inhibits TNF production. Here we show that an implantable vagus nerve-stimulating device in epilepsy patients inhibits peripheral blood production of TNF, IL-1β, and IL-6. Vagus nerve stimulation (up to four times daily) in RA patients significantly inhibited TNF production for up to 84 d. Moreover, RA disease severity, as measured by standardized clinical composite scores, improved significantly. Together, these results establish that vagus nerve stimulation targeting the inflammatory reflex modulates TNF production and reduces inflammation in humans. These findings suggest that it is possible to use mechanism-based neuromodulating devices in the experimental therapy of RA and possibly other autoimmune and autoinflammatory diseases. PMID:27382171

  10. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis

    PubMed Central

    Koopman, Frieda A.; Chavan, Sangeeta S.; Miljko, Sanda; Grazio, Simeon; Sokolovic, Sekib; Schuurman, P. Richard; Mehta, Ashesh D.; Levine, Yaakov A.; Faltys, Michael; Zitnik, Ralph; Tracey, Kevin J.; Tak, Paul P.

    2016-01-01

    Rheumatoid arthritis (RA) is a heterogeneous, prevalent, chronic autoimmune disease characterized by painful swollen joints and significant disabilities. Symptomatic relief can be achieved in up to 50% of patients using biological agents that inhibit tumor necrosis factor (TNF) or other mechanisms of action, but there are no universally effective therapies. Recent advances in basic and preclinical science reveal that reflex neural circuits inhibit the production of cytokines and inflammation in animal models. One well-characterized cytokine-inhibiting mechanism, termed the “inflammatory reflex,” is dependent upon vagus nerve signals that inhibit cytokine production and attenuate experimental arthritis severity in mice and rats. It previously was unknown whether directly stimulating the inflammatory reflex in humans inhibits TNF production. Here we show that an implantable vagus nerve-stimulating device in epilepsy patients inhibits peripheral blood production of TNF, IL-1β, and IL-6. Vagus nerve stimulation (up to four times daily) in RA patients significantly inhibited TNF production for up to 84 d. Moreover, RA disease severity, as measured by standardized clinical composite scores, improved significantly. Together, these results establish that vagus nerve stimulation targeting the inflammatory reflex modulates TNF production and reduces inflammation in humans. These findings suggest that it is possible to use mechanism-based neuromodulating devices in the experimental therapy of RA and possibly other autoimmune and autoinflammatory diseases. PMID:27382171

  11. Comparative analysis of lymphocyte activation marker expression and cytokine secretion profile in stimulated human peripheral blood mononuclear cell cultures: an in vitro model to monitor cellular immune function.

    PubMed

    Reddy, Manjula; Eirikis, Edward; Davis, Cuc; Davis, Hugh M; Prabhakar, Uma

    2004-10-01

    Activation of lymphocytes is a complex, yet finely regulated cascade of events that results in the expression of cytokine receptors, production and secretion of cytokines and expression of several cell surface molecules that eventually lead to divergent immune responses. Assessing the qualitative and quantitative nature of lymphocyte function following immunotherapy provides valuable information about the immune responses mediated by a therapeutic agent. To facilitate evaluation of the immunomodulatory activity of therapeutic agents, we have established a platform of in vitro immunoassays with normal human peripheral blood mononuclear cells (PBMCs) treated with several polyclonal activators that are known to exhibit different modes of action. We evaluated the kinetics of cell surface marker expression and cytokine release from PBMCs stimulated in parallel with various activating agents over a time course. These stimulating agents induced early (CD69 and CD71) and late (CD25 and HLA-DR) activation markers to varying antigen densities, indicated different cytokine profiles, and showed differential inhibition with dexamethasone (DEX), an inhibitor of early signaling events. Based on the association or correlation of the kinetics of activation marker expression and secreted cytokines, the results of our study indicate the appropriate time points for the simultaneous measurement of both these activation products. This study defines the kinetics for both measures of T cell activation and provides a comprehensive review with various polyclonal activators that can serve as a reference for monitoring lymphocyte function in clinical study samples. PMID:15541283

  12. Inhaled house dust mite induces pulmonary T helper 2 cytokine production

    PubMed Central

    Gregory, L. G.; Causton, B.; Murdoch, J. R.; Mathie, S. A.; O’Donnell, V.; Thomas, C. P.; Priest, F. M.; Quint, D. J.; Lloyd, C. M.

    2012-01-01

    Background Inhaled house dust mite (HDM) results in T-helper (TH) 2 type pathology in unsensitized mice, in conjunction with airway hyperreactivity and airway remodelling. However, the pulmonary cytokine and chemokine profile has not been reported. Methods We have performed a time course analysis of the characteristic molecular mediators and cellular influx in the bronchoalveolar lavage (BAL) and lung in order to define the pulmonary inflammatory response to inhaled HDM extract. Mice were exposed five times a week to soluble HDM extract for 3 weeks. Lung function was measured in groups of mice at intervals following the final HDM challenge. Recruitment of inflammatory cells and inflammatory mediator production was then assessed in BAL and lungs of individual mice. Results We found that Th2 cytokines were significantly increased in BAL and lung after HDM challenge from as early as 2 h post-final challenge. The levels of cytokines and chemokines correlated with the influx of eosinophils and Th2 cells to the different compartments of the lung. However, the production of key cytokines such as IL-4, IL-5 and IL-13 preceded the increase in airways resistance. Conclusion Inhaled HDM challenge induces a classical Th2 inflammatory mediator profile in the BAL and lung. These data are important for studies determining the efficacy of novel treatment strategies for allergic airways disease. PMID:19545261

  13. Posttraumatic stress disorder is associated with an enhanced spontaneous production of pro-inflammatory cytokines by peripheral blood mononuclear cells

    PubMed Central

    2013-01-01

    Background Posttraumatic stress disorder (PTSD) is associated with an enhanced risk for cardiovascular and other inflammatory diseases. Chronic low-level inflammation has been suggested as a potential mechanism linking these conditions. Methods We investigated plasma cytokine levels as well as spontaneous and lipopolysaccharide (LPS)-stimulated cytokine production by peripheral blood mononuclear cells (PBMCs) in a group of 35 severely traumatized PTSD patients compared to 25 healthy controls. Results Spontaneous production of interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α by isolated PBMCs was significantly higher in the PTSD compared to the control group and even correlated with PTSD symptom severity within the PTSD group. In contrast, circulating plasma levels of pro- and anti-inflammatory cytokines such as IL-6, IL-8, IL-10, TNF-α, or monocyte chemotactic protein (MCP)-1 were not significantly altered in PTSD patients compared to healthy controls. Conclusions Our findings indicate that PBMCs of PTSD patients are already pre-activated in vivo, providing further evidence for low-grade inflammation in PTSD. This might possibly represent one psychobiological pathway from PTSD to poor physical health. PMID:23360282

  14. Altered Cytokine Production By Specific Human Peripheral Blood Cell Subsets Immediately Following Spaceflight

    NASA Technical Reports Server (NTRS)

    Crucian, Brian E.; Cubbage, Michael L.; Sams, Clarence F.

    1999-01-01

    In this study, we have attempted to combine standard immunological assays with the cellular resolving power of the flow cytometer to positively identify the specific cell types involved in spaceflight-induced immune alterations. We have obtained whole blood samples from 27 astronauts collected at three timepoints (L-10, R+0 and R+3) surrounding four recent space shuttle missions. The duration of these missions ranged from 10 to 18 days. Assays performed included serum/urine cortisol, comprehensive subset phenotyping, assessment of cellular activation markers and intracellular cytokine production following mitogenic stimulation. Absolute levels of peripheral granulocytes were significantly elevated following spaceflight, but the levels of circulating lymphocytes and monocytes were unchanged. Lymphocyte subset analysis demonstrated trends towards a decreased percentage of T cells and an increased percentage of B cells. Nearly all of the astronauts exhibited an increased CD4:CD8 ratio, which was dramatic in some individuals. Assessment of memory (CD45RA+) vs. naive (CD45RO+) CD4+ T cell subsets was more ambiguous, with subjects tending to group more as a flight crew. All subjects from one mission demonstrated an increased CD45RA:CD45RO ratio, while all subjects from another Mission demonstrated a decreased ratio. While no significant trend was seen in the monocyte population as defined by scatter, a decreased percentage of the CD14+ CD16+ monocyte subset was seen following spaceflight in all subjects tested. In general, most of the cellular changes described above which were assessed at R+O and compared to L-10 trended to pre-flight levels by R+3. Although no significant differences were seen in the expression of the cellular activation markers CD69 and CD25 following exposure to microgravity, significant alterations were seen in cytokine production in response to mitogenic activation for specific subsets. T cell (CD3+) production of IL-2 was significantly decreased

  15. Cytokine regulation of human lung fibroblast hyaluronan (hyaluronic acid) production. Evidence for cytokine-regulated hyaluronan (hyaluronic acid) degradation and human lung fibroblast-derived hyaluronidase.

    PubMed Central

    Sampson, P M; Rochester, C L; Freundlich, B; Elias, J A

    1992-01-01

    We characterized the mechanisms by which recombinant (r) tumor necrosis factor (TNF), IFN-gamma, and IL-1, alone and in combination, regulate human lung fibroblast hyaluronic acid (HA) production. Each cytokine stimulated fibroblast HA production. The combination of rTNF and rIFN-gamma resulted in a synergistic increase in the production of high molecular weight HA. This was due to a synergistic increase in hyaluronate synthetase activity and a simultaneous decrease in HA degradation. In contrast, when rTNF and rIL-1 were combined, an additive increase in low molecular weight HA was noted. This was due to a synergistic increase in hyaluronate synthetase activity and a simultaneous increase in HA degradation. Human lung fibroblasts contained a hyaluronidase that, at pH 3.7, depolymerized high molecular weight HA to 10-40 kD end products of digestion. However, hyaluronidase activity did not correlate with fibroblast HA degradation. Instead, HA degradation correlated with fibroblast-HA binding, which was increased by rIL-1 plus rTNF and decreased by rIFN-gamma plus rTNF. Recombinant IL-1 and rTNF weakly stimulated and rIL-1 and rTNF in combination further augmented the levels of CD44 mRNA in lung fibroblasts. In contrast, rIFN-gamma did not significantly alter the levels of CD44 mRNA in unstimulated or rTNF stimulated cells. These studies demonstrate that rIL-1, rTNF, and rIFN-gamma have complex effects on biosynthesis and degradation which alter the quantity and molecular weight of the HA produced by lung fibroblasts. They also show that fibroblast HA degradation is mediated by a previously unrecognized lysosomal-type hyaluronidase whose function may be regulated by altering fibroblast-HA binding. Lastly, they suggest that the CD44 HA receptor may be involved in this process. Images PMID:1401082

  16. MicroRNA-155 regulates inflammatory cytokine production in tumor-associated macrophages via targeting C/EBPbeta.

    PubMed

    He, Min; Xu, Zhenqun; Ding, Tong; Kuang, Dong-Ming; Zheng, Limin

    2009-10-01

    Macrophages (Mphi) are prominent components of solid tumors and exhibit distinct phenotypes in different microenvironments. We have recently found that tumors can alter the normal developmental process of Mphi to trigger transient activation of monocytes, but the underlying regulatory mechanisms are incompletely understood. Here, we showed that the protein expression of transcription factor C/EBPbeta was markedly elevated in tumor-associated Mphi both in vitro and human tumors in situ. The expression of C/EBP protein correlated with cytokine production in tumor-activated monocytes. Moreover, we found that C/EBPbeta expression was regulated at the post-transcriptional level and correlated with sustained reduction of microRNA-155 (miR-155) in tumor-activated monocytes. Bioinformatic analysis revealed that C/EBPbeta is a potential target of miR-155 and luciferase assay confirmed that C/EBPbeta translation is suppressed by miR-155 through interaction with the 3'UTR of C/EBPbeta mRNA. Further analysis showed that induction of miR-155 suppressed C/EBPbeta protein expression as well as cytokine production in tumor-activated monocytes, an effect which could be mimicked by silencing of C/EBPbeta. These results indicate that tumor environment causes a sustained reduction of miR-155 in monocytes/Mphi, which in turn regulates the functional activities of monocytes/Mphi by releasing the translational inhibition of transcription factor C/EBPbeta. PMID:19887047

  17. Myeloid STAT3 inhibits T-cell–mediated hepatitis by regulating T helper 1 cytokine and interleukin-17 production

    PubMed Central

    Lafdil, Fouad; Wang, Hua; Park, Ogyi; Zhang, Weici; Moritoki, Yuki; Yin, Shi; Fu, Xin Yuan; Gershwin, M. Eric; Lian, Zhe-Xiong; Gao, Bin

    2009-01-01

    Background & Aims T-cell–mediated hepatitis is a leading cause of acute liver failure; there is no effective treatment and the mechanisms underlying its pathogenesis are obscure. The aim of this study was to investigate the immune-cell signaling pathways involved—specifically the role of signal transducer and activator of transcription 3 (STAT3)—in T-cell–mediated hepatitis in mice. Methods T-cell–mediated hepatitis was induced in mice by injection of concanavalin A (Con A). Mice with myeloid cell-specific and T-cell–specific deletion of STAT3 were generated. Results STAT3 was activated in myeloid and T cells following Con A injection. Deletion of STAT3 specifically from myeloid cells exacerbated T-cell hepatitis and induced STAT1-dependent production of a Th1 cytokine (IFN-γ), and to a lesser extent of Th17 cytokines (IL-17 and IL-22), in a STAT1-independent manner. In contrast, deletion of STAT3 in T cells reduced T-cell mediated hepatitis and IL-17 production. Furthermore, deletion of IFN-γ completely abolished Con A-induced T-cell hepatitis whereas deletion of IL-17 slightly but significantly reduced such injury. In vitro experiments indicated that IL-17 promoted liver inflammation but inhibited hepatocyte apoptosis. Conclusion Myeloid STAT3 activation inhibits T-cell–mediated hepatitis via suppression of a Th1 cytokine (IFN-γ) in a STAT1-dependent manner whereas STAT3 activation in T cells promotes T-cell hepatitis to a lesser extent, via induction of IL-17. Therefore, activation of STAT3 in myeloid cells could be a novel therapeutic strategy for patients with T-cell hepatitis. PMID:19686746

  18. Evaluation of proliferation and cytokines production by mitogen-stimulated bovine peripheral blood mononuclear cells

    PubMed Central

    Norian, Reza; Delirezh, Nowruz; Azadmehr, Abbas

    2015-01-01

    This in vitro study was conducted to evaluate lymphocyte blastogenic and cytokine production by bovine peripheral blood mononuclear cells (PBMCs) stimulated with phytohemagglutinin (PHA), pokeweed mitogen (PWM) and concanavalin A (Con A) mitogens, by using tetrazolium salt and ELISA tests, respectively. The results presented that Interleukin-2 (IL-2), IL-4, IL-5, IL-10, IL-17 and IFN-γ production in response to PWM mitogens was the highest and Con A the lowest amount and the median values of three mitogens were in the following order: PWM > PHA > Con A > cell control. In the case of IL-6, the production of this cytokine was the same amount for PWM and Con A and a lower amount for PHA stimulation. The results of this study not only showed a normal range for the production of these cytokines from PBMCs that were affected by mitogens, but it demonstrated that the bovine immune system at 2.5 to 3 months was post-natally matured enough to mount an effective immune response to mitogens as well as specific antigens. PMID:26973760

  19. Evaluation of proliferation and cytokines production by mitogen-stimulated bovine peripheral blood mononuclear cells.

    PubMed

    Norian, Reza; Delirezh, Nowruz; Azadmehr, Abbas

    2015-01-01

    This in vitro study was conducted to evaluate lymphocyte blastogenic and cytokine production by bovine peripheral blood mononuclear cells (PBMCs) stimulated with phytohemagglutinin (PHA), pokeweed mitogen (PWM) and concanavalin A (Con A) mitogens, by using tetrazolium salt and ELISA tests, respectively. The results presented that Interleukin-2 (IL-2), IL-4, IL-5, IL-10, IL-17 and IFN-γ production in response to PWM mitogens was the highest and Con A the lowest amount and the median values of three mitogens were in the following order: PWM > PHA > Con A > cell control. In the case of IL-6, the production of this cytokine was the same amount for PWM and Con A and a lower amount for PHA stimulation. The results of this study not only showed a normal range for the production of these cytokines from PBMCs that were affected by mitogens, but it demonstrated that the bovine immune system at 2.5 to 3 months was post-natally matured enough to mount an effective immune response to mitogens as well as specific antigens. PMID:26973760

  20. FK506 inhibition of histamine release and cytokine production by mast cells and basophils.

    PubMed

    Sengoku, T; Kishi, S; Sakuma, S; Ohkubo, Y; Goto, T

    2000-03-01

    Histamine release and cytokine production by mast cells and basophils are thought to be closely involved in the pathogenesis of allergic diseases. Some reports show that FK506 (tacrolimus hydrate) inhibited histamine release and cytokine production by mast cells and basophils. However, as the effects of FK506 has not been compared with those of clinically used drugs in those reports, the clinical relevancy of FK506 inhibition remained unclear. In this paper, we compared the actions of FK506 with those of steroids or disodium cromoglycate (DSCG) which has been clinically used. FK506 inhibited histamine release by Brown-Norway rat peritoneal mast cells more potently than steroids and especially DSCG. FK506 also inhibited histamine release by a mast rat basophilic leukemia (RBL)-1 cell line and human peripheral blood basophils, whereas steroids failed to inhibit histamine release by human basophils. FK506 as well as steroids inhibited TNF-alpha and IL-4 production by RBL-1 cells. FK506 was therefore more effective than steroids and DSCG in inhibiting histamine release, and it also had the ability of inhibiting cytokine production by mast cells as steroids do. We concluded that FK506 might regulate allergic diseases via these actions, judging from the viewpoint of clinical relevancy. PMID:10685002

  1. Dose-dependent modulation of the in vitro cytokine production of human immune competent cells by lead salts.

    PubMed

    Hemdan, Nasr Y A; Emmrich, Frank; Adham, Khadiga; Wichmann, Gunnar; Lehmann, Irina; El-Massry, Azza; Ghoneim, Hossam; Lehmann, Jörg; Sack, Ulrich

    2005-07-01

    Lead pollution constitutes a major health problem that has been intensively debated. To reveal its effects on the immune response, the influence of lead on the in vitro cytokine production of human peripheral mononuclear blood cells was investigated. Isolated cells were exposed to lead acetate or lead chloride for 24 h in the presence of either heat-killed Salmonella enteritidis (hk-SE) or monoclonal antibodies (anti-CD3, anti-CD28, anti-CD40) as cell activators. Our results showed that while higher lead doses are toxic, lower ones evoke immunomodulatory effects. All tested lead doses significantly reduced cell vitality and/or proliferation and affected secretion of proinflammatory, T helper cell type (T(H))1 and T(H)2 cytokines. Expression of interferon (IFN)-gamma, interleukin (IL)-1beta, and tumor necrosis factor (TNF)-alpha was reduced at lower lead doses in both models of cell stimulation. Although hk-SE failed to induce detectable IL-4 levels, monoclonal antibody-induced IL-4, IL-6, and IL-10 secretion increased in the presence of lower lead doses. Also, levels of hk-SE-induced IL-10 and IL-6 secretion were increased at lower lead doses. Thus, exposure to lower doses leads to suppression of the T(H)1 cytokine IFN-gamma and the proinflammatory cytokines TNF-alpha and IL-1beta. The elevated production of IL-4 and/or IL-10 can induce and maintain a T(H)2 immune response and might contribute to increased susceptibility to pathologic agents as well as the incidence of allergic hypersensitivity and/or T(H)2-dominated autoimmune diseases. PMID:15843504

  2. Expression of the kynurenine pathway enzymes in the pancreatic islet cells. Activation by cytokines and glucolipotoxicity.

    PubMed

    Liu, J J; Raynal, S; Bailbé, D; Gausseres, B; Carbonne, C; Autier, V; Movassat, J; Kergoat, M; Portha, B

    2015-05-01

    The tryptophan/kynurenine pathway (TKP) is the main route of tryptophan degradation and generates several neuroactive and immunomodulatory metabolites. Experimental and clinical data have clearly established that besides fat, muscle and liver, pancreatic islet tissue itself is a site of inflammation during obesity and type 2 diabetes. Therefore it is conceivable that pancreatic islet exposure to increased levels of cytokines may induce upregulation of islet kynurenine metabolism in a way resembling that seen in the brain in many neurodegenerative disorders. Using normal rat islets and the INS-1 β-cell line, we have demonstrated for the first time that: 1/only some TKP genes are constitutively expressed, both in β-cells as well as non β-cells; 2/ the regulatory enzyme indoleamine 2,3-dioxygenase (IDO1) is not constitutively expressed; 3/ IDO1 and kynurenine 3-monoxygenase (KMO) expression are potently activated by proinflammatory cytokines (IFN-γ, IL-1β) and glucolipotoxicity respectively, rather in β-cells than in non β-cells; 4/ Islet kynurenine/kynurenic acid production ratio is enhanced following IFN-γ and glucolipotoxicity; 5/ acute exposure to KYN potentiates glucose-induced insulin secretion by normal islets; and 6/ oxidative stress or glucocorticoid modulates TKP genes only marginally. Pancreatic islets may represent a new target tissue for inflammation and glucolipotoxicity to activate the TKP. Since inflammation is now recognized as a crucial mechanism in the development of the metabolic syndrome and more specifically at the islet level, it is needed to evaluate the potential induction of the TKP in the endocrine pancreas during obesity and/or diabetes and its relationship to the islet cell functional alterations. PMID:25675848

  3. Proinflammatory cytokine expression contributes to brain injury provoked by chronic monocyte activation.

    PubMed Central

    Sirén, A. L.; McCarron, R.; Wang, L.; Garcia-Pinto, P.; Ruetzler, C.; Martin, D.; Hallenbeck, J. M.

    2001-01-01

    BACKGROUND: We have proposed that an increased interaction between monocyte/macrophages and blood vessel endothelium predisposes subjects to strokes. The effect of chronic monocyte activation on the development of cerebral infarcts was thus studied in rats after provocation of a modified local Swartzman reaction, in brain vasculature. MATERIALS AND METHODS: Two weeks after an IV bolus of bacillus Calmette-Guérin (BCG), we studied spontaneous superoxide production, integrin expression, endothelial adhesion of monocytes and the neurological symptoms, brain histology, and cytokine immunoreactivity after a provocative dose of LPS (30-300 microg/rat i.c.v.). RESULTS: Monocyte migration into the brain was stimulated by BCG priming. The incidence of paralysis and death in response to LPS was markedly increased in BCG-primed rats. Histological evaluation of the brains of neurologically impaired and moribund animals revealed intravascular thrombosis and pale and hemorrhagic infarcts. Infiltrates of leukocytes expressing immunoreactive IL-1:, IL-6, and TNF-alpha were found around blood vessels, cerebral ventricles, and meninges, and were accompanied by a profound microglial expression of IL1P, endothelial expression of IL-6, and expression of TNF-alpha and TNF-R 1 in glia and neurons of cortex and hippocampus. Treatment (2 x 100 microg/10 ,I, i.c.v.) with recombinant human (rh-)TNF 55kDa receptor completely prevented, and treatment with rh-IL- I receptor antagonist significantly decreased the incidence of paralysis and death in response to BCG + LPS. The improvement of neurological symptoms was accompanied by reduced histological damage and supppression of IL-1P/ expression in the brain tissue. CONCLUSIONS: The data demonstrate that chronic monocyte activation predisposes subjects to thrombosis and hemorrhage via an exaggerated release of proinflammatory cytokines. PMID:11471566

  4. Changes in cytokine production associated with acquired immunity to Plasmodium falciparum malaria

    PubMed Central

    Rhee, M S M; Akanmori, B D; Waterfall, M; Riley, E M

    2001-01-01

    Individuals living in malaria-endemic areas eventually develop clinical immunity to Plasmodium falciparum. That is, they are able to limit blood parasite densities to extremely low levels and fail to show symptoms of infection. As the clinical symptoms of malaria infection are mediated in part by pro-inflammatory cytokines it is not clear whether the acquisition of clinical immunity is due simply to the development of antiparasitic mechanisms or whether the ability to regulate inflammatory cytokine production is also involved. We hypothesize that there is a correlation between risk of developing clinical malaria and the tendency to produce high levels of proinflammatory cytokines in response to malaria infection. In order to test this hypothesis, we have compared the ability of peripheral blood mononuclear cells from malaria-naive and malaria-exposed adult donors to proliferate and to secrete IFN-γ in response to P. falciparum schizont extract (PfSE). In order to determine how PfSE-induced IFN-γ production is regulated, we have also measured production of IL-12p40 and IL-10 from PfSE-stimulated PBMC and investigated the role of neutralizing antibody to IL-12 in modulating IFN-γ production. We find that cells from naive donors produce moderate amounts of IFN-γ in response to PfSE and that IFN-γ production is strongly IL-12 dependent. Cells from malaria-exposed donors living in an area of low malaria endemicity produce much higher levels of IFN-γ and this response is also at least partially IL-12 dependent. In complete contrast, cells from donors living in an area of very high endemicity produce minimal amounts of IFN-γ. No significant differences were detected between the groups in IL-10 production, suggesting that this cytokine does not play a major role in regulating malaria-induced IFN-γ production. The data from this study thus strongly support the hypothesis that down-regulation of inflammatory cytokine production may be a component of acquired clinical

  5. Cytokine and Eicosanoid Production by Cultured Human Monocytes Exposed to Titanium Particulate Debris

    NASA Astrophysics Data System (ADS)

    Robinson, Timothy M.; Manley, Paul A.; Sims, Paul A.; Albrecht, Ralph; Darien, Benjamin J.

    1999-10-01

    Phagocytosis of particulate wear debris from arthroplasties by macrophages induces an inflammatory response that has been linked to implant loosening and premature failure of artificial joints. Inflammatory mediators released by phagocytic macrophages such as tumor necrosis factor-a (TNF-[alpha]), interleukin-1[beta] (IL-1[beta]), interleukin-6 (IL-6), and prostaglandin E2 (PGE2) are believed to play a central role in the pathogenesis of aseptic loosening. The objective of this study was to characterize titanium alloy particulates that closely match wear debris found around joint arthroplasties and to study their effects on the biosynthesis of inflammatory mediators by cultured monocytes. Peripheral blood monocytes were isolated from healthy human volunteers. Monocytes were cultured in 96-well plates for 24 h, washed, and exposed to three concentrations of titanium particulates and controls from 18Ð24 h. Supernatants were assayed for TNF-[alpha], IL-1[beta], IL-6, and PGE2 activity. Energy dispersive X-ray spectroscopy (EDX) verified the titanium alloy to be Ti6A14V. Scanning electron microscopy (SEM) analysis showed significant titanium particulate heterogeneity with approximately 95% of the particles <1 micrometer in diameter. SEM and EDX technology was useful in the characterization of the titanium particulates utilized for in vitro models of titanium-induced cytokine release by monocytes. Incubation of titanium particulates (in concentrations similar to those found around loosened prosthetic joints) with cultured monocytes significantly increased their production of TNF-[alpha], IL-1[beta], and PGE2.

  6. α-(-)-bisabolol reduces pro-inflammatory cytokine production and ameliorates skin inflammation.

    PubMed

    Maurya, Anil K; Singh, Monika; Dubey, Vijaya; Srivastava, Suchita; Luqman, Suaib; Bawankule, Dnyaneshwar U

    2014-01-01

    α-(-)-bisabolol is a natural monocyclic sesquiterpene present in the essential oil has generated considerable interest in the chemical and pharmaceutical industries and currently in use in various formulations, mainly in cosmetics. This study was undertaken to evaluate its therapeutic profile against skin inflammation using in-vitro, in-vivo and in-silico assays. Lipopolysachharide (LPS) and 12-O-tetradecanoyl-phorbol-13-acetate (TPA)-induced production of proinflammatory cytokines (TNF-α and IL-6) in macrophage cells as well as in TPA-induced skin inflammation in mice was significantly inhibited by α-(-)-bisabolol. TPA-induced ear thickness, ear weight and lipid peroxidation and histopathological damage in the ear tissue were also significantly inhibited by topical application of α-(-)-bisabolol in a dose dependent manner. In-vitro and in-vivo toxicity profiles indicate that it is safe for topical application on skin. Molecular docking study also revealed its strong binding affinity to the active site of the pro-inflammatory proteins. These findings suggested that α-(-)-bisabolol may be a useful therapeutic candidate for the treatment of skin inflammation. PMID:24894548

  7. Induction of Inhibitory Receptors on T Cells During Plasmodium vivax Malaria Impairs Cytokine Production.

    PubMed

    Costa, Pedro A C; Leoratti, Fabiana M S; Figueiredo, Maria M; Tada, Mauro S; Pereira, Dhelio B; Junqueira, Caroline; Soares, Irene S; Barber, Daniel L; Gazzinelli, Ricardo T; Antonelli, Lis R V

    2015-12-15

    The function and regulation of the immune response triggered during malaria is complex and poorly understood, and there is a particular paucity of studies conducted in humans infected with Plasmodium vivax. While it has been proposed that T-cell-effector responses are crucial for protection against blood-stage malaria in mice, the mechanisms behind this in humans remain poorly understood. Experimental models of malaria have shown that the regulatory molecules, cytotoxic T-lymphocyte attenuator-4 (CTLA-4), lymphocyte activation gene-3 (LAG-3), and programmed death-1 (PD-1) are involved in the functional impairment of T cells during infection. Our goal was to define the role of these molecules during P. vivax malaria. We demonstrate that infection triggers the expression of regulatory molecules on T cells. The pattern of expression differs in CD4(+) and CD8(+) T cells. Higher frequencies of CD4(+) express more than 1 regulatory molecule compared to CD8(+) T cells. Moreover, lower proportions of CD4(+) T cells coexpress regulatory molecules, but are still able to proliferate. Importantly, simultaneously blockade of the CLTA-4, PD-1, and T-cell immunoglobulin and mucin-3 signaling restores the cytokine production by antigen-specific cells. These data support the hypothesis that upregulation of inhibitory receptors on T cells during P. vivax malaria impairs parasite-specific T-cell effector function. PMID:26019284

  8. Kinetic study of cytokines production by human peripheral blood mononuclear cells in response to Brucella DNA.

    PubMed

    Lashkarbolouki, Taghi; Ardestani, Sussan K; Kariminia, Amina; Ziaee, Abed-Ali; Torkabadi, Ebrahim; Ebrahimi, Mohammad

    2008-01-01

    In spite of reports on cytokines induction by the Brucella DNA in murine model, there is no comparison between pathogenic and appropriate vaccine strains in human. We investigated the cytokines profile of human peripheral blood mononuclear cells (PBMCs) induced by DNA extracted from pathogenic isolates of Brucella melitensis and B. abortus as well as Rev1 and S19; the appropriate vaccine strains. It was observed that despite differential induction of Interleukin(IL)-12 and IL-10 production, identical IL-12/IL-10 concentration ratio was obtained by all Brucella strains DNAs that was 2 after 24 h and 4 after 5 days of incubation. In addition, IL-2 and Interferon(IFN)-gamma production were profoundly increased compared to the medium at day 3 and 5 respectively but IFN-alpha was not induced. Therefore, Brucella strains DNAs are Th1 inducing component with similar pattern in human PBMCs. PMID:17008080

  9. MicroRNA-124 mediates the cholinergic anti-inflammatory action through inhibiting the production of pro-inflammatory cytokines

    PubMed Central

    Sun, Yang; Li, Qi; Gui, Huan; Xu, Dong-Ping; Yang, Yi-Li; Su, Ding-Feng; Liu, Xia

    2013-01-01

    The vagus nerve can control inflammatory response through a 'cholinergic anti-inflammatory pathway', which is mediated by the α7-nicotinic acetylcholine receptor (α7nAChR) on macrophages. However, the intracellular mechanisms that link α7nAChR activation and pro-inflammatory cytokine production remain not well understood. In this study, we found that miR-124 is upregulated by cholinergic agonists in LPS-exposed cells and mice. Utilizing miR-124 mimic and siRNA knockdown, we demonstrated that miR-124 is a critical mediator for the cholinergic anti-inflammatory action. Furthermore, our data indicated that miR-124 modulates LPS-induced cytokine production by targeting signal transducer and activator of transcription 3 (STAT3) to decrease IL-6 production and TNF-α converting enzyme (TACE) to reduce TNF-α release. These results also indicate that miR-124 is a potential therapeutic target for the treatment of inflammatory diseases. PMID:23979021

  10. Oclacitinib (APOQUEL®) is a novel Janus kinase inhibitor with activity against cytokines involved in allergy

    PubMed Central

    Gonzales, A J; Bowman, J W; Fici, G J; Zhang, M; Mann, D W; Mitton-Fry, M

    2014-01-01

    Janus kinase (JAK) enzymes are involved in cell signaling pathways activated by various cytokines dysregulated in allergy. The objective of this study was to determine whether the novel JAK inhibitor oclacitinib could reduce the activity of cytokines implicated in canine allergic skin disease. Using isolated enzyme systems and in vitro human or canine cell models, potency and selectivity of oclacitinib was determined against JAK family members and cytokines that trigger JAK activation in cells. Oclacitinib inhibited JAK family members by 50% at concentrations (IC50's) ranging from 10 to 99 nm and did not inhibit a panel of 38 non-JAK kinases (IC50's > 1000 nm). Oclacitinib was most potent at inhibiting JAK1 (IC50 = 10 nm). Oclacitinib also inhibited the function of JAK1-dependent cytokines involved in allergy and inflammation (IL-2, IL-4, IL-6, and IL-13) as well as pruritus (IL-31) at IC50's ranging from 36 to 249 nm. Oclacitinib had minimal effects on cytokines that did not activate the JAK1 enzyme in cells (erythropoietin, granulocyte/macrophage colony-stimulating factor, IL-12, IL-23; IC50's > 1000 nm). These results demonstrate that oclacitinib is a targeted therapy that selectively inhibits JAK1-dependent cytokines involved in allergy, inflammation, and pruritus and suggests these are the mechanisms by which oclacitinib effectively controls clinical signs associated with allergic skin disease in dogs. PMID:24495176

  11. Epithelial neutrophil activating peptide-78: a novel chemotactic cytokine for neutrophils in arthritis.

    PubMed Central

    Koch, A E; Kunkel, S L; Harlow, L A; Mazarakis, D D; Haines, G K; Burdick, M D; Pope, R M; Walz, A; Strieter, R M

    1994-01-01

    We and others have shown that cells obtained from inflamed joints of rheumatoid arthritis (RA) patients produce interleukin-8, a potent chemotactic cytokine for neutrophils (PMNs). However, IL-8 accounted for only 40% of the chemotactic activity for PMNs found in these synovial fluids. Currently, we have examined the production of the novel PMN chemotactic cytokine, epithelial neutrophil activating peptide-78 (ENA-78), using peripheral blood, synovial fluid, and synovial tissue from 70 arthritic patients. RA ENA-78 levels were greater in RA synovial fluid (239 +/- 63 ng/ml) compared with synovial fluid from other forms of arthritis (130 +/- 118 ng/ml) or osteoarthritis (2.6 +/- 1.8 ng/ml) (P < 0.05). RA peripheral blood ENA-78 levels (70 +/- 26 ng/ml) were greater than normal peripheral blood levels (0.12 +/- 0.04 ng/ml) (P < 0.05). Anti-ENA-78 antibodies neutralized 42 +/- 9% (mean +/- SE) of the chemotactic activity for PMNs found in RA synovial fluids. Isolated RA synovial tissue fibroblasts in vitro constitutively produced significant levels of ENA-78, and this production was further augmented when stimulated with tumor necrosis factor-alpha (TNF-alpha). In addition RA and osteoarthritis synovial tissue fibroblasts as well as RA synovial tissue macrophages were found to constitutively produce ENA-78. RA synovial fluid mononuclear cells spontaneously produced ENA-78, which was augmented in the presence of lipopolysaccharide. Immunohistochemical localization of ENA-78 from the synovial tissue of patients with arthritis or normal subjects showed that the predominant cellular source of this chemokine was synovial lining cells, followed by macrophages, endothelial cells, and fibroblasts. Synovial tissue macrophages and fibroblasts were more ENA-78 immunopositive in RA than in normal synovial tissue (P < 0.05). These results, which are the first demonstration of ENA-78 in a human disease state, suggest that ENA-78 may play an important role in the recruitment of PMNs

  12. Cytokine production by peripheral blood mononuclear cells of women with a history of preterm birth.

    PubMed

    Peltier, Morgan R; Faux, David S; Hamblin, Steven D; Silver, Robert M; Esplin, M Sean

    2010-01-01

    Preterm birth is associated with elevated production of pro-inflammatory cytokines such as TNFalpha at the maternal-fetal interface. Previous studies have suggested that women with a history of preterm birth produce aberrantly strong inflammatory responses to bacterial lipopolysaccharide (LPS). However many intrauterine infections in women are associated with pathogens including Ureaplasma urealyticum, Mycoplasma hominis and Streptococcus agalactiae (group B streptococcus) that contain pro-inflammatory factors other than LPS. We evaluated whether peripheral blood leukocytes from women with a history of preterm birth produce elevated amounts of TNFalpha upon stimulation with pathogens associated with preterm birth and if pre-treatment with aspirin, an anti-inflammatory medication, decreases the ex vivo production of this cytokine. Heat-killed bacteria elicited increased TNFalpha production from leukocytes in a dose-dependent manner, but no differences in TNFalpha production between leukocytes from women with preterm birth and control women with term birth were detected. In women who consumed aspirin each day for one week, TNFalpha production was increased in leukocytes from control women stimulated with Escherichia coli and U. urealyticum, but was reduced or unchanged in leukocytes from women with preterm birth. Similar trends were observed for a subset of samples stimulated with U. urealyticum and assayed for IL-6, IL-10, IL-1beta and TNFalpha by bead array. We conclude that leukocytes from women with a history of preterm birth do not have elevated pro-inflammatory responses to pathogens, and that reproductive history is associated with different effects of aspirin on pro-inflammatory cytokine production. PMID:20005575

  13. A Novel Pentamethoxyflavone Down-Regulates Tumor Cell Survival and Proliferative and Angiogenic Gene Products through Inhibition of IκB Kinase Activation and Sensitizes Tumor Cells to Apoptosis by Cytokines and Chemotherapeutic Agents

    PubMed Central

    Phromnoi, Kanokkarn; Reuter, Simone; Sung, Bokyung; Prasad, Sahdeo; Kannappan, Ramaswamy; Yadav, Vivek R.; Chanmahasathien, Wisinee; Limtrakul, Pornngarm

    2011-01-01

    Most anticancer drugs have their origin in traditional medicinal plants. We describe here a flavone, 5,3′-dihydroxy-3,6,7,8,4′-pentamethoxyflavone (PMF), from the leaves of the Thai plant Gardenia obtusifolia, that has anti-inflammatory and anticancer potential. Because the nuclear factor-κB (NF-κB) pathway is linked to inflammation and tumorigenesis, we investigated the effect of PMF on this pathway. We found that PMF suppressed NF-κB activation induced by inflammatory agents, tumor promoters, and carcinogens. This suppression was not specific to the cell type. Although PMF did not directly modify the ability of NF-κB proteins to bind to DNA, it inhibited IκBα (inhibitory subunit of NF-κB) kinase, leading to suppression of phosphorylation and degradation of IκBα, and suppressed consequent p65 nuclear translocation, thus abrogating NF-κB-dependent reporter gene expression. Suppression of the NF-κB cell signaling pathway by the flavone led to the inhibition of expression of NF-κB-regulated gene products that mediate inflammation (cyclooxygenase-2), survival (XIAP, survivin, Bcl-xL, and cFLIP), proliferation (cyclin D1), invasion (matrix metalloproteinase-9), and angiogenesis (vascular endothelial growth factor). Suppression of antiapoptotic gene products by PMF correlated with the enhancement of apoptosis induced by tumor necrosis factor-α and the chemotherapeutic agents cisplatin, paclitaxel, and 5-flurouracil. Overall, our results indicate that PMF suppresses the activation of NF-κB and NF-κB-regulated gene expression, leading to the enhancement of apoptosis. This is the first report to demonstrate that this novel flavone has anti-inflammatory and anticancer effects by targeting the IKK complex. PMID:20930110

  14. HMGB1/RAGE Signaling and Pro-Inflammatory Cytokine Responses in Non-HIV Adults with Active Pulmonary Tuberculosis

    PubMed Central

    Ip, Margaret; Chu, Yi Jun; Yung, Irene M. H.; Cheung, Catherine S. K.; Zheng, Lin; Lam, Judy S. Y.; Wong, Ka Tak; Sin, Winnie W. Y.; Choi, Kin Wing; Lee, Nelson

    2016-01-01

    Background We aimed to study the pathogenic roles of High-Mobility Group Box 1 (HMGB1) / Receptor-for-Advanced-Glycation-End-products (RAGE) signaling and pro-inflammatory cytokines in patients with active pulmonary tuberculosis (PTB). Methods A prospective study was conducted among non-HIV adults newly-diagnosed with active PTB at two acute-care hospitals (n = 80); age-and-sex matched asymptomatic individuals (tested for latent TB) were used for comparison (n = 45). Plasma concentrations of 8 cytokines/chemokines, HMGB1, soluble-RAGE, and transmembrane-RAGE expressed on monocytes/dendritic cells, were measured. Gene expression (mRNA) of HMGB1, RAGE, and inflammasome-NALP3 was quantified. Patients’ PBMCs were stimulated with recombinant-HMGB1 and MTB-antigen (lipoarabinomannan) for cytokine induction ex vivo. Results In active PTB, plasma IL-8/CXCL8 [median(IQR), 6.0(3.6–15.1) vs 3.6(3.6–3.6) pg/ml, P<0.001] and IL-6 were elevated, which significantly correlated with mycobacterial load, extent of lung consolidation (rs +0.509, P<0.001), severity-score (rs +0.317, P = 0.004), and fever and hospitalization durations (rs +0.407, P<0.001). IL-18 and sTNFR1 also increased. Plasma IL-8/CXCL8 (adjusted OR 1.12, 95%CI 1.02–1.23 per unit increase, P = 0.021) and HMGB1 (adjusted OR 1.42 per unit increase, 95%CI 1.08–1.87, P = 0.012) concentrations were independent predictors for respiratory failure, as well as for ICU admission/death. Gene expression of HMGB1, RAGE, and inflammasome-NALP3 were upregulated (1.2−2.8 fold). Transmembrane-RAGE was increased, whereas the decoy soluble-RAGE was significantly depleted. RAGE and HMGB1 gene expressions positively correlated with cytokine levels (IL-8/CXCL8, IL-6, sTNFR1) and clinico-/radiographical severity (e.g. extent of consolidation rs +0.240, P = 0.034). Ex vivo, recombinant-HMGB1 potentiated cytokine release (e.g. TNF-α) when combined with lipoarabinomannan. Conclusion In patients with active PTB, HMGB1/RAGE

  15. Modulation of the plasminogen activation system by inflammatory cytokines in human colon carcinoma cells.

    PubMed Central

    Trân-Thang, C.; Kruithof, E.; Lahm, H.; Schuster, W. A.; Tada, M.; Sordat, B.

    1996-01-01

    Inflammation may promote malignant invasion by enhancing cancer cell-associated proteolysis. Here we present the effect of inflammatory cytokines on the plasminogen activation system of eight human colon carcinoma cell lines. Tumour necrosis factor alpha (TNF-alpha) and interleukin-1 beta (IL-1 beta) increased in several, but not all, cell lines the production of urokinase-type plasminogen activator (uPA), tissue-type PA (tPA) and plasminogen activator inhibitor type 1 (PAI-1) as analysed by zymography, enzyme immunoassays and Northern analysis. Interleukin 6 (IL-6) had no effect. uPA receptor (uPAR) mRNA levels were also upregulated. However, each individual cell line responded differently following exposure to TNF-alpha or IL-1 beta. For example, there was a dose-dependent up-regulation of uPA and PAI-1 in SW 620 cells, whereas increased uPA production in SW 1116 cells was not accompanied by an increase in PAI-1. The TNF-alpha stimulatory effect was blocked by anti-TNF-alpha Fab fragments. All cell lines expressed both types of TNF receptor mRNAs, whereas no transcript for TNF-alpha, IL-1 beta, IL-6, IL-6 receptor or the IL-1 receptors was found. Our results demonstrate that TNF-alpha and IL-1 beta stimulate the plasminogen activation system in tumour cell but the responses differed even in cells derived from the same tissue origin. Images Figure 1 Figure 2 Figure 3 Figure 5 PMID:8826848

  16. [Production of recombinant human interleukin-38 and its inhibitory effect on the expression of proinflammatory cytokines in THP-1 cells].

