Sample records for activation detectors

  1. Charged particle detectors with active detector surface for partial energy deposition of the charged particles and related methods

    DOEpatents

    Gerts, David W; Bean, Robert S; Metcalf, Richard R

    2013-02-19

    A radiation detector is disclosed. The radiation detector comprises an active detector surface configured to generate charge carriers in response to charged particles associated with incident radiation. The active detector surface is further configured with a sufficient thickness for a partial energy deposition of the charged particles to occur and permit the charged particles to pass through the active detector surface. The radiation detector further comprises a plurality of voltage leads coupled to the active detector surface. The plurality of voltage leads is configured to couple to a voltage source to generate a voltage drop across the active detector surface and to separate the charge carriers into a plurality of electrons and holes for detection. The active detector surface may comprise one or more graphene layers. Timing data between active detector surfaces may be used to determine energy of the incident radiation. Other apparatuses and methods are disclosed herein.

  2. Electronically shielded solid state charged particle detector

    DOEpatents

    Balmer, D.K.; Haverty, T.W.; Nordin, C.W.; Tyree, W.H.

    1996-08-20

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite. 1 fig.

  3. Electronically shielded solid state charged particle detector

    DOEpatents

    Balmer, David K.; Haverty, Thomas W.; Nordin, Carl W.; Tyree, William H.

    1996-08-20

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite.

  4. Determination of the active volumes of solid-state photon-beam dosimetry detectors using the PTB proton microbeam.

    PubMed

    Poppinga, Daniela; Delfs, Bjoern; Meyners, Jutta; Langner, Frank; Giesen, Ulrich; Harder, Dietrich; Poppe, Bjoern; Looe, Hui K

    2018-05-04

    This study aims at the experimental determination of the diameters and thicknesses of the active volumes of solid-state photon-beam detectors for clinical dosimetry. The 10 MeV proton microbeam of the PTB (Physikalisch-Technische Bundesanstalt, Braunschweig) was used to examine two synthetic diamond detectors, type microDiamond (PTW Freiburg, Germany), and the silicon detectors Diode E (PTW Freiburg, Germany) and Razor Diode (Iba Dosimetry, Germany). The knowledge of the dimensions of their active volumes is essential for their Monte Carlo simulation and their applications in small-field photon-beam dosimetry. The diameter of the active detector volume was determined from the detector current profile recorded by radially scanning the proton microbeam across the detector. The thickness of the active detector volume was determined from the detector's electrical current, the number of protons incident per time interval and their mean stopping power in the active volume. The mean energy of the protons entering this volume was assessed by comparing the measured and the simulated influence of the thickness of a stack of aluminum preabsorber foils on the detector signal. For all detector types investigated, the diameters measured for the active volume closely agreed with the manufacturers' data. For the silicon Diode E detector, the thickness determined for the active volume agreed with the manufacturer's data, while for the microDiamond detectors and the Razor Diode, the thicknesses measured slightly exceeded those stated by the manufacturers. The PTB microbeam facility was used to analyze the diameters and thicknesses of the active volumes of photon dosimetry detectors for the first time. A new method of determining the thickness values with an uncertainty of ±10% was applied. The results appear useful for further consolidating detailed geometrical knowledge of the solid-state detectors investigated, which are used in clinical small-field photon-beam dosimetry. © 2018 American Association of Physicists in Medicine.

  5. Nuclear fuel pin scanner

    DOEpatents

    Bramblett, Richard L.; Preskitt, Charles A.

    1987-03-03

    Systems and methods for inspection of nuclear fuel pins to determine fiss loading and uniformity. The system includes infeed mechanisms which stockpile, identify and install nuclear fuel pins into an irradiator. The irradiator provides extended activation times using an approximately cylindrical arrangement of numerous fuel pins. The fuel pins can be arranged in a magazine which is rotated about a longitudinal axis of rotation. A source of activating radiation is positioned equidistant from the fuel pins along the longitudinal axis of rotation. The source of activating radiation is preferably oscillated along the axis to uniformly activate the fuel pins. A detector is provided downstream of the irradiator. The detector uses a plurality of detector elements arranged in an axial array. Each detector element inspects a segment of the fuel pin. The activated fuel pin being inspected in the detector is oscillated repeatedly over a distance equal to the spacing between adjacent detector elements, thereby multiplying the effective time available for detecting radiation emissions from the activated fuel pin.

  6. Technology of silicon charged-particle detectors developed at the Institute of Electron Technology (ITE)

    NASA Astrophysics Data System (ADS)

    Wegrzecka, Iwona; Panas, Andrzej; Bar, Jan; Budzyński, Tadeusz; Grabiec, Piotr; Kozłowski, Roman; Sarnecki, Jerzy; Słysz, Wojciech; Szmigiel, Dariusz; Wegrzecki, Maciej; Zaborowski, Michał

    2013-07-01

    The paper discusses the technology of silicon charged-particle detectors developed at the Institute of Electron Technology (ITE). The developed technology enables the fabrication of both planar and epiplanar p+-ν-n+ detector structures with an active area of up to 50 cm2. The starting material for epiplanar structures are silicon wafers with a high-resistivity n-type epitaxial layer ( ν layer - ρ < 3 kΩcm) deposited on a highly doped n+-type substrate (ρ< 0,02Ωcm) developed and fabricated at the Institute of Electronic Materials Technology. Active layer thickness of the epiplanar detectors (νlayer) may range from 10 μm to 150 μm. Imported silicon with min. 5 kΩcm resistivity is used to fabricate planar detectors. Active layer thickness of the planar detectors (ν) layer) may range from 200 μm to 1 mm. This technology enables the fabrication of both discrete and multi-junction detectors (monolithic detector arrays), such as single-sided strip detectors (epiplanar and planar) and double-sided strip detectors (planar). Examples of process diagrams for fabrication of the epiplanar and planar detectors are presented in the paper, and selected technological processes are discussed.

  7. Performance tests of a large volume cerium tribromide (CeBr3) scintillation detector.

    PubMed

    Naqvi, A A; Khiari, F Z; Liadi, F A; Khateeb-Ur-Rehman; Isab, A A

    2016-08-01

    The response of a large cylindrical 76mm×76mm (height×diameter) cerium tribromide (CeBr3) detector was measured for prompt gamma rays. The total intrinsic activity of the CeBr3 detector, which was measured over 0.33-3.33MeV range, was found to be 0.022±0.001 counts/s/cm(3). The partial intrinsic activity ( due to (227)Ac contamination), was measured over a energy range of 1.22-2.20MeV energy, was found to be 0.007±0.001 counts/s/cm(3). Compared to intrinsic activities of LaBr3:Ce and LaCl3:Ce detectors of equivalent volume, the CeBr3 detector has 7-8 times less total intrinsic activity. The detector response for low energy prompt gamma rays was measured over 0.3-0.6MeVgamma energy range using a portable neutron generator-based Prompt Gamma Neutron Activation Analysis (PGNAA) setup. The experimental yield of boron, cadmium and mercury prompt gamma-rays was measured from water samples contaminated with 0.75-2.5wt% mercury, 0.31-2.50wt% boron, and 0.0625-0.500wt% cadmium, respectively. An excellent agreement has been observed between the calculated and experimental yields of the gamma rays. Also minimum detection limit (MDC) of the CeBr3 detector was measured for boron, cadmium and mercury samples. The CeBr3 detector has 23% smaller value of MDCB and 18% larger value of MDCCd than those of a LaBr3:Ce detector of equivalent size. This study has shown that CeBr3 detector has an excellent response for the low energy prompt gamma-rays with almost an order of magnitude low intrinsic activity as compared to LaCl3:Ce and LaBr3:Ce detectors of equivalent volume. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Synthesis and evaluation of phase detectors for active bit synchronizers

    NASA Technical Reports Server (NTRS)

    Mcbride, A. L.

    1974-01-01

    Self-synchronizing digital data communication systems usually use active or phase-locked loop (PLL) bit synchronizers. The three main elements of PLL synchronizers are the phase detector, loop filter, and the voltage controlled oscillator. Of these three elements, phase detector synthesis is the main source of difficulty, particularly when the received signals are demodulated square-wave signals. A phase detector synthesis technique is reviewed that provides a physically realizable design for bit synchronizer phase detectors. The development is based upon nonlinear recursive estimation methods. The phase detector portion of the algorithm is isolated and analyzed.

  9. Microscope mode secondary ion mass spectrometry imaging with a Timepix detector.

    PubMed

    Kiss, Andras; Jungmann, Julia H; Smith, Donald F; Heeren, Ron M A

    2013-01-01

    In-vacuum active pixel detectors enable high sensitivity, highly parallel time- and space-resolved detection of ions from complex surfaces. For the first time, a Timepix detector assembly was combined with a secondary ion mass spectrometer for microscope mode secondary ion mass spectrometry (SIMS) imaging. Time resolved images from various benchmark samples demonstrate the imaging capabilities of the detector system. The main advantages of the active pixel detector are the higher signal-to-noise ratio and parallel acquisition of arrival time and position. Microscope mode SIMS imaging of biomolecules is demonstrated from tissue sections with the Timepix detector.

  10. Methods for radiation detection and characterization using a multiple detector probe

    DOEpatents

    Akers, Douglas William; Roybal, Lyle Gene

    2014-11-04

    Apparatuses, methods, and systems relating to radiological characterization of environments are disclosed. Multi-detector probes with a plurality of detectors in a common housing may be used to substantially concurrently detect a plurality of different radiation activities and types. Multiple multi-detector probes may be used in a down-hole environment to substantially concurrently detect radioactive activity and contents of a buried waste container. Software may process, analyze, and integrate the data from the different multi-detector probes and the different detector types therein to provide source location and integrated analysis as to the source types and activity in the measured environment. Further, the integrated data may be used to compensate for differential density effects and the effects of radiation shielding materials within the volume being measured.

  11. Study of a new design of p-N semiconductor detector array for nuclear medicine imaging by monte carlo simulation codes.

    PubMed

    Hajizadeh-Safar, M; Ghorbani, M; Khoshkharam, S; Ashrafi, Z

    2014-07-01

    Gamma camera is an important apparatus in nuclear medicine imaging. Its detection part is consists of a scintillation detector with a heavy collimator. Substitution of semiconductor detectors instead of scintillator in these cameras has been effectively studied. In this study, it is aimed to introduce a new design of P-N semiconductor detector array for nuclear medicine imaging. A P-N semiconductor detector composed of N-SnO2 :F, and P-NiO:Li, has been introduced through simulating with MCNPX monte carlo codes. Its sensitivity with different factors such as thickness, dimension, and direction of emission photons were investigated. It is then used to configure a new design of an array in one-dimension and study its spatial resolution for nuclear medicine imaging. One-dimension array with 39 detectors was simulated to measure a predefined linear distribution of Tc(99_m) activity and its spatial resolution. The activity distribution was calculated from detector responses through mathematical linear optimization using LINPROG code on MATLAB software. Three different configurations of one-dimension detector array, horizontal, vertical one sided, and vertical double-sided were simulated. In all of these configurations, the energy windows of the photopeak were ± 1%. The results show that the detector response increases with an increase of dimension and thickness of the detector with the highest sensitivity for emission photons 15-30° above the surface. Horizontal configuration array of detectors is not suitable for imaging of line activity sources. The measured activity distribution with vertical configuration array, double-side detectors, has no similarity with emission sources and hence is not suitable for imaging purposes. Measured activity distribution using vertical configuration array, single side detectors has a good similarity with sources. Therefore, it could be introduced as a suitable configuration for nuclear medicine imaging. It has been shown that using semiconductor P-N detectors such as P-NiO:Li, N-SnO2 :F for gamma detection could be possibly applicable for design of a one dimension array configuration with suitable spatial resolution of 2.7 mm for nuclear medicine imaging.

  12. A review of the developments of radioxenon detectors for nuclear explosion monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivels, Ciara B.; McIntyre, Justin I.; Bowyer, Theodore W.

    Developments in radioxenon monitoring since the implementation of the International Monitoring System are reviewed with emphasis on the most current technologies to improve detector sensitivity and resolution. The nuclear detectors reviewed include combinations of plastic and NaI(Tl) detectors, high purity germanium detectors, silicon detectors, and phoswich detectors. The minimum detectable activity and calibration methods for the various detectors are also discussed.

  13. Resonant infrared detector with substantially unit quantum efficiency

    NASA Technical Reports Server (NTRS)

    Farhoomand, Jam (Inventor); Mcmurray, Robert E., Jr. (Inventor)

    1994-01-01

    A resonant infrared detector includes an infrared-active layer which has first and second parallel faces and which absorbs radiation of a given wavelength. The detector also includes a first tuned reflective layer, disposed opposite the first face of the infrared-active layer, which reflects a specific portion of the radiation incident thereon and allows a specific portion of the incident radiation at the given wavelength to reach the infrared-active layer. A second reflective layer, disposed opposite the second face of the infrared-active layer, reflects back into the infrared-active layer substantially all of the radiation at the given wavelength which passes through the infrared-active layer. The reflective layers have the effect of increasing the quantum efficiency of the infrared detector relative to the quantum efficiency of the infrared-active layer alone.

  14. [The detector, the command neuron and plastic convergence].

    PubMed

    Sokolov, E N

    1977-01-01

    The paper deals with the structure of detectors, the function of commanding neurones and the problem of relationship between detectors and commanding neurons. An example of hierarchial organization of detectors is provided by the colour analyser in which a layer of receptors, a layer of opponent neurones and a layer of colour-selective detectors are singled out. The colour detector is selectively sensitive to a certain combination of excitations at the input. If the detector is selectively activated by a certain combination of excitations at the input, the selective activation of the commanding neurone through a pool of motoneurones brings about a reaction at the output, specific in its organization. The reflexogenic zone of the reaction is determined by the detectors which converge on the commanding neurone controlling the given reaction. The plasticity of the reaction results from a plastic convergence of the detectors on the commanding neurone which controls the reaction. This comprises selective switching off the detectors from the commanding neurone (habituation) and connecting the detectors to the commanding neurone (facilitation).

  15. Second-generation detector work in Israel

    NASA Astrophysics Data System (ADS)

    Rosenfeld, David

    2001-10-01

    A tremendous developmental effort in the field of infrared detectors during the last decade in Israel has resulted in a variety of InSb and HgCdTe infrared detectors. Additional and significant R&D effort associated with other IR components, have also been done in Israel, in order to integrate the detectors into advanced Detector-Dewar-Cooler assemblies (DDCs). This R&D effort included notable activities in the field of materials, signal processors, dewars and cryocoolers. These activities are presented together with the status of infrared detector work in Israel. Several two-dimensional InSb staring detectors and DDCs are demonstrated. This includes two versions of the classical 256 X 256 detectors and DDCs, improved 640 X 480 InSb detectors and DDC, and a 2000- element detector with high TDI level. SADA II type HgCdTe detectors are also presented. Considerations regarding the course of future detector work are also described. The classical DDC requirement list which traditionally included demands for high D*, low NETD and high resolution is widened to include cost related issues such as higher reliability, lower maintenance, smaller volume, lower power consumption and higher operation temperature.

  16. A measurement routine to determine 137Cs activities at steep mountain slopes

    NASA Astrophysics Data System (ADS)

    Schaub, Monika; Konz, Nadine; Meusburger, Katrin; Alewell, Chrstine

    2010-05-01

    Caesium-137 (137Cs) is a common tracer for soil erosion. So far, in-situ measurements in steep alpine environments have not often been done. Most studies have been carried out in arable lands and with Ge detectors. However, the NaI detector system is a good priced, easy to handle field instrument. A comparison of laboratory measurements with GeLi detector and in-situ measurements with NaI detector of 137Cs gamma soil radiation has been done in an alpine catchment (Urseren Valley, Swizerland). The aim of this study was to calibrate the in-situ NaI detector system for application at steep alpine slopes. Replicate samples from an altitudinal transect through the Urseren Valley were measured ex situ in the laboratory with a GeLi detector, and compared to in situ NaI detector measurements. Ex situ soil samples showed a big variability in 137Cs activities at a meter-scale. This large, small scale heterogeneity determined with the GeLi detector is smoothed out by uncollimated in-situ measurements with the NaI detector, which provide integrated estimates of 137Cs within the field of view of each measurement (3.1 m2). There was no dependency of 137Cs on pH, clay content and carbon content. However, a close relationship was determined between 137Cs and soil moisture. Thus, in-situ data must be corrected for soil moisture. Close correlation (R2 = 0.86) was found for 137Cs activities (in Bq kg-1) estimated with both, in-situ (NaI detector) and laboratory (GeLi detector) methods which proves the validity of the in-situ measurements with the NaI detector system. This paper describes the calibration of the NaI detector system for field application under elevated 137Cs activities originating from Chernobyl fallout.

  17. Arsenic activation neutron detector

    DOEpatents

    Jacobs, E.L.

    1980-01-28

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5-MeV neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  18. Arsenic activation neutron detector

    DOEpatents

    Jacobs, Eddy L.

    1981-01-01

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5 Mev neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  19. Simulation and experimental measurement of radon activity using a multichannel silicon-based radiation detector.

    PubMed

    Ozdemir, F B; Selcuk, A B; Ozkorucuklu, S; Alpat, A B; Ozdemir, T; Ӧzek, N

    2018-05-01

    In this study, high-precision radiation detector (HIPRAD), a new-generation semiconductor microstrip detector, was used for detecting radon (Rn-222) activity. The aim of this study was to detect radon (Rn-222) activity experimentally by measuring the energy of particles in this detector. Count-ADC channel, eta-charge, and dose-response values were experimentally obtained using HIPRAD. The radon simulation in the radiation detector was theoretically performed using the Geant4 software package. The obtained radioactive decay, energy generation, energy values, and efficiency values of the simulation were plotted using the root program. The new-generation radiation detector proved to have 95% reliability according to the obtained dose-response graphs. The experimental and simulation results were found to be compatible with each other and with the radon decays and literature studies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Infrared Detector Activities at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Abedin, M. N.; Refaat, T. F.; Sulima, O. V.; Amzajerdian, F.

    2008-01-01

    Infrared detector development and characterization at NASA Langley Research Center will be reviewed. These detectors were intended for ground, airborne, and space borne remote sensing applications. Discussion will be focused on recently developed single-element infrared detector and future development of near-infrared focal plane arrays (FPA). The FPA will be applied to next generation space-based instruments. These activities are based on phototransistor and avalanche photodiode technologies, which offer high internal gain and relatively low noise-equivalent-power. These novel devices will improve the sensitivity of active remote sensing instruments while eliminating the need for a high power laser transmitter.

  1. Mid-Infrared Tunable Resonant Cavity Enhanced Detectors

    PubMed Central

    Quack, Niels; Blunier, Stefan; Dual, Jurg; Felder, Ferdinand; Arnold, Martin; Zogg, Hans

    2008-01-01

    Mid-infrared detectors that are sensitive only in a tunable narrow spectral band are presented. They are based on the Resonant Cavity Enhanced Detector (RCED) principle and employing a thin active region using IV-VI narrow gap semiconductor layers. A Fabry-Pérot cavity is formed by two mirrors. The active layer is grown onto one mirror, while the second mirror can be displaced. This changes the cavity length thus shifting the resonances where the detector is sensitive. Using electrostatically actuated MEMS micromirrors, a very compact tunable detector system has been fabricated. Mirror movements of more than 3 μm at 30V are obtained. With these mirrors, detectors with a wavelength tuning range of about 0.7 μm have been realized. Single detectors can be used in mid-infrared micro spectrometers, while a detector arrangement in an array makes it possible to realize Adaptive Focal Plane Arrays (AFPA). PMID:27873824

  2. Active Well Counting Using New PSD Plastic Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hausladen, Paul; Newby, Jason; McElroy, Robert Dennis

    This report presents results and analysis from a series of proof-of-concept measurements to assess the suitability of segmented detectors constructed from Eljen EJ-299-34 PSD-plastic scintillator with pulse-shape discrimination capability for the purposes of quantifying uranium via active neutron coincidence counting. Present quantification of bulk uranium materials for international safeguards and domestic materials control and accounting relies on active neutron coincidence counting systems, such as the Active Well Coincidence Counter (AWCC) and the Uranium Neutron Coincidence Collar (UNCL), that use moderated He-3 proportional counters along with necessarily low-intensity 241Am(Li) neutron sources. Scintillation-based fast-neutron detectors are a potentially superior technology to themore » existing AWCC and UNCL designs due to their spectroscopic capability and their inherently short neutron coincidence times that largely eliminate random coincidences and enable interrogation by stronger sources. One of the past impediments to the investigation and adoption of scintillation counters for the purpose of quantifying bulk uranium was the commercial availability of scintillators having the necessary neutron-gamma pulse-shape discrimination properties only as flammable liquids. Recently, Eljen EJ-299-34 PSD-plastic scintillator became commercially available. The present work is the first assessment of an array of PSD-plastic detectors for the purposes of quantifying bulk uranium. The detector panel used in the present work was originally built as the focal plane for a fast-neutron imager, but it was repurposed for the present investigation by construction of a stand to support the inner well of an AWCC immediately in front of the detector panel. The detector panel and data acquisition of this system are particularly well suited for performing active-well fast-neutron counting of LEU and HEU samples because the active detector volume is solid, the 241Am(Li) interrogating neutrons are largely below the detector threshold, and the segmented construction of the detector modules allow for separation of true neutron-neutron coincidences from inter-detector scattering using the kinematics of neutron scattering. The results from a series of measurements of a suite of uranium standards are presented, and compared to measurements of the same standards and source configurations using the AWCC. Using these results, the performance of the segmented detectors reconfigured as a well counter is predicted and outperforms the AWCC.« less

  3. Development of a mercuric iodide detector array for in-vivo x-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patt, B.E.; Iwanczyk, J.S.; Tornai, M.P.

    A nineteen element mercuric iodide (HgI{sub 2}) detector array has been developed in order to investigate the potential of using this technology for in-vivo x-ray and gamma-ray imaging. A prototype cross-grid detector array was constructed with hexagonal pixels of 1.9 mm diameter (active area = 3.28 mm{sup 2}) and 0.2 mm thick septa. The overall detector active area is roughly 65 mm{sup 2}. A detector thickness of 1.2 mm was used to achieve about 100% efficiency at 60 keV and 67% efficiency at 140 keV The detector fabrication, geometry and structure were optimized for charge collection and to minimize crosstalkmore » between elements. A section of a standard high resolution cast-lead gamma-camera collimator was incorporated into the detector to provide collimation matching the discrete pixel geometry. Measurements of spectral and spatial performance of the array were made using 241-Am and 99m-Tc sources. These measurements were compared with similar measurements made using an optimized single HgI{sub 2} x-ray detector with active area of about 3 mm{sup 2} and thickness of 500 {mu}m.« less

  4. A fully-active fine-grained detector with three readout views

    NASA Astrophysics Data System (ADS)

    Blondel, A.; Cadoux, F.; Fedotov, S.; Khabibullin, M.; Khotjantsev, A.; Korzenev, A.; Kostin, A.; Kudenko, Y.; Longhin, A.; Mefodiev, A.; Mermod, P.; Mineev, O.; Noah, E.; Sgalaberna, D.; Smirnov, A.; Yershov, N.

    2018-02-01

    This paper describes a novel idea of a fine-grained fully-active plastic scintillator detector made of many optically independent 1×1×1 cm3 cubes with readout on three orthogonal projections by wavelength shifting fibers. The original purpose of this detector is to serve as an active neutrino target for the detection, measurement and identification of the final state particles down to a few tenths MeV kinetic energies. The three readout views as well as the fine granularity ensure powerful localization and measurement of the deposited energy combined with good timing properties and isotropic acceptance. The possible application as a new active target for the T2K near detector, initial simulation studies and R&D test results are reported.

  5. A BGO detector for Positron Emission Profiling in catalysts

    NASA Astrophysics Data System (ADS)

    Mangnus, A. V. G.; van Ijzendoorn, L. J.; de Goeij, J. J. M.; Cunningham, R. H.; van Santen, R. A.; de Voigt, M. J. A.

    1995-05-01

    As part of a project to study the reaction kinetics in catalysts, a detector system has been designed and built. The detector will measure in one dimension the activity distribution of positron emitters in catalyst reactors under operational conditions as a function of time. The detector consists of two arrays of ten BGO crystals each and has the flexibility to measure with high sensitivity the activity profile in various reactor sizes; the position resolution that can be reached is 3 mm.

  6. Characteristics and application of spherical-type activation detectors in neutron spectrum measurements at a boron neutron capture therapy (BNCT) facility

    NASA Astrophysics Data System (ADS)

    Lin, Heng-Xiao; Chen, Wei-Lin; Liu, Yuan-Hao; Sheu, Rong-Jiun

    2016-03-01

    A set of spherical-type activation detectors was developed aiming to provide better determination of the neutron spectrum at the Tsing Hua Open-pool Reactor (THOR) BNCT facility. An activation foil embedded in a specially designed spherical holder exhibits three advantages: (1) minimizing the effect of neutron angular dependence, (2) creating response functions with broadened coverage of neutron energies by introducing additional moderators or absorbers to the central activation foil, and (3) reducing irradiation time because of improved detection efficiencies to epithermal neutron beam. This paper presents the design concept and the calculated response functions of new detectors. Theoretical and experimental demonstrations of the performance of the detectors are provided through comparisons of the unfolded neutron spectra determined using this method and conventional multiple-foil activation techniques.

  7. Space activity and programs at SOFRADIR

    NASA Astrophysics Data System (ADS)

    Bouakka-Manesse, A.; Jamin, N.; Delannoy, A.; Fieque, B.; Leroy, C.; Pidancier, P.; Vial, L.; Chorier, P.; Péré-Laperne, N.

    2016-09-01

    SOFRADIR is one of the leading companies involved in the development and manufacturing of infrared detectors for space applications. As a matter of fact, SOFRADIR is involved in many space programs from visible up to VLWIR spectral ranges. These programs concern operational missions for earth imagery, meteorology and also scientific missions for universe exploration. One of the last space detectors available at SOFRADIR is a visible - SWIR detector named Next Generation Panchromatic Detector (NGP) which is well adapted for hyperspectral, imagery and spectroscopy applications. In parallel of this new space detector, numerous programs are currently running for different kind of missions: meteorology (MTG), Copernicus with the Sentinel detectors series, Metop-SG system (3MI), Mars exploration (Mamiss, etc.). In this paper, we present the last developments made for space activity and in particular the NGP detector. We will also present the space applications using this detector and show appropriateness of its use to answer space programs specifications, as for example those of Sentinel-5.

  8. Space activity and programs at Sofradir

    NASA Astrophysics Data System (ADS)

    Bouakka-Manesse, A.; Jamin, N.; Delannoy, A.; Fièque, B.; Leroy, C.; Pidancier, P.; Vial, L.; Chorier, P.; Péré Laperne, N.

    2016-10-01

    SOFRADIR is one of the leading companies involved in the development and manufacturing of infrared detectors for space applications. As a matter of fact, SOFRADIR is involved in many space programs from visible up to VLWIR spectral ranges. These programs concern operational missions for earth imagery, meteorology and also scientific missions for universe exploration. One of the last space detectors available at SOFRADIR is a visible - SWIR detector named Next Generation Panchromatic Detector (NGP) which is well adapted for hyperspectral, imagery and spectroscopy applications. In parallel of this new space detector, numerous programs are currently running for different kind of missions: meteorology (MTG), Copernicus with the Sentinel detectors series, Metop-SG system (3MI), Mars exploration (Mamiss, etc….)… In this paper, we present the last developments made for space activity and in particular the NGP detector. We will also present the space applications using this detector and show appropriateness of its use to answer space programs specifications, as for example those of Sentinel-5.

  9. 78 FR 21077 - Airworthiness Directives; Bombardier, Inc. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-09

    ... all three advance pneumatic detectors (APDs) with new detector assemblies. That NPRM was prompted by reports of ADPs for engine fire/overheat detector assemblies failing to reset after activation due to permanent deformation of the detector switch diaphragm after being exposed to high temperatures. This action...

  10. Study of prototypes of LFoundry active CMOS pixels sensors for the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Vigani, L.; Bortoletto, D.; Ambroz, L.; Plackett, R.; Hemperek, T.; Rymaszewski, P.; Wang, T.; Krueger, H.; Hirono, T.; Caicedo Sierra, I.; Wermes, N.; Barbero, M.; Bhat, S.; Breugnon, P.; Chen, Z.; Godiot, S.; Pangaud, P.; Rozanov, A.

    2018-02-01

    Current high energy particle physics experiments at the LHC use hybrid silicon detectors, in both pixel and strip configurations, for their inner trackers. These detectors have proven to be very reliable and performant. Nevertheless, there is great interest in depleted CMOS silicon detectors, which could achieve a similar performance at lower cost of production. We present recent developments of this technology in the framework of the ATLAS CMOS demonstrator project. In particular, studies of two active sensors from LFoundry, CCPD_LF and LFCPIX, are shown.

  11. Application of in-situ measurement to determine 137Cs in the Swiss Alps.

    PubMed

    Schaub, M; Konz, N; Meusburger, K; Alewell, C

    2010-05-01

    Establishment of (137)Cs inventories is often used to gain information on soil stability. The latter is crucial in mountain systems, where ecosystem stability is tightly connected to soil stability. In-situ measurements of (137)Cs in steep alpine environments are scarce. Most studies have been carried out in arable lands and with Germanium (Ge) detectors. Sodium Iodide (NaI) detector system is an inexpensive and easy to handle field instrument, but its validity on steep alpine environments has not been tested yet. In this study, a comparison of laboratory measurements with GeLi detector and in-situ measurements with NaI detector of (137)Cs gamma soil radiation has been done in an alpine catchment with high (137)Cs concentration (Urseren Valley, Switzerland). The aim of this study was to calibrate the in-situ NaI detector system for application on steep alpine slopes. Replicate samples from an altitudinal transect through the Urseren Valley, measured in the laboratory with a GeLi detector, showed a large variability in (137)Cs activities at a meter scale. This small-scale heterogeneity determined with the GeLi detector is smoothed out by uncollimated in-situ measurements with the NaI detector, which provides integrated estimates of (137)Cs within the field of view (3.1 m(2)) of each measurement. There was no dependency of (137)Cs on pH, clay content and carbon content, but a close relationship was determined between measured (137)Cs activities and soil moisture. Thus, in-situ data must be corrected for soil moisture. Close correlation (R(2) = 0.86, p < 0.0001) was found for (137)Cs activities (in Bq kg(-1)) estimated with in-situ (NaI detector) and laboratory (GeLi detector) methods. We thus concluded that the NaI detector system is a suitable tool for in-situ measurements in alpine environments. This paper describes the calibration of the NaI detector system for field application under elevated (137)Cs activities originating from Chernobyl fallout. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  12. Apparatus for and method of monitoring for breached fuel elements

    DOEpatents

    Gross, Kenny C.; Strain, Robert V.

    1983-01-01

    This invention teaches improved apparatus for the method of detecting a breach in cladded fuel used in a nuclear reactor. The detector apparatus uses a separate bypass loop for conveying part of the reactor coolant away from the core, and at least three separate delayed-neutron detectors mounted proximate this detector loop. The detectors are spaced apart so that the coolant flow time from the core to each detector is different, and these differences are known. The delayed-neutron activity at the detectors is a function of the dealy time after the reaction in the fuel until the coolant carrying the delayed-neutron emitter passes the respective detector. This time delay is broken down into separate components including an isotopic holdup time required for the emitter to move through the fuel from the reaction to the coolant at the breach, and two transit times required for the emitter now in the coolant to flow from the breach to the detector loop and then via the loop to the detector. At least two of these time components are determined during calibrated operation of the reactor. Thereafter during normal reactor operation, repeated comparisons are made by the method of regression approximation of the third time component for the best-fit line correlating measured delayed-neutron activity against activity that is approximated according to specific equations. The equations use these time-delay components and known parameter values of the fuel and of the part and emitting daughter isotopes.

  13. High-Speed Incoming Infrared Target Detection by Fusion of Spatial and Temporal Detectors

    PubMed Central

    Kim, Sungho

    2015-01-01

    This paper presents a method for detecting high-speed incoming targets by the fusion of spatial and temporal detectors to achieve a high detection rate for an active protection system (APS). The incoming targets have different image velocities according to the target-camera geometry. Therefore, single-target detector-based approaches, such as a 1D temporal filter, 2D spatial filter and 3D matched filter, cannot provide a high detection rate with moderate false alarms. The target speed variation was analyzed according to the incoming angle and target velocity. The speed of the distant target at the firing time is almost stationary and increases slowly. The speed varying targets are detected stably by fusing the spatial and temporal filters. The stationary target detector is activated by an almost zero temporal contrast filter (TCF) and identifies targets using a spatial filter called the modified mean subtraction filter (M-MSF). A small motion (sub-pixel velocity) target detector is activated by a small TCF value and finds targets using the same spatial filter. A large motion (pixel-velocity) target detector works when the TCF value is high. The final target detection is terminated by fusing the three detectors based on the threat priority. The experimental results of the various target sequences show that the proposed fusion-based target detector produces the highest detection rate with an acceptable false alarm rate. PMID:25815448

  14. The investigation of fast neutron Threshold Activation Detectors (TAD)

    NASA Astrophysics Data System (ADS)

    Gozani, T.; King, M. J.; Stevenson, J.

    2012-02-01

    The detection of fast neutrons is usually done by liquid hydrogenous organic scintillators, where the separation between the ever present gamma rays and neutrons is achieved by the pulse shape discrimination (PSD). In many practical situation the detection of fast neutrons has to be carried out while the intense source (be it neutrons, gamma rays or x-rays) that creates these neutrons, for example by the fission process, is present. This source, or ``flash'', usually blinds the neutron detectors and temporarily incapacitates them. By the time the detectors recover the prompt neutron signature does not exist. Thus to overcome the blinding background, one needs to search for processes whereby the desired signature, such as fission neutrons could in some way be measured long after the fission occurred and when the neutron detector is fully recovered from the overload. A new approach was proposed and demonstrated a good sensitivity for the detection of fast neutrons in adverse overload situations where normally it could not be done. A temporal separation of the fission event from the prompt neutrons detection is achieved via the activation process. The main idea, called Threshold Activation Detection (or detector)-TAD, is to find appropriate substances that can be selectively activated by the fission neutrons and not by the source radiation, and then measure the radioactively decaying activation products (typically beta and γ-rays) well after the source pulse has ended. The activation material should possess certain properties: a suitable half-life; an energy threshold below which the numerous source neutrons will not activate it (e.g. about 3 MeV); easily detectable activation products and has a usable cross section for the selected reaction. Ideally the substance would be part of the scintillator. There are several good candidates for TAD. The first one we have selected is based on fluorine. One of the major advantages of this element is the fact that it is a major constituent of available scintillators (e.g., BaF2, CaF2, hydrogen free liquid fluorocarbon). Thus the activation products of the fast prompt neutrons, in particular, the beta particles, can be measured with a very high efficiency in the detector. Other detectors and substances were investigated, such as 6Li and even common detectors such as NaI. The principles and experimental results obtained with F, NaI and 6Li based TAD are shown. The various contributing activation products are identified. The insensitivity of the fluorine based TAD to (d,D) neutrons is demonstrated. Ways and means to reduce or subtract the various neutron induced activations of NaI detector are elucidated along with its fast neutron detection capabilities. 6Li could also be a useful TAD.

  15. Characterization of silicon detectors through TCT at Delhi University

    NASA Astrophysics Data System (ADS)

    Jain, G.; Lalwani, K.; Dalal, R.; Bhardwaj, A.; Ranjan, K.

    2016-07-01

    Transient Current Technique (TCT) is one of the important methods to characterize silicon detectors and is based on the time evolution of the charge carriers generated when a laser light is shone on it. For red laser, charge is injected only to a small distance from the surface of the detector. For such a system, one of the charge carriers is collected faster than the readout time of the electronics and therefore, the effective signal at the electrodes is decided by the charge carriers that traverse throughout the active volume of the detector, giving insight to the electric field profile, drift velocity, effective doping density, etc. of the detector. Delhi University is actively involved in the silicon detector R&D and has recently installed a TCT setup consisting of a red laser system, a Faraday cage, a SMU (Source Measuring Unit), a bias tee, and an amplifier. Measurements on a few silicon pad detectors have been performed using the developed system, and the results have been found in good agreement with the CERN setup.

  16. 3D track reconstruction capability of a silicon hybrid active pixel detector

    NASA Astrophysics Data System (ADS)

    Bergmann, Benedikt; Pichotka, Martin; Pospisil, Stanislav; Vycpalek, Jiri; Burian, Petr; Broulim, Pavel; Jakubek, Jan

    2017-06-01

    Timepix3 detectors are the latest generation of hybrid active pixel detectors of the Medipix/Timepix family. Such detectors consist of an active sensor layer which is connected to the readout ASIC (application specific integrated circuit), segmenting the detector into a square matrix of 256 × 256 pixels (pixel pitch 55 μm). Particles interacting in the active sensor material create charge carriers, which drift towards the pixelated electrode, where they are collected. In each pixel, the time of the interaction (time resolution 1.56 ns) and the amount of created charge carriers are measured. Such a device was employed in an experiment in a 120 GeV/c pion beam. It is demonstrated, how the drift time information can be used for "4D" particle tracking, with the three spatial dimensions and the energy losses along the particle trajectory (dE/dx). Since the coordinates in the detector plane are given by the pixelation ( x, y), the x- and y-resolution is determined by the pixel pitch (55 μm). A z-resolution of 50.4 μm could be achieved (for a 500 μm thick silicon sensor at 130 V bias), whereby the drift time model independent z-resolution was found to be 28.5 μm.

  17. Can direct electron detectors outperform phosphor-CCD systems for TEM?

    NASA Astrophysics Data System (ADS)

    Moldovan, G.; Li, X.; Kirkland, A.

    2008-08-01

    A new generation of imaging detectors is being considered for application in TEM, but which device architectures can provide the best images? Monte Carlo simulations of the electron-sensor interaction are used here to calculate the expected modulation transfer of monolithic active pixel sensors (MAPS), hybrid active pixel sensors (HAPS) and double sided Silicon strip detectors (DSSD), showing that ideal and nearly ideal transfer can be obtained using DSSD and MAPS sensors. These results highly recommend the replacement of current phosphor screen and charge coupled device imaging systems with such new directly exposed position sensitive electron detectors.

  18. Early clinical experience utilizing scintillator with optical fiber (SOF) detector in clinical boron neutron capture therapy: its issues and solutions.

    PubMed

    Ishikawa, Masayori; Yamamoto, Tetsuya; Matsumura, Akira; Hiratsuka, Junichi; Miyatake, Shin-Ichi; Kato, Itsuro; Sakurai, Yoshinori; Kumada, Hiroaki; Shrestha, Shubhechha J; Ono, Koji

    2016-08-09

    Real-time measurement of thermal neutrons in the tumor region is essential for proper evaluation of the absorbed dose in boron neutron capture therapy (BNCT) treatment. The gold wire activation method has been routinely used to measure the neutron flux distribution in BNCT irradiation, but a real-time measurement using gold wire is not possible. To overcome this issue, the scintillator with optical fiber (SOF) detector has been developed. The purpose of this study is to demonstrate the feasibility of the SOF detector as a real-time thermal neutron monitor in clinical BNCT treatment and also to report issues in the use of SOF detectors in clinical practice and their solutions. Clinical measurements using the SOF detector were carried out in 16 BNCT clinical trial patients from December 2002 until end of 2006 at the Japanese Atomic Energy Agency (JAEA) and Kyoto University Research Reactor Institute (KURRI). The SOF detector worked effectively as a real-time thermal neutron monitor. The neutron fluence obtained by the gold wire activation method was found to differ from that obtained by the SOF detector. The neutron fluence obtained by the SOF detector was in better agreement with the expected fluence than with gold wire activation. The estimation error for the SOF detector was small in comparison to the gold wire measurement. In addition, real-time monitoring suggested that the neutron flux distribution and intensity at the region of interest (ROI) may vary due to the reactor condition, patient motion and dislocation of the SOF detector. Clinical measurements using the SOF detector to measure thermal neutron flux during BNCT confirmed that SOF detectors are effective as a real-time thermal neutron monitor. To minimize the estimation error due to the displacement of the SOF probe during treatment, a loop-type SOF probe was developed.

  19. Intercomparison of retrospective radon detectors.

    PubMed Central

    Field, R W; Steck, D J; Parkhurst, M A; Mahaffey, J A; Alavanja, M C

    1999-01-01

    We performed both a laboratory and a field intercomparison of two novel glass-based retrospective radon detectors previously used in major radon case-control studies performed in Missouri and Iowa. The new detectors estimate retrospective residential radon exposure from the accumulation of a long-lived radon decay product, (210)Pb, in glass. The detectors use track registration material in direct contact with glass surfaces to measure the alpha-emission of a (210)Pb-decay product, (210)Po. The detector's track density generation rate (tracks per square centimeter per hour) is proportional to the surface alpha-activity. In the absence of other strong sources of alpha-emission in the glass, the implanted surface alpha-activity should be proportional to the accumulated (210)Po, and hence to the cumulative radon gas exposure. The goals of the intercomparison were to a) perform collocated measurements using two different glass-based retrospective radon detectors in a controlled laboratory environment to compare their relative response to implanted polonium in the absence of environmental variation, b) perform collocated measurements using two different retrospective radon progeny detectors in a variety of residential settings to compare their detection of glass-implanted polonium activities, and c) examine the correlation between track density rates and contemporary radon gas concentrations. The laboratory results suggested that the materials and methods used by the studies produced similar track densities in detectors exposed to the same implanted (210)Po activity. The field phase of the intercomparison found excellent agreement between the track density rates for the two types of retrospective detectors. The correlation between the track density rates and direct contemporary radon concentration measurements was relatively high, considering that no adjustments were performed to account for either the residential depositional environment or glass surface type. Preliminary comparisons of the models used to translate track rate densities to average long-term radon concentrations differ between the two studies. Further calibration of the retrospective detectors' models for interpretation of track rate density may allow the pooling of studies that use glass-based retrospective radon detectors to determine historic residential radon exposures. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:10545336

  20. Intercomparison of retrospective radon detectors.

    PubMed

    Field, R W; Steck, D J; Parkhurst, M A; Mahaffey, J A; Alavanja, M C

    1999-11-01

    We performed both a laboratory and a field intercomparison of two novel glass-based retrospective radon detectors previously used in major radon case-control studies performed in Missouri and Iowa. The new detectors estimate retrospective residential radon exposure from the accumulation of a long-lived radon decay product, (210)Pb, in glass. The detectors use track registration material in direct contact with glass surfaces to measure the alpha-emission of a (210)Pb-decay product, (210)Po. The detector's track density generation rate (tracks per square centimeter per hour) is proportional to the surface alpha-activity. In the absence of other strong sources of alpha-emission in the glass, the implanted surface alpha-activity should be proportional to the accumulated (210)Po, and hence to the cumulative radon gas exposure. The goals of the intercomparison were to a) perform collocated measurements using two different glass-based retrospective radon detectors in a controlled laboratory environment to compare their relative response to implanted polonium in the absence of environmental variation, b) perform collocated measurements using two different retrospective radon progeny detectors in a variety of residential settings to compare their detection of glass-implanted polonium activities, and c) examine the correlation between track density rates and contemporary radon gas concentrations. The laboratory results suggested that the materials and methods used by the studies produced similar track densities in detectors exposed to the same implanted (210)Po activity. The field phase of the intercomparison found excellent agreement between the track density rates for the two types of retrospective detectors. The correlation between the track density rates and direct contemporary radon concentration measurements was relatively high, considering that no adjustments were performed to account for either the residential depositional environment or glass surface type. Preliminary comparisons of the models used to translate track rate densities to average long-term radon concentrations differ between the two studies. Further calibration of the retrospective detectors' models for interpretation of track rate density may allow the pooling of studies that use glass-based retrospective radon detectors to determine historic residential radon exposures.

  1. Tin Can Radiation Detector.

    ERIC Educational Resources Information Center

    Crull, John L.

    1986-01-01

    Provides instructions for making tin can radiation detectors from empty aluminum cans, aluminum foil, clear plastic, copper wire, silica gel, and fine, unwaxed dental floss put together with tape or glue. Also provides suggestions for activities using the detectors. (JN)

  2. CALDER: Cryogenic light detectors for background-free searches

    NASA Astrophysics Data System (ADS)

    Di Domizio, S.; Bellini, F.; Cardani, L.; Casali, N.; Castellano, M. G.; Colantoni, I.; Cosmelli, C.; Cruciani, A.; D'Addabbo, A.; Martinez, M.; Minutolo, L.; Tomei, C.; Vignati, M.

    2018-01-01

    CALDER is a R&D project for the development of cryogenic light detectors with an active surface of 5x5cm2 and an energy resolution of 20 eV RMS for visible and UV photons. These devices can enhance the sensitivity of next generation large mass bolometric detectors for rare event searches, providing an active background rejection method based on particle discrimination. A CALDER detector is composed by a large area Si absorber substrate with superconducting kinetic inductance detectors (KIDs) deposited on it. The substrate converts the incoming light into athermal phonons, that are then sensed by the KIDs. KID technology combine fabrication simplicity with natural attitude to frequency-domain multiplexing, making it an ideal candidate for a large scale bolometric experiments. We will give an overview of the CALDER project and show the performances obtained with prototype detectors both in terms of energy resolution and efficiency.

  3. Direct tests of micro channel plates as the active element of a new shower maximum detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronzhin, A.; Los, S.; Ramberg, E.

    2015-05-22

    We continue the study of micro channel plates (MCP) as the active element of a shower maximum (SM) detector. We present below test beam results obtained with MCPs detecting directly secondary particles of an electromagnetic shower. The MCP efficiency to shower particles is close to 100%. Furthermore, the time resolution obtained for this new type of the SM detector is at the level of 40 ps.

  4. Application of epithermal neutron activation in multielement analysis of silicate rocks employing both coaxial Ge(Li) and low energy photon detector systems

    USGS Publications Warehouse

    Baedecker, P.A.; Rowe, J.J.; Steinnes, E.

    1977-01-01

    The instrumental activation analysis of silicate rocks using epithermal neutrons has been studied using both high resolution coaxial Ge(Li) detectors and low energy photon detectors, and applied to the determination of 23 elements in eight new U.S.G.S. standard rocks. The analytical use X-ray peaks associated with electron capture or internal conversion processes has been evaluated. Of 28 elements which can be considered to be determinable by instrumental means, the epithermal activation approach is capable of giving improved sensitivity and precision in 16 cases, over the normal INAA procedure. In eleven cases the use of the low energy photon detector is thought to show advantages over convertional coaxial Ge(Li) spectroscopy. ?? 1977 Akade??miai Kiado??.

  5. Comparative Study of Various Types of Vehicle Detectors

    DOT National Transportation Integrated Search

    1977-09-01

    This report is a comparison between the different types of vehicle detectors and associated equipment. It covers practically all of the presence and motion detectors either being sold commercially or actively researched at this time, and includes rad...

  6. Induced Radioactivity Measured in a Germanium Detector After a Long Duration Balloon Flight

    NASA Technical Reports Server (NTRS)

    Starr, R.; Evans, L. G.; Floyed, S. R.; Drake, D. M.; Feldman, W. C.; Squyres, S. W.; Rester, A. C.

    1997-01-01

    A 13-day long duration balloon flight carrying a germanium detector was flown from Williams Field, Antartica in December 1992. After recovery of the payload the activity induced in the detector was measured.

  7. Monolithic active pixel radiation detector with shielding techniques

    DOEpatents

    Deptuch, Grzegorz W.

    2018-03-20

    A monolithic active pixel radiation detector including a method of fabricating thereof. The disclosed radiation detector can include a substrate comprising a silicon layer upon which electronics are configured. A plurality of channels can be formed on the silicon layer, wherein the plurality of channels are connected to sources of signals located in a bulk part of the substrate, and wherein the signals flow through electrically conducting vias established in an isolation oxide on the substrate. One or more nested wells can be configured from the substrate, wherein the nested wells assist in collecting charge carriers released in interaction with radiation and wherein the nested wells further separate the electronics from the sensing portion of the detector substrate. The detector can also be configured according to a thick SOA method of fabrication.

  8. Monolithic active pixel radiation detector with shielding techniques

    DOEpatents

    Deptuch, Grzegorz W.

    2016-09-06

    A monolithic active pixel radiation detector including a method of fabricating thereof. The disclosed radiation detector can include a substrate comprising a silicon layer upon which electronics are configured. A plurality of channels can be formed on the silicon layer, wherein the plurality of channels are connected to sources of signals located in a bulk part of the substrate, and wherein the signals flow through electrically conducting vias established in an isolation oxide on the substrate. One or more nested wells can be configured from the substrate, wherein the nested wells assist in collecting charge carriers released in interaction with radiation and wherein the nested wells further separate the electronics from the sensing portion of the detector substrate. The detector can also be configured according to a thick SOA method of fabrication.

  9. Detection of pulsed neutrons with solid-state electronics

    NASA Astrophysics Data System (ADS)

    Chatzakis, J.; Rigakis, I.; Hassan, S. M.; Clark, E. L.; Lee, P.

    2016-09-01

    Measurements of the spatial and time-resolved characteristics of pulsed neutron sources require large area detection materials and fast circuitry that can process the electronic pulses readout from the active region of the detector. In this paper, we present a solid-state detector based on the nuclear activation of materials by neutrons, and the detection of the secondary particle emission of the generated radionuclides’ decay. The detector utilizes a microcontroller that communicates using a modified SPI protocol. A solid-state, pulse shaping filter follows a charge amplifier, and it is designed as an inexpensive, low-noise solution for measuring pulses measured by a digital counter. An imaging detector can also be made by using an array of these detectors. The system can communicate with an interface unit and pass an image to a personal computer.

  10. Experiment neutrino-4 on searching for a sterile neutrino with multisection detector model

    NASA Astrophysics Data System (ADS)

    Serebrov, A. P.; Ivochkin, V. G.; Samoilov, R. M.; Fomin, A. K.; Zinov'ev, V. G.; Neustroev, P. V.; Golovtsov, V. L.; Chernyi, A. V.; Zherebtsov, O. M.; Polyushkin, A. O.; Martem'yanov, V. P.; Tarasenkov, V. G.; Aleshin, V. I.; Petelin, A. L.; Izhutov, A. L.; Tuzov, A. A.; Sazontov, S. A.; Ryazanov, D. K.; Gromov, M. O.; Afanas'ev, V. V.; Zaitsev, M. E.; Chaikovskii, M. E.

    2017-02-01

    A laboratory for searching for oscillations of reactor antineutrinos has been created based on the SM-3 reactor in order to approach the problem of the possible existence of a sterile neutrino. The multisection detector prototype with a liquid scintillator volume of 350 L was installed in mid-2015. This detector can move inside the passive shield in a range of 6-11 m from the active core of the reactor. The antineutrino flux was measured for the first time at these short distances from the active core of the reactor by the movable detector. The measurements with the multisection detector prototype demonstrated that it is possible to measure the antineutrino flux from the reactor in the complicated conditions of cosmic background on the Earth's surface.

  11. Data acquisition system for segmented reactor antineutrino detector

    NASA Astrophysics Data System (ADS)

    Hons, Z.; Vlášek, J.

    2017-01-01

    This paper describes the data acquisition system used for data readout from the PMT channels of a segmented detector of reactor antineutrinos with active shielding. Theoretical approach to the data acquisition is described and two possible solutions using QDCs and digitizers are discussed. Also described are the results of the DAQ performance during routine data taking operation of DANSS. DANSS (Detector of the reactor AntiNeutrino based on Solid Scintillator) is a project aiming to measure a spectrum of reactor antineutrinos using inverse beta decay (IBD) in a plastic scintillator. The detector is located close to an industrial nuclear reactor core and is covered by passive and active shielding. It is expected to have about 15000 IBD interactions per day. Light from the detector is sensed by PMT and SiPM.

  12. Nuclear reactor with internal thimble-type delayed neutron detection system

    DOEpatents

    Gross, Kenny C.; Poloncsik, John; Lambert, John D. B.

    1990-01-01

    This invention teaches improved apparatus for the method of detecting a breach in cladded fuel used in a nuclear reactor. The detector apparatus is located in the primary heat exchanger which conveys part of the reactor coolant past at least three separate delayed-neutron detectors mounted in this heat exchanger. The detectors are spaced apart such that the coolant flow time from the core to each detector is different, and these differences are known. The delayed-neutron activity at the detectors is a function of the delay time after the reaction in the fuel until the coolant carrying the delayed-neutron emitter passes the respective detector. This time delay is broken down into separate components including an isotopic holdup time required for the emitter to move through the fuel from the reaction to the coolant at the breach, and two transit times required for the emitter now in the coolant to flow from the breach to the detector loop and then via the loop to the detector. At least two of these time components are determined during calibrated operation of the reactor. Thereafter during normal reactor operation, repeated comparisons are made by the method of regression approximation of the third time component for the best-fit line correlating measured delayed-neutron activity against activity that is approximated according to specific equations. The equations use these time-delay components and known parameter values of the fuel and of the part and emitting daughter isotopes.

  13. Design and characterization of free-running InGaAsP single-photon detector with active-quenching technique

    NASA Astrophysics Data System (ADS)

    Liu, Junliang; Zhang, Tingfa; Li, Yongfu; Ding, Lei; Tao, Junchao; Wang, Ying; Wang, Qingpu; Fang, Jiaxiong

    2017-07-01

    A free-running single-photon detector for 1.06 μm wavelength based on an InGaAsP/InP single-photon avalanche diode is presented. The detector incorporates an ultra-fast active-quenching technique to greatly lessen the afterpulsing effects. An improved method for avalanche characterization using electroluminescence is proposed, and the performance of the detector is evaluated. The number of avalanche carriers is as low as 1.68 ×106 , resulting in a low total afterpulse probability of 4% at 233 K, 10% detection efficiency, and 1 μs hold-off time.

  14. Background Studies in CZT Detectors at Balloon Altitudes

    NASA Astrophysics Data System (ADS)

    Slavis, K. R.; Dowkontt, P. F.; Epstein, J. W.; Hink, P. L.; Matteson, J. L.; Duttweiler, F.; Huszar, G. L.; Leblanc, P. C.; Skelton, R. T.; Stephan, E. A.

    1998-12-01

    Cadmium Zinc Telluride (CZT) is a room temperature semiconductor detector well suited for high energy X-ray astronomy. We have developed a CZT detector with crossed strip readout, 500 micron resolution, and an advanced electrode design that greatly improves energy resolution. The latter varies from 3 keV to 6 keV FWHM over the range from 14-184 keV. We have conducted two balloon flights using this cross-strip detector and a standard planar detector sensitive in the energy range of 20-350 keV. These flights utilized a total of seven shielding schemes: 3 passive (7, 2, and 0 mm thick Pb/Sn/Cu), 2 active (NaI-CsI with 2 opening angles) and 2 hybrid passive-active. In the active shielding modes, the shield pulse heights were telemetered for each CZT event, allowing us to study the effect of shield energy-loss threshold on the background. The flights were launched from Fort Sumner, NM in October 1997 and May 1998, and had float altitudes of 109,000 and 105,000 feet respectively. Periodic energy calibrations showed the detector performance to be identical to that in the laboratory. The long duration of the May flight, 22 hours, enables us to study activation effects in the background. We present results on the effectiveness of each of the shielding schemes, activation effects and two new background reduction techniques for the strip detector. These reduction techniques employ the depth of interaction, as indicated by the ratio of cathode to anode pulse height, and multiple-site signatures to reject events that are unlikely to be X-rays incident on the detector's face. The depth of interaction technique reduces the background by a factor of 4 in the 20-40 keV energy range with passive shielding. Our preliminary results indicate a background level of 8.6x10(-3) cts/cm(2) -s-keV using passive shielding and 6x10(-4) cts/cm(2) -s-keV using active shielding in the 20-40 keV range.

  15. Germanium detectors for nuclear spectroscopy: Current research and development activity at LNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Napoli, D. R., E-mail: daniel.r.napoli@lnl.infn.it; Maggioni, G., E-mail: maggioni@lnl.infn.it; Carturan, S.

    2016-07-07

    High-purity Germanium (HPGe) detectors have reached an unprecedented level of sophistication and are still the best solution for high-resolution gamma spectroscopy. In the present work, we will show the results of the characterization of new surface treatments for the production of these detectors, studied in the framework of our multidisciplinary research program in HPGe detector technologies.

  16. Designing an Active Target Test Projection Chamber

    NASA Astrophysics Data System (ADS)

    Koci, James; Tan Ahn Collaboration, Dr.; Nicolas Dixneuf Collaboration

    2015-10-01

    The development of instrumentation in nuclear physics is crucial for advancing our ability to measure the properties of exotic nuclei. One limitation of the use of exotic nuclei in experiment is their very low production intensities. Recently, detectors, called active-target dectectors, have been developed to address this issue. Active-target detectors use a gas medium to image charged-particle tracks that are emitted in nuclear reactions. Last semester, I designed a vacuum chamber to be used in developing Micro-Pattern Gas detectors that will upgrade the capabilities of an active-target detector called the Prototype AT-TPC. With the exterior of the chamber complete, I have now been using an electric field modeling program, Garfield, developed by CERN to design a field cage to be placed within the vacuum chamber. The field cage will be a box-like apparatus consisting of two parallel metal plates connected with a resistor chain and attached to wires wrapped between them. The cage will provide a uniform electric field within the chamber to drift electrons from nuclear reactions down to the detector in the bottom of the chamber. These signals are then amplified by a proportional counter, and the data is sent to a computer. For the long term, we would like to incorporate a Micro-Pattern Gas Detectors in the interior of the chamber and eventually use the AT-TPC to examine various nuclei. Dr. Ahn is my advising professor.

  17. Note: Large active area solid state photon counter with 20 ps timing resolution and 60 fs detection delay stability

    NASA Astrophysics Data System (ADS)

    Prochazka, Ivan; Kodet, Jan; Eckl, Johann; Blazej, Josef

    2017-10-01

    We are reporting on the design, construction, and performance of a photon counting detector system, which is based on single photon avalanche diode detector technology. This photon counting device has been optimized for very high timing resolution and stability of its detection delay. The foreseen application of this detector is laser ranging of space objects, laser time transfer ground to space and fundamental metrology. The single photon avalanche diode structure, manufactured on silicon using K14 technology, is used as a sensor. The active area of the sensor is circular with 200 μm diameter. Its photon detection probability exceeds 40% in the wavelength range spanning from 500 to 800 nm. The sensor is operated in active quenching and gating mode. A new control circuit was optimized to maintain high timing resolution and detection delay stability. In connection to this circuit, timing resolution of the detector is reaching 20 ps FWHM. In addition, the temperature change of the detection delay is as low as 70 fs/K. As a result, the detection delay stability of the device is exceptional: expressed in the form of time deviation, detection delay stability of better than 60 fs has been achieved. Considering the large active area aperture of the detector, this is, to our knowledge, the best timing performance reported for a solid state photon counting detector so far.

  18. A Spherical Active Coded Aperture for 4π Gamma-ray Imaging

    DOE PAGES

    Hellfeld, Daniel; Barton, Paul; Gunter, Donald; ...

    2017-09-22

    Gamma-ray imaging facilitates the efficient detection, characterization, and localization of compact radioactive sources in cluttered environments. Fieldable detector systems employing active planar coded apertures have demonstrated broad energy sensitivity via both coded aperture and Compton imaging modalities. But, planar configurations suffer from a limited field-of-view, especially in the coded aperture mode. In order to improve upon this limitation, we introduce a novel design by rearranging the detectors into an active coded spherical configuration, resulting in a 4pi isotropic field-of-view for both coded aperture and Compton imaging. This work focuses on the low- energy coded aperture modality and the optimization techniquesmore » used to determine the optimal number and configuration of 1 cm 3 CdZnTe coplanar grid detectors on a 14 cm diameter sphere with 192 available detector locations.« less

  19. Characterization of large area ZnS(Ag) detector for gross alpha and beta activity measurements in tap water plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lunardon, M.; Cester, D.; Mistura, G.

    2015-07-01

    In this work we present the characterization of a large area 200 x 200 mm{sup 2} EJ-444 scintillation detector to be used for monitoring gross alpha and beta activity in tap water plants. Specific tests were performed to determine the best setup to readout the light from the detector side in order to have the possibility to stack many detectors and get a compact device with total active area of the order of 1 m{sup 2}. Alpha/Beta discrimination, efficiency and homogeneity tests were carried out with alpha and beta sources. Background from ambient radioactivity was measured as well. Alpha/beta real-timemore » monitoring in drinking water is a goal of the EU project TAWARA{sub R}TM. (authors)« less

  20. Preliminary results on underground muon bundles observed in the Frejus proton-decay detector

    NASA Technical Reports Server (NTRS)

    Degrange, B.

    1985-01-01

    The proton-decay detector installed in the Modane Underground laboratory (4400 mwe) in the Frejus tunnel (French Alps) has recorded 80 880 single muon and 2 322 multi-muon events between March '84 and March '85 (6425 hours of active time). During this period, a part of this modular detector was running, while new modules were being mounted, so that the detector size has continuously increased. The final detector has been completed in May '85.

  1. Variation in bat detections due to detector orientation in a forest.

    Treesearch

    Theodore J. Weller; Zabel Cynthia J.

    2002-01-01

    Bat detectors are widely used to compare bat activity among habitats. We placed 8 Anabat II detectors at 2 heights. 3 directions and 2 angles with respect to horizontal to evaluate the effect of detector orientation on the number of bat detections received. The orientation receiving the maximum number of detections had 70% more detections than the mean of the 7...

  2. 77 FR 60060 - Airworthiness Directives; Bombardier, Inc. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-02

    ...-400 series airplanes. This proposed AD was prompted by reports of engine fire/overheat detector assemblies advance pneumatic detectors (APDs) failing to reset after activation due to permanent deformation of the detector switch diaphragm after being exposed to high temperatures. This proposed AD would...

  3. Accuracy of Monte Carlo photon transport simulation in characterizing brachytherapy dosimeter energy-response artefacts.

    PubMed

    Das, R K; Li, Z; Perera, H; Williamson, J F

    1996-06-01

    Practical dosimeters in brachytherapy, such as thermoluminescent dosimeters (TLD) and diodes, are usually calibrated against low-energy megavoltage beams. To measure absolute dose rate near a brachytherapy source, it is necessary to establish the energy response of the detector relative to that of the calibration energy. The purpose of this paper is to assess the accuracy of Monte Carlo photon transport (MCPT) simulation in modelling the absolute detector response as a function of detector geometry and photon energy. We have exposed two different sizes of TLD-100 (LiF chips) and p-type silicon diode detectors to calibrated 60Co, HDR source (192Ir) and superficial x-ray beams. For the Scanditronix electron-field diode, the relative detector response, defined as the measured detector readings per measured unit of air kerma, varied from 38.46 V cGy-1 (40 kVp beam) to 6.22 V cGy-1 (60Co beam). Similarly for the large and small chips the same quantity varied from 2.08-3.02 nC cGy-1 and 0.171-0.244 nC cGy-1, respectively. Monte Carlo simulation was used to calculate the absorbed dose to the active volume of the detector per unit air kerma. If the Monte Carlo simulation is accurate, then the absolute detector response, which is defined as the measured detector reading per unit dose absorbed by the active detector volume, and is calculated by Monte Carlo simulation, should be a constant. For the diode, the absolute response is 5.86 +/- 0.15 (V cGy-1). For TLDs of size 3 x 3 x 1 mm3 the absolute response is 2.47 +/- 0.07 (nC cGy-1) and for TLDs of 1 x 1 x 1 mm3 it is 0.201 +/- 0.008 (nC cGy-1). From the above results we can conclude that the absolute response function of detectors (TLDs and diodes) is directly proportional to absorbed dose by the active volume of the detector and is independent of beam quality.

  4. Neutron threshold activation detectors (TAD) for the detection of fissions

    NASA Astrophysics Data System (ADS)

    Gozani, Tsahi; Stevenson, John; King, Michael J.

    2011-10-01

    Prompt fission neutrons are one of the strongest signatures of the fission process. Depending on the fission inducing radiation, their average number ranges from 2.5 to 4 neutrons per fission. They are more energetic and abundant, by about 2 orders of magnitude, than the delayed neutrons (≈3 vs. ≈0.01) that are commonly used as indicators for the presence of fissionable materials. The detection of fission prompt neutrons, however, has to be done in the presence of extremely intense probing radiation that stimulated them. During irradiation, the fission stimulation radiation, X-rays or neutrons, overwhelms the neutron detectors and temporarily incapacitate them. Consequently, by the time the detectors recover from the source radiation, fission prompt neutrons are no longer emitted. In order to measure the prompt fission signatures under these circumstances, special measures are usually taken with the detectors such as heavy shielding with collimation, use of inefficient geometries, high pulse height bias and gamma-neutron separation via pulse-shape discrimination with an appropriate organic scintillator. These attempts to shield the detector from the flash of radiation result in a major loss of sensitivity. It can lead to a complete inability to detect the fission prompt neutrons. In order to overcome the blinding induced background from the source radiation, the detection of prompt fission neutrons needs to occur long after the fission event and after the detector has fully recovered from the source overload. A new approach to achieve this is to detect the delayed activation induced by the fission neutrons. The approach demonstrates a good sensitivity in adverse overload situations (gamma and neutron "flash") where fission prompt neutrons could normally not be detected. The new approach achieves the required temporal separation between the detection of prompt neutrons and the detector overload by the neutron activation of the detector material. The technique, called Threshold Activation Detection (TAD), is to utilize appropriate substances that can be selectively activated by the fission neutrons and not by the source radiation and then measure the radioactively decaying activation products (typically beta and gamma rays) well after the source pulse. The activation material should possess certain properties: a suitable half-life of the order of seconds; an energy threshold below which the numerous source neutrons will not activate it (e.g., 3 MeV); easily detectable activation products (typically >1 MeV beta and gamma rays) and have a usable cross-section for the selected reaction. Ideally the substance would be a part of the scintillator. There are several good material candidates for the TAD, including fluorine, which is a major constituent of available scintillators such as BaF 2, CaF 2 and hydrogen free liquid fluorocarbon. Thus the fluorine activation products, in particular the beta particles, can be measured with a very high efficiency in the detector. The principles, applications and experimental results obtained with the fluorine based TAD are discussed.

  5. High-numerical-aperture-based virtual point detectors for photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Li, Changhui; Wang, Lihong V.

    2008-07-01

    The focal point of a high-numerical-aperture (NA) ultrasonic transducer can be used as a virtual point detector. This virtual point detector detects omnidirectionally over a wide acceptance angle. It also combines a large active transducer surface and a small effective virtual detector size. Thus the sensitivity is high compared with that of a real point detector, and the aperture effect is small compared with that of a finite size transducer. We present two kinds of high-NA-based virtual point detectors and their successful application in photoacoustic tomography. They can also be applied in other ultrasound-related fields.

  6. Radon detection

    DOEpatents

    MacArthur, D.W.; Allander, K.S.; Bounds, J.A.

    1994-01-25

    A detector for atmospheric radon using a long range alpha detector as its sensing element is described. An electrostatic filter removes ions from ambient air, while allowing radon atoms to pass into a decay cavity. Here, radon atoms are allowed to decay, creating air ions. These air ions are drawn by a fan through a second electrostatic filter which can be activated or deactivated, and into the long range alpha detector. With the second electrostatic filter activated, no air ions are allowed to pass, and the signal output from the long range alpha detector consists of only the electronic background. With the second electrostatic filter deactivated, air ions and cosmic rays will be detected. The cosmic ray contribution can be minimized by shielding. 3 figures.

  7. Radon detection

    DOEpatents

    MacArthur, Duncan W.; Allander, Krag S.; Bounds, John A.

    1994-01-01

    A detector for atmospheric radon using a long range alpha detector as its sensing element. An electrostatic filter removes ions from ambient air, while allowing radon atoms to pass into a decay cavity. Here, radon atoms are allowed to decay, creating air ions. These air ions are drawn by a fan through a second electrostatic filter which can be activated or deactivated, and into the long range alpha detector. With the second electrostatic filter activated, no air ions are allowed to pass, and the signal output from the long range alpha detector consists of only the electronic background. With the second electrostatic filter deactivated, air ions and cosmic rays will be detected. The cosmic ray contribution can be minimized by shielding.

