Science.gov

Sample records for activation energy levels

  1. Highlands County Energy Education Activities--High School Level.

    ERIC Educational Resources Information Center

    Allen, Rodney F., Ed.

    Presented are five instructional units, developed by the Tri-County Teacher Education Center, for the purpose of educating secondary school students on Florida's unique energy problems. Unit one provides a series of value clarification and awareness activities as an introduction to energy. Unit two uses mathematics exercises to examine energy…

  2. Is a Coded Physical Activity Diary Valid for Assessing Physical Activity Level and Energy Expenditure in Stroke Patients?

    PubMed Central

    Vanroy, Christel; Vanlandewijck, Yves; Cras, Patrick; Feys, Hilde; Truijen, Steven; Michielsen, Marc; Vissers, Dirk

    2014-01-01

    Objectives to determine the concurrent validity of a physical activity diary for measuring physical activity level and total energy expenditure in hospitalized stroke patients. Method Sixteen stroke patients kept coded activity diaries and wore SenseWear Pro2 multi-sensor activity monitors during daytime hours for one day. A researcher observed the patients and completed a diary. Data from the patients' diaries were compared with observed and measured data to determine total activity (METs*minutes), activity level and total energy expenditure. Results Spearman correlations between the patients' and researchers' diaries revealed a high correlation for total METs*minutes (rs = 0.75, p<0.01) for sedentary (rs = 0.74,p<0.01) and moderate activities (rs = 0.71,p<0.01) and a very high correlation (rs = 0.92, p<0.01) for the total energy expenditure. Comparisons between the patients' diaries and activity monitor data revealed a low correlation (rs 0.29) for total METs*minutes and energy expenditure. Conclusion Coded self-monitoring activity diaries appear feasible as a low-tech alternative to labor-intensive observational diaries for determining sedentary, moderate, and total physical activity and for quantifying energy expenditure in hospitalized stroke patients. Given the poor correlation with objective measurements of physical activity, however, further research is needed to validate its use against a gold-standard measure of physical activity intensity and energy expenditure. PMID:24905345

  3. A system for measuring thermal activation energy levels in silicon by thermally stimulated capacitance

    NASA Technical Reports Server (NTRS)

    Cockrum, R. H.

    1982-01-01

    One method being used to determine energy level(s) and electrical activity of impurities in silicon is described. The method is called capacitance transient spectroscopy (CTS). It can be classified into three basic categories: the thermally stimulated capacitance method, the voltage-stimulated capacitance method, and the light-stimulated capacitance method; the first two categories are discussed. From the total change in capacitance and the time constant of the capacitance response, emission rates, energy levels, and trap concentrations can be determined. A major advantage of using CTS is its ability to detect the presence of electrically active impurities that are invisible to other techniques, such as Zeeman effect atomic absorption, and the ability to detect more than one electrically active impurity in a sample. Examples of detection of majority and minority carrier traps from gold donor and acceptor centers in silicon using the capacitance transient spectrometer are given to illustrate the method and its sensitivity.

  4. Energy and Safety: Science Activities for Elementary Students, Level III (Grades (5-6).

    ERIC Educational Resources Information Center

    Westcott, Dale; And Others

    Thirteen activities are presented that focus on a common phenomenon of a child's world: energy. These activities relate energy, how it occurs, how it is used, and how to use it safely. Each activity includes the purpose, introduction, background, procedure, materials, estimated time for the activity, typical results, safety notes, and more ideas.…

  5. Energy and Safety: Science Activities for Elementary Students, Level II (Grades (3-4).

    ERIC Educational Resources Information Center

    Westcott, Dale; And Others

    Thirteen activities are presented that focus on a common phenomenon of a child's world: energy. These activities relate energy, how it occurs, how it is used, and how to use it safely. Each activity includes the purpose, introduction, background, procedure, materials, estimated time for the activity, typical results, safety notes, and more ideas.…

  6. [The effect of limiting neuronal energy metabolism on the level of impulse activity and membrane potentials].

    PubMed

    Voronova, N V; Chumachenko, A A

    1989-01-01

    The changes of the membrane potential and the frequency of impulse activity of the crayfish stretch receptor neuron have been studied under condition of energy supply deficiency. The energetic metabolism inhibitors have been found not to exert a significant effect on the membrane potential. The activity of the glycolysis process and the Krebs cycle have different effect on the sensitivity of the generating mechanism.

  7. Antidepressant Use is Associated with Increased Energy Intake and Similar Levels of Physical Activity.

    PubMed

    Jensen-Otsu, Elsbeth; Austin, Gregory L

    2015-11-20

    Antidepressants have been associated with weight gain, but the causes are unclear. The aims of this study were to assess the association of antidepressant use with energy intake, macronutrient diet composition, and physical activity. We used data on medication use, energy intake, diet composition, and physical activity for 3073 eligible adults from the 2005-2006 National Health and Nutrition Examination Survey (NHANES). Potential confounding variables, including depression symptoms, were included in the models assessing energy intake, physical activity, and sedentary behavior. Antidepressant users reported consuming an additional (mean ± S.E.) 215 ± 73 kcal/day compared to non-users (p = 0.01). There were no differences in percent calories from sugar, fat, or alcohol between the two groups. Antidepressant users had similar frequencies of walking or biking, engaging in muscle-strengthening activities, and engaging in moderate or vigorous physical activity. Antidepressant users were more likely to use a computer for ≥2 h/day (OR 1.77; 95% CI: 1.09-2.90), but TV watching was similar between the two groups. These results suggest increased energy intake and sedentary behavior may contribute to weight gain associated with antidepressant use. Focusing on limiting food intake and sedentary behaviors may be important in mitigating the weight gain associated with antidepressant use.

  8. Young Scientists Explore an Encyclopedia of Energy Activities. Book 8--Intermediate Level. A Good Apple Activity Book.

    ERIC Educational Resources Information Center

    DeBruin, Jerry

    Designed to develop creativity in young learners, this book contains interdisciplinary activities which focus on the theme of energy. Activity pages are provided that can serve as front and back covers of a student booklet and the suggested activities can be duplicated for insertion between the covers resulting in a booklet for each student. A…

  9. Low levels of physical activity are associated with dysregulation of energy intake and fat mass gain over 1 year12

    PubMed Central

    Shook, Robin P; Hand, Gregory A; Drenowatz, Clemens; Hebert, James R; Paluch, Amanda E; Blundell, John E; Hill, James O; Katzmarzyk, Peter T; Church, Timothy S; Blair, Steven N

    2015-01-01

    Background: Previous studies suggest that appetite may be dysregulated at low levels of activity, creating an energy imbalance that results in weight gain. Objective: The aim was to examine the relation between energy intake, physical activity, appetite, and weight gain during a 1-y follow-up period in a large sample of adults. Design: Participants included 421 individuals (mean ± SD age: 27.6 ± 3.8 y). Measurements included the following: energy intake with the use of interviewer-administered dietary recalls and calculated by using changes in body composition and energy expenditure, moderate-to-vigorous physical activity (MVPA) with the use of an arm-based monitor, body composition with the use of dual-energy X-ray absorptiometry, and questionnaire-derived perceptions of dietary restraint, disinhibition, hunger, and control of eating. Participants were grouped at baseline into quintiles of MVPA (min/d) by sex. Measurements were repeated every 3 mo for 1 y. Results: At baseline, an inverse relation existed between body weight and activity groups, with the least-active group (15.7 ± 9.9 min MVPA/d, 6062 ± 1778 steps/d) having the highest body weight (86.3 ± 13.2 kg) and the most-active group (174.5 ± 60.5 min MVPA/d, 10260 ± 3087 steps/d) having the lowest body weight (67.5 ± 11.0 kg). A positive relation was observed between calculated energy intake and activity group, except in the lowest quintile of activity. The lowest physical activity group reported higher levels of disinhibition (P = 0.07) and cravings for savory foods (P = 0.03) compared with the group with the highest level of physical activity. Over 1 y of follow-up, the lowest activity group gained the largest amount of fat mass (1.7 ± 0.3 kg) after adjustment for change in MVPA and baseline fat mass. The odds of gaining >3% of fat mass were between 1.8 and 3.8 times as high for individuals in the least-active group as for those in the middle activity group. Conclusions: These results suggest

  10. Exercise Level and Energy Expenditure in the Take 10![R] In-Class Physical Activity Program.

    ERIC Educational Resources Information Center

    Stewart, James A.; Dennison, David A.; Kohl, Harold W., III; Doyle, J. Andrew

    2004-01-01

    This study evaluated the effectiveness of an innovative, classroom-based physical activity prevention program designed to integrate academic curriculum elements along with a physical activity program in providing moderate-to-vigorous intensity physical activity. A convenience sample of three public school classrooms (one first, third, and fifth…

  11. Activation Energy

    NASA Technical Reports Server (NTRS)

    Gadeken, Owen

    2002-01-01

    Teaming is so common in today's project management environment that most of us assume it comes naturally. We further assume that when presented with meaningful and challenging work, project teams will naturally engage in productive activity to complete their tasks. This assumption is expressed in the simple (but false) equation: Team + Work = Teamwork. Although this equation appears simple and straightforward, it is far from true for most project organizations whose reality is a complex web of institutional norms based on individual achievement and rewards. This is illustrated by the very first successful team experience from my early Air Force career. As a young lieutenant, I was sent to Squadron Officer School, which was the first in the series of Air Force professional military education courses I was required to complete during my career. We were immediately formed into teams of twelve officers. Much of the course featured competition between these teams. As the most junior member of my team, I quickly observed the tremendous pressure to show individual leadership capability. At one point early in the course, almost everyone in our group was vying to become the team leader. This conflict was so intense that it caused us to fail miserably in our first outdoor team building exercise. We spent so much time fighting over leadership that we were unable to complete any of the events on the outdoor obstacle course. This complete lack of success was so disheartening to me that I gave our team little hope for future success. What followed was a very intense period of bickering, conflict, and even shouting matches as our dysfunctional team tried to cope with our early failures and find some way to succeed. British physician and researcher Wilfred Bion (Experiences in Groups, 1961) discovered that there are powerful psychological forces inherent in all groups that divert from accomplishing their primary tasks. To overcome these restraining forces and use the potential

  12. Predicting energy requirement with pedometer-determined physical-activity level in women with chronic obstructive pulmonary disease

    PubMed Central

    Farooqi, Nighat; Slinde, Frode; Carlsson, Maine; Håglin, Lena; Sandström, Thomas

    2015-01-01

    Background In clinical practice, in the absence of objective measures, simple methods to predict energy requirement in patients with chronic obstructive pulmonary disease (COPD) needs to be evaluated. The aim of the present study was to evaluate predicted energy requirement in females with COPD using pedometer-determined physical activity level (PAL) multiplied by resting metabolic rate (RMR) equations. Methods Energy requirement was predicted in 18 women with COPD using pedometer-determined PAL multiplied by six different RMR equations (Harris–Benedict; Schofield; World Health Organization; Moore; Nordic Nutrition Recommendations; Nordenson). Total energy expenditure (TEE) was measured by the criterion method: doubly labeled water. The predicted energy requirement was compared with measured TEE using intraclass correlation coefficient (ICC) and Bland–Altman analyses. Results The energy requirement predicted by pedometer-determined PAL multiplied by six different RMR equations was within a reasonable accuracy (±10%) of the measured TEE for all equations except one (Nordenson equation). The ICC values between the criterion method (TEE) and predicted energy requirement were: Harris–Benedict, ICC =0.70, 95% confidence interval (CI) 0.23–0.89; Schofield, ICC =0.71, 95% CI 0.21–0.89; World Health Organization, ICC =0.74, 95% CI 0.33–0.90; Moore, ICC =0.69, 95% CI 0.21–0.88; Nordic Nutrition Recommendations, ICC =0.70, 95% CI 0.17–0.89; and Nordenson, ICC =0.40, 95% CI −0.19 to 0.77. Bland–Altman plots revealed no systematic bias for predicted energy requirement except for Nordenson estimates. Conclusion For clinical purposes, in absence of objective methods such as doubly labeled water method and motion sensors, energy requirement can be predicted using pedometer-determined PAL and common RMR equations. However, for assessment of nutritional status and for the purpose of giving nutritional treatment, a clinical judgment is important regarding when

  13. Navy Activity-Level Energy Systems Planning Procedure (A-LESP) Users Manual.

    DTIC Science & Technology

    1986-01-01

    strength sheet; Asphalt shingles ; 1/2- siding; 1/2-inch ply- 30% sidewalls; 0% end inch plywood sheathing r wood sheathing; 2-inch walls. 3-1/2-inch...inch Gypsum 3-inch/12-inch. wallboard. Low-Rise 0.77 4-inch common brick; Single-strength sheet; Asphalt shingles ; 1/2- 1/2-inch plywood 30% sidewalls...U-Value Fuel Saved: electricity ( Fiberglass Batt) (In.) R Value (I/R) Energy Cost: $0.08/kwh Escalation Rate: 7% 1 3.16 0.31 Annual Discount Rate (R

  14. Physical Activity, Energy Expenditure, Nutritional Habits, Quality of Sleep and Stress Levels in Shift-Working Health Care Personnel

    PubMed Central

    Vogt, Lena Johanna; Gärtner, Simone; Hannich, Hans Joachim; Steveling, Antje; Lerch, Markus M.

    2017-01-01

    Background Among health care personnel working regular hours or rotating shifts can affect parameters of general health and nutrition. We have investigated physical activity, sleep quality, metabolic activity and stress levels in health care workers from both groups. Methods We prospectively recruited 46 volunteer participants from the workforce of a University Medical Department of which 23 worked in rotating shifts (all nursing) and 21 non-shift regular hours (10 nursing, 13 clerical staff). All were investigated over 7 days by multisensory accelerometer (SenseWear Bodymedia® armband) and kept a detailed food diary. Physical activity and resting energy expenditure (REE) were measured in metabolic equivalents of task (METs). Quality of sleep was assessed as Pittsburgh Sleeping Quality Index and stress load using the Trier Inventory for Chronic Stress questionnaire (TICS). Results No significant differences were found for overall physical activity, steps per minute, time of exceeding the 3 METs level or sleep quality. A significant difference for physical activity during working hours was found between shift-workers vs. non-shift-workers (p<0.01) and for shift-working nurses (median = 2.1 METs SE = 0.1) vs. non-shift-working clerical personnel (median = 1.5 METs SE = 0.07, p<0.05). Non-shift-working nurses had a significantly lower REE than the other groups (p<0.05). The proportion of fat in the diet was significantly higher (p<0.05) in the office worker group (median = 42% SE = 1.2) whereas shift-working nurses consumed significantly more carbohydrates (median = 46% SE = 1.4) than clerical staff (median = 41% SE = 1.7). Stress assessment by TICS confirmed a significantly higher level of social overload in the shift working group (p<0.05). Conclusion In this prospective cohort study shift-working had no influence on overall physical activity. Lower physical activity during working hours appears to be compensated for during off-hours. Differences in nutritional

  15. Effects of dietary protein and energy levels on digestive enzyme activities and electrolyte composition in the small intestinal fluid of geese.

    PubMed

    Yang, Jing; Yang, Lin; Wang, Yongchang; Zhai, Shuangshuang; Wang, Shenshen; Yang, Zhipeng; Wang, Wence

    2017-02-01

    The present study was conducted to evaluate the effects of dietary protein and energy levels on digestive enzymes and electrolyte composition in jejunum of geese. A 3×3 factorial and completely randomized design was adopted with three protein levels and three energy levels. The experiment included four replicates for each treatment, and three geese for each replicate. Isovolumetric supernate from centrifugal jejuna fluid were mixed in each replicate. Activities of digestive enzymes and ions were analyzed. The results showed trypsin and chymotrypsin activities were significantly increased with increasing of dietary protein and energy levels (P<0.05). The concentrations of Ca(2+) and pH value were significantly decreased by increased dietary protein and energy levels. However, no significant differences were found for the activities of amylase and cellulase, as well as the concentration of Na(+) among groups with different protein and energy levels. In conclusion, digesta enzymes and electrolytes in the small intestine adapted to the protein and energy levels. The activities of protease, rather than amylase and cellulase were induced with increasing of protein and energy levels. The imbalance of positive and negative ions was possibly adjusted by the fluctuant concentrations of K(+) , Cl(-) and Ca(2+) for maintaining normal physiological function.

  16. Empowering Sedentary Adults to Reduce Sedentary Behavior and Increase Physical Activity Levels and Energy Expenditure: A Pilot Study

    PubMed Central

    Barwais, Faisal A.; Cuddihy, Thomas F.

    2015-01-01

    Objective: The purpose of this study was to assess the effectiveness of a 4-week intervention in which an online personal activity monitor (Gruve-Technologies™) was used to reduce sedentary behavior among sedentary adults. Method: Eighteen, sedentary adult volunteers (12 men, six women, mean age 29 ± 4.0 years) were recruited to participate in the study. Time spent in sedentary activities and light-, moderate-, and vigorous-intensity physical activity and energy expenditure were assessed during waking hours using the monitor and the 7-day SLIPA Log at both baseline and post-intervention. Results: A significant decrease of 33% (3.1 h/day; p < 0.001) was found between the time spent in sedentary activities measured at baseline (9.4 ± 1.1 h/day) and at the end of the 4-week intervention (6.3 ± 0.8 h/day). Consequent to the changes in sedentary time, significant increases were found in the amount of time spent in light- (45% (2.6 h/day), p < 0.001), moderate- (33% (1 h/day) p < 0.001), vigorous-intensity physical activity (39% (0.16 h/day), p < 0.001), and energy expenditure (47% (216.7 kcal/day), p < 0.001). Conclusion: This monitor contributes to a meaningful reduction in time spent in sedentary activities and has a large effect on energy expenditure and physical activity patterns. PMID:25568971

  17. The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans

    PubMed Central

    Apfeld, Javier; O'Connor, Greg; McDonagh, Tom; DiStefano, Peter S.; Curtis, Rory

    2004-01-01

    Although limiting energy availability extends lifespan in many organisms, it is not understood how lifespan is coupled to energy levels. We find that the AMP:ATP ratio, a measure of energy levels, increases with age in Caenorhabditis elegans and can be used to predict life expectancy. The C. elegans AMP-activated protein kinase α subunit AAK-2 is activated by AMP and functions to extend lifespan. In addition, either an environmental stressor that increases the AMP:ATP ratio or mutations that lower insulin-like signaling extend lifespan in an aak-2-dependent manner. Thus, AAK-2 is a sensor that couples lifespan to information about energy levels and insulin-like signals. PMID:15574588

  18. Energy dependence of hadronic activity

    NASA Astrophysics Data System (ADS)

    Gabriel, T. A.; Groom, D. E.; Job, P. K.; Mokhov, N. V.; Stevenson, G. R.

    1994-01-01

    Two features of high-energy hadronic cascades have long been known to shielding specialists: a) in a high-energy hadronic cascade in a given material (incident E ≳ 10 GeV), the relative abundance and spectrum of each hadronic species responsible for most of the energy deposition is independent of the energy or species of the incident hadron, and b) because π0 production bleeds off more and more energy into the electromagnetic sector as the energy of the incident hadron increases, the absolute level of this low-energy hadronic activity ( E ≲ 1 GeV) rises less rapidly than the incident energy, and in fact rises very nearly as a power of the incident energy. Both features are of great importance in hadron calorimetry, where it is the "universal spectrum" which makes possible the definition of an intrinsic {e}/{h}, and the increasing fraction of the energy going into π0's which leads to the energy dependence of {e}/{π}. We present evidence for the "universal spectrum," and use an induction argument and simulation results to demonstrate that the low-energy activity ss Em, with 0.80 ≲ m ≲ 0.85. The hadronic activity produced by incident pions is 15-20% less than that initiated by protons.

  19. Energy Activities for the Primary Classroom. Revised.

    ERIC Educational Resources Information Center

    Tierney, Blue, Comp.

    An energy education program at the primary level should help students to understand the nature and importance of energy, consider different energy sources, learn about energy conservation, prepare for energy related careers, and become energy conscious in other career fields. The activities charts, readings, and experiments provided in this…

  20. Science Activities in Energy: Chemical Energy.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    Presented is a science activities in energy package which includes 15 activities relating to chemical energy. Activities are simple, concrete experiments for fourth, fifth and sixth grades which illustrate principles and problems relating to energy. Each activity is outlined on a single card which is introduced by a question. A teacher's…

  1. Science Activities in Energy: Solar Energy.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    Presented is a science activities in energy package which includes 12 activities relating to solar energy. Activities are simple, concrete experiments for fourth, fifth, and sixth grades, which illustrate principles and problems relating to energy. Each activity is outlined on a single card which is introduced by a question. A teacher's supplement…

  2. Science Activities in Energy: Electrical Energy.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    Presented is a science activities in energy package which includes 16 activities relating to electrical energy. Activities are simple, concrete experiments for fourth, fifth and sixth grades which illustrate principles and problems relating to energy. Each activity is outlined in a single card which is introduced by a question. A teacher's…

  3. Approaches to the Organization of the Energy Efficient Activity at the Regional Level in the Context of Limited Budget Resources during the Transformation of Energy Market Paradigm

    NASA Astrophysics Data System (ADS)

    Vakulenko, Ihor; Myroshnychenko, Iuliia

    2015-12-01

    The research is devoted to the problem of the assessment of the integrated projects investment efficiency, energy saving and energy efficiency measures for social and municipal buildings within the course aimed at the reduction of the natural gas consumption and its replacement by alternative fuel types, that is important for a number of European countries, and Ukraine in particular. The objectives of the research are as follows: comparative assessment of the quality of integrated and element-by-element approaches to energy saving encompassing investment, environmental, social and organizational aspects; the formulation of practical recommendations to improve the efficiency of development and implementation of integrated programs in the field of energy saving and energy efficiency. It is proposed to use the methodology of system analysis with the elements of deduction that is practical and that allows to set key factors that influence the processes of energy replacement and energy efficiency increase, as well as factors that constrain them.

  4. Changing Conceptions of Activation Energy.

    ERIC Educational Resources Information Center

    Pacey, Philip D.

    1981-01-01

    Provides background material which relates to the concept of activation energy, fundamental in the study of chemical kinetics. Compares the related concepts of the Arrhenius activation energy, the activation energy at absolute zero, the enthalpy of activation, and the threshold energy. (CS)

  5. Science Activities in Energy: Wind Energy.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    Included in this science activities energy package are 12 activities related to wind energy for elementary students. Each activity is outlined on a single card and is introduced by a question. Topics include: (1) At what time of day is there enough wind to make electricity where you live?; (2) Where is the windiest spot on your schoolground?; and…

  6. Oligomycin A-induced inhibition of mitochondrial ATP-synthase activity suppresses boar sperm motility and in vitro capacitation achievement without modifying overall sperm energy levels.

    PubMed

    Ramió-Lluch, Laura; Yeste, Marc; Fernández-Novell, Josep M; Estrada, Efrén; Rocha, Luiz; Cebrián-Pérez, José A; Muiño-Blanco, Teresa; Concha, Ilona I; Ramírez, Alfredo; Rodríguez-Gil, Joan E

    2014-01-01

    Incubation of boar spermatozoa in a capacitation medium with oligomycin A, a specific inhibitor of the F0 component of the mitochondrial ATP synthase, induced an immediate and almost complete immobilisation of cells. Oligomycin A also inhibited the ability of spermatozoa to achieve feasible in vitro capacitation (IVC), as measured through IVC-compatible changes in motility patterns, tyrosine phosphorylation levels of the acrosomal p32 protein, membrane fluidity and the ability of spermatozoa to achieve subsequent, progesterone-induced in vitro acrosome exocytosis (IVAE). Both inhibitory effects were caused without changes in the rhythm of O2 consumption, intracellular ATP levels or mitochondrial membrane potential (MMP). IVAE was accompanied by a fast and intense peak in O2 consumption and ATP levels in control spermatozoa. Oligomycin A also inhibited progesterone-induced IVAE as well as the concomitant peaks of O2 consumption and ATP levels. The effect of oligomycin on IVAE was also accompanied by concomitant alterations in the IVAE-induced changes on intracellular Ca(2+) levels and MMP. Our results suggest that the oligomycin A-sensitive mitochondrial ATP-synthase activity is instrumental in the achievement of an adequate boar sperm motion pattern, IVC and IVAE. However, this effect seems not to be linked to changes in the overall maintenance of adequate energy levels in stages other than IVAE.

  7. Neural activity and the levels of high energy phosphates during deprivation of oxygen and/or glucose in hippocampal slices of immature and adult rats.

    PubMed

    Nabetani, M; Okada, Y; Kawai, S; Nakamura, H

    1995-02-01

    To investigate the relationship between neural activity and cerebral energy metabolism during anoxia or ischemia in neural tissue of different ages, hippocampal slices were prepared from four-, seven- and 10-day-old and adult rats. For the index of the neural activity, the population spikes were recorded in the pyramidal cell layer of the CA3 area. ATP and phosphocreatine levels in the slices were measured during oxygen and/or glucose deprivation. After deprivation of both oxygen and glucose, population spikes of the slices from four, seven- and 10-day-old and adult rats ceased completely in 14.2, 11.8, 9.4 and 5.3 min, respectively. The level of ATP at the time of cessation of population spike in four-, seven- and 10-day-old and adult rats was 37.4, 30.2, 28.5 and 56.4% of the original concentrations. After deprivation of glucose only, the decay time of the population spikes of the slices from four-, seven- and 10-day-old and adult rats was 17.8, 14.5, 9.0 and 10.0 min and at the time of population spikes cessation the level of ATP was 99.8, 84.2, 79.3 and 49%, respectively. After deprivation of oxygen only, population spikes of the slices from four, seven- and 10-day old and adult rats ceased completely in 257, 283, 109 and 8.5 min, respectively. The level of ATP at the time of population spikes cessation was 50, 40, 36.6 and 94.4% of the initial values, respectively. These results indicate that the immature rat is extremely resistant to oxygen deprivation from a functional and a metabolic view, whereas in the adult rat, preservation of neural activity depends much on both oxygen and glucose. During glucose deprivation, population spikes of the slices of immature and mature rats ceased rapidly although the level of ATP is preserved at high levels. This suggests that glucose plays an important role in the preservation of neural activity in addition to its major function as an energy substrate especially in immature animals.

  8. Activities Handbook for Energy Education.

    ERIC Educational Resources Information Center

    DeVito, Alfred; Krockover, Gerald H.

    The purpose of this handbook is to present information about energy and to translate this information into learning activities for children. Chapter 1, "Energy: A Delicate Dilemma," presents activities intended to provide an introduction to energy and energy usage. Chapter 2, "What are the Sources of Energy?" provides…

  9. Energy Adventure Center. Activity Book.

    ERIC Educational Resources Information Center

    Carlton, Linda L.

    Energy activities are provided in this student activity book. They include: (1) an energy walk; (2) forms of energy in the home; (3) energy conversion; (4) constructing a solar hot dog cooker (with instructions for drawing a parabola); (5) interviewing senior citizens to learn about energy use in the past; (6) packaging materials; (7) insulation;…

  10. Science Activities in Energy: Conservation.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    Presented is a science activities in energy package which includes 14 activities relating to energy conservation. Activities are simple, concrete experiments for fourth, fifth and sixth grades, which illustrate principles and problems relating to energy. Each activity is outlined on a simple card which is introduced by a question. A teacher's…

  11. Science Activities in Energy: Solar Energy II.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    Included in this science activities energy package are 14 activities related to solar energy for secondary students. Each activity is outlined on a single card and is introduced by a question such as: (1) how much solar heat comes from the sun? or (2) how many times do you have to run water through a flat-plate collector to get a 10 degree rise in…

  12. Molecular-Level Design of Hierarchically Porous Carbons Codoped with Nitrogen and Phosphorus Capable of In Situ Self-Activation for Sustainable Energy Systems.

    PubMed

    Ai, Wei; Wang, Xuewan; Zou, Chenji; Du, Zhuzhu; Fan, Zhanxi; Zhang, Hua; Chen, Peng; Yu, Ting; Huang, Wei

    2017-02-01

    Hierarchically porous carbons are attracting tremendous attention in sustainable energy systems, such as lithium ion battery (LIB) and fuel cell, due to their excellent transport properties that arise from the high surface area and rich porosity. The state-of-the-art approaches for synthesizing hierarchically porous carbons normally require chemical- and/or template-assisted activation techniques, which is complicate, time consuming, and not feasible for large scale production. Here, a molecular-level design principle toward large-scale synthesis of nitrogen and phosphorus codoped hierarchically porous carbon (NPHPC) through an in situ self-activation process is proposed. The material is fabricated based on the direct pyrolysis of a well-designed polymer, melamine polyphosphate, which is capable of in situ self-activation to generate large specific surface area (1479 m(2) g(-1) ) and hierarchical pores in the final NPHPC. As an anode material for LIB, NPHPC delivers a high reversible capacity of 1073 mAh g(-1) and an excellent cyclic stability for 300 cycles with negligible capacity decay. The peculiar structural properties and synergistic effect of N and P codopants also enable NPHPC a promising electrocatalyst for oxygen reduction reaction, a key cathodic reaction process of many energy conversion devices (for example, fuel cells and metal air batteries). Electrochemical measurements show NPHPC a comparable electrocatalytic performance to commercial Pt/C catalyst (onset potential of 0.88 V vs reversible hydrogen electrode in alkaline medium) with excellent stability (89.8% retention after 20 000 s continuous operation) and superior methanol tolerance.

  13. Energy levels of bilayer graphene quantum dots

    NASA Astrophysics Data System (ADS)

    da Costa, D. R.; Zarenia, M.; Chaves, Andrey; Farias, G. A.; Peeters, F. M.

    2015-09-01

    Within a tight binding approach we investigate the energy levels of hexagonal and triangular bilayer graphene (BLG) quantum dots (QDs) with zigzag and armchair edges. We study AA- and AB- (Bernal) stacked BLG QDs and obtain the energy levels in both the absence and the presence of a perpendicular electric field (i.e., biased BLG QDs). Our results show that the size dependence of the energy levels is different from that of monolayer graphene QDs. The energy spectrum of AB-stacked BLG QDs with zigzag edges exhibits edge states which spread out into the opened energy gap in the presence of a perpendicular electric field. We found that the behavior of these edges states is different for the hexagonal and triangular geometries. In the case of AA-stacked BLG QDs, the electron and hole energy levels cross each other in both cases of armchair and zigzag edges as the dot size or the applied bias increases.

  14. State-Level Benefits of Energy Efficiency

    SciTech Connect

    Tonn, Bruce Edward

    2007-02-01

    This report describes benefits attributable to state-level energy efficiency programs. Nationwide, state-level energy efficiency programs have targeted all sectors of the economy and have employed a wide range of methods to promote energy efficiency. Standard residential and industrial programs typically identify between 20 to 30% energy savings in homes and plants, respectively. Over a 20 year period of time, an average state that aggressively pursues even a limited array of energy efficiency programs can potentially reduce total state energy use by as much as 20%. Benefit-cost ratios of effective energy efficiency programs typically exceed 3 to 1 and are much higher when non-energy and macroeconomic benefits are included. Indeed, energy efficiency and associated programs and investments can create significant numbers of new jobs and enhance state tax revenues. Several states have incorporated energy efficiency into their economic development programs. It should also be noted that increasing amounts of venture capital are being invested in the energy sector in general and in specific technologies like solar power in particular. Well-designed energy efficiency programs can be expected to help overcome numerous barriers to the market penetration of energy efficient technologies and accelerate the market penetration of the technologies.

  15. Housing Electrons: Relating Quantum Numbers, Energy Levels, and Electron Configurations.

    ERIC Educational Resources Information Center

    Garofalo, Anthony

    1997-01-01

    Presents an activity that combines the concepts of quantum numbers and probability locations, energy levels, and electron configurations in a concrete, hands-on way. Uses model houses constructed out of foam board and colored beads to represent electrons. (JRH)

  16. Effects of energy intake on type 1 plasminogen activator inhibitor levels in glomeruli of lupus-prone B/W mice.

    PubMed Central

    Troyer, D. A.; Chandrasekar, B.; Thinnes, T.; Stone, A.; Loskutoff, D. J.; Fernandes, G.

    1995-01-01

    Calorie restriction (CR) and/or reduced energy intake ameliorates the progression of autoimmune renal disease in (NZB x NZW)F1 (B/W) female mice and increases life span. Like other forms of glomerulonephritis, the lupus-like kidney disease observed in these animals is frequently accompanied by glomerular deposition of fibrin and increased accumulation of mesangial matrix. Because alterations in plasminogen activator inhibitor type 1 (PAI-1) expression or function may be involved in both fibrin deposition and accumulation of extracellular matrix, we have studied the effects of CR on the expression of PAI-1 in kidneys from female B/W mice fed either ad libitum or on a 40% CR diet. By immunohistochemistry and immunoblotting, we found that the glomerular levels of PAI-1 antigen were highest in older ad lib fed animals with more advanced glomerular disease. Increased levels of PAI-1 protein were paralleled by increased levels of PAI-1 mRNA in total RNA extracted from renal cortex and in diseased glomeruli as detected by in situ hybridization. CR diminished the accumulation of PAI-1 protein and reduced the expression of PAI-1 mRNA. Thus, glomeruli from animals fed ad lib showed much greater deposition of PAI-1 protein, increased expression of PAI-1 mRNA, and more severe histological abnormalities than animals on a CR diet. The differences between CR and ad lib animals were more pronounced in animals studied at 9 to 10 months versus those at 3 to 4 months of age. These observations indicate that the ameliorating effects of CR include diminished PAI-1 gene expression and decreased localization of PAI-1 in glomeruli. Images Figure 2 Figure 3 Figure 4 PMID:7856720

  17. Energy Levels of Hydrogen and Deuterium

    National Institute of Standards and Technology Data Gateway

    SRD 142 Energy Levels of Hydrogen and Deuterium (Web, free access)   This database provides theoretical values of energy levels of hydrogen and deuterium for principle quantum numbers n = 1 to 200 and all allowed orbital angular momenta l and total angular momenta j. The values are based on current knowledge of the revelant theoretical contributions including relativistic, quantum electrodynamic, recoil, and nuclear size effects.

  18. Distribution of convective energy at upper level in South Korea and the possibility of artificial showery rain caused by activated CAPE

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Min; Byun, Hi-Ryong

    2011-10-01

    This paper reports a theoretical study on the possibility of inducing artificial showery rain using the convective available potential energy, which is naturally stored in the troposphere. We calculated the environmental parameters (frequency of climatic values, extreme value of stability index, etc.) in the upper troposphere using rawinsonde data from six main stations in Korea from 2001 to 2008 and examined the temporal spatial convective energy according to region. Our results showed that convective available potential energy, which can induce artificial rainfall, existed in the troposphere mainly in summer and were low in other seasons. Its value was found to be highest during late afternoon and in inland regions. We examined the vertical structure of the atmosphere using moisture convergence and vertical velocity (omega) and found that precipitation occurred under strong real latent instability conditions with high convective available potential energy (>3,000 J/kg) in summer and was characterized by moisture convergence at 1,000-400 hPa, moisture divergence at 400-300 hPa, and continuous ascending air current at 1,000-300 hPa (-ω), on average. However, precipitation still did not occur in more than half the cases with high convective available potential energy because, according to the analysis, convective rainfall is affected to a greater extent by the value of convective inhibition than by convective available potential energy. It was also verified that in spite of zero convective inhibition, if the updrafts at a lower level were not sufficient to generate high convective available potential energy at a level higher than the level of free convection, convective rainfall would not occur under real latent instability. Therefore, we suggest it might be possible during the summer to secure the water resources in regions without precipitation by inducing ascending air current artificially under unstable atmospheric conditions to induce showery rain.

  19. Suppression of the inducible form of nitric oxide synthase prior to traumatic brain injury improves cytochrome c oxidase activity and normalizes cellular energy levels.

    PubMed

    Hüttemann, M; Lee, I; Kreipke, C W; Petrov, T

    2008-01-02

    We have previously shown that the observed immediate increase in nitric oxide (NO) plays a significant role in the control of the cerebral microcirculation following traumatic brain injury (TBI). However, a second consequence of increased NO production after TBI may be impaired mitochondrial function, due to the fact that NO is a well-known inhibitor of cytochrome c oxidase (CcO). CcO is a key enzyme of the mitochondrial oxidative phosphorylation (OxPhos) machinery, which creates cellular energy in the form of ATP. NO competes with oxygen at the heme a(3)-Cu(B) reaction center of CcO. We thus hypothesized that TBI triggers inhibition of CcO, which would in turn lead to a decreased energy production by OxPhos at a time of an elevated energy demand for tissue remodeling. Here we show that TBI as induced by an acceleration weight drop model of diffuse brain injury in rats leads to CcO inhibition and dramatically decreased ATP levels in brain cortex. CcO inhibition can be partially restored by application of iNOS antisense oligonucleotides prior to TBI, which leads to a normalization of ATP levels similar to the controls. We propose that a lack of energy after TBI caused by inhibition of CcO is an important aspect of trauma pathology.

  20. Surface free energy ( γsd) of active carbons determined by inverse gas chromatography: influences of the origin of precursors, the burn off level and the chemical modification

    NASA Astrophysics Data System (ADS)

    Cossarutto, L.; Vagner, C.; Finqueneisel, G.; Weber, J. V.; Zimny, T.

    2001-06-01

    The dispersive component of the surface free energies ( γsd) of commercial active carbons (AC) from various origins were determined by inverse gas chromatography at infinite dilution (IGC-ID). This method discriminates clearly the AC produced from wood (and activated/carbonised with phosphoric acid) and those from coconut-shell (carbonised and steam activated at 850°C). The values for the last AC (from coconut) are twice higher than the values for AC of wood origin. The structure and shape of the pores have to be considered to explain these values. It seems that for AC, IGC-ID globally characterises the most energetic micropores. This can be observed, in this work, by two ways: (i) washing of commercial AC (chemically activated) allows to liberate a part of the micropores blocked by soluble phosphate and consequently increases the γsd value; (ii) modifying coconuts AC by chemical treatment (formamide) results in a strong decrease of both microporosity and γsd value. On the contrary, thermal activation of the modified AC increases at the same time the microporosity and the surface free energy. Finally, we demonstrate that the IGC method is also an useful tool to monitor in situ the evolutions of the surface properties of carbonaceous materials.

  1. Vibrational energy levels of CH5+

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Gang; Carrington, Tucker

    2008-12-01

    We present a parallelized contracted basis-iterative method for calculating numerically exact vibrational energy levels of CH5+ (a 12-dimensional calculation). We use Radau polyspherical coordinates and basis functions that are products of eigenfunctions of bend and stretch Hamiltonians. The bend eigenfunctions are computed in a nondirect product basis with more than 200×106 functions and the stretch functions are computed in a product potential optimized discrete variable basis. The basis functions have amplitude in all of the 120 equivalent minima. Many low-lying levels are well converged. We find that the energy level pattern is determined in part by the curvature and width of the valley connecting the minima and in part by the slope of the walls of this valley but does not depend on the height or shape of the barriers separating the minima.

  2. Energy Model of Neuron Activation.

    PubMed

    Romanyshyn, Yuriy; Smerdov, Andriy; Petrytska, Svitlana

    2017-02-01

    On the basis of the neurophysiological strength-duration (amplitude-duration) curve of neuron activation (which relates the threshold amplitude of a rectangular current pulse of neuron activation to the pulse duration), as well as with the use of activation energy constraint (the threshold curve corresponds to the energy threshold of neuron activation by a rectangular current pulse), an energy model of neuron activation by a single current pulse has been constructed. The constructed model of activation, which determines its spectral properties, is a bandpass filter. Under the condition of minimum-phase feature of the neuron activation model, on the basis of Hilbert transform, the possibilities of phase-frequency response calculation from its amplitude-frequency response have been considered. Approximation to the amplitude-frequency response by the response of the Butterworth filter of the first order, as well as obtaining the pulse response corresponding to this approximation, give us the possibility of analyzing the efficiency of activating current pulses of various shapes, including analysis in accordance with the energy constraint.

  3. Fermi level stabilization energy in cadmium oxide

    SciTech Connect

    Speaks, D. T.; Mayer, M. A.; Yu, K. M.; Mao, S. S.; Haller, E. E.; Walukiewicz, W.

    2010-04-08

    We have studied the effects of high concentrations of native point defects on the electrical and optical properties of CdO. The defects were introduced by irradiation with high energy He+, Ne+, Ar+ and C+ ions. Increasing the irradiation damage with particles heavier than He+ increases the electron concentration until a saturation level of 5x1020 cm-3 is reached. In contrast, due to the ionic character and hence strong dynamic annealing of CdO, irradiation with much lighter He+ stabilizes the electron concentration at a much lower level of 1.7x1020 cm-3. A large shift of the optical absorption edge with increasing electron concentration in irradiated samples is explained by the Burstein-Moss shift corrected for electron-electron and electron-ion interactions. The saturation of the electron concentration and the optical absorption edge energy are consistent with a defect induced stabilization of the Fermi energy at 1 eV above the conduction band edge. The result is in a good agreement with previously determined Fermi level pinning energies on CdO surfaces. The results indicate that CdO shares many similarities with InN, as both materials exhibit extremely large electron affinities and an unprecedented propensity for n-type conductivity.

  4. Spectrum and energy levels of Mo VI

    NASA Astrophysics Data System (ADS)

    Reader, Joseph

    1998-05-01

    We have photographed the spectrum of the Rb-like ion Mo VI from 200 to 5300 Å with a sliding-spark discharge on our 10.7-m normal- and grazing-incidence spectrographs and have observed most of the yrast transitions given by Romanov et al.(N. P. Romanov and A. R. Striganov, Opt. Spectrosc. 27), 8 (1969). from a Penning discharge. We have obtained improved values for all of the energy levels. We confirm the odd levels of Kancerevicius et al.,(A. Kancerevicius et al.), Lithuanian Phys. J. 31, 143 (1991). but have revised a number of the even levels of Edlén et al.(B. Edlén et al.), Phys. Scr. 32, 215 (1985). The ionization energy of Edlén et al.,footnotemark[4] which had been called into question by Kancerevicius et al.footnotemark[3] as a result of their revision of the odd levels,footnotemark[4] is confirmed.

  5. Energy-level alignment at organic heterointerfaces

    PubMed Central

    Oehzelt, Martin; Akaike, Kouki; Koch, Norbert; Heimel, Georg

    2015-01-01

    Today’s champion organic (opto-)electronic devices comprise an ever-increasing number of different organic-semiconductor layers. The functionality of these complex heterostructures largely derives from the relative alignment of the frontier molecular-orbital energies in each layer with respect to those in all others. Despite the technological relevance of the energy-level alignment at organic heterointerfaces, and despite continued scientific interest, a reliable model that can quantitatively predict the full range of phenomena observed at such interfaces is notably absent. We identify the limitations of previous attempts to formulate such a model and highlight inconsistencies in the interpretation of the experimental data they were based on. We then develop a theoretical framework, which we demonstrate to accurately reproduce experiment. Applying this theory, a comprehensive overview of all possible energy-level alignment scenarios that can be encountered at organic heterojunctions is finally given. These results will help focus future efforts on developing functional organic interfaces for superior device performance. PMID:26702447

  6. Solar Energy Project, Activities: Biology.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of biology experiments. Each unit presents an introduction; objectives; skills and knowledge needed; materials; methods; questions; recommendations for further work; and a teacher information sheet. The teacher information…

  7. Activation energy measurements of cheese

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temperature sweeps of cheeses using small amplitude oscillatory shear tests produced values for activation energy of flow (Ea) between 30 and 44 deg C. Soft goat cheese and Queso Fresco, which are high-moisture cheeses and do not flow when heated, exhibited Ea values between 30 and 60 kJ/mol. The ...

  8. A column level, low power, 1 M sample/s double ramp A/D converter for monolithic active pixel sensors in high energy physics

    NASA Astrophysics Data System (ADS)

    Pillet, N.; Heini, S.; Hu, Y.

    2010-08-01

    Monolithic active pixel sensors (MAPS) using standard low cost CMOS technologies available from industrial manufacturers have demonstrated excellent tracking performances for minimum ionizing particles. The need for highly granular, fast, thin sensors with a full digital output drives an R&D effort, aiming to design and optimize a low power high speed A/D converter integrated at the column level. Following this main issue, a double digital ramp A/D converter has been proposed for CMOS monolithic active pixel sensors in this paper. This A/D converter responds to the constraints of size, power dissipation and precision for CMOS sensors for particle detection. It also represents a first step in order to reach the high speed of conversion needed for this kind of application. The A/D converter has a resolution of 4 bits for conversion speed of 1 M sample/s with only 264 μW of static consumption in a very particular pitch of 25 μm×900 μm.

  9. Energy balance regulation by thyroid hormones at central level.

    PubMed

    López, Miguel; Alvarez, Clara V; Nogueiras, Rubén; Diéguez, Carlos

    2013-07-01

    Classically, medical textbooks taught that most effects of thyroid hormones (THs) on energy homeostasis are directly exerted in peripheral tissues. However, current evidence is changing (and challenging) our perspective about the role of THs from a 'peripheral' to a 'central' vision, implying that they affect food intake, energy expenditure, and metabolism by acting, to a large extent, at the central level. Interestingly, effects of THs are interrelated with global energy sensors in the central nervous system (CNS), such as uncoupling protein 2 (UCP2), AMP-activated protein kinase (AMPK; the 'AMPK-BAT axis'), and mechanistic target of rapamycin (mTOR). Here, we review what is currently known about THs and their regulation of energy balance and metabolism in both peripheral and central tissues.

  10. Energy Conservation Activities for the Classroom K-12.

    ERIC Educational Resources Information Center

    Kentucky Dept. of Energy, Frankfort.

    After a brief introduction entitled "Where Does the Energy We Use Come From," this unit presents 86 activities. Each activity gives the title, concept, objectives, subject area, level, time involved, materials needed, procedures, and related career activities. Topics cover everything from housing insulation to alternate sources of energy to energy…

  11. Energy Storage. Teachers Guide. Science Activities in Energy.

    ERIC Educational Resources Information Center

    Jacobs, Mary Lynn, Ed.