    PubMed

    Yuan, X L; Li, Y; Pan, X H; Zhou, M; Gao, Q Y; Li, M C

    2016-01-01

    Interleukin (IL)-38 is the latest member of the IL-1 cytokine family. However, as a result of lacking efficient method to generate relatively large quantity of IL-38, its precise functions are poorly understood. In the present study, the cloning, expression, purification, and activity analysis of recombinant human IL-38 was described. Human IL-38 cDNA was cloned into the prokaryotic expression vector pET-44. The recombinant IL-38 containing a C-hexahistidine tag was expressed in Escherichia coli BL21 (DE3) which induced by isopropyl-β-D-thiogalactoside. The expressed fusion protein was purified by Ni-NTA affinity chromatography. IL-38 protein was largely found in the soluble fraction. The purified IL-38 appeared a single band on SDS-PAGE, the yield of IL-38 was 4 mg from 1 L of bacterial culture, and the purity was more than 98% with low endotoxin level (<0.1 EU/μg). Western blotting confirmed the identity of the purified protein. Activity analysis showed that IL-38 can inhibit effectively the expression of proinflammatory cytokines, such as tumor necrosis factor-α, IL-1β, IL-17, and monocyte chemoattractant protein-1 in lipopolysaccharide-activated THP-1 cells. The production and characterization of biologically active IL-38 will be beneficial for its potential role in clinical applications. PMID:27414784

  17. Interaction with activated monocytes enhances cytokine expression and suppressive activity of human CD4+CD45RO+CD25+CD127low regulatory T cells

    PubMed Central

    Walter, Gina J.; Evans, Hayley G.; Menon, Bina; Gullick, Nicola J.; Kirkham, Bruce W.; Cope, Andrew P.; Geissmann, Frédéric; Taams, Leonie S.

    2014-01-01

    Objective Despite the high frequency of CD4+ T cells with a regulatory phenotype (CD25+CD127lowFoxP3+) in the joints of patients with rheumatoid arthritis (RA), inflammation persists. One possible explanation is that human Tregs are converted into pro-inflammatory IL-17-producing cells by inflammatory mediators and thereby lose their suppressive function. We investigated whether activated monocytes, which are potent producers of inflammatory cytokines and abundantly present in the rheumatic joint, induce pro-inflammatory cytokine expression in human Tregs and impair their regulatory function. Methods The presence and phenotype of CD4+CD45RO+CD25+CD127low T cells (memory Tregs) and CD14+ monocytes in the peripheral blood (PB) and synovial fluid (SF) from patients with RA was investigated by flow cytometry. FACS-sorted memory Tregs from healthy controls were co-cultured with autologous activated monocytes and stimulated with anti-CD3 monoclonal antibody. Intracellular cytokine expression, phenotype and function of cells were determined by flow cytometry, ELISA and proliferation assays. Results Patients with RA showed higher frequencies of CD4+CD45RO+CD25+CD127low Tregs and activated CD14+ monocytes in SF relative to PB. In vitro-activated monocytes induced an increase in the percentage of IL-17+, IFNγ+ and TNF-α+, but also IL-10+ Tregs. The observed increase in IL-17+ and IFNγ+ Tregs was driven by monocyte-derived IL-1β, IL-6 and TNF-α and was mediated by both CD14+CD16− and CD14+CD16+ monocyte subsets. Despite enhanced cytokine expression, cells maintained their CD25+FoxP3+CD39+ Treg phenotype and showed enhanced capacity to suppress proliferation and IL-17 production by effector T cells. Conclusion Tregs exposed to a pro-inflammatory environment show increased cytokine expression as well as enhanced suppressive activity. PMID:23280063

  18. Up-regulation of T lymphocyte and antibody production by inflammatory cytokines released by macrophage exposure to multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Grecco, Ana Carolina P.; Paula, Rosemeire F. O.; Mizutani, Erica; Sartorelli, Juliana C.; Milani, Ana M.; Longhini, Ana Leda F.; Oliveira, Elaine C.; Pradella, Fernando; Silva, Vania D. R.; Moraes, Adriel S.; Peterlevitz, Alfredo C.; Farias, Alessandro S.; Ceragioli, Helder J.; Santos, Leonilda M. B.; Baranauskas, Vitor

    2011-07-01

    Our data demonstrate that multi-walled carbon nanotubes (MWCNTs) are internalized by macrophages, subsequently activating them to produce interleukin (IL)-12 (IL-12). This cytokine induced the proliferative response of T lymphocytes to a nonspecific mitogen and to ovalbumin (OVA). This increase in the proliferative response was accompanied by an increase in the expression of pro-inflammatory cytokines, such as interferon-gamma (IFNγ), tumor necrosis factor-alpha (TNFα) and IL-6, in mice inoculated with MWCNTs, whether or not they had been immunized with OVA. A decrease in the expression of transforming growth factor-beta (TGFβ) was observed in the mice treated with MWCNTs, whereas the suppression of the expression of both TGFβ and IL-10 was observed in mice that had been both treated and immunized. The activation of the T lymphocyte response by the pro-inflammatory cytokines leads to an increase in antibody production to OVA, suggesting the important immunostimulatory effect of carbon nanotubes.

  19. Cytokines and autoimmunity.

    PubMed Central

    Cavallo, M G; Pozzilli, P; Thorpe, R

    1994-01-01

    Although the immunopathology of most autoimmune diseases has been well defined, the mechanisms responsible for the breakdown of self-tolerance and which lead to the development of systemic and organ-specific autoaggression are still unclear. Evidence has accumulated which supports a role for a disregulated production of cytokines by leucocytes and possibly other cells in the pathogenesis of some autoimmune diseases. However, due to the complexity and heterogeneity of cytokine effects in the regulation of the immune response, it is difficult to determine whether abnormalities in the patterns of cytokine production are primary or secondary to the pathological process. Confusion is also caused by the fact that the biological activities of cytokines are multiple and often overlapping, and consequently it is difficult to focus on a unique effect of any one cytokine. Characterization of the potential and actual involvement of cytokines is important not only for a better understanding of the pathogenesis of autoimmune conditions, but particularly because of the implications for the development of immunotherapeutic strategies for the prevention and treatment of the diseases. PMID:8149655

  20. Lipoteichoic Acid Isolated from Weissella cibaria Increases Cytokine Production in Human Monocyte-Like THP-1 Cells and Mouse Splenocytes.

    PubMed

    Hong, Yi-Fan; Lee, Yoon-Doo; Park, Jae-Yeon; Kim, Seongjae; Lee, Youn-Woo; Jeon, Boram; Jagdish, Deepa; Kim, Hangeun; Chung, Dae Kyun

    2016-07-28

    Lactic acid bacteria (LAB) have beneficial effects on intestinal health and skin diseases. Lipoteichoic acid (LTA), a cell wall component of gram-positive bacteria, is known to induce the production of several cytokines such as TNF-α, IL-1β, and IL-8 and affect the intestinal microflora, anti-aging, sepsis, and cholesterol level. In this study, Weissella cibaria was isolated from Indian dairy products, and we examined its immune-enhancing effects. Live and heatkilled W. cibaria did not induce the secretion of immune-related cytokines, whereas LTA isolated from W. cibaria (cLTA) significantly increased the secretion of TNF-α, IL-1β, and IL-6 in a dose-dependent manner. cLTA increased the phosphorylation of nuclear factor kappalight-chain-enhancer of activated B cells, p38 mitogen-activated protein kinases, and c-Jun N-terminal kinases in THP-1 cells. The secretion of TNF-α and IL-6 was also increased in the cLTA-treated mouse splenocytes. These results suggest that cLTA, but not W. cibaria whole cells, has immune-boosting potential and can be used to treat immunosuppression diseases. PMID:27012236

  1. Early induction of cytokines/cytokine receptors and Cox2, and activation of NF-κB in 4-nitroquinoline 1-oxide-induced murine oral cancer model

    SciTech Connect

    Liu, Yu-Ching; Ho, Heng-Chien; Lee, Miau-Rong; Lai, Kuang-Chi; Yeh, Chung-Min; Lin, Yueh-Min; Ho, Tin-Yun; Hsiang, Chien-Yun; Chung, Jing-Gung

    2012-07-15

    The purpose of this study was to identify the genes induced early in murine oral carcinogenesis. Murine tongue tumors induced by the carcinogen, 4-nitroquinoline 1-oxide (4-NQO), and paired non-tumor tissues were subjected to microarray analysis. Hierarchical clustering of upregulated genes in the tumor tissues revealed an association of induced genes with inflammation. Cytokines/cytokine receptors induced early were subsequently identified, clearly indicating their involvement in oral carcinogenesis. Hierarchical clustering also showed that cytokine-mediated inflammation was possibly linked with Mapk6. Cox2 exhibited the greatest extent (9–18 fold) of induction in the microarray data, and its early induction was observed in a 2 h painting experiment by RT-PCR. MetaCore analysis showed that overexpressed Cox2 may interact with p53 and transcriptionally inhibit expression of several downstream genes. A painting experiment in transgenic mice also demonstrated that NF-κB activates early independently of Cox2 induction. MetaCore analysis revealed the most striking metabolic alterations in tumor tissues, especially in lipid metabolism resulting from the reduction of Pparα and Rxrg. Reduced expression of Mapk12 was noted, and MetaCore analysis established its relationship with decreased efficiency of Pparα phosphorylation. In conclusion, in addition to cytokines/cytokine receptors, the early induction of Cox2 and NF-κB activation is involved in murine oral carcinogenesis.

  2. Inhibition of Age-Related Cytokines Production by ATGL: A Mechanism Linked to the Anti-Inflammatory Effect of Resveratrol

    PubMed Central

    Lettieri Barbato, Daniele; Tatulli, Giuseppe; Aquilano, Katia; Ciriolo, Maria R.

    2014-01-01

    Ageing is characterized by the expansion and the decreased vascularization of visceral adipose tissue (vAT), disruption of metabolic activities, and decline of the function of the immune system, leading to chronic inflammatory states. We previously demonstrated that, in vAT of mice at early state of ageing, adipocytes mount a stress resistance response consisting in the upregulation of ATGL, which is functional in restraining the production of inflammatory cytokines. Here, we found that, in the late phase of ageing, such an adaptive response is impaired. In particular, 24-months-old mice and aged 3T3-L1 adipocytes display affected expression of ATGL and its downstream PPARα-mediated lipid signalling pathway, leading to upregulation of TNFα and IL-6 production. We show that the natural polyphenol compound resveratrol (RSV) efficiently suppresses the expression of TNFα and IL-6 in an ATGL/PPARα dependent manner. Actually, adipocytes downregulating ATGL do not show a restored PPARα expression and display elevated cytokines production. Overall the results obtained highlight a crucial function of ATGL in inhibiting age-related inflammation and reinforce the idea that RSV could represent a valid natural compound to limit the onset and/or the exacerbation of the age-related inflammatory states. PMID:24817795

  3. Inhibition of age-related cytokines production by ATGL: a mechanism linked to the anti-inflammatory effect of resveratrol.

    PubMed

    Lettieri Barbato, Daniele; Tatulli, Giuseppe; Aquilano, Katia; Ciriolo, Maria R

    2014-01-01

    Ageing is characterized by the expansion and the decreased vascularization of visceral adipose tissue (vAT), disruption of metabolic activities, and decline of the function of the immune system, leading to chronic inflammatory states. We previously demonstrated that, in vAT of mice at early state of ageing, adipocytes mount a stress resistance response consisting in the upregulation of ATGL, which is functional in restraining the production of inflammatory cytokines. Here, we found that, in the late phase of ageing, such an adaptive response is impaired. In particular, 24-months-old mice and aged 3T3-L1 adipocytes display affected expression of ATGL and its downstream PPARα-mediated lipid signalling pathway, leading to upregulation of TNFα and IL-6 production. We show that the natural polyphenol compound resveratrol (RSV) efficiently suppresses the expression of TNFα and IL-6 in an ATGL/PPARα dependent manner. Actually, adipocytes downregulating ATGL do not show a restored PPARα expression and display elevated cytokines production. Overall the results obtained highlight a crucial function of ATGL in inhibiting age-related inflammation and reinforce the idea that RSV could represent a valid natural compound to limit the onset and/or the exacerbation of the age-related inflammatory states. PMID:24817795

  4. Inflammatory Cytokines in General and Central Obesity and Modulating Effects of Physical Activity

    PubMed Central

    Sander, Christian; Minkwitz, Juliane; Thormann, Julia; Chittka, Tobias; Mergl, Roland; Kirkby, Kenneth C.; Faßhauer, Mathias; Stumvoll, Michael; Holdt, Lesca M.; Teupser, Daniel; Hegerl, Ulrich; Himmerich, Hubertus

    2015-01-01

    Context Chronic systemic inflammation in obesity originates from local immune responses in visceral adipose tissue. However, assessment of a broad range of inflammation-mediating cytokines and their relationship to physical activity and adipometrics has scarcely been reported to date. Objective To characterize the profile of a broad range of pro- and anti-inflammatory cytokines and the impact of physical activity and energy expenditure in individuals with general obesity, central obesity, and non-obese subjects. Design, Setting, and Participants A cross-sectional study comprising 117 obese patients (body mass index (BMI) ≥ 30) and 83 non-obese community-based volunteers. Main Outcomes Measures Serum levels of interleukin (IL)-2, IL-4, IL-5, IL-10, IL-12, IL-13, granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon (IFN)-γ and tumor necrosis factor (TNF)-α were measured. Physical activity and energy expenditure (MET) were assessed with actigraphy. Adipometrics comprised BMI, weight, abdominal-, waist- and hip-circumference, waist to hip ratio (WHR), and waist-to-height-ratio (WHtR). Results General obesity was associated with significantly elevated levels of IL-5, IL-10, IL-12, IL-13, IFN-γ and TNF-α, central obesity with significantly elevated IL-5, IL-10, IL-12, IL-13 and IFN-γ-levels. In participants with general obesity, levels of IL-4, IL-10 and IL-13 were significantly elevated in participants with low physical activity, even when controlled for BMI which was negatively associated with physical acitivity. Cytokines significantly correlated with adipometrics, particularly in obese participants. Conclusions Results confirm up-regulation of certain pro- and anti-inflammatory cytokines in obesity. In obese subjects, physical activity may lower levels and thus reduce pro-inflammatory effects of cytokines that may link obesity, insulin resistance and diabetes. PMID:25781614

  5. Altered cytokine production by specific human peripheral blood cell subsets immediately following space flight

    NASA Technical Reports Server (NTRS)

    Crucian, B. E.; Cubbage, M. L.; Sams, C. F.

    2000-01-01

    In this study, flow cytometry was used to positively identify the specific lymphocyte subsets exhibiting space flight-induced alterations in cytokine production. Whole blood samples were collected from 27 astronauts at three points (one preflight, two postflight) surrounding four space shuttle missions. Assays performed included serum/urine stress hormones, white blood cell (WBC) phenotyping, and intracellular cytokine production following mitogenic stimulation. Absolute levels of peripheral granulocytes were significantly elevated following space flight, but the levels of circulating lymphocytes and monocytes were unchanged. Lymphocyte subset analysis demonstrated a decreased percentage of T cells, whereas percentages of B cells and natural killer (NK) cells remained unchanged after flight. Nearly all the astronauts exhibited an increased CD4/CD8 T cell ratio. Assessment of naive (CD45RA+) vs. memory (CD45RO+) CD4+ T cell subsets was ambiguous, and subjects tended to group within specific missions. Although no significant trend was seen in absolute monocyte levels, a significant decrease in the percentage of the CD14+ CD16+ monocytes was seen following space flight in all subjects tested. T cell (CD3+) production of interleukin-2 (IL-2) was significantly decreased after space flight, as was IL-2 production by both CD4+ and CD8+ T cell subsets. Production of interferon-gamma (IFN-gamma) was not altered by space flight for the CD8+ cell subset, but there was a significant decrease in IFN-gamma production for the CD4+ T cell subset. Serum and urine stress hormone analysis indicated significant physiologic stresses in astronauts following space flight. Altered peripheral leukocyte subsets, altered serum and urine stress hormone levels, and altered T cell cytokine secretion profiles were all observed postflight. In addition, there appeared to be differential susceptibility to space flight regarding cytokine secretion by T cell subsets. These alterations may be the

  6. Combined immunomodulator and antimicrobial therapy eliminates polymicrobial sepsis and modulates cytokine production in combined injured mice

    PubMed Central

    Elliott, Thomas B.; Bolduc, David L.; Ledney, G. David; Kiang, Juliann G.; Fatanmi, Oluseyi O.; Wise, Stephen Y.; Romaine, Patricia L. P.; Newman, Victoria L.; Singh, Vijay K.

    2015-01-01

    Purpose: A combination therapy for combined injury (CI) using a non-specific immunomodulator, synthetic trehalose dicorynomycolate and monophosphoryl lipid A (STDCM-MPL), was evaluated to augment oral antimicrobial agents, levofloxacin (LVX) and amoxicillin (AMX), to eliminate endogenous sepsis and modulate cytokine production. Materials and methods: Female B6D2F1/J mice received 9.75 Gy cobalt-60 gamma-radiation and wound. Bacteria were isolated and identified in three tissues. Incidence of bacteria and cytokines were compared between treatment groups. Results: Results demonstrated that the lethal dose for 50% at 30 days (LD50/30) of B6D2F1/J mice was 9.42 Gy. Antimicrobial therapy increased survival in radiation-injured (RI) mice. Combination therapy increased survival after RI and extended survival time but did not increase survival after CI. Sepsis began five days earlier in CI mice than RI mice with Gram-negative species predominating early and Gram-positive species increasing later. LVX plus AMX eliminated sepsis in CI and RI mice. STDCM-MPL eliminated Gram-positive bacteria in CI and most RI mice but not Gram-negative. Treatments significantly modulated 12 cytokines tested, which pertain to wound healing or elimination of infection. Conclusions: Combination therapy eliminates infection and prolongs survival time but does not assure CI mouse survival, suggesting that additional treatment for proliferative-cell recovery is required. PMID:25994812

  7. Cytokines, phagocytes, and pentoxifylline.

    PubMed

    Mandell, G L

    1995-01-01

    Phagocytic cells, such as polymorphonuclear neutrophils, monocytes, and macrophages, are essential for defense against infection caused by a variety of microorganisms. The mechanisms used by these cells to destroy microbes comprise a potent oxidative armamentarium including superoxide, hydrogen peroxide, and hypochlorous acid. In addition, granule contents such as proteolytic enzymes, lysozyme, lactoferrin, and myeloperoxidase are released into the phagosome to destroy ingested microorganisms. Inflammatory cytokines, such as tumor necrosis factor (TNF), interleukin-1 (IL-1), and IL-6, enhance the phagocytic and microbicidal activity of the cells and increase their stickiness. It has been demonstrated in a variety of animal and clinical studies that activated phagocytes can damage the host they are designed to protect, using the mechanisms described above. Alkylxanthines, including pentoxifylline, are potent inhibitors of this inflammatory damage by two major actions: (a) reduction of the production of inflammatory cytokines (especially TNF) by phagocytes stimulated with a variety of microbial products (e.g., endotoxin); and (b) reversal of the effect of these cytokines on phagocytes. Thus, pentoxifylline counteracts the following effects of inflammatory cytokines on phagocytes: increased adherence, shape change resulting in larger size and rigidity, increased oxidative burst, priming for an enhanced oxidative burst, increased degranulation, and decreased chemotactic movement. In addition, these activities synergize with the normal anti-inflammatory mediator adenosine. Alkylxanthines have the potential to be effective therapy for conditions in which inflammatory cytokines and phagocytes cause damage, including the sepsis syndrome, ARDS, AIDS, and arthritis. PMID:8699856

  8. Sea cucumber (Codonopsis pilosula) oligopeptides: immunomodulatory effects based on stimulating Th cells, cytokine secretion and antibody production.

    PubMed

    He, Li-Xia; Zhang, Zhao-Feng; Sun, Bin; Chen, Qi-He; Liu, Rui; Ren, Jin-Wei; Wang, Jun-Bo; Li, Yong

    2016-02-01

    This study aimed to investigate the immunomodulating activity of small molecule oligopeptides from sea cucumber (Codonopsis pilosula) (SOP) in mice. Seven assays were performed to determine the immunomodulatory effects, including splenic lymphocyte proliferation and delayed-type hypersensitivity assays (cell-mediated immunity), IgM antibody response of spleen to sheep red blood cells (SRBC) and serum hemolysin level assays (humoral immunity), the carbon clearance assay and the phagocytic capacity of peritoneal cavity phagocytes assay (macrophage phagocytosis), and the NK cell activity assay. Spleen T lymphocyte subpopulations, multiplex sandwich immunoassays of serum cytokine and immunoglobulin levels and enzyme-linked immunosorbent assays for small intestinal secretory immunoglobulin were performed to study the mechanism by which SOP affects the immune system. We found that SOP could improve immune functions in mice, which may be due to the enhancement of the functions of cell-mediated immunity, humoral immunity, macrophage phagocytosis and NK cell activity. From the cellular and molecular assays, we postulated that the immunomodulatory effects are most likely attributed to the stimulation of Th cells, cytokine secretion and antibody production. PMID:26838796

  9. Carnosol and Related Substances Modulate Chemokine and Cytokine Production in Macrophages and Chondrocytes.

    PubMed

    Schwager, Joseph; Richard, Nathalie; Fowler, Ann; Seifert, Nicole; Raederstorff, Daniel

    2016-01-01

    Phenolic diterpenes present in Rosmarinus officinalis and Salvia officinalis have anti-inflammatory and chemoprotective effects. We investigated the in vitro effects of carnosol (CL), carnosic acid (CA), carnosic acid-12-methylether (CAME), 20-deoxocarnosol and abieta-8,11,13-triene-11,12,20-triol (ABTT) in murine macrophages (RAW264.7 cells) and human chondrocytes. The substances concentration-dependently reduced nitric oxide (NO) and prostaglandin E₂ (PGE₂) production in LPS-stimulated macrophages (i.e., acute inflammation). They significantly blunted gene expression levels of iNOS, cytokines/interleukins (IL-1α, IL-6) and chemokines including CCL5/RANTES, CXCL10/IP-10. The substances modulated the expression of catabolic and anabolic genes in chondrosarcoma cell line SW1353 and in primary human chondrocytes that were stimulated by IL-1β (i.e., chronic inflammation In SW1353, catabolic genes like MMP-13 and ADAMTS-4 that contribute to cartilage erosion were down-regulated, while expression of anabolic genes including Col2A1 and aggrecan were shifted towards pre-pathophysiological homeostasis. CL had the strongest overall effect on inflammatory mediators, as well as on macrophage and chondrocyte gene expression. Conversely, CAME mainly affected catabolic gene expression, whereas ABTT had a more selectively altered interleukin and chemokine gene exprssion. CL inhibited the IL-1β induced nuclear translocation of NF-κBp65, suggesting that it primarily regulated via the NF-κB signalling pathway. Collectively, CL had the strongest effects on inflammatory mediators and chondrocyte gene expression. The data show that the phenolic diterpenes altered activity pattern of genes that regulate acute and chronic inflammatory processes. Since the substances affected catabolic and anabolic gene expression in cartilage cells in vitro, they may beneficially act on the aetiology of osteoarthritis. PMID:27070563

  10. Sphingosine-1-Phosphate Receptor 2 Regulates Proinflammatory Cytokine Production and Osteoclastogenesis

    PubMed Central

    2016-01-01

    Sphingosine-1-phosphate receptor 2 (S1PR2) couples with the Gi, Gq, and G12/13 group of proteins, which modulate an array of cellular signaling pathways and affect immune responses to multiple stimuli. In this study, we demonstrated that knockdown of S1PR2 by a specific S1PR2 shRNA lentiviral vector significantly inhibited IL-1β, IL-6, and TNF-α protein levels induced by oral pathogen Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) in murine bone marrow-derived monocytes and macrophages (BMMs) compared with controls. In addition, knockdown of S1PR2 by the S1PR2 shRNA lentiviral vector suppressed p-PI3K, p-ERK, p-JNK, p-p38, and p-NF-κBp65 protein expressions induced by A. actinomycetemcomitans. Furthermore, bone marrow cells treated with the S1PR2 shRNA lentiviral vector inhibited osteoclastogenesis induced by RANKL compared with controls. The S1PR2 shRNA suppressed the mRNA levels of six osteoclastogenic factors including nuclear factor of activated T-cells cytoplasmic calcineurin-dependent 1 (NFATc1), cathepsin K (Ctsk), acid phosphatase 5 (Acp5), osteoclast-associated receptor (Oscar), dendritic cells specific transmembrane protein (Dcstamp), and osteoclast stimulatory transmembrane protein (Ocstamp) in bone marrow cells. We conclude that S1PR2 plays an essential role in modulating proinflammatory cytokine production and osteoclastogenesis. Blocking S1PR2 signaling might be a novel therapeutic strategy to treat inflammatory bone loss diseases. PMID:27224249

  11. Cytokine secretion and NK cell activity in human ADAM17 deficiency

    PubMed Central

    Chavkin, Maor; Schmiedel, Dominik; Wong, Eitan; Werner, Marion; Yaacov, Barak; Averbuch, Diana; Molho-Pessach, Vered; Stepensky, Polina; Kaynan, Noa; Bar-On, Yotam; Seidel, Einat; Yamin, Rachel; Sagi, Irit; Elpeleg, Orly; Mandelboim, Ofer

    2015-01-01

    Genetic deficiencies provide insights into gene function in humans. Here we describe a patient with a very rare genetic deficiency of ADAM17. We show that the patient's PBMCs had impaired cytokine secretion in response to LPS stimulation, correlating with the clinical picture of severe bacteremia from which the patient suffered. ADAM17 was shown to cleave CD16, a major NK killer receptor. Functional analysis of patient's NK cells demonstrated that his NK cells express normal levels of activating receptors and maintain high surface levels of CD16 following mAb stimulation. Activation of individual NK cell receptors showed that the patient's NK cells are more potent when activated directly by CD16, albeit no difference was observed in Antibody Depedent Cytotoxicity (ADCC) assays. Our data suggest that ADAM17 inhibitors currently considered for clinical use to boost CD16 activity should be cautiously applied, as they might have severe side effects resulting from impaired cytokine secretion. PMID:26683521

  12. SATB1 packages densely-looped, transciptionally-active chromatinfor coordinated expression of cytokine genes

    SciTech Connect

    Cai, Shutao; Lee, Charles C.; Kohwi-Shigematsu, Terumi

    2006-05-23

    SATB1 is an important regulator of nuclear architecture that anchors specialized DNA sequences onto its cage-like network and recruits chromatin remodeling/modifying factors to control gene transcription. We studied the role of SATB1 in regulating the coordinated expression of Il5, Il4, and Il13 from the 200kb cytokine gene cluster region of mouse chromosome 11 during T-helper 2 (Th2)-cell activation. We show that upon cell activation, SATB1 is rapidly induced to form a unique transcriptionally-active chromatin structure that includes the cytokine gene region. Chromatin is folded into numerous small loops all anchored by SATB1, is histone H3 acetylated at lysine 9/14, and associated with Th2-specific factors, GATA3, STAT6, c-Maf, the chromatin-remodeling enzyme Brg-1, and RNA polymerase II across the 200kb region. Before activation, the chromatin displays some of these features, such as association with GATA3 and STAT6, but these were insufficient for cytokine gene expression. Using RNA interference (RNAi), we show that upon cell activation, SATB1 is not only required for chromatin folding into dense loops, but also for c-Maf induction and subsequently for Il4, Il5, and Il13 transcription. Our results show that SATB1 is an important determinant for chromatin architecture that constitutes a novel higher-order, transcriptionally-active chromatin structure upon Th2-cell activation.

  13. Heat stroke activates a stress-induced cytokine response in skeletal muscle.

    PubMed

    Welc, Steven S; Clanton, Thomas L; Dineen, Shauna M; Leon, Lisa R

    2013-10-15

    Heat stroke (HS) induces a rapid elevation in a number of circulating cytokines. This is often attributed to the stimulatory effects of endotoxin, released from damaged intestine, on immune cells. However, parenchymal cells also produce cytokines, and skeletal muscle, comprising a large proportion of body mass, is thought to participate. We tested the hypothesis that skeletal muscle exhibits a cytokine response to HS that parallels the systemic response in conscious mice heated to a core temperature of 42.4°C (TcMax). Diaphragm and hindlimb muscles showed a rapid rise in interleukin-6 (IL-6) and interleuin-10 (IL-10) mRNA and transient inhibition of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) throughout early recovery, a pattern that parallels changes in circulating cytokines. IL-6 protein was transiently elevated in both muscles at ∼32 min after reaching TcMax. Other responses observed included an upregulation of toll-like receptor-4 (TLR-4) and heat shock protein-72 (HSP-72) mRNA but no change in TLR-2 or HSP25 mRNA. Furthermore, c-jun and c-fos mRNA increased. Together, c-jun/c-fos form the activator protein-1 (AP-1) transcription factor, critical for stress-induced regulation of IL-6. Interestingly, a second "late-phase" (24 h) cytokine response, with increases in IL-6, IL-10, IL-1β, and TNF-α protein, were observed in hindlimb but not diaphragm muscle. These results demonstrate that skeletal muscle responds to HS with a distinct "stress-induced immune response," characterized by an early upregulation of IL-6, IL-10, and TLR-4 and suppression of IL-1β and TNF-α mRNA, a pattern discrete from classic innate immune cytokine responses. PMID:23928112

  14. Cytokine responses during mycobacterial and schistosomal antigen-induced pulmonary granuloma formation. Production of Th1 and Th2 cytokines and relative contribution of tumor necrosis factor.

    PubMed Central

    Chensue, S. W.; Warmington, K.; Ruth, J.; Lincoln, P.; Kuo, M. C.; Kunkel, S. L.

    1994-01-01

    Synchronized pulmonary granulomas (GRs) were induced in presensitized mice by intravenous embolization of polymer beads bound with purified protein derivative (PPD) of Mycobacteria tuberculosis or soluble antigens derived from Schistosoma mansoni eggs (SEA). Uncoated beads served as a foreign body control (CON). Antigen-coated beads elicited GRs with characteristic epithelioid macrophages and multinucleate giant cells by 4 days after embolization. Unlike PPD GR, SEA bead lesions contained eosinophils, whereas CON beads elicited only a limited mononuclear infiltrate. GRs and draining lymph nodes (LN) were assessed on days 2, 4, and 8 for Th1-(interleukin-2 [IL-2], interferon-gamma[IFN] and Th2-type (IL-4, IL-5, and IL-10) cytokines. CON GR produced only a small amount of IFN-gamma on day 2 and failed to induce a significant response in draining LN. In contrast, both PPD and SEA antigen-coated beads induced reactive lymphoid hyperplasia but differed greatly in local and regional cytokine profiles. PPD GR produced IFN-gamma on day 2 and the draining LN produced predominantly Th1 cytokines on days 2 and 4. In contrast, SEA beads GRs were dominated by Th2 cytokines. The corresponding LN produced IL-2 and IL-4 on day 2; IL-2, IL-4, IFN-gamma, and IL-10 on day 4; then IL-2, IFN-gamma, and IL-4 on day 8, probably reflecting maturational changes of T cells. Macrophages (MP) from bead GR also showed different patterns of IL-6 and tumor necrosis factor (TNF) production. Compared with CON GR, MPs from PPD GR were weak sources of IL-6, whereas those of SEA GR showed enhanced and accelerated production. In contrast, MP of PPD GR had augmented TNF-producing capacity, whereas those of SEA GR showed delayed TNF production. In vivo depletion of TNF, respectively, caused 40 and 10% decreases in PPD GR and SEA GR but had no effect on CON GR area, indicating that TNF contributed to a greater degree to the PPD response. These data show that depending on the inciting agent, GR can be

  15. Proinflammatory Cytokines Induce Endocrine Differentiation in Pancreatic Ductal Cells via STAT3-Dependent NGN3 Activation.

    PubMed

    Valdez, Ivan Achel; Dirice, Ercument; Gupta, Manoj K; Shirakawa, Jun; Teo, Adrian Kee Keong; Kulkarni, Rohit N

    2016-04-19

    A major goal of diabetes research is to develop strategies that replenish pancreatic insulin-producing beta cells. One emerging strategy is to harness pancreatic plasticity-the ability of pancreatic cells to undergo cellular interconversions-a phenomenon implicated in physiological stress and pancreatic injury. Here, we investigate the effects of inflammatory cytokine stress on the differentiation potential of ductal cells in a human cell line, in mouse ductal cells by pancreatic intraductal injection, and during the progression of autoimmune diabetes in the non-obese diabetic (NOD) mouse model. We find that inflammatory cytokine insults stimulate epithelial-to-mesenchymal transition (EMT) as well as the endocrine program in human pancreatic ductal cells via STAT3-dependent NGN3 activation. Furthermore, we show that inflammatory cytokines activate ductal-to-endocrine cell reprogramming in vivo independent of hyperglycemic stress. Together, our findings provide evidence that inflammatory cytokines direct ductal-to-endocrine cell differentiation, with implications for beta cell regeneration. PMID:27068459

  16. Comparison of the potency of a variety of β-glucans to induce cytokine production in human whole blood

    PubMed Central

    Noss, Ilka; Doekes, Gert; Thorne, Peter S; Heederik, Dick J.J.; Wouters, Inge M.

    2014-01-01

    Beta-glucans are components of fungal cell walls and potent stimulants of innate immunity. The majority of research on biological activities of glucans has focused on β-(1,3)-glucans, which have been implicated in relation with fungal exposure-associated respiratory symptoms, and as important stimulatory agents in anti-fungal immune responses. Fungi - and bacteria and plants - produce a wide variety of glucans with vast differences in proportion and arrangement of their 1,3-, 1,4-, and 1,6-β-glycosidic linkages. Thus far the proinflammatory potential of different β-glucans has not been studied within the same experimental model. Therefore, we compared the potency of 13 different glucan preparations to induce in vitro production of IL1β, IL6, IL8 and TNF-α in human whole blood cultures. The strongest inducers of all cytokines were pustulan (β-(1,6)-glucan), lichenan (β-(1,3)-(1,4)-glucan), xyloglucan (β-(1,4)-glucan), and pullulan (α-(1,4)-(1,6)-glucan). Moderate to strong cytokine production was observed for curdlan (β-(1,3)-glucan), baker’s yeast glucan (β-(1,3)-(1,6)-glucan), and barley glucan (β-(1,3)-(1,4)-glucan), while all other glucan preparations induced only low or no detectable levels of cytokines. We therefore conclude that innate immunity reactions are not exclusively induced by β-(1,3)-glucans, but also by β-(1,6)- and β-(1,4)-structures. Thus, not only β-(1,3)-glucan, but also other β-glucans and particularly β-(1,6)-glucans should be considered in future research. PMID:22653750

  17. Alginate microsphere compositions dictate different mechanisms of complement activation with consequences for cytokine release and leukocyte activation.

    PubMed

    Ørning, Pontus; Hoem, Kine Samset; Coron, Abba Elizabeth; Skjåk-Bræk, Gudmund; Mollnes, Tom Eirik; Brekke, Ole-Lars; Espevik, Terje; Rokstad, Anne Mari

    2016-05-10

    The inflammatory potential of 12 types of alginate-based microspheres was assessed in a human whole blood model. The inflammatory potential could be categorized from low to high based on the four main alginate microsphere types; alginate microbeads, liquefied core poly-l-ornithine (PLO)-containing microcapsules, liquefied core poly-l-lysine (PLL)-containing microcapsules, and solid core PLL-containing microcapsules. No complement or inflammatory cytokine activation was detected for the Ca/Ba alginate microbeads. Liquefied core PLO- and PLL-containing microcapsules induced significant fluid phase complement activation (TCC), but with low complement surface deposition (anti-C3c), and a low proinflammatory cytokine secretion, with exception of an elevated MCP-1(CCL2) secretion. The solid core PLL-containing microcapsules generated lower TCC but a marked complement surface deposition and significant induction of the proinflammatory cytokines interleukin (IL-1)β, TNF, IL-6, the chemokines IL-8 (CXCL8), and MIP-1α (CCL3) and MCP-1(CCL2). Inhibition with compstatin (C3 inhibitor) completely abolished complement surface deposition, leukocyte adhesion and the proinflammatory cytokines. The C5 inhibitions partly lead to a reduction of the proinflammatory cytokines. The leukocyte adhesion was abolished by inhibitory antibodies against CD18 and partly reduced by CD11b, but not by CD11c. Anti-CD18 significantly reduced the (IL-1)β, TNF, IL-6 and MIP-1α and anti-CD11b significantly reduced the IL-6 and VEGF secretion. MCP-1 was strongly activated by anti-CD18 and anti-CD11b. In conclusion the initial proinflammatory cytokine responses are driven by the microspheres potential to trigger complement C3 (C3b/iC3b) deposition, leukocyte activation and binding through complement receptor CR3 (CD11b/CD18). MCP-1 is one exception dependent on the fluid phase complement activation mediated through CR3. PMID:26993426

  18. Oligonol, a lychee fruit-derived low-molecular form of polyphenol mixture, suppresses inflammatory cytokine production from human monocytes.

    PubMed

    Lee, Naeun; Shin, Min Sun; Kang, Youna; Park, Kieyoung; Maeda, Takahiro; Nishioka, Hiroshi; Fujii, Hajime; Kang, Insoo

    2016-06-01

    Monocytes produce high levels of inflammatory cytokines including IL-6 and TNF-α that are involved in autoimmunity, inflammatory diseases, cardiovascular disease and obesity. Therapies targeting IL-6 and TNF-α have been utilized in treating chronic inflammatory diseases. Oligonol is a lychee fruit-derived low-molecular form of polyphenol mixture, typically catechin-type monomers and oligomers of proanthocyanidins, which are produced by an oligomerization process. Although previous studies reported anti-inflammatory properties of Oligonol, it is unknown whether and how Oligonol suppresses IL-6 and TNF-α production in human monocytes. The results of our study demonstrate that Oligonol (25μg/ml) decreases the production of IL-6 and TNF-α from human primary monocytes as measured by flow cytometry and ELISA. Such an anti-cytokine effect was likely mediated by the suppression of NF-κB activation without inducing cell death. Our findings raise the possibility of exploring the benefits of Oligonol in controlling inflammatory conditions, especially those associated with monocytes, in humans. PMID:27079270

  19. Helminth Products Protect against Autoimmunity via Innate Type 2 Cytokines IL-5 and IL-33, Which Promote Eosinophilia.

    PubMed

    Finlay, Conor M; Stefanska, Anna M; Walsh, Kevin P; Kelly, Patrick J; Boon, Louis; Lavelle, Ed C; Walsh, Patrick T; Mills, Kingston H G

    2016-01-15

    Epidemiologic studies in humans have demonstrated that infection with helminth parasites is associated with a reduced risk of developing autoimmune diseases. Mechanistic studies in mice have linked the protective effect of helminths on autoimmunity to the suppressive activity of helminth-induced regulatory T cells (Tregs) or Th2 cells. In this study, we demonstrate that treatment of mice with Fasciola hepatica excretory-secretory products (FHES) attenuated the clinical signs of experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. Protection was associated with a significant reduction in the infiltration of pathogenic Th1 and Th17 cells into the brain. Although FHES enhanced anti-inflammatory cytokine and Th2 responses, protection against EAE was independent of IL-4, IL-10, and Tregs. However, administration of FHES induced production of the type 2 cytokines IL-33 and IL-5, which promoted accumulation of eosinophils. FHES-induced expansion of eosinophils and protection against EAE was lost in IL-33(-/-) mice and upon neutralization of IL-5. Furthermore, transfer of FHES-induced or IL-33-induced eosinophils conferred protection against EAE. In addition, treatment of mice with recombinant IL-33 attenuated autoimmunity, and this was dependent on IL-5. To our knowledge, this study is the first to report a role for helminth-induced IL-5 and IL-33 in protection against autoimmunity. PMID:26673140

  20. Effect of perceived stress on cytokine production in healthy college students.

    PubMed

    Sribanditmongkol, Vorachai; Neal, Jeremy L; Patrick, Thelma E; Szalacha, Laura A; McCarthy, Donna O

    2015-04-01

    Chronic psychological stress impairs antibody synthesis following influenza vaccination. Chronic stress also increases circulating levels of proinflammatory cytokines and glucocorticoids in elders and caregivers, which can impair antibody synthesis. The purpose of this study was to determine whether psychological stress increases ex vivo cytokine production or decreases glucocorticoid sensitivity (GCS) of peripheral blood leukocytes from healthy college students. A convenience sample of Reserve Officer Training Corps (ROTC) students completed the Perceived Stress Scale (PSS). Whole blood was incubated in the presence of influenza vaccine and dexamethasone to evaluate production of interleukin-6 (IL-6), interleukin-1-beta (IL-1β), tumor necrosis factor-alpha (TNF-α), and interferon-gamma (IFN-γ). Multiple regression models controlling for age, gender, and grade point average revealed a negative relationship between PSS and GCS for vaccine-stimulated production of IL-1β, IL-6, and TNF-α. These data increase our understanding of the complex relationship between chronic stress and immune function. PMID:25125502

  1. Specific effect of the HLDF differentiation factor on the cytokine production potential of immunocompetent blood cells in stomach adenocarcinoma.

    PubMed

    Autenshlyus, A I; Kunts, T A; Mikhaylova, E S; Varaksin, N A; Bogachuk, A P; Lipkin, V M

    2016-07-01

    The cytokine production potential of immunocompetent cells from the blood of stomach adenocarcinoma patients was analyzed after the pretreatment of cells with the HLDF differentiation factor with subsequent exposure to polyclonal activators (HLDF+PA). IL-1β, IL-1Ra, TNFα, IL-2, IL-6, IL-8, IL-10, IL-17, IL-18, IL-18BPa, IFNγ, G-CSF, and GM-CSF were quantified in the supernatants after precipitation of the cells. Specific effects of HLDF+PA were manifested as an increase in the production of IL-8, IL-17, and GM-CSF due to suppression of Th1-dependent immune reactions in a Th17-mediated mechanism that is a part of a broader functional antagonism of Th1 and Th17 lymphocyte subpopulations. PMID:27595831

  2. Polysaccharides from Inonotus obliquus sclerotia and cultured mycelia stimulate cytokine production of human peripheral blood mononuclear cells in vitro and their chemical characterization.