  8. A semiconductor radiation imaging pixel detector for space radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Kroupa, Martin; Bahadori, Amir; Campbell-Ricketts, Thomas; Empl, Anton; Hoang, Son Minh; Idarraga-Munoz, John; Rios, Ryan; Semones, Edward; Stoffle, Nicholas; Tlustos, Lukas; Turecek, Daniel; Pinsky, Lawrence

    2015-07-01

    Progress in the development of high-performance semiconductor radiation imaging pixel detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. Such detectors can provide real-time information concerning radiation exposure, along with detailed analysis of the individual particles incident on the active medium. Recent results from the deployment of detectors based on the Timepix from the CERN-based Medipix2 Collaboration on the International Space Station (ISS) are reviewed, along with a glimpse of developments to come. Preliminary results from Orion MPCV Exploration Flight Test 1 are also presented.

  9. 78 FR 53633 - Airworthiness Directives; Bombardier, Inc. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-30

    .... Model DHC-8-400 series airplanes. This AD was prompted by reports of advance pneumatic detectors (APDs) for engine fire/ overheat detector assemblies failing to reset after activation due to permanent deformation of the detector switch diaphragm after being exposed to high temperatures. This AD requires...

  10. Development of Scintillators in Nuclear Medicine.

    PubMed

    Khoshakhlagh, Mohammad; Islamian, Jalil Pirayesh; Abedi, Seyed Mohammad; Mahmoudian, Babak

    2015-01-01

    High-quality image is necessary for accurate diagnosis in nuclear medicine. There are many factors in creating a good image and detector is the most important one. In recent years, several detectors are studied to get a better picture. The aim of this paper is comparison of some type of these detectors such as thallium activated sodium iodide bismuth germinate cesium activated yttrium aluminum garnet (YAG: Ce) YAP: Ce "lutetium aluminum garnet activated by cerium" CRY018 "CRY019" lanthanum bromide and cadmium zinc telluride. We studied different properties of these crystals including density, energy resolution and decay times that are more important factors affecting the image quality.

  11. Development of Scintillators in Nuclear Medicine

    PubMed Central

    Khoshakhlagh, Mohammad; Islamian, Jalil Pirayesh; Abedi, Seyed Mohammad; Mahmoudian, Babak

    2015-01-01

    High-quality image is necessary for accurate diagnosis in nuclear medicine. There are many factors in creating a good image and detector is the most important one. In recent years, several detectors are studied to get a better picture. The aim of this paper is comparison of some type of these detectors such as thallium activated sodium iodide bismuth germinate cesium activated yttrium aluminum garnet (YAG: Ce) YAP: Ce “lutetium aluminum garnet activated by cerium” CRY018 “CRY019” lanthanum bromide and cadmium zinc telluride. We studied different properties of these crystals including density, energy resolution and decay times that are more important factors affecting the image quality. PMID:26420984

  12. Monolithically Integrated Mid-Infrared Quantum Cascade Laser and Detector

    PubMed Central

    Schwarz, Benedikt; Reininger, Peter; Detz, Hermann; Zederbauer, Tobias; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried

    2013-01-01

    We demonstrate the monolithic integration of a mid-infrared laser and detector utilizing a bi-functional quantum cascade active region. When biased, this active region provides optical gain, while it can be used as a detector at zero bias. With our novel approach we can measure the light intensity of the laser on the same chip without the need of external lenses or detectors. Based on a bound-to-continuum design, the bi-functional active region has an inherent broad electro-luminescence spectrum of 200 cm−1, which indicate sits use for single mode laser arrays. We have measured a peak signal of 191.5 mV at theon-chip detector, without any amplification. The room-temperature pulsed emission with an averaged power consumption of 4 mW and the high-speed detection makes these devices ideal for low-power sensors. The combination of the on-chip detection functionality, the broad emission spectrum and the low average power consumption indicates the potential of our bi-functional quantum cascade structures to build a mid-infrared lab-on-a-chip based on quantum cascade laser technology. PMID:23389348

  13. Calibration of Cherenkov detectors for monoenergetic photon imaging in active interrogation applications

    NASA Astrophysics Data System (ADS)

    Rose, P. B.; Erickson, A. S.

    2015-11-01

    Active interrogation of cargo containers using monoenergetic photons offers a rapid and low-dose approach to search for shielded special nuclear materials. Cherenkov detectors can be used for imaging of the cargo provided that gamma ray energies used in interrogation are well resolved, as the case in 11B(d,n-γ)12C reaction resulting in 4.4 MeV and 15.1 MeV photons. While an array of Cherenkov threshold detectors reduces low energy background from scatter while providing the ability of high contrast transmission imaging, thus confirming the presence of high-Z materials, these detectors require a special approach to energy calibration due to the lack of resolution. In this paper, we discuss the utility of Cherenkov detectors for active interrogation with monoenergetic photons as well as the results of computational and experimental studies of their energy calibration. The results of the studies with sources emitting monoenergetic photons as well as complex gamma ray spectrum sources, for example 232Th, show that calibration is possible as long as the energies of photons of interest are distinct.

  14. Test of the Equivalence Principle in an Einstein Elevator

    NASA Technical Reports Server (NTRS)

    Shapiro, Irwin I.; Glashow, S.; Lorenzini, E. C.; Cosmo, M. L.; Cheimets, P. N.; Finkelstein, N.; Schneps, M.

    2005-01-01

    This Annual Report illustrates the work carried out during the last grant-year activity on the Test of the Equivalence Principle in an Einstein Elevator. The activity focused on the following main topics: (1) analysis and conceptual design of a detector configuration suitable for the flight tests; (2) development of techniques for extracting a small signal from data strings with colored and white noise; (3) design of the mechanism that spins and releases the instrument package inside the cryostat; and (4) experimental activity carried out by our non-US partners (a summary is shown in this report). The analysis and conceptual design of the flight-detector (point 1) was focused on studying the response of the differential accelerometer during free fall, in the presence of errors and precession dynamics, for various detector's configurations. The goal was to devise a detector configuration in which an Equivalence Principle violation (EPV) signal at the sensitivity threshold level can be successfully measured and resolved out of a much stronger dynamics-related noise and gravity gradient. A detailed analysis and comprehensive simulation effort led us to a detector's design that can accomplish that goal successfully.

  15. CMOS SiPM with integrated amplifier

    NASA Astrophysics Data System (ADS)

    Schwinger, Alexander; Brockherde, Werner; Hosticka, Bedrich J.; Vogt, Holger

    2017-02-01

    The integration of silicon photomultiplier (SiPM) and frontend electronics in a suitable optoelectronic CMOS process is a promising approach to increase the versatility of single-photon avalanche diode (SPAD)-based singlephoton detectors. By integrating readout amplifiers, the device output capacitance can be reduced to minimize the waveform tail, which is especially important for large area detectors (>10 × 10mm2). Possible architectures include a single readout amplifier for the whole detector, which reduces the output capacitance to 1:1 pF at minimal reduction in detector active area. On the other hand, including a readout amplifier in every SiPM cell would greatly improve the total output capacitance by minimizing the influence of metal routing parasitic capacitance, but requiring a prohibitive amount of detector area. As tradeoff, the proposed detector features one readout amplifier for each column of the detector matrix to allow for a moderate reduction in output capacitance while allowing the electronics to be placed in the periphery of the active detector area. The presented detector with a total size of 1.7 ♢ 1.0mm2 features 400 cells with a 50 μm pitch, where the signal of each column of 20 SiPM cells is summed in a readout channel. The 20 readout channels are subsequently summed into one output channel, to allow the device to be used as a drop-in replacement for commonly used analog SiPMs.

  16. A Review of Accelerometry-Based Wearable Motion Detectors for Physical Activity Monitoring

    PubMed Central

    Yang, Che-Chang; Hsu, Yeh-Liang

    2010-01-01

    Characteristics of physical activity are indicative of one’s mobility level, latent chronic diseases and aging process. Accelerometers have been widely accepted as useful and practical sensors for wearable devices to measure and assess physical activity. This paper reviews the development of wearable accelerometry-based motion detectors. The principle of accelerometry measurement, sensor properties and sensor placements are first introduced. Various research using accelerometry-based wearable motion detectors for physical activity monitoring and assessment, including posture and movement classification, estimation of energy expenditure, fall detection and balance control evaluation, are also reviewed. Finally this paper reviews and compares existing commercial products to provide a comprehensive outlook of current development status and possible emerging technologies. PMID:22163626

  17. Natural and man-made radioactivity in soils and plants around the research reactor of Inshass.

    PubMed

    Higgy, R H; Pimpl, M

    1998-12-01

    The specific radioactivities of the U-series, 232Th, 137Cs and 40K were measured in soil samples around the Inshass reactor in Cairo, using a gamma-ray spectrometer with a HpGe detector. The alpha activity of 238U, 234U and 235U was measured in the same soil samples by surface barrier detectors after radiochemical separation and the obtained results were compared with the specific activities determined by gamma-measurements. The alpha-activity of 238Pu, 239+240Pu, 241Am, 242Cm and 244Cm was measured after radiochemical separation by surface barrier detectors for both soil and plant samples. Then beta-activity of 241Pu was measured using liquid scintillation spectrometry.

  18. Absorption of Thermal Neutrons in Uranium

    DOE R&D Accomplishments Database

    Creutz, E. C.; Wilson, R. R.; Wigner, E. P.

    1941-09-26

    A knowledge of the absorption processes for neutrons in uranium is important for planning a chain reaction experiment. The absorption of thermal neutrons in uranium and uranium oxide has been studied. Neutrons from the cyclotron were slowed down by passage through a graphite block. A uranium or uranium oxide sphere was placed at various positions in the block. The neutron intensity at different points in the sphere and in the graphite was measured by observing the activity induced in detectors or uranium oxide or manganese. It was found that both the fission activity in the uranium oxide and the activity induced in manganese was affected by non-thermal neutrons. An experimental correction for such effects was made by making measurements with the detectors surrounded by cadmium. After such corrections the results from three methods of procedure with the uranium oxide detectors and from the manganese detectors were consistent to within a few per cent.

  19. The LUX-Zeplin Dark Matter Detector

    NASA Astrophysics Data System (ADS)

    Mock, Jeremy; Lux-Zeplin (Lz) Collaboration

    2016-03-01

    The LUX-ZEPLIN (LZ) detector is a second generation dark matter experiment that will operate at the 4850 foot level of the Sanford Underground Research Experiment as a follow-up to the LUX detector, currently the world's most sensitive WIMP direct detection experiment. The LZ detector will contain 7 tonnes of active liquid xenon with a 5.6 tonne fiducial mass in the TPC. The TPC is surrounded by an active, instrumented, liquid-xenon ``skin'' region to veto gammas, then a layer of liquid scintillator to veto neutrons, all contained within a water shield. Modeling the detector is key to understanding the expected background, which in turn leads to a better understanding of the projected sensitivity, currently expected to be 2e-48 cm2 for a 50 GeV WIMP. I will discuss the current status of the LZ experiment as well as its projected sensitivity.

  20. Detection systems for mass spectrometry imaging: a perspective on novel developments with a focus on active pixel detectors.

    PubMed

    Jungmann, Julia H; Heeren, Ron M A

    2013-01-15

    Instrumental developments for imaging and individual particle detection for biomolecular mass spectrometry (imaging) and fundamental atomic and molecular physics studies are reviewed. Ion-counting detectors, array detection systems and high mass detectors for mass spectrometry (imaging) are treated. State-of-the-art detection systems for multi-dimensional ion, electron and photon detection are highlighted. Their application and performance in three different imaging modes--integrated, selected and spectral image detection--are described. Electro-optical and microchannel-plate-based systems are contrasted. The analytical capabilities of solid-state pixel detectors--both charge coupled device (CCD) and complementary metal oxide semiconductor (CMOS) chips--are introduced. The Medipix/Timepix detector family is described as an example of a CMOS hybrid active pixel sensor. Alternative imaging methods for particle detection and their potential for future applications are investigated. Copyright © 2012 John Wiley & Sons, Ltd.

  1. Physical characterization and performance comparison of active- and passive-pixel CMOS detectors for mammography.

    PubMed

    Elbakri, I A; McIntosh, B J; Rickey, D W

    2009-03-21

    We investigated the physical characteristics of two complementary metal oxide semiconductor (CMOS) mammography detectors. The detectors featured 14-bit image acquisition, 50 microm detector element (del) size and an active area of 5 cm x 5 cm. One detector was a passive-pixel sensor (PPS) with signal amplification performed by an array of amplifiers connected to dels via data lines. The other detector was an active-pixel sensor (APS) with signal amplification performed at each del. Passive-pixel designs have higher read noise due to data line capacitance, and the APS represents an attempt to improve the noise performance of this technology. We evaluated the detectors' resolution by measuring the modulation transfer function (MTF) using a tilted edge. We measured the noise power spectra (NPS) and detective quantum efficiencies (DQE) using mammographic beam conditions specified by the IEC 62220-1-2 standard. Our measurements showed the APS to have much higher gain, slightly higher MTF, and higher NPS. The MTF of both sensors approached 10% near the Nyquist limit. DQE values near dc frequency were in the range of 55-67%, with the APS sensor DQE lower than the PPS DQE for all frequencies. Our results show that lower read noise specifications in this case do not translate into gains in the imaging performance of the sensor. We postulate that the lower fill factor of the APS is a possible cause for this result.

  2. Design and Technical Study of Neutrino Detector Spacecraft

    NASA Technical Reports Server (NTRS)

    Solomey, Niclolas

    2017-01-01

    A neutrino detector is proposed to be developed for use on a space probe in close orbit of the Sun. The detector will also be protected from radiation by a tungsten shield Sun shade, active veto array and passive cosmic shielding. With the intensity of solar neutrinos substantially greater in a close solar orbit than on the Earth only a small 250 kg detector is needed. It is expected that this detector and space probe studying the core of the Sun, its nuclear furnace and particle physics basic properties will bring new knowledge beyond what is currently possible for Earth bound solar neutrino detectors.

  3. The MPGD-based photon detectors for the upgrade of COMPASS RICH-1

    NASA Astrophysics Data System (ADS)

    Alexeev, M.; Azevedo, C. D. R.; Birsa, R.; Bradamante, F.; Bressan, A.; Büchele, M.; Chiosso, M.; Ciliberti, P.; Dalla Torre, S.; Dasgupta, S.; Denisov, O.; Finger, M.; Finger, M.; Fischer, H.; Gobbo, B.; Gregori, M.; Hamar, G.; Herrmann, F.; Levorato, S.; Maggiora, A.; Makke, A.; Martin, A.; Menon, G.; Steiger, K.; Novy, J.; Panzieri, D.; Pereira, F. A. B.; Santos, C. A.; Sbrizzai, G.; Schopferer, S.; Slunecka, M.; Steiger, L.; Sulc, M.; Tessarotto, F.; Veloso, J. F. C. A.

    2017-12-01

    The RICH-1 Detector of the COMPASS experiment at CERN SPS has undergone an important upgrade for the 2016 physics run. Four new photon detectors, based on Micro Pattern Gaseous Detector technology and covering a total active area larger than 1.2 m2 have replaced the previously used MWPC-based photon detectors. The upgrade answers the challenging efficiency and stability quest for the new phase of the COMPASS spectrometer physics programme. The new detector architecture consists in a hybrid MPGD combination of two Thick Gas Electron Multipliers and a MicroMegas stage. Signals, extracted from the anode pad by capacitive coupling, are read-out by analog F-E based on the APV25 chip. The main aspects of the COMPASS RICH-1 photon detectors upgrade are presented focussing on detector design, engineering aspects, mass production, the quality assessment and assembly challenges of the MPGD components. The status of the detector commissioning is also presented.

  4. Airport detectors and orthopaedic implants.

    PubMed

    van der Wal, Bart C H; Grimm, Bernd; Heyligers, Ide C

    2005-08-01

    As a result of the rising threats of terrorism, airport security has become a major issue. Patients with orthopaedic implants are concerned that they may activate alarms at airport security gates. A literature overview showed that the activation rate of the alarm by hand-held detectors is higher than for arch detectors (100% versus 56%). Arch detection rate has significantly increased from 0% before 1995 up to 83.3% after 1994. Reported factors which influence detection rates are implant mass, implant combinations, implant volume, transfer speed, side of implant, detector model, sensitivity settings, material and tissue masking. Detection rate has been improved by more sensitive devices and improved filter software. Doctors should be able to objectively inform patients. A form is presented which will easily inform the airport security staff.

  5. The National Ignition Facility (NIF) and High Energy Density Science Research at LLNL (Briefing Charts)

    DTIC Science & Technology

    2013-06-21

    neutron activation detectors (FNADS) 2013-049951s2.ppt Detector locations • Average rR ~ 1 g/cm2 • ~ 50% variations Motivates new 2D backlit imaging...of the implosion Motivates Compton radiography for stagnated fuel shape g/cm2 DrR rR map from neutron Activation Detectors (90Zr(n,2n)  89Zr...high energy cosmic rays Oxford Univ./LLNL LLNL Novel phases of compressed diamond Synthesis of elements heavier than iron 1545 Neutron flux in

  6. Earth radiation budget measurement from a spinning satellite: Conceptual design of detectors

    NASA Technical Reports Server (NTRS)

    Sromovsky, L. A.; Revercomb, H. E.; Suomi, V. E.

    1975-01-01

    The conceptual design, sensor characteristics, sensor performance and accuracy, and spacecraft and orbital requirements for a spinning wide-field-of-view earth energy budget detector were investigated. The scientific requirements for measurement of the earth's radiative energy budget are presented. Other topics discussed include the observing system concept, solar constant radiometer design, plane flux wide FOV sensor design, fast active cavity theory, fast active cavity design and error analysis, thermopile detectors as an alternative, pre-flight and in-flight calibration plane, system error summary, and interface requirements.

  7. Characterization and Performance Evaluation of an HPXe Detector for Nuclear Explosion Monitoring Applications

    DTIC Science & Technology

    2007-09-01

    performance of the detector, and to compare the performance with sodium iodide and germanium detectors. Monte Carlo ( MCNP ) simulation was used to...aluminum ~50% more efficient), and to estimate optimum shield dimensions for an HPXe based nuclear explosion monitor. MCNP modeling was also used to...detector were calculated with MCNP by using input activity levels as measured in routine NEM runs at Pacific Northwest National Laboratory (PNNL

  8. Design of FPGA-based radiation tolerant quench detectors for LHC

    NASA Astrophysics Data System (ADS)

    Steckert, J.; Skoczen, A.

    2017-04-01

    The Large Hadron Collider (LHC) comprises many superconducting circuits. Most elements of these circuits require active protection. The functionality of the quench detectors was initially implemented as microcontroller based equipment. After the initial stage of the LHC operation with beams the introduction of a new type of quench detector began. This article presents briefly the main ideas and architectures applied to the design and the validation of FPGA-based quench detectors.

  9. Performance of a Commercial Silicon Drift Detector for X-ray Microanalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenik, Edward A

    2008-01-01

    Silicon drift detectors (SDDs) are rapidly becoming the energy dispersive spectrometer of choice especially for scanning electron microscopy applications. The complementary features of large active areas (i.e., collection angle) and high count rate capability of these detector contribute to their popularity, as well as the absence of liquid nitrogen cooling of the detector. The performance of an EDAX Apollo 40 SDD on a JEOL 6500F SEM will be discussed.

  10. Quantum efficiency test set up performances for NIR detector characterization at ESTEC

    NASA Astrophysics Data System (ADS)

    Crouzet, P.-E.; Duvet, L.; De Wit, F.; Beaufort, T.; Blommaert, S.; Butler, B.; Van Duinkerken, G.; ter Haar, J.; Heijnen, J.; van der Luijt, K.; Smit, H.; Viale, T.

    2014-07-01

    The Payload Technology Validation Section (Future mission preparation Office) at ESTEC is in charge of specific mission oriented validation activities, for science and robotic exploration missions, aiming at reducing development risks in the implementation phase. These activities take place during the early mission phases or during the implementation itself. In this framework, a test set up to characterize the quantum efficiency of near infrared detectors has been developed. The first detector to be tested will an HAWAII-2RG detector with a 2.5μm cut off, it will be used as commissioning device in preparation to the tests of prototypes European detectors developed under ESA funding. The capability to compare on the same setup detectors from different manufacturers will be a unique asset for the future mission preparation office. This publication presents the performances of the quantum efficiency test bench to prepare measurements on the HAWAII-2RG detector. A SOFRADIR Saturn detector has been used as a preliminary test vehicle for the bench. A test set up with a lamp, chopper, monochromator, pinhole and off axis mirrors allows to create a spot of 1mm diameter between 700nm and 2.5μm.The shape of the beam has been measured to match the rms voltage read by the Merlin Lock -in amplifier and the amplitude of the incoming signal. The reference detectors have been inter-calibrated with an uncertainty up to 3 %. For the measurement with HAWAII-2RG detector, the existing cryostat [1] has been modified to adapt cold black baffling, a cold filter wheel and a sapphire window. An statistic uncertainty of +/-2.6% on the quantum efficiency on the detector under test measurement is expected.

  11. Study of Background Rejection Systems for the IXO Mission.

    NASA Astrophysics Data System (ADS)

    Laurent, Philippe; Limousin, O.; Tatischeff, V.

    2009-01-01

    The scientific performances of the IXO mission will necessitate a very low detector background level. This will imply thorough background simulations, and efficient background rejection systems. It necessitates also a very good knowledge of the detectors to be shielded. In APC, Paris, and CEA, Saclay, we got experience on these activities by conceiving and optimising in parallel the high energy detector and the active and passive background rejection system of the Simbol-X mission. Considering that this work may be naturally extended to other X-ray missions, we have initiated with CNES a R&D project on the study of background rejection systems mainly in view the IXO project. We will detail this activity in the poster.

  12. Determination of the activity concentration of a 238 Pu solution by the defined solid angle method utilizing a novel dual diaphragm-detector assembly.

    PubMed

    Aguiar, Julio C; Galiano, Eduardo; Arenillas, Pablo

    2005-08-01

    The activity concentration of a (238)Pu solution was measured by the determined solid angle method employing a novel dual diaphragm-detector assembly, which has been previously described. Due to the special requirements of the detector, a new type of source holder was developed, which consisted of sandwiching the radioisotope between two organic films called VYNS. It was experimentally demonstrated that the VYNS films do not absorb alpha particles, but reduce their energy by an average of 22 keV.A mean activity concentration for (238)Pu of 359.10+/-0.8 kBq/g was measured.

  13. COMPARATIVE STUDY OF RADON AND THORON MEASUREMENTS IN FOUR ROMANIAN SHOW CAVES.

    PubMed

    Burghele, B D; Cucos, A; Papp, B; Dicu, T; Pressyanov, D; Dimitrov, D; Dimitrova, I; Constantin, S

    2017-11-01

    Measurements have been carried out using four types of passive detectors in four of the most popular show caves in Romania. Three types of detectors (RSKS, RadTrak and CD) were used for radon measurements and two (Raduet and CD) for thoron measurement. Activity concentrations in air were measured in the same locations for two seasons, autumn and winter. Measured values for the different caves varied between below detection limit (5 Bq m-3) and 4024 Bq m-3 for radon and from below 10 to 583 Bq m-3 for thoron. The results indicate a very good correlation between RSKS and RadTrak detectors (r = 0.96). The most significant difference between radon concentrations measured with different types of detectors (RSKS and CD) was higher than 150%. The study suggests that the activity concentration of radon in caves, measured using track detectors, could not be influenced by the type of detector used if the microclimate factor is acknowledged. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. a Portable Pixel Detector Operating as AN Active Nuclear Emulsion and its Application for X-Ray and Neutron Tomography

    NASA Astrophysics Data System (ADS)

    Vykydal, Z.; Jakubek, J.; Holy, T.; Pospisil, S.

    2006-04-01

    This work is devoted to the development of a USB1.1 (Universal Serial Bus) based read out system for the Medipix2 detector to achieve maximum portability of this position sensitive detecting device. All necessary detector support is integrated into one compact system (80 × 50 × 20 mm3) including the detector bias source (up to 100 V). The read out interface can control external I2C based devices, so in case of tomography it is easy to synchronize detector shutter with stepper motor control. An additional significant advantage of the USB interface is the support of back side pulse processing. This feature enables to determine the energy additionally to the position of a heavy charged particle hitting the sensor. Due to the small pixel dimensions it is also possible to distinguish the type of single quanta of radiation from the track created in the pixel detector as in case of an active nuclear emulsion.

  15. AO WFS detector developments at ESO to prepare for the E-ELT

    NASA Astrophysics Data System (ADS)

    Downing, Mark; Casali, Mark; Finger, Gert; Lewis, Steffan; Marchetti, Enrico; Mehrgan, Leander; Ramsay, Suzanne; Reyes, Javier

    2016-07-01

    ESO has a very active on-going AO WFS detector development program to not only meet the needs of the current crop of instruments for the VLT, but also has been actively involved in gathering requirements, planning, and developing detectors and controllers/cameras for the instruments in design and being proposed for the E-ELT. This paper provides an overall summary of the AO WFS Detector requirements of the E-ELT instruments currently in design and telescope focal units. This is followed by a description of the many interesting detector, controller, and camera developments underway at ESO to meet these needs; a) the rationale behind and plan to upgrade the 240x240 pixels, 2000fps, "zero noise", L3Vision CCD220 sensor based AONGC camera; b) status of the LGSD/NGSD High QE, 3e- RoN, fast 700fps, 1760x1680 pixels, Visible CMOS Imager and camera development; c) status of and development plans for the Selex SAPHIRA NIR eAPD and controller. Most of the instruments and detector/camera developments are described in more detail in other papers at this conference.

  16. Testing and Comparison of Imaging Detectors for Electrons in the Energy Range 10-20 keV

    NASA Astrophysics Data System (ADS)

    Matheson, J.; Moldovan, G.; Kirkland, A.; Allinson, N.; Abrahams, J. P.

    2017-11-01

    Interest in direct detectors for low-energy electrons has increased markedly in recent years. Detection of electrons in the energy range up to low tens of keV is important in techniques such as photoelectron emission microscopy (PEEM) and electron backscatter diffraction (EBSD) on scanning electron microscopes (SEMs). The PEEM technique is used both in the laboratory and on synchrotron light sources worldwide. The ubiquity of SEMs means that there is a very large market for EBSD detectors for materials studies. Currently, the most widely used detectors in these applications are based on indirect detection of incident electrons. Examples include scintillators or microchannel plates (MCPs), coupled to CCD cameras. Such approaches result in blurring in scintillators/phosphors, distortions in optical systems, and inefficiencies due the limited active area of MCPs. In principle, these difficulties can be overcome using direct detection in a semiconductor device. Growing out of a feasibility study into the use of a direct detector for use on an XPEEM, we have built at Rutherford Appleton Laboratory a system to illuminate detectors with an electron beam of energy up to 20 keV . We describe this system in detail. It has been used to measure the performance of a custom back-thinned monolithic active pixel sensor (MAPS), a detector based on the Medipix2 chip, and a commercial detector based on MCPs. We present a selection of the results from these measurements and compare and contrast different detector types.

  17. Automated Detector of High Frequency Oscillations in Epilepsy Based on Maximum Distributed Peak Points.

    PubMed

    Ren, Guo-Ping; Yan, Jia-Qing; Yu, Zhi-Xin; Wang, Dan; Li, Xiao-Nan; Mei, Shan-Shan; Dai, Jin-Dong; Li, Xiao-Li; Li, Yun-Lin; Wang, Xiao-Fei; Yang, Xiao-Feng

    2018-02-01

    High frequency oscillations (HFOs) are considered as biomarker for epileptogenicity. Reliable automation of HFOs detection is necessary for rapid and objective analysis, and is determined by accurate computation of the baseline. Although most existing automated detectors measure baseline accurately in channels with rare HFOs, they lose accuracy in channels with frequent HFOs. Here, we proposed a novel algorithm using the maximum distributed peak points method to improve baseline determination accuracy in channels with wide HFOs activity ranges and calculate a dynamic baseline. Interictal ripples (80-200[Formula: see text]Hz), fast ripples (FRs, 200-500[Formula: see text]Hz) and baselines in intracerebral EEGs from seven patients with intractable epilepsy were identified by experienced reviewers and by our computer-automated program, and the results were compared. We also compared the performance of our detector to four well-known detectors integrated in RIPPLELAB. The sensitivity and specificity of our detector were, respectively, 71% and 75% for ripples and 66% and 84% for FRs. Spearman's rank correlation coefficient comparing automated and manual detection was [Formula: see text] for ripples and [Formula: see text] for FRs ([Formula: see text]). In comparison to other detectors, our detector had a relatively higher sensitivity and specificity. In conclusion, our automated detector is able to accurately calculate a dynamic iEEG baseline in different HFO activity channels using the maximum distributed peak points method, resulting in higher sensitivity and specificity than other available HFO detectors.

  18. Single photon detection using Geiger mode CMOS avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Lawrence, William G.; Stapels, Christopher; Augustine, Frank L.; Christian, James F.

    2005-10-01

    Geiger mode Avalanche Photodiodes fabricated using complementary metal-oxide-semiconductor (CMOS) fabrication technology combine high sensitivity detectors with pixel-level auxiliary circuitry. Radiation Monitoring Devices has successfully implemented CMOS manufacturing techniques to develop prototype detectors with active diameters ranging from 5 to 60 microns and measured detection efficiencies of up to 60%. CMOS active quenching circuits are included in the pixel layout. The actively quenched pixels have a quenching time less than 30 ns and a maximum count rate greater than 10 MHz. The actively quenched Geiger mode avalanche photodiode (GPD) has linear response at room temperature over six orders of magnitude. When operating in Geiger mode, these GPDs act as single photon-counting detectors that produce a digital output pulse for each photon with no associated read noise. Thermoelectrically cooled detectors have less than 1 Hz dark counts. The detection efficiency, dark count rate, and after-pulsing of two different pixel designs are measured and demonstrate the differences in the device operation. Additional applications for these devices include nuclear imaging and replacement of photomultiplier tubes in dosimeters.

  19. Great apes and children infer causal relations from patterns of variation and covariation.

    PubMed

    Völter, Christoph J; Sentís, Inés; Call, Josep

    2016-10-01

    We investigated whether nonhuman great apes (N=23), 2.5-year-old (N=20), and 3-year-old children (N=40) infer causal relations from patterns of variation and covariation by adapting the blicket detector paradigm for apes. We presented chimpanzees (Pan troglodytes), bonobos (Pan paniscus), orangutans (Pongo abelii), gorillas (Gorilla gorilla), and children (Homo sapiens) with a novel reward dispenser, the blicket detector. The detector was activated by inserting specific (yet randomly determined) objects, the so-called blickets. Once activated a reward was released, accompanied by lights and a short tone. Participants were shown different patterns of variation and covariation between two different objects and the activation of the detector. When subsequently choosing between one of the two objects to activate the detector on their own all species, except gorillas (who failed the training), took these patterns of correlation into account. In particular, apes and 2.5-year-old children ignored objects whose effect on the detector completely depended on the presence of another object. Follow-up experiments explored whether the apes and children were also able to re-evaluate evidence retrospectively. Only children (3-year-olds in particular) were able to make such retrospective inferences about causal structures from observing the effects of the experimenter's actions. Apes succeeded here only when they observed the effects of their own interventions. Together, this study provides evidence that apes, like young children, accurately infer causal structures from patterns of (co)variation and that they use this information to inform their own interventions. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Arrays of Segmented, Tapered Light Guides for Use With Large, Planar Scintillation Detectors

    NASA Astrophysics Data System (ADS)

    Raylman, Raymond R.; Vaigneur, Keith; Stolin, Alexander V.; Jaliparthi, Gangadhar

    2015-06-01

    Metabolic imaging techniques can potentially improve detection and diagnosis of cancer in women with radiodense and/or fibrocystic breasts. Our group has previously developed a high-resolution positron emission tomography imaging and biopsy device (PEM-PET) to detect and guide the biopsy of suspicious breast lesions. Initial testing revealed that the imaging field-of-view (FOV) of the scanner was smaller than the physical size of the detector's active area, which could hinder sampling of breast areas close to the chest wall. The purpose of this work was to utilize segmented, tapered light guides for optically coupling the scintillator arrays to arrays of position-sensitive photomultipliers to increase both the active FOV and identification of individual scintillator elements. Testing of the new system revealed that the optics of these structures made it possible to discern detector elements from the complete active area of the detector face. In the previous system the top and bottom rows and left and right columns were not identifiable. Additionally, use of the new light guides increased the contrast of individual detector elements by up to 129%. Improved element identification led to a spatial resolution increase by approximately 12%. Due to attenuation of light in the light guides the detector energy resolution decreased from 18.5% to 19.1%. Overall, these improvements should increase the field-of-view and spatial resolution of the dedicated breast-PET system.

  1. Results from a calibration of XENON100 using a source of dissolved radon-220

    NASA Astrophysics Data System (ADS)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; di Gangi, P.; di Giovanni, A.; Diglio, S.; Duchovni, E.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Franco, D.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Grandi, L.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Itay, R.; Kaminsky, B.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Le Calloch, M.; Lin, Q.; Lindemann, S.; Lindner, M.; Lopes, J. A. M.; Manfredini, A.; Maris, I.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Meng, Y.; Messina, M.; Micheneau, K.; Miguez, B.; Molinario, A.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Orrigo, S. E. A.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Piro, M.-C.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; Saldanha, R.; Dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Shockley, E.; Silva, M.; Simgen, H.; Sivers, M. V.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Upole, N.; Wang, H.; Wei, Y.; Weinheimer, C.; Wulf, J.; Ye, J.; Zhang, Y.; Xenon Collaboration

    2017-04-01

    A Rn 220 source is deployed on the XENON100 dark matter detector in order to address the challenges in calibration of tonne-scale liquid noble element detectors. We show that the Pb 212 beta emission can be used for low-energy electronic recoil calibration in searches for dark matter. The isotope spreads throughout the entire active region of the detector, and its activity naturally decays below background level within a week after the source is closed. We find no increase in the activity of the troublesome Rn 222 background after calibration. Alpha emitters are also distributed throughout the detector and facilitate calibration of its response to Rn 222 . Using the delayed coincidence of Rn 220 - Po 216 , we map for the first time the convective motion of particles in the XENON100 detector. Additionally, we make a competitive measurement of the half-life of Po 212 , t1 /2=(293.9 ±(1.0 )stat±(0.6 )sys) ns .

  2. Neutron Activation Diagnostics in Deuterium Gas-Puff Experiments on the 3 MA GIT-12 Z-Pinch

    NASA Astrophysics Data System (ADS)

    Cikhardt, J.; Klir, D.; Rezac, K.; Cikhardtova, B.; Kravarik, J.; Kubes, P.; Sila, O.; Shishlov, A. V.; Cherdizov, R. K.; Fursov, F. I.; Kokshenev, V. A.; Kurmaev, N. E.; Labetsky, A. Yu; Ratakhin, N. A.; Dudkin, G. N.; Garapatsky, A. A.; Padalko, V. N.; Varlachev, V. A.; Turek, K.

    2016-10-01

    The experiments with a deuterium z-pinch on the GIT-12 generator at IHCE in Tomsk were performed in the frame of the Czech-Russian agreement. A set of neutron diagnostics included scintillation time-of-flight detectors, bubble detectors, and several kinds of threshold nuclear activation detectors in the order to obtain information about the yield, anisotropy, and spectrum of the neutrons produced by a deuterium gas-puff. The average neutron yield in these experiments was of the order of 1012 neutrons per a single shot. The energy spectrum of the produced neutrons was evaluated using neutron time-of-flight detectors and a set of neutron activation detectors. Because the deuterons in the pinch achieve multi-MeV energies, non-DD neutrons are produced by nuclear reactions of deuterons with a stainless steel vacuum chamber and aluminum components of diagnostics inside the chamber. An estimated number of the non-DD was of the order of 1011. GACR (Grant No. 16-07036S), CME (Grant Nos. LD14089, LG13029, and LH13283), MESRF (Grant No. RFMEFI59114X0001), IAEA (Grant No. RC17088), CTU (Grant No. SGS 16/223/OHK3/3T/13).

  3. A Finger-Pressing Position Detector for Assisting People with Developmental Disabilities to Control Their Environmental Stimulation through Fine Motor Activities with a Standard Keyboard

    ERIC Educational Resources Information Center

    Shih, Ching-Hsiang

    2012-01-01

    This study used a standard keyboard with a newly developed finger-pressing position detection program (FPPDP), i.e. a new software program, which turns a standard keyboard into a finger-pressing position detector, to evaluate whether two people with developmental disabilities would be able to actively perform fine motor activities to control their…

  4. LWIR detector requirements for low-background space applications

    NASA Technical Reports Server (NTRS)

    Deluccia, Frank J.

    1990-01-01

    Detection of cold bodies (200 to 300 K) against space backgrounds has many important applications, both military and non-military. The detector performance and design characteristics required to support low-background applications are discussed, with particular emphasis on those characteristics required for space surveillance. The status of existing detector technologies under active development for these applications is also discussed. In order to play a role in future systems, new, potentially competing detector technologies such as multiple quantum well detectors must not only meet system-derived requirements, but also offer distinct performance or other advantages over these incumbent technologies.

  5. Design and Fabrication of Cherenkov Counters for the Detection of SNM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Anna S.; Lanza, Richard; Galaitsis, Anthony

    2011-12-13

    The need for large-size detectors for long-range active interrogation (AI) detection of SNM has generated interest in water-based detector technologies. Water Cherenkov Detectors (WCD) were selected for this research because of their transportability, scalability, and an inherent energy threshold. The detector design and analysis was completed using the Geant4 toolkit. It was demonstrated both computationally and experimentally that it is possible to use WCD to detect and characterize gamma rays. Absolute efficiency of the detector (with no energy cuts applied) was determined to be around 30% for a {sup 60}Co source.

  6. Radon free storage container and method

    DOEpatents

    Langner, Jr., G. Harold; Rangel, Mark J.

    1991-01-01

    A radon free containment environment for either short or long term storage of radon gas detectors can be provided as active, passive, or combined active and passive embodiments. A passive embodiment includes a resealable vessel containing a basket capable of holding and storing detectors and an activated charcoal adsorbing liner between the basket and the containment vessel wall. An active embodiment includes the resealable vessel of the passive embodiment, and also includes an external activated charcoal filter that circulates the gas inside the vessel through the activated charcoal filter. An embodiment combining the active and passive embodiments is also provided.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hellfeld, Daniel; Barton, Paul; Gunter, Donald

    Gamma-ray imaging facilitates the efficient detection, characterization, and localization of compact radioactive sources in cluttered environments. Fieldable detector systems employing active planar coded apertures have demonstrated broad energy sensitivity via both coded aperture and Compton imaging modalities. But, planar configurations suffer from a limited field-of-view, especially in the coded aperture mode. In order to improve upon this limitation, we introduce a novel design by rearranging the detectors into an active coded spherical configuration, resulting in a 4pi isotropic field-of-view for both coded aperture and Compton imaging. This work focuses on the low- energy coded aperture modality and the optimization techniquesmore » used to determine the optimal number and configuration of 1 cm 3 CdZnTe coplanar grid detectors on a 14 cm diameter sphere with 192 available detector locations.« less

  8. A semiconductor radiation imaging pixel detector for space radiation dosimetry.

    PubMed

    Kroupa, Martin; Bahadori, Amir; Campbell-Ricketts, Thomas; Empl, Anton; Hoang, Son Minh; Idarraga-Munoz, John; Rios, Ryan; Semones, Edward; Stoffle, Nicholas; Tlustos, Lukas; Turecek, Daniel; Pinsky, Lawrence

    2015-07-01

    Progress in the development of high-performance semiconductor radiation imaging pixel detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. Such detectors can provide real-time information concerning radiation exposure, along with detailed analysis of the individual particles incident on the active medium. Recent results from the deployment of detectors based on the Timepix from the CERN-based Medipix2 Collaboration on the International Space Station (ISS) are reviewed, along with a glimpse of developments to come. Preliminary results from Orion MPCV Exploration Flight Test 1 are also presented. Copyright © 2015 The Committee on Space Research (COSPAR). All rights reserved.

  9. HEAO-1 analysis of Low Energy Detectors (LED)

    NASA Technical Reports Server (NTRS)

    Nousek, John A.

    1992-01-01

    The activities at Penn State University are described. During the period Oct. 1990 to Dec. 1991 work on HEAO-1 analysis of the Low Energy Detectors (LED) concentrated on using the improved detector spectral simulation model and fitting diffuse x-ray background spectral data. Spectral fitting results, x-ray point sources, and diffuse x-ray sources are described.

  10. 75 FR 47646 - Idaho State University; Notice of Issuance of Director's Decision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ... detector from the reactor core. In the petition Dr. Crawford states that this was cited as an Apparent... detector. The personnel roof access hatch was also addressed in Rev. 3 and Rev. 4 of the Physical Security... procedures to wear protective clothing to routinely remove the activated startup channel detector from the...

  11. Universal EUV in-band intensity detector

    DOEpatents

    Berger, Kurt W.

    2004-08-24

    Extreme ultraviolet light is detected using a universal in-band detector for detecting extreme ultraviolet radiation that includes: (a) an EUV sensitive photodiode having a diode active area that generates a current responsive to EUV radiation; (b) one or more mirrors that reflects EUV radiation having a defined wavelength(s) to the diode active area; and (c) a mask defining a pinhole that is positioned above the diode active area, wherein EUV radiation passing through the pinhole is restricted substantially to illuminating the diode active area.

  12. The Hard X-ray Imager (HXI) for the ASTRO-H mission

    NASA Astrophysics Data System (ADS)

    Kokubun, Motohide; Nakazawa, Kazuhiro; Enoto, Teruaki; Fukazawa, Yasushi; Kataoka, Jun; Kawaharada, Madoka; Laurent, Philippe; Lebrun, François; Limousin, Olivier; Makishima, Kazuo; Mizuno, Tsunefumi; Mori, Kunishiro; Nakamori, Takeshi; Odaka, Hirokazu; Ohno, Masanori; Ohta, Masayuki; Sato, Goro; Sato, Rie; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Tanaka, Takaaki; Terada, Yukikatsu; Uchiyama, Hideki; Uchiyama, Yasunobu; Watanabe, Shin; Yatsu, Yoichi; Yuasa, Takayuki

    2012-09-01

    The Hard X-ray Imager (HXI) is one of the four detectors on board the ASTRO-H mission (6th Japanese X-ray satellite), which is scheduled to be launched in 2014. Using the hybrid structure composed of double-sided silicon strip detectors and a cadmium telluride double-sided strip detector, both with a high spatial resolution of 250 μm. Combined with the hard X-ray telescope (HXT), it consists a hard X-ray imaging spectroscopic instrument covering the energy range from 5 to 80 keV with an effective area of <300 cm2 in total at 30 keV. An energy resolution of 1-2 keV (FWHM) and lower threshold of 5 keV are both achieved with using a low noise front-end ASICs. In addition, the thick BGO active shields surrounding the main detector package is a heritage of the successful performance of the Hard X-ray Detector on board the Suzaku satellite. This feature enables the instrument to achieve an extremely good reduction of background caused by cosmic-ray particles, cosmic X-ray background, and in-orbit radiation activation. In this paper, we present the detector concept, design, latest results of the detector development, and the current status of the hardware.

  13. An online, energy-resolving beam profile detector for laser-driven proton beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metzkes, J.; Rehwald, M.; Obst, L.

    In this paper, a scintillator-based online beam profile detector for the characterization of laser-driven proton beams is presented. Using a pixelated matrix with varying absorber thicknesses, the proton beam is spatially resolved in two dimensions and simultaneously energy-resolved. A thin plastic scintillator placed behind the absorber and read out by a CCD camera is used as the active detector material. The spatial detector resolution reaches down to ∼4 mm and the detector can resolve proton beam profiles for up to 9 proton threshold energies. With these detector design parameters, the spatial characteristics of the proton distribution and its cut-off energymore » can be analyzed online and on-shot under vacuum conditions. The paper discusses the detector design, its characterization and calibration at a conventional proton source, as well as the first detector application at a laser-driven proton source.« less

  14. High Operating Temperature Midwave Quantum Dot Barrier Infrared Detector (QD-BIRD)

    NASA Technical Reports Server (NTRS)

    Ting, David Z.; Soibel, Alexander; Hill, Cory J.; Keo, Sam A.; Mumolo, Jason M.; Gunapala, Sarath D.

    2012-01-01

    The nBn or XBn barrier infrared detector has the advantage of reduced dark current resulting from suppressed Shockley-Read-Hall (SRH) recombination and surface leakage. High performance detectors and focal plane arrays (FPAs) based on InAsSb absorber lattice matched to GaSb substrate, with a matching AlAsSb unipolar electron barrier, have been demonstrated. The band gap of lattice-matched InAsSb yields a detector cutoff wavelength of approximately 4.2 ??m when operating at 150K. We report results on extending the cutoff wavelength of midwave barrier infrared detectors by incorporating self-assembled InSb quantum dots into the active area of the detector. Using this approach, we were able to extend the detector cutoff wavelength to 6 ?m, allowing the coverage of the full midwave infrared (MWIR) transmission window. The quantum dot barrier infrared detector (QD-BIRD) shows infrared response at temperatures up to 225 K.

  15. An online, energy-resolving beam profile detector for laser-driven proton beams.

    PubMed

    Metzkes, J; Zeil, K; Kraft, S D; Karsch, L; Sobiella, M; Rehwald, M; Obst, L; Schlenvoigt, H-P; Schramm, U

    2016-08-01

    In this paper, a scintillator-based online beam profile detector for the characterization of laser-driven proton beams is presented. Using a pixelated matrix with varying absorber thicknesses, the proton beam is spatially resolved in two dimensions and simultaneously energy-resolved. A thin plastic scintillator placed behind the absorber and read out by a CCD camera is used as the active detector material. The spatial detector resolution reaches down to ∼4 mm and the detector can resolve proton beam profiles for up to 9 proton threshold energies. With these detector design parameters, the spatial characteristics of the proton distribution and its cut-off energy can be analyzed online and on-shot under vacuum conditions. The paper discusses the detector design, its characterization and calibration at a conventional proton source, as well as the first detector application at a laser-driven proton source.

  16. Modeling of light distribution in the brain for topographical imaging

    NASA Astrophysics Data System (ADS)

    Okada, Eiji; Hayashi, Toshiyuki; Kawaguchi, Hiroshi

    2004-07-01

    Multi-channel optical imaging system can obtain a topographical distribution of the activated region in the brain cortex by a simple mapping algorithm. Near-infrared light is strongly scattered in the head and the volume of tissue that contributes to the change in the optical signal detected with source-detector pair on the head surface is broadly distributed in the brain. This scattering effect results in poor resolution and contrast in the topographic image of the brain activity. We report theoretical investigations on the spatial resolution of the topographic imaging of the brain activity. The head model for the theoretical study consists of five layers that imitate the scalp, skull, subarachnoid space, gray matter and white matter. The light propagation in the head model is predicted by Monte Carlo simulation to obtain the spatial sensitivity profile for a source-detector pair. The source-detector pairs are one dimensionally arranged on the surface of the model and the distance between the adjoining source-detector pairs are varied from 4 mm to 32 mm. The change in detected intensity caused by the absorption change is obtained by Monte Carlo simulation. The position of absorption change is reconstructed by the conventional mapping algorithm and the reconstruction algorithm using the spatial sensitivity profiles. We discuss the effective interval between the source-detector pairs and the choice of reconstruction algorithms to improve the topographic images of brain activity.

  17. Search for active-sterile neutrino mixing using neutral-current interactions in NOvA

    NASA Astrophysics Data System (ADS)

    Adamson, P.; Aliaga, L.; Ambrose, D.; Anfimov, N.; Antoshkin, A.; Arrieta-Diaz, E.; Augsten, K.; Aurisano, A.; Backhouse, C.; Baird, M.; Bambah, B. A.; Bays, K.; Behera, B.; Bending, S.; Bernstein, R.; Bhatnagar, V.; Bhuyan, B.; Bian, J.; Blackburn, T.; Bolshakova, A.; Bromberg, C.; Brown, J.; Brunetti, G.; Buchanan, N.; Butkevich, A.; Bychkov, V.; Campbell, M.; Catano-Mur, E.; Childress, S.; Choudhary, B. C.; Chowdhury, B.; Coan, T. E.; Coelho, J. A. B.; Colo, M.; Cooper, J.; Corwin, L.; Cremonesi, L.; Cronin-Hennessy, D.; Davies, G. S.; Davies, J. P.; Derwent, P. F.; Dharmapalan, R.; Ding, P.; Djurcic, Z.; Dukes, E. C.; Duyang, H.; Edayath, S.; Ehrlich, R.; Feldman, G. J.; Frank, M. J.; Gabrielyan, M.; Gallagher, H. R.; Germani, S.; Ghosh, T.; Giri, A.; Gomes, R. A.; Goodman, M. C.; Grichine, V.; Groh, M.; Group, R.; Grover, D.; Guo, B.; Habig, A.; Hartnell, J.; Hatcher, R.; Hatzikoutelis, A.; Heller, K.; Himmel, A.; Holin, A.; Howard, B.; Hylen, J.; Jediny, F.; Judah, M.; Kafka, G. K.; Kalra, D.; Kasahara, S. M. S.; Kasetti, S.; Keloth, R.; Kolupaeva, L.; Kotelnikov, S.; Kourbanis, I.; Kreymer, A.; Kumar, A.; Kurbanov, S.; Lackey, T.; Lang, K.; Lee, W. M.; Lin, S.; Lokajicek, M.; Lozier, J.; Luchuk, S.; Maan, K.; Magill, S.; Mann, W. A.; Marshak, M. L.; Matera, K.; Matveev, V.; Méndez, D. P.; Messier, M. D.; Meyer, H.; Miao, T.; Miller, W. H.; Mishra, S. R.; Mohanta, R.; Moren, A.; Mualem, L.; Muether, M.; Mufson, S.; Murphy, R.; Musser, J.; Nelson, J. K.; Nichol, R.; Niner, E.; Norman, A.; Nosek, T.; Oksuzian, Y.; Olshevskiy, A.; Olson, T.; Paley, J.; Patterson, R. B.; Pawloski, G.; Pershey, D.; Petrova, O.; Petti, R.; Phan-Budd, S.; Plunkett, R. K.; Poling, R.; Potukuchi, B.; Principato, C.; Psihas, F.; Radovic, A.; Rameika, R. A.; Rebel, B.; Reed, B.; Rocco, D.; Rojas, P.; Ryabov, V.; Sachdev, K.; Sail, P.; Samoylov, O.; Sanchez, M. C.; Schroeter, R.; Sepulveda-Quiroz, J.; Shanahan, P.; Sheshukov, A.; Singh, J.; Singh, J.; Singh, P.; Singh, V.; Smolik, J.; Solomey, N.; Song, E.; Sousa, A.; Soustruznik, K.; Strait, M.; Suter, L.; Talaga, R. L.; Tas, P.; Thayyullathil, R. B.; Thomas, J.; Tian, X.; Tognini, S. C.; Tripathi, J.; Tsaris, A.; Urheim, J.; Vahle, P.; Vasel, J.; Vinton, L.; Vold, A.; Vrba, T.; Wang, B.; Wetstein, M.; Whittington, D.; Wojcicki, S. G.; Wolcott, J.; Yadav, N.; Yang, S.; Zalesak, J.; Zamorano, B.; Zwaska, R.; NOvA Collaboration

    2017-10-01

    We report results from the first search for sterile neutrinos mixing with active neutrinos through a reduction in the rate of neutral-current interactions over a baseline of 810 km between the NOvA detectors. Analyzing a 14-kton detector equivalent exposure of 6.05 ×1020 protons-on-target in the NuMI beam at Fermilab, we observe 95 neutral-current candidates at the Far Detector compared with 83.5 ±9.7 (stat ) ±9.4 (syst ) events predicted assuming mixing only occurs between active neutrino species. No evidence for νμ→νs transitions is found. Interpreting these results within a 3 +1 model, we place constraints on the mixing angles θ24<20.8 ° and θ34<31.2 ° at the 90% C.L. for 0.05 eV2≤Δ m412≤0.5 eV2 , the range of mass splittings that produce no significant oscillations over the Near Detector baseline.

  18. Intrinsic germanium detector used in borehole sonde for uranium exploration

    USGS Publications Warehouse

    Senftle, F.E.; Moxham, R.M.; Tanner, A.B.; Boynton, G.R.; Philbin, P.W.; Baicker, J.A.

    1976-01-01

    A borehole sonde (~1.7 m long; 7.3 cm diameter) using a 200 mm2 planar intrinsic germanium detector, mounted in a cryostat cooled by removable canisters of frozen propane, has been constructed and tested. The sonde is especially useful in measuring X- and low-energy gamma-ray spectra (40–400 keV). Laboratory tests in an artificial borehole facility indicate its potential for in-situ uranium analyses in boreholes irrespective of the state of equilibrium in the uranium series. Both natural gamma-ray and neutron-activation gamma-ray spectra have been measured with the sonde. Although the neutron-activation technique yields greater sensitivity, improvements being made in the resolution and efficiency of intrinsic germanium detectors suggest that it will soon be possible to use a similar sonde in the passive mode for measurement of uranium in a borehole down to about 0.1% with acceptable accuracy. Using a similar detector and neutron activation, the sonde can be used to measure uranium down to 0.01%.

  19. The Angra Neutrino Project: precise measurement of {theta}{sub 13} and safeguards applications of neutrino detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casimiro, E.; Anjos, J. C.

    2009-04-20

    We present an introduction to the Angra Neutrino Project. The goal of the project is to explore the use of neutrino detectors to monitor the reactor activity. The Angra Project, willl employ as neutrino sources the reactors of the nuclear power complex in Brazil, located in Angra dos Reis, some 150 Km south from the city of Rio de Janeiro. The Angra collaboration will develop and operate a low-mass neutrino detector to monitor the nuclear reactor activity, in particular to measure the reactor thermal power and the reactor fuel isotopic composition.

  20. The Angra Neutrino Project: precise measurement of θ13 and safeguards applications of neutrino detectors

    NASA Astrophysics Data System (ADS)

    Casimiro, E.; Anjos, J. C.

    2009-04-01

    We present an introduction to the Angra Neutrino Project. The goal of the project is to explore the use of neutrino detectors to monitor the reactor activity. The Angra Project, willl employ as neutrino sources the reactors of the nuclear power complex in Brazil, located in Angra dos Reis, some 150 Km south from the city of Rio de Janeiro. The Angra collaboration will develop and operate a low-mass neutrino detector to monitor the nuclear reactor activity, in particular to measure the reactor thermal power and the reactor fuel isotopic composition.

  1. Solid state neutron detector array

    DOEpatents

    Seidel, John G.; Ruddy, Frank H.; Brandt, Charles D.; Dulloo, Abdul R.; Lott, Randy G.; Sirianni, Ernest; Wilson, Randall O.

    1999-01-01

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors.

  2. Semiconductor neutron detectors

    NASA Astrophysics Data System (ADS)

    Gueorguiev, Andrey; Hong, Huicong; Tower, Joshua; Kim, Hadong; Cirignano, Leonard; Burger, Arnold; Shah, Kanai

    2016-09-01

    Lithium Indium Selenide (LiInSe2) has been under development in RMD Inc. and Fisk University for room temperature thermal neutron detection due to a number of promising properties. The recent advances of the crystal growth, material processing, and detector fabrication technologies allowed us to fabricate large detectors with 100 mm2 active area. The thermal neutron detection sensitivity and gamma rejection ratio (GRR) were comparable to 3He tube with 10 atm gas pressure at comparable dimensions. The synthesis, crystal growth, detector fabrication, and characterization are reported in this paper.

  3. Status and Construction of the Belle II DEPFET pixel system

    NASA Astrophysics Data System (ADS)

    Lütticke, Florian

    2014-06-01

    DEpleted P-channel Field Effect Transistor (DEPFET) active pixel detectors combine detection with a first amplification stage in a fully depleted detector, resulting in an superb signal-to-noise ratio even for thin sensors. Two layers of thin (75 micron) silicon DEPFET pixels will be used as the innermost vertex system, very close to the beam pipe in the Belle II detector at the SuperKEKB facility. The status of the 8 million DEPFET pixels detector, latest developments and current system tests will be discussed.

  4. The DarkSide veto: muon and neutron detectors

    NASA Astrophysics Data System (ADS)

    Pagani, L.; Agnes, P.; Alexander, T.; Alton, A.; Arisaka, K.; O. Back, H.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Brigatti, A.; Brodsky, J.; Budano, F.; Cadonati, L.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; Cocco, A. G.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Deo, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Goretti, A.; Grandi, L.; Gromov, M.; Y. Guan, M.; Guardincerri, Y.; Hackett, B.; Herner, K.; Humble, P.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; Jollet, C.; Keeter, K.; Kendziora, C.; Kidner, S.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kurlej, A.; X. Li, P.; Lombardi, P.; Love, C.; Ludhova, L.; Luitz, S.; Ma, Y. Q.; Machulin, I.; Mandarano, A.; Mari, S.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meroni, E.; Meyers, P. D.; Milincic, R.; Montanari, D.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B.; Muratova, V.; Musico, P.; Nelson, A.; Odrowski, S.; Okounkova, M.; Orsini, M.; Ortica, F.; Pallavicini, M.; Pantic, E.; Papp, L.; Parmeggiano, S.; Parsells, R.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A.; Romani, A.; Rossi, B.; Rossi, N.; D. Rountree, S.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Segreto, E.; Semenov, D.; Shields, E.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Unzhakov, E.; Vogelaar, R. B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A.; Westerdale, S.; Wojcik, M.; Wright, A.; Xiang, X.; Xu, J.; G. Yang, C.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhu, C.; Zuzel, G.; DarkSide Collaboration

    2015-01-01

    The existence of dark matter is known because of its gravitational effects, and although its nature remains undisclosed, there is a growing indication that the galactic halo could be permeated by weakly interactive massive particles (WIMPs) with mass of the order of 100GeV. Direct observation of WIMP-nuclear collisions in a laboratory detector plays a key role in dark matter searches. However, it also poses significant challenges, as the expected signals are low in energy and very rare. DarkSide is a project for direct observation of WIMPs in a liquid argon time-projection chamber specifically designed to overtake the difficulties of these challenges. A limiting background for all dark matter detectors is the production in their active volumes of nuclear recoils from the elastic scattering of radiogenic and cosmogenic neutrons. To rule out this background, DarkSide-50 is surrounded by a water tank serving as a Cherenkov detector for muons, and a boron-doped liquid scintillator acting as an active, high-efficiency neutron detector.

  5. An active drop counting device using condenser microphone for superheated emulsion detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Mala; Marick, C.; Kanjilal, D.

    2008-11-15

    An active device for superheated emulsion detector is described. A capacitive diaphragm sensor or condenser microphone is used to convert the acoustic pulse of drop nucleation to electrical signal. An active peak detector is included in the circuit to avoid multiple triggering of the counter. The counts are finally recorded by a microprocessor based data acquisition system. Genuine triggers, missed by the sensor, were studied using a simulated clock pulse. The neutron energy spectrum of {sup 252}Cf fission neutron source was measured using the device with R114 as the sensitive liquid and compared with the calculated fission neutron energy spectrummore » of {sup 252}Cf. Frequency analysis of the detected signals was also carried out.« less

  6. Determination of Trace Concentration in TMD Detectors using PGAA

    NASA Astrophysics Data System (ADS)

    Tomandl, I.; Viererbl, L.; Kudějová, P.; Lahodová, Z.; Klupák, V.; Fikrle, M.

    2015-05-01

    Transmutation detectors could be alternative to the traditional activation detector method for neutron fluence dosimetry at power nuclear reactors. This new method require an isotopically highly-sensitive, non-destructive in sense of compactness as well as isotopic content, precise and standardly used analytical method for trace concentration determination. The capability of Prompt Gamma-ray Activation Analysis (PGAA) for determination of trace concentrations of transmuted stable nuclides in the metallic foils of Ni, Au, Cu and Nb, which were irradiated for 21 days in the reactor core at the LVR-15 research reactor in Řež, is reported. The PGAA measurements of these activation foils were performed at the PGAA facility at Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRMII) in Garching.

  7. An active drop counting device using condenser microphone for superheated emulsion detector

    NASA Astrophysics Data System (ADS)

    Das, Mala; Arya, A. S.; Marick, C.; Kanjilal, D.; Saha, S.

    2008-11-01

    An active device for superheated emulsion detector is described. A capacitive diaphragm sensor or condenser microphone is used to convert the acoustic pulse of drop nucleation to electrical signal. An active peak detector is included in the circuit to avoid multiple triggering of the counter. The counts are finally recorded by a microprocessor based data acquisition system. Genuine triggers, missed by the sensor, were studied using a simulated clock pulse. The neutron energy spectrum of C252f fission neutron source was measured using the device with R114 as the sensitive liquid and compared with the calculated fission neutron energy spectrum of C252f. Frequency analysis of the detected signals was also carried out.

  8. Apparatus for and method of monitoring for breached fuel elements

    DOEpatents

    Gross, K.C.; Strain, R.V.

    1981-04-28

    This invention teaches improved apparatus for the method of detecting a breach in cladded fuel used in a nuclear reactor. The detector apparatus uses a separate bypass loop for conveying part of the reactor coolant away from the core, and at least three separate delayed-neutron detectors mounted proximate this detector loop. The detectors are spaced apart so that the coolant flow time from the core to each detector is different, and these differences are known. The delayed-neutron activity at the detectors is a function of the delay time after the reaction in the fuel until the coolant carrying the delayed-neutron emitter passes the respective detector. This time delay is broken down into separate components including an isotopic holdup time required for the emitter to move through the fuel from the reaction to the coolant at the breach, and two transit times required for the emitter now in the coolant to flow from the breach to the detector loop and then via the loop to the detector.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelley, R.P.; Lewis, J.M.; Murer, D.

    Previous work has measured the neutron response of pressurized {sup 4}He scintillation detectors, however these studies only examine the response as a function of incident neutron energy. Since the detection mechanism in {sup 4}He detectors is elastic scattering, and the interacting neutron will only deposit a fraction of its incident kinetic energy in the detector gas, an examination of the response of the detector output to deposited energy is necessary to transform these detectors into instruments for neutron spectrometry. Using a combined time-of-flight (TOF) and coincidence scattering method, this paper further characterizes the {sup 4}He light response to fast neutronsmore » by examining the scintillation light yield as a function of deposited energy, measuring the light response up to 5 MeV. These {sup 4}He detectors are simple in design, and are manufactured by Arktis Radiation Detectors in several sizes. The specific model used in this experiment had an active volume 20 cm long with an inner diameter of 4.4 cm, giving a total active volume of 304 cm{sup 3}. The key components include the active volume, filled with 150 bar of helium-4 gas, and photomultiplier tubes (PMTs) mounted at either end of the active volume. The detector body is made of stainless steel. The detector response was experimentally measured using a two-detector coincidence arrangement with a {sup 252}Cf source. Two {sup 4}He detectors were vertically mounted, and the source was placed at a horizontal distance from the center of the bottom detector, forming a right angle. By requiring coincidence between the two detectors, it was confirmed that each neutron interacting in the second (top) detector must first have undergone a scattering interaction in the first (bottom) detector, and the time-of-flight (TOF) technique could then be used to determine the energy of the neutron as it traveled between the two detectors by the difference in time between the two detector events. More importantly, with the scattering angle known, the amount of energy deposited by the neutron in the bottom detector (ER) was also calculated using kinematic scattering equations. This deposited recoil energy was then compared to the corresponding light output for each event to form a deposited energy scintillation light response matrix. Similarly, the system's insensitivity to gammas and its ability to reject gammas by pulse shape discrimination (PSD) are often cited as an important advantage, although a detailed analysis of these capabilities has not yet been performed. This work therefore quantified these parameters in order to further characterize these detectors for future mixed radiation field measurements. Gamma sources were measured spanning a range of gamma-ray energies from 0.122 MeV to 1.332 MeV, including {sup 57}Co, {sup 137}Cs, {sup 54}Mn, and {sup 60}Co. Each source was counted by the {sup 4}He detector and the background subtracted. Taking the ratio of the number of events detected during the experimental source measurement to the number of gammas predicted by MCNPX to pass through the detector volume yields the detector's intrinsic gamma efficiency. The difference between this fraction and unity is therefore a measure of the detector's ability to ignore interfering gamma rays, defined as its inherent gamma rejection rate. The ability of post-processing PSD algorithms to further reduce the number of gammas is also investigated and quantified. Finally, it has been noted that the scintillation signal from a single neutron event can be separated in time into two components: the fast component is a sharp peak that exists on the order of nanoseconds; the slow component is a series of smaller pulses, stretched out over four microseconds. Whereas previous research has exclusively focused on the energy information contained in the slow component, this work demonstrates that the fast component is also sensitive to neutron energy, and the entire scintillation signal can therefore be used. In conclusion, the relationship of fast neutron {sup 4}He scintillation detectors to deposited neutron energy was explored, and will be combined with previous works that measured the scintillation response to incident neutron energy in order to develop a neutron spectrometer. Similarly, the ability of these {sup 4}He detectors to reject interfering gamma rays was also quantified, and so will enable this spectrometer to be deployed in mixed radiation field measurements. Finally, while previous works with these detectors have focused on an analysis of the slow scintillation component, it was demonstrated in this work that the fast component also contains significant energy information.« less

  10. Development and Characterization of 6Li-doped Liquid Scintillator Detectors for PROSPECT

    NASA Astrophysics Data System (ADS)

    Gaison, Jeremy; Prospect Collaboration

    2016-09-01

    PROSPECT, the Precision Reactor Oscillation and Spectrum experiment, is a phased reactor antineutrino experiment designed to search for eV-scale sterile neutrinos via short-baseline neutrino oscillations and to make a precision measurement of the 235U reactor antineutrino spectrum. A multi-ton, optically segmented detector will be deployed at Oak Ridge National Laboratory's (ORNL) High Flux Isotope Reactor (HFIR) to measure the reactor spectrum at baselines ranging from 7-12m. A two-segment detector prototype with 50 liters of active liquid scintillator target has been built to verify the detector design and to benchmark its performance. In this presentation, we will summarize the performance of this detector prototype and describe the optical and energy calibration of the segmented PROSPECT detectors.

  11. Blocked impurity band hybrid infrared focal plane arrays for astronomy

    NASA Technical Reports Server (NTRS)

    Reynolds, D. B.; Seib, D. H.; Stetson, S. B.; Herter, T.; Rowlands, N.

    1989-01-01

    High-performance infrared hybrid focal plane arrays using 10- x 50-element Si:As blocked-impurity-band (BIB) detectors (cutoff wavelength = 28 microns) and matching switched MOSFET multiplexers have been developed and characterized for space astronomy. Use of impurity-band-conduction technology provides detectors which are nuclear-radiation-hard and free of the many anomalies associated with conventional silicon photoconductive detectors. Emphasis in the present work is on recent advances in detector material quality which have led to significantly improved detector and hybrid characteristics. Results demonstrating increased quantum efficiency (particularly at short-wavelength infrared), obtained by varying the BIB detector properties (infrared active layer thickness and arsenic doping profile), are summarized. Measured read noise and dark current for different temperatures are reported. The hybrid array performance achieved demonstrates that BIB detectors are well suited for use in astronomical instrumentation.

  12. Absolute linearity measurements on a gold-black-coated deuterated L-alanine-doped triglycine sulfate pyroelectric detector.

    PubMed

    Theocharous, E

    2008-07-20

    The nonlinearity characteristics of a commercially available deuterated L-alanine-doped triglycine sulfate (DLATGS) pyroelectric detector were experimentally investigated at high levels of illumination using the National Physical Laboratory detector linearity characterization facility. The detector was shown to exhibit a superlinear response at high levels of illumination. Moreover, the linearity factor was shown to depend on the area of the spot on the detector active area being illuminated, i.e., the incident irradiance. Possible reasons for the observed behavior are proposed and discussed. The temperature coefficient of the response of the DLATGS pyroelectric detector was measured and found to be higher than +2.5% degrees C(-1). This large and positive temperature coefficient of response is the most likely cause of the superlinear behavior of the DLATGS pyroelectric detector.