    Included in this science activities energy package for students in grades 4-10 are 12 activities related to energy storage. Each activity is outlined on the front and back of a single sheet and is introduced by a key question. Most of the activities can be completed in the classroom with materials readily available in any community. Among the…

  12. Comparisons of a Multi-Frequency Bioelectrical Impedance Analysis to the Dual-Energy X-Ray Absorptiometry Scan in Healthy Young Adults Depending on their Physical Activity Level

    PubMed Central

    Verney, Julien; Schwartz, Chloé; Amiche, Saliha; Pereira, Bruno; Thivel, David

    2015-01-01

    This study aimed at comparing BIA and DXA results in assessing body composition in young adults depending on their physical activity level. Eighty healthy 19–30 years old subjects were enrolled and their body composition (Fat Mass and Fat-Free Mass) was assessed by dual-energy X-ray absorptiometry (DXA) and by a newly developed Bioelectrical Impedance Analyzer (BIA - Tanita MC780). A seven-day physical activity level was assessed using a 3-axial accelerometer. DXA-FM% and BIA-FM% were correlated (p<0.001; r= 0.852; ICC [IC95%]: 0.84 [0.75 – 0.90]; concordance coefficient: 0.844). DXA-FFM and BIA FFM were correlated (p<0.001; r=0.976; ICC [IC95%]: 0.95 [0.93 – 0.97], concordance coefficient: 0.955). DXA and BIA measurements of FM% and FFM were highly correlated in both boys and girls regardless of the physical activity level. Compared with DXA scans, newly developed bioelectrical impedance analyzers provide satisfactory fat mass and lean mass measures in healthy young women and men, despite their physical activity level. PMID:26557191

  13. Comparisons of a Multi-Frequency Bioelectrical Impedance Analysis to the Dual-Energy X-Ray Absorptiometry Scan in Healthy Young Adults Depending on their Physical Activity Level.

    PubMed

    Verney, Julien; Schwartz, Chloé; Amiche, Saliha; Pereira, Bruno; Thivel, David

    2015-09-29

    This study aimed at comparing BIA and DXA results in assessing body composition in young adults depending on their physical activity level. Eighty healthy 19-30 years old subjects were enrolled and their body composition (Fat Mass and Fat-Free Mass) was assessed by dual-energy X-ray absorptiometry (DXA) and by a newly developed Bioelectrical Impedance Analyzer (BIA - Tanita MC780). A seven-day physical activity level was assessed using a 3-axial accelerometer. DXA-FM% and BIA-FM% were correlated (p<0.001; r= 0.852; ICC [IC95%]: 0.84 [0.75 - 0.90]; concordance coefficient: 0.844). DXA-FFM and BIA FFM were correlated (p<0.001; r=0.976; ICC [IC95%]: 0.95 [0.93 - 0.97], concordance coefficient: 0.955). DXA and BIA measurements of FM% and FFM were highly correlated in both boys and girls regardless of the physical activity level. Compared with DXA scans, newly developed bioelectrical impedance analyzers provide satisfactory fat mass and lean mass measures in healthy young women and men, despite their physical activity level.

  14. Public budgets for energy RD&D and the effects on energy intensity and pollution levels.

    PubMed

    Balsalobre, Daniel; Álvarez, Agustín; Cantos, José María

    2015-04-01

    This study, based on the N-shaped cubic model of the environmental Kuznets curve, analyzes the evolution of per capita greenhouse gas emissions (GHGpc) using not just economic growth but also public budgets dedicated to energy-oriented research development and demonstration (RD&D) and energy intensity. The empirical evidence, obtained from an econometric model of fixed effects for 28 OECD countries during 1994-2010, suggests that energy innovations help reduce GHGpc levels and mitigate the negative impact of energy intensity on environmental quality. When countries develop active energy RD&D policies, they can reduce both the rates of energy intensity and the level of GHGpc emissions. This paper incorporates a moderating variable to the econometric model that emphasizes the effect that GDP has on energy intensity. It also adds a variable that reflects the difference between countries that have made a greater economic effort in energy RD&D, which in turn corrects the GHG emissions resulting from the energy intensity of each country.

  15. Birth Order and Activity Level in Children.

    ERIC Educational Resources Information Center

    Eaton, Warren O.; And Others

    1989-01-01

    Studied 7,018 children between birth and 7 years and 81 children of 5-8 years to test the hypothesis that birth order is negatively related to motor activity level. Activity level declined linearly across birth position, so that early-borns were rated as more active than later-borns. (RJC)

  16. Matching renewable energy systems to village-level energy needs

    SciTech Connect

    Ashworth, J.H.; Neuendorffer, J.W.

    1980-06-01

    This report provides a five step process for matching alternative renewable energy technologies with energy needs in rural villages of developing countries. Analytic tools are given for each of the five steps as well as information that can be expected. Twelve characterization criteria are developed to assist in the matching process. Three of these criteria, called discrimination criteria, are used for preliminary screening of technology possibilities for each need. The other criteria address site-specific temporal, climatic, social, cultural, and environmental characteristics of the energy need, technology, and cost considerations. To illustrate the matching process, seven basic human needs for energy are matched with seven potential renewable energy technologies. The final portion of the paper discusses the advantages of such a matching process and the resources required to initiate such an effort within a development project. Specific recommendations are given for field-testing this process and actions that could be taken immediately in basic research and development, applied research and technology modification, demonstrations, and commercialization to assist in the future diffusion of renewable energy technologies to rural areas of developing countries.

  17. Solar Energy Education. Renewable energy activities for biology

    SciTech Connect

    Not Available

    1982-01-01

    An instructional aid for teachers is presented that will allow biology students the opportunity to learn about renewable energy sources. Some of the school activities include using leaves as collectors of solar energy, solar energy stored in wood, and a fuel value test for green and dry woods. A study of organic wastes as a source of fuel is included. (BCS)

  18. Solar energy education. Renewable energy activities for general science

    SciTech Connect

    Not Available

    1985-01-01

    Renewable energy topics are integrated with the study of general science. The literature is provided in the form of a teaching manual and includes such topics as passive solar homes, siting a home for solar energy, and wind power for the home. Other energy topics are explored through library research activities. (BCS)

  19. Energy-efficiency testing activities of the Mobile Energy Laboratory

    SciTech Connect

    Parker, G.B.

    1991-01-01

    This report summarizes energy-efficiency testing activities during the first and second quarters of fiscal year 1990 applying the Mobile Energy Laboratory (MEL) testing capabilities. Four MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) for energy testing and program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in the MEL Use Plan (PNL-6861) for semiannual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semiannually to establish priorities for energy-efficient testing applications using the MEL capabilities.

  20. Energy Activities for Junior High Science.

    ERIC Educational Resources Information Center

    Beaver, David; And Others

    This document is a collection of six energy education activities for junior high school science. Its purpose is to help promote knowledge about energy, provide laboratory experiences, provoke inquiry, and relate energy to society through the science curriculum. The six activities are designed to take one to three class periods. Two of the…

  1. Factors Influencing Cypriot Children's Physical Activity Levels

    ERIC Educational Resources Information Center

    Loucaides, Constantinos A.; Chedzoy, Sue M.

    2005-01-01

    The purpose of this paper is to present selected findings from a larger study, which set out to examine the physical activity levels of Cypriot primary school children and determinants of their activity. Twenty parents of children who obtained high and low activity scores based on pedometer counts and self-reports scores were interviewed. By…

  2. Ground Levels and Ionization Energies for the Neutral Atoms

    National Institute of Standards and Technology Data Gateway

    SRD 111 Ground Levels and Ionization Energies for the Neutral Atoms (Web, free access)   Data for ground state electron configurations and ionization energies for the neutral atoms (Z = 1-104) including references.

  3. Energy Conservation Activity Packet, Grade 5.

    ERIC Educational Resources Information Center

    Bakke, Ruth

    This activity packet for grade 5 is one of a series developed in response to concern for energy conservation. It contains activities that stress an energy conservation ethic and includes many values clarification activities for grade five. The packet is divided into two parts and provides the teacher with background information, concepts and…

  4. Physical activity levels of children during school playtime.

    PubMed

    Ridgers, Nicola D; Stratton, Gareth; Fairclough, Stuart J

    2006-01-01

    School represents a suitable setting for intervention programmes aiming to promote physical activity to benefit health. During the school day, physical education and school playtime offer children regular opportunities to engage in physical activity. However, there is growing concern that, internationally, curricular time allocated to physical education is not meeting statutory guidelines. The effectiveness of the playground environment to promote physical activity has been considered as a complementary setting to physical education. Physical activity guidelines state that children should engage in at least 1 hour of moderate intensity physical activity a day. Currently no empirically tested guidelines exist for physical activity levels during playtime. However, studies cited in this article indicate that playtime can contribute between 5-40% of recommended daily physical activity levels when no interventions have been utilised. The limited school-based investigations that have been reported in the literature suggest that boys engage in more physical activity during playtime than girls. Studies that have implemented intervention strategies in order to promote physical activity levels indicate that playtime can substantially contribute towards daily optimal physical activity guidelines. Energy expenditure and physical activity levels have increased during playtime following the implementation of playtime-based interventions. In order to advance knowledge of children's physical activity during playtime, a number of key issues for consideration in future research are detailed. Research on children's use of playtime to be physically active and the extent of the contribution of playtime to daily physical activity guidelines is warranted.

  5. Solar Energy Project, Activities: General Solar Topics.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of activities which introduce students to concepts and issues relating to solar energy. Lessons frequently presented in the context of solar energy as it relates to contemporary energy problems. Each unit presents an introduction; objectives; necessary skills and knowledge; materials; method;…

  6. ORNL takes energy-efficient housing to a new level

    SciTech Connect

    2008-12-19

    Oak Ridge National Laboratory, TVA and the Department of Energy are taking energy-saving research into a West Knox County neighborhood. In the Campbell Creek subdivision, ORNL researchers have helped builders to construct three homes with three different levels of energy-saving features.

  7. ORNL takes energy-efficient housing to a new level

    ScienceCinema

    None

    2016-07-12

    Oak Ridge National Laboratory, TVA and the Department of Energy are taking energy-saving research into a West Knox County neighborhood. In the Campbell Creek subdivision, ORNL researchers have helped builders to construct three homes with three different levels of energy-saving features.

  8. Hybrid energy harvesting using active thermal backplane

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Wook; Lee, Dong-Gun

    2016-04-01

    In this study, we demonstrate the concept of a new hybrid energy harvesting system by combing solar cells with magneto-thermoelectric generator (MTG, i.e., thermal energy harvesting). The silicon solar cell can easily reach high temperature under normal operating conditions. Thus the heated solar cell becomes rapidly less efficient as the temperature of solar cell rises. To increase the efficiency of the solar cell, air or water-based cooling system is used. To surpass conventional cooling devices requiring additional power as well as large working space for air/water collectors, we develop a new technology of pairing an active thermal backplane (ATB) to solar cell. The ATB design is based on MTG technology utilizing the physics of the 2nd order phase transition of active ferromagnetic materials. The MTG is cost-effective conversion of thermal energy to electrical energy and is fundamentally different from Seebeck TEG devices. The ATB (MTG) is in addition to being an energy conversion system, a very good conveyor of heat through both conduction and convection. Therefore, the ATB can provide dual-mode for the proposed hybrid energy harvesting. One is active convective and conductive cooling for heated solar cell. Another is active thermal energy harvesting from heat of solar cell. These novel hybrid energy harvesting device have potentially simultaneous energy conversion capability of solar and thermal energy into electricity. The results presented can be used for better understanding of hybrid energy harvesting system that can be integrated into commercial applications.

  9. Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook

    EIA Publications

    2016-01-01

    This paper presents average values of levelized costs for generating technologies entering service in 2018, 2022, and 2040 as represented in the National Energy Modeling System (NEMS) for the Annual Energy Outlook 2016 (AEO2016) Reference case.

  10. Physical activity level, waist circumference, and mortality

    PubMed Central

    Staiano, Amanda E.; Reeder, Bruce A.; Elliott, Susan; Joffres, Michel R.; Pahwa, Punam; Kirkland, Susan A.; Paradis, Gilles; Katzmarzyk, Peter T.

    2014-01-01

    This study predicted all-cause mortality based on physical activity level (active or inactive) and waist circumference (WC) in 8208 Canadian adults in Alberta, Manitoba, Nova Scotia, and Saskatchewan, surveyed between 1986–1995 and followed through 2004. Physically inactive adults had higher mortality risk than active adults overall (hazard ratio, 95% confidence interval = 1.20, 1.05–1.37) and within the low WC category (1.51, 1.19–1.92). Detrimental effects of physical inactivity and high WC demonstrate the need for physical activity promotion. PMID:22703160

  11. Energy and power limits for microbial activity

    NASA Astrophysics Data System (ADS)

    LaRowe, D.; Amend, J.

    2014-12-01

    The goal of this presentation is to describe a quantitative framework for determining how energy limits microbial activity, biomass and, ultimately, biogeochemical processes. Although this model can be applied to any environment, its utility is demonstrated in marine sediments, which are an attractive test habitat because they encompass a broad spectrum of energy levels, varying amounts of biomass and are ubiquitous. The potential number of active microbial cells in Arkonas Basin (Baltic Sea) sediments are estimated as a function of depth by quantifying the amount of energy that is available to them and the rate at which it is supplied: power. The amount of power supplied per cubic centimeter of sediment is determined by calculating the Gibbs energy of fermentation and sulfate reduction in combination with the rate of particulate organic carbon, POC, degradation. The Reactive Continuum Model (Boudreau and Ruddick, 1991), RCM, is used to determine the rate at which POC is made available for microbial consumption. The RCM represents POC as containing a range of different types of organic compounds whose ability to be consumed by microorganisms varies as a function of the age of the sediment and on the distribution of compound types that were initially deposited. The sediment age model and RCM parameters determined by (Mogollon et al., 2012) are used. The power available for fermentation and sulfate reduction coupled to H2 and acetate oxidation varies from 10-8 W cm-3 at the sediment water interface to between 10-11 - 10-12 W cm-3 at 3.5 meters below the seafloor, mbsf. Using values of maintenance powers for each of these catabolic activities taken from the literature, the total number of active cells in these sediments similarly decreases from just less than 108 cell cm-3 at the SWI to 4.6 x 104 cells cm-3 at 3.5 mbsf. The number of moles of POC decreases from 2.6 x 10-5 to 9.5 x 10-6, also becoming more recalcitrant with depth. Boudreau, B. P. and Ruddick, B. R

  12. Calculation of Rydberg energy levels for the francium atom

    NASA Astrophysics Data System (ADS)

    Huang, Shi-Zhong; Chu, Jin-Min

    2010-06-01

    Based on the weakest bound electron potential model theory, the Rydberg energy levels and quantum defects of the np2Po1/2 (n = 7-50) and np2Po3/2 (n = 7-50) spectrum series for the francium atom are calculated. The calculated results are in excellent agreement with the 48 measured levels, and 40 energy levels for highly excited states are predicted.

  13. [Subliminal perception and the levels of activation].

    PubMed

    Borgeat, F; Chabot, R; Chaloult, L

    1981-06-01

    The influence of the auditory subliminal messages on the level of activation has been evaluated through a double-blind study. Twenty consenting subjects were alternately submitted to activating and deactivating subliminal messages. Activation changes were estimated through the variations in the scores at the Mood Adjective Check List. Five out of this test's six factors concerned by the content of the subliminal messages responded differently according to the nature of these messages; four factors did so to a statistically significant degree. These results tend to indicate that auditory subliminal perceptions can influence the level of activation. The authors raise several questions, especially stressing that the parameters regulating subliminal response and susceptibility remain largely undefined and in need of systematic investigation.

  14. How to Draw Energy Level Diagrams in Excitonic Solar Cells.

    PubMed

    Zhu, X-Y

    2014-07-03

    Emerging photovoltaic devices based on molecular and nanomaterials are mostly excitonic in nature. The initial absorption of a photon in these materials creates an exciton that can subsequently dissociate in each material or at their interfaces to give charge carriers. Any attempt at mechanistic understanding of excitonic solar cells must start with drawing energy level diagrams. This seemingly elementary exercise, which is described in textbooks for inorganic solar cells, has turned out to be a difficult subject in the literature. The problem stems from conceptual confusion of single-particle energy with quasi-particle energy and the misleading practice of mixing the two on the same energy level diagram. Here, I discuss how to draw physically accurate energy diagrams in excitonic solar cells using only single-particle energies (ionization potentials and electron affinities) of both ground and optically excited states. I will briefly discuss current understanding on the electronic energy landscape responsible for efficient charge separation in excitonic solar cells.

  15. Energy Conservation Activities, Grades 1-6.

    ERIC Educational Resources Information Center

    Northern Colorado Educational Board of Cooperative Services, Boulder.

    This publication is a collection of energy education activities for grades 1-6. The activities were written or selected to be used with daily lesson plans and the existing school curriculum. Activities are classified by: (1) content area (fine arts, mathematics, physical education, reading and language arts, science, and social studies; and (2)…

  16. Locomotor activity and tissue levels following acute ...

    EPA Pesticide Factsheets

    Pyrethroids produce neurotoxicity that depends, in part, on the chemical structure. Common behavioral effects include locomotor activity changes and specific toxic syndromes (types I and II). In general these neurobehavioral effects correlate well with peak internal dose metrics. Products of cyhalothrin, a type II pyrethroid, include mixtures of isomers (e.g., λ-cyhalothrin) as well as enriched active isomers (e.g., γ-cyhalothrin). We measured acute changes in locomotor activity in adult male rats and directly correlated these changes to peak brain and plasma concentrations of λ- and γ-cyhalothrin using a within-subject design. One-hour locomotor activity studies were conducted 1.5 h after oral gavage dosing, and immediately thereafter plasma and brains were collected for analyzing tissue levels using LC/MS/MS methods. Both isomers produced dose-related decreases in activity counts, and the effective dose range for γ-cyhalothrin was lower than for λ-cyhalothrin. Doses calculated to decrease activity by 50% were 2-fold lower for the γ-isomer (1.29 mg/kg) compared to λ-cyhalothrin (2.65 mg/kg). Salivation, typical of type II pyrethroids, was also observed at lower doses of γ-cyhalothrin. Administered dose correlated well with brain and plasma concentrations, which furthermore showed good correlations with activity changes. Brain and plasma levels were tightly correlated across doses. While γ-cyhalothrin was 2-fold more potent based on administ

  17. Neck Muscle Activation Levels During Frontal Impacts

    DTIC Science & Technology

    2004-09-01

    right and left upper trapezius and sternocleidomastoid . Amplitude and frequency components of the signals were evaluated to determine the amount of...Gx acceleration levels. The trapezius produced more force than the sternocleidomastoid . Activity of both muscle groups was synchronized, by their...dynamic environment. The role of upper trapezius and sternocleidomastoid (SCM) during long-duration head and neck loading situations has been

  18. Solar Energy Education. Renewable energy activities for earth science

    SciTech Connect

    Not Available

    1980-01-01

    A teaching manual is provided to aid teachers in introducing renewable energy topics to earth science students. The main emphasis is placed on solar energy. Activities for the student include a study of the greenhouse effect, solar gain for home heating, measuring solar radiation, and the construction of a model solar still to obtain fresh water. Instructions for the construction of apparatus to demonstrate a solar still, the greenhouse effect and measurement of the altitude and azimuth of the sun are included. (BCS)

  19. Infrared energy levels and intensities of carbon dioxide.

    PubMed

    Rothman, L S; Benedict, W S

    1978-08-15

    Updated tables of vibrational energy levels, molecular constants, band origins, and intensities for carbon dioxide in the infrared region of the spectrum are presented. These tables are references for the AFGL Atmospheric Absorption Line Parameters Compilation.

  20. "Piekara's Chair": Mechanical Model for Atomic Energy Levels.

    ERIC Educational Resources Information Center

    Golab-Meyer, Zofia

    1991-01-01

    Uses the teaching method of models or analogies, specifically the model called "Piekara's chair," to show how teaching classical mechanics can familiarize students with the notion of energy levels in atomic physics. (MDH)

  1. Energy intake, physical activity, energy balance, and cancer: epidemiologic evidence.

    PubMed

    Pan, Sai Yi; DesMeules, Marie

    2009-01-01

    Energy intake, physical activity, and obesity are modifiable lifestyle factors. This chapter reviews and summarizes the epidemiologic evidence on the relation of energy intake, physical activity, and obesity to cancer. High energy intake may increase the risk of cancers of colon-rectum, prostate (especially advanced prostate cancer), and breast. However, because physical activity, body size, and metabolic efficiency are highly related to total energy intake and expenditure, it is difficult to assess the independent effect of energy intake on cancer risk. There are sufficient evidences to support a role of physical activity in preventing cancers of the colon and breast, whereas the association is stronger in men than in women for colon cancer and in postmenopausal than in premenopausal women for breast cancer. The evidence also suggests that physical activity likely reduces the risk of cancers of endometrium, lung, and prostate (to a lesser extent). On the other hand, there is little or no evidence that the risk of rectal cancer is related to physical activity, whereas the results have been inconsistent regarding the association between physical activity and the risks of cancers of pancreas, ovary and kidney. Epidemiologic studies provide sufficient evidence that obesity is a risk factor for both cancer incidence and mortality. The evidence supports strong links of obesity with the risk of cancers of the colon, rectum, breast (in postmenopausal women), endometrium, kidney (renal cell), and adenocarcinoma of the esophagus. Epidemiologic evidence also indicates that obesity is probably related to cancers of the pancreas, liver, and gallbladder, and aggressive prostate cancer, while it seems that obesity is not associated with lung cancer. The role of obesity in other cancer risks is unclear.

  2. Temperature dependent energy levels of methylammonium lead iodide perovskite

    SciTech Connect

    Foley, Benjamin J.; Marlowe, Daniel L.; Choi, Joshua J. E-mail: mgupta@virginia.edu; Sun, Keye; Gupta, Mool C. E-mail: mgupta@virginia.edu; Saidi, Wissam A.; Scudiero, Louis E-mail: mgupta@virginia.edu

    2015-06-15

    Temperature dependent energy levels of methylammonium lead iodide are investigated using a combination of ultraviolet photoemission spectroscopy and optical spectroscopy. Our results show that the valence band maximum and conduction band minimum shift down in energy by 110 meV and 77 meV as temperature increases from 28 °C to 85 °C. Density functional theory calculations using slab structures show that the decreased orbital splitting due to thermal expansion is a major contribution to the experimentally observed shift in energy levels. Our results have implications for solar cell performance under operating conditions with continued sunlight exposure and increased temperature.

  3. Energy Conservation Education for New York State. Interdisciplinary Learning Activities. Grades 7-12.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany.

    Provided in this document are 18 energy conservation activities designed to supplement regular classroom learning activities. A matrix correlating activity number with grade level and subject areas is included. Titles of activities are: puzzles; energy quiz; energy-related careers; reading a meter; trading calories for kilo-watts; conserving home…

  4. Chemical activation through super energy transfer collisions.

    PubMed

    Smith, Jonathan M; Nikow, Matthew; Ma, Jianqiang; Wilhelm, Michael J; Han, Yong-Chang; Sharma, Amit R; Bowman, Joel M; Dai, Hai-Lung

    2014-02-05

    Can a molecule be efficiently activated with a large amount of energy in a single collision with a fast atom? If so, this type of collision will greatly affect molecular reactivity and equilibrium in systems where abundant hot atoms exist. Conventional expectation of molecular energy transfer (ET) is that the probability decreases exponentially with the amount of energy transferred, hence the probability of what we label "super energy transfer" is negligible. We show, however, that in collisions between an atom and a molecule for which chemical reactions may occur, such as those between a translationally hot H atom and an ambient acetylene (HCCH) or sulfur dioxide, ET of chemically significant amounts of energy commences with surprisingly high efficiency through chemical complex formation. Time-resolved infrared emission observations are supported by quasi-classical trajectory calculations on a global ab initio potential energy surface. Results show that ∼10% of collisions between H atoms moving with ∼60 kcal/mol energy and HCCH result in transfer of up to 70% of this energy to activate internal degrees of freedom.

  5. Wavelengths and Energy Levels of Neutral Kr84 and Level Shifts in All Kr Even Isotopes

    PubMed Central

    Kaufman, Victor

    1993-01-01

    Interferometrically-measured wavelengths of 109 lines of neutral Kr84 are compared with those of Kr86. Sixty energy levels of neutral Kr84 derived from those wavelengths and 25 Kr86–Kr84 isotope shifts previously measured are given along with their shifts from the energy levels of Kr86. Twenty levels of each of Kr82, Kr80, and Kr78 are also evaluated using isotope-shift information in the literature. The differences between the experimentally observed shifts and the normal mass shift leave large negative residuals which are accounted for by ionization energy differences and by the specific mass shift. It appears that the volume effect causes only a very small, if any, energy level shift. PMID:28053495

  6. Energy level transitions of gas in a 2D nanopore

    SciTech Connect

    Grinyaev, Yurii V.; Chertova, Nadezhda V.; Psakhie, Sergei G.

    2015-10-27

    An analytical study of gas behavior in a 2D nanopore was performed. It is shown that the temperature dependence of gas energy can be stepwise due to transitions from one size-quantized subband to another. Taking into account quantum size effects results in energy level transitions governed by the nanopore size, temperature and gas density. This effect leads to an abrupt change of gas heat capacity in the nanopore at the above varying system parameters.

  7. Study of the crossing of quasi-energy levels in a four-level system

    SciTech Connect

    Arushanyan, S; Melikyan, A; Saakyan, S

    2011-05-31

    It was shown previously that in taking into account only dipole transitions, the crossing of quasi-energy levels is possible in the system if any of the transitions forms a closed loop. It followed herefrom that for the analysis of the crossing conditions, it is necessary to consider a system which has at least four levels. In this paper we show that we can uniquely specify which quasi-energy levels cross at the given values of the parameters of the atomic system and radiation field, without solving an algebraic quartic equation. It was found that the most suitable system for the implementation of the crossing is the group of energy levels {sup 5}S{sub 1/2}, {sup 5}P{sub 1/2}, {sup 5}P{sub 3/2} and {sup 5}D{sub 3/2} of a rubidium atom. The performed calculations of the laser field intensity and frequency values at which crossing takes place in this system show that they are easily attainable. It turned out that in this system there occur crossing of quasi-energy levels corresponding to the excited atomic levels. (intersection of quasi-energy levels)

  8. Prediction of energy expenditure and physical activity in preschoolers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate, nonintrusive, and feasible methods are needed to predict energy expenditure (EE) and physical activity (PA) levels in preschoolers. Herein, we validated cross-sectional time series (CSTS) and multivariate adaptive regression splines (MARS) models based on accelerometry and heart rate (HR) ...

  9. Constrained Total Energy Expenditure and Metabolic Adaptation to Physical Activity in Adult Humans.

    PubMed

    Pontzer, Herman; Durazo-Arvizu, Ramon; Dugas, Lara R; Plange-Rhule, Jacob; Bovet, Pascal; Forrester, Terrence E; Lambert, Estelle V; Cooper, Richard S; Schoeller, Dale A; Luke, Amy

    2016-02-08

    Current obesity prevention strategies recommend increasing daily physical activity, assuming that increased activity will lead to corresponding increases in total energy expenditure and prevent or reverse energy imbalance and weight gain [1-3]. Such Additive total energy expenditure models are supported by exercise intervention and accelerometry studies reporting positive correlations between physical activity and total energy expenditure [4] but are challenged by ecological studies in humans and other species showing that more active populations do not have higher total energy expenditure [5-8]. Here we tested a Constrained total energy expenditure model, in which total energy expenditure increases with physical activity at low activity levels but plateaus at higher activity levels as the body adapts to maintain total energy expenditure within a narrow range. We compared total energy expenditure, measured using doubly labeled water, against physical activity, measured using accelerometry, for a large (n = 332) sample of adults living in five populations [9]. After adjusting for body size and composition, total energy expenditure was positively correlated with physical activity, but the relationship was markedly stronger over the lower range of physical activity. For subjects in the upper range of physical activity, total energy expenditure plateaued, supporting a Constrained total energy expenditure model. Body fat percentage and activity intensity appear to modulate the metabolic response to physical activity. Models of energy balance employed in public health [1-3] should be revised to better reflect the constrained nature of total energy expenditure and the complex effects of physical activity on metabolic physiology.

  10. Conservation Activities Related to Energy: Energy Activities for Urban Elementary Students, K-6.

    ERIC Educational Resources Information Center

    Schmidt, Joan S.; And Others

    Presented are simple activities, experiments, and demonstrations relating to energy conservation in the home. Activities are divided into four areas: (1) kitchen, (2) house, (3) transportation, and (4) heating and cooling. The material has been designed to require a minimum of preparation. Activity and game masters are provided. Activities may be…

  11. Department of Energy pretreatment of high-level and low-level wastes

    SciTech Connect

    McGinnis, C.P.; Hunt, R.D.

    1995-12-31

    The remediation of the 1 {times} 10{sup 8} gal of highly radioactive waste in the underground storage tanks (USTs) at five US Department of Energy (DOE) sites is one of DOE`s greatest challenges. Therefore, the DOE Office of Environmental Management has created the Tank Focus Area (TFA) to manage an integrated technology development program that results in the safe and efficient remediation of UST waste. The TFA has divided its efforts into five areas, which are safety, characterization, retrieval/closure, pretreatment, and immobilization. All DOE pretreatment activities are integrated by the Pretreatment Technical Integration Manager of the TFA. For FY 1996, the 14 pretreatment tasks are divided into 3 systems: supernate separations, sludge treatment, and solid/liquid separation. The plans and recent results of these TFA tasks, which include two 25,000-gal demonstrations and two former TFA tasks on Cs removal, are presented. The pretreatment goals are to minimize the volume of high-level waste and the radioactivity in low-level waste.

  12. Energy Activities for Junior High Social Studies.

    ERIC Educational Resources Information Center

    Minnesota State Energy Agency, St. Paul.

    The document contains seven learning activities for junior high students on the energy situation. Objectives are to help students gain understanding and knowledge about the relationships between humans and their social and physical environments; solve problems and clarify issues; examine personal beliefs and values; and recognize the relationships…

  13. Solar Energy Project, Activities: Chemistry & Physics.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of chemistry and physics experiments. Each unit presents an introduction to the unit; objectives; required skills and knowledge; materials; method; questions; recommendations for further work; and a teacher information sheet.…

  14. Degeneracy of energy levels of pseudo-Gaussian oscillators

    SciTech Connect

    Iacob, Theodor-Felix; Iacob, Felix; Lute, Marina

    2015-12-07

    We study the main features of the isotropic radial pseudo-Gaussian oscillators spectral properties. This study is made upon the energy levels degeneracy with respect to orbital angular momentum quantum number. In a previous work [6] we have shown that the pseudo-Gaussian oscillators belong to the class of quasi-exactly solvable models and an exact solution has been found.

  15. Energy levels of hybrid monolayer-bilayer graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Mirzakhani, M.; Zarenia, M.; Ketabi, S. A.; da Costa, D. R.; Peeters, F. M.

    2016-04-01

    Often real samples of graphene consist of islands of both monolayer and bilayer graphene. Bound states in such hybrid quantum dots are investigated for (i) a circular single-layer graphene quantum dot surrounded by an infinite bilayer graphene sheet and (ii) a circular bilayer graphene quantum dot surrounded by an infinite single-layer graphene. Using the continuum model and applying zigzag boundary conditions at the single-layer-bilayer graphene interface, we obtain analytical results for the energy levels and the corresponding wave spinors. Their dependence on perpendicular magnetic and electric fields are studied for both types of quantum dots. The energy levels exhibit characteristics of interface states, and we find anticrossings and closing of the energy gap in the presence of a bias potential.

  16. Levelized cost of energy for a Backward Bent Duct Buoy

    SciTech Connect

    Bull, Diana; Jenne, D. Scott; Smith, Christopher S.; Copping, Andrea E.; Copeland, Guild

    2016-12-01

    The Reference Model Project, supported by the U.S. Department of Energy, was developed to provide publically available technical and economic benchmarks for a variety of marine energy converters. The methodology to achieve these benchmarks is to develop public domain designs that incorporate power performance estimates, structural models, anchor and mooring designs, power conversion chain designs, and estimates of the operations and maintenance, installation, and environmental permitting required. The reference model designs are intended to be conservative, robust, and experimentally verified. The Backward Bent Duct Buoy (BBDB) presented in this paper is one of three wave energy conversion devices studied within the Reference Model Project. Comprehensive modeling of the BBDB in a Northern California climate has enabled a full levelized cost of energy (LCOE) analysis to be completed on this device.

  17. Levelized cost of energy for a Backward Bent Duct Buoy

    DOE PAGES

    Bull, Diana; Jenne, D. Scott; Smith, Christopher S.; ...

    2016-07-18

    The Reference Model Project, supported by the U.S. Department of Energy, was developed to provide publicly available technical and economic benchmarks for a variety of marine energy converters. The methodology to achieve these benchmarks is to develop public domain designs that incorporate power performance estimates, structural models, anchor and mooring designs, power conversion chain designs, and estimates of the operations and maintenance, installation, and environmental permitting required. The reference model designs are intended to be conservative, robust, and experimentally verified. The Backward Bent Duct Buoy (BBDB) presented in this paper is one of three wave energy conversion devices studied withinmore » the Reference Model Project. Furthermore, comprehensive modeling of the BBDB in a Northern California climate has enabled a full levelized cost of energy (LCOE) analysis to be completed on this device.« less

  18. Levelized cost of energy for a Backward Bent Duct Buoy

    SciTech Connect

    Bull, Diana; Jenne, D. Scott; Smith, Christopher S.; Copping, Andrea E.; Copeland, Guild

    2016-07-18

    The Reference Model Project, supported by the U.S. Department of Energy, was developed to provide publicly available technical and economic benchmarks for a variety of marine energy converters. The methodology to achieve these benchmarks is to develop public domain designs that incorporate power performance estimates, structural models, anchor and mooring designs, power conversion chain designs, and estimates of the operations and maintenance, installation, and environmental permitting required. The reference model designs are intended to be conservative, robust, and experimentally verified. The Backward Bent Duct Buoy (BBDB) presented in this paper is one of three wave energy conversion devices studied within the Reference Model Project. Furthermore, comprehensive modeling of the BBDB in a Northern California climate has enabled a full levelized cost of energy (LCOE) analysis to be completed on this device.

  19. Determinants affecting physical activity levels in animal models

    NASA Technical Reports Server (NTRS)

    Tou, Janet C L.; Wade, Charles E.

    2002-01-01

    Weight control is dependent on energy balance. Reduced energy expenditure (EE) associated with decreased physical activity is suggested to be a major underlying cause in the increasing prevalence of weight gain and obesity. Therefore, a better understanding of the biological determinants involved in the regulation of physical activity is essential. To facilitate interpretation in humans, it is helpful to consider the evidence from animal studies. This review focuses on animal studies examining the biological determinants influencing activity and potential implications to human. It appears that physical activity is influenced by a number of parameters. However, regardless of the parameter involved, body weight appears to play an underlying role in the regulation of activity. Furthermore, the regulation of activity associated with body weight appears to occur only after the animal achieves a critical weight. This suggests that activity levels are a consequence rather than a contributor to weight control. However, the existence of an inverse weight-activity relationship remains inconclusive. Confounding the results are the multifactorial nature of physical activity and the lack of appropriate measuring devices. Furthermore, many determinants of body weight are closely interlocked, making it difficult to determine whether a single, combination, or interaction of factors is important for the regulation of activity. For example, diet-induced obesity, aging, lesions to the ventral medial hypothalamus, and genetics all produce hypoactivity. Providing a better understanding of the biological determinants involved in the regulation of activity has important implications for the development of strategies for the prevention of weight gain leading to obesity and subsequent morbidity and mortality in the human population.

  20. Determinants Affecting Physical Activity Levels In Animal Models

    NASA Technical Reports Server (NTRS)

    Tou, Janet C. L.; Wade, Charles E.; Dalton, Bonnie P. (Technical Monitor)

    2001-01-01

    Weight control is dependent on energy balance. Reduced energy expenditure (EE) associated with decreased physical activity is suggested to be a major underlying cause in the increasing prevalence of weight gain and obesity. Therefore, a better understanding of the biological determinants involved in the regulation of physical activity is essential. To facilitate interpretation in humans, it is helpful to consider the evidence from animal studies. This review focuses on animal studies examining the biological determinants influencing activity and potential implications to human. It appears that physical activity is influenced by a number of parameters. However, regardless of the parameter involved, body weight appears to play all underlying role in the regulation of activity. Furthermore, the regulation of activity associated with body weight appears to occur only after the animal achieves a critical weight. This suggests that activity levels are a consequence rather than a contributor to weight control. However, the existence of an inverse weight-activity relationship remains inconclusive. Confounding the results are the multi-factorial nature of physical activity and the lack of appropriate measuring devices. Furthermore, many determinants of body weight are closely interlocked making it difficult to determine whether a single, combination or interaction of factors is important for the regulation of activity. For example, diet-induced obesity, aging, lesions to tile ventral medial hypothalamus and genetics all produce hypoactivity. Providing a better understanding of the biological determinants involved in the regulation of activity has important implications for the development of strategies for the prevention of weight gain leading to obesity and subsequent morbidity and mortality in the human population.

  1. The Magnetic Free Energy in Active Regions

    NASA Technical Reports Server (NTRS)

    Metcalf, Thomas R.; Mickey, Donald L.; LaBonte, Barry J.

    2001-01-01

    The magnetic field permeating the solar atmosphere governs much of the structure, morphology, brightness, and dynamics observed on the Sun. The magnetic field, especially in active regions, is thought to provide the power for energetic events in the solar corona, such as solar flares and Coronal Mass Ejections (CME) and is believed to energize the hot coronal plasma seen in extreme ultraviolet or X-rays. The question remains what specific aspect of the magnetic flux governs the observed variability. To directly understand the role of the magnetic field in energizing the solar corona, it is necessary to measure the free magnetic energy available in active regions. The grant now expiring has demonstrated a new and valuable technique for observing the magnetic free energy in active regions as a function of time.

  2. Mo uc(v) Energy Levels and f values

    NASA Astrophysics Data System (ADS)

    Pan, Lin; Beck, Donald R.

    2004-05-01

    Relativistic Configuration Interaction (RCI) calculations have been done for the lowest 12 J=0 even parity levels, and the lowest 30 J=1 odd parity levels of Mo uc(v.) For the J=0 4d^2 and 4d 5d energy differences, the average error is 229 cm-1 ( M. I. Cabeza, F. G. Meijer, and L. Iglesias, Phys. Scr. 34), 223 (1986). For the other J=0 levels, the average difference with experiment (A. Tauheed, M. S. Z. Chaghtai, and K. Rahimullah, Phys. Scr. 31), 369 (1985) is considerably greater. Our average energy errors for the 11 known ^2 J=1 levels is 233 cm-1, excluding the 5s 5p ^1 P level, which is 1580 cm-1 higher than observed ^2. We predict positions of 19 4p^5 4d^3 levels, as well as f values for the 360 transitions between the calculated levels. Gauge agreements are good for transitions with f > .01. Details of the methodology have been published elsewhere (D. R. Beck and L. Pan, Phys. Scr. 69), 91 (2004).

  3. Alignment of electronic energy levels at electrochemical interfaces.

    PubMed

    Cheng, Jun; Sprik, Michiel

    2012-08-28

    The position of electronic energy levels in a phase depends on the surface potentials at its boundaries. Bringing two phases in contact at an interface will alter the surface potentials shifting the energy levels relative to each other. Calculating such shifts for electrochemical interfaces requires a combination of methods from computational surface science and physical chemistry. The problem is closely related to the computation of potentials of electrochemically inactive electrodes. These so-called ideally polarizable interfaces are impossible to cross for electrons. In this perspective we review two density functional theory based methods that have been developed for this purpose, the workfunction method and the hydrogen insertion method. The key expressions of the two methods are derived from the formal theory of absolute electrode potentials. As an illustration of the workfunction method we review the computation of the potential of zero charge of the Pt(111)-water interface as recently published by a number of groups. The example of the hydrogen insertion method is from our own work on the rutile TiO(2)(110)-water interface at the point of zero proton charge. The calculations are summarized in level diagrams aligning the electronic energy levels of the solid electrode (Fermi level of the metal, valence band maximum and conduction band minimum of the semiconductor) to the band edges of liquid water and the standard potential for the reduction of the hydroxyl radical. All potentials are calculated at the same level of density functional theory using the standard hydrogen electrode as common energy reference. Comparison to experiment identifies the treatment of the valence band of water as a potentially dangerous source of error for application to electrocatalysis and photocatalysis.

  4. Self-energy shift of the energy levels of atomic hydrogen in photonic crystal medium

    NASA Astrophysics Data System (ADS)

    Gainutdinov, R. Kh; Khamadeev, M. A.; Steryakov, O. V.; Ziyatdinova, K. A.; Salakhov, M. Kh

    2016-05-01

    Corrections to the average kinetic energy of atomic electrons caused by the change in electron mass in the photonic crystal medium are investigated. Corresponding shift of energy levels of atoms placed in a photonic crystal is shown to be of order of the ordinary Lamb shift.

  5. First principle prediction of shallow defect level binding energies and deep level nonradiative recombination rates

    NASA Astrophysics Data System (ADS)

    Wang, Linwang

    2014-03-01

    Accurate calculation of defect level energies in semiconductors and their carrier capturing rate is an important issue in ab initio prediction of semiconductor properties. In this talk, I will present our result work in ab initio shallow level calculation and deep level caused nonradiative recombination rate calculation. In the shallow acceptor level calculation, a large system up to 64,000 atoms needs to be used to properly describe the weakly bounded hole wave functions. The single particle Hamiltonian of that system is patched from bulk potential and central potential. Furthermore, GW calculation is used to correct the one site potential of the impurity atom. The resulting binding energy agrees excellently with the experiments within 10 meV. To calculate the nonradiative decay rate, the electron-phonon coupling constants in the defect system are calculated all at once using a new variational algorithm. Multiphonon process formalism is used to calculate the nonradiative decay rate. It is found that the transition is induced by the electron and the optical phonon coupling, but the energy conservation is mostly satisfied by the acoustic phonons. The new algorithm allows fast calculation of such nonradiative decay rate for any defect levels, as well as other multiphonon processes in nanostructures. This work was supported by the Director, Office of Science (SC), Basic Energy Science (BES)/Materials Science and Engineering Division (MSED) of the U.S. Department of Energy (DOE) under the contract No. DE-AC02-05CH11231.

  6. Energy Expenditure During Extravehicular Activity Through Apollo

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.

    2011-01-01

    Monitoring crew health during manned space missions has always been an important factor to ensure that the astronauts can complete the missions successfully and within safe physiological limits. The necessity of real-time metabolic rate monitoring during extravehicular activities (EVAs) came into question during the Gemini missions, when the energy expenditure required to complete EVA tasks exceeded the life support capabilities for cooling and humidity control and crewmembers (CMs) ended the EVAs fatigued and overworked. This paper discusses the importance of real-time monitoring of metabolic rate during EVA, and provides a historical look at energy expenditure during EVA through the Apollo program.

  7. Energy Expenditure During Extravehicular Activity Through Apollo

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.

    2012-01-01

    Monitoring crew health during manned space missions has always been an important factor to ensure that the astronauts can complete the missions successfully and within safe physiological limits. The necessity of real-time metabolic rate monitoring during extravehicular activities (EVAs) came into question during the Gemini missions, when the energy expenditure required to complete EVA tasks exceeded the life support capabilities for cooling and humidity control and, as a result, crew members ended the EVAs fatigued and overworked. This paper discusses the importance of real-time monitoring of metabolic rate during EVAs, and provides a historical look at energy expenditure during EVAs through the Apollo Program.

  8. Framework for State-Level Renewable Energy Market Potential Studies

    SciTech Connect

    Kreycik, C.; Vimmerstedt, L.; Doris, E.

    2010-01-01

    State-level policymakers are relying on estimates of the market potential for renewable energy resources as they set goals and develop policies to accelerate the development of these resources. Therefore, accuracy of such estimates should be understood and possibly improved to appropriately support these decisions. This document provides a framework and next steps for state officials who require estimates of renewable energy market potential. The report gives insight into how to conduct a market potential study, including what supporting data are needed and what types of assumptions need to be made. The report distinguishes between goal-oriented studies and other types of studies, and explains the benefits of each.

  9. Recommendations on the Nature and Level of U.S. Participation in the International Thermonuclear Experimental Reactor Extension of the Experimental Reactor Extension of the Engineering Design Activities. Panel Report To Fusion Energy Sciences Advisory Committee (FESAC)

    SciTech Connect

    none,

    1998-01-31

    The DOE Office of Energy Research chartered through the Fusion Energy Sciences Advisory Committee (FESAC) a panel to "address the topic of U. S. participation in an ITER construction phase, assuming the ITER Parties decide to proceed with construction." (Attachment 1: DOE Charge, September 1996). Given that there is expected to be a transition period of three to five years between the conclusion of the Engineering Design Activities (EDA) and the possible construction start, the DOE Office of Energy Research expanded the charge to "include the U.S. role in an interim period between the EDA and construction." (Attachment 2: DOE Expanded Charge, May 1997). This panel has heard presentations and received input from a wide cross-section of parties with an interest in the fusion program. The panel concluded it could best fulfill its responsibility under this charge by considering the fusion energy science and technology portion of the U.S. program in its entirety. Accordingly, the panel is making some recommendations for optimum use of the transition period considering the goals of the fusion program and budget pressures.

  10. Energy Level Alignment at Aqueous GaN and ZnO Interfaces

    NASA Astrophysics Data System (ADS)

    Hybertsen, Mark S.; Kharche, Neerav; Muckerman, James T.