    PubMed

    Xu, Xiangqun; Li, Juan; Hu, Yan

    2014-08-01

    Inonotus obliquus is an edible and medicinal mushroom to treat many diseases. In the present study, polysaccharides and fractions were isolated and purified by DEAE-52 and Sephadex G-200 chromatography from I. obliquus wild sclerotia, culture broth and cultured mycelia under submerged fermentation. The extracts and fractions could significantly induce the secretion of TNF-α, IFN-γ, IL-1β, and IL-2 in human peripheral blood mononuclear cells (PBMCs) and showed no toxicity to PBMCs. The stimulation effect of the six extracts and eight fractions on the four-cytokine production was dose-dependent. Sclerotial polysaccharides were more effective in the four-cytokine production at 150 μg/ml while exopolysaccharides and endopolysacchrides showed a much better effect on IL-1β production at 30 μg/ml. Purified fractions from exopolysaccharides and endopolysaccharides were more effective than the fraction from sclerotia in most cytokine production. These heteropolysaccharide-protein conjugates mainly contained glucose, galactose, and mannose. Protein content, molecular weight, monosaccharide molar ratio, and anomeric carbon configuration differed from each other and had effects on the cytokine induction activity of the polysaccharides to some extent. PMID:24867795

  3. p62/SQSTM1 Enhances NOD2-Mediated Signaling and Cytokine Production through Stabilizing NOD2 Oligomerization

    PubMed Central

    Park, Sangwook; Ha, Soon-Duck; Coleman, Macon; Meshkibaf, Shahab; Kim, Sung Ouk

    2013-01-01

    NOD2 is a cytosolic pattern-recognition receptor that senses muramyl dipeptide of peptidoglycan that constitutes the bacterial cell wall, and plays an important role in maintaining immunological homeostasis in the intestine. To date, multiple molecules have shown to be involved in regulating NOD2 signaling cascades. p62 (sequestosome-1; SQSTM1) is a multifaceted scaffolding protein involved in trafficking molecules to autophagy, and regulating signal cascades activated by Toll-like receptors, inflammasomes and several cytokine receptors. Here, we show that p62 positively regulates NOD2-induced NF-κB activation and p38 MAPK, and subsequent production of cytokines IL-1β and TNF-α. p62 associated with the nucleotide binding domain of NOD2 through a bi-directional interaction mediated by either TRAF6-binding or ubiquitin-associated domains. NOD2 formed a large complex with p62 in an electron-dense area of the cytoplasm, which increased its signaling cascade likely through preventing its degradation. This study for the first time demonstrates a novel role of p62 in enhancing NOD2 signaling effects. PMID:23437331

  4. Changes in Production of Cytokines by C57Bl/6J Mouse Spleen during Aggression Provoked by Social Stress.

    PubMed

    Idova, G V; Markova, E V; Gevorgyan, M M; Alperina, E L; Zhukova, E N

    2016-03-01

    The effect of aggressive behavior shaped under social stress of various durations on the production of proinflammatory cytokines by splenic cells was examined on C57BL/6J mice. Aggressive mice were characterized by enhanced production of IL-2 and IFN-γ (released by T helper type 1 cells) and reduced secretion of TNF-α, whose major producers are monocytes and macrophages. Elevation of IL-2 and IFN-γ in aggressive mice resulted from enhancement of spontaneous and Con A-stimulated production, the most pronounced effect was demonstrated by the with a longer period (20 days) of victories. In contrast, spontaneous production of TNF-α was similar in control and aggressive mice, although LPS-stimulated production of this cytokine decreased after 10- and 20-day stress. The possible mechanisms of the changes in cytokine production are discussed. PMID:27021091

  5. The Epidermal Growth Factor Receptor Increases Cytokine Production and Cutaneous Inflammation in Response to Ultraviolet Irradiation

    PubMed Central

    El-Abaseri, Taghrid Bahig; Repertinger, Susan K.; Hansen, Laura A.

    2013-01-01

    The epidermal growth factor receptor (EGFR) is activated in cutaneous keratinocytes upon ultraviolet (UV) exposure and has been implicated in ultraviolet-(UV-)induced inflammation and skin tumorigenesis. Egfr mutant mice and EGFR inhibitors were used to investigate the hypothesis that EGFR activation augments inflammation following UV irradiation. Topical treatment of mouse skin with the EGFR inhibitor AG1478 before UV exposure suppressed UV-induced erythema, edema, mast cell infiltration, and neutrophil infiltration. Genetic ablation of Egfr and EGFR inhibition by AG1478 also suppressed the increase in the proinflammatory cytokines tumor necrosis factor α (TNF-α), interleukin-1α, KC (murine IL-8), and cyclooxygenase-2 (COX-2) after UV exposure of cultured keratinocytes. Finally, genetic ablation of inhibition of EGFR in cultured keratinocytes decreased p38 activation after UV, while inhibition of p38 kinase reduced COX-2 expression after UV. These data demonstrate that EGFR regulates multiple aspects of UV-induced inflammation and suggest activation of p38 kinase leading to increased COX-2 and cytokine expression as one mechanism through which it acts. PMID:23878744

  6. Effect of Chemotherapy with Praziquantel on the Production of Cytokines and Morbidity Associated with Schistosomiasis Mansoni▿

    PubMed Central

    Martins-Leite, P.; Gazzinelli, G.; Alves-Oliveira, L. F.; Gazzinelli, A.; Malaquias, L. C. C.; Correa-Oliveira, R.; Teixeira-Carvalho, A.; Silveira, A. M. S.

    2008-01-01

    The objective of the present study was to test the hypothesis that treatment of schistosomiasis mansoni with praziquantel can alter significantly the immune response of patients and generate a reversal of the level of fibrosis. Peripheral blood mononuclear cell (PBMC) samples were collected from, and abdominal ultrasound examinations conducted on, volunteers infected with Schistosoma mansoni and living in an area where the disease is endemic, both prior to and one year after treatment with praziquantel. Subjects were classified into groups according to the level of pathology (i.e., absent, incipient, moderate, or severe fibrosis). PBMCs were stimulated with schistosome soluble egg antigens (SEA), and the levels of production of the cytokines gamma interferon (IFN-γ), tumor necrosis factor alpha, transforming growth factor β, and interleukin-4 (IL-4), IL-10, and IL-13 were determined. The chemotherapy was effective in reducing morbidity, particularly for individuals presenting with severe fibrosis. When levels of cytokine production in posttreatment PBMC cultures stimulated by SEA were categorized as low or high, significant differences in the distribution of IL-13 levels between groups presenting with or not presenting with fibrosis were established. Comparison of pre- and posttreatment SEA-induced cytokine levels in individuals who had experienced no change in the grade of fibrosis following chemotherapy revealed that the level of IFN-γ decreased in subjects with fibrosis whereas that of IL-10 decreased in individuals with and without fibrosis. The data suggest that chemotherapy is effective in reducing the morbidity of the disease and that the level of IL-13 may be a useful indicator of the persistence of fibrosis following treatment. PMID:18519730

  7. RIPK4 activates an IRF6-mediated proinflammatory cytokine response in keratinocytes.

    PubMed

    Kwa, Mei Qi; Scholz, Glen M; Reynolds, Eric C

    2016-07-01

    Keratinocytes of the oral mucosa and epidermis play key roles in host defense. In addition to functioning as a physical barrier, they also produce cytokines to elicit inflammation in response to infection or injury. We recently established that receptor-interacting protein kinase 4 (RIPK4) and interferon regulatory factor 6 (IRF6) function as a cell-intrinsic signaling axis to regulate keratinocyte differentiation. In this study, we have demonstrated a functional relationship between RIPK4 and IRF6 in the control of proinflammatory cytokine expression in keratinocytes. The overexpression of RIPK4 by oral keratinocytes induced the strong expression of CCL5 and CXCL11. In contrast, the expression of other cytokines (e.g. IL8 and TNF) was largely unaffected, thus demonstrating specificity in the induction of proinflammatory cytokine expression by RIPK4. CCL5 and CXCL11 expression were also induced in response to the activation of the PKC pathway, and gene silencing experiments indicated that their inducible expression was dependent on RIPK4 and IRF6. Moreover, gene reporter assays suggested that RIPK4 induces CCL5 and CXCL11 expression by stimulating the transactivation of their promoters by IRF6. Accordingly, our findings suggest that the RIPK4-IRF6 signaling axis plays a multifaceted role in barrier epithelial homeostasis through its regulation of both keratinocyte inflammation and differentiation. PMID:27014863

  8. NOS1-derived nitric oxide promotes NF-κB transcriptional activity through inhibition of suppressor of cytokine signaling-1

    PubMed Central

    Baig, Mirza Saqib; Zaichick, Sofia V.; Mao, Mao; de Abreu, Andre L.; Bakhshi, Farnaz R.; Hart, Peter C.; Saqib, Uzma; Deng, Jing; Chatterjee, Saurabh; Block, Michelle L.; Vogel, Stephen M.; Malik, Asrar B.; Consolaro, Marcia E.L.; Christman, John W.; Minshall, Richard D.

    2015-01-01

    The NF-κB pathway is central to the regulation of inflammation. Here, we demonstrate that the low-output nitric oxide (NO) synthase 1 (NOS1 or nNOS) plays a critical role in the inflammatory response by promoting the activity of NF-κB. Specifically, NOS1-derived NO production in macrophages leads to proteolysis of suppressor of cytokine signaling 1 (SOCS1), alleviating its repression of NF-κB transcriptional activity. As a result, NOS1−/− mice demonstrate reduced cytokine production, lung injury, and mortality when subjected to two different models of sepsis. Isolated NOS1−/− macrophages demonstrate similar defects in proinflammatory transcription on challenge with Gram-negative bacterial LPS. Consistently, we found that activated NOS1−/− macrophages contain increased SOCS1 protein and decreased levels of p65 protein compared with wild-type cells. NOS1-dependent S-nitrosation of SOCS1 impairs its binding to p65 and targets SOCS1 for proteolysis. Treatment of NOS1−/− cells with exogenous NO rescues both SOCS1 degradation and stabilization of p65 protein. Point mutation analysis demonstrated that both Cys147 and Cys179 on SOCS1 are required for its NO-dependent degradation. These findings demonstrate a fundamental role for NOS1-derived NO in regulating TLR4-mediated inflammatory gene transcription, as well as the intensity and duration of the resulting host immune response. PMID:26324446

  9. The synergistic effect of ethanol and shock insults on Caco-2 cytokine production and apoptosis.

    PubMed

    Amin, Parth B; Diebel, Lawrence N; Liberati, David M

    2008-05-01

    Gut epithelial cells are important in orchestrating immunoinflammatory responses in the gut and may impact systemic immunocompetent cells after shock and trauma. Ethanol (EtOH) intoxication is an important etiological factor in trauma and may increase the likelihood of posttraumatic septic complications. Both EtOH and gut I/R impair intestinal barrier function. However, their combined effects on intestinal epithelial cell function and barrier integrity are unknown. Confluent CaCO2 cell monolayers were grown in a two-chamber culture system and exposed to 0.1% EtOH and/or Escherichia coli C-25 under normoxic (21% O2) or hypoxia (5% O2) followed by reoxygenation (H/R). Apical and basal compartment supernatants were collected, and TNF and IL-6 were quantitated by enzyme-linked immunosorbent assay (picograms per milliliter). CaCO2 cell integrity was indexed by apoptosis and monolayer permeability. TNF-alpha production by CaCO2 cells are greatest when incubated with EtOH and then exposed to H/R group. The apical levels of TNF production are consistently higher than basal levels, although the trend toward increased cytokine production is similar in both compartments. IL-6 production by the CaCO2 cell is also greatest when CaCO2 cells incubated with EtOH undergoes H/R. Lastly, the findings in apoptosis mirror the data of the TNF production in the apical compartment. Ethanol and H/R have a synergistic effect on cytokine production and barrier dysfunction in this model. They may also contribute to increased infectious complications and posttraumatic organ failure. PMID:18414237

  10. Insulin-induced cytokine production in macrophages causes insulin resistance in hepatocytes.

    PubMed

    Manowsky, Julia; Camargo, Rodolfo Gonzalez; Kipp, Anna P; Henkel, Janin; Püschel, Gerhard P

    2016-06-01

    Overweight and obesity are associated with hyperinsulinemia, insulin resistance, and a low-grade inflammation. Although hyperinsulinemia is generally thought to result from an attempt of the β-cell to compensate for insulin resistance, there is evidence that hyperinsulinaemia itself may contribute to the development of insulin resistance and possibly the low-grade inflammation. To test this hypothesis, U937 macrophages were exposed to insulin. In these cells, insulin induced expression of the proinflammatory cytokines IL-1β, IL-8, CCL2, and OSM. The insulin-elicited induction of IL-1β was independent of the presence of endotoxin and most likely mediated by an insulin-dependent activation of NF-κB. Supernatants of the insulin-treated U937 macrophages rendered primary cultures of rat hepatocytes insulin resistant; they attenuated the insulin-dependent induction of glucokinase by 50%. The cytokines contained in the supernatants of insulin-treated U937 macrophages activated ERK1/2 and IKKβ, resulting in an inhibitory serine phosphorylation of the insulin receptor substrate. In addition, STAT3 was activated and SOCS3 induced, further contributing to the interruption of the insulin receptor signal chain in hepatocytes. These results indicate that hyperinsulinemia per se might contribute to the low-grade inflammation prevailing in overweight and obese patients and thereby promote the development of insulin resistance particularly in the liver, because the insulin concentration in the portal circulation is much higher than in all other tissues. PMID:27094035

  11. Sequential production of Th1 and Th2 cytokines in response to live bacillus Calmette-Guérin.

    PubMed Central

    Sander, B; Skansén-Saphir, U; Damm, O; Håkansson, L; Andersson, J; Andersson, U

    1995-01-01

    Causes of individual variation in susceptibility to mycobacterial diseases are only partly understood. An efficient cell-mediated immune response is crucial for resistance. Macrophages and T cells interact to eliminate the mycobacteria, partially through the effects of secreted cytokines. A vigorous anti-bacterial inflammatory response is sometimes accompanied by severe tissue damage, while immunosuppression leads to progressive infection. Here, live, attenuated Mycobacterium bovis, bacillus Calmette-Guérin (BCG), was used as a model antigen to study cytokine production at the single-cell level in response to mycobacteria. Peripheral blood mononuclear cells from healthy individuals were challenged in vitro and the kinetics and frequencies of cytokine-producing cells were studied by immunofluorescent visualization of intracellular cytokines. Fourteen cytokines were assayed; interleukin-1 alpha (IL-1 alpha), IL-1 beta, IL-1 receptor antagonist (IL-1ra), IL-2, IL-3, IL-4, IL-5, IL-6, IL-8, IL-10, interferon-gamma (IFN-gamma), tumour necrosis factor-alpha (TNF-alpha), TNF-beta and granulocyte-macrophage colony-stimulating factor (GM-CSF). A sequential production of T helper-1 (Th1) and T helper-2 (Th2) cytokines was induced by BCG. Early, at days 1-2 after stimulation, the response was dominated by monokines and a low IFN-gamma and TNF-beta production. At days 4-5 there was a marked production of Th1 lymphokines, with approximately 6% IFN-gamma+ cells, 4% TNF-beta+ cells and 2% IL-2+ cells. Late in the reaction, at days 10-12, a Th2 response with IL-4, IL-5 and IL-10 was detected, while the synthesis of Th1 lymphokines and monokines declined. Overall, our results provide further evidence of IFN-gamma as the major cytokine induced by mycobacteria in healthy individuals, but also suggest that Th2 cytokines participate in the response. Images Figure 1 Figure 2 Figure 3 PMID:8567014

  12. METEORIN-LIKE is a cytokine associated with barrier tissues and alternatively activated macrophages

    PubMed Central

    Ushach, Irina; Burkhardt, Amanda M.; Martinez, Cynthia; Hevezi, Peter A.; Gerber, Peter Arne; Buhren, Bettina Alexandra; Schrumpf, Holger; Valle-Rios, Ricardo; Vazquez, Monica I.; Homey, Bernhard; Zlotnik, Albert

    2014-01-01

    Cytokines are involved in many functions of the immune system including initiating, amplifying and resolving immune responses. Through bioinformatics analyses of a comprehensive database of gene expression (BIGE: Body Index of Gene Expression) we observed that a small secreted protein encoded by a poorly characterized gene called meteorin-like (METRNL), is highly expressed in mucosal tissues, skin and activated macrophages. Further studies indicate that Metrnl is produced by Alternatively Activated Macrophages (AAM) and M-CSF cultured bone marrow macrophages (M2-like macrophages). In the skin, METRNL is expressed by resting fibroblasts and IFNγ-treated keratinocytes. A screen of human skin-associated diseases showed significant over-expression of METRNL in psoriasis, prurigo nodularis, actinic keratosis and atopic dermatitis. METRNL is also up-regulated in synovial membranes of human rheumatoid arthritis. Taken together, these results indicate that Metrnl represents a novel cytokine, which is likely involved in both innate and acquired immune responses. PMID:25486603

  13. Ts6 and Ts2 from Tityus serrulatus venom induce inflammation by mechanisms dependent on lipid mediators and cytokine production.

    PubMed

    Zoccal, Karina Furlani; Bitencourt, Claudia da Silva; Sorgi, Carlos Artério; Bordon, Karla de Castro Figueiredo; Sampaio, Suely Vilela; Arantes, Eliane Candiani; Faccioli, Lúcia Helena

    2013-01-01

    Inflammatory mediators are thought to be involved in the systemic and local immune response induced by the Tityus serrulatus scorpion envenomation. New functional aspects of lipid mediators have recently been described. Here, we examine the unreported role of lipid mediators in cell recruitment to the peritoneal cavity after an injection with Ts2 or Ts6 toxins isolated from the T. serrulatus scorpion venom. In this report, we demonstrate that following a single intraperitoneal (i.p.) injection of Ts2 or Ts6 (250 μg/kg) in mice, there was an induction of leukocytosis with a predominance of neutrophils observed at 4, 24, 48 and 96 h. Moreover, total protein, leukotriene (LT)B(4), prostaglandin (PG)E(2) and pro-inflammatory cytokine levels were increased. We also observed an increase of regulatory cytokines, including interleukin (IL)-10, after the Ts2 injection. Finally, we observed that Ts2 or Ts6 injection in 5-lipoxygenase (LO) deficient mice and in wild type (WT) 129sv mice pre-treated with LTs and PGs inhibitors (MK-886 and celecoxib, respectively) a reduction the influx of leukocytes occurs in comparison to WT. The recruitment of these cells demonstrated a phenotype characteristic of neutrophils, macrophages, CD4 and CD8 lymphocytes expressing GR1+, F4/80+, CD3+/CD4+ and CD3+/CD8+, respectively. In conclusion, our data demonstrate that Ts2 and Ts6 induce inflammation by mechanisms dependent on lipid mediators and cytokine production. Ts2 may play a regulatory role whereas Ts6 exhibits pro-inflammatory activity exclusively. PMID:23085190

  14. Cytokine-Modulating Strategies and Newer Cytokine Targets for Arthritis Therapy

    PubMed Central

    Venkatesha, Shivaprasad H.; Dudics, Steven; Acharya, Bodhraj; Moudgil, Kamal D.

    2014-01-01

    Cytokines are the key mediators of inflammation in the course of autoimmune arthritis and other immune-mediated diseases. Uncontrolled production of the pro-inflammatory cytokines such as interferon-γ (IFN-γ), tumor necrosis factor α (TNFα), interleukin-6 (IL-6), and IL-17 can promote autoimmune pathology, whereas anti-inflammatory cytokines including IL-4, IL-10, and IL-27 can help control inflammation and tissue damage. The pro-inflammatory cytokines are the prime targets of the strategies to control rheumatoid arthritis (RA). For example, the neutralization of TNFα, either by engineered anti-cytokine antibodies or by soluble cytokine receptors as decoys, has proven successful in the treatment of RA. The activity of pro-inflammatory cytokines can also be downregulated either by using specific siRNA to inhibit the expression of a particular cytokine or by using small molecule inhibitors of cytokine signaling. Furthermore, the use of anti-inflammatory cytokines or cytokine antagonists delivered via gene therapy has proven to be an effective approach to regulate autoimmunity. Unexpectedly, under certain conditions, TNFα, IFN-γ, and few other cytokines can display anti-inflammatory activities. Increasing awareness of this phenomenon might help develop appropriate regimens to harness or avoid this effect. Furthermore, the relatively newer cytokines such as IL-32, IL-34 and IL-35 are being investigated for their potential role in the pathogenesis and treatment of arthritis. PMID:25561237

  15. Differential activation by cytokines of mitogen-activated protein kinases in bovine temporomandibular-joint disc cells.

    PubMed

    Landesberg, R; Takeuchi, E; Puzas, J E

    1999-01-01

    Temporomandibular disorders affect a significant proportion of the population. While their aetiology is not well defined, recent histological studies suggest that the majority are similar to the osteoarthritis seen in other joints. Inflammatory cytokines such as interleukin-1 and tumour necrosis factor-alpha appear to be important in the cascade of events leading to joint destruction in osteoarthritis. Here, cells from the disc of bovine temporomandibular joint were used to examine the response to various cytokines in vitro. Disc cells were stimulated with interleukin-1alpha, tumour necrosis factor-alpha, transforming growth factor-beta, platelet-derived growth factor, and basic fibroblast growth factor. Their effects were monitored by assessing the phosphorylation of selected signal-transduction intermediates using western blot. Mitogen-activated protein kinases (Erk 1, Erk 2) were rapidly phosphorylated by exposure to basic fibroblast growth factor, platelet-derived growth factor, and tumour necrosis factor-alpha, while interleukin-1alpha showed a weak response. Transforming growth factor-beta failed to activate these kinases. Examination of the effect of these cytokines on p38 (an intermediate in the stress-activated protein-kinase pathway) showed an increase in phosphorylated p38 when stimulated with tumour necrosis factor-alpha and interleukin-1alpha. The amounts of phosphorylated signal transducer and activator of transcription-3 did not significantly increase when the cells were exposed to any of the cytokines. PMID:10075149

  16. Diet-induced obesity attenuates cytokine production following an immune challenge

    PubMed Central

    Baumgarner, Katherine M.; Setti, Sharay; Diaz, Carolyn; Littlefield, Alyssa; Jones, Amanda; Kohman, Rachel A.

    2014-01-01

    Obesity increases susceptibility for numerous diseases and neurological disorders including cardiovascular disease, metabolic syndrome, and dementia. One factor that may contribute to the increased risk for these conditions is the development of chronic inflammation. The current study evaluated whether diet-induced obesity (DIO) affects cognitive performance by increasing neuroinflammation and prolonging the behavioral and inflammatory response to an immune challenge. Adult male C57BL/6J mice were fed a high-fat (60% fat) or control diet (10% fat) for 2 or 5 months. After consuming their respective diets for two months, sickness associated behaviors were assessed 4 and 24 hours after a lipopolysaccharide (LPS) or saline injection. In a separate experiment, DIO and control mice were tested for spatial learning in the water maze and challenged with LPS one month later. Peripheral cytokine production was assessed in adipose and spleen samples and the neuroinflammatory response was assessed in hippocampal, cortical, and brain samples. DIO impaired acquisition of a spatial learning task relative to control mice. However, these deficits are unlikely to be related to inflammation as DIO showed no changes in basal cytokine levels within the periphery or brain. Further, in response to LPS DIO mice showed comparable or attenuated levels of the proinflammatory cytokines interleukin-1β and interleukin-6 relative to control mice. DIO also reduced hippocampal expression of brain-derived neurotrophic factor and the pre-synaptic marker synaptophysin. Presently, the data indicate that DIO suppresses aspects of the immune response and that cognitive deficits associated with DIO may be related to reduced neurotrophic support rather than inflammation. PMID:24657736

  17. Enhanced cytokine production and collagen synthesis of gingival fibroblasts from patients with denture fibromatosis.

    PubMed

    Nakao, K; Yoneda, K; Osaki, T

    1995-04-01

    The mechanisms of denture-induced gingival hypertrophy remain to be explored. Since fibroblast proliferation and bone resorption characterize this disorder, the possible involvement of cytokines was investigated. Gingival fibroblasts were obtained from six patients with denture fibromatosis (Den-Fb) and six healthy persons (Nor-Fb). Cells were compared for proliferation, collagen synthesis, and cytokine production. Incorporation of [3H]thymidine (TdR) was increased in 3 Den-Fb and 3 Nor-Fb lines in the presence of interleukin-1-beta (IL-1 beta) (10 U/mL) and tumor necrosis factor-alpha (TNF-alpha) (from 10 to 100 U/mL). Proline incorporation in Den-Fb was higher than that in Nor-Fb, and the mean collagen synthesis level in Den-Fb was significantly higher than that in Nor-Fb. Although there was no difference between the up-regulation of protein synthesis in Den-Fb and Nor-Fb induced by IL-1 beta or TNF-alpha, the receptors for these cytokines were expressed at higher levels in cell lines which exhibited higher protein synthesis. Between Nor-Fb and Den-Fb, there was no difference in the generation of granulocyte-macrophage colony-stimulating factor (GM-CSF) or interleukin-6 (IL-6). However, most Den-Fb produced more GM-CSF and IL-6 in the presence of TNF-alpha. Enhancement of IL-6 generation by GM-CSF was also more prominent in Den-Fb. GM-CSF and IL-6 were synergistically generated after co-culture of the fibroblasts with gingival keratinocytes. GM-CSF and IL-6 generation of Den-Fb was markedly enhanced by co-culture of Den-Fb with peripheral blood mononuclear cells (PBMC), especially PBMC from patients.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7782537

  18. Specific Inhibition of Histone Deacetylase 8 Reduces Gene Expression and Production of Proinflammatory Cytokines in Vitro and in Vivo*

    PubMed Central

    Li, Suzhao; Fossati, Gianluca; Marchetti, Carlo; Modena, Daniela; Pozzi, Pietro; Reznikov, Leonid L.; Moras, Maria Luisa; Azam, Tania; Abbate, Antonio; Mascagni, Paolo; Dinarello, Charles A.

    2015-01-01

    ITF2357 (generic givinostat) is an orally active, hydroxamic-containing histone deacetylase (HDAC) inhibitor with broad anti-inflammatory properties, which has been used to treat children with systemic juvenile idiopathic arthritis. ITF2357 inhibits both Class I and II HDACs and reduces caspase-1 activity in human peripheral blood mononuclear cells and the secretion of IL-1β and other cytokines at 25–100 nm; at concentrations >200 nm, ITF2357 is toxic in vitro. ITF3056, an analog of ITF2357, inhibits only HDAC8 (IC50 of 285 nm). Here we compared the production of IL-1β, IL-1α, TNFα, and IL-6 by ITF2357 with that of ITF3056 in peripheral blood mononuclear cells stimulated with lipopolysaccharide (LPS), heat-killed Candida albicans, or anti-CD3/anti-CD28 antibodies. ITF3056 reduced LPS-induced cytokines from 100 to 1000 nm; at 1000 nm, the secretion of IL-1β was reduced by 76%, secretion of TNFα was reduced by 88%, and secretion of IL-6 was reduced by 61%. The intracellular levels of IL-1α were 30% lower. There was no evidence of cell toxicity at ITF3056 concentrations of 100–1000 nm. Gene expression of TNFα was markedly reduced (80%), whereas IL-6 gene expression was 40% lower. Although anti-CD3/28 and Candida stimulation of IL-1β and TNFα was modestly reduced, IFNγ production was 75% lower. Mechanistically, ITF3056 reduced the secretion of processed IL-1β independent of inhibition of caspase-1 activity; however, synthesis of the IL-1β precursor was reduced by 40% without significant decrease in IL-1β mRNA levels. In mice, ITF3056 reduced LPS-induced serum TNFα by 85% and reduced IL-1β by 88%. These data suggest that specific inhibition of HDAC8 results in reduced inflammation without cell toxicity. PMID:25451941

  19. Review of the innate immune response in acne vulgaris: activation of Toll-like receptor 2 in acne triggers inflammatory cytokine responses.

    PubMed

    Kim, Jenny

    2005-01-01

    Acne vulgaris is a common disorder that affects 40-50 million people in the USA alone. The pathogenesis of acne is multifactorial, including hormonal, microbiological and immunological mechanisms. One of the factors that contributes to the pathogenesis of acne is Propionibacterium acnes; yet, the molecular mechanism by which P. acnes induces inflammation is not known. Recent studies have demonstrated that microbial agents trigger cytokine responses via Toll-like receptors (TLRs). TLRs are pattern recognition receptors that recognize pathogen-associated molecular patterns conserved among microorganisms and elicit immune responses. We investigated whether TLR2 mediates P. acnes-induced cytokine production in acne. Using transfectant cells we found that TLR2 was sufficient for NF-kappaB activation in response to P. acnes. In addition, peritoneal macrophages from wild-type, TLR6 knockout and TLR1 knockout mice, but not TLR2 knockout mice, produced IL-6 in response to P. acnes.P. acnes induced activation of IL-12 and IL-8 production by primary human monocytes, and this cytokine production was inhibited by anti-TLR2-blocking antibody. Finally, in acne lesions, TLR2 was expressed on the cell surface of macrophages surrounding pilosebaceous follicles. These data suggest that P. acnes triggers inflammatory cytokine responses in acne by activation of TLR2. As such, TLR2 may provide a novel target for the treatment of this common skin disease. PMID:16205063

  20. Chronic Ethanol consumption modulates growth factor release, mucosal cytokine production and microRNA expression in nonhuman primates

    PubMed Central

    Asquith, Mark; Pasala, Sumana; Engelmann, Flora; Haberthur, Kristen; Meyer, Christine; Park, Byung; Grant, Kathleen A.; Messaoudi, Ilhem

    2013-01-01

    BACKGROUND Chronic alcohol consumption has been associated with enhanced susceptibility to both systemic and mucosal infections. However, the exact mechanisms underlying this enhanced susceptibility remain incompletely understood. METHODS Using a nonhuman primate model of ethanol self-administration, we examined the impact of chronic alcohol exposure on immune homeostasis, cytokine and growth factor production in peripheral blood, lung and intestinal mucosa following twelve months of chronic ethanol exposure. RESULTS Ethanol exposure inhibited activation-induced production of growth factors HGF, G-CSF and VEGF by peripheral blood mononuclear cells (PBMC). Moreover, ethanol significantly reduced the frequency of colonic Th1 and Th17 cells in a dose-dependent manner. In contrast, we did not observe differences in lymphocyte frequency or soluble factor production in the lung of ethanol-consuming animals. To uncover mechanisms underlying reduced growth factor and Th1/Th17 cytokine production, we compared expression levels of microRNAs in PBMC and intestinal mucosa. Our analysis revealed ethanol-dependent upregulation of distinct microRNAs in affected tissues (miR-181a and miR-221 in PBMC; miR-155 in colon). Moreover, we were able to detect reduced expression of the transcription factors STAT3 and ARNT, which regulate expression of VEGF, G-CSF and HGF and contain targets for these microRNAs. To confirm and extend these observations, PBMC were transfected with either mimics or antagomirs of miR181 and 221and protein levels of the transcription factors and growth factors were determined. Transfection of microRNA mimics led to a reduction in both STAT-3/ARNT as well as VEGF/HGF/G-CSF levels. The opposite outcome was observed when microRNA antagomirs were transfected CONCLUSION Chronic ethanol consumption significantly disrupts both peripheral and mucosal immune homeostasis, and this dysregulation may be mediated by changes in microRNA expression. PMID:24329418

  1. Effect of anti-asthma Chinese medicine Chuankezhi on the anti-tumor activity of cytokine-induced killer cells

    PubMed Central

    Zhao, Jing-Jing; Pan, Ke; Wang, Qi-Jing; Xu, Zheng-Di; Weng, De-Sheng; Li, Jian-Jun; Li, Yong-Qiang; Xia, Jian-Chuan

    2013-01-01

    Chuankezhi (CKZ), a new Chinese medicine, plays an important role in immunoregulation. Cytokine-induced killer (CIK) cells have been commonly used for immunotherapy in recent years. In this study, we aimed to investigate the immunoregulatory effect of CKZ on CIK cells. Peripheral blood monocytes were isolated from healthy donors, and CIK cells were generated by culturing monocytes with interferon-gamma (IFN-γ) and interleukin 2. Different concentrations of CKZ were added on day 2. After incubation for 14 days in culture, the antitumor effects of CIK cells were measured by cytotoxicity assay. Flow cytometry was used to explore the effect of CKZ on CIK cell immunophenotype, intracellular cytokine production, and apoptosis. The effect of CKZ on the antitumor activity of CIK cells in nude mice was also investigated. CKZ increased the percentage of CD3+CD56+ CIK cells but did not significantly change the percentage of CD4+, CD8+, or CD4+CD25+ CIK cells. CKZ-conditioned CIK cells showed a greater ability to kill tumor cells, as well as a higher frequency of IFN-γ and TNF-α production, compared with the CIK cells in the control group. CKZ also suppressed the apoptosis of CIK cells in vitro. Furthermore, CKZ combined with CIK cells had a stronger suppressive effect on tumor growth in vivo than the CIK, CKZ, or normal saline control groups. Our results indicate that CKZ enhances the antitumor activity of CIK cells and is a potential medicine for tumor immunotherapy. PMID:23470144

  2. Effects of acute ethanol exposure on cytokine production by primary airway smooth muscle cells.

    PubMed

    Kaphalia, Lata; Kalita, Mridul; Kaphalia, Bhupendra S; Calhoun, William J

    2016-02-01

    Both chronic and binge alcohol abuse can be significant risk factors for inflammatory lung diseases such as acute respiratory distress syndrome and chronic obstructive pulmonary disease. However, metabolic basis of alcohol-related lung disease is not well defined, and may include key metabolites of ethanol [EtOH] in addition to EtOH itself. Therefore, we investigated the effects of EtOH, acetaldehyde [ACE], and fatty acid ethyl esters [FAEEs] on oxidative stress, endoplasmic reticulum (ER) stress, AMP-activated protein kinase (AMPK) signaling and nuclear translocation of phosphorylated (p)-NF-κB p65 in primary human airway smooth muscle (HASM) cells stimulated to produce cytokines using LPS exposure. Both FAEEs and ACE induced evidence of cellular oxidative stress and ER stress, and increased p-NF-κB in nuclear extracts. EtOH and its metabolites decreased p-AMPKα activation, and induced expression of fatty acid synthase, and decreased expression of sirtuin 1. In general, EtOH decreased secretion of IP-10, IL-6, eotaxin, GCSF, and MCP-1. However, FAEEs and ACE increased these cytokines, suggesting that both FAEEs and ACE as compared to EtOH itself are proinflammatory. A direct effect of EtOH could be consistent with blunted immune response. Collectively, these two features of EtOH exposure, coupled with the known inhibition of innate immune response in our model might explain some clinical manifestations of EtOH exposure in the lung. PMID:26721307

  3. The PHD motif of Map3k1 activates cytokine-dependent MAPK signaling

    PubMed Central

    Gallagher, Ewen; Suddason, Tesha

    2015-01-01

    We generated a mutation in the gene encoding mitogen-activated protein kinase kinase kinase 1 (Map3k1) that results in a protein with an inactive plant homeodomain (PHD). Map3k1mPHD cells are defective in cytokine-mediated MAPK signaling. Protein array identified transforming growth factor (TGF-β)-activated kinase 1 binding protein 1 (Tab1) as a PHD substrate. The Map3k1 PHD transfers Lys63-linked poly-ubiquitin onto Tab1 to activate MAPKs. PMID:27308457

  4. Dengue virus NS1 enhances viral replication and pro-inflammatory cytokine production in human dendritic cells.

    PubMed

    Alayli, Farah; Scholle, Frank

    2016-09-01

    Dengue virus (DV) has become the most prevalent arthropod borne virus due to globalization and climate change. It targets dendritic cells during infection and leads to production of pro-inflammatory cytokines and chemokines. Several DV non-structural proteins (NS) modulate activation of human dendritic cells. We investigated the effect of DV NS1 on human monocyte-derived dendritic cells (mo-DCs) during dengue infection. NS1 is secreted into the serum of infected individuals where it interacts with various immune mediators and cell types. We purified secreted DV1 NS1 from supernatants of 293T cells that over-express the protein. Upon incubation with mo-DCs, we observed NS1 uptake and enhancement of early DV1 replication. As a consequence, mo-DCs that were pre-exposed to NS1 produced more pro-inflammatory cytokines in response to subsequent DV infection compared to DCs exposed to heat-inactivated NS1 (HNS1). Therefore the presence of exogenous NS1 is able to modulate dengue infection in mo-DCs. PMID:27348054

  5. The use of a spaceflight-compatible device to perform WBC surface marker staining and whole-blood mitogenic activation for cytokine detection by flow cytometry

    NASA Technical Reports Server (NTRS)

    Crucian, B. E.; Sams, C. F.

    1999-01-01

    Significant changes have recently been described regarding circulating peripheral immune cells immediately following spaceflight. Existing methods for immunophenotype staining of peripheral blood in terrestrial labs do not meet the constraints for flight on the Space Shuttle. We have recently described the development and use of the Whole Blood Staining Device (WBSD), a simple device for staining flow cytometry specimens during spaceflight. When preparing samples with the WBSD, all liquids are safely contained as the cells are moved through staining, lysis and fixation steps. Here we briefly review the use of the WBSD, and then describe another versatile adaptation, a modification to perform intracellular staining of cytokines for detection by flow cytometry. Alterations in cytokine production have been reported both in ground-based simulated microgravity culture and in astronaut samples returning from spaceflight. Data regarding microgravity effects on cytokine production for specific subpopulations of cells is lacking. Flow cytometric cytokine analysis offers the unique ability to perform simultaneous surface marker analysis and positively identity cytokine producing subsets of cells. The utilization of the WBSD provides the ability to perform rapid and routine mitogenic activation during spaceflight coupled with the ability to perform simultaneous surface marker analysis. The only external requirements for this procedure are an in-flight 37-degree incubator and the capacity for 4-degree storage.

  6. Immunomodulatory Effects of Dioscoreae Rhizome Against Inflammation through Suppressed Production of Cytokines Via Inhibition of the NF-κB Pathway

    PubMed Central

    Kim, Seulah; Shin, Seulmee; Hyun, Bobae; Kong, Hyunseok; Han, Shinha; Lee, Aeri; Lee, Seungjeong

    2012-01-01

    Dioscoreae Rhizome (DR) has been used in traditional medicine to treat numerous diseases and is reported to have anti-diabetes and anti-tumor activities. To identify a bioactive traditional medicine with anti-inflammatory activity of a water extract of DR (EDR), we determined the mRNA and protein levels of proinflammatory cytokines in macrophages through RT-PCR and western blot analysis and performed a FACS analysis for measuring surface molecules. EDR dose-dependently decreased the production of NO and pro-inflammatory cytokines such as IL-1β, IL-6, TNF-α, and PGE2, as well as mRNA levels of iNOS, COX-2, and pro-inflammatory cytokines, as determined by western blot and RT-PCR analysis, respectively. The expression of co-stimulatory molecules such as B7-1 and B7-2 was also reduced by EDR. Furthermore, activation of the nuclear transcription factor, NF-κB, but not that of IL-4 and IL-10, in macrophages was inhibited by EDR. These results show that EDR decreased pro-inflammatory cytokines via inhibition of NF-κB-dependent inflammatory protein level, suggesting that EDR could be a useful immunomodulatory agent for treating immunological diseases. PMID:23213311

  7. Cytokines and immune surveillance in humans

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1993-01-01

    Evidence from both human and rodent studies has indicated that alterations in immunological parameters occur after space flight. Among the parameters shown, by us and others, to be affected is the production of interferons. Interferons are a family of cytokines that are antiviral and play a major role in regulating immune responses that control resistance to infection. Alterations in interferon and other cytokine production and activity could result in changes in immunity and a possible compromise of host defenses against both opportunistic and external infections. The purpose of the present study is to further explore the effects of space flight on cytokines and cytokine-directed immunological function.

  8. Inflammatory cytokines in vitro production are associated with Ala16Val superoxide dismutase gene polymorphism of peripheral blood mononuclear cells.

    PubMed

    Montano, Marco Aurélio Echart; da Cruz, Ivana Beatrice Mânica; Duarte, Marta Maria Medeiros Frescura; Krewer, Cristina da Costa; da Rocha, Maria Izabel de Ugalde Marques; Mânica-Cattani, Maria Fernanda; Soares, Felix Alexandre Antunes; Rosa, Guilherme; Maris, Angélica Francesca; Battiston, Francielle Garghetti; Trott, Alexis; Lera, Juan Pablo Barrio

    2012-10-01

    Obesity is considered a chronic low-grade inflammatory state associated with a chronic oxidative stress caused by superoxide production (O(2)(-)). The superoxide dismutase manganese dependent (SOD2) catalyzes O(2)(-) in H(2)O(2) into mitochondria and is encoded by a single gene that presents a common polymorphism that results in the replacement of alanine (A) with a valine (V) in the 16 codon. This polymorphism has been implicated in a decreased efficiency of SOD2 transport into targeted mitochondria in V allele carriers. Previous studies described an association between VV genotype and metabolic diseases, including obesity and diabetes. However, the causal mechanisms to explain this association need to be more elucidated. We postulated that the polymorphism could influence the inflammatory response. To test our hypothesis, we evaluated the in vitro cytokines production by human peripheral blood mononuclear cells (PBMCs) carrier's different Ala16Val-SOD2 genotypes (IL-1, IL-6, IL-10, TNF-α, IFN-γ). Additionally, we evaluated if the culture medium glucose, enriched insulin, could influence the cytokine production. Higher levels of proinflammatory cytokines were observed in VV-PBMCs when compared to AA-PBMCs. However, the culture medium glucose and enriched insulin did not affect cytokine production. The results suggest that Ala16Val-SOD2 gene polymorphism could trigger the PBMCs proinflammatory cytokines level. However, discerning if a similar mechanism occurs in fat cells is an open question. PMID:22688013

  9. CDCP1 Identifies a CD146 Negative Subset of Marrow Fibroblasts Involved with Cytokine Production

    PubMed Central

    Iwata, Mineo; Torok-Storb, Beverly; Wayner, Elizabeth A.; Carter, William G.

    2014-01-01

    In vitro expanded bone marrow stromal cells contain at least two populations of fibroblasts, a CD146/MCAM positive population, previously reported to be critical for establishing the stem cell niche and a CD146-negative population that expresses CUB domain-containing protein 1 (CDCP1)/CD318. Immunohistochemistry of marrow biopsies shows that clusters of CDCP1+ cells are present in discrete areas distinct from areas of fibroblasts expressing CD146. Using a stromal cell line, HS5, which approximates primary CDCP1+ stromal cells, we show that binding of an activating antibody against CDCP1 results in tyrosine-phosphorylation of CDCP1, paralleled by phosphorylation of Src Family Kinases (SFKs) Protein Kinase C delta (PKC-δ). When CDCP1 expression is knocked-down by siRNA, the expression and secretion of myelopoietic cytokines is increased. These data suggest CDCP1 expression can be used to identify a subset of marrow fibroblasts functionally distinct from CD146+ fibroblasts. Furthermore the CDCP1 protein may contribute to the defining function of these cells by regulating cytokine expression. PMID:25275584

  10. Stretch-induced human myometrial cytokines enhance immune cell recruitment via endothelial activation

    PubMed Central

    Lee, Yu-Hui; Shynlova, Oksana; Lye, Stephen J

    2015-01-01

    Spontaneous term labour is associated with amplified inflammatory events in the myometrium including cytokine production and leukocyte infiltration; however, potential mechanisms regulating such events are not fully understood. We hypothesized that mechanical stretch of the uterine wall by the growing fetus facilitates peripheral leukocyte extravasation into the term myometrium through the release of various cytokines by uterine myocytes. Human myometrial cells (hTERT-HM) were subjected to static mechanical stretch; stretch-conditioned media was collected and analysed using 48-plex Luminex assay and ELISA. Effect of stretch-conditioned media on cell adhesion molecule expression of human uterine microvascular endothelial cells (UtMVEC-Myo) was detected by quantitative polymerase chain reaction (qPCR) and flow cytometry; functional assays testing leukocyte–endothelial interactions: adhesion of leukocytes to endothelial cells and transendothelial migration of calcein-labelled primary human neutrophils as well as migration of THP-1 monocytic cells were assessed by fluorometry. The current in vitro study demonstrated that mechanical stretch (i) directly induces secretion of multiple cytokines and chemokines by hTERT-HM cells (IL-6, CXCL8, CXCL1, migration inhibitory factor (MIF), VEGF, G-CSF, IL-12p70, bFGF and platelet-derived growth factor subunit B (PDGF-bb), P<0.05); stretch-induced cytokines (ii) enhance leukocyte adhesion to the endothelium of the surrounding uterine microvasculature by (iii) inducing the expression of endothelial cell adhesion molecules and (iv) directing the transendothelial migration of peripheral leukocytes. (vi) Chemokine-neutralizing antibodies and broad-spectrum chemokine inhibitor block leukocyte migration. Our data provide a proof of mechanical regulation for leukocyte recruitment from the uterine blood vessels to the myometrium, suggesting a putative mechanism for the leukocyte infiltrate into the uterus during labour and postpartum

  11. Modulation of Female Genital Tract-Derived Dendritic Cell Migration and Activation in Response to Inflammatory Cytokines and Toll-Like Receptor Agonists

    PubMed Central

    Shey, Muki S.; Maharaj, Niren; Archary, Derseree; Ngcapu, Sinaye; Garrett, Nigel; Abdool Karim, Salim; Passmore, Jo-Ann S.