  13. FLIM and FCS detection in laser-scanning microscopes: increased efficiency by GaAsP hybrid detectors.

    PubMed

    Becker, W; Su, B; Holub, O; Weisshart, K

    2011-09-01

    Photon counting detectors currently used in fluorescence lifetime microscopy have a number of deficiencies that result in less-than-ideal signal-to-noise ratio of the lifetimes obtained: either the quantum efficiency is unsatisfactory or the active area is too small, and afterpulsing or tails in the temporal response contribute to overall timing inaccuracy. We have therefore developed a new FLIM detector based on a GaAsP hybrid photomultiplier. Compared with conventional PMTs and SPADs, GaAsP hybrid detectors have a number of advantages: The detection quantum efficiency reaches or surpasses the efficiency of fast SPADs, and the active area is on the order of 5 mm², compared with 2.5 10⁻³ mm² for a SPAD. The TCSPC response is clean, without the bumps and the diffusion tails typical for PMTs and SPADs. Most important, the hybrid detector is intrinsically free of afterpulsing. FLIM results are therefore free of signal-dependent background, and FCS curves are free of the known afterpulsing peak. We demonstrate the performance of the new detector for multiphoton NDD FLIM and for FCS. Copyright © 2010 Wiley-Liss, Inc.

  14. High-resolution pulse-counting array detectors for imaging and spectroscopy at ultraviolet wavelengths

    NASA Technical Reports Server (NTRS)

    Timothy, J. Gethyn; Bybee, Richard L.

    1986-01-01

    The performance characteristics of multianode microchannel array (MAMA) detector systems which have formats as large as 256 x 1024 pixels and which have application to imaging and spectroscopy at UV wavelengths are evaluated. Sealed and open-structure MAMA detector tubes with opaque CsI photocathodes can determine the arrival time of the detected photon to an accuracy of 100 ns or better. Very large format MAMA detectors with CsI and Cs2Te photocathodes and active areas of 52 x 52 mm (2048 x 2048 pixels) will be used as the UV solar blind detectors for the NASA STIS.

  15. The fast neutron fluence and the activation detector activity calculations using the effective source method and the adjoint function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hep, J.; Konecna, A.; Krysl, V.

    2011-07-01

    This paper describes the application of effective source in forward calculations and the adjoint method to the solution of fast neutron fluence and activation detector activities in the reactor pressure vessel (RPV) and RPV cavity of a VVER-440 reactor. Its objective is the demonstration of both methods on a practical task. The effective source method applies the Boltzmann transport operator to time integrated source data in order to obtain neutron fluence and detector activities. By weighting the source data by time dependent decay of the detector activity, the result of the calculation is the detector activity. Alternatively, if the weightingmore » is uniform with respect to time, the result is the fluence. The approach works because of the inherent linearity of radiation transport in non-multiplying time-invariant media. Integrated in this way, the source data are referred to as the effective source. The effective source in the forward calculations method thereby enables the analyst to replace numerous intensive transport calculations with a single transport calculation in which the time dependence and magnitude of the source are correctly represented. In this work, the effective source method has been expanded slightly in the following way: neutron source data were performed with few group method calculation using the active core calculation code MOBY-DICK. The follow-up neutron transport calculation was performed using the neutron transport code TORT to perform multigroup calculations. For comparison, an alternative method of calculation has been used based upon adjoint functions of the Boltzmann transport equation. Calculation of the three-dimensional (3-D) adjoint function for each required computational outcome has been obtained using the deterministic code TORT and the cross section library BGL440. Adjoint functions appropriate to the required fast neutron flux density and neutron reaction rates have been calculated for several significant points within the RPV and RPV cavity of the VVER-440 reacto rand located axially at the position of maximum power and at the position of the weld. Both of these methods (the effective source and the adjoint function) are briefly described in the present paper. The paper also describes their application to the solution of fast neutron fluence and detectors activities for the VVER-440 reactor. (authors)« less

  16. Measurement of radon progenies using the Timepix detector.

    PubMed

    Bulanek, Boris; Jilek, Karel; Cermak, Pavel

    2014-07-01

    After an introduction of Timepix detector, results of these detectors with silicon and cadmium telluride detection layer in assessment of activity of short-lived radon decay products are presented. They were collected on an open-face filter by means of one-grab sampling method from the NRPI radon chamber. Activity of short-lived radon decay products was estimated from measured alpha decays of 218,214Po. The results indicate very good agreement between the use of both Timepix detectors and an NRPI reference instrument, continuous monitor Fritra 4. Low-level detection limit for EEC was estimated to be 41 Bq m(-3) for silicon detection layer and 184 Bq m(-3) for CdTe detection layer, respectively. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Tritium autoradiography with thinned and back-side illuminated monolithic active pixel sensor device

    NASA Astrophysics Data System (ADS)

    Deptuch, G.

    2005-05-01

    The first autoradiographic results of the tritium ( 3H) marked source obtained with monolithic active pixel sensors are presented. The detector is a high-resolution, back-side illuminated imager, developed within the SUCIMA collaboration for low-energy (<30 keV) electrons detection. The sensitivity to these energies is obtained by thinning the detector, originally fabricated in the form of a standard VLSI chip, down to the thickness of the epitaxial layer. The detector used is the 1×10 6 pixel, thinned MIMOSA V chip. The low noise performance and thin (˜160 nm) entrance window provide the sensitivity of the device to energies as low as ˜4 keV. A polymer tritium source was parked directly atop the detector in open-air conditions. A real-time image of the source was obtained.

  18. SiC detectors to monitor ionizing radiations emitted from nuclear events and plasmas

    NASA Astrophysics Data System (ADS)

    Torrisi, L.; Cannavò, A.

    2016-09-01

    Silicon Carbide (SiC) semiconductor detectors are increasingly employed in Nuclear Physics for their advantages with respect to traditional silicon (Si). Such detectors show an energy resolution, charge mobility, response velocity and detection efficiency similar to Si detectors. However, the higher band gap (3.26 eV), the lower leakage current (∼10 pA) maintained also at room temperature, the higher radiation hardness and the higher density with respect to Si represent some indisputable advantages characterizing such detectors. The devices can be employed at high temperatures, at high absorbed doses and in the case of high visible light intensities, for example, in plasma, for limited exposition times without damage. Generally SiC Schottky diodes are employed in reverse polarization with an active region depth of the order of 100 µm, purity below 1014 cm-3 and an active area lower than 1 cm2. Measurements in the regime of proportionality with the radiation energy released in the active region and measurements in time-of-flight configuration are employed for nuclear emission events produced at both low and high fluences. Alpha spectra demonstrated an energy resolution of about 1.3% at 5.8 MeV. Radiation emission from laser-generated plasma can be monitored in terms of detected photons, electrons and ions, using the laser pulse as a start signal and the radiation detection as a stop signal, enabling to measure the ion velocity by knowing the target-detector flight distance. SiC spectra acquired in the Messina University laboratories using radioactive ion sources and at the PALS laboratory facility in Prague (Czech Republic) are presented. A preliminary study of the use of SiC detectors, embedded in a water equivalent polymer, as a dosimeter is presented and discussed.

  19. A Wireless Object Location Detector Enabling People with Developmental Disabilities to Control Environmental Stimulation through Simple Occupational Activities with Nintendo Wii Balance Boards

    ERIC Educational Resources Information Center

    Shih, Ching-Hsiang; Chang, Man-Ling

    2012-01-01

    The latest researches have adopted software technology, turning the Nintendo Wii Balance Board into a high performance standing location detector with a newly developed standing location detection program (SLDP). This study extended SLDP functionality to assess whether two people with developmental disabilities would be able to actively perform…

  20. Active Radiation Detectors for Use in Space Beyond Low Earth Orbit: Spatial and Energy Resolution Requirements and Methods for Heavy Ion Charge Classification

    NASA Astrophysics Data System (ADS)

    McBeth, Rafe A.

    Space radiation exposure to astronauts will need to be carefully monitored on future missions beyond low earth orbit. NASA has proposed an updated radiation risk framework that takes into account a significant amount of radiobiological and heavy ion track structure information. These models require active radiation detection systems to measure the energy and ion charge Z. However, current radiation detection systems cannot meet these demands. The aim of this study was to investigate several topics that will help next generation detection systems meet the NASA objectives. Specifically, this work investigates the required spatial resolution to avoid coincident events in a detector, the effects of energy straggling and conversion of dose from silicon to water, and methods for ion identification (Z) using machine learning. The main results of this dissertation are as follows: 1. Spatial resolution on the order of 0.1 cm is required for active space radiation detectors to have high confidence in identifying individual particles, i.e., to eliminate coincident events. 2. Energy resolution of a detector system will be limited by energy straggling effects and the conversion of dose in silicon to dose in biological tissue (water). 3. Machine learning methods show strong promise for identification of ion charge (Z) with simple detector designs.

  1. A simple on-line arterial time-activity curve detector for [O-15] water PET studies

    NASA Astrophysics Data System (ADS)

    Wollenweber, S. D.; Hichwa, R. D.; Ponto, L. L. B.

    1997-08-01

    A simple, automated on-line detector system has been fabricated and implemented to detect the arterial time-activity curve (TAG) for bolus-injection [O-15] water PET studies. This system offers two significant improvements over existing systems: a pump mechanism is not required to control arterial blood flow through the detector and dispersion correction of the time-activity curve for dispersion in external tubing is unnecessary. The [O-15] positrons emanating from blood within a thin-walled, 0.134 cm inner-diameter plastic tube are detected by a 0.5 cm wide by 1.0 cm long by 0.1 cm thick plastic scintillator mounted to a miniature PMT. Photon background is reduced to insignificant levels by a 2.0 cm thick cylindrical lead shield. Mean cerebral blood flow (mCBF) determined from an autoradiographic model and from the TAC measured by 1-second automated sampling was compared to that calculated from a TAC acquired using 5-second integrated manual samples. Improvements in timing resolution (1-sec vs. 5-sec) cause small but significant differences between the two sampling methods. Dispersion is minimized due to small tubing diameters, short lengths of tubing between the radial arterial sampling site and the detector and the presence of a 3-way valve 10 cm proximal to the detector.

  2. Spatial response of synthetic microDiamond and diode detectors measured with kilovoltage synchrotron radiation.

    PubMed

    Butler, Duncan J; Beveridge, Toby; Lehmann, Joerg; Oliver, Christopher P; Stevenson, Andrew W; Livingstone, Jayde

    2018-02-01

    To map the spatial response of four solid-state radiation detectors of types commonly used for radiotherapy dosimetry. PTW model 60016 Diode P, 60017 Diode E, 60018 Diode SRS, and 60019 microDiamond detectors were radiographed using a high resolution conventional X-ray system. Their spatial response was then investigated using a 0.1 mm diameter beam of 95 keV average energy photons generated by a synchrotron. The detectors were scanned through the beam while their signal was recorded as a function of position, to map the response. These 2D response maps were created in both the end-on and side-on orientations. The results show the location and size of the active region. End-on, the active area was determined to be centrally located and within 0.2 mm of the manufacturer's specified diameter. The active areas of the 60016 Diode P, 60017 Diode E, 60018 Diode SRS detectors are uniform to within approximately 5%. The 60019 microDiamond showed local variations up to 30%. The extra-cameral signal in the microDiamond was calculated from the side-on scan to be approximately 8% of the signal from the active element. The spatial response of four solid-state detectors has been measured. The technique yielded information about the location and uniformity of the active area, and the extra-cameral signal, for the beam quality used. © 2017 Commonwealth of Australia. Medical Physics © 2017 American Association of Physicists in Medicine. This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced without prior written permission. Requests and enquiries concerning reproduction and rights should be directed in the first instance to John Wiley & Sons Ltd of The Atrium, Southern Gate, Chichester, West Sussex P019 8SQ UNITED KINGDOM; alternatively to ARPANSA.

  3. Actively driven thermal radiation shield

    DOEpatents

    Madden, Norman W.; Cork, Christopher P.; Becker, John A.; Knapp, David A.

    2002-01-01

    A thermal radiation shield for cooled portable gamma-ray spectrometers. The thermal radiation shield is located intermediate the vacuum enclosure and detector enclosure, is actively driven, and is useful in reducing the heat load to mechanical cooler and additionally extends the lifetime of the mechanical cooler. The thermal shield is electrically-powered and is particularly useful for portable solid-state gamma-ray detectors or spectrometers that dramatically reduces the cooling power requirements. For example, the operating shield at 260K (40K below room temperature) will decrease the thermal radiation load to the detector by 50%, which makes possible portable battery operation for a mechanically cooled Ge spectrometer.

  4. Measurements of the Reactor Antineutrino with Solid State Scintillation Detector

    NASA Astrophysics Data System (ADS)

    Alekseev, I.; Belov, V.; Brudanin, V.; Danilov, M.; Egorov, V.; Filosofov, D.; Fomina, M.; Hons, Z.; Kazartsev, S.; Kobyakin, A.; Kuznetsov, A.; Machikhiliyan, I.; Medvedev, D.; Nesterov, V.; Olshevsky, A.; Pogorelov, N.; Ponomarev, D.; Rozova, I.; Rumyantseva, N.; Rusinov, V.; Salamatin, A.; Samigullin, E.; Shevchik, Ye.; Shirchenko, M.; Shitov, Yu.; Skrobova, N.; Starostin, A.; Svirida, D.; Tarkovsky, E.; Tikhomirov, I.; Vlášek, J.; Zhitnikov, I.; Zinatulina, D.

    Measurements of reactor antineutrino play an important role in the efforts at the frontier of the modern physics. The DANSS collaboration presents preliminary results of a one year run with a cubic meter solid state detector placed below 3.1 GW industrial light water reactor. The experiment is sensitive to sterile neutrino in the most interesting region of mixing parameter space. 2500 scintillation strips of the sensitive volume of the detector have multilayer passive shielding of copper, lead and borated polyethylene and active muon veto. Detector position below the reactor gives an advantage of overburden about 50 m of water equivalent providing factor of six in cosmic muon suppression and eliminating fast neutrons.The detector is placed on a vertically movable platform which allows to change the distance to the reactor core center in the range 10.7-12.7 m within a few minutes. The strips are read out individually by SiPMs and in groups of 50 by PMTs. 5000 inverse beta-decay events per day are collected in the fiducial volume, which is 78% of the whole detector, at the position closest to the reactor. Overburden, active veto and good segmentation of the detector result in an excellent signal to background ratio. The talk is dedicated to the data analysis and preliminary results. The experiment status is also presented.

  5. Investigation of Active Interrogation Techniques to Detect Special Nuclear Material in Maritime Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Thomas Martin; Patton, Bruce W

    The detection and interdiction of special nuclear material (SNM) is still a high-priority focus area for many organizations around the world. One method that is commonly considered a leading candidate in the detection of SNM is active interrogation (AI). AI is different from its close relative, passive interrogation, in that an active source is used to enhance or create a detectable signal (usually fission) from SNM, particularly in shielded scenarios or scenarios where the SNM has a low activity. The use of AI thus makes the detection of SNM easier or, in some scenarios, even enables previously impossible detection. Inmore » this work the signal from prompt neutrons and photons as well as delayed neutrons and photons will be combined, as is typically done in AI. In previous work AI has been evaluated experimentally and computationally. However, for the purposes of this work, past scenarios are considered lightly shielded and tightly coupled spatially. At most, the previous work interrogated the contents of one standard cargo container (2.44 x 2.60 x 6.10 m) and the source and detector were both within a few meters of the object being interrogated. A few examples of this type of previous work can be found in references 1 and 2. Obviously, more heavily shielded AI scenarios will require larger source intensities, larger detector surface areas (larger detectors or more detectors), greater detector efficiencies, longer count times, or some combination of these.« less

  6. NEMO: Status of the Project

    NASA Astrophysics Data System (ADS)

    Migneco, E.; Aiello, S.; Amato, E.; Ambriola, M.; Ameli, F.; Andronico, G.; Anghinolfi, M.; Battaglieri, M.; Bellotti, R.; Bersani, A.; Boldrin, A.; Bonori, M.; Cafagna, F.; Capone, A.; Caponnetto, L.; Chiarusi, T.; Circella, M.; Cocimano, R.; Coniglione, R.; Cordelli, M.; Costa, M.; Cuneo, S.; D'Amico, A.; D'Amico, V.; De Marzo, C.; De Vita, R.; Distefano, C.; Gabrielli, A.; Gandolfi, E.; Grimaldi, A.; Habel, R.; Italiano, A.; Leonardi, M.; Lo Nigro, L.; Lo Presti, D.; Margiotta, A.; Martini, A.; Masetti, M.; Masullo, R.; Montaruli, T.; Mosetti, R.; Musumeci, M.; Nicolau, C. A.; Occhipinti, R.; Papaleo, R.; Petta, C.; Piattelli, P.; Raia, G.; Randazzo, N.; Reito, S.; Ricco, G.; Riccobene, G.; Ripani, M.; Romita, M.; Rovelli, A.; Ruppi, M.; Russo, G. V.; Russo, M.; Sapienza, P.; Schuller, J. P.; Sedita, M.; Sokalski, I.; Spurio, M.; Taiuti, M.; Trasatti, L.; Ursella, L.; Valente, V.; Vicini, P.; Zanarini, G.

    2004-11-01

    The activities towards the realisation of a km3 Cherenkov neutrino detector, carried out by the NEMO Collaboration are described. Long term exploration of a 3500 m deep site close to the Sicilian coast has shown that it is optimal for the installation of the detector. A complete feasibility study, that has considered all the components of the detector as well as its deployment, has been carried out demonstrating that technological solutions exist for the realization of an underwater km3 detector. The realization of a technological demonstrator (the NEMO Phase 1 project) is under way.

  7. Solid state neutron detector array

    DOEpatents

    Seidel, J.G.; Ruddy, F.H.; Brandt, C.D.; Dulloo, A.R.; Lott, R.G.; Sirianni, E.; Wilson, R.O.

    1999-08-17

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors. 7 figs.

  8. Study of Neutrino-Induced Neutrons in Dark Matter Detectors for Supernova Burst Neutrinos

    NASA Astrophysics Data System (ADS)

    Kwan, Newton; Scholberg, Kate

    2017-09-01

    When supernova burst neutrinos (1-50 MeV) pass through the Earth, they occasionally interact with the passive shielding surrounding dark matter detectors. When the neutrinos interact, one or two roughly 2 MeV neutrons are scattered isotropically and uniformly, often leaving undetected. Occasionally, these neutrino-induced neutrons (NINs) interact with the detector and leave a background signal similar to a WIMP. The purpose of this study is to understand the effects of NINs on active dark matter detectors during a supernova burst.

  9. Pillar-structured neutron detector based multiplicity system

    DOE PAGES

    Murphy, John W.; Shao, Qinghui; Voss, Lars F.; ...

    2017-10-04

    This work demonstrates the potential of silicon pillars filled with boron-10 as a sensor technology for a compact and portable neutron multiplicity system. Solid-state, semiconductor based neutron detectors may enable completely new detector form factors, offer an alternate approach to helium-3 based systems, and reduce detector weight and volume requirements. Thirty-two pillar-structured neutron detectors were assembled into a system with an active area of over 20 cm 2 and were used in this work to demonstrate the feasibility of this sensor technology as a potential replacement for helium-3 based gas detectors. Multiplicity measurements were successfully carried out using a californium-252more » neutron source, in which the source mass, system efficiency, and die-away time were determined. As a result, this demonstration shows that these solid-state detectors could allow for a more compact and portable system that could be used for special nuclear material identification in the field.« less

  10. Imaging characteristics of the Extreme Ultraviolet Explorer microchannel plate detectors

    NASA Technical Reports Server (NTRS)

    Vallerga, J. V.; Kaplan, G. C.; Siegmund, O. H. W.; Lampton, M.; Malina, R. F.

    1989-01-01

    The Extreme Ultraviolet Explorer (EUVE) satellite will conduct an all-sky survey over the wavelength range from 70 A to 760 A using four grazing-incidence telescopes and seven microchannel-plate (MCP) detectors. The imaging photon-counting MCP detectors have active areas of 19.6 cm2. Photon arrival position is determined using a wedge-and-strip anode and associated pulse-encoding electronics. The imaging characteristics of the EUVE flight detectors are presented including image distortion, flat-field response, and spatial differential nonlinearity. Also included is a detailed discussion of image distortions due to the detector mechanical assembly, the wedge-and-strip anode, and the electronics. Model predictions of these distortions are compared to preflight calibration images which show distortions less than 1.3 percent rms of the detector diameter of 50 mm before correction. The plans for correcting these residual detector image distortions to less than 0.1 percent rms are also presented.

  11. Pillar-structured neutron detector based multiplicity system

    NASA Astrophysics Data System (ADS)

    Murphy, John W.; Shao, Qinghui; Voss, Lars F.; Kerr, Phil L.; Fabris, Lorenzo; Conway, Adam M.; Nikolic, Rebecca J.

    2018-01-01

    This work demonstrates the potential of silicon pillars filled with boron-10 as a sensor technology for a compact and portable neutron multiplicity system. Solid-state, semiconductor based neutron detectors may enable completely new detector form factors, offer an alternate approach to helium-3 based systems, and reduce detector weight and volume requirements. Thirty-two pillar-structured neutron detectors were assembled into a system with an active area of over 20 cm2 and were used in this work to demonstrate the feasibility of this sensor technology as a potential replacement for helium-3 based gas detectors. Multiplicity measurements were successfully carried out using a californium-252 neutron source, in which the source mass, system efficiency, and die-away time were determined. This demonstration shows that these solid-state detectors could allow for a more compact and portable system that could be used for special nuclear material identification in the field.

  12. Fiber optic detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Partin, J.K.; Ward, T.E.; Grey, A.E.

    1990-12-31

    This invention is comprised of a portable fiber optic detector that senses the presence of specific target chemicals by exchanging the target chemical for a fluorescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.

  13. Fiber optic detector for immuno-testing

    DOEpatents

    Partin, Judy K.; Ward, Thomas E.; Grey, Alan E.

    1992-01-01

    A portable fiber optic detector that senses the presence of specific target chemicals in air or a gas by exchanging the target chemical for a fluoroescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.

  14. Fiber optic detector

    NASA Astrophysics Data System (ADS)

    Partin, Judy K.; Ward, Thomas E.; Grey, Alan E.

    1990-04-01

    This invention is comprised of a portable fiber optic detector that senses the presence of specific target chemicals by exchanging the target chemical for a fluorescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.

  15. Tomography of quantum detectors

    NASA Astrophysics Data System (ADS)

    Lundeen, J. S.; Feito, A.; Coldenstrodt-Ronge, H.; Pregnell, K. L.; Silberhorn, Ch.; Ralph, T. C.; Eisert, J.; Plenio, M. B.; Walmsley, I. A.

    2009-01-01

    Measurement connects the world of quantum phenomena to the world of classical events. It has both a passive role-in observing quantum systems-and an active one, in preparing quantum states and controlling them. In view of the central status of measurement in quantum mechanics, it is surprising that there is no general recipe for designing a detector that measures a given observable. Compounding this, the characterization of existing detectors is typically based on partial calibrations or elaborate models. Thus, experimental specification (that is, tomography) of a detector is of fundamental and practical importance. Here, we present the realization of quantum detector tomography. We identify the positive-operator-valued measure describing the detector, with no ancillary assumptions. This result completes the triad, state, process and detector tomography, required to fully specify an experiment. We characterize an avalanche photodiode and a photon-number-resolving detector capable of detecting up to eight photons. This creates a new set of tools for accurately detecting and preparing non-classical light.

  16. Elemental analysis using natural gamma-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Aksoy, A.; Naqvi, A. A.; Khiari, F. Z.; Abujarad, F.; Al-Ohali, M.; Sumani, M.

    1994-12-01

    A gamma-ray spectroscopy setup has been recently established to measure the natural gamma-ray activity from potassium ( 40K), uranium ( 238U), and thorium ( 232Th) isotopes in rock samples of oil well-logs. The setup mainly consists of a shielded 135 cm 3 Hyper Pure Germanium (HPGe) detector, a 5 in. × 5 in. NaT(Tl) detector and a PC based data acquisition system. The core samples, with 70-100 g weight, have cylindrical geometry and are sealed such that radon gas from 238U decay would not escape from the sample. For room background subtraction, pure quartz samples identical to core samples were used. The sample is first counted with the HPGe detector to identify the elements through its characteristics gamma rays. Then the elemental concentration is determined by counting the sample with a NaI detector. In order to determine the absolute concentrations, the sample activity is compared with the activities of standards supplied by NIST and IAEA. The concentration of 238U and 232Th has been determined in ppm range with that of 40K in wt.%.

  17. Search for active-sterile neutrino mixing using neutral-current interactions in NOvA

    DOE PAGES

    Adamson, P.; Aliaga, L.; Ambrose, D.; ...

    2017-10-30

    Here, we report results from the first search for sterile neutrinos mixing with active neutrinos through a reduction in the rate of neutral-current interactions over a baseline of 810 km between the NOvA detectors. Analyzing a 14-kton detector equivalent exposure of 6.05 × 10 20 protons-on-target in the NuMI beam at Fermilab, we observe 95 neutral-current candidates at the Far Detector compared with 83.5 ± 9.7(stat) ± 9.4(syst) events predicted assuming mixing only occurs between active neutrino species. No evidence for νμ→νs transitions is found. Interpreting these results within a 3+1 model, we place constraints on the mixing angles θ 24more » < 20.8° and θ 34 < 31.2° at the 90% C.L. for 0.05 eV 2 ≤ Δm 41 2 ≤ 0.5 eV 2, the range of mass splittings that produce no significant oscillations over the Near Detector baseline.« less

  18. Characterization of BEGe detectors in the HADES underground laboratory

    NASA Astrophysics Data System (ADS)

    Andreotti, Erica; Gerda Collaboration

    2013-08-01

    This paper describes the characterization of newly produced Broad Energy Germanium (BEGe) detectors, enriched in the isotope 76Ge. These detectors have been produced in the frame of the GERDA experiment. The aim of the characterization campaign consists in the determination of all the important operational parameters (active volume, dead layer thickness and uniformity, energy resolution, detector stability in time, quality of pulse shape discrimination). A protocol test procedure and devoted set-ups, partially automated, have been developed in view of the large number (∼ 25) of BEGe's detectors to be tested. The characterization is carried out in the HADES underground laboratory, located 225 m below ground (∼ 500 m water equivalent) in Mol, Belgium.

  19. Cosmic Ray research in Armenia

    NASA Astrophysics Data System (ADS)

    Chilingarian, A.; Mirzoyan, R.; Zazyan, M.

    2009-11-01

    Cosmic Ray research on Mt. Aragats began in 1934 with the measurements of East-West anisotropy by the group from Leningrad Physics-Technical Institute and Norair Kocharian from Yerevan State University. Stimulated by the results of their experiments in 1942 Artem and Abraham Alikhanyan brothers organized a scientific expedition to Aragats. Since that time physicists were studying Cosmic Ray fluxes on Mt. Aragats with various particle detectors: mass spectrometers, calorimeters, transition radiation detectors, and huge particle detector arrays detecting protons and nuclei accelerated in most violent explosions in Galaxy. Latest activities at Mt. Aragats include Space Weather research with networks of particle detectors located in Armenia and abroad, and detectors of Space Education center in Yerevan.

  20. Apparatus and method for detecting gamma radiation

    DOEpatents

    Sigg, Raymond A.

    1994-01-01

    A high efficiency radiation detector for measuring X-ray and gamma radiation from small-volume, low-activity liquid samples with an overall uncertainty better than 0.7% (one sigma SD). The radiation detector includes a hyperpure germanium well detector, a collimator, and a reference source. The well detector monitors gamma radiation emitted by the reference source and a radioactive isotope or isotopes in a sample source. The radiation from the reference source is collimated to avoid attenuation of reference source gamma radiation by the sample. Signals from the well detector are processed and stored, and the stored data is analyzed to determine the radioactive isotope(s) content of the sample. Minor self-attenuation corrections are calculated from chemical composition data.

  1. System for detecting special nuclear materials

    DOEpatents

    Jandel, Marian; Rusev, Gencho Yordanov; Taddeucci, Terry Nicholas

    2015-07-14

    The present disclosure includes a radiological material detector having a convertor material that emits one or more photons in response to a capture of a neutron emitted by a radiological material; a photon detector arranged around the convertor material and that produces an electrical signal in response to a receipt of a photon; and a processor connected to the photon detector, the processor configured to determine the presence of a radiological material in response to a predetermined signature of the electrical signal produced at the photon detector. One or more detectors described herein can be integrated into a detection system that is suited for use in port monitoring, treaty compliance, and radiological material management activities.

  2. Pulse shape discrimination for background rejection in germanium gamma-ray detectors

    NASA Technical Reports Server (NTRS)

    Feffer, P. T.; Smith, D. M.; Campbell, R. D.; Primbsch, J. H.; Lin, R. P.

    1989-01-01

    A pulse-shape discrimination (PSD) technique is developed to reject the beta-decay background resulting from activation of Ge gamma-ray detectors by cosmic-ray secondaries. These beta decays are a major source of background at 0.2-2 MeV energies in well shielded Ge detector systems. The technique exploits the difference between the detected current pulse shapes of single- and multiple-site energy depositions within the detector: beta decays are primarily single-site events, while photons at these energies typically Compton scatter before being photoelectrically absorbed to produce multiple-site events. Depending upon the amount of background due to sources other than beta decay, PSD can more than double the detector sensitivity.

  3. Measurement of the absolute reflectance of polytetrafluoroethylene (PTFE) immersed in liquid xenon

    NASA Astrophysics Data System (ADS)

    Neves, F.; Lindote, A.; Morozov, A.; Solovov, V.; Silva, C.; Bras, P.; Rodrigues, J. P.; Lopes, M. I.

    2017-01-01

    The performance of a detector using liquid xenon (LXe) as a scintillator is strongly dependent on the collection efficiency for xenon scintillation light, which in turn is critically dependent on the reflectance of the surfaces that surround the active volume. To improve the light collection in such detectors the active volume is usually surrounded by polytetrafluoroethylene (PTFE) reflector panels, used due to its very high reflectance—even at the short wavelength of scintillation light of LXe (peaked at 178 nm). In this work, which contributed to the overall R&D effort towards the LUX-ZEPLIN (LZ) experiment, we present experimental results for the absolute reflectance measurements of three different PTFE samples (including the material used in the LUX detector) immersed in LXe for its scintillation light. The obtained results show that very high bi-hemispherical reflectance values (>= 97%) can be achieved, enabling very low energy thresholds in liquid xenon scintillator-based detectors.

  4. Experimental research of neutron yield and spectrum from deuterium gas-puff z-pinch on the GIT-12 generator at current above 2 MA

    NASA Astrophysics Data System (ADS)

    Cherdizov, R. K.; Fursov, F. I.; Kokshenev, V. A.; Kurmaev, N. E.; Labetsky, A. Yu; Ratakhin, N. A.; Shishlov, A. V.; Cikhardt, J.; Cikhardtova, B.; Klir, D.; Kravarik, J.; Kubes, P.; Rezac, K.; Dudkin, G. N.; Garapatsky, A. A.; Padalko, V. N.; Varlachev, V. A.

    2017-05-01

    The Z-pinch experiments with deuterium gas-puff surrounded by an outer plasma shell were carried out on the GIT-12 generator (Tomsk, Russia) at currents of 2 MA. The plasma shell consisting of hydrogen and carbon ions was formed by 48 plasma guns. The deuterium gas-puff was created by a fast electromagnetic valve. This configuration provides an efficient mode of the neutron production in DD reaction, and the neutron yield reaches a value above 1012 neutrons per shot. Neutron diagnostics included scintillation TOF detectors for determination of the neutron energy spectrum, bubble detectors BD-PND, a silver activation detector, and several activation samples for determination of the neutron yield analysed by a Sodium Iodide (NaI) and a high-purity Germanium (HPGe) detectors. Using this neutron diagnostic complex, we measured the total neutron yield and amount of high-energy neutrons.

  5. A universal setup for active control of a single-photon detector

    NASA Astrophysics Data System (ADS)

    Liu, Qin; Lamas-Linares, Antía; Kurtsiefer, Christian; Skaar, Johannes; Makarov, Vadim; Gerhardt, Ilja

    2014-01-01

    The influence of bright light on a single-photon detector has been described in a number of recent publications. The impact on quantum key distribution (QKD) is important, and several hacking experiments have been tailored to fully control single-photon detectors. Special attention has been given to avoid introducing further errors into a QKD system. We describe the design and technical details of an apparatus which allows to attack a quantum-cryptographic connection. This device is capable of controlling free-space and fiber-based systems and of minimizing unwanted clicks in the system. With different control diagrams, we are able to achieve a different level of control. The control was initially targeted to the systems using BB84 protocol, with polarization encoding and basis switching using beamsplitters, but could be extended to other types of systems. We further outline how to characterize the quality of active control of single-photon detectors.

  6. A universal setup for active control of a single-photon detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Qin; Skaar, Johannes; Lamas-Linares, Antía

    2014-01-15

    The influence of bright light on a single-photon detector has been described in a number of recent publications. The impact on quantum key distribution (QKD) is important, and several hacking experiments have been tailored to fully control single-photon detectors. Special attention has been given to avoid introducing further errors into a QKD system. We describe the design and technical details of an apparatus which allows to attack a quantum-cryptographic connection. This device is capable of controlling free-space and fiber-based systems and of minimizing unwanted clicks in the system. With different control diagrams, we are able to achieve a different levelmore » of control. The control was initially targeted to the systems using BB84 protocol, with polarization encoding and basis switching using beamsplitters, but could be extended to other types of systems. We further outline how to characterize the quality of active control of single-photon detectors.« less

  7. Reflectance measurements of PTFE, Kapton, and PEEK for xenon scintillation light for the LZ detector.

    NASA Astrophysics Data System (ADS)

    Arthurs, M.; Batista, E.; Haefner, J.; Lorenzon, W.; Morton, D.; Neff, A.; Okunawo, M.; Pushkin, K.; Sander, A.; Stephenson, S.; Wang, Y.; LZ Collaboration

    2017-01-01

    LZ (LUX-Zeplin) is an international collaboration that will look for dark matter candidates, WIMPs (Weakly Interacting Massive Particles), through direct detection by dual-phase time projection chamber (TPC) using liquid xenon. The LZ detector will be located nearly a mile underground at SURF, South Dakota, shielded from cosmic background radiation. Seven tons active mass of liquid xenon will be used for detecting the weak interaction of WIMPs with ordinary matter. Over three years of operation it is expected to reach the ultimate sensitivity of 2x10-48 cm2 for a WIMP mass of 50 GeV. As for many other rare event searches, high light collection efficiency is essential for LZ detector. Moreover, in order to achieve greater active volume for detection as well as reduce potential backgrounds, thinner detector walls without significant loss in reflectance are desired. Reflectance measurements of polytetrafluoroethylene (PTFE), Kapton, and PEEK for xenon scintillation light (178 nm), conducted at the University of Michigan using the Michigan Xenon Detector (MiX) will be presented. The University of Michigan, LZ Collaboration, The US Department of Energy.

  8. An ultra-low power self-timed column-level ADC for a CMOS pixel sensor based vertex detector

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Wang, M.

    2014-11-01

    The International Large Detector (ILD) is a detector concept for the future linear collider experiment. The vertex detector is the key tool to achieve high precision measurements for flavor tagging, which puts stringent requirements on the CMOS pixel sensors. Due to the cooling systems which deteriorate the material budget and increase the multiple scattering, it is important to reduce the power consumption. This paper presents an ultra-low power self-timed column-level ADC for the CMOS pixel sensors, aiming to equip the outer layers of the vertex detector. The ADC was designed to operate in two modes (active and idle) adapted to the low hit density in the outer layers. The architecture employs an enhanced sample-and-hold circuit and a self-timed technique. The total power consumption with a 3-V supply is 225μW during idle mode, which is the most frequent situation. This value rises to 425μW in the case of the active mode. It occupies an area of 35 × 590μm2.

  9. Calibration and Characterization of the UNCB and Nab Detectors

    NASA Astrophysics Data System (ADS)

    Zeck, Bryan; UCNB Collaboration; Nab Collaboration

    2017-09-01

    The UCNB and Nab experiments are designed to produce precision measurements of the free neutron decay angular correlations B, a, and b. Measurements of B and a require a coincident detection of the proton and electron produced in neutron decay, while for b, which manifests as a subtle shift in the electron energy spectrum, energy resolution better than 3 keV is desired and excellent fidelity for energy reconstruction is required, including characterization of non-linearity to the 10-4 level. To this end, a thick segmented silicon detector with a 100 nm dead layer and a 100 cm active area has been extensively characterized at LANL. The thin dead layer allows protons accelerated to 30 keV to deposit energy above threshold in the active volume of the detector, and the paired amplifer chain, developed at LANL, has a risetime of approximately 40 ns. Comparison of simulation to experiment reveals a detector resolution better than σ = 2.5 keV. A complete characterization of the detector will be presented. This work has been supported by Grants from the US National Science Foundation and the Department of Energy.

  10. Using the Wiener estimator to determine optimal imaging parameters in a synthetic-collimator SPECT system used for small animal imaging

    NASA Astrophysics Data System (ADS)

    Lin, Alexander; Johnson, Lindsay C.; Shokouhi, Sepideh; Peterson, Todd E.; Kupinski, Matthew A.

    2015-03-01

    In synthetic-collimator SPECT imaging, two detectors are placed at different distances behind a multi-pinhole aperture. This configuration allows for image detection at different magnifications and photon energies, resulting in higher overall sensitivity while maintaining high resolution. Image multiplexing the undesired overlapping between images due to photon origin uncertainty may occur in both detector planes and is often present in the second detector plane due to greater magnification. However, artifact-free image reconstruction is possible by combining data from both the front detector (little to no multiplexing) and the back detector (noticeable multiplexing). When the two detectors are used in tandem, spatial resolution is increased, allowing for a higher sensitivity-to-detector-area ratio. Due to variability in detector distances and pinhole spacings found in synthetic-collimator SPECT systems, a large parameter space must be examined to determine optimal imaging configurations. We chose to assess image quality based on the task of estimating activity in various regions of a mouse brain. Phantom objects were simulated using mouse brain data from the Magnetic Resonance Microimaging Neurological Atlas (MRM NeAt) and projected at different angles through models of a synthetic-collimator SPECT system, which was developed by collaborators at Vanderbilt University. Uptake in the different brain regions was modeled as being normally distributed about predetermined means and variances. We computed the performance of the Wiener estimator for the task of estimating activity in different regions of the mouse brain. Our results demonstrate the utility of the method for optimizing synthetic-collimator system design.

  11. Calibration of the JET neutron activation system for DT operation

    NASA Astrophysics Data System (ADS)

    Bertalot, L.; Roquemore, A. L.; Loughlin, M.; Esposito, B.

    1999-01-01

    The neutron activation system at JET is a pneumatic transfer system capable of positioning activation samples close to the plasma. Its primary purpose is to provide a calibration for the time-dependent neutron yield monitors (fission chambers and solid state detectors). Various activation reactions with different high energy thresholds were used including 56Fe(n,p) 56Mn, 27Al(n,α) 24Na, 93Nb(n,2n) 92mNb, and 28Si(n,p) 28Al reactions. The silicon reaction, with its short half life (2.25 min), provides a prompt determination of the 14 MeV DT yield. The neutron induced γ-ray activity of the Si samples was measured using three sodium iodide scintillators, while two high purity germanium detectors were used for other foils. It was necessary to use a range of sample masses and different counting geometries in order to cover the wide range of neutron yields (1015-1019 neutrons) while avoiding excessive count rates in the detectors. The absolute full energy peak efficiency calibration of the detectors was measured taking into account the source-detector geometry, the self-attenuation of the samples and cross-talk effects. An error analysis of the neutron yield measurement was performed including uncertainties in efficiency calibration, neutron transport calculations, cross sections, and counting statistics. Cross calibrations between the different irradiation ends were carried out in DD and DT (with 1% and 10% tritium content) discharges. The effect of the plasma vertical displacement was also experimentally studied. An agreement within 10% was found between the 14 MeV neutron yields measured from Si, Fe, Al, Nb samples in DT discharges.

  12. Effects induced by high and low intensity laser plasma on SiC Schottky detectors

    NASA Astrophysics Data System (ADS)

    Sciuto, Antonella; Torrisi, Lorenzo; Cannavò, Antonino; Mazzillo, Massimo; Calcagno, Lucia

    2018-01-01

    Silicon-Carbide detectors are extensively employed as diagnostic devices in laser-generated plasma, allowing the simultaneous detection of photons, electrons and ions, when used in time-of-flight configuration. The plasma generated by high intensity laser (1016 W/cm2) producing high energy ions was characterized by SiC detector with a continuous front-electrode, and a very thick active depth, while SiC detector with an Interdigit front-electrode was used to measure the low energy ions of plasma generated by low intensity laser (1010 W/cm2). Information about ion energy, number of charge states, plasma temperature can be accurately obtained. However, laser exposure induces the formation of surface and bulk defects whose concentration increases with increasing the time to plasma exposure. The surface defects consist of clusters with a main size of the order of some microns and they modify the diode barrier height and the efficiency of the detector as checked by alpha spectrometry. The bulk defects, due to the energy loss of detected ions, strongly affect the electrical properties of the device, inducing a relevant increase of the leakage (reverse) current and decrease the forward current related to a deactivation of the dopant in the active detector region.

  13. 3D modeling of electric fields in the LUX detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akerib, D. S.; Alsum, S.; Araújo, H. M.

    This work details the development of a three-dimensional (3D) electric field model for the LUX detector. The detector took data to search for weakly interacting massive particles (WIMPs) during two periods. After the first period completed, a time-varying non-uniform negative charge developed in the polytetrafluoroethylene (PTFE) panels that define the radial boundary of the detector's active volume. This caused electric field variations in the detector in time, depth and azimuth, generating an electrostatic radially-inward force on electrons on their way upward to the liquid surface. To map this behavior, 3D electric field maps of the detector's active volume were generatedmore » on a monthly basis. This was done by fitting a model built in COMSOL Multiphysics to the uniformly distributed calibration data that were collected on a regular basis. The modeled average PTFE charge density increased over the course of the exposure from -3.6 to -5.5 μC/m 2. Here, from our studies, we deduce that the electric field magnitude varied locally while the mean value of the field of ~200 V/cm remained constant throughout the exposure. As a result of this work the varying electric fields and their impact on event reconstruction and discrimination were successfully modeled.« less

  14. 3D modeling of electric fields in the LUX detector

    DOE PAGES

    Akerib, D. S.; Alsum, S.; Araújo, H. M.; ...

    2017-11-24

    This work details the development of a three-dimensional (3D) electric field model for the LUX detector. The detector took data to search for weakly interacting massive particles (WIMPs) during two periods. After the first period completed, a time-varying non-uniform negative charge developed in the polytetrafluoroethylene (PTFE) panels that define the radial boundary of the detector's active volume. This caused electric field variations in the detector in time, depth and azimuth, generating an electrostatic radially-inward force on electrons on their way upward to the liquid surface. To map this behavior, 3D electric field maps of the detector's active volume were generatedmore » on a monthly basis. This was done by fitting a model built in COMSOL Multiphysics to the uniformly distributed calibration data that were collected on a regular basis. The modeled average PTFE charge density increased over the course of the exposure from -3.6 to -5.5 μC/m 2. Here, from our studies, we deduce that the electric field magnitude varied locally while the mean value of the field of ~200 V/cm remained constant throughout the exposure. As a result of this work the varying electric fields and their impact on event reconstruction and discrimination were successfully modeled.« less

  15. 3D modeling of electric fields in the LUX detector

    NASA Astrophysics Data System (ADS)

    Akerib, D. S.; Alsum, S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Brás, P.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Druszkiewicz, E.; Edwards, B. N.; Fallon, S. R.; Fan, A.; Fiorucci, S.; Gaitskell, R. J.; Genovesi, J.; Ghag, C.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solmaz, M.; Solovov, V. N.; Sorensen, P.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W. C.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Velan, V.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Xu, J.; Yazdani, K.; Young, S. K.; Zhang, C.

    2017-11-01

    This work details the development of a three-dimensional (3D) electric field model for the LUX detector. The detector took data to search for weakly interacting massive particles (WIMPs) during two periods. After the first period completed, a time-varying non-uniform negative charge developed in the polytetrafluoroethylene (PTFE) panels that define the radial boundary of the detector's active volume. This caused electric field variations in the detector in time, depth and azimuth, generating an electrostatic radially-inward force on electrons on their way upward to the liquid surface. To map this behavior, 3D electric field maps of the detector's active volume were generated on a monthly basis. This was done by fitting a model built in COMSOL Multiphysics to the uniformly distributed calibration data that were collected on a regular basis. The modeled average PTFE charge density increased over the course of the exposure from -3.6 to -5.5 μC/m2. From our studies, we deduce that the electric field magnitude varied locally while the mean value of the field of ~200 V/cm remained constant throughout the exposure. As a result of this work the varying electric fields and their impact on event reconstruction and discrimination were successfully modeled.

  16. Direct imaging detectors for electron microscopy

    NASA Astrophysics Data System (ADS)

    Faruqi, A. R.; McMullan, G.

    2018-01-01

    Electronic detectors used for imaging in electron microscopy are reviewed in this paper. Much of the detector technology is based on the developments in microelectronics, which have allowed the design of direct detectors with fine pixels, fast readout and which are sufficiently radiation hard for practical use. Detectors included in this review are hybrid pixel detectors, monolithic active pixel sensors based on CMOS technology and pnCCDs, which share one important feature: they are all direct imaging detectors, relying on directly converting energy in a semiconductor. Traditional methods of recording images in the electron microscope such as film and CCDs, are mentioned briefly along with a more detailed description of direct electronic detectors. Many applications benefit from the use of direct electron detectors and a few examples are mentioned in the text. In recent years one of the most dramatic advances in structural biology has been in the deployment of the new backthinned CMOS direct detectors to attain near-atomic resolution molecular structures with electron cryo-microscopy (cryo-EM). The development of direct detectors, along with a number of other parallel advances, has seen a very significant amount of new information being recorded in the images, which was not previously possible-and this forms the main emphasis of the review.

  17. Commissioning of the Active-Target Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Bradt, J.; Bazin, D.; Abu-Nimeh, F.; Ahn, T.; Ayyad, Y.; Beceiro Novo, S.; Carpenter, L.; Cortesi, M.; Kuchera, M. P.; Lynch, W. G.; Mittig, W.; Rost, S.; Watwood, N.; Yurkon, J.

    2017-12-01

    The Active-Target Time Projection Chamber (AT-TPC) was recently built and commissioned at the National Superconducting Cyclotron Laboratory at Michigan State University. This gas-filled detector uses an active-target design where the gas acts as both the tracking medium and the reaction target. Operating inside a 2T solenoidal magnetic field, the AT-TPC records charged particle tracks that can be reconstructed to very good energy and angular resolutions. The near- 4 π solid angle coverage and thick target of the detector are well-suited to experiments with low secondary beam intensities. In this paper, the design and instrumentation of theAT-TPC are described along with the methods used to analyze the data it produces. A simulation of the detector's performance and some results from its commissioning with a radioactive 46Ar beam are also presented.

  18. Direct tests of a pixelated microchannel plate as the active element of a shower maximum detector

    DOE PAGES

    Apresyan, A.; Los, S.; Pena, C.; ...

    2016-05-07

    One possibility to make a fast and radiation resistant shower maximum detector is to use a secondary emitter as an active element. We report our studies of microchannel plate photomultipliers (MCPs) as the active element of a shower-maximum detector. We present test beam results obtained using Photonis XP85011 to detect secondary particles of an electromagnetic shower. We focus on the use of the multiple pixels on the Photonis MCP in order to find a transverse two-dimensional shower distribution. A spatial resolution of 0.8 mm was obtained with an 8 GeV electron beam. As a result, a method for measuring themore » arrival time resolution for electromagnetic showers is presented, and we show that time resolution better than 40 ps can be achieved.« less

  19. Direct tests of a pixelated microchannel plate as the active element of a shower maximum detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apresyan, A.; Los, S.; Pena, C.

    One possibility to make a fast and radiation resistant shower maximum detector is to use a secondary emitter as an active element. We report our studies of microchannel plate photomultipliers (MCPs) as the active element of a shower-maximum detector. We present test beam results obtained using Photonis XP85011 to detect secondary particles of an electromagnetic shower. We focus on the use of the multiple pixels on the Photonis MCP in order to find a transverse two-dimensional shower distribution. A spatial resolution of 0.8 mm was obtained with an 8 GeV electron beam. As a result, a method for measuring themore » arrival time resolution for electromagnetic showers is presented, and we show that time resolution better than 40 ps can be achieved.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Jeter C.; Aalseth, Craig E.; Bonicalzi, Ricco

    Age dating groundwater and seawater using 39Ar/Ar ratios is an important tool to understand water mass flow rates and mean residence time. For modern or contemporary argon, the 39Ar activity is 1.8 mBq per liter of argon. Radiation measurements at these activity levels require ultra low-background detectors. Low-background proportional counters have been developed at Pacific Northwest National Laboratory. These detectors use traditional mixtures of argon and methane as counting gas, and the residual 39Ar from commercial argon has become a predominant source of background activity in these detectors. We demonstrated sensitivity to 39Ar by using geological or ancient argon frommore » gas wells in place of commercial argon. The low level counting performance of these proportional counters is then demonstrated for sensitivities to 39Ar/Ar ratios sufficient to date water masses as old as 1000 years.« less

  1. Results of neutron irradiation of GEM detector for plasma radiation detection

    NASA Astrophysics Data System (ADS)

    Jednorog, S.; Bienkowska, B.; Chernyshova, M.; Łaszynska, E.; Prokopowicz, R.; Ziołkowski, A.

    2015-09-01

    The detecting devices dedicated for plasma monitoring will be exposed for massive fluxes of neutron, photons as well as other rays that are components of fusion reactions and their product interactions with plasma itself or surroundings. In result detecting module metallic components will be activated becoming a source of radiation. Moreover, electronics components could change their electronic properties. The prototype GEM detector constructed for monitoring soft X-ray radiation in ITER oriented tokamaks was used for plasma monitoring during experimental campaign on tokamak ASDEX Upgrade. After that it became a source of gamma radiation caused by neutrons. The present work contains description of detector activation in the laboratory conditions.

  2. Metrological activity determination of 133Ba by sum-peak absolute method

    NASA Astrophysics Data System (ADS)

    da Silva, R. L.; de Almeida, M. C. M.; Delgado, J. U.; Poledna, R.; Santos, A.; de Veras, E. V.; Rangel, J.; Trindade, O. L.

    2016-07-01

    The National Laboratory for Metrology of Ionizing Radiation provides gamma sources of radionuclide and standardized in activity with reduced uncertainties. Relative methods require standards to determine the sample activity while the absolute methods, as sum-peak, not. The activity is obtained directly with good accuracy and low uncertainties. 133Ba is used in research laboratories and on calibration of detectors for analysis in different work areas. Classical absolute methods don't calibrate 133Ba due to its complex decay scheme. The sum-peak method using gamma spectrometry with germanium detector standardizes 133Ba samples. Uncertainties lower than 1% to activity results were obtained.

  3. Study of cluster shapes in a monolithic active pixel detector

    NASA Astrophysics Data System (ADS)

    Maçzewski, ł.; Adamus, M.; Ciborowski, J.; Grzelak, G.; łużniak, P.; Nieżurawski, P.; Żarnecki, A. F.

    2009-11-01

    Beamstrahlung will constitute an important source of background in a pixel vertex detector at the future International Linear Collider. Electron and positron tracks of this origin impact the pixel planes at angles generally larger than those of secondary hadrons and the corresponding clusters are elongated. We report studies of cluster characteristics using test beam electron tracks incident at various angles on a MIMOSA-5 monolithic active pixel sensor matrix.

  4. Monitoring gross alpha and beta activity in liquids by using ZnS(Ag) scintillation detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevanato, L.; Cester, D.; Filippi, D.

    In this work the possibility of monitoring gross alpha and beta activity in liquids using EJ-444 was investigated. Specific tests were carried out to determine the change of the detector properties in water tests. Possible protecting coating is also proposed and tested. Alpha/beta real-time monitoring in liquids is a goal of the EU project TAWARA{sub R}TM. (authors)

  5. Status of NEMO

    NASA Astrophysics Data System (ADS)

    Migneco, E.; Aiello, S.; Ambriola, M.; Ameli, F.; Amore, I.; Anghinolfi, M.; Anzalone, A.; Barbarino, G.; Barbarito, E.; Battaglieri, M.; Bellotti, R.; Beverini, N.; Bonori, M.; Bouhdaef, B.; Brescia, M.; Cacopardo, G.; Cafagna, F.; Capone, A.; Caponetto, L.; Castorina, E.; Ceres, A.; Chiarusi, T.; Circella, M.; Cocimano, R.; Coniglione, R.; Cordelli, M.; Costa, M.; Cuneo, S.; D'Amico, A.; De Bonis, G.; De Marzo, C.; De Rosa, G.; De Vita, R.; Distefano, C.; Falchini, E.; Fiorello, C.; Flaminio, V.; Fratini, K.; Galeotti, S.; Gabrielli, A.; Gandolfi, E.; Giacomelli, G.; Grimaldi, A.; Habel, R.; Leonora, E.; Lonardo, A.; Longo, G.; Lo Presti, D.; Lucarelli, F.; Maccione, L.; Margiotta, A.; Martini, A.; Masullo, R.; Megna, R.; Mongelli, M.; Morganti, M.; Montaruli, T.; Musumeci, M.; Nicolau, C. A.; Orlando, A.; Osipenko, M.; Osteria, G.; Papaleo, R.; Pappalardo, V.; Petta, C.; Piattelli, P.; Raffaelli, F.; Raia, G.; Randazzo, N.; Reito, S.; Ricco, G.; Riccobene, G.; Ripani, M.; Rovelli, A.; Ruppi, M.; Russo, G. V.; Russo, S.; Sapienza, P.; Sedita, M.; Schuller, J.-P.; Shirokov, E.; Simeone, F.; Sipala, V.; Spurio, M.; Taiuti, M.; Terreni, G.; Trasatti, L.; Urso, S.; Valente, V.; Vicini, P.

    2006-11-01

    The activities towards the realization of a km3 Cherenkov neutrino detector carried out by the NEMO Collaboration are described. Long-term exploration of a 3500 m deep-sea site close to the Sicilian coast has shown that it is optimal for the installation of the detector. The realization of a Phase-1 project, which is under way, will validate the proposed technologies for the realization of the km3 detector on a Test Site at 2000 m depth. The realization of a new infrastructure on the candidate site (Phase-2 project) will provide the possibility to test detector components at 3500 m depth.

  6. 2016 Research Outreach Program report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hye Young; Kim, Yangkyu

    2016-10-13

    This paper is the research activity report for 4 weeks in LANL. Under the guidance of Dr. Lee, who performs nuclear physics research at LANSCE, LANL, I studied the Low Energy NZ (LENZ) setup and how to use the LENZ. First, I studied the LENZ chamber and Si detectors, and worked on detector calibrations, using the computer software, ROOT (CERN developed data analysis tool) and EXCEL (Microsoft office software). I also performed the calibration experiments that measure alpha particles emitted from a Th-229 source by using a S1-type detector (Si detector). And with Dr. Lee, we checked the result.

  7. What are the assets and weaknesses of HFO detectors? A benchmark framework based on realistic simulations

    PubMed Central

    Pizzo, Francesca; Bartolomei, Fabrice; Wendling, Fabrice; Bénar, Christian-George

    2017-01-01

    High-frequency oscillations (HFO) have been suggested as biomarkers of epileptic tissues. While visual marking of these short and small oscillations is tedious and time-consuming, automatic HFO detectors have not yet met a large consensus. Even though detectors have been shown to perform well when validated against visual marking, the large number of false detections due to their lack of robustness hinder their clinical application. In this study, we developed a validation framework based on realistic and controlled simulations to quantify precisely the assets and weaknesses of current detectors. We constructed a dictionary of synthesized elements—HFOs and epileptic spikes—from different patients and brain areas by extracting these elements from the original data using discrete wavelet transform coefficients. These elements were then added to their corresponding simulated background activity (preserving patient- and region- specific spectra). We tested five existing detectors against this benchmark. Compared to other studies confronting detectors, we did not only ranked them according their performance but we investigated the reasons leading to these results. Our simulations, thanks to their realism and their variability, enabled us to highlight unreported issues of current detectors: (1) the lack of robust estimation of the background activity, (2) the underestimated impact of the 1/f spectrum, and (3) the inadequate criteria defining an HFO. We believe that our benchmark framework could be a valuable tool to translate HFOs into a clinical environment. PMID:28406919

  8. Calibration, Monitoring, and Control of Complex Detector Systems

    NASA Astrophysics Data System (ADS)

    Breidenbach, M.

    1981-04-01

    LEP Detectors will probably be complex devices having tens of subsystems; some subsystems having perhaps tens of thousands of channels. Reasonable design goals for such a detector will include economic use of money and people, rapid and reliable calibration and monitoring of the detector, and simple control and operation of the device. The synchronous operation of an e+e- storage ring, coupled with its relatively low interaction rate, allow the design of simple circuits for time and charge measurements. These circuits, and more importantly, the basic detector channels, can usually be tested and calibrated by signal injection into the detector. Present detectors utilize semi-autonomous controllers which collect such calibration data and calculate statistics as well as control sparse data scans. Straightforward improvements in programming technology should move the entire calibration into these local controllers, so that calibration and testing time will be a constant independent of the number of channels in a system. Considerable programming effort may be saved by emphasizing the similarities of the subsystems, so that the subsystems can be described by a reasonable database and general purpose calibration and test routines can be used. Monitoring of the apparatus will probably continue to be of two classes: "passive" histogramming of channel occupancies and other more complex combinations of the data; and "active" injection of test patterns and calibration signals during a run. The relative importance of active monitoring will increase for the low data rates expected off resonances at high s. Experience at SPEAR and PEP is used to illustrate these approaches.

  9. Event-Driven X-Ray CCD Detectors for High Energy Astrophysics

    NASA Technical Reports Server (NTRS)

    Ricker, George R.

    2004-01-01

    A viewgraph presentation describing the Event-Driven X- Ray CCD (EDCCD) detector system for high energy astrophysics is presented. The topics include: 1) EDCCD: Description and Advantages; 2) Summary of Grant Activity Carried Out; and 3) EDCCD Test System.

  10. Self-Powered Neutron Detector Qualification for Absolute On-Line In-Pile Neutron Flux Measurements in BR2

    NASA Astrophysics Data System (ADS)

    Vermeeren, L.; Wéber, M.

    2003-06-01

    A set of ten Self-Powered Neutron Detectors with Co, Rh and Ag emitters has been irradiated in several channels of the BR2 research reactor at SCK•CEN aiming at a comparison of their performance as thermal neutron flux detectors under various conditions. To allow for a correct interpretation of their signals, all detector sensitivity contributions (prompt and delayed) were calculated using a dedicated Monte Carlo model. The various contributions were also measured separately; the agreement between calculated and experimental data, including data from activation dosimetry, was excellent. Detailed neutron flux profiles were obtained from the SPND data, after correction for the finite detector lengths and for the slow response of delayed SPNDs.

  11. Apparatus and method for detecting gamma radiation

    DOEpatents

    Sigg, R.A.

    1994-12-13

    A high efficiency radiation detector is disclosed for measuring X-ray and gamma radiation from small-volume, low-activity liquid samples with an overall uncertainty better than 0.7% (one sigma SD). The radiation detector includes a hyperpure germanium well detector, a collimator, and a reference source. The well detector monitors gamma radiation emitted by the reference source and a radioactive isotope or isotopes in a sample source. The radiation from the reference source is collimated to avoid attenuation of reference source gamma radiation by the sample. Signals from the well detector are processed and stored, and the stored data is analyzed to determine the radioactive isotope(s) content of the sample. Minor self-attenuation corrections are calculated from chemical composition data. 4 figures.

  12. A portable gas recirculation unit for gaseous detectors

    NASA Astrophysics Data System (ADS)

    Guida, R.; Mandelli, B.

    2017-10-01

    The use of greenhouse gases (usually C2H2F4, CF4 and SF6) is sometimes necessary to achieve the required performance for some gaseous detectors. The consumption of these gases in the LHC systems is reduced by recycling the gas mixture thanks to a complex gas recirculation system. Beyond greenhouse gas consumption due to LHC systems, a considerable contribution is generated by setups used for LHC detector upgrade projects, R&D activities, detector quality assurance or longevity tests. In order to minimise this emission, a new flexible and portable gas recirculation unit has been developed. Thanks to its low price, flexibility and user-friendly operation it can be easily adapted for the different types of detector systems and set-ups.

  13. Microwave Photonics

    DTIC Science & Technology

    2005-11-01

    along X & Z The active area of the detector used is about 3 mm in diameter. Figure 54 shows two measured light power coupling curves plotted against...the scanned detector positions along the X & Z axes. At the top of the power curves , there are flat areas. It indicates that the detector collects...is about 400 m long for curve scanning along X direction and is about 500 m long for curve scanning along Z direction. This difference might be

  14. New approach to calculate the true-coincidence effect of HpGe detector

    NASA Astrophysics Data System (ADS)

    Alnour, I. A.; Wagiran, H.; Ibrahim, N.; Hamzah, S.; Siong, W. B.; Elias, M. S.

    2016-01-01

    The corrections for true-coincidence effects in HpGe detector are important, especially at low source-to-detector distances. This work established an approach to calculate the true-coincidence effects experimentally for HpGe detectors of type Canberra GC3018 and Ortec GEM25-76-XLB-C, which are in operation at neutron activation analysis lab in Malaysian Nuclear Agency (NM). The correction for true-coincidence effects was performed close to detector at distances 2 and 5 cm using 57Co, 60Co, 133Ba and 137Cs as standard point sources. The correction factors were ranged between 0.93-1.10 at 2 cm and 0.97-1.00 at 5 cm for Canberra HpGe detector; whereas for Ortec HpGe detector ranged between 0.92-1.13 and 0.95-100 at 2 and 5 cm respectively. The change in efficiency calibration curve of the detector at 2 and 5 cm after correction was found to be less than 1%. Moreover, the polynomial parameters functions were simulated through a computer program, MATLAB in order to find an accurate fit to the experimental data points.

  15. Advanced testing of the DEPFET minimatrix particle detector

    NASA Astrophysics Data System (ADS)

    Andricek, L.; Kodyš, P.; Koffmane, C.; Ninkovic, J.; Oswald, C.; Richter, R.; Ritter, A.; Rummel, S.; Scheirich, J.; Wassatsch, A.

    2012-01-01

    The DEPFET (DEPleted Field Effect Transistor) is an active pixel particle detector with a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) integrated in each pixel, providing first amplification stage of readout electronics. Excellent signal over noise performance is gained this way. The DEPFET sensor will be used as a vertex detector in the Belle II experiment at SuperKEKB, electron-positron collider in Japan. The vertex detector will be composed of two layers of pixel detectors (DEPFET) and four layers of strip detectors. The DEPFET sensor requires switching and current readout circuits for its operation. These circuits have been designed as ASICs (Application Specific Integrated Circuits) in several different versions, but they provide insufficient flexibility for precise detector testing. Therefore, a test system with a flexible control cycle range and minimal noise has been designed for testing and characterizing of small detector prototypes (Minimatrices). Sensors with different design layouts and thicknesses are produced in order to evaluate and select the one with the best performance for the Belle II application. Description of the test system as well as measurement results are presented.

  16. SU-E-T-543: Measurement of Neutron Activation From Different High Energy Varian Linear Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thatcher, T; Madsen, S; Sudowe, R

    2015-06-15

    Purpose: Linear accelerators producing photons above 10 MeV may induce photonuclear reactions in high Z components of the accelerator. These liberated neutrons can then activate the structural components of the accelerator and other materials in the beam path through neutron capture reactions. The induced activity within the accelerator may contribute to additional dose to both patients and personnel. This project seeks to determine the total activity and activity per activated isotope following irradiation in different Varian accelerators at energies above 10 MeV. Methods: A Varian 21IX accelerator was used to irradiate a 30 cm × 30 cm × 20 cmmore » solid water phantom with 15 MV x-rays. The phantom was placed at an SSD of 100 cm and at the center of a 20 cm × 20 cm field. Activation induced gamma spectra were acquired over a 5 minute interval after 1 and 15 minutes from completion of the irradiation. All measurements were made using a CANBERRA Falcon 5000 Portable HPGe detector. The majority of measurements were made in scattering geometry with the detector situated at 90° to the incident beam, 30 cm from the side of the phantom and approximately 10 cm from the top. A 5 minute background count was acquired and automatically subtracted from all subsequent measurements. Photon spectra were acquired for both open and MLC fields. Results: Based on spectral signatures, nuclides have been identified and their activities calculated for both open and MLC fields. Preliminary analyses suggest that activities from the activation products in the microcurie range. Conclusion: Activation isotopes have been identified and their relative activities determined. These activities are only gross estimates since efficiencies have not been determined for this source-detector geometry. Current efforts are focused on accurate determination of detector efficiencies using Monte Carlo calculations.« less

  17. Airport metal detector activation is rare after posterior spinal fusion in children with scoliosis.

    PubMed

    Fabricant, Peter D; Robles, Alex; Blanco, John S

    2013-12-01

    Since the September 11, 2001 terrorist attacks on the World Trade Center in New York City, travel security has become an ever-increasing priority in the United States. Frequent parent and patient inquiry and recent literature reports have generated interest in the impact of heightened security measures on patients with orthopaedic implants, and have indicated increasing rates of metal detector triggering. There are no reports to date, however, evaluating children and adolescents who have undergone posterior spinal fusion for scoliosis, so responses to patient and parent inquiries are not data-driven. The purpose of this study is to determine the frequency of airport metal detector triggering by patients who have had posterior-only spinal fusion and to characterise any potential predictors of metal detector activation. A cross-sectional study was performed by interviewing 90 patients who underwent posterior-only spinal fusion for a diagnosis of juvenile or adolescent idiopathic scoliosis and have travelled by air in the past year. Demographic, clinical and surgical instrumentation data were collected and evaluated, along with patients' reports of airport metal detector triggering and subsequent screening procedures. Five patients with stainless steel instrumentation (5.6 % of the cohort) triggered an airport walkthrough metal detector, and an additional five patients who did not trigger an airport detector triggered a handheld detector at a different venue. All patients who triggered an airport metal detector had stainless steel instrumentation implanted prior to 2008, and no patient with titanium instrumentation triggered any detector in any venue. All trigger events required subsequent screening procedures, even when an implant card was presented. In this cohort of children and adolescents with posterior spinal instrumentation, airport walkthrough metal detector triggering was a rare event. Therefore, we advise patients and families with planned posterior scoliosis fusions using titanium instrumentation that airport detection risk is essentially non-existent, and only rare for those with planned stainless steel instrumentation. We no longer issue implant cards postoperatively, as these did not prevent further screening procedures in this cohort. Prognostic level 2. cross-sectional.

  18. Energy resolution and efficiency of phonon-mediated kinetic inductance detectors for light detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardani, L., E-mail: laura.cardani@roma1.infn.it; Physics Department, Princeton University, Washington Road, 08544, Princeton, New Jersey; Colantoni, I.

    The development of sensitive cryogenic light detectors is of primary interest for bolometric experiments searching for rare events like dark matter interactions or neutrino-less double beta decay. Thanks to their good energy resolution and the natural multiplexed read-out, Kinetic Inductance Detectors (KIDs) are particularly suitable for this purpose. To efficiently couple KIDs-based light detectors to the large crystals used by the most advanced bolometric detectors, active surfaces of several cm{sup 2} are needed. For this reason, we are developing phonon-mediated detectors. In this paper, we present the results obtained with a prototype consisting of four 40 nm thick aluminum resonators patternedmore » on a 2 × 2 cm{sup 2} silicon chip, and calibrated with optical pulses and X-rays. The detector features a noise resolution σ{sub E} = 154 ± 7 eV and an (18 ± 2)% efficiency.« less

  19. A novel muon detector for borehole density tomography

    NASA Astrophysics Data System (ADS)

    Bonneville, Alain; Kouzes, Richard T.; Yamaoka, Jared; Rowe, Charlotte; Guardincerri, Elena; Durham, J. Matthew; Morris, Christopher L.; Poulson, Daniel C.; Plaud-Ramos, Kenie; Morley, Deborah J.; Bacon, Jeffrey D.; Bynes, James; Cercillieux, Julien; Ketter, Chris; Le, Khanh; Mostafanezhad, Isar; Varner, Gary; Flygare, Joshua; Lintereur, Azaree T.