    2014-03-01

    Electronic energy level alignment at semiconductor-electrolyte interfaces is fundamental to electrochemical activity. Motivated in particular by the search for new materials that can be more efficient for photocatalysis, we develop a first principles method to calculate this alignment at aqueous interfaces and demonstrate it for the specific case of non-polar GaN and ZnO interfaces with water. In the first step, density functional theory (DFT) based molecular dynamics is used to sample the physical interface structure and to evaluate the electrostatic potential step at the interface. In the second step, the GW approach is used to evaluate the reference electronic energy level separately in the bulk semiconductor (valence band edge energy) and in bulk water (the 1b1 energy level), relative to the internal electrostatic energy reference. Use of the GW approach naturally corrects for errors inherent in the use of Kohn-Sham energy eigenvalues to approximate the electronic excitation energies in each material. With this predicted interface alignment, specific redox levels in water, with potentials known relative to the 1b1 level, can then be compared to the semiconductor band edge positions. Our results will be discussed in the context of experiments in which photoexcited GaN and ZnO drive the hydrogen evolution reaction. Research carried out at Brookhaven National Laboratory under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.

  11. Mechanism of active transport: free energy dissipation and free energy transduction.

    PubMed Central

    Tanford, C

    1982-01-01

    The thermodynamic pathway for "chemiosmotic" free energy transduction in active transport is discussed with an ATP-driven Ca2+ pump as an illustrative example. Two innovations are made in the analysis. (i) Free energy dissipated as heat is rigorously excluded from overall free energy bookkeeping by focusing on the dynamic equilibrium state of the chemiosmotic process. (ii) Separate chemical potential terms for free energy donor and transported ions are used to keep track of the thermodynamic state of each substrate through the reaction cycle. These procedures clarify the mechanism of free energy transduction, even without step-by-step analysis. The results show that free energy exchange must occur in its entirety among protein-bound species. Imposition of conditions for an adequate rate of physiological function further indicates (i) that the standard free energy of hydrolysis of protein-bound ATP (to yield protein-bound products) needs to differ substantially from the standard free energy of hydrolysis in solution and (ii) that binding sites for the transported ions must have different affinities when facing opposite sides of the membrane. The results also demonstrate that step-by-step "basic" free energy changes (often used in the form of free energy level diagrams) are inherently unsuited for analysis of the mechanism of free energy transduction. PMID:6216483

  12. Active Control by Conservation of Energy Concept

    NASA Technical Reports Server (NTRS)

    Maestrello, Lucio

    2000-01-01

    Three unrelated experiments are discussed; each was extremely sensitive to initial conditions. The initial conditions are the beginnings of the origins of the information that nonlinearity displays. Initial conditions make the phenomenon unstable and unpredictable. With the knowledge of the initial conditions, active control requires far less power than that present in the system response. The first experiment is on the control of shocks from an axisymmetric supersonic jet; the second, control of a nonlinear panel response forced by turbulent boundary layer and sound; the third, control of subharmonic and harmonics of a panel forced by sound. In all three experiments, control is achieved by redistribution of periodic energy response such that the energy is nearly preserved from a previous uncontrolled state. This type of active control improves the performance of the system being controlled.

  13. Energy cost and energy sources during a simulated firefighting activity.

    PubMed

    Perroni, Fabrizio; Tessitore, Antonio; Cortis, Cristina; Lupo, Corrado; D'artibale, Emanuele; Cignitti, Lamberto; Capranica, Laura

    2010-12-01

    This study aimed to 1) analyze the energy requirement (VO2eq) and the contribution of the aerobic (VO2ex), anaerobic alactic (VO2al), and anaerobic lactic (VO2la-) energy sources of a simulated intervention; 2) ascertain differences in mean VO2 and heart rate (HR) during firefighting tasks; and 3) verify the relationship between time of job completion and the fitness level of firefighters. Twenty Italian firefighters (age = 32 ± 6 yr, VO2peak = 43.1 ± 4.9 mL·kg·min) performed 4 consecutive tasks (i.e., child rescue; 250-m run; find an exit; 250-m run) that required a VO2eq of 406.26 ± 73.91 mL·kg (VO2ex = 86 ± 5%; VO2al = 9 ± 3%; VO2la- = 5 ± 3%). After 30 minutes, the recovery HR (108 ± 15 beats·min) and VO2 (8.86±2.67mL·kg·min) were higher (p < 0.0001) than basal values (HR = 66 ± 8 beats·min; VO2 = 4.57 ± 1.07 mL·kg·min), indicating that passive recovery is insufficient in reducing the cardiovascular and thermoregulatory strain of the previous workload. Differences (p < 0.001) between tasks emerged for mean VO2 and HR, with a lack of significant correlation between the time of job completion and the firefighters' aerobic fitness. These findings indicate that unpredictable working conditions highly challenge expert firefighters who need adequate fitness levels to meet the requirements of their work. Practically, to enhance the fitness level of firefighters, specific interval training programs should include a wide variety of tasks requiring different intensities and decision-making strategies.

  14. Get Current: Switch on Clean Energy Activity Book

    SciTech Connect

    2014-06-01

    Switching on clean energy technologies means strengthening the economy while protecting the environment. This activity book for all ages promotes energy awareness, with facts on different types of energy and a variety of puzzles in an energy theme.

  15. Department of Energy low-level radioactive waste disposal concepts

    SciTech Connect

    Ozaki, C.; Page, L.; Morreale, B.; Owens, C.

    1990-01-01

    The Department of Energy (DOE) manages its low-level waste (LLW), regulated by DOE Order 5820.2A by using an overall systems approach. This systems approach provides an improved and consistent management system for all DOE LLW waste, from generation to disposal. This paper outlines six basic disposal concepts used in the systems approach, discusses issues associated with each of the concepts, and outlines both present and future disposal concepts used at six DOE sites. 3 refs., 9 figs.

  16. Nestling activity levels during begging behaviour predicts activity level and body mass in adulthood

    PubMed Central

    Griffith, Simon C.

    2014-01-01

    Across a range of species including humans, personality traits, or differences in behaviour between individuals that are consistent over time, have been demonstrated. However, few studies have measured whether these consistent differences are evident in very young animals, and whether they persist over an individual’s entire lifespan. Here we investigated the begging behaviour of very young cross-fostered zebra finch nestlings and the relationship between that and adult activity levels. We found a link between the nestling activity behaviour head movements during begging, measured at just five and seven days after hatching, and adult activity levels, measured when individuals were between three and three and a half years old. Moreover, body mass was found to be negatively correlated with both nestling and adult activity levels, suggesting that individuals which carry less body fat as adults are less active both as adults and during begging as nestlings. Our work suggests that the personality traits identified here in both very young nestlings and adults may be linked to physiological factors such as metabolism or environmental sources of variation. Moreover, our work suggests it may be possible to predict an individual’s future adult personality at a very young age, opening up new avenues for future work to explore the relationship between personality and a number of aspects of individual life history and survival. PMID:25279258

  17. A Detailed Level Kinetics Model of NO Vibrational Energy Distributions

    NASA Technical Reports Server (NTRS)

    Sharma, Surendra P.; Gilmore, John; Cavolowsky, John A. (Technical Monitor)

    1996-01-01

    Several contemporary problems have pointed to the desirability of a detailed level kinetics approach to modeling the distribution of vibrational energy in NO. Such a model is necessary when vibrational redistribution reactions are insufficient to maintain a Boltzmann distribution over the vibrational energy states. Recent calculations of the rate constant for the first reaction of the Zeldovich mechanism (N2 + O (goes to) NO + N) have suggested that the product NO is formed in high vibrational states. In shock layer flowfields, the product NO molecules may experience an insufficient number of collisions to establish a Boltzmann distribution over vibrational states, thus necessitating a level kinetics model. In other flows, such as expansions of high temperature air, fast, near-resonance vibrational energy exchanges with N2 and O2 may also require a level specific model for NO because of the relative rates of vibrational exchange and redistribution. The proposed report will integrate computational and experimental components to construct such a model for the NO molecule.

  18. Energy levels scheme simulation of divalent cobalt doped bismuth germanate

    SciTech Connect

    Andreici, Emiliana-Laura; Petkova, Petya; Avram, Nicolae M.

    2015-12-07

    The aim of this paper is to simulate the energy levels scheme for Bismuth Germanate (BGO) doped with divalent cobalt, in order to give a reliable explanation for spectral experimental data. In the semiempirical crystal field theory we first modeled the Crystal Field Parameters (CFPs) of BGO:Cr{sup 2+} system, in the frame of Exchange Charge Model (ECM), with actually site symmetry of the impurity ions after doping. The values of CFPs depend on the geometry of doped host matrix and by parameter G of ECM. First, we optimized the geometry of undoped BGO host matrix and afterwards, that of doped BGO with divalent cobalt. The charges effect of ligands and covalence bonding between cobalt cations and oxygen anions, in the cluster approach, also were taken into account. With the obtained values of the CFPs we simulate the energy levels scheme of cobalt ions, by diagonalizing the matrix of the doped crystal Hamiltonian. Obviously, energy levels and estimated Racah parameters B and C were compared with the experimental spectroscopic data and discussed. Comparison of obtained results with experimental data shows quite satisfactory, which justify the model and simulation schemes used for the title system.

  19. A rotamer energy level study of sulfuric acid.

    PubMed

    Partanen, Lauri; Pesonen, Janne; Sjöholm, Elina; Halonen, Lauri

    2013-10-14

    It is a common approach in quantum chemical calculations for polyatomic molecules to rigidly constrain some of the degrees of freedom in order to make the calculations computationally feasible. However, the presence of the rigid constraints also affects the kinetic energy operator resulting in the frozen mode correction, originally derived by Pesonen [J. Chem. Phys. 139, 144310 (2013)]. In this study, we compare the effects of this correction to several different approximations to the kinetic energy operator used in the literature, in the specific case of the rotamer energy levels of sulfuric acid. The two stable conformers of sulfuric acid are connected by the rotations of the O-S-O-H dihedral angles and possess C2 and Cs symmetry in the order of increasing energy. Our results show that of the models tested, the largest differences with the frozen mode corrected values were obtained by simply omitting the passive degrees of freedom. For the lowest 17 excited states, this inappropriate treatment introduces an increase of 9.6 cm(-1) on average, with an increase of 8.7 cm(-1) in the zero-point energies. With our two-dimensional potential energy surface calculated at the CCSD(T)-F12a/VDZ-F12 level, we observe a radical shift in the density of states compared to the harmonic picture, combined with an increase in zero point energy. Thus, we conclude that the quantum mechanical inclusion of the different conformers of sulfuric acid have a significant effect on its vibrational partition function, suggesting that it will also have an impact on the computational values of the thermodynamic properties of any reactions where sulfuric acid plays a role. Finally, we also considered the effect of the anharmonicities for the other vibrational degrees of freedom with a VSCF-calculation at the DF-MP2-F12/VTZ-F12 level of theory but found that the inclusion of the other conformer had the more important effect on the vibrational partition function.

  20. Potential energy surface and rovibrational energy levels of the H2-CS van der Waals complex.

    PubMed

    Denis-Alpizar, Otoniel; Stoecklin, Thierry; Halvick, Philippe; Dubernet, Marie-Lise; Marinakis, Sarantos

    2012-12-21

    Owing to its large dipole, astrophysicists use carbon monosulfide (CS) as a tracer of molecular gas in the interstellar medium, often in regions where H(2) is the most abundant collider. Predictions of the rovibrational energy levels of the weakly bound complex CS-H(2) (not yet observed) and also of rate coefficients for rotational transitions of CS in collision with H(2) should help to interpret the observed spectra. This paper deals with the first goal, i.e., the calculation of the rovibrational energy levels. A new four-dimensional intermolecular potential energy surface for the H(2)-CS complex is presented. Ab initio potential energy calculations were carried out at the coupled-cluster level with single and double excitations and a perturbative treatment of triple excitations, using a quadruple-zeta basis set and midbond functions. The potential energy surface was obtained by an analytic fit of the ab initio data. The equilibrium structure of the H(2)-CS complex is found to be linear with the carbon pointing toward H(2) at the intermolecular separation of 8.6 a(o). The corresponding well depth is -173 cm(-1). The potential was used to calculate the rovibrational energy levels of the para-H(2)-CS and ortho-H(2)-CS complexes. The present work provides the first theoretical predictions of these levels. The calculated dissociation energies are found to be 35.9 cm(-1) and 49.9 cm(-1), respectively, for the para and ortho complexes. The second virial coefficient for the H(2)-CS pair has also been calculated for a large range of temperature. These results could be used to assign future experimental spectra and to check the accuracy of the potential energy surface.

  1. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Cold Climates

    SciTech Connect

    Building Industry Research Alliance; Building Science Consortium; Consortium for Advanced Residential Buildings; Florida Solar Energy Center; IBACOS; National Renewable Energy Laboratory

    2006-08-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in Cold Climates on a cost-neutral basis.

  2. Energy and Man's Environment Activity Guide: An Interdisciplinary Teacher's Guide to Energy and Environmental Activities, Section One - Sources of Energy.

    ERIC Educational Resources Information Center

    Jones, John, Ed.

    This publication presents the activities pertaining to the first goal of this activity guide series. The activities in this publication focus primarily on the availability of resources, forms of energy, natural laws, and socioeconomic considerations. These materials are appropriate for middle school and junior high school students. These…

  3. Energy and Man's Environment Activity Guide: An Interdisciplinary Teacher's Guide to Energy and Environmental Activities, Section Four - Impacts of Energy.

    ERIC Educational Resources Information Center

    Jones, John, Ed.

    This publication presents the activities pertaining to the fourth goal of this activity guide series. The activities in this publication focus on the socioeconomic effects of energy uses and crises and the understandings needed to assess those effects. These materials are appropriate for middle school and junior high school students. These…

  4. Experimental Energy Levels and Partition Function of the 12C2 Molecule

    NASA Astrophysics Data System (ADS)

    Furtenbacher, Tibor; Szabó, István; Császár, Attila G.; Bernath, Peter F.; Yurchenko, Sergei N.; Tennyson, Jonathan

    2016-06-01

    The carbon dimer, the 12C2 molecule, is ubiquitous in astronomical environments. Experimental-quality rovibronic energy levels are reported for 12C2, based on rovibronic transitions measured for and among its singlet, triplet, and quintet electronic states, reported in 42 publications. The determination utilizes the Measured Active Rotational-Vibrational Energy Levels (MARVEL) technique. The 23,343 transitions measured experimentally and validated within this study determine 5699 rovibronic energy levels, 1325, 4309, and 65 levels for the singlet, triplet, and quintet states investigated, respectively. The MARVEL analysis provides rovibronic energies for six singlet, six triplet, and two quintet electronic states. For example, the lowest measurable energy level of the {{a}}{}3{{{\\Pi }}}{{u}} state, corresponding to the J = 2 total angular momentum quantum number and the F 1 spin-multiplet component, is 603.817(5) cm-1. This well-determined energy difference should facilitate observations of singlet-triplet intercombination lines, which are thought to occur in the interstellar medium and comets. The large number of highly accurate and clearly labeled transitions that can be derived by combining MARVEL energy levels with computed temperature-dependent intensities should help a number of astrophysical observations as well as corresponding laboratory measurements. The experimental rovibronic energy levels, augmented, where needed, with ab initio variational ones based on empirically adjusted and spin-orbit coupled potential energy curves obtained using the Duo code, are used to obtain a highly accurate partition function, and related thermodynamic data, for 12C2 up to 4000 K.

  5. Hydrogen Energy Storage (HES) Activities at NREL; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Eichman, J.

    2015-04-21

    This presentation provides an overview of hydrogen and energy storage, including hydrogen storage pathways and international power-to-gas activities, and summarizes the National Renewable Energy Laboratory's hydrogen energy storage activities and results.

  6. Decreased energy levels can cause and sustain obesity.

    PubMed

    Wlodek, Danuta; Gonzales, Michael

    2003-11-07

    Obesity has reached epidemic proportions and has become one of the major health problems in developed countries. Current theories consider obesity a result of overeating and sedentary life style and most efforts to treat or prevent weight gain concentrate on exercise and food intake. This approach does not improve the situation as may be seen from the steep increase in the prevalence of obesity. This encouraged us to reanalyse existing information and look for biochemical basis of obesity. Our approach was to ignore current theories and concentrate on experimental data which are described in scientific journals and are available from several databases. We developed and applied a Knowledge Discovery in Databases procedure to analyse metabolic data. We began with the contradictory information: in obesity, more calories are consumed than used up, suggesting that obese people should have excess energy. On the other side, obese people experience fatigue and decreased physical endurance that indicates diminished energy supply in the body. The result of our work is a chain of metabolic events leading to obesity. The crucial event is the inhibition of the TCA cycle at the step of aconitase. It disturbs energy metabolism and results in ATP deficiency with simultaneous fat accumulation. Further steps in obesity development are the consequences of diminished energy supply: inhibition of beta-oxidation, leptin resistance, increase in appetite and food intake and a decrease in physical activity. Thus, our theory shows that obesity does not have to be caused by overeating and sedentary life-style but may be the result of the "obese" change in metabolism which is forcing people to overeat and save energy to sustain metabolic functions of cells. This "obese" change is caused by environmental factors that activate chronic low-grade inflammatory process in the body linking obesity with the environment of developed countries.

  7. Energy level alignment at planar organic heterojunctions: influence of contact doping and molecular orientation.

    PubMed

    Opitz, Andreas

    2017-04-05

    Planar organic heterojunctions are widely used in photovoltaic cells, light-emitting diodes, and bilayer field-effect transistors. The energy level alignment in the devices plays an important role in obtaining the aspired gap arrangement. Additionally, the π-orbital overlap between the involved molecules defines e.g. the charge-separation efficiency in solar cells due to charge-transfer effects. To account for both aspects, direct/inverse photoemission spectroscopy and near edge x-ray absorption fine structure spectroscopy were used to determine the energy level landscape and the molecular orientation at prototypical planar organic heterojunctions. The combined experimental approach results in a comprehensive model for the electronic and morphological characteristics of the interface between the two investigated molecular semiconductors. Following an introduction on heterojunctions used in devices and on energy levels of organic materials, the energy level alignment of planar organic heterojunctions will be discussed. The observed energy landscape is always determined by the individual arrangement between the energy levels of the molecules and the work function of the electrode. This might result in contact doping due to Fermi level pinning at the electrode for donor/acceptor heterojunctions, which also improves the solar cell efficiency. This pinning behaviour can be observed across an unpinned interlayer and results in charge accumulation at the donor/acceptor interface, depending on the transport levels of the respective organic semiconductors. Moreover, molecular orientation will affect the energy levels because of the anisotropy in ionisation energy and electron affinity and is influenced by the structural compatibility of the involved molecules at the heterojunction. High structural compatibility leads to π-orbital stacking between different molecules at a heterojunction, which is of additional interest for photovoltaic active interfaces and for ground

  8. Energy level alignment at planar organic heterojunctions: influence of contact doping and molecular orientation

    NASA Astrophysics Data System (ADS)

    Opitz, Andreas

    2017-04-01

    Planar organic heterojunctions are widely used in photovoltaic cells, light-emitting diodes, and bilayer field-effect transistors. The energy level alignment in the devices plays an important role in obtaining the aspired gap arrangement. Additionally, the π-orbital overlap between the involved molecules defines e.g. the charge-separation efficiency in solar cells due to charge-transfer effects. To account for both aspects, direct/inverse photoemission spectroscopy and near edge x-ray absorption fine structure spectroscopy were used to determine the energy level landscape and the molecular orientation at prototypical planar organic heterojunctions. The combined experimental approach results in a comprehensive model for the electronic and morphological characteristics of the interface between the two investigated molecular semiconductors. Following an introduction on heterojunctions used in devices and on energy levels of organic materials, the energy level alignment of planar organic heterojunctions will be discussed. The observed energy landscape is always determined by the individual arrangement between the energy levels of the molecules and the work function of the electrode. This might result in contact doping due to Fermi level pinning at the electrode for donor/acceptor heterojunctions, which also improves the solar cell efficiency. This pinning behaviour can be observed across an unpinned interlayer and results in charge accumulation at the donor/acceptor interface, depending on the transport levels of the respective organic semiconductors. Moreover, molecular orientation will affect the energy levels because of the anisotropy in ionisation energy and electron affinity and is influenced by the structural compatibility of the involved molecules at the heterojunction. High structural compatibility leads to π-orbital stacking between different molecules at a heterojunction, which is of additional interest for photovoltaic active interfaces and for ground

  9. Antimullerian Hormone Level and Endometrioma Ablation Using Plasma Energy

    PubMed Central

    Bubenheim, Michael; Auber, Mathieu; Marpeau, Loïc; Puscasiu, Lucian

    2014-01-01

    Objective: To investigate the impact of ovarian endometrioma vaporization using plasma energy on antimullerian hormone (AMH) level. Method: We report a prospective, noncomparative series (NCT01596985). Twenty-two patients with unilateral ovarian endometriomas ≥30 mm, with no surgical antecedent and no ongoing pregnancy, underwent vaporization of ovarian endometriomas using plasma energy during the period of November 29, 2010 to November 28, 2012. We assessed AMH levels before surgery, 3 months postoperatively, and at the end of follow-up. Results: The mean length of postoperative follow-up was 18.2 ± 8 months. AMH level significantly varied through the 3 assessments performed in the study, as the mean values ± SD were 3.9 ± 2.6 ng/mL before the surgery, 2.3 ± 1.1 ng/mL at 3 months, and 3.1 ± 2.2 ng/mL at the end of the follow-up (P = .001). There was a significant increase from 3 months postoperatively to the end of follow-up (median change 0.7 ng/mL, P = .01). Seventy-one percent of patients had an AMH level >2 ng/mL at the end of the follow-up versus 76% before the surgery (P = 1). During the postoperative follow-up, 11 patients tried to conceive, of whom 8 (73%) became pregnant. Conclusions: The ablation of unilateral endometriomas is followed in a majority of cases by a significant decrease in AMH level 3 months after surgery. In subsequent months, this level progressively increases, raising questions about the real factors that impact postoperative ovarian AMH production. PMID:25392649

  10. Energy level control: toward an efficient hot electron transport.

    PubMed

    Jin, Xiao; Li, Qinghua; Li, Yue; Chen, Zihan; Wei, Tai-Huei; He, Xingdao; Sun, Weifu

    2014-08-07

    Highly efficient hot electron transport represents one of the most important properties required for applications in photovoltaic devices. Whereas the fabrication of efficient hot electron capture and lost-cost devices remains a technological challenge, regulating the energy level of acceptor-donor system through the incorporation of foreign ions using the solution-processed technique is one of the most promising strategies to overcome this obstacle. Here we present a versatile acceptor-donor system by incorporating MoO3:Eu nanophosphors, which reduces both the 'excess' energy offset between the conduction band of acceptor and the lowest unoccupied molecular orbital of donor, and that between the valence band and highest occupied molecular orbital. Strikingly, the hot electron transfer time has been shortened. This work demonstrates that suitable energy level alignment can be tuned to gain the higher hot electron/hole transport efficiency in a simple approach without the need for complicated architectures. This work builds up the foundation of engineering building blocks for third-generation solar cells.

  11. Energy level control: toward an efficient hot electron transport

    PubMed Central

    Jin, Xiao; Li, Qinghua; Li, Yue; Chen, Zihan; Wei, Tai-Huei; He, Xingdao; Sun, Weifu

    2014-01-01

    Highly efficient hot electron transport represents one of the most important properties required for applications in photovoltaic devices. Whereas the fabrication of efficient hot electron capture and lost-cost devices remains a technological challenge, regulating the energy level of acceptor-donor system through the incorporation of foreign ions using the solution-processed technique is one of the most promising strategies to overcome this obstacle. Here we present a versatile acceptor-donor system by incorporating MoO3:Eu nanophosphors, which reduces both the ‘excess' energy offset between the conduction band of acceptor and the lowest unoccupied molecular orbital of donor, and that between the valence band and highest occupied molecular orbital. Strikingly, the hot electron transfer time has been shortened. This work demonstrates that suitable energy level alignment can be tuned to gain the higher hot electron/hole transport efficiency in a simple approach without the need for complicated architectures. This work builds up the foundation of engineering building blocks for third-generation solar cells. PMID:25099864

  12. Vintage-level energy and environmental performance of manufacturing establishments

    SciTech Connect

    Boyd, G.A.; Bock, M.J.; Neifer, M.J.; Karlson, S.H.; Ross, M.H.

    1994-05-01

    This report examines the relationship between an industrial plant`s vintage and its energy and environmental performance. Basic questions related to defining vintage and measuring the effects of the manufacturing industry`s vintage distribution of plant-level capacity and energy intensity are explored in general for six energy-intensive sectors (paper, chlorine, nitrogenous fertilizer, aluminum, steel, and cement) at the four-digit standard industrial classification (SIC) level and in detail for two sectors (steel and cement). Results show that greenfield (i.e., newly opened) plants in the paper, steel, and cement industries exhibit low fossil fuel intensities. These results are consistent with expectations. New plants in the paper and steel industries, where processes are undergoing electrification, exhibit high electricity intensities. An analysis of a subsector of the steel industry -- minimills that use scrap-based, electric arc furnaces -- reveals a decline in electricity intensity of 6.2 kilowatt-hours per ton for each newer year of installed vintage. This estimate is consistent with those of engineering studies and raises confidence that analyses of vintage effects in other industries could be conducted. When a vintage measure is assigned on the basis of investment data rather than trade association data, the vintage/performance relationship results for the cement industry are reasonably robust; thus, the analysis of vintage and performance could be extended to sectors for which only US Bureau of the Census data are available.

  13. The molecular potential energy surface and vibrational energy levels of methyl fluoride. Part II.

    PubMed

    Manson, Steven A; Law, Mark M; Atkinson, Ian A; Thomson, Grant A

    2006-06-28

    New analytical bending and stretching, ground electronic state, potential energy surfaces for CH(3)F are reported. The surfaces are expressed in bond-length, bond-angle internal coordinates. The four-dimensional stretching surface is an accurate, least squares fit to over 2000 symmetrically unique ab initio points calculated at the CCSD(T) level. Similarly, the five-dimensional bending surface is a fit to over 1200 symmetrically unique ab initio points. This is an important first stage towards a full nine-dimensional potential energy surface for the prototype CH(3)F molecule. Using these surfaces, highly excited stretching and (separately) bending vibrational energy levels of CH(3)F are calculated variationally using a finite basis representation method. The method uses the exact vibrational kinetic energy operator derived for XY(3)Z systems by Manson and Law (preceding paper, Part I, Phys. Chem. Chem. Phys., 2006, 8, DOI: 10.1039/b603106d). We use the full C(3v) symmetry and the computer codes are designed to use an arbitrary potential energy function. Ultimately, these results will be used to design a compact basis for fully coupled stretch-bend calculations of the vibrational energy levels of the CH(3)F system.

  14. ERP Energy and Cognitive Activity Correlates

    NASA Astrophysics Data System (ADS)

    Schillaci, Michael Jay; Vendemia, Jennifer M. C.

    2014-03-01

    We propose a novel analysis approach for high-density event related scalp potential (ERP) data where the integrated channel-power is used to attain an energy density functional state for channel-clusters of neurophysiological significance. The method is applied to data recorded during a two-stimulus, directed lie paradigm and shows that deceptive responses emit between 8% and 10% less power. A time course analysis of these cognitive activity measures over posterior and anterior regions of the cortex suggests that neocortical interactions, reflecting the differing workload demands during executive and semantic processes, take about 50% longer for the case of deception. These results suggest that the proposed method may provide a useful tool for the analysis of ERP correlates of high-order cognitive functioning. We also report on a possible equivalence between the energy functional distribution and near-infrared signatures that have been measured with other modalities.

  15. Fermi level stabilization energy in group III-nitrides

    SciTech Connect

    Li, S.X.; Yu, K.M.; Wu, J.; Jones, R.E.; Walukiewicz, W.; AgerIII, J.W.; Shan, W.; Haller, E.E.; Lu, Hai; Schaff, William J.

    2005-01-07

    Energetic particle irradiation is used to systematically introduce point defects into In{sub 1-x}Ga{sub x}N alloys over the entire composition range. Three types of energetic particles (electrons, protons, and {sup 4}He{sup +}) are used to produce a displacement damage dose spanning five decades. In InN and In-rich InGaN the free electron concentration increases with increasing irradiation dose but saturates at a sufficiently high dose. The saturation is due to Fermi level pinning at the Fermi Stabilization Energy (E{sub FS}), which is located at 4.9 eV below the vacuum level. Electrochemical capacitance-voltage (ECV) measurements show that the pinning of the surface Fermi energy at E{sub FS} is also responsible for the surface electron accumulation in as-grown InN and In-rich InGaN alloys. The results are in agreement with the amphoteric defect model that predicts that the same type of native defects are responsible for the Fermi level pinning in both cases.

  16. Probing Energy Levels of Large Array Quantum Dot Superlattice by Electronic Transport Measurement

    NASA Astrophysics Data System (ADS)

    Bisri, S. Z.; Degoli, E.; Spallanzani, N.; Krishnan, G.; Kooi, B.; Ghica, C.; Yarema, M.; Protesescu, L.; Heiss, W.; Kovalenko, M.; Pulci, O.; Ossicini, S.; Iwasa, Y.; Loi, M. A.

    2015-03-01

    Colloidal quantum dot superlattice (CQDS) emerges as new type of hybrid solids allowing easy fabrication of devices that exploits the quantum confinement properties of individual QD. This materials displays peculiar characters, making investigation of their transport properties nontrivial. Besides the bandgap variations, 0D nature of QD lead to the formation of discrete energy subbands. These subbands are crucial for multiple exciton generation (for efficient solar cell), thermoelectric material and multistate transistor. Full understanding of the CQDS energy level structure is vital to use them in complex devices. Here we show a powerful method to determine the CQDS electronic energy levels from their intrinsic charge transport characteristics. Via the use of ambipolar transistors with CQDS as active materials and gated using highly capacitive ionic liquid gating, Fermi energy can be largely tuned. It can access energy levels beyond QD's HOMO & LUMO. Ability to probe not only the bandgap, but also the discrete energy level from large assembly of QD at room temperature suggests the formation of energy minibands in this system.

  17. Accurate energy levels for singly ionized platinum (Pt II)

    NASA Technical Reports Server (NTRS)

    Reader, Joseph; Acquista, Nicolo; Sansonetti, Craig J.; Engleman, Rolf, Jr.

    1988-01-01

    New observations of the spectrum of Pt II have been made with hollow-cathode lamps. The region from 1032 to 4101 A was observed photographically with a 10.7-m normal-incidence spectrograph. The region from 2245 to 5223 A was observed with a Fourier-transform spectrometer. Wavelength measurements were made for 558 lines. The uncertainties vary from 0.0005 to 0.004 A. From these measurements and three parity-forbidden transitions in the infrared, accurate values were determined for 28 even and 72 odd energy levels of Pt II.

  18. Charge retention in quantized energy levels of nanocrystals

    NASA Astrophysics Data System (ADS)

    Dâna, Aykutlu; Akça, İmran; Ergun, Orçun; Aydınlı, Atilla; Turan, Raşit; Finstad, Terje G.

    2007-04-01

    Understanding charging mechanisms and charge retention dynamics of nanocrystal (NC) memory devices is important in optimization of device design. Capacitance spectroscopy on PECVD grown germanium NCs embedded in a silicon oxide matrix was performed. Dynamic measurements of discharge dynamics are carried out. Charge decay is modelled by assuming storage of carriers in the ground states of NCs and that the decay is dominated by direct tunnelling. Discharge rates are calculated using the theoretical model for different NC sizes and densities and are compared with experimental data. Experimental results agree well with the proposed model and suggest that charge is indeed stored in the quantized energy levels of the NCs.

  19. Developing Energy Literacy in US Middle-Level Students Using the Geospatial Curriculum Approach

    NASA Astrophysics Data System (ADS)

    Bodzin, Alec M.; Fu, Qiong; Peffer, Tamara E.; Kulo, Violet

    2013-06-01

    This quantitative study examined the effectiveness of a geospatial curriculum approach to promote energy literacy in an urban school district and examined factors that may account for energy content knowledge achievement. An energy literacy measure was administered to 1,044 eighth-grade students (ages 13-15) in an urban school district in Pennsylvania, USA. One group of students received instruction with a geospatial curriculum approach (geospatial technologies (GT)) and another group of students received 'business as usual' (BAU) curriculum instruction. For the GT students, findings revealed statistically significant gains from pretest to posttest (p < 0.001) on knowledge of energy resource acquisition, energy generation, storage and transport, and energy consumption and conservation. The GT students had year-end energy content knowledge scores significantly higher than those who learned with the BAU curriculum (p < 0.001; effect size being large). A multiple regression found that prior energy content knowledge was the only significant predictor to the year-end energy content knowledge achievement for the GT students (p < 0.001). The findings support that the implementation of a geospatial curriculum approach that employs learning activities that focus on the spatial nature of energy resources can improve the energy literacy of urban middle-level education students.

  20. Low Levels of Energy Expenditure in Childhood Cancer Survivors: Implications for Obesity Prevention

    PubMed Central

    Zhang, Fang Fang; Roberts, Susan B.; Parsons, Susan K.; Must, Aviva; Kelly, Michael J.; Wong, William W.; Saltzman, Edward

    2014-01-01

    Childhood cancer survivors are at an increased risk of obesity but causes for this elevated risk are uncertain. We evaluated total energy expenditure (TEE) in childhood cancer survivors using the doubly labeled water method in a cross-sectional study of 17 survivors of pediatric leukemia or lymphoma (median age 11.5 years). Mean TEE was 2,073 kcal/day, which was nearly 500 kcal/day lower than estimated energy requirements with recommended levels of physical activity. This energy gap is likely to contribute to the risk of obesity in this population and future trials are needed to assess implications and potential treatment strategies. PMID:25197775

  1. Human Development Program: Level V Activity Guide.

    ERIC Educational Resources Information Center

    Ball, Geraldine

    The curriculum guide presents the activities component of the Human Development Program for grade 5. The Human Development Program (HDP) is an affective curricular approach developed by psychologists to help teachers instill responsibility and self-confidence in children. The activity guide presents topics and directions for 180 sequential Human…

  2. Science. Iowa Developed Energy Activity Sampler, 6-12. Revised.

    ERIC Educational Resources Information Center

    Iowa State Dept. of Education, Des Moines. Div. of Instructional Services.

    The revised Iowa Developed Energy Activity Sampler (IDEAS) was compiled using the original IDEAS program and the Energy Conservation Activity Packets (ECAPS). This document is one of a series of revised IDEAS booklets, and provides activities for teaching science. The activities are intended to present energy principles in an interesting manner…

  3. Mathematics. Iowa Developed Energy Activity Sampler, 6-12. Revised.

    ERIC Educational Resources Information Center

    Iowa State Dept. of Education, Des Moines.

    The revised Iowa Developed Energy Activity Sampler (IDEAS) was compiled using the original IDEAS program and the Energy Conservation Activity Packets (ECAPS). This document is one of the series of revised IDEAS booklets, and provides activities for teaching mathematics. The activities are intended to present energy principles in an interesting…

  4. Science. Iowa Developed Energy Activity Sampler, 6-12. Revised.

    ERIC Educational Resources Information Center

    Iowa State Dept. of Education, Des Moines.

    The revised Iowa Developed Energy Activity Sampler (IDEAS) was compiled using the original IDEAS program and the Energy Conservation Activity Packets (ECAPS). This document is one of the series of revised IDEAS booklets, and provides activities for teaching science. The activities are intended to present energy principles in an interesting manner…

  5. Energy Adventure Center. Activity Book. Revised [and Expanded] Edition.

    ERIC Educational Resources Information Center

    Wichita Unified School District 259, KS.

    A variety of energy activities are provided, including instructions for and questions related to energy films. The activities are organized into five sections. Section 1 (work) includes an activity focusing on movement and change. Section 2 (forms of energy) includes activities related to mechanical (movement), radiant (light), chemical (burning),…

  6. Radiative lifetime and energy of the low-energy isomeric level in 229Th

    NASA Astrophysics Data System (ADS)

    Tkalya, E. V.; Schneider, Christian; Jeet, Justin; Hudson, Eric R.

    2015-11-01

    We estimate the range of the radiative lifetime and energy of the anomalous, low-energy 3 /2+(7.8 ±0.5 eV) state in the 229Th nucleus. Our phenomenological calculations are based on the available experimental data for the intensities of M 1 and E 2 transitions between excited levels of the 229Th nucleus in the Kπ[N nZΛ ] =5 /2+[633 ] and 3 /2+[631 ] rotational bands. We also discuss the influence of certain branching coefficients, which affect the currently accepted measured energy of the isomeric state. From this work, we establish a favored region, 0.66 ×106seV3/ω3≤τ ≤2.2 ×106seV3/ω3 , where the transition lifetime τ as a function of transition energy ω should lie at roughly the 95% confidence level. Together with the result of Beck et al. [LLNL-PROC-415170 (2009)], we establish a favored area where transition lifetime and energy should lie at roughly the 90% confidence level. We also suggest new nuclear physics measurements, which would significantly reduce the ambiguity in the present data.

  7. Energy efficiency, human behavior, and economic growth: Challenges to cutting energy demand to sustainable levels

    SciTech Connect

    Santarius, Tilman

    2015-03-30

    Increasing energy efficiency in households, transportation, industries, and services is an important strategy to reduce energy service demand to levels that allow the steep reduction of greenhouse gases, and a full fledged switch of energy systems to a renewable basis. Yet, technological efficiency improvements may generate so-called rebound effects, which may ‘eat up’ parts of the technical savings potential. This article provides a comprehensive review of existing research on these effects, raises critiques, and points out open questions. It introduces micro-economic rebound effect and suggests extending consumer-side analysis to incorporate potential ‘psychological rebound effects.’ It then discusses meso-economic rebound effects, i.e. producer-side and market-level rebounds, which so far have achieved little attention in the literature. Finally, the article critically reviews evidence for macro-economic rebound effects as energy efficiency-induced economic growth impacts. For all three categories, the article summarizes assessments of their potential quantitative scope, while pointing out remaining methodological weaknesses and open questions. As a rough “rule of thumb”, in the long term and on gross average, only half the technical savings potential of across-the-board efficiency improvements may actually be achieved in the real world. Policies that aim at cutting energy service demand to sustainable levels are well advised to take due note of detrimental behavioral and economic growth impacts, and should foster policies and measures that can contain them.

  8. Energy efficiency, human behavior, and economic growth: Challenges to cutting energy demand to sustainable levels

    NASA Astrophysics Data System (ADS)

    Santarius, Tilman

    2015-03-01

    Increasing energy efficiency in households, transportation, industries, and services is an important strategy to reduce energy service demand to levels that allow the steep reduction of greenhouse gases, and a full fledged switch of energy systems to a renewable basis. Yet, technological efficiency improvements may generate so-called rebound effects, which may `eat up' parts of the technical savings potential. This article provides a comprehensive review of existing research on these effects, raises critiques, and points out open questions. It introduces micro-economic rebound effect and suggests extending consumer-side analysis to incorporate potential `psychological rebound effects.' It then discusses meso-economic rebound effects, i.e. producer-side and market-level rebounds, which so far have achieved little attention in the literature. Finally, the article critically reviews evidence for macro-economic rebound effects as energy efficiency-induced economic growth impacts. For all three categories, the article summarizes assessments of their potential quantitative scope, while pointing out remaining methodological weaknesses and open questions. As a rough "rule of thumb", in the long term and on gross average, only half the technical savings potential of across-the-board efficiency improvements may actually be achieved in the real world. Policies that aim at cutting energy service demand to sustainable levels are well advised to take due note of detrimental behavioral and economic growth impacts, and should foster policies and measures that can contain them.

  9. Monthly variations of the Caspian sea level and solar activity.

    NASA Astrophysics Data System (ADS)

    Romanchuk, P. R.; Pasechnik, M. N.

    The connection between 11-year cycle of solar activity and the Caspian sea level is investigated. Seasonal changes of the Caspian sea level and annual variations of the sea level with variations of solar activity are studied. The results of the verifications of the sea level forecasts obtained with application of the rules discovered by the authors are given.

  10. AHEAD: Integrated Activities in the High Energy Astrophysics Domain

    NASA Astrophysics Data System (ADS)

    Piro, Luigi; Natalucci, Lorenzo; Ahead Consortium

    2015-09-01

    AHEAD (Integrated Activities in the High Energy Astrophysics Domain) is a forthcoming project approved in the framework of the European Horizon 2020 program (Research Infrastructures for High Energy Astrophysics). The overall objective of AHEAD is to integrate national efforts in high-energy Astrophysics and to promote the domain at the European level, to keep its community at the cutting edge of science and technology and ensure that space observatories for high-energy astrophysics, with particular regard to Athena, are at the state of the art. AHEAD will integrate key research infrastructures for on-ground test and calibration of space-based sensors and electronics and promote their coordinated use. In parallel, the best facilities for data analysis of high-energy astrophysical observatories will be made available to the European community. The technological development will focus on the improvement of selected critical technologies, background modeling, cross calibration, and feasibility studies of space-based instrumentation for the benefit of future high energy missions like Athena, and the best exploitation of existing observatories. AHEAD will support the community via grants for collaborative studies, dissemination of results, and promotion of workshops. A strong public outreach package will ensure that the domain is well publicized at national, European and International level. Networking, joint research activities and access to infrastructures as devised in AHEAD, will serve to establish strong connections between institutes and industry to create the basis for a more rapid advancement of high-energy astrophysical science, space oriented instrumentation and cutting-edge sensor technology in Europe. This enables the development of new technologies and the associated growth of the European technology market with a dedicated technology innovation package, as well as the creation of a new generation of researchers.

  11. Community Energy: Analysis of Hydrogen Distributed Energy Systems with Photovoltaics for Load Leveling and Vehicle Refueling

    SciTech Connect

    Steward, D.; Zuboy, J.

    2014-10-01

    Energy storage could complement PV electricity generation at the community level. Because PV generation is intermittent, strategies must be implemented to integrate it into the electricity system. Hydrogen and fuel cell technologies offer possible PV integration strategies, including the community-level approaches analyzed in this report: (1) using hydrogen production, storage, and reconversion to electricity to level PV generation and grid loads (reconversion scenario); (2) using hydrogen production and storage to capture peak PV generation and refuel hydrogen fuel cell electric vehicles (FCEVs) (hydrogen fueling scenario); and (3) a comparison scenario using a battery system to store electricity for EV nighttime charging (electric charging scenario).

  12. Rotational Energies in Various Torsional Levels of CH_2DOH

    NASA Astrophysics Data System (ADS)

    Coudert, L. H.; Hilali, A. El; Margulès, L.; Motiyenko, R. A.; Klee, S.

    2012-06-01

    Using an approach accounting for the hindered internal rotation of a monodeuterated methyl group, an analysis of the torsional spectrum of the monodeuterated species of methanol CH_2DOH has been carried out recently and led to the assignment of 76 torsional subbands in its microwave, FIR, and IR spectra. Although this approach also allowed us to account for subband centers, the rotational structure of the torsional subbands is not well understood yet. In this paper, we will deal with the rotational energies of CH_2DOH. Analyses of the rotational structure of the available subbands^b have been performed using the polynomial-type expansion introduced in the case of the normal species of methanol. For each subband, FIR or IR transitions and a-type microwave lines, within the lower torsional level, were fitted. The frequencies of the latters were taken from previous investigations or from new measurements carried out from 50 to 950 GHz with the submillimeterwave solid state spectrometer in Lille. Subbands involving lower levels with v_t=0 and K ≥ 3 could be satisfactorily analyzed. For levels characterized by lower K-values, the expansion fails. In the case of the K=1, v_t=1 level, the frequencies of a-type microwave transitions involving the lower member of the K-type doublet cannot be well reproduced. For K=0 levels with v_t=1 and 2, a large number of terms is needed in the expansion. We will try to understand why the rotational energies of these levels cannot be reproduced. The results of the analyses will be compared to those obtained with a global approach based on the rotation-torsion Hamiltonian of the molecule. [2] El Hilali, Coudert, Konov, and Klee, J. Chem. Phys. 135 (2011) 194309. [3] Ioli, Moruzzi, Riminucci, Strumia, Moraes, Winnewisser, and Winnewisser, J. Mol. Spec. 171 (1995) 130. [4] Quade and Suenram, J. Chem. Phys. 73 (1980) 1127; and Su and Quade, J. Mol. Spec. 134 (1989) 290. [5] Lauvergnat, Coudert, Klee, and Smirnov, J. Mol. Spec. 256 (2009

  13. The analysis and kinetic energy balance of an upper-level wind maximum during intense convection

    NASA Technical Reports Server (NTRS)

    Fuelberg, H. E.; Jedlovec, G. J.

    1982-01-01

    The purpose of this paper is to analyze the formation and maintenance of the upper-level wind maximum which formed between 1800 and 2100 GMT, April 10, 1979, during the AVE-SESAME I period, when intense storms and tornadoes were experienced (the Red River Valley tornado outbreak). Radiosonde stations participating in AVE-SESAME I are plotted (centered on Oklahoma). National Meteorological Center radar summaries near the times of maximum convective activity are mapped, and height and isotach plots are given, where the formation of an upper-level wind maximum over Oklahoma is the most significant feature at 300 mb. The energy balance of the storm region is seen to change dramatically as the wind maximum forms. During much of its lifetime, the upper-level wind maximum is maintained by ageostrophic flow that produces cross-contour generation of kinetic energy and by the upward transport of midtropospheric energy. Two possible mechanisms for the ageostrophic flow are considered.