    2016-01-01

    HIV transmission across the genital mucosa is a major mode of new HIV infections in women. The probability of infection may be influenced by several factors including recruitment and activation of HIV target cells, such as dendritic cells (DCs) and cytokine production, associated with genital inflammation. We evaluated the role of inflammatory cytokines and TLR signaling in migration and activation of genital tract DCs in the human cervical explant model. Hysterectomy tissues from 10 HIV-negative and 7 HIV-positive donor women were separated into ecto- and endocervical explants, and incubated with inflammatory cytokines (TNF-α, IL-1β, IL-8, MIP-1β) or agonists for TLR4 (LPS), TLR2/1 (PAM3) and TLR7/8 (R848). Migration (frequency) and activation (HLA-DR expression) of myeloid and plasmacytoid DCs and Langerhans cells were measured by flow cytometry. We observed that cytokines, LPS and PAM3 induced activation of migrating myeloid and plasmacytoid DCs. LPS induced a 3.6 fold lower levels of migration of plasmacytoid DCs from HIV-infected women compared with HIV-uninfected women (median activation indices of 2.932 vs 0.833). There was however a 4.5 fold increase in migration of Langerhans cells in HIV-infected compared with HIV-uninfected women in response to cytokines (median activation indices of 3.539 vs 0.77). Only TLR agonists induced migration and activation of DCs from endocervical explants. Hormonal contraception use was associated with an increase in activation of DC subsets in the endo and ectocervical explants. We conclude that inflammatory signals in the female genital tract induced DC migration and activation, with possible important implications for HIV susceptibility of cervical tissues. PMID:27171482

  12. Cytokine production in arthritis susceptible and resistant rats: a study with arthritogenic and non-arthritogenic Lactobacillus cell walls.

    PubMed

    Simelyte, E; Isomäki, P; Rimpiläinen, M; Zhang, X; Toivanen, P

    2001-02-01

    The basis of the different susceptibility to bacterial cell wall-induced arthritis between Lewis and Fischer rats is unclear. Likewise, it is not known why cell walls of some species of Lactobacillus are arthritogenic and those of others are not. With these two questions in mind, we investigated the role of anti-inflammatory (interleukin (IL)-10, IL-4) and proinflammatory (tumour necrosis factor (TNF)-alpha, IL-1 beta) cytokines in Lewis and Fischer rats injected intraperitoneally with cell walls from arthritogenic or nonarthritogenic species of Lactobacillus. Cytokine levels in the serum and in vitro production by peritoneal macrophages and splenocytes were studied. The results obtained indicate that the differences in the production of IL-10, IL-4, TNF-alpha or IL-1 beta do not explain the difference in the arthritis susceptibility between Lewis and Fischer rats. Likewise, the arthritogenicity of different Lactobacillus cell walls appears not to be dependent on their capacity to stimulate cytokine production. PMID:11169216

  13. Cytokine gene expression and activation of NF-{kappa}B in aniline-induced splenic toxicity

    SciTech Connect

    Wang Jianling; Kannan, Subburaj; Li Hui; Firoze Khan, M. . E-mail: mfkhan@utmb.edu

    2005-02-15

    Exposure to aniline results in selective toxicity to the spleen, leading to a variety of sarcomas on chronic exposure in rats, and fibrosis appears to be an important initiating preneoplastic lesion of the spleen. However, the molecular mechanism(s) by which aniline leads to fibrogenic response is not well understood. Previously, we have shown that aniline exposure leads to iron overload and induction of oxidative stress in the spleen. We hypothesized that aniline-induced oxidative stress in the spleen causes transcriptional up-regulation of fibrogenic cytokines via activation of redox-sensitive transcription factor, nuclear factor-kappa B (NF-{kappa}B). To test this hypothesis, male SD rats were treated with 0.5 mmol/kg/day aniline hydrochloride via drinking water for 30 days. Cytokine mRNAs were measured by real-time quantitative PCR, while cytokine release was determined in the supernatants of the cultured splenocytes using specific ELISAs. IL-1{alpha}, IL-6, and TNF-{alpha} mRNA levels showed 6.9-, 2.9-, and 2.6-fold increases, respectively, in the spleens of aniline-treated rats in comparison to the controls. The increases in mRNA levels were associated with enhanced secretion of these cytokines in the splenocyte culture supernatants. NF-{kappa}B p65 level in the nuclear extracts of cultured splenocytes of aniline-treated rats showed a 2-fold increase in comparison to the controls as quantitated by NF-{kappa}B p65-specific ELISA. The binding activity of NF-{kappa}B, determined by electrophoretic mobility shift assay (EMSA), also showed an increase in NF-{kappa}B binding in the nuclear extracts of the splenocytes from aniline-treated rats. The specificity of NF-{kappa}B binding was further confirmed by supershift assays. The results indicate that aniline exposure causes enhanced expression of IL-1{alpha}, IL-6, and TNF-{alpha}, both at mRNA and protein levels, suggesting their role in splenic fibrosis. Also, the increased NF-{kappa}B binding activity suggests

  14. Dual Requirement of Cytokine and Activation Receptor Triggering for Cytotoxic Control of Murine Cytomegalovirus by NK Cells

    PubMed Central

    Pak-Wittel, Melissa A.; Yang, Liping; Schreiber, Robert D.; Yokoyama, Wayne M.

    2015-01-01

    Natural killer (NK) cells play a critical role in controlling murine cytomegalovirus (MCMV) and can mediate both cytokine production and direct cytotoxicity. The NK cell activation receptor, Ly49H, is responsible for genetic resistance to MCMV in C57BL/6 mice. Recognition of the viral m157 protein by Ly49H is sufficient for effective control of MCMV infection. Additionally, during the host response to infection, distinct immune and non-immune cells elaborate a variety of pleiotropic cytokines which have the potential to impact viral pathogenesis, NK cells, and other immune functions, both directly and indirectly. While the effects of various immune deficiencies have been examined for general antiviral phenotypes, their direct effects on Ly49H-dependent MCMV control are poorly understood. To specifically interrogate Ly49H-dependent functions, herein we employed an in vivo viral competition approach to show Ly49H-dependent MCMV control is specifically mediated through cytotoxicity but not IFNγ production. Whereas m157 induced Ly49H-dependent degranulation, efficient cytotoxicity also required either IL-12 or type I interferon (IFN-I) which acted directly on NK cells to produce granzyme B. These studies demonstrate that both of these distinct NK cell-intrinsic mechanisms are integrated for optimal viral control by NK cells. PMID:26720279

  15. Antiviral activity of various interferons and pro-inflammatory cytokines in non-transformed cultured hepatocytes infected with hepatitis B virus.

    PubMed

    Isorce, Nathalie; Testoni, Barbara; Locatelli, Maëlle; Fresquet, Judith; Rivoire, Michel; Luangsay, Souphalone; Zoulim, Fabien; Durantel, David

    2016-06-01

    In HBV-infected patients, therapies with nucleoside analogues or IFNα remain ineffective in eradicating the infection. Our aim was to re-analyze the anti-HBV activity of a large panel of IFNs and cytokines in vitro using non-transformed cultured hepatocytes infected with HBV, to identify new immune-therapeutic options. HepaRG cells and primary human hepatocytes were infected with HBV and, when infection was established, treated with various concentrations of different IFNs or inflammatory cytokines. Viral parameters were evaluated by quantifying HBV nucleic acids by qPCR and Southern Blot, and secreted HBV antigens were evaluated using ELISA. The cytokines tested were type-I IFNs, IFNγ, type-III IFNs, TNFα, IL-6, IL-1β, IL-18 as well as nucleos(t)ide analogues tenofovir and ribavirin. Cytokines and drugs, with the exception of IL-18 and ribavirin, exhibited a suppressive effect on HBV replication at least as strong as, but often stronger than, IFNα. The cytokine presenting the highest effect on HBV DNA was IL-1β, which exerted its inhibition within picomolar range. Importantly, we noticed differential effects on other parameters (HBV RNA, HBeAg, HBsAg) between both IFNs and inflammatory cytokines, thus suggesting different mechanisms of action. The combination of IL-1β and already used therapies, i.e. IFNα or tenofovir, demonstrated a stronger or similar anti-HBV activity. IL-1β was found to have a very potent antiviral effect against HBV in vitro. HBV was previously shown to promptly inhibit IL-1β production in Kupffer cells. Strategies aiming at unlocking this inhibition and restoring local production of IL-1β may help to further inhibit HBV replication in vivo. PMID:26971407

  16. Unique cytokine production profile following stimulation with DNA in macrophages from NZB/W F1 mice.

    PubMed

    Ogawa, Yoshiyuki; Yoshinaga, Takaharu; Nishikawa, Makiya; Takakura, Yoshinobu

    2008-06-01

    Nucleosome is the major autoantigen in systemic lupus erythematosus (SLE). Professional antigen-presenting cells (APCs), such as macrophages (M Phis) and dendritic cells (DCs), play the central roles in the acquisition of Ag-specific immune responses and activation of such APCs is required for the efficient Ag-presentation. Therefore, adjuvant activity of DNA in nucleosomes would cause the prominent effects on the production of anti-nucleosome antibodies. In this study, we report that elicited peritoneal M Phis from New Zealand Black/White F1 (NZB/W) mice showed a unique cytokine production profile following stimulation with DNA. M Phis from 5-week old NZB/W mice produced a higher amount of IL-6 and about a half amount of TNF-alpha after stimulation with DNA complexed with cationic liposomes compared with those from control ICR mice. These results suggest that M Phis of NZB/W mice have altered responsiveness to DNA and this might elevate the antigenicity of nucleosomes to induce the production of anti-nucleosome antibodies. PMID:18520062

  17. Effect of endothelin antagonism on the production of cytokines in eosinophilic airway inflammation.

    PubMed

    Finsnes, F; Lyberg, T; Christensen, G; Skjønsberg, O H

    2001-04-01

    Endothelin (ET)-1 has been launched as an important mediator in bronchial asthma, which is an eosinophilic airway inflammation. However, the interplay between ET-1 and other proinflammatory mediators during the development of airway inflammation has not been elucidated. We wanted to study 1) whether the production of ET-1 precedes the production of other proinflammatory mediators and 2) whether ET-1 stimulates the production of these mediators within the airways. These hypotheses were studied during the development of an eosinophilic airway inflammation in rats. The increase in ET-1 mRNA level in lung tissue preceded the increase in mRNA levels of tumor necrosis factor-alpha, interleukin (IL)-1beta, and IL-8. Treatment of the animals with the ET receptor antagonist bosentan resulted in a substantial decrease in the concentrations of tumor necrosis factor-alpha, IL-4, IL-1beta, interferon-gamma, and ET-1 in bronchoalveolar lavage fluid. In conclusion, the synthesis of ET-1 as measured by increased mRNA level precedes the synthesis of other proinflammatory cytokines of importance for the development of an eosinophilic airway inflammation, and ET antagonism inhibits the production of these mediators within the airways. Whether treatment with ET antagonists will prove beneficial for patients with eosinophilic airway inflammations like bronchial asthma is not yet known. PMID:11238005

  18. Cytokine regulation of granulocyte-macrophage colony-stimulating factor (GM-CSF) production by human retinal pigment epithelial cells

    PubMed Central

    Crane, I J; Kuppner, M C; Mckillop-Smith, S; Wallace, C A; Forrester, J V

    1999-01-01

    GM-CSF is an important regulator of macrophage, granulocyte and dendritic cell behaviour and function. These cell types have been implicated in the retinal damage characteristic of endogenous posterior uveitis. Dendritic cells in the choroid have access to retinal antigens processed by the retinal pigment epithelial (RPE) cells of the blood–retinal barrier and are thought to be candidates for the presentation of antigen in uveoretinitis. We therefore investigated the production of GM-CSF and its regulation in human RPE cells. IL-1β, tumour necrosis factor-alpha (TNF-α) and transforming growth factor-beta (TGF-β) all stimulated GM-CSF production by RPE cells and a combination of these cytokines increased GM-CSF production over five-fold compared with that with the individual cytokines alone. Interferon-gamma (IFN-γ) rapidly down-regulated these responses. IFN-γ did not appear to be acting directly on IL-1β or via the synthesis of another protein. GM-CSF mRNA expression showed the same pattern of response to these cytokines, indicating transcriptional or pre-transcriptional regulation, and there was no evidence that IFN-γ was acting by destabilizing GM-CSF mRNA. These results are generally important in understanding the ways in which cytokine regulation differs between different cell types and also more specifically for determining ways in which a cytokine with a significant role in the development of autoimmune uveoretinitis may be manipulated. PMID:9933455

  19. Inhibitory effects of geranium essential oil and its major component, citronellol, on degranulation and cytokine production by mast cells.

    PubMed

    Kobayashi, Yuko; Sato, Harumi; Yorita, Mika; Nakayama, Hiroto; Miyazato, Hironari; Sugimoto, Keiichiro; Jippo, Tomoko

    2016-06-01

    We investigated the effects of geranium essential oil (GEO) on anaphylaxis. GEO can exert antioxidant and anti-inflammatory effects, but its roles in allergic reactions are incompletely understood. Here, we used mouse cells to show that GEO inhibited the degranulation of cultured mast cells (CMCs). Citronellol is the major component of GEO and inhibited CMC degranulation. The l-enantiomer of citronellol more effectively suppressed CMC degranulation than did d-citronellol. We also examined whether citronellol could inhibit the immunoglobulin (Ig) E-induced production of tumor necrosis factor (TNF)-α. Treatment with various concentrations of citronellol before CMC activation with IgE significantly inhibited the induction of TNF-α in a dose-dependent manner. Mechanistically, citronellol suppressed the phosphorylation of mitogen-activated protein kinase (ERK), which is critical for ERK activation and the production of inflammatory cytokines in mast cells. These findings suggest that citronellol may represent a candidate compound for the effective treatment of allergic diseases. PMID:26927807

  20. JANEX-1, a JAK3 inhibitor, protects pancreatic islets from cytokine toxicity through downregulation of NF-{kappa}B activation and the JAK/STAT pathway

    SciTech Connect

    Lv, Na; Kim, Eun-Kyung; Song, Mi-Young; Choi, Ha-Na; Moon, Woo Sung; Park, Sung-Joo; Park, Jin-Woo; Kwon, Kang-Beom; Park, Byung-Hyun

    2009-07-15

    JANEX-1/WHI-P131, a selective Janus kinase 3 (JAK3) inhibitor, has been shown to delay the onset of diabetes in the NOD mouse model. However, the molecular mechanism by which JANEX-1 protects pancreatic {beta}-cells is unknown. In the current study, we investigated the role of JANEX-1 on interleukin (IL)-1{beta} and interferon (IFN)-{gamma}-induced {beta}-cell damage using isolated islets. JANEX-1-pretreated islets showed resistance to cytokine toxicity, namely suppressed nitric oxide (NO) production, reduced inducible form of NO synthase (iNOS) expression, and decreased islet destruction. The molecular mechanism by which JANEX-1 inhibits iNOS expression was mediated through suppression of the nuclear factor {kappa}B (NF-{kappa}B) and JAK/signal transducer and activator of transcription (STAT) pathways. Islets treated with the cytokines downregulated the protein levels of suppressor of cytokine signaling (SOCS)-1 and SOCS-3, but pretreatment with JANEX-1 attenuated these decreases. Additionally, islets from JAK3{sup -/-} mice were more resistant to cytokine toxicity than islets from control mice. These results demonstrate that JANEX-1 protects {beta}-cells from cytokine toxicity through suppression of the NF-{kappa}B and JAK/STAT pathways and upregulation of SOCS proteins, suggesting that JANEX-1 may be used to preserve functional {beta}-cell mass.

  1. Increased Proinflammatory Cytokine Production and Decreased Cholesterol Efflux Due to Downregulation of ABCG1 in Macrophages Exposed to Indoxyl Sulfate

    PubMed Central

    Matsuo, Koji; Yamamoto, Suguru; Wakamatsu, Takuya; Takahashi, Yoshimitsu; Kawamura, Kazuko; Kaneko, Yoshikatsu; Goto, Shin; Kazama, Junichiro J.; Narita, Ichiei

    2015-01-01

    One of the possible causes of enhanced atherosclerosis in patients with chronic kidney disease (CKD) is the accumulation of uremic toxins. Since macrophage foam cell formation is a hallmark of atherosclerosis, we examined the direct effect of indoxyl sulfate (IS), a representative uremic toxin, on macrophage function. Macrophages differentiated from THP-1 cells were exposed to IS in vitro. IS decreased the cell viability of THP-1 derived macrophages but promoted the production of inflammatory cytokines (IL-1β, IS 1.0 mM: 101.8 ± 21.8 pg/mL vs. 0 mM: 7.0 ± 0.3 pg/mL, TNF-α, IS 1.0 mM: 96.6 ± 11.0 pg/mL vs. 0 mM: 15.1 ± 3.1 pg/mL) and reactive oxygen species. IS reduced macrophage cholesterol efflux (IS 0.5 mM: 30.3% ± 7.3% vs. 0 mM: 43.5% ± 1.6%) and decreased ATP-binding cassette transporter G1 expression. However, lipid uptake into cells was not enhanced. A liver X receptor (LXR) agonist, T0901317, improved IS-induced production of inflammatory cytokines as well as reduced cholesterol efflux. In conclusion, IS induced inflammatory reactions and reduced cholesterol efflux in macrophages. Both effects of IS were improved with activation of LXR. Direct interactions of uremic toxins with macrophages may be a major cause of atherosclerosis acceleration in patients with CKD. PMID:26287243

  2. Neutrophil-mediated damage to human vascular endothelium. Role of cytokine activation.

    PubMed Central

    Westlin, W. F.; Gimbrone, M. A.

    1993-01-01

    Cytokine activation of cultured human vascular endothelial cells renders them hyperadhesive for blood leukocytes. Co-incubation of freshly isolated, unstimulated human blood neutrophils with confluent cytokine-activated human endothelial monolayers for 90 minutes results in extensive endothelial detachment and destruction of monolayer integrity. In contrast, unactivated endothelial monolayers remain intact. Using this in vitro model, we have explored the neutrophil-effector mechanisms involved in this injury. Coincubation in the presence of a serine protease inhibitor (phenylmethylsulfonyl fluoride) or specific elastase inhibitors (Ala-Ala-Pro-Val-chloromethyl ketone or alpha-1-protease inhibitor) markedly diminished injury. In contrast, scavengers or inhibitors of oxygen-derived free radicals (superoxide dismutase, catalase, mannitol, or sodium azide) were not protective. Purified human neutrophil elastase mimicked the effect of the neutrophils suggesting a key role for elastase in the neutrophil-mediated injury in this model. Interfering with direct neutrophil-endothelial cell contact by interposing a microporous barrier insert prevented endothelial cell detachment. Furthermore, this neutrophil-mediated detachment could be inhibited with interleukin-8, an action correlated with a decrease in neutrophil adhesion to activated endothelial monolayers. By defining the role of endothelial activation in neutrophil-mediated injury, this in vitro model may provide useful insights into potential therapeutic interventions designed to prevent disruption of the endothelial barrier function. Images Figure 1 Figure 6 PMID:8424450

  3. Biological Character of RetroNectin Activated Cytokine-Induced Killer Cells

    PubMed Central

    2016-01-01

    Adoptive cell therapy (ACT) using autologous cytokine-induced killer (CIK) cells is a promising treatment for metastatic carcinomas. In this study, we investigated the impact of RetroNectin on the proliferation, phenotype alternation, cytokine secretion, and cytotoxic activity of CIK cells from pancreatic cancer patients. Furthermore, we treated 13 patients with metastatic or locally advanced pancreatic cancer using autologous RetroNectin-activated CIK cells (R-CIK cells) alone or in combination with chemotherapy. Compared with only CD3 activated CIK cells (OKT-CIK cells), R-CIK cells showed stronger and faster proliferative ability, with a lower ratio of spontaneous apoptosis. Moreover, this ability continued after IL-2 was withdrawn from the culture system. R-CIK cells could also secrete higher levels of IL-2 and lower levels of IL-4 and IL-5 versus OKT-CIK cells. There was no difference between OKT-CIK and R-CIK cells in cytotoxic ability against lymphoma cell line K562. In patients who received auto-R-CIK cell infusion therapy, the overall objective response rate was 23.1%. Median survival time (mOS) after first R-CIK cell infusion was 10.57 months; the 1-year survival rate was 38.5%. No serious toxicity was associated with R-CIK cell infusion. In conclusion, RetroNectin may enhance antitumor activity of CIK cells: it is safe for use in treating pancreatic cancer. PMID:27433478

  4. Evaluation of the Microbicidal Activity and Cytokines/Chemokines Profile Released by Neutrophils from HTLV-1-Infected Individuals

    PubMed Central

    Bezerra, Caroline A.; Cardoso, Thiago M.; Giudice, Angela; Porto, Aurélia F.; Santos, Silvane B.; Carvalho, Edgar M.; Bacellar, Olívia

    2011-01-01

    Human T cell lymphotropic virus type-1 (HTLV-1) induces activation and spontaneous proliferation of T cells with production of type-1 pro-inflammatory cytokines. It modifies the immune response to other antigens and increases susceptibility to infectious diseases. However, little is known about innate immunity in HTLV-1 infection. HTLV-1-infected individuals have higher spontaneous neutrophil activation than HTLV-1-seronegative individuals, as shown by the nitroblue tetrazolium (NBT) assay. This study was conducted to evaluate neutrophil function in HTLV-1-infected individuals. Participants in the study included 18 HTLV-1-infected individuals and 14 HTLV-1-seronegative controls. We evaluated the ability of neutrophils (PMNs) to control a parasite infection, to produce peroxynitrite, cytokines and chemokines and to express activation markers in cultures when stimulated with LPS or infected with Leishmania. When compared with the control group, there was no difference in the percentage of PMNs infected with Leishmania or in the number of amastigotes/100 PMNs in HTLV-1-infected individuals. The microbicidal activity of the PMNs and the levels of CXCL8 and CCL4 released by these cells did not show a difference between HTLV-1-infected individuals and the control group. In both the HTLV-1 group and the control group, infection with Leishmania or stimulation of PMNs led to cellular activation. These observations suggest that neutrophils from HTLV-1-infected individuals have preserved their ability to become activated and to produce chemokines and peroxynitrite after stimulation and that the susceptibility to infection by intracellular Leishmania amazonensis in HTLV-1-infected individuals does not depend on impairment of neutrophil function. PMID:21595736

  5. Modulation of pro- and anti-inflammatory cytokines in active and latent tuberculosis by coexistent Strongyloides stercoralis infection.

    PubMed

    George, Parakkal Jovvian; Pavan Kumar, Nathella; Jaganathan, Jeeva; Dolla, Chandrakumar; Kumaran, Paul; Nair, Dina; Banurekha, Vaithilingam V; Shen, Kui; Nutman, Thomas B; Babu, Subash

    2015-12-01

    Helminth infections are known to induce modulation of both innate and adaptive immune responses in active and latent tuberculosis (TB). However, the role of helminth infections in modulating systemic cytokine responses in active and latent tuberculosis (LTB) is not known. To define the systemic cytokine levels in helminth-TB coinfection, we measured the circulating plasma levels of Type 1, Type 2, Type 17, other pro-inflammatory and regulatory cytokines in individuals with active TB (ATB) with or without coexistent Strongyloides stercoralis (Ss) infection by multiplex ELISA. Similarly, we also measured the same cytokine levels in individuals with LTB with or without concomitant Ss infection in a cross-sectional study. Our data reveal that individuals with ATB or LTB and coexistent Ss infection have significantly lower levels of Type 1 (IFNγ, TNFα and IL-2) and Type 17 (IL-17A and IL-17F) cytokines compared to those without Ss infection. In contrast, those with ATB and LTB with Ss infection have significantly higher levels of the regulatory cytokines (IL-10 and TGFβ), and those with LTB and Ss infection also have significantly higher levels of Type 2 cytokines (IL-4, IL-5 and IL-13) as well. Finally, those with LTB (but not ATB) exhibit significantly lower levels of other pro-inflammatory cytokines (IFNα, IFNβ, IL-6, IL-12 and GM-CSF). Our data therefore reveal a profound effect of Ss infection on the systemic cytokine responses in ATB and LTB and indicate that coincident helminth infections might influence pathogenesis of TB infection and disease. PMID:26542223

  6. Cytokine Production and Antigen Recognition by Human Mucosal Homing Conjunctival Effector Memory CD8+ T Cells

    PubMed Central

    Williams, Geraint P.; Pachnio, Annette; Long, Heather M.; Rauz, Saaeha; Curnow, S. John

    2014-01-01

    Purpose. Conjunctival epithelial T cells are dominated by CD3+CD56-TCRαβ+CD8αβ+ lymphocytes. In this study we explored the antigen experience status, mucosal homing phenotype, cytokine expression, and viral antigen recognition of conjunctival epithelial CD8+ T cells from healthy individuals. Methods. Following ocular surface impression cytology, conjunctival cells were recovered by gentle agitation and analyzed by flow cytometry for cell surface markers, cytokine production (stimulated by phorbol 12-myristate 13-acetate [PMA]/ionomycin), and Epstein-Barr virus (EBV)/cytomegalovirus (CMV) immunodominant epitope recognition using major histocompatibility complex (MHC) class I peptide tetramers. Results. In contrast to peripheral blood, conjunctival epithelial CD8+ T cells were dominantly CD45RA−CCR7− effector memory cells, and the vast majority expressed the mucosal homing integrin αEβ7. Conjunctival memory CD8+ T cells maintained effector functions with the ability to secrete IFN-γ and expression of Granzyme B, although they expressed significantly reduced amounts per cell compared to peripheral blood T cells. Interestingly, herpetic virus-specific CD8+ T cells recognizing epitopes derived from EBV and CMV could be detected in the conjunctival cells of healthy virus carriers, although they were generally at lower frequencies than in the peripheral blood of the same donor. Virus-specific conjunctival CD8+ T cells were dominated by CD45RA−CCR7− effector memory cells that expressed αEβ7. Conclusions. These data demonstrate that the majority of conjunctival epithelial CD8+ T cells are mucosal homing αEβ7+ effector memory T cells, which can recognize viral epitopes and are capable of secreting Granzyme B and IFN-γ. PMID:25395484

  7. Tacrolimus does not alter the production of several cytokines and antimicrobial peptide in Malassezia furfur-infected-keratinocytes.

    PubMed

    Balato, Anna; Paoletti, Iole; De Gregorio, Vincenza; Cantelli, Mariateresa; Ayala, Fabio; Donnarumma, Giovanna

    2014-03-01

    Topical immunosuppressant therapy is widely used in the treatment of inflammatory skin diseases, such as atopic dermatitis and psoriasis. Besides its beneficial therapeutic effects, application of topical anti-inflammatory drugs may render the epidermis more vulnerable to invading pathogens by suppressing innate immune responses in keratinocytes (KCs). Cytokines, chemokines and antimicrobial peptides (AMPs) produced by epithelial cells enable them to participate in innate and acquired immune responses. The aim of the present work was to study the influence of tacrolimus (FK506) on KCs infected with Malassezia furfur (M. furfur), evaluating the expression of pro-inflammatory cytokines IL-1α and IL-6, chemokine IL-8, anti-inflammatory cytokines transforming growth factor beta1 (TGF-β1) and IL-10 and AMP β-defensin-2. Human KCs were obtained from surgical specimens of normal adult skin. The expression of mRNAs in KCs: FK506-treated, FK506-treated and M. furfur-infected as well as only M. furfur-infected was quantified by real-time quantitative polymerase chain reaction. Next, the production of the AMP β-defensin-2 and of the above-mentioned pro-inflammatory and anti-inflammatory cytokines was evaluated using enzyme-linked immunosorbent assay. In this study, FK506 did not alter cytokine and AMP production by KCs; this led us to hypothesise that it may not enhance the risk of mycotic skin infections. PMID:24512536

  8. Paracrine effect of inflammatory cytokine-activated bone marrow mesenchymal stem cells and its role in osteoblast function.

    PubMed

    Li, Cheng; Li, Guoqiang; Liu, Meng; Zhou, Tiantian; Zhou, Haibin

    2016-02-01

    Mesenchymal stem cells (MSCs) have a crucial function in bone regeneration. Inflammation is a well-documented component of the osteogenic microenvironment. In the present study, we investigated whether stimulation of MSCs with inflammatory cytokines promotes osteogenesis through a paracrine mediator. MSCs were pre-stimulated with the inflammatory factors IFN-γ and TNF-α. After pre-stimulation, the MSC secretion levels of IL-6, HGF, VEGF, and TGF-β were significantly elevated (p < 0.01); however, the production of IL-2, IL-4, and IL-10 was not changed (p > 0.05). MG63, an osteoblast-like cell line, was cultured in different MSC-conditioned media. After treatment with conditioned media collected from MSCs pre-treated with cytokines, the proliferation and migration of MG63 cells were significantly improved, and the expression levels of the osteoblast differentiation markers ALP, COLI, OCN and OPN were significantly increased as revealed by a quantitative PCR analysis (p < 0.05). Furthermore, an immunofluorescence staining assay showed that more MG63 cells were OPN-positive, while an Alizarin red staining indicated the increased formation of calcium nodules in the IFN-γ and TNF-α combined pretreatment group. The results indicated that conditioned medium from inflammatory cytokine-activated MSCs can significantly promote osteoblast proliferation, migration, differentiation, and mineralization and ultimately enhance osteogenesis through paracrine mechanisms. These findings present a new direction for the clinical application of MSCs in the repair of bone defects. PMID:26315505

  9. Sertoli cells have a functional NALP3 inflammasome that can modulate autophagy and cytokine production

    PubMed Central

    Hayrabedyan, Soren; Todorova, Krassimira; Jabeen, Asma; Metodieva, Gergana; Toshkov, Stavri; Metodiev, Metodi V.; Mincheff, Milcho; Fernández, Nelson

    2016-01-01

    Sertoli cells, can function as non-professional tolerogenic antigen-presenting cells, and sustain the blood-testis barrier formed by their tight junctions. The NOD-like receptor family members and the NALP3 inflammasome play a key role in pro-inflammatory innate immunity signalling pathways. Limited data exist on NOD1 and NOD2 expression in human and mouse Sertoli cells. Currently, there is no data on inflammasome expression or function in Sertoli cells. We found that in primary pre-pubertal Sertoli cells and in adult Sertoli line, TLR4\\NOD1 and NOD2 crosstalk converged in NFκB activation and elicited a NALP3 activation, leading to de novo synthesis and inflammasome priming. This led to caspase-1 activation and IL-1β secretion. We demonstrated this process was controlled by mechanisms linked to autophagy. NOD1 promoted pro-IL-1β restriction and autophagosome maturation arrest, while NOD2 promoted caspase-1 activation, IL-1β secretion and autophagy maturation. NALP3 modulated NOD1 and pro-IL-1β expression, while NOD2 inversely promoted IL-1β. This study is proof of concept that Sertoli cells, upon specific stimulation, could participate in male infertility pathogenesis via inflammatory cytokine induction. PMID:26744177

  10. Effect of sesamin against cytokine production from influenza type A H1N1-induced peripheral blood mononuclear cells: computational and experimental studies.

    PubMed

    Fanhchaksai, Kanda; Kodchakorn, Kanchanok; Pothacharoen, Peraphan; Kongtawelert, Prachya

    2016-01-01

    In 2009, swine flu (H1N1) had spread significantly to levels that threatened pandemic influenza. There have been many treatments that have arisen for patients since the WHO first reported the disease. Although some progress in controlling influenza has taken place during the last few years, the disease is not yet under control. The development of new and less expensive anti-influenza drugs is still needed. Here, we show that sesamin from the seeds of the Thai medicinal plant Sesamum indicum has anti-inflammatory cytokines in human peripheral blood mononuclear cells (PBMCs) induced by 2009 influenza virus type A H1N1. In this study, the combinatorial screening method combined with the computational approach was applied to investigate the new molecular binding structures of sesamin against the 2009 influenza virus type A H1N1 (p09N1) crystallized structure. Experimental methods were applied to propose the mechanisms of sesamin against cytokine production from H1N1-induced human PBMC model. The molecular dynamics simulation of sesamin binding with the p09N1 crystallized structure showed new molecular binding structures at ARG118, ILE222, ARG224, and TYR406, and it has been proposed that sesamin could potentially be used to produce anti-H1N1 compounds. Furthermore, the mechanisms of sesamin against cytokine production from influenza type A H1N1-induced PBMCs by ELISA and signaling transduction showed that sesamin exhibits the ability to inhibit proinflammatory cytokines, IL-1β and TNF-α, and to enhance the activity of the immune cell cytokine IL-2 via downregulating the phosphorylated JNK, p38, and ERK1/2 MAPK signaling pathways. This information might very well be useful in the prevention and treatment of immune-induced inflammatory disorders. PMID:26424131

  11. The Involvement of TLR2 and TLR4 in Cytokine and Nitric Oxide Production in Visceral Leishmaniasis Patients before and after Treatment with Anti-Leishmanial Drugs

    PubMed Central

    Gatto, Mariana; de Abreu, Mariana Miziara; Tasca, Karen Ingrid; de Assis Golim, Marjorie; da Silva, Laura Denise Mendes; Simão, José Cláudio; Fortaleza, Carlos Magno Castelo Branco; de Campos Soares, Ângela Maria Victoriano; Calvi, Sueli Aparecida

    2015-01-01

    Toll-like receptors (TLRs) have significant involvement in Leishmania infection, although little is known about the relationship between these receptors, cytokines and nitric oxide (NO) in patients with visceral leishmaniasis (VL) before or after treatment with anti-leishmanial drugs. The goal of this study was to evaluate the expression of TLR2 and TLR4 in CD3+ and CD14+ cells and the production of TNF-α, IFN-γ, IL-17, IL-10, TGF-β and NO in peripheral blood mononuclear cells (PBMCs) from VL patients pre- and post-treatment with anti-leishmanial drugs. In addition, we investigated whether these receptors were involved in the production of these cytokines and NO. In the active VL patients, increased TLR2 and TLR4 expression in lymphocytes and monocytes, increased production of TNF-α, IL-10 and TGF-β and decreased production of IFN-γ, IL-17 and NO were observed. After treatment, TLR2 and TLR4 were still expressed in lymphocytes and monocytes, the TNF-α and IL-10 levels were lower, the production of IFN-γ, IL-17 and NO was higher, and the TGF-β level remained high. Before treatment, the production of TNF-α and NO was associated with TLR2 and TLR4 expression, while IL-10 production was only associated with TLR2 expression. After treatment, both receptors were associated with the production of TNF-α, IFN-γ, IL-10 and NO, while the production of IL-17 was associated only with TLR4 expression. The results presented in this study suggest that both TLR2 and TLR4 participate in the modulation of cytokine and NO production in VL patients, contributing to the pathogenesis of VL prior to treatment and the protective immune response after treatment. PMID:25706930

  12. miR-155 augments CD8+ T-cell antitumor activity in lymphoreplete hosts by enhancing responsiveness to homeostatic γc cytokines

    PubMed Central

    Ji, Yun; Wrzesinski, Claudia; Yu, Zhiya; Hu, Jinhui; Gautam, Sanjivan; Hawk, Nga V.; Telford, William G.; Palmer, Douglas C.; Franco, Zulmarie; Sukumar, Madhusudhanan; Roychoudhuri, Rahul; Clever, David; Klebanoff, Christopher A.; Surh, Charles D.; Waldmann, Thomas A.; Restifo, Nicholas P.; Gattinoni, Luca

    2015-01-01

    Lymphodepleting regimens are used before adoptive immunotherapy to augment the antitumor efficacy of transferred T cells by removing endogenous homeostatic “cytokine sinks.” These conditioning modalities, however, are often associated with severe toxicities. We found that microRNA-155 (miR-155) enabled tumor-specific CD8+ T cells to mediate profound antitumor responses in lymphoreplete hosts that were not potentiated by immune-ablation. miR-155 enhanced T-cell responsiveness to limited amounts of homeostatic γc cytokines, resulting in delayed cellular contraction and sustained cytokine production. miR-155 restrained the expression of the inositol 5-phosphatase Ship1, an inhibitor of the serine-threonine protein kinase Akt, and multiple negative regulators of signal transducer and activator of transcription 5 (Stat5), including suppressor of cytokine signaling 1 (Socs1) and the protein tyrosine phosphatase Ptpn2. Expression of constitutively active Stat5a recapitulated the survival advantages conferred by miR-155, whereas constitutive Akt activation promoted sustained effector functions. Our results indicate that overexpression of miR-155 in tumor-specific T cells can be used to increase the effectiveness of adoptive immunotherapies in a cell-intrinsic manner without the need for life-threatening, lymphodepleting maneuvers. PMID:25548153

  13. Physiologically Based Pharmacokinetic Model to Assess the Influence of Blinatumomab-Mediated Cytokine Elevations on Cytochrome P450 Enzyme Activity

    PubMed Central

    Xu, Y; Hijazi, Y; Wolf, A; Wu, B; Sun, Y-N; Zhu, M

    2015-01-01

    Blinatumomab is a CD19/CD3 bispecific T-cell engager (BiTE®) antibody construct for treatment of leukemia. Transient elevation of cytokines (interleukin (IL)-6, IL-10, interferon-gamma (IFN-γ)) has been observed within the first 48 hours of continuous intravenous blinatumomab infusion. In human hepatocytes, blinatumomab showed no effect on cytochrome P450 (CYP450) activities, whereas a cytokine cocktail showed suppression of CYP3A4, CYP1A2, and CYP2C9 activities. We developed a physiologically based pharmacokinetic (PBPK) model to evaluate the effect of transient elevation of cytokines, particularly IL-6, on CYP450 suppression. The predicted suppression of hepatic CYP450 activities was <30%, and IL-6–mediated changes in exposure to sensitive substrates of CYP3A4, CYP1A2, and CYP2C9 were cytokine suppressing CYP450 activities; the duration of cytokine elevation was a major determinant of magnitude of suppression. This study shows the utility of PBPK modeling for risk assessment of cytokine-mediated drug interactions. PMID:26451330

  14. MiR-150 impairs inflammatory cytokine production by targeting ARRB-2 after blocking CD28/B7 costimulatory pathway.

    PubMed

    Sang, Wei; Wang, Ying; Zhang, Cong; Zhang, Dianzheng; Sun, Cai; Niu, Mingshan; Zhang, Zhe; Wei, Xiangyu; Pan, Bin; Chen, Wei; Yan, Dongmei; Zeng, Lingyu; Loughran, Thomas P; Xu, Kailin

    2016-04-01

    MiR-150, a major modulator negatively regulating the development and differentiation of various immune cells, is widely involved in orchestrating inflammation. In transplantation immunity, miR-150 can effectively induce immune tolerance, although the underlying mechanisms have not been fully elucidated. In the current study, we found that miR-150 is elevated after blocking CD28/B7 co-stimulatory signaling pathway and impaired IL-2 production by targeting ARRB2. Further investigation suggested that miR-150 not only repressed the level of ARRB2/PDE4 directly but also prevented AKT/ARRB2/PDE4 trimer recruitment into the lipid raft by inhibiting the activities of PI3K and AKT through the cAMP-PKA-Csk signaling pathway. This leads to the interruption of cAMP degradation and subsequently results in inhibition of the NF-kB pathway and reduced production of both IL-2 and TNF. In conclusion, our study demonstrated that miR-150 can effectively prevent CD28/B7 co-stimulatory signaling transduction, decrease production of inflammatory cytokines, such as IL-2 and TNF, and elicit the induction of immune tolerance. Therefore, miR-150 could become a novel potential therapeutic target in transplantation immunology. PMID:26549736

  15. Serum levels of innate immunity cytokines are elevated in dogs with metaphyseal osteopathy (hypertrophic osteodytrophy) during active disease and remission.

    PubMed

    Safra, Noa; Hitchens, Peta L; Maverakis, Emanual; Mitra, Anupam; Korff, Courtney; Johnson, Eric; Kol, Amir; Bannasch, Michael J; Pedersen, Niels C; Bannasch, Danika L

    2016-10-15

    Metaphyseal osteopathy (MO) (hypertrophic osteodystrophy) is a developmental disorder of unexplained etiology affecting dogs during rapid growth. Affected dogs experience relapsing episodes of lytic/sclerotic metaphyseal lesions and systemic inflammation. MO is rare in the general dog population; however, some breeds (Weimaraner, Great Dane and Irish Setter) have a much higher incidence, supporting a hereditary etiology. Autoinflammatory childhood disorders of parallel presentation such as chronic recurrent multifocal osteomyelitis (CRMO), and deficiency of interleukin-1 receptor antagonist (DIRA), involve impaired innate immunity pathways and aberrant cytokine production. Given the similarities between these diseases, we hypothesize that MO is an autoinflammatory disease mediated by cytokines involved in innate immunity. To characterize immune dysregulation in MO dogs we measured serum levels of inflammatory markers in 26 MO and 102 control dogs. MO dogs had significantly higher levels (pg/ml) of serum Interleukin-1beta (IL-1β), IL-18, IL-6, Granulocyte-macrophage colony stimulating factor (GM-CSF), C-X-C motif chemokine 10 (CXCL10), tumor necrosis factor (TNF), and IL-10. Notably, recovered MO dogs were not different from dogs during active MO disease, providing a suggestive mechanism for disease predisposition. This is the first documentation of elevated immune markers in MO dogs, uncovering an immune profile similar to comparable autoinflammatory disorders in children. PMID:27590423

  16. Th17 cytokines differentiate obesity from obesity-associated type 2 diabetes and promote TNFα production

    PubMed Central

    Ip, Blanche; Cilfone, Nicholas; Belkina, Anna C.; DeFuria, Jason; Jagannathan-Bogdan, Madhumita; Zhu, Min; Kuchibhatla, Ramya; McDonnell, Marie E.; Xiao, Qiang; Kepler, Thomas B.; Apovian, Caroline M.; Lauffenburger, Douglas A.; Nikolajczyk, Barbara S.

    2015-01-01

    Objective T cell inflammation plays pivotal roles in obesity-associated type 2 diabetes (T2DM). The identification of dominant sources of T cell inflammation in humans remains a significant gap in understanding disease pathogenesis. We hypothesized that cytokine profiles from circulating T cells identify T cell subsets and T cell cytokines that define T2DM-associated inflammation. Methods We used multiplex analyses to quantify T cell-associated cytokines in αCD3/αCD28-stimulated PBMCs, or B cell-depleted PBMCs, from subjects with T2DM or BMI-matched controls. We subjected cytokine measurements to multivariate (principal component and partial least squares) analyses. Flow cytometry detected intracellular TNFα in multiple immune cells subsets in the presence/absence of antibodies that neutralize T cell cytokines. Results T cell cytokines were generally higher in T2DM samples, but Th17 cytokines are specifically important for classifying individuals correctly as T2DM. Multivariate analyses indicated that B cells support Th17 inflammation in T2DM but not control samples, while monocytes supported Th17 inflammation regardless of T2DM status. Partial least squares regression analysis indicated that both Th17 and Th1 cytokines impact %HbA1c. Conclusions Among various T cell subsets, Th17 cells are major contributors to inflammation and hyperglycemia, and are uniquely supported by B cells in obesity-associated T2DM. PMID:26576827

  17. Production of antibodies to canine IL-1beta and canine TNF to assess the role of proinflammatory cytokines.

    PubMed

    Baggio, Vannozza; Ott, Fabienne; Fischer, René W; Gram, Hermann; Peele, John; Spreng, David; Schmökel, Hugo; Jungi, Thomas W

    2005-08-15

    IL-1 and TNF are important proinflammatory cytokines implicated in both antimicrobial host defense and pathogenesis of diseases with an immune-mediated and/or inflammatory component. Respective studies in the dog have been hampered by the unavailability of reagents allowing the specific measurement of canine cytokine proteins and the effect of canine cytokine neutralization by Ab. Starting with recombinant canine (rcan) IL-1beta and rcanTNF, four polyclonal antisera and 22 mAb specific for rcanIL-1beta and rcanTNF were generated. Their usefulness in neutralization assays was determined. Using cytokine-containing supernatants of canine cells in bioassays, polyclonal antisera neutralized either canine IL-1beta or TNF. TNF was also neutralized by three antibodies developed in this study and one commercial mAb. The usefulness of monoclonal and polyclonal Ab in canine cytokine-specific Ab capture ELISA's was assessed. This resulted in the identification of a commercial mAb combination and one pair developed in this study allowing low levels of TNF to be detected by antibody capture ELISA. The detection limit was 141 pg/ml rcanTNF for both combinations. Using rcanIL-1beta as an antigen allowed the detection of lower concentrations of rcanIL-1beta (20 pg/ml, on the average) by a pair of polyclonal antisera than when monoclonals were used. By using such IL-1beta-specific and TNF-specific ELISA's, the respective cytokines were detected in supernatants of canine PBMC stimulated with LPS or heat-killed Listeria monocytogenes and interferon-gamma combined. Thus, monoclonal and polyclonal reagents were identified allowing the quantitation of canine IL-1beta and TNF production in vitro, and the neutralization of these cytokines. PMID:15982477

  18. [Intestinal dysbacteriosis promotes intestinal intraepithelial T lymphocyte activation and proinflammatory cytokine secretion in mice].