    2017-04-01

    Muons can be used to image the density of materials through which they pass, including geological structures. Subsurface applications of the technology include tracking fluid migration during injection or production, with increasing concern regarding such timely issues as induced seismicity or chemical leakage into aquifers. Current density monitoring options include gravimetric data collection and active or passive seismic surveys. One alternative, or complement, to these methods is the development of a muon detector that is sufficiently compact and robust for deployment in a borehole. Such a muon detector can enable imaging of density structure to monitor small changes in density - a proxy for fluid migration - at depths up to 1500 m. Such a detector has been developed, and Monte Carlo modeling methods applied to simulate the anticipated detector response. Testing and measurements using a prototype detector in the laboratory and shallow underground laboratory demonstrated robust response. A satisfactory comparison with a large drift tube-based muon detector is also presented.

  20. Implementation of the P barANDA Planar-GEM tracking detector in Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Divani Veis, Nazila; Ehret, Andre; Firoozabadi, Mohammad M.; Karabowicz, Radoslaw; Maas, Frank; Saito, Nami; Saito, Takehiko R.; Voss, Bernd; PANDA Gem-Tracker Subgroup

    2018-02-01

    The P barANDA experiment at FAIR will be performed to investigate different aspects of hadron physics using anti-proton beams interacting with a fixed nuclear target. The experimental setup consists of a complex series of detector components covering a large solid angle. A detector with a gaseous active media equipped with gas electron multiplier (GEM) technique will be employed to measure tracks of charged particles at forward direction in order to achieve a high momentum resolution. In this work, a full setup of the GEM tracking detector has been implemented in the P barANDA Monte Carlo simulation package (PandaRoot) based on the current technical and conceptual design, and the expected performance of the P barANDA GEM-tracking detector has been investigated. Furthermore, material-budget studies in terms of the radiation length of the P barANDA GEM-tracking detector have been made in order to investigate the effect of the detector materials and its associated structures to particle measurements.

  1. A novel muon detector for borehole density tomography

    DOE PAGES

    Bonneville, Alain; Kouzes, Richard T.; Yamaoka, Jared; ...

    2017-02-01

    Muons can be used to image the density of materials through which they pass, including geological structures. Subsurface applications of the technology include tracking fluid migration during injection or production, with increasing concern regarding such timely issues as induced seismicity or chemical leakage into aquifers. Current density monitoring options include gravimetric data collection and active or passive seismic surveys. One alternative, or complement, to these methods is the development of a muon detector that is sufficiently compact and robust for deployment in a borehole. Such a muon detector can enable imaging of density structure to monitor small changes in densitymore » – a proxy for fluid migration – at depths up to 1500 m. Such a detector has been developed, and Monte Carlo modeling methods applied to simulate the anticipated detector response. Testing and measurements using a prototype detector in the laboratory and shallow underground laboratory demonstrated robust response. Lastly, a satisfactory comparison with a large drift tube-based muon detector is also presented.« less

  2. Study on detection geometry and detector shielding for portable PGNAA system using PHITS

    NASA Astrophysics Data System (ADS)

    Ithnin, H.; Dahing, L. N. S.; Lip, N. M.; Rashid, I. Q. Abd; Mohamad, E. J.

    2018-01-01

    Prompt gamma-ray neutron activation analysis (PGNAA) measurements require efficient detectors for gamma-ray detection. Apart from experimental studies, the Monte Carlo (MC) method has become one of the most popular tools in detector studies. The absolute efficiency for a 2 × 2 inch cylindrical Sodium Iodide (NaI) detector has been modelled using the PHITS software and compared with previous studies in literature. In the present work, PHITS code is used for optimization of portable PGNAA system using the validated NaI detector. The detection geometry is optimized by moving the detector along the sample to find the highest intensity of the prompt gamma generated from the sample. Shielding material for the validated NaI detector is also studied to find the best option for the PGNAA system setup. The result shows the optimum distance for detector is on the surface of the sample and around 15 cm from the source. The results specify that this process can be followed to determine the best setup for PGNAA system for a different sample size and detector type. It can be concluded that data from PHITS code is a strong tool not only for efficiency studies but also for optimization of PGNAA system.

  3. Measurements with Si and GaAs pixel detectors bonded to photon counting readout chips

    NASA Astrophysics Data System (ADS)

    Schwarz, C.; Campbell, M.; Goeppert, R.; Ludwig, J.; Mikulec, B.; Runge, K.; Smith, K. M.; Snoeys, W.

    2001-06-01

    Detectors fabricated with SI-GaAs and Si bulk material were bonded to Photon Counting Chips (PCC), developed in the framework of the MEDIPIX Collaboration. The PCC consists of a matrix of 64×64 identical square pixels (170 μm×170 μm) with a 15-bit counter in each cell. We investigated the imaging properties of these detector systems under exposure of a dental X-ray tube at room temperature. The image homogeneity and the mean count rate were determined via flood exposure images and compared. Exposures for GaAs detectors exhibit a 3 times larger spread in count rate per image in comparison to Si detectors. This also results in a 3 times worse signal to noise ratio. IV-characteristics and X-ray images at different values of the detectors bias voltage were also taken and show a 30 times higher leakage current for GaAs. The Si detector is fully active beginning from 70 V, whereas the GaAs detector does not reach full charge collection. The presampling modulation transfer function of both assembly types was measured via slit images and gives a spatial resolution of 4.3 lp/mm for both detector systems.

  4. Novel drift structures for silicon and compound semiconductor X-ray and gamma-ray detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patt, B.E.; Iwanczyk, J.S.

    Recently developed silicon- and compound-semiconductor-based drift detector structures have produced excellent performance for charged particles, X-rays, and gamma rays and for low-signal visible light detection. The silicon drift detector (SDD) structures that the authors discuss relate to direct X-ray detectors and scintillation photon detectors coupled with scintillators for gamma rays. Recent designs include several novel features that ensure very low dark current and hence low noise. In addition, application of thin window technology ensures a very high quantum efficiency entrance window on the drift photodetector. The main features of the silicon drift structures for X rays and light detection aremore » very small anode capacitance independent of the overall detector size, low noise, and high throughput. To take advantage of the small detector capacitance, the first stage of the electronics needs to be integrated into the detector anode. In the gamma-ray application, factors other than electronic noise dominate, and there is no need to integrate the electronics into the anode. Thus, a different drift structure is needed in conjunction with a high-Z material. The main features in this case are large active detector volume and electron-only induced signal.« less

  5. The 124Sb activity standardization by gamma spectrometry for medical applications

    NASA Astrophysics Data System (ADS)

    de Almeida, M. C. M.; Iwahara, A.; Delgado, J. U.; Poledna, R.; da Silva, R. L.

    2010-07-01

    This work describes a metrological activity determination of 124Sb, which can be used as radiotracer, applying gamma spectrometry methods with hyper pure germanium detector and efficiency curves. This isotope with good activity and high radionuclidic purity is employed in the form of meglumine antimoniate (Glucantime) or sodium stibogluconate (Pentostam) to treat leishmaniasis. 124Sb is also applied in animal organ distribution studies to solve some questions in pharmacology. 124Sb decays by β-emission and it produces several photons (X and gamma rays) with energy varying from 27 to 2700 keV. Efficiency curves to measure point 124Sb solid sources were obtained from a 166mHo standard that is a multi-gamma reference source. These curves depend on radiation energy, sample geometry, photon attenuation, dead time and sample-detector position. Results for activity determination of 124Sb samples using efficiency curves and a high purity coaxial germanium detector were consistent in different counting geometries. Also uncertainties of about 2% ( k=2) were obtained.

  6. Progress in the Development of CdTe and CdZnTe Semiconductor Radiation Detectors for Astrophysical and Medical Applications

    PubMed Central

    Sordo, Stefano Del; Abbene, Leonardo; Caroli, Ezio; Mancini, Anna Maria; Zappettini, Andrea; Ubertini, Pietro

    2009-01-01

    Over the last decade, cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) wide band gap semiconductors have attracted increasing interest as X-ray and gamma ray detectors. Among the traditional high performance spectrometers based on silicon (Si) and germanium (Ge), CdTe and CdZnTe detectors show high detection efficiency and good room temperature performance and are well suited for the development of compact and reliable detection systems. In this paper, we review the current status of research in the development of CdTe and CdZnTe detectors by a comprehensive survey on the material properties, the device characteristics, the different techniques for improving the overall detector performance and some major applications. Astrophysical and medical applications are discussed, pointing out the ongoing Italian research activities on the development of these detectors. PMID:22412323

  7. Thin NaI(Tl) crystals to enhance the detection sensitivity for molten 241Am sources.

    PubMed

    Peura, Pauli; Bélanger-Champagne, Camille; Eerola, Paula; Dendooven, Peter; Huhtalo, Eero

    2018-04-26

    A thin 5-mm NaI(Tl) scintillator detector was tested with the goal of enhancing the detection efficiency of 241 Am gamma and X rays for steelworks operations. The performance of a thin (5 mm) NaI(Tl) detector was compared with a standard 76.2-mm thick NaI(Tl) detector. The 5-mm thick detector crystal results in a 55% smaller background rate at 60 keV compared with the thicker detector, translating into the ability to detect 30% weaker 241 Am sources. For a 5 mm thick and 76.2 mm diameter NaI detector in the ladle car tunnel at Outokumpu Tornio Works, the minimum activity of a molten 241 Am source that can be detected in 5 s with 95% probability is 9 MBq. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Cognitive Radios Exploiting Gray Spaces via Compressed Sensing

    NASA Astrophysics Data System (ADS)

    Wieruch, Dennis; Jung, Peter; Wirth, Thomas; Dekorsy, Armin; Haustein, Thomas

    2016-07-01

    We suggest an interweave cognitive radio system with a gray space detector, which is properly identifying a small fraction of unused resources within an active band of a primary user system like 3GPP LTE. Therefore, the gray space detector can cope with frequency fading holes and distinguish them from inactive resources. Different approaches of the gray space detector are investigated, the conventional reduced-rank least squares method as well as the compressed sensing-based orthogonal matching pursuit and basis pursuit denoising algorithm. In addition, the gray space detector is compared with the classical energy detector. Simulation results present the receiver operating characteristic at several SNRs and the detection performance over further aspects like base station system load for practical false alarm rates. The results show, that especially for practical false alarm rates the compressed sensing algorithm are more suitable than the classical energy detector and reduced-rank least squares approach.

  9. Development of an advanced antineutrino detector for reactor monitoring

    DOE PAGES

    Classen, T.; Bernstein, A.; Bowden, N. S.; ...

    2014-11-05

    We present the development of a compact antineutrino detector for the purpose of nuclear reactor monitoring, improving upon a previously successful design. Our paper will describe the design improvements of the detector which increases the antineutrino detection efficiency threefold over the previous effort. There are two main design improvements over previous generations of detectors for nuclear reactor monitoring: dual-ended optical readout and single volume detection mass. The dual-ended optical readout eliminates the need for fiducialization and increases the uniformity of the detector's optical response. The containment of the detection mass in a single active volume provides more target mass permore » detector footprint, a key design criteria for operating within a nuclear power plant. This technology could allow for real-time monitoring of the evolution of a nuclear reactor core, independent of reactor operator declarations of fuel inventories, and may be of interest to the safeguards community.« less

  10. Characterisation of the high dynamic range Large Pixel Detector (LPD) and its use at X-ray free electron laser sources

    NASA Astrophysics Data System (ADS)

    Veale, M. C.; Adkin, P.; Booker, P.; Coughlan, J.; French, M. J.; Hart, M.; Nicholls, T.; Schneider, A.; Seller, P.; Pape, I.; Sawhney, K.; Carini, G. A.; Hart, P. A.

    2017-12-01

    The STFC Rutherford Appleton Laboratory have delivered the Large Pixel Detector (LPD) for MHz frame rate imaging at the European XFEL. The detector system has an active area of 0.5 m × 0.5 m and consists of a million pixels on a 500 μm pitch. Sensors have been produced from 500 μm thick Hammamatsu silicon tiles that have been bump bonded to the readout ASIC using a silver epoxy and gold stud technique. Each pixel of the detector system is capable of measuring 105 12 keV photons per image readout at 4.5 MHz. In this paper results from the testing of these detectors at the Diamond Light Source and the Linac Coherent Light Source (LCLS) are presented. The performance of the detector in terms of linearity, spatial uniformity and the performance of the different ASIC gain stages is characterised.

  11. Lung counting: comparison of detector performance with a four detector array that has either metal or carbon fibre end caps, and the effect on mda calculation.

    PubMed

    Ahmed, Asm Sabbir; Hauck, Barry; Kramer, Gary H

    2012-08-01

    This study described the performance of an array of high-purity Germanium detectors, designed with two different end cap materials-steel and carbon fibre. The advantages and disadvantages of using this detector type in the estimation of the minimum detectable activity (MDA) for different energy peaks of isotope (152)Eu were illustrated. A Monte Carlo model was developed to study the detection efficiency for the detector array. A voxelised Lawrence Livermore torso phantom, equipped with lung, chest plates and overlay plates, was used to mimic a typical lung counting protocol with the array of detectors. The lung of the phantom simulated the volumetric source organ. A significantly low MDA was estimated for energy peaks at 40 keV and at a chest wall thickness of 6.64 cm.

  12. Centroid measurement error of CMOS detector in the presence of detector noise for inter-satellite optical communications

    NASA Astrophysics Data System (ADS)

    Li, Xin; Zhou, Shihong; Ma, Jing; Tan, Liying; Shen, Tao

    2013-08-01

    CMOS is a good candidate tracking detector for satellite optical communications systems with outstanding feature of sub-window for the development of APS (Active Pixel Sensor) technology. For inter-satellite optical communications it is critical to estimate the direction of incident laser beam precisely by measuring the centroid position of incident beam spot. The presence of detector noise results in measurement error, which degrades the tracking performance of systems. In this research, the measurement error of CMOS is derived taking consideration of detector noise. It is shown that the measurement error depends on pixel noise, size of the tracking sub-window (pixels number), intensity of incident laser beam, relative size of beam spot. The influences of these factors are analyzed by numerical simulation. We hope the results obtained in this research will be helpful in the design of CMOS detector satellite optical communications systems.

  13. MCP detector development for UV space missions

    NASA Astrophysics Data System (ADS)

    Conti, Lauro; Barnstedt, Jürgen; Hanke, Lars; Kalkuhl, Christoph; Kappelmann, Norbert; Rauch, Thomas; Stelzer, Beate; Werner, Klaus; Elsener, Hans-Rudolf; Schaadt, Daniel M.

    2018-04-01

    We are developing imaging and photon counting UV-MCP detectors, which are sensitive in the wavelength range from far ultraviolet to near ultraviolet. A good quantum efficiency, solar blindness and high spatial resolution is the aim of our development. The sealed detector has a Cs-activated photoactive layer of GaN (or similarly advanced photocathode), which is operated in semitransparent mode on (001)-MgF2. The detector comprises a stack of two long-life MCPs and a coplanar cross strip anode with advanced readout electronics. The main challenge is the flawless growth of the GaN photocathode layer as well as the requirements for the sealing of the detector, to prevent a degradation of the photocathode. We present here the detector concept and the experimental setup, examine in detail the status in the production and describe the current status of the readout electronics development.

  14. Sofradir latest developments for infrared space detectors

    NASA Astrophysics Data System (ADS)

    Chorier, Philippe; Delannoy, Anne

    2011-06-01

    Sofradir is one of the leading companies that develop and produce infrared detectors. Space applications have become a significant activity and Sofradir relies now on 20 years of experience in development and production of MCT infrared detectors of 2nd and 3rd generation for space applications. Thanks to its capabilities and experience, Sofradir is now able to offer high reliability infrared detectors for space applications. These detectors cover various kinds of applications like hyperspectral observation, earth observations for meteorological or scientific purpose and science experiments. In this paper, we present a review of latest Sofradir's development for infrared space applications. A presentation of Sofradir infrared detectors answering hyperspectral needs from visible up to VLWIR waveband will be made. In addition a particular emphasis will be placed on the different programs currently running, with a presentation of the associated results as they relate to performances and qualifications for space use.

  15. Reference Guide for Building Diagnostics Equipment and Techniques

    DTIC Science & Technology

    1989-07-01

    From 1/2 hour to 1 of symptoms and of contamination by such pollut- hour is allowed for proper mixing of the gas. ants as radon daughters , which cause no...ACTIVE) topes. Daughter products captured on the prefilter are also analyzed. All information is stored in Measurement and analysis memory. Radon ... daughters are collected on a filter and particle activity is measured with a detector. A Accuracy microprocessor counts and stores detector pulses. The

  16. Localization of activities in the human body with a whole-body counter.

    PubMed

    Fischer, H; Schlagbauer, M

    2007-01-01

    The whole-body counter of the Radiation Protection Unit at the ARC Seibersdorf research GmbH has two HP Ge-detectors for measuring radionuclides, which are internally deposited in the human body. The detector system has a scanning geometry, where one detector is placed below the bed and the other detector above the bed. The body counter is placed in a massive shielded chamber. This device is especially used for measuring radioactive exposed workers with the possibility of intake by inhalation and ingestion. In the most cases whole-body counters are calibrated with anthropomorphic phantoms where activity is homogenously distributed. However, in some cases radioactivity can be located as a 'Hot Spot' in an organ. The localisation of 'Hot spots' at least in one dimension was the topic of this work. Experiments were done by means of a water-filled bottle phantom where three point sources (137Cs, 133Ba and 60Co) were placed at different positions. Measurements show that these radionuclides can be located within 1.5 cm along the longitudinal axis of the phantom with activities for 137Cs of at least 240 Bq, 133Ba of at least 670 Bq and 60Co of at least 140 Bq.

  17. Overview of the data analysis and new micro-pattern gas detector development for the Active Target Time Projection Chamber (AT-TPC) project.

    NASA Astrophysics Data System (ADS)

    Ayyad, Yassid; Mittig, Wolfgang; Bazin, Daniel; Cortesi, Marco

    2017-07-01

    The Active Target Time Projection Chamber (AT-TPC) project at the NSCL (National Superconducting Cyclotron Laboratory, Michigan State University) is a novel active target detector tailored for low-energy nuclear reactions in inverse kinematics with radioactive ion beams. The AT-TPC allows for a full three dimensional reconstruction of the reaction and provides high luminosity without degradation of resolution by the thickness of the target. Since all the particles (and also the reaction vertex) are tracked inside the detector, the AT-TPC has full 4π efficiency. The AT-TPC can operate under a magnetic field (2 T) that improves the identification of the particles and the energy resolution through the measurement of the magnetic rigidity. Another important characteristic of the AT-TPC is the high-gain operation achieved by the hybrid thick Gas Electron Multipliers (THGEM)-Micromegas pad plane, that allow operation also in pure elemental gas. These two features make the AT-TPC a unique high resolution spectrometer with full acceptance for nuclear physics reactions. This work presents an overview of the project, focused on the data analysis and the development of new micro-pattern gas detectors.

  18. Properties of thin film radiation detectors and their application to dosimetry and quality assurance in x-ray imaging

    NASA Astrophysics Data System (ADS)

    Elshahat, Bassem

    The characteristics of two different types of thin-film radiation detectors are experimentally investigated: organic photovoltaic cells (OPV) and a new self-powered detector that operates based on high-energy secondary electrons (HEC). Although their working principles are substantially different, they both can be used for radiation detection and image formation in medical applications. OPVs with different active layer material thicknesses and aluminum electrode areas were fabricated. The OPV cell consisted of P3HT: PCBM photoactive materials, composed of donor and acceptor semiconducting organic materials, sandwiched between an aluminum electrode as anode and an indium tin oxide (ITO) electrode as a cathode. The detectors were exposed to 60150 kVp x rays, which generated photocurrent in the active layer. The electric charge production in the OPV cells was measured. The net current as function of beam energy (kVp) was proportional to ~1/kVp0.45 when adjusted for x-ray beam output. The best combination of parameters for these cells was 270-nm active layer thicknesses for 0.7cm-2 electrode area. The measured current ranged from about 0.7 to 2.4 nA/cm2 for 60-150 kVp, corresponding to about 0.09 -- 0.06 nA/cm2/mGy, respectively, when adjusted for the output x-ray source flux. The HEC detection concept was recently proposed and experimentally demonstrated by a UML/HMS research group. HEC detection employs direct conversion of high-energy electron current to detector signal without external power and amplification. The potential of using HEC detectors for diagnostic imaging application was investigated by using a heterogeneous phantom consisting of a water cylinder with Al and wax rod inserts.

  19. Holmes

    NASA Astrophysics Data System (ADS)

    Faverzani, M.; HOLMES Collaboration

    2017-09-01

    The experiment HOLMES, founded by the European Research Council, will perform a calorimetric measurement of the energy released in the electron capture of 163Ho to directly measure the neutrino mass with a sensitivity of ˜ 1 eV. This approach allows to eliminate the problematics connected to the use of external sources and the systematic uncertainties arising from decays on excited states. Such measurement will be performed with low temperature thermal detectors, where the decay energy is converted into a temperature signal measured by sensitive thermometers. HOLMES, besides of being an important step forward in the direct neutrino mass measurement with a calorimetric approach, will also establish the potential of this approach to extend the sensitivity down to 0.1 eV and lower. The best configuration has been defined with Monte Carlo simulations: HOLMES will collect about 3 × 1013 decays with 1000 detectors characterized by an instrumental energy resolution of the order of the eV and a time resolution of few microseconds. For a measuring time of 3 years, this translates in a total required 163Ho activity of about 300 kBq, equivalent to about 6.5 × 1016 163Ho nuclei, or 18 µg. The HOLMES detectors will have 163Ho implanted into Gold absorber coupled to Transition Edge Sensors, which will be read using microwave multiplexed rf-SQUIDs in combination with a ROACH2 based acquisition system. An extensive R&D activity is in progress in order to maximize the multiplexing factor while preserving the performances of the individual detectors. R&D activities aimed at optimizing the single detector performances, the 163Ho isotope production and embedding are in progress and will converge in a preliminary measurement of an array of 16 detectors planned by the end of 2016. We outline here the HOLMES project with its technical challenges, its status and perspectives.

  20. Measurements and simulations of MAPS (Monolithic Active Pixel Sensors) response to charged particles - a study towards a vertex detector at the ILC

    NASA Astrophysics Data System (ADS)

    Maczewski, Lukasz

    2010-05-01

    The International Linear Collider (ILC) is a project of an electron-positron (e+e-) linear collider with the centre-of-mass energy of 200-500 GeV. Monolithic Active Pixel Sensors (MAPS) are one of the proposed silicon pixel detector concepts for the ILC vertex detector (VTX). Basic characteristics of two MAPS pixel matrices MIMOSA-5 (17 μm pixel pitch) and MIMOSA-18 (10 μm pixel pitch) are studied and compared (pedestals, noises, calibration of the ADC-to-electron conversion gain, detector efficiency and charge collection properties). The e+e- collisions at the ILC will be accompanied by intense beamsstrahlung background of electrons and positrons hitting inner planes of the vertex detector. Tracks of this origin leave elongated clusters contrary to those of secondary hadrons. Cluster characteristics and orientation with respect to the pixels netting are studied for perpendicular and inclined tracks. Elongation and precision of determining the cluster orientation as a function of the angle of incidence were measured. A simple model of signal formation (based on charge diffusion) is proposed and tested using the collected data.

  1. Cross Section Measurements Using the Zero Degree Detector

    NASA Technical Reports Server (NTRS)

    Christl, M. J.; Adams, J. H., Jr.; Heilbronn, L.; Kuznetsov, E. N.; Miller, J.; Zeitlin, C.

    2007-01-01

    The Zero Degree Detector (ZDD) is an instrument that has been used in accelerator exposures to measure the angular dependence of particles produced in heavy ion fragmentation experiments. The ZDD uses two identical layers of pixelated silicon detectors that make coincident measurements over the active area of the instrument. The angular distribution of secondary particle produced in nuclear interactions for several heavy ions: and target materials will be presented along with performance characteristic of the instrument.

  2. Integration of the ATLAS FE-I4 Pixel Chip in the Mini Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Lopez-Thibodeaux, Mayra; Garcia-Sciveres, Maurice; Kadyk, John; Oliver-Mallory, Kelsey

    2013-04-01

    This project deals with development of readout for a Time Projection Chamber (TPC) prototype. This is a type of detector proposed for direct detection of dark matter (WIMPS) with direction information. The TPC is a gaseous charged particle tracking detector composed of a field cage and a gas avalanche detector. The latter is made of two Gas Electron Multipliers in series, illuminating a pixel readout integrated circuit, which measures the distribution in position and time of the output charge. We are testing the TPC prototype, filled with ArCO2 gas, using a Fe-55 x-ray source and cosmic rays. The present prototype uses an FE-I3 chip for readout. This chip was developed about 10 years ago and is presently in use within the ATLAS pixel detector at the LHC. The aim of this work is to upgrade the TPC prototype to use an FE-I4 chip. The FE-I4 has an active area of 336 mm^2 and 26880 pixels, over nine times the number of pixels in the FE-I3 chip, and an active area about six times as much. The FE-I4 chip represents the state of the art of pixel detector readout, and is presently being used to build an upgrade of the ATLAS pixel detector.

  3. The effect of guard ring on leakage current and spectroscopic performance of TlBr planar detectors

    NASA Astrophysics Data System (ADS)

    Kargar, Alireza; Kim, Hadong; Cirignano, Leonard; Shah, Kanai

    2014-09-01

    Four thallium bromide planar detectors were fabricated from materials grown at RMD Inc. The TlBr samples were prepared to investigate the effect of guard ring on device gamma-ray spectroscopy performance, and to investigate the leakage current through surface and bulk. The devices' active area in planar configuration were 4.4 × 4.4 × 1.0 mm3. In this report, the detector fabrication process is described and the resulting energy spectra are discussed. It is shown that the guard ring improves device spectroscopic performance by shielding the sensing electrode from the surface leakage current, and by making the electric filed more uniform in the active region of the device.

  4. Neutron detection with a NaI spectrometer using high-energy photons

    NASA Astrophysics Data System (ADS)

    Holm, Philip; Peräjärvi, Kari; Sihvonen, Ari-Pekka; Siiskonen, Teemu; Toivonen, Harri

    2013-01-01

    Neutrons can be indirectly detected by high-energy photons. The performance of a 4″×4″×16″ NaI portal monitor was compared to a 3He-based portal monitor with a comparable cross-section of the active volume. Measurements were performed with bare and shielded 252Cf and AmBe sources. With an optimum converter and moderator structure for the NaI detector, the detection efficiencies and minimum detectable activities of the portal monitors were similar. The NaI portal monitor preserved its detection efficiency much better with shielded sources, making the method very interesting for security applications. For heavily shielded sources, the NaI detector was 2-3 times more sensitive than the 3He-based detector.

  5. Cosmogenically-produced isotopes in natural and enriched high-purity germanium detectors for the MAJORANA DEMONSTRATOR

    NASA Astrophysics Data System (ADS)

    Gilliss, Thomas; MAJORANA DEMONSTRATOR Collaboration

    2017-01-01

    The MAJORANA DEMONSTRATOR advances toward measurements of the neutrinoless double-beta decay of 76Ge. Detectors employed in the DEMONSTRATOR are subject to cosmogenic spallation during production and processing, resulting in activation of certain long-lived radioisotopes. Activation of these cosmogenic isotopes is mitigated by shielded storage of detectors and through underground operation of the DEMONSTRATOR at the 4850 ft level of the Sanford Underground Research Facility. In this work, we explore the appearance and reduction of cosmogenic contributions to the DEMONSTRATOR background spectrum. This work is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics and Nuclear Physics Programs of the National Science Foundation, and the Sanford Underground Research Facility.

  6. Silicon technologies for the CLIC vertex detector

    NASA Astrophysics Data System (ADS)

    Spannagel, S.

    2017-06-01

    CLIC is a proposed linear e+e- collider designed to provide particle collisions at center-of-mass energies of up to 3 TeV. Precise measurements of the properties of the top quark and the Higgs boson, as well as searches for Beyond the Standard Model physics require a highly performant CLIC detector. In particular the vertex detector must provide a single point resolution of only a few micrometers while not exceeding the envisaged material budget of around 0.2% X0 per layer. Beam-beam interactions and beamstrahlung processes impose an additional requirement on the timestamping capabilities of the vertex detector of about 10 ns. These goals can only be met by using novel techniques in the sensor and ASIC design as well as in the detector construction. The R&D program for the CLIC vertex detector explores various technologies in order to meet these demands. The feasibility of planar sensors with a thickness of 50-150 μm, including different active edge designs, are evaluated using Timepix3 ASICs. First prototypes of the CLICpix readout ASIC, implemented in 65 nm CMOS technology and with a pixel size of 25×25μm 2, have been produced and tested in particle beams. An updated version of the ASIC with a larger pixel matrix and improved precision of the time-over-threshold and time-of-arrival measurements has been submitted. Different hybridization concepts have been developed for the interconnection between the sensor and readout ASIC, ranging from small-pitch bump bonding of planar sensors to capacitive coupling of active HV-CMOS sensors. Detector simulations based on Geant 4 and TCAD are compared with experimental results to assess and optimize the performance of the various designs. This contribution gives an overview of the R&D program undertaken for the CLIC vertex detector and presents performance measurements of the prototype detectors currently under investigation.

  7. Neutron detector using sol-gel absorber

    DOEpatents

    Hiller, John M.; Wallace, Steven A.; Dai, Sheng

    1999-01-01

    An neutron detector composed of fissionable material having ions of lithium, uranium, thorium, plutonium, or neptunium, contained within a glass film fabricated using a sol-gel method combined with a particle detector is disclosed. When the glass film is bombarded with neutrons, the fissionable material emits fission particles and electrons. Prompt emitting activated elements yielding a high energy electron contained within a sol-gel glass film in combination with a particle detector is also disclosed. The emissions resulting from neutron bombardment can then be detected using standard UV and particle detection methods well known in the art, such as microchannel plates, channeltrons, and silicon avalanche photodiodes.

  8. Low energy prompt gamma-ray tests of a large volume BGO detector.

    PubMed

    Naqvi, A A; Kalakada, Zameer; Al-Anezi, M S; Raashid, M; Khateeb-ur-Rehman; Maslehuddin, M; Garwan, M A

    2012-01-01

    Tests of a large volume Bismuth Germinate (BGO) detector were carried out to detect low energy prompt gamma-rays from boron and cadmium-contaminated water samples using a portable neutron generator-based Prompt Gamma Neutron Activation Analysis (PGNAA) setup. Inspite of strong interference between the sample- and the detector-associated prompt gamma-rays, an excellent agreement has been observed between the experimental and calculated yields of the prompt gamma-rays, indicating successful application of the large volume BGO detector in the PGNAA analysis of bulk samples using low energy prompt gamma-rays. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Editorial

    NASA Astrophysics Data System (ADS)

    Bruzzi, Mara; Cartiglia, Nicolo; Pace, Emanuele; Talamonti, Cinzia

    2015-10-01

    The 10th edition of the International Conference on Radiation Effects on Semiconductor Materials, Detectors and Devices (RESMDD) was held in Florence, at Dipartimento di Fisica ed Astronomia on October 8-10, 2014. It has been aimed at discussing frontier research activities in several application fields as nuclear and particle physics, astrophysics, medical and solid-state physics. Main topics discussed in this conference concern performance of heavily irradiated silicon detectors, developments required for the luminosity upgrade of the Large Hadron Collider (HL-LHC), ultra-fast silicon detectors design and manufacturing, high-band gap semiconductor detectors, novel semiconductor-based devices for medical applications, radiation damage issues in semiconductors and related radiation-hardening technologies.

  10. Calibration and operational data for a compact photodiode detector useful for monitoring the location of moving sources of positron emitting radioisotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsland, M. G.; Dehnel, M. P.; Theroux, J.

    2013-04-19

    D-Pace has developed a compact cost-effective gamma detector system based on technology licensed from TRIUMF. These photodiode detectors are convenient for detecting the presence of positron emitting radioisotopes, particularly for the case of transport of radioisotopes from a PET cyclotron to hotlab, or from one location to another in an automated radiochemistry processing unit. This paper describes recent calibration experiments undertaken at the Turku PET Centre for stationary and moving sources of F18 and C11 in standard setups. The practical diagnostic utility of using several of these devices to track the transport of radioisotopes from the cyclotron to hotlab ismore » illustrated. For example, such a detector system provides: a semi-quantitative indication of total activity, speed of transport, location of any activity lost en route and effectiveness of follow-up system flushes, a means of identifying bolus break-up, feedback useful for deciding when to change out tubing.« less

  11. Sensor readout detector circuit

    DOEpatents

    Chu, Dahlon D.; Thelen, Jr., Donald C.

    1998-01-01

    A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems.

  12. Sensor readout detector circuit

    DOEpatents

    Chu, D.D.; Thelen, D.C. Jr.

    1998-08-11

    A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems. 6 figs.

  13. The feasibility of well-logging measurements of arsenic levels using neutron-activation analysis

    USGS Publications Warehouse

    Oden, C.P.; Schweitzer, J.S.; McDowell, G.M.

    2006-01-01

    Arsenic is an extremely toxic metal, which poses a significant problem in many mining environments. Arsenic contamination is also a major problem in ground and surface waters. A feasibility study was conducted to determine if neutron-activation analysis is a practical method of measuring in situ arsenic levels. The response of hypothetical well-logging tools to arsenic was simulated using a readily available Monte Carlo simulation code (MCNP). Simulations were made for probes with both hyperpure germanium (HPGe) and bismuth germanate (BGO) detectors using accelerator and isotopic neutron sources. Both sources produce similar results; however, the BGO detector is much more susceptible to spectral interference than the HPGe detector. Spectral interference from copper can preclude low-level arsenic measurements when using the BGO detector. Results show that a borehole probe could be built that would measure arsenic concentrations of 100 ppm by weight to an uncertainty of 50 ppm in about 15 min. ?? 2006 Elsevier Ltd. All rights reserved.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamson, P.; Aliaga, L.; Ambrose, D.

    Here, we report results from the first search for sterile neutrinos mixing with active neutrinos through a reduction in the rate of neutral-current interactions over a baseline of 810 km between the NOvA detectors. Analyzing a 14-kton detector equivalent exposure of 6.05 × 10 20 protons-on-target in the NuMI beam at Fermilab, we observe 95 neutral-current candidates at the Far Detector compared with 83.5 ± 9.7(stat) ± 9.4(syst) events predicted assuming mixing only occurs between active neutrino species. No evidence for νμ→νs transitions is found. Interpreting these results within a 3+1 model, we place constraints on the mixing angles θ 24more » < 20.8° and θ 34 < 31.2° at the 90% C.L. for 0.05 eV 2 ≤ Δm 41 2 ≤ 0.5 eV 2, the range of mass splittings that produce no significant oscillations over the Near Detector baseline.« less

  15. An ultra low-power CMOS automatic action potential detector.

    PubMed

    Gosselin, Benoit; Sawan, Mohamad

    2009-08-01

    We present a low-power complementary metal-oxide semiconductor (CMOS) analog integrated biopotential detector intended for neural recording in wireless multichannel implants. The proposed detector can achieve accurate automatic discrimination of action potential (APs) from the background activity by means of an energy-based preprocessor and a linear delay element. This strategy improves detected waveforms integrity and prompts for better performance in neural prostheses. The delay element is implemented with a low-power continuous-time filter using a ninth-order equiripple allpass transfer function. All circuit building blocks use subthreshold OTAs employing dedicated circuit techniques for achieving ultra low-power and high dynamic range. The proposed circuit function in the submicrowatt range as the implemented CMOS 0.18- microm chip dissipates 780 nW, and it features a size of 0.07 mm(2). So it is suitable for massive integration in a multichannel device with modest overhead. The fabricated detector succeeds to automatically detect APs from underlying background activity. Testbench validation results obtained with synthetic neural waveforms are presented.

  16. Estimation of neutron spectrum in the low-level gamma spectroscopy system using unfolding procedure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knežević, D., E-mail: david.knezevic@df.uns.ac.rs; Jovančević, N.; Krmar, M.

    2016-03-25

    The radiation resulting from neutron interactions with Ge nuclei in active volume of HPGe detectors is one of the main concerns in low-level gamma spectroscopy measurements [1,2]. It is usually not possible to measure directly spectrum of neutrons which strike detector. This paper explore the possibility of estimation of neutron spectrum using measured activities of certain Ge(n,γ) and Ge(n,n’) reactions (obtained from low-level gamma measurements), available ENDF cross section data and unfolding procedures. In this work HPGe detector with passive shield made from commercial low background lead was used for the measurement. The most important objective of this study wasmore » to reconstruct muon induced neutron spectrum created in the shield of the HPGe detector. MAXED [3] and GRAVEL [4] algorithms for neutron spectra unfolding were used. The results of those two algorithms were compared and we analyzed the sensitivity of the unfolding procedure to the various input parameters.« less

  17. Large area silicon drift detectors for x-rays -- New results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwanczyk, J.S.; Patt, B.E.; Tull, C.R.

    Large area silicon drift detectors, consisting of 8 mm and 12 mm diameter hexagons, were fabricated on 0.35 mm thick high resistivity n-type silicon. An external FET and a low-noise charge sensitive preamplifier were used for testing the prototype detectors. The detector performance was measured in the range 75 to 25 C using Peltier cooling, and from 0.125 to 6 {micro}s amplifier shaping time. Measured energy resolutions were 159 eV FWHM and 263 eV FWHM for the 0.5 cm{sup 2} and 1 cm{sup 2} detectors, respectively (at 5.9 keV, {minus}75 C, 6 {micro}s shaping time). The uniformity of the detectormore » response over the entire active area (measured using 560 nm light) was < 0.5%.« less

  18. STEFFY-software to calculate nuclide-specific total counting efficiency in well-type γ-ray detectors.

    PubMed

    Pommé, S

    2012-09-01

    A software package is presented to calculate the total counting efficiency for the decay of radionuclides in a well-type γ-ray detector. It is specifically applied to primary standardisation of activity by means of 4πγ-counting with a NaI(Tl) well-type scintillation detector. As an alternative to Monte Carlo simulations, the software combines good accuracy with superior speed and ease-of-use. It is also well suited to investigate uncertainties associated with the 4πγ-counting method for a variety of radionuclides and detector dimensions. In this paper, the underlying analytical models for the radioactive decay and subsequent counting efficiency of the emitted radiation in the detector are summarised. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Implementing a Multiplexed System of Detectors for Higher Photon Counting Rates

    DTIC Science & Technology

    2007-01-01

    D1 D2 Fig. 3. (a) Setup for testing different arrangements of InGaAs SPAD assemblies; (b) three different InGaAs SPAD assemblies; ( c ) schematic of...presently available, either commercial or prototype, the deadtimes range from ≈50 ns for actively quenched single photon avalanche detectors ( SPADs ...to ≈10 µs for passively quenched SPADs , although even actively quenched SPADs sometimes employ µs deadtimes to avoid excessive afterpulsing rates. In

  20. Accuracy of Monte Carlo photon transport simulation in characterizing brachytherapy dosimeter energy-response artefacts

    NASA Astrophysics Data System (ADS)

    Das, R. K.; Li, Z.; Perera, H.; Williamson, J. F.

    1996-06-01

    Practical dosimeters in brachytherapy, such as thermoluminescent dosimeters (TLD) and diodes, are usually calibrated against low-energy megavoltage beams. To measure absolute dose rate near a brachytherapy source, it is necessary to establish the energy response of the detector relative to that of the calibration energy. The purpose of this paper is to assess the accuracy of Monte Carlo photon transport (MCPT) simulation in modelling the absolute detector response as a function of detector geometry and photon energy. We have exposed two different sizes of TLD-100 (LiF chips) and p-type silicon diode detectors to calibrated , HDR source and superficial x-ray beams. For the Scanditronix electron-field diode, the relative detector response, defined as the measured detector readings per measured unit of air kerma, varied from (40 kVp beam) to ( beam). Similarly for the large and small chips the same quantity varied from and , respectively. Monte Carlo simulation was used to calculate the absorbed dose to the active volume of the detector per unit air kerma. If the Monte Carlo simulation is accurate, then the absolute detector response, which is defined as the measured detector reading per unit dose absorbed by the active detector volume, and is calculated by Monte Carlo simulation, should be a constant. For the diode, the absolute response is . For TLDs of size the absolute response is and for TLDs of it is . From the above results we can conclude that the absolute response function of detectors (TLDs and diodes) is directly proportional to absorbed dose by the active volume of the detector and is independent of beam quality.

  1. Surface Contamination by Radon Daughters Measured by Ionization-Heat NTD Germanium Detectors

    NASA Astrophysics Data System (ADS)

    Navick, X.-F.

    2008-05-01

    The discrimination power of the NTD ionization-heat detectors to distinguish nuclear recoils from electron recoils is affected by events interpreted as surface events. On the basis of the data from EDELWEISS I and first data taking of EDELWEISS-2, we present a coherent interpretation and direct evidence that surface events occur and are due to radon daughter deposition on detector surface and close-by surfaces. The estimation of the surface activities of contaminated surface are extracted from the new data taking.

  2. Some gamma-ray shielding measurements made at altitudes greater than 115000 feet using large Ge(Li) detectors

    NASA Technical Reports Server (NTRS)

    Chapman, G. T.; Cumby, R. P.; Gibbons, J. H.; Macklin, R. L.; Parker, H. W.

    1972-01-01

    A series of balloon-flight experiments at altitudes greater than 115,000 feet were conducted to gain information relative to the use of composite shields (passive and/or active) for shielding large-volume, lithium-drifted, germanium (Ge(Li)) detectors used in gamma-ray spectrometers. Data showing the pulse-height spectra of the environmental gamma radiation as measured at 5.3 and 3.8 gms sq cm residual atmosphere with an unshielded diode detector are also presented.

  3. Detector sustainability improvements at LCLS

    NASA Astrophysics Data System (ADS)

    Browne, Michael C.; Carini, Gabriella; DePonte, Daniel P.; Galtier, Eric C.; Hart, Philip A.; Koralek, J. D.; Mitra, Ankush; Nakahara, Kazutaka

    2017-06-01

    The Linac Coherent Light Source (LCLS) poses a number of daunting and often unusual challenges to maintaining X-ray detectors, such as proximity to liquid-sample injectors, complex setups with moving components, intense X-ray and optical laser light, and Electromagnetic Pulse (EMP). The Detector and Sample Environment departments at LCLS are developing an array of engineering, monitoring, and administrative controls solutions to better address these issues. These include injector improvements and monitoring methods, fast online damage recognition algorithms, EMP mapping and protection, actively cooled filters, and more.

  4. In vivo dosimeters for HDR brachytherapy: a comparison of a diamond detector, MOSFET, TLD, and scintillation detector.

    PubMed

    Lambert, Jamil; Nakano, Tatsuya; Law, Sue; Elsey, Justin; McKenzie, David R; Suchowerska, Natalka

    2007-05-01

    The large dose gradients in brachytherapy necessitate a detector with a small active volume for accurate dosimetry. The dosimetric performance of a novel scintillation detector (BrachyFOD) is evaluated and compared to three commercially available detectors, a diamond detector, a MOSFET, and LiF TLDs. An 192Ir HDR brachytherapy source is used to measure the depth dependence, angular dependence, and temperature dependence of the detectors. Of the commercially available detectors, the diamond detector was found to be the most accurate, but has a large physical size. The TLDs cannot provide real time readings and have depth dependent sensitivity. The MOSFET used in this study was accurate to within 5% for distances of 20 to 50 mm from the 192Ir source in water but gave errors of 30%-40% for distances greater than 50 mm from the source. The BrachyFOD was found to be accurate to within 3% for distances of 10 to 100 mm from an HDR 192Ir brachytherapy source in water. It has an angular dependence of less than 2% and the background signal created by Cerenkov radiation and fluorescence of the plastic optical fiber is insignificant compared to the signal generated in the scintillator. Of the four detectors compared in this study the BrachyFOD has the most favorable combination of characteristics for dosimetry in HDR brachytherapy.

  5. New approach to calculate the true-coincidence effect of HpGe detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alnour, I. A., E-mail: aaibrahim3@live.utm.my, E-mail: ibrahim.elnour@yahoo.com; Wagiran, H.; Ibrahim, N.

    The corrections for true-coincidence effects in HpGe detector are important, especially at low source-to-detector distances. This work established an approach to calculate the true-coincidence effects experimentally for HpGe detectors of type Canberra GC3018 and Ortec GEM25-76-XLB-C, which are in operation at neutron activation analysis lab in Malaysian Nuclear Agency (NM). The correction for true-coincidence effects was performed close to detector at distances 2 and 5 cm using {sup 57}Co, {sup 60}Co, {sup 133}Ba and {sup 137}Cs as standard point sources. The correction factors were ranged between 0.93-1.10 at 2 cm and 0.97-1.00 at 5 cm for Canberra HpGe detector; whereas for Ortec HpGemore » detector ranged between 0.92-1.13 and 0.95-100 at 2 and 5 cm respectively. The change in efficiency calibration curve of the detector at 2 and 5 cm after correction was found to be less than 1%. Moreover, the polynomial parameters functions were simulated through a computer program, MATLAB in order to find an accurate fit to the experimental data points.« less

  6. The energy spectrum of neutrons from 7Li(d,n)8Be reaction at deuteron energy 2.9 MeV

    NASA Astrophysics Data System (ADS)

    Mitrofanov, Konstantin V.; Piksaikin, Vladimir M.; Zolotarev, Konstantin I.; Egorov, Andrey S.; Gremyachkin, Dmitrii E.

    2017-09-01

    The neutron beams generated at the electrostatic accelerators using nuclear reactions T(p,n)3He, D(d,n)3He, 7Li(p,n)7Be, T(d,n)4He, 7Li(d,n)8Be, 9Be(d,n)10B are widely used in neutron physics and in many practical applications. Among these reactions the least studied reactions are 7Li(d,n)8Be and 9Be(d,n)10B. The present work is devoted to the measurement of the neutron spectrum from 7Li(d,n)8Be reaction at 0∘ angle to the deuteron beam axis on the electrostatic accelerator Tandetron (JSC "SSC RF - IPPE") using activation method and a stilbene crystal scintillation detector. The first time ever 7Li(d,n)8Be reaction was measured by activation method. The target was a thick lithium layer on metallic backing. The energy of the incident deuteron was 2.9 MeV. As activation detectors a wide range of nuclear reactions were used: 27Al(n,p)27Mg, 27Al(n,α)24Na, 113In(n,n')113mIn, 115In(n,n')115mIn, 115In(n,γ)116mIn, 58Ni(n,p)58mCo, 58Ni(n,2n)57Ni, 197Au(n,γ)198Au, 197Au(n,2n)196Au, 59Co(n,p)59Fe, 59Co(n,2n)58m+gCo, 59Co (n,g)60Co. Measurement of the induced gamma-activity was carried out using HPGe detector Canberra GX5019 [1]. The up-to-date evaluations of the cross sections for these reactions were used in processing of the data. The program STAYSL was used to unfold the energy spectra. The neutron spectra obtained by activation detectors is consistent with the corresponding data measured by a stilbene crystal scintillation detector within their uncertainties.

  7. Multi-wavelength Spatial LED illumination based detector for in vitro detection of Botulinum Neurotoxin A Activity

    PubMed Central

    Sun, Steven; Francis, Jesse; Sapsford, Kim E.; Kostov, Yordan; Rasooly, Avraham

    2010-01-01

    A portable and rapid detection system for the activity analysis of Botulinum Neurotoxins (BoNT) is needed for food safety and bio-security applications. To improve BoNT activity detection, a previously designed portable charge-coupled device (CCD) based detector was modified and equipped with a higher intensity more versatile multi-wavelength spatial light-emitting diode (LED) illumination, a faster CCD detector and the capability to simultaneously detect 30 samples. A FITC/DABCYL Förster Resonance Energy Transfer (FRET)-labeled peptide substrate (SNAP-25), with BoNT-A target cleavage site sequence was used to measure BoNT-A light chain (LcA) activity through the FITC fluorescence increase that occurs upon peptide substrate cleavage. For fluorescence excitation, a multi-wavelength spatial LED illuminator was used and compared to our previous electroluminescent (EL) strips. The LED illuminator was equipped with blue, green, red and white LEDs, covering a spectrum of 450-680 nm (red 610-650 nm, green 492-550 nm, blue 450-495 nm, and white LED 440-680 nm). In terms of light intensity, the blue LED was found to be ~80 fold higher than the previously used blue EL strips. When measuring the activity of LcA the CCD detector limit of detection (LOD) was found to be 0.08 nM LcA for both the blue LED (2 s exposure) and the blue EL (which require ≥60 s exposure) while the limits of quantitation (LOQ) is about 1 nM. The LOD for white LED was higher at 1.4 nM while the white EL was not used for the assay due to a high variable background. Unlike the weaker intensity EL illumination the high intensity LED illumination enabled shorter exposure times and allowed multi-wavelength illumination without the need to physically change the excitation strip, thus making spectrum excitation of multiple fluorophores possible increasing the versatility of the detector platform for a variety of optical detection assays. PMID:20498728

  8. Development of a Coded Aperture X-Ray Backscatter Imager for Explosive Device Detection

    NASA Astrophysics Data System (ADS)

    Faust, Anthony A.; Rothschild, Richard E.; Leblanc, Philippe; McFee, John Elton

    2009-02-01

    Defence R&D Canada has an active research and development program on detection of explosive devices using nuclear methods. One system under development is a coded aperture-based X-ray backscatter imaging detector designed to provide sufficient speed, contrast and spatial resolution to detect antipersonnel landmines and improvised explosive devices. The successful development of a hand-held imaging detector requires, among other things, a light-weight, ruggedized detector with low power requirements, supplying high spatial resolution. The University of California, San Diego-designed HEXIS detector provides a modern, large area, high-temperature CZT imaging surface, robustly packaged in a light-weight housing with sound mechanical properties. Based on the potential for the HEXIS detector to be incorporated as the detection element of a hand-held imaging detector, the authors initiated a collaborative effort to demonstrate the capability of a coded aperture-based X-ray backscatter imaging detector. This paper will discuss the landmine and IED detection problem and review the coded aperture technique. Results from initial proof-of-principle experiments will then be reported.

  9. Determination of the Effective Detector Area of an Energy-Dispersive X-Ray Spectrometer at the Scanning Electron Microscope Using Experimental and Theoretical X-Ray Emission Yields.

    PubMed

    Procop, Mathias; Hodoroaba, Vasile-Dan; Terborg, Ralf; Berger, Dirk

    2016-12-01

    A method is proposed to determine the effective detector area for energy-dispersive X-ray spectrometers (EDS). Nowadays, detectors are available for a wide range of nominal areas ranging from 10 up to 150 mm2. However, it remains in most cases unknown whether this nominal area coincides with the "net active sensor area" that should be given according to the related standard ISO 15632, or with any other area of the detector device. Moreover, the specific geometry of EDS installation may further reduce a given detector area. The proposed method can be applied to most scanning electron microscope/EDS configurations. The basic idea consists in a comparison of the measured count rate with the count rate resulting from known X-ray yields of copper, titanium, or silicon. The method was successfully tested on three detectors with known effective area and applied further to seven spectrometers from different manufacturers. In most cases the method gave an effective area smaller than the area given in the detector description.

  10. The DOSIS -Experiment onboard the Columbus Laboratory of the International Space Station -Overview and first mission results

    NASA Astrophysics Data System (ADS)

    Reitz, Guenther; Berger, Thomas; Kürner, Christine; Burmeister, Sünke; Hajek, Michael; Bilski, Pawel; Horwacik, Tomasz; Vanhavere, Filip; Spurny, Frantisek; Jadrnickova, Iva; Pálfalvi, József K.; O'Sullivan, Denis; Yasuda, Nakahiro; Uchihori, Yukio; Kitamura, Hisashi; Kodaira, Satoshi; Yukihara, Eduardo; Benton, Eric; Zapp, Neal; Gaza, Ramona; Zhou, Dazhuang; Semones, Edward; Roed, Yvonne; Boehme, Matthias; Haumann, Lutz

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long dura-tion human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station ISS is therefore needed. The DOSIS (Dose Distribution inside the ISS) experiment, under the project and science lead of DLR, aims for the spatial and tempo-ral measurement of the radiation field parameters inside the European Columbus laboratory onboard the International Space Station. This goal is achieved by applying a combination of passive (Thermo-and Optical luminescence detectors and Nuclear track etch detectors) and active (silicon telescope) radiation detectors. The passive radiation detectors -so called pas-sive detector packages (PDP) are mounted at eleven positions within the Columbus laboratory -aiming for a spatial dose distribution measurement of the absorbed dose, the linear energy transfer spectra and the dose equivalent with an average exposure time of six months. Two active silicon telescopes -so called Dosimetry Telescopes (DOSTEL 1 and DOSTEL 2) together with a Data and Power Unit (DDPU) are mounted within the DOSIS Main Box at a fixed loca-tion beneath the European Physiology Module (EPM) rack. The DOSTEL 1 and DOSTEL 2 detectors are positioned at a 90 angle to each other for a precise measurement of the temporal and spatial variation of the radiation field, especially during crossing of the South Atlantic Anomaly (SAA). The DOSIS hardware was launched with the Space Shuttle Endeavour to the International Space Station on 15 July 2009 and installed by European Astronaut Frank de Winne on 18 July 2009. The first PDP set was downloaded after an exposure time of 124 days in November 2009 and a second PDP set was installed in November 2009. The active part of the instrument suit is working since July 2009. The presentation will give an overview about the DOSIS experiment as well as first results from the passive and active radiation detector measurements. The Austrian activities within this experiment were supported by the Austrian Space Appli-cations Programme (ASAP) of the Federal Ministry for Transport, Innovation and Technology under contract no. 819643. The Polish contribution to this work was supported by the Min-istry of Science and Higher Education, grant No. DWM/N118/ESA/2008. The Hungarian contribution was supported by the ESA PECS grant No. C98066.

  11. Active noise canceling system for mechanically cooled germanium radiation detectors

    DOEpatents

    Nelson, Karl Einar; Burks, Morgan T

    2014-04-22

    A microphonics noise cancellation system and method for improving the energy resolution for mechanically cooled high-purity Germanium (HPGe) detector systems. A classical adaptive noise canceling digital processing system using an adaptive predictor is used in an MCA to attenuate the microphonics noise source making the system more deployable.

  12. Low cost charged-coupled device (CCD) based detectors for Shiga toxins activity analysis

    USDA-ARS?s Scientific Manuscript database

    To improve food safety there is a need to develop simple, low-cost sensitive devices for detection of foodborne pathogens and their toxins. We describe a simple and relatively low-cost webcam-based detector which can be used for various optical detection modalities, including fluorescence, chemilumi...

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozhdestvenskyy, S.

    This work iterates on the first demonstration of a solid-state neutron multiplicity counting system developed at Lawrence Livermore National Laboratory by using commercial off-the-shelf detectors. The system was demonstrated to determine the mass of a californium-252 neutron source within 20% error requiring only one-hour measurement time with 20 cm 2 of active detector area.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markovic, M; Stathakis, S; Jurkovic, I

    Purpose The aim for the study was to compare intrinsic characteristics of the nine detectors and evaluate their performance in non-equilibrium radiation dosimetry. Methods The intrinsic characteristics of the nine detectors that were evaluated are based on the composition and size of the active volume, operating voltage, initial recombination of the collected charge, temperature, the effective cross section of the detectors. The shortterm stability and collection efficiency has been investigated. The minimum radiation detection sensitivity and detectors leakage current has been measured. The sensitivity to changes in energy spectrum as well as change in incident beam angles were measured anmore » analyzed. Results The short-term stability of the measurements within every detector showed consistency in the measured values with the highest value of the standard deviation of the mean not exceeding 0.5%. Air ion chamber detectors showed minimum sensitivity to change in incident beam angles while diode detectors underestimated measurements up to 16%. Comparing the slope of the tangents for detector’s sensitivity curve, diode detectors illustrate more sensitivity to change in photon spectrum than ion chamber detectors. The change in radiation detection sensitivity with increase in dose delivered has been observed for semiconductor detectors with maximum deviation 0.01% for doses between 1 Gy and 10 Gy. Leakage current has been mainly influenced by bias voltage (ion chamber detectors) and room light intensity (diode detectors). With dose per pulse varying from 1.47E−4 to 5.1E−4 Gy/pulse the maximum change in collection efficiency was 1.4% for the air ion chambers up to 8% for liquid filled ion chamber. Conclusion Broad range of measurements performed showed all the detectors susceptible to some limitations and while they are suitable for use in broad scope of applications, careful selection has to be made for particular range of measurements.« less

  15. A hybrid approach for efficient anomaly detection using metaheuristic methods

    PubMed Central

    Ghanem, Tamer F.; Elkilani, Wail S.; Abdul-kader, Hatem M.

    2014-01-01

    Network intrusion detection based on anomaly detection techniques has a significant role in protecting networks and systems against harmful activities. Different metaheuristic techniques have been used for anomaly detector generation. Yet, reported literature has not studied the use of the multi-start metaheuristic method for detector generation. This paper proposes a hybrid approach for anomaly detection in large scale datasets using detectors generated based on multi-start metaheuristic method and genetic algorithms. The proposed approach has taken some inspiration of negative selection-based detector generation. The evaluation of this approach is performed using NSL-KDD dataset which is a modified version of the widely used KDD CUP 99 dataset. The results show its effectiveness in generating a suitable number of detectors with an accuracy of 96.1% compared to other competitors of machine learning algorithms. PMID:26199752

  16. Large area silicon drift detectors for x-rays -- New results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwanczyk, J.S.; Patt, B.E.; Tull, C.R.

    Large area silicon drift detectors, consisting of 8 mm and 12 mm diameter hexagons, were fabricated on 0.35 mm thick high resistivity n-type silicon. An external FET and a low-noise charge sensitive preamplifier were used for testing the prototype detectors. The detector performance was measured in the range {minus}75 to 25 C using Peltier cooling, and from 0.125 to 6 {micro}s amplifier shaping time. Measured energy resolutions were 159 eV FWHM and 263 eV FWHM for the 0.5 cm{sup 2} and 1 cm{sup 2} detectors, respectively (at 5.9 keV, {minus}75 C, 6 {micro}s shaping time). The uniformity of the detectormore » response over the entire active area (measured using 560 nm light) was <0.5%.« less

  17. A hybrid approach for efficient anomaly detection using metaheuristic methods.

    PubMed

    Ghanem, Tamer F; Elkilani, Wail S; Abdul-Kader, Hatem M

    2015-07-01

    Network intrusion detection based on anomaly detection techniques has a significant role in protecting networks and systems against harmful activities. Different metaheuristic techniques have been used for anomaly detector generation. Yet, reported literature has not studied the use of the multi-start metaheuristic method for detector generation. This paper proposes a hybrid approach for anomaly detection in large scale datasets using detectors generated based on multi-start metaheuristic method and genetic algorithms. The proposed approach has taken some inspiration of negative selection-based detector generation. The evaluation of this approach is performed using NSL-KDD dataset which is a modified version of the widely used KDD CUP 99 dataset. The results show its effectiveness in generating a suitable number of detectors with an accuracy of 96.1% compared to other competitors of machine learning algorithms.

  18. Measurement of the Energy-Dependent Angular Response of the ARES Detector System and Application to Aerial Imaging

    NASA Astrophysics Data System (ADS)

    Joshi, Tenzing H. Y.; Quiter, Brian J.; Maltz, Jonathan S.; Bandstra, Mark S.; Haefner, Andrew; Eikmeier, Nicole; Wagner, Eric; Luke, Tanushree; Malchow, Russell; McCall, Karen

    2017-07-01

    The Airborne Radiological Enhanced-sensor System (ARES) includes a prototype helicopter-borne CsI(Na) detector array that has been developed as part of the DHS Domestic Nuclear Detection Office Advanced Technology Demonstration. The detector system geometry comprises two pairs of 23-detector arrays designed to function as active masks, providing additional angular resolution of measured gamma rays in the roll dimension. Experimental measurements, using five radioisotopes (137Cs, 60Co, 241Am, 131I, and 99mTc), were performed to map the detector response in both roll and pitch dimensions. This paper describes the acquisition and analysis of these characterization measurements, calculation of the angular response of the ARES system, and how this response function is used to improve aerial detection and localization of radiological and nuclear threat sources.

  19. Evaluation of absolute measurement using a 4π plastic scintillator for the 4πβ-γ coincidence counting method.

    PubMed

    Unno, Y; Sanami, T; Sasaki, S; Hagiwara, M; Yunoki, A

    2018-04-01

    Absolute measurement by the 4πβ-γ coincidence counting method was conducted by two photomultipliers facing across a plastic scintillator to be focused on β ray counting efficiency. The detector was held with a through-hole-type NaI(Tl) detector. The results include absolutely determined activity and its uncertainty especially about extrapolation. A comparison between the obtained and known activities showed agreement within their uncertainties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Light-pulse atom interferometric device

    DOEpatents

    Biedermann, Grant; McGuinness, Hayden James Evans; Rakholia, Akash; Jau, Yuan-Yu; Schwindt, Peter; Wheeler, David R.

    2016-03-22

    An atomic interferometric device useful, e.g., for measuring acceleration or rotation is provided. The device comprises at least one vapor cell containing a Raman-active chemical species, an optical system, and at least one detector. The optical system is conformed to implement a Raman pulse interferometer in which Raman transitions are stimulated in a warm vapor of the Raman-active chemical species. The detector is conformed to detect changes in the populations of different internal states of atoms that have been irradiated by the optical system.

  1. Intercomparison NaI(Tl) and HPGe spectrometry to studies of natural radioactivity on geological samples.

    PubMed

    Hung, Nguyen Quoc; Chuong, Huynh Dinh; Vuong, Le Quang; Thanh, Tran Thien; Tao, Chau Van

    2016-11-01

    In this study, in situ gamma spectra using NaI(Tl) detector have been compared with the laboratory measurements by using HPGe detector on geological samples. The results for measuring naturally occurring terrestrial gamma radiation of 4 0 K and the decay series of 232 Th and, 238 U respectively of both detectors show a maximum deviation about 5%. The mass activities series from both detectors were checked for coherence using proficiency test procedure from the International Atomic Energy Agency. The reliability and precision pass for final scores for all the analytical determinations of are received "acceptable" for all radionuclides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. The Measurement of Spectral Characteristics and Composition of Radiation in Atlas with MEDIPIX2-USB Devices

    NASA Astrophysics Data System (ADS)

    Campbell, M.; Doležal, Z.; Greiffenberg, D.; Heijne, E.; Holy, T.; Idárraga, J.; Jakůbek, J.; Král, V.; Králík, M.; Lebel, C.; Leroy, C.; Llopart, X.; Lord, G.; Maneuski, D.; Ouellette, O.; Sochor, V.; Pospíšil, S.; Suk, M.; Tlustos, L.; Vykydal, Z.; Wilhelm, I.

    2008-06-01

    A network of devices to perform real-time measurements of the spectral characteristics and composition of radiation in the ATLAS detector and cavern during its operation is being built. This system of detectors will be a stand alone system fully capable of delivering real-time images of fluxes and spectral composition of different particle species including slow and fast neutrons. The devices are based on MEDIPIX2 pixel silicon detectors that will be operated via active USB cables and USB-Ethernet extenders through an Ethernet network by a PC located in the USA15 ATLAS control room. The installation of 14 devices inside ATLAS (detector and cavern) is in progress.

  3. A standing location detector enabling people with developmental disabilities to control environmental stimulation through simple physical activities with Nintendo Wii Balance Boards.

    PubMed

    Shih, Ching-Hsiang

    2011-01-01

    This study evaluated whether two people with developmental disabilities would be able to actively perform simple physical activities by controlling their favorite environmental stimulation using Nintendo Wii Balance Boards with a newly developed standing location detection program (SLDP, i.e., a new software program turning a Nintendo Wii Balance Board into a standing location detector). This study was carried out using to an ABAB design. The data showed that both participants significantly increased their simple physical activity (target response) to activate the control system to produce environmental stimulation during the B (intervention) phases. The practical and developmental implications of the findings are discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. The CdZnTe Detector with Slit Collimator for Measure Distribution of the Specific Activity Radionuclide in the Ground

    NASA Astrophysics Data System (ADS)

    Stepanov, V. E.; Volkovich, A. G.; Potapov, V. N.; Semin, I. A.; Stepanov, A. V.; Simirskii, Iu. N.

    2018-01-01

    From 2011 in the NRC "Kurchatov Institute" carry out the dismantling of the MR multiloop research reactor. Now the reactor and all technological equipment in the premises of the reactor were dismantled. Now the measurements of radioactive contamination in the reactor premises are made. The most contaminated parts of premises - floor and the ground beneath it. To measure the distribution of specific activity in the ground the CdZnTe detector (volume 500MM3) was used. Detector placed in a lead shielding with a slit collimation hole. The upper part of shielding is made movable to close and open the slit of the collimator. At each point two measurements carried out: with open and closed collimator. The software for determination specific activity of radionuclides in ground was developed. The mathematical model of spectrometric system based on the Monte-Carlo method. Measurements of specific activity of ground were made. Using the results of measurements the thickness of the removed layer of ground and the amount of radioactive waste were calculated.

  5. A high quality voice coder with integrated echo canceller and voice activity detector for mobile satellite applications

    NASA Technical Reports Server (NTRS)

    Kondoz, A. M.; Evans, B. G.

    1993-01-01

    In the last decade, low bit rate speech coding research has received much attention resulting in newly developed, good quality, speech coders operating at as low as 4.8 Kb/s. Although speech quality at around 8 Kb/s is acceptable for a wide variety of applications, at 4.8 Kb/s more improvements in quality are necessary to make it acceptable to the majority of applications and users. In addition to the required low bit rate with acceptable speech quality, other facilities such as integrated digital echo cancellation and voice activity detection are now becoming necessary to provide a cost effective and compact solution. In this paper we describe a CELP speech coder with integrated echo canceller and a voice activity detector all of which have been implemented on a single DSP32C with 32 KBytes of SRAM. The quality of CELP coded speech has been improved significantly by a new codebook implementation which also simplifies the encoder/decoder complexity making room for the integration of a 64-tap echo canceller together with a voice activity detector.

  6. Radiation Measurements Performed with Active Detectors Relevant for Human Space Exploration

    PubMed Central

    Narici, Livio; Berger, Thomas; Matthiä, Daniel; Reitz, Günther

    2015-01-01

    A reliable radiation risk assessment in space is a mandatory step for the development of countermeasures and long-duration mission planning in human spaceflight. Research in radiobiology provides information about possible risks linked to radiation. In addition, for a meaningful risk evaluation, the radiation exposure has to be assessed to a sufficient level of accuracy. Consequently, both the radiation models predicting the risks and the measurements used to validate such models must have an equivalent precision. Corresponding measurements can be performed both with passive and active devices. The former is easier to handle, cheaper, lighter, and smaller but they measure neither the time dependence of the radiation environment nor some of the details useful for a comprehensive radiation risk assessment. Active detectors provide most of these details and have been extensively used in the International Space Station. To easily access such an amount of data, a single point access is becoming essential. This review presents an ongoing work on the development of a tool that allows obtaining information about all relevant measurements performed with active detectors providing reliable inputs for radiation model validation. PMID:26697408

  7. Radiation Measurements Performed with Active Detectors Relevant for Human Space Exploration.

    PubMed

    Narici, Livio; Berger, Thomas; Matthiä, Daniel; Reitz, Günther

    2015-01-01

    A reliable radiation risk assessment in space is a mandatory step for the development of countermeasures and long-duration mission planning in human spaceflight. Research in radiobiology provides information about possible risks linked to radiation. In addition, for a meaningful risk evaluation, the radiation exposure has to be assessed to a sufficient level of accuracy. Consequently, both the radiation models predicting the risks and the measurements used to validate such models must have an equivalent precision. Corresponding measurements can be performed both with passive and active devices. The former is easier to handle, cheaper, lighter, and smaller but they measure neither the time dependence of the radiation environment nor some of the details useful for a comprehensive radiation risk assessment. Active detectors provide most of these details and have been extensively used in the International Space Station. To easily access such an amount of data, a single point access is becoming essential. This review presents an ongoing work on the development of a tool that allows obtaining information about all relevant measurements performed with active detectors providing reliable inputs for radiation model validation.