  14. Distributed Energy Communications & Controls, Lab Activities - Summary

    SciTech Connect

    Rizy, D Tom

    2010-01-01

    The purpose is to develop controls for inverter-based renewable and non-renewable distributed energy systems to provide local voltage, power and power quality support for loads and the power grid. The objectives are to (1) develop adaptive controls for inverter-based distributed energy (DE) systems when there are multiple inverters on the same feeder and (2) determine the impact of high penetration high seasonal energy efficiency ratio (SEER) air conditioning (A/C) units on power systems during sub-transmission faults which can result in an A/C compressor motor stall and assess how inverter-based DE can help to mitigate the stall event. The Distributed Energy Communications & Controls Laboratory (DECC) is a unique facility for studying dynamic voltage, active power (P), non-active power (Q) and power factor control from inverter-based renewable distributed energy (DE) resources. Conventionally, inverter-based DE systems have been designed to provide constant, close to unity power factor and thus not provide any voltage support. The DECC Lab interfaces with the ORNL campus distribution system to provide actual power system testing of the controls approach. Using mathematical software tools and the DECC Lab environment, we are developing and testing local, autonomous and adaptive controls for local voltage control and P & Q control for inverter-based DE. We successfully tested our active and non-active power (P,Q) controls at the DECC laboratory along with voltage regulation controls. The new PQ control along with current limiter controls has been tested on our existing inverter test system. We have tested both non-adaptive and adaptive control modes for the PQ control. We have completed several technical papers on the approaches and results. Electric power distribution systems are experiencing outages due to a phenomenon known as fault induced delayed voltage recovery (FIDVR) due to air conditioning (A/C) compressor motor stall. Local voltage collapse from FIDVR is

  15. Relationship of lipoprotein(a) levels to physical activity and family history of coronary heart disease.

    PubMed Central

    Martín, S; Elosua, R; Covas, M I; Pavesi, M; Vila, J; Marrugat, J

    1999-01-01

    OBJECTIVES: This study evaluated the association of physical activity with serum lipoprotein(a) [La(a)] levels in individuals according to whether they had a family history of coronary heart disease (CHD). METHODS: Lp(a) levels in 332 healthy Spanish men aged 20 to 60 years were measured. Physical activity and family history of CHD were assessed. RESULTS: For men with a family history of CHD, the odds ratio for Lp(a) levels above the median value was 0.13 (95% confidence interval = 0.03, 0.50) in very active men (energy expended in physical activity > 300 kcal/day) compared with active men (energy expended in physical activity < 300 kcal/day). CONCLUSIONS: Regular daily physical activity in individuals with a family history of CHD could be useful for controlling Lp(a) levels. PMID:10076490

  16. Identifying Energy-Efficient Concurrency Levels using Machine Learning

    SciTech Connect

    Curtis-Maury, M; Singh, K; Blagojevic, F; Nikolopoulos, D S; de Supinski, B R; Schulz, M; McKee, S A

    2007-07-23

    Multicore microprocessors have been largely motivated by the diminishing returns in performance and the increased power consumption of single-threaded ILP microprocessors. With the industry already shifting from multicore to many-core microprocessors, software developers must extract more thread-level parallelism from applications. Unfortunately, low power-efficiency and diminishing returns in performance remain major obstacles with many cores. Poor interaction between software and hardware, and bottlenecks in shared hardware structures often prevent scaling to many cores, even in applications where a high degree of parallelism is potentially available. In some cases, throwing additional cores at a problem may actually harm performance and increase power consumption. Better use of otherwise limitedly beneficial cores by software components such as hypervisors and operating systems can improve system-wide performance and reliability, even in cases where power consumption is not a main concern. In response to these observations, we evaluate an approach to throttle concurrency in parallel programs dynamically. We throttle concurrency to levels with higher predicted efficiency from both performance and energy standpoints, and we do so via machine learning, specifically artificial neural networks (ANNs). One advantage of using ANNs over similar techniques previously explored is that the training phase is greatly simplified, thereby reducing the burden on the end user. Using machine learning in the context of concurrency throttling is novel. We show that ANNs are effective for identifying energy-efficient concurrency levels in multithreaded scientific applications, and we do so using physical experimentation on a state-of-the-art quad-core Xeon platform.

  17. First-Principles Approach to Energy Level Alignment at Aqueous Semiconductor Interfaces

    NASA Astrophysics Data System (ADS)

    Hybertsen, Mark

    2015-03-01

    We have developed a first principles method to calculate the energy level alignment between semiconductor band edges and reference energy levels at aqueous interfaces. This alignment is fundamental to understand the electrochemical characteristics of any semiconductor electrode in general and the potential for photocatalytic activity in particular. For example, in the search for new photo-catalytic materials, viable candidates must demonstrate both efficient absorption of the solar spectrum and an appropriate alignment of the band edge levels in the semiconductor to the redox levels for the target reactions. In our approach, the interface-specific contribution to the electrostatic step across the interface is evaluated using density functional theory (DFT) based molecular dynamics to sample the physical interface structure and the corresponding change in the electrostatic potential at the interface. The reference electronic levels in the semiconductor and in the water are calculated using the GW approach, which naturally corrects for errors inherent in the use of Kohn-Sham energy eigenvalues to approximate the electronic excitation energies in each material. Taken together, our calculations provide the alignment of the semiconductor valence band edge to the centroid of the highest occupied 1b1 level in water. The known relationship of the 1b1 level to the normal hydrogen electrode completes the connection to electrochemical levels. We discuss specific results for GaN, ZnO, and TiO2. The effect of interface structural motifs, such as different degrees of water dissociation, and of dynamical characteristics, will be presented together with available experimental data. Work supported by the US Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-98CH10886.

  18. Entry-Level Activities in System Consultation

    ERIC Educational Resources Information Center

    Hylander, Ingrid

    2014-01-01

    System-level consultation or organizational development in schools is an area in great need of theoretical models and definitions. The three articles in this special issue provide a unique learning opportunity not only for consultation across borders but also for consultation within the same nation. In my commentary, I limit my remarks to a few…

  19. Dual-energy precursor and nuclear erythroid-related factor 2 activator treatment additively improve redox glutathione levels and neuron survival in aging and Alzheimer mouse neurons upstream of reactive oxygen species.

    PubMed

    Ghosh, Debolina; LeVault, Kelsey R; Brewer, Gregory J

    2014-01-01

    To determine whether glutathione (GSH) loss or increased reactive oxygen species (ROS) are more important to neuron loss, aging, and Alzheimer's disease (AD), we stressed or boosted GSH levels in neurons isolated from aging 3xTg-AD neurons compared with those from age-matched nontransgenic (non-Tg) neurons. Here, using titrating with buthionine sulfoximine, an inhibitor of γ-glutamyl cysteine synthetase (GCL), we observed that GSH depletion increased neuronal death of 3xTg-AD cultured neurons at increasing rates across the age span, whereas non-Tg neurons were resistant to GSH depletion until old age. Remarkably, the rate of neuron loss with ROS did not increase in old age and was the same for both genotypes, which indicates that cognitive deficits in the AD model were not caused by ROS. Therefore, we targeted for neuroprotection activation of the redox sensitive transcription factor, nuclear erythroid-related factor 2 (Nrf2) by 18 alpha glycyrrhetinic acid to stimulate GSH synthesis through GCL. This balanced stimulation of a number of redox enzymes restored the lower levels of Nrf2 and GCL seen in 3xTg-AD neurons compared with those of non-Tg neurons and promoted translocation of Nrf2 to the nucleus. By combining the Nrf2 activator together with the NADH precursor, nicotinamide, we increased neuron survival against amyloid beta stress in an additive manner. These stress tests and neuroprotective treatments suggest that the redox environment is more important for neuron survival than ROS. The dual neuroprotective treatment with nicotinamide and an Nrf2 inducer indicates that these age-related and AD-related changes are reversible.

  20. Energy deposition study of low-energy cosmic radiation at sea level

    NASA Astrophysics Data System (ADS)

    Wijesinghe, Pushpa

    In this dissertation work, a computer simulation model based on the Geant4 simulation package has been designed and developed to study the energy deposition and track structures of cosmic muons and their secondary electrons in tissue-like materials. The particle interactions in a cubic water volume were first simulated. To analyze the energy deposition and tracks in small structures, with the intention of studying the energy localization in nanometric structures such as DNA, the chamber was sliced in three dimentions. Validation studies have been performed by comparing the results with experimental, theoretical, and other simulation results to test the accuracy of the simulation model. A human body phantom in sea-level muon environment was modeled to measure the yearly dose to a human from cosmic muons. The yearly dose in this phantom is about 22 millirems. This is close to the accepted value for the yearly dose from cosmic radiation at sea level. Shielding cosmic muons with a concrete slab from 0 to 2 meters increased the dose received by the body. This dissertation presents an extensive study on the interactions of secondary electrons created by muons in water. Index words. Radiation Dosimetry Simulation, Track Structures, Sea-Level muon Flux, Energy Deposition

  1. 76 FR 55278 - Assistance to Foreign Atomic Energy Activities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ...; ] DEPARTMENT OF ENERGY 10 CFR Part 810 RIN 1994-AA02 Assistance to Foreign Atomic Energy Activities AGENCY.... SUMMARY: DOE proposes to amend its regulation concerning unclassified assistance to foreign atomic energy... territories for which a general authorization for foreign atomic energy activities is available. This...

  2. Energy and antioxidant responses of pacific oyster exposed to trace levels of pesticides.

    PubMed

    Epelboin, Yanouk; Quéré, Claudie; Pernet, Fabrice; Pichereau, Vianney; Corporeau, Charlotte

    2015-09-21

    Here, we assess the physiological effects induced by environmental concentrations of pesticides in Pacific oyster Crassostrea gigas. Oysters were exposed for 14 d to trace levels of metconazole (0.2 and 2 μg/L), isoproturon (0.1 and 1 μg/L), or both in a mixture (0.2 and 0.1 μg/L, respectively). Exposure to trace levels of pesticides had no effect on the filtration rate, growth, and energy reserves of oysters. However, oysters exposed to metconazole and isoproturon showed an overactivation of the sensing-kinase AMP-activated protein kinase α (AMPKα), a key enzyme involved in energy metabolism and more particularly glycolysis. In the meantime, these exposed oysters showed a decrease in hexokinase and pyruvate kinase activities, whereas 2-DE proteomic revealed that fructose-1,6-bisphosphatase (F-1,6-BP), a key enzyme of gluconeogenesis, was up-regulated. Activities of antioxidant enzymes were higher in oysters exposed to the highest pesticide concentrations. Both pesticides enhanced the superoxide dismutase activity of oysters. Isoproturon enhanced catalase activity, and metconazole enhanced peroxiredoxin activity. Overall, our results show that environmental concentrations of metconazole or isoproturon induced subtle changes in the energy and antioxidant metabolisms of oysters.

  3. Mathematics. Iowa Developed Energy Activity Sampler, 6-12. Revised.

    ERIC Educational Resources Information Center

    Iowa State Dept. of Education, Des Moines. Div. of Instructional Services.

    The revised Iowa Developed Energy Activity Sampler (IDEAS) was compiled using the original IDEAS program and the Energy Conservation Activity Packets (ECAPS). This document contains teaching activities which are intended to strengthen students' mathematics skills and concepts, while broadening their understanding of energy concepts. Each of the 24…

  4. Cytosolic calcium coordinates mitochondrial energy metabolism with presynaptic activity.

    PubMed

    Chouhan, Amit K; Ivannikov, Maxim V; Lu, Zhongmin; Sugimori, Mutsuyuki; Llinas, Rodolfo R; Macleod, Gregory T

    2012-01-25

    Most neurons fire in bursts, imposing episodic energy demands, but how these demands are coordinated with oxidative phosphorylation is still unknown. Here, using fluorescence imaging techniques on presynaptic termini of Drosophila motor neurons (MNs), we show that mitochondrial matrix pH (pHm), inner membrane potential (Δψm), and NAD(P)H levels ([NAD(P)H]m) increase within seconds of nerve stimulation. The elevations of pHm, Δψm, and [NAD(P)H]m indicate an increased capacity for ATP production. Elevations in pHm were blocked by manipulations that blocked mitochondrial Ca2+ uptake, including replacement of extracellular Ca2+ with Sr2+ and application of either tetraphenylphosphonium chloride or KB-R7943, indicating that it is Ca2+ that stimulates presynaptic mitochondrial energy metabolism. To place this phenomenon within the context of endogenous neuronal activity, the firing rates of a number of individually identified MNs were determined during fictive locomotion. Surprisingly, although endogenous firing rates are significantly different, there was little difference in presynaptic cytosolic Ca2+ levels ([Ca2+]c) between MNs when each fires at its endogenous rate. The average [Ca2+]c level (329±11 nM) was slightly above the average Ca2+ affinity of the mitochondria (281±13 nM). In summary, we show that when MNs fire at endogenous rates, [Ca2+]c is driven into a range where mitochondria rapidly acquire Ca2+. As we also show that Ca2+ stimulates presynaptic mitochondrial energy metabolism, we conclude that [Ca2+]c levels play an integral role in coordinating mitochondrial energy metabolism with presynaptic activity in Drosophila MNs.

  5. Cytosolic Calcium Coordinates Mitochondrial Energy Metabolism with Presynaptic Activity

    PubMed Central

    Chouhan, Amit K.; Ivannikov, Maxim V.; Lu, Zhongmin; Sugimori, Mutsuyuki; Llinas, Rodolfo R.; Macleod, Gregory T.

    2012-01-01

    Most neurons fire in bursts, imposing episodic energy demands, but how these demands are coordinated with oxidative phosphorylation is still unknown. Here, using fluorescence imaging techniques on presynaptic termini of Drosophila motor neurons (MNs), we show that mitochondrial matrix pH (pHm), inner membrane potential (Δψm), and NAD(P)H levels ([NAD(P)H]m) increase within seconds of nerve stimulation. The elevations of pHm, Δψm, and [NAD(P)H]m indicate an increased capacity for ATP production. Elevations in pHm were blocked by manipulations which blocked mitochondrial Ca2+ uptake, including replacement of extracellular Ca2+ with Sr2+, and application of either tetraphenylphosphonium chloride or KB-R7943, indicating that it is Ca2+ that stimulates presynaptic mitochondrial energy metabolism. To place this phenomenon within the context of endogenous neuronal activity, the firing rates of a number of individually identified MNs were determined during fictive locomotion. Surprisingly, although endogenous firing rates are significantly different, there was little difference in presynaptic cytosolic Ca2+ levels ([Ca2+]c) between MNs when each fires at its endogenous rate. The average [Ca2+]c level (329±11nM) was slightly above the average Ca2+ affinity of the mitochondria (281±13nM). In summary, we show that when MNs fire at endogenous rates [Ca2+]c is driven into a range where mitochondria rapidly acquire Ca2+. As we also show that Ca2+ stimulates presynaptic mitochondrial energy metabolism, we conclude that [Ca2+]c levels play an integral role in coordinating mitochondrial energy metabolism with presynaptic activity in Drosophila MNs. PMID:22279208

  6. Juvenile subsistence effort, activity levels, and growth patterns. Middle childhood among Pumé foragers.

    PubMed

    Kramer, Karen L; Greaves, Russell D

    2011-09-01

    Attention has been given to cross-cultural differences in adolescent growth, but far less is known about developmental variability during juvenility (ages 3-10). Previous research among the Pumé, a group of South American foragers, found that girls achieve a greater proportion of their adult stature during juvenility compared with normative growth expectations. To explain rapid juvenile growth, in this paper we consider girls' activity levels and energy expended in subsistence effort. Results show that Pumé girls spend far less time in subsistence tasks in proportion to their body size compared with adults, and they have lower physical activity levels compared with many juveniles cross-culturally. Low activity levels help to explain where the extra energy comes from to support rapid growth in a challenging environment. We suggest that activity levels are important to account for the variation of resource and labor transfers in mediating energy availability.

  7. Physical activity and physical activity induced energy expenditure in humans: measurement, determinants, and effects.

    PubMed

    Westerterp, Klaas R

    2013-01-01

    Physical activity is defined as any bodily movement produced by skeletal muscles that results in energy expenditure. The doubly labeled water method for the measurement of total energy expenditure (TEE), in combination with resting energy expenditure, is the reference for physical activity under free-living conditions. To compare the physical activity level (PAL) within and between species, TEE is divided by resting energy expenditure resulting in a figure without dimension. The PAL for sustainable lifestyles ranges between a minimum of 1.1-1.2 and a maximum of 2.0-2.5. The average PAL increases from 1.4 at age 1 year to 1.7-1.8 at reproductive age and declines again to 1.4 at age 90 year. Exercise training increases PAL in young adults when energy balance is maintained by increasing energy intake. Professional endurance athletes can reach PAL values around 4.0. Most of the variation in PAL between subjects can be ascribed to predisposition. A higher weight implicates higher movement costs and less body movement but not necessarily a lower PAL. Changes in physical activity primarily affect body composition and to a lesser extent body weight. Modern man has a similar PAL as a wild mammal of a similar body size.

  8. The Limit of Free Magnetic Energy in Active Regions

    NASA Technical Reports Server (NTRS)

    Moore, Ron; Falconer, David; Sterling, Alphonse

    2012-01-01

    By measuring from active-region magnetograms a proxy of the free energy in the active region fs magnetic field, it has been found previously that (1) there is an abrupt upper limit to the free energy the field can hold that increases with the amount of magnetic field in the active region, the active region fs magnetic flux content, and (2) the free energy is usually near its limit when the field explodes in a CME/flare eruption. That is, explosive active regions are concentrated in a main-sequence path bordering the free-energy ]limit line in (flux content, free-energy proxy) phase space. Here, from measurement of Marshall Space Flight Center vector magnetograms, we find the magnetic condition that underlies the free ]energy limit and the accompanying main sequence of explosive active regions. Using a suitable free ]energy proxy measured from vector magnetograms of 44 active regions, we find that (1) in active regions at and near their free ]energy limit, the ratio of magnetic-shear free energy to the non ]free magnetic energy the potential field would have is approximately 1 in the core field, the field rooted along the neutral line, and (2) this ratio is progressively less in active regions progressively farther below their free ]energy limit. This shows that most active regions in which this core-field energy ratio is much less than 1 cannot be triggered to explode; as this ratio approaches 1, most active regions become capable of exploding; and when this ratio is 1 or greater, most active regions are compelled to explode. From these results we surmise the magnetic condition that determines the free ]energy limit is the ratio of the free magnetic energy to the non-free energy the active region fs field would have were it completely relaxed to its potential ]field configuration, and that this ratio is approximately 1 at the free-energy limit and in the main sequence of explosive active regions.

  9. Level set method coupled with Energy Image features for brain MR image segmentation.

    PubMed

    Punga, Mirela Visan; Gaurav, Rahul; Moraru, Luminita

    2014-06-01

    Up until now, the noise and intensity inhomogeneity are considered one of the major drawbacks in the field of brain magnetic resonance (MR) image segmentation. This paper introduces the energy image feature approach for intensity inhomogeneity correction. Our approach of segmentation takes the advantage of image features and preserves the advantages of the level set methods in region-based active contours framework. The energy image feature represents a new image obtained from the original image when the pixels' values are replaced by local energy values computed in the 3×3 mask size. The performance and utility of the energy image features were tested and compared through two different variants of level set methods: one as the encompassed local and global intensity fitting method and the other as the selective binary and Gaussian filtering regularized level set method. The reported results demonstrate the flexibility of the energy image feature to adapt to level set segmentation framework and to perform the challenging task of brain lesion segmentation in a rather robust way.

  10. Physical activity levels in the treatment of juvenile fibromyalgia.

    PubMed

    Sherry, David D

    2013-01-01

    Physical activity is paramount in the treatment of juvenile fibromyalgia, although some interventions use indirect methods to increase activity levels rather than address physical dysfunction head-on. New research explores the effects of a psychotherapeutic approach on levels of physical activity in adolescents with fibromyalgia.

  11. Energy Use and Power Levels in New Monitors and Personal Computers

    SciTech Connect

    Roberson, Judy A.; Homan, Gregory K.; Mahajan, Akshay; Nordman, Bruce; Webber, Carrie A.; Brown, Richard E.; McWhinney, Marla; Koomey, Jonathan G.

    2002-07-23

    Our research was conducted in support of the EPA ENERGY STAR Office Equipment program, whose goal is to reduce the amount of electricity consumed by office equipment in the U.S. The most energy-efficient models in each office equipment category are eligible for the ENERGY STAR label, which consumers can use to identify and select efficient products. As the efficiency of each category improves over time, the ENERGY STAR criteria need to be revised accordingly. The purpose of this study was to provide reliable data on the energy consumption of the newest personal computers and monitors that the EPA can use to evaluate revisions to current ENERGY STAR criteria as well as to improve the accuracy of ENERGY STAR program savings estimates. We report the results of measuring the power consumption and power management capabilities of a sample of new monitors and computers. These results will be used to improve estimates of program energy savings and carbon emission reductions, and to inform rev isions of the ENERGY STAR criteria for these products. Our sample consists of 35 monitors and 26 computers manufactured between July 2000 and October 2001; it includes cathode ray tube (CRT) and liquid crystal display (LCD) monitors, Macintosh and Intel-architecture computers, desktop and laptop computers, and integrated computer systems, in which power consumption of the computer and monitor cannot be measured separately. For each machine we measured power consumption when off, on, and in each low-power level. We identify trends in and opportunities to reduce power consumption in new personal computers and monitors. Our results include a trend among monitor manufacturers to provide a single very low low-power level, well below the current ENERGY STAR criteria for sleep power consumption. These very low sleep power results mean that energy consumed when monitors are off or in active use has become more important in terms of contribution to the overall unit energy consumption (UEC

  12. Energy transfer and energy level decay processes in Tm{sup 3+}-doped tellurite glass

    SciTech Connect

    Gomes, Laercio; Lousteau, Joris; Milanese, Daniel; Scarpignato, Gerardo C.; Jackson, Stuart D.

    2012-03-15

    The primary excited state decay and energy transfer processes in singly Tm{sup 3+}-doped TeO{sub 2}:ZnO:Bi{sub 2}O{sub 3}:GeO{sub 2} (TZBG) glass relating to the {sup 3}F{sub 4}{yields}{sup 3}H{sub 6}{approx}1.85 {mu}m laser transition have been investigated in detail using time-resolved fluorescence spectroscopy. Selective laser excitation of the {sup 3}H{sub 4} manifold at 794 nm, the {sup 3}H{sub 5} manifold at 1220 nm, and {sup 3}F{sub 4} manifold at 1760 nm has established that the {sup 3}H{sub 5} manifold is entirely quenched by multiphonon relaxation in tellurite glass. The luminescence from the {sup 3}H{sub 4} manifold with an emission peak at 1465 nm suffers strong suppression due to cross relaxation that populates the {sup 3}F{sub 4} level with a near quadratic dependence on the Tm{sup 3+} concentration. The {sup 3}F{sub 4} lifetime becomes longer as the Tm{sup 3+} concentration increases due to energy migration and decreases to 2.92 ms when [Tm{sup 3+}] = 4 mol. % as a result of quasi-resonant energy transfer to free OH{sup -} radicals present in the glass at concentrations between 1 x 10{sup 18} cm{sup -3} and 2 x 10{sup 18} cm{sup -3}. Judd-Ofelt theory in conjunction with absorption measurements were used to obtain the radiative lifetimes and branching ratios of the energy levels located below 25 000 cm{sup -1}. The spectroscopic parameters, the cross relaxation and Tm{sup 3+}({sup 3}F{sub 4}) {yields} OH{sup -} energy transfer rates were used in a numerical model for laser transitions emitting at 2335 nm and 1865 nm.

  13. Reasoning about Energy. An Activity Booklet for Middle and High School Science and Social Studies Students... and Their Teachers.

    ERIC Educational Resources Information Center

    Allen, Rodney F., Ed.

    This booklet is a collection of energy activities to be infused into existing science and social studies courses at the seventh and ninth grade levels. The activities were written for students at different levels of problem solving ability, emphasizing the learning and use of knowledge about energy. By using energy knowledge in these…

  14. Simple Activity Demonstrates Wind Energy Principles

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2012-01-01

    Wind energy is an exciting and clean energy option often described as the fastest-growing energy system on the planet. With some simple materials, teachers can easily demonstrate its key principles in their classroom. (Contains 1 figure and 2 tables.)

  15. Delayed dopamine signaling of energy level builds appetitive long-term memory in Drosophila.

    PubMed

    Musso, Pierre-Yves; Tchenio, Paul; Preat, Thomas

    2015-02-24

    Sensory cues relevant to a food source, such as odors, can be associated with post-ingestion signals related either to food energetic value or toxicity. Despite numerous behavioral studies, a global understanding of the mechanisms underlying these long delay associations remains out of reach. Here, we demonstrate in Drosophila that the long-term association between an odor and a nutritious sugar depends on delayed post-ingestion signaling of energy level. We show at the neural circuit level that the activity of two pairs of dopaminergic neurons is necessary and sufficient to signal energy level to the olfactory memory center. Accordingly, we have identified in these dopaminergic neurons a delayed calcium trace that correlates with appetitive long-term memory formation. Altogether, these findings demonstrate that the Drosophila brain remembers food quality through a two-step mechanism that consists of the integration of olfactory and gustatory sensory information and then post-ingestion energetic value.

  16. ARRA-Multi-Level Energy Storage and Controls for Large-Scale Wind Energy Integration

    SciTech Connect

    David Wenzhong Gao

    2012-09-30

    The Project Objective is to design innovative energy storage architecture and associated controls for high wind penetration to increase reliability and market acceptance of wind power. The project goals are to facilitate wind energy integration at different levels by design and control of suitable energy storage systems. The three levels of wind power system are: Balancing Control Center level, Wind Power Plant level, and Wind Power Generator level. Our scopes are to smooth the wind power fluctuation and also ensure adequate battery life. In the new hybrid energy storage system (HESS) design for wind power generation application, the boundary levels of the state of charge of the battery and that of the supercapacitor are used in the control strategy. In the controller, some logic gates are also used to control the operating time durations of the battery. The sizing method is based on the average fluctuation of wind profiles of a specific wind station. The calculated battery size is dependent on the size of the supercapacitor, state of charge of the supercapacitor and battery wear. To accommodate the wind power fluctuation, a hybrid energy storage system (HESS) consisting of battery energy system (BESS) and super-capacitor is adopted in this project. A probability-based power capacity specification approach for the BESS and super-capacitors is proposed. Through this method the capacities of BESS and super-capacitor are properly designed to combine the characteristics of high energy density of BESS and the characteristics of high power density of super-capacitor. It turns out that the super-capacitor within HESS deals with the high power fluctuations, which contributes to the extension of BESS lifetime, and the super-capacitor can handle the peaks in wind power fluctuations without the severe penalty of round trip losses associated with a BESS. The proposed approach has been verified based on the real wind data from an existing wind power plant in Iowa. An

  17. Spectra, energy levels, and energy transition of lanthanide complexes with cinnamic acid and its derivatives

    NASA Astrophysics Data System (ADS)

    Zhou, Kaining; Feng, Zhongshan; Shen, Jun; Wu, Bing; Luo, Xiaobing; Jiang, Sha; Li, Li; Zhou, Xianju

    2016-04-01

    High resolution spectra and luminescent lifetimes of 6 europium(III)-cinnamic acid complex {[Eu2L6(DMF)(H2O)]·nDMF·H2O}m (L = cinnamic acid I, 4-methyl-cinnamic acid II, 4-chloro-cinnamic acid III, 4-methoxy-cinnamic acid IV, 4-hydroxy-cinnamic acid V, 4-nitro-cinnamic acid VI; DMF = N, N-dimethylformamide, C3H7NO) were recorded from 8 K to room temperature. The energy levels of Eu3 + in these 6 complexes are obtained from the spectra analysis. It is found that the energy levels of the central Eu3 + ions are influenced by the nephelauxetic effect, while the triplet state of ligand is lowered by the p-π conjugation effect of the para-substituted functional groups. The best energy matching between the ligand triplet state and the central ion excited state is found in complex I. While the other complexes show poorer matching because the gap of 5D0 and triplet state contracts.

  18. Spectra, energy levels, and energy transition of lanthanide complexes with cinnamic acid and its derivatives.

    PubMed

    Zhou, Kaining; Feng, Zhongshan; Shen, Jun; Wu, Bing; Luo, Xiaobing; Jiang, Sha; Li, Li; Zhou, Xianju

    2016-04-05

    High resolution spectra and luminescent lifetimes of 6 europium(III)-cinnamic acid complex {[Eu2L6(DMF)(H2O)]·nDMF·H2O}m (L=cinnamic acid I, 4-methyl-cinnamic acid II, 4-chloro-cinnamic acid III, 4-methoxy-cinnamic acid IV, 4-hydroxy-cinnamic acid V, 4-nitro-cinnamic acid VI; DMF=N, N-dimethylformamide, C3H7NO) were recorded from 8 K to room temperature. The energy levels of Eu(3+) in these 6 complexes are obtained from the spectra analysis. It is found that the energy levels of the central Eu(3+) ions are influenced by the nephelauxetic effect, while the triplet state of ligand is lowered by the p-π conjugation effect of the para-substituted functional groups. The best energy matching between the ligand triplet state and the central ion excited state is found in complex I. While the other complexes show poorer matching because the gap of (5)D0 and triplet state contracts.

  19. Sample Energy Conservation Education Activities for Elementary School Students.

    ERIC Educational Resources Information Center

    Allen, Rodney F., Ed.; LaHart, David E., Ed.

    The booklet contains learning activities for introducing energy and conservation concepts into the existing elementary school curriculum. The activities were developed by Palm Beach County teachers during a one-week workshop. A framework of ideas is divided into three functional categories: universe of energy, living systems and energy, and social…

  20. Steering quantum transitions between three crossing energy levels

    SciTech Connect

    Ivanov, S. S.; Vitanov, N. V.

    2008-02-15

    We calculate the propagator and the transition probabilities for a coherently driven three-state quantum system. The energies of the three states change linearly in time, whereas the interactions between them are pulse shaped. We derive a highly accurate analytic approximation by assuming independent pairwise Landau-Zener transitions occurring instantly at the relevant avoided crossings, and adiabatic evolution elsewhere. Quantum interferences are identified, which occur due to different possible evolution paths in Hilbert space between an initial and a final state. A detailed comparison with numerical results for Gaussian-shaped pulses demonstrates a remarkable accuracy of the analytic approximation. We use the analytic results to derive estimates for the half-width of the excitation profile, and for the parameters required for creation of a maximally coherent superposition of the three states. These results are of potential interest in ladder climbing in alkali-metal atoms by chirped laser pulses, in quantum rotors, in transitions between Zeeman sublevels of a J=1 level in a magnetic field, and in control of entanglement of a pair of spin-1/2 particles. The results for the three-state system can be generalized, without essential difficulties, to higher dimensions.

  1. Ab initio potential energy surface and vibration-rotation energy levels of sulfur dioxide.

    PubMed

    Koput, Jacek

    2017-05-05

    An accurate potential energy surface of sulfur dioxide, SO2 , in its ground electronic state X∼ 1A1 has been determined from ab initio calculations using the coupled-cluster approach in conjunction with the correlation-consistent basis sets up to septuple-zeta quality. The results obtained with the conventional and explicitly correlated coupled-cluster methods are compared. The role of the core-electron correlation, higher-order valence-electron correlation, scalar relativistic, and adiabatic effects in determining the structure and dynamics of the SO2 molecule is discussed. The vibration-rotation energy levels of the (32) SO2 and (34) SO2 isotopologues were predicted using a variational approach. It was shown that the inclusion of the aforementioned effects was mandatory to attain the "spectroscopic" accuracy. © 2017 Wiley Periodicals, Inc.

  2. Ab initio potential energy surface and vibration-rotation energy levels of beryllium monohydroxide.

    PubMed

    Koput, Jacek

    2017-01-05

    The accurate potential energy surface of beryllium monohydroxide, BeOH, in its ground electronic state X 2A' has been determined from ab initio calculations using the coupled-cluster approach in conjunction with the correlation-consistent core-valence basis sets up to septuple-zeta quality. The higher-order electron correlation, scalar relativistic, and adiabatic effects were taken into account. The BeOH molecule was confirmed to be bent at equilibrium, with the BeOH angle of 141.2° and the barrier to linearity of 129 cm(-1) . The vibration-rotation energy levels of the BeOH and BeOD isotopologues were predicted using a variational approach and compared with recent experimental data. The results can be useful in a further analysis of high-resolution vibration-rotation spectra of these interesting species. © 2016 Wiley Periodicals, Inc.

  3. Quantifying the Level of Cross-State Renewable Energy Transactions

    SciTech Connect

    Jenny Heeter, Philipp Beiter, Francisco Flores-Espino, David Hurlbut, Chang Liu

    2015-02-01

    This analysis provides first-ever assessment of the extent to which renewable energy is crossing state borders to be used to meet renewable portfolio standard (RPS) requirements. Two primary methods for data collection are Renewable Energy Certificate (REC) tracking and power flow estimates. Data from regional REC tracking systems, state agencies, and utility compliance reports help understand how cross-state transactions have been used to meet RPS compliance. Data on regional renewable energy flow use generator-specific information primarily sourced from EIA, SNL Energy, and FERC Form 1 filings. The renewable energy examined through this method may or may not have actually been used to meet RPS compliance.

  4. New Perspective on Formation Energies and Energy Levels of Point Defects in Nonmetals

    NASA Astrophysics Data System (ADS)

    Ramprasad, R.; Zhu, H.; Rinke, Patrick; Scheffler, Matthias

    2012-02-01

    We propose a powerful scheme to accurately determine the formation energy and thermodynamic charge transition levels of point defects in nonmetals. Previously unknown correlations between defect properties and the valence-band width of the defect-free host material are identified allowing for a determination of the former via an accurate knowledge of the latter. These correlations are identified through a series of hybrid density-functional theory computations and an unbiased exploration of the parameter space that defines the Hyde-Scuseria-Ernzerhof family of hybrid functionals. The applicability of this paradigm is demonstrated for point defects in Si, Ge, ZnO, and ZrO2.

  5. Energy levels and transition probability matrix elements of ruby for maser applications

    NASA Technical Reports Server (NTRS)

    Berwin, R. W.

    1971-01-01

    Program computes fine structure energy levels of ruby as a function of magnetic field. Included in program is matrix formulation, each row of which contains a magnetic field and four corresponding energy levels.

  6. Ligand reorganization and activation energies in nonadiabatic electron transfer reactions

    NASA Astrophysics Data System (ADS)

    Zhu, Jianjun; Wang, Jianji; Stell, George

    2006-10-01

    The activation energy and ligand reorganization energy for nonadiabatic electron transfer reactions in chemical and biological systems are investigated in this paper. The free energy surfaces and the activation energy are derived exactly in the general case in which the ligand vibration frequencies are not equal. The activation energy is derived by free energy minimization at the transition state. Our formulation leads to the Marcus-Hush [J. Chem. Phys. 24, 979 (1956); 98, 7170 (1994); 28, 962 (1958)] results in the equal-frequency limit and also generalizes the Marcus-Sumi [J. Chem. Phys. 84, 4894 (1986)] model in the context of studying the solvent dynamic effect on electron transfer reactions. It is found that when the ligand vibration frequencies are different, the activation energy derived from the Marcus-Hush formula deviates by 5%-10% from the exact value. If the reduced reorganization energy approximation is introduced in the Marcus-Hush formula, the result is almost exact.

  7. Clean Energy Policy Analyses. Analysis of the Status and Impact of Clean Energy Policies at the Local Level

    SciTech Connect

    Busche, S.

    2010-12-01

    This report takes a broad look at the status of local clean energy policies in the United States to develop a better understanding of local clean energy policy development and the interaction between state and local policies. To date, the majority of clean energy policy research focuses on the state and federal levels. While there has been a substantial amount of research on local level climate change initiatives, this is one of the first analyses of clean energy policies separate from climate change initiatives. This report is one in a suite of reports analyzing clean energy and climate policy development at the local, state, and regional levels.

  8. Clean Energy Policy Analyses: Analysis of the Status and Impact of Clean Energy Policies at the Local Level

    SciTech Connect

    Busche, S.

    2010-12-01

    This report takes a broad look at the status of local clean energy policies in the United States to develop a better understanding of local clean energy policy development and the interaction between state and local policies. To date, the majority of clean energy policy research focuses on the state and federal levels. While there has been a substantial amount of research on local level climate change initiatives, this is one of the first analyses of clean energy policies separate from climate change initiatives. This report is one in a suite of reports analyzing clean energy and climate policy development at the local, state, and regional levels.

  9. Energy Conservation Activity Packet, Grade 5. Revised Edition.

    ERIC Educational Resources Information Center

    Pohlman, Betty; And Others

    This activity notebook for grade 5 is one of a series developed in response to energy conservation. It contains activities that stress an energy conservation ethic and includes many values clarification activities for grade five. The packet is divided into two parts and provides the teacher with background information, concepts and objectives, and…

  10. Energy Conservation Activity Packet, Grade 6. Revised Edition.

    ERIC Educational Resources Information Center

    Pohlman, Betty; And Others

    This activity notebook for grade 6 is one of a series developed in response to the concern for energy conservation. It contains activities that stress an energy conservation ethic and includes many values clarification activities for grade six. The packet is divided into two parts and provides the teacher with background information, concepts and…

  11. Energy Conservation Activity Packet, Grade 4. Revised Edition.

    ERIC Educational Resources Information Center

    Pohlman, Betty; And Others

    This activity notebook for grade 4 is one in a series developed in response to the concern for energy conservation. It contains activities that stress an energy conservation ethic and includes many values clarification activities for grade four. The packet is divided into two parts and provides the teacher with background information, concepts and…

  12. Calculation of astrophysical S factor at low energy levels

    NASA Astrophysics Data System (ADS)

    Andic, Halil Ibrahim; Ozer, Okan

    2017-02-01

    Nuclear reactions are very important for the structure, evolution, nucleosynthesis and various observational manifestations of main-sequence stars, white dwarfs and neutron stars. For astrophysical applications, one needs to know value of S-factor for many reactions at low energies. The experimental measurements of cross-sections at such low energies are essentially not easily available since the Coulomb barrier. Theoretical calculations are model dependent, so that nuclear physics uncertainties of calculated S-factor can be substantial. Using the supersymmetric quantum mechanics one can obtain the supersymmetric partner potential that can vary by several orders of magnitude in the energy range of a given reaction in the calculation of S factor. Since the determination of reaction rates requires accurate values of cross sections at very low energies, then in order to eliminate the main part of the energy dependence of these cross sections one makes use of the astrophysical S-factor in Taylor Expansion series about zero-energy.

  13. Peroxisome proliferator-activated receptor mRNA levels are modified by dietary n-3 fatty acid restriction and energy restriction in the brain and liver of growing rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Without dietary sources of long chain (LC) n-3 fatty acids, alpha-linolenic acid (ALA;18:3n-3) is the precursor for docosahexaenoic acid (DHA; 22:6n-3). It is not known how energy restriction (ER) impacts ALA conversion to DHA. We tested the hypothesis that ER reduces LCn-3 content in growing rats ...

  14. City-Level Energy Decision Making. Data Use in Energy Planning, Implementation, and Evaluation in U.S. Cities

    SciTech Connect

    Aznar, Alexandra; Day, Megan; Doris, Elizabeth; Mathur, Shivani; Donohoo-Vallett, Paul

    2015-07-08

    The Cities-LEAP technical report, City-Level Energy Decision Making: Data Use in Energy Planning, Implementation, and Evaluation in U.S. Cities, explores how a sample of cities incorporates data into making energy-related decisions. This report provides the foundation for forthcoming components of the Cities-LEAP project that will help cities improve energy decision making by mapping specific city energy or climate policies and actions to measurable impacts and results.

  15. Contribution of regional brain melanocortin receptor subtypes to elevated activity energy expenditure in lean, active rats

    PubMed Central

    Shukla, Charu; Koch, Lauren G.; Britton, Steven L.; Cai, Minying; Hruby, Victor J.; Bednarek, Maria; Novak, Colleen M.

    2015-01-01

    Physical activity and non-exercise activity thermogenesis (NEAT) are crucial factors accounting for individual differences in body weight, interacting with genetic predisposition. In the brain, a number of neuroendocrine intermediates regulate food intake and energy expenditure (EE); this includes the brain melanocortin (MC) system, consisting of melanocortin peptides as well as their receptors (MCR). MC3R and MC4R have emerged as critical modulators of EE and food intake. To determine how variance in MC signaling may underlie individual differences in physical activity levels, we examined behavioral response to MC receptor agonists and antagonists in rats that show high and low levels of physical activity and NEAT, that is, high- and low-capacity runners (HCR, LCR), developed by artificial selection for differential intrinsic aerobic running capacity. Focusing on the hypothalamus, we identified brain region-specific elevations in expression of MCR 3, 4, and also MC5R, in the highly active, lean HCR relative to the less active and obesity-prone LCR. Further, the differences in activity and associated EE as a result of MCR activation or suppression using specific agonists and antagonists were similarly region-specific and directly corresponded to the differential MCR expression patterns. The agonists and antagonists investigated here did not significantly impact food intake at the doses used, suggesting that the differential pattern of receptor expression may by more meaningful to physical activity than to other aspects of energy balance regulation. Thus, MCR-mediated physical activity may be a key neural mechanism in distinguishing the lean phenotype and a target for enhancing physical activity and NEAT. PMID:26404873

  16. Towards a new paradigm: Activity level balanced sustainability reporting.

    PubMed

    Samudhram, Ananda; Siew, Eu-Gene; Sinnakkannu, Jothee; Yeow, Paul H P

    2016-11-01

    Technoeconomic paradigms based economic growth theories suggest that waves of technological innovations drove the economic growth of advanced economies. Widespread economic degradation and pollution is an unintended consequence of such growth. Tackling environmental and social issues at firm levels would help us to overcome such issues at macro-levels. Consequently, the Triple Bottom Line (TBL) reporting approach promotes firm level economic, environmental and social performances. Incorporating Zink's (2014) 3-pillar presentation model, this paper indicates that economic, social and environmental performances tend to be reported at firm level. All three pillars are not covered evenly at the activity levels. Thus, a loophole is identified whereby excellent environmental performance at activity levels could potentially leave poor social performance undisclosed. A refinement of the TBL paradigm, whereby all three pillars are covered at the activity level, is suggested, to enhance sustainability reporting.

  17. Solar Activity, Different Geomagnetic Activity Levels and Acute Myocardial Infarction

    NASA Astrophysics Data System (ADS)

    Dimitrova, Svetla; Jordanova, Malina; Stoilova, Irina; Taseva, Tatiana; Maslarov, Dimitar

    Results on revealing a possible relationship between solar activity (SA) and geomagnetic activity (GMA) and acute myocardial infarction (AMI) morbidity are presented. Studies were based on medical data covering the period from 1.12.1995 to 31.12.2004 and concerned daily distribution of patients with AMI diagnose (in total 1192 cases) from Sofia region on the day of admission at the hospital. Analysis of variance (ANOVA) was applied to check the significance of GMA intensity effect and the type of geomagnetic storms, those caused by Magnetic Clouds (MC) and by High Speed Solar Wind Streams (HSSWS), on AMI morbidity. Relevant correlation coefficients were calculated. Results revealed statistically significant positive correlation between considered GMA indices and AMI. ANOVA revealed that AMI number was signifi- cantly increased from the day before (-1st) till the day after (+1st) geomagnetic storms with different intensities. Geomagnetic storms caused by MC were related to significant increase of AMI number in comparison with the storms caused by HSSWS. There was a trend for such different effects even on -1st and +1st day.

  18. DOD-DOE Workshop on Joint Energy Activities

    SciTech Connect

    1980-01-01

    The general conditions for DOD-DOE interactions were delineated in an October 1978, Memorandum of Understanding (MOU) that identified two basic goals: improving energy efficiency and availability within DOD, and utilizing DOD and DOE expertise and facilities to carry out projects of mutual interest. There has been considerable interaction between DOD and DOE, including a number of proposed joint initiatives but a systematic and coordinated approach for nurturing, maintaining, and expanding these relationships has not been developed. A DOD-DOE Workshop on Joint Energy Activities was held on March 10-12, 1980. The workshop was structured into five working groups - Mobility Fuels, Conservation, Fossil Fuels for Fixed Facilities, Solar and Renewable Energy Sources, and Special Projects - with DOD and DOE cochairmen for each. Over a hundred DOD and DOE management, program, and policymaking representatives were brought together by the workshop Steering Committee to identify specific programs for inclusion in an overall plan for implementing the MOU and to deal with fundamental issues and problems of maintaining future communications. The workshop accomplished its goals, these being to: (1) improve communication among the appropriate key DOD and DOE personnel at all levels and promote information exchange; (2) review ongoing and already-proposed joint DOD and DOE programs; (3) initiate a coordinated, systematic effort to establish joint DOD-DOE energy-security programs; and (4) propose specific programs and projects of mutual interest for inclusion in a follow-on joint-implementation plan.

  19. Energy levels distribution in supersaturated silicon with titanium for photovoltaic applications

    SciTech Connect

    Pérez, E. Castán, H.; García, H.; Dueñas, S.; Bailón, L.; Montero, D.; García-Hernansanz, R.; García-Hemme, E.; González-Díaz, G.; Olea, J.

    2015-01-12

    In the attempt to form an intermediate band in the bandgap of silicon substrates to give it the capability to absorb infrared radiation, we studied the deep levels in supersaturated silicon with titanium. The technique used to characterize the energy levels was the thermal admittance spectroscopy. Our experimental results showed that in samples with titanium concentration just under Mott limit there was a relationship among the activation energy value and the capture cross section value. This relationship obeys to the well known Meyer-Neldel rule, which typically appears in processes involving multiple excitations, like carrier capture/emission in deep levels, and it is generally observed in disordered systems. The obtained characteristic Meyer-Neldel parameters were Tmn = 176 K and kTmn = 15 meV. The energy value could be associated to the typical energy of the phonons in the substrate. The almost perfect adjust of all experimental data to the same straight line provides further evidence of the validity of the Meyer Neldel rule, and may contribute to obtain a deeper insight on the ultimate meaning of this phenomenon.

  20. Correlation, Breit and Quantum Electrodynamics effects on energy level and transition properties of W54+ ion

    NASA Astrophysics Data System (ADS)

    Ding, Xiaobin; Sun, Rui; Koike, Fumihiro; Kato, Daiji; Murakami, Izumi; Sakaue, Hiroyuki A.; Dong, Chenzhong

    2017-03-01

    The electron correlation effects and Breit interaction as well as Quantum Electro-Dynamics (QED) effects were expected to have important contribution to the energy level and transition properties of heavy highly charged ions. The ground states [Ne]3 s 23 p 63 d 2 and first excited states [Ne]3 s 23 p 53 d 3 of W54+ ion have been studied by using Multi-Configuration Dirac-Fock method with the implementation of Grasp2K package. A restricted active space method was employed to investigate the correlation contribution from different models. The Breit interaction and QED effects were taken into account in the relativistic configuration interaction calculation with the converged wavefunction. It is found that the correlation contribution from 3 s and 3 p orbital have important contribution to the energy level, transition wavelength and probability of the ground and the first excited state of W54+ ion.