    PubMed

    Luo, Xia; Luo, Shuang; Zheng, Yanyi; Wen, Ruyan; Deng, Xiangliang; Zhou, Lian

    2016-08-01

    Objective To study the effect of intestinal dysbacteriosis on mouse intestinal intraepithelial T lymphocytes (iIELs). Methods The intestinal dysbacteriosis was induced in mice by oral administration of ceftriaxone sodium. The iIELs were digested with ethylene diaminetetraacetic acid (EDTA) and DL-dithiothreitol (DTT). The phenotype of iIELs and the proportions of subsets of T cells were detected by flow cytometry; the concentrations of cytokines (IL-2, IL-6, IFN-γ) in the intestine were examined by ELISA; the intestinal bacteria were analyzed with selective medium and PCR. Results Compared with the control group, intestinal commensal bacteria in mice were significantly reduced after the administration of ceftriaxone sodium, but fungi and yeasts increased. The proportions of T cell subgroups in ilELs changed, in which the proportion of TCR γδ(+)T cells significantly increased, and the activated CD3(+)T, CD8(+)T and TCR γδ(+)T cells increased. The concentrations of IL-2, IL-6 and IFN-γ were significantly raised in the intestine. Conclusion The dysbacteriosis results in the decrease of commensal bacteria, the increase of the fungus, the damage of microbial barrier, the more activated T cells in ilELs and the promotion of proinflammatory cytokine secretion in the gut. This is probably one of the reasons for inflammatory bowel disease caused by dysbacteriosis. PMID:27412931

  19. Effects of ethanol on cytokine generation and NFkappaB activity in human lung epithelial cell.

    PubMed

    Johansson, Anne-Sofie M; Lidén, Johan; Okret, Sam; Palmblad, Jan E W

    2005-08-15

    Alcohol abuse is associated with enhanced risk for pulmonary infections, but the mechanisms remain obscure. We assessed whether ethanol reduced generation of cytokines from a human lung epithelial cell line (A549) in vitro and if effects on the NFkappaB transcription factor were involved. Exposure of A549 to ethanol (0.1-1%) dose-dependently inhibited (by 15-49%) the release of G-CSF and IL-8, but not of M-CSF, triggered by IL1beta or TNFalpha. Ethanol also inhibited by 49% the IL-1beta stimulated translocation of the p65 subunit of NFkappaB from the cytoplasm into the nucleus. Using a kappaB binding and luciferase coupled construct, transfected into A549 cells, we found that 1% ethanol specifically reduced IL-1beta and TNFalpha induced luciferase activity with 34 and 40%, respectively. Thus, in vitro exposure of lung epithelial cells to ethanol reduced the generation of cytokines, as well as translocation and gene activation by NFkappaB. PMID:15993849

  20. Central P2Y12 receptor blockade alleviates inflammatory and neuropathic pain and cytokine production in rodents

    PubMed Central

    Horváth, Gergely; Gölöncsér, Flóra; Csölle, Cecilia; Király, Kornél; Andó, Rómeó D.; Baranyi, Mária; Koványi, Bence; Máté, Zoltán; Hoffmann, Kristina; Algaier, Irina; Baqi, Younis; Müller, Christa E.; Von Kügelgen, Ivar; Sperlágh, Beáta

    2014-01-01

    In this study the role of P2Y12 receptors (P2Y12R) was explored in rodent models of inflammatory and neuropathic pain and in acute thermal nociception. In correlation with their activity to block the recombinant human P2Y12R, the majority of P2Y12R antagonists alleviated mechanical hyperalgesia dose-dependently, following intraplantar CFA injection, and after partial ligation of the sciatic nerve in rats. They also caused an increase in thermal nociceptive threshold in the hot plate test. Among the six P2Y12R antagonists evaluated in the pain studies, the selective P2Y12 receptor antagonist PSB-0739 was most potent upon intrathecal application. P2Y12R mRNA and IL-1β protein were time-dependently overexpressed in the rat hind paw and lumbar spinal cord following intraplantar CFA injection. This was accompanied by the upregulation of TNF-α, IL-6 and IL-10 in the hind paw. PSB-0739 (0.3 mg/kg i.t.) attenuated CFA-induced expression of cytokines in the hind paw and of IL-1β in the spinal cord. Subdiaphragmatic vagotomy and the α7 nicotinic acetylcholine receptor antagonist MLA occluded the effect of PSB-0739 (i.t.) on pain behavior and peripheral cytokine induction. Denervation of sympathetic nerves by 6-OHDA pretreatment did not affect the action of PSB-0739. PSB-0739, in an analgesic dose, did not influence motor coordination and platelet aggregation. Genetic deletion of the P2Y12R in mice reproduced the effect of P2Y12R antagonists on mechanical hyperalgesia in inflammatory and neuropathic pain models, on acute thermal nociception and on the induction of spinal IL-1β. Here we report the robust involvement of the P2Y12R in inflammatory pain. The anti-hyperalgesic effect of P2Y12R antagonism could be mediated by the inhibition of both central and peripheral cytokine production and involves α7-receptor mediated efferent pathways. PMID:24971933

  1. The cytomegalovirus homolog of interleukin-10 requires phosphatidylinositol 3-kinase activity for inhibition of cytokine synthesis in monocytes.

    PubMed

    Spencer, Juliet V

    2007-02-01

    Human cytomegalovirus (CMV) has evolved numerous strategies for evading host immune defenses, including piracy of cellular cytokines. A viral homolog of interleukin-10, designated cmvIL-10, binds to the cellular IL-10 receptor and effects potent immune suppression. The signaling pathways employed by cmvIL-10 were investigated, and the classic IL-10R/JAK1/Stat3 pathway was found to be activated in monocytes. However, inhibition of JAK1 had little effect on cmvIL-10-mediated suppression of tumor necrosis factor alpha (TNF-alpha) production. Inhibition of the phosphatidylinositol 3-kinase/Akt pathway had a more significant impact on TNF-alpha levels but did not completely relieve the immune suppression, demonstrating that cmvIL-10 stimulates multiple signaling pathways to modulate cell function. PMID:17121792

  2. High IFN-γ Release and Impaired Capacity of Multi-Cytokine Secretion in IGRA Supernatants Are Associated with Active Tuberculosis.

    PubMed

    Carrère-Kremer, Séverine; Rubbo, Pierre-Alain; Pisoni, Amandine; Bendriss, Sophie; Marin, Grégory; Peries, Marianne; Bolloré, Karine; Terru, Dominique; Godreuil, Sylvain; Bourdin, Arnaud; Van de Perre, Philippe; Tuaillon, Edouard

    2016-01-01

    Interferon gamma (IFN-γ) release assays (IGRAs) detect Mycobacterium tuberculosis (Mtb) infection regardless of the active (ATB) or latent (LTBI) forms of tuberculosis (TB). In this study, Mtb-specific T cell response against region of deletion 1 (RD1) antigens were explored by a microbead multiplex assay performed in T-SPOT TB assay (T-SPOT) supernatants from 35 patients with ATB and 115 patients with LTBI. T-SPOT is positive when over 7 IFN-γ secreting cells (SC)/250 000 peripheral blood mononuclear cells (PBMC) are enumerated. However, over 100 IFN-γ SC /250 000 PBMC were more frequently observed in the ATB group compared to the LTBI group. By contrast, lower cytokine concentrations and lower cytokine productions relative to IFN-γ secretion were observed for IL 4, IL-12, TNF-α, GM-CSF, Eotaxin and IFN-α when compared to LTBI. Thus, high IFN-γ release and low cytokine secretions in relation with IFN-γ production appeared as signatures of ATB, corroborating that multicytokine Mtb-specific response against RD1 antigens reflects host capacity to contain TB reactivation. In this way, testing cytokine profile in IGRA supernatants would be helpful to improve ATB screening strategy including immunologic tests. PMID:27603919

  3. IL-1β (interleukin-1β) stimulates the production and release of multiple cytokines and chemokines by human preadipocytes.

    PubMed

    Alomar, Suliman Y; Gentili, Alessandra; Zaibi, Mohamed S; Kępczyńska, Malgorzata A; Trayhurn, Paul

    2016-07-01

    The effect of IL-1β on cytokine and chemokine production by human preadipocytes has been examined. Preadipocytes were incubated with IL-1β, and cytokine and chemokine release was measured at 24 h by protein arrays, while the expression of cytokine/chemokine genes was assessed by qPCR at 4 and 24 h. IL-1β stimulated the secretion of multiple cytokines/chemokines, including IL-6, IL-8, IL-10, IL-13, MCP-4, TNFα and IP-10. IL-10 was not released by un-stimulated preadipocytes, while IL-6 exhibited the greatest response to IL-1β (453-fold increase). IL-16 and IL-12p40 did not respond to IL-1β. qPCR demonstrated that IL-1β markedly stimulated CCL3, CSF3 and CXCL10 expression at 4 h (>900-fold mRNA increase). A time-course indicated that while CCL13 (encoding MCP-4) exhibited minimal basal expression in preadipocytes, expression increased progressively following differentiation. Human preadipocytes are highly sensitive to IL-1β, the cytokine stimulating a major inflammatory response in these cells similar to that in mature adipocytes. PMID:26890442

  4. Synergy between Common γ Chain Family Cytokines and IL-18 Potentiates Innate and Adaptive Pathways of NK Cell Activation

    PubMed Central

    Nielsen, Carolyn M.; Wolf, Asia-Sophia; Goodier, Martin R.; Riley, Eleanor M.

    2016-01-01

    Studies to develop cell-based therapies for cancer and other diseases have consistently shown that purified human natural killer (NK) cells secrete cytokines and kill target cells after in vitro culture with high concentrations of cytokines. However, these assays poorly reflect the conditions that are likely to prevail in vivo in the early stages of an infection and have been carried out in a wide variety of experimental systems, which has led to contradictions within the literature. We have conducted a detailed kinetic and dose–response analysis of human NK cell responses to low concentrations of IL-12, IL-15, IL-18, IL-21, and IFN-α, alone and in combination, and their potential to synergize with IL-2. We find that very low concentrations of both innate and adaptive common γ chain cytokines synergize with equally low concentrations of IL-18 to drive rapid and potent NK cell CD25 and IFN-γ expression; IL-18 and IL-2 reciprocally sustain CD25 and IL-18Rα expression in a positive feedback loop; and IL-18 synergizes with FcγRIII (CD16) signaling to augment antibody-dependent cellular cytotoxicity. These data indicate that NK cells can be rapidly activated by very low doses of innate cytokines and that the common γ chain cytokines have overlapping but distinct functions in combination with IL-18. Importantly, synergy between multiple signaling pathways leading to rapid NK cell activation at very low cytokine concentrations has been overlooked in prior studies focusing on single cytokines or simple combinations. Moreover, although the precise common γ chain cytokines available during primary and secondary infections may differ, their synergy with both IL-18 and antigen–antibody immune complexes underscores their contribution to NK cell activation during innate and adaptive responses. IL-18 signaling potentiates NK cell effector function during innate and adaptive immune responses by synergy with IL-2, IL-15, and IL-21 and immune complexes. PMID:27047490

  5. Borrelia-induced cytokine production is mediated by spleen tyrosine kinase (Syk) but is Dectin-1 and Dectin-2 independent.

    PubMed

    Oosting, Marije; Buffen, Kathrin; Cheng, Shih-Chin; Verschueren, Ineke C; Koentgen, Frank; van de Veerdonk, Frank L; Netea, Mihai G; Joosten, Leo A B

    2015-12-01

    Although it is known that Borrelia species express sugar-like structures on their outer surface, not much is known about the role of these structures in immune recognition by host cells. Fungi, like Candida albicans, are mainly recognized by C-type lectin receptors, in specific Dectin-1 and Dectin-2. In this study we assessed the role of Dectin-1 and Dectin-2 in the recognition process of Borrelia spirochetes. Using specific inhibitors against these receptors on human cells did not influenced cytokine production. Individuals carrying a SNP leading to an early stop codon in the DECTIN-1 gene also did not lead to differential induction of Borrelia-dependent cytokines. After injection of live Borrelia into knee joints of Dectin-2 deficient mice a trend towards lower inflammation was observed. Inhibition of Syk in human cells resulted in lower cytokine production after Borrelia stimulation. In conclusion, Dectin-1 and Dectin-2 seem not to play a major role in Borrelia recognition or Borrelia-induced inflammation. However, Syk seems to be involved in Borrelia-induced cytokine production. PMID:26297607

  6. α1-adrenergic receptors positively regulate Toll-like receptor cytokine production from human monocytes and macrophages.

    PubMed

    Grisanti, Laurel A; Woster, Andrew P; Dahlman, Julie; Sauter, Edward R; Combs, Colin K; Porter, James E

    2011-08-01

    Catecholamines released from the sympathetic nervous system in response to stress or injury affect expression of inflammatory cytokines generated by immune cells. α(1)-Adrenergic receptors (ARs) are expressed on innate immune cell populations, but their subtype expression patterns and signaling characteristics are not well characterized. Primary human monocytes, a human monocytic cell line, and monocyte-derived macrophage cells were used to measure expression of the proinflammatory mediator interleukin (IL)-1β responding to lipopolysaccharide (LPS) in the presence or absence of α(1)-AR activation. Based on our previous findings, we hypothesized that α(1)-AR stimulation on innate immune cells positively regulates LPS-initiated IL-1β production. IL-1β production in response to LPS was synergistically higher for both monocytes and macrophages in the presence of the selective α(1)-AR agonist (R)-(-)-phenylephrine hydrochloride (PE). This synergistic IL-1β response could be blocked with a selective α(1)-AR antagonist as well as inhibitors of protein kinase C (PKC). Radioligand binding studies characterized a homogenous α(1B)-AR subtype population on monocytes, which changed to a heterogeneous receptor subtype expression pattern when differentiated to macrophages. Furthermore, increased p38 mitogen-activated protein kinase (MAPK) activation was observed only with concurrent PE and LPS stimulation, peaking after 120 and 30 min in monocytes and macrophages, respectively. Blocking the PKC/p38 MAPK signaling pathway in both innate immune cell types inhibited the synergistic IL-1β increase observed with concurrent PE and LPS treatments. This study characterizes α(1)-AR subtype expression on both human monocyte and macrophage cells and illustrates a mechanism by which increased IL-1β production can be modulated by α(1)-AR input. PMID:21571945

  7. Porcine reproductive and respiratory syndrome virus infection triggers HMGB1 release to promote inflammatory cytokine production

    SciTech Connect

    Duan, Erzhen; Wang, Dang; Luo, Rui; Luo, Jingyi; Gao, Li; Chen, Huanchun; Fang, Liurong Xiao, Shaobo

    2014-11-15

    The high mobility group box 1 (HMGB1) protein is an endogenous damage-associated molecular pattern (DAMP) molecule involved in the pathogenesis of various infectious agents. Based on meta-analysis of all publicly available microarray datasets, HMGB1 has recently been proposed as the most significant immune modulator during the porcine response to porcine reproductive and respiratory syndrome virus (PRRSV) infection. However, the function of HMGB1 in PRRSV pathogenesis is unclear. In this study, we found that PRRSV infection triggers the translocation of HMGB1 from the nucleus to the extracellular milieu in MARC-145 cells and porcine alveolar macrophages. Although HMGB1 has no effect on PRRSV replication, HMGB1 promotes PRRSV-induced NF-κB activation and subsequent expression of inflammatory cytokines through receptors RAGE, TLR2 and TLR4. Our findings show that HMGB1 release, triggered by PRRSV infection, enhances the efficiency of virus-induced inflammatory responses, thereby providing new insights into the pathogenesis of PRRSV infection. - Highlights: • PRRSV infection triggers HMGB1 release from MARC-145 cells and PAMs. • HMGB1 does not significantly affect PRRSV proliferation. • HMGB1 is involved in PRRSV-induced NF-κB activation and inflammatory responses. • HMGB1 promotes PRRSV-induced inflammatory responses through TLR2/4 and RAGE.

  8. Cytokine production in patients with papillary thyroid cancer and associated autoimmune Hashimoto thyroiditis.

    PubMed

    Zivancevic-Simonovic, Snezana; Mihaljevic, Olgica; Majstorovic, Ivana; Popovic, Suzana; Markovic, Slavica; Milosevic-Djordjevic, Olivera; Jovanovic, Zorica; Mijatovic-Teodorovic, Ljiljana; Mihajlovic, Dusan; Colic, Miodrag

    2015-08-01

    Hashimoto thyroiditis (HT) is the most frequent thyroid autoimmune disease, while papillary thyroid cancer (PTC) is one of the most common endocrine malignancies. A few patients with HT also develop PTC. The aim of this study was to analyze cytokine profiles in patients with PTC accompanied with autoimmune HT in comparison with those in patients with PTC alone or HT alone and healthy subjects. Cytokine levels were determined in supernatants obtained from phytohemagglutinin (PHA)-stimulated whole blood cultures in vitro. The concentrations of selected cytokines: Th1-interferon gamma (IFN-γ); Th2-interleukin 4 (IL-4), interleukin 5 (IL-5), interleukin 6 (IL-6), interleukin 10 (IL-10) and interleukin 13 (IL-13); Th9-interleukin 9 (IL-9); and Th17-interleukin 17 (IL-17A) were measured using multiplex cytokine detection systems for human Th1/Th2/Th9/Th17/Th22. We found that PTC patients with HT produced significantly higher concentrations of IL-4, IL-6, IL-9, IL-13 and IFN-γ than PTC patients without HT. In conclusion, autoimmune HT affects the cytokine profile of patients with PTC by stimulating secretion of Th1/Th2/Th9 types of cytokines. Th1/Th2 cytokine ratios in PTC patients with associated autoimmune HT indicate a marked shift toward Th2 immunity. PMID:25971541

  9. Suppressed cytokine production in whole blood cultures is related to iron status and is partially corrected following weight reduction in morbidly obese pre-menopausal women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Assess ex vivo whole-blood cytokine production and its association with iron status in obese versus non-obese women. Determine the change in ex vivo whole-blood cytokine production six months after restrictive bariatric surgery in the obese group. Subjects were 17 obese (BMI: 46.6 ±7.9 kg/m2) and 1...

  10. Cytokine-Independent Detection of Antigen-Specific Germinal Center T Follicular Helper Cells in Immunized Nonhuman Primates Using a Live Cell Activation-Induced Marker Technique.

    PubMed

    Havenar-Daughton, Colin; Reiss, Samantha M; Carnathan, Diane G; Wu, Jennifer E; Kendric, Kayla; Torrents de la Peña, Alba; Kasturi, Sudhir Pai; Dan, Jennifer M; Bothwell, Marcella; Sanders, Rogier W; Pulendran, Bali; Silvestri, Guido; Crotty, Shane

    2016-08-01

    A range of current candidate AIDS vaccine regimens are focused on generating protective HIV-neutralizing Ab responses. Many of these efforts rely on the rhesus macaque animal model. Understanding how protective Ab responses develop and how to increase their efficacy are both major knowledge gaps. Germinal centers (GCs) are the engines of Ab affinity maturation. GC T follicular helper (Tfh) CD4 T cells are required for GCs. Studying vaccine-specific GC Tfh cells after protein immunizations has been challenging, as Ag-specific GC Tfh cells are difficult to identify by conventional intracellular cytokine staining. Cytokine production by GC Tfh cells may be intrinsically limited in comparison with other Th effector cells, as the biological role of a GC Tfh cell is to provide help to individual B cells within the GC, rather than secreting large amounts of cytokines bathing a tissue. To test this idea, we developed a cytokine-independent method to identify Ag-specific GC Tfh cells. RNA sequencing was performed using TCR-stimulated GC Tfh cells to identify candidate markers. Validation experiments determined CD25 (IL-2Rα) and OX40 to be highly upregulated activation-induced markers (AIM) on the surface of GC Tfh cells after stimulation. In comparison with intracellular cytokine staining, the AIM assay identified >10-fold more Ag-specific GC Tfh cells in HIV Env protein-immunized macaques (BG505 SOSIP). CD4 T cells in blood were also studied. In summary, AIM demonstrates that Ag-specific GC Tfh cells are intrinsically stingy producers of cytokines, which is likely an essential part of their biological function. PMID:27335502

  11. Production Systems. Laboratory Activities.

    ERIC Educational Resources Information Center

    Gallaway, Ann, Ed.

    This production systems guide provides teachers with learning activities for secondary students. Introductory materials include an instructional planning outline and worksheet, an outline of essential elements, domains and objectives, a course description, and a content outline. The guide contains 30 modules on the following topics: production…

  12. Involvement of proton-sensing TDAG8 in extracellular acidification-induced inhibition of proinflammatory cytokine production in peritoneal macrophages.

    PubMed

    Mogi, Chihiro; Tobo, Masayuki; Tomura, Hideaki; Murata, Naoya; He, Xiao-dong; Sato, Koichi; Kimura, Takao; Ishizuka, Tamotsu; Sasaki, Takehiko; Sato, Takashi; Kihara, Yasuyuki; Ishii, Satoshi; Harada, Akihiro; Okajima, Fumikazu

    2009-03-01

    Extracellular acidification inhibited LPS-induced TNF-alpha protein production, which was associated with an inhibition of TNF-alpha mRNA expression, in mouse peritoneal macrophages. The LPS-induced cytokine production was also inhibited by G(s) protein-coupled receptor agonists prostaglandin E(1) and isoproterenol. Among OGR1 family proton-sensing GTP-binding regulatory protein-coupled receptors, TDAG8, OGR1, and G2A are expressed in the cells. The inhibitory action by acidic pH on TNF-alpha production was significantly attenuated in macrophages from TDAG8(Tp/Tp) mice but not in those from OGR1(geo/geo) mice. Moreover, small interfering RNA specific to TDAG8, but not to G2A, clearly attenuated the acidification-induced inhibition of TNF-alpha production. On the other hand, the down-regulation or deficiency of TDAG8 hardly affected prostaglandin E(1)- or isoproterenol-induced actions. LPS-induced IL-6 production was also inhibited by extracellular acidification in a manner that was sensitive to TDAG8 expression. The acidic pH-induced inhibitory action on the cytokine production was significantly reversed either by a small interfering RNA specific to G(s) proteins or by a protein kinase A (PKA)-specific inhibitor H89. Indeed, a PKA-specific cAMP derivative inhibited LPS-induced cytokine production. Moreover, acidification induced cAMP accumulation in a TDAG8-specific way. We conclude that TDAG8, at least partly, mediates the extracellular acidification-induced inhibition of proinflammatory cytokine production through the G(s) protein/cAMP/PKA signaling pathway in mouse macrophages. PMID:19234222

  13. Circulating Cytokine Profiles and Their Relationships with Autoantibodies, Acute Phase Reactants, and Disease Activity in Patients with Rheumatoid Arthritis

    PubMed Central

    Meyer, Pieter W. A.; Hodkinson, Bridget; Ally, Mahmood; Musenge, Eustasius; Wadee, Ahmed A.; Fickl, Heidi; Tikly, Mohammed; Anderson, Ronald

    2010-01-01

    Our objective was to analyse the relationship between circulating cytokines, autoantibodies, acute phase reactants, and disease activity in DMARDs-naïve rheumatoid arthritis (RA) patients (n = 140). All cytokines were significantly higher in the RA cohort than in healthy controls. Moderate-to-strong positive intercorrelations were observed between Th1/Th2/macrophage/fibroblast-derived cytokines. RF correlated significantly with IL-1β, IL-2, IL-4, IL-10, IL-12, G-CSF, GM-CSF, IFN-γ, and TNF (P < .0001), and aCCP and aMCV with IL-1β, IL-2, IL-4, and IL-10 (P < .0002), while IL-6 correlated best with the acute phase reactants, CRP, and SAA (P < .0001). In patients with a DAS28 score of ≥5.1, IFN-γ, IL-1β, IL-1Ra, TNF, GM-CSF, and VEGF were significantly correlated (P < .04–.001) with high disease activity (HDA). Circulating cytokines in RA reflect a multifaceted increase in immune reactivity encompassing Th1 and Th2 cells, monocytes/macrophages, and synovial fibroblasts, underscored by strong correlations between these cytokines, as well as their relationships with RF, aCCP, and aMCV, with some cytokines showing promise as biomarkers of HDA. PMID:21437211

  14. Blocking of cell proliferation, cytokines production and genes expression following administration of Chinese herbs in the human mesangial cells.

    PubMed

    Kuo, Y C; Sun, C M; Tsai, W J; Ou, J C; Chen, W P; Lin, C Y

    1999-01-01

    In the hope of identifying agents of therapeutic value in immuoglobulin A nephropathy (IgA-N), we tested crude methanol extracts of 15 Chinese herbs for their effect on human mesangial cell proliferation. The results indicated that 4 out of the 15 crude extracts inhibited human cells proliferation activated by IL-1beta and IL-6. The extracts and their median inhibitory concentrations were as follows (in microg/ml): Ludwiga octovalvis (MLS-052), 49.9 +/- 1.8; Rhus semialata (MLS-053), 31.2 +/- 1.6; Tabernaemontana divaricata (MLS-054), 50.0 +/- 2.1; Amepelopsis brevipedunculata (MLS-059), 42.9 +/- 1.1. These findings indicate that human mesangial cells were most sensitive to MLS-053 treatment. These herbs also decreased interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) production. Moreover, IL- 1beta mRNA expression was inhibited by Rhus semialata (R. semialata; MLS-053). It is unlikely that cytotoxicity was involved, because no cell deaths were observable. We hypothesize that the inhibitory mechanisms of these Chinese herbs may be related to the impairments of gene expression and production of cytokines in human mesangial cells. Plans are underway for the isolation of pure compounds from these Chinese herbs and the elucidation of their mechanisms of action. PMID:10372651

  15. Differential proinflammatory and angiogenesis-specific cytokine production in human pulmonary endothelial cells, HPMEC-ST1.6R infected with dengue-2 and dengue-3 virus.

    PubMed

    Azizan, Azliyati; Sweat, James; Espino, Carlos; Gemmer, Jennifer; Stark, Lillian; Kazanis, Deno

    2006-12-01

    In this study, the ability of dengue virus serotypes 2 (DENV-2) and 3 (DENV-3) to infect and induce increased production of proinflammatory cytokines in a pulmonary endothelial cell line (HPMEC-ST1.6R) was investigated. This cell line exhibits the major constitutive and inducible endothelial cell characteristics, as well as angiogenic response. DENV-2 and DENV-3 infection was confirmed by an observed cytopathic effect (CPE), as well as RT-PCR and immunofluorescence assays. Increases in Th-1 and Th-2 cytokines IL-4, IL-8, IL-6, IL-10, GM-CSF, INF-gamma, and tumor necrosis factor (TNF-alpha) within DENV-2- and DENV-3-infected cells were demonstrated using a microbead-based Bio-plex assay. Proinflammatory cytokine increases and the expression of a potent angiogenic inducer protein, VEGF were confirmed by dot-blot analysis using the TranSignal Human Angiogenesis Antibody Array. Dengue virus-infected HPMEC-ST1.6R cells exhibited an elongated cytoplasmic morphology, possibly representing a response to VEGF and activation of angiogenesis. The increased levels of Th-1 cytokines and VEGF in DENV-2 virus infected-HPMEC-ST1.6R could be distinguished from those infected by DENV-3. This suggests that cytokine patterns associated with DENV infections may be serotype and strain-specific. The experimental approaches described here could be developed further into a useful diagnostic tool for the characterization of dengue hemorrhagic fever cases, leading to enhancement of treatment therapy. PMID:17034872

  16. Spironolactone inhibits production of proinflammatory cytokines, including tumour necrosis factor-α and interferon-γ, and has potential in the treatment of arthritis

    PubMed Central

    BENDTZEN, K; HANSEN, P R; RIENECK, K

    2003-01-01

    Evidence suggests that spironolactone, an aldosterone antagonist, has effects on many cell types independent of its binding to cytosolic mineralocorticoid receptors. We tested the effects of spironolactone on ex vivo-activated human blood leucocytes using gene expression analyses (GeneChip®, 12 000 genes) and enzyme immunoassay for quantitating secreted pro- and anti-inflammatory cytokines. Furthermore, to evaluate the safety and efficacy of spironolactone as an anti-inflammatory drug 21 patients with rheumatoid arthritis (RA), juvenile idiopathic arthritis (JIA) or other arthritides were treated for up to 22 months with 1–3 mg/kg/day. Spironolactone, at in vivo attainable doses, markedly suppressed transcription of several proinflammatory cytokines and, accordingly, inhibited release of tumour necrosis factor, lymphotoxin, interferon-γ, granulocyte-macrophage colony-stimulating factor and interleukin 6 (70–90% inhibition). Release of these cytokines was also suppressed when testing whole blood from RA patients receiving 50 mg spironolactone twice daily, indicating that pharmaceutical use of the drug may suppress the release of inflammatory cytokines. Spironolactone therapy was generally well tolerated, although treatment had to be stopped in two adults on concomitant methotrexate therapy. Sixteen patients (76%) responded favourably. American College of Rheumatology criteria (ACR)20 or better was achieved in six of nine RA patients; four reached ACR70. Eight of nine JIA patients improved. In conclusion, spironolactone inhibits production of several proinflammatory cytokines considered to be of pathogenic importance in many immunoinflammatory diseases and shows positive effect in patients with chronic arthritis. Its effect as an anti-inflammatory drug should be explored, because prolonged spironolactone therapy is reasonably safe and economically attractive compared with many modern anti-inflammatory therapies. PMID:12974768

  17. Role of antigen presentation in the production of pro-inflammatory cytokines in obese adipose tissue.

    PubMed

    Majdoubi, Abdelilah; Kishta, Osama A; Thibodeau, Jacques

    2016-06-01

    Type II diabetes regroups different physiological anomalies that ultimately lead to low-grade chronic inflammation, insulin resistance and loss of pancreatic β-cells. Obesity is one of the best examples of such a condition that can develop into Metabolic Syndrome, causing serious health problems of great socio-economic consequences. The pathological outcome of obesity has a genetic basis and depends on the delicate balance between pro- and anti-inflammatory effectors of the immune system. The causal link between obesity and inflammation is well established. While innate immunity plays a key role in the development of a pro-inflammatory state in obese adipose tissues, it has now become clear that adaptive immune cells are also involved and participate in the cascade of events that lead to metabolic perturbations. The efficacy of some immunotherapeutic protocols in reducing the symptoms of obesity-driven metabolic syndrome in mice implicated all arms of the immune response. Recently, the production of pathogenic immunoglobulins and pro-inflammatory cytokines by B and T lymphocytes suggested an auto-immune basis for the establishment of a non-healthy obese state. Understanding the cellular landscape of obese adipose tissues and how immune cells sustain chronic inflammation holds the key to the development of targeted therapies. In this review, we emphasize the role of antigen-presenting cells and MHC molecules in obese adipose tissue and the general contribution of the adaptive arm of the immune system in inflammation-induced insulin resistance. PMID:26854212

  18. The Imidazoquinoline Toll-Like Receptor-7/8 Agonist Hybrid-2 Potently Induces Cytokine Production by Human Newborn and Adult Leukocytes

    PubMed Central

    Ganapathi, Lakshmi; Van Haren, Simon; Dowling, David J.; Bergelson, Ilana; Shukla, Nikunj M.; Malladi, Subbalakshmi S.; Balakrishna, Rajalakshmi; Tanji, Hiromi; Ohto, Umeharu; Shimizu, Toshiyuki; David, Sunil A.; Levy, Ofer

    2015-01-01

    Background Newborns and young infants are at higher risk for infections than adults, and manifest suboptimal vaccine responses, motivating a search for novel immunomodulators and/or vaccine adjuvants effective in early life. In contrast to most TLR agonists (TLRA), TLR8 agonists such as imidazoquinolines (IMQs) induce adult-level Th1-polarizing cytokine production from human neonatal cord blood monocytes and are candidate early life adjuvants. We assessed whether TLR8-activating IMQ congeners may differ in potency and efficacy in inducing neonatal cytokine production in vitro, comparing the novel TLR7/8-activating IMQ analogues Hybrid-2, Meta-amine, and Para-amine to the benchmark IMQ resiquimod (R848). Methods TLRA-induced NF-κB activation was measured in TLR-transfected HEK cells. Cytokine production in human newborn cord and adult peripheral blood and in monocyte-derived dendritic cell cultures were measured by ELISA and multiplex assays. X-ray crystallography characterized the interaction of human TLR8 with Hybrid-2. Results Hybrid-2 selectively activated both TLR7 and 8 and was more potent than R848 in inducing adult-like levels of TNF-α, and IL-1β. Consistent with its relatively high in vitro activity, crystallographic studies suggest that absence in Hybrid-2 of an ether oxygen of the C2-ethoxymethyl substituent, which can engage in unfavorable electrostatic and/or dipolar interactions with the carbonyl oxygen of Gly572 in human TLR8, may confer greater efficacy and potency compared to R848. Conclusions Hybrid-2 is a selective and potent TLR7/8 agonist that is a candidate adjuvant for early life immunization. PMID:26274907

  19. Kinetics of cytokine profile in response to Mycobacterium bovis BCG and Streptococcus pyogenes activated cells.

    PubMed

    Verma, Vivek; Kumar, Parveen; Dhanda, Rakesh Singh; Yadav, Manisha

    2016-06-01

    The infection of epithelial cells is a necessary step for Mycobacterium bovis BCG dissemination, but the mechanism of mycobacterial epithelial interactions is not completely understood. Similarly, Streptococcus pyogenes is a strictly human pathogen that favorably colonizes the skin and the pharynx. Effective cytokine secretion is essential in order to fabricate a suitable inflammatory response against an infection. In this data article, the cytokine profile in BCG and S. pyogenes activated THP-1 cell line in media after the acute phase of infection by ELISA is described. The interleukin-8 level was increased in response to both BCG and S. pyogenes, but was quite prominent after 24 h and further increased upto 72 h post infection. On the other hand, an increase in IL-6 response to S. pyogenes was observed while there was no response to BCG even after 48 h of infection. A low level of TNF-α was detected upon BCG and S. pyogenes infection. PMID:27014727

  20. Minimizing antibody surface density on liposomes while sustaining cytokine-activated EC targeting.

    PubMed

    Almeda, Dariela; Wang, Biran; Auguste, Debra T

    2015-02-01

    Liposomes may be engineered to target inflamed endothelium by mimicking ligand-receptor interactions between leukocytes and cytokine-activated endothelial cells (ECs). The upregulation and assembly of vascular cell adhesion molecule-1 (VCAM1) and E-selectin on the cell membrane upon exposure to cytokines have shown potential for drug delivery vehicles to target sites of chronic endothelial inflammation, such as atherosclerosis and cancer. Herein, we characterized EC surfaces by measuring the E-selectin and VCAM1 surface densities and adhesion forces of aVCAM1 and aE-selectin to ECs. We quantified the antibody density, ratio, and diffusivity of liposomes to achieve significant binding and internalization. At 1 h, the 1:1 ratio of VCAM1:E-selectin antibodies was significantly higher than 1:0 and 0:1. Significant binding and uptake was achieved at aE-selectin densities as low as 400 molecules/μm(2). The highest levels of binding and uptake were achieved when using a 1:1 ratio of VCAM1:E-selectin antibodies at a density of 1000 molecules/μm(2); this density is 85% lower than previous reports. The binding and uptake of functionalized liposomes were reduced to levels comparable to IgG functionalized liposomes upon a 10-fold reduction in liposome membrane diffusivity. We conclude with a liposomal design that discriminates between healthy and inflamed endothelium while reducing antibody surface presentation. PMID:25522963

  1. Kinetics of cytokine profile in response to Mycobacterium bovis BCG and Streptococcus pyogenes activated cells

    PubMed Central

    Verma, Vivek; Kumar, Parveen; Dhanda, Rakesh Singh; Yadav, Manisha

    2016-01-01

    The infection of epithelial cells is a necessary step for Mycobacterium bovis BCG dissemination, but the mechanism of mycobacterial epithelial interactions is not completely understood. Similarly, Streptococcus pyogenes is a strictly human pathogen that favorably colonizes the skin and the pharynx. Effective cytokine secretion is essential in order to fabricate a suitable inflammatory response against an infection. In this data article, the cytokine profile in BCG and S. pyogenes activated THP-1 cell line in media after the acute phase of infection by ELISA is described. The interleukin-8 level was increased in response to both BCG and S. pyogenes, but was quite prominent after 24 h and further increased upto 72 h post infection. On the other hand, an increase in IL-6 response to S. pyogenes was observed while there was no response to BCG even after 48 h of infection. A low level of TNF-α was detected upon BCG and S. pyogenes infection. PMID:27014727

  2. Determination of the Absolute Number of Cytokine mRNA Molecules within Individual Activated Human T Cells

    NASA Technical Reports Server (NTRS)

    Karr, Laurel J.; Marshall, Gwen; Hockett, Richard D.; Bucy, R. Pat; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    A primary function of activated T cells is the expression and subsequent secretion of cytokines, which orchestrate the differentiation of other lymphocytes, modulate antigen presenting cell activity, and alter vascular endothelium to mediate an immune response. Since many features of immune regulation probably result from modest alterations of endogenous rates of multiple interacting processes, quantitative analysis of the frequency and specific activity of individual T cells is critically important. Using a coordinated set of quantitative methods, the absolute number of molecules of several key cytokine mRNA species in individual T cells has been determined. The frequency of human blood T cells activated in vitro by mitogens and recall protein antigens was determined by intracellular cytokine protein staining, in situ hybridization for cytokine mRNA, and by limiting dilution analysis for cytokine mRNA+ cells. The absolute number of mRNA molecules was simultaneously determined in both homogenates of the entire population of cells and in individual cells obtained by limiting dilution, using a quantitative, competitive RT-PCR assay. The absolute numbers of mRNA molecules in a population of cells divided by the frequency of individual positive cells, yielded essentially the same number of mRNA molecules per cell as direct analysis of individual cells by limiting dilution analysis. Mean numbers of mRNA per positive cell from both mitogen and antigen activated T cells, using these stimulation conditions, were 6000 for IL-2, 6300 for IFN-gamma, and 1600 for IL-4.

  3. Contribution of IPS-1 to polyI:C-induced cytokine production in conjunctival epithelial cells.

    PubMed

    Ueta, Mayumi; Kawai, Taro; Yokoi, Norihiko; Akira, Shizuo; Kinoshita, Shigeru

    2011-01-01

    We previously demonstrated that ocular surface epithelium expressed TLR3 and that its ligand, polyI:C, stimulation induced the secretion of inflammatory cytokines and type I IFN. It was recently reported that RIG-I and MDA5 also recognize viral dsRNA mimicking polyI:C. In this study, we investigated whether RIG-I and/or MDA5 contribute to polyI:C-inducible responses in conjunctival epithelium. The expression of RIG-I, MDA5, and TLR3 in human conjunctival epithelium was examined by RT-PCR and their up-regulation after polyI:C stimulation by quantitative RT-PCR and immunoblot analysis. Human conjunctival epithelial cells also expressed RIG-I, MDA5 and TLR3 mRNA and protein. The expression of RIG-I and MDA5, but not of TLR3, was markedly up-regulated upon polyI:C stimulation. We also examined the function of IPS-1 (an adaptor molecule common to RIG-I and/or MDA5) and TLR3 in conjunctival epithelium using IPS-1 KO and TLR3 KO mice. To analyze in vivo murine conjunctival epithelial cells, 10 μl of a 100 μg/ml polyI:C solution were delivered subconjunctivally and as eye drops, then conjunctival epithelial cells were subjected to gene expression analysis. We focused on 10 transcripts up-regulated in murine conjunctival epithelium upon polyI:C stimulation. Cxcl10, Mx1, Ifi44, Ifi203, Iigp2 and Rtp4 were dominantly regulated by IPS-1, Ccl5 by TLR3, and Rsad2, Mx2 and Cmpk2 were regulated by TLR3 and IPS-1. Our results showed that conjunctival epithelial cells express RIG-I and MDA5, and IPS-1, an adaptor molecule common to RIG-I and MDA5, contributes to polyI:C-inducible cytokine production in conjunctival epithelial cells. PMID:21130742

  4. Transmissible Plasmid Containing Salmonella enterica Heidelberg Isolates Modulate Cytokine Production During Early Stage of Interaction with Intestinal Epithelial Cells.

    PubMed

    Gokulan, Kuppan; Khare, Sangeeta; Williams, Katherine; Foley, Steven L

    2016-08-01

    The variation in cytokine production during bacterial invasion of human intestinal epithelial cells (IECs) is a contributing factor for progression of the infection. A few Salmonella enterica Heidelberg strains isolated from poultry products harbor transmissible plasmids (TPs), including those that encode a type-IV secretion system. Earlier, we showed that these TPs are responsible for increased virulence during infection. This study examines the potential role of these TPs in cytokine production in IECs. This study showed that S. Heidelberg strains containing TPs (we refer as virulent strains) caused decreased interleukin (IL)-10 production in IECs after 1 h infection. The virulent strains induced a high level of tumor necrosis factor-α production under identical conditions. The virulent strains of S. Heidelberg also altered the production of IL-2, IL-17, and granulocyte macrophage colony-stimulating factor compared to an avirulent strain. As a part of infection, bacteria cross the epithelial barrier and encounter intestinal macrophages. Hence, we examined the cytotoxic mechanism of strains of S. Heidelberg in macrophages. Scanning electron microscopy showed cell necrosis occurs during the early stage of infection. In conclusion, virulent S. Heidelberg strains were able to modify the host cytokine profile during the early stages of infection and also caused necrosis in macrophages. PMID:27082282

  5. A new Lactobacillus plantarum strain, TN8, from the gastro intestinal tract of poultry induces high cytokine production.

    PubMed

    Ben Salah, Riadh; Trabelsi, Imen; Ben Mansour, Riadh; Lassoued, Saloua; Chouayekh, Hichem; Bejar, Samir

    2012-08-01

    This study aimed to determine the probiotic potential of 100 strains of Lactic Acid Bacteria (LAB) isolated from different intestinal segments of indigenous poultry in Tunisia. The strains were submitted to a battery of standard tests and criteria commonly used for determining their probiotic properties and attributes. The findings revealed that 19 of the isolates exhibited antimicrobial activity against 4 pathogenic bacteria, and that 4 (TN1, TN8, TN7, and TN13) showed good resistance to pH 3 and 5% bovine bile. Three isolates, namely TN1, TN8, and TN13, showed sensitivity to several antibiotics and were, therefore, selected for further enzymatic activity assays. Two isolates, namely TN1 and TN8, showed high efficacy of adhesion to chicken enterocytes. The cytokines released after stimulation by the two isolates showed high anti-inflammatory profiles, with an increased rate of Interleukin-10 (IL-10) production for the TN8 strain. Showing the highest performance, TN8 was submitted to 16S rRNA gene sequencing, which revealed that the strain was of the species Lactobacillus plantarum. Overall, the findings indicate that the Lactobacilli from poultry intestine has a number of promising properties that make it candidate for application as a probiotic additive in poultry industry. PMID:22634330

  6. Effect of non-operative management (NOM) of splenic rupture versus splenectomy on the distribution of peripheral blood lymphocyte populations and cytokine production by T cells

    PubMed Central

    Theodorou, G L; Mouzaki, A; Tsiftsis, D; Apostolopoulou, A; Mougiou, A; Theodori, E; Vagianos, C; Karakantza, M

    2007-01-01

    Post-traumatic splenectomy is associated with increased postoperative morbidity and mortality and long-term impairment of humoral and cellular immunity. Alternatives to surgery have been developed to minimize or avoid the immediate and/or long-term complications of splenectomy. Herein we investigated the long-term effect of non-operative management (NOM) of the traumatic rupture of the spleen on the distribution of peripheral blood (PB) lymphocyte populations and cytokine production by T cells. PB samples were drawn from six NOM patients, 13 age-matched adults who had undergone splenectomy after trauma (SP patients) and 31 age-matched controls. Cellular phenotypes and the intracellular production of interferon (IFN)-γ, interleukin (IL)-2, IL-4 and IL-10 cytokines in T cells were determined in whole blood ± mitogens by flow cytometry. NOM patients did not show any changes in the absolute numbers of lymphocytes or the distribution of their subsets, compared to the controls. In contrast, SP patients showed a sustained increase in the percentage and/or absolute numbers of lymphocytes, CD8 T cells, activated CD8 T cells, natural killer (NK) T cells, NK cells and γδ T cells, and a reduction in naive CD4 T cells. The constitutive or induced cytokine production by T cells of the NOM group was similar to the control group, whereas SP patients had increased percentages of constitutive IL-2- and IFN-γ-producing CD8 T cells and IFN-γ-producing CD4 T cells. Our findings indicate collectively that the healing process in NOM does not affect the architecture of the spleen to such an extent that it would lead to long-term alterations of the proportions of PB lymphocytes or the T cell cytokine profiles. PMID:17924970

  7. Elevated cytokine responses to Vibrio harveyi infection in the Japanese pufferfish (Takifugu rubripes) treated with Lactobacillus paracasei spp. paracasei (06TCa22) isolated from the Mongolian dairy product.