  8. Distributed state machine supervision for long-baseline gravitational-wave detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rollins, Jameson Graef, E-mail: jameson.rollins@ligo.org

    The Laser Interferometer Gravitational-wave Observatory (LIGO) consists of two identical yet independent, widely separated, long-baseline gravitational-wave detectors. Each Advanced LIGO detector consists of complex optical-mechanical systems isolated from the ground by multiple layers of active seismic isolation, all controlled by hundreds of fast, digital, feedback control systems. This article describes a novel state machine-based automation platform developed to handle the automation and supervisory control challenges of these detectors. The platform, called Guardian, consists of distributed, independent, state machine automaton nodes organized hierarchically for full detector control. User code is written in standard Python and the platform is designed to facilitatemore » the fast-paced development process associated with commissioning the complicated Advanced LIGO instruments. While developed specifically for the Advanced LIGO detectors, Guardian is a generic state machine automation platform that is useful for experimental control at all levels, from simple table-top setups to large-scale multi-million dollar facilities.« less

  9. Device for calibrating a radiation detector system

    DOEpatents

    McFee, M.C.; Kirkham, T.J.; Johnson, T.H.

    1994-12-27

    A device is disclosed for testing a radiation detector system that includes at least two arrays of radiation detectors that are movable with respect to each other. The device includes a ''shield plate'' or shell, and an opposing ''source plate'' containing a source of ionizing radiation. Guides are attached to the outer surface of the shell for engaging the forward ends of the detectors, thereby reproducibly positioning the detectors with respect to the source and with respect to each other, thereby ensuring that a predetermined portion of the radiation emitted by the source passes through the shell and reaches the detectors. The shell is made of an hydrogenous material having approximately the same radiological attenuation characteristics as composite human tissue. The source represents a human organ such as the lungs, heart, kidneys, liver, spleen, pancreas, thyroid, testes, prostate, or ovaries. The source includes a source of ionizing radiation having a long half-life and an activity that is within the range typically searched for in human subjects. 3 figures.

  10. Large-area field-ionization detector for the study of Rydberg atoms.

    PubMed

    Jones, A C L; Piñeiro, A M; Roeder, E E; Rutbeck-Goldman, H J; Tom, H W K; Mills, A P

    2016-11-01

    We describe here the development and characterization of a micro-channel plate (MCP) based detector designed for the efficient collection and detection of Rydberg positronium (Ps) atoms for use in a time-of-flight apparatus. The designed detector collects Rydberg atoms over a large area (∼4 times greater than the active area of the MCP), ionizing incident atoms and then collecting and focusing the freed positrons onto the MCP. Here we discuss the function, design, and optimization of the device. The detector has an efficiency for Rydberg Ps that is two times larger than that of the γ-ray scintillation detector based scheme it has been designed to replace, with half the background signal. In principle, detectors of the type described here could be readily employed for the detection of any Rydberg atom species, provided a sufficient field can be applied to achieve an ionization rate of ≥10 8 /s. In such cases, the best time resolution would be achieved by collecting ionized electrons rather than the positive ions.

  11. Optimization of a low noise detection circuit for probing the structure of damage cascades with IBIC

    DOE PAGES

    Auden, Elizabeth C.; Doyle, Barney L.; Bielejec, Edward; ...

    2015-06-18

    Optimal detector / pre-amplifier combinations have been identified for the use of light ion IBIC (ion beam induced charge) to probe the physical structure of electrically active defects in damage cascades caused by heavy ion implantation. The ideal detector must have a sufficiently thin dead layer that incident ions will produce the majority of damage cascades in the depletion region of the detector rather than the dead layer. Detector and circuit noise must be low enough to detect the implantation of a single heavy ion as well as the decrease in the light ion IBIC signal caused by Shockley-Read-Hall recombinationmore » when the beam scans regions of the detector damaged by the heavy ion. The IBIC signals from three detectors irradiated with 750 keV He⁺ ions are measured with commercial and bespoke charge sensitive pre-amplifiers to identify the combination with the lowest noise.« less

  12. Characterisation of the high dynamic range Large Pixel Detector (LPD) and its use at X-ray free electron laser sources

    DOE PAGES

    Veale, M. C.; Adkin, P.; Booker, P.; ...

    2017-12-04

    The STFC Rutherford Appleton Laboratory have delivered the Large Pixel Detector (LPD) for MHz frame rate imaging at the European XFEL. The detector system has an active area of 0.5 m × 0.5 m and consists of a million pixels on a 500 μm pitch. Sensors have been produced from 500 μm thick Hammamatsu silicon tiles that have been bump bonded to the readout ASIC using a silver epoxy and gold stud technique. Each pixel of the detector system is capable of measuring 10 5 12 keV photons per image readout at 4.5 MHz. In this paper results from themore » testing of these detectors at the Diamond Light Source and the Linac Coherent Light Source (LCLS) are presented. As a result, the performance of the detector in terms of linearity, spatial uniformity and the performance of the different ASIC gain stages is characterised.« less

  13. Characterisation of the high dynamic range Large Pixel Detector (LPD) and its use at X-ray free electron laser sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veale, M. C.; Adkin, P.; Booker, P.

    The STFC Rutherford Appleton Laboratory have delivered the Large Pixel Detector (LPD) for MHz frame rate imaging at the European XFEL. The detector system has an active area of 0.5 m × 0.5 m and consists of a million pixels on a 500 μm pitch. Sensors have been produced from 500 μm thick Hammamatsu silicon tiles that have been bump bonded to the readout ASIC using a silver epoxy and gold stud technique. Each pixel of the detector system is capable of measuring 10 5 12 keV photons per image readout at 4.5 MHz. In this paper results from themore » testing of these detectors at the Diamond Light Source and the Linac Coherent Light Source (LCLS) are presented. As a result, the performance of the detector in terms of linearity, spatial uniformity and the performance of the different ASIC gain stages is characterised.« less

  14. Time dependent 14 MeV neutrons measurement using a polycrystalline chemical vapor deposited diamond detector at the JET tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angelone, M.; Pillon, M.; Bertalot, L.

    A polycrystalline chemical vapor deposited (CVD) diamond detector was installed on a JET tokamak in order to monitor the time dependent 14 MeV neutron emission produced by D-T plasma pulses during the Trace Tritium Experiment (TTE) performed in October 2003. This was the first tentative ever attempted to use a CVD diamond detector as neutron monitor in a tokamak environment. Despite its small active volume, the detector was able to detect the 14 MeV neutron emission (>1.0x10{sup 15} n/shot) with good reliability and stability during the experimental campaign that lasted five weeks. The comparison with standard silicon detectors presently usedmore » at JET as 14 MeV neutron monitors is reported, showing excellent correlation between the measurements. The results prove that CVD diamond detectors can be reliably used in a tokamak environment and therefore confirm the potential of this technology for next step machines like ITER.« less

  15. Device for calibrating a radiation detector system

    DOEpatents

    Mc Fee, Matthew C.; Kirkham, Tim J.; Johnson, Tippi H.

    1994-01-01

    A device for testing a radiation detector system that includes at least two arrays of radiation detectors that are movable with respect to each other. The device includes a "shield plate" or shell, and an opposing "source plate" containing a source of ionizing radiation. Guides are attached to the outer surface of the shell for engaging the forward ends of the detectors, thereby reproducibly positioning the detectors with respect to the source and with respect to each other, thereby ensuring that a predetermined portion of the radiation emitted by the source passes through the shell and reaches the detectors. The shell is made of an hydrogenous material having approximately the same radiological attenuation characteristics as composite human tissue. The source represents a human organ such as the lungs, heart, kidneys, heart, liver, spleen, pancreas, thyroid, testes, prostate, or ovaries. The source includes a source of ionizing radiation having a long half-life and an activity that is within the range typically searched for in human subjects.

  16. Evaluating the Performance of a Commercial Silicon Drift Detector for X-ray Microanalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenik, Edward A

    2011-01-01

    Silicon drift detectors (SDDs) are rapidly becoming the energy dispersive spectrometer (EDS) of choice, especially for scanning electron microscopy x-ray microanalysis. The complementary features of large active areas (i.e., high collection angle) and high count rate capability of these detector contribute to their popularity, as well as the absence of liquid nitrogen cooling and good energy resolution of these detectors. The performance of an EDAX Apollo 40 SDD on a JEOL 6500F SEM is discussed. The larger detector resulted in an significant increase (~3.5x) in geometric collection efficiency compared to the original 10mm2 Si(Li) detector that it replaced. The SEMmore » can provide high beam currents (up to 200nA in some conditions) at small probe diameters. The high count rate capability of the SDD and the high current capability of the SEM compliment each other and provide excellent EDS analytical capabilities for both single point and spectrum imaging applications.« less

  17. Measurement of the 235U Induced Fission Gamma-ray Spectrum as an Active Non-destructive Assay of Fresh Nucleear Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarnoski, Sarah E.; Fast, James E.; Fulsom, Bryan G.

    2017-07-17

    Non-destructive assay is a powerful tool the International Atomic Energy Agency (IAEA) employs to verify adherence to safeguards agreements. Current IAEA veri- cation techniques for fresh nuclear fuel include passive gamma-ray spectroscopy to determine fuel enrichment. This technique suers from self-shielding and lakes the percision to detect diversion of central fuel rods. The aim of this research is to develop a new, more capable non-destructive analysis technique using active neutron interroga- tion of fuel assemblies and determining the yields of short-lived ssion products from high-resolution gamma-ray spectroscopy using high-purity germanium (HPGe). This paper reports results from irradiation of a onemore » meter tall mock fresh fuel assembly with low enriched uranium (LEU) or depleted uranium (DU) rods using a down-scattered deuterium-tritium (D-T) neutron source. Both prompt and delayed gamma-ray spec- tra were collected as time-stamped list-mode data in a coax detector and without list mode data in a planar strip detector. No dierentiating signatures were observed in the prompt spectra in either detector; however, both detectors observed several short-lived ssion product signatures in LEU and not DU fuel, indicating that this technique has potential for determination of enrichment of fresh fuel assemblies. There were eight unique ssion products observed in the LEU spectra with the coax detector spectra, and three ssion products were observed in the LEU spectra with the strip detector.« less

  18. Efficiency study of a big volume well type NaI(Tl) detector by point and voluminous sources and Monte-Carlo simulation.

    PubMed

    Hansman, Jan; Mrdja, Dusan; Slivka, Jaroslav; Krmar, Miodrag; Bikit, Istvan

    2015-05-01

    The activity of environmental samples is usually measured by high resolution HPGe gamma spectrometers. In this work a set-up with a 9in.x9in. NaI well-detector with 3in. thickness and a 3in.×3in. plug detector in a 15-cm-thick lead shielding is considered as an alternative (Hansman, 2014). In spite of its much poorer resolution, it requires shorter measurement times and may possibly give better detection limits. In order to determine the U-238, Th-232, and K-40 content in the samples by this NaI(Tl) detector, the corresponding photopeak efficiencies must be known. These efficiencies can be found for certain source matrix and geometry by Geant4 simulation. We found discrepancy between simulated and experimental efficiencies of 5-50%, which can be mainly due to effects of light collection within the detector volume, an effect which was not taken into account by simulations. The influence of random coincidence summing on detection efficiency for radionuclide activities in the range 130-4000Bq, was negligible. This paper describes also, how the efficiency in the detector depends on the position of the radioactive point source. To avoid large dead time, relatively weak Mn-54, Co-60 and Na-22 point sources of a few kBq were used. Results for single gamma lines and also for coincidence summing gamma lines are presented. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Assessment of uncertainties in the lung activity measurement of low-energy photon emitters using Monte Carlo simulation of ICRP male thorax voxel phantom.

    PubMed

    Nadar, M Y; Akar, D K; Rao, D D; Kulkarni, M S; Pradeepkumar, K S

    2015-12-01

    Assessment of intake due to long-lived actinides by inhalation pathway is carried out by lung monitoring of the radiation workers inside totally shielded steel room using sensitive detection systems such as Phoswich and an array of HPGe detectors. In this paper, uncertainties in the lung activity estimation due to positional errors, chest wall thickness (CWT) and detector background variation are evaluated. First, calibration factors (CFs) of Phoswich and an array of three HPGe detectors are estimated by incorporating ICRP male thorax voxel phantom and detectors in Monte Carlo code 'FLUKA'. CFs are estimated for the uniform source distribution in lungs of the phantom for various photon energies. The variation in the CFs for positional errors of ±0.5, 1 and 1.5 cm in horizontal and vertical direction along the chest are studied. The positional errors are also evaluated by resizing the voxel phantom. Combined uncertainties are estimated at different energies using the uncertainties due to CWT, detector positioning, detector background variation of an uncontaminated adult person and counting statistics in the form of scattering factors (SFs). SFs are found to decrease with increase in energy. With HPGe array, highest SF of 1.84 is found at 18 keV. It reduces to 1.36 at 238 keV. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Critical Configuration and Physics Measurements for Beryllium Reflected Assemblies of U(93.15)O₂ Fuel Rods (1.506-cm Pitch and 7-Tube Clusters)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Margaret A.; Bess, John D.; Briggs, J. Blair

    2015-03-01

    Cadmium ratios were measured with enriched uranium metal foils at various locations in the assembly with the fuel tube at the 1.506-cm spacing. They are described in the following subsections. The experiment configuration was the same as the first critical configuration described in HEU-COMP-FAST-004 (Case 1). The experimenter placed 0.75-cm-diameter × 0.010-cm-thick 93.15%-235U-enriched uranium metal foils with and without 0.051-cm-thick cadmium covers at various locations in the core and top reflector. One part of the cadmium cover was cupshape and contained the uranium foil. The other part was a lid that fit over the exposed side of the foil whenmore » it was in the cup shaped section of the cover. As can be seen in the logbook, two runs were required to obtain all the measurements necessary for the cadmium ratio. The bare foil measurements within the top reflector were run first as part of the axial foil activation measurements. The results of this run are used for both the axial activation results and the cadmium ratios. Cadmium covered foils were then placed at the same location through the top reflector in a different run. Three pairs of bare and cadmium covered foils were also placed through the core tank. One pair was placed at the axial center of a fuel tube 11.35 cm from the center of the core. Two pairs of foils were placed on top of fuel tubes 3.02 and 12.06 cm from the center of the core. The activation of the uranium metal foils was measured after removal from the assembly using two lead shielded NaI scintillation detectors as follows. The NaI scintillators were carefully matched and had detection efficiencies for counting delayed-fission-product gamma rays with energies above 250 KeV within 5%. In all foil activation measurements, one foil at a specific location was used as a normalizing foil to remove the effects of the decay of fission products during the counting measurements with the NaI detectors. The normalization foil was placed on one NaI scintillator and the other foil on the other NaI detector and the activities measured simultaneously. The activation of a particular foil was compared to that of the normalization foil by dividing the count rate for each foil by that of the normalization foil. To correct for the differing efficiencies of the two NaI detectors, the normalization foil was counted in Detector 1 simultaneously with the foil at position x in Detector 2, and then the normalization foil was counted simultaneously in Detector 2 with the foil from position x in Counter 1. The activity of the foil from position x was divided by the activity of the normalization foil counted simultaneously. This resulted in obtaining two values of the ratio that were then averaged. This procedure essentially removed the effect of the differing efficiencies of the two NaI detectors. Differing efficiencies of 10% resulted in errors in the ratios measured to less than 1%. The background counting rates obatined with the foils used for the measurements on the NaI detectors before their irradiation measurement were subtracted from all count rates. The results of the cadmium ratio measurements are given in Table 1.3-1 and Figure 1.3-1. “No correction has been made for self shielding in the foils” (Reference 3).« less

  1. Theory and Performance of AIMS for Active Interrogation

    NASA Astrophysics Data System (ADS)

    Walters, William J.; Royston, Katherine E. K.; Haghighat, Alireza

    2014-06-01

    A hybrid Monte Carlo and deterministic methodology has been developed for application to active interrogation systems. The methodology consists of four steps: i) determination of neutron flux distribution due to neutron source transport and subcritical multiplication; ii) generation of gamma source distribution from (n, γ) interactions; iii) determination of gamma current at a detector window; iv) detection of gammas by the detector. This paper discusses the theory and results of the first three steps for the case of a cargo container with a sphere of HEU in third-density water. In the first step, a response-function formulation has been developed to calculate the subcritical multiplication and neutron flux distribution. Response coefficients are pre-calculated using the MCNP5 Monte Carlo code. The second step uses the calculated neutron flux distribution and Bugle-96 (n, γ) cross sections to find the resulting gamma source distribution. Finally, in the third step the gamma source distribution is coupled with a pre-calculated adjoint function to determine the gamma flux at a detector window. A code, AIMS (Active Interrogation for Monitoring Special-Nuclear-materials), has been written to output the gamma current for an source-detector assembly scanning across the cargo using the pre-calculated values and takes significantly less time than a reference MCNP5 calculation.

  2. Characterization of the graphite pile as a source of thermal neutrons

    NASA Astrophysics Data System (ADS)

    Vykydal, Zdenek; Králík, Miloslav; Jančář, Aleš; Kopecký, Zdeněk; Dressler, Jan; Veškrna, Martin

    2015-11-01

    A new graphite pile designed to serve as a standard source of thermal neutrons has been built at the Czech Metrology Institute. Actual dimensions of the pile are 1.95 m (W)×1.95 m (L)×2.0 m (H). At its center, there is a measurement channel whose dimensions are 0.4 m×0.4 m×1.25 m (depth). The channel is equipped with a calibration bench, which allows reproducible placement of the tested/calibrated device. At a distance of 80 cm from the channel axis, six holes are symmetrically located allowing the placement of radionuclide neutron sources of Pu-Be and/or Am-Be type. Spatial distribution of thermal neutron fluence in the cavity was calculated in detail with the MCNP neutron transport code. Experimentally, it was measured with two active detectors: a small 3He proportional detector by the French company LMT, type 0.5 NH 1/1 KF, and a silicon pixel detector Timepix with 10B converter foil. The relative values of thermal neutron fluence rate obtained with active detectors were converted to absolute ones using thermal neutron fluence rates measured by means of gold foil activation. The quality of thermal neutron field was characterized by the cadmium ratio.

  3. Optimising in situ gamma measurements to identify the presence of radioactive particles in land areas.

    PubMed

    Rostron, Peter D; Heathcote, John A; Ramsey, Michael H

    2014-12-01

    High-coverage in situ surveys with gamma detectors are the best means of identifying small hotspots of activity, such as radioactive particles, in land areas. Scanning surveys can produce rapid results, but the probabilities of obtaining false positive or false negative errors are often unknown, and they may not satisfy other criteria such as estimation of mass activity concentrations. An alternative is to use portable gamma-detectors that are set up at a series of locations in a systematic sampling pattern, where any positive measurements are subsequently followed up in order to determine the exact location, extent and nature of the target source. The preliminary survey is typically designed using settings of detector height, measurement spacing and counting time that are based on convenience, rather than using settings that have been calculated to meet requirements. This paper introduces the basis of a repeatable method of setting these parameters at the outset of a survey, for pre-defined probabilities of false positive and false negative errors in locating spatially small radioactive particles in land areas. It is shown that an un-collimated detector is more effective than a collimated detector that might typically be used in the field. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Design Study of an Incinerator Ash Conveyor Counting System - 13323

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaederstroem, Henrik; Bronson, Frazier

    A design study has been performed for a system that should measure the Cs-137 activity in ash from an incinerator. Radioactive ash, expected to consist of both Cs-134 and Cs-137, will be transported on a conveyor belt at 0.1 m/s. The objective of the counting system is to determine the Cs-137 activity and direct the ash to the correct stream after a diverter. The decision levels are ranging from 8000 to 400000 Bq/kg and the decision error should be as low as possible. The decision error depends on the total measurement uncertainty which depends on the counting statistics and themore » uncertainty in the efficiency of the geometry. For the low activity decision it is necessary to know the efficiency to be able to determine if the signal from the Cs-137 is above the minimum detectable activity and that it generates enough counts to reach the desired precision. For the higher activity decision the uncertainty of the efficiency needs to be understood to minimize decision errors. The total efficiency of the detector is needed to be able to determine if the detector will be able operate at the count rate at the highest expected activity. The design study that is presented in this paper describes how the objectives of the monitoring systems were obtained, the choice of detector was made and how ISOCS (In Situ Object Counting System) mathematical modeling was used to calculate the efficiency. The ISOCS uncertainty estimator (IUE) was used to determine which parameters of the ash was important to know accurately in order to minimize the uncertainty of the efficiency. The examined parameters include the height of the ash on the conveyor belt, the matrix composition and density and relative efficiency of the detector. (authors)« less

  5. Gated IR imaging with 128 × 128 HgCdTe electron avalanche photodiode FPA

    NASA Astrophysics Data System (ADS)

    Beck, Jeff; Woodall, Milton; Scritchfield, Richard; Ohlson, Martha; Wood, Lewis; Mitra, Pradip; Robinson, Jim

    2007-04-01

    The next generation of IR sensor systems will include active imaging capabilities. One example of such a system is a gated-active/passive system. The gated-active/passive system promises long-range target detection and identification. A detector that is capable of both active and passive modes of operation opens up the possibility of a self-aligned system that uses a single focal plane. The detector would need to be sensitive in the 3-5 μm band for passive mode operation. In the active mode, the detector would need to be sensitive in eye-safe range, e.g. 1.55 μm, and have internal gain to achieve the required system sensitivity. The MWIR HgCdTe electron injection avalanche photodiode (e-APD) not only provides state-of-the-art 3-5 μm spectral sensitivity, but also high avalanche photodiode gain without minimal excess noise. Gains of greater than 1000 have been measured in MWIR e-APDs with a gain independent excess noise factor of 1.3. This paper reports the application of the mid-wave HgCdTe e-APD for near-IR gated-active/passive imaging. Specifically a 128x128 FPA composed of 40 μm pitch, 4.2 μm to 5 μm cutoff, APD detectors with a custom readout integrated circuit was designed, fabricated, and tested. Median gains as high as 946 at 11 V bias with noise equivalent inputs as low as 0.4 photon were measured at 80 K. A gated imaging demonstration system was designed and built using commercially available parts. High resolution gated imagery out to 9 km was obtained with this system that demonstrated predicted MTF, precision gating, and sub 10 photon sensitivity.

  6. SU-F-J-51: A Cone-Based Scintillator Detector for IGRT QA for Scattered and Scanning Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oesten, H; Clasie, B; Jee, K

    Purpose: IGRT commissioning and QA are critical components for precise delivery of proton treatment beams to patients. In order to ensure high quality IGRT, a new cone-based scintillator detector was evaluated for our QA activities for double-scattered and scanning proton modalities. This allows a routine evaluation of the gantry-angle dependent position offset between the radiation and imaging. Methods: The cone-based scintillator detector (XRV-124, Logos Systems, Int’l CA, USA) features a unique configuration of measuring stereotactic paths of proton and x-ray beams in a single setup with arbitrary gantry angles. For the beams-eye-view (BEV) analysis of x-ray crosshair images, a cylindricalmore » representation of the cone image was newly developed. The calibration accuracy was evaluated using different CT resolutions for a range of 55 – 95mm in patient’s cranial direction and ±9mm in the lateral direction. Energy-dependent spot sizes (σ) of pencil beams were characterized and compared to measurements by the MatriXX detector (IBA, Germany). Iso-centric deviations between radiation and x-ray imaging were characterized as a function of gantry angle. Results: The position calibration of the detector was successfully verified with a reproducible positioning by x-ray imaging. The measurements were reproducible within clinical tolerances (±1mm). The spot size vs. energy at zero gantry angle measured with the scintillating cone detector agreed with the MatriXX detector measurements within 17%. Conclusion: The new approach to investigate the accuracy of IGRT and pencil beam properties could successfully be implemented into the QA program. The system will improve efficiency in our QA activities for proton treatments.« less

  7. Silicon pixel-detector R&D for CLIC

    NASA Astrophysics Data System (ADS)

    Nürnberg, A.

    2016-11-01

    The physics aims at the future CLIC high-energy linear e+e- collider set very high precision requirements on the performance of the vertex and tracking detectors. Moreover, these detectors have to be well adapted to the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The principal challenges are: a point resolution of a few μm, ultra-low mass (~ 0.2%X0 per layer for the vertex region and ~ 1%X0 per layer for the outer tracker), very low power dissipation (compatible with air-flow cooling in the inner vertex region) and pulsed power operation, complemented with ~ 10 ns time stamping capabilities. A highly granular all-silicon vertex and tracking detector system is under development, following an integrated approach addressing simultaneously the physics requirements and engineering constraints. For the vertex-detector region, hybrid pixel detectors with small pitch (25 μm) and analog readout are explored. For the outer tracking region, both hybrid concepts and fully integrated CMOS sensors are under consideration. The feasibility of ultra-thin sensor layers is validated with Timepix3 readout ASICs bump bonded to active edge planar sensors with 50 μm to 150 μm thickness. Prototypes of CLICpix readout ASICs implemented in 6525 nm CMOS technology with 25 μm pixel pitch have been produced. Hybridisation concepts have been developed for interconnecting these chips either through capacitive coupling to active HV-CMOS sensors or through bump-bonding to planar sensors. Recent R&D achievements include results from beam tests with all types of hybrid assemblies. Simulations based on Geant4 and TCAD are used to validate the experimental results and to assess and optimise the performance of various detector designs.

  8. Detection of the onset of upper-limb movements based on the combined analysis of changes in the sensorimotor rhythms and slow cortical potentials

    NASA Astrophysics Data System (ADS)

    Ibáñez, J.; Serrano, J. I.; del Castillo, M. D.; Monge-Pereira, E.; Molina-Rueda, F.; Alguacil-Diego, I.; Pons, J. L.

    2014-10-01

    Objective. Characterizing the intention to move by means of electroencephalographic activity can be used in rehabilitation protocols with patients’ cortical activity taking an active role during the intervention. In such applications, the reliability of the intention estimation is critical both in terms of specificity ‘number of misclassifications’ and temporal accuracy. Here, a detector of the onset of voluntary upper-limb reaching movements based on the cortical rhythms and the slow cortical potentials is proposed. The improvement in detections due to the combination of these two cortical patterns is also studied. Approach. Upper-limb movements and cortical activity were recorded in healthy subjects and stroke patients performing self-paced reaching movements. A logistic regression combined the output of two classifiers: (i) a naïve Bayes classifier trained to detect the event-related desynchronization preceding the movement onset and (ii) a matched filter detecting the bereitschaftspotential. The proposed detector was compared with the detectors by using each one of these cortical patterns separately. In addition, differences between the patients and healthy subjects were analysed. Main results. On average, 74.5 ± 13.8% and 82.2 ± 10.4% of the movements were detected with 1.32 ± 0.87 and 1.50 ± 1.09 false detections generated per minute in the healthy subjects and the patients, respectively. A significantly better performance was achieved by the combined detector (as compared to the detectors of the two cortical patterns separately) in terms of true detections (p = 0.099) and false positives (p = 0.0083). Significance. A rationale is provided for combining information from cortical rhythms and slow cortical potentials to detect the onsets of voluntary upper-limb movements. It is demonstrated that the two cortical processes supply complementary information that can be summed up to boost the performance of the detector. Successful results have been also obtained with stroke patients, which supports the use of the proposed system in brain-computer interface applications with this group of patients.

  9. ASTRO-H CdTe detectors proton irradiation at PIF

    NASA Astrophysics Data System (ADS)

    Limousin, O.; Renaud, D.; Horeau, B.; Dubos, S.; Laurent, P.; Lebrun, F.; Chipaux, R.; Boatella Polo, C.; Marcinkowski, R.; Kawaharada, M.; Watanabe, S.; Ohta, M.; Sato, G.; Takahashi, T.

    2015-07-01

    ASTRO-H will be operated in a Low Earth Orbit with a 31° inclination at 550 km altitude, thus passing daily through the South Atlantic Anomaly radiation belt, a specially harsh environment where the detectors are suffering the effect of the interaction with trapped high energy protons. As CdTe detector performance might be affected by the irradiation, we investigate the effect of the accumulated proton fluence on their spectral response. To do so, we have characterized and irradiated representative samples of SGD and HXI detector under different conditions. The detectors in question, from ACRORAD, are single-pixels having a size of 2 mm by 2 mm and 750 μm thick. The Schottky contact is either made of an Indium or Aluminum for SGD and HXI respectively. We ran the irradiation test campaign at the Proton Irradiation Facility (PIF) at PSI, and ESA approved equipment to evaluate the radiation hardness of flight hardware. We simulated the proton flux expected on the sensors over the entire mission, and secondary neutrons flux due to primary proton interactions into the surrounding BGO active shielding. We eventually characterized the detector response evolution, emphasizing each detector spectral response as well as its stability by studying the so-called Polarization effect. The latter is provoking a spectral response degradation against time as a charge accumulation process occurs in Schottky type CdTe sensors. In this paper, we report on the test campaigns at PIF and will show up our experimental setup. We will pursue describing the irradiation conditions associated with our GEANT 4 predictions and finally, we report the main results of our campaigns concluding that the proton effect does not severely affect the CdTe response neither the detector stability while the secondary neutrons might be more active to reduce the performance on the long run.

  10. Proof of principle study of the use of a CMOS active pixel sensor for proton radiography.

    PubMed

    Seco, Joao; Depauw, Nicolas

    2011-02-01

    Proof of principle study of the use of a CMOS active pixel sensor (APS) in producing proton radiographic images using the proton beam at the Massachusetts General Hospital (MGH). A CMOS APS, previously tested for use in s-ray radiation therapy applications, was used for proton beam radiographic imaging at the MGH. Two different setups were used as a proof of principle that CMOS can be used as proton imaging device: (i) a pen with two metal screws to assess spatial resolution of the CMOS and (ii) a phantom with lung tissue, bone tissue, and water to assess tissue contrast of the CMOS. The sensor was then traversed by a double scattered monoenergetic proton beam at 117 MeV, and the energy deposition inside the detector was recorded to assess its energy response. Conventional x-ray images with similar setup at voltages of 70 kVp and proton images using commercial Gafchromic EBT 2 and Kodak X-Omat V films were also taken for comparison purposes. Images were successfully acquired and compared to x-ray kVp and proton EBT2/X-Omat film images. The spatial resolution of the CMOS detector image is subjectively comparable to the EBT2 and Kodak X-Omat V film images obtained at the same object-detector distance. X-rays have apparent higher spatial resolution than the CMOS. However, further studies with different commercial films using proton beam irradiation demonstrate that the distance of the detector to the object is important to the amount of proton scatter contributing to the proton image. Proton images obtained with films at different distances from the source indicate that proton scatter significantly affects the CMOS image quality. Proton radiographic images were successfully acquired at MGH using a CMOS active pixel sensor detector. The CMOS demonstrated spatial resolution subjectively comparable to films at the same object-detector distance. Further work will be done in order to establish the spatial and energy resolution of the CMOS detector for protons. The development and use of CMOS in proton radiography could allow in vivo proton range checks, patient setup QA, and real-time tumor tracking.

  11. Characterization of Geiger mode avalanche photodiodes for fluorescence decay measurements

    NASA Astrophysics Data System (ADS)

    Jackson, John C.; Phelan, Don; Morrison, Alan P.; Redfern, R. Michael; Mathewson, Alan

    2002-05-01

    Geiger mode avalanche photodiodes (APD) can be biased above the breakdown voltage to allow detection of single photons. Because of the increase in quantum efficiency, magnetic field immunity, robustness, longer operating lifetime and reduction in costs, solid-state detectors capable of operating at non-cryogenic temperatures and providing single photon detection capabilities provide attractive alternatives to the photomultiplier tube (PMT). Shallow junction Geiger mode APD detectors provide the ability to manufacture photon detectors and detector arrays with CMOS compatible processing steps and allows the use of novel Silicon-on-Insulator(SoI) technology to provide future integrated sensing solutions. Previous work on Geiger mode APD detectors has focused on increasing the active area of the detector to make it more PMT like, easing the integration of discrete reaction, detection and signal processing into laboratory experimental systems. This discrete model for single photon detection works well for laboratory sized test and measurement equipment, however the move towards microfluidics and systems on a chip requires integrated sensing solutions. As we move towards providing integrated functionality of increasingly nanoscopic sized emissions, small area detectors and detector arrays that can be easily integrated into marketable systems, with sensitive small area single photon counting detectors will be needed. This paper will demonstrate the 2-dimensional and 3-dimensional simulation of optical coupling that occurs in Geiger mode APDs. Fabricated Geiger mode APD detectors optimized for fluorescence decay measurements were characterized and preliminary results show excellent results for their integration into fluorescence decay measurement systems.

  12. A likelihood ratio anomaly detector for identifying within-perimeter computer network attacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grana, Justin; Wolpert, David; Neil, Joshua

    The rapid detection of attackers within firewalls of enterprise computer networks is of paramount importance. Anomaly detectors address this problem by quantifying deviations from baseline statistical models of normal network behavior and signaling an intrusion when the observed data deviates significantly from the baseline model. But, many anomaly detectors do not take into account plausible attacker behavior. As a result, anomaly detectors are prone to a large number of false positives due to unusual but benign activity. Our paper first introduces a stochastic model of attacker behavior which is motivated by real world attacker traversal. Then, we develop a likelihoodmore » ratio detector that compares the probability of observed network behavior under normal conditions against the case when an attacker has possibly compromised a subset of hosts within the network. Since the likelihood ratio detector requires integrating over the time each host becomes compromised, we illustrate how to use Monte Carlo methods to compute the requisite integral. We then present Receiver Operating Characteristic (ROC) curves for various network parameterizations that show for any rate of true positives, the rate of false positives for the likelihood ratio detector is no higher than that of a simple anomaly detector and is often lower. Finally, we demonstrate the superiority of the proposed likelihood ratio detector when the network topologies and parameterizations are extracted from real-world networks.« less

  13. A likelihood ratio anomaly detector for identifying within-perimeter computer network attacks

    DOE PAGES

    Grana, Justin; Wolpert, David; Neil, Joshua; ...

    2016-03-11

    The rapid detection of attackers within firewalls of enterprise computer networks is of paramount importance. Anomaly detectors address this problem by quantifying deviations from baseline statistical models of normal network behavior and signaling an intrusion when the observed data deviates significantly from the baseline model. But, many anomaly detectors do not take into account plausible attacker behavior. As a result, anomaly detectors are prone to a large number of false positives due to unusual but benign activity. Our paper first introduces a stochastic model of attacker behavior which is motivated by real world attacker traversal. Then, we develop a likelihoodmore » ratio detector that compares the probability of observed network behavior under normal conditions against the case when an attacker has possibly compromised a subset of hosts within the network. Since the likelihood ratio detector requires integrating over the time each host becomes compromised, we illustrate how to use Monte Carlo methods to compute the requisite integral. We then present Receiver Operating Characteristic (ROC) curves for various network parameterizations that show for any rate of true positives, the rate of false positives for the likelihood ratio detector is no higher than that of a simple anomaly detector and is often lower. Finally, we demonstrate the superiority of the proposed likelihood ratio detector when the network topologies and parameterizations are extracted from real-world networks.« less

  14. 14C autoradiography with an energy-sensitive silicon pixel detector.

    PubMed

    Esposito, M; Mettivier, G; Russo, P

    2011-04-07

    The first performance tests are presented of a carbon-14 ((14)C) beta-particle digital autoradiography system with an energy-sensitive hybrid silicon pixel detector based on the Timepix readout circuit. Timepix was developed by the Medipix2 Collaboration and it is similar to the photon-counting Medipix2 circuit, except for an added time-based synchronization logic which allows derivation of energy information from the time-over-threshold signal. This feature permits direct energy measurements in each pixel of the detector array. Timepix is bump-bonded to a 300 µm thick silicon detector with 256 × 256 pixels of 55 µm pitch. Since an energetic beta-particle could release its kinetic energy in more than one detector pixel as it slows down in the semiconductor detector, an off-line image analysis procedure was adopted in which the single-particle cluster of hit pixels is recognized; its total energy is calculated and the position of interaction on the detector surface is attributed to the centre of the charge cluster. Measurements reported are detector sensitivity, (4.11 ± 0.03) × 10(-3) cps mm(-2) kBq(-1) g, background level, (3.59 ± 0.01) × 10(-5) cps mm(-2), and minimum detectable activity, 0.0077 Bq. The spatial resolution is 76.9 µm full-width at half-maximum. These figures are compared with several digital imaging detectors for (14)C beta-particle digital autoradiography.

  15. Detection and treatment of chemical weapons and/or biological pathogens

    DOEpatents

    Mariella Jr., Raymond P.

    2004-09-07

    A system for detection and treatment of chemical weapons and/or biological pathogens uses a detector system, an electrostatic precipitator or scrubber, a circulation system, and a control. The precipitator or scrubber is activated in response to a signal from the detector upon the detection of chemical weapons and/or biological pathogens.

  16. Whole-rock uranium analysis by fission track activation

    NASA Technical Reports Server (NTRS)

    Weiss, J. R.; Haines, E. L.

    1974-01-01

    We report a whole-rock uranium method in which the polished sample and track detector are separated in a vacuum chamber. Irradiation with thermal neutrons induces uranium fission in the sample, and the detector records the integrated fission track density. Detection efficiency and geometric factors are calculated and compared with calibration experiments.

  17. Assessing bat detectability and occupancy with multiple automated echolocation detectors

    Treesearch

    Marcos P. Gorresen; Adam C. Miles; Christopher M. Todd; Frank J. Bonaccorso; Theodore J. Weller

    2008-01-01

    Occupancy analysis and its ability to account for differential detection probabilities is important for studies in which detecting echolocation calls is used as a measure of bat occurrence and activity. We examined the feasibility of remotely acquiring bat encounter histories to estimate detection probability and occupancy. We used echolocation detectors coupled o...

  18. [The use of a detector of the extremely weak radiation as a variometer of gravitation field].

    PubMed

    Gorshkov, E S; Bondarenko, E G; Shapovalov, S N; Sokolovskiĭ, V V; Troshichev, O A

    2001-01-01

    It was shown that the detector of extremely weak radiation with selectively increased sensitivity to the nonelectromagnetic, including the gravitational component of the spectrum of active physical fields can be used as the basis for constructing a variometer of gravitational field of a new type.

  19. Detection device for high explosives

    DOEpatents

    Grey, Alan E.; Partin, Judy K.; Stone, Mark L.; Von Wandruszka, Ray M.; Reagen, William K.; Ingram, Jani C.; Lancaster, Gregory D.

    1992-01-01

    A portable fiber optic detector that senses the presence of specific target chemicals by electrostatically attracting the target chemical to an aromatic compound coating on an optical fiber. Attaching the target chemical to the coated fiber reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.

  20. The Simbol-X Low Energy Detector

    NASA Astrophysics Data System (ADS)

    Lechner, Peter

    2009-05-01

    For the Low Energy Detector of Simbol-X a new type of active pixel sensor based on the integrated amplifier DEPFET has been developed. This concept combines large area, scalable pixel size, low noise, and ultra-fast readout. Flight representative prototypes have been processed with a performance matching the Simbol-X specifications and demonstrating the technology readiness.

  1. Fast, Large-Area, Wide-Bandgap UV Photodetector for Cherenkov Light Detection

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.

    2013-01-01

    Due to limited resources available for power and space for payloads, miniaturizing and integrating instrumentation is a high priority for addressing the challenges of manned and unmanned deep space missions to high Earth orbit (HEO), near Earth objects (NEOs), Lunar and Martian orbits and surfaces, and outer planetary systems, as well as improvements to high-altitude aircraft safety. New, robust, and compact detectors allow future instrumentation packages more options in satisfying specific mission goals. A solid-state ultraviolet (UV) detector was developed with a theoretical fast response time and large detection area intended for application to Cherenkov detectors. The detector is based on the wide-bandgap semiconductor zinc oxide (ZnO), which in a bridge circuit can detect small, fast pulses of UV light like those required for Cherenkov detectors. The goal is to replace the role of photomultiplier tubes in Cherenkov detectors with these solid-state devices, saving on size, weight, and required power. For improving detection geometry, a spherical detector to measure high atomic number and energy (HZE) ions from any direction has been patented as part of a larger space radiation detector system. The detector will require the development of solid-state UV photodetectors fast enough (2 ns response time or better) to detect the shockwave of Cherenkov light emitted as the ions pass through a quartz, sapphire, or acrylic ball. The detector must be small enough to fit in the detector system structure, but have an active area large enough to capture enough Cherenkov light from the sphere. The detector is fabricated on bulk single-crystal undoped ZnO. Inter - digitated finger electrodes and contact pads are patterned via photolithography, and formed by sputtered metal of silver, platinum, or other high-conductivity metal.

  2. A New Active Space Radiation Instruments for the International Space Station, A-DREAMS

    NASA Astrophysics Data System (ADS)

    Uchihori, Yukio; Kodaira, Satoshi; Kitamura, Hisashi; Kobayashi, Shingo

    For future space experiments in the International Space Station (ISS) or other satellites, radiation detectors, A-DREAMS (Active Dosimeter for Radiation Environment and Astronautic Monitoring in Space), using single or multiple silicon semi-conductor detectors have been developed. The first version of the detectors were produced and calibrated with particle accelerators. National Institute of Radiological Sciences has a medical heavy ion accelerator (HIMAC) for cancer therapy and a cyclotron accelerator. The detector was irradiated with high energy heavy ions and protons in HIMAC and the cyclotron and calibrated the energy resolution and linearity for deposited energies of these particles. We are planned to be going to use the new instrument in an international project, the new MATROSHKA experiment which is directed by members in the Institute of Bio-Medical Problem (IBMP) in Russia and German Space Center (DLR) in Germany. In the project, the dose distribution in human torso phantom will be investigated for several months in the ISS. For the project, a new type of the instruments is under development in NIRS and the current situation will be reported in this paper.

  3. 3D simulation of electron and ion transmission of GEM-based detectors

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Purba; Mohanty, Bedangadas; Mukhopadhyay, Supratik; Majumdar, Nayana; da Luz, Hugo Natal

    2017-10-01

    Time Projection Chamber (TPC) has been chosen as the main tracking system in several high-flux and high repetition rate experiments. These include on-going experiments such as ALICE and future experiments such as PANDA at FAIR and ILC. Different R&D activities were carried out on the adoption of Gas Electron Multiplier (GEM) as the gas amplification stage of the ALICE-TPC upgrade version. The requirement of low ion feedback has been established through these activities. Low ion feedback minimizes distortions due to space charge and maintains the necessary values of detector gain and energy resolution. In the present work, Garfield simulation framework has been used to study the related physical processes occurring within single, triple and quadruple GEM detectors. Ion backflow and electron transmission of quadruple GEMs, made up of foils with different hole pitch under different electromagnetic field configurations (the projected solutions for the ALICE TPC) have been studied. Finally a new triple GEM detector configuration with low ion backflow fraction and good electron transmission properties has been proposed as a simpler GEM-based alternative suitable for TPCs for future collider experiments.

  4. JFET front-end circuits integrated in a detector-grade silicon substrate

    NASA Astrophysics Data System (ADS)

    Manghisoni, M.; Ratti, L.; Re, V.; Speziali, V.; Traversi, G.; Dalla Betta, G. F.; Boscardin, M.; Batignani, G.; Giorgi, M.; Bosisio, L.

    2003-08-01

    This paper presents the design and experimental results relevant to front-end circuits integrated on detector-grade high resistivity silicon. The fabrication technology is made available by the Istituto per la Ricerca Scientifica e Tecnologica (ITC-IRST), Trento, Italy and allows using a common substrate for different kinds of active devices, such as N-channel JFETs and MOSFETs, and for pixel, microstrip, and PIN detectors. This research activity is being carried out in the framework of a project aiming at the fabrication of a multichannel mixed analog-digital chip for the readout of solid-state detectors integrated in the same substrate. Possible applications are in the field of medical and industrial imaging and space and high energy physics experiments. An all-JFET charge sensitive amplifier, which can use either a resistive or a nonresistive feedback network, has been characterized. The two configurations have been compared to each other, paying particular attention to noise performances, in view of the design of the complete readout channel. Operation capability in harsh radiation environment has been evaluated through exposure to /spl gamma/-rays from a /sup 60/Co source.

  5. A proposed STAR microvertex detector using Active Pixel Sensors with some relevant studies on APS performance

    NASA Astrophysics Data System (ADS)

    Kleinfelder, S.; Li, S.; Bieser, F.; Gareus, R.; Greiner, L.; King, J.; Levesque, J.; Matis, H. S.; Oldenburg, M.; Ritter, H. G.; Retiere, F.; Rose, A.; Schweda, K.; Shabetai, A.; Sichtermann, E.; Thomas, J. H.; Wieman, H. H.; Bichsel, H.

    2006-09-01

    A vertex detector that can measure particles with charm or bottom quarks would dramatically expand the physics capability of the STAR detector at RHIC. To accomplish this, we are proposing to build the Heavy Flavor Tracker (HFT) using 2×2 cm Active Pixels Sensors (APS). Ten of these APS chips will be arranged on a ladder (0.28% of a radiation length) at radii of 1.5 and at 5.0 cm. We have examined several properties of APS chips, so that we can characterize the performance of this detector. Using 1.5 GeV/ c electrons, we have measured the charge collected and compared it to the expected charge. To achieve high efficiency, we have considered two different cluster finding algorithms and found that the choice of algorithm is dependent on noise level. We have demonstrated that a Scanning Electron Microscope can probe properties of an APS chip. In particular, we studied several position resolution algorithms. Finally, we studied the properties of pixel pitches from 5 to 30 μm.

  6. Comparison of modeled and measured performance of a GSO crystal as gamma detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parno, Diana Syemour; Friend, Megan Lynn; Mamyan, Vahe

    2013-11-01

    We have modeled, tested, and installed a large, cerium-activated Gd{sub 2}SiO{sub 5} crystal scintillator for use as a detector of gamma rays. We present the measured detector response to two types of incident photons: nearly monochromatic photons up to 40 MeV, and photons from a continuous Compton backscattering spectrum up to 200 MeV. Our GEANT4 simulations, developed to determine the analyzing power of the Compton polarimeter in Hall A of Jefferson Lab, reproduce the measured spectra well.

  7. Liquid Scintillator Production for the NOvA Experiment

    DOE PAGES

    Mufson, S.; Baugh, B.; Bower, C.; ...

    2015-04-15

    The NOvA collaboration blended and delivered 8.8 kt (2.72M gal) of liquid scintillator as the active detector medium to its near and far detectors. The composition of this scintillator was specifically developed to satisfy NOvA's performance requirements. A rigorous set of quality control procedures was put in place to verify that the incoming components and the blended scintillator met these requirements. The scintillator was blended commercially in Hammond, IN. The scintillator was shipped to the NOvA detectors using dedicated stainless steel tanker trailers cleaned to food grade.

  8. Particle Flow Calorimetry for the ILC

    NASA Astrophysics Data System (ADS)

    Magill, Stephen

    2006-04-01

    The Particle Flow approach to detector design is seen as the best way to achieve dijet mass resolutions suitable for the precision measurements anticipated at a future e^+e^- Linear Collider (LC). Particle Flow Algorithms (PFAs) affect not only the way data is analyzed, but are necessary and crucial elements used even in initial stages of detector design. In particular, the Calorimeter design parameters are almost entirely dependent on the optimized performance of the PFA. Use of PFAs imposes constraints on the granularity and segmentation of the readout cells, the choices of absorber and active media, and overall detector parameters such as the strength of the B-field, magnet bore, hermeticity, etc. PFAs must be flexible and modular in order to evaluate many detector models in simulation. The influence of PFA development on calorimetry is presented here with particular emphasis on results from the use of PFAs on several LC detector models.

  9. The development and test of multi-anode microchannel array detector systems. Part 2: Soft X-ray detectors

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1986-01-01

    Detector systems based on the high gain microchannel plate (MCP) electron multiplier were used extensively for imaging at soft X-ray wavelengths both on the ground and in space. The latest pulse counting electronic readout systems provide zero readout noise, spatial resolutions (FWHM) of 25 microns or better and can determine the arrival times of detected photons to an accuracy of the order of 100 ns. These systems can be developed to produce detectors with active areas of 100 nm in diameter or greater. The use of CsI photocathodes produces very high detective quantum efficiencies at wavelengths between about 100 and 1A (approximately 0.1 to 10 keV) with moderate energy resolution. The operating characteristics of the different types of soft X-ray MCP detector systems are described and the prospects for future developments are discussed.

  10. Determination of efficiency of an aged HPGe detector for gaseous sources by self absorption correction and point source methods

    NASA Astrophysics Data System (ADS)

    Sarangapani, R.; Jose, M. T.; Srinivasan, T. K.; Venkatraman, B.

    2017-07-01

    Methods for the determination of efficiency of an aged high purity germanium (HPGe) detector for gaseous sources have been presented in the paper. X-ray radiography of the detector has been performed to get detector dimensions for computational purposes. The dead layer thickness of HPGe detector has been ascertained from experiments and Monte Carlo computations. Experimental work with standard point and liquid sources in several cylindrical geometries has been undertaken for obtaining energy dependant efficiency. Monte Carlo simulations have been performed for computing efficiencies for point, liquid and gaseous sources. Self absorption correction factors have been obtained using mathematical equations for volume sources and MCNP simulations. Self-absorption correction and point source methods have been used to estimate the efficiency for gaseous sources. The efficiencies determined from the present work have been used to estimate activity of cover gas sample of a fast reactor.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lombigit, L., E-mail: lojius@nm.gov.my; Yussup, N., E-mail: nolida@nm.gov.my; Ibrahim, Maslina Mohd

    A digital n/γ pulse shape discrimination (PSD) system is currently under development at Instrumentation and Automation Centre, Malaysian Nuclear Agency. This system aims at simultaneous detection of fast neutron and gamma ray in mixed radiations environment. This work reports the system characterization performed on the liquid scintillation detector (BC-501A) and digital pulse shape discrimination (DPSD) system. The characterization involves measurement of electron light output from the BC-501A detector and energy channels calibration of the pulse height spectra acquired with DPSD system using set of photon reference sources. The main goal of this experiment is to calibrate the ADC channel ofmore » our DPSD system, characterized the BC-501 detector and find the position of Compton edge which later could be used as threshold for the n/γ PSD experiment. The detector resolution however is worse as compared to other published data but it is expected as our detector has a smaller active volume.« less

  12. The Simbol-X Anticoincidence

    NASA Astrophysics Data System (ADS)

    Chabaud, J.; Laurent, P.; Colonges, S.; Barbay, J.; Baronick, J. P.; Benallou, M.; Ferrando, P.; Gilliot, M.; Jaeger, J. J.; Nicolas, M.; Ollivier, E.; Waisbard, J.; Yoffo, B.

    2009-05-01

    The Simbol-X telescope will be constitued by two satellites in formation flight. One will host the mirror module and the other the detector payload. This payload will be built with two main detectors able to measure the position, energy and arrival time of each focused photon, between 0.5 and 80 keV. The high sensitivity required by Simbol-X will necessitate low noise background detectors. To achieve this goal, those detectors will be surrounded by a passive graded shield, aimed to stop the out of field of view photons, and an active anticoïncidence system to tag the passing particles. This anticoïncidence detector, whose conception, optimisation and realization are under responsibility of the APC Laboratory, Paris, is based on plastic scintillator plates associated to multi-anodes photo-multipliers via optical fibers. In this paper, we will present the present status of the anticoïncidence system and its expected performances.

  13. High Frequency Amplitude Detector for GMI Magnetic Sensors

    PubMed Central

    Asfour, Aktham; Zidi, Manel; Yonnet, Jean-Paul

    2014-01-01

    A new concept of a high-frequency amplitude detector and demodulator for Giant-Magneto-Impedance (GMI) sensors is presented. This concept combines a half wave rectifier, with outstanding capabilities and high speed, and a feedback approach that ensures the amplitude detection with easily adjustable gain. The developed detector is capable of measuring high-frequency and very low amplitude signals without the use of diode-based active rectifiers or analog multipliers. The performances of this detector are addressed throughout the paper. The full circuitry of the design is given, together with a comprehensive theoretical study of the concept and experimental validation. The detector has been used for the amplitude measurement of both single frequency and pulsed signals and for the demodulation of amplitude-modulated signals. It has also been successfully integrated in a GMI sensor prototype. Magnetic field and electrical current measurements in open- and closed-loop of this sensor have also been conducted. PMID:25536003

  14. Extrinsic germanium Blocked Impurity Bank (BIB) detectors

    NASA Technical Reports Server (NTRS)

    Krabach, Timothy N.; Huffman, James E.; Watson, Dan M.

    1989-01-01

    Ge:Ga blocked-impurity-band (BIB) detectors with long wavelength thresholds greater than 190 microns and peak quantum efficiencies of 4 percent, at an operating temperature of 1.8 K, have been fabricated. These proof of concept devices consist of a high purity germanium blocking layer epitaxially grown on a Ga-doped Ge substrate. This demonstration of BIB behavior in germanium enables the development of far infrared detector arrays similar to the current silicon-based devices. Present efforts are focussed on improving the chemical vapor deposition process used to create the blocking layer and on the lithographic processing required to produce monolithic detector arrays in germanium. Approaches to test the impurity levels in both the blocking and active layers are considered.

  15. A new 4π(LS)-γ coincidence counter at NCBJ RC POLATOM with TDCR detector in the beta channel.

    PubMed

    Ziemek, T; Jęczmieniowski, A; Cacko, D; Broda, R; Lech, E

    2016-03-01

    A new 4π(LS)-γ coincidence system (TDCRG) was built at the NCBJ RC POLATOM. The counter consists of a TDCR detector in the beta channel and scintillation detector with NaI(Tl) crystal in the gamma channel. The system is equipped with a digital board with FPGA, which records and analyses coincidences in the TDCR detector and coincidences between the beta and gamma channels. The characteristics of the system and a scheme of the FPGA implementation with behavioral simulation are given. The TDCRG counter was validated by activity measurements on (14)C and (60)Co solutions standardized in RC POLATOM using previously validated methods. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. The BiPo-3 detector for the measurement of ultra low natural radioactivities of thin materials

    NASA Astrophysics Data System (ADS)

    Barabash, A. S.; Basharina-Freshville, A.; Birdsall, E.; Blondel, S.; Blot, S.; Bongrand, M.; Boursette, D.; Brudanin, V.; Busto, J.; Caffrey, A. J.; Calvez, S.; Cascella, M.; Cebrián, S.; Cerna, C.; Cesar, J. P.; Chauveau, E.; Chopra, A.; Dafní, T.; De Capua, S.; Duchesneau, D.; Durand, D.; Egorov, V.; Eurin, G.; Evans, J. J.; Fajt, L.; Filosofov, D.; Flack, R.; Garrido, X.; Gómez, H.; Guillon, B.; Guzowski, P.; Holý, K.; Hodák, R.; Huber, A.; Hugon, C.; Iguaz, F. J.; Irastorza, I. G.; Jeremie, A.; Jullian, S.; Kauer, M.; Klimenko, A.; Kochetov, O.; Konovalov, S. I.; Kovalenko, V.; Lang, K.; Lemière, Y.; Le Noblet, T.; Liptak, Z.; Liu, X. R.; Loaiza, P.; Lutter, G.; Luzón, G.; Macko, M.; Mamedov, F.; Marquet, C.; Mauger, F.; Morgan, B.; Mott, J.; Nemchenok, I.; Nomachi, M.; Nova, F.; Ohsumi, H.; Oliviéro, G.; Ortiz de Solórzano, A.; Pahlka, R. B.; Pater, J.; Perrot, F.; Piquemal, F.; Povinec, P.; Přidal, P.; Ramachers, Y. A.; Remoto, A.; Richards, B.; Riddle, C. L.; Rukhadze, E.; Saakyan, R.; Salazar, R.; Sarazin, X.; Shitov, Yu.; Simard, L.; Šimkovic, F.; Smetana, A.; Smolek, K.; Smolnikov, A.; Söldner-Rembold, S.; Soulé, B.; Štekl, I.; Thomas, J.; Timkin, V.; Torre, S.; Tretyak, Vl. I.; Tretyak, V. I.; Umatov, V. I.; Vilela, C.; Vorobel, V.; Waters, D.; Žukauskas, A.

    2017-06-01

    The BiPo-3 detector, running at the Canfranc Underground Laboratory (Laboratorio Subterr&aposaneo de Canfranc, LSC, Spain) since 2013, is a low-radioactivity detector dedicated to measuring ultra low natural radionuclide contaminations of 208Tl (232Th chain) and 214Bi (238U chain) in thin materials. The total sensitive surface area of the detector is 3.6 m2. The detector has been developed to measure the radiopurity of the selenium double β-decay source foils of the SuperNEMO experiment. In this paper the design and performance of the detector, and results of the background measurements in 208Tl and 214Bi, are presented, and the validation of the BiPo-3 measurement with a calibrated aluminium foil is discussed. Results of the 208Tl and 214Bi activity measurements of the first enriched 82Se foils of the double β-decay SuperNEMO experiment are reported. The sensitivity of the BiPo-3 detector for the measurement of the SuperNEMO 82Se foils is Script A(208Tl) <2 μBq/kg (90% C.L.) and Script A(214Bi) <140 μBq/kg (90% C.L.) after 6 months of measurement.

  17. Monte Carlo simulation of a NaI(Tl) detector for in situ radioactivity measurements in the marine environment.

    PubMed

    Zhang, Yingying; Li, Changkai; Liu, Dongyan; Zhang, Ying; Liu, Yan

    2015-04-01

    To develop in situ NaI(Tl) detector for radioactivity measurement in the marine environment, the Monte Carlo N-Particle (MCNP) Transport Code was utilized to simulate the measurement of NaI(Tl) detector immersed in seawater, taking into account the material and geometry of the detector, and the interactions between the photons with the atoms of the seawater and the detector. The simulation results of the marine detection efficiency and distance were deduced and analyzed. In order to test their reliability, the field measurement was made at open sea and the experimental value of the marine detection efficiency was deduced and seems to be in good agreement with the simulated one. The minimum detectable activity for (137)Cs in the seawater of NaI(Tl) detector developed was determined mathematically at last. The simulation method and results in the paper can be used for the better design and quantitative calculation of in situ NaI(Tl) detector for radioactivity measurement in the marine environment, and also for some applications such as the installation on the marine monitoring platform and the quantitative analysis of radionuclides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Segmented Ge detector rejection of internal beta activity produced by neutron irradiation

    NASA Technical Reports Server (NTRS)

    Varnell, L. S.; Callas, J. L.; Mahoney, W. A.; Pehl, R. H.; Landis, D. A.

    1991-01-01

    Future Ge spectrometers flown in space to observe cosmic gamma-ray sources will incorporate segmented detectors to reduce the background from radioactivity produced by energetic particle reactions. To demonstrate the effectiveness of a segmented Ge detector in rejecting background events due to the beta decay of internal radioactivity, a laboratory experiment has been carried out in which radioactivity was produced in the detector by neutron irradiation. A Cf-252 source of neutrons was used to produce, by neutron capture on Ge-74 (36.5 percent of natural Ge) in the detector itself, Ge-75 (t sub 1/2 = 82.78 min), which decays by beta emission with a maximum electron kinetic energy of 1188 keV. By requiring that an ionizing event deposit energy in two or more of the five segments of the detector, each about 1-cm thick, the beta particles, which have a range of about 1-mm, are rejected, while most external gamma rays incident on the detector are counted. Analysis of this experiment indicates that over 85 percent of the beta events from the decay of Ge-75 are rejected, which is in good agreement with Monte Carlo calculations.

  19. New target and detection methods: active detectors

    NASA Astrophysics Data System (ADS)

    Mittig, W.; Savajols, H.; Demonchy, C. E.; Giot, L.; Roussel-Chomaz, P.; Wang, H.; Ter-Akopian, G.; Fomichev, A.; Golovkov, M. S.; Stepansov, S.; Wolski, R.; Alamanos, N.; Drouart, A.; Gillibert, A.; Lapoux, V.; Pollacco, E.

    2003-07-01

    The study of nuclei far from stability interacting with simple target nuclei, such as protons, deuterons, 3He and 4He implies the use of inverse kinematics. The very special kinematics, together with the low intensities of the beams calls for special techniques. In july 2002 we tested a new detector, in which the detector gas is the target. This allows in principle a 4π solid angle of the detection, and a big effective target thickness without loss of resolution. The detector developped, called Maya, used isobuthane C4H10 as gas in present tests, and other gases are possible. The multiplexed electronics of more than 1000channels allows the reconstruction of the events occuring between the incoming particle and the detector gas atoms in 3D. Here we were interested in the elastic scattering of 8He on protons for the study of the isobaric analogue states (IAS) of 9He. The beam, in this case, is stopped in the detector. The resonance energy is determined by the place of interaction and the energy of the recoiling proton. The design of the detector is shown, together with some preliminary results are discussed.

  20. Postoperative seizure outcome-guided machine learning for interictal electrocorticography in neocortical epilepsy.

    PubMed

    Park, Seong-Cheol; Chung, Chun Kee

    2018-06-01

    The objective of this study was to introduce a new machine learning guided by outcome of resective epilepsy surgery defined as the presence/absence of seizures to improve data mining for interictal pathological activities in neocortical epilepsy. Electrocorticographies for 39 patients with medically intractable neocortical epilepsy were analyzed. We separately analyzed 38 frequencies from 0.9 to 800 Hz including both high-frequency activities and low-frequency activities to select bands related to seizure outcome. An automatic detector using amplitude-duration-number thresholds was used. Interictal electrocorticography data sets of 8 min for each patient were selected. In the first training data set of 20 patients, the automatic detector was optimized to best differentiate the seizure-free group from not-seizure-free-group based on ranks of resection percentages of activities detected using a genetic algorithm. The optimization was validated in a different data set of 19 patients. There were 16 (41%) seizure-free patients. The mean follow-up duration was 21 ± 11 mo (range, 13-44 mo). After validation, frequencies significantly related to seizure outcome were 5.8, 8.4-25, 30, 36, 52, and 75 among low-frequency activities and 108 and 800 Hz among high-frequency activities. Resection for 5.8, 8.4-25, 108, and 800 Hz activities consistently improved seizure outcome. Resection effects of 17-36, 52, and 75 Hz activities on seizure outcome were variable according to thresholds. We developed and validated an automated detector for monitoring interictal pathological and inhibitory/physiological activities in neocortical epilepsy using a data-driven approach through outcome-guided machine learning. NEW & NOTEWORTHY Outcome-guided machine learning based on seizure outcome was used to improve detections for interictal electrocorticographic low- and high-frequency activities. This method resulted in better separation of seizure outcome groups than others reported in the literature. The automatic detector can be trained without human intervention and no prior information. It is based only on objective seizure outcome data without relying on an expert's manual annotations. Using the method, we could find and characterize pathological and inhibitory activities.

  1. A bismuth activation counter for high sensitivity pulsed 14 MeV neutrons

    NASA Astrophysics Data System (ADS)

    Burns, E. J. T.; Thacher, P. D.; Hassig, G. J.; Decker, R. D.; Romero, J. A.; Barrett, K. P.

    2011-08-01

    We have built a fast neutron bismuth activation counter that measures activation counts from pulsed 14-MeV neutron generators for incident neutron fluences between 30 and 300 neutrons/cm2 at 15.2 cm (6 in.). The activation counter consists of a large bismuth germanate (BGO) detector surrounded by a bismuth metal shield in front of and concentric with the cylindrical detector housing. The 14 MeV neutrons activate the 2.6-millisecond (ms) isomer in the shield and the detector by the reaction 209Bi (n,2nγ) 208mBi. The use of millisecond isomers and activation counting times minimizes the background from other activated materials and the environment. In addition to activation, the bismuth metal shields against other outside radiation sources. We have tested the bismuth activation counter, simultaneously, with two data acquisition systems (DASs) and both give similar results. The two-dimensional (2D) DAS and three dimensional (3D) DAS both consist of pulse height analysis (PHA) systems that can be used to discriminate against gamma radiations below 300 keV photon energy, so that the detector can be used strictly as a counter. If the counting time is restricted to less than 25 ms after the neutron pulse, there are less than 10 counts of background for single pulse operation in all our operational environments tested so far. High-fluence neutron generator operations are restricted by large dead times and pulse height saturation. When we operate our 3D DAS PHA system in list mode acquisition (LIST), real-time corrections to dead time or live time can be made on the scale of 1 ms time windows or dwell times. The live time correction is consistent with nonparalyzable models for dead time of 1.0±0.2 μs for our 3D DAS and 1.5±0.3 μs for our 2D DAS dominated by our fixed time width analog to digital converters (ADCs). With the same solid angle, we have shown that the bismuth activation counter has a factor of 4 increase in sensitivity over our lead activation counter, because of higher counts and negligible backgrounds.

  2. System and method for monitoring cellular activity

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory H. (Inventor); Fraser, Scott E. (Inventor); Lansford, Russell D. (Inventor)

    2002-01-01

    A system and method for monitoring cellular activity in a cellular specimen. According to one embodiment, a plurality of excitable markers are applied to the specimen. A multi-photon laser microscope is provided to excite a region of the specimen and cause fluorescence to be radiated from the region. The radiating fluorescence is processed by a spectral analyzer to separate the fluorescence into respective wavelength bands. The respective bands of fluorescence are then collected by an array of detectors, with each detector receiving a corresponding one of the wavelength bands.

  3. System and method for monitoring cellular activity

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory H. (Inventor); Fraser, Scott E. (Inventor); Lansford, Russell D. (Inventor)

    2004-01-01

    A system and method for monitoring cellular activity in a cellular specimen. According to one embodiment, a plurality of excitable markers are applied to the specimen. A multi-photon laser microscope is provided to excite a region of the specimen and cause fluorescence to be radiated from the region. The radiating fluorescence is processed by a spectral analyzer to separate the fluorescence into respective wavelength bands. The respective bands of fluorescence are then collected by an array of detectors, with each detector receiving a corresponding one of the wavelength bands.

  4. Proceedings of the technical exchange meeting on passive radon monnitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duray, J.R.; Langner, H. Jr.; Martz, D.E.

    1987-09-01

    The purpose of the meeting was to bring together a number of scientists active in the development and use of passive radon monitoring instrumentation, primarily activated charcoal detectors and alpha track detectors. Many of those present expressed a desire to receive copies of the viewgraphs and other materials presented. Most have supplied extended abstracts or complete reports. These materials are reproduced here as a Technical Measurements Center Report for the benefit of those attending the meeting and for others interested in passive radon monitoring. Individual papers were processed separately for the data base.

  5. Bucking coil implementation on PMT for active canceling of magnetic field

    NASA Astrophysics Data System (ADS)

    Gogami, T.; Asaturyan, A.; Bono, J.; Baturin, P.; Chen, C.; Chiba, A.; Chiga, N.; Fujii, Y.; Hashimoto, O.; Kawama, D.; Maruta, T.; Maxwell, V.; Mkrtchyan, A.; Nagao, S.; Nakamura, S. N.; Reinhold, J.; Shichijo, A.; Tang, L.; Taniya, N.; Wood, S. A.; Ye, Z.

    2013-11-01

    Aerogel and water Čherenkov detectors were employed to tag kaons for a Λ hypernuclear spectroscopic experiment which used the (e,e‧K+) reaction in experimental Hall C at Jefferson Lab (JLab E05-115). Fringe fields from the kaon spectrometer magnet yielded ~5 gauss at the photomultiplier tubes for these detectors. These fields, which could not be easily passively shielded, would result in a lowered kaon detection efficiency if not mitigated. A bucking coil was placed on each photomultiplier tube to actively cancel this magnetic field, thus recovering kaon detection efficiency.