  1. Symmetry breaking in the zero-energy Landau level in bilayer graphene.

    PubMed

    Zhao, Y; Cadden-Zimansky, P; Jiang, Z; Kim, P

    2010-02-12

    The quantum Hall effect near the charge neutrality point in bilayer graphene is investigated in high magnetic fields of up to 35 T using electronic transport measurements. In the high-field regime, the eightfold degeneracy in the zero-energy Landau level is completely lifted, exhibiting new quantum Hall states corresponding to filling factors nu=0, 1, 2, and 3. Measurements of the activation energy gaps for the nu=2 and 3 filling factors in tilted magnetic fields exhibit no appreciable dependence on the in-plane magnetic field, suggesting that these Landau level splittings are independent of spin. In addition, measurements taken at the nu=0 charge neutral point show that, similar to single layer graphene, the bilayer becomes insulating at high fields.

  2. Induction of antioxidant enzyme activity and lipid peroxidation level in ion-beam-bombarded rice seeds

    NASA Astrophysics Data System (ADS)

    Semsang, Nuananong; Yu, LiangDeng

    2013-07-01

    Low-energy ion beam bombardment has been used to mutate a wide variety of plant species. To explore the indirect effects of low-energy ion beam on biological damage due to the free radical production in plant cells, the increase in antioxidant enzyme activities and lipid peroxidation level was investigated in ion-bombarded rice seeds. Local rice seeds were bombarded with nitrogen or argon ion beams at energies of 29-60 keV and ion fluences of 1 × 1016 ions cm-2. The activities of the antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST) and lipid peroxidation level were assayed in the germinated rice seeds after ion bombardment. The results showed most of the enzyme activities and lipid peroxidation levels in both the argon and nitrogen bombarded samples were higher than those in the natural control. N-ion bombardment could induce higher levels of antioxidant enzyme activities in the rice samples than the Ar-ion bombardment. Additional effects due to the vacuum condition were found to affect activities of some antioxidant enzymes and lipid peroxidation level. This study demonstrates that ion beam bombardment and vacuum condition could induce the antioxidant enzyme activity and lipid peroxidation level which might be due to free radical production in the bombarded rice seeds.

  3. Energy Conservation Activities for Elementary Grades (Or: How to Help Slim Down the Energy Monster). Iowa Developed Energy Activities Sampler, Intermediate 3-5.

    ERIC Educational Resources Information Center

    Iowa State Dept. of Education, Des Moines. Div. of Instructional Services.

    The revised Iowa Developed Energy Activity Sampler (IDEAS) was compiled using the original IDEAS program and the Energy Conservation Activity Packets (ECAPS). This booklet provides activities for teachers in the intermediate elementary grades (3-5) and is designed to enable students to develop a comprehensive understanding of energy concepts. Each…

  4. Energy Conservation Activities for Elementary Grades (Or: How To Help Slim Down the Energy Monster). Iowa Developed Energy Activities Sampler, Intermediate 3-5. Revised.

    ERIC Educational Resources Information Center

    Iowa State Dept. of Education, Des Moines.

    The revised Iowa Developed Energy Activity Sampler (IDEAS) was compiled using the original IDEAS program and the Energy Conservation Activity Packets (ECAPS). This booklet provides activities for teachers in the intermediate elementary grades (3-5) and is designed to enable students to develop a comprehensive understanding of energy concepts. Each…

  5. Highlands County Energy Lessons. Middle School Level - Science, Mathematics, Social Studies, Vocational Education.

    ERIC Educational Resources Information Center

    Allen, Rodney F., Ed.; Farmer, Richard

    Middle school energy skills (Enerskills) and activities (Eneractivities) are provided in seven sections. Areas addressed include: (1) locating energy information using telephone books, dictionaries, card catalogs, and readers' guides; (2) writing letters for energy information; (3) energy and food (food intake/human performance, calories/energy);…

  6. Nanoscale friction as a function of activation energies

    NASA Astrophysics Data System (ADS)

    Chong, W. W. F.; Rahnejat, H.

    2015-12-01

    Understanding the scale-dependence of friction is increasingly viewed as a critical quest. With progressively thinner films, mixed and boundary regimes of lubrication have become commonplace. Therefore, at the micro-scale a greater need for mitigating friction is desired in order to improve operational efficiency of many machines and mechanisms. Furthermore, there is a growing tendency to use low friction hard wear-resistant advanced coatings to guard against wear. In parallel, there has been much attention paid to lubricant rheology and formulation. However, only in recent times there has been an emerging view of lubricant-surface combination as a system. In this perspective it is essential to relate the observed and measured friction at component level to the underlying interactions in micro/nano-scales. This is the approach in this paper. Observed phenomenon at micro-scale are related back to the activation energies of lubricant-surface system, providing in particular results for surface modified Ni-SiC coated specimen in combination with formulated lubricants, the combination of which represent the lubricant-surface system of choice in cylinders of high performance race engine. The nano-scale conjunction of an AFM tip with lubricated surface-engineered specimen, subjected to various conjunctional loading and sliding kinematics is investigated. It is shown that the measured frictional characteristics can be adequately described in terms of activation energies in line with the Eyring’s thermal activation model for cases of fairly smooth asperity tip contact conjunctions.

  7. Ferromagnetic interaction model of activity level in workplace communication

    NASA Astrophysics Data System (ADS)

    Akitomi, Tomoaki; Ara, Koji; Watanabe, Jun-ichiro; Yano, Kazuo

    2013-03-01

    The nature of human-human interaction, specifically, how people synchronize with each other in multiple-participant conversations, is described by a ferromagnetic interaction model of people’s activity levels. We found two microscopic human interaction characteristics from a real-environment face-to-face conversation. The first characteristic is that people quite regularly synchronize their activity level with that of the other participants in a conversation. The second characteristic is that the degree of synchronization increases as the number of participants increases. Based on these microscopic ferromagnetic characteristics, a “conversation activity level” was modeled according to the Ising model. The results of a simulation of activity level based on this model well reproduce macroscopic experimental measurements of activity level. This model will give a new insight into how people interact with each other in a conversation.

  8. A reduced energy supply strategy in active vibration control

    NASA Astrophysics Data System (ADS)

    Ichchou, M. N.; Loukil, T.; Bareille, O.; Chamberland, G.; Qiu, J.

    2011-12-01

    In this paper, a control strategy is presented and numerically tested. This strategy aims to achieve the potential performance of fully active systems with a reduced energy supply. These energy needs are expected to be comparable to the power demands of semi-active systems, while system performance is intended to be comparable to that of a fully active configuration. The underlying strategy is called 'global semi-active control'. This control approach results from an energy investigation based on management of the optimal control process. Energy management encompasses storage and convenient restitution. The proposed strategy monitors a given active law without any external energy supply by considering purely dissipative and energy-demanding phases. Such a control law is offered here along with an analysis of its properties. A suboptimal form, well adapted for practical implementation steps, is also given. Moreover, a number of numerical experiments are proposed in order to validate test findings.

  9. Erythrocyte aldose reductase activity and sorbitol levels in diabetic retinopathy

    PubMed Central

    Satyanarayana, A.; Balakrishna, N.; Ayyagari, Radha; Padma, M.; Viswanath, K.; Petrash, J. Mark

    2008-01-01

    Purpose Activation of polyol pathway due to increased aldose reductase (ALR2) activity has been implicated in the development of diabetic complications including diabetic retinopathy (DR), a leading cause of blindness. However, the relationship between hyperglycemia-induced activation of polyol pathway in retina and DR is still uncertain. We investigated the relationship between ALR2 levels and human DR by measuring ALR2 activity and its product, sorbitol, in erythrocytes. Methods We enrolled 362 type 2 diabetic subjects (T2D) with and without DR and 66 normal subjects in this clinical case-control study. Clinical evaluation of DR in T2D patients was done by fundus examination. ALR2 activity and sorbitol levels along with glucose and glycosylated hemoglobin (HbA1C) levels in erythrocytes were determined. Results T2D patients with DR showed significantly higher specific activity of ALR2 as compared to T2D patients without DR. Elevated levels of sorbitol in T2D patients with DR, as compared to T2D patients without DR, corroborated the increased ALR2 activity in erythrocytes of DR patients. However, the increased ALR2 activity was not significantly associated with diabetes duration, age, and HbA1C in both the DR group and total T2D subjects. Conclusions Levels of ALR2 activity as well as sorbitol in erythrocytes may have value as a quantitative trait to be included among other markers to establish a risk profile for development of DR. PMID:18385795

  10. Framework for State-Level Renewable Energy Market Potential Studies

    EPA Pesticide Factsheets

    This document provides a framework and next steps for state officials who require estimates of renewable energy market potential. The report gives insight into how to conduct a market potential study.

  11. Closure Plan for Active Low Level Burial Grounds

    SciTech Connect

    SKELLY, W.A.

    2000-11-16

    This plan has been prepared in response to direction from the U.S. Department of Energy. The purpose of the plan is to define approaches that will be implemented to ensure protection of the public and the environment when active Low-Level Burial Grounds (LLBGs) at the Hanford Site are closed. Performance assessments for active burial grounds in the 200 East and West 200 Areas provide current estimates of potential environmental contamination and doses to the ''maximum exposed individual'' from burial ground operation and closure and compare dose estimates to performance objective dose limits for the facilities. This is an Operational Closure Plan. The intent of the guidance in DOE Order 435.1 is that this plan will be a living document, like the facility performance assessments, and will be revised periodically through the operational life of the LLBGs to reflect updated information on waste inventory. management practices, facility transition planning, schedule dates, assessments of post-closure performance, and environmental consequences. Out year dates identified in this plan are tentative. A Final Closure Plan will be prepared in the future when the timing and extent of closure-related activities for LLBGs can be established with greater certainty. After current operations at the LLBGs are concluded, this plan proposes transitioning of these facilities to the Environmental Restoration Program. This action will enable the Environmental Restoration Program to design and implement consistent and coordinated final remedial actions for active and inactive LLBGs. Active and inactive burial grounds in the 200 West and 200 East Areas are commingled. This plan describes approaches that will be implemented during Interim Closure, Final Closure, and Institutional Control Periods to prepare LLBGs for surface barriers, and the construction of barriers, as well as the scope of inspection, monitoring and maintenance practices that will be performed during and after closure

  12. Calculation of the energy levels of lithium-like ions

    NASA Astrophysics Data System (ADS)

    Nadykto, B. A.

    An attempt is made to develop a straightforward and sufficiently accurate method for calculating the energies of complex ion states. The method is based on Bohr's computational model and Sommerfeld's model in relativistic form (for circular orbits only). The method proposed here makes it possible to calculate excited ion states having different atomic and quantum numbers. A similar method can be used for calculating the energies of ion states with the number of electrons exceeding three.

  13. New perspective on formation energies and energy levels of point defects in non-metals

    NASA Astrophysics Data System (ADS)

    Zhu, Hong; Rinke, Patrick; Scheffler, Matthias; Ramprasad, Rampi

    2012-02-01

    We propose a powerful scheme to accurately determine the formation energy and thermodynamic charge transition levels of point defects in non-metals. Previously unknown correlations between defect properties and the valence-band width of the defect-free host material are identified allowing for a determination of the former via an accurate knowledge of the latter. These correlations are identified through a series of hybrid density functional theory computations and an unbiased exploration of the parameter space that defines the Hyde-Scuseria-Ernzerhof family of hybrid-functionals. The applicability of this paradigm is demonstrated for point defects in several insulators, including Si, Ge, ZrO2 and ZnO

  14. Office of Inspector General audit report on the U.S. Department of Energy`s aircraft activities

    SciTech Connect

    1999-01-01

    On October 19, 1998, the Office of Inspector General (OIG) was asked to undertake a review of the Department of Energy`s aircraft activities. It was also requested that they report back within 90 days. The OIG has gathered information concerning the number of aircraft, the level of utilization, and the cost of the Department`s aircraft operations. They have also briefly summarized four issues that, in their judgment, may require management attention.

  15. Selected Energy Education Activities for Pennsylvania Middle School Grades. Draft.

    ERIC Educational Resources Information Center

    Hack, Nancy; And Others

    These activities are intended to help increase awareness and understanding of the energy situation and to encourage students to become energy conservationists. The document is divided into sections according to discipline area. A final section is devoted to interdisciplinary activities involving several discipline areas integrated with the energy…

  16. Lightstick Magic: Determination of the Activation Energy with PSL.

    ERIC Educational Resources Information Center

    Bindel, Thomas H.

    1996-01-01

    Presents experiments with lightsticks in which the activation energy for the light-producing reaction is determined. Involves monitoring the light intensity of the lightstick as a function of temperature. Gives students the opportunity to explore the concepts of kinetics and activation energies and the world of computer-interfaced experimentation…

  17. Fabric-based integrated energy devices for wearable activity monitors.

    PubMed

    Jung, Sungmook; Lee, Jongsu; Hyeon, Taeghwan; Lee, Minbaek; Kim, Dae-Hyeong

    2014-09-01

    A wearable fabric-based integrated power-supply system that generates energy triboelectrically using human activity and stores the generated energy in an integrated supercapacitor is developed. This system can be utilized as either a self-powered activity monitor or as a power supply for external wearable sensors. These demonstrations give new insights for the research of wearable electronics.

  18. Biomass I. Science Activities in Energy [and] Teacher's Guide.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    Designed for science students in fourth, fifth, and sixth grades, the activities in this unit illustrate principles and problems related to biomass as a form of energy. (The word biomass is used to describe all solid material of animal or vegetable origin from which energy may be extracted.) Twelve student activities using art, economics,…

  19. Energy Conservation Activity Packet, Grade 3. Revised Edition.

    ERIC Educational Resources Information Center

    Pohlman, Betty; And Others

    This notebook for grade 3 is one of a series developed in response to the concern for energy conservation. It contains activities that stress an energy conservation ethic and includes many values clarification activities for grade three. The packet is divided into two parts and provides the teacher with background information, concepts and…

  20. Energy Conservation Activities for Elementary Grades (Or: How To Help Slim Down the Energy Monster). Iowa Developed Energy Activities Sampler, Primary K-2. Revised.

    ERIC Educational Resources Information Center

    Iowa State Dept. of Education, Des Moines.

    The revised Iowa Developed Energy Activity Sampler (IDEAS) was compiled using the original IDEAS program and the Energy Conservation Activity Packets (ECAPS). This booklet provides activities for teachers to use in the primary elementary grades (K-2). The activities are organized into nine units, with units 1 through 8 containing three activities…

  1. Energy Conservation Activities for Elementary Grades (Or: How to Help Slim Down the Energy Monster). Iowa Developed Energy Activities Sampler, Primary K-2.

    ERIC Educational Resources Information Center

    Iowa State Dept. of Education, Des Moines. Div. of Instructional Services.

    The revised Iowa Developed Energy Activity Sampler (IDEAS) was compiled using the original IDEAS program and the Energy Conservation Activity Packets (ECAPS). This booklet provides activities for teachers to use in the primary elementary grades (K-2). The activities are organized into nine units, with units I through VIII containing three…

  2. Energy Conservation Teaching Activities for Home Economics Classrooms.

    ERIC Educational Resources Information Center

    Jedlicka, Ella, Ed.

    This collection of home economics activities is intended to meet the special needs of home economics teachers who wish to include energy education activities in their curricula. The 45 activities can be used as presented, or can be modified to individual needs or local conditions. Each activity includes: (1) title, (2) objective, (3) activity…

  3. Activity Profile and Energy Expenditure Among Active Older Adults, British Columbia, 2011–2012

    PubMed Central

    Ashe, Maureen C.; Chase, Jocelyn M.

    2015-01-01

    Introduction Time spent by young adults in moderate to vigorous activity predicts daily caloric expenditure. In contrast, caloric expenditure among older adults is best predicted by time spent in light activity. We examined highly active older adults to examine the biggest contributors to energy expenditure in this population. Methods Fifty-four community-dwelling men and women aged 65 years or older (mean, 71.4 y) were enrolled in this cross-sectional observational study. All were members of the Whistler Senior Ski Team, and all met current American guidelines for physical activity. Activity levels (sedentary, light, and moderate to vigorous) were recorded by accelerometers worn continuously for 7 days. Caloric expenditure was measured using accelerometry, galvanic skin response, skin temperature, and heat flux. Significant variables were entered into a stepwise multivariate linear model consisting of activity level, age, and sex. Results The average (standard deviation [SD]) daily nonlying sedentary time was 564 (92) minutes (9.4 [1.5] h) per day. The main predictors of higher caloric expenditure were time spent in moderate to vigorous activity (standardized β = 0.42 [SE, 0.08]; P < .001) and male sex (standardized β = 1.34 [SE, 0.16]; P < .001). A model consisting of only moderate to vigorous physical activity and sex explained 68% of the variation in caloric expenditure. An increase in moderate to vigorous physical activity by 1 minute per day was associated with an additional 16 kcal expended in physical activity. Conclusion The relationship between activity intensity and caloric expenditure in athletic seniors is similar to that observed in young adults. Active older adults still spend a substantial proportion of the day engaged in sedentary behaviors. PMID:26182147

  4. Solar Energy Education. Home economics: student activities. Field test edition

    SciTech Connect

    Not Available

    1981-03-01

    A view of solar energy from the standpoint of home economics is taken in this book of activities. Students are provided information on solar energy resources while performing these classroom activities. Instructions for the construction of a solar food dryer and a solar cooker are provided. Topics for study include window treatments, clothing, the history of solar energy, vitamins from the sun, and how to choose the correct solar home. (BCS)

  5. Award Winning Energy Education Activities for Elementary and High School Teachers.

    ERIC Educational Resources Information Center

    Carey, Helen H., Ed.

    This publication contains descriptions of the winning entries to the National Science Teachers Association (NSTA) Teacher Participation Contest conducted in 1976. This was a nationwide contest for the design of activities around energy themes at any grade level, K-12. The ten winning entries described here are: (1) Energy Units for Primary Grades;…

  6. Comparison of doubly labeled water with respirometry at low- and high-activity levels

    SciTech Connect

    Westerterp, K.R.; Brouns, F.; Saris, W.H.; ten Hoor, F.

    1988-07-01

    In previous studies the doubly labeled water method for measuring energy expenditure in free-living humans has been validated against respirometry under sedentary conditions. In the present investigation, energy expenditure is measured simultaneously with doubly labeled water and respirometry at low- and high-activity levels. Over 6 days, five subjects were measured doing mainly sedentary activities like desk work; their average daily metabolic rate was 1.40 +/- 0.09 (SD) times sleeping metabolic rate. Four subjects were measured twice over 3.5 days, including 2 days with heavy bicycle ergometer work, resulting in an average daily metabolic rate of 2.61 +/- 0.25 (SD) times sleeping metabolic rate. At the low-activity level, energy expenditures from the doubly labeled water method were on the average 1.4 +/- 3.9% (SD) larger than those from respirometry. At the high-activity level, the doubly labeled water method yielded values that were 1.0 +/- 7.0% (SD) lower than those from respirometry. Results demonstrate the utility of the doubly labeled water method for the determination of energy expenditure in the range of activity levels in daily life.

  7. Energy Levels and the de Broglie Relationship for High School Students

    ERIC Educational Resources Information Center

    Gianino, Concetto

    2008-01-01

    In this article, four examples of possible lessons on energy levels for high school are described: a particle in a box, a finite square well, the hydrogen atom and a harmonic oscillator. The energy levels are deduced through the use of the steady-state condition and the de Broglie relationship. In particular, the harmonic oscillator energy levels…

  8. Physical Activity Levels in Portuguese High School Physical Education

    ERIC Educational Resources Information Center

    Marmeleira, Jose Francisco Filipe; Aldeias, Nuno Micael Carrasqueira; da Graca, Pedro Miguel dos Santos Medeira

    2012-01-01

    The main aim of this study was to evaluate the physical activity (PA) levels of high school Portuguese students during physical education (PE) and investigate the association of PA levels with students' goal orientation and intrinsic motivation. Forty-six students from three high schools participated. Heart rate telemetry and pedometry were used…

  9. Children's Physical Activity Levels during Indoor Recess Dance Videos

    ERIC Educational Resources Information Center

    Erwin, Heather; Koufoudakis, Ryann; Beighle, Aaron

    2013-01-01

    Background: Children's physical activity (PA) levels remain low, and schools are being asked to assume a leadership role in PA promotion. Research suggests outdoor recess contributes to children's overall PA levels. However, similar research is not available for indoor recess, which occurs frequently due to a variety of factors. The purpose of…

  10. Movement Activity Levels on Traditional and Contemporary Playground Structures.

    ERIC Educational Resources Information Center

    Gabbard, Carl P.; LeBlanc, Elizabeth

    This study investigated playground activity levels of children in grades K-4 and compared levels of use of traditional and creative playground apparatus. The traditional playground area consisted of climbing bars, slides, ladders, chin bars, swings, see saws, and a merry-go-round. The creative playground contained tire hurdles, tire walk, tire…

  11. A Quantum Model of Atoms (the Energy Levels of Atoms).

    ERIC Educational Resources Information Center

    Rafie, Francois

    2001-01-01

    Discusses the model for all atoms which was developed on the same basis as Bohr's model for the hydrogen atom. Calculates the radii and the energies of the orbits. Demonstrates how the model obeys the de Broglie's hypothesis that the moving electron exhibits both wave and particle properties. (Author/ASK)

  12. Teaching Field Concept and Potential Energy at A-Level.

    ERIC Educational Resources Information Center

    Poon, C. H.

    1986-01-01

    Argues for a greater emphasis on the reality of fields in electronics and gravitation instruction. Advocates that the potential energy in a system be regarded as stored in the field rather than in the material bodies of the system. Provides a rationale and examples for this position. (ML)

  13. Orbital Energy Levels in Molecular Hydrogen. A Simple Approach.

    ERIC Educational Resources Information Center

    Willis, Christopher J.

    1988-01-01

    Described are the energetics involved in the formation of molecular hydrogen using concepts that should be familiar to students beginning the study of molecular orbital theory. Emphasized are experimental data on ionization energies. Included are two-electron atomic and molecular systems. (CW)

  14. Macroautophagy regulates energy metabolism during effector T cell activation.

    PubMed

    Hubbard, Vanessa M; Valdor, Rut; Patel, Bindi; Singh, Rajat; Cuervo, Ana Maria; Macian, Fernando

    2010-12-15

    Macroautophagy is a highly conserved mechanism of lysosomal-mediated protein degradation that plays a key role in maintaining cellular homeostasis by recycling amino acids, reducing the amount of damaged proteins, and regulating protein levels in response to extracellular signals. We have found that macroautophagy is induced after effector T cell activation. Engagement of the TCR and CD28 results in enhanced microtubule-associated protein 1 light chain 3 (LC3) processing, increased numbers of LC3-containing vesicles, and increased LC3 flux, indicating active autophagosome formation and clearance. The autophagosomes formed in stimulated T cells actively fuse with lysosomes to degrade their cargo. Using a conditional KO mouse model where Atg7, a critical gene for macroautophagy, is specifically deleted in T cells, we have found that macroautophagy-deficient effector Th cells have defective IL-2 and IFN-γ production and reduced proliferation after stimulation, with no significant increase in apoptosis. We have found that ATP generation is decreased when autophagy is blocked, and defects in activation-induced cytokine production are restored when an exogenous energy source is added to macroautophagy-deficient T cells. Furthermore, we present evidence showing that the nature of the cargo inside autophagic vesicles found in resting T cells differs from the cargo of autophagosomes in activated T cells, where mitochondria and other organelles are selectively excluded. These results suggest that macroautophagy is an actively regulated process in T cells that can be induced in response to TCR engagement to accommodate the bioenergetic requirements of activated T cells.

  15. Actively controlled vehicle suspension with energy regeneration capabilities

    NASA Astrophysics Data System (ADS)

    Bar David, Sagiv; Zion Bobrovsky, Ben

    2011-06-01

    The paper presents an innovative dual purpose automotive suspension topology, combining for the first time the active damping qualities with mechanical vibrations power regeneration capabilities. The new configuration consists of a linear generator as an actuator, a power processing stage based on a gyrator operating under sliding mode control and dynamics controllers. The researched design is simple and energetically efficient, enables an accurate force-velocity suspension characteristic control as well as energy regeneration control, with no practical implementation constraints imposed over the theoretical design. Active damping is based on Skyhook suspension control scheme, which enables overcoming the passive damping tradeoff between high- and low-frequency performance, improving both body isolation and the tire's road grip. The system-level design includes configuration of three system operation modes: passive, semi-active or fully active damping, all using the same electro-mechanical infrastructure, and each focusing on different objective: dynamics improvement or power regeneration. Conclusively, the innovative hybrid suspension is theoretically researched, practically designed and analysed, and proven to be feasible as well as profitable in the aspects of power regeneration, vehicle dynamics improvement and human health risks reduction.

  16. The Role of Various Curriculum Models on Physical Activity Levels

    ERIC Educational Resources Information Center

    Culpepper, Dean O.; Tarr, Susan J.; Killion, Lorraine E.

    2011-01-01

    Researchers have suggested that physical education curricula can be highly effective in increasing physical activity levels at school (Sallis & Owen, 1999). The purpose of this study was to investigate the impact of various curriculum models on physical activity. Total steps were measured on 1,111 subjects and three curriculum models were studied…

  17. African American Preschool Children's Physical Activity Levels in Head Start

    ERIC Educational Resources Information Center

    Shen, Bo; Reinhart-Lee, Tamara; Janisse, Heather; Brogan, Kathryn; Danford, Cynthia; Jen, K-L. C.

    2012-01-01

    The purpose of this study was to describe the physical activity levels of urban inner city preschoolers while attending Head Start, the federally funded preschool program for children from low-income families. Participants were 158 African American children. Their physical activity during Head Start days was measured using programmed RT-3…

  18. Seasonality in Children's Pedometer-Measured Physical Activity Levels

    ERIC Educational Resources Information Center

    Beighle, Aaron; Alderman, Brandon; Morgan, Charles F.; Le Masurier, Guy

    2008-01-01

    Seasonality appears to have an impact on children's physical activity levels, but equivocal findings demand more study in this area. With the increased use of pedometers in both research and practice, collecting descriptive data in various seasons to examine the impact of seasonality on pedometer-measured physical activity among children is…

  19. Active Ageing Level of Older Persons: Regional Comparison in Thailand

    PubMed Central

    Haque, Md. Nuruzzaman

    2016-01-01

    Active ageing level and its discrepancy in different regions (Bangkok, Central, North, Northeast, and South) of Thailand have been examined for prioritizing the policy agenda to be implemented. Attempt has been made to test preliminary active ageing models for Thai older persons and hence active ageing index (AAI, ranges from 0 to 1) has been estimated. Using nationally representative data and confirmatory factor analysis approach, this study justified active ageing models for female and male older persons in Thailand. Results revealed that active ageing level of Thai older persons is not high (mean AAIs for female and male older persons are 0.64 and 0.61, resp., and those are significantly different (p < 0.001)). Mean AAI in Central region is lower than North, Northeast, and South regions but there is no significant difference in the latter three regions of Thailand. Special emphasis should be given to Central region and policy should be undertaken for increasing active ageing level. Implementation of an Integrated Active Ageing Package (IAAP), containing policies for older persons to improve their health and economic security, to promote participation in social groups and longer working lives, and to arrange learning programs, would be helpful for increasing older persons' active ageing level in Thailand. PMID:27375903

  20. Can exergaming contribute to improving physical activity levels and health outcomes in children?

    PubMed

    Daley, Amanda J

    2009-08-01

    Physical inactivity among children is a serious public health problem. It has been suggested that high levels of screen time are contributory factors that encourage sedentary lifestyles in young people. As physical inactivity and obesity levels continue to rise in young people, it has been proposed that new-generation active computer- and video-console games (otherwise known as "exergaming") may offer the opportunity to contribute to young people's energy expenditure during their free time. Although studies have produced some encouraging results regarding the energy costs involved in playing active video-console games, the energy costs of playing the authentic versions of activity-based video games are substantially larger, highlighting that active gaming is no substitute for real sports and activities. A small number of exergaming activities engage children in moderate-intensity activity, but most do not. Only 3 very small trials have considered the effects of exergaming on physical activity levels and/or other health outcomes in children. Evidence from these trials has been mixed; positive trends for improvements in some health outcomes in the intervention groups were noted in 2 trials. No adequately powered randomized, controlled trial has been published to date, and no trial has assessed the long-term impact of exergaming on children's health. We now need high-quality randomized, controlled trials to evaluate the effectiveness and sustainability of exergaming, as well as its clinical relevance; until such studies take place, we should remain cautious about its ability to positively affect children's health.

  1. Activity level classification algorithm using SHIMMER™ wearable sensors for individuals with rheumatoid arthritis.

    PubMed

    Fortune, Emma; Tierney, Marie; Scanaill, Cliodhna Ni; Bourke, Ala; Kennedy, Norelee; Nelson, John

    2011-01-01

    In rheumatoid arthritis (RA) it is believed that symptoms associated with the progression of the disease result in a reduction in the physical activity level of the patient. One of the key flaws of the research surrounding this hypothesis to date is the use of non-validated physical activity outcomes measures. In this study, an algorithm to estimate physical activity levels in patients as they perform a simulated protocol of typical activities of daily living using SHIMMER kinematic sensors, incorporating tri-axial gyroscopes and accelerometers, is proposed. The results are validated against simultaneously recorded energy expenditure data and the defined activity protocol and demonstrate that SHIMMER can be used to accurately estimate physical activity levels in RA populations.

  2. Delta oscillations induced by ketamine increase energy levels in sleep-wake related brain regions.

    PubMed

    Dworak, M; McCarley, R W; Kim, T; Basheer, R

    2011-12-01

    Neuronal signaling consumes much of the brain energy, mainly through the restoration of the membrane potential (MP) by ATP-consuming ionic pumps. We have reported that, compared with waking, ATP levels increase during the initial hours of natural slow-wave sleep, a time with prominent electroencephalogram (EEG) delta oscillations (0.5-4.5 Hz). We have hypothesized that there is a delta oscillation-ATP increase coupling, since, during delta waves, neurons exhibit a prolonged hyperpolarizing phase followed by a very brief phase of action potentials. However, direct proof of this hypothesis is lacking, and rapid changes in EEG/neuronal activity preclude measurement in the naturally sleeping brain. Thus, to induce a uniform state with pure delta oscillations and one previously shown to be accompanied by a similar pattern of neuronal activity during delta waves as natural sleep, we used ketamine-xylazine treatment in rats. We here report that, with this treatment, the high-energy molecules ATP and ADP increased in frontal and cingulate cortices, basal forebrain, and hippocampus compared with spontaneous waking. Moreover, the degree of ATP increase positively and significantly correlated with the degree of EEG delta activity. Supporting the hypothesis of decreased ATP consumption during delta activity, the ATP-consuming Na+-K+-ATPase mRNA levels were significantly decreased, whereas the mRNAs for the ATP-producing cytochrome c oxidase (COX) subunits COX III and COX IVa were unchanged. Taken together, these data support the hypothesis of a cortical delta oscillation-dependent reduction in ATP consumption, thus providing the brain with increased ATP availability, and likely occurring because of reduced Na+-K+-ATPase-related energy consumption.

  3. Energy balance regulation by endocannabinoids at central and peripheral levels.

    PubMed

    Quarta, Carmelo; Mazza, Roberta; Obici, Silvana; Pasquali, Renato; Pagotto, Uberto

    2011-09-01

    Dysregulation of the endocannabinoid system (ECS) is a universal and, perhaps, causative feature of obesity. Central nervous system (CNS) circuits that regulate food intake were initially believed to be the targets for dysregulation. However, it is increasingly evident that endocannabinoids affect food intake, energy expenditure and substrate metabolism by acting on peripheral sites. Cannabinoid type 1 receptor (CB1r) antagonists can effectively treat obesity and associated metabolic alterations but, unfortunately, cause and exacerbate mood disorders. Drugs restricted to act on peripheral CB1rs might be safer and more effective, retaining the anti-obesity effects but lacking the adverse neurodepressive reactions. This review summarizes the emerging roles of the ECS in energy balance and discusses future pharmacological approaches for developing peripherally restricted CB1r antagonists.

  4. Ionization energy and active cation vibrations of trans-2-fluorostyrene

    NASA Astrophysics Data System (ADS)

    Wu, Pei Ying; Tzeng, Sheng Yuan; Hsu, Ya Chu; Tzeng, Wen Bih

    2017-02-01

    We applied the two-color resonant two-photon mass-analyzed threshold ionization (MATI) technique to record the cation spectra of trans-2-fluorostyrene by ionizing via six intermediate vibronic levels. The adiabatic ionization energy was determined to be 69 304 ± 5 cm-1. The distinct MATI bands at 67, 124, 242, 355, 737, 806, 833, and 993 cm-1 were assigned to the active cation vibrations related to out-of-plane substituent-sensitive bending vibrations and in-plane ring deformation and bending motions. Many combination vibrations were also observed. Our experimental results suggest that the molecular geometry and vibrational coordinates of the trans-2-fluorostyrene cation in the D0 state resemble those of the neutral species in the S1 state.

  5. Energy monitoring system based on human activity in the workplace

    NASA Astrophysics Data System (ADS)

    Mustafa, Nur Hanim; Husain, Mohd Nor; Aziz, Mohamad Zoinol Abidin Abdul; Othman, Mohd Azlishah; Malek, Fareq

    2015-05-01

    Human behaviors always related to day routine activities in a smart house directly give the significant factor to manage energy usage in human life. An Addition that, the factor will contribute to the best efficiency of the system. This paper will focus on the monitoring efficiency based on duration time in office hours around 8am until 5pm which depend on human behavior at working place. Besides that, the correlation coefficient method is used to show the relation between energy consumption and energy saving based on the total hours of time energy spent. In future, the percentages of energy monitoring system usage will be increase to manage energy saving based on human behaviors. This scenario will help to see the human activity in the workplace in order to get the energy saving and support world green environment.

  6. Photospheric Magnetic Free Energy Density of Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Zhang, Hongqi

    2016-12-01

    We present the photospheric energy density of magnetic fields in two solar active regions (one of them recurrent) inferred from observational vector magnetograms, and compare it with other available differently defined energy parameters of magnetic fields in the photosphere. We analyze the magnetic fields in Active Regions NOAA 6580-6619-6659 and 11158. The quantity 1/4π{B}n\\cdot{B}p is an important energy parameter that reflects the contribution of magnetic shear to the difference between the potential (Bp) and the non-potential magnetic field (Bn), and also the contribution to the free magnetic energy near the magnetic neutral lines in the active regions. It is found that the photospheric mean magnetic energy density shows clear changes before the powerful solar flares in Active Region NOAA 11158, which is consistent with the change in magnetic fields in the flaring lower atmosphere.

  7. Living in a Global Age. A Simulation Activity for Upper Elementary and Secondary Level Students.

    ERIC Educational Resources Information Center

    Stanford Univ., CA. Stanford Program on International and Cross Cultural Education.

    Designed to introduce concepts in international trade and global economics to upper elementary and secondary level students, this simulation activity engages students in the group task of assembling flashlights. A variety of topics can be explored, such as energy shortages, international crises, relationships between rich and poor nations, foreign…

  8. Energy levels of isoelectronic impurities by large scale LDA calculations

    SciTech Connect

    Li, Jingbo; Wang, Lin-Wang

    2002-11-22

    Isoelectronic impurity states are localized states induced by stoichiometric single atom substitution in bulk semiconductor. Photoluminescence spectra indicate deep impurity levels of 0.5 to 0.9eV above the top of valence band for systems like: GaN:As, GaN:P, CdS:Te, ZnS:Te. Previous calculations based on small supercells seemingly confirmed these experimental results. However, the current ab initio calculations based on thousand atom supercells indicate that the impurity levels of the above systems are actually much shallower(0.04 to 0.23 eV), and these impurity levels should be compared with photoluminescence excitation spectra, not photoluminescence spectra.

  9. On the possibility of negative activation energies in bimolecular reactions

    NASA Technical Reports Server (NTRS)

    Jaffe, R. L.

    1978-01-01

    The temperature dependence of the rate constants for model reacting systems was studied to understand some recent experimental measurements which imply the existence of negative activation energies. A collision theory model and classical trajectory calculations are used to demonstrate that the reaction probability can vary inversely with collision energy for bimolecular reactions occurring on attractive potential energy surfaces. However, this is not a sufficient condition to ensure that the rate constant has a negative temperature dependence. On the basis of these calculations, it seems unlikely that a true bimolecular reaction between neutral molecules will have a negative activation energy.

  10. Optimization of energy level for coronary angiography with dual-energy and dual-source computed tomography.

    PubMed

    Okayama, Satoshi; Seno, Ayako; Soeda, Tsunenari; Takami, Yasuhiro; Kawakami, Rika; Somekawa, Satoshi; Ishigami, Ken-Ichi; Takeda, Yukiji; Kawata, Hiroyuki; Horii, Manabu; Uemura, Shiro; Saito, Yoshihiko

    2012-04-01

    Dual-energy computed tomography (DE-CT) uses polyenergetic X-rays at 100- and 140-kVp tube energy, and generates 120-kVp composite images that are referred to as polyenergetic images (PEIs). Moreover, DE-CT can produce monoenergetic images (MEIs) at any effective energy level. We evaluated whether the image quality of coronary angiography is improved by optimizing the energy levels of DE-CT. We retrospectively evaluated data sets obtained from 24 consecutive patients using cardiac DE-CT at 100- and 140-kVp tube energy with a dual-source scanner. Signal-to-noise ratios (SNRs) were evaluated in the left ascending coronary artery in PEIs, and in MEIs reconstructed at 40, 50, 60, 70, 80, 90, 100, 130, 160 and 190 keV. Energy levels of 100, 120 and 140 kVp generated the highest SNRs in PEIs from 10, 12 and 2 patients, respectively, at 60, 70 and 80 keV in MEIs from 2, 10 and 10 patients, respectively, and at 90 and 100 keV in those from one patient each. Optimization of the energy level for each patient increased the SNR by 16.6% in PEIs (P < 0.0001) and by 18.2% in MEIs (P < 0.05), compared with 120-kVp composite images. The image quality of coronary angiography using DE-CT can be improved by optimizing the energy level for individual patients.

  11. Energy.

    ERIC Educational Resources Information Center

    Online-Offline, 1998

    1998-01-01

    This issue focuses on the theme of "Energy," and describes several educational resources (Web sites, CD-ROMs and software, videos, books, activities, and other resources). Sidebars offer features on alternative energy, animal energy, internal combustion engines, and energy from food. Subthemes include harnessing energy, human energy, and…

  12. Hybrid energy storage systems utilizing redox active organic compounds

    SciTech Connect

    Wang, Wei; Xu, Wu; Li, Liyu; Yang, Zhenguo

    2015-09-08

    Redox flow batteries (RFB) have attracted considerable interest due to their ability to store large amounts of power and energy. Non-aqueous energy storage systems that utilize at least some aspects of RFB systems are attractive because they can offer an expansion of the operating potential window, which can improve on the system energy and power densities. One example of such systems has a separator separating first and second electrodes. The first electrode includes a first current collector and volume containing a first active material. The second electrode includes a second current collector and volume containing a second active material. During operation, the first source provides a flow of first active material to the first volume. The first active material includes a redox active organic compound dissolved in a non-aqueous, liquid electrolyte and the second active material includes a redox active metal.

  13. Determining Linac Beam Energy from C-11/O-15 Activity Ratios in Polymers

    NASA Astrophysics Data System (ADS)

    Cardman, Ryan; Shepherd, Matthew

    2017-01-01

    A method for precisely measuring the beam energy of 20-25 MeV electron linear accelerator was developed. Polyoxymethylene (Delrin) and poly(methyl methacrylate) (acrylic) samples were irradiated with an electron linac at several energy settings of the accelerator simultaneously producing C-11 and O-15 via photonuclear reactions within each of the polymers. Using gamma-ray spectroscopy the activity ratios of C-11/O-15 were measured by analyzing the decay of activity vs. time. The C-11/O-15 ratio exhibits an energy dependence due to differences in the production cross section vs. energy. The observed dependence can be matched to predictions of the activity ratio vs. energy, developed from GEANT4 Monte Carlo models of an electromagnetic shower and knowledge of the cross sections, in order to determine the energy of the beam at a sub-MeV level of precision. National Science Foundation Research Experience for Undergraduates.

  14. Energy Consumption of Actively Beating Flagella

    NASA Astrophysics Data System (ADS)

    Chen, Daniel; Nicastro, Daniela; Dogic, Zvonimir

    2012-02-01

    Motile cilia and flagella are important for propelling cells or driving fluid over tissues. The microtubule-based core in these organelles, the axoneme, has a nearly universal ``9+2'' arrangement of 9 outer doublet microtubules assembled around two singlet microtubules in the center. Thousands of molecular motor proteins are attached to the doublets and walk on neighboring outer doublets. The motors convert the chemical energy of ATP hydrolysis into sliding motion between adjacent doublet microtubules, resulting in precisely regulated oscillatory beating. Using demembranated sea urchin sperm flagella as an experimental platform, we simultaneously monitor the axoneme's consumption of ATP and its beating dynamics while key parameters, such as solution viscosity and ATP concentration, are varied. Insights into motor cooperativity during beating and energetic consequences of hydrodynamic interactions will be presented.

  15. Energy Around Us. A Fall Activity Packet for Fourth Grade.

    ERIC Educational Resources Information Center

    Jackson Community Coll., MI. Dahlem Environmental Education Center.

    This instructional packet is one of 14 school environmental education programs developed for use in the classroom and at the Dahlem Environmental Education Center (DEEC) of the Jackson Community College (Michigan). Provided in the packet are pre-trip activities, field trip activities, and post-trip activities which focus on energy uses, energy…

  16. Thermopower and conductivity activation energies in hydrogenated amorphous silicon

    SciTech Connect

    Dyalsingh, H.M.; Kakalios, J.

    1996-12-31

    The long range fluctuation model has been widely used to account for the difference in activation energies seen experimentally in dark conductivity and thermopower measurements in hydrogenated amorphous silicon. The authors report on a test of this model using measurements of the conductivity and thermoelectric effects carried out in both open and short circuit configurations. While the thermopower activation energy is less than that of the dark conductivity, the short circuit Seebeck conductivity is found to be nearly identical to the dark conductivity in both activation energy and magnitude, consistent with the long range fluctuation model.

  17. Energy levels of magneto-optical polaron in spherical quantum dot — Part 1: Strong coupling

    NASA Astrophysics Data System (ADS)

    Fotue, A. J.; Kenfack, S. C.; Issofa, N.; Tiotsop, M.; Fotsin, H.; Mainimo, E.; Fai, L. C.

    2015-09-01

    We investigate the influence of a magnetic field on the ground state energy of a polaron in a spherical semiconductor quantum dot (QD) using the modified LLP method. The ground state energy is split into sub-energy levels and there is a degeneracy of energy levels. It is also observed that the degenerate energy increase with the electron-phonon coupling constant and decrease with the magnetic field. The numerical results show that, under the influence of magnetic field and the interaction with the total momentum along the z-direction, the split energy increases and decreases with the longitudinal and the transverse confinement length, respectively.

  18. Binding energy levels of a slowly moving ion in dusty plasmas

    NASA Astrophysics Data System (ADS)

    Hu, Hongwei; Li, Fuli

    2013-02-01

    The near field electric potential of a slowly moving ion in complex plasmas is studied. We find that the potential consists of the Debye-Hückel potential, the wake potential, and the potential associated with charge fluctuations. The binding energy levels of the ion are calculated by use of the Ritz variation method. The results show that the binding energy levels are related to the magnetic quantum number m. The binding energy levels are affected by speed of the ion and dust grain number density. In contract to isolated ion or static ion in plasmas, the binding energy levels of the ion are pushed up and even become unbounded.

  19. Physical Activity Levels of Adolescents With Type 1 Diabetes.

    PubMed

    de Lima, Valderi Abreu; Mascarenhas, Luis Paulo Gomes; Decimo, Juliana Pereira; de Souza, William Cordeiro; Monteiro, Anna Louise Stellfeld; Lahard, Ian; França, Suzana Nesi; Leite, Neiva

    2017-01-04

    The aim of this study was to evaluate the level of physical activity and cardiorespiratory fitness in teenagers with type 1 diabetes mellitus (T1D) in comparison with healthy scholar participants. Total of 154 teenagers (T1D=45 and CON=109). Height, weight, cardiorespiratory fitness (VO2max), and the level of physical activity by the Bouchard's Physical Activity Record were measured, and glycated hemoglobin (HbA1c) in T1D. The VO2 max was lower in the T1D (38.38 ± 7.54) in comparison with the CON (42.44 ± 4.65; p<0.05). The VO2max had correlation with the amount of time of moderate-to-vigorous physical activity (r = 0.63; p = 0.0001) and an inverse correlation with sedentary activities (r = -0.46; p = 0.006). In the T1D the levels of HbA1c had an inverse correlation with the amount of time of moderate-to-vigorous physical activity (r = -0.34; p = 0.041) and correlation with the BMI z-score (r = 0.43; p = 0.017). Only 37,8% of the participants in the T1D reached the adequate amount of daily moderate-to-vigorous intensity physical activity, in the CON 81,7% reached the WHO's recommendation.

  20. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Marine Climates; January 2006 - December 2006

    SciTech Connect

    Building America Industrialized Housing Partnership; Building Industry Research Alliance; Building Science Consortium; Consortium for Advanced Residential Buildings; Davis Energy Group; IBACOS; National Association of Home Builders Research Center; National Renewable Energy Laboratory

    2006-12-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Marine Climate Region on a cost neutral basis.