    PubMed

    Biswas, G; Korenaga, H; Nagamine, R; Kawahara, S; Takeda, S; Kikuchi, Y; Dashnyam, B; Yoshida, T; Kono, T; Sakai, M

    2013-09-01

    With the aim of evaluating the effect of a Mongolian dairy product derived Lactobacillus paracasei spp. paracasei (strain 06TCa22) (Lpp) on the cytokine-mediated immune responses to Vibrio harveyi infection, we examined 16 cytokine expressions in the Japanese pufferfish, Takifugu rubripes. Fish were orally treated with the heat-killed Lpp at 1 mg g(-1) body weight d(-1) for 3 days. At 24 h posttreatment, fish were infected by an intramuscular injection of 0.1 mL V. harveyi bacterial suspension (10(8) cfu mL(-1)). Additionally, superoxide anion production (SAP) and phagocytic activity (PA) of head kidney cells were assessed during 120 h postinfection period. Significant up-regulation of pro-inflammatory (IL-1β, IL-6, IL-17A/F-3, TNF-α and TNF-N), cell-mediated immune inducing (IL-12p35, IL-12p40 and IL-18), antiviral/intra-cellular pathogen killing (I-IFN-1 and IFN-γ), anti-inflammatory (IL-10) and lymphocyte agonistic (IL-2, IL-7, IL-15, IL-21 and TGF-β1) cytokines was observed in the treated fish compared to control ones during the pathogen infection. Furthermore, significantly increased SAP and PA (P < 0.01; 0.05) were recorded in the treated fish compared to untreated fish. These results suggest the beneficial role of Lpp in enhancement of cytokine-mediated immunity in the Japanese pufferfish against V. harveyi infection and application of this product as a potential fish immunostimulant. PMID:23769874

  8. Time dependent production of cytokines and eicosanoids by human monocytic leukaemia U937 cells; effects of glucocorticosteroids.

    PubMed Central

    Garrelds, I M; van Hal, P T; Haakmat, R C; Hoogsteden, H C; Saxena, P R; Zijlstra, F J

    1999-01-01

    In the present study the human monoblast cell line U937 has been used as a model to study the function of human mononuclear phagocytes in asthma. The kinetics of the production of eicosanoids and cytokines, which are thought to play a role in the pathogenesis of asthma, were studied. In addition, the effects of glucocorticosteroids were investigated, as these drugs are of great importance for the treatment of asthmatic patients. After stimulation with phorbol-12 myristate acetate (PMA) for 24 h, U937 cells were cultured in the absence or presence of lipopolysaccharide (LPS: 1 and 5 microg ml(-1)) and glucocorticosteroids (budesonide, fluticasone propionate and prednisolone: 10(-11), 10(-9) and 10(-7) M) for 96 h. The production of interleukin-1beta (IL-1beta), interleukin-6 (IL-6), prostaglandin E2 (PGE2) and thromboxane B2 (TxB2) gradually increased in time after stimulation with LPS, whereas the transient production of tumor necrosis factor alpha (TNF-alpha) reached its maximum between 6 and 12 h. Interferon-gamma (IFN-gamma), interleukin-10 (IL-10) and leukotriene B4 (LTB4) were not detectable. All three glucocorticosteroids (budesonide, fluticasone propionate and prednisolone) completely inhibited the production of both eicosanoids and cytokines. The production of eicosanoids was more sensitive to these glucocorticoids than the production of cytokines. The observed differences in the kinetics of the production of eicosanoids and cytokines stress the importance of time course experiments in studies on the effect of drugs on mononuclear cells. PMID:10704077

  9. Anesthetic isoflurane attenuates activated microglial cytokine-induced VSC4.1 motoneuronal apoptosis

    PubMed Central

    Yang, Shuangmei; Liu, Jun; Zhang, Xiaoran; Tian, Jianmin; Zuo, Zhichao; Liu, Jingjing; Yue, Xiuqin

    2016-01-01

    Isoflurane (ISO) exhibits neuroprotective effects against inflammation and apoptosis. However, the role of ISO in motoneuronal apoptosis induced by activated microglia remains poorly studied. We investigated the protective effects of ISO on the apoptosis of ventral spinal cord 4.1 (VSC4.1) motoneurons induced by lipopolysaccharide (LPS)-activated BV-2 microglia. Results indicated that ISO inhibited NF-κB activation and pro-inflammatory cytokine release in LPS-treated BV-2 microglia. Conditioned medium (CM) from activated BV-2 cells treated by ISO directly prevented VSC4.1 motoneurons from LPS-CM-induced neuronal apoptosis, as determined by the following: reductions in caspase-8, caspase-9, and caspase-3 activities; downregulation of pro-apoptotic procaspase-8, cleaved (cl)-caspase-8, procaspase-9, cl-caspase-9, caspase-3, cl-caspase-3, Bid, Bax, and cytochrome c expression; and upregulation of anti-apoptotic Bcl-2 expression in LPS-CM-cultured VSC4.1 motoneurons. Findings demonstrated that ISO inhibits BV-2 microglia activation and alleviates VSC4.1 motoneuronal apoptosis induced by microglial activation. These effects suggest that ISO can be used as an alternative agent for reducing neuronal apoptosis. PMID:27186270

  10. Modulation of immunoglobulin production and cytokine mRNA expression in peripheral blood mononuclear cells by intravenous immunoglobulin.

    PubMed

    Toyoda, M; Zhang, X; Petrosian, A; Galera, O A; Wang, S J; Jordan, S C

    1994-05-01

    Intravenous immunoglobulin (IVIG) has the potential to regulate Ig production, but the mechanism(s) responsible for this effect is unknown. In experiments reported here, we examined the ability of IVIG to regulate Ig production in human peripheral blood mononuclear cells (PBMCs) stimulated with pokeweed mitogen (PWM). IVIG (2-10 mg/ml) showed a potent (80-85%) inhibition of PWM-stimulated IgG, IgM, and IgA production. To determine more precisely how IVIG mediated the inhibition of Ig production, we studied Ig promoting cytokine gene expression after PWM stimulation with or without IVIG (2 and 10 mg/ml) using dot-blot techniques. RNA was isolated from PBMCs at predetermined time points and probed with cDNAs specific for human cytokines (IL-1 beta, IL-2, IL-2R, IL-4, IL-5, IL-6, gamma-IFN, and TNF-alpha). IL-6 mRNA accumulation was maximal at 4.5 hr post-PWM stimulation and was inhibited 64-75% when IVIG (10 mg/ml) was present. gamma-IFN mRNA levels peaked at 72 hr poststimulation and were also 68-75% inhibited by IVIG. IL-2 mRNA levels peaked at 4.5 hr and were 23-46% inhibited by IVIG. The inhibitory effect of IVIG on production of these cytokines (IL-6 and gamma-IFN) was also observed at the protein level in sonicated PBMCs after incubation with PWM and IVIG. The mRNA levels for other cytokines were not or only minimally inhibited by IVIG. Addition of IL-6, gamma-IFN, or IL-2 partially restored Ig production in IVIG-treated PWM-stimulated cultures, suggesting that inhibition of other cytokines or another mechanism(s) independent of cytokine inhibition might also be involved, although inhibition of IL-6, gamma-IFN, and IL-2 may be one of the critical factors in the suppression of Ig production by IVIG. PMID:7523434

  11. T helper 2 and regulatory T-cell cytokine production by mast cells: a key factor in the pathogenesis of IgG4-related disease.

    PubMed

    Takeuchi, Mai; Sato, Yasuharu; Ohno, Kyotaro; Tanaka, Satoshi; Takata, Katsuyoshi; Gion, Yuka; Orita, Yorihisa; Ito, Toshihiro; Tachibana, Tomoyasu; Yoshino, Tadashi

    2014-08-01

    IgG4-related disease is a systemic disorder with unique clinicopathological features and uncertain etiological features and is frequently related to allergic disease. T helper 2 and regulatory T-cell cytokines have been reported to be upregulated in the affected tissues; thus, the production of these cytokines by T helper 2 and regulatory T cells has been suggested as an important factor in the pathogenesis of IgG4-related disease. However, it is not yet clear which cells produce these cytokines in IgG4-related disease, and some aspects of the disorder cannot be completely explained by T-cell-related processes. To address this, we analyzed paraffin-embedded sections of tissues from nine cases of IgG4-related submandibular gland disease, five cases of submandibular sialolithiasis, and six cases of normal submandibular gland in order to identify potential key players in the pathogenesis of IgG4-related disease. Real-time polymerase chain reaction analysis confirmed the significant upregulation of interleukin (IL)4, IL10, and transforming growth factor beta 1 (TGFβ1) in IgG4-related disease. Interestingly, immunohistochemical studies indicated the presence of mast cells expressing these cytokines in diseased tissues. In addition, dual immunofluorescence assays identified cells that were double-positive for each cytokine and for KIT, which is expressed by mast cells. In contrast, the distribution of T cells did not correlate with cytokine distribution in affected tissues. We also found that the mast cells were strongly positive for IgE. This observation supports the hypothesis that mast cells are involved in IgG4-related disease, as mast cells are known to be closely related to allergic reactions and are activated in the presence of elevated non-specific IgE levels. In conclusion, our results indicate that mast cells produce T helper 2 and regulatory T-cell cytokines in tissues affected by IgG4-related disease and possibly have an important role in disease

  12. Over-expression of GTP-cyclohydrolase 1 feedback regulatory protein attenuates LPS and cytokine-stimulated nitric oxide production.

    PubMed

    Nandi, Manasi; Kelly, Peter; Vallance, Patrick; Leiper, James

    2008-02-01

    GTP-cyclohydrolase 1 (GTP-CH1) catalyses the first and rate-limiting step for the de novo production of tetrahydrobiopterin (BH(4)), an essential cofactor for nitric oxide synthase (NOS). The GTP-CH1-BH(4) pathway is emerging as an important regulator in a number of pathologies associated with over-production of nitric oxide (NO) and hence a more detailed understanding of this pathway may lead to novel therapeutic targets for the treatment of certain vascular diseases. GTP-CH1 activity can be inhibited by BH(4) through its protein-protein interactions with GTP-CH1 regulatory protein (GFRP), and transcriptional and post-translational modification of both GTP-CH1 and GFRP have been reported in response to proinflammatory stimuli. However, the functional significance of GFRP/GTP-CH1 interactions on NO pathways has not yet been demonstrated. We aimed to investigate whether over-expression of GFRP could affect NO production in living cells. Over-expression of N-terminally Myc-tagged recombinant human GFRP in the murine endothelial cell line sEnd 1 resulted in no significant effect on basal BH(4) nor NO levels but significantly attenuated the rise in BH(4) and NO observed following lipopolysaccharide and cytokine stimulation of cells. This study demonstrates that GFRP can play a direct regulatory role in iNOS-mediated NO synthesis and suggests that the allosteric regulation of GTP-CH1 activity by GFRP may be an important mechanism regulating BH(4) and NO levels in vivo. PMID:18372436

  13. Pimaradienoic Acid Inhibits Carrageenan-Induced Inflammatory Leukocyte Recruitment and Edema in Mice: Inhibition of Oxidative Stress, Nitric Oxide and Cytokine Production

    PubMed Central

    Casagrande, Rubia; Verri, Waldiceu A.

    2016-01-01

    Pimaradienoic acid (PA; ent-pimara-8(14),15-dien-19-oic acid) is a pimarane diterpene found in plants such as Vigueira arenaria Baker (Asteraceae) in the Brazilian savannas. Although there is evidence on the analgesic and in vitro inhibition of inflammatory signaling pathways, and paw edema by PA, its anti-inflammatory effect deserves further investigation. Thus, the objective of present study was to investigate the anti-inflammatory effect of PA in carrageenan-induced peritoneal and paw inflammation in mice. Firstly, we assessed the effect of PA in carrageenan-induced leukocyte recruitment in the peritoneal cavity and paw edema and myeloperoxidase activity. Next, we investigated the mechanisms involved in the anti-inflammatory effect of PA. The effect of PA on carrageenan-induced oxidative stress in the paw skin and peritoneal cavity was assessed. We also tested the effect of PA on nitric oxide, superoxide anion, and inflammatory cytokine production in the peritoneal cavity. PA inhibited carrageenan-induced recruitment of total leukocytes and neutrophils to the peritoneal cavity in a dose-dependent manner. PA also inhibited carrageenan-induced paw edema and myeloperoxidase activity in the paw skin. The anti-inflammatory mechanism of PA depended on maintaining paw skin antioxidant activity as observed by the levels of reduced glutathione, ability to scavenge the ABTS cation and reduce iron as well as by the inhibition of superoxide anion and nitric oxide production in the peritoneal cavity. Furthermore, PA inhibited carrageenan-induced peritoneal production of inflammatory cytokines TNF-α and IL-1β. PA presents prominent anti-inflammatory effect in carrageenan-induced inflammation by reducing oxidative stress, nitric oxide, and cytokine production. Therefore, it seems to be a promising anti-inflammatory molecule that merits further investigation. PMID:26895409

  14. Pimaradienoic Acid Inhibits Carrageenan-Induced Inflammatory Leukocyte Recruitment and Edema in Mice: Inhibition of Oxidative Stress, Nitric Oxide and Cytokine Production.

    PubMed

    Mizokami, Sandra S; Hohmann, Miriam S N; Staurengo-Ferrari, Larissa; Carvalho, Thacyana T; Zarpelon, Ana C; Possebon, Maria I; de Souza, Anderson R; Veneziani, Rodrigo C S; Arakawa, Nilton S; Casagrande, Rubia; Verri, Waldiceu A

    2016-01-01

    Pimaradienoic acid (PA; ent-pimara-8(14),15-dien-19-oic acid) is a pimarane diterpene found in plants such as Vigueira arenaria Baker (Asteraceae) in the Brazilian savannas. Although there is evidence on the analgesic and in vitro inhibition of inflammatory signaling pathways, and paw edema by PA, its anti-inflammatory effect deserves further investigation. Thus, the objective of present study was to investigate the anti-inflammatory effect of PA in carrageenan-induced peritoneal and paw inflammation in mice. Firstly, we assessed the effect of PA in carrageenan-induced leukocyte recruitment in the peritoneal cavity and paw edema and myeloperoxidase activity. Next, we investigated the mechanisms involved in the anti-inflammatory effect of PA. The effect of PA on carrageenan-induced oxidative stress in the paw skin and peritoneal cavity was assessed. We also tested the effect of PA on nitric oxide, superoxide anion, and inflammatory cytokine production in the peritoneal cavity. PA inhibited carrageenan-induced recruitment of total leukocytes and neutrophils to the peritoneal cavity in a dose-dependent manner. PA also inhibited carrageenan-induced paw edema and myeloperoxidase activity in the paw skin. The anti-inflammatory mechanism of PA depended on maintaining paw skin antioxidant activity as observed by the levels of reduced glutathione, ability to scavenge the ABTS cation and reduce iron as well as by the inhibition of superoxide anion and nitric oxide production in the peritoneal cavity. Furthermore, PA inhibited carrageenan-induced peritoneal production of inflammatory cytokines TNF-α and IL-1β. PA presents prominent anti-inflammatory effect in carrageenan-induced inflammation by reducing oxidative stress, nitric oxide, and cytokine production. Therefore, it seems to be a promising anti-inflammatory molecule that merits further investigation. PMID:26895409

  15. Probiotic supplement consumption alters cytokine production from peripheral blood mononuclear cells: a preliminary study using healthy individuals.

    PubMed

    Hepburn, N J; Garaiova, I; Williams, E A; Michael, D R; Plummer, S

    2013-12-01

    The objective of this study was to examine the effect of daily probiotic supplementation upon the immune profile of healthy participants by the assessment of ex vivo cytokine production. Twenty healthy adult volunteers received a multi-strain probiotic supplement consisting of two strains of Lactobacillus acidophilus (CUL60 and CUL21), Bifidobacterium lactis (CUL34) and Bifidobacterium bifidum (CUL20) and fructooligosaccharide for 12 weeks. Blood samples were collected at baseline, 6 and 12 weeks. Peripheral blood mononuclear cells (PBMCs) were isolated and cultured ex vivo in the presence or absence of lipopolysaccharide and cytokine production was assessed. Postintervention, a significant decrease in the production of interleukin-6 and interleukin-1β was apparent when PBMCs were incubated in the presence of lipopolysaccharide, whilst a significant increase in IL-10 and transforning growth factor-β production was seen when the cells were incubated without an additional stimulus. This preliminary study demonstrates the potential of a multi-strain probiotic supplement to alter the immune response as demonstrated by changes in ex vivo cytokine production. Such results demonstrate the potential benefit of probiotic supplementation for healthy individuals and warrants further investigation. PMID:24311314

  16. Activation of cytokine genes during primary and anamnestic immune response to inactivated c. albicans.

    PubMed Central

    Rosati, E; Scaringi, L; Cornacchione, P; Fettucciari, K; Sabatini, R; Mezzasoma, L; Benedetti, C; Cianetti, S; Rossi, R; Marconi, P

    1996-01-01

    Recent evidence suggests that after repeated stimulations with inactivated C. albicans (CA) cells, CD2F1 mice respond with a cytokine pattern typical of T-helper 1 (ThI) subset development. The purpose of this study was to analyse the sequence of immunological events which, soon after priming mice with CA, lead to the development of primary and anamnestic response. A comprehensive kinetics analysis of cytokine mRNA expression was performed by Northern blot assay, in peritoneal exudate cells (PEC), at different phases of immune response to CA: after priming (one i.p. injection of 2 x 10(7) CA cells mouse), during development of the primary immune response (five progressive CA i.p. injections over a 2-week period) and in the anamnestic response (CA booster 30 days after the primary response). In vitro assays were performed 2 and 24 hr after every CA stimulation. The response to CA priming was characterized by an early and high expression of interleukin-2 (IL-2) and IL-1 beta mRNAs At 24hr. IL-2 mRNA was still at a high level, while IL-1 beta had greatly decreased. A weak expression of IL-10 was only induced at 2 hr. whereas IL-12 p40 subunit, interferon-7 (IFN-7) IL-4 and IL-5 mRNAs were undetectable. In this phase no in vitro proliferative response of PEC to CA was observed, whereas a significant natural killer (NK) activity was induced. From the second CA injection, the IFN-7 mRNA was already induced at 2 hr. Its expression level increased progressively with the number of CA injections persisting up to 24 hr after the fifth stimulation. A progressive increase of IL-2 mRNA expression was also induced whereas IL-1 beta and IL-10 mRNAs were always transiently expressed at 2 hr at levels similar to those observed after the priming. IL-12 p40 subunit. IL-4 and IL-5 mRNAs were never detectable. The expression of this selected cytokine pattern typical of Thl response was correlated with the development of CA-specific T lymphocytes as confirmed by the in vitro

  17. Propolis immunomodulatory action in vivo on Toll-like receptors 2 and 4 expression and on pro-inflammatory cytokines production in mice.

    PubMed

    Orsatti, C L; Missima, F; Pagliarone, A C; Bachiega, T F; Búfalo, M C; Araújo, J P; Sforcin, J M

    2010-08-01

    Propolis is a bee product and its immunomodulatory action has been the subject of intense investigation lately. The recent discovery and characterization of the family of Toll-like receptors (TLR) have triggered a great deal of interest in the field of innate immunity due to their crucial role in microbial recognition and development of the adaptive immune response. This work aimed to evaluate propolis's effect on TLR-2 and TLR-4 expression and on the production of pro-inflammatory cytokines (IL-1beta and IL-6). Male BALB/c mice were treated with propolis (200 mg/kg) for three consecutive days, and TLR-2 and TLR-4 expression as well as IL-1beta and IL-6 production were assessed in peritoneal macrophages and spleen cells. Basal IL-1beta production and TLR-2 and TLR-4 expression were increased in peritoneal macrophages of propolis-treated mice. TLR-2 and TLR-4 expression and IL-1beta and IL-6 production were also upregulated in the spleen cells of propolis-treated mice. One may conclude that propolis activated the initial steps of the immune response by upregulating TLRs expression and the production of pro-inflammatory cytokines in mice, modulating the mechanisms of the innate immunity. PMID:20041423

  18. IL-6 Amplifies TLR Mediated Cytokine and Chemokine Production: Implications for the Pathogenesis of Rheumatic Inflammatory Diseases

    PubMed Central

    Caiello, Ivan; Minnone, Gaetana; Holzinger, Dirk; Vogl, Thomas; Prencipe, Giusi; Manzo, Antonio; De Benedetti, Fabrizio; Strippoli, Raffaele

    2014-01-01

    The role of Interleukin(IL)-6 in the pathogenesis of joint and systemic inflammation in rheumatoid arthritis (RA) and systemic juvenile idiopathic arthritis (s-JIA) has been clearly demonstrated. However, the mechanisms by which IL-6 contributes to the pathogenesis are not completely understood. This study investigates whether IL-6 affects, alone or upon toll like receptor (TLR) ligand stimulation, the production of inflammatory cytokines and chemokines in human peripheral blood mononuclear cells (PBMCs), synovial fluid mononuclear cells from JIA patients (SFMCs) and fibroblast-like synoviocytes from rheumatoid arthritis patients (RA synoviocytes) and signalling pathways involved. PBMCs were pre-treated with IL-6 and soluble IL-6 Receptor (sIL-6R). SFMCs and RA synoviocytes were pre-treated with IL-6/sIL-6R or sIL-6R, alone or in combination with Tocilizumab (TCZ). Cells were stimulated with LPS, S100A8-9, poly(I-C), CpG, Pam2CSK4, MDP, IL-1β. Treatment of PBMCs with IL-6 induced production of TNF-α, CXCL8, and CCL2, but not IL-1β. Addition of IL-6 to the same cells after stimulation with poly(I-C), CpG, Pam2CSK4, and MDP induced a significant increase in IL-1β and CXCL8, but not TNF-α production compared with TLR ligands alone. This enhanced production of IL-1β and CXCL8 paralleled increased p65 NF-κB activation. In contrast, addition of IL-6 to PBMCs stimulated with LPS or S100A8-9 (TLR-4 ligands) led to reduction of IL-1β, TNF-α and CXCL8 with reduced p65 NF-κB activation. IL-6/IL-1β co-stimulation increased CXCL8, CCL2 and IL-6 production. Addition of IL-6 to SFMCs stimulated with LPS or S100A8 increased CXCL8, CCL2 and IL-1β production. Treatment of RA synoviocytes with sIL-6R increased IL-6, CXCL8 and CCL2 production, with increased STAT3 and p65 NF-κB phosphorylation. Our results suggest that IL-6 amplifies TLR-induced inflammatory response. This effect may be relevant in the presence of high IL-6 and sIL-6R levels, such as in arthritic joints

  19. IL-6 amplifies TLR mediated cytokine and chemokine production: implications for the pathogenesis of rheumatic inflammatory diseases.

    PubMed

    Caiello, Ivan; Minnone, Gaetana; Holzinger, Dirk; Vogl, Thomas; Prencipe, Giusi; Manzo, Antonio; De Benedetti, Fabrizio; Strippoli, Raffaele

    2014-01-01

    The role of Interleukin(IL)-6 in the pathogenesis of joint and systemic inflammation in rheumatoid arthritis (RA) and systemic juvenile idiopathic arthritis (s-JIA) has been clearly demonstrated. However, the mechanisms by which IL-6 contributes to the pathogenesis are not completely understood. This study investigates whether IL-6 affects, alone or upon toll like receptor (TLR) ligand stimulation, the production of inflammatory cytokines and chemokines in human peripheral blood mononuclear cells (PBMCs), synovial fluid mononuclear cells from JIA patients (SFMCs) and fibroblast-like synoviocytes from rheumatoid arthritis patients (RA synoviocytes) and signalling pathways involved. PBMCs were pre-treated with IL-6 and soluble IL-6 Receptor (sIL-6R). SFMCs and RA synoviocytes were pre-treated with IL-6/sIL-6R or sIL-6R, alone or in combination with Tocilizumab (TCZ). Cells were stimulated with LPS, S100A8-9, poly(I-C), CpG, Pam2CSK4, MDP, IL-1β. Treatment of PBMCs with IL-6 induced production of TNF-α, CXCL8, and CCL2, but not IL-1β. Addition of IL-6 to the same cells after stimulation with poly(I-C), CpG, Pam2CSK4, and MDP induced a significant increase in IL-1β and CXCL8, but not TNF-α production compared with TLR ligands alone. This enhanced production of IL-1β and CXCL8 paralleled increased p65 NF-κB activation. In contrast, addition of IL-6 to PBMCs stimulated with LPS or S100A8-9 (TLR-4 ligands) led to reduction of IL-1β, TNF-α and CXCL8 with reduced p65 NF-κB activation. IL-6/IL-1β co-stimulation increased CXCL8, CCL2 and IL-6 production. Addition of IL-6 to SFMCs stimulated with LPS or S100A8 increased CXCL8, CCL2 and IL-1β production. Treatment of RA synoviocytes with sIL-6R increased IL-6, CXCL8 and CCL2 production, with increased STAT3 and p65 NF-κB phosphorylation. Our results suggest that IL-6 amplifies TLR-induced inflammatory response. This effect may be relevant in the presence of high IL-6 and sIL-6R levels, such as in arthritic joints

  20. Prospective crossover trial of the influence of vitamin E-coated dialyzer membranes on T-cell activation and cytokine induction.

    PubMed

    Girndt, M; Lengler, S; Kaul, H; Sester, U; Sester, M; Köhler, H

    2000-01-01

    Cytokine induction by dialyzer membranes has been related to several acute and chronic side effects of hemodialysis treatment, among them being immune dysfunction and progressive atherosclerosis. Surface modification of cuprophane dialyzers with the antioxidant vitamin E is a new approach to enhance biocompatibility and improve cytokine levels, as well as immune function. Twenty-one patients undergoing treatment with hemophane (HE) dialyzers were enrolled onto a crossover study with a vitamin E-coated (VE) dialyzer or a synthetic polyamide (PA) dialyzer. In vitro assays of lymphocyte activation and measurements of cytokine induction were performed to evaluate biocompatibility. Four weeks of treatment with either VE or PA dialyzers enhanced in vitro proliferation of peripheral blood leukocytes in comparison to treatment with HE membranes used before study entry. Enhancement of lymphocyte function was independent of dialysis efficiency, which was kept constant during the study. In the interdialytic interval, preactivation of monocytes for the production of interleukin-6 (IL-6) did not differ between VE or PA dialysis. In contrast, the VE membrane reduced acute production of IL-6 during a dialysis treatment, whereas the PA membrane did not. Unlike IL-6, the regulatory cytokine IL-10 is not inhibited by either membrane. This is important because IL-10 is believed to have a beneficial effect on immune function in dialysis patients. The VE membrane, despite being based on a cuprophane backbone, is similar to the highly biocompatible PA dialyzer in terms of its effect on lymphocyte function, whereas it exerts an additional suppressive effect on the overproduction of proinflammatory cytokines. PMID:10620550

  1. The Epithelial Cell-derived Atopic Dermatitis Cytokine TSLP Activates Neurons to Induce Itch

    PubMed Central

    Wilson, Sarah R.; Thé, Lydia; Batia, Lyn M.; Beattie, Katherine; Katibah, George E.; McClain, Shannan P.; Pellegrino, Maurizio; Estandian, Daniel M.; Bautista, Diana M.

    2014-01-01

    Summary Atopic dermatitis (AD) is a chronic itch and inflammatory disorder of the skin that affects one in ten people. Patients suffering from severe AD eventually progress to develop asthma and allergic rhinitis, in a process known as the “atopic march.” Signaling between epithelial cells and innate immune cells via the cytokine Thymic Stromal Lymphopoietin (TSLP) is thought to drive AD and the atopic march. Here we report that epithelial cells directly communicate to cutaneous sensory neurons via TSLP to promote itch. We identify the ORAI1/NFAT calcium signaling pathway as an essential regulator of TSLP release from keratinocytes, the primary epithelial cells of the skin. TSLP then acts directly on a subset of TRPA1-positive sensory neurons to trigger robust itch behaviors. Our results support a new model whereby calcium-dependent TSLP release by keratinocytes activates both primary afferent neurons and immune cells to promote inflammatory responses in the skin and airways. PMID:24094650

  2. Increased Expression of IL-37 in Patients with Graves' Disease and Its Contribution to Suppression of Proinflammatory Cytokines Production in Peripheral Blood Mononuclear Cells

    PubMed Central

    Li, Yanqun; Wang, Zi; Yu, Ting; Chen, Bingni; Zhang, Jinshun; Huang, Kunzhao; Huang, Zhong

    2014-01-01

    Background Intreleukin-37 (IL-37), a member of IL-1 family, is primarily an anti-inflammatory cytokine, which reduces systemic and local inflammation. However, the expression and role of IL-37 in Graves' disease (GD) remains unknown. This study aims to measure the levels of serum and peripheral blood mononuclear cells (PBMCs) IL-37 in patients with Graves' disease and to examine its association with disease activity. Furthermore, we investigate the effect of IL-37 on proinflammatory cytokines involved in the pathogenesis of GD. Methods The expressions of IL-37, TNF-α, IL-6, and IL-17 mRNA in peripheral blood mononuclear cells (PBMCs) of 40 patients with Graves' disease were determined by real-time reverse transcription-polymerase chain reaction (RT-PCR), and the levels of IL-37, TNF-α, IL-6, and IL-17 in serum were detected by enzyme-linked immunoassay (ELISA). The correlation of serum IL-37 levels with cytokines and disease activity in Graves' disease patients were investigated. The expressions of cytokines TNF-α, IL-6, and IL-17 in PBMCs under recombinant IL-37 stimulation were determined by RT-PCR and ELISA respectively. Results The levels of IL-37, TNF-α, IL-6, and IL-17 in PBMCs and serum were significantly increased in patients with GD compared with healthy controls (HC). Serum IL-37 were closely correlated with TNF-α, IL-6, IL-17, thyrotropin (TSH), free thyroxine (FT4),free triiodothyronine (FT3) and thyrotropin receptor antibody (TRAB). GD patients with active disease showed higher IL-37 mRNA and serum protein levels compared with those with inactive disease as well as HC. Moreover, IL-37 suppressed the production of IL-6, IL-17 and TNF-α in PBMCs of patients with GD. Conclusions Increased level of IL-37 in patients with GD are associated with TNF-α, IL-6, IL-17 and disease activity, and it plays a protective role against inflammatory effect in GD by inhibiting the production of proinflammatory cytokines. Thus, IL-37 may provide a novel research

  3. Changes of serum cytokine activities and other parameters in dogs with experimentally induced endotoxic shock.

    PubMed

    Miyamoto, T; Fujinaga, T; Yamashita, K; Hagio, M

    1996-08-01

    To study the relationship of changes of cytokines in endotoxic shock, serum tumor necrosis factor (TNF), interleukin (IL)-1 and IL-6 like activities, together with physiologic and hemodynamic responses, were examined in dogs before and after intravenous administration of lipopolysaccharide (LPS) purified from Escherichia coli in a dose of 500 micrograms/kg of body weight. The blood endotoxin concentration increased significantly at 30 min after LPS administration, and maintained high levels for 24 hr. Red blood cell counts; hemoglobin concentration and hematocrit values increased at 30 min, and these high values persisted for 24 hr. The platelet count decreased significantly at 30 min, then showed a tendency to recover, but decreased again at 24 hr. Cardiac output, cardiac index and mean arterial pressure showed transient, significant decreases at 15 min, and then returned to the baseline levels by 24 hr. TNF-like activities increased at 30 min, while IL-1-like activities did so between 30 and 60 min. The former reached the maximal levels at 2 hr and the latter at 1.5 hr. Both activities were then hardly detectable from 6 to 24 hr. IL-6-like activities elevated at 1 hr with the peak at 1.5 hr, and remained high until 24 hr. PMID:8870390

  4. Effects of breast milk from allergic and non-allergic mothers on mitogen- and allergen-induced cytokine production.

    PubMed

    Böttcher, Malin F; Fredriksson, Jenny; Hellquist, Anna; Jenmalm, Maria C

    2003-02-01

    Breast milk contains several components that provide specific immunity and affect the maturation of the infant's immune system. The aim of this study was to analyze the effects of breast milk, on mitogen- and allergen-induced cytokine production from cord blood mononuclear cells (CBMC), and if those effects differ between allergic and non-allergic mothers. The cells were incubated for 96 h with phytohemagglutinin (PHA), ovalbumin or cat dander in the presence of various dilutions of colostrum. Colostrum inhibited both mitogen- and cat-induced IFN-gamma and mitogen-induced interleukin-4 (IL-4) production. The inhibition on IFN-gamma production was to some extent caused by TGF-beta, as the effect was modified when an anti-TGF-beta antibody was added to the cultures. In contrast, colostrum enhanced allergen-induced production of the Th2-like cytokines IL-5 and IL-13, and this was accompanied with increased production of IL-10. No differences were found between allergic and non-allergic mothers. The inhibitory effect of breast milk on IFN-gamma production, which was partly due to the high levels of TGF-beta, together with the enhancing effect on IL-10 secretion, confirm that breast milk is anti-inflammatory. Although the production of IL-5 and IL-13 was enhanced by colostrum, this was accompanied with an increased production of IL-10. Together with the high levels of TGF-beta in breast milk and inhibitory effect of colostrum on IL-4 production, this suggests a possible mechanism whereby breast-feeding may protect against the development of allergy. Despite differences in the composition of breast milk between allergic and non-allergic mothers, the effects of breast milk on cytokine production from CBMC were independent of the atopic status of the mothers. PMID:12603708

  5. Effect of surfactant protein A (SP-A) on the production of cytokines by human pulmonary macrophages.

    PubMed

    Arias-Diaz, J; Garcia-Verdugo, I; Casals, C; Sanchez-Rico, N; Vara, E; Balibrea, J L

    2000-09-01

    Surfactant protein A (SP-A) is thought to play a role in the modulation of lung inflammation during acute respiratory distress syndrome (ARDS). However, SP-A has been reported both to stimulate and to inhibit the proinflammatory activity of pulmonary macrophages (Mphi). Because of the interspecies differences and heterogeneity of Mphi subpopulations used may have influenced previous controversial results, in this study, we investigated the effect of human SP-A on the production of cytokines and other inflammatory mediators by two well-defined subpopulations of human pulmonary Mphi. Surfactant and both alveolar (aMphi) and interstitial (iMphi) macrophages were obtained from multiple organ donor lungs by bronchoalveolar lavage and enzymatic digestion. Donors with either recent history of tobacco smoking, more than 72 h on mechanical ventilation, or any radiological pulmonary infiltrate were discarded. SP-A was purified from isolated surfactant using sequential butanol and octyl glucoside extractions. After 24-h preculture, purified Mphi were cultured for 24 h in the presence or absence of LPS (10 microg/mL), SP-A (50 microg/mL), and combinations. Nitric oxide and carbon monoxide (CO) generation (pmol/microg protein), cell cGMP content (pmol/microg protein), and tumor necrosis factor alpha (TNFalpha), interleukin (IL)-1, and IL-6 release to the medium (pg/microg protein) were determined. SP-A inhibited the lipopolysaccharide (LPS)-induced TNFalpha response of both interstitial and alveolar human Mphi, as well as the IL-1 response in iMphi. The SP-A effect on TNFalpha production could be mediated by a suppression in the LPS-induced increase in intracellular cGMP. In iMphi but not in aMphi, SP-A also inhibited the LPS-induced IL-1 secretion and CO generation. These data lend further credit to a physiological function of SP-A in regulating alveolar host defense and inflammation by suggesting a fundamental role of this apoprotein in limiting excessive proinflammatory

  6. Effect of 17β-oestradiol on cytokine-induced nitric oxide production in rat isolated aorta

    PubMed Central

    Kauser, Katalin; Sonnenberg, Dagmar; Diel, Patrick; Rubanyi, Gabor M

    1998-01-01

    Studies were performed on isolated aortic rings without endothelium to investigate the effect of 17β-oestradiol on cytokine-induced nitric oxide production by the inducible nitric oxide synthase (iNOS).Treatment of the isolated aortic rings with interleukin-1β (IL-1β, 20 μ ml−1) led to the expression of iNOS mRNA and protein, as well as significant nitrite accumulation in the incubation media and suppression of phenylephrine (1 nM–10 μM)-evoked contraction.Cycloheximide (1 μM), a protein synthesis inhibitor, prevented iNOS protein expression, nitrite accumulation and the suppression of contractility by IL-1β on the isolated aortic rings. 17β-oestradiol (1 nM–10 μM) and the partial oestrogen receptor agonist 4-OH-tamoxifen (1 nM–10 μM) produced concentration-dependent inhibition of IL-1β-induced nitrite accumulation and restored vasoconstrictor responsiveness to phenylephrine, similar to the iNOS inhibitor aminoguanidine (100 μM).Semiquantitative PCR demonstrated decreased iNOS mRNA in the IL-1β-induced and 17β-oestradiol-treated rings. Western blot analysis of rat aorta homogenates revealed that 17β-oestradiol treatment resulted in a reduction in IL-1ß-induced iNOS protein level.Incubation with tumour necrosis factor α (TNFα, 1 ng ml−1) resulted in significant nitrite accumulation in the incubation media and suppression of the smooth muscle contractile response to phenylephrine, similar to IL-1β. The effects of TNFα were also inhibited by co-incubation of the rings with 17β-oestradiol and 4-OH-tamoxifen (1 μM).The anti-transforming growth factor-β1 (TGF-β1) antibody, which inhibited TGF-β1-induced suppression of nitrite production from IL-1β-treated vascular rings, did not affect the inhibitory action of 17β-oestradiol, suggesting that the effect of oestrogen on iNOS inhibition was not mediated by TGF-β1.These results show that the ovarian sex steroid, 17β-oestradiol is a modulator of cytokine

  7. IL-37 Alleviates Rheumatoid Arthritis by Suppressing IL-17 and IL-17-Triggering Cytokine Production and Limiting Th17 Cell Proliferation.

    PubMed

    Ye, Liang; Jiang, Bo; Deng, Jun; Du, Jing; Xiong, Wen; Guan, Youfei; Wen, Zhongyang; Huang, Kunzhao; Huang, Zhong

    2015-06-01

    IL-37, a new member of the IL-1 cytokine family, is a natural inhibitor of innate immunity associated with autoimmune diseases. This study was undertaken to evaluate whether IL-37 has antiarthritic effects in patients with rheumatoid arthritis (RA) and in mice with collagen-induced arthritis (CIA). In this study, we analyzed the expression of IL-37 in PBMCs, serum, and lymphocytes from RA patients as well as CD4(+) T cells polarized under Th1/Th2/Th17 conditions. The role of IL-37 was assessed by investigating the effects of recombinant human (rh)IL-37 and an adenovirus encoding human IL-37 (Ad-IL-37) on Th17 cells and Th17-related cytokines in RA patients and CIA mice. We found that active RA patients showed higher IL-37 levels compared with patients with inactive RA and healthy controls. Upregulated IL-37 expression also was found in CD3(+) T cells and CD4(+) T cells from RA patients and in Th1/Th17-differentiation conditions. rhIL-37 markedly decreased IL-17 expression and Th17 cell frequency in PBMCs and CD4(+) T cells from RA patients. Furthermore, IL-37 exerted a more suppressive effect on Th17 cell proliferation, whereas it had little or no effect on Th17 cell differentiation. IL-17 and IL-17-driving cytokine production were significantly reduced in synovium and joint cells from CIA mice receiving injections of Ad-IL-37. Our findings indicate that IL-37 plays a potent immunosuppressive role in the pathogenesis of human RA and CIA models via the downregulation of IL-17 and IL-17-triggering cytokine production and the curbing of Th17 cell proliferation. PMID:25917106

  8. Impact of lithium alone and in combination with antidepressants on cytokine production in vitro.

    PubMed

    Petersein, Charlotte; Sack, Ulrich; Mergl, Roland; Schönherr, Jeremias; Schmidt, Frank M; Lichtblau, Nicole; Kirkby, Kenneth C; Bauer, Katrin; Himmerich, Hubertus

    2015-01-01

    Lithium is an important psychopharmacological agent for the treatment of unipolar as well as bipolar affective disorders. Lithium has a number of side effects such as hypothyroidism and aggravation of psoriasis. On the other hand, lithium has pro-inflammatory effects, which appear beneficial in some disorders associated with immunological deficits, such as human immunodeficiency virus (HIV) infection and systemic lupus erythematosus (SLE). Therefore, immunological characteristics of lithium may be an important consideration in individualized therapeutic decisions. We measured the levels of the cytokines interleukin (IL)-1ß, IL-2, IL-4, IL-6, IL-22, IL-17 and tumour necrosis factor (TNF)-α in the stimulated blood of thirty healthy subjects supplemented with lithium alone, the antidepressants citalopram, escitalopram or mirtazapine alone, the combination of each antidepressant with lithium, and a no drug control. These drugs were tested under three blood stimulant conditions: murine anti-human CD3 monoclonal antibody OKT3 and the 5C3 monoclonal antibody (OKT3/5C3), phytohemagglutinin (PHA), and unstimulated blood. Lithium, alone and in combination with any of the tested antidepressants, led to a consistent increase of IL-1ß, IL-6 and TNF-α levels in the unstimulated as well as the stimulated blood. In the OKT3/5C3- and PHA-stimulated blood, IL-17 production was significantly enhanced by lithium. Lithium additionally increased IL-2 concentrations significantly in PHA-stimulated blood. The data support the view that lithium has pro-inflammatory properties. These immunological characteristics may contribute to side effects of lithium, but may also explain its beneficial effects in patients suffering from HIV infection or SLE. PMID:25377522

  9. The effect of linarin on LPS-induced cytokine production and nitric oxide inhibition in murine macrophages cell line RAW264.7.