  6. Development activities on NIR large format MCT detectors for astrophysics and space science at CEA and SOFRADIR

    NASA Astrophysics Data System (ADS)

    Boulade, Olivier; Moreau, Vincent; Mulet, Patrick; Gravrand, Olivier; Cervera, Cyril; Zanatta, Jean-Paul; Castelein, Pierre; Guellec, Fabrice; Fièque, Bruno; Chorier, Philippe; Roumegoux, Julien

    2016-07-01

    CEA and SOFRADIR have been manufacturing and characterizing near infrared detectors in the frame of ESA's near infrared large format sensor array roadmap to develop a 2Kx2K large format low flux low noise device for space applications such as astrophysics. These detectors use HgCdTe as the absorbing material and p/n diode technology. The technological developments (photovoltaic technology, readout circuit, ...) are shared between CEA/LETI and SOFRADIR, both in Grenoble, while most of the performances are evaluated at CEA/IRFU in Saclay where a dedicated test facility has been developed, in particular to measure very low dark currents. The paper will present the current status of these developments at the end of ESA's NIRLFSA phase 2. The performances of the latest batch of devices meet or are very close to all the requirements (quantum efficiency, dark current, cross talk, readout noise, ...) even though a glow induced by the ROIC prevents the accurate measurement of the dark current. The current devices are fairly small, 640x512 15μm pixels, and the next phase of activity will target the development of a full size 2Kx2K detector. From the design and development, to the manufacturing and finally the testing, that type of detector requests a high level of mastering. An appropriate manufacturing and process chain compatible with such a size is needed at industrial level and results obtained with CEA technology coupled with Sofradir industrial experience and work on large dimension detector allow French actors to be confident to address this type of future missions.

  7. Detection device for high explosives

    DOEpatents

    Grey, A.E.; Partin, J.K.; Stone, M.L.; Von Wandruszka, R.M.; Reagen, W.K.; Ingram, J.C.; Lancaster, G.D.

    1992-10-20

    A portable fiber optic detector is described that senses the presence of specific target chemicals by electrostatically attracting the target chemical to an aromatic compound coating on an optical fiber. Attaching the target chemical to the coated fiber reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator. 5 figs.

  8. Advanced Silicon Detectors for High Energy Astrophysics Missions

    NASA Technical Reports Server (NTRS)

    Ricker, George

    2005-01-01

    A viewgraph presentation on the development of silicon detectors for high energy astrophysics missions is presented. The topics include: 1) Background: Motivation for Event-Driven CCD; 2) Report of Grant Activity; 3) Packaged EDCCD; 4) Measured X-ray Energy Resolution of the Gen1 EDCCDs Operated in "Conventional Mode"; and 5) EDCCD Gen 1.5-Lot 1 Planning.

  9. A compact high resolution flat panel PET detector based on the new 4-side buttable MPPC for biomedical applications.

    PubMed

    Wang, Qiang; Wen, Jie; Ravindranath, Bosky; O'Sullivan, Andrew W; Catherall, David; Li, Ke; Wei, Shouyi; Komarov, Sergey; Tai, Yuan-Chuan

    2015-09-11

    Compact high-resolution panel detectors using virtual pinhole (VP) PET geometry can be inserted into existing clinical or pre-clinical PET systems to improve regional spatial resolution and sensitivity. Here we describe a compact panel PET detector built using the new Though Silicon Via (TSV) multi-pixel photon counters (MPPC) detector. This insert provides high spatial resolution and good timing performance for multiple bio-medical applications. Because the TSV MPPC design eliminates wire bonding and has a package dimension which is very close to the MPPC's active area, it is 4-side buttable. The custom designed MPPC array (based on Hamamatsu S12641-PA-50(x)) used in the prototype is composed of 4 × 4 TSV-MPPC cells with a 4.46 mm pitch in both directions. The detector module has 16 × 16 lutetium yttrium oxyorthosilicate (LYSO) crystal array, with each crystal measuring 0.92 × 0.92 × 3 mm 3 with 1.0 mm pitch. The outer diameter of the detector block is 16.8 × 16.8 mm 2 . Thirty-two such blocks will be arranged in a 4 × 8 array with 1 mm gaps to form a panel detector with detection area around 7 cm × 14 cm in the full-size detector. The flood histogram acquired with Ge-68 source showed excellent crystal separation capability with all 256 crystals clearly resolved. The detector module's mean, standard deviation, minimum (best) and maximum (worst) energy resolution were 10.19%, +/-0.68%, 8.36% and 13.45% FWHM, respectively. The measured coincidence time resolution between the block detector and a fast reference detector (around 200 ps single photon timing resolution) was 0.95 ns. When tested with Siemens Cardinal electronics the performance of the detector blocks remain consistent. These results demonstrate that the TSV-MPPC is a promising photon sensor for use in a flat panel PET insert composed of many high resolution compact detector modules.

  10. Realization of deep 3D metal electrodes in diamond radiation detectors

    NASA Astrophysics Data System (ADS)

    Wulz, Thomas; Gerding, William; Lavrik, Nickolay; Briggs, Dayrl; Srijanto, Bernadeta; Lester, Kevin; Hensley, Dale; Spanier, Stefan; Lukosi, Eric

    2018-05-01

    A fabrication technique to create 3D diamond detectors is presented. Deep reactive ion etching was used to create an array of through-diamond vias (TDVs) in a 2 × 2 × 0.15 mm3 electronic grade single crystal diamond detector. The diameter of the TDVs was nominally 30 μm with a pitch of 100 μm between them. The TDVs were filled with chromium using hexavalent chromium electroplating to create 3D electrodes, which were connected electrically by interdigitated electrodes. The fabricated 3D diamond detector responded to both alpha particles and X-rays, exhibiting a charge collection efficiency of 52.3% at 200 V. Comparing to a diamond detector with the same interdigitated electrodes, but no 3D electrodes, confirms that the 3D electrodes are electrically active within the device. The average resistivity of the 3D electrodes is 2.89 ± 0.03 × 10-5 Ω cm, near that of bulk chromium. These results indicate that this fabrication technique is a potential option for 3D diamond detector fabrication.

  11. [A Generator of Mono-energetic Electrons for Response Test of Charged Particle Detectors.].

    PubMed

    Matsubayashi, Fumiyasu; Yoshida, Katsuhide; Maruyama, Koichi

    2005-01-01

    We designed and fabricated a generator of mono-energetic electrons for the response test of charged particle detectors, which is used to measure fragmented particles of the carbon beam for cancer therapy. Mono-energetic electrons are extracted from (90)Sr by analyzing the energy of beta rays in the generator with a magnetic field. We evaluated performance parameters of the generator such as the absolute energy, the energy resolution and the counting rates of extracted electrons. The generator supplies mono-energetic electrons from 0.5MeV to 1.7MeV with the energy resolution of 20% in FWHM at higher energies than 1.0MeV. The counting rate of electrons is 400cpm at the maximum when the activity of (90)Sr is 298kBq. The generator was used to measure responses of fragmented-particle detectors and to determine the threshold energy of the detectors. We evaluated the dependence of pulse height variation on the detector position and the threshold energy by using the generator. We concluded this generator is useful for the response test of general charged particle detectors.

  12. SuperCDMS Underground Detector Fabrication Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Platt, M.; Mahapatra, R.; Bunker, Raymond A.

    The SuperCDMS SNOLAB dark matter experiment processes Ge and Si crystals into fully tested phonon and ionization detectors at surface fabrication and test facilities. If not mitigated, it is anticipated that trace-level production of radioisotopes in the crystals due to exposure to cosmic rays at (or above) sea level will result in the dominant source of background events in future dark matter searches using the current SuperCDMS detector technology. Fabrication and testing of detectors in underground facilities shielded from cosmic radiation is one way to directly reduce production of trace levels of radioisotopes, thereby improving experimental sensitivity for the discoverymore » of dark matter beyond the level of the current experiment. In this report, we investigate the cost and feasibility to establish a complete detector fabrication processing chain in an underground location to mitigate cosmogenic activation of the Ge and Si detector substrates. For a specific and concrete evaluation, we explore options for such a facility located at SNOLAB, an underground laboratory in Sudbury, Canada hosting the current and future experimental phases of SuperCDMS.« less

  13. Multi-Grid detector for neutron spectroscopy: results obtained on time-of-flight spectrometer CNCS

    NASA Astrophysics Data System (ADS)

    Anastasopoulos, M.; Bebb, R.; Berry, K.; Birch, J.; Bryś, T.; Buffet, J.-C.; Clergeau, J.-F.; Deen, P. P.; Ehlers, G.; van Esch, P.; Everett, S. M.; Guerard, B.; Hall-Wilton, R.; Herwig, K.; Hultman, L.; Höglund, C.; Iruretagoiena, I.; Issa, F.; Jensen, J.; Khaplanov, A.; Kirstein, O.; Lopez Higuera, I.; Piscitelli, F.; Robinson, L.; Schmidt, S.; Stefanescu, I.

    2017-04-01

    The Multi-Grid detector technology has evolved from the proof-of-principle and characterisation stages. Here we report on the performance of the Multi-Grid detector, the MG.CNCS prototype, which has been installed and tested at the Cold Neutron Chopper Spectrometer, CNCS at SNS. This has allowed a side-by-side comparison to the performance of 3He detectors on an operational instrument. The demonstrator has an active area of 0.2 m2. It is specifically tailored to the specifications of CNCS. The detector was installed in June 2016 and has operated since then, collecting neutron scattering data in parallel to the He-3 detectors of CNCS. In this paper, we present a comprehensive analysis of this data, in particular on instrument energy resolution, rate capability, background and relative efficiency. Stability, gamma-ray and fast neutron sensitivity have also been investigated. The effect of scattering in the detector components has been measured and provides input to comparison for Monte Carlo simulations. All data is presented in comparison to that measured by the 3He detectors simultaneously, showing that all features recorded by one detector are also recorded by the other. The energy resolution matches closely. We find that the Multi-Grid is able to match the data collected by 3He, and see an indication of a considerable advantage in the count rate capability. Based on these results, we are confident that the Multi-Grid detector will be capable of producing high quality scientific data on chopper spectrometers utilising the unprecedented neutron flux of the ESS.

  14. Development and application of a hybrid transport methodology for active interrogation systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Royston, K.; Walters, W.; Haghighat, A.

    A hybrid Monte Carlo and deterministic methodology has been developed for application to active interrogation systems. The methodology consists of four steps: i) neutron flux distribution due to neutron source transport and subcritical multiplication; ii) generation of gamma source distribution from (n, 7) interactions; iii) determination of gamma current at a detector window; iv) detection of gammas by the detector. This paper discusses the theory and results of the first three steps for the case of a cargo container with a sphere of HEU in third-density water cargo. To complete the first step, a response-function formulation has been developed tomore » calculate the subcritical multiplication and neutron flux distribution. Response coefficients are pre-calculated using the MCNP5 Monte Carlo code. The second step uses the calculated neutron flux distribution and Bugle-96 (n, 7) cross sections to find the resulting gamma source distribution. In the third step the gamma source distribution is coupled with a pre-calculated adjoint function to determine the gamma current at a detector window. The AIMS (Active Interrogation for Monitoring Special-Nuclear-Materials) software has been written to output the gamma current for a source-detector assembly scanning across a cargo container using the pre-calculated values and taking significantly less time than a reference MCNP5 calculation. (authors)« less

  15. Method for measurement of radon diffusion and solubility in solid materials

    NASA Astrophysics Data System (ADS)

    Maier, Andreas; Weber, Uli; Dickmann, Jannis; Breckow, Joachim; van Beek, Patrick; Schardt, Dieter; Kraft, Gerhard; Fournier, Claudia

    2018-02-01

    In order to study the permeation i.e. the diffusion and solubility of radon gas in biological material, a new setup was constructed and a novel analysis was applied to obtain diffusion and solubility coefficients. Thin slabs of solid materials were installed between detector housing and the surrounding radon exposure chamber of 50 Ls volume. In this setup radon can diffuse through thin test samples into a cylindrical volume of 5 mm height and 20 mm diameter and reach an α-particle detector. There the 5.49 MeV α-decay of the penetrating radon atoms is measured by a silicon surface barrier detector. The time dependent activities inside the small detector volume are recorded after injection of a known radon activity concentration into the outer chamber. Analyzing the time behavior of the integral α-activity from radon in the small vessel, both, the diffusion coefficient and solubility of the test material can be determined, based on a new mathematical model of the diffusion process concerning the special boundary conditions given by the experimental setup. These first measurements were intended as proof of concept for the detection system and the data analysis. Thin polyethylene foils (LDPE) were selected as material for the diffusion measurements and the results were in agreement with data from literature. In further measurements, we will concentrate on biological material like bone, fat and other tissues.

  16. A conjugate counting method to determine [75Se]SeHCAT retention in the human body.

    PubMed

    du Toit, M D; Strydom, W J; van Reenen, O R; van der Merwe, C F

    1990-01-01

    To evaluate the functional integrity of the distal part of the ileum the retention of a gamma-labelled bile acid (SeHCAT) in the human body can be measured with a detector. Due to the lack of a whole body counter at our institution a two detector system was designed to measure SeHCAT retention and an evaluation of such a system has been made. The detectors are positioned on either side of a patient lying supine on a hospital trolley. The trolley is stepped forward in 100 mm steps, to determine the SeHCAT activity in the patient. With these counts the location of the SeHCAT activity and total activity present in the body can be determined. A water filled phantom and a phantom consisting of nine 1-L saline bags with 75Se activity placed in them was used to determine system performance. Four patients with no history of bowel disease were compared with published data for normals. Results showed that the system performed satisfactorily, and accurate quantitative measurements could be made, showing that this inexpensive system could be used where a whole body counter is not available.

  17. Advanced active quenching circuit for ultra-fast quantum cryptography.

    PubMed

    Stipčević, Mario; Christensen, Bradley G; Kwiat, Paul G; Gauthier, Daniel J

    2017-09-04

    Commercial photon-counting modules based on actively quenched solid-state avalanche photodiode sensors are used in a wide variety of applications. Manufacturers characterize their detectors by specifying a small set of parameters, such as detection efficiency, dead time, dark counts rate, afterpulsing probability and single-photon arrival-time resolution (jitter). However, they usually do not specify the range of conditions over which these parameters are constant or present a sufficient description of the characterization process. In this work, we perform a few novel tests on two commercial detectors and identify an additional set of imperfections that must be specified to sufficiently characterize their behavior. These include rate-dependence of the dead time and jitter, detection delay shift, and "twilighting". We find that these additional non-ideal behaviors can lead to unexpected effects or strong deterioration of the performance of a system using these devices. We explain their origin by an in-depth analysis of the active quenching process. To mitigate the effects of these imperfections, a custom-built detection system is designed using a novel active quenching circuit. Its performance is compared against two commercial detectors in a fast quantum key distribution system with hyper-entangled photons and a random number generator.

  18. Spectroscopic neutron detection using composite scintillators

    NASA Astrophysics Data System (ADS)

    Jovanovic, I.; Foster, A.; Kukharev, V.; Mayer, M.; Meddeb, A.; Nattress, J.; Ounaies, Z.; Trivelpiece, C.

    2016-09-01

    Shielded special nuclear material (SNM), especially highly enriched uranium, is exceptionally difficult to detect without the use of active interrogation (AI). We are investigating the potential use of low-dose active interrogation to realize simultaneous high-contrast imaging and photofission of SNM using energetic gamma-rays produced by low-energy nuclear reactions, such as 11B(d,nγ)12C and 12C(p,p‧)12C. Neutrons produced via fission are one reliable signature of the presence of SNM and are usually identified by their unique timing characteristics, such as the delayed neutron die-away. Fast neutron spectroscopy may provide additional useful discriminating characteristics for SNM detection. Spectroscopic measurements can be conducted by recoil-based or thermalization and capture-gated detectors; the latter may offer unique advantages since they facilitate low-statistics and event-by-event neutron energy measurements without spectrum unfolding. We describe the results of the development and characterization of a new type of capture-gated spectroscopic neutron detector based on a composite of scintillating polyvinyltoluene and lithium-doped scintillating glass in the form of millimeter-thick rods. The detector achieves >108 neutron-gamma discrimination resulting from its geometric properties and material selection. The design facilitates simultaneous pulse shape and pulse height discrimination, despite the fact that no materials intrinsically capable of pulse shape discrimination have been used to construct the detector. Accurate single-event measurements of neutron energy may be possible even when the energy is relatively low, such as with delayed fission neutrons. Simulation and preliminary measurements using the new composite detector are described, including those conducted using radioisotope sources and the low-dose active interrogation system based on low-energy nuclear reactions.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheuermann, J; Howansky, A; Goldan, A

    Purpose: We present the first active matrix flat panel imager (AMFPI) capable of producing x-ray quantum noise limited images at low doses by overcoming the electronic noise through signal amplification by photoconductive avalanche gain (gav). The indirect detector fabricated uses an optical sensing layer of amorphous selenium (a-Se) known as High-Gain Avalanche Rushing Photoconductor (HARP). The detector design is called Scintillator HARP (SHARP)-AMFPI. This is the first image sensor to utilize solid-state HARP technology. Methods: The detector’s electronic readout is a 24 × 30 cm{sup 2} array of thin film transistors (TFT) with a pixel pitch of 85 µm. Themore » HARP structure consists of a 15 µm layer of a-Se isolated from the high voltage (HV) and signal electrode by a 2 µm thick hole blocking layer and electron blocking layer, respectively, to reduce dark current. A 150 µm thick structured CsI scintillator with reflective backing and a fiber optic faceplate (FOP) was coupled to the semi-transparent HV bias electrode of the HARP structure. Images were acquired using a 30 kVp Mo/Mo spectrum typically used in mammography. Results: Optical sensitivity measurements demonstrate that gav = 76 ± 5 can be achieved over the entire active area of the detector. At a constant dose to the detector of 6.67 µGy, image quality increases with gav until the effective electronic noise is negligible. Quantum noise limited images can be obtained with doses as low as 0.18 µGy. Conclusion: We demonstrate the feasibility of utilizing avalanche gain to overcome electronic noise. The indirect detector fabricated is the first solid-state imaging sensor to use HARP, and the largest active area HARP sensor to date. Our future work is to improve charge transport within the HARP structure and utilize a transparent HV electrode.« less

  20. Digital radiography using amorphous selenium: photoconductively activated switch (PAS) readout system.

    PubMed

    Reznik, Nikita; Komljenovic, Philip T; Germann, Stephen; Rowlands, John A

    2008-03-01

    A new amorphous selenium (a-Se) digital radiography detector is introduced. The proposed detector generates a charge image in the a-Se layer in a conventional manner, which is stored on electrode pixels at the surface of the a-Se layer. A novel method, called photoconductively activated switch (PAS), is used to read out the latent x-ray charge image. The PAS readout method uses lateral photoconduction at the a-Se surface which is a revolutionary modification of the bulk photoinduced discharge (PID) methods. The PAS method addresses and eliminates the fundamental weaknesses of the PID methods--long readout times and high readout noise--while maintaining the structural simplicity and high resolution for which PID optical readout systems are noted. The photoconduction properties of the a-Se surface were investigated and the geometrical design for the electrode pixels for a PAS radiography system was determined. This design was implemented in a single pixel PAS evaluation system. The results show that the PAS x-ray induced output charge signal was reproducible and depended linearly on the x-ray exposure in the diagnostic exposure range. Furthermore, the readout was reasonably rapid (10 ms for pixel discharge). The proposed detector allows readout of half a pixel row at a time (odd pixels followed by even pixels), thus permitting the readout of a complete image in 30 s for a 40 cm x 40 cm detector with the potential of reducing that time by using greater readout light intensity. This demonstrates that a-Se based x-ray detectors using photoconductively activated switches could form a basis for a practical integrated digital radiography system.

  1. The Bright Future of Gravitational Wave Astronomy

    NASA Astrophysics Data System (ADS)

    Gonzalez, Gabriela

    2008-04-01

    These are exciting times in the search for gravitational waves. Gravitational waves are expected from many different astrophysical sources: brief transients from violent events like supernova explosions and collisions of neutron stars and black holes, coalescence of compact binary systems, continuous waves from rotating systems, and stochastic signals from cosmological origin or unresolved transients. The LIGO gravitational wave detectors have achieved unprecedented sensitivity to gravitational waves, and other detectors around the world are expected to reach similar sensitivities. The LIGO Scientific Collaboration (LSC) has recently completed their most sensitive observation run to date with LIGO and GEO detectors, including several months of joint observations with the European VIRGO detector. The LIGO Laboratory and the LSC, as well as the Virgo Collaboration, are actively preparing for operating enhanced detectors in the very near future. The next decade will see the construction and commissioning of Advanced LIGO and VIRGO, and quite possibly the launch of the space-based LISA mission, starting for sure then, if not earlier, a new era for gravitational wave astronomy. Plans for a world-wide network of ground based detectors involving more detectors in Europe, Japan and Australia are becoming more concrete. The future of gravitational wave astronomy is bright indeed! In this talk, will briefly describe the present status of the ground and space based detector projects and discuss the science we may expect to do with the detectors (and detections!) we will have in the upcoming era of gravitational wave astronomy.

  2. Performance of an improved thermal neutron activation detector for buried bulk explosives

    NASA Astrophysics Data System (ADS)

    McFee, J. E.; Faust, A. A.; Andrews, H. R.; Clifford, E. T. H.; Mosquera, C. M.

    2013-06-01

    First generation thermal neutron activation (TNA) sensors, employing an isotopic source and NaI(Tl) gamma ray detectors, were deployed by Canadian Forces in 2002 as confirmation sensors on multi-sensor landmine detection systems. The second generation TNA detector is being developed with a number of improvements aimed at increasing sensitivity and facilitating ease of operation. Among these are an electronic neutron generator to increase sensitivity for deeper and horizontally displaced explosives; LaBr3(Ce) scintillators, to improve time response and energy resolution; improved thermal and electronic stability; improved sensor head geometry to minimize spatial response nonuniformity; and more robust data processing. The sensor is described, with emphasis on the improvements. Experiments to characterize the performance of the second generation TNA in detecting buried landmines and improvised explosive devices (IEDs) hidden in culverts are described. Performance results, including comparisons between the performance of the first and second generation systems are presented.

  3. On the use of microwave radar devices in chronobiology studies: an application with Periplaneta americana.

    PubMed

    Pasquali, Vittorio; Renzi, Paolo

    2005-08-01

    Modified motion detectors can be used to monitor locomotor activity and measure endogenous rhythms. Although these devices can help monitor insects in their home cages, the small size of the animals requires a very short wavelength detector. We modified a commercial microwave-based detection device, connected the detector's output to the digital input of a computer, and validated the device by recording circadian and ultradian rhythms. Periplaneta americana were housed in individual cages, and their activity was monitored at 18 degrees C and subsequently at 28 degrees C in constant darkness. Time series were analyzed by a discrete Fourier transform and a chi-square periodogram. Q10 values and the circadian free-running period confirmed the data reported in the literature, validating the apparatus. Moreover, the spectral analysis and periodogram revealed the presence of ultradian rhythmicity in the range of 1-8 h.

  4. Micro-controller based fall detector to assist recovering patients or senior citizens

    NASA Astrophysics Data System (ADS)

    Páez, Francisco; Asplund, Lars

    2010-09-01

    Senior citizens and patients recovering from surgery or using strong medications with severe side effects tend to fall unexpectedly. The consequences of such an uncontrolled fall could be worse than the original malady, especially when there is no communication with the care-takers. We describe a fall-detector device capable of distinguishing falls from normal daily activities. Based on three-axis accelerometer and advanced data processing, the microcontroller emits an alarm requesting help in the case of a physical fall. We design and construct the fall-detector prototype for either inside or outside use. In order to determine the device performance, fifty instances of each fall event have been evaluated; all of them detected as fall event. In the case of daily activities, the only movement that produces an alarm is the transition from standing up to lying in 5% of the occurrences.

  5. The Hard X-ray Imager (HXI) for the ASTRO-H Mission

    NASA Astrophysics Data System (ADS)

    Sato, Goro; Kokubun, Motohide; Nakazawa, Kazuhiro; Enoto, Teruaki; Fukazawa, Yasushi; Harayama, Atsushi; Hayashi, Katsuhiro; Kataoka, Jun; Katsuta, Junichiro; Kawaharada, Madoka; Laurent, Philippe; Lebrun, François; Limousin, Olivier; Makishima, Kazuo; Mizuno, Tsunefumi; Mori, Kunishiro; Nakamori, Takeshi; Noda, Hirofumi; Odaka, Hirokazu; Ohno, Masanori; Ohta, Masayuki; Saito, Shinya; Sato, Rie; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shinichiro; Terada, Yukikatsu; Uchiyama, Hideki; Uchiyama, Yasunobu; Watanabe, Shin; Yamaoka, Kazutaka; Yatsu, Yoichi; Yuasa, Takayuki

    2014-07-01

    The 6th Japanese X-ray satellite, ASTRO-H, is scheduled for launch in 2015. The hard X-ray focusing imaging system will observe astronomical objects with the sensitivity for detecting point sources with a brightness of 1/100,000 times fainter than the Crab nebula at > 10 keV. The Hard X-ray Imager (HXI) is a focal plane detector 12 m below the hard X-ray telescope (HXT) covering the energy range from 5 to 80 keV. The HXI is composed of a stacked Si/CdTe semiconductor detector module and surrounding BGO scintillators. The latter work as active shields for efficient reduction of background events caused by cosmic-ray particles, cosmic X-ray background, and in-orbit radiation activation. In this paper, we describe the detector system, and present current status of flight model development, and performance of HXI using an engineering model of HXI.

  6. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors.

    PubMed

    Waugh, C J; Rosenberg, M J; Zylstra, A B; Frenje, J A; Séguin, F H; Petrasso, R D; Glebov, V Yu; Sangster, T C; Stoeckl, C

    2015-05-01

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition, comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.

  7. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors

    DOE PAGES

    Waugh, C. J.; Rosenberg, M. J.; Zylstra, A. B.; ...

    2015-05-27

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition,more » comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.« less

  8. High-dynamic-range coherent diffractive imaging: ptychography using the mixed-mode pixel array detector

    PubMed Central

    Giewekemeyer, Klaus; Philipp, Hugh T.; Wilke, Robin N.; Aquila, Andrew; Osterhoff, Markus; Tate, Mark W.; Shanks, Katherine S.; Zozulya, Alexey V.; Salditt, Tim; Gruner, Sol M.; Mancuso, Adrian P.

    2014-01-01

    Coherent (X-ray) diffractive imaging (CDI) is an increasingly popular form of X-ray microscopy, mainly due to its potential to produce high-resolution images and the lack of an objective lens between the sample and its corresponding imaging detector. One challenge, however, is that very high dynamic range diffraction data must be collected to produce both quantitative and high-resolution images. In this work, hard X-ray ptychographic coherent diffractive imaging has been performed at the P10 beamline of the PETRA III synchrotron to demonstrate the potential of a very wide dynamic range imaging X-ray detector (the Mixed-Mode Pixel Array Detector, or MM-PAD). The detector is capable of single photon detection, detecting fluxes exceeding 1 × 108 8-keV photons pixel−1 s−1, and framing at 1 kHz. A ptychographic reconstruction was performed using a peak focal intensity on the order of 1 × 1010 photons µm−2 s−1 within an area of approximately 325 nm × 603 nm. This was done without need of a beam stop and with a very modest attenuation, while ‘still’ images of the empty beam far-field intensity were recorded without any attenuation. The treatment of the detector frames and CDI methodology for reconstruction of non-sensitive detector regions, partially also extending the active detector area, are described. PMID:25178008

  9. Preliminary evaluation of a novel energy-resolved photon-counting gamma ray detector.

    PubMed

    Meng, L-J; Tan, J W; Spartiotis, K; Schulman, T

    2009-06-11

    In this paper, we present the design and preliminary performance evaluation of a novel energy-resolved photon-counting (ERPC) detector for gamma ray imaging applications. The prototype ERPC detector has an active area of 4.4 cm × 4.4 cm, which is pixelated into 128 × 128 square pixels with a pitch size of 350 µm × 350µm. The current detector consists of multiple detector hybrids, each with a CdTe crystal of 1.1 cm × 2.2 cm × 1 mm, bump-bonded onto a custom-designed application-specific integrated circuit (ASIC). The ERPC ASIC has 2048 readout channels arranged in a 32 × 64 array. Each channel is equipped with pre- and shaping-amplifiers, a discriminator, peak/hold circuitry and an analog-to-digital converter (ADC) for digitizing the signal amplitude. In order to compensate for the pixel-to-pixel variation, two 8-bit digital-to-analog converters (DACs) are implemented into each channel for tuning the gain and offset. The ERPC detector is designed to offer a high spatial resolution, a wide dynamic range of 12-200 keV and a good energy resolution of 3-4 keV. The hybrid detector configuration provides a flexible detection area that can be easily tailored for different imaging applications. The intrinsic performance of a prototype ERPC detector was evaluated with various gamma ray sources, and the results are presented.

  10. High-dynamic-range coherent diffractive imaging: ptychography using the mixed-mode pixel array detector.

    PubMed

    Giewekemeyer, Klaus; Philipp, Hugh T; Wilke, Robin N; Aquila, Andrew; Osterhoff, Markus; Tate, Mark W; Shanks, Katherine S; Zozulya, Alexey V; Salditt, Tim; Gruner, Sol M; Mancuso, Adrian P

    2014-09-01

    Coherent (X-ray) diffractive imaging (CDI) is an increasingly popular form of X-ray microscopy, mainly due to its potential to produce high-resolution images and the lack of an objective lens between the sample and its corresponding imaging detector. One challenge, however, is that very high dynamic range diffraction data must be collected to produce both quantitative and high-resolution images. In this work, hard X-ray ptychographic coherent diffractive imaging has been performed at the P10 beamline of the PETRA III synchrotron to demonstrate the potential of a very wide dynamic range imaging X-ray detector (the Mixed-Mode Pixel Array Detector, or MM-PAD). The detector is capable of single photon detection, detecting fluxes exceeding 1 × 10(8) 8-keV photons pixel(-1) s(-1), and framing at 1 kHz. A ptychographic reconstruction was performed using a peak focal intensity on the order of 1 × 10(10) photons µm(-2) s(-1) within an area of approximately 325 nm × 603 nm. This was done without need of a beam stop and with a very modest attenuation, while `still' images of the empty beam far-field intensity were recorded without any attenuation. The treatment of the detector frames and CDI methodology for reconstruction of non-sensitive detector regions, partially also extending the active detector area, are described.

  11. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waugh, C. J.; Rosenberg, M. J.; Zylstra, A. B.

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition,more » comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.« less

  12. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waugh, C. J., E-mail: cjwaugh@mit.edu; Zylstra, A. B.; Frenje, J. A.

    2015-05-15

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition,more » comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.« less

  13. Detection of neutrinos, antineutrinos, and neutrino-like particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischbach, Ephraim

    An apparatus for detecting the presence of a nuclear reactor by the detection of antineutrinos from the reactor can include a radioactive sample having a measurable nuclear activity level and a decay rate capable of changing in response to the presence of antineutrinos, and a detector associated with the radioactive sample. The detector is responsive to at least one of a particle or radiation formed by decay of the radioactive sample. A processor associated with the detector can correlate rate of decay of the radioactive sample to a flux of the antineutrinos to detect the reactor.

  14. The veto system of the DarkSide-50 experiment

    DOE PAGES

    Agnes, P.

    2016-03-16

    Here, nuclear recoil events produced by neutron scatters form one of the most important classes of background in WIMP direct detection experiments, as they may produce nuclear recoils that look exactly like WIMP interactions. In DarkSide-50, we both actively suppress and measure the rate of neutron-induced background events using our neutron veto, composed of a boron-loaded liquid scintillator detector within a water Cherenkov detector. This paper is devoted to the description of the neutron veto system of DarkSide-50, including the detector structure, the fundamentals of event reconstruction and data analysis, and basic performance parameters.

  15. GEM detectors for WEST and potential application for heavy impurity transport studies

    NASA Astrophysics Data System (ADS)

    Mazon, D.; Jardin, A.; Coston, C.; Faisse, F.; Chernyshova, M.; Czarski, T.; Kasprowicz, G.; Wojenski, A.

    2016-08-01

    In tokamaks equipped with metallic walls and in particular tungsten, the interplay between particle transport and MagnetoHydroDynamic (MHD) activity might lead to impurities accumulation and finally to sudden plasma termination called disruption. Studying such transport phenomena is thus essential if stationary discharges are to be achieved. On WEST a new SXR diagnostic is developed in collaboration with IPPLM (Poland) and the Warsaw University of Technology, based on a triple Gas Electron Multiplier (GEM) detector. Potential application of the WEST GEM detectors for tomographic reconstruction and subsequent transport analysis is presented.

  16. III-V infrared research at the Jet Propulsion Laboratory

    NASA Astrophysics Data System (ADS)

    Gunapala, S. D.; Ting, D. Z.; Hill, C. J.; Soibel, A.; Liu, John; Liu, J. K.; Mumolo, J. M.; Keo, S. A.; Nguyen, J.; Bandara, S. V.; Tidrow, M. Z.

    2009-08-01

    Jet Propulsion Laboratory is actively developing the III-V based infrared detector and focal plane arrays (FPAs) for NASA, DoD, and commercial applications. Currently, we are working on multi-band Quantum Well Infrared Photodetectors (QWIPs), Superlattice detectors, and Quantum Dot Infrared Photodetector (QDIPs) technologies suitable for high pixel-pixel uniformity and high pixel operability large area imaging arrays. In this paper we report the first demonstration of the megapixel-simultaneously-readable and pixel-co-registered dual-band QWIP focal plane array (FPA). In addition, we will present the latest advances in QDIPs and Superlattice infrared detectors at the Jet Propulsion Laboratory.

  17. The veto system of the DarkSide-50 experiment

    NASA Astrophysics Data System (ADS)

    Agnes, P.; Agostino, L.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadonati, L.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cocco, A. G.; Covone, G.; Crippa, L.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Foster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giganti, C.; Goretti, A. M.; Granato, F.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K. R.; Hungerford, E. V.; Ianni, Aldo; Ianni, Andrea; James, I.; Johnson, T.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Lombardi, P.; Luitz, S.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Miletic, T.; Milincic, R.; Montanari, D.; Monte, A.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Nelson, A.; Odrowski, S.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Savarese, C.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Vishneva, A.; Vogelaar, R. B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xu, J.; Yang, C.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhong, W.; Zhu, C.; Zuzel, G.

    2016-03-01

    Nuclear recoil events produced by neutron scatters form one of the most important classes of background in WIMP direct detection experiments, as they may produce nuclear recoils that look exactly like WIMP interactions. In DarkSide-50, we both actively suppress and measure the rate of neutron-induced background events using our neutron veto, composed of a boron-loaded liquid scintillator detector within a water Cherenkov detector. This paper is devoted to the description of the neutron veto system of DarkSide-50, including the detector structure, the fundamentals of event reconstruction and data analysis, and basic performance parameters.

  18. 3D detectors with high space and time resolution

    NASA Astrophysics Data System (ADS)

    Loi, A.

    2018-01-01

    For future high luminosity LHC experiments it will be important to develop new detector systems with increased space and time resolution and also better radiation hardness in order to operate in high luminosity environment. A possible technology which could give such performances is 3D silicon detectors. This work explores the possibility of a pixel geometry by designing and simulating different solutions, using Sentaurus Tecnology Computer Aided Design (TCAD) as design and simulation tool, and analysing their performances. A key factor during the selection was the generated electric field and the carrier velocity inside the active area of the pixel.

  19. Calibration and performance of a real-time gamma-ray spectrometry water monitor using a LaBr3(Ce) detector

    NASA Astrophysics Data System (ADS)

    Prieto, E.; Casanovas, R.; Salvadó, M.

    2018-03-01

    A scintillation gamma-ray spectrometry water monitor with a 2″ × 2″ LaBr3(Ce) detector was characterized in this study. This monitor measures gamma-ray spectra of river water. Energy and resolution calibrations were performed experimentally, whereas the detector efficiency was determined using Monte Carlo simulations with EGS5 code system. Values of the minimum detectable activity concentrations for 131I and 137Cs were calculated for different integration times. As an example of the monitor performance after calibration, a radiological increment during a rainfall episode was studied.

  20. The Litho-Density tool calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, D.; Flaum, C.; Marienbach, E.

    1983-10-01

    The Litho-Density tool (LDT) uses a gamma ray source and two NaI scintillator detectors for borehole measurement of electron density, p/SUB e/, and a quantity, P/SUB e/, which is related to the photoelectric cross section at 60 keV and therefore to the lithology of the formation. An active stabilization system controls the gains of the two detectors which permits selective gamma-ray detection. Spectral analysis is performed in the near detector (2 energy windows) and in the detector farther away from the source (3 energy windows). This paper describes the results of laboratory measurements undertaken to define the basic tool response.more » The tool is shown to provide reliable measurements of formation density and lithology under a variety of environmental conditions.« less

  1. Development of multi-layer crystal detector and related front end electronics

    NASA Astrophysics Data System (ADS)

    Cardarelli, R.; Di Ciaccio, A.; Paolozzi, L.

    2014-05-01

    A crystal (diamond) particle detector has been developed and tested, whose constitute elements are a multi-layer polycrystalline diamond and a pick-up system capable of collecting in parallel the charge produced in the layers. The charge is read with a charge-to-voltage amplifier (5-6 mV/fC) realized with bipolar junction transistors in order to minimize the effect of the detector capacitance. The tests performed with cosmic rays and at the beam test facility of Frascati with 500 MeV electrons in single electron mode operation have shown that a detector with 4-5 layers of 250 μm thickness each and 9 mm2 active area exhibits an upper limit of 150 ps time resolution for minimum ionizing particles at an operating voltage of about 350 V.

  2. Modeling Charge Collection in Detector Arrays

    NASA Technical Reports Server (NTRS)

    Hardage, Donna (Technical Monitor); Pickel, J. C.

    2003-01-01

    A detector array charge collection model has been developed for use as an engineering tool to aid in the design of optical sensor missions for operation in the space radiation environment. This model is an enhancement of the prototype array charge collection model that was developed for the Next Generation Space Telescope (NGST) program. The primary enhancements were accounting for drift-assisted diffusion by Monte Carlo modeling techniques and implementing the modeling approaches in a windows-based code. The modeling is concerned with integrated charge collection within discrete pixels in the focal plane array (FPA), with high fidelity spatial resolution. It is applicable to all detector geometries including monolithc charge coupled devices (CCDs), Active Pixel Sensors (APS) and hybrid FPA geometries based on a detector array bump-bonded to a readout integrated circuit (ROIC).

  3. FastSim: A Fast Simulation for the SuperB Detector

    NASA Astrophysics Data System (ADS)

    Andreassen, R.; Arnaud, N.; Brown, D. N.; Burmistrov, L.; Carlson, J.; Cheng, C.-h.; Di Simone, A.; Gaponenko, I.; Manoni, E.; Perez, A.; Rama, M.; Roberts, D.; Rotondo, M.; Simi, G.; Sokoloff, M.; Suzuki, A.; Walsh, J.

    2011-12-01

    We have developed a parameterized (fast) simulation for detector optimization and physics reach studies of the proposed SuperB Flavor Factory in Italy. Detector components are modeled as thin sections of planes, cylinders, disks or cones. Particle-material interactions are modeled using simplified cross-sections and formulas. Active detectors are modeled using parameterized response functions. Geometry and response parameters are configured using xml files with a custom-designed schema. Reconstruction algorithms adapted from BaBar are used to build tracks and clusters. Multiple sources of background signals can be merged with primary signals. Pattern recognition errors are modeled statistically by randomly misassigning nearby tracking hits. Standard BaBar analysis tuples are used as an event output. Hadronic B meson pair events can be simulated at roughly 10Hz.

  4. Background in X-ray astronomy proportional counters

    NASA Technical Reports Server (NTRS)

    Bower, C. R.; Dietz, K. L.; Ramsey, B. D.; Weisskopf, M. C.

    1991-01-01

    The authors report the results of an investigation into the nature of background events in proportional counters sensitive to X-ray photons having energy of less than 150 keV. Even with the use of thick shields composed of high-atomic-number material, a significant flux background in the detector's energy region can result from multiple Compton scattering in the mass surrounding the active region of the detector. The importance of the selection of detector components in the reduction of the background by more than an order of magnitude is emphasized. Experimental results are shown to agree qualitatively with Monte Carlo simulations. It is concluded that escape gating is a powerful means of determining the nature of background in flight detectors: the single/pair ratios reveal whether the detected events are charged particles or photons.

  5. The Pierre Auger Observatory scaler mode for the study of solar activity modulation of galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Pierre Auger Collaboration; Abreu, P.; Aglietta, M.; Ahn, E. J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Anzalone, A.; Aramo, C.; Arganda, E.; Arisaka, K.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bäcker, T.; Badagnani, D.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bergmann, T.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Busca, N. G.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Clay, R. W.; Colombo, E.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; del Peral, L.; Deligny, O.; Della Selva, A.; Dembinski, H.; Denkiewicz, A.; Di Giulio, C.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Dobrigkeit, C.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Ferrero, A.; Fick, B.; Filevich, A.; Filipčič, A.; Fleck, I.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fröhlich, U.; Fuchs, B.; Fulgione, W.; Gamarra, R. F.; Gambetta, S.; García, B.; García Gámez, D.; Garcia-Pinto, D.; Garrido, X.; Gascon, A.; Gelmini, G.; Gemmeke, H.; Gesterling, K.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Góra, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hague, J. D.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Holmes, V. C.; Homola, P.; Hórandel, J. R.; Horneffer, A.; Hrabovský, M.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jiraskova, S.; Kadija, K.; Kaducak, M.; Kampert, K. H.; Karhan, P.; Karova, T.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lautridou, P.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Meurer, C.; Mičanović, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafá, M.; Mueller, S.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nhung, P. T.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Parrisius, J.; Parsons, R. D.; Pastor, S.; Paul, T.; Pavlidou c, V.; Payet, K.; Pech, M.; Pękala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Phan, N.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rivière, C.; Rizi, V.; Robledo, C.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Salamida, F.; Salazar, H.; Salina, G.; Sánchez, F.; Santander, M.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schroeder, F.; Schulte, S.; Schüssler, F.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Semikoz, D.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Stapleton, J.; Stasielak, J.; Stephan, M.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Tamashiro, A.; Tapia, A.; Tarutina, T.; Taşcǎu, O.; Tcaciuc, R.; Tcherniakhovski, D.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tiwari, D. K.; Tkaczyk, W.; Todero Peixoto, C. J.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Vargas Cárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Venters, T.; Verzi, V.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Warner, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Westerhoff, S.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Winders, L.; Winnick, M. G.; Wommer, M.; Wundheiler, B.; Yamamoto a, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Ziolkowski, M.

    2011-01-01

    Since data-taking began in January 2004, the Pierre Auger Observatory has been recording the count rates of low energy secondary cosmic ray particles for the self-calibration of the ground detectors of its surface detector array. After correcting for atmospheric effects, modulations of galactic cosmic rays due to solar activity and transient events are observed. Temporal variations related with the activity of the heliosphere can be determined with high accuracy due to the high total count rates. In this study, the available data are presented together with an analysis focused on the observation of Forbush decreases, where a strong correlation with neutron monitor data is found.

  6. Activity measurements of 55Fe by two different methods

    NASA Astrophysics Data System (ADS)

    da Cruz, Paulo A. L.; Iwahara, Akira; da Silva, Carlos J.; Poledna, Roberto; Loureiro, Jamir S.; da Silva, Monica A. L.; Ruzzarin, Anelise

    2018-03-01

    A calibrated germanium detector and CIEMAT/NIST liquid scintillation method were used in the standardization of solution of 55Fe coming from a key-comparison BIPM. Commercial cocktails were used in source preparation for activity measurements in CIEMAT/NIST method. Measurements were performed in Liquid Scintillation Counter. In the germanium counting method standard point sources were prepared for obtaining atomic number versus efficiency curve of the detector in order to obtain the efficiency of 5.9 keV KX-ray of 55Fe by interpolation. The activity concentrations obtained were 508.17 ± 3.56 and 509.95 ± 16.20 kBq/g for CIEMAT/NIST and germanium methods, respectively.

  7. A wireless object location detector enabling people with developmental disabilities to control environmental stimulation through simple occupational activities with Nintendo Wii Balance Boards.

    PubMed

    Shih, Ching-Hsiang; Chang, Man-Ling

    2012-01-01

    The latest researches have adopted software technology, turning the Nintendo Wii Balance Board into a high performance standing location detector with a newly developed standing location detection program (SLDP). This study extended SLDP functionality to assess whether two people with developmental disabilities would be able to actively perform simple occupational activities by controlling their favorite environmental stimulation using Nintendo Wii Balance Boards and SLDP software. An ABAB design was adopted in this study to perform the tests. The test results showed that, during the intervention phases, both participants significantly increased their target response (i.e. simple occupational activity) to activate the control system to produce environmental stimulation. The practical and developmental implications of the findings are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. C+C Fusion Cross Sections Measurements for Nuclear Astrophysics

    DOE PAGES

    Almaraz-Calderon, S.; Carnelli, P. F. F.; Rehm, K. E.; ...

    2015-06-02

    Total fusion cross section of carbon isotopes were obtained using the newly developed MUSIC detector. MUSIC is a highly efficient, active target-detector system designed to measure fusion excitation functions with radioactive beams. The present measurements are relevant for understanding x-ray superbursts. The results of the first MUSIC campaign as well as the astrophysical implications are presented in this work.

  9. C+C Fusion Cross Sections Measurements for Nuclear Astrophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almaraz-Calderon, S.; Carnelli, P. F. F.; Rehm, K. E.

    Total fusion cross section of carbon isotopes were obtained using the newly developed MUSIC detector. MUSIC is a highly efficient, active target-detector system designed to measure fusion excitation functions with radioactive beams. The present measurements are relevant for understanding x-ray superbursts. The results of the first MUSIC campaign as well as the astrophysical implications are presented in this work.

  10. Staged Z-pinch Experiments at the 1MA Zebra pulsed-power generator: Neutron measurements

    NASA Astrophysics Data System (ADS)

    Ruskov, Emil; Darling, T.; Glebov, V.; Wessel, F. J.; Anderson, A.; Beg, F.; Conti, F.; Covington, A.; Dutra, E.; Narkis, J.; Rahman, H.; Ross, M.; Valenzuela, J.

    2017-10-01

    We report on neutron measurements from the latest Staged Z-pinch experiments at the 1MA Zebra pulsed-power generator. In these experiments a hollow shell of argon or krypton gas liner, injected between the 1 cm anode-cathode gap, compresses a deuterium plasma target of varying density. Axial magnetic field Bz <= 2 kGs, applied throughout the pinch region, stabilizes the Rayleigh-Taylor instability. The standard silver activation diagnostics and 4 plastic scintillator neutron Time of Flight (nTOF) detectors are augmented with a large area ( 1400 cm2) liquid scintillator detector to which fast gatedPhotek photomultipliers are attached. Sample data from these neutron diagnostics systems is presented. Consistently high neutron yields YDD >109 are measured, with highest yield of 2.6 ×109 . A pair of horizontally and vertically placed plastic scintillator nTOFs suggest isotropic i.e. thermonuclear origin of the neutrons produced. nTOF data from the liquid scintillator detector was cross-calibrated with the silver activation detector, and can be used for accurate calculation of the neutron yield. Funded by the Advanced Research Projects Agency - Energy, under Grant Number DE-AR0000569.

  11. Relationship between position of brain activity and change in optical density for NIR imaging

    NASA Astrophysics Data System (ADS)

    Kashio, Yoshihiko; Ono, Muneo; Firbank, Michael; Schweiger, Martin; Arridge, Simon R.; Okada, Eiji

    2000-11-01

    Multi-channel NIR system can obtain the topographic image of brain activity. Since the image is reconstructed from the change in optical density measured with the source-detector pairs, it is important to reveal the volume of tissue sampled by each source-detector pair. In this study, the light propagation in three-dimensional adult head model is calculated by hybrid radiosity-diffusion method. The model is a layered slab which mimics the extra cerebral tissue (skin, skull), CSF and brain. The change in optical density caused by the absorption change in a small cylindrical region of 10 mm in diameter at various positions in the brain is calculated. The greatest change in optical density can be observed when the absorber is located in the middle of the source and detector. When the absorber is located just below the source or detector, the change in optical density is almost half of that caused by the same absorber in the midpoint. The light propagation in the brain is strongly affected by the presence of non-scattering layer and consequently sensitive region is broadly distributed on the brain surface.

  12. CMOS Active Pixel Sensors as energy-range detectors for proton Computed Tomography.

    PubMed

    Esposito, M; Anaxagoras, T; Evans, P M; Green, S; Manolopoulos, S; Nieto-Camero, J; Parker, D J; Poludniowski, G; Price, T; Waltham, C; Allinson, N M

    2015-06-03

    Since the first proof of concept in the early 70s, a number of technologies has been proposed to perform proton CT (pCT), as a means of mapping tissue stopping power for accurate treatment planning in proton therapy. Previous prototypes of energy-range detectors for pCT have been mainly based on the use of scintillator-based calorimeters, to measure proton residual energy after passing through the patient. However, such an approach is limited by the need for only a single proton passing through the energy-range detector in a read-out cycle. A novel approach to this problem could be the use of pixelated detectors, where the independent read-out of each pixel allows to measure simultaneously the residual energy of a number of protons in the same read-out cycle, facilitating a faster and more efficient pCT scan. This paper investigates the suitability of CMOS Active Pixel Sensors (APSs) to track individual protons as they go through a number of CMOS layers, forming an energy-range telescope. Measurements performed at the iThemba Laboratories will be presented and analysed in terms of correlation, to confirm capability of proton tracking for CMOS APSs.

  13. Using the EXIST Active Shields for Earth Occultation Observations of X-Ray Sources

    NASA Technical Reports Server (NTRS)

    Wilson, Colleen A.; Fishman, Gerald; Hong, Jae-Sub; Gridlay, Jonathan; Krawczynski, Henric

    2005-01-01

    The EXIST active shields, now being planned for the main detectors of the coded aperture telescope, will have approximately 15 times the area of the BATSE detectors; and they will have a good geometry on the spacecraft for viewing both the leading and training Earth's limb for occultation observations. These occultation observations will complement the imaging observations of EXIST and can extend them to higher energies. Earth occultatio observations of the hard X-ray sky with BATSE on the Compton Gamma Ray Observatory developed and demonstrated the capabilities of large, flat, uncollimated detectors for this method. With BATSE, a catalog of 179 X-ray sources was monitored twice every spacecraft orbit for 9 years at energies above about 25 keV, resulting in 83 definite detections and 36 possible detections with 5-sigma detection sensitivities of 3.5-20 mcrab (20-430 keV) depending on the sky location. This catalog included four transients discovered with this technique and many variable objects (galactic and extragalactic). This poster will describe the Earth occultation technique, summarize the BATSE occultation observations, and compare the basic observational parameters of the occultation detector elements of BATSE and EXIST.

  14. Neutron detection using a water Cherenkov detector with pure water and a single PMT

    NASA Astrophysics Data System (ADS)

    Sidelnik, Iván; Asorey, Hernán; Blostein, Juan Jerónimo; Gómez Berisso, Mariano

    2017-12-01

    We present the performance of a novel neutron detector based on a water Cherenkov detector (WCD) employing pure water and a single photomultiplier tube (PMT). The experiments presented in this work were performed using 241AmBe and 252Cf neutron sources in different neutron moderator and shielding configurations. We show that fast neutrons from the 241AmBe and 241Cf sources, as well as thermal neutrons from a neutron moderator, despite having different spectral characteristics, produce essentially the same pulse histogram shape. This characteristic pulse-height histogram shapes are recorded as a clear signature of neutrons with energies lower than ≃ 11 MeV . This is verified in different experimental conditions. Our estimation of the neutron detection efficiency is at the level of (15±5)%, for fast neutrons. Since water is the material employed as active volume, the results of this study are of interest for the construction of low cost and large active volume neutron detectors for various applications. Of special importance are those related with space weather phenomena monitoring as well as those for the detection of fissile special nuclear material, including uranium or plutonium.

  15. Spectral filtering using active metasurfaces compatible with narrow bandgap III-V infrared detectors

    DOE PAGES

    Wolf, Omri; Campione, Salvatore; Kim, Jin; ...

    2016-01-01

    Narrow-bandgap semiconductors such as alloys of InAsAlSb and their heterostructures are considered promising candidates for next generation infrared photodetectors and devices. The prospect of actively tuning the spectral responsivity of these detectors at the pixel level is very appealing. In principle, this could be achieved with a tunable metasurface fabricated monolithically on the detector pixel. Here, we present first steps towards that goal using a complementary metasurface strongly coupled to an epsilon-near-zero (ENZ) mode operating in the long-wave region of the infrared spectrum. We fabricate such a coupled system using the same epitaxial layers used for infrared pixels in amore » focal plane array and demonstrate the existence of ENZ modes in high mobility layers of InAsSb. We confirm that the coupling strength between the ENZ mode and the metasurface depends on the ENZ layer thickness and demonstrate a transmission modulation on the order of 25%. Lastly, we further show numerically the expected tunable spectral behavior of such coupled system under reverse and forward bias, which could be used in future electrically tunable detectors.« less

  16. Measurement Of Gas Electron Multiplier (GEM) Detector Characteristics

    NASA Astrophysics Data System (ADS)

    Park, Seongtae; Baldelomar, Edwin; Park, Kwangjune; Sosebee, Mark; White, Andy; Yu, Jaehoon

    2011-06-01

    The High Energy Physics group of the University of Texas at Arlington has been developing gas electron multiplier detectors to use them as sensitive gap detectors in digital hadron calorimeters for the International Linear Collider, a future high energy particle accelerator. For this purpose, we constructed numerous GEM detectors that employ double GEM layers. In this study, two kinds of prototype GEM detectors were tested; one with 28×28 cm2 active area double GEM structure with a 3 mm drift gap, a 1 mm transfer gap and a 1 mm induction gap and the other with two 3×3 cm2 GEM foils in the amplifier stage with a 5 mm drift gap, a 2 mm transfer gap and a 1 mm induction gap. The detectors' characteristics from exposure to high-energy charged particles and other radiations were measured using cosmic rays and 55Fe radioactive source. From the 55Fe tests, we observed two well separated characteristic X-ray emission peaks and confirmed the detectors' functionality. We also measured chamber gains to be over 6000 at a high voltage of 395 V across each GEM electrode. The responses to cosmic rays show the spectra that fit well to Landau distributions as expected from minimum ionizing particles.

  17. Utilization of wavelength-shifting fibers coupled to ZnS(Ag) and plastic scintillator for simultaneous detection of alpha/beta particles

    NASA Astrophysics Data System (ADS)

    Ifergan, Y.; Dadon, S.; Israelashvili, I.; Osovizky, A.; Gonen, E.; Yehuda-Zada, Y.; Smadja, D.; Knafo, Y.; Ginzburg, D.; Kadmon, Y.; Cohen, Y.; Mazor, T.

    2015-06-01

    Low level radioactive surface contamination measurements require lightweight, large area and high efficiency detector. In most existing scintillation detectors there is a tradeoff between effective area and scintillation light collection. By using wavelength shifting (WLS) fibers the scintillation light may be collected efficiently also in a large area detector. In this study, WLS fibers were coupled to a beta sensitive plastic scintillator layer and to a alpha sensitive silver-activated zinc sulfide ZnS(Ag) layer for detecting both alpha and beta particles. The WLS fibers collect the scintillation light from the whole detector and transfer it to a single PMT. This first prototype unique configuration enables monitoring radioactive contaminated surfaces by both sides of the detector and provides high gamma rejection. In this paper, the detector structure, as well as the detector's measured linear response, will be described. The measured detection efficiency of 238Pu alpha particles (5.5 MeV) is 63%. The measured detection efficiency for beta particles is 89% for 90Sr-90Y (average energy of 195.8 keV, 934.8 keV), 50% for 36Cl (average energy of 251.3 keV), and 35% for 137Cs (average energy of 156.8 keV).

  18. Prosthetic metal implants and airport metal detectors.

    PubMed

    Ismail, A; Dancey, A; Titley, O G

    2013-04-01

    Metal detectors have been present in airports and points of departure for some time. With the introduction of heightened security measures in response to fears of an increased threat of terrorism, they may become more prevalent in other public locations. The aim of this study was to ascertain which prosthetic devices activated metal detector devices used for security purposes. A range of prosthetic devices used commonly in orthopaedic and plastic surgery procedures were passed through an arch metal detector at Birmingham Airport in the UK. Additionally, each item was passed under a wand detector. Items tested included expandable breast prostheses, plates used in wrist and hand surgery, screws, K-wires, Autosuture™ ligation clips and staples. No prostheses were detected by the arch detector. The expandable implants and wrist plates were the only devices detected by passing the wand directly over them. No device was detected by the wand when it was under cover of the axillary soft tissue. Screws, K-wires, Autosuture™ clips and staples were not detected under any of the study conditions. Although unlikely to trigger a detector, it is possible that an expandable breast prosthesis or larger plate may do so. It is therefore best to warn patients of this so they can anticipate detection and further examination.

  19. Prosthetic metal implants and airport metal detectors

    PubMed Central

    Dancey, A; Titley, OG

    2013-01-01

    Introduction Metal detectors have been present in airports and points of departure for some time. With the introduction of heightened security measures in response to fears of an increased threat of terrorism, they may become more prevalent in other public locations. The aim of this study was to ascertain which prosthetic devices activated metal detector devices used for security purposes. Methods A range of prosthetic devices used commonly in orthopaedic and plastic surgery procedures were passed through an arch metal detector at Birmingham Airport in the UK. Additionally, each item was passed under a wand detector. Items tested included expandable breast prostheses, plates used in wrist and hand surgery, screws, K-wires, Autosuture™ ligation clips and staples. Results No prostheses were detected by the arch detector. The expandable implants and wrist plates were the only devices detected by passing the wand directly over them. No device was detected by the wand when it was under cover of the axillary soft tissue. Screws, K-wires, Autosuture™ clips and staples were not detected under any of the study conditions. Conclusions Although unlikely to trigger a detector, it is possible that an expandable breast prosthesis or larger plate may do so. It is therefore best to warn patients of this so they can anticipate detection and further examination. PMID:23827294

  20. MCNP-REN - A Monte Carlo Tool for Neutron Detector Design Without Using the Point Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abhold, M.E.; Baker, M.C.

    1999-07-25

    The development of neutron detectors makes extensive use of the predictions of detector response through the use of Monte Carlo techniques in conjunction with the point reactor model. Unfortunately, the point reactor model fails to accurately predict detector response in common applications. For this reason, the general Monte Carlo N-Particle code (MCNP) was modified to simulate the pulse streams that would be generated by a neutron detector and normally analyzed by a shift register. This modified code, MCNP - Random Exponentially Distributed Neutron Source (MCNP-REN), along with the Time Analysis Program (TAP) predict neutron detector response without using the pointmore » reactor model, making it unnecessary for the user to decide whether or not the assumptions of the point model are met for their application. MCNP-REN is capable of simulating standard neutron coincidence counting as well as neutron multiplicity counting. Measurements of MOX fresh fuel made using the Underwater Coincidence Counter (UWCC) as well as measurements of HEU reactor fuel using the active neutron Research Reactor Fuel Counter (RRFC) are compared with calculations. The method used in MCNP-REN is demonstrated to be fundamentally sound and shown to eliminate the need to use the point model for detector performance predictions.« less

  1. Fast coincidence counting with active inspection systems

    NASA Astrophysics Data System (ADS)

    Mullens, J. A.; Neal, J. S.; Hausladen, P. A.; Pozzi, S. A.; Mihalczo, J. T.

    2005-12-01

    This paper describes 2nd and 3rd order time coincidence distributions measurements with a GHz processor that synchronously samples 5 or 10 channels of data from radiation detectors near fissile material. On-line, time coincidence distributions are measured between detectors or between detectors and an external stimulating source. Detector-to-detector correlations are useful for passive measurements also. The processor also measures the number of times n pulses occur in a selectable time window and compares this multiplet distribution to a Poisson distribution as a method of determining the occurrence of fission. The detectors respond to radiation emitted in the fission process induced internally by inherent sources or by external sources such as LINACS, DT generators either pulsed or steady state with alpha detectors, etc. Data can be acquired from prompt emission during the source pulse, prompt emissions immediately after the source pulse, or delayed emissions between source pulses. These types of time coincidence measurements (occurring on the time scale of the fission chain multiplication processes for nuclear weapons grade U and Pu) are useful for determining the presence of these fissile materials and quantifying the amount, and are useful for counter terrorism and nuclear material control and accountability. This paper presents the results for a variety of measurements.

  2. Sensitivity booster for DOI-PET scanner by utilizing Compton scattering events between detector blocks

    NASA Astrophysics Data System (ADS)

    Yoshida, Eiji; Tashima, Hideaki; Yamaya, Taiga

    2014-11-01

    In a conventional PET scanner, coincidence events are measured with a limited energy window for detection of photoelectric events in order to reject Compton scatter events that occur in a patient, but Compton scatter events caused in detector crystals are also rejected. Scatter events within the patient causes scatter coincidences, but inter crystal scattering (ICS) events have useful information for determining an activity distribution. Some researchers have reported the feasibility of PET scanners based on a Compton camera for tracing ICS into the detector. However, these scanners require expensive semiconductor detectors for high-energy resolution. In the Anger-type block detector, single photons interacting with multiple detectors can be obtained for each interacting position and complete information can be gotten just as for photoelectric events in the single detector. ICS events in the single detector have been used to get coincidence, but single photons interacting with multiple detectors have not been used to get coincidence. In this work, we evaluated effect of sensitivity improvement using Compton kinetics in several types of DOI-PET scanners. The proposed method promises to improve the sensitivity using coincidence events of single photons interacting with multiple detectors, which are identified as the first interaction (FI). FI estimation accuracy can be improved to determine FI validity from the correlation between Compton scatter angles calculated on the coincidence line-of-response. We simulated an animal PET scanner consisting of 42 detectors. Each detector block consists of three types of scintillator crystals (LSO, GSO and GAGG). After the simulation, coincidence events are added as information for several depth-of-interaction (DOI) resolutions. From the simulation results, we concluded the proposed method promises to improve the sensitivity considerably when effective atomic number of a scintillator is low. Also, we showed that FI estimate accuracy is improved, as DOI resolution is high.

  3. SU-C-201-02: Quantitative Small-Animal SPECT Without Scatter Correction Using High-Purity Germanium Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gearhart, A; Peterson, T; Johnson, L

    2015-06-15

    Purpose: To evaluate the impact of the exceptional energy resolution of germanium detectors for preclinical SPECT in comparison to conventional detectors. Methods: A cylindrical water phantom was created in GATE with a spherical Tc-99m source in the center. Sixty-four projections over 360 degrees using a pinhole collimator were simulated. The same phantom was simulated using air instead of water to establish the true reconstructed voxel intensity without attenuation. Attenuation correction based on the Chang method was performed on MLEM reconstructed images from the water phantom to determine a quantitative measure of the effectiveness of the attenuation correction. Similarly, a NEMAmore » phantom was simulated, and the effectiveness of the attenuation correction was evaluated. Both simulations were carried out using both NaI detectors with an energy resolution of 10% FWHM and Ge detectors with an energy resolution of 1%. Results: Analysis shows that attenuation correction without scatter correction using germanium detectors can reconstruct a small spherical source to within 3.5%. Scatter analysis showed that for standard sized objects in a preclinical scanner, a NaI detector has a scatter-to-primary ratio between 7% and 12.5% compared to between 0.8% and 1.5% for a Ge detector. Preliminary results from line profiles through the NEMA phantom suggest that applying attenuation correction without scatter correction provides acceptable results for the Ge detectors but overestimates the phantom activity using NaI detectors. Due to the decreased scatter, we believe that the spillover ratio for the air and water cylinders in the NEMA phantom will be lower using germanium detectors compared to NaI detectors. Conclusion: This work indicates that the superior energy resolution of germanium detectors allows for less scattered photons to be included within the energy window compared to traditional SPECT detectors. This may allow for quantitative SPECT without implementing scatter correction, reducing uncertainties introduced by scatter correction algorithms. Funding provided by NIH/NIBIB grant R01EB013677; Todd Peterson, Ph.D., has had a research contract with PHDs Co., Knoxville, TN.« less

  4. Track reconstruction in the inhomogeneous magnetic field for Vertex Detector of NA61/SHINE experiment at CERN SPS

    NASA Astrophysics Data System (ADS)

    Merzlaya, Anastasia; NA61/SHINE Collaboration

    2017-01-01

    The heavy-ion programme of the NA61/SHINE experiment at CERN SPS is expanding to allow precise measurements of exotic particles with lifetime few hundred microns. A Vertex Detector for open charm measurements at the SPS is being constructed by the NA61/SHINE Collaboration to meet the challenges of high spatial resolution of secondary vertices and efficiency of track registration. This task is solved by the application of the coordinate sensitive CMOS Monolithic Active Pixel Sensors with extremely low material budget in the new Vertex Detector. A small-acceptance version of the Vertex Detector is being tested this year, later it will be expanded to a large-acceptance version. Simulation studies will be presented. A method of track reconstruction in the inhomogeneous magnetic field for the Vertex Detector was developed and implemented. Numerical calculations show the possibility of high precision measurements in heavy ion collisions of strange and multi strange particles, as well as heavy flavours, like charmed particles.

  5. Reactor antineutrino detector iDREAM.

    NASA Astrophysics Data System (ADS)

    Gromov, M. B.; Lukyanchenko, G. A.; Novikova, G. J.; Obinyakov, B. A.; Oralbaev, A. Y.; Skorokhvatov, M. D.; Sukhotin, S. V.; Chepurnov, A. S.; Etenko, A. V.

    2017-09-01

    Industrial Detector for Reactor Antineutrino Monitoring (iDREAM) is a compact (≈ 3.5m 2) industrial electron antineutrino spectrometer. It is dedicated for remote monitoring of PWR reactor operational modes by neutrino method in real-time. Measurements of antineutrino flux from PWR allow to estimate a fuel mixture in active zone and to check the status of the reactor campaign for non-proliferation purposes. LAB-based gadolinium doped scintillator is exploited as a target. Multizone architecture of the detector with gamma-catcher surrounding fiducial volume and plastic muon veto above and below ensure high efficiency of IBD detection and background suppression. DAQ is based on Flash ADC with PSD discrimination algorithms while digital trigger is programmable and flexible due to FPGA. The prototype detector was started up in 2014. Preliminary works on registration Cerenkov radiation produced by cosmic muons were established with distilled water inside the detector in order to test electronic and slow control systems. Also in parallel a long-term measurements with different scintillator samples were conducted.

  6. Improving the neutron-to-photon discrimination capability of detectors used for neutron dosimetry in high energy photon beam radiotherapy.

    PubMed

    Irazola, L; Terrón, J A; Bedogni, R; Pola, A; Lorenzoli, M; Sánchez-Nieto, B; Gómez, F; Sánchez-Doblado, F

    2016-09-01

    The increasing interest of the medical community to radioinduced second malignancies due to photoneutrons in patients undergoing high-energy radiotherapy, has stimulated in recent years the study of peripheral doses, including the development of some dedicated active detectors. Although these devices are designed to respond to neutrons only, their parasitic photon response is usually not identically zero and anisotropic. The impact of these facts on measurement accuracy can be important, especially in points close to the photon field-edge. A simple method to estimate the photon contribution to detector readings is to cover it with a thermal neutron absorber with reduced secondary photon emission, such as a borated rubber. This technique was applied to the TNRD (Thermal Neutron Rate Detector), recently validated for thermal neutron measurements in high-energy photon radiotherapy. The positive results, together with the accessibility of the method, encourage its application to other detectors and different clinical scenarios. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. In-vivo x-ray micro-imaging and micro-CT with the Medipix2 semiconductor detector at UniAndes

    NASA Astrophysics Data System (ADS)

    Caicedo, I.; Avila, C.; Gomez, B.; Bula, C.; Roa, C.; Sanabria, J.