  1. Extraction of Children's Friendship Relation from Activity Level

    NASA Astrophysics Data System (ADS)

    Kono, Aki; Shintani, Kimio; Katsuki, Takuya; Kihara, Shin'ya; Ueda, Mari; Kaneda, Shigeo; Haga, Hirohide

    Children learn to fit into society through living in a group, and it's greatly influenced by their friend relations. Although preschool teachers need to observe them to assist in the growth of children's social progress and support the development each child's personality, only experienced teachers can watch over children while providing high-quality guidance. To resolve the problem, this paper proposes a mathematical and objective method that assists teachers with observation. It uses numerical data of activity level recorded by pedometers, and we make tree diagram called dendrogram based on hierarchical clustering with recorded activity level. Also, we calculate children's ``breadth'' and ``depth'' of friend relations by using more than one dendrogram. When we record children's activity level in a certain kindergarten for two months and evaluated the proposed method, the results usually coincide with remarks of teachers about the children.

  2. Modeling and optimization of actively Q-switched Nd-doped quasi-three-level laser

    NASA Astrophysics Data System (ADS)

    Yan, Renpeng; Yu, Xin; Li, Xudong; Chen, Deying; Gao, Jing

    2013-09-01

    The energy transfer upconversion and the ground state absorption are considered in solving the rate equations for an active Q-switched quasi-three-level laser. The dependence of output pulse characters on the laser parameters is investigated by solving the rate equations. The influence of the energy transfer upconversion on the pulsed laser performance is illustrated and discussed. By this model, the optimal parameters could be achieved for arbitrary quasi-three-level Q-switched lasers. An acousto-optical Q-switched Nd:YAG 946 nm laser is constructed and the reliability of the theoretical model is demonstrated.

  3. Activity level and risk of overweight in male health professionals.

    PubMed Central

    Ching, P L; Willett, W C; Rimm, E B; Colditz, G A; Gortmaker, S L; Stampfer, M J

    1996-01-01

    OBJECTIVES. This study undertook to examine relationships between nonsedentary activity level, time spent watching television (TV)/videocassette recorder (VCR), and risk of overweight among men. METHODS. Men participating in the Health Professionals Follow-Up Study were mailed surveys. Cross-sectional analyses examined the prevalence and odds of being overweight, prospective analyses determined cumulative incidence rates and relative risks of becoming overweight over 2 years of follow-up. RESULTS. Cross-sectionally, odds of being overweight were 50% (95% confidence interval [CI] = 45%; 55%) lower for men in the highest quintile of nonsedentary activity level when compared with men in the lowest quintile. Among men watching 41 or more hours of TV/VCR per week, the odds of being overweight were 406 (95% CI = 2.67, 6.17) times greater than those for men watching no more than 1 hour per week. Prospectively, higher levels is of nonsedentary activity and lower levels of TV/VCR viewing were independently associated with lower relative risks for becoming overweight between survey years. CONCLUSIONS. Both a lack of nonsedentary activity and time spent watching TV/VCR contribute to the development of overweight in men. Sedentary and nonsedentary activities represent separate domains, each with independent risks for overweight. PMID:8561237

  4. Using Microcomputers in the Physical Chemistry Laboratory: Activation Energy Experiment.

    ERIC Educational Resources Information Center

    Touvelle, Michele; Venugopalan, Mundiyath

    1986-01-01

    Describes a computer program, "Activation Energy," which is designed for use in physical chemistry classes and can be modified for kinetic experiments. Provides suggestions for instruction, sample program listings, and information on the availability of the program package. (ML)

  5. The Geography of Wind Energy: Problem Solving Activities.

    ERIC Educational Resources Information Center

    Lahart, David E.; Allen, Rodney F.

    1985-01-01

    Today there are many attempts to use wind machines to confront the increasing costs of electricity. Described are activities to help secondary students understand wind energy, its distribution, applications, and limitations. (RM)

  6. Play equipment, physical activity opportunities, and children's activity levels at childcare.

    PubMed

    Gubbels, Jessica S; Van Kann, Dave H H; Jansen, Maria W J

    2012-01-01

    This study investigated the association between physical activity facilities at childcare (e.g., play equipment) and physical activity of 2- and 3-year olds. Observations of physical activity intensity were performed among 175 children at 9 childcare centers in The Netherlands, using the OSRAC-P. The physical activity facilities were assessed for indoors and outdoors separately, using the EPAO instrument. Regular (single-level) multivariate and multilevel linear regression analyses examined the association of the facilities and child characteristics (age and sex) with children's activity levels. Various physical activity facilities were available in all childcare centers (e.g., balls). Riding toys and a small playing area were associated with lower indoor physical activity levels. Outdoor physical activity levels were positively associated with the availability of portable jumping equipment and the presence of a structured track on the playground. Portable slides, fixed swinging equipment, and sandboxes were negatively associated with outdoor activity levels. In addition, the 3-year old children were more active outdoors than the 2-year olds. In conclusion, not all physical activity facilities at childcare were indeed positively associated with children's activity levels. The current findings provide concrete leads for childcare providers regarding which factors they can improve in the physical environment to facilitate children's physical activity.

  7. Energy Levels and Co-evolution of Product Innovation in Supply Chain Clusters

    NASA Astrophysics Data System (ADS)

    Ji, Guojun

    In the last decade supply chain clusters phenomenon has emerged as a new approach in product innovation studies. This article makes three contributions to the approach by addressing some open issues. The first contribution is to explicitly incorporate the energy levels in the analysis. Hence, the unit of analysis is widened from sectoral systems of innovation to socio-technical systems. Hence, the unit of analysis is widened from sectoral systems of innovation to socio-technical systems. The second contribution is to suggest an analytical distinction between different evolution method, actors involved in them, and the institutions which guide actor's perceptions and activities. Thirdly, the article opens up the black box of institutions, making them an integral part of supply chain. The article provides a coherent conceptual multi-level perspective, using insights from sociology, institutional theory and innovation studies. The perspective is particularly useful to analyze long-term dynamics supply chain clusters phenomenon, shifts from one energy level to another and the co-evolution of product innovation.

  8. Energy Conservation Activity Guide, Grades 9-12. Bulletin 1602.

    ERIC Educational Resources Information Center

    Fraser, Mollie; And Others

    As an interdisciplinary, non-sequential teaching guide, this publication was developed to increase awareness and understanding of the energy situation and to encourage individuals to become energy conservationists. Sections provide background information for the teacher followed by a variety of student activities using different subject areas for…

  9. Daily ambulatory activity levels in idiopathic Parkinson disease.

    PubMed

    Skidmore, Frank M; Mackman, Chad A; Pav, Breckon; Shulman, Lisa M; Garvan, Cyndi; Macko, Richard F; Heilman, Kenneth M

    2008-01-01

    Patients with Parkinson disease (PD) may have decreased physical activity due to motor deficits. We recently validated the reliability of step activity monitors (SAMs) to accurately count steps in PD, and we wished to use them to evaluate the impact of disease severity on home activity levels in PD. Twenty-six subjects with PD (Hoehn and Yahr disease stage 2-4) were recruited to participate in a study of activity levels over 48 hours. Ability to achieve 95% device accuracy was an entry requirement. A Unified Parkinson Disease Rating Scale (UPDRS) evaluation was performed on all subjects, subjects were monitored for 48 hours, and total number of steps per day and maximum steps taken per hour were calculated. Out of 26 subjects, 25 met entry requirements. We calculated the number of steps taken per day, as well as maximal activity levels, and correlated these with UPDRS total score, the activity of daily living subscale, and the UPDRS motor function subscale off and on medication (all p < 0.01). Transition from Hoehn and Yahr stage 2 to stage 3 was associated with a decline in functional mobility (p < 0.005). A microprocessor-linked SAM accurately counted steps in subjects with PD. The number of steps taken correlated highly with disease severity. SAMs may be useful outcome measures in PD.

  10. A Survey of Physical Activity Levels of Certified Athletic Trainers

    PubMed Central

    Cuppett, Marchell; Latin, Richard W.

    2002-01-01

    Objective: To determine the self-reported physical activities of certified athletic trainers (ATCs), both at work and at leisure. Design and Setting: We used the Baecke Questionnaire of Habitual Physical Activity and also asked for demographic information, including employment setting, years of experience, education level, and position. Subjects: The questionnaire was sent to 1200 randomly selected ATCs in the Mid-America Athletic Trainers' Association; the return rate was 53%. Measurements: We used means, standard deviations, and ranges to describe the age, total fitness index, work, and leisure and sport indexes of men and women subjects. Independent t tests were used to compare the mean total activity index between men and women within this study and with previous studies. We examined differences in activity indexes by employment setting, position, and age with one-way analysis of variance and Fisher pairwise comparison tests. Two-way χ2 analysis was used to determine the relationship between activity level and employment setting and position. Statistical significance was set at P = .05 for all analyses. Results: Certified athletic trainers who work in a clinical setting had the highest mean total activity score at 9.1 points. Clinic ATCs scored significantly higher than high school ATCs and college ATCs. When compared by position, there were no significant differences among the mean total activity indexes; however, the mean work index of program directors was significantly lower than all other positions and the mean work index of high school and clinic ATCs was significantly higher than all other employment settings. Conclusions: Female ATCs scored significantly higher in total activity levels on the Baecke Questionnaire than their male counterparts. This is in contrast to the general population, investigated by other authors, in which men scored significantly higher than women on the same scale. Additionally, we compared the total activity levels by age

  11. Element levels in birch and spruce wood ashes: green energy?

    PubMed

    Reimann, Clemens; Ottesen, Rolf Tore; Andersson, Malin; Arnoldussen, Arnold; Koller, Friedrich; Englmaier, Peter

    2008-04-15

    Production of wood ash has increased strongly in the last ten years due to the increasing popularity of renewable and CO(2)-neutral heat and energy production via wood burning. Wood ashes are rich in many essential plant nutrients. In addition they are alkaline. The idea of using the waste ash as fertiliser in forests is appealing. However, wood is also known for its ability to strongly enrich certain heavy metals from the underlying soils, e.g. Cd, without any anthropogenic input. Concentrations of 26 chemical elements (Ag, As, Au, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sr, Ti, and Zn) in 40 samples each of birch and spruce wood ashes collected along a 120 km long transect in southern Norway are reported. The observed maximum concentrations are 1.3 wt.% Pb, 4.4 wt.% Zn and 203 mg/kg Cd in birch wood ashes. Wood ashes can thus contain very high heavy metal concentrations. Spreading wood ashes in a forest is a major anthropogenic interference with the natural biogeochemical cycles. As with the use of sewage sludge in agriculture the use of wood ashes in forests clearly needs regulation.

  12. Removing the barrier to the calculation of activation energies

    SciTech Connect

    Mesele, Oluwaseun O.; Thompson, Ward H.

    2016-10-06

    Approaches for directly calculating the activation energy for a chemical reaction from a simulation at a single temperature are explored with applications to both classical and quantum systems. The activation energy is obtained from a time correlation function that can be evaluated from the same molecular dynamics trajectories or quantum dynamics used to evaluate the rate constant itself and thus requires essentially no extra computational work.

  13. Density and energy level of a deep-level Mg acceptor in 4H-SiC

    NASA Astrophysics Data System (ADS)

    Matsuura, Hideharu; Morine, Tatsuya; Nagamachi, Shinji

    2015-01-01

    Reliably determining the densities and energy levels of deep-level dominant acceptors in heavily doped wide-band-gap semiconductors has been a topic of recent discussion. In these discussions, the focus is on both Hall scattering factors for holes and distribution functions for acceptors. Mg acceptor levels in 4H-SiC seem to be deep, and so here the electrical properties of Mg-implanted 4H-SiC layers are studied by measuring Hall effects. The obtained Hall scattering factors are not reliable because they drop to less than 0.5 at high measurement temperatures. Moreover, the Fermi-Dirac distribution function is unsuitable for examining Mg acceptors because the obtained acceptor density is much higher than the concentration of implanted Mg atoms. However, by using a distribution function that includes the influence of the excited states of a deep-level acceptor, the density and energy level of Mg acceptors can be reliably determined.

  14. The activation energy for creep of columbium /niobium/.

    NASA Technical Reports Server (NTRS)

    Klein, M. J.; Gulden, M. E.

    1973-01-01

    The activation energy for creep of nominally pure columbium (niobium) was determined in the temperature range from 0.4 to 0.75 T sub M by measuring strain rate changes induced by temperature shifts at constant stress. A peak in the activation energy vs temperature curve was found with a maximum value of 160 kcal/mole. A pretest heat treatment of 3000 F for 30 min resulted in even higher values of activation energy (greater than 600 kcal/mole) in this temperature range. The activation energy for the heat-treated columbium (Nb) could not be determined near 0.5 T sub M because of unusual creep curves involving negligible steady-state creep rates and failure at less than 5% creep strain. It is suggested that the anomalous activation energy values and the unusual creep behavior in this temperature range are caused by dynamic strain aging involving substitutional atom impurities and that this type of strain aging may be in part responsible for the scatter in previously reported values of activation energy for creep of columbium (Nb) near 0.5 T sub M.

  15. North Dakota Industrial Arts Teachers Handbook. Energy/Power Curriculum Guide, Level I.

    ERIC Educational Resources Information Center

    Mugan, Don

    This handbook provides teachers with support material to more fully implement the North Dakota Energy and Power Curriculum Guide, Level I. It first presents the body of knowledge for Energy/Power Technology as taken from the curriculum guide. The guide is then addressed unit by unit, topic by topic. These seven units are covered: Energy/Power…

  16. 24 CFR 990.185 - Utilities expense level: Incentives for energy conservation/rate reduction.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... for energy conservation/rate reduction. 990.185 Section 990.185 Housing and Urban Development... Calculating Formula Expenses § 990.185 Utilities expense level: Incentives for energy conservation/rate reduction. (a) General/consumption reduction. If a PHA undertakes energy conservation measures that...

  17. Quantifying the Level of Cross-State Renewable Energy Transactions (Presentation)

    SciTech Connect

    Heeter, J.; Beiter, P.; Flores, F.; Hurlbut, D.; Liu, C.

    2015-02-01

    This presentation and associated spreadsheet examine the level of cross-state renewable energy transactions. Most state renewable portfolio standard (RPS) policies allow for out-of-state renewable energy or renewable energy certificates to count towards compliance. This analysis focuses on compliance for 2012 and provides stakeholders with an understanding of the extent to which RPSs are being met.

  18. 24 CFR 990.185 - Utilities expense level: Incentives for energy conservation/rate reduction.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... for energy conservation/rate reduction. 990.185 Section 990.185 Housing and Urban Development... Calculating Formula Expenses § 990.185 Utilities expense level: Incentives for energy conservation/rate reduction. (a) General/consumption reduction. If a PHA undertakes energy conservation measures that...

  19. 24 CFR 990.185 - Utilities expense level: Incentives for energy conservation/rate reduction.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... for energy conservation/rate reduction. 990.185 Section 990.185 Housing and Urban Development... Calculating Formula Expenses § 990.185 Utilities expense level: Incentives for energy conservation/rate reduction. (a) General/consumption reduction. If a PHA undertakes energy conservation measures that...

  20. 24 CFR 990.185 - Utilities expense level: Incentives for energy conservation/rate reduction.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... for energy conservation/rate reduction. 990.185 Section 990.185 Housing and Urban Development... Calculating Formula Expenses § 990.185 Utilities expense level: Incentives for energy conservation/rate reduction. (a) General/consumption reduction. If a PHA undertakes energy conservation measures that...

  1. 24 CFR 990.185 - Utilities expense level: Incentives for energy conservation/rate reduction.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... for energy conservation/rate reduction. 990.185 Section 990.185 Housing and Urban Development... Calculating Formula Expenses § 990.185 Utilities expense level: Incentives for energy conservation/rate reduction. (a) General/consumption reduction. If a PHA undertakes energy conservation measures that...

  2. Cascading Activation across Levels of Representation in Children's Lexical Processing

    ERIC Educational Resources Information Center

    Huang, Yi Ting; Snedeker, Jesse

    2011-01-01

    Recent work in adult psycholinguistics has demonstrated that activation of semantic representations begins long before phonological processing is complete. This incremental propagation of information across multiple levels of analysis is a hallmark of adult language processing but how does this ability develop? In two experiments, we elicit…

  3. Pedometer-Assessed Physical Activity Levels of Rural Appalachian Youth

    ERIC Educational Resources Information Center

    Oh, Hyun-Ju; Rana, Sharon

    2014-01-01

    The purposes of this investigation were to examine whether pedometer-assessed physical activity (PA) in Appalachian Ohio students differed by body mass index (BMI), school level (middle school vs. high school), and gender during school days and nonschool days and whether students met the recommended PA guidelines. Participants (N = 149) were…

  4. Cardiovascular effects of variations in habitual levels of physical activity

    NASA Technical Reports Server (NTRS)

    Blomqvist, C. G.; Mitchell, J. H.

    1975-01-01

    Mechanisms involved in human cardiovascular adaption to stress, particularly adaption to different levels of physical activity are determined along with quantitative noninvasive methods for evaluation of cardiovascular function during stess in normal subjects and in individuals with latent or manifest cardiovascular disease. Results are summarized.

  5. 34 CFR 300.814 - Other State-level activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false Other State-level activities. 300.814 Section 300.814 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION ASSISTANCE TO STATES FOR THE EDUCATION...

  6. Genetic Influences on Mechanically-Assessed Activity Level in Children

    ERIC Educational Resources Information Center

    Wood, Alexis C.; Saudino, Kimberly J.; Rogers, Hannah; Asherson, Philip; Kuntsi, Jonna

    2007-01-01

    Background: Activity level is an important component of children's temperament, as well as being part of the core symptom domain of hyperactivity-impulsivity within attention deficit hyperactivity disorder (ADHD). Yet it is poorly understood, due partly to limitations on parent and teacher ratings, which are typically used as measurements of these…

  7. Energy conversion modeling of the intrinsic persistent luminescence of solids via energy transfer paths between transition levels.

    PubMed

    Huang, Bolong; Sun, Mingzi

    2017-04-05

    An energy conversion model has been established for the intrinsic persistent luminescence in solids related to the native point defect levels, formations, and transitions. In this study, we showed how the recombination of charge carriers between different defect levels along the zero phonon line (ZPL) can lead to energy conversions supporting the intrinsic persistent phosphorescence in solids. This suggests that the key driving force for this optical phenomenon is the pair of electrons hopping between different charged defects with negative-Ueff. Such a negative correlation energy will provide a sustainable energy source for electron-holes to further recombine in a new cycle with a specific quantum yield. This will help us to understand the intrinsic persistent luminescence with respect to native point defect levels as well as the correlations of electronics and energetics.

  8. Dietary Curcumin Supplementation Counteracts Reduction in Levels of Molecules Involved in Energy Homeostasis after Brain Trauma

    PubMed Central

    Sharma, S.; Zhuang, Y.; Ying, Z.; Wu, A.; Gomez-Pinilla, F.

    2009-01-01

    Traumatic brain injury (TBI) is followed by an energy crisis that compromises the capacity of the brain to cope with challenges, and often reduces cognitive ability. New research indicates that events that regulate energy homeostasis crucially impact synaptic function and this can compromise the capacity of the brain to respond to challenges during the acute and chronic phases of TBI. The goal of the present study is to determine the influence of the phenolic yellow curry pigment curcumin on molecular systems involved with the monitoring, balance, and transduction of cellular energy, in the hippocampus of animals exposed to mild fluid percussion injury (FPI). Young adult rats were exposed to a regular diet (RD) without or with 500 ppm curcumin (Cur) for four weeks, before an FPI was performed. The rats were assigned to four groups: RD/Sham, Cur/Sham, RD/FPI, and Cur/FPI. We found that FPI decreased the levels of AMP-activated protein kinase (AMPK), ubiquitous mitochondrial creatine kinase (uMtCK) and cytochrome c oxidase II (COX-II) in RD/FPI rats as compared to the RD/sham rats. The curcumin diet counteracted the effects of FPI and elevated the levels of AMPK, uMtCK, COX-II in Cur/FPI rats as compared to RD/sham rats. In addition, in the Cur/sham rats, AMPK and uMtCK increased compared to the RD/sham. Results show the potential of curcumin to regulate molecules involved in energy homeostasis following TBI. These studies may foster a new line of therapeutic treatments for TBI patients by endogenous upregulation of molecules important for functional recovery. PMID:19393301

  9. Rotation vibration energy level clustering in the XB1 ground electronic state of PH2

    NASA Astrophysics Data System (ADS)

    Yurchenko, S. N.; Thiel, W.; Jensen, Per; Bunker, P. R.

    2006-10-01

    We use previously determined potential energy surfaces for the Renner-coupled XB1 and AA1 electronic states of the phosphino (PH 2) free radical in a calculation of the energies and wavefunctions of highly excited rotational and vibrational energy levels of the X˜ state. We show how spin-orbit coupling, the Renner effect, rotational excitation, and vibrational excitation affect the clustered energy level patterns that occur. We consider both 4-fold rotational energy level clustering caused by centrifugal distortion, and vibrational energy level pairing caused by local mode behaviour. We also calculate ab initio dipole moment surfaces for the X˜ and A˜ states, and the X˜-A˜ transition moment surface, in order to obtain spectral intensities.

  10. Anterior cingulate activity and level of cognitive conflict: explicit comparisons.

    PubMed

    Mitchell, Rachel L C

    2006-12-01

    The role of anterior cingulate cortex (ACC) in attention is a matter of debate. One hypothesis suggests that its role is to monitor response-level conflict, but explicit evidence is somewhat lacking. In this study, the activation of ACC was compared in (a) color and number standard Stroop tasks in which response preparation and interference shared modality (response-level conflict) and (b) color and number matching Stroop tasks in which response preparation and interference did not share modality (non-response-level conflict). In the congruent conditions, there was no effect of task type. In the interference conditions, anterior cingulate activity in the matching tasks was less than that in the standard tasks. These results support the hypothesis that ACC specifically mediates generalized modality-independent selection processes invoked by response competition.

  11. Wind energy development in the United States: Can state-level policies promote efficient development of wind energy capacity?

    NASA Astrophysics Data System (ADS)

    Goldstein, Blair S.

    In the absence of strong U.S. federal renewable energy policies, state governments have taken the lead in passing legislation to promote wind energy. Studies have shown that many of these policies, including Renewable Portfolio Standards (RPS), have aided in the development of wind energy capacity nationwide. This paper seeks to analyze whether these state-level policies have led to an efficient development of U.S. wind energy. For the purposes of this paper, wind energy development is considered efficient if competitive markets enable wind capacity to be built in the most cost effective manner, allowing states to trade wind energy between high wind potential states and low wind potential states. This concept is operationalized by analyzing how state policies that incentivize the in-state development of wind energy impact where wind capacity is developed. A multivariate regression model examining wind capacity in the 48 contiguous United States that had some wind capacity between 1999 and 2008 found these in-state policies are associated with increased wind capacity, controlling for states' wind potential. The results suggest that state-level policies are distorting where wind is developed. These findings support the enactment of a more comprehensive federal energy policy, such as a national RPS, a cap-and-trade program, or a targeted federal transmission policy. These federal policies could spur national markets that would result in the more efficient development of U.S. wind energy.

  12. The energy expenditure of non-weight bearing crutch walking on the level and ascending stairs.

    PubMed

    Moran, Jonathan; Murphy, Alexandra; Murphy, David; Austin, Andy; Moran, Danielle; Cronin, Caitriona; Guinan, Emer; Hussey, Juliette

    2015-06-01

    Crutches are commonly prescribed to patients with lower limb dysfunction during rehabilitation to assist with mobility. The aim of this study was to determine the energy expenditure for non-weight bearing crutch walking on level ground and ascending stairs at a self selected speed in a healthy adult population. Thirty-one healthy male and female adults (mean±SD: age 21.6±1.2 years; height 170.8±10.8 cm; weight 70.8±11.4 kg) mobilised non-weight bearing with elbow crutches along a 30 m corridor and (with one crutch) up a flight of 13 stairs. Energy expenditure for each activity was measured by indirect calorimetry using the COSMED K4b(2) portable ergospirometry system. The established VO2 values were 16.4ml/kg/min for crutch walking on level ground and 17.85 ml/kg/min for stair climbing. Non-weight bearing crutch walking at a self selected speed on the level ground and up a flight of stairs resulted in a MET value of 4.57 and 5.06 respectively. The mean heart rate (HR) for crutch walking along the flat was 117.06±20.54 beats per minute (bpm), while the mean HR for ambulating upstairs with crutches was 113.91±19.32 bpm. The increased energy demands of non-weight bearing crutch walking should be considered by physical therapists when instructing patients on crutch use. Further investigation to determine the implications of these results in populations with chronic disease is warranted.

  13. Reactive Ni/Al Nanocomposites: Structural Characteristics and Activation Energy.

    PubMed

    Shuck, Christopher E; Mukasyan, Alexander S

    2017-02-16

    Stochastically structured Ni/Al reactive nanocomposites (RNCs) were prepared using short-term high-energy ball milling. Several milling times were utilized to prepare RNCs with differing internal nanostructures. These internal structures were quantitatively and statistically analyzed by use of serial focused ion beam sectioning coupled with 3D reconstruction techniques. The reaction kinetics were analyzed using the electrothermal explosion technique for each milling condition. It is shown that the effective activation energy (Eef) ranges from 79 to 137 kJ/mol and is directly related to the surface area contact between the reactants. Essentially, the reaction kinetics can be accurately controlled through mechanical processing techniques. Finally, the nature of the reaction is considered; the mechanistic effect of the reactive and three diffusive activation energies on the effective activation energy is examined.

  14. Effects of Curricular Activity on Students' Situational Motivation and Physical Activity Levels

    ERIC Educational Resources Information Center

    Gao, Zan; Hannon, James C.; Newton, Maria; Huang, Chaoqun

    2011-01-01

    The purpose of this study was to examine (a) the effects of three curricular activities on students' situational motivation (intrinsic motivation [IM], identified regulation [IR], external regulation, and amotivation [AM]) and physical activity (PA) levels, and (b) the predictive strength of situational motivation to PA levels. Four hundred twelve…

  15. Conservation II. Science Activities in Energy. [Student's and] Teacher's Guide.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    Designed for science students in fourth, fifth, and sixth grades, the activities in this unit illustrate principles and problems related to the conservation of energy. Eleven student activities using art, economics, arithmetic, and other skills and disciplines help teachers directly involve students in exploring scientific questions and making…

  16. Enzyme activation through the utilization of intrinsic dianion binding energy.

    PubMed

    Amyes, T L; Malabanan, M M; Zhai, X; Reyes, A C; Richard, J P

    2016-11-29

    We consider 'the proposition that the intrinsic binding energy that results from the noncovalent interaction of a specific substrate with the active site of the enzyme is considerably larger than is generally believed. An important part of this binding energy may be utilized to provide the driving force for catalysis, so that the observed binding energy represents only what is left over after this utilization' [Jencks,W.P. (1975) Adv. Enzymol. Relat. Areas. Mol. Biol., 43: , 219-410]. The large ~12 kcal/mol intrinsic substrate phosphodianion binding energy for reactions catalyzed by triosephosphate isomerase (TIM), orotidine 5'-monophosphate decarboxylase and glycerol-3-phosphate dehydrogenase is divided into 4-6 kcal/mol binding energy that is expressed on the formation of the Michaelis complex in anchoring substrates to the respective enzyme, and 6-8 kcal/mol binding energy that is specifically expressed at the transition state in activating the respective enzymes for catalysis. A structure-based mechanism is described where the dianion binding energy drives a conformational change that activates these enzymes for catalysis. Phosphite dianion plays the active role of holding TIM in a high-energy closed active form, but acts as passive spectator in showing no effect on transition-state structure. The result of studies on mutant enzymes is presented, which support the proposal that the dianion-driven enzyme conformational change plays a role in enhancing the basicity of side chain of E167, the catalytic base, by clamping the base between a pair of hydrophobic side chains. The insight these results provide into the architecture of enzyme active sites and the development of strategies for the de novo design of protein catalysts is discussed.

  17. Effect of temperature-dependent energy-level shifts on a semiconductor's Peltier heat

    NASA Astrophysics Data System (ADS)

    Emin, David

    1984-11-01

    The Peltier heat of a charge carrier in a semiconductor is calculated for the situation in which the electronic energy levels are temperature dependent. The temperature dependences of the electronic energy levels, generally observed optically, arise from their dependences on the vibrational energy of the lattice (e.g., as caused by thermal expansion). It has been suggested that these temperature dependences will typically have a major effect on the Peltier heat. The Peltier heat associated with a given energy level is a thermodynamic quantity; it is the product of the temperature and the change of the entropy of the system when a carrier is added in that level. As such, the energy levels cannot be treated as explicitly temperature dependent. The electron-lattice interaction causing the temperature dependence must be expressly considered. It is found that the carrier's interaction with the atomic vibrations lowers its electronic energy. However, the interaction of the carrier with the atomic vibrations also causes an infinitesimal lowering (~1N) of each of the N vibrational frequencies. As a result, there is a finite carrier-induced increase in the average vibrational energy. Above the Debye temperature, this cancels the lowering of the carrier's electronic energy. Thus, the standard Peltier-heat formula, whose derivation generally ignores the temperature dependence of the electronic energy levels, is regained. This explains the apparent success of the standard formula in numerous analyses of electronic transport experiments.

  18. World Energy Projection System Plus (WEPS ): Global Activity Module

    EIA Publications

    2016-01-01

    The World Energy Projection System Plus (WEPS ) is a comprehensive, mid?term energy forecasting and policy analysis tool used by EIA. WEPS projects energy supply, demand, and prices by country or region, given assumptions about the state of various economies, international energy markets, and energy policies. The Global Activity Module (GLAM) provides projections of economic driver variables for use by the supply, demand, and conversion modules of WEPS . GLAM’s baseline economic projection contains the economic assumptions used in WEPS to help determine energy demand and supply. GLAM can also provide WEPS with alternative economic assumptions representing a range of uncertainty about economic growth. The resulting economic impacts of such assumptions are inputs to the remaining supply and demand modules of WEPS .

  19. Low Energy Physical Activity Recognition System on Smartphones

    PubMed Central

    Morillo, Luis Miguel Soria; Gonzalez-Abril, Luis; Ramirez, Juan Antonio Ortega; de la Concepcion, Miguel Angel Alvarez

    2015-01-01

    An innovative approach to physical activity recognition based on the use of discrete variables obtained from accelerometer sensors is presented. The system first performs a discretization process for each variable, which allows efficient recognition of activities performed by users using as little energy as possible. To this end, an innovative discretization and classification technique is presented based on the χ2 distribution. Furthermore, the entire recognition process is executed on the smartphone, which determines not only the activity performed, but also the frequency at which it is carried out. These techniques and the new classification system presented reduce energy consumption caused by the activity monitoring system. The energy saved increases smartphone usage time to more than 27 h without recharging while maintaining accuracy. PMID:25742171

  20. Cancer in Utah Mormon women by church activity level.

    PubMed

    Gardner, J W; Lyon, J L

    1982-08-01

    In light of low cancer rates by the Mormon Church, this study classifies female Mormon cancer patients in Utah according to measures of adherence to Church doctrines. The distribution by Church activity level is compared for each site to a group of other cancer sites felt to represent the overall activity level distribution of Utah Mormon women. Mormon women classified as having the strongest adherence to Church doctrines had lung cancer rates during 1966-1970 much lower than did women with the weakest adherence. The relationship was not as strong, however, as that seen in Mormon men when classified by lay priesthood office. Cancer of the uterine cervix also showed lower rates in the more active groups, but this finding was not statistically significant. Cancers of the breast and ovary did not show consistent associations with Church activity level, nor did most of the gastrointestinal cancers. These data suggest that some of the differences in cancer incidence between Mormons and non-Mormons may not be explained by adherence to specific Church doctrines.

  1. Treatment of Electronic Energy Level Transition and Ionization Following the Particle-Based Chemistry Model

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Lewis, Mark

    2010-01-01

    A new method of treating electronic energy level transitions as well as linking ionization to electronic energy levels is proposed following the particle-based chemistry model of Bird. Although the use of electronic energy levels and ionization reactions in DSMC are not new ideas, the current method of selecting what level to transition to, how to reproduce transition rates, and the linking of the electronic energy levels to ionization are, to the author s knowledge, novel concepts. The resulting equilibrium temperatures are shown to remain constant, and the electronic energy level distributions are shown to reproduce the Boltzmann distribution. The electronic energy level transition rates and ionization rates due to electron impacts are shown to reproduce theoretical and measured rates. The rates due to heavy particle impacts, while not as favorable as the electron impact rates, compare favorably to values from the literature. Thus, these new extensions to the particle-based chemistry model of Bird provide an accurate method for predicting electronic energy level transition and ionization rates in gases.

  2. Effects of activity and energy budget balancing algorithm on laboratory performance of a fish bioenergetics model

    USGS Publications Warehouse

    Madenjian, Charles P.; David, Solomon R.; Pothoven, Steven A.

    2012-01-01

    We evaluated the performance of the Wisconsin bioenergetics model for lake trout Salvelinus namaycush that were fed ad libitum in laboratory tanks under regimes of low activity and high activity. In addition, we compared model performance under two different model algorithms: (1) balancing the lake trout energy budget on day t based on lake trout energy density on day t and (2) balancing the lake trout energy budget on day t based on lake trout energy density on day t + 1. Results indicated that the model significantly underestimated consumption for both inactive and active lake trout when algorithm 1 was used and that the degree of underestimation was similar for the two activity levels. In contrast, model performance substantially improved when using algorithm 2, as no detectable bias was found in model predictions of consumption for inactive fish and only a slight degree of overestimation was detected for active fish. The energy budget was accurately balanced by using algorithm 2 but not by using algorithm 1. Based on the results of this study, we recommend the use of algorithm 2 to estimate food consumption by fish in the field. Our study results highlight the importance of accurately accounting for changes in fish energy density when balancing the energy budget; furthermore, these results have implications for the science of evaluating fish bioenergetics model performance and for more accurate estimation of food consumption by fish in the field when fish energy density undergoes relatively rapid changes.

  3. Low level laser therapy reduces inflammation in activated Achilles tendinitis

    NASA Astrophysics Data System (ADS)

    Bjordal, Jan M.; Iversen, Vegard; Lopes-Martins, Rodrigo Alvaro B.

    2006-02-01

    Objective: Low level laser therapy (LLLT) has been forwarded as therapy for osteoarthritis and tendinopathy. Results in animal and cell studies suggest that LLLT may act through a biological mechanism of inflammatory modulation. The current study was designed to investigate if LLLT has an anti-inflammatory effect on activated tendinitis of the Achilles tendon. Methods: Seven patients with bilateral Achilles tendonitis (14 tendons) who had aggravated symptoms by pain-inducing activity immediately prior to the study. LLLT (1.8 Joules for each of three points along the Achilles tendon with 904nm infrared laser) and placebo LLLT were administered to either Achilles tendons in a random order to which patients and therapist were blinded. Inflammation was examined by 1) mini-invasive microdialysis for measuring the concentration of inflammatory marker PGE II in the peritendinous tissue, 2) ultrasound with Doppler measurement of peri- and intratendinous blood flow, 3) pressure pain algometry and 4) single hop test. Results: PGE 2- levels were significantly reduced at 75, 90 and 105 minutes after active LLLT compared both to pre-treatment levels (p=0.026) and to placebo LLLT (p=0.009). Changes in pressure pain threshold (PPT) were significantly different (P=0.012) between groups. PPT increased by a mean value of 0.19 kg/cm2 [95%CI:0.04 to 0.34] after treatment in the active LLLT group, while pressure pain threshold was reduced by -0.20 kg/cm2 [95%CI:-0.45 to 0.05] after placebo LLLT. Conclusion: LLLT can be used to reduce inflammatory musculskeletal pain as it reduces inflammation and increases pressure pain threshold levels in activity-induced pain episodes of Achilles tendinopathy.

  4. AMP-activated protein kinase and energy balance in breast cancer

    PubMed Central

    Zhao, Hong; Orhan, Yelda C; Zha, Xiaoming; Esencan, Ecem; Chatterton, Robert T; Bulun, Serdar E

    2017-01-01

    Cancer growth and metastasis depends on the availability of energy. Energy-sensing systems are critical in maintaining a balance between the energy supply and utilization of energy for tumor growth. A central regulator in this process is AMP-activated protein kinase (AMPK). In times of energy deficit, AMPK is allosterically modified by the binding of increased levels of AMP and ADP, making it a target of specific AMPK kinases (AMPKKs). AMPK signaling prompts cells to produce energy at the expense of growth and motility, opposing the actions of insulin and growth factors. Increasing AMPK activity may thus prevent the proliferation and metastasis of tumor cells. Activated AMPK also suppresses aromatase, which lowers estrogen formation and prevents breast cancer growth. Biguanides can be used to activate AMPK, but AMPK activity is modified by many different interacting factors; understanding these factors is important in order to control the abnormal growth processes that lead to breast cancer neoplasia. Fatty acids, estrogens, androgens, adipokines, and another energy sensor, sirtuin-1, alter the phosphorylation and activation of AMPK. Isoforms of AMPK differ among tissues and may serve specific functions. Targeting AMPK regulatory processes at points other than the upstream AMPKKs may provide additional approaches for prevention of breast cancer neoplasia, growth, and metastasis. PMID:28337254

  5. Energy effective approach for activation of metallurgical slag

    NASA Astrophysics Data System (ADS)

    Mazov, I. N.; Khaydarov, B. B.; Mamulat, S. L.; Suvorov, D. S.; Saltikova, Y. S.; Yudin, A. G.; Kuznetsov, D. V.

    2016-01-01

    The paper presents results of investigation of the process of mechanical activation of metallurgical slag using different approaches - ball milling and electromagnetic vortex apparatus. Particle size distribution and structure of mechanically activated slag samples were investigated, as well as energetic parameters of the activation process. It was shown that electromagnetic vortex activation is more energy effective and allows to produce microscale milled slag-based concrete using very short treatment time. Activated slag materials can be used as clinker-free cement in civilian and road construction, providing ecology-friendly technology and recycling of high-tonnage industrial waste.

  6. Microgravity: a Teacher's Guide with Activities, Secondary Level

    NASA Technical Reports Server (NTRS)

    Vogt, Gregory L. (Editor); Wargo, Michael J. (Editor)

    1992-01-01

    This NASA Educational Publication is a teacher's guide that focuses on microgravity for the secondary level student. The introduction answers the question 'What is microgravity?', as well as describing gravity and creating microgravity. Following the introduction is a microgravity primer which covers such topics as the fluid state, combustion science, materials science, biotechnology, as well as microgravity and space flight. Seven different activities are described in the activities section and are written by authors prominent in the field. The concluding sections of the book include a glossary, microgravity references, and NASA educational resources.

  7. The activation energy for dislocation nucleation at a crack

    NASA Astrophysics Data System (ADS)

    Rice, James R.; Beltz, Glenn E.

    1994-02-01

    T HE ACTIVATION energy for dislocation nucleation from a stressed crack tip is calculated within the Peierls framework, in which a periodic shear stress vs displacement relation is assumed to hold on a slip plane emanating from the crack tip. Previous results have revealed that the critical G (energy release rate corresponding to the "screened" crack tip stress field) for dislocation nucleation scales with γ us (the unstable stacking energy), in an analysis which neglects any coupling between tension and shear along the slip plane. That analysis represents instantaneous nucleation and takes thermal effects into account only via the weak temperature dependence of the elastic constants. In this work, the energy required to thermally activate a stable, incipient dislocation into its unstable "saddle-point" configuration is directly calculated for loads less than that critical value. We do so only with the simplest case, for which the slip plane is a prolongation of the crack plane. A first calculation reported is 2D in nature, and hence reveals an activation energy per unit length. A more realistic scheme for thermal activation involves the emission of a dislocation loop, an inherently 3D phenomenon. Asymptotic calculations of the activation energy for loads close to the critical load are performed in 2D and in 3D. It is found that the 3D activation energy generally corresponds to the 2D activation energy per unit length multiplied by about 5-10 Burgers vectors (but by as many as 17 very near to the critical loading). Implications for the emission of dislocations in copper, α-iron, and silicon at elevated temperature are discussed. The effects of thermal activation are very significant in lowering the load for emission. Also, the appropriate activation energy to correspond to molecular dynamics simulations of crack tips is discussed. Such simulations, as typically carried out with only a few atomic planes in a periodic repeat direction parallel to the crack tip, are

  8. Effect of Learning Activity on Students' Motivation, Physical Activity Levels and Effort/Persistence

    ERIC Educational Resources Information Center

    Gao, Zan; Lee, Amelia M.; Xiang, Ping; Kosma, Maria

    2011-01-01

    The type of learning activity offered in physical education may influence students' motivational beliefs, physical activity participation and effort/persistence in class. However, most empirical studies have focused on the individual level rather than on the learner-content interactions. Accordingly, the potential effects of learning activities on…

  9. Variational calculation of highly excited rovibrational energy levels of H2O2.

    PubMed

    Polyansky, Oleg L; Kozin, Igor N; Ovsyannikov, Roman I; Małyszek, Paweł; Koput, Jacek; Tennyson, Jonathan; Yurchenko, Sergei N

    2013-08-15

    Results are presented for highly accurate ab initio variational calculation of the rotation-vibration energy levels of H2O2 in its electronic ground state. These results use a recently computed potential energy surface and the variational nuclear-motion programs WARV4, which uses an exact kinetic energy operator, and TROVE, which uses a numerical expansion for the kinetic energy. The TROVE calculations are performed for levels with high values of rotational excitation, J up to 35. The purely ab initio calculations of the rovibrational energy levels reproduce the observed levels with a standard deviation of about 1 cm(-1), similar to that of the J = 0 calculation, because the discrepancy between theory and experiment for rotational energies within a given vibrational state is substantially determined by the error in the vibrational band origin. Minor adjustments are made to the ab initio equilibrium geometry and to the height of the torsional barrier. Using these and correcting the band origins using the error in J = 0 states lowers the standard deviation of the observed-calculated energies to only 0.002 cm(-1) for levels up to J = 10 and 0.02 cm(-1) for all experimentally known energy levels, which extend up to J = 35.

  10. [Comparison of eating habits among students according to sex and level of physical activity].

    PubMed

    Łagowska, Karolina; Woźniewicz, Małgorzata; Jeszka, Jan

    2011-01-01

    The aim of the study was to evaluate nutritional habits of high school students, depending on their sex and physical activity. The investigated population included 147 students in age of 17.5 +/- 1.5 y (girls DZ = 98, boys CH = 49) with different level of physical activity (athletes SPO, moderate physical activity UAF, low physical activity NAF). Nutritional data were obtained by FFQ and calculated for selected food-groups and generally as young healthy eating index YHEI. International IPAQ was used to determine the level of physical activity and anthropometric measured were conducted to estimated BMI and body fat status. It was indicated the YHEI in athletes was significantly higher (p < 0.05) compared to rest of students. Moreover, a significant difference (p < 0.05) in YHEI in DZ compared to CH was also found. The significant differences (p < 0.05) in the frequency of consumption of red meat, vegetable oil and sweetned drinks was revealed between DZ and CH adolescents. The frequency of consumption of vegetable oil, fast - foods, sweets, alcoholic drinks, energy drinks and isotonic drinks varied with the level of physical activity. Frequency of consumption of sweets negatively correlated with skinfold thickness in DZ, whereas positive correlation between consumption frequency of energy drinks, BMI and skinfold thickness was found in CH. The results show, that nutritional habits of the athletes was most approached to nutritional guidelines. CH, nutritional habits may predicted to overweight and obesity in CH group more distinctly than in DZ group.

  11. Physical Modeling of Activation Energy in Organic Semiconductor Devices based on Energy and Momentum Conservations.

    PubMed

    Mao, Ling-Feng; Ning, H; Hu, Changjun; Lu, Zhaolin; Wang, Gaofeng

    2016-04-22

    Field effect mobility in an organic device is determined by the activation energy. A new physical model of the activation energy is proposed by virtue of the energy and momentum conservation equations. The dependencies of the activation energy on the gate voltage and the drain voltage, which were observed in the experiments in the previous independent literature, can be well explained using the proposed model. Moreover, the expression in the proposed model, which has clear physical meanings in all parameters, can have the same mathematical form as the well-known Meyer-Neldel relation, which lacks of clear physical meanings in some of its parameters since it is a phenomenological model. Thus it not only describes a physical mechanism but also offers a possibility to design the next generation of high-performance optoelectronics and integrated flexible circuits by optimizing device physical parameter.

  12. Physical Modeling of Activation Energy in Organic Semiconductor Devices based on Energy and Momentum Conservations

    PubMed Central

    Mao, Ling-Feng; Ning, H.; Hu, Changjun; Lu, Zhaolin; Wang, Gaofeng

    2016-01-01

    Field effect mobility in an organic device is determined by the activation energy. A new physical model of the activation energy is proposed by virtue of the energy and momentum conservation equations. The dependencies of the activation energy on the gate voltage and the drain voltage, which were observed in the experiments in the previous independent literature, can be well explained using the proposed model. Moreover, the expression in the proposed model, which has clear physical meanings in all parameters, can have the same mathematical form as the well-known Meyer-Neldel relation, which lacks of clear physical meanings in some of its parameters since it is a phenomenological model. Thus it not only describes a physical mechanism but also offers a possibility to design the next generation of high-performance optoelectronics and integrated flexible circuits by optimizing device physical parameter. PMID:27103586

  13. Physical Modeling of Activation Energy in Organic Semiconductor Devices based on Energy and Momentum Conservations

    NASA Astrophysics Data System (ADS)

    Mao, Ling-Feng; Ning, H.; Hu, Changjun; Lu, Zhaolin; Wang, Gaofeng

    2016-04-01

    Field effect mobility in an organic device is determined by the activation energy. A new physical model of the activation energy is proposed by virtue of the energy and momentum conservation equations. The dependencies of the activation energy on the gate voltage and the drain voltage, which were observed in the experiments in the previous independent literature, can be well explained using the proposed model. Moreover, the expression in the proposed model, which has clear physical meanings in all parameters, can have the same mathematical form as the well-known Meyer-Neldel relation, which lacks of clear physical meanings in some of its parameters since it is a phenomenological model. Thus it not only describes a physical mechanism but also offers a possibility to design the next generation of high-performance optoelectronics and integrated flexible circuits by optimizing device physical parameter.