    PubMed

    Han, Shinha; Sung, Ki-Hyun; Yim, Dongsool; Lee, Sookyeon; Lee, Chong-Kil; Ha, Nam-ju; Kim, Kyungjae

    2002-04-01

    The herb, Chrysanthemum zawadskii var, latilobum commomly known as Gu-Jul-Cho in Korea, used in traditional medicine to treat pneumonia, bronchitis, cough, common cold, pharyngitis, bladder-related disorders, gastroenteric disorders, and hypertension. Linarin is the main active compound and the biological mechanisms of its activity are unclear. It is believed that effects of this herb may be exerted through the pluripotent effectors of linarin due to its ability to treat a variety of afflictions. In this study, the effects of linarin on the mouse macrophages cell line, RAW 264.7, were investigated. It was found that linarin could activate macrophages by producing cytokines. Monocytes and tissue macrophages produce at least two groups of protein mediators of inflammation, interleukin 1 (IL-1) and the tumor necrosis factor (TNF). Recent studies have shown that TNF and IL-1 modulate the inflammatory function of endothelial cells, leukocytes, and fibroblasts. TNF-alpha production by macrophages treated with linarin occured in a dose dependent manner. However, IL-1 production was largely unaffected by this natural product. This study demonstrated the ability of linarin to activate macrophages both directly and indirectly. Linarin also affect both cytokine production and nitric oxide inhibition, in addition to the expression of some surface molecules. Nitric oxide (NO), derived from L-argin-ine, is produced by two forms(constitutive and inducible) of nitric oxide synthase (NOS). The NO produced in large amounts by inducible NOS is known to be responsible for the vasodilation and hypotension observed in septic shock. Linarin was found to inhibit NO production in the LPS-activated RAW 264.7 cells. Linarin may be a useful candidate as a new drug for treating endotoxemia and the inflammation accompanied by NO overproduction. The linarin-treated total lymphocytes exhibited cytotoxicity in a dose dependent manner between 20 microg/ml and 40 microg/ml. These results suggest

  10. Inhibitory effects of compounds from Phyllanthus amarus on nitric oxide production, lymphocyte proliferation, and cytokine release from phagocytes

    PubMed Central

    Yuandani; Jantan, Ibrahim; Ilangkovan, Menaga; Husain, Khairana; Chan, Kok Meng

    2016-01-01

    Standardized extract of Phyllanthus amarus has previously been shown to have a strong inhibitory effect on phagocytic activity of human neutrophils. The current study was carried out to evaluate the effects of constituents of the extract of P. amarus on nitric oxide (NO) production as well as lymphocyte proliferation and cytokine release from phagocytes. Three compounds, ethyl 8-hydroxy-8-methyl-tridecanoate, 7β,19α dihydroxy-urs-12-ene, and 1,7,8-trihydroxy-2-naphtaldehyde, together with seven known compounds were isolated from the whole plant of P. amarus. The isolated compounds and reference standards, ie, gallic acid, ellagic acid, corilagin, and geraniin, which were quantitatively analyzed in the extracts, were evaluated for their effects on immune cells. Among the compounds tested, the lignans, especially phyltetralin and phyllanthin, showed strong inhibition on lymphocyte proliferation with half maximal inhibitory concentration (IC50) values of 1.07 μM and 1.82 μM, respectively. Ethyl 8-hydroxy-8-methyl-tridecanoate and 1,7,8-trihydroxy-2-naphtaldehyde exhibited strong inhibition on nitric oxide production with IC50 values of 0.91 μM and 1.07 μM, respectively. Of all the compounds, corilagin was the strongest inhibitor of tumor necrosis factor-α release with an IC50 value of 7.39 μM, whereas geraniin depicted the strongest inhibitory activity on interleukin-1β release with an IC50 value of 16.41 μM. The compounds constituting the extract of P. amarus were able to inhibit the innate immune response of phagocytes at different steps. PMID:27354767

  11. Anti-inflammatory activity of compounds isolated from Astragalus sinicus L. in cytokine-induced keratinocytes and skin

    PubMed Central

    Kim, Byung-Hak; Oh, Ikhoon; Kim, Jung-Ho; Jeon, Ju-eun; Jeon, Byeongwook; Shin, Jongheon; Kim, Tae-Yoon

    2014-01-01

    Inflammation is a part of the complex biological responses of a tissue to injury that protect the organ by removing injurious stimuli and initiating the healing process, and is considered as a mechanism of innate immunity. To identify biologically active compounds against pathogenic inflammatory and immune responses, we fractionated water, aqueous methanol and n-hexane layers from nine kinds of leguminosae and examined anti-inflammatory activity of the fractions in human keratinocytes and mouse skin. Among the fractions, rf3 and rf4, isolated from the aqueous methanol layer of Astragalus sinicus L., exhibited the strongest reactive oxygen species (ROS)-scavenging and anti-inflammatory activities as measured by inhibition of the intracellular ROS production, nuclear factor-kappaB (NF-κB), janus kinase (JAK)/signal transducer and activator of transcription (STAT), and phosphatidylinositol 3-kinase/Akt signaling in cytokine-stimulated human keratinocytes, as well as by effects on T-cell differentiation in mouse CD4+ T cells. In addition, topical application of rf3 and rf4 suppressed the progression of psoriasis-like dermatitis and expression of pro-inflammatory mediators in interleukin (IL)-23-injected mouse ears. Our results suggest that Astragalus sinicus L. may ameliorate chronic inflammatory skin diseases due to its antioxidant and anti-inflammatory activities via regulation of the intracellular ROS production, NF-κB, JAK/STAT and PI3/Akt signaling cascades as well as immune responses, and these results are the first report that Astragalus sinicus L. exhibits pharmacological activity. PMID:24651533

  12. Contrasting human cytokine responses to promastigote whole-cell extract and the Leishmania analogue receptor for activated C kinase antigen of L. amazonensis in natural infection versus immunization

    PubMed Central

    Azeredo-Coutinho, R B G; Matos, D C S; Armôa, G G R; Maia, R M; Schubach, A; Mayrink, W; Mendonça, S C F

    2008-01-01

    It is known that the same antigen can induce different immune responses, depending upon the way that it is presented to the immune system. The objective of this study was to compare cytokine responses of peripheral blood mononuclear cells (PBMC) from cutaneous leishmaniasis patients and subjects immunized with a first-generation candidate vaccine composed of killed Leishmania amazonensis promastigotes to a whole-cell promastigote antigen extract (La) and to the recombinant protein LACK (Leishmania analogue receptor for activated C kinase), both from L. amazonensis. Thirty-two patients, 35 vaccinees and 13 healthy subjects without exposure to Leishmania, were studied. Cytokine production was assessed by enzyme-linked immunosorbent assay and enzyme-linked immunospot assay. The interferon (IFN)-γ levels stimulated by La were significantly higher and the levels of interleukin (IL)-10 significantly lower than those stimulated by LACK in the patient group, while LACK induced a significantly higher IFN-γ production and a significantly lower IL-10 production compared with those induced by La in the vaccinated group. LACK also induced a significantly higher frequency of IFN-γ-producing cells than did La in the vaccinated group. The contrast in the cytokine responses stimulated by LACK and La in PBMC cultures from vaccinated subjects versus patients indicates that the human immune response to crude and defined Leishmania antigens as a consequence of immunization differs from that induced by natural infection. PMID:18627399

  13. Isoquercitrin suppresses the expression of histamine and pro-inflammatory cytokines by inhibiting the activation of MAP Kinases and NF-κB in human KU812 cells.

    PubMed

    Li, Li; Zhang, Xiao-Hui; Liu, Guang-Rong; Liu, Chang; Dong, Yin-Mao

    2016-06-01

    Mast cells and basophils are multifunctional effector cells that contain abundant secretory granules in their cytoplasm. Both cell types are involved in a variety of inflammatory and immune events, producing an array of inflammatory mediators, such as cytokines. The aim of the study was to examine whether isoquercitrin modulates allergic and inflammatory reactions in the human basophilic KU812 cells and to elucidate its influence on the phosphorylation of mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB activation. The KU812 cells were stimulated with phorbol-12-myristate 13-acetate plus the calcium ionophore A23187 (PMACI). The inhibitory effects of isoquercitrin on the productions of histamine and pro-inflammatory cytokines in the stimulated KU812 cells were measured using cytokine-specific enzyme-linked immunosorbent (ELISA) assays. Western blotting analysis was used to assess the effects of isoquercitrin on the MAPKs and NF-κB protein levels. Our results indicated that the isoquercitrin treatment of PMACI-stimulated KU812 cells significantly reduced the production of histamine and the pro-inflammatory cytokines, such as interleukin (IL)-6, IL-8, IL-1β, and tumor necrosis factor (TNF)-α. The treated cells exhibited decreased phosphorylation of extracellular signal-regulated kinase (ERK), revealing the role of ERK MAPK in isoquercitrin-mediated allergy inhibition. Furthermore, isoquercitrin suppressed the PMACI-mediated activation of NF-κB in the human basophil cells. In conclusion, the results from the present study provide insights into the potential therapeutic use of isoquercitrin for the treatment of inflammatory and allergic reactions. PMID:27473957

  14. Viability, Apoptosis, Proliferation, Activation, and Cytokine Secretion of Human Keratoconus Keratocytes after Cross-Linking

    PubMed Central

    Stachon, Tanja; Wang, Jiong; Seitz, Berthold; Szentmáry, Nóra

    2015-01-01

    Purpose. The purpose of this study was to determine the impact of cross-linking (CXL) on viability, apoptosis, proliferation, activation, and cytokine secretion of human keratoconus (KC) keratocytes, in vitro. Methods. Primary KC keratocytes were cultured in DMEM/Ham's F12 medium supplemented with 10% FCS and underwent UVA illumination (370 nm, 2 J/cm2) during exposure to 0.1% riboflavin and 20% Dextran in PBS. Twenty-four hours after CXL, viability was assessed using Alamar blue assay; apoptosis using APO-DIRECT Kit; proliferation using ELISA-BrdU kit; and CD34 and alpha-smooth muscle actin (α-SMA) expression using flow cytometry. Five and 24 hours after CXL, FGFb, HGF, TGFβ1, VEGF, KGF, IL-1β, IL-6, and IL-8 secretion was measured using enzyme-linked-immunoabsorbent assay (ELISA). Results. Following CXL, cell viability and proliferation decreased (P < 0.05; P = 0.009), the percentage of apoptotic keratocytes increased (P < 0.05) significantly, and CD34 and α-SMA expression remained unchanged (P > 0.06). Five hours after CXL, FGFb secretion increased significantly (P = 0.037); however no other cytokine secretion differed significantly from controls after 5 or 24 hours (P > 0.12). Conclusions. Cross-linking decreases viability, triggers apoptosis, and inhibits proliferation, without an impact on multipotent hematopoietic stem cell transformation and myofibroblastic transformation of KC keratocytes. CXL triggers FGFb secretion of KC keratocytes transiently (5 hours), normalizing after 24 hours. PMID:25699261

  15. Modulation of Cytokines Production by Indomethacin Acute Dose during the Evolution of Ehrlich Ascites Tumor in Mice

    PubMed Central

    Gentile, Luciana Boffoni; Queiroz-Hazarbassanov, Nicolle; Massoco, Cristina de Oliveira; Fecchio, Denise

    2015-01-01

    The aim of the present study was to investigate the influence of a nonselective COX1/COX2 inhibitor (indomethacin) on tumor growth of Ehrlich Ascites Tumor (EAT) in mice, using as parameters the tumor growth and cytokine profile. Mice were inoculated with EAT cells and treated with indomethacin. After 1, 3, 6, 10, and 13 days the animals were evaluated for the secretion of TNFα, IL-1α, IL-2, IL-4, IL-6, IL-10, and IL-13 and PGE2 level in peritoneal cavity. The results have shown that EAT induces PGE2 production and increases tumor cells number from the 10th day. The cytokine profile showed EAT induces production of IL-6 from 10th day and of IL-2 on 13th day; the other studied cytokines were not affected in a significant way. The indomethacin treatment of EAT-bearing mice inhibited the tumor growth and PGE2 synthesis from the 10th day. In addition, the treatment of EAT-bearing mice with indomethacin has stimulated the IL-13 production and has significantly inhibited IL-6 in the 13th day of tumor growth. Taken together, the results have demonstrated that EAT growth is modulated by PGE2 and the inhibition of the tumor growth could be partly related to suppression of IL-6 and induction of IL-13. PMID:26347589

  16. Antigen-specific CD4{sup +} effector T cells: Analysis of factors regulating clonal expansion and cytokine production

    SciTech Connect

    Ohnuki, Kazunobu; Watanabe, Yuri; Takahashi, Yusuke; Kobayashi, Sakiko; Watanabe, Shiho; Ogawa, Shuhei; Kotani, Motoko; Kozono, Haruo; Tanabe, Kazunari; Abe, Ryo

    2009-03-20

    In order to fully understand T cell-mediated immunity, the mechanisms that regulate clonal expansion and cytokine production by CD4{sup +} antigen-specific effector T cells in response to a wide range of antigenic stimulation needs clarification. For this purpose, panels of antigen-specific CD4{sup +} T cell clones with different thresholds for antigen-induced proliferation were generated by repeated stimulation with high- or low-dose antigen. Differences in antigen sensitivities did not correlate with expression of TCR, CD4, adhesion or costimulatory molecules. There was no significant difference in antigen-dependent cytokine production by TG40 cells transfected with TCR obtained from either high- or low-dose-responding T cell clones, suggesting that the affinity of TCRs for their ligands is not primary determinant of T cell antigen reactivity. The proliferative responses of all T cell clones to both peptide stimulation and to TCR{beta} crosslinking revealed parallel dose-response curves. These results suggest that the TCR signal strength of effector T cells and threshold of antigen reactivity is determined by an intrinsic property, such as the TCR signalosome and/or intracellular signaling machinery. Finally, the antigen responses of high- and low-peptide-responding T cell clones reveal that clonal expansion and cytokine production of effector T cells occur independently of antigen concentration. Based on these results, the mechanisms underlying selection of high 'avidity' effector and memory T cells in response to pathogen are discussed.

  17. Kupffer cells suppress perfluorononanoic acid-induced hepatic peroxisome proliferator-activated receptor α expression by releasing cytokines.

    PubMed

    Fang, Xuemei; Zou, Shanshan; Zhao, Yuanyuan; Cui, Ruina; Zhang, Wei; Hu, Jiayue; Dai, Jiayin

    2012-10-01

    Kupffer cells (KCs) have been demonstrated to play a role in the regulation of intra-hepatic lipid metabolism through the synthesis and secretion of biologically active products. The involvement of KCs in the disturbance of lipid metabolism that induced by perfluorononanoic acid (PFNA), a known agonist of the peroxisome proliferator-activated receptor alpha (PPARα), was investigated in this study. Rats were exposed to PFNA or PFNA combined with gadolinium chloride, an inhibitor of KCs, for 14 days. PFNA exposure dose-dependently increased absolute and relative liver weights, induced triglyceride accumulation, up-regulated the expression of both SERBP-1c and PPARα, and stimulated the release of TNFα and IL-1β. Inactivation of KCs markedly lowered TNFα and IL-1β level, enhanced PFNA-induced expression of PPARα and its target genes, and reduced liver triglyceride levels. In vitro, PFNA-induced expression of PPARα in primary cultured hepatocytes was suppressed by recombinant rat TNFα and IL-1β. However, inhibition of the NF-κB pathway prevented this. Transient transfection and promoter analysis further revealed that these two cytokines and NF-κB were coordinately involved in the suppression of PPARα promoter activity. Our data demonstrate that TNFα and IL-1β released from KCs following PFNA exposure can suppress the expression of PPARα via NF-κB pathway, which partially contribute to the evident accumulation of triglycerides in rat liver. PMID:22648072

  18. Suppression of wear-particle-induced pro-inflammatory cytokine and chemokine production in macrophages via NF-κB decoy oligodeoxynucleotide: a preliminary report.

    PubMed

    Lin, Tzu-Hua; Yao, Zhenyu; Sato, Taishi; Keeney, Michael; Li, Chenguang; Pajarinen, Jukka; Yang, Fan; Egashira, Kensuke; Goodman, Stuart B

    2014-08-01

    Total joint replacement (TJR) is very cost-effective surgery for end-stage arthritis. One important goal is to decrease the revision rate, mainly because TJR has been extended to younger patients. Continuous production of ultra-high molecular weight polyethylene (UHMWPE) wear particles induces macrophage infiltration and chronic inflammation, which can lead to periprosthetic osteolysis. Targeting individual pro-inflammatory cytokines directly has not reversed the osteolytic process in clinical trials, owing to compensatory up-regulation of other pro-inflammatory factors. It is hypothesized that targeting the important transcription factor NF-κB could mitigate the inflammatory response to wear particles, potentially diminishing osteolysis. In the current study, NF-κB activity in mouse RAW 264.7 and human THP1 macrophage cell lines, as well as primary mouse and human macrophages, was suppressed via competitive binding with double strand decoy oligodeoxynucleotide (ODN) containing an NF-κB binding element. It was found that macrophage exposure to UHMWPE particles induced multiple pro-inflammatory cytokine and chemokine expression, including TNF-α, MCP1, MIP1α and others. Importantly, the decoy ODN significantly suppressed the induced cytokine and chemokine expression in both murine and human macrophages, and resulted in suppression of macrophage recruitment. The strategic use of decoy NF-κB ODN, delivered locally, could potentially diminish particle-induced periprosthetic osteolysis. PMID:24814879

  19. Neutralizing Antibodies Inhibit HIV-1 Infection of Plasmacytoid Dendritic Cells by an FcγRIIa Independent Mechanism and Do Not Diminish Cytokines Production

    PubMed Central

    Lederle, Alexandre; Su, Bin; Holl, Vincent; Penichon, Julien; Schmidt, Sylvie; Decoville, Thomas; Laumond, Géraldine; Moog, Christiane

    2014-01-01

    Plasmacytoid dendritic cells (pDC) expressing FcγRIIa are antigen-presenting cells able to link innate and adaptive immunity and producing various cytokines and chemokines. Although highly restricted, they are able to replicate HIV-1. We determined the activity of anti-HIV-1 neutralizing antibodies (NAb) and non-neutralizing inhibitory antibodies (NNIAb) on the infection of primary pDC by HIV-1 primary isolates and analyzed cytokines and chemokines production. Neutralization assay was performed with primary pDC in the presence of serial antibodies (Ab) concentrations. In parallel, we measured the release of cytokines and chemokines by ELISA and CBA Flex assay. We found that NAb, but not NNIAb, inhibit HIV-1 replication in pDC. This inhibitory activity was lower than that detected for myeloid dendritic cells (mDC) infection and independent of FcγRIIa expressed on pDC. Despite the complete protection, IFN-α production was detected in the supernatant of pDC treated with NAb VRC01, 4E10, PGT121, 10-1074, 10E8, or polyclonal IgG44 but not with NAb b12. Production of MIP-1α, MIP-1β, IL-6, and TNF-α by pDC was also maintained in the presence of 4E10, b12 and VRC01. These findings suggest that pDC can be protected from HIV-1 infection by both NAb and IFN-α release triggered by the innate immune response during infection. PMID:25132382

  20. Effects of intracellular products of Bacillus subtilis VSG1 and Lactobacillus plantarum VSG3 on cytokine responses in the head kidney macrophages of Labeo rohita.

    PubMed

    Giri, Sib Sankar; Sen, Shib Sankar; Chi, Cheng; Kim, Hyoun Joong; Yun, Saekil; Park, Se Chang; Sukumaran, V

    2015-12-01

    The efficiency of intracellular products (ICPs) of the probiotics Bacillus subtilis VSG1 and Lactobacillus plantarum VSG3 in stimulating cytokine responses in the head kidney (HK) macrophages of Labeo rohita was investigated. The HK macrophages were incubated with ICPs and lipopolysaccharide (LPS), and the responses of cytokine genes, namely interleukin-10 (IL-10), IL-1β, IL-12p35, IL-12p40, IL-18, tumour necrosis factor-α (TNF-α), nuclear factor kappa B (NF-κB), cyclo-oxygenase-2 (COX-2), interferon-1 (IFN-1), and IFN-γ were assessed by quantitative real-time PCR (qRT-PCR) at 2, 6, 12, 24, and 48 h post-stimulation (hps). Among the proinflammatory cytokines, a strong increase in the gene expression of IL-1β and TNF-α was displayed mainly at 2-6 hps with ICPs, as compared to that of the positive control (LPS) or the negative control (PBS) (P < 0.05). However, COX-2 and NF-κB showed higher expression at 2 and 24 hps, and 6-24 hps with ICPs, respectively. Antiviral cytokines IFN-1 and IFN-γ displayed strong expressions (P < 0.05) at 6-12 hps, and 12-24 hps with ICPs, respectively. Upregulation of the anti-inflammatory cytokine, IL-10, was recorded at 6-24 hps with ICPs, as compared to that controls. Expressions of cell-mediated immune factor genes (IL-12p35, IL-12p40, and IL-18) were also significantly upregulated at different time points, except 48 hps, in HK macrophages stimulated with ICPs. Furthermore, enhanced cellular (phagocytic activity and nitroblue tetrazolium assay) and humoral (lysozyme) immune parameters in stimulated cells confirmed the induction of the inflammatory response. Therefore, the results of this in vitro study indicate that the ICPs of B. subtilis VSG1 or L. plantarum VSG3 have great potential for stimulating the cytokine responses in fish, and are thereby potential immunostimulants to fish. Further studies could be conducted to explore its suitability as an adjuvant vaccine in aquaculture. PMID:26520566

  1. Long-term study of the impact of methotrexate on serum cytokines and lymphocyte subsets in patients with active rheumatoid arthritis: correlation with pharmacokinetic measures

    PubMed Central

    Kremer, Joel M; Lawrence, David A; Hamilton, Robert; McInnes, Iain B

    2016-01-01

    Objective To describe changes in immune parameters observed during long-term methotrexate (MTX) therapy in patients with active rheumatoid arthritis (RA) and explore correlations with simultaneously measured MTX pharmacokinetic (PKC) parameters. Design Prospective, open-label, long-term mechanism of action study. Setting University clinic. Methods MTX was initiated at a single weekly oral dose of 7.5 mg and dose adjusted for efficacy and toxicity for the duration of the study. Standard measures of disease activity were performed at baseline and every 6–36 months. Serum cytokine measurements in blood together with lymphocyte surface immunophenotypes and stimulated peripheral blood mononuclear cell (PBMC) cytokine production were assessed at each clinical evaluation. Results Cytokine concentrations exhibited multiple significant correlations with disease activity measures over time. The strongest correlations observed were for interleukin (IL)-6 (r=0.45, p<0.0001 for swollen joints and r=0.32, p=0.002 for tender joints) and IL-8 (r=0.25, p=0.01 for swollen joints). Significant decreases from baseline were observed in serum IL-1B, IL-6 and IL-8 concentrations. The most significant changes were observed for IL-6 (p<0.001). Significant increases from baseline were observed in IL-2 release from PBMCs ex vivo (p<0.01). In parallel, multiple statistically significant correlations were observed between MTX PKC measures and immune parameters. The change in swollen joint count correlated inversely with the change in area under the curve (AUC) for MTX (r=−0.63, p=0.007). Conclusions MTX therapy of patients with RA is accompanied by a variety of changes in serum cytokine expression, which in turn correlate strongly with clinical disease activity and MTX pharmacokinetics (PKCs). These data strongly support the notion that MTX mediates profound and functionally relevant effects on the immunological hierarchy in the RA lesion. PMID:27335660

  2. Neutral sphingomyelinase 2 is required for cytokine-induced skeletal muscle calpain activation.

    PubMed

    Supinski, Gerald S; Alimov, Alexander P; Wang, Lin; Song, Xiao-Hong; Callahan, Leigh A

    2015-09-15

    Calpain contributes to infection-induced diaphragm dysfunction but the upstream mechanism(s) responsible for calpain activation are poorly understood. It is known, however, that cytokines activate neutral sphingomyelinase (nSMase) and nSMase has downstream effects with the potential to increase calpain activity. We tested the hypothesis that infection-induced skeletal muscle calpain activation is a consequence of nSMase activation. We administered cytomix (20 ng/ml TNF-α, 50 U/ml IL-1β, 100 U/ml IFN-γ, 10 μg/ml LPS) to C2C12 muscle cells to simulate the effects of infection in vitro and studied mice undergoing cecal ligation puncture (CLP) as an in vivo model of infection. In cell studies, we assessed sphingomyelinase activity, subcellular calcium levels, and calpain activity and determined the effects of inhibiting sphingomyelinase using chemical (GW4869) and genetic (siRNA to nSMase2 and nSMase3) techniques. We assessed diaphragm force and calpain activity and utilized GW4869 to inhibit sphingomyelinase in mice. Cytomix increased cytosolic and mitochondrial calcium levels in C2C12 cells (P < 0.001); addition of GW4869 blocked these increases (P < 0.001). Cytomix also activated calpain, increasing calpain activity (P < 0.02), and the calpain-mediated cleavage of procaspase 12 (P < 0.001). Procaspase 12 cleavage was attenuated by either GW4869 (P < 0.001), BAPTA-AM (P < 0.001), or siRNA to nSMase2 (P < 0.001) but was unaffected by siRNA to nSMase3. GW4869 prevented CLP-induced diaphragm calpain activation and diaphragm weakness in mice. These data suggest that nSMase2 activation is required for the development of infection-induced diaphragm calpain activation and muscle weakness. As a consequence, therapies that inhibit nSMase2 in patients may prevent infection-induced skeletal muscle dysfunction. PMID:26138644

  3. Dimethyl fumarate blocks pro-inflammatory cytokine production via inhibition of TLR induced M1 and K63 ubiquitin chain formation

    PubMed Central

    McGuire, Victoria A.; Ruiz-Zorrilla Diez, Tamara; Emmerich, Christoph H.; Strickson, Sam; Ritorto, Maria Stella; Sutavani, Ruhcha V.; Weiβ, Anne; Houslay, Kirsty F.; Knebel, Axel; Meakin, Paul J.; Phair, Iain R.; Ashford, Michael L. J.; Trost, Matthias; Arthur, J. Simon C.

    2016-01-01

    Dimethyl fumarate (DMF) possesses anti-inflammatory properties and is approved for the treatment of psoriasis and multiple sclerosis. While clinically effective, its molecular target has remained elusive - although it is known to activate anti-oxidant pathways. We find that DMF inhibits pro-inflammatory cytokine production in response to TLR agonists independently of the Nrf2-Keap1 anti-oxidant pathway. Instead we show that DMF can inhibit the E2 conjugating enzymes involved in K63 and M1 polyubiquitin chain formation both in vitro and in cells. The formation of K63 and M1 chains is required to link TLR activation to downstream signaling, and consistent with the block in K63 and/or M1 chain formation, DMF inhibits NFκB and ERK1/2 activation, resulting in a loss of pro-inflammatory cytokine production. Together these results reveal a new molecular target for DMF and show that a clinically approved drug inhibits M1 and K63 chain formation in TLR induced signaling complexes. Selective targeting of E2s may therefore be a viable strategy for autoimmunity. PMID:27498693

  4. Dimethyl fumarate blocks pro-inflammatory cytokine production via inhibition of TLR induced M1 and K63 ubiquitin chain formation.

    PubMed

    McGuire, Victoria A; Ruiz-Zorrilla Diez, Tamara; Emmerich, Christoph H; Strickson, Sam; Ritorto, Maria Stella; Sutavani, Ruhcha V; Weiβ, Anne; Houslay, Kirsty F; Knebel, Axel; Meakin, Paul J; Phair, Iain R; Ashford, Michael L J; Trost, Matthias; Arthur, J Simon C

    2016-01-01

    Dimethyl fumarate (DMF) possesses anti-inflammatory properties and is approved for the treatment of psoriasis and multiple sclerosis. While clinically effective, its molecular target has remained elusive - although it is known to activate anti-oxidant pathways. We find that DMF inhibits pro-inflammatory cytokine production in response to TLR agonists independently of the Nrf2-Keap1 anti-oxidant pathway. Instead we show that DMF can inhibit the E2 conjugating enzymes involved in K63 and M1 polyubiquitin chain formation both in vitro and in cells. The formation of K63 and M1 chains is required to link TLR activation to downstream signaling, and consistent with the block in K63 and/or M1 chain formation, DMF inhibits NFκB and ERK1/2 activation, resulting in a loss of pro-inflammatory cytokine production. Together these results reveal a new molecular target for DMF and show that a clinically approved drug inhibits M1 and K63 chain formation in TLR induced signaling complexes. Selective targeting of E2s may therefore be a viable strategy for autoimmunity. PMID:27498693

  5. Anti-inflammatory properties of clovamide and Theobroma cacao phenolic extracts in human monocytes: evaluation of respiratory burst, cytokine release, NF-κB activation, and PPARγ modulation.

    PubMed

    Zeng, Huawu; Locatelli, Monica; Bardelli, Claudio; Amoruso, Angela; Coisson, Jean Daniel; Travaglia, Fabiano; Arlorio, Marco; Brunelleschi, Sandra

    2011-05-25

    There is a great interest in the potential health benefits of biologically active phenolic compounds in cocoa (Theobroma cacao) and dark chocolate. We investigated the anti-inflammatory potential of clovamide (a N-phenylpropenoyl-L-amino acid amide present in cocoa beans) and two phenolic extracts from unroasted and roasted cocoa beans, by evaluating superoxide anion (O(2)(-)) production, cytokine release, and NF-κB activation in human monocytes stimulated by phorbol 12-myristate 13-acetate (PMA). The effects of rosmarinic acid are shown for comparison. Clovamide and rosmarinic acid inhibited PMA-induced O(2)(-) production and cytokine release (with a bell-shaped curve and maximal inhibition at 10-100 nM), as well as PMA-induced NF-κB activation; the two cocoa extracts were less effective. In all tests, clovamide was the most potent compound and also enhanced peroxisome proliferator-activated receptor-γ (PPARγ) activity, which may exert anti-inflammatory effects. These findings indicate clovamide as a possible bioactive compound with anti-inflammatory activity in human cells. PMID:21486087

  6. Crosstalk between monocytes and myometrial smooth muscle in culture generates synergistic pro-inflammatory cytokine production and enhances myocyte contraction, with effects opposed by progesterone

    PubMed Central

    Rajagopal, S.P.; Hutchinson, J.L.; Dorward, D.A.; Rossi, A.G.; Norman, J.E.

    2015-01-01

    Both term and preterm parturition are characterized by an influx of macrophages and neutrophils into the myometrium and cervix, with co-incident increased peripheral blood monocyte activation. Infection and inflammation are strongly implicated in the pathology of preterm labour (PTL), with progesterone considered a promising candidate for its prevention or treatment. In this study, we investigated the effect of monocytes on myometrial smooth muscle cell inflammatory cytokine production both alone and in response to LPS, a TLR4 agonist used to trigger PTL in vivo. We also investigated the effect of monocytes on myocyte contraction. Monocytes, isolated from peripheral blood samples from term pregnant women, were cultured alone, or co-cultured with PHM1-41 myometrial smooth muscle cells, for 24 h. In a third set of experiments, PHM1-41 myocytes were cultured for 24 h in isolation. Cytokine secretion was determined by ELISA or multiplex assays. Co-culture of monocytes and myocytes led to synergistic secretion of pro-inflammatory cytokines and chemokines including IL-6, IL-8 and MCP-1, with the secretion being further enhanced by LPS (100 ng/ml). The synergistic secretion of IL-6 and IL-8 from co-cultures was mediated in part by direct cell–cell contact, and by TNF. Conditioned media from co-cultures stimulated contraction of PHM1-41 myocytes, and the effect was inhibited by progesterone. Both progesterone and IL-10 inhibited LPS-stimulated IL-6 and IL-8 secretion from co-cultures, while progesterone also inhibited chemokine secretion. These data suggest that monocytes infiltrating the myometrium at labour participate in crosstalk that potentiates pro-inflammatory cytokine secretion, an effect that is enhanced by LPS, and can augment myocyte contraction. These effects are all partially inhibited by progesterone. PMID:26002969

  7. Crosstalk between monocytes and myometrial smooth muscle in culture generates synergistic pro-inflammatory cytokine production and enhances myocyte contraction, with effects opposed by progesterone.

    PubMed

    Rajagopal, S P; Hutchinson, J L; Dorward, D A; Rossi, A G; Norman, J E

    2015-08-01

    Both term and preterm parturition are characterized by an influx of macrophages and neutrophils into the myometrium and cervix, with co-incident increased peripheral blood monocyte activation. Infection and inflammation are strongly implicated in the pathology of preterm labour (PTL), with progesterone considered a promising candidate for its prevention or treatment. In this study, we investigated the effect of monocytes on myometrial smooth muscle cell inflammatory cytokine production both alone and in response to LPS, a TLR4 agonist used to trigger PTL in vivo. We also investigated the effect of monocytes on myocyte contraction. Monocytes, isolated from peripheral blood samples from term pregnant women, were cultured alone, or co-cultured with PHM1-41 myometrial smooth muscle cells, for 24 h. In a third set of experiments, PHM1-41 myocytes were cultured for 24 h in isolation. Cytokine secretion was determined by ELISA or multiplex assays. Co-culture of monocytes and myocytes led to synergistic secretion of pro-inflammatory cytokines and chemokines including IL-6, IL-8 and MCP-1, with the secretion being further enhanced by LPS (100 ng/ml). The synergistic secretion of IL-6 and IL-8 from co-cultures was mediated in part by direct cell-cell contact, and by TNF. Conditioned media from co-cultures stimulated contraction of PHM1-41 myocytes, and the effect was inhibited by progesterone. Both progesterone and IL-10 inhibited LPS-stimulated IL-6 and IL-8 secretion from co-cultures, while progesterone also inhibited chemokine secretion. These data suggest that monocytes infiltrating the myometrium at labour participate in crosstalk that potentiates pro-inflammatory cytokine secretion, an effect that is enhanced by LPS, and can augment myocyte contraction. These effects are all partially inhibited by progesterone. PMID:26002969

  8. Remote ischaemic preconditioning does not alter perioperative cytokine production in high-risk cardiac surgery

    PubMed Central

    Williams, Jenni M; Young, Paul; Pilcher, Janine; Weatherall, Mark; Miller, John Holmes; Beasley, Richard; La Flamme, Anne Camille

    2012-01-01

    Rationale Remote ischaemic preconditioning (RIPC) is a novel cardioprotective strategy that uses brief intermittent limb ischaemia to protect the myocardium and other organs from perioperative ischaemic damage. The precise mechanism through which this protective effect occurs is unknown, but potentially could be related to changes in blood-borne mediators such as cytokines. Objective To determine whether RIPC alters inflammatory cytokine expression in a double-blind, randomised, controlled trial of patients undergoing high-risk cardiac surgery. Methods and results Serum interleukin (IL)-6, IL-8, and IL-10 levels from 95 patients randomised to RIPC (n=47) or control treatment (n=48) were measured preoperatively, and 1, 2, 3, 6 and 12 h after cross-clamp removal. Systemic concentrations of all cytokines were increased from baseline following surgery, and, compared with simple procedures, complex surgeries were associated with significantly higher release of IL-6 (ratio of mean area under the curves 1.54 (95% CI 1.02 to 2.34), p=0.04) and IL-10 (1.97 (1.16 to 3.35), p=0.012). No significant difference in mean cytokine levels between the RIPC and control groups was detected at any time point, irrespective of the type of surgery undergone. Conclusions High levels of IL-6, IL-8 and IL-10 are produced during high-risk cardiac surgery, and RIPC does not alter these elevated perioperative cytokine concentrations. Identification of factors that influence the ability to induce RIPC-mediated cardioprotection should be the priority of future research. Trial registration is in the Australian New Zealand Clinical Trials Registry (http://www.anzctr.org.au; ACTRN12609000965202)

  9. Effects of Omega-3-Rich Harp Seal Oil on the Production of Pro-Inflammatory Cytokines in Mouse Peritoneal Macrophages.

    PubMed

    Choi, Myungwon; Ju, Jaehyun; Suh, Jae Soo; Park, Kun-Young; Kim, Kwang Hyuk

    2015-06-01

    Omega-3, a polyunsaturated fatty acid, is an essential fatty acid necessary for human health, and it protects against cardiovascular disease, inflammation, autoimmune diseases, and cancer. In the present study, we investigated the effects of omega-3-rich harp seal oil (HSO) on the production of nitric oxide (NO) and cytokines, such as tumor necrosis factor (TNF)-α, interleukin-(IL)-1β, IL-6, and IL-12/IL-23 (p40) in peritoneal macrophages of mice. The culture supernatants of murine macrophages exposed to lipopolysaccharide (LPS), HSO, or HSO+LPS were harvested to assay IL-1β, TNF-α, IL-6, and IL-12/IL-23 (p40) cytokines and NO. TNF-α, IL-1 β, and IL-12/IL-23 (p40) levels, except IL-6, were lower in the culture supernatants of mouse peritoneal macrophages exposed to LPS plus HSO than those of the groups exposed to LPS alone. These observations demonstrate that omega-3-rich harp seal oil downregulates the production of the pro-inflammatory cytokines such as IL-1β, TNF-α, and IL-12/IL-23 (p40). These results suggest that HSO could be potentially used as a preventive agent or as an adjunct in anti-inflammatory therapy, if more research results were accumulated. PMID:26175994

  10. SARM is required for neuronal injury and cytokine production in response to central nervous system viral infection.

    PubMed

    Hou, Ying-Ju; Banerjee, Rebecca; Thomas, Bobby; Nathan, Carl; García-Sastre, Adolfo; Ding, Aihao; Uccellini, Melissa B

    2013-07-15

    Four of the five members of the Toll/IL-1R domain-containing adaptor family are required for signaling downstream of TLRs, promoting innate immune responses against different pathogens. However, the role of the fifth member of this family, sterile α and Toll/IL-1R domain-containing 1 (SARM), is unclear. SARM is expressed primarily in the CNS where it is required for axonal death. Studies in Caenorhabditis elegans have also shown a role for SARM in innate immunity. To clarify the role of mammalian SARM in innate immunity, we infected SARM(-/-) mice with a number of bacterial and viral pathogens. SARM(-/-) mice show normal responses to Listeria monocytogenes, Mycobacterium tuberculosis, and influenza virus, but show dramatic protection from death after CNS infection with vesicular stomatitis virus. Protection correlates with reduced CNS injury and cytokine production by nonhematopoietic cells, suggesting that SARM is a positive regulator of cytokine production. Neurons and microglia are the predominant source of cytokines in vivo, supporting a role for SARM as a link between neuronal injury and innate immunity. PMID:23749635

  11. Effects of Omega-3-Rich Harp Seal Oil on the Production of Pro-Inflammatory Cytokines in Mouse Peritoneal Macrophages

    PubMed Central

    Choi, Myungwon; Ju, Jaehyun; Suh, Jae Soo; Park, Kun-Young; Kim, Kwang Hyuk

    2015-01-01

    Omega-3, a polyunsaturated fatty acid, is an essential fatty acid necessary for human health, and it protects against cardiovascular disease, inflammation, autoimmune diseases, and cancer. In the present study, we investigated the effects of omega-3-rich harp seal oil (HSO) on the production of nitric oxide (NO) and cytokines, such as tumor necrosis factor (TNF)-α, interleukin-(IL)-1β, IL-6, and IL-12/IL-23 (p40) in peritoneal macrophages of mice. The culture supernatants of murine macrophages exposed to lipopolysaccharide (LPS), HSO, or HSO+LPS were harvested to assay IL-1β, TNF-α, IL-6, and IL-12/IL-23 (p40) cytokines and NO. TNF-α, IL-1 β, and IL-12/IL-23 (p40) levels, except IL-6, were lower in the culture supernatants of mouse peritoneal macrophages exposed to LPS plus HSO than those of the groups exposed to LPS alone. These observations demonstrate that omega-3-rich harp seal oil downregulates the production of the pro-inflammatory cytokines such as IL-1β, TNF-α, and IL-12/IL-23 (p40). These results suggest that HSO could be potentially used as a preventive agent or as an adjunct in anti-inflammatory therapy, if more research results were accumulated. PMID:26175994

  12. Two Drosophila suppressors of cytokine signaling (SOCS) differentially regulate JAK and EGFR pathway activities

    PubMed Central

    Rawlings, Jason S; Rennebeck, Gabriela; Harrison, Susan MW; Xi, Rongwen; Harrison, Douglas A

    2004-01-01

    Background The Janus kinase (JAK) cascade is an essential and well-conserved pathway required to transduce signals for a variety of ligands in both vertebrates and invertebrates. While activation of the pathway is essential to many processes, mutations from mammals and Drosophila demonstrate that regulation is also critical. The SOCS (Suppressor Of Cytokine Signaling) proteins in mammals are regulators of the JAK pathway that participate in a negative feedback loop, as they are transcriptionally activated by JAK signaling. Examination of one Drosophila SOCS homologue, Socs36E, demonstrated that its expression is responsive to JAK pathway activity and it is capable of downregulating JAK signaling, similar to the well characterized mammalian SOCS. Results Based on sequence analysis of the Drosophila genome, there are three identifiable SOCS homologues in flies. All three are most similar to mammalian SOCS that have not been extensively characterized: Socs36E is most similar to mammalian SOCS5, while Socs44A and Socs16D are most similar to mammalian SOCS6 and 7. Although Socs44A is capable of repressing JAK activity in some tissues, its expression is not regulated by the pathway. Furthermore, Socs44A can enhance the activity of the EGFR/MAPK signaling cascade, in contrast to Socs36E. Conclusions Two Drosophila SOCS proteins have some overlapping and some distinct capabilities. While Socs36E behaves similarly to the canonical vertebrate SOCS, Socs44A is not part of a JAK pathway negative feedback loop. Nonetheless, both SOCS regulate JAK and EGFR signaling pathways, albeit differently. The non-canonical properties of Socs44A may be representative of the class of less characterized vertebrate SOCS with which it shares greatest similarity. PMID:15488148

  13. Retargeting cytokine-induced killer cell activity by CD16 engagement with clinical-grade antibodies

    PubMed Central

    Cappuzzello, Elisa; Tosi, Anna; Zanovello, Paola; Sommaggio, Roberta; Rosato, Antonio

    2016-01-01

    ABSTRACT Cytokine-induced Killer (CIK) cells are a heterogeneous population of ex vivo expanded T lymphocytes capable of MHC-unrestricted antitumor activity, which share phenotypic and functional features with both NK and T cells. Preclinical data and initial clinical studies demonstrated their high tolerability in vivo, supporting CIK cells as a promising cell population for adoptive cell immunotherapy. In this study, we report for the first time that CIK cells display a donor-dependent expression of CD16, which can be engaged by trastuzumab or cetuximab to exert a potent antibody-dependent cell-mediated cytotoxicity (ADCC) against ovarian and breast cancer cell lines, leading to an increased lytic activity in vitro, and an enhanced therapeutic efficacy in vivo. Thus, an efficient tumor antigen-specific retargeting can be achieved by a combination therapy with clinical-grade monoclonal antibodies already widely used in cancer therapy, and CIK cell populations that are easily expandable in very large numbers, inexpensive, safe and do not require genetic manipulations. Overall, these data provide a new therapeutic strategy for the treatment of Her2 and EGFR expressing tumors by adoptive cell therapy, which could find wide implementation and application, and could also be expanded to the use of additional therapeutic antibodies.

  14. Retargeting cytokine-induced killer cell activity by CD16 engagement with clinical-grade antibodies.

    PubMed

    Cappuzzello, Elisa; Tosi, Anna; Zanovello, Paola; Sommaggio, Roberta; Rosato, Antonio

    2016-08-01

    Cytokine-induced Killer (CIK) cells are a heterogeneous population of ex vivo expanded T lymphocytes capable of MHC-unrestricted antitumor activity, which share phenotypic and functional features with both NK and T cells. Preclinical data and initial clinical studies demonstrated their high tolerability in vivo, supporting CIK cells as a promising cell population for adoptive cell immunotherapy. In this study, we report for the first time that CIK cells display a donor-dependent expression of CD16, which can be engaged by trastuzumab or cetuximab to exert a potent antibody-dependent cell-mediated cytotoxicity (ADCC) against ovarian and breast cancer cell lines, leading to an increased lytic activity in vitro, and an enhanced therapeutic efficacy in vivo. Thus, an efficient tumor antigen-specific retargeting can be achieved by a combination therapy with clinical-grade monoclonal antibodies already widely used in cancer therapy, and CIK cell populations that are easily expandable in very large numbers, inexpensive, safe and do not require genetic manipulations. Overall, these data provide a new therapeutic strategy for the treatment of Her2 and EGFR expressing tumors by adoptive cell therapy, which could find wide implementation and application, and could also be expanded to the use of additional therapeutic antibodies. PMID:27622068

  15. Glibenclamide reduces pro-inflammatory cytokine production by neutrophils of diabetes patients in response to bacterial infection

    NASA Astrophysics Data System (ADS)

    Kewcharoenwong, Chidchamai; Rinchai, Darawan; Utispan, Kusumawadee; Suwannasaen, Duangchan; Bancroft, Gregory J.; Ato, Manabu; Lertmemongkolchai, Ganjana

    2013-11-01

    Type 2 diabetes mellitus is a major risk factor for melioidosis, which is caused by Burkholderia pseudomallei. Our previous study has shown that polymorphonuclear neutrophils (PMNs) from diabetic subjects exhibited decreased functions in response to B. pseudomallei. Here we investigated the mechanisms regulating cytokine secretion of PMNs from diabetic patients which might contribute to patient susceptibility to bacterial infections. Purified PMNs from diabetic patients who had been treated with glibenclamide (an ATP-sensitive potassium channel blocker for anti-diabetes therapy), showed reduction of interleukin (IL)-1β and IL-8 secretion when exposed to B. pseudomallei. Additionally, reduction of these pro-inflammatory cytokines occurred when PMNs from diabetic patients were treated in vitro with glibenclamide. These findings suggest that glibenclamide might be responsible for the increased susceptibility of diabetic patients, with poor glycemic control, to bacterial infections as a result of its effect on reducing IL-1β production by PMNs.

  16. Role of nitric oxide in depressed lymphoproliferative responses and altered cytokine production following thermal injury in rats.