    2012-02-01

    This poster contains the procedure to obtain micro-CTs and to image moving samples using the Medipix2 detector, with its corresponding results. The high granularity of the detector makes it suitable for micro-CT. We used commercial software (Octopus) to do the 3D reconstruction of the samples in the first place, and we worked on modifying free reconstruction software afterwards. Medipix has a very fast response ( ~ hundreds of nanoseconds) and high sensibility. These features allow obtaining nearly in-vivo high resolution (55m * 55m) images. We used an exposure time of 0.1 s for each frame, and the resulting images were animated. The High Energy Physics Group at UniAndes is a member of the Medipix3 collaboration. Its research activities are focused on developing set-ups for biomedical applications and particle tracking using the Medipix2 and Timepix detectors, and assessing the feasibility of the Medipix3 detector for future applications.

  8. 2016 NIST (133Xe) and Transfer (131mXe, 133mXe, 135Xe) Calibration Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Troy A.

    A significantly improved calibration of the High Purity Germanium detectors used by the Idaho National Laboratory Noble Gas Laboratory was performed during the annual NIST calibration. New sample spacers provide reproducible and secure support of samples at distances of 4, 12, 24, 50 and 100 cm. Bean, 15mL and 50mL Schlenk tube geometries were calibrated. Also included in this year’s calibration was a correlation of detector dead-time with sample activity that can be used to predict the schedule of counting the samples at each distance for each geometry. This schedule prediction will help staff members set calendar reminders so thatmore » collection of calibration data at each geometry will not be missed. This report also correlates the counting efficiencies between detectors, so that if the counting efficiency on one detector is not known, it can be estimated from the same geometry on another detector.« less

  9. Applications of a Fast Neutron Detector System to Verification of Special Nuclear Materials

    NASA Astrophysics Data System (ADS)

    Mayo, Douglas R.; Byrd, Roger C.; Ensslin, Norbert; Krick, Merlyn S.; Mercer, David J.; Miller, Michael C.; Prettyman, Thomas H.; Russo, Phyllis A.

    1998-04-01

    An array of boron-loaded plastic optically coupled to bismuth germanate scintillators has been developed to detect neutrons for measurement of special nuclear materials. The phoswiched detection system has the advantage of a high neutron detection efficiency and short die-away time. This is achieved by mixing the moderator (plastic) and the detector (^10B) at the molecular level. Simulations indicate that the neutron capture probabilities equal or exceed those of the current thermal neutron multiplicity techniques which have the moderator (polyethylene) and detectors (^3He gas proportional tubes) macroscopically separate. Experiments have been performed to characterize the response of these detectors and validate computer simulations. The fast neutron detection system may be applied to the quantitative assay of plutonium in high (α,n) backgrounds, with emphasis on safeguards and enviromental scenarios. Additional applications of the insturment, in a non-quantative mode, has been tested for possible verification activities involving dismantlement of nuclear weapons. A description of the detector system, simulations and preliminary data will be presented.

  10. Silicon drift detectors with on-chip electronics for x-ray spectroscopy.

    PubMed

    Fiorini, C; Longoni, A; Hartmann, R; Lechner, P; Strüder, L

    1997-01-01

    The silicon drift detector (SDD) is a semiconductor device based on high resistivity silicon fully depleted through junctions implanted on both sides of the semiconductor wafer. The electrons generated by the ionizing radiation are driven by means of a suitable electric field from the point of interaction toward a collecting anode of small capacitance, independent of the active area of the detector. A suitably designed front-end JFET has been directly integrated on the detector chip close to the anode region, in order to obtain a nearly ideal capacitive matching between detector and transistor and to minimize the stray capacitances of the connections. This feature allows it to reach high energy resolution also at high count rates and near room temperature. The present work describes the structure and the performance of SDDs specially designed for high resolution spectroscopy with soft x rays at high detection rate. Experimental results of SDDs used in spectroscopy applications are also reported.

  11. Numerical Investigation on Electron and Ion Transmission of GEM-based Detectors

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Purba; Sahoo, Sumanya Sekhar; Biswas, Saikat; Mohanty, Bedangadas; Majumdar, Nayana; Mukhopadhyay, Supratik

    2018-02-01

    ALICE at the LHC is planning a major upgrade of its detector systems, including the TPC, to cope with an increase of the LHC luminosity after 2018. Different R&D activities are currently concentrated on the adoption of the Gas Electron Multiplier (GEM) as the gas amplification stage of the ALICE-TPC upgrade version. The major challenge is to have low ion feedback in the drift volume as well as to ensure a collection of good percentage of primary electrons in the signal generation process. In the present work, Garfield simulation framework has been adopted to numerically estimate the electron transparency and ion backflow fraction of GEM-based detectors. In this process, extensive simulations have been carried out to enrich our understanding of the complex physical processes occurring within single, triple and quadruple GEM detectors. A detailed study has been performed to observe the effect of detector geometry, field configuration and magnetic field on the above mentioned characteristics.

  12. Photon noise from chaotic and coherent millimeter-wave sources measured with horn-coupled, aluminum lumped-element kinetic inductance detectors

    NASA Astrophysics Data System (ADS)

    Flanigan, D.; McCarrick, H.; Jones, G.; Johnson, B. R.; Abitbol, M. H.; Ade, P.; Araujo, D.; Bradford, K.; Cantor, R.; Che, G.; Day, P.; Doyle, S.; Kjellstrand, C. B.; Leduc, H.; Limon, M.; Luu, V.; Mauskopf, P.; Miller, A.; Mroczkowski, T.; Tucker, C.; Zmuidzinas, J.

    2016-02-01

    We report photon-noise limited performance of horn-coupled, aluminum lumped-element kinetic inductance detectors at millimeter wavelengths. The detectors are illuminated by a millimeter-wave source that uses an active multiplier chain to produce radiation between 140 and 160 GHz. We feed the multiplier with either amplified broadband noise or a continuous-wave tone from a microwave signal generator. We demonstrate that the detector response over a 40 dB range of source power is well-described by a simple model that considers the number of quasiparticles. The detector noise-equivalent power (NEP) is dominated by photon noise when the absorbed power is greater than approximately 1 pW, which corresponds to NEP≈2 ×10-17 W Hz-1 /2 , referenced to absorbed power. At higher source power levels, we observe the relationships between noise and power expected from the photon statistics of the source signal: NEP∝P for broadband (chaotic) illumination and NEP∝P1 /2 for continuous-wave (coherent) illumination.

  13. Comparison of UWCC MOX fuel measurements to MCNP-REN calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abhold, M.; Baker, M.; Jie, R.

    1998-12-31

    The development of neutron coincidence counting has greatly improved the accuracy and versatility of neutron-based techniques to assay fissile materials. Today, the shift register analyzer connected to either a passive or active neutron detector is widely used by both domestic and international safeguards organizations. The continued development of these techniques and detectors makes extensive use of the predictions of detector response through the use of Monte Carlo techniques in conjunction with the point reactor model. Unfortunately, the point reactor model, as it is currently used, fails to accurately predict detector response in highly multiplying mediums such as mixed-oxide (MOX) lightmore » water reactor fuel assemblies. For this reason, efforts have been made to modify the currently used Monte Carlo codes and to develop new analytical methods so that this model is not required to predict detector response. The authors describe their efforts to modify a widely used Monte Carlo code for this purpose and also compare calculational results with experimental measurements.« less

  14. Three-dimensional cascaded system analysis of a 50 µm pixel pitch wafer-scale CMOS active pixel sensor x-ray detector for digital breast tomosynthesis.

    PubMed

    Zhao, C; Vassiljev, N; Konstantinidis, A C; Speller, R D; Kanicki, J

    2017-03-07

    High-resolution, low-noise x-ray detectors based on the complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been developed and proposed for digital breast tomosynthesis (DBT). In this study, we evaluated the three-dimensional (3D) imaging performance of a 50 µm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). The two-dimensional (2D) angle-dependent modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) were experimentally characterized and modeled using the cascaded system analysis at oblique incident angles up to 30°. The cascaded system model was extended to the 3D spatial frequency space in combination with the filtered back-projection (FBP) reconstruction method to calculate the 3D and in-plane MTF, NNPS and DQE parameters. The results demonstrate that the beam obliquity blurs the 2D MTF and DQE in the high spatial frequency range. However, this effect can be eliminated after FBP image reconstruction. In addition, impacts of the image acquisition geometry and detector parameters were evaluated using the 3D cascaded system analysis for DBT. The result shows that a wider projection angle range (e.g.  ±30°) improves the low spatial frequency (below 5 mm -1 ) performance of the CMOS APS detector. In addition, to maintain a high spatial resolution for DBT, a focal spot size of smaller than 0.3 mm should be used. Theoretical analysis suggests that a pixelated scintillator in combination with the 50 µm pixel pitch CMOS APS detector could further improve the 3D image resolution. Finally, the 3D imaging performance of the CMOS APS and an indirect amorphous silicon (a-Si:H) thin-film transistor (TFT) passive pixel sensor (PPS) detector was simulated and compared.

  15. Three-dimensional cascaded system analysis of a 50 µm pixel pitch wafer-scale CMOS active pixel sensor x-ray detector for digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Zhao, C.; Vassiljev, N.; Konstantinidis, A. C.; Speller, R. D.; Kanicki, J.

    2017-03-01

    High-resolution, low-noise x-ray detectors based on the complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been developed and proposed for digital breast tomosynthesis (DBT). In this study, we evaluated the three-dimensional (3D) imaging performance of a 50 µm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). The two-dimensional (2D) angle-dependent modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) were experimentally characterized and modeled using the cascaded system analysis at oblique incident angles up to 30°. The cascaded system model was extended to the 3D spatial frequency space in combination with the filtered back-projection (FBP) reconstruction method to calculate the 3D and in-plane MTF, NNPS and DQE parameters. The results demonstrate that the beam obliquity blurs the 2D MTF and DQE in the high spatial frequency range. However, this effect can be eliminated after FBP image reconstruction. In addition, impacts of the image acquisition geometry and detector parameters were evaluated using the 3D cascaded system analysis for DBT. The result shows that a wider projection angle range (e.g.  ±30°) improves the low spatial frequency (below 5 mm-1) performance of the CMOS APS detector. In addition, to maintain a high spatial resolution for DBT, a focal spot size of smaller than 0.3 mm should be used. Theoretical analysis suggests that a pixelated scintillator in combination with the 50 µm pixel pitch CMOS APS detector could further improve the 3D image resolution. Finally, the 3D imaging performance of the CMOS APS and an indirect amorphous silicon (a-Si:H) thin-film transistor (TFT) passive pixel sensor (PPS) detector was simulated and compared.

  16. 18F-FDG positron autoradiography with a particle counting silicon pixel detector.

    PubMed

    Russo, P; Lauria, A; Mettivier, G; Montesi, M C; Marotta, M; Aloj, L; Lastoria, S

    2008-11-07

    We report on tests of a room-temperature particle counting silicon pixel detector of the Medipix2 series as the detector unit of a positron autoradiography (AR) system, for samples labelled with (18)F-FDG radiopharmaceutical used in PET studies. The silicon detector (1.98 cm(2) sensitive area, 300 microm thick) has high intrinsic resolution (55 microm pitch) and works by counting all hits in a pixel above a certain energy threshold. The present work extends the detector characterization with (18)F-FDG of a previous paper. We analysed the system's linearity, dynamic range, sensitivity, background count rate, noise, and its imaging performance on biological samples. Tests have been performed in the laboratory with (18)F-FDG drops (37-37 000 Bq initial activity) and ex vivo in a rat injected with 88.8 MBq of (18)F-FDG. Particles interacting in the detector volume produced a hit in a cluster of pixels whose mean size was 4.3 pixels/event at 11 keV threshold and 2.2 pixels/event at 37 keV threshold. Results show a sensitivity for beta(+) of 0.377 cps Bq(-1), a dynamic range of at least five orders of magnitude and a lower detection limit of 0.0015 Bq mm(-2). Real-time (18)F-FDG positron AR images have been obtained in 500-1000 s exposure time of thin (10-20 microm) slices of a rat brain and compared with 20 h film autoradiography of adjacent slices. The analysis of the image contrast and signal-to-noise ratio in a rat brain slice indicated that Poisson noise-limited imaging can be approached in short (e.g. 100 s) exposures, with approximately 100 Bq slice activity, and that the silicon pixel detector produced a higher image quality than film-based AR.

  17. Low-background gamma spectroscopy at the Boulby Underground Laboratory

    NASA Astrophysics Data System (ADS)

    Scovell, P. R.; Meehan, E.; Araújo, H. M.; Dobson, J.; Ghag, C.; Kraus, H.; Kudryavtsev, V. A.; Liu, X.-. R.; Majewski, P.; Paling, S. M.; Preece, R. M.; Saakyan, R.; Tomás, A.; Toth, C.; Yeoman, L. M.

    2018-01-01

    The Boulby Underground Germanium Suite (BUGS) comprises three low-background, high-purity germanium detectors operating in the Boulby Underground Laboratory, located 1.1 km underground in the north-east of England, UK. BUGS utilises three types of detector to facilitate a high-sensitivity, high-throughput radio-assay programme to support the development of rare-event search experiments. A Broad Energy Germanium (BEGe) detector delivers sensitivity to low-energy gamma-rays such as those emitted by 210Pb and 234Th. A Small Anode Germanium (SAGe) well-type detector is employed for efficient screening of small samples. Finally, a standard p-type coaxial detector provides fast screening of standard samples. This paper presents the steps used to characterise the performance of these detectors for a variety of sample geometries, including the corrections applied to account for cascade summing effects. For low-density materials, BUGS is able to radio-assay to specific activities down to 3.6mBqkg-1 for 234Th and 6.6mBqkg-1 for 210Pb both of which have uncovered some significant equilibrium breaks in the 238U chain. In denser materials, where gamma-ray self-absorption increases, sensitivity is demonstrated to specific activities of 0.9mBqkg-1 for 226Ra, 1.1mBqkg-1 for 228Ra, 0.3mBqkg-1 for 224Ra, and 8.6mBqkg-1 for 40K with all upper limits at a 90% confidence level. These meet the requirements of most screening campaigns presently under way for rare-event search experiments, such as the LUX-ZEPLIN (LZ) dark matter experiment. We also highlight the ability of the BEGe detector to probe the X-ray fluorescence region which can be important to identify the presence of radioisotopes associated with neutron production; this is of particular relevance in experiments sensitive to nuclear recoils.

  18. Proof of principle study of the use of a CMOS active pixel sensor for proton radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seco, Joao; Depauw, Nicolas

    2011-02-15

    Purpose: Proof of principle study of the use of a CMOS active pixel sensor (APS) in producing proton radiographic images using the proton beam at the Massachusetts General Hospital (MGH). Methods: A CMOS APS, previously tested for use in s-ray radiation therapy applications, was used for proton beam radiographic imaging at the MGH. Two different setups were used as a proof of principle that CMOS can be used as proton imaging device: (i) a pen with two metal screws to assess spatial resolution of the CMOS and (ii) a phantom with lung tissue, bone tissue, and water to assess tissuemore » contrast of the CMOS. The sensor was then traversed by a double scattered monoenergetic proton beam at 117 MeV, and the energy deposition inside the detector was recorded to assess its energy response. Conventional x-ray images with similar setup at voltages of 70 kVp and proton images using commercial Gafchromic EBT 2 and Kodak X-Omat V films were also taken for comparison purposes. Results: Images were successfully acquired and compared to x-ray kVp and proton EBT2/X-Omat film images. The spatial resolution of the CMOS detector image is subjectively comparable to the EBT2 and Kodak X-Omat V film images obtained at the same object-detector distance. X-rays have apparent higher spatial resolution than the CMOS. However, further studies with different commercial films using proton beam irradiation demonstrate that the distance of the detector to the object is important to the amount of proton scatter contributing to the proton image. Proton images obtained with films at different distances from the source indicate that proton scatter significantly affects the CMOS image quality. Conclusion: Proton radiographic images were successfully acquired at MGH using a CMOS active pixel sensor detector. The CMOS demonstrated spatial resolution subjectively comparable to films at the same object-detector distance. Further work will be done in order to establish the spatial and energy resolution of the CMOS detector for protons. The development and use of CMOS in proton radiography could allow in vivo proton range checks, patient setup QA, and real-time tumor tracking.« less

  19. Detector Noise Characterization and Performance of MODIS Thermal Emissive Bands

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Wu, A.; Chen, N.; Chiang, K.; Xiong, S.; Wenny, B.; Barnes, W. L.

    2007-01-01

    MODIS has 16 thermal emissive bands, a total of 160 individual detectors (10 for each spectral bands), located on the two cold focal plane assemblies (CFPA). MODIS TEB detectors were fully characterized pre-launch in a thermal vacuum (TV) environment using a NIST traceable blackbody calibration source (BCS) with temperatures ranging from 170 to 340K. On-orbit the TEB detectors are calibrated using an on-board blackbody (BB) on a scan-by-scan basis. For nominal on-orbit operation, the on-board BB temperature is typically controlled at 285K for Aqua MODIS and 290K for Terra MODIS. For the MODIS TEB calibration, each detector's noise equivalent temperature difference (NEdT) is often used to assess its performance and this parameter is a major contributor to the calibration uncertainty. Because of its impact on sensor calibration and data product quality, each MODIS TEB detector's NEdT is monitored on a daily basis at a fixed BB temperature and completely characterized on a regular basis at a number of BB temperatures. In this paper, we describe MODIS on-orbit TEB NEdT characterization activities, approaches, and results. We compare both pre-launch and on-orbit performance with sensor design specification and examine detector noise characterization impact on the calibration uncertainty. To date, 135 TEB detectors (out of a total of 160 detectors) in Terra MODIS (launched in December 1999) and 158 in Aqua MODIS (launched in May 2002) continue to perform with their NEdT below (or better than) their design specifications. A complete summary of all TEB noisy detectors, identified both pre-launch and on-orbit, is provided.

  20. Measuring the electron neutrino mass with improved sensitivity: the HOLMES experiment

    NASA Astrophysics Data System (ADS)

    Giachero, A.; Alpert, B. K.; Becker, D. T.; Bennett, D. A.; Biasotti, M.; Brofferio, C.; Ceriale, V.; Ceruti, G.; Corsini, D.; Day, P. K.; De Gerone, M.; Dressler, R.; Faverzani, M.; Ferri, E.; Fowler, J. W.; Fumagalli, E.; Gallucci, G.; Gard, J. D.; Gatti, F.; Hays-Wehle, J. P.; Heinitz, S.; Hilton, G. C.; Köster, U.; Lusignoli, M.; Mates, J. A. B.; Nisi, S.; Nucciotti, A.; Orlando, A.; Parodi, L.; Pessina, G.; Pizzigoni, G.; Puiu, A.; Ragazzi, S.; Reintsema, C. D.; Ribeiro Gomes, M.; Schmidt, D. R.; Schumann, D.; Siccardi, F.; Sisti, M.; Swetz, D. S.; Terranova, F.; Ullom, J. N.; Vale, L. R.

    2017-02-01

    HOLMES is a new experiment aiming at directly measuring the neutrino mass with a sensitivity below 2 eV . HOLMES will perform a calorimetric measurement of the energy released in the decay of 163Ho. The calorimetric measurement eliminates systematic uncertainties arising from the use of external beta sources, as in experiments with spectrometers. This measurement was proposed in 1982 by A. De Rujula and M. Lusignoli, but only recently the detector technological progress has allowed to design a sensitive experiment. HOLMES will deploy a 1000 pixels array of low temperature microcalorimeters with implanted 163Ho nuclei. HOLMES, besides being an important step forward in the direct neutrino mass measurement with a calorimetric approach, will also establish the potential of this approach to extend the sensitivity down to 0.1 eV and lower. The detectors used for the HOLMES experiment will be Mo/Cu bilayers TESs (Transition Edge Sensors) on SiNx membrane with gold absorbers. Microwave multiplexed rf-SQUIDs are the best available technique to read out large array of such detectors. An extensive R&D activity is in progress in order to maximize the multiplexing factor while preserving the performances of the individual detectors. To embed the 163Ho into the gold absorbers a custom mass separator ion implanter is being developed. The current activities are focused on the the single detector performances optimization and on the 163Ho isotope production and embedding. A preliminary measurement of a sub-array of 4× 16 detectors is planned late in 2017. In this contribution we present the HOLMES project with its technical challenges, its status and perspectives.

  1. Characterization of EJ-200 plastic scintillators as active background shield for cosmogenic radiation

    NASA Astrophysics Data System (ADS)

    Tkaczyk, A. H.; Saare, H.; Ipbüker, C.; Schulte, F.; Mastinu, P.; Paepen, J.; Pedersen, B.; Schillebeeckx, P.; Varasano, G.

    2018-02-01

    This paper describes the characterization of commercially available plastic scintillation detectors to be used as an active shield or veto system to reduce the neutron background resulting from atmospheric muon interactions in low-level nuclear waste assay systems. The shield consists of an array of scintillation detectors surrounding a neutron detection system. Scintillation detectors with different thicknesses are characterized for their response to gamma rays, neutrons, and muons. Response functions to gamma rays were determined and measured in the energy range from 0.6 MeV to 6.0 MeV using radionuclide sources. Neutron response functions were derived from results of time-of-flight measurements at the Van de Graaff accelerator of the INFN Legnaro and from measurements with quasi mono-energetic neutron beams produced at the Van de Graaff accelerator of the JRC Geel. From these data, the light output and resolution functions for protons and electrons were derived. The response to muons was verified by background measurements, i.e. without the presence of any neutron or gamma source. It was found that the muon peak is more pronounced when the detectors are placed horizontally. The results indicate that a scintillator with a minimum thickness of 20 mm is needed to separate events due to atmospheric muons from natural gamma ray background, and contributions due to neutron production in nuclear waste based on only the total energy deposition in the detector. In addition, it was shown that muons can be identified with a coincidence pattern when the detectors are stacked. The effectiveness of the proposed system was demonstrated based on muon induced spallation reactions in a lead sample.

  2. Summary of radiation dosimetry results on U.S. and Soviet manned spacecraft.

    PubMed

    Benton, E V

    1986-01-01

    Measurements of the radiation environment aboard U.S. and Soviet manned spacecraft are reviewed and summarized. Data obtained mostly from passive and some active radiation detectors now exist for the case of low Earth-orbit missions. Major uncertainties still exist for space exposure in high altitude, high inclination, geostationary orbits, in connection with solar effects and that of shielding. Data from active detectors flown in Spacelabs 1 and 2 suggest that a variety of phenomena must be understood before the effects of long-term exposure at the space-station type of orbit and shielding can be properly assessed.

  3. LDEF active optical system components experiment

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1992-01-01

    A preliminary report on the Active Optical System Components Experiment is presented. This experiment contained 136 components in a six inch deep tray including lasers, infrared detectors and arrays, ultraviolet light detectors, light-emitting diodes, a light modulator, flash lamps, optical filters, glasses, and samples of surface finishes. Thermal, mechanical, and structural considerations leading to the design of the tray hardware are discussed. In general, changes in the retested component characteristics appear as much related to the passage of time as to the effects of the space environment, but organic materials, multilayer optical interference filters, and extreme-infrared reflectivity of black paints show unexpected changes.

  4. Study of new anticoincidence systems design

    NASA Astrophysics Data System (ADS)

    Chabaud, J.; Laurent, P.; Baronick, J.-P.; Oger, R.; Prévôt, G.

    2012-12-01

    The scientific performances of future hard X-ray missions will necessitate a very low detector background level. This will imply thorough background simulations, and efficient background rejection systems. It necessitates also a very good knowledge of the detectors to be shielded. We got experience on these activities by conceiving and optimizing the active and passive background rejection system of the Simbol-X and IXO/HXI missions. Considering that this work may naturally be extended to other X-ray missions, we have initiated with CNES, in 2010, a R&T project on the study of background rejection systems, whose status will be presented in this paper.

  5. Calibration of the active radiation detector for Spacelab-One

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The flight models of the active radiation detector (ARD) for the ENV-01 environmental monitor were calibrated using gamma radiation. Measured sensitivities of the ion chambers were 6.1 + or - 0.3 micron rad per count for ARD S/N1, and 10.4 + or - 0.5 micron rad per count for ARD S/N2. Both were linear over the measured range 0.10 to 500 m/rad hour. The particle counters (proportional counters) were set to respond to approximately 85% of minimum ionizing particles of unit charge passing through them. These counters were also calibrated in the gamma field.

  6. The ITER bolometer diagnostic: Status and plansa)

    NASA Astrophysics Data System (ADS)

    Meister, H.; Giannone, L.; Horton, L. D.; Raupp, G.; Zeidner, W.; Grunda, G.; Kalvin, S.; Fischer, U.; Serikov, A.; Stickel, S.; Reichle, R.

    2008-10-01

    A consortium consisting of four EURATOM Associations has been set up to develop the project plan for the full development of the ITER bolometer diagnostic and to continue urgent R&D activities. An overview of the current status is given, including detector development, line-of-sight optimization, performance analysis as well as the design of the diagnostic components and their integration in ITER. This is complemented by the presentation of plans for future activities required to successfully implement the bolometer diagnostic, ranging from the detector development over diagnostic design and prototype testing to RH tools for calibration.

  7. Advanced readout methods for superheated emulsion detectors

    NASA Astrophysics Data System (ADS)

    d'Errico, F.; Di Fulvio, A.

    2018-05-01

    Superheated emulsions develop visible vapor bubbles when exposed to ionizing radiation. They consist in droplets of a metastable liquid, emulsified in an inert matrix. The formation of a bubble cavity is accompanied by sound waves. Evaporated bubbles also exhibit a lower refractive index, compared to the inert gel matrix. These two physical phenomena have been exploited to count the number of evaporated bubbles and thus measure the interacting radiation flux. Systems based on piezoelectric transducers have been traditionally used to acquire the acoustic (pressure) signals generated by bubble evaporation. Such systems can operate at ambient noise levels exceeding 100 dB; however, they are affected by a significant dead time (>10 ms). An optical readout technique relying on the scattering of light by neutron-induced bubbles has been recently improved in order to minimize measurement dead time and ambient noise sensitivity. Beams of infra-red light from light-emitting diode (LED) sources cross the active area of the detector and are deflected by evaporated bubbles. The scattered light correlates with bubble density. Planar photodiodes are affixed along the detector length in optimized positions, allowing the detection of scattered light from the bubbles and minimizing the detection of direct light from the LEDs. A low-noise signal-conditioning stage has been designed and realized to amplify the current induced in the photodiodes by scattered light and to subtract the background signal due to intrinsic scattering within the detector matrix. The proposed amplification architecture maximizes the measurement signal-to-noise ratio, yielding a readout uncertainty of 6% (±1 SD), with 1000 evaporated bubbles in a detector active volume of 150 ml (6 cm detector diameter). In this work, we prove that the intensity of scattered light also relates to the bubble size, which can be controlled by applying an external pressure to the detector emulsion. This effect can be exploited during the readout procedure to minimize shadowing effects between bubbles, which become severe when the latter are several thousands. The detector we used in this work is based on superheated C-318 (octafluorocyclobutane), emulsified in 100 μm ± 10% (1 SD) diameter drops in an inert matrix of approximately 150 ml. The detector was operated at room temperature and ambient pressure.

  8. Operational performance characteristics of the WISH detector array on the ISIS spallation neutron source

    NASA Astrophysics Data System (ADS)

    Duxbury, D.; Khalyavin, D.; Manuel, P.; Raspino, D.; Rhodes, N.; Schooneveld, E.; Spill, E.

    2014-12-01

    The performance of the position sensitive neutron detector array of the WISH diffractometer is discussed. WISH (Wide angle In a Single Histogram) is one of the seven instruments currently available for users on the second target station (TS2) of the ISIS spallation neutron source, and is used mainly for magnetic studies of materials. WISH is instrumented with an array of 10 detector panels, covering an angular range of 320o, orientated in two semi-cylindrical annuli around a central sample position at a radius of 2.2m. In total the 10 detector panels are composed of 1520 3He based position sensitive detector tubes. Each tube has an active length of one metre, a diameter of 8mm and is filled with 3He at 15 bar. The specification for the WISH detectors included a neutron detection efficiency of 50% at a neutron wavelength of 1Å with good gamma rejection. A position resolution better than 8 mm FWHM along the length of the tubes was also required which has been met experimentally. Results obtained from the detector arrays showing pulse height and positional information both prior to and post installation are shown. The first 5 of the 10 detector panels have been operational since 2009, and comparable diffraction data from powder and single crystal samples taken from the remaining 5 panels (installation completed in 2013) shows that we have a detector array with a highly stable performance which is easily assembled and maintained. Finally some real user data is shown, highlighting the excellent quality of data attainable with this instrument.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagen, E. C.; Lowe, D. R.; O'Brien, R.

    Dense Plasma Focus (DPF) machines are in use worldwide or a wide variety of applications; one of these is to produce intense, short bursts of fusion via r-Z pinch heating and compression of a working gas. We have designed and constructed a series of these, ranging from portable to a maximum energy storage capacity of 2 MJ. Fusion rates from 5 DPF pulsed fusion generators have been measured in a single laboratory using calibrated activation detectors. Measured rates range from ~ 1015 to more than 1019 fusions per second have been measured. Fusion rates from the intense short (20 –more » 50 ns) periods of production were inferred from measurement of neutron production using both calibrated activation detectors and scintillator-PMT neutron time of flight (NTOF) detectors. The NTOF detectors are arranged to measure neutrons versus time over flight paths of 30 Meters. Fusion rate scaling versus energy and current will be discussed. Data showing observed fusion cutoff at D-D fusion yield levels of approximately 1*1012, and corresponding tube currents of ~ 3 MA will be shown. Energy asymmetry of product neutrons will also be discussed. Data from the NTOF lines of sight have been used to measure energy asymmetries of the fusion neutrons. From this, center of mass energies for the D(d,n)3He reaction are inferred. A novel re-entrant chamber that allows extremely high single pulse neutron doses (> 109 neutrons/cm2 in 50 ns) to be supplied to samples will be described. Machine characteristics and detector types will be discussed.« less

  10. 50 μm pixel pitch wafer-scale CMOS active pixel sensor x-ray detector for digital breast tomosynthesis.

    PubMed

    Zhao, C; Konstantinidis, A C; Zheng, Y; Anaxagoras, T; Speller, R D; Kanicki, J

    2015-12-07

    Wafer-scale CMOS active pixel sensors (APSs) have been developed recently for x-ray imaging applications. The small pixel pitch and low noise are very promising properties for medical imaging applications such as digital breast tomosynthesis (DBT). In this work, we evaluated experimentally and through modeling the imaging properties of a 50 μm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). A modified cascaded system model was developed for CMOS APS x-ray detectors by taking into account the device nonlinear signal and noise properties. The imaging properties such as modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) were extracted from both measurements and the nonlinear cascaded system analysis. The results show that the DynAMITe x-ray detector achieves a high spatial resolution of 10 mm(-1) and a DQE of around 0.5 at spatial frequencies  <1 mm(-1). In addition, the modeling results were used to calculate the image signal-to-noise ratio (SNRi) of microcalcifications at various mean glandular dose (MGD). For an average breast (5 cm thickness, 50% glandular fraction), 165 μm microcalcifications can be distinguished at a MGD of 27% lower than the clinical value (~1.3 mGy). To detect 100 μm microcalcifications, further optimizations of the CMOS APS x-ray detector, image aquisition geometry and image reconstruction techniques should be considered.

  11. Mechanisms of time-based figure-ground segregation.

    PubMed

    Kandil, Farid I; Fahle, Manfred

    2003-11-01

    Figure-ground segregation can rely on purely temporal information, that is, on short temporal delays between positional changes of elements in figure and ground (Kandil, F.I. & Fahle, M. (2001) Eur. J. Neurosci., 13, 2004-2008). Here, we investigate the underlying mechanisms by measuring temporal segregation thresholds for various kinds of motion cues. Segregation can rely on monocular first-order motion (based on luminance modulation) and second-order motion cues (contrast modulation) with a high temporal resolution of approximately 20 ms. The mechanism can also use isoluminant motion with a reduced temporal resolution of 60 ms. Figure-ground segregation can be achieved even at presentation frequencies too high for human subjects to inspect successive frames individually. In contrast, when stimuli are presented dichoptically, i.e. separately to both eyes, subjects are unable to perceive any segregation, irrespective of temporal frequency. We propose that segregation in these displays is detected by a mechanism consisting of at least two stages. On the first level, standard motion or flicker detectors signal local positional changes (flips). On the second level, a segregation mechanism combines the local activities of the low-level detectors with high temporal precision. Our findings suggest that the segregation mechanism can rely on monocular detectors but not on binocular mechanisms. Moreover, the results oppose the idea that segregation in these displays is achieved by motion detectors of a higher order (motion-from-motion), but favour mechanisms sensitive to short temporal delays even without activation of higher-order motion detectors.

  12. The Borexino Thermal Monitoring & Management System and simulations of the fluid-dynamics of the Borexino detector under asymmetrical, changing boundary conditions

    NASA Astrophysics Data System (ADS)

    Bravo-Berguño, D.; Mereu, R.; Cavalcante, P.; Carlini, M.; Ianni, A.; Goretti, A.; Gabriele, F.; Wright, T.; Yokley, Z.; Vogelaar, R. B.; Calaprice, F.; Inzoli, F.

    2018-03-01

    A comprehensive monitoring system for the thermal environment inside the Borexino neutrino detector was developed and installed in order to reduce uncertainties in determining temperatures throughout the detector. A complementary thermal management system limits undesirable thermal couplings between the environment and Borexino's active sections. This strategy is bringing improved radioactive background conditions to the region of interest for the physics signal thanks to reduced fluid mixing induced in the liquid scintillator. Although fluid-dynamical equilibrium has not yet been fully reached, and thermal fine-tuning is possible, the system has proven extremely effective at stabilizing the detector's thermal conditions while offering precise insights into its mechanisms of internal thermal transport. Furthermore, a Computational Fluid-Dynamics analysis has been performed, based on the empirical measurements provided by the thermal monitoring system, and providing information into present and future thermal trends. A two-dimensional modeling approach was implemented in order to achieve a proper understanding of the thermal and fluid-dynamics in Borexino. It was optimized for different regions and periods of interest, focusing on the most critical effects that were identified as influencing background concentrations. Literature experimental case studies were reproduced to benchmark the method and settings, and a Borexino-specific benchmark was implemented in order to validate the modeling approach for thermal transport. Finally, fully-convective models were applied to understand general and specific fluid motions impacting the detector's Active Volume.

  13. 4.3 μm quantum cascade detector in pixel configuration.

    PubMed

    Harrer, A; Schwarz, B; Schuler, S; Reininger, P; Wirthmüller, A; Detz, H; MacFarland, D; Zederbauer, T; Andrews, A M; Rothermund, M; Oppermann, H; Schrenk, W; Strasser, G

    2016-07-25

    We present the design simulation and characterization of a quantum cascade detector operating at 4.3μm wavelength. Array integration and packaging processes were investigated. The device operates in the 4.3μm CO2 absorption region and consists of 64 pixels. The detector is designed fully compatible to standard processing and material growth methods for scalability to large pixel counts. The detector design is optimized for a high device resistance at elevated temperatures. A QCD simulation model was enhanced for resistance and responsivity optimization. The substrate illuminated pixels utilize a two dimensional Au diffraction grating to couple the light to the active region. A single pixel responsivity of 16mA/W at room temperature with a specific detectivity D* of 5⋅107 cmHz/W was measured.

  14. The Belle II DEPFET pixel detector

    NASA Astrophysics Data System (ADS)

    Lütticke, F.

    2013-02-01

    The existing Japanese Flavour Factory (KEKB) is currently being upgraded and is foreseen to be comissioned by 2014. The new e+e- collider (SuperKEKB) will have an instantaneous luminosity of 8 × 1035cm-2s-1, 40 times higher than the current world record set by KEKB. In order to handle the increased event rate and the higher background and provide high data quality, the Belle detector is upgraded to Belle II. The increased particle rate requires a new vertex pixel detector with high granularity. This silicon detector will be based on DEPFET technology and will consist of two layers of active pixel sensors. By integrating a field effect transistor into every pixel on top of a fully depleted bulk, the DEPFET technology combines detection and in-pixel amplification. This technology allows good signal to noise performance with a very low material budget.

  15. Radon backgrounds in the DEAP-1 liquid-argon-based Dark Matter detector

    NASA Astrophysics Data System (ADS)

    Amaudruz, P.-A.; Batygov, M.; Beltran, B.; Boudjemline, K.; Boulay, M. G.; Cai, B.; Caldwell, T.; Chen, M.; Chouinard, R.; Cleveland, B. T.; Contreras, D.; Dering, K.; Duncan, F.; Ford, R.; Gagnon, R.; Giuliani, F.; Gold, M.; Golovko, V. V.; Gorel, P.; Graham, K.; Grant, D. R.; Hakobyan, R.; Hallin, A. L.; Harvey, P.; Hearns, C.; Jillings, C. J.; Kuźniak, M.; Lawson, I.; Li, O.; Lidgard, J.; Liimatainen, P.; Lippincott, W. H.; Mathew, R.; McDonald, A. B.; McElroy, T.; McFarlane, K.; McKinsey, D.; Muir, A.; Nantais, C.; Nicolics, K.; Nikkel, J.; Noble, T.; O'Dwyer, E.; Olsen, K. S.; Ouellet, C.; Pasuthip, P.; Pollmann, T.; Rau, W.; Retiere, F.; Ronquest, M.; Skensved, P.; Sonley, T.; Tang, J.; Vázquez-Jáuregui, E.; Veloce, L.; Ward, M.

    2015-03-01

    The DEAP-1 7 kg single phase liquid argon scintillation detector was operated underground at SNOLAB in order to test the techniques and measure the backgrounds inherent to single phase detection, in support of the DEAP-3600 Dark Matter detector. Backgrounds in DEAP are controlled through material selection, construction techniques, pulse shape discrimination, and event reconstruction. This report details the analysis of background events observed in three iterations of the DEAP-1 detector, and the measures taken to reduce them. The 222 Rn decay rate in the liquid argon was measured to be between 16 and 26 μBq kg-1. We found that the background spectrum near the region of interest for Dark Matter detection in the DEAP-1 detector can be described considering events from three sources: radon daughters decaying on the surface of the active volume, the expected rate of electromagnetic events misidentified as nuclear recoils due to inefficiencies in the pulse shape discrimination, and leakage of events from outside the fiducial volume due to imperfect position reconstruction. These backgrounds statistically account for all observed events, and they will be strongly reduced in the DEAP-3600 detector due to its higher light yield and simpler geometry.

  16. Multidirectional Cosmic Ray Ion Detector for Deep Space CubeSats

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.

    2016-01-01

    Understanding the nature of anisotropy of solar energetic protons (SEPs) and galactic cosmic ray (GCR) fluxes in the interplanetary medium is crucial in characterizing time-dependent radiation exposure in interplanetary space for future exploration missions. NASA Glenn Research Center has proposed a CubeSat-based instrument to study solar and cosmic ray ions in lunar orbit or deep space. The objective of Solar Proton Anisotropy and Galactic cosmic ray High Energy Transport Instrument (SPAGHETI) is to provide multi-directional ion data to further understand anisotropies in SEP and GCR flux. The instrument is to be developed using large area detectors fabricated from high density, high purity silicon carbide (SiC) to measure linear energy transfer (LET) of ions. Stacks of these LET detectors are arranged in a CubeSat at orthogonal directions to provide multidirectional measurements. The low-noise, thermally-stable nature of silicon carbide and its radiation tolerance allows the multidirectional array of detector stacks to be packed in a 6U CubeSat without active cooling. A concept involving additional coincidence/anticoincidence detectors and a high energy Cherenkov detector is possible to further expand ion energy range and sensitivity.

  17. Autoradiography imaging in targeted alpha therapy with Timepix detector.

    PubMed

    A L Darwish, Ruqaya; Staudacher, Alexander Hugo; Bezak, Eva; Brown, Michael Paul

    2015-01-01

    There is a lack of data related to activity uptake and particle track distribution in targeted alpha therapy. These data are required to estimate the absorbed dose on a cellular level as alpha particles have a limited range and traverse only a few cells. Tracking of individual alpha particles is possible using the Timepix semiconductor radiation detector. We investigated the feasibility of imaging alpha particle emissions in tumour sections from mice treated with Thorium-227 (using APOMAB), with and without prior chemotherapy and Timepix detector. Additionally, the sensitivity of the Timepix detector to monitor variations in tumour uptake based on the necrotic tissue volume was also studied. Compartmental analysis model was used, based on the obtained imaging data, to assess the Th-227 uptake. Results show that alpha particle, photon, electron, and muon tracks were detected and resolved by Timepix detector. The current study demonstrated that individual alpha particle emissions, resulting from targeted alpha therapy, can be visualised and quantified using Timepix detector. Furthermore, the variations in the uptake based on the tumour necrotic volume have been observed with four times higher uptake for tumours pretreated with chemotherapy than for those without chemotherapy.

  18. Autoradiography Imaging in Targeted Alpha Therapy with Timepix Detector

    PubMed Central

    AL Darwish, Ruqaya; Staudacher, Alexander Hugo; Bezak, Eva; Brown, Michael Paul

    2015-01-01

    There is a lack of data related to activity uptake and particle track distribution in targeted alpha therapy. These data are required to estimate the absorbed dose on a cellular level as alpha particles have a limited range and traverse only a few cells. Tracking of individual alpha particles is possible using the Timepix semiconductor radiation detector. We investigated the feasibility of imaging alpha particle emissions in tumour sections from mice treated with Thorium-227 (using APOMAB), with and without prior chemotherapy and Timepix detector. Additionally, the sensitivity of the Timepix detector to monitor variations in tumour uptake based on the necrotic tissue volume was also studied. Compartmental analysis model was used, based on the obtained imaging data, to assess the Th-227 uptake. Results show that alpha particle, photon, electron, and muon tracks were detected and resolved by Timepix detector. The current study demonstrated that individual alpha particle emissions, resulting from targeted alpha therapy, can be visualised and quantified using Timepix detector. Furthermore, the variations in the uptake based on the tumour necrotic volume have been observed with four times higher uptake for tumours pretreated with chemotherapy than for those without chemotherapy. PMID:25688285

  19. Infrared detector development for the IASI instrument

    NASA Astrophysics Data System (ADS)

    Royer, Michel; Fleury, Joel; Lorans, Dominique; Pelier, Alain

    1997-10-01

    IASI is an infrared atmospheric sounding interferometer devoted to the operational meteorology and to atmospheric studies and is to be installed on board the ESA/EUMETSAT Polar Platform METOP to be launched in 2002. The required operating lifetime is 5 years. SAGEM/SAT has been developing the cold acquisition unit since 1991. The B-phase study was dedicated to the manufacture of the critical components, among which the IR detectors, optics, cold links and packaging. They concern the 3 types of detectors (InSb, HgCdTe-photovoltaic, HgCdTe- photoconductive) and the assembly technologies. The quantum detectors operate in the IR spectrum, so they are cooled at 100 K. The large spectrum (3.4 to 15.5 micrometer) is divided into 3 spectral bands. After manufacturing of these components, a program of test has been conducted and is reported for the evaluation of the technologies. It shows how the detector focal planes can sustain the space environmental conditions of an operational mission. It comprises two main files of test, mechanical evaluation and electrical evaluation. The detector environment has also been considered with aging and radiation tests, performed successfully. The B- phase is now achieved and all these development and testing activities are here reported.

  20. Bubble-detector measurements in the Russian segment of the International Space Station during 2009-12.

    PubMed

    Smith, M B; Khulapko, S; Andrews, H R; Arkhangelsky, V; Ing, H; Lewis, B J; Machrafi, R; Nikolaev, I; Shurshakov, V

    2015-01-01

    Measurements using bubble detectors have been performed in order to characterise the neutron dose and energy spectrum in the Russian segment of the International Space Station (ISS). Experiments using bubble dosemeters and a bubble-detector spectrometer, a set of six detectors with different energy thresholds that is used to determine the neutron spectrum, were performed during the ISS-22 (2009) to ISS-33 (2012) missions. The spectrometric measurements are in good agreement with earlier data, exhibiting expected features of the neutron energy spectrum in space. Experiments using a hydrogenous radiation shield show that the neutron dose can be reduced by shielding, with a reduction similar to that determined in earlier measurements using bubble detectors. The bubble-detector data are compared with measurements performed on the ISS using other instruments and are correlated with potential influencing factors such as the ISS altitude and the solar activity. Surprisingly, these influences do not seem to have a strong effect on the neutron dose or energy spectrum inside the ISS. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. A Detailed FLUKA-2005 Monte Carlo Simulation for the ATIC Detector

    NASA Technical Reports Server (NTRS)

    Gunasingha, R. M.; Fazely, A. R.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G. L.; Batkov, K. E.; Chang, J.; Christl, M.; Ganel, O.; Guzik, T. G.

    2006-01-01

    We have performed a detailed Monte Carlo (MC) calculation for the Advanced thin Ionization Calorimeter (ATIC) detector using the MC code FLUKA-2005 which is capable of simulating particles up to 10 PeV. The ATIC detector has completed two successful balloon flights from McMurdo, Antarctica lasting a total of more than 35 days. ATIC is designed as a multiple, long duration balloon Bight, investigation of the cosmic ray spectra from below 50 GeV to near 100 TeV total energy; using a fully active Bismuth Germanate @GO) calorimeter. It is equipped with a large mosaic of silicon detector pixels capable of charge identification and as a particle tracking system, three projective layers of x-y scintillator hodoscopes were employed, above, in the middle and below a 0.75 nuclear interaction length graphite target. Our calculations are part of an analysis package of both A- and energy-dependences of different nuclei interacting with the ATIC detector. The MC simulates the responses of different components of the detector such as the Simatrix, the scintillator hodoscopes and the BGO calorimeter to various nuclei. We also show comparisons of the FLUKA-2005 MC calculations with a GEANT calculation and data for protons, He and CNO.

  2. Readout Electronics for the Forward Vertex Detector at PHENIX

    NASA Astrophysics Data System (ADS)

    Phillips, Michael

    2010-11-01

    The PHENIX experiment at RHIC at Brookhaven National Laboratory has been providing high quality physics data for over 10 years. The current PHENIX physics program will be significantly enhanced by addition of the Forward Silicon Vertex upgrade detector (FVTX) in the acceptance of existing muon arm detectors. The proposed tracker is planned to be put into operation in 2012. Each arm of the FVTX detector consist of 4 discs of silicon strip sensors combined with FPHX readout chips, designed at FNAL. The full detector consists of over 1 million active mini-strip channels with instantaneous bandwidth topping 3.4 Tb/s. The FPHX chip utilizes data push architecture with 2 serial output streams at 200 MHz. The readout electronics design consists of Read-Out Cards (ROC) located in the vicinity of the detector and Front End Modules (FEM) located in the Counting House. ROC boards combine the data from several chips, synchronizes data streams and send them to FEM over a Fiber Optics Link. The data are buffered in the FEM and then sent to a standard PHENIX DAQ interface upon Level-1 trigger request. We will present the current status of the readout electronics development and testing, including tests with data from production wedges.

  3. Absolute efficiency calibration of 6LiF-based solid state thermal neutron detectors

    NASA Astrophysics Data System (ADS)

    Finocchiaro, Paolo; Cosentino, Luigi; Lo Meo, Sergio; Nolte, Ralf; Radeck, Desiree

    2018-03-01

    The demand for new thermal neutron detectors as an alternative to 3He tubes in research, industrial, safety and homeland security applications, is growing. These needs have triggered research and development activities about new generations of thermal neutron detectors, characterized by reasonable efficiency and gamma rejection comparable to 3He tubes. In this paper we show the state of the art of a promising low-cost technique, based on commercial solid state silicon detectors coupled with thin neutron converter layers of 6LiF deposited onto carbon fiber substrates. A few configurations were studied with the GEANT4 simulation code, and the intrinsic efficiency of the corresponding detectors was calibrated at the PTB Thermal Neutron Calibration Facility. The results show that the measured intrinsic detection efficiency is well reproduced by the simulations, therefore validating the simulation tool in view of new designs. These neutron detectors have also been tested at neutron beam facilities like ISIS (Rutherford Appleton Laboratory, UK) and n_TOF (CERN) where a few samples are already in operation for beam flux and 2D profile measurements. Forthcoming applications are foreseen for the online monitoring of spent nuclear fuel casks in interim storage sites.

  4. High-sensitivity brain SPECT system using cadmium telluride (CdTe) semiconductor detector and 4-pixel matched collimator.

    PubMed

    Suzuki, Atsuro; Takeuchi, Wataru; Ishitsu, Takafumi; Tsuchiya, Katsutoshi; Morimoto, Yuichi; Ueno, Yuichiro; Kobashi, Keiji; Kubo, Naoki; Shiga, Tohru; Tamaki, Nagara

    2013-11-07

    For high-sensitivity brain imaging, we have developed a two-head single-photon emission computed tomography (SPECT) system using a CdTe semiconductor detector and 4-pixel matched collimator (4-PMC). The term, '4-PMC' indicates that the collimator hole size is matched to a 2 × 2 array of detector pixels. By contrast, a 1-pixel matched collimator (1-PMC) is defined as a collimator whose hole size is matched to one detector pixel. The performance of the higher-sensitivity 4-PMC was experimentally compared with that of the 1-PMC. The sensitivities of the 1-PMC and 4-PMC were 70 cps/MBq/head and 220 cps/MBq/head, respectively. The SPECT system using the 4-PMC provides superior image resolution in cold and hot rods phantom with the same activity and scan time to that of the 1-PMC. In addition, with half the usual scan time the 4-PMC provides comparable image quality to that of the 1-PMC. Furthermore, (99m)Tc-ECD brain perfusion images of healthy volunteers obtained using the 4-PMC demonstrated acceptable image quality for clinical diagnosis. In conclusion, our CdTe SPECT system equipped with the higher-sensitivity 4-PMC can provide better spatial resolution than the 1-PMC either in half the imaging time with the same administered activity, or alternatively, in the same imaging time with half the activity.

  5. Comparative estimations of 137Cs distribution in a boreal forest in northern Sweden using a traditional sampling approach and a portable NaI detector.

    PubMed

    Plamboeck, A H; Nylén, T; Agren, G

    2006-01-01

    Field-portable detectors have been frequently used in routine monitoring and hazard assessment studies. However, there have been few thorough attempts to evaluate their potential as an alternative to the traditional procedure of collecting samples and analysing them in the laboratory. Thus, in this study the two approaches were compared in terms of their utility for monitoring (137)Cs activity in the Nyänget catchment in northern Sweden. The objectives were: (i) to determine the (137)Cs activity in soils associated with three types of vegetation, (ii) to map the geographical distribution of (137)Cs using the portable NaI detector connected to a GPS system (GDM-40), (iii) to identify (137)Cs anomalies in the catchment, and (iv) to compare the measurements obtained with the NaI detector and traditional sampling followed by laboratory analysis. Our results demonstrate that the GDM-40 has very good potential for making (137)Cs inventories and for detecting (137)Cs anomalies within large areas. The GDM-40 measurements identified differences between different hydrological areas that were not determined with the soil sampling method. The GDM-40 method is much faster than a traditional soil sampling method. However, soil sampling cannot be totally excluded because it is needed to calibrate the GDM-40. The agreement between the (137)Cs activity values obtained by the two approaches was 20% which is good in the field where so many factors vary.

  6. Support of research in X-ray astronomy

    NASA Technical Reports Server (NTRS)

    Garmire, G.

    1983-01-01

    Activities described include: (1) the evaluation of CCD detectors for X-ray astronomy applications; (2) contributions to the development of an imaging gas scintillation proportional counter; (3) the evaluation of certain metal oxide crystals as potential radiation detectors; (4) optical observations and searches for X-ray sources discovered by the HEAO-1 A2 experiment; and (5) theoretical modeling of nonequilibrium ionization structure of supernova remnants.

  7. A three-dimensional object orientation detector assisting people with developmental disabilities to control their environmental stimulation through simple occupational activities with a Nintendo Wii Remote Controller.

    PubMed

    Shih, Ching-Hsiang; Chang, Man-Ling; Mohua, Zhang

    2012-01-01

    This study evaluated whether two people with developmental disabilities would be able to actively perform simple occupational activities to control their preferred environmental stimulation using a Nintendo Wii Remote Controller with a newly developed three-dimensional object orientation detection program (TDOODP, i.e. a new software program, which turns a Wii Remote Controller into a three-dimensional object orientation detector). An ABAB design, in which A represented the baseline and B represented intervention phases, was adopted in this study. The data shows that the performance of both participants has significantly increased (i.e. they perform more simple occupational activities to activate the control system to produce environmental stimulation) during the intervention phases. The practical and developmental implications of the findings are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Measurements of 55Fe activity in activated steel samples with GEMPix

    NASA Astrophysics Data System (ADS)

    Curioni, A.; Dinar, N.; La Torre, F. P.; Leidner, J.; Murtas, F.; Puddu, S.; Silari, M.

    2017-03-01

    In this paper we present a novel method, based on the recently developed GEMPix detector, to measure the 55Fe content in samples of metallic material activated during operation of CERN accelerators and experimental facilities. The GEMPix, a gas detector with highly pixelated read-out, has been obtained by coupling a triple Gas Electron Multiplier (GEM) to a quad Timepix ASIC. Sample preparation, measurements performed on 45 samples and data analysis are described. The calibration factor (counts per second per unit specific activity) has been obtained via measurements of the 55Fe activity determined by radiochemical analysis of the same samples. Detection limit and sensitivity to the current Swiss exemption limit are calculated. Comparison with radiochemical analysis shows inconsistency for the sensitivity for only two samples, most likely due to underestimated uncertainties of the GEMPix analysis. An operative test phase of this technique is already planned at CERN.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klix, A.; Fischer, U.; Raj, P.

    Fusion power reactors will rely on the internal production of the fuel tritium from lithium in the tritium breeding blanket. Test Blanket Modules (TBM) will be installed in ITER with the aim to investigate the nuclear performance of different breeding blanket designs. Currently there is no fully qualified nuclear instrumentation available for the measurement of neutron fluxes and tritium production rates which would be able to withstand the harsh environment conditions in the TBM such as high temperature (>400 deg. C) and, depending on the operation scenario, intense radiation levels. As partner of the European Consortium on Nuclear Data andmore » Measurement Techniques in the framework of several F4E specific grants and contracts, KIT and ENEA have jointly studied the possibility to develop and test detectors suitable to operate in ITER-TBMs. Here we present an overview of ongoing work on three types of neutron flux monitors under development for the TBMs with focus on the KIT activities. A neutron activation system (NAS) with pneumatic sample transport could provide absolute neutron flux measurements in selected positions. A test system for investigating activation materials with short half-lives was constructed at the DT neutron generator laboratory of Technical University of Dresden to investigate the neutronics aspects. Several irradiations have been performed with focus on the simultaneous measurement of the extracted activated probes. An engineering assessment of a TBM NAS in the conceptual design phase has been done which considered issues of design requirements and integration. Last but not least, a mechanical test bench is under construction at KIT which will address issues of driving the activation probes, solutions for loading the system etc. experimentally. Self-powered neutron detectors (SPND) are widely applied in fission reactor monitoring, and the commercially available SPNDs are sensitive to thermal neutrons. We are investigating novel materials for SPND which would be sensitive also to the fast neutron flux expected in the TBMs. To this end simulations were done with the European Activation System EASY and neutron flux spectra which were calculated with MCNP for the HCPB TBM. Preliminary tests with commercial SPND in a fast reactor were performed. As a result of these activities, several materials have been found which may be suitable for the measurement of fast neutron fluxes in the TBM. Test detectors are under preparation for testing with DT neutron generators. Within the I{sub S}MART project, funded by KIC InnoEnergy, KIT is developing an online detector based on silicon carbide electronics for the TBMs. The operation of such detectors at TBM relevant temperatures is expected to incur lower accumulated radiation damage to them than at room temperature due to annealing effects. Detectors of several designs have been already irradiated with DT neutrons. Irradiation tests at elevated temperatures have been done and further tests are currently underway. This paper summarizes the status of the work for these three neutron flux monitor systems. (authors)« less

  10. Calibrating and training of neutron based NSA techniques with less SNM standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geist, William H; Swinhoe, Martyn T; Bracken, David S

    2010-01-01

    Accessing special nuclear material (SNM) standards for the calibration of and training on nondestructive assay (NDA) instruments has become increasingly difficult in light of enhanced safeguards and security regulations. Limited or nonexistent access to SNM has affected neutron based NDA techniques more than gamma ray techniques because the effects of multiplication require a range of masses to accurately measure the detector response. Neutron based NDA techniques can also be greatly affected by the matrix and impurity characteristics of the item. The safeguards community has been developing techniques for calibrating instrumentation and training personnel with dwindling numbers of SNM standards. Montemore » Carlo methods have become increasingly important for design and calibration of instrumentation. Monte Carlo techniques have the ability to accurately predict the detector response for passive techniques. The Monte Carlo results are usually benchmarked to neutron source measurements such as californium. For active techniques, the modeling becomes more difficult because of the interaction of the interrogation source with the detector and nuclear material; and the results cannot be simply benchmarked with neutron sources. A Monte Carlo calculated calibration curve for a training course in Indonesia of material test reactor (MTR) fuel elements assayed with an active well coincidence counter (AWCC) will be presented as an example. Performing training activities with reduced amounts of nuclear material makes it difficult to demonstrate how the multiplication and matrix properties of the item affects the detector response and limits the knowledge that can be obtained with hands-on training. A neutron pulse simulator (NPS) has been developed that can produce a pulse stream representative of a real pulse stream output from a detector measuring SNM. The NPS has been used by the International Atomic Energy Agency (IAEA) for detector testing and training applications at the Agency due to the lack of appropriate SNM standards. This paper will address the effect of reduced access to SNM for calibration and training of neutron NDA applications along with the advantages and disadvantages of some solutions that do not use standards, such as the Monte Carlo techniques and the NPS.« less

  11. INTEGRAL/SPI γ-ray line spectroscopy. Response and background characteristics

    NASA Astrophysics Data System (ADS)

    Diehl, Roland; Siegert, Thomas; Greiner, Jochen; Krause, Martin; Kretschmer, Karsten; Lang, Michael; Pleintinger, Moritz; Strong, Andrew W.; Weinberger, Christoph; Zhang, Xiaoling

    2018-03-01

    Context. The space based γ-ray observatory INTEGRAL of the European Space Agency (ESA) includes the spectrometer instrument "SPI". This is a coded mask telescope featuring a 19-element Germanium detector array for high-resolution γ-ray spectroscopy, encapsulated in a scintillation detector assembly that provides a veto for background from charged particles. In space, cosmic rays irradiate spacecraft and instruments, which, in spite of the vetoing detectors, results in a large instrumental background from activation of those materials, and leads to deterioration of the charge collection properties of the Ge detectors. Aim. We aim to determine the measurement characteristics of our detectors and their evolution with time, that is, their spectral response and instrumental background. These incur systematic variations in the SPI signal from celestial photons, hence their determination from a broad empirical database enables a reduction of underlying systematics in data analysis. For this, we explore compromises balancing temporal and spectral resolution within statistical limitations. Our goal is to enable modelling of background applicable to spectroscopic studies of the sky, accounting separately for changes of the spectral response and of instrumental background. Methods: We use 13.5 years of INTEGRAL/SPI data, which consist of spectra for each detector and for each pointing of the satellite. Spectral fits to each such spectrum, with independent but coherent treatment of continuum and line backgrounds, provides us with details about separated background components. From the strongest background lines, we first determine how the spectral response changes with time. Applying symmetry and long-term stability tests, we eliminate degeneracies and reduce statistical fluctuations of background parameters, with the aim of providing a self-consistent description of the spectral response for each individual detector. Accounting for this, we then determine how the instrumental background components change in intensities and other characteristics, most-importantly their relative distribution among detectors. Results: Spectral resolution of Ge detectors in space degrades with time, up to 15% within half a year, consistently for all detectors, and across the SPI energy range. Semi-annual annealing operations recover these losses, yet there is a small long-term degradation. The intensity of instrumental background varies anti-correlated to solar activity, in general. There are significant differences among different lines and with respect to continuum. Background lines are found to have a characteristic, well-defined and long-term consistent intensity ratio among detectors. We use this to categorise lines in groups of similar behaviour. The dataset of spectral-response and background parameters as fitted across the INTEGRAL mission allows studies of SPI spectral response and background behaviour in a broad perspective, and efficiently supports precision modelling of instrumental background.

  12. The paradox of characteristics of silicon detectors operated at temperature close to liquid helium

    NASA Astrophysics Data System (ADS)

    Eremin, V.; Shepelev, A.; Verbitskaya, E.; Zamantzas, C.; Galkin, A.

    2018-05-01

    The aim of this study is to give characterization of silicon p+/n/n+ detectors for the monitoring systems of the Large Hadron Collider machine at CERN with the focus on justifying the choice of silicon resistivity for the detector operation at the temperature of 1.9-10 K. The detectors from n-type silicon with the resistivity of 10, 4.5, and 0.5 kΩ cm were investigated at the temperature from 293 up to 7 K by the Transient Current Technique with a 660 nm pulse laser and alpha-particles. The shapes of the detector current pulse response allowed revealing a paradox in the properties of shallow donors of phosphorus, i.e., native dopants in the n-type Si. There was no carrier freeze-out on the phosphorus energy levels in the space charge region (SCR), and they remained positively charged irrespective of temperature, thus limiting the depleted region depth. As for the base region of a partially depleted detector, the levels became neutral at T < 28 K, which transformed silicon to an insulator. The reduction of the activation energy for carrier emission in the detector SCR estimated in the scope of the Poole-Frenkel effect failed to account for the impact of the electric field on the properties of phosphorus levels. The absence of carrier freeze-out in the SCR justifies the choice of high resistivity silicon as the only proper material for detector operation in a fully depleted mode at extremely low temperature.

  13. A compact high resolution flat panel PET detector based on the new 4-side buttable MPPC for biomedical applications

    PubMed Central

    Wang, Qiang; Wen, Jie; Ravindranath, Bosky; O’Sullivan, Andrew W.; Catherall, David; Li, Ke; Wei, Shouyi; Komarov, Sergey; Tai, Yuan-Chuan

    2015-01-01

    Compact high-resolution panel detectors using virtual pinhole (VP) PET geometry can be inserted into existing clinical or pre-clinical PET systems to improve regional spatial resolution and sensitivity. Here we describe a compact panel PET detector built using the new Though Silicon Via (TSV) multi-pixel photon counters (MPPC) detector. This insert provides high spatial resolution and good timing performance for multiple bio-medical applications. Because the TSV MPPC design eliminates wire bonding and has a package dimension which is very close to the MPPC’s active area, it is 4-side buttable. The custom designed MPPC array (based on Hamamatsu S12641-PA-50(x)) used in the prototype is composed of 4 × 4 TSV-MPPC cells with a 4.46 mm pitch in both directions. The detector module has 16 × 16 lutetium yttrium oxyorthosilicate (LYSO) crystal array, with each crystal measuring 0.92 × 0.92 × 3 mm3 with 1.0 mm pitch. The outer diameter of the detector block is 16.8 × 16.8 mm2. Thirty-two such blocks will be arranged in a 4 × 8 array with 1 mm gaps to form a panel detector with detection area around 7 cm × 14 cm in the full-size detector. The flood histogram acquired with Ge-68 source showed excellent crystal separation capability with all 256 crystals clearly resolved. The detector module’s mean, standard deviation, minimum (best) and maximum (worst) energy resolution were 10.19%, +/−0.68%, 8.36% and 13.45% FWHM, respectively. The measured coincidence time resolution between the block detector and a fast reference detector (around 200 ps single photon timing resolution) was 0.95 ns. When tested with Siemens Cardinal electronics the performance of the detector blocks remain consistent. These results demonstrate that the TSV-MPPC is a promising photon sensor for use in a flat panel PET insert composed of many high resolution compact detector modules. PMID:26085702

  14. Acoustic emission intrusion detector

    DOEpatents

    Carver, Donald W.; Whittaker, Jerry W.

    1980-01-01

    An intrusion detector is provided for detecting a forcible entry into a secured structure while minimizing false alarms. The detector uses a piezoelectric crystal transducer to sense acoustic emissions. The transducer output is amplified by a selectable gain amplifier to control the sensitivity. The rectified output of the amplifier is applied to a Schmitt trigger circuit having a preselected threshold level to provide amplitude discrimination. Timing circuitry is provided which is activated by successive pulses from the Schmitt trigger which lie within a selected time frame for frequency discrimination. Detected signals having proper amplitude and frequency trigger an alarm within the first complete cycle time of a detected acoustical disturbance signal.

  15. Real-time measurements of radon activity with the Timepix-based RADONLITE and RADONPIX detectors

    NASA Astrophysics Data System (ADS)

    Caresana, M.; Garlati, L.; Murtas, F.; Romano, S.; Severino, C. T.; Silari, M.

    2014-11-01

    Radon gas is the most important source of ionizing radiation among those of natural origin. Two new systems for radon measurement based on the Timepix silicon detector were developed. The positively charged radon daughters are electrostatically collected on the surface of the Si detector and their energy spectrum measured. Pattern recognition of the tracks on the sensor and particle identification are used to determine number and energy of the alpha particles and to subtract the background, allowing for efficient radon detection. The systems include an algorithm for real-time measurement of the radon concentration and the calculation of the effective dose to the lungs.

  16. Multi-anode microchannel arrays - New detectors for imaging and spectroscopy in space

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Bybee, R. L.

    1983-01-01

    Consideration is given to the construction and operation of multi-anode microchannel array detector systems having formats as large as 256 x 1024 pixels. Such arrays are being developed for imaging and spectroscopy at soft X-ray, ultraviolet and visible wavelengths from balloons, sounding rockets and space probes. Both discrete-anode and coincidence-anode arrays are described. Two types of photocathode structures are evaluated: an opaque photocathode deposited directly on the curved-channel MCP and an activated cathode deposited on a proximity-focused mesh. Future work will include sensitivity optimization in the different wavelength regions and the development of detector tubes with semitransparent proximity-focused photocathodes.

  17. Application of an ultraminiature thermal neutron monitor for irradiation field study of accelerator-based neutron capture therapy

    PubMed Central

    Ishikawa, Masayori; Tanaka, Kenichi; Endo, Satrou; Hoshi, Masaharu

    2015-01-01

    Abstract Phantom experiments to evaluate thermal neutron flux distribution were performed using the Scintillator with Optical Fiber (SOF) detector, which was developed as a thermal neutron monitor during boron neutron capture therapy (BNCT) irradiation. Compared with the gold wire activation method and Monte Carlo N-particle (MCNP) calculations, it was confirmed that the SOF detector is capable of measuring thermal neutron flux as low as 105 n/cm2/s with sufficient accuracy. The SOF detector will be useful for phantom experiments with BNCT neutron fields from low-current accelerator-based neutron sources. PMID:25589504

  18. Laser damage helps the eavesdropper in quantum cryptography.

    PubMed

    Bugge, Audun Nystad; Sauge, Sebastien; Ghazali, Aina Mardhiyah M; Skaar, Johannes; Lydersen, Lars; Makarov, Vadim

    2014-02-21

    We propose a class of attacks on quantum key distribution (QKD) systems where an eavesdropper actively engineers new loopholes by using damaging laser illumination to permanently change properties of system components. This can turn a perfect QKD system into a completely insecure system. A proof-of-principle experiment performed on an avalanche photodiode-based detector shows that laser damage can be used to create loopholes. After ∼1  W illumination, the detectors' dark count rate reduces 2-5 times, permanently improving single-photon counting performance. After ∼1.5  W, the detectors switch permanently into the linear photodetection mode and become completely insecure for QKD applications.

  19. Commissioning of the ATLAS pixel detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ATLAS Collaboration; Golling, Tobias

    2008-09-01

    The ATLAS pixel detector is a high precision silicon tracking device located closest to the LHC interaction point. It belongs to the first generation of its kind in a hadron collider experiment. It will provide crucial pattern recognition information and will largely determine the ability of ATLAS to precisely track particle trajectories and find secondary vertices. It was the last detector to be installed in ATLAS in June 2007, has been fully connected and tested in-situ during spring and summer 2008, and is ready for the imminent LHC turn-on. The highlights of the past and future commissioning activities of themore » ATLAS pixel system are presented.« less

  20. Integrated input protection against discharges for Micro Pattern Gas Detectors readout ASICs

    NASA Astrophysics Data System (ADS)

    Fiutowski, T.; Dąbrowski, W.; Koperny, S.; Wiącek, P.