  14. Single-Molecule Nanocatalysis Reveals Catalytic Activation Energy of Single Nanocatalysts.

    PubMed

    Chen, Tao; Zhang, Yuwei; Xu, Weilin

    2016-09-28

    By monitoring the temperature-dependent catalytic activity of single Au nanocatalysts for a fluorogenic reaction, we derive the activation energies via multiple methods for two sequential catalytic steps (product formation and dissociation) on single nanocatalysts. The wide distributions of activation energies across multiple individual nanocatalysts indicate a huge static heterogeneity among the individual nanocatalysts. The compensation effect and isokinetic relationship of catalytic reactions are observed at the single particle level. This study exemplifies another function of single-molecule nanocatalysis and improves our understanding of heterogeneous catalysis.

  15. Stress versus temperature dependence of activation energies for creep

    NASA Technical Reports Server (NTRS)

    Freed, A. D.; Raj, S. V.; Walker, K. P.

    1992-01-01

    The activation energy for creep at low stresses and elevated temperatures is associated with lattice diffusion, where the rate controlling mechanism for deformation is dislocation climb. At higher stresses and intermediate temperatures, the rate controlling mechanism changes from dislocation climb to obstacle-controlled dislocation glide. Along with this change in deformation mechanism occurs a change in the activation energy. When the rate controlling mechanism for deformation is obstacle-controlled dislocation glide, it is shown that a temperature-dependent Gibbs free energy does better than a stress-dependent Gibbs free energy in correlating steady-state creep data for both copper and LiF-22mol percent CaF2 hypereutectic salt.

  16. Stress versus temperature dependent activation energies in creep

    NASA Technical Reports Server (NTRS)

    Freed, A. D.; Raj, S. V.; Walker, K. P.

    1990-01-01

    The activation energy for creep at low stresses and elevated temperatures is lattice diffusion, where the rate controlling mechanism for deformation is dislocation climb. At higher stresses and intermediate temperatures, the rate controlling mechanism changes from that of dislocation climb to one of obstacle-controlled dislocation glide. Along with this change, there occurs a change in the activation energy. It is shown that a temperature-dependent Gibbs free energy does a good job of correlating steady-state creep data, while a stress-dependent Gibbs free energy does a less desirable job of correlating the same data. Applications are made to copper and a LiF-22 mol. percent CaF2 hypereutectic salt.

  17. Revisiting the Earth's sea-level and energy budgets from 1961 to 2008

    USGS Publications Warehouse

    Church, John A.; White, Neil J.; Konikow, Leonard F.; Domingues, Catia M.; Cogley, J. Graham; Rignot, Eric; Gregory, Jonathan M.; van den Broeke, Michiel R.; Monaghan, Andrew J.; Velicogna, Isabella

    2011-01-01

    We review the sea-level and energy budgets together from 1961, using recent and updated estimates of all terms. From 1972 to 2008, the observed sea-level rise (1.8 0.2 mm yr-1 from tide gauges alone and 2.1 0.2 mm yr -1 from a combination of tide gauges and altimeter observations) agrees well with the sum of contributions (1.8 0.4 mm yr-1) in magnitude and with both having similar increases in the rate of rise during the period. The largest contributions come from ocean thermal expansion (0.8 mm yr-1) and the melting of glaciers and ice caps (0.7 mm yr -1), with Greenland and Antarctica contributing about 0.4 mm yr -1. The cryospheric contributions increase through the period (particularly in the 1990s) but the thermosteric contribution increases less rapidly. We include an improved estimate of aquifer depletion (0.3 mm yr -1), partially offsetting the retention of water in dams and giving a total terrestrial storage contribution of-0.1 mm yr-1. Ocean warming (90% of the total of the Earth's energy increase) continues through to the end of the record, in agreement with continued greenhouse gas forcing. The aerosol forcing, inferred as a residual in the atmospheric energy balance, is estimated as-0.8 0.4 W m-2 for the 1980s and early 1990s. It increases in the late 1990s, as is required for consistency with little surface warming over the last decade. This increase is likely at least partially related to substantial increases in aerosol emissions from developing nations and moderate volcanic activity. Copyright 2011 by the American Geophysical Union.

  18. Energy-aware activity classification using wearable sensor networks

    NASA Astrophysics Data System (ADS)

    Dong, Bo; Montoye, Alexander; Moore, Rebecca; Pfeiffer, Karin; Biswas, Subir

    2013-05-01

    This paper presents implementation details, system characterization, and the performance of a wearable sensor network that was designed for human activity analysis. Specific machine learning mechanisms are implemented for recognizing a target set of activities with both out-of-body and on-body processing arrangements. Impacts of energy consumption by the on-body sensors are analyzed in terms of activity detection accuracy for out-of-body processing. Impacts of limited processing abilities for the on-body scenario are also characterized in terms of detection accuracy, by varying the background processing load in the sensor units. Impacts of varying number of sensors in terms of activity classification accuracy are also evaluated. Through a rigorous systems study, it is shown that an efficient human activity analytics system can be designed and operated even under energy and processing constraints of tiny on-body wearable sensors.

  19. Energy-aware Activity Classification using Wearable Sensor Networks

    PubMed Central

    Dong, Bo; Montoye, Alexander; Moore, Rebecca; Pfeiffer, Karin; Biswas, Subir

    2014-01-01

    This paper presents implementation details, system characterization, and the performance of a wearable sensor network that was designed for human activity analysis. Specific machine learning mechanisms are implemented for recognizing a target set of activities with both out-of-body and on-body processing arrangements. Impacts of energy consumption by the on-body sensors are analyzed in terms of activity detection accuracy for out-of-body processing. Impacts of limited processing abilities for the on-body scenario are also characterized in terms of detection accuracy, by varying the background processing load in the sensor units. Impacts of varying number of sensors in terms of activity classification accuracy are also evaluated. Through a rigorous systems study, it is shown that an efficient human activity analytics system can be designed and operated even under energy and processing constraints of tiny on-body wearable sensors. PMID:25075266

  20. Cellular Links between Neuronal Activity and Energy Homeostasis

    PubMed Central

    Shetty, Pavan K.; Galeffi, Francesca; Turner, Dennis A.

    2012-01-01

    Neuronal activity, astrocytic responses to this activity, and energy homeostasis are linked together during baseline, conscious conditions, and short-term rapid activation (as occurs with sensory or motor function). Nervous system energy homeostasis also varies during long-term physiological conditions (i.e., development and aging) and with adaptation to pathological conditions, such as ischemia or low glucose. Neuronal activation requires increased metabolism (i.e., ATP generation) which leads initially to substrate depletion, induction of a variety of signals for enhanced astrocytic function, and increased local blood flow and substrate delivery. Energy generation (particularly in mitochondria) and use during ATP hydrolysis also lead to considerable heat generation. The local increases in blood flow noted following neuronal activation can both enhance local substrate delivery but also provides a heat sink to help cool the brain and removal of waste by-products. In this review we highlight the interactions between short-term neuronal activity and energy metabolism with an emphasis on signals and factors regulating astrocyte function and substrate supply. PMID:22470340

  1. Origin of activation energy in a superionic conductor.

    PubMed

    Kamishima, O; Kawamura, K; Hattori, T; Kawamura, J

    2011-06-08

    The characteristics of cation diffusion with many-body effects are discussed using Ag β-alumina as an example of a superionic conductor. Polarized Raman spectra of Ag β-alumina have been measured at room temperature. The interatomic potentials were determined by a non-linear least square fitting between the phonon eigenvalues from the Raman observations and a dynamical matrix calculation based on a rigid-ion model. The obtained potential parameters for the model crystal of Ag β-alumina successfully reproduce the macroscopic properties with respect to the heat capacity, isothermal compressibility and self-diffusion constant. A molecular dynamics (MD) calculation has been carried out using the model crystal of Ag β-alumina to understand the many-body effects for the fast ionic diffusion. It was found that the Ag-Ag repulsion by excess Ag defects significantly reduced the cost of the energy difference of the occupancy between the stable and metastable sites. It is possible for the system to take various configurations of the mobile ions through defects easily, and then the fast ionic diffusion will appear. On the other hand, the Ag-Ag repulsion changes the dynamics of the Ag ions from a random hopping to a cooperative motion. In the cooperative motion, the ionic transport becomes difficult due to the additional energy required for the structural relaxation of the surrounding Ag ions. We propose a new insight into the superionic conduction, that is, the activation energy for the ionic transport is composed of two kinds of elements: a 'static' activation energy and a 'dynamic' one. The static activation energy is the cost of the averaged energy difference in the various structural configurations in the equilibrium state. The dynamic activation energy is the additional energy required for the structural relaxation induced by the jump process.

  2. Ab initio ground-state potential energy function and vibration-rotation energy levels of imidogen, NH.

    PubMed

    Koput, Jacek

    2015-06-30

    The accurate ground-state potential energy function of imidogen, NH, has been determined from ab initio calculations using the multireference averaged coupled-pair functional (MR-ACPF) method in conjunction with the correlation-consistent core-valence basis sets up to octuple-zeta quality. The importance of several effects, including electron correlation beyond the MR-ACPF level of approximation, the scalar relativistic, adiabatic, and nonadiabatic corrections were discussed. Along with the large one-particle basis set, all of these effects were found to be crucial to attain "spectroscopic" accuracy of the theoretical predictions of vibration-rotation energy levels of NH.

  3. Low level laser therapy modulates viability, alkaline phosphatase and matrix metalloproteinase-2 activities of osteoblasts.

    PubMed

    Oliveira, Flávia Amadeu de; Matos, Adriana Arruda; Matsuda, Sandra Satiko; Buzalaf, Marília Afonso Rabelo; Bagnato, Vanderley Salvador; Machado, Maria Aparecida de Andrade Moreira; Damante, Carla Andreotti; Oliveira, Rodrigo Cardoso de; Peres-Buzalaf, Camila

    2017-04-01

    Low level laser therapy (LLLT) has been shown to stimulate bone cell metabolism but their impact on the matrix metalloproteinase (MMP) expression and activity is little explored. This study evaluated the influence of LLLT at two different wavelengths, red and infrared, on MC3T3-E1 preosteoblast viability, alkaline phosphatase (ALP) and MMP-2 and -9 activities. To accomplish this, MC3T3-E1 cells were irradiated with a punctual application of either red (660nm; InGaAIP active medium) or infrared (780nm; GaAlAs active medium) lasers both at a potency of 20mW, energy dose of 0.08 or 0.16J, and energy density of 1.9J/cm(2) or 3.8J/cm(2), respectively. The control group received no irradiation. Cellular viability, ALP and MMP-2 and -9 activities were assessed by MTT assay, enzymatic activity and zymography, respectively, at 24, 48 and 72h. The treatment of cells with both red and infrared lasers significantly increased the cellular viability compared to the non-irradiated control group at 24 and 48h. The ALP activity was also up modulated in infrared groups at 24 and 72h, depending on the energy densities. In addition, the irradiation with red laser at the energy density of 1.9J/cm(2) promoted an enhancement of MMP-2 activity at 48 and 72h. However, no differences were observed for the MMP-9 activity. In conclusion, when used at these specific parameters, LLL modulates both preosteoblast viability and differentiation highlighted by the increased ALP and MMP-2 activities induced by irradiation.

  4. Energy Efficiency Policy in the United States. Overview of Trends at Different Levels of Government

    SciTech Connect

    Doris, Elizabeth; Cochran, Jaquelin; Vorum, Martin

    2009-12-01

    This report catalogs by sector--buildings, transportation, industrial, and power--energy efficiency policies at the federal, state, and local levels, and identifies some prominent policy trends. Four key findings emerged from this report: 1) leadership on energy efficiency is necessary--and is found--at each level of government; 2) there is no widely accepted methodology for evaluating energy efficiency policies; 3) coordination among the three levels of government--and across sectors--is increasingly important, and there are opportunities to significantly improve policy performance through a unified strategy; and 4) there are efficiencies to be gained by informing policies in one sector with experience from others.

  5. Energy Efficiency Policy in the United States: Overview of Trends at Different Levels of Government

    SciTech Connect

    Doris, E.; Cochran, J.; Vorum, M.

    2009-12-01

    This report catalogs by sector--buildings, transportation, industrial, and power--energy efficiency policies at the federal, state, and local levels, and identifies some prominent policy trends. Four key findings emerged from this report: 1) leadership on energy efficiency is necessary--and is found--at each level of government; 2) there is no widely accepted methodology for evaluating energy efficiency policies; 3) coordination among the three levels of government--and across sectors--is increasingly important, and there are opportunities to significantly improve policy performance through a unified strategy; and 4) there are efficiencies to be gained by informing policies in one sector with experience from others.

  6. Secular trends in storm-level geomagnetic activity

    USGS Publications Warehouse

    Love, J.J.

    2011-01-01

    Analysis is made of K-index data from groups of ground-based geomagnetic observatories in Germany, Britain, and Australia, 1868.0-2009.0, solar cycles 11-23. Methods include nonparametric measures of trends and statistical significance used by the hydrological and climatological research communities. Among the three observatory groups, German K data systematically record the highest disturbance levels, followed by the British and, then, the Australian data. Signals consistently seen in K data from all three observatory groups can be reasonably interpreted as physically meaninginful: (1) geomagnetic activity has generally increased over the past 141 years. However, the detailed secular evolution of geomagnetic activity is not well characterized by either a linear trend nor, even, a monotonic trend. Therefore, simple, phenomenological extrapolations of past trends in solar and geomagnetic activity levels are unlikely to be useful for making quantitative predictions of future trends lasting longer than a solar cycle or so. (2) The well-known tendency for magnetic storms to occur during the declining phase of a sunspot-solar cycles is clearly seen for cycles 14-23; it is not, however, clearly seen for cycles 11-13. Therefore, in addition to an increase in geomagnetic activity, the nature of solar-terrestrial interaction has also apparently changed over the past 141 years. ?? Author(s) 2011.

  7. Associations between personality traits, physical activity level, and muscle strength.

    PubMed

    Tolea, Magdalena I; Terracciano, Antonio; Simonsick, Eleanor M; Metter, E Jeffrey; Costa, Paul T; Ferrucci, Luigi

    2012-06-01

    Associations among personality as measured by the Five Factor Model, physical activity, and muscle strength were assessed using data from the Baltimore Longitudinal Study of Aging (N = 1220, age: mean = 58, SD = 16). General linear modeling with adjustment for age, sex, race, and body mass index, and bootstrapping for mediation were used. We found neuroticism and most of its facets to negatively correlate with strength. The extraversion domain and its facets of warmth, activity, and positive-emotions were positively correlated with strength, independent of covariates. Mediation analysis results suggest that these associations are partly explained by physical activity level. Findings extend the evidence of an association between personality and physical function to its strength component and indicate health behavior as an important pathway.

  8. Age, gender, and level of activity as moderators of personal incentives to physical activity in Israel.

    PubMed

    Raviv, Shulamith; Netz, Yael

    2007-05-01

    The authors conducted an exploratory study with Israeli adults examining their personal incentives for physical activity (e.g., appearance, weight management). The participants formed a sample of 379 physically active Israelis, aged 20-89 years, divided into 3 age groups and 3 levels of activity. The authors found a similar profile for men and women for most incentives, with men scoring more highly than did women on only competition and fitness. Participants in the highest level of activity attributed greater importance to all incentives than did those in the other levels, and older adults attributed less importance to all incentives except for health benefits. The findings are relevant for planning activities intended to encourage adults to engage in more physical activity.

  9. Influence of Molting and Starvation on Digestive Enzyme Activities and Energy Storage in Gammarus fossarum

    PubMed Central

    Charron, Laetitia; Geffard, Olivier; Chaumot, Arnaud; Coulaud, Romain; Jaffal, Ali; Gaillet, Véronique; Dedourge-Geffard, Odile; Geffard, Alain

    2014-01-01

    Among the many biological responses studied in ecotoxicology, energy-based biomarkers such as digestive enzyme activities and energy reserves appear to be useful predictive tools for detecting physiological disturbances in organisms. However, the use of these biological responses as biomarkers could be limited by the effects of confounding factors (biotic and abiotic) and physiological processes, such as the reproductive cycle. Thus, the optimal use of these biomarkers will be facilitated by understanding the effects of these factors on the energy metabolism of the sentinel species being studied. We considered abiotic factors (temperature and conductivity) in a previous study, whereas the present study investigated the effects of gender, the female reproductive stage, and food availability on the digestive enzyme activities and energy storage of Gammarus fossarum. The results indicated that, during the female reproductive cycle, the activities of digestive enzymes (amylase, cellulase, and trypsin) decreased significantly, whereas the levels of reserves (proteins, lipids, and sugar) increased until the last premolt stage. Restricted food diets only led to decreased amylase activities in both sexes. Food starvation also induced a decrease in the energy outcomes in females, whereas there were no effects in males. In general, the biochemical (digestive enzyme activities) and physiological (energy reserves) responses were more stable in males than in females. These results support the use of males fed ad libitum to limit the effects of confounding factors when using these energy biomarkers in Gammarus fossarum during biomonitoring programs. PMID:24788197

  10. Surface diffusion activation energy determination using ion beam microtexturing

    NASA Technical Reports Server (NTRS)

    Rossnagel, S. M.; Robinson, R. S.

    1982-01-01

    The activation energy for impurity atom (adatom) surface diffusion can be determined from the temperature dependence of the spacing of sputter cones. These cones are formed on the surface during sputtering while simultaneously adding impurities. The impurities form clusters by means of surface diffusion, and these clusters in turn initiate cone formation. Values are given for the surface diffusion activation energies for various materials on polycrystalline Cu, Al, Pb, Au, and Ni. The values for different impurity species on each of these substrates are approximately independent of impurity species within the experimental uncertainty, suggesting the absence of strong chemical bonding effects on the diffusion.

  11. United States Department of Energy Thermally Activated Heat Pump Program

    SciTech Connect

    Fiskum, R.J.; Adcock, P.W.; DeVault, R.C.

    1996-06-01

    The US Department of Energy (DOE) is working with partners from the gas heating and cooling industry to improve energy efficiency using advance absorption technologies, to eliminate chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs), to reduce global warming through more efficient combustion of natural gas, and to impact electric peak demand of air conditioning. To assist industry in developing these gas heating and cooling absorption technologies, the US DOE sponsors the Thermally Activated Heat Pump Program. It is divided into five key activities, addressing residential gas absorption heat pumps, large commercial chillers, advanced absorption fluids, computer-aided design, and advanced ``Hi-Cool`` heat pumps.

  12. The aircraft energy efficiency active controls technology program

    NASA Technical Reports Server (NTRS)

    Hood, R. V., Jr.

    1977-01-01

    Broad outlines of the NASA Aircraft Energy Efficiency Program for expediting the application of active controls technology to civil transport aircraft are presented. Advances in propulsion and airframe technology to cut down on fuel consumption and fuel costs, a program for an energy-efficient transport, and integrated analysis and design technology in aerodynamics, structures, and active controls are envisaged. Fault-tolerant computer systems and fault-tolerant flight control system architectures are under study. Contracts with leading manufacturers for research and development work on wing-tip extensions and winglets for the B-747, a wing load alleviation system, elastic mode suppression, maneuver-load control, and gust alleviation are mentioned.

  13. The activation energy for Mg acceptor in the Ga-rich InGaN alloys

    NASA Astrophysics Data System (ADS)

    Zhao, Chuan-Zhen; Wei, Tong; Chen, Li-Ying; Wang, Sha-Sha; Wang, Jun

    2017-02-01

    The activation energy for Mg acceptor in InxGa1-xN alloys is investigated. It is found that there are three factors to influence the activation energy for Mg acceptor. One is the stronger dependence of the VBM of InxGa1-xN depending on In content than that of the Mg acceptor energy level. The other is the concentration of Mg acceptors. Another is the extending of the valence band-tail states into the band gap. In addition, a model based on modifying the effective mass model is developed. It is found that the model can describe the activation energy for Mg acceptor in the Ga-rich InxGa1-xN alloys well after considering the influence of the valence band-tail states.

  14. 77 FR 38570 - Announcement of Grant Application Deadlines and Funding Levels for the Assistance to High Energy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ...) of the United States Department of Energy. Home energy means any energy source or fuel used by a... solar energy. Fuels used for subsistence activities in remote rural areas are also included. High energy... energy expenditures; total annual expenditures for individual fuels; annual average per unit energy...

  15. Energy and Man's Environment Activity Guide: An Interdisciplinary Teacher's Guide to Energy and Environmental Activities, Section Three - Conversion of Energy.

    ERIC Educational Resources Information Center

    Jones, John, Ed.

    This publication presents the activities pertaining to the third goal of this activity guide series. The activities in this publication focus on understanding conservation processes, efficiencies, socioeconomic costs, and personal decision-making. These materials are appropriate for middle school and junior high school students. These activities,…

  16. Underwater Sound Levels at a Wave Energy Device Testing Facility in Falmouth Bay, UK.

    PubMed

    Garrett, Joanne K; Witt, Matthew J; Johanning, Lars

    2016-01-01

    Passive acoustic monitoring devices were deployed at FaBTest in Falmouth Bay, UK, a marine renewable energy device testing facility during trials of a wave energy device. The area supports considerable commercial shipping and recreational boating along with diverse marine fauna. Noise monitoring occurred during (1) a baseline period, (2) installation activity, (3) the device in situ with inactive power status, and (4) the device in situ with active power status. This paper discusses the preliminary findings of the sound recording at FabTest during these different activity periods of a wave energy device trial.

  17. New Fe I Level Energies and Line Identifications from Stellar Spectra

    NASA Astrophysics Data System (ADS)

    Peterson, Ruth C.; Kurucz, Robert L.

    2015-01-01

    The spectrum of the Fe I atom is critical to many areas of astrophysics and beyond. Measurements of the energies of its high-lying levels remain woefully incomplete, however, despite extensive laboratory and solar analysis. In this work, we use high-resolution archival absorption-line ultraviolet and optical spectra of stars whose warm temperatures favor moderate Fe I excitation. We derive the energy for a particular upper level in Kurucz's semiempirical calculations by adopting a trial value that yields the same wavelength for a given line predicted to be about as strong as that of a strong unidentified spectral line observed in the stellar spectra, then checking the new wavelengths of other strong predicted transitions that share the same upper level for coincidence with other strong observed unidentified lines. To date, this analysis has provided the upper energies of 66 Fe I levels. Many new energy levels are higher than those accessible to laboratory experiments; several exceed the Fe I ionization energy. These levels provide new identifications for over 2000 potentially detectable lines. Almost all of the new levels of odd parity include UV lines that were detected but unclassified in laboratory Fe I absorption spectra, providing an external check on the energy values. We motivate and present the procedure, provide the resulting new energy levels and their uncertainties, list all the potentially detectable UV and optical new Fe I line identifications and their gf values, point out new lines of astrophysical interest, and discuss the prospects for additional Fe I energy level determinations.

  18. Impact behaviour of Napier/polyester composites under different energy levels

    NASA Astrophysics Data System (ADS)

    Fahmi, I.; Majid, M. S. Abdul; Afendi, M.; Haslan, M.; Helmi E., A.; M. Haameem J., A.

    2016-07-01

    The effects of different energy levels on the impact behaviour of Napier fibre/polyester reinforced composites were investigated. Napier fibre was extracted using traditional water retting process to be utilized as reinforcing materials in polyester composite laminates. 25% fibre loading composite laminates were prepared and impacted at three different energy levels; 2.5,5 and 7.5 J using an instrumented drop weight impact testing machine (IMATEK IM10). The outcomes show that peak force and contact time increase with increased impact load. The energy absorption was then calculated from the force displacement curve. The results indicated that the energy absorption decreases with increasing energy levels of the impact. Impacted specimens were observed visually for fragmentation fracture using an optical camera to identify the failure mechanisms. Fracture fragmentation pattern from permanent dent to perforation with radial and circumferential was observed.

  19. Increases in Physical Activity Result in Diminishing Increments in Daily Energy Expenditure in Mice.

    PubMed

    O'Neal, Timothy J; Friend, Danielle M; Guo, Juen; Hall, Kevin D; Kravitz, Alexxai V

    2017-02-06

    Exercise is a common component of weight loss strategies, yet exercise programs are associated with surprisingly small changes in body weight [1-4]. This may be due in part to compensatory adaptations, in which calories expended during exercise are counteracted by decreases in other aspects of energy expenditure [1, 5-10]. Here we examined the relationship between a rodent model of voluntary exercise- wheel running- and total daily energy expenditure. Use of a running wheel for 3 to 7 days increased daily energy expenditure, resulting in a caloric deficit of ∼1 kcal/day; however, total daily energy expenditure remained stable after the first week of wheel access, despite further increases in wheel use. We hypothesized that compensatory mechanisms accounted for the lack of increase in daily energy expenditure after the first week. Supporting this idea, we observed a decrease in off-wheel ambulation when mice were using the wheels, indicating behavioral compensation. Finally, we asked whether individual variation in wheel use within a group of mice would be associated with different levels of daily energy expenditure. Despite a large variation in wheel running, we did not observe a significant relationship between the amount of daily wheel running and total daily energy expenditure or energy intake across mice. Together, our experiments support a model in which the transition from sedentary to light activity is associated with an increase in daily energy expenditure, but further increases in physical activity produce diminishingly small increments in daily energy expenditure.

  20. Building Energy Use Modeling at the U.S. State Level Under Climate Change

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Eom, J.; Clarke, L.; Kyle, P.

    2012-12-01

    Climate change plays an important role in building energy use for heating and cooling. As global building energy use accounts for as much as about 32% of global final energy consumption in 2005, the impact of climate change on greenhouse gas emissions may also be significant. As long-term socioeconomic transformation and energy service expansion show large spatial heterogeneity, advanced understanding of climate impact on building energy use at the sub-national level will offer useful insights into regional energy system planning. In this study, we have developed a detailed building energy model with U.S. 50-state representation, embedded in an integrated assessment framework (Global Change Assessment Model). The climate change impact on heating and cooling demand is measured through estimating heating and cooling degree days (HDD/CDDs) derived from MIT Integrated Global System Model (IGSM) climate data and linking the estimates to the building energy model. Having the model calibrated against historical data at the U.S. state level, we estimated the building energy use in the 21st century at the U.S. state level and analyzed its spatial pattern. We have found that the total building energy use (heating and cooling) in U.S. states is over- or under-estimated without having climate feedback taken into account, and that the difference with and without climate feedback at the state level varies from -25% to 25% in reference scenario and -15% to 10% in climate mitigation scenario. The result not only confirms earlier finding that global warming leads to increased cooling and decreased heating energy use, it also indicates that climate change has a different impact on total building energy use at national and state level, exhibiting large spatial heterogeneity across states (Figure 1). The scale impact in building energy use modeling emphasizes the importance of developing a building energy model that represents socioeconomic development, energy service expansion, and

  1. Ab initio potential energy surface and vibration-rotation energy levels of silicon dicarbide, SiC2.

    PubMed

    Koput, Jacek

    2016-10-05

    The accurate ground-state potential energy surface of silicon dicarbide, SiC2 , has been determined from ab initio calculations using the coupled-cluster approach. Results obtained with the conventional and explicitly correlated coupled-cluster methods were compared. The core-electron correlation, higher-order valence-electron correlation, and scalar relativistic effects were taken into account. The potential energy barrier to the linear SiCC configuration was predicted to be 1782 cm(-1) . The vibration-rotation energy levels of the SiC2 , (29) SiC2 , (30) SiC2 , and SiC(13) C isotopologues were calculated using a variational method. The experimental vibration-rotation energy levels of the main isotopologue were reproduced to high accuracy. In particular, the experimental energy levels of the highly anharmonic vibrational ν3 mode of SiC2 were reproduced to within 6.7 cm(-1) , up to as high as the v3  = 16 state.

  2. Effect of energy and protein levels on nutrient utilization and their requirements in growing Murrah buffaloes.

    PubMed

    Prusty, Sonali; Kundu, Shivlal Singh; Mondal, Goutam; Sontakke, Umesh; Sharma, Vijay Kumar

    2016-04-01

    To evaluate different levels of energy and protein for optimum growth of Murrah male buffalo calves, a growth trial (150 days) was conducted on 30 calves (body weight 202.5 ± 6.8 kg). Six diets were formulated to provide 90, 100 and 110% protein level and 90 and 110% energy level requirements for buffalo calves, derived from ICAR 2013 recommendations for buffaloes. The crude protein (CP) intake was increased with higher dietary CP, whereas no effect of energy levels or interaction between protein and energy was observed on CP intake. There were significant effects (P < 0.01) of the interaction between protein and energy (P < 0.05) on metabolizable energy (ME) intake. The digestibility of dry matter (DM), organic matter (OM) and non-fibrous carbohydrate (NFC) was higher (P < 0.0001) in high-energy groups compared to low-energy groups. The CP digestibility increased with the increased CP and ME of the rations. The absorbed N was improved linearly with an increased level of dietary CP, whereas the N retention was similar among all the groups distributed as per different energy or protein levels. The nutrient intake (protein or energy) per kg body weight (BW)(0.75) at various fortnight intervals was regressed linearly from the average daily gain (ADG) per kg BW(0.75). By setting the average daily gain at zero in the developed regression equation, a maintenance requirement was obtained, i.e. 133.1 kcal ME, 6.45 g CP and 3.95 g metabolizable protein (MP) per kg BW(0.75). Requirement for growth was 6.12 kcal ME, 0.46 g CP and 0.32 g MP per kg BW(0.75) per day. Metabolizable amino acid requirement was estimated from partitioning of MP intake and ADG. The ME requirements were lower, whereas the MP requirement of Murrah buffaloes was higher than ICAR (2013) recommendations.

  3. Energy level of the nitrogen dangling bond in amorphous silicon nitride

    SciTech Connect

    Warren, W.L. ); Kanicki, J. ); Robertson, J. ); Lenahan, P.M. )

    1991-09-30

    The composition dependence and room-temperature metastability of the paramagnetic nitrogen dangling-bond center is amorphous silicon nitride suggest that its energy level lies close to the N {ital p}{pi} states, in agreement with theoretical calculations.

  4. Electrocortical activity distinguishes between uphill and level walking in humans.

    PubMed

    Bradford, J Cortney; Lukos, Jamie R; Ferris, Daniel P

    2016-02-01

    The objective of this study was to determine if electrocortical activity is different between walking on an incline compared with level surface. Subjects walked on a treadmill at 0% and 15% grades for 30 min while we recorded electroencephalography (EEG). We used independent component (IC) analysis to parse EEG signals into maximally independent sources and then computed dipole estimations for each IC. We clustered cortical source ICs and analyzed event-related spectral perturbations synchronized to gait events. Theta power fluctuated across the gait cycle for both conditions, but was greater during incline walking in the anterior cingulate, sensorimotor and posterior parietal clusters. We found greater gamma power during level walking in the left sensorimotor and anterior cingulate clusters. We also found distinct alpha and beta fluctuations, depending on the phase of the gait cycle for the left and right sensorimotor cortices, indicating cortical lateralization for both walking conditions. We validated the results by isolating movement artifact. We found that the frequency activation patterns of the artifact were different than the actual EEG data, providing evidence that the differences between walking conditions were cortically driven rather than a residual artifact of the experiment. These findings suggest that the locomotor pattern adjustments necessary to walk on an incline compared with level surface may require supraspinal input, especially from the left sensorimotor cortex, anterior cingulate, and posterior parietal areas. These results are a promising step toward the use of EEG as a feed-forward control signal for ambulatory brain-computer interface technologies.

  5. Employing Magnetic Levitation to Monitor Reaction Kinetics and Measure Activation Energy

    ERIC Educational Resources Information Center

    Benz, Lauren; Cesafsky, Karen E.; Le, Tran; Park, Aileen; Malicky, David

    2012-01-01

    This article describes a simple and inexpensive undergraduate-level kinetics experiment that uses magnetic levitation to monitor the progress and determine the activation energy of a condensation reaction on a polymeric solid support. The method employs a cuvette filled with a paramagnetic solution positioned between two strong magnets. The…

  6. Home and Work Physical Activity Environments: Associations with Cardiorespiratory Fitness and Physical Activity Level in French Women

    PubMed Central

    Oppert, Jean-Michel; Charles, Marie-Aline; Charreire, Hélène; Menai, Mehdi; De Bourdeaudhuij, Ilse; Brage, Soren; de Lauzon-Guillain, Blandine; Fagherazzi, Guy; Balkau, Beverley

    2016-01-01

    The influence of the physical activity environment in the home and at work on cardiorespiratory fitness (CRF) and objectively-measured physical activity has not been extensively studied. We recruited 147 women with a (mean ± SD) age of 54 ± 7 years and without evidence of chronic disease. The physical activity environment was assessed by self-report (Assessing Levels of PHysical Activity or ALPHA questionnaire), CRF using a submaximal step test, usual physical activity using combined heart rate and accelerometry, as well as by a validated questionnaire (Recent Physical Activity Questionnaire). Summary scores of the home environment and the work environment derived from the ALPHA questionnaire were positively correlated with CRF after adjustment for age (r = 0.18, p = 0.03 and r = 0.28, p < 0.01, respectively). Women owning a bicycle or having a garden (which may prompt physical activity) had higher CRF; those with a bicycle at home also had a higher physical activity energy expenditure. Similarly, women who had access to fitness equipment at work had higher CRF. In conclusion, these results provide new insights into potential environmental influences on physical capacity and physical activity that could inform the design of physical activity promotion strategies. PMID:27537900

  7. Suppressing recombination in polymer photovoltaic devices via energy-level cascades.

    PubMed

    Tan, Zhi-Kuang; Johnson, Kerr; Vaynzof, Yana; Bakulin, Artem A; Chua, Lay-Lay; Ho, Peter K H; Friend, Richard H

    2013-08-14

    An energy cascading structure is designed in a polymer photovoltaic device to suppress recombination and improve quantum yields. By the insertion of a thin polymer interlayer with intermediate energy levels, electrons and holes can effectively shuttle away from each other while being spatially separated from recombination. An increase in open-circuit voltage and short-circuit current are observed in modified devices.

  8. Role of energy-level mismatches in a multi-pathway complex of photosynthesis

    NASA Astrophysics Data System (ADS)

    Lim, James; Ryu, Junghee; Lee, Changhyoup; Yoo, Seokwon; Jeong, Hyunseok; Lee, Jinhyoung

    2011-10-01

    Considering a multi-pathway structure in a light-harvesting complex of photosynthesis, we investigated the role of energy-level mismatches between antenna molecules in transferring the absorbed energy to a reaction center (RC). We found a condition in which the antenna molecules faithfully play their roles: when their effective absorption ratios are larger than those of the receiver molecule directly coupled to the RC. In the absence of energy-level mismatches and dephasing noise, there arises quantum destructive interference between multiple paths that restricts the energy transfer. On the other hand, the destructive interference diminishes as asymmetrically biasing the energy-level mismatches and/or introducing quantum noise of dephasing for the antenna molecules, so that the transfer efficiency is greatly enhanced to nearly unity. Remarkably, the near-unity efficiency can be achieved at a wide range of asymmetric energy-level mismatches. Temporal characteristics are also optimized at the energy-level mismatches where the transfer efficiency is nearly unity. We discuss these effects, in particular, for the Fenna-Matthews-Olson complex.

  9. Energy expenditure and habitual physical activities in adolescent sprint athletes.

    PubMed

    Aerenhouts, Dirk; Zinzen, Evert; Clarys, Peter

    2011-01-01

    This study aimed to assess total energy expenditure (TEE) and specific habitual physical activities in adolescent sprint athletes. Two methods used to estimate TEE, an activity diary (AD) and SenseWear armband (SWA), were compared. Sixteen athletes (6 girls, 10 boys, mean age 16.5 ± 1.6 yr) simultaneously wore a SWA and completed an AD and food diary during one week. Basal energy expenditure as given by the SWA when taken off was corrected for the appropriate MET value using the AD. TEE as estimated by the AD and SWA was comparable (3196 ± 590 kcal and 3012 ± 518 kcal, p = 0.113) without day-to-day variations in TEE and energy expended in activities of high intensity. Daily energy intake (2569 ± 508 kcal) did not match TEE according to both the AD and SWA (respectively p < 0.001 and p = 0.007). Athletes were in a supine position for a longer time on weekend days than on week days and slept longer on Sundays. Athletes reported a longer time of high-intensive physical activities in the AD than registered by the SWA on 4 out of 7 days. In addition to specific sprint activities on 3 to 7 days per week, 11 out of 16 athletes actively commuted to school where they participated in sports once or twice per week. The AD and the SWA are comparable in the estimation of TEE, which appears realistic and sustainable. The SWA offers an appropriate and objective method in the assessment of TEE, sleeping and resting in adolescent athletes on the condition that detailed information is given for the times the armband is not worn. The AD offers activity specific information but relies on the motivation, compliance and subjectivity of the individual, especially considering high-intensive intermittent training. Key pointsThe activity diary and Sensewear armband provide comparable estimates of TEE in adolescent sprint athletes.A high inter-individual variation was observed in time spent in high-intensity physical activities, advocating an individual based assessment when coaching

  10. Energy and angular dependence of active-type personal dosemeter for high-energy neutron.

    PubMed

    Rito, Hirotaka; Yamauchi, Tomoya; Oda, Keiji

    2011-07-01

    In order to develop an active-type personal dosemeter having suitable sensitivity to high-energy neutrons, the characteristic response of silicon surface barrier detector has been investigated experimentally and theoretically. An agreement of the shape of pulse-height distribution, its change with radiator thickness and the relative sensitivity was confirmed between the calculated and experimental results for 14.8-MeV neutrons. The angular dependence was estimated for other neutron energies, and found that the angular dependence decreased with the incident energy. The reason was also discussed with regard to the radiator thickness relative to maximum range of recoil protons.

  11. Levelized Cost of Energy Analysis of Marine and Hydrokinetic Reference Models: Preprint

    SciTech Connect

    Jenne, D. S.; Yu, Y. H.; Neary, V.

    2015-04-24

    In 2010 the U.S. Department of Energy initiated the development of six marine energy converter reference models. The reference models are point designs of well-known marine energy converters. Each device was designed to operate in a specific marine resource, instead of a generic device that can be deployed at any location. This method allows each device to be used as a benchmark for future reference model to benchmark future devices. The six designs consist of three current energy converters and three wave energy converters. The reference model project has generated both technical and economic data sets that are available in the public domain. The methodology to calculate the levelized cost of energy for the reference model project and an overall comparison of the cost of energy from these six reference-model designs are presented in this paper.

  12. Determining characteristics of melting cheese by activation energy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Activation energy of flow (Ea) between 30 and 44 deg C was measured from temperature sweeps of various cheeses to determine its usefulness in predicting rheological behavior upon heating. Seven cheese varieties were heated in a rheometer from 22 to 70 deg C, and Ea was calculated from the resulting ...

  13. Activation energy measurements in rheological analysis of cheese

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Activation energy of flow (Ea) was calculated from temperature sweeps of cheeses with contrasting characteristics to determine its usefulness in predicting rheological behavior upon heating. Cheddar, Colby, whole milk Mozzarella, low moisture part skim Mozzarella, Parmesan, soft goat, and Queso Fre...

  14. Solar Energy Education. Industrial arts: student activities. Field test edition

    SciTech Connect

    Not Available

    1981-02-01

    In this teaching manual several activities are presented to introduce students to information on solar energy through classroom instruction. Wind power is also included. Instructions for constructing demonstration models for passive solar systems, photovoltaic cells, solar collectors and water heaters, and a bicycle wheel wind turbine are provided. (BCS)

  15. Converging ligand-binding free energies obtained with free-energy perturbations at the quantum mechanical level.

    PubMed

    Olsson, Martin A; Söderhjelm, Pär; Ryde, Ulf

    2016-06-30

    In this article, the convergence of quantum mechanical (QM) free-energy simulations based on molecular dynamics simulations at the molecular mechanics (MM) level has been investigated. We have estimated relative free energies for the binding of nine cyclic carboxylate ligands to the octa-acid deep-cavity host, including the host, the ligand, and all water molecules within 4.5 Å of the ligand in the QM calculations (158-224 atoms). We use single-step exponential averaging (ssEA) and the non-Boltzmann Bennett acceptance ratio (NBB) methods to estimate QM/MM free energy with the semi-empirical PM6-DH2X method, both based on interaction energies. We show that ssEA with cumulant expansion gives a better convergence and uses half as many QM calculations as NBB, although the two methods give consistent results. With 720,000 QM calculations per transformation, QM/MM free-energy estimates with a precision of 1 kJ/mol can be obtained for all eight relative energies with ssEA, showing that this approach can be used to calculate converged QM/MM binding free energies for realistic systems and large QM partitions. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

  16. Mechanism and activation energy of magnetic skyrmion annihilation obtained from minimum energy path calculations

    NASA Astrophysics Data System (ADS)

    Lobanov, Igor S.; Jónsson, Hannes; Uzdin, Valery M.

    2016-11-01

    The mechanism and activation energy for the annihilation of a magnetic skyrmion is studied by finding the minimum energy path for the transition in a system described by a Heisenberg-type Hamiltonian extended to include dipole-dipole, Dzyaloshinskii-Moriya, and anisotropy interactions so as to represent a Co monolayer on a Pt(111) surface. The annihilation mechanism involves isotropic shrinking of the skyrmion and slow increase of the energy until the transition state is reached after which the energy drops abruptly as the ferromagnetic final state forms. The maximum energy along the minimum energy path, which gives an estimate of the activation energy within the harmonic approximation of transition state theory, is found to be in excellent agreement with direct Langevin dynamics simulations at relatively high temperature carried out by Rohart et al. [Phys. Rev. B 93, 214412 (2016), 10.1103/PhysRevB.93.214412]. The dipole-dipole interaction, the computationally most demanding term in the Hamiltonian, is found to be important but its effect on the stability of the skyrmion and shape of the transition path can be mimicked accurately by reducing the anisotropy constant in the Hamiltonian.

  17. Clinical application of asparaginase activity levels following treatment with pegaspargase.

    PubMed

    Bleyer, Archie; Asselin, Barbara L; Koontz, Susannah E; Hunger, Stephen P

    2015-06-01

    Asparaginase, an enzyme used to treat acute lymphoblastic leukemia and related forms of nonHodgkin lymphoma, depletes asparagine, which leads to lymphoblast cell death. Unlike most chemotherapeutic agents, asparaginase is a foreign protein that can result in clinical allergy and/or silent hypersensitivity with production of neutralizing antibodies that inactivate asparaginase. In North America, asparaginase activity levels can now be obtained via a commercially available assay, for therapeutic drug monitoring and investigation of potential allergic reactions. Herein, we provide recommendations and a corresponding algorithm for the clinical application of this assay after treatment with pegaspargase to evaluate suspected hypersensitivity reactions and/or silent inactivation.

  18. Chemical control over the energy-level alignment in a two-terminal junction.

    PubMed

    Yuan, Li; Franco, Carlos; Crivillers, Núria; Mas-Torrent, Marta; Cao, Liang; Sangeeth, C S Suchand; Rovira, Concepció; Veciana, Jaume; Nijhuis, Christian A

    2016-07-26

    The energy-level alignment of molecular transistors can be controlled by external gating to move molecular orbitals with respect to the Fermi levels of the source and drain electrodes. Two-terminal molecular tunnelling junctions, however, lack a gate electrode and suffer from Fermi-level pinning, making it difficult to control the energy-level alignment of the system. Here we report an enhancement of 2 orders of magnitude of the tunnelling current in a two-terminal junction via chemical molecular orbital control, changing chemically the molecular component between a stable radical and its non-radical form without altering the supramolecular structure of the junction. Our findings demonstrate that the energy-level alignment in self-assembled monolayer-based junctions can be regulated by purely chemical modifications, which seems an attractive alternative to control the electrical properties of two-terminal junctions.

  19. Energy level alignment between C 60 and Al using ultraviolet photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Seo, J. H.; Kang, S. J.; Kim, C. Y.; Cho, S. W.; Yoo, K.-H.; Whang, C. N.

    2006-09-01

    The energy level alignment between C 60 and Al has been investigated by using ultraviolet photoelectron spectroscopy. To obtain the interfacial electronic structure between C 60 and Al, C 60 was deposited on a clean Al substrate in a stepwise manner. The valence-band spectra were measured immediately after each step of C 60 deposition without breaking the vacuum. The measured onset of the highest occupied molecular orbital energy level was located at 1.59 eV from the Fermi level of Al. The vacuum level was shifted 0.68 eV toward lower binding energy with additional C 60 layers. The observed vacuum level shift means that the interface dipole exists at the interface between C 60 and Al. The barrier height of electron injection from Al to C 60 is 0.11 eV, which is smaller value than that of hole injection.

  20. Chemical control over the energy-level alignment in a two-terminal junction

    PubMed Central

    Yuan, Li; Franco, Carlos; Crivillers, Núria; Mas-Torrent, Marta; Cao, Liang; Sangeeth, C. S. Suchand; Rovira, Concepció; Veciana, Jaume; Nijhuis, Christian A.