    PubMed

    Masson, I; Mathieu, J; Nolland, X B; De Sousa, M; Chanaud, B; Strzalko, S; Chancerelle, Y; Kergonou, J F; Giroud, J P; Florentin, I

    1998-06-15

    Immunodeficiency follows extensive burns. We investigated some underlying mechanisms in rats, 10 days after a full-thickness skin burn affecting 20% of total body surface area. In both normal and burned rats the splenocyte proliferative response to Con A was linearly and negatively correlated with nitric oxide (NO) production. In all burned rats, the proliferative response was depressed by more than 80% and NO production corresponded to a nitrite concentration above 20 microM. Proliferative responses in burned rats were fully restored in the presence of 250 microM NG-monomethyl-L-arginine (NMMA). A time course study of NO production in response to Con A, LPS, anti-CD3, and IFN-gamma showed that splenic macrophages from burned rats responded to direct and indirect stimuli more rapidly and more intensively than normal macrophages. In the second part of this work, the effect of the overproduction of NO on the synthesis of immunoregulatory and proinflammatory cytokines was investigated. Although it was inhibited, IFN-gamma production by splenocytes from burned rats remained sufficient for NO synthase induction and was restored by NMMA. Concomitantly, IL-2 concentration was enhanced but returned to normal in the presence of NMMA. TNF production was halved after burn injury and NMMA partially restored it. In contrast, IL-6 production was enhanced and increased further in the presence of NMMA. Therefore, cytokines were differently affected by burn injury and variously regulated by NO. PMID:9665754

  17. The Structure of the GM-CSF Receptor Complex Reveals a Distinct Mode of Cytokine Receptor Activation

    SciTech Connect

    Hansen, Guido; Hercus, Timothy R.; McClure, Barbara J.; Stomski, Frank C.; Dottore, Mara; Powell, Jason; Ramshaw, Hayley; Woodcock, Joanna M.; Xu, Yibin; Guthridge, Mark; McKinstry, William J.; Lopez, Angel F.; Parker, Michael W.

    2008-08-11

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine that controls the production and function of blood cells, is deregulated in clinical conditions such as rheumatoid arthritis and leukemia, yet offers therapeutic value for other diseases. Its receptors are heterodimers consisting of a ligand-specific {alpha} subunit and a {beta}c subunit that is shared with the interleukin (IL)-3 and IL-5 receptors. How signaling is initiated remains an enigma. We report here the crystal structure of the human GM-CSF/GM-CSF receptor ternary complex and its assembly into an unexpected dodecamer or higher-order complex. Importantly, mutagenesis of the GM-CSF receptor at the dodecamer interface and functional studies reveal that dodecamer formation is required for receptor activation and signaling. This unusual form of receptor assembly likely applies also to IL-3 and IL-5 receptors, providing a structural basis for understanding their mechanism of activation and for the development of therapeutics.

  18. Houttuynia cordata Thunb inhibits the production of pro-inflammatory cytokines through inhibition of the NFκB signaling pathway in HMC-1 human mast cells.

    PubMed

    Lee, Hee Joe; Seo, Hye-Sook; Kim, Gyung-Jun; Jeon, Chan Yong; Park, Jong Hyeong; Jang, Bo-Hyoung; Park, Sun-Ju; Shin, Yong-Cheol; Ko, Seong-Gyu

    2013-09-01

    Houttuynia cordata Thunb (HCT) is widely used in oriental medicine as a remedy for inflammation. However, at present there is no explanation for the mechanism by which HCT affects the production of inflammatory cytokines. The current study aimed to determine the effect of an essence extracted from HCT on mast cell-mediated inflammatory responses. Inflammatory cytokine production induced by phorbol myristate acetate (PMA) plus a calcium ionophore, A23187, was measured in the human mast cell line, HMC-1, incubated with various concentrations of HCT. TNF-α, IL-6 and IL-8 secreted protein levels were measured using an ELISA assay. TNF-α, IL-6 and IL-8 mRNA levels were measured using RT-PCR analysis. Nuclear and cytoplasmic proteins were examined by western blot analysis. The NF-κB promoter activity was examined by luciferase assay. It was observed that HCT inhibited PMA plus A23187-induced TNF-α and IL-6 secretion and reduced the mRNA levels of TNF-α, IL-6 and IL-8. It was also noted that HCT suppressed the induction of NF-κB activity, inhibited nuclear translocation of NF-κB and blocked the phosphorylation of IκBα in stimulated HMC-1 cells. It was concluded that HCT is an inhibitor of NF-κB and cytokines blocking mast cell-mediated inflammatory responses. These results indicate that HCT may be used for the treatment of mast cell-derived allergic inflammatory diseases. PMID:23846481

  19. Intracellular staining and detection of cytokines by fluorescence-activated flow cytometry.

    PubMed

    Freer, Giulia

    2014-01-01

    The detection of cytokines inside cells producing them has made a tremendous impact on the way immune reactivity is measured. Intracellular cytokine staining is the only immunological technique allowing determination of antigen-specific T cell function and phenotype at the same time; for this reason, it is one of the most popular methods to measure antigenicity in the evaluation of vaccine efficacy and in the study of infectious diseases. It is a flow cytometric technique based on staining of intracellular cytokines and cell markers (surface or cytoplasmic) with fluorescent antibodies after short term culture of stimulated immune cells in the presence of a protein secretion inhibitor, followed by fixation and permeabilization. Most experiments involve detection of five to ten different colors but many more can be detected by modern flow cytometers. Here, we discuss our experience using a standard protocol for intracellular cytokine staining. PMID:24908309

  20. TAp73 suppresses tumor angiogenesis through repression of proangiogenic cytokines and HIF-1α activity

    PubMed Central

    Stantic, Marina; Sakil, Habib A. M.; Zirath, Hanna; Fang, Trixy; Sanz, Gema; Fernandez-Woodbridge, Alejandro; Marin, Ana; Susanto, Evelyn; Mak, Tak W.; Arsenian Henriksson, Marie; Wilhelm, Margareta T.

    2015-01-01

    The p53-family member TAp73 is known to function as a tumor suppressor and regulates genomic integrity, cellular proliferation, and apoptosis; however, its role in tumor angiogenesis is poorly understood. Here we demonstrate that TAp73 regulates tumor angiogenesis through repression of proangiogenic and proinflammatory cytokines. Importantly, loss of TAp73 results in highly vascularized tumors, as well as an increase in vessel permeability resulting from disruption of vascular endothelial-cadherin junctions between endothelial cells. In contrast, loss of the oncogenic p73 isoform ΔNp73 leads to reduced blood vessel formation in tumors. Furthermore, we show that up-regulated ΔNp73 levels are associated with increased angiogenesis in human breast cancer and that inhibition of TAp73 results in an accumulation of HIF-1α and up-regulation of HIF-1α target genes. Taken together, our data demonstrate that loss of TAp73 or ΔNp73 up-regulation activates the angiogenic switch that stimulates tumor growth and progression. PMID:25535357

  1. Ultrafiltered pig leukocyte extract (IMUNOR) decreases nitric oxide formation and hematopoiesis-stimulating cytokine production in lipopolysaccharide-stimulated RAW 264.7 macrophages.

    PubMed

    Hofer, Michal; Vacek, Antonín; Lojek, Antonín; Holá, Jirina; Streitová, Denisa

    2007-10-01

    A low-molecular-weight (<12 kDa) ultrafiltered pig leukocyte extract, IMUNOR, was tested in experiments in vitro on non-stimulated and lipopolysaccharide (LPS)-stimulated murine RAW 264.7 macrophages in order to assess modulation of nitric oxide (NO) production (measured indirectly as the concentration of nitrites), hematopoiesis-stimulating activity of the supernatant of the macrophage cells (ascertained by counting cell colonies growing from progenitor cells for granulocytes and macrophages (GM-CFC) in vitro), and the release of hematopoiesis-stimulating cytokines. No hematopoiesis-stimulating activity and cytokine or NO production were found in the supernatant of non-stimulated macrophages. It was found that IMUNOR does not influence this status. Supernatant of LPS-stimulated macrophages was characterized by hematopoiesis-stimulating activity, as well as by the presence of nitrites, interleukin-6 (IL-6), and granulocyte colony-stimulating factor (G-CSF). A key role in the hematopoiesis-stimulating activity of the supernatant of LPS-stimulated macrophages could be ascribed to G-CSF since the formation of the colonies could be abrogated nearly completely by monoclonal antibodies against G-CSF. IMUNOR was found to suppress all the mentioned manifestations of the LPS-activated macrophages. When considering these results together with those from our previous in vivo study revealing stimulatory effects of IMUNOR on radiation-suppressed hematopoiesis, a hypothesis may be formulated which postulates a homeostatic role of IMUNOR, consisting in stimulation of impaired immune and hematopoietic systems but also in cutting back the production of proinflammatory mediators in cases of overstimulation which threats with undesirable consequences. PMID:17673152

  2. Do mechanical strain and TNF-α interact to amplify pro-inflammatory cytokine production in human annulus fibrosus cells?

    PubMed

    Likhitpanichkul, Morakot; Torre, Olivia M; Gruen, Jadry; Walter, Benjamin A; Hecht, Andrew C; Iatridis, James C

    2016-05-01

    During intervertebral disc (IVD) injury and degeneration, annulus fibrosus (AF) cells experience large mechanical strains in a pro-inflammatory milieu. We hypothesized that TNF-α, an initiator of IVD inflammation, modifies AF cell mechanobiology via cytoskeletal changes, and interacts with mechanical strain to enhance pro-inflammatory cytokine production. Human AF cells (N=5, Thompson grades 2-4) were stretched uniaxially on collagen-I coated chambers to 0%, 5% (physiological) or 15% (pathologic) strains at 0.5Hz for 24h under hypoxic conditions with or without TNF-α (10ng/mL). AF cells were treated with anti-TNF-α and anti-IL-6. ELISA assessed IL-1β, IL-6, and IL-8 production and immunocytochemistry measured F-actin, vinculin and α-tubulin in AF cells. TNF-α significantly increased AF cell pro-inflammatory cytokine production compared to basal conditions (IL-1β:2.0±1.4-84.0±77.3, IL-6:10.6±9.9-280.9±214.1, IL-8:23.9±26.0-5125.1±4170.8pg/ml for basal and TNF-α treatment, respectively) as expected, but mechanical strain did not. Pathologic strain in combination with TNF-α increased IL-1β, and IL-8 but not IL-6 production of AF cells. TNF-α treatment altered F-actin and α-tubulin in AF cells, suggestive of altered cytoskeletal stiffness. Anti-TNF-α (infliximab) significantly inhibited pro-inflammatory cytokine production while anti-IL-6 (atlizumab) did not. In conclusion, TNF-α altered AF cell mechanobiology with cytoskeletal remodeling that potentially sensitized AF cells to mechanical strain and increased TNF-α-induced pro-inflammatory cytokine production. Results suggest an interaction between TNF-α and mechanical strain and future mechanistic studies are required to validate these observations. PMID:26924657

  3. Increased central microglial activation associated with peripheral cytokine levels in premanifest Huntington's disease gene carriers.

    PubMed

    Politis, Marios; Lahiri, Nayana; Niccolini, Flavia; Su, Paul; Wu, Kit; Giannetti, Paolo; Scahill, Rachael I; Turkheimer, Federico E; Tabrizi, Sarah J; Piccini, Paola

    2015-11-01

    Previous studies have shown activation of the immune system and altered immune response in Huntington's disease (HD) gene carriers. Here, we hypothesized that peripheral and central immune responses could be concurrent pathophysiological events and represent a global innate immune response to the toxic effects of mutant huntingtin in HD gene carriers. We sought to investigate our hypothesis using [(11)C]PK11195 PET as a translocator protein (TSPO) marker of central microglial activation, together with assessment of peripheral plasma cytokine levels in a cohort of premanifest HD gene carriers who were more than a decade from predicted symptomatic conversion. Data were also compared to those from a group of healthy controls matched for age and gender. We found significantly increased peripheral plasma IL-1β levels in premanifest HD gene carriers compared to the group of normal controls (P=0.018). Premanifest HD gene carriers had increased TSPO levels in cortical, basal ganglia and thalamic brain regions (P<0.001). Increased microglial activation in somatosensory cortex correlated with higher plasma levels of IL-1β (rs=0.87, P=0.013), IL-6 (rs=0.85, P=0.013), IL-8 (rs=0.68, P=0.045) and TNF-α (rs=0.79; P=0.013). Our findings provide first in vivo evidence for an association between peripheral and central immune responses in premanifest HD gene carriers, and provide further supporting evidence for the role of immune dysfunction in the pathogenesis of HD. PMID:26297319

  4. Activation of macrophage peroxisome proliferator-activated receptor-gamma by diclofenac results in the induction of cyclooxygenase-2 protein and the synthesis of anti-inflammatory cytokines.

    PubMed

    Ayoub, Samir S; Botting, Regina M; Joshi, Amrish N; Seed, Michael P; Colville-Nash, Paul R

    2009-07-01

    Cyclooxygenase-2 (COX-2) is an inducible isoform of the COX family of enzymes central to the synthesis of pro-inflammatory prostaglandins. Induction of COX-2 is mediated by many endogenous and exogenous molecules that include pro-inflammatory cytokines and bacterial lipopolysaccharide (LPS). It has been demonstrated that COX-2 can also be induced by diclofenac in cultured J774.2 macrophages. This induction was delayed compared to COX-2 induced by LPS and paracetamol selectively inhibited activity of this protein. The aim of the present study was to determine the transcription factor involved in the production of COX-2 after treatment of J774.2 cells with 500 microM diclofenac. Pre-treatment of cells with the peroxisome proliferator-activated receptor-gamma (PPAR-gamma) antagonists GW9662 (0.1-1 microM) or biphenol A Diglycidyl Ether (100-200 microM) resulted in reduction of the induction of COX-2 by diclofenac, but not by LPS. Induction of COX-2 by the PPAR-gamma agonist 15deoxyDelta(12,14)prostaglandin J(2) was also reduced when the cells were pre-treated with the PPAR-gamma antagonists BADGE or GW9662. On the other hand, pre-treatment of cells with the nuclear factor-kappa-B (NF-kappaB) Super-repressor IkappaBalpha (150-600 nM) reduced the induction of COX-2 by LPS, but not by diclofenac. We, therefore, have identified that PPAR-gamma activation is a requirement for COX-2 induction after diclofenac stimulation of J774.2 cells. These results along with the finding that treatment of J774.2 macrophages with diclofenac resulted in the release of the anti-inflammatory cytokines, interleukin-10 and transforming growth factor-beta suggest that the diclofenac-induced COX-2 protein may possess anti-inflammatory actions. PMID:19219624

  5. Entamoeba lysyl-tRNA Synthetase Contains a Cytokine-Like Domain with Chemokine Activity towards Human Endothelial Cells

    PubMed Central

    Han, Jung Min; Kim, Sunghoon; Celada, Antonio; Ribas de Pouplana, Lluís

    2011-01-01

    Immunological pressure encountered by protozoan parasites drives the selection of strategies to modulate or avoid the immune responses of their hosts. Here we show that the parasite Entamoeba histolytica has evolved a chemokine that mimics the sequence, structure, and function of the human cytokine HsEMAPII (Homo sapiens endothelial monocyte activating polypeptide II). This Entamoeba EMAPII-like polypeptide (EELP) is translated as a domain attached to two different aminoacyl-tRNA synthetases (aaRS) that are overexpressed when parasites are exposed to inflammatory signals. EELP is dispensable for the tRNA aminoacylation activity of the enzymes that harbor it, and it is cleaved from them by Entamoeba proteases to generate a standalone cytokine. Isolated EELP acts as a chemoattractant for human cells, but its cell specificity is different from that of HsEMAPII. We show that cell specificity differences between HsEMAPII and EELP can be swapped by site directed mutagenesis of only two residues in the cytokines' signal sequence. Thus, Entamoeba has evolved a functional mimic of an aaRS-associated human cytokine with modified cell specificity. PMID:22140588

  6. Quantification and characterization of specific T-cells by antigen-specific cytokine production using ELISPOT assay or intracellular cytokine staining.

    PubMed

    Letsch, Anne; Scheibenbogen, Carmen

    2003-10-01

    The novel generation of sensitive T-cell assays facilitates the direct quantitation and characterization of specific T-cell responses. Functional T-cell assays such as the ELISPOT assay and the intracellular cytokine cytometry (ICC) employ the antigen-specific induction of cytokines to detect specific T-cells on a single cell level. ICC has the advantage that the simultaneous phenotypic characterization of the antigen-specific T-cells is possible. There is evidence now from clinical cancer vaccination trials, that there is a relationship between the detection of vaccine-induced T-cells by cytokine-based assays and clinical responses. As these assays become increasingly relevant in clinical practice to suggest issues of assay validation and quality control become of major importance. PMID:12957572

  7. Regulation of cytokines by small RNAs during skin inflammation

    PubMed Central

    2010-01-01

    Intercellular signaling by cytokines is a vital feature of the innate immune system. In skin, an inflammatory response is mediated by cytokines and an entwined network of cellular communication between T-cells and epidermal keratinocytes. Dysregulated cytokine production, orchestrated by activated T-cells homing to the skin, is believed to be the main cause of psoriasis, a common inflammatory skin disorder. Cytokines are heavily regulated at the transcriptional level, but emerging evidence suggests that regulatory mechanisms that operate after transcription play a key role in balancing the production of cytokines. Herein, we review the nature of cytokine signaling in psoriasis with particular emphasis on regulation by mRNA destabilizing elements and the potential targeting of cytokine-encoding mRNAs by miRNAs. The proposed linkage between mRNA decay mediated by AU-rich elements and miRNA association is described and discussed as a possible general feature of cytokine regulation in skin. Moreover, we describe the latest attempts to therapeutically target cytokines at the RNA level in psoriasis by exploiting the cellular RNA interference machinery. The applicability of cytokine-encoding mRNAs as future clinical drug targets is evaluated, and advances and obstacles related to topical administration of RNA-based drugs targeting the cytokine circuit in psoriasis are described. PMID:20594301

  8. Fluoxetine stimulates anti-inflammatory IL-10 cytokine production and attenuates sensory deficits in a rat model of decompression sickness.

    PubMed

    Blatteau, Jean-Eric; de Maistre, Sébastien; Lambrechts, Kate; Abraini, Jacques; Risso, Jean-Jacques; Vallée, Nicolas

    2015-12-15

    Despite "gold standard" hyperbaric oxygen treatment, 30% of patients suffering from neurological decompression sickness still exhibit incomplete recovery, including sensory impairments. Fluoxetine, a well-known antidepressant, is recognized as having anti-inflammatory effects in the setting of cerebral ischemia. In this study, we focused on the assessment of sensory neurological deficits and measurement of circulating cytokines after decompression in rats treated or not with fluoxetine. Seventy-eight rats were divided into a clinical (n = 38) and a cytokine (n = 40) group. In both groups, the rats were treated with fluoxetine (30 mg/kg po, 6 h beforehand) or with a saccharine solution. All of the rats were exposed to 90 m seawater for 45 min before staged decompression. In the clinical group, paw withdrawal force after mechanical stimulation and paw withdrawal latency after thermal stimulation were evaluated before and 1 and 48 h after surfacing. At 48 h, a dynamic weight-bearing device was used to assess postural stability, depending on the time spent on three or four paws. For cytokine analysis, blood samples were collected from the vena cava 1 h after surfacing. Paw withdrawal force and latency were increased after surfacing in the controls, but not in the fluoxetine group. Dynamic weight-bearing assessment highlighted a better stability on three paws for the fluoxetine group. IL-10 levels were significantly decreased after decompression in the controls, but maintained at baseline level with fluoxetine. This study suggests that fluoxetine has a beneficial effect on sensory neurological recovery. We hypothesize that the observed effect is mediated through maintained anti-inflammatory cytokine IL-10 production. PMID:26494447

  9. The effects of vitamin A supplementation with measles vaccine on leucocyte counts and in vitro cytokine production.

    PubMed

    Jensen, Kristoffer Jarlov; Fisker, Ane Bærent; Andersen, Andreas; Sartono, Erliyani; Yazdanbakhsh, Maria; Aaby, Peter; Erikstrup, Christian; Benn, Christine Stabell

    2016-02-28

    As WHO recommends vitamin A supplementation (VAS) at vaccination contacts after age 6 months, many children receive VAS together with measles vaccine (MV). We aimed to investigate the immunological effect of VAS given with MV. Within a randomised placebo-controlled trial investigating the effect on overall mortality of providing VAS with vaccines in Guinea-Bissau, we conducted an immunological sub-study of VAS v. placebo with MV, analysing leucocyte counts, whole blood in vitro cytokine production, vitamin A status and concentration of C-reactive protein (CRP). VAS compared with placebo was associated with an increased frequency of CRP ≥ 5 mg/l (28 v. 12%; P=0·005). Six weeks after supplementation, VAS had significant sex-differential effects on leucocyte, lymphocyte, monocyte and basophil cell counts, decreasing them in males but increasing them in females. Mainly in females, the effect of VAS on cytokine responses differed by previous VAS: in previous VAS recipients, VAS increased the pro-inflammatory and T helper cell type 1 (Th1) cytokine responses, whereas VAS decreased these responses in previously unsupplemented children. In previous VAS recipients, VAS was associated with increased IFN-γ responses to phytohaemagglutinin in females (geometric mean ratio (GMR): 3·97; 95% CI 1·44, 10·90) but not in males (GMR 0·44; 95% CI 0·14, 1·42); the opposite was observed in previously unsupplemented children. Our results corroborate that VAS provided with MV has immunological effects, which may depend on sex and previous VAS. VAS may increase the number of leucocytes, but also repress both the innate and lymphocyte-derived cytokine responses in females, whereas this repression may be opposite if the females have previously received VAS. PMID:26678511

  10. Prolactin modulates cytokine production induced by culture filtrate proteins of M. bovis through different signaling mechanisms in THP1 cells.

    PubMed

    Martínez-Neri, Priscila A; López-Rincón, Gonzalo; Mancilla-Jiménez, Raúl; del Toro-Arreola, Susana; Muñoz-Valle, José Francisco; Fafutis-Morris, Mary; Bueno-Topete, Miriam Ruth; Estrada-Chávez, Ciro; Pereira-Suárez, Ana Laura

    2015-01-01

    The immunomodulatory functions of prolactin (PRL) are well recognized. Augmented PRL plasma levels were observed in patients with advanced tuberculosis (TB). Recently, we have reported that LPS and Mycobacterium bovis (M. bovis) induced differential expression of PRL receptor (PRLR) isoforms in THP-1 cells and bovine macrophages, respectively. The aim of this work was to determine whether PRL should be considered as a potential modulator of the signaling pathways and cytokine synthesis, induced by culture filtrate protein (CFP) from M. bovis in THP-1 monocytes. The THP-1 cells were stimulated with PRL (20ng/mL), M. bovis CFP (50μg/mL). PRLR as well as phosphorylated STAT3, STAT5, Akt1/2/3, ERK1/2 and p38 expression were evaluated by Western blot. IL1-β, TNF-α, IL-6, IL-12, IL-8, and IL-10 concentrations were measured by ELISA. Our results demonstrated that the expression pattern of PRLR short isoforms is induced by M. bovis CFP. M bovis CFP induced phosphorylation of Akt2, ERK1/2, p38, STAT3, and STAT5 pathways. In turn, PRL only activated the JAK2/STAT3-5 signaling pathway. However, when combined both stimuli, PRL significantly increased STAT3-5 phosphorylation and downregulated Akt2, ERK1/2, and p38 phosphorylation. As expected, M. bovis CFP induced substantial amounts of IL1-β, IL-6, TNF-α, IL-8, IL-12, and IL-10. However, the PRL costimulation considerably decreased IL1-β, TNF-α, and IL-12 secretion, and increased IL-10 production. This results suggest that up-regulation of IL-10 by PRL might be modulating the pro-inflammatory response against mycobacterial antigens through the MAPK pathway. PMID:25218920

  11. Effect of synthetic agonists of toll-like receptor 9 on canine lymphocyte proliferation and cytokine production in vitro.

    PubMed

    Im Hof, Michelle; Williamson, Lina; Summerfield, Artur; Balmer, Vreni; Dutoit, Virginie; Kandimalla, Ekambar R; Yu, Dong; Zurbriggen, Andreas; Doherr, Marcus G; Peel, John; Roosje, Petra J

    2008-07-15

    Synthetic agonists of TLR9 containing novel DNA structures and R'pG (wherein R=1-(2'-deoxy-beta-d-ribofuranosyl)-2-oxo-7-deaza-8-methyl-purine) motifs, referred to as immune modulatory oligonucleotides (IMOs), have been shown to stimulate T(H)-1-type-immune responses and potently reverse allergen-induced T(H)-2 responses to T(H)-1 responses in vitro and in vivo in mice. In order to investigate the immunomodulatory potential of IMOs in dogs, canine peripheral blood mononuclear cells (PBMC) from healthy dogs were stimulated with three different IMOs and a control IMO, alone or in combination with concanavalin A (ConA). Lipopolysaccharide (LPS) was used as a positive control for B lymphocyte activation. Carboxyfluorescein diacetate succinimidyl ester and phenotype staining was used to tag proliferating T and B lymphocytes (CD5(+) and CD21(+)) by flow cytometry. Real-time PCR and ELISA were processed to assay cytokine production of IFN-gamma, IL-10, TGF-beta, IL-6 and IL-10. Like LPS, IMOs alone induced neither proliferation of CD5(+) T cells nor CD21(+) B cells, but both LPS and IMO had the capacity to co-stimulate ConA and induced proliferation of B cells. In combination with ConA, one of the IMOs (IMO1) also induced proliferation of T cells. IMO1 also significantly enhanced the expression of IFN-gamma on the mRNA and protein level in canine PBMC, whereas expression of IL-10, TGF-beta and IL-4 mRNAs was not induced by any of the IMOs. These results indicate that in canine PBMC from healthy dogs, IMO1 was able to induce a T(H)-1 immune response including T- and B-cell proliferation. PMID:18452997

  12. Circulating Myeloid Dendritic Cells of Advanced Cancer Patients Result in Reduced Activation and a Biased Cytokine Profile in Invariant NKT Cells1

    PubMed Central

    van der Vliet, Hans J. J.; Wang, Ruojie; Yue, Simon C.; Koon, Henry B.; Balk, Steven P.; Exley, Mark A.

    2010-01-01

    CD1d-restricted invariant NKT (iNKT) cells play important regulatory roles in various immune responses, including antitumor immune responses. Previous studies have demonstrated quantitative and qualitative defects in iNKT cells of cancer patients, and these defects are clinically relevant as they are associated with poor prognosis. In this study we demonstrate that defects in the iNKT cell population can, at least in part, be attributed to defective interactions between iNKT cells and CD1d-expressing circulating myeloid dendritic cells (mDC), as mDC of patients with advanced melanoma and renal cell cancer reduced the activation and Th1 cytokine production of healthy donor-derived iNKT cells. Interestingly, this reduced activation of iNKT cells was restricted to patients with low circulating iNKT cell numbers and could be reversed by IL-12 and in part by the neutralization of TGF-β, but it was further reduced by the neutralization of IL-10 in vitro. Additional experiments revealed discordant roles for TGF-β and IL-10 on human iNKT cells, because TGF-β suppressed iNKT cell activation and proliferation and IFN-γ production while IL-10 was identified as a cytokine involved in stimulating the activation and expansion of iNKT cells that could subsequently suppress NK cell and T cell responses. PMID:18490728

  13. Comparison of the purification of biologically active IL-7 cytokine expressed in Escherichia coli and Pichia pastoris.

    PubMed

    Zaremba-Czogalla, Magdalena; Stumpp, Christian; Bonifacio, Ezio; Paul, Ralf

    2015-06-01

    The large scale screening of cytokine mutants is a component of binding and activity mapping and requires an efficient method of cytokine protein expression. Here, we compared recombinant IL-7 expression with and purification from Escherichia coli and Pichia pastoris. The IL-7 cytokine contains three disulfide bonds that are essential for its biological activity, and which are formed upon secretion through P. pastoris, but not in the reducing cytoplasm of E. coli. In contrast to a previous report we found that P. pastoris secretes active but N-linked hyperglycosylated IL-7. Enzymatic deglycosylation was incompatible with activity measurements in a cell based assay. E. coli expressed IL-7 was refolded from solubilized inclusion bodies. A chromatographic purification step between inclusion body solubilization and refolding increased the yield of biologically active monomeric IL-7, and decreased the amount of inactive soluble aggregates. Cation exchange chromatography of untagged IL-7, and IMAC of His-tagged IL-7 improved refolding yields to a similar extend, indicating that the removal of contaminating components in the solubilized inclusion bodies improves refolding efficiency. We conclude that a chromatographic purification step of IL-7 solubilized from E. coli inclusion bodies increases refolding yield, and may be a suitable general rescue strategy for obtaining folded and biologically active proteins from inclusion bodies. PMID:25703052

  14. Expression of cytokine, chemokine, and adhesion molecules during endothelial cell activation induced by antibodies against dengue virus nonstructural protein 1.

    PubMed

    Lin, Chiou-Feng; Chiu, Shu-Chen; Hsiao, Yu-Ling; Wan, Shu-Wen; Lei, Huan-Yao; Shiau, Ai-Li; Liu, Hsiao-Sheng; Yeh, Trai-Ming; Chen, Shun-Hua; Liu, Ching-Chuan; Lin, Yee-Shin

    2005-01-01

    Vascular dysfunction is a hallmark associated with disease onset in dengue hemorrhagic fever and dengue shock syndrome. In addition to direct viral damage, immune responses to dengue virus (DV) infection may also underlie the pathogenesis of disease. We have proposed a mechanism of molecular mimicry in which Abs directed against DV nonstructural protein 1 (NS1) cross-react with endothelial cells and induce damage. In this study, we demonstrated the inflammatory endothelial cell activation induced by anti-DV NS1 via the transcription factor NF-kappaB-regulated pathway. Protein phosphorylation and NF-kappaB activation were observed after anti-DV NS1 stimulation in a human microvascular endothelial cell line-1. The cytokine and chemokine production, including IL-6, IL-8, and MCP-1, but not RANTES, in endothelial cells increased after treatment with anti-DV NS1 Abs. The expression of IL-6, IL-8, and MCP-1 was blocked by the preabsorption of anti-DV NS1 with DV NS1 or by the inhibition of NF-kappaB activation. Furthermore, the increases in both ICAM-1 expression and the ability of human PBMC to adhere to endothelial cells were also observed, and these effects were inhibited by pretreatment with anti-ICAM-1 or anti-MCP-1 Abs. Therefore, in addition to endothelial cell apoptosis, as previously reported, inflammatory activation occurs in endothelial cells after stimulation by anti-DV NS1 Abs. These results suggest the involvement of anti-DV NS1 Abs in the vasculopathy of DV infection. PMID:15611263

  15. cAMP-dependent protein kinase activation decreases cytokine release in bronchial epithelial cells

    PubMed Central

    Poole, Jill A.; Nordgren, Tara M.; DeVasure, Jane M.; Heires, Art J.; Bailey, Kristina L.; Romberger, Debra J.

    2014-01-01

    Lung injury caused by inhalation of dust from swine-concentrated animal-feeding operations (CAFO) involves the release of inflammatory cytokine interleukin 8 (IL-8), which is mediated by protein kinase C-ε (PKC-ε) in airway epithelial cells. Once activated by CAFO dust, PKC-ε is responsible for slowing cilia beating and reducing cell migration for wound repair. Conversely, the cAMP-dependent protein kinase (PKA) stimulates contrasting effects, such as increased cilia beating and an acceleration of cell migration for wound repair. We hypothesized that a bidirectional mechanism involving PKA and PKC regulates epithelial airway inflammatory responses. To test this hypothesis, primary human bronchial epithelial cells and BEAS-2B cells were treated with hog dust extract (HDE) in the presence or absence of cAMP. PKC-ε activity was significantly reduced in cells that were pretreated for 1 h with 8-bromoadenosine 3′,5′-cyclic monophosphate (8-Br-cAMP) before exposure to HDE (P < 0.05). HDE-induced IL-6, and IL-8 release was significantly lower in cells that were pretreated with 8-Br-cAMP (P < 0.05). To exclude exchange protein activated by cAMP (EPAC) involvement, cells were pretreated with either 8-Br-cAMP or 8-(4-chlorophenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate (8-CPT-2Me-cAMP) (EPAC agonist). 8-CPT-2Me-cAMP did not activate PKA and did not reduce HDE-stimulated IL-6 release. In contrast, 8-Br-cAMP decreased HDE-stimulated tumor necrosis factor (TNF)-α-converting enzyme (TACE; ADAM-17) activity and subsequent TNF-α release (P < 0.001). 8-Br-cAMP also blocked HDE-stimulated IL-6 and keratinocyte-derived chemokine release in precision-cut mouse lung slices (P < 0.05). These data show bidirectional regulation of PKC-ε via a PKA-mediated inhibition of TACE activity resulting in reduced PKC-ε-mediated release of IL-6 and IL-8. PMID:25150062

  16. cAMP-dependent protein kinase activation decreases cytokine release in bronchial epithelial cells.

    PubMed

    Wyatt, Todd A; Poole, Jill A; Nordgren, Tara M; DeVasure, Jane M; Heires, Art J; Bailey, Kristina L; Romberger, Debra J

    2014-10-15

    Lung injury caused by inhalation of dust from swine-concentrated animal-feeding operations (CAFO) involves the release of inflammatory cytokine interleukin 8 (IL-8), which is mediated by protein kinase C-ε (PKC-ε) in airway epithelial cells. Once activated by CAFO dust, PKC-ε is responsible for slowing cilia beating and reducing cell migration for wound repair. Conversely, the cAMP-dependent protein kinase (PKA) stimulates contrasting effects, such as increased cilia beating and an acceleration of cell migration for wound repair. We hypothesized that a bidirectional mechanism involving PKA and PKC regulates epithelial airway inflammatory responses. To test this hypothesis, primary human bronchial epithelial cells and BEAS-2B cells were treated with hog dust extract (HDE) in the presence or absence of cAMP. PKC-ε activity was significantly reduced in cells that were pretreated for 1 h with 8-bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP) before exposure to HDE (P < 0.05). HDE-induced IL-6, and IL-8 release was significantly lower in cells that were pretreated with 8-Br-cAMP (P < 0.05). To exclude exchange protein activated by cAMP (EPAC) involvement, cells were pretreated with either 8-Br-cAMP or 8-(4-chlorophenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate (8-CPT-2Me-cAMP) (EPAC agonist). 8-CPT-2Me-cAMP did not activate PKA and did not reduce HDE-stimulated IL-6 release. In contrast, 8-Br-cAMP decreased HDE-stimulated tumor necrosis factor (TNF)-α-converting enzyme (TACE; ADAM-17) activity and subsequent TNF-α release (P < 0.001). 8-Br-cAMP also blocked HDE-stimulated IL-6 and keratinocyte-derived chemokine release in precision-cut mouse lung slices (P < 0.05). These data show bidirectional regulation of PKC-ε via a PKA-mediated inhibition of TACE activity resulting in reduced PKC-ε-mediated release of IL-6 and IL-8. PMID:25150062

  17. Cytokines in cerebrospinal fluid of neurosyphilis patients: Identification of Urokinase plasminogen activator using antibody microarrays.

    PubMed

    Lu, Ping; Zheng, Dao-Cheng; Fang, Chang; Huang, Jin-Mei; Ke, Wu-Jian; Wang, Liu-Yuan; Zeng, Wei-Ying; Zheng, He-Ping; Yang, Bin

    2016-04-15

    Little is known regarding protein responses to syphilis infection in cerebrospinal fluid (CSF) of patients presenting with neurosyphilis. Protein and antibody arrays offer a new opportunity to gain insights into global protein expression profiles in these patients. Here we obtained CSF samples from 46 syphilis patients, 25 of which diagnosed as having central nervous system involvement based on clinical and laboratory findings. The CSF samples were then analyzed using a RayBioH L-Series 507 Antibody Array system designed to simultaneously analyze 507 specific cytokines. The results indicated that 41 molecules showed higher levels in patients with neurosyphilis in comparison with patients without neural involvement. For validation by single target ELISA, we selected five of them (MIP-1a, I-TAC/CXCL11, Urokinase plasminogen activator [uPA], and Oncostatin M) because they have previously been found to be involved in central nervous system (CNS) disorders. The ELISA tests confirmed that uPA levels were significantly higher in the CSF of neurosyphilis patients (109.1±7.88pg/ml) versus patients without CNS involvement (63.86±4.53pg/ml, p<0.0001). There was also a clear correlation between CSF uPA levels and CSF protein levels (p=0.0128) as well as CSF-VDRL titers (p=0.0074) used to diagnose neurosyphilis. No significant difference between the two groups of patients, however, was found in uPA levels in the serum, suggesting specific activation of the inflammatory system in the CNS but not the periphery in neurosyphilis patients. We conclude that measurements of uPA levels in CSF may be an additional parameter for diagnosing neurosyphilis. PMID:27049560

  18. Suppression of PU.1-linked TLR4 expression by cilostazol with decrease of cytokine production in macrophages from patients with rheumatoid arthritis

    PubMed Central

    Park, SY; Lee, SW; Baek, SH; Lee, CW; Lee, WS; Rhim, BY; Hong, KW; Kim, CD

    2013-01-01

    Background and Purpose The present study assessed the effects of cilostazol on LPS-stimulated TLR4 signal pathways in synovial macrophages from patients with rheumatoid arthritis (RA). These effects were confirmed in collagen-induced arthritis (CIA) in mice. Experimental Approach Expression of TLR4, PU.1, NF-κB p65 and IκBα on synovial fluid macrophages from RA patients was determined by Western blotting, and cytokines were measured by elisa. Anti-arthritic effects were evaluated in CIA mice. Key Results Intracellular cAMP was concentration-dependently raised by cilostazol (1–100 μM). Cilostazol significantly suppressed LPS-stimulated increase of TLR4 expression by blocking PU.1 transcriptional activity in RA macrophages. In addition, cilostazol decreased LPS-induced myeloid differentiation factor 88 (MyD88) expression, but not that of TNF receptor-associated factor 6 (TRAF6). Cilostazol also suppressed IkBα degradation and NF-κB p65 nuclear translocation. Moreover, LPS-induced increase of cytokine production (TNF-α, IL-1β) was inhibited by cilostazol, an effect which was accompanied by suppression of IκBα degradation, and NF-κB p65 nuclear translocation. However, expression of anti-inflammatory IL-10 was elevated by cilostazol and forskolin/IBMX. In mice with CIA, post-treatment with cilostazol (30 mg kg−1 day−1) decreased expression of TLR4 in knee joints in association with decreased recruitment of macrophages. Consequently, synovial inflammation, proteoglycan depletion and bone erosion were significantly inhibited by cilostazol treatment. Conclusions and Implications Cilostazol down-regulated LPS-stimulated PU.1-linked TLR4 expression and TLR4/MyD88/NF-κB signal pathways, and then suppressed inflammatory cytokine production in synovial macrophages from RA patients. Also cilostazol markedly inhibited the severity of CIA in mice. PMID:23072581

  19. Products of enteropathogenic Escherichia coli inhibit lymphocyte activation and lymphokine production.

    PubMed Central

    Klapproth, J M; Donnenberg, M S; Abraham, J M; Mobley, H L; James, S P

    1995-01-01

    The aim of this study was to determine whether products of enteric bacteria are able to regulate lymphocyte activation and cytokine production. Whole bacteria and bacterial lysates from different strains of Escherichia coli were tested for their ability to inhibit cytokine production by peripheral blood mononuclear cells as determined by reverse transcription-PCR, Northern (RNA) blotting of cellular RNA, or enzyme-linked immunosorbent assay for cytokine protein. Lysates from two pathogenic strains of E. coli, enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli, inhibited mitogen-stimulated expression of interleukin-2 (IL-2), IL-4, IL-5, and gamma interferon. IL-1 beta, IL-6, IL-8, IL-10, IL-12, and Rantes mRNA expression was not affected. The inhibitory activity was dose dependent, protease and heat sensitive, nondialyzable, and not due to cellular toxicity. The inhibitory activity remained in EPEC strains having mutations in known virulence factors. Nonpathogenic E. coli HB101 transformed with a 22-kb cosmid clone derived from EPEC chromosomal DNA expressed the inhibitory activity. Thus, certain strains of pathogenic E. coli express a protein or proteins encoded by chromosomal genes that selectively inhibit lymphocyte activation and lymphokine production. Therefore, immunosuppressive factors produced by pathogenic bacteria could be important in modifying gastrointestinal immune responses in enteric bacterial infections or gastrointestinal autoimmune diseases. PMID:7768605

  20. In vitro morphology, viability and cytokine secretion of uterine telocyte-activated mouse peritoneal macrophages.

    PubMed

    Chi, Chi; Jiang, Xiao-Juan; Su, Lei; Shen, Zong-Ji; Yang, Xiao-Jun

    2015-12-01

    Telocytes (TCs), a distinct interstitial cell population, have been identified in the uterus, oviduct and placenta, with multiple proposed potential biological functions. Their unique structure allows them to form intercellular junctions with various immunocytes, both in normal and diseased tissues, suggesting a potential functional relationship with the local immune response. It has been hypothesized that through direct heterocellular junctions or indirect paracrine effects, TCs influence the activity of local immunocytes that are involved in the inflammatory process and in immune-mediated reproductive abnormalities. However, no reliable cytological evidence for this hypothesis is currently available. In this study, we cultured primary murine uterine TCs and collected TC conditioned media (TCM). Mouse peritoneal macrophages (pMACs) were co-cultured for 48 hrs with TCM or with DMEM/F12 or lipopolysaccharide (LPS) as negative and positive controls, respectively. Normal uterine TCs with a typical structure and a CD-34-positive/vimentin-positive/c-kit-negative immunophenotype were observed during culture. Morphologically, TCM-treated pMACs displayed an obvious activation/immunoresponse, in contrast to over-stimulation and cell death after LPS treatment and no sign of activation in the presence of DMEM/F12. Accordingly, a cell counting kit 8 (CCK-8) assay indicated significant activation of pMACs by TCM and LPS compared to DMEM/F12, thus supporting the marked morphological differences among these groups of cells. Furthermore, within a panel of macrophage-derived cytokines/enzymes, interleukin-6 (IL-6) and inducible nitric oxide synthase were significantly elevated in TCM-treated pMACs; tumour necrosis factor α, IL1-R1, and IL-10 were slightly, but significantly, up-regulated; and no changes were observed for transforming growth factor-β1, IL-1β, IL-23α and IL-18. Our results indicate that TCs are not simply innocent bystanders but are rather functional players in

  1. Sepsis-induced morbidity in mice: effects on body temperature, body weight, cage activity, social behavior and cytokines in brain

    PubMed Central

    Granger, Jill I.; Ratti, Pietro-Luca; Datta, Subhash C.; Raymond, Richard M.; Opp, Mark R.

    2012-01-01

    Infection negatively impacts mental health, as evidenced by the lethargy, malaise, and cognitive deficits experienced during illness. These changes in central nervous system processes, collectively termed sickness behavior, have been shown in animal models to be mediated primarily by the actions of cytokines in brain. Most studies of sickness behavior to date have used bolus injection of bacterial lipopolysaccharide (LPS) or selective administration of the proinflammatory cytokines interleukin-1β (IL-1β) or IL-6 as the immune challenge. Such models, although useful for determining mechanisms responsible for acute changes in physiology and behavior, do not adequately represent the more complex effects on central nervous system (CNS) processes of a true infection with replicating pathogens. In the present study, we used the cecal ligation and puncture (CLP) model to quantify sepsis-induced alterations in several facets of physiology and behavior of mice. We determined the impact of sepsis on cage activity, body temperature, food and water consumption and body weights of mice. Because cytokines are critical mediators of changes in behavior and temperature regulation during immune challenge, we also quantified sepsis-induced alterations in cytokine mRNA and protein in brain during the acute period of sepsis onset. We now report that cage activity and temperature regulation in mice that survive are altered for up to 23 days after sepsis induction. Food and water consumption are transiently reduced, and body weight is lost during sepsis. Furthermore, sepsis decreases social interactions for 24 – 48 hours. Finally, mRNA and protein for IL-1β, IL-6, and tumor necrosis factor-α (TNFα) are upregulated in the hypothalamus, hippocampus, and brain stem during sepsis onset, from 6–72 hour post sepsis induction. Collectively, these data indicate that sepsis not only acutely alters physiology, behavior and cytokine profiles in brain, but that some brain functions are

  2. Primary dengue virus infections induce differential cytokine production</