    2017-02-01

    Immunity against possible random discharges inside active detector volume of MPGDs is one of the key aspects that should be addressed in the design of the front-end electronics. This issue becomes particularly critical for systems with high channel counts and high density readout employing the front-end electronics built as multichannel ASICs implemented in modern CMOS technologies, for which the breakdown voltages are in the range of a few Volts. The paper presents the design of various input protection structures integrated in the ASIC manufactured in a 350 nm CMOS process and test results using an electrical circuit to mimic discharges in the detectors.

  1. Simulated characteristics of the DEGAS γ-detector array

    NASA Astrophysics Data System (ADS)

    Li, G. S.; Lizarazo, C.; Gerl, J.; Kojouharov, I.; Schaffner, H.; Górska, M.; Pietralla, N.; Saha, S.; Liu, M. L.; Wang, J. G.

    2018-05-01

    The performance of the novel HPGe-Cluster array DEGAS to be used at FAIR has been studied through GEANT4 simulations using accurate geometries of most of the detector components. The simulation framework has been tested by comparing experimental data of various detector setups. The study showed that the DEGAS system could provide a clear improvement of the photo-peak efficiency compared to the previous RISING array. In addition, the active BGO Back-catcher could greatly enhance the background suppression capability. The add-back analysis revealed that even at a γ multiplicity of six the sensitivity is improved by adding back the energy depositions of the neighboring Ge crystals.

  2. Resonant metamaterial detectors based on THz quantum-cascade structures

    PubMed Central

    Benz, A.; Krall, M.; Schwarz, S.; Dietze, D.; Detz, H.; Andrews, A. M.; Schrenk, W.; Strasser, G.; Unterrainer, K.

    2014-01-01

    We present the design, fabrication and characterisation of an intersubband detector employing a resonant metamaterial coupling structure. The semiconductor heterostructure relies on a conventional THz quantum-cascade laser design and is operated at zero bias for the detector operation. The same active region can be used to generate or detect light depending on the bias conditions and the vertical confinement. The metamaterial is processed directly into the top metal contact and is used to couple normal incidence radiation resonantly to the intersubband transitions. The device is capable of detecting light below and above the reststrahlenband of gallium-arsenide corresponding to the mid-infrared and THz spectral region. PMID:24608677

  3. The Pierre Auger Observatory scaler mode for the study of solar activity modulation of galactic cosmic rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abreu, P.; /Lisbon, LIFEP /Lisbon, IST; Aglietta, M.

    2011-01-01

    Since data-taking began in January 2004, the Pierre Auger Observatory has been recording the count rates of low energy secondary cosmic ray particles for the self-calibration of the ground detectors of its surface detector array. After correcting for atmospheric effects, modulations of galactic cosmic rays due to solar activity and transient events are observed. Temporal variations related with the activity of the heliosphere can be determined with high accuracy due to the high total count rates. In this study, the available data are presented together with an analysis focused on the observation of Forbush decreases, where a strong correlation withmore » neutron monitor data is found.« less

  4. Efficiency calibration and minimum detectable activity concentration of a real-time UAV airborne sensor system with two gamma spectrometers.

    PubMed

    Tang, Xiao-Bin; Meng, Jia; Wang, Peng; Cao, Ye; Huang, Xi; Wen, Liang-Sheng; Chen, Da

    2016-04-01

    A small-sized UAV (NH-UAV) airborne system with two gamma spectrometers (LaBr3 detector and HPGe detector) was developed to monitor activity concentration in serious nuclear accidents, such as the Fukushima nuclear accident. The efficiency calibration and determination of minimum detectable activity concentration (MDAC) of the specific system were studied by MC simulations at different flight altitudes, different horizontal distances from the detection position to the source term center and different source term sizes. Both air and ground radiation were considered in the models. The results obtained may provide instructive suggestions for in-situ radioactivity measurements of NH-UAV. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Realization of the electrical Sentinel 4 detector integration

    NASA Astrophysics Data System (ADS)

    Hermsen, M.; Hohn, R.; Skegg, M.; Woffinden, C.; Reulke, R.

    2017-09-01

    The detectors of the Sentinel 4 multi spectral imager are operated in flight at 215K while the analog electronics is operated at ambient temperature. The detector is cooled by means of a radiator. For thermal reasons no active component has been allowed in the cooled area closest to the detector as the passive radiator is restricted in its size. For thermal decoupling of detector and electronics a long distance between detector and electronics is considered ideal as thermal conductivity decreases with the length of the connection. In contradiction a short connection between detector and electronics is ideal for the electronic signals. Only a short connection ensures the signal integrity of both the weak detector output signal but similarly also the clock signals for driving the detector. From a mechanical and thermal point of view the connection requires a certain minimum length. The selected solution serves all these needs but had to approach the limits of what is electrically, mechanically and thermally feasible. In addition, shielding from internal (self distortion) and external distorting signals has to be realized for the connection between FEE(Front End Electronics) and detectors. At the time of the design of the flex it was not defined whether the mechanical structure between FEE and FPA (Focal Plane Assembly) would act as a shielding structure. The physical separation between CCD detector and the Front-end Electronics, the adverse EMI environment in which the instrument will be operated in (the location of the instrument on the satellite is in vicinity to a down-link K-band communication antenna of the S/C) require at least the video output signals to be shielded. Both detectors (a NIR and a UVVIS detector) are sensitive to contamination and difficult to be cleaned in case of any contamination. This brings up extreme cleanliness requirements for the detector in manufacturing and assembly. Effectively the detector has to be kept in an ISO 5 environment and additionally humidity has to be avoided - which does not comply with the usual clean-room atmosphere. This paper describes how in Sentinel 4 the given challenges have been overcome, how the limited load drive capability of the detector component has been considered on a flex length of about 20 cm (7.87 in) and how EMC shielding of the highly sensitive analog signals of the detector has been realized. Also covered are design/manufacturing aspects and a glance on testing results is provided

  6. Projected sensitivity of the SuperCDMS SNOLAB experiment

    DOE PAGES

    Agnese, R.; Anderson, A. J.; Aramaki, T.; ...

    2017-04-07

    SuperCDMS SNOLAB will be a next-generation experiment aimed at directly detecting low-mass particles (with masses ≤10 GeV/c 2) that may constitute dark matter by using cryogenic detectors of two types (HV and iZIP) and two target materials (germanium and silicon). The experiment is being designed with an initial sensitivity to nuclear recoil cross sections ~1×10 –43 cm 2 for a dark matter particle mass of 1 GeV/c 2, and with capacity to continue exploration to both smaller masses and better sensitivities. The phonon sensitivity of the HV detectors will be sufficient to detect nuclear recoils from sub-GeV dark matter. Amore » detailed calibration of the detector response to low-energy recoils will be needed to optimize running conditions of the HV detectors and to interpret their data for dark matter searches. Low-activity shielding, and the depth of SNOLAB, will reduce most backgrounds, but cosmogenically produced 3H and naturally occurring 32Si will be present in the detectors at some level. Even if these backgrounds are 10 times higher than expected, the science reach of the HV detectors would be over 3 orders of magnitude beyond current results for a dark matter mass of 1 GeV/c 2. The iZIP detectors are relatively insensitive to variations in detector response and backgrounds, and will provide better sensitivity for dark matter particles with masses ≳5 GeV/c 2. The mix of detector types (HV and iZIP), and targets (germanium and silicon), planned for the experiment, as well as flexibility in how the detectors are operated, will allow us to maximize the low-mass reach, and understand the backgrounds that the experiment will encounter. In conclusion, upgrades to the experiment, perhaps with a variety of ultra-low-background cryogenic detectors, will extend dark matter sensitivity down to the “neutrino floor,” where coherent scatters of solar neutrinos become a limiting background.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnese, R.; Anderson, A. J.; Aramaki, T.

    SuperCDMS SNOLAB will be a next-generation experiment aimed at directly detecting low-mass (< 10 GeV/cmore » $^2$) particles that may constitute dark matter by using cryogenic detectors of two types (HV and iZIP) and two target materials (germanium and silicon). The experiment is being designed with an initial sensitivity to nuclear recoil cross sections ~ 1 x 10$$^{-43}$$ cm$^2$ for a dark matter particle mass of 1 GeV/c$^2$, and with capacity to continue exploration to both smaller masses and better sensitivities. The phonon sensitivity of the HV detectors will be sufficient to detect nuclear recoils from sub-GeV dark matter. A detailed calibration of the detector response to low energy recoils will be needed to optimize running conditions of the HV detectors and to interpret their data for dark matter searches. Low-activity shielding, and the depth of SNOLAB, will reduce most backgrounds, but cosmogenically produced $$^{3}$$H and naturally occurring $$^{32}$$Si will be present in the detectors at some level. Even if these backgrounds are x10 higher than expected, the science reach of the HV detectors would be over three orders of magnitude beyond current results for a dark matter mass of 1 GeV/c$^2$. The iZIP detectors are relatively insensitive to variations in detector response and backgrounds, and will provide better sensitivity for dark matter particle masses (> 5 GeV/c$^2$). The mix of detector types (HV and iZIP), and targets (germanium and silicon), planned for the experiment, as well as flexibility in how the detectors are operated, will allow us to maximize the low-mass reach, and understand the backgrounds that the experiment will encounter. Upgrades to the experiment, perhaps with a variety of ultra-low-background cryogenic detectors, will extend dark matter sensitivity down to the "neutrino floor", where coherent scatters of solar neutrinos become a limiting background.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnese, R.; Anderson, A. J.; Aramaki, T.

    SuperCDMS SNOLAB will be a next-generation experiment aimed at directly detecting low-mass particles (with masses ≤ 10 GeV/c^2) that may constitute dark matter by using cryogenic detectors of two types (HV and iZIP) and two target materials (germanium and silicon). The experiment is being designed with an initial sensitivity to nuclear recoil cross sections ~1×10^-43 cm^2 for a dark matter particle mass of 1 GeV/c^2, and with capacity to continue exploration to both smaller masses and better sensitivities. The phonon sensitivity of the HV detectors will be sufficient to detect nuclear recoils from sub-GeV dark matter. A detailed calibration ofmore » the detector response to low-energy recoils will be needed to optimize running conditions of the HV detectors and to interpret their data for dark matter searches. Low-activity shielding, and the depth of SNOLAB, will reduce most backgrounds, but cosmogenically produced H-3 and naturally occurring Si-32 will be present in the detectors at some level. Even if these backgrounds are 10 times higher than expected, the science reach of the HV detectors would be over 3 orders of magnitude beyond current results for a dark matter mass of 1 GeV/c^2. The iZIP detectors are relatively insensitive to variations in detector response and backgrounds, and will provide better sensitivity for dark matter particles with masses ≳5 GeV/c^2. The mix of detector types (HV and iZIP), and targets (germanium and silicon), planned for the experiment, as well as flexibility in how the detectors are operated, will allow us to maximize the low-mass reach, and understand the backgrounds that the experiment will encounter. Upgrades to the experiment, perhaps with a variety of ultra-low-background cryogenic detectors, will extend dark matter sensitivity down to the “neutrino floor,” where coherent scatters of solar neutrinos become a limiting background.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnese, R.; Anderson, A. J.; Aramaki, T.

    SuperCDMS SNOLAB will be a next-generation experiment aimed at directly detecting low-mass particles (with masses ≤10 GeV/c 2) that may constitute dark matter by using cryogenic detectors of two types (HV and iZIP) and two target materials (germanium and silicon). The experiment is being designed with an initial sensitivity to nuclear recoil cross sections ~1×10 –43 cm 2 for a dark matter particle mass of 1 GeV/c 2, and with capacity to continue exploration to both smaller masses and better sensitivities. The phonon sensitivity of the HV detectors will be sufficient to detect nuclear recoils from sub-GeV dark matter. Amore » detailed calibration of the detector response to low-energy recoils will be needed to optimize running conditions of the HV detectors and to interpret their data for dark matter searches. Low-activity shielding, and the depth of SNOLAB, will reduce most backgrounds, but cosmogenically produced 3H and naturally occurring 32Si will be present in the detectors at some level. Even if these backgrounds are 10 times higher than expected, the science reach of the HV detectors would be over 3 orders of magnitude beyond current results for a dark matter mass of 1 GeV/c 2. The iZIP detectors are relatively insensitive to variations in detector response and backgrounds, and will provide better sensitivity for dark matter particles with masses ≳5 GeV/c 2. The mix of detector types (HV and iZIP), and targets (germanium and silicon), planned for the experiment, as well as flexibility in how the detectors are operated, will allow us to maximize the low-mass reach, and understand the backgrounds that the experiment will encounter. In conclusion, upgrades to the experiment, perhaps with a variety of ultra-low-background cryogenic detectors, will extend dark matter sensitivity down to the “neutrino floor,” where coherent scatters of solar neutrinos become a limiting background.« less

  10. SU-F-T-490: Separating Effects Influencing Detector Response in Small MV Photon Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wegener, S; Sauer, O

    2016-06-15

    Purpose: Different detector properties influence their responses especially in field sizes below the lateral electron range. Due to the finite active volume, the detector density and electron perturbation at other structural parts, the response factor is in general field size dependent. We aimed to visualize and separate the main effects contributing to detector behavior for a variety of detector types. This was achieved in an experimental setup, shielding the field center. Thus, effects caused by scattered radiation could be examined separately. Methods: Signal ratios for field sizes down to 8 mm (SSD 90 cm, water depth 10 cm) of amore » 6MV beam from a Siemens Primus LINAC were recorded with several detectors: PTW microDiamond and PinPoint ionization chamber, shielded diodes (PTW P-60008, IBA PFD and SNC Edge) and unshielded diodes (PTW E-60012 and IBA SFD). Measurements were carried out in open fields and with an aluminum pole of 4 mm diameter as a central block. The geometric volume effect was calculated from profiles obtained with Gafchromic EBT3 film, evaluated using FilmQA Pro software (Ashland, USA). Results: Volume corrections were 1.7% at maximum. After correction, in small open fields, unshielded diodes showed a lower response than the diamond, i.e. diamond detector over-response seems to be higher than that for unshielded diodes. Beneath the block, this behavior was amplified by a factor of 2. For the shielded diodes, the overresponse for small open fields could be confirmed. However their lateral response behavior was strongly type dependent, e.g. the signal ratio dropped from 1.02 to 0.98 for the P-60008 diode. Conclusion: The lateral detector response was experimentally examined. Detector volume and density alone do not fully account for the field size dependence of detector response. Detector construction details play a major role, especially for shielded diodes.« less

  11. Monolithic Active Pixel Sensors

    NASA Astrophysics Data System (ADS)

    Lutz, P.

    In close collaboration with the group from Strasbourg, Saclay has been developing fast monolithic active pixel sensors for future vertex detectors. This presentation gives some recent results from the MIMOSA serie, emphazising the participation of the group.

  12. Development and verification of signal processing system of avalanche photo diode for the active shields onboard ASTRO-H

    NASA Astrophysics Data System (ADS)

    Ohno, M.; Kawano, T.; Edahiro, I.; Shirakawa, H.; Ohashi, N.; Okada, C.; Habata, S.; Katsuta, J.; Tanaka, Y.; Takahashi, H.; Mizuno, T.; Fukazawa, Y.; Murakami, H.; Kobayashi, S.; Miyake, K.; Ono, K.; Kato, Y.; Furuta, Y.; Murota, Y.; Okuda, K.; Wada, Y.; Nakazawa, K.; Mimura, T.; Kataoka, J.; Ichinohe, Y.; Uchida, Y.; Katsuragawa, M.; Yoneda, H.; Sato, G.; Sato, R.; Kawaharada, M.; Harayama, A.; Odaka, H.; Hayashi, K.; Ohta, M.; Watanabe, S.; Kokubun, M.; Takahashi, T.; Takeda, S.; Kinoshita, M.; Yamaoka, K.; Tajima, H.; Yatsu, Y.; Uchiyama, H.; Saito, S.; Yuasa, T.; Makishima, K.; ASTRO-H HXI/SGD Team

    2016-09-01

    The hard X-ray Imager and Soft Gamma-ray Detector onboard ASTRO-H demonstrate high sensitivity to hard X-ray (5-80 keV) and soft gamma-rays (60-600 keV), respectively. To reduce the background, both instruments are actively shielded by large, thick Bismuth Germanate scintillators. We have developed the signal processing system of the avalanche photodiode in the BGO active shields and have demonstrated its effectiveness after assembly in the flight model of the HXI/SGD sensor and after integration into the satellite. The energy threshold achieved is about 150 keV and anti-coincidence efficiency for cosmic-ray events is almost 100%. Installed in the BGO active shield, the developed signal processing system successfully reduces the room background level of the main detector.

  13. Neutron absorption detector

    DOEpatents

    Bell, Zane William [Oak Ridge, TN; Boatner, Lynn Allen [Oak Ridge, TN

    2011-05-31

    A method of detecting an activator, the method including impinging a receptor material that is not predominately water and lacks a photoluminescent material with an activator and generating Cherenkov effect light due to the activator impinging the receptor material. The method further including identifying a characteristic of the activator based on the light.

  14. X-ray radiation detectors of ``scintillator-photoreceiving device type'' for industrial digital radiography with improved spatial resolution

    NASA Astrophysics Data System (ADS)

    Ryzhykov, V. D.; Lysetska, O. K.; Opolonin, O. D.; Kozin, D. N.

    2003-06-01

    Main types of photoreceivers used in X-ray digital radiography systems are luminescent screens that transfer the optical image onto charge collection instruments, which require cooling, and semiconductor silicon detectors, which limit the contrast sensitivity. We have developed and produced X-ray radiation detectors of "scintillator-photoreceiving device" (S-PRD) type, which are integrally located on the inverse side of the photodiode (PD). The receiving-converting circuit (RCC) is designed for data conversion into digital form and their input into PC. Software is provided for RCC control and image visualization. Main advantages of these detectors are high industrial resolution (3-5 line pairs per mm), detecting activity up to 20 μm, controlled sensitivity, low weight and small size, imaging low (0.1-0.3 mrad) object dose in real time. In this work, main characteristics of 32-, 64- and 1024-channel detectors of S-PRD type were studied and compared for X-ray sensitivity with S-PD detectors. Images of the tested objects have been obtained. Recommendations are given on the use of different scintillation materials, depending upon the purpose of a digital radiographic system. The detectors operate in a broad energy range of ionizing radiation, hence the size of the controlled object is not limited. The system is sufficiently powerful to ensure frontal (through two walls) observation of pipelines with wall thickness up to 10 cm.

  15. The low energy detector of Simbol-X

    NASA Astrophysics Data System (ADS)

    Lechner, P.; Andricek, L.; Briel, U.; Hasinger, G.; Heinzinger, K.; Herrmann, S.; Huber, H.; Kendziorra, E.; Lauf, T.; Lutz, G.; Richter, R.; Santangelo, A.; Schaller, G.; Schnecke, M.; Schopper, F.; Segneri, G.; Strüder, L.; Treis, J.

    2008-07-01

    Simbol-X is a French-Italian-German hard energy X-ray mission with a projected launch in 2014. Being sensitive in the energy range from 500 eV to 80 keV it will cover the sensitivity gap beyond the energy interval of today's telescopes XMM-Newton and Chandra. Simbol-X will use an imaging telescope of nested Wolter-I mirrors. To provide a focal length of 20 m it will be the first mission of two independent mirror and detector spacecrafts in autonomous formation flight. The detector spacecraft's payload is composed of an imaging silicon low energy detector in front of a pixelated cadmium-telluride hard energy detector. Both have a sensitive area of 8 × 8 cm2 to cover a 12 arcmin field of view and a pixel size of 625 × 625 μm2 adapted to the telescope's resolution of 20 arcsec. The additional LED specifications are: high energy resolution, high quantum efficiency, fast readout and optional window mode, monolithic device with 100 % fill factor and suspension mounting, and operation at warm temperature. To match these requirements the low energy detector is composed of 'active macro pixels', combining the large, scalable area of a Silicon Drift Detector and the low-noise, on-demand readout of an integrated DEPFET amplifier. Flight representative prototypes have been processed at the MPI semiconductor laboratory, and the prototype's measured performance demonstrates the technology readiness.

  16. Exploiting different active silicon detectors in the International Space Station: ALTEA and DOSTEL galactic cosmic radiation (GCR) measurements

    NASA Astrophysics Data System (ADS)

    Narici, Livo; Berger, Thomas; Burmeister, Sönke; Di Fino, Luca; Rizzo, Alessandro; Matthiä, Daniel; Reitz, Günther

    2017-08-01

    The solar system exploration by humans requires to successfully deal with the radiation exposition issue. The scientific aspect of this issue is twofold: knowing the radiation environment the astronauts are going to face and linking radiation exposure to health risks. Here we focus on the first issue. It is generally agreed that the final tool to describe the radiation environment in a space habitat will be a model featuring the needed amount of details to perform a meaningful risk assessment. The model should also take into account the shield changes due to the movement of materials inside the habitat, which in turn produce changes in the radiation environment. This model will have to undergo a final validation with a radiation field of similar complexity. The International Space Station (ISS) is a space habitat that features a radiation environment inside which is similar to what will be found in habitats in deep space, if we use measurements acquired only during high latitude passages (where the effects of the Earth magnetic field are reduced). Active detectors, providing time information, that can easily select data from different orbital sections, are the ones best fulfilling the requirements for these kinds of measurements. The exploitation of the radiation measurements performed in the ISS by all the available instruments is therefore mandatory to provide the largest possible database to the scientific community, to be merged with detailed Computer Aided Design (CAD) models, in the quest for a full model validation. While some efforts in comparing results from multiple active detectors have been attempted, a thorough study of a procedure to merge data in a single data matrix in order to provide the best validation set for radiation environment models has never been attempted. The aim of this paper is to provide such a procedure, to apply it to two of the most performing active detector systems in the ISS: the Anomalous Long Term Effects in Astronauts (ALTEA) instrument and the DOSimetry TELescope (DOSTEL) detectors, applied in the frame of the DOSIS and DOSIS 3D project onboard the ISS and to present combined results exploiting the features of each of the two apparatuses.

  17. Development of Ultra-Fast Silicon Detectors for 4D tracking

    NASA Astrophysics Data System (ADS)

    Staiano, A.; Arcidiacono, R.; Boscardin, M.; Dalla Betta, G. F.; Cartiglia, N.; Cenna, F.; Ferrero, M.; Ficorella, F.; Mandurrino, M.; Obertino, M.; Pancheri, L.; Paternoster, G.; Sola, V.

    2017-12-01

    In this contribution we review the progress towards the development of a novel type of silicon detectors suited for tracking with a picosecond timing resolution, the so called Ultra-Fast Silicon Detectors. The goal is to create a new family of particle detectors merging excellent position and timing resolution with GHz counting capabilities, very low material budget, radiation resistance, fine granularity, low power, insensitivity to magnetic field, and affordability. We aim to achieve concurrent precisions of ~ 10 ps and ~ 10 μm with a 50 μm thick sensor. Ultra-Fast Silicon Detectors are based on the concept of Low-Gain Avalanche Detectors, which are silicon detectors with an internal multiplication mechanism so that they generate a signal which is factor ~10 larger than standard silicon detectors. The basic design of UFSD consists of a thin silicon sensor with moderate internal gain and pixelated electrodes coupled to full custom VLSI chip. An overview of test beam data on time resolution and the impact on this measurement of radiation doses at the level of those expected at HL-LHC is presented. First I-V and C-V measurements on a new FBK sensor production of UFSD, 50 μm thick, with B and Ga, activated at two diffusion temperatures, with and without C co-implantation (in Low and High concentrations), and with different effective doping concentrations in the Gain layer, are shown. Perspectives on current use of UFSD in HEP experiments (UFSD detectors have been installed in the CMS-TOTEM Precision Protons Spectrometer for the forward physics tracking, and are currently taking data) and proposed applications for a MIP timing layer in the HL-LHC upgrade are briefly discussed.

  18. Design and Fabrication of the Second-Generation KID-Based Light Detectors of CALDER

    NASA Astrophysics Data System (ADS)

    Colantoni, I.; Cardani, L.; Casali, N.; Cruciani, A.; Bellini, F.; Castellano, M. G.; Cosmelli, C.; D'Addabbo, A.; Di Domizio, S.; Martinez, M.; Tomei, C.; Vignati, M.

    2018-04-01

    The goal of the cryogenic wide-area light detectors with excellent resolution project is the development of light detectors with large active area and noise energy resolution smaller than 20 eV RMS using phonon-mediated kinetic inductance detectors (KIDs). The detectors are developed to improve the background suppression in large-mass bolometric experiments such as CUORE, via the double readout of the light and the heat released by particles interacting in the bolometers. In this work we present the fabrication process, starting from the silicon wafer arriving to the single chip. In the first part of the project, we designed and fabricated KID detectors using aluminum. Detectors are designed by means of state-of-the-art software for electromagnetic analysis (SONNET). The Al thin films (40 nm) are evaporated on high-quality, high-resistivity (> 10 kΩ cm) Si(100) substrates using an electron beam evaporator in a HV chamber. Detectors are patterned in direct-write mode, using electron beam lithography (EBL), positive tone resist poly-methyl methacrylate and lift-off process. Finally, the chip is diced into 20 × 20 mm2 chips and assembled in a holder OFHC (oxygen-free high conductivity) copper using PTFE support. To increase the energy resolution of our detectors, we are changing the superconductor to sub-stoichiometric TiN (TiN x ) deposited by means of DC magnetron sputtering. We are optimizing its deposition by means of DC magnetron reactive sputtering. For this kind of material, the fabrication process is subtractive and consists of EBL patterning through negative tone resist AR-N 7700 and deep reactive ion etching. Critical temperature of TiN x samples was measured in a dedicated cryostat.

  19. Evaluation of dual γ-ray imager with active collimator using various types of scintillators.

    PubMed

    Lee, Wonho; Lee, Taewoong; Jeong, Manhee; Kim, Ho Kyung

    2011-10-01

    The performance of a specialized dual γ-ray imager using both mechanical and electronic collimation was evaluated by Monte Carlo simulation (MCNP5). The dual imager consisted of an active collimator and a planar detector that were made from scintillators. The active collimator served not only as a coded aperture for mechanical collimation but also as a first detector for electronic collimation. Therefore, a single system contained both mechanical and electronic collimation. Various types of scintillators were tested and compared with each other in terms of their angular resolution, efficiency, and background noise. In general, a BGO active collimator had the best mechanical collimation performance, and an LaCl₃(Ce) active collimator provided the best electronic collimation performance. However, for low radiation energies, the mechanical collimation images made from both scintillators showed the same quality, and, for high radiation energies, electronic collimation images made from both scintillators also show similar quality. Therefore, if mechanical collimation is used to detect low-energy radiation and electronic collimation is applied to reconstruct a high-energy source, either LaCl₃(Ce) or BGO would be appropriate for the active collimator of a dual γ-ray imager. These results broaden the choice of scintillators for the active collimator of the dual γ-ray imager, which makes it possible to consider other factors, such as machinability and cost, in making the imager. As a planar detector, BGO showed better performance than other scintillators since its radiation detection efficiency was highest of all. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Electromagnetic Launch Optical Telemetry Feasibility Study

    DTIC Science & Technology

    2007-10-01

    responsivity R(λ) of the ThorLab PDA55-switchable gain, amplified silicon detectors...and collected by a telescope, which amplified both the narrow-band optical signal and the broadband optical noise of the muzzle flash generated by the...used, unfiltered. These detectors have a 3.6 mm × 3.6 mm active area, a 10-MHz bandwidth, a 15-V/mA transimpedance gain, and an optical responsivity of

  1. Spiking Excitable Semiconductor Laser as Optical Neurons: Dynamics, Clustering and Global Emerging Behaviors

    DTIC Science & Technology

    2014-06-28

    constructed from inexpensive semiconductor lasers could lead to the development of novel neuro-inspired optical computing devices (threshold detectors ...optical computing devices (threshold detectors , logic gates, signal recognition, etc.). Other topics of research included the analysis of extreme events in...Extreme events is nowadays a highly active field of research. Rogue waves, earthquakes of high magnitude and financial crises are all rare and

  2. DURIP: Piezoresponse Force Microscope (PFM) with Controlled Environment for Characterization of Flexoelectric Nanostructures

    DTIC Science & Technology

    2015-04-21

    seismic sensors , acoustic sensors , electromagnetic sensors and infrared (IR) detectors are among in-need multimodal sensing of vehicles, personnel, weapons... sensors and detectors largely due to the fact that the nature of piezoelectricity renders both active and passive sensing with fast response, low profile...and low power consumption. Acoustic and seismic sensors are used to ascertain the exact target location, speed, direction of motion, and

  3. A high-efficiency HPGe coincidence system for environmental analysis.

    PubMed

    Britton, R; Davies, A V; Burnett, J L; Jackson, M J

    2015-08-01

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) is supported by a network of certified laboratories which must meet certain sensitivity requirements for CTBT relevant radionuclides. At the UK CTBT Radionuclide Laboratory (GBL15), a high-efficiency, dual-detector gamma spectroscopy system has been developed to improve the sensitivity of measurements for treaty compliance, greatly reducing the time required for each sample. Utilising list-mode acquisition, each sample can be counted once, and processed multiple times to further improve sensitivity. For the 8 key radionuclides considered, Minimum Detectable Activities (MDA's) were improved by up to 37% in standard mode (when compared to a typical CTBT detector system), with the acquisition time required to achieve the CTBT sensitivity requirements reduced from 6 days to only 3. When utilising the system in coincidence mode, the MDA for (60) Co in a high-activity source was improved by a factor of 34 when compared to a standard CTBT detector, and a factor of 17 when compared to the dual-detector system operating in standard mode. These MDA improvements will allow the accurate and timely quantification of radionuclides that decay via both singular and cascade γ emission, greatly enhancing the effectiveness of CTBT laboratories. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  4. Continuous Dropout.

    PubMed

    Shen, Xu; Tian, Xinmei; Liu, Tongliang; Xu, Fang; Tao, Dacheng

    2017-10-03

    Dropout has been proven to be an effective algorithm for training robust deep networks because of its ability to prevent overfitting by avoiding the co-adaptation of feature detectors. Current explanations of dropout include bagging, naive Bayes, regularization, and sex in evolution. According to the activation patterns of neurons in the human brain, when faced with different situations, the firing rates of neurons are random and continuous, not binary as current dropout does. Inspired by this phenomenon, we extend the traditional binary dropout to continuous dropout. On the one hand, continuous dropout is considerably closer to the activation characteristics of neurons in the human brain than traditional binary dropout. On the other hand, we demonstrate that continuous dropout has the property of avoiding the co-adaptation of feature detectors, which suggests that we can extract more independent feature detectors for model averaging in the test stage. We introduce the proposed continuous dropout to a feedforward neural network and comprehensively compare it with binary dropout, adaptive dropout, and DropConnect on Modified National Institute of Standards and Technology, Canadian Institute for Advanced Research-10, Street View House Numbers, NORB, and ImageNet large scale visual recognition competition-12. Thorough experiments demonstrate that our method performs better in preventing the co-adaptation of feature detectors and improves test performance.

  5. Self absorption of alpha and beta particles in a fiberglass filter.

    PubMed

    Luetzelschwab, J W; Storey, C; Zraly, K; Dussinger, D

    2000-10-01

    Environmental air sampling uses fiberglass filters to collect particulate matter from the air and then a gas flow detector to measure the alpha and beta activity on the filter. When counted, the filter is located close to the detector so the alpha and beta particles emerging from the filter travel toward the detector at angles ranging from zero to nearly 90 degrees to the normal to the filter surface. The particles at small angles can readily pass through the filter, but particles at large angles pass through a significant amount of filter material and can be totally absorbed. As a result, counting losses can be great. For 4 MeV alpha particles, the filter used in this experiment absorbs 43% of the alpha particles; for 7.5 MeV alphas, the absorption is 13%. The measured beta activities also can have significant counting losses. Beta particles with maximum energies of 0.2 and 2.0 MeV have absorptions of 44 and 2%, respectively.

  6. Precision Timing with shower maximum detectors based on pixelated micro-channel plates

    NASA Astrophysics Data System (ADS)

    Bornheim, A.; Apresyan, A.; Ronzhin, A.; Xie, S.; Spiropulu, M.; Trevor, J.; Pena, C.; Presutti, F.; Los, S.

    2017-11-01

    Future calorimeters and shower maximum detectors at high luminosity colliders need to be highly radiation resistant and very fast. One exciting option for such a detector is a calorimeter composed of a secondary emitter as the active element. In this report we outline the study and development of a secondary emission calorimeter prototype using micro-channel plates (MCP) as the active element, which directly amplify the electromagnetic shower signal. We demonstrate the feasibility of using a bare MCP within an inexpensive and robust housing without the need for any photo cathode, which is a key requirement for high radiation tolerance. Test beam measurements of the prototype were performed with 120 GeV primary protons and secondary beams at the Fermilab Test Beam Facility, demonstrating basic calorimetric measurements and precision timing capabilities. Using multiple pixel readout on the MCP, we demonstrate a transverse spatial resolution of 0.8 mm, and time resolution better than 40 ps for electromagnetic showers.

  7. Deriving the solar activity cycle modulation on cosmic ray intensity observed by Nagoya muon detector from October 1970 until December 2012

    NASA Astrophysics Data System (ADS)

    de Mendonça, Rafael R. S.; Braga, Carlos. R.; Echer, Ezequiel; Dal Lago, Alisson; Rockenbach, Marlos; Schuch, Nelson J.; Munakata, Kazuoki

    2017-10-01

    It is well known that the cosmic ray intensity observed at the Earth's surface presents an 11 and 22-yr variations associated with the solar activity cycle. However, the observation and analysis of this modulation through ground muon detectors datahave been difficult due to the temperature effect. Furthermore, instrumental changes or temporary problems may difficult the analysis of these variations. In this work, we analyze the cosmic ray intensity observed since October 1970 until December 2012 by the Nagoya muon detector. We show the results obtained after analyzing all discontinuities and gaps present in this data and removing changes not related to natural phenomena. We also show the results found using the mass weighted method for eliminate the influence of atmospheric temperature changes on muon intensity observed at ground. As a preliminary result of our analyses, we show the solar cycle modulation in the muon intensity observed for more than 40 years.

  8. Development of the Fast Scintillation Detector with Programmable High Voltage Adjustment Suitable for Moessbauer Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prochazka, R.; Frydrych, J.; Pechousek, J.

    2010-07-13

    This work is focused on a development of a compact fast scintillation detector suitable for Moessbauer spectroscopy (low energy X-ray/{gamma}-ray detection) where high counting rates are inevitable. Optimization of this part was necessary for a reliable function, better time resolution and to avoid a detector pulses pile-up effect. The pile-up effect decreases the measurement performance, significantly depends on the source activity and also on the pulse duration. Our new detection unit includes a fast scintillation crystal YAP:Ce, an R6095 photomultiplier tube, a high voltage power supply socket C9028-01 assembly, an AD5252 digital potentiometer with an I2C interface and an AD8000more » ultra fast operation preamplifier. The main advantages of this solution lie in a short pulse duration (less than 200 ns), stable operation for high activities, programmable gain of the high voltage supply and compact design in the aluminum housing.« less

  9. Precision Timing with shower maximum detectors based on pixelated micro-channel plates

    DOE PAGES

    Bornheim, A.; Apresyan, A.; Ronzhin, A.; ...

    2017-11-27

    Future calorimeters and shower maximum detectors at high luminosity colliders need to be highly radiation resistant and very fast. One exciting option for such a detector is a calorimeter composed of a secondary emitter as the active element. Here, we outline the study and development of a secondary emission calorimeter prototype using micro-channel plates (MCP) as the active element, which directly amplify the electromagnetic shower signal. We also demonstrate the feasibility of using a bare MCP within an inexpensive and robust housing without the need for any photo cathode, which is a key requirement for high radiation tolerance. Test beammore » measurements of the prototype were performed with 120 GeV primary protons and secondary beams at the Fermilab Test Beam Facility, demonstrating basic calorimetric measurements and precision timing capabilities. Using multiple pixel readout on the MCP, we demonstrate a transverse spatial resolution of 0.8 mm, and time resolution better than 40 ps for electromagnetic showers.« less

  10. Neutron resonance spectroscopy for the characterization of materials and objects

    NASA Astrophysics Data System (ADS)

    Schillebeeckx, P.; Borella, A.; Emiliani, F.; Gorini, G.; Kockelmann, W.; Kopecky, S.; Lampoudis, C.; Moxon, M.; Perelli Cippo, E.; Postma, H.; Rhodes, N. J.; Schooneveld, E. M.; Van Beveren, C.

    2012-03-01

    The resonance structure in neutron induced reaction cross sections can be used to determine the elemental compositions of materials or objects. The occurrence of resonances is the basis of neutron resonance capture analysis (NRCA) and neutron resonance transmission analysis (NRTA). NRCA and NRTA are fully non-destructive methods to determine the bulk elemental composition without the need of any sample preparation and resulting in a negligible residual activity. They have been applied to determine the elemental composition of archaeological objects and to characterize reference materials used for cross section measurements. For imaging applications a position sensitive neutron detector has been developed within the ANCIENT CHARM project. The detector is based on a 10 × 10 array of 6Li-glass scintillators mounted on a pitch of 2.5 mm, resulting in a 25 × 25 mm2 active area. The detector has been tested at the time-of-flight facility GELINA and used at the ISIS spallation source to study cultural heritage objects.

  11. Precision Timing with shower maximum detectors based on pixelated micro-channel plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bornheim, A.; Apresyan, A.; Ronzhin, A.

    Future calorimeters and shower maximum detectors at high luminosity colliders need to be highly radiation resistant and very fast. One exciting option for such a detector is a calorimeter composed of a secondary emitter as the active element. Here, we outline the study and development of a secondary emission calorimeter prototype using micro-channel plates (MCP) as the active element, which directly amplify the electromagnetic shower signal. We also demonstrate the feasibility of using a bare MCP within an inexpensive and robust housing without the need for any photo cathode, which is a key requirement for high radiation tolerance. Test beammore » measurements of the prototype were performed with 120 GeV primary protons and secondary beams at the Fermilab Test Beam Facility, demonstrating basic calorimetric measurements and precision timing capabilities. Using multiple pixel readout on the MCP, we demonstrate a transverse spatial resolution of 0.8 mm, and time resolution better than 40 ps for electromagnetic showers.« less

  12. MCNP6 simulated performance of Micro-Pocket Fission Detectors (MPFDs) in the Transient REActor Test (TREAT) Facility

    DOE PAGES

    Reichenberger, Michael A.; Patel, Vishal K.; Roberts, Jeremy A.; ...

    2017-03-03

    Here, Micro-Pocket Fission Detectors (MPFDs) are under development for in-core neutron flux measurements at the Transient REActor Test facility (TREAT) and in other experiments at Idaho National Laboratory (INL). The sensitivity of MPFDs to the energy dependent neutron flux at TREAT has been determined for 0.0300-μm thick active material coatings of 242Pu, 232Th, natural uranium, and 93% enriched 235U. Self-shielding effects in the active material of the MPFD was also confirmed to be negligible. Finally, fission fragment energy deposition was found to be in conformance with previously reported results.

  13. Neutron activation analysis system

    DOEpatents

    Taylor, M.C.; Rhodes, J.R.

    1973-12-25

    A neutron activation analysis system for monitoring a generally fluid media, such as slurries, solutions, and fluidized powders, including two separate conduit loops for circulating fluid samples within the range of radiation sources and detectors is described. Associated with the first loop is a neutron source that emits s high flux of slow and thermal neutrons. The second loop employs a fast neutron source, the flux from which is substantially free of thermal neutrons. Adjacent to both loops are gamma counters for spectrographic determination of the fluid constituents. Other gsmma sources and detectors are arranged across a portion of each loop for deterMining the fluid density. (Official Gazette)

  14. A tritium activity monitor for the KATRIN Experiment

    NASA Astrophysics Data System (ADS)

    Schmitt, Udo

    2008-06-01

    The KArlsruhe TRItium Neutrino experiment KATRIN is designed to measure the absolute neutrino mass scale by analyzing the endpoint region of the tritium beta-decay spectrum with a sensitivity of 0.2 eV/c2 (90 % C.L.). A high-luminous windowless gaseous tritium source with an activity of 1.7 · 1011 Bq will produce the decay electrons, their energy spectrum will be analyzed by a combination of two electrostatic retarding spectrometers with magnetic adiabatic collimation (MAC-E-filter). Fluctuations of the source column density and inelastic scattering processes within the source affect the energy distribution of the decay electrons. Hence, a precise and continuous monitoring of the source activity is necessary to correct the data taken by the main detector. A prototype of the beam monitor detector, based on a silicon drift diode, has been developed to measure an expected counting rate in the range of 106/(s · mm2). The detector element shall be moveable across the complete beam in a magnetic field of 0.8 T, resulting in a beam diameter of 20 cm. A precise sensor positioning device has been designed and built to be compatible with the primary beamline vacuum of 10-11 mbar.

  15. An EUDET/AIDA Pixel Beam Telescope for Detector Development

    NASA Astrophysics Data System (ADS)

    Rubinskiy, I.; EUDET Consortium; AIDA Consortium

    Ahigh resolution(σ< 2 μm) beam telescope based on monolithic active pixel sensors (MAPS) was developed within the EUDET collaboration. EUDET was a coordinated detector R&D programme for the future International Linear Collider providing test beam infrastructure to detector R&D groups. The telescope consists of six sensor planes with a pixel pitch of either 18.4 μm or 10 μmand canbe operated insidea solenoidal magnetic fieldofupto1.2T.Ageneral purpose cooling, positioning, data acquisition (DAQ) and offine data analysis tools are available for the users. The excellent resolution, readout rate andDAQintegration capabilities made the telescopea primary beam tests tool also for several CERN based experiments. In this report the performance of the final telescope is presented. The plans for an even more flexible telescope with three differentpixel technologies(ATLASPixel, Mimosa,Timepix) withinthenew European detector infrastructure project AIDA are presented.

  16. The Angra Project: Monitoring Nuclear Reactors with Antineutrino Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anjos, J. C.; Barbosa, A. F.; Lima, H. P. Jr.

    2010-03-30

    We present the status of the Angra Neutrino project, describing the development of an antineutrino detector aimed at monitoring nuclear reactor activity. The experiment will take place at the Brazilian nuclear power plant located in Angra dos Reis. The Angra II reactor, with 4 GW of thermal power, will be used as a source of antineutrinos. A water Cherenkov detector will be placed above ground in a commercial container outside the reactor containment, about 30 m from the reactor core. With a detector of one ton scale a few thousand antineutrino interactions per day are expected. We intend, in amore » first step, to use the measured neutrino event rate to monitor the on--off status and the thermal power delivered by the reactor. In addition to the safeguards issues the project will provide an alternative tool to have an independent measurement of the reactor power.« less

  17. The Angra Project: Monitoring Nuclear Reactors with Antineutrino Detectors

    NASA Astrophysics Data System (ADS)

    Anjos, J. C.; Barbosa, A. F.; Bezerra, T. J. C.; Chimenti, P.; Gonzalez, L. F. G.; Kemp, E.; de Oliveira, M. A. Leigui; Lima, H. P.; Lima, R. M.; Nunokawa, H.

    2010-03-01

    We present the status of the Angra Neutrino project, describing the development of an antineutrino detector aimed at monitoring nuclear reactor activity. The experiment will take place at the Brazilian nuclear power plant located in Angra dos Reis. The Angra II reactor, with 4 GW of thermal power, will be used as a source of antineutrinos. A water Cherenkov detector will be placed above ground in a commercial container outside the reactor containment, about 30 m from the reactor core. With a detector of one ton scale a few thousand antineutrino interactions per day are expected. We intend, in a first step, to use the measured neutrino event rate to monitor the on—off status and the thermal power delivered by the reactor. In addition to the safeguards issues the project will provide an alternative tool to have an independent measurement of the reactor power.

  18. Production of low-background CuSn6-bronze for the CRESST dark-matter-search experiment.

    PubMed

    Majorovits, B; Kader, H; Kraus, H; Lossin, A; Pantic, E; Petricca, F; Proebst, F; Seidel, W

    2009-01-01

    One of the most intriguing open questions in modern particle physics is the nature of the dark matter in our universe. As hypothetical weakly interacting massive particles (WIMPs) do interact with ordinary matter extremely rarely, their observation requires a very low-background detector environment regarding radioactivity as well as an advanced detector technique that allows for active discrimination of the still present radioactive contaminations. The CRESST experiment uses detectors operating at milli-Kelvin temperature. Energy deposition in the detectors is recorded via the simultaneous measurement of a phonon-mediated signal and scintillation emitted by the CaWO(4) crystal targets. The entire setup is made of carefully selected materials. In this note we report on the development of ultra-pure bronze (CuSn(6)) wire in small quantities for springs and clamps that are currently being used in the CRESST II setup.

  19. Secure detection in quantum key distribution by real-time calibration of receiver

    NASA Astrophysics Data System (ADS)

    Marøy, Øystein; Makarov, Vadim; Skaar, Johannes

    2017-12-01

    The single-photon detectionefficiency of the detector unit is crucial for the security of common quantum key distribution protocols like Bennett-Brassard 1984 (BB84). A low value for the efficiency indicates a possible eavesdropping attack that exploits the photon receiver’s imperfections. We present a method for estimating the detection efficiency, and calculate the corresponding secure key generation rate. The estimation is done by testing gated detectors using a randomly activated photon source inside the receiver unit. This estimate gives a secure rate for any detector with non-unity single-photon detection efficiency, both inherit or due to blinding. By adding extra optical components to the receiver, we make sure that the key is extracted from photon states for which our estimate is valid. The result is a quantum key distribution scheme that is secure against any attack that exploits detector imperfections.

  20. Prototype Compton imager for special nuclear material

    NASA Astrophysics Data System (ADS)

    Wulf, Eric A.; Phlips, Bernard F.; Kurfess, James D.; Novikova, Elena I.; Fitzgerald, Carrie

    2006-05-01

    Compton imagers offer a method for passive detection of nuclear material over background radiation. A prototype Compton imager has been constructed using 8 layers of silicon detectors. Each layer consists of a 2×2 array of 2 mm thick cross-strip double-sided silicon detectors with active areas of 5.7 × 5.7 cm2 and 64 strips per side. The detectors are daisy-chained together in the array so that only 256 channels of electronics are needed to read-out each layer of the instrument. This imager is a prototype for a large, high-efficiency Compton imager that will meet operational requirements of Homeland Security for detection of shielded uranium. The instrument can differentiate between different radioisotopes using the reconstructed gamma-ray energy and can also show the location of the emissions with respect to the detector location. Results from the current instrument as well as simulations of the next generation instrument are presented.

  1. Semiconductor radiation detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patt, Bradley E.; Iwanczyk, Jan S.; Tull, Carolyn R.

    A semiconductor radiation detector is provided to detect x-ray and light photons. The entrance electrode is segmented by using variable doping concentrations. Further, the entrance electrode is physically segmented by inserting n+ regions between p+ regions. The p+ regions and the n+ regions are individually biased. The detector elements can be used in an array, and the p+ regions and the n+ regions can be biased by applying potential at a single point. The back side of the semiconductor radiation detector has an n+ anode for collecting created charges and a number of p+ cathodes. Biased n+ inserts can bemore » placed between the p+ cathodes, and an internal resistor divider can be used to bias the n+ inserts as well as the p+ cathodes. A polysilicon spiral guard can be implemented surrounding the active area of the entrance electrode or surrounding an array of entrance electrodes.« less

  2. Experiments and Monte Carlo modeling of a higher resolution Cadmium Zinc Telluride detector for safeguards applications

    NASA Astrophysics Data System (ADS)

    Borella, Alessandro

    2016-09-01

    The Belgian Nuclear Research Centre is engaged in R&D activity in the field of Non Destructive Analysis on nuclear materials, with focus on spent fuel characterization. A 500 mm3 Cadmium Zinc Telluride (CZT) with enhanced resolution was recently purchased. With a full width at half maximum of 1.3% at 662 keV, the detector is very promising in view of its use for applications such as determination of uranium enrichment and plutonium isotopic composition, as well as measurement on spent fuel. In this paper, I report about the work done with such a detector in terms of its characterization. The detector energy calibration, peak shape and efficiency were determined from experimental data. The data included measurements with calibrated sources, both in a bare and in a shielded environment. In addition, Monte Carlo calculations with the MCNPX code were carried out and benchmarked with experiments.

  3. Highly photoresponsive and wavelength-selective circularly-polarized-light detector based on metal-oxides hetero-chiral thin film.

    PubMed

    Lee, Seung Hee; Singh, Dhruv Pratap; Sung, Ji Ho; Jo, Moon-Ho; Kwon, Ki Chang; Kim, Soo Young; Jang, Ho Won; Kim, Jong Kyu

    2016-01-22

    A highly efficient circularly-polarized-light detector with excellent wavelength selectivity is demonstrated with an elegant and simple microelectronics-compatible way. The circularly-polarized-light detector based on a proper combination of the geometry-controlled TiO2-SnO2 hetero-chiral thin film as an effective chiroptical filter and the Si active layer shows excellent chiroptical response with external quantum efficiency as high as 30% and high helicity selectivity of ~15.8% in an intended wavelength range. Furthermore, we demonstrated the ability of manipulating both bandwidth and responsivity of the detector simultaneously in whole visible wavelength range by a precise control over the geometry and materials constituting hetero-chiral thin film. The high efficiency, wavelength selectivity and compatibility with conventional microelectronics processes enabled by the proposed device can result in remarkable developments in highly integrated photonic platforms utilizing chiroptical responses.

  4. Highly photoresponsive and wavelength-selective circularly-polarized-light detector based on metal-oxides hetero-chiral thin film

    PubMed Central

    Lee, Seung Hee; Singh, Dhruv Pratap; Sung, Ji Ho; Jo, Moon-Ho; Kwon, Ki Chang; Kim, Soo Young; Jang, Ho Won; Kim, Jong Kyu

    2016-01-01

    A highly efficient circularly-polarized-light detector with excellent wavelength selectivity is demonstrated with an elegant and simple microelectronics-compatible way. The circularly-polarized-light detector based on a proper combination of the geometry-controlled TiO2-SnO2 hetero-chiral thin film as an effective chiroptical filter and the Si active layer shows excellent chiroptical response with external quantum efficiency as high as 30% and high helicity selectivity of ~15.8% in an intended wavelength range. Furthermore, we demonstrated the ability of manipulating both bandwidth and responsivity of the detector simultaneously in whole visible wavelength range by a precise control over the geometry and materials constituting hetero-chiral thin film. The high efficiency, wavelength selectivity and compatibility with conventional microelectronics processes enabled by the proposed device can result in remarkable developments in highly integrated photonic platforms utilizing chiroptical responses. PMID:26795601

  5. Highly photoresponsive and wavelength-selective circularly-polarized-light detector based on metal-oxides hetero-chiral thin film

    NASA Astrophysics Data System (ADS)

    Lee, Seung Hee; Singh, Dhruv Pratap; Sung, Ji Ho; Jo, Moon-Ho; Kwon, Ki Chang; Kim, Soo Young; Jang, Ho Won; Kim, Jong Kyu

    2016-01-01

    A highly efficient circularly-polarized-light detector with excellent wavelength selectivity is demonstrated with an elegant and simple microelectronics-compatible way. The circularly-polarized-light detector based on a proper combination of the geometry-controlled TiO2-SnO2 hetero-chiral thin film as an effective chiroptical filter and the Si active layer shows excellent chiroptical response with external quantum efficiency as high as 30% and high helicity selectivity of ~15.8% in an intended wavelength range. Furthermore, we demonstrated the ability of manipulating both bandwidth and responsivity of the detector simultaneously in whole visible wavelength range by a precise control over the geometry and materials constituting hetero-chiral thin film. The high efficiency, wavelength selectivity and compatibility with conventional microelectronics processes enabled by the proposed device can result in remarkable developments in highly integrated photonic platforms utilizing chiroptical responses.

  6. Status of the Simbol-X Background Simulation Activities

    NASA Astrophysics Data System (ADS)

    Tenzer, C.; Briel, U.; Bulgarelli, A.; Chipaux, R.; Claret, A.; Cusumano, G.; Dell'Orto, E.; Fioretti, V.; Foschini, L.; Hauf, S.; Kendziorra, E.; Kuster, M.; Laurent, P.; Tiengo, A.

    2009-05-01

    The Simbol-X background simulation group is working towards a simulation based background and mass model which can be used before and during the mission. Using the Geant4 toolkit, a Monte-Carlo code to simulate the detector background of the Simbol-X focal plane instrument has been developed with the aim to optimize the design of the instrument. Achieving an overall low instrument background has direct impact on the sensitivity of Simbol-X and thus will be crucial for the success of the mission. We present results of recent simulation studies concerning the shielding of the detectors with respect to the diffuse cosmic hard X-ray background and to the cosmic-ray proton induced background. Besides estimates of the level and spectral shape of the remaining background expected in the low and high energy detector, also anti-coincidence rates and resulting detector dead time predictions are discussed.

  7. Modeling Urban Scenarios & Experiments: Fort Indiantown Gap Data Collections Summary and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archer, Daniel E.; Bandstra, Mark S.; Davidson, Gregory G.

    This report summarizes experimental radiation detector, contextual sensor, weather, and global positioning system (GPS) data collected to inform and validate a comprehensive, operational radiation transport modeling framework to evaluate radiation detector system and algorithm performance. This framework will be used to study the influence of systematic effects (such as geometry, background activity, background variability, environmental shielding, etc.) on detector responses and algorithm performance using synthetic time series data. This work consists of performing data collection campaigns at a canonical, controlled environment for complete radiological characterization to help construct and benchmark a high-fidelity model with quantified system geometries, detector response functions,more » and source terms for background and threat objects. This data also provides an archival, benchmark dataset that can be used by the radiation detection community. The data reported here spans four data collection campaigns conducted between May 2015 and September 2016.« less

  8. Radiation response issues for infrared detectors

    NASA Technical Reports Server (NTRS)

    Kalma, Arne H.

    1990-01-01

    Researchers describe the most important radiation response issues for infrared detectors. In general, the two key degradation mechanisms in infrared detectors are the noise produced by exposure to a flux of ionizing particles (e.g.; trapped electronics and protons, debris gammas and electrons, radioactive decay of neutron-activated materials) and permanent damage produced by exposure to total dose. Total-dose-induced damage is most often the result of charge trapping in insulators or at interfaces. Exposure to short pulses of ionization (e.g.; prompt x rays or gammas, delayed gammas) will cause detector upset. However, this upset is not important to a sensor unless the recovery time is too long. A few detector technologies are vulnerable to neutron-induced displacement damage, but fortunately most are not. Researchers compare the responses of the new technologies with those of the mainstream technologies of PV HgCdTe and IBC Si:As. One important reason for this comparison is to note where some of the newer technologies have the potential to provide significantly improved radiation hardness compared with that of the mainstream technologies, and thus to provide greater motivation for the pursuit of these technologies.

  9. Alpha spectroscopy by the Φ25 mm×0.1 mm YAlO3:Ce scintillation detector under atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Kvasnicka, Jiri; Urban, Tomas; Tous, Jan; Smejkal, Jan; Blazek, Karel; Nikl, Martin

    2017-06-01

    The YAlO3:Ce scintillation crystal has excellent mechanical properties and is not affected if used in chemically aggressive environments. The detector with the diameter of Φ25.4 mm and thickness of 0.1 mm was coupled with the PMT, associated electronics and the MCA in order to study its alpha spectroscopy properties. The measured alpha spectra of the surface calibration sources of 241Am and 230Th were compared with results of a Monte Carlo simulation. The experiment and the simulation were carried out for three distances between the detector and the surface alpha source in order to assess the effect of the distance on the detected energy of alpha radiation. Finally, the detector was used for the monitoring of radon (222Rn) decay products (radon daughters) in the air. It was concluded that the detector is suitable for the in-situ alpha spectroscopy monitoring under ambient atmospheric conditions. Nevertheless, in order to identify radionuclides and their activity from the measured alpha spectra a computer code would need to be developed.

  10. Characterization of a Commercial Silicon Beta Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foxe, Michael P.; Hayes, James C.; Mayer, Michael F.

    Silicon detectors are of interest for the verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) due to their enhanced energy resolution compared to plastic scintillators beta cells. Previous work developing a figure-of-merit (FOM) for comparison of beta cells suggests that the minimum detectable activity (MDA) could be reduced by a factor of two to three with the use of silicon detectors. Silicon beta cells have been developed by CEA (France) and Lares Ltd. (Russia), with the PIPSBox developed by CEA being commercially available from Canberra for approximately $35k, but there is still uncertainty about the reproducibility of the capabilities in themore » field. PNNL is developing a high-resolution beta-gamma detector system in the shallow underground laboratory, which will utilize and characterize the operation of the PIPSBox detector. Throughout this report, we examine the capabilities of the PIPSBox as developed by CEA. The lessons learned through the testing and use of the PIPSBox will allow PNNL to strategically develop a silicon detector optimized to better suit the communities needs in the future.« less

  11. Paul W. Kruse (1927-2012), In Memoriam

    NASA Astrophysics Data System (ADS)

    Reine, Marion B.; Norton, Paul R.; Stelzer, Ernie L.

    2013-06-01

    During his distinguished 37-year career as a research physicist at the Honeywell Research Center in Minneapolis, Minnesota, Dr. Paul W. Kruse (1927-2012) played leadership roles in two disruptive infrared detector technologies, the narrow-gap semiconductor alloy HgCdTe and the silicon CMOS-based microbolometer array, both of which revolutionized the worldwide infrared detector industry. He served on numerous government advisory boards and panels, including the Army Scientific Advisory Panel and the Army Science Board, for which he received the Outstanding Civilian Service Medal. After retiring for Honeywell in 1993, he remained active in the infrared detector field in several roles: as a successful small-business entrepreneur, as an author of two books, and as a SPIE lecturer. His books, papers and lectures have educated new generations of workers in the infrared detector industry. His career, a model for industrial research physicists, has had major and permanent impacts on the worldwide infrared detector industry. This paper is a summary of the career of Paul W. Kruse, as well as a tribute to that career and its lasting legacy.

  12. Photoacoustic-based detector for infrared laser spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholz, L.; Palzer, S., E-mail: stefan.palzer@imtek.uni-freiburg.de

    In this contribution, we present an alternative detector technology for use in direct absorption spectroscopy setups. Instead of a semiconductor based detector, we use the photoacoustic effect to gauge the light intensity. To this end, the target gas species is hermetically sealed under excess pressure inside a miniature cell along with a MEMS microphone. Optical access to the cell is provided by a quartz window. The approach is particularly suitable for tunable diode laser spectroscopy in the mid-infrared range, where numerous molecules exhibit large absorption cross sections. Moreover, a frequency standard is integrated into the method since the number densitymore » and pressure inside the cell are constant. We demonstrate that the information extracted by our method is at least equivalent to that achieved using a semiconductor-based photon detector. As exemplary and highly relevant target gas, we have performed direct spectroscopy of methane at the R3-line of the 2v{sub 3} band at 6046.95 cm{sup −1} using both detector technologies in parallel. The results may be transferred to other infrared-active transitions without loss of generality.« less

  13. High-speed microstrip multi-anode multichannel plate detector system

    NASA Astrophysics Data System (ADS)

    Riedo, Andreas; Tulej, Marek; Rohner, Urs; Wurz, Peter

    2017-04-01

    High-speed detector systems with high dynamic range and pulse width characteristics in the sub-nanosecond regime are mandatory for high resolution and highly sensitive time-of-flight mass spectrometers. Typically, for a reasonable detector area, an impedance-matched anode design is necessary to transmit the registered signal fast and distortion-free from the anode to the signal acquisition system. In this report, a high-speed microstrip multi-anode multichannel plate detector is presented and discussed. The anode consists of four separate active concentric anode segments allowing a simultaneous readout of signal with a dynamic range of about eight orders of magnitude. The impedance matched anode segments show pulse width of about 250 ps, measured at full width at half maximum, and rise time of ˜170 ps, measured with an oscilloscope with a sampling rate of 20 GS/s and 4 GHz analogue bandwidth. The usage of multichannel plates as signal amplifier allowed the design of a lightweight, low power consuming, and compact detector system, suitable, e.g., for the integration into space instrumentation or portable systems where size, weight, and power consumption are limited parameters.

  14. Apparatus for detecting the presence of a liquid

    DOEpatents

    Kronberg, James W.

    1995-01-01

    An apparatus for detecting the presence of a liquid in a region, including an electrically passive sensor adapted for contacting the liquid, and an electrically active detector. The sensor is a circuit with a pair of spaced-apart terminals connected to a switch that closes in the presence of the liquid. The detector carries an alternating current with a resonant frequency. When the sensor is placed in a region and liquid is present in the region, the circuit of the sensor is closed. By bringing the detector close to the sensor, an alternating current is induced in the sensor that will, in turn, alter the resonant frequency of the detector. The change in the resonant frequency is signaled by a transducer. The switch can operate by a change in conductivity of a material between the terminals of the sensor or by expansion of a liquid absorber that pushes the two terminals together, or by a change in the conductivity of the space between the terminals as a result of the presence of the liquid. The detector generates an audible or visible signal, or both, in response to the change in current.

  15. Apparatus for detecting the presence of a liquid

    DOEpatents

    Kronberg, J.W.

    1993-01-01

    This invention is comprised of an apparatus for detecting the presence of a liquid in a region, including an electrically passive sensor adapted for contacting the liquid, and an electrically active detector. The sensor is a circuit with a pair of spaced-apart terminals connected to a switch that closes in the presence of the liquid. The detector carries an alternating current with a resonant frequency. When the sensor is placed in a region and liquid is present, the circuit of the sensor is closed. By bringing the detector close to the sensor, an alternating current is induced in the sensor that will, in turn, alter the resonant frequency of the detector. This change is signaled by a transducer. The switch can operate by a change in conductivity of a material between the terminals of the sensor or by expansion of a liquid absorber that pushes the two terminals together, or by a change in the conductivity of the space between the terminals as a result of the liquid. The detector generates an audible or visible signal, or both, in response to the current change.

  16. Observing the Next Galactic Supernova with the NOvA Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasel, Justin A.; Sheshukov, Andrey; Habig, Alec

    The next galactic core-collapse supernova will deliver a wealth of neutrinos which for the first time we are well-situated to measure. These explosions produce neutrinos with energies between 10 and 100 MeV over a period of tens of seconds. Galactic supernovae are relatively rare events, occurring with a frequency of just a few per century. It is therefore essential that all neutrino detectors capable of detecting these neutrinos are ready to trigger on this signal when it occurs. This poster describes a data-driven trigger which is designed to detect the neutrino signal from a galactic core-collapse supernova with the NOvAmore » detectors. The trigger analyzes 5ms blocks of detector activity and applies background rejection algorithms to detect the signal time structure over the background. This background reduction is an essential part of the process, as the NOvA detectors are designed to detect neutrinos from Fermilab's NuMI beam which have an average energy of 2GeV--well above the average energy of supernova neutrinos.« less

  17. ASSESSING INTERNAL CONTAMINATION AFTER THE DETONATION OF A RADIOLOGICAL DISPERSION DEVICE USING A 2×2-INCH SODIUM IODIDE DETECTOR

    PubMed Central

    Dewji, S.; Hertel, N.; Ansari, A.

    2017-01-01

    The detonation of a radiological dispersion device may result in a situation where individuals inhale radioactive materials and require rapid assessment of internal contamination. The feasibility of using a 2×2-inch sodium-iodide detector to determine the committed effective dose to an individual following acute inhalation of gamma-emitting radionuclides was investigated. Experimental configurations of point sources with a polymethyl methacrylate slab phantom were used to validate Monte Carlo simulations. The validated detector model was used to simulate the responses for four detector positions on six different anthropomorphic phantoms. The nuclides examined included 241Am, 60Co, 137Cs, 131I and 192Ir. Biokinetic modelling was employed to determine the distributed activity in the body as a function of post-inhalation time. The simulation and biokinetic data were used to determine time-dependent count-rate values at optimal detector locations on the body for each radionuclide corresponding to a target committed effective dose (E50) value of 250 mSv. PMID:23436621

  18. Tuning a Parallel Segmented Flow Column and Enabling Multiplexed Detection.

    PubMed

    Pravadali-Cekic, Sercan; Kocic, Danijela; Hua, Stanley; Jones, Andrew; Dennis, Gary R; Shalliker, R Andrew

    2015-12-15

    Active flow technology (AFT) is new form of column technology that was designed to overcome flow heterogeneity to increase separation performance in terms of efficiency and sensitivity and to enable multiplexed detection. This form of AFT uses a parallel segmented flow (PSF) column. A PSF column outlet end-fitting consists of 2 or 4 ports, which can be multiplexed to connect up to 4 detectors. The PSF column not only allows a platform for multiplexed detection but also the combination of both destructive and non-destructive detectors, without additional dead volume tubing, simultaneously. The amount of flow through each port can also be adjusted through pressure management to suit the requirements of a specific detector(s). To achieve multiplexed detection using a PSF column there are a number of parameters which can be controlled to ensure optimal separation performance and quality of results; that is tube dimensions for each port, choice of port for each type of detector and flow adjustment. This protocol is intended to show how to use and tune a PSF column functioning in a multiplexed mode of detection.

  19. Calibration of modified Liulin detector for cosmic radiation measurements on-board aircraft.

    PubMed

    Kyselová, D; Ambrožová, I; Krist, P; Kubančák, J; Uchihori, Y; Kitamura, H; Ploc, O

    2015-06-01

    The annual effective doses of aircrew members often exceed the limit of 1 mSv for the public due to the increased level of cosmic radiation at the flight altitudes, and thus, it is recommended to monitor them. Aircrew dosimetry is usually performed using special computer programs mostly based on results of Monte Carlo simulations. Contemporary, detectors are used mostly for validation of these computer codes, verification of effective dose calculations and for research purposes. One of such detectors is active silicon semiconductor deposited energy spectrometer Liulin. Output quantities of measurement with the Liulin detector are the absorbed dose in silicon D and the ambient dose equivalent H*(10); to determine it, two calibrations are necessary. The purpose of this work was to develop a calibration methodology that can be used to convert signal from the detector to D independently on calibration performed at Heavy Ion Medical Accelerator facility in Chiba, Japan. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. The development of the room temperature LWIR HgCdTe detectors for free space optics communication systems

    NASA Astrophysics Data System (ADS)

    Martyniuk, Piotr; Gawron, Waldemar; Mikołajczyk, Janusz

    2017-10-01

    There are many room temperature applications to include free space optics (FSO) communication system combining quantum cascade lasers sources where HgCdTe long-wave (8-12 micrometer) infrared radiation (LWIR) detector reaching ultrafast response time < 1 ns and nearly background limited infrared photodetection (BLIP) condition are implemented. Both nearly BLIP detectivity and ultra-response time stay in contradiction in detector's optimization process. That issue could be circumvented by implementation of the hyperhemispherical GaAs immersion lens into structure to increase optical to electrical area ratio giving flexibility in terms of response time optimization. The optimization approach depends on voltage condition. The generation - recombination (GR) mechanism within active layer was found to be important for forward and weak reverse conditions while photogenerated carrier transport is significant for higher reverse bias. Except of applied voltage, the drift time strongly depends on thickness of the absorption region. Reducing the thickness of the active region, the short drift times could be reached, but that solution significantly reduces quantum efficiency and lowers detectivity. Taking that into consideration a special multilayer heterostructure designs are developed. The p-type absorber is promising due to both high ambipolar mobility and low thermal GR driven by the Auger 7 mechanism. Theoretical simulations indicate that depending on bias condition and T = 300 K the multilayer barrier LWIR HgCdTe structure could reach response time below < 100 ps while biased and <= 1 ns while unbiased. Immersed detectivity reaches > 109 cmHz1/2/W. Since commercially available FSO could operate separately in SWIR, MWIR and LWIR range - the dual band detectors should be implemented into FSO. This paper shows theoretical performance of the dual band back-to-back MWIR and LWIR HgCdTe detector operating at 300 K pointing out the MWIR active layer influence on LWIR operating regime.

Top