    2016-01-01

    The energy-level alignment of molecular transistors can be controlled by external gating to move molecular orbitals with respect to the Fermi levels of the source and drain electrodes. Two-terminal molecular tunnelling junctions, however, lack a gate electrode and suffer from Fermi-level pinning, making it difficult to control the energy-level alignment of the system. Here we report an enhancement of 2 orders of magnitude of the tunnelling current in a two-terminal junction via chemical molecular orbital control, changing chemically the molecular component between a stable radical and its non-radical form without altering the supramolecular structure of the junction. Our findings demonstrate that the energy-level alignment in self-assembled monolayer-based junctions can be regulated by purely chemical modifications, which seems an attractive alternative to control the electrical properties of two-terminal junctions. PMID:27456200

  1. Energy expended by boys playing active video games.

    PubMed

    White, Kate; Schofield, Grant; Kilding, Andrew E

    2011-03-01

    The purpose of this study was to: (1) determine energy expenditure (EE) during a range of active video games (AVGs) and (2) determine whether EE during AVGs is influenced by gaming experience or fitness. Twenty-six boys (11.4±0.8 years) participated and performed a range of sedentary activities (resting, watching television and sedentary gaming), playing AVGs (Nintendo® Wii Bowling, Boxing, Tennis, and Wii Fit Skiing and Step), walking and running including a maximal fitness test. During all activities, oxygen uptake, heart rate and EE were determined. The AVGs resulted in a significantly higher EE compared to rest (63-190%, p≤0.001) and sedentary screen-time activities (56-184%, p≤0.001). No significant differences in EE were found between the most active video games and walking. There was no evidence to suggest that gaming experience or aerobic fitness influenced EE when playing AVGs. In conclusion, boys expended more energy during active gaming compared to sedentary activities. Whilst EE during AVG is game-specific, AVGs are not intense enough to contribute towards the 60min of daily moderate-to-vigorous physical activity that is currently recommended for children.

  2. The Work and Home Activities Questionnaire: Energy Expenditure Estimates and Association With Percent Body Fat

    PubMed Central

    Block, Gladys; Jensen, Christopher D.; Block, Torin J.; Norris, Jean; Dalvi, Tapashi B.; Fung, Ellen B.

    2015-01-01

    Background Understanding and increasing physical activity requires assessment of occupational, home, leisure and sedentary activities. Methods A physical activity questionnaire was developed using data from a large representative U.S. sample; includes occupational, leisure and home-based domains; and produces estimates of energy expenditure, percent body fat, minutes in various domains, and meeting recommendations. It was tested in 396 persons, mean age 44 years. Estimates were evaluated in relation to percent body fat measured by dual-energy x-ray absorptiometry. Results Median energy expenditure was 2,365 kcal (women) and 2.960 kcal (men). Women spent 35.1 minutes/day in moderate household activities, 13.0 minutes in moderate leisure and 4.0 minutes in vigorous activities. Men spent 18.0, 22.5 and 15.6 minutes/day in those activities, respectively. Men and women spent 276.4 and 257.0 minutes/day in sedentary activities. Respondents who met recommendations through vigorous activities had significantly lower percent body fat than those who did not, while meeting recommendations only through moderate activities was not associated with percent body fat. Predicted and observed percent body fat correlated at r = .73 and r = .82 for men and women respectively, P < .0001. Conclusions This questionnaire may be useful for understanding health effects of different components of activity, and for interventions to increase activity levels. PMID:19998851

  3. Growth and energy budget of juvenile lenok Brachymystax lenok in relation to ration level

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Li, Zhongjie; Zhang, Tanglin; Yuan, Jing; Mou, Zhenbo; Liu, Jiashou

    2015-03-01

    We evaluated the effect of ration level (RL) on the growth and energy budget of lenok Brachymystax lenok. Juvenile lenok (initial mean body weight 3.06±0.13 g) were fed for 21 d at five different ration levels: starvation, 2%, 3%, 4% bwd (body weight per day, based on initial mean values), and apparent satiation. Feed consumption, apparent digestibility, and growth were directly measured. Specific growth rates in terms of wet weight, dry weight, protein, and energy increased logarithmically with an increase in ration levels. The relationship between specific growth rate in terms of wet weight (SGRw, %/d) and RL (%) was characterized by a decelerating curve: SGRw=-1.417+3.166ln(RL+1). The apparent digestibility coefficients of energy exhibited a decreasing pattern with increasing ration level, and there was a significant difference among different RLs. Body composition was significantly affected by ration size. The relationship between feed efficiency rate in terms of energy (FERe) and RL was: FERe=-14.167+23.793RL-3.367(RL)2, and the maximum FERe was observed at a 3.53% ration. The maintenance requirement for energy of juvenile lenok was 105.39 kJ BW (kg)-0.80/d, the utilization efficiency of DE for growth was 0.496. The energy budget equation at satiation was: 100IE=29.03FE+5.78(ZE+UE)+39.56 HE+25.63 RE, where IE is feed energy, FE is fecal energy, ZE+UE is excretory energy, HE is heat production, and RE is recovered energy. Our results suggest that the most suitable feeding rate for juvenile lenok aquaculture for wet weight growth is 2.89% bwd, whereas for energy growth, the suggested rate is 3.53% bwd at this growth stage.

  4. Activity pattern and energy expenditure due to physical activity before and during pregnancy in healthy Swedish women.

    PubMed

    Lof, Marie; Forsum, Elisabet

    2006-02-01

    Human pregnancy is associated with increased requirements for dietary energy and this increase may be partly offset by reductions in physical activity during gestation. Studies in well-nourished women have shown that the physical activity level (PAL), obtained as the total energy expenditure (TEE) divided by the BMR, decreases in late pregnancy. However, it is not known if this decrease is really caused by reductions in physical activity or if it is the result of decreases in energy expenditure/BMR (the so-called metabolic equivalent, MET) for many activities in late pregnancy. In the present study activity pattern, TEE and BMR were assessed in twenty-three healthy Swedish women before pregnancy as well as in gestational weeks 14 and 32. Activity pattern was assessed using a questionnaire and heart rate recording. TEE was assessed using the doubly labelled water method and BMR was measured by means of indirect calorimetry. When compared to the pre-pregnant value, there was little change in the PAL in gestational week 14 but it was significantly reduced in gestational week 32. Results obtained by means of the questionnaire and by heart rate recording showed that the activity pattern was largely unaffected by pregnancy. The findings support the following conclusion: in a population of well-nourished women where the activity pattern is maintained during pregnancy, the increase in BMR represents approximately the main part of the pregnancy-induced increase in TEE, at least until gestational week 32.

  5. Predicting Activity Energy Expenditure Using the Actical[R] Activity Monitor

    ERIC Educational Resources Information Center

    Heil, Daniel P.

    2006-01-01

    This study developed algorithms for predicting activity energy expenditure (AEE) in children (n = 24) and adults (n = 24) from the Actical[R] activity monitor. Each participant performed 10 activities (supine resting, three sitting, three house cleaning, and three locomotion) while wearing monitors on the ankle, hip, and wrist; AEE was computed…

  6. Spectrum and energy levels of five-times ionized zirconium (Zr VI)

    NASA Astrophysics Data System (ADS)

    Reader, Joseph; Lindsay, Mark D.

    2016-02-01

    We carried out a new analysis of the spectrum of five-times-ionized zirconium Zr VI. For this we used sliding-spark discharges together with normal- and grazing-incidence spectrographs to observe the spectrum from 160 to 2000 Å. These observations showed that the analysis of this spectrum by Khan et al (1985 Phys. Scr. 31 837) contained a significant number of incorrect energy levels. We have now classified ∼420 lines as transitions between 23 even-parity levels 73 odd-parity levels. The 4s24p5, 4s4p6, 4s24p44d, 5s, 5d, 6s configurations are now complete, although a few levels of 4s24p45d are tentative. We determined Ritz-type wavelengths for ∼135 lines from the optimized energy levels. The uncertainties range from 0.0003 to 0.0020 Å. Hartree–Fock calculations and least-squares fits of the energy parameters to the observed levels were used to interpret the observed configurations. Oscillator strengths for all classified lines were calculated with the fitted parameters. The results are compared with values for the level energies, percentage compositions, and transition probabilities from recent ab initio theoretical calculations. The ionization energy was revised to 777 380 ± 300 cm‑1 (96.38 ± 0.04 eV).

  7. Energy-Water Nexus: Balancing the Tradeoffs between Two-Level Decision Makers

    DOE PAGES

    Zhang, Xiaodong; Vesselinov, Velimir Valentinov

    2016-09-03

    Energy-water nexus has substantially increased importance in the recent years. Synergistic approaches based on systems-analysis and mathematical models are critical for helping decision makers better understand the interrelationships and tradeoffs between energy and water. In energywater nexus management, various decision makers with different goals and preferences, which are often conflicting, are involved. These decision makers may have different controlling power over the management objectives and the decisions. They make decisions sequentially from the upper level to the lower level, challenging decision making in energy-water nexus. In order to address such planning issues, a bi-level decision model is developed, which improvesmore » upon the existing studies by integration of bi-level programming into energy-water nexus management. The developed model represents a methodological contribution to the challenge of sequential decisionmaking in energy-water nexus through provision of an integrated modeling framework/tool. An interactive fuzzy optimization methodology is introduced to seek a satisfactory solution to meet the overall satisfaction of the two-level decision makers. The tradeoffs between the two-level decision makers in energy-water nexus management are effectively addressed and quantified. Application of the proposed model to a synthetic example problem has demonstrated its applicability in practical energy-water nexus management. Optimal solutions for electricity generation, fuel supply, water supply including groundwater, surface water and recycled water, capacity expansion of the power plants, and GHG emission control are generated. In conclusion, these analyses are capable of helping decision makers or stakeholders adjust their tolerances to make informed decisions to achieve the overall satisfaction of energy-water nexus management where bi-level sequential decision making process is involved.« less

  8. Energy-Water Nexus: Balancing the Tradeoffs between Two-Level Decision Makers

    SciTech Connect

    Zhang, Xiaodong; Vesselinov, Velimir Valentinov

    2016-09-03

    Energy-water nexus has substantially increased importance in the recent years. Synergistic approaches based on systems-analysis and mathematical models are critical for helping decision makers better understand the interrelationships and tradeoffs between energy and water. In energywater nexus management, various decision makers with different goals and preferences, which are often conflicting, are involved. These decision makers may have different controlling power over the management objectives and the decisions. They make decisions sequentially from the upper level to the lower level, challenging decision making in energy-water nexus. In order to address such planning issues, a bi-level decision model is developed, which improves upon the existing studies by integration of bi-level programming into energy-water nexus management. The developed model represents a methodological contribution to the challenge of sequential decisionmaking in energy-water nexus through provision of an integrated modeling framework/tool. An interactive fuzzy optimization methodology is introduced to seek a satisfactory solution to meet the overall satisfaction of the two-level decision makers. The tradeoffs between the two-level decision makers in energy-water nexus management are effectively addressed and quantified. Application of the proposed model to a synthetic example problem has demonstrated its applicability in practical energy-water nexus management. Optimal solutions for electricity generation, fuel supply, water supply including groundwater, surface water and recycled water, capacity expansion of the power plants, and GHG emission control are generated. In conclusion, these analyses are capable of helping decision makers or stakeholders adjust their tolerances to make informed decisions to achieve the overall satisfaction of energy-water nexus management where bi-level sequential decision making process is involved.

  9. Expression of Arabidopsis FCS-Like Zinc finger genes is differentially regulated by sugars, cellular energy level, and abiotic stress.

    PubMed

    Jamsheer K, Muhammed; Laxmi, Ashverya

    2015-01-01

    Cellular energy status is an important regulator of plant growth, development, and stress mitigation. Environmental stresses ultimately lead to energy deficit in the cell which activates the SNF1-RELATED KINASE 1 (SnRK1) signaling cascade which eventually triggering a massive reprogramming of transcription to enable the plant to survive under low-energy conditions. The role of Arabidopsis thaliana FCS-Like Zinc finger (FLZ) gene family in energy and stress signaling is recently come to highlight after their interaction with kinase subunits of SnRK1 were identified. In a detailed expression analysis in different sugars, energy starvation, and replenishment series, we identified that the expression of most of the FLZ genes is differentially modulated by cellular energy level. It was found that FLZ gene family contains genes which are both positively and negatively regulated by energy deficit as well as energy-rich conditions. Genetic and pharmacological studies identified the role of HEXOKINASE 1- dependent and energy signaling pathways in the sugar-induced expression of FLZ genes. Further, these genes were also found to be highly responsive to different stresses as well as abscisic acid. In over-expression of kinase subunit of SnRK1, FLZ genes were found to be differentially regulated in accordance with their response toward energy fluctuation suggesting that these genes may work downstream to the established SnRK1 signaling under low-energy stress. Taken together, the present study provides a conceptual framework for further studies related to SnRK1-FLZ interaction in relation to sugar and energy signaling and stress response.

  10. Level-energy-dependent mean velocities of excited tungsten atoms sputtered by krypton-ion bombardment

    SciTech Connect

    Nogami, Keisuke; Sakai, Yasuhiro; Mineta, Shota; Kato, Daiji; Murakami, Izumi; Sakaue, Hiroyuki A.; Kenmotsu, Takahiro; Furuya, Kenji; Motohashi, Kenji

    2015-11-15

    Visible emission spectra were acquired from neutral atoms sputtered by 35–60 keV Kr{sup +} ions from a polycrystalline tungsten surface. Mean velocities of excited tungsten atoms in seven different 6p states were also obtained via the dependence of photon intensities on the distance from the surface. The average velocities parallel to the surface normal varied by factors of 2–4 for atoms in the different 6p energy levels. However, they were almost independent of the incident ion kinetic energy. The 6p-level energy dependence indicated that the velocities of the excited atoms were determined by inelastic processes that involve resonant charge exchange.

  11. SU(4) skyrmions and activation energy anomaly in bilayer quantum Hall systems

    NASA Astrophysics Data System (ADS)

    Ezawa, Z. F.; Tsitsishvili, G.

    2004-09-01

    The bilayer quantum Hall (QH) system has four energy levels in the lowest Landau level, corresponding to the layer and spin degrees of freedom. We investigate the system in the regime where all four levels are nearly degenerate and equally active. The underlying group structure is SU(4) . At ν=1 the QH state is a charge-transferable state between the two layers and the SU(4) isospin coherence develops spontaneously. Quasiparticles are isospin textures to be identified with SU(4) skyrmions. The skyrmion energy consists of the Coulomb energy, the Zeeman energy and the pseudo-Zeeman energy. The Coulomb energy consists of the self-energy, the capacitance energy and the exchange energy. At the balanced point only pseudospins are excited unless the tunneling gap is too large. Then, the SU(4) skyrmion evolves continuously from the pseudospin-skyrmion limit into the spin-skyrmion limit as the system is transformed from the balanced point to the monolayer point by controlling the bias voltage. Our theoretical result explains quite well the experimental data due to Murphy [S. Q. Murphy, J. P. Eisenstein, G. S. Boebinger, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 72, 728 (1994)] and Sawada [A. Sawada, D. Terasawa, N. Kumada, M. Morino, K. Tagashira, Z. F. Ezawa, K. Muraki, T. Saku, and Y. Hirayama, Physica E 18, 118 (2003); D. Terasawa, M. Morino, K. Nakada, S. Kozumi, A. Sawada, Z. F. Ezawa, N. Kumada, K. Muraki, T. Saku, and Y. Hirayama, Physica E 22, 52 (2004)] on the activation energy anomaly induced by applying parallel magnetic field.

  12. Thermodynamic Derivation of the Activation Energy for Ice Nucleation

    NASA Technical Reports Server (NTRS)

    Barahona, D.

    2015-01-01

    Cirrus clouds play a key role in the radiative and hydrological balance of the upper troposphere. Their correct representation in atmospheric models requires an understanding of the microscopic processes leading to ice nucleation. A key parameter in the theoretical description of ice nucleation is the activation energy, which controls the flux of water molecules from the bulk of the liquid to the solid during the early stages of ice formation. In most studies it is estimated by direct association with the bulk properties of water, typically viscosity and self-diffusivity. As the environment in the ice-liquid interface may differ from that of the bulk, this approach may introduce bias in calculated nucleation rates. In this work a theoretical model is proposed to describe the transfer of water molecules across the ice-liquid interface. Within this framework the activation energy naturally emerges from the combination of the energy required to break hydrogen bonds in the liquid, i.e., the bulk diffusion process, and the work dissipated from the molecular rearrangement of water molecules within the ice-liquid interface. The new expression is introduced into a generalized form of classical nucleation theory. Even though no nucleation rate measurements are used to fit any of the parameters of the theory the predicted nucleation rate is in good agreement with experimental results, even at temperature as low as 190 K, where it tends to be underestimated by most models. It is shown that the activation energy has a strong dependency on temperature and a weak dependency on water activity. Such dependencies are masked by thermodynamic effects at temperatures typical of homogeneous freezing of cloud droplets; however, they may affect the formation of ice in haze aerosol particles. The new model provides an independent estimation of the activation energy and the homogeneous ice nucleation rate, and it may help to improve the interpretation of experimental results and the

  13. Effects of activation energy and activation volume on the temperature-dependent viscosity of water.

    PubMed

    Kwang-Hua, Chu Rainer

    2016-08-01

    Water transport in a leaf is vulnerable to viscosity-induced changes. Recent research has suggested that these changes may be partially due to variation at the molecular scale, e.g., regulations via aquaporins, that induce reductions in leaf hydraulic conductance. What are the quantitative as well as qualitative changes in temperature-dependent viscosity due to the role of aquaporins in tuning activation energy and activation volume? Using the transition-state approach as well as the boundary perturbation method, we investigate temperature-dependent viscosity tuned by activation energy and activation volume. To validate our approach, we compare our numerical results with previous temperature-dependent viscosity measurements. The rather good fit between our calculations and measurements confirms our present approach. We have obtained critical parameters for the temperature-dependent (shear) viscosity of water that might be relevant to the increasing and reducing of leaf hydraulic conductance. These parameters are sensitive to temperature, activation energy, and activation volume. Once the activation energy increases, the (shear) viscosity of water increases. Our results also show that as the activation volume increases (say, 10^{-23}m^{3}), the (shear) viscosity of water decreases significantly and the latter induces the enhancing of leaf hydraulic conductance. Within the room-temperature regime, a small increase in the activation energy will increase the water viscosity or reduce the leaf hydraulic conductance. Our approach and results can be applied to diverse plant or leaf attributes.

  14. Effects of activation energy and activation volume on the temperature-dependent viscosity of water

    NASA Astrophysics Data System (ADS)

    Kwang-Hua, Chu Rainer

    2016-08-01

    Water transport in a leaf is vulnerable to viscosity-induced changes. Recent research has suggested that these changes may be partially due to variation at the molecular scale, e.g., regulations via aquaporins, that induce reductions in leaf hydraulic conductance. What are the quantitative as well as qualitative changes in temperature-dependent viscosity due to the role of aquaporins in tuning activation energy and activation volume? Using the transition-state approach as well as the boundary perturbation method, we investigate temperature-dependent viscosity tuned by activation energy and activation volume. To validate our approach, we compare our numerical results with previous temperature-dependent viscosity measurements. The rather good fit between our calculations and measurements confirms our present approach. We have obtained critical parameters for the temperature-dependent (shear) viscosity of water that might be relevant to the increasing and reducing of leaf hydraulic conductance. These parameters are sensitive to temperature, activation energy, and activation volume. Once the activation energy increases, the (shear) viscosity of water increases. Our results also show that as the activation volume increases (say, 10-23m3 ), the (shear) viscosity of water decreases significantly and the latter induces the enhancing of leaf hydraulic conductance. Within the room-temperature regime, a small increase in the activation energy will increase the water viscosity or reduce the leaf hydraulic conductance. Our approach and results can be applied to diverse plant or leaf attributes.

  15. Energy level alignment at C60/DTDCTB/PEDOT:PSS interfaces in organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Yoo, Jisu; Jung, Kwanwook; Jeong, Junkyeong; Hyun, Gyeongho; Lee, Hyunbok; Yi, Yeonjin

    2017-04-01

    The electronic structure of a narrow band gap small molecule ditolylaminothienyl-benzothiadiazole-dicyanovinylene (DTDCTB), possessing a donor-acceptor-acceptor configuration, was investigated with regard to its application as an efficient donor material in organic photovoltaics (OPVs). The interfacial orbital alignment of C60/DTDCTB/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) was determined using in situ ultraviolet photoelectron and inverse photoelectron spectroscopic methods. The ionization energy and electron affinity values of DTDCTB were measured to be 5.27 eV and 3.65 eV, respectively, and thus a very small transport gap of 1.62 eV was evaluated. Large band bending of DTDCTB on PEDOT:PSS was observed, resulting in a low hole extraction barrier. Additionally, the photovoltaic gap between the highest occupied molecular orbital level of the DTDCTB donor and the lowest unoccupied molecular orbital level of the C60 acceptor was estimated to be 1.30 eV, which is known to be the theoretical maximum open-circuit voltage in OPVs employing the C60/DTDCTB active layer. The unique electronic structures of DTDCTB contributed toward the recently reported excellent power conversion efficiencies of OPVs containing a DTDCTB donor material.

  16. Mediating role of activity level in the depressive realism effect.

    PubMed

    Blanco, Fernando; Matute, Helena; A Vadillo, Miguel

    2012-01-01

    Several classic studies have concluded that the accuracy of identifying uncontrollable situations depends heavily on depressive mood. Nondepressed participants tend to exhibit an optimistic illusion of control, whereas depressed participants tend to better detect a lack of control. Recently, we suggested that the different activity levels (measured as the probability of responding during a contingency learning task) exhibited by depressed and nondepressed individuals is partly responsible for this effect. The two studies presented in this paper provide further support for this mediational hypothesis, in which mood is the distal cause of the illusion of control operating through activity level, the proximal cause. In Study 1, the probability of responding, P(R), was found to be a mediator variable between the depressive symptoms and the judgments of control. In Study 2, we intervened directly on the mediator variable: The P(R) for both depressed and nondepressed participants was manipulated through instructions. Our results confirm that P(R) manipulation produced differences in the participants' perceptions of uncontrollability. Importantly, the intervention on the mediator variable cancelled the effect of the distal cause; the participants' judgments of control were no longer mood dependent when the P(R) was manipulated. This result supports the hypothesis that the so-called depressive realism effect is actually mediated by the probability of responding.

  17. Zone Level Occupant-Responsive Building Energy Systems at the GSA

    SciTech Connect

    Robinson, Alastair

    2014-03-01

    The General Services Administration (GSA) partnered with the U.S. Department of Energy (DOE) to develop and implement building energy system retrofits, aiming to reduce energy consumption of at least two building systems by a total of 30 percent or more, as part of DOE’s Commercial Building Partnership (CBP) Program. Lawrence Berkeley National Laboratory (LBNL) provided technical expertise in support of this DOE program, working with the GSA and a team of consultants. This case study reports expected energy savings from appropriate energy efficient design and operations modifications to lighting and heating, ventilating and air conditioning (HVAC) systems at the selected study sites. These retrofits comprised installation of new lighting systems with dimming capability and occupancy-sensor control at the individual light fixture level, and utilized lighting system occupancy sensor signals to continually readjust zone-level ventilation airflow according to the number of people present, down to minimum rates when vacant.

  18. Examining student ideas about energy measurements on quantum states across undergraduate and graduate levels

    NASA Astrophysics Data System (ADS)

    Passante, Gina; Emigh, Paul J.; Shaffer, Peter S.

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] Energy measurements play a fundamental role in the theory of quantum mechanics, yet there is evidence that the underlying concepts are difficult for many students, even after all undergraduate instruction. We present results from an investigation into student ability to determine the possible energies that can be measured for a given wave function and Hamiltonian, to determine the probabilities of each energy measurement and how they depend on time, and to recognize how a measurement of energy affects the state. By analyzing student responses to open-ended questions, we identify five broad, interrelated sets of conceptual and reasoning difficulties related to energy measurements. Data are drawn from sophomore-, junior-, and graduate-level quantum mechanics courses. Particular attention is paid to incorrect ideas that persist across all levels.

  19. Excitation energy dependence of the level density parameter close to the doubly magic 208Pb

    NASA Astrophysics Data System (ADS)

    Roy, Pratap; Banerjee, K.; Bhattacharya, C.; Pandey, R.; Sen, A.; Manna, S.; Kundu, S.; Rana, T. K.; Ghosh, T. K.; Mukherjee, G.; Roy, T.; Dhal, A.; Dey, A.; Meena, J. K.; Saha, A. K.; Pandit, Deepak; Mukhopadhyay, S.; Bhattacharya, S.

    2016-12-01

    Neutron evaporation spectra have been measured from 4He+208Pb and 4He+209Bi reactions by using 4He-ion beams of several bombarding energies. Excitation-energy dependence of the level density parameter has been studied for the two systems in the excitation energy range of ˜18 -50 MeV. For both the reactions an overall reduction of the asymptotic level density parameter with increasing excitation energy (temperature) is observed. The trend of the data was compared with the Thomas-Fermi model predictions and found to be in reasonable agreement. The value of the shell damping parameter has been extracted from the lowest-energy data in the case of Po,211210 and At,212211 nuclei close to the Z =82 and N =126 shell closure, and it was found to be consistent with the recent measurement in the vicinity of doubly magic 208Pb nucleus.

  20. Wave energy level and geographic setting correlate with Florida beach water quality.

    PubMed

    Feng, Zhixuan; Reniers, Ad; Haus, Brian K; Solo-Gabriele, Helena M; Kelly, Elizabeth A

    2016-03-15

    Many recreational beaches suffer from elevated levels of microorganisms, resulting in beach advisories and closures due to lack of compliance with Environmental Protection Agency guidelines. We conducted the first statewide beach water quality assessment by analyzing decadal records of fecal indicator bacteria (enterococci and fecal coliform) levels at 262 Florida beaches. The objectives were to depict synoptic patterns of beach water quality exceedance along the entire Florida shoreline and to evaluate their relationships with wave condition and geographic location. Percent exceedances based on enterococci and fecal coliform were negatively correlated with both long-term mean wave energy and beach slope. Also, Gulf of Mexico beaches exceeded the thresholds significantly more than Atlantic Ocean ones, perhaps partially due to the lower wave energy. A possible linkage between wave energy level and water quality is beach sand, a pervasive nonpoint source that tends to harbor more bacteria in the low-wave-energy environment.

  1. RESEARCH PAPER: A logistic model for magnetic energy storage in solar active regions

    NASA Astrophysics Data System (ADS)

    Wang, Hua-Ning; Cui, Yan-Mei; He, Han

    2009-06-01

    Previous statistical analyses of a large number of SOHO/MDI full disk longitudinal magnetograms provided a result that demonstrated how responses of solar flares to photospheric magnetic properties can be fitted with sigmoid functions. A logistic model reveals that these fitted sigmoid functions might be related to the free energy storage process in solar active regions. Although this suggested model is rather simple, the free energy level of active regions can be estimated and the probability of a solar flare with importance over a threshold can be forecast within a given time window.

  2. STAT3 Activities and Energy Metabolism: Dangerous Liaisons

    PubMed Central

    Camporeale, Annalisa; Demaria, Marco; Monteleone, Emanuele; Giorgi, Carlotta; Wieckowski, Mariusz R.; Pinton, Paolo; Poli, Valeria

    2014-01-01

    STAT3 mediates cytokine and growth factor receptor signalling, becoming transcriptionally active upon tyrosine 705 phosphorylation (Y-P). Constitutively Y-P STAT3 is observed in many tumors that become addicted to its activity, and STAT3 transcriptional activation is required for tumor transformation downstream of several oncogenes. We have recently demonstrated that constitutively active STAT3 drives a metabolic switch towards aerobic glycolysis through the transcriptional induction of Hif-1α and the down-regulation of mitochondrial activity, in both MEF cells expressing constitutively active STAT3 (Stat3C/C) and STAT3-addicted tumor cells. This novel metabolic function is likely involved in mediating pre-oncogenic features in the primary Stat3C/C MEFs such as resistance to apoptosis and senescence and rapid proliferation. Moreover, it strongly contributes to the ability of primary Stat3C/C MEFs to undergo malignant transformation upon spontaneous immortalization, a feature that may explain the well known causative link between STAT3 constitutive activity and tumor transformation under chronic inflammatory conditions. Taken together with the recently uncovered role of STAT3 in regulating energy metabolism from within the mitochondrion when phosphorylated on Ser 727, these data place STAT3 at the center of a hub regulating energy metabolism under different conditions, in most cases promoting cell survival, proliferation and malignant transformation even though with distinct mechanisms. PMID:25089666

  3. Activity profile of high-level Australian lacrosse players.

    PubMed

    Polley, Chris S; Cormack, Stuart J; Gabbett, Tim J; Polglaze, Ted

    2015-01-01

    Despite lacrosse being one of the fastest growing team sports in the world, there is a paucity of information detailing the activity profile of high-level players. Microtechnology systems (global positioning systems and accelerometers) provide the opportunity to obtain detailed information on the activity profile in lacrosse. Therefore, this study aimed to analyze the activity profile of lacrosse match-play using microtechnology. Activity profile variables assessed relative to minutes of playing time included relative distance (meter per minute), distance spent standing (0-0.1 m·min), walking (0.2-1.7 m·min), jogging (1.8-3.2 m·min), running (3.3-5.6 m·min), sprinting (≥5.7 m·min), number of high, moderate, low accelerations and decelerations, and player load (PL per minute), calculated as the square root of the sum of the squared instantaneous rate of change in acceleration in 3 vectors (medio-lateral, anterior-posterior, and vertical). Activity was recorded from 14 lacrosse players over 4 matches during a national tournament. Players were separated into positions of attack, midfield, or defense. Differences (effect size [ES] ± 90% confidence interval) between positions and periods of play were considered likely positive when there was ≥75% likelihood of the difference exceeding an ES threshold of 0.2. Midfielders had likely covered higher (mean ± SD) meters per minute (100 ± 11) compared with attackers (87 ± 14; ES = 0.89 ± 1.04) and defenders (79 ± 14; ES = 1.54 ± 0.94) and more moderate and high accelerations and decelerations. Almost all variables across positions were reduced in quarter 4 compared with quarter 1. Coaches should accommodate for positional differences when preparing lacrosse players for competition.

  4. Low Levels of Physical Activity Increase Metabolic Responsiveness to Cold in a Rat (Rattus fuscipes)

    PubMed Central

    Seebacher, Frank; Glanville, Elsa J.

    2010-01-01

    Background Physical activity modulates expression of metabolic genes and may therefore be a prerequisite for metabolic responses to environmental stimuli. However, the extent to which exercise interacts with environmental conditions to modulate metabolism is unresolved. Hence, we tested the hypothesis that even low levels of physical activity are beneficial by improving metabolic responsiveness to temperatures below the thermal neutral zone, thereby increasing the capacity for substrate oxidation and energy expenditure. Methodology/Principal Findings We used wild rats (Rattus fuscipes) to avoid potential effects of breeding on physiological phenotypes. Exercise acclimation (for 30 min/day on 5 days/week for 30 days at 60% of maximal performance) at 22°C increased mRNA concentrations of PGC1α, PPARδ, and NRF-1 in skeletal muscle and brown adipose tissue compared to sedentary animals. Lowering ambient temperature to 12°C caused further increases in relative expression of NRF-1 in skeletal muscle, and of PPARδ of brown adipose tissue. Surprisingly, relative expression of UCP1 increased only when both exercise and cold stimuli were present. Importantly, in sedentary animals cold acclimation (12°C) alone did not change any of the above variables. Similarly, cold alone did not increase maximum capacity for substrate oxidation in mitochondria (cytochrome c oxidase and citrate synthase activities) of either muscle or brown adipose tissue. Animals that exercised regularly had higher exercise induced metabolic rates in colder environments than sedentary rats, and temperature induced metabolic scope was greater in exercised rats. Conclusions/Significance Physical activity is a necessary prerequisite for the expression of transcriptional regulators that influence a broad range of physiological functions from energy metabolism to cardiovascular function and nutrient uptake. A sedentary lifestyle leads to decreased daily energy expenditure because of a lack of direct use

  5. Starch levels on performance, milk composition and energy balance of lactating dairy cows.

    PubMed

    Carmo, Carolina Almeida; Batistel, Fernanda; de Souza, Jonas; Martinez, Junio Cesar; Correa, Paulo; Pedroso, Alexandre Mendonça; Santos, Flávio Augusto Portela

    2015-01-01

    The objective of this experiment was to evaluate the effects of starch levels in diets with the replacement of citrus pulp for corn on milk yield, milk composition, and energy balance of lactating dairy cows. Twenty-eight multiparous Holstein cows were used in seven 4 × 4 Latin squares conducted concurrently, and each experimental period consisted of 20 days (16 days for adaptation and 4 days for sampling). The experimental treatments comprised four starch levels: 15, 20, 25, and 30% in the diet. The dry matter intake increased linearly with increasing starch levels. The milk yield and 3.5% fat-corrected milk yield showed quadratic response to increasing starch levels. The milk protein content and milk total solids content responded linearly to increasing starch levels. The feed efficiency, milk lactose content, milk urea nitrogen, plasma urea nitrogen, and plasma glucose concentration were not affected by starch levels. The estimated net energy for lactation (NEL) intake increased linearly as the starch level was raised. Although the milk NEL output per kilogram of milk was not affected by starch, the milk NEL output daily responded quadratically to starch levels. In addition, the NEL in body weight gain also responded quadratically to increasing starch levels. The efficiency of energy use for milk yield and the NEL efficiency for production also responded quadratically to increasing starch levels. Diets for mid-lactating dairy cows producing around 30 kg/day of milk should be formulated to provide around 25% starch to optimize performance.

  6. A measurement error model for physical activity level as measured by a questionnaire with application to the 1999-2006 NHANES questionnaire.

    PubMed

    Tooze, Janet A; Troiano, Richard P; Carroll, Raymond J; Moshfegh, Alanna J; Freedman, Laurence S

    2013-06-01

    Systematic investigations into the structure of measurement error of physical activity questionnaires are lacking. We propose a measurement error model for a physical activity questionnaire that uses physical activity level (the ratio of total energy expenditure to basal energy expenditure) to relate questionnaire-based reports of physical activity level to true physical activity levels. The 1999-2006 National Health and Nutrition Examination Survey physical activity questionnaire was administered to 433 participants aged 40-69 years in the Observing Protein and Energy Nutrition (OPEN) Study (Maryland, 1999-2000). Valid estimates of participants' total energy expenditure were also available from doubly labeled water, and basal energy expenditure was estimated from an equation; the ratio of those measures estimated true physical activity level ("truth"). We present a measurement error model that accommodates the mixture of errors that arise from assuming a classical measurement error model for doubly labeled water and a Berkson error model for the equation used to estimate basal energy expenditure. The method was then applied to the OPEN Study. Correlations between the questionnaire-based physical activity level and truth were modest (r = 0.32-0.41); attenuation factors (0.43-0.73) indicate that the use of questionnaire-based physical activity level would lead to attenuated estimates of effect size. Results suggest that sample sizes for estimating relationships between physical activity level and disease should be inflated, and that regression calibration can be used to provide measurement error-adjusted estimates of relationships between physical activity and disease.

  7. Energy levels of odd-even nuclei using broken pair model

    SciTech Connect

    Hamammu, I. M.; Haq, S.; Eldahomi, J. M.

    2012-09-06

    A method to calculate energy levels and wave functions of odd-even nuclei, in the frame work of the broken pair model have been developed. The accuracy of the model has been tested by comparing the shell model results of limiting cases in which the broken pair model exactly coincides with the shell model, where there are two-proton/neutron + one-neutron/proton in the valence levels. The model is then applied to calculate the energy levels of some nuclei in the Zirconium region. The model results compare reasonably well with the shell model as well as with the experimental data.

  8. Plantar pressures during level walking compared with other ambulatory activities.

    PubMed

    Lundeen, S; Lundquist, K; Cornwall, M W; McPoil, T G

    1994-06-01

    This study was designed to determine the magnitude of plantar pressures during level walking in comparison to other activities. These activities included climbing up stairs, going down stairs, a simple pivot while walking, and a crossover pivot while walking in normal individuals. Twelve volunteers, six men and six women, mean age 28 years, served as subjects. Data were collected on the dominant foot with an EMED-SF pressure sensor platform as each subject walked barefoot and did each of the five activities. Maximum plantar pressure (MPP) and pressure-time integral (PTI) was found in the metatarsal and heel regions. The results of repeated-measures analysis of variance tests showed that the five experimental conditions were statistically different for both MPP and PTI in the metatarsal and heel regions. Post hoc analysis indicated that MPP and PTI were decreased during the going down stairs condition in the heel and increased during the crossover pivot while walking and pivot while walking conditions for the metatarsal region.

  9. High-energy neutrinos from active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Done, C.; Salamon, M. H.; Sommers, P.

    1991-01-01

    The spectrum and high-energy neutrino background flux from photomeson production in active galactic nuclei (AGN) is calculated using the recent UV and X-ray observations to define the photon fields and an accretion-disk shock-acceleration model for producing high-energy particles. Collectively, AGN produce the dominant isotropic neutrino background between 10,000 and 10 to the 10th GeV, detectable with current instruments. AGN neutrinos should produce a sphere of stellar disruption which may explain the 'broad-line region' seen in AGN.

  10. The Effect of Gender and Level of Vision on the Physical Activity Level of Children and Adolescents with Visual Impairment

    ERIC Educational Resources Information Center

    Aslan, Ummuhan Bas; Calik, Bilge Basakci; Kitis, Ali

    2012-01-01

    This study was planned in order to determine physical activity levels of visually impaired children and adolescents and to investigate the effect of gender and level of vision on physical activity level in visually impaired children and adolescents. A total of 30 visually impaired children and adolescents (16 low vision and 14 blind) aged between…

  11. Active beam shaping in multi-levels amplification system

    NASA Astrophysics Data System (ADS)

    Zhao, Tianzhuo; Fan, Zhongwei; Qiu, Jisi; Tang, Xiongxin; Lin, Weiran; Zhang, Hongbo

    2016-09-01

    Using Liquid Crystal Spatial Light Modulator (LC-SLM) as a beam shaping device to improve beam quality in high-gain amplification system is reported. 1.6 nJ injected small-size signal Gaussian beam can be amplified to 5 J by 4 stages amplification, and finally output beam is a 50mm×50mm square spot with flat-top intensity distribution. In the amplification system we designed, LC-SLM is placed after the second level of amplifier, where the signal laser energy is about 20mJ, and beam size is 10mm×10mm. The structure of Fourier image transfer is also implemented in this amplifications system to be capable of maintaining high-quality image transmission in the amplification process. The LC-SLM as an object, is imaged by beam expand lenses and spatial filters lenses in the amplifications system to get good quality of imaging. By catching output spot and making a feed-back, transmission efficiency of each pixel on LC-SLM is modulated, high energy density area can be decreased to realize flat-top intensity distribution. A spot modulation function is defined as, using the maximum grey value on spot area divided by the average grey value of the image after background correction. By this, amplified laser obtains the spot modulation of 1.24 on central 90% area of the spot. Furthermore, un-uniform distribution on the full spot, soften effects of spot edge, and output beam shape can also be optimized by the LC-SLM shaping scheme in the amplification system.

  12. A fluorescence resonance energy transfer activation sensor for Arf6.

    PubMed

    Hall, Brian; McLean, Mark A; Davis, Kathryn; Casanova, James E; Sligar, Steven G; Schwartz, Martin A

    2008-03-15

    The involvement of the small GTPase Arf6 in Rac activation, cell migration, and cancer invasiveness suggests that it is activated in a spatially and temporally regulated manner. Small GTPase activation has been imaged in cells using probes in which the GTPase and a fragment of a downstream effector protein are fused to fluorescent reporter proteins that constitute a fluorescence resonance energy transfer (FRET) donor/acceptor pair. Unlike other Ras family GTPases, the N terminus of Arf6 is critical for membrane targeting and, thus, cannot be modified by fusion to a fluorescent protein. We found that the previously described C-terminal green fluorescent protein (GFP) derivative also shows diminished membrane targeting. Therefore, we inserted a fluorescent protein into an inert loop within the Arf6 sequence. This fusion showed normal membrane targeting, nucleotide-dependent interaction with the downstream effector GGA3, and normal regulation by a GTPase-activating protein (GAP) and a guanine nucleotide exchange factor (GEF). Using the recently developed CyPET/YPET fluorescent proteins as a FRET pair, we found that Arf6-CyPET underwent efficient energy transfer when bound to YPET-GGA3 effector domain in intact cells. The addition of platelet-derived growth factor (PDGF) to fibroblasts triggered a rapid and transient increase in FRET, indicative of Arf6 activation. These reagents should be useful for investigations of Arf6 activation and function.

  13. C sub 60 bonding and energy-level alignment on metal and semiconductor surfaces

    SciTech Connect

    Ohno, T.R.; Chen, Y.; Harvey, S.E.; Kroll, G.H.; Weaver, J.H. ); Haufler, R.E.; Smalley, R.E. )

    1991-12-15

    Electronic-structure studies of C{sub 60} condensed on metal surfaces show that the energy levels derived from the fullerene align with the substrate Fermi level, not the vacuum level. For thick layers grown on metals at 300 K, the binding energy of the C 1{ital s} main line was 284.7 eV and the center of the band derived from the highest occupied molecular orbital was 2.25 eV below the Fermi level. For monolayer amounts of C{sub 60} adsorbed on Au and Cr, however, the C 1{ital s} line was broadened asymmetrically and shifted to lower binding energy, the shakeup features were less distinct, and a band derived from the lowest unoccupied molecular orbital (LUMO) was shifted toward the Fermi level. These monolayer effects demonstrate partial occupancy of a LUMO-derived state, dipole formation, and changes in screening that are associated with LUMO occupancy. Results for C{sub 60} monolayers on {ital n}-type GaAs(110) show transfer of {le}0.02 electron per fullerene, as gauged by substrate band bending. For C{sub 60} on {ital p}-type GaAs, however, the bands remained flat because electron redistribution was not possible, and the C{sub 60}-derived energy levels were aligned to the substrate vacuum level.

  14. The rapid bi-level exploration on the evolution of regional solar energy development

    NASA Astrophysics Data System (ADS)

    Guan, Qing; An, Haizhong; Li, Huajiao; Hao, Xiaoqing

    2017-01-01

    As one of the renewable energy, solar energy is experiencing increased but exploratory development worldwide. The positive or negative influences of regional characteristics, like economy, production capacity and allowance policies, make them have uneven solar energy development. In this paper, we aim at quickly exploring the features of provincial solar energy development, and their concerns about solar energy. We take China as a typical case, and combine text mining and two-actor networks. We find that the classification of levels based on certain nodes and the amount of degree avoids missing meaningful information that may be ignored by global level results. Moreover, eastern provinces are hot focus for the media, western countries are key to bridge the networks and special administrative region has local development features; third, most focus points are more about the application than the improvement of material. The exploration of news provides practical information to adjust researches and development strategies of solar energy. Moreover, the bi-level exploration, which can also be expanded to multi-level, is helpful for governments or researchers to grasp more targeted and precise knowledge.

  15. Energy-optimal path planning by stochastic dynamically orthogonal level-set optimization

    NASA Astrophysics Data System (ADS)

    Subramani, Deepak N.; Lermusiaux, Pierre F. J.

    2016-04-01

    A stochastic optimization methodology is formulated for computing energy-optimal paths from among time-optimal paths of autonomous vehicles navigating in a dynamic flow field. Based on partial differential equations, the methodology rigorously leverages the level-set equation that governs time-optimal reachability fronts for a given relative vehicle-speed function. To set up the energy optimization, the relative vehicle-speed and headings are considered to be stochastic and new stochastic Dynamically Orthogonal (DO) level-set equations are derived. Their solution provides the distribution of time-optimal reachability fronts and corresponding distribution of time-optimal paths. An optimization is then performed on the vehicle's energy-time joint distribution to select the energy-optimal paths for each arrival time, among all stochastic time-optimal paths for that arrival time. Numerical schemes to solve the reduced stochastic DO level-set equations are obtained, and accuracy and efficiency considerations are discussed. These reduced equations are first shown to be efficient at solving the governing stochastic level-sets, in part by comparisons with direct Monte Carlo simulations. To validate the methodology and illustrate its accuracy, comparisons with semi-analytical energy-optimal path solutions are then completed. In particular, we consider the energy-optimal crossing of a canonical steady front and set up its semi-analytical solution using a energy-time nested nonlinear double-optimization scheme. We then showcase the inner workings and nuances of the energy-optimal path planning, considering different mission scenarios. Finally, we study and discuss results of energy-optimal missions in a wind-driven barotropic quasi-geostrophic double-gyre ocean circulation.

  16. Assessment of Physical Activity and Energy Expenditure: An Overview of Objective Measures

    PubMed Central

    Hills, Andrew P.; Mokhtar, Najat; Byrne, Nuala M.

    2014-01-01

    The ability to assess energy expenditure (EE) and estimate physical activity (PA) in free-living individuals is extremely important in the global context of non-communicable diseases including malnutrition, overnutrition (obesity), and diabetes. It is also important to appreciate that PA and EE are different constructs with PA defined as any bodily movement that results in EE and accordingly, energy is expended as a result of PA. However, total energy expenditure, best assessed using the criterion doubly labeled water (DLW) technique, includes components in addition to physical activity energy expenditure, namely resting energy expenditure and the thermic effect of food. Given the large number of assessment techniques currently used to estimate PA in humans, it is imperative to understand the relative merits of each. The goal of this review is to provide information on the utility and limitations of a range of objective measures of PA and their relationship with EE. The measures discussed include those based on EE or oxygen uptake including DLW, activity energy expenditure, physical activity level, and metabolic equivalent; those based on heart rate monitoring and motion sensors; and because of their widespread use, selected subjective measures. PMID:25988109

  17. Level sequence and splitting identification of closely spaced energy levels by angle-resolved analysis of fluorescence light

    NASA Astrophysics Data System (ADS)

    Wu, Z. W.; Volotka, A. V.; Surzhykov, A.; Dong, C. Z.; Fritzsche, S.

    2016-06-01

    The angular distribution and linear polarization of the fluorescence light following the resonant photoexcitation is investigated within the framework of density matrix and second-order perturbation theory. Emphasis has been placed on "signatures" for determining the level sequence and splitting of intermediate (partially) overlapping resonances, if analyzed as a function of photon energy of incident light. Detailed computations within the multiconfiguration Dirac-Fock method have been performed, especially for the 1 s22 s22 p63 s ,Ji=1 /2 +γ1→(1s22 s 2 p63 s ) 13 p3 /2,J =1 /2 ,3 /2 →1 s22 s22 p63 s ,Jf=1 /2 +γ2 photoexcitation and subsequent fluorescence emission of atomic sodium. A remarkably strong dependence of the angular distribution and linear polarization of the γ2 fluorescence emission is found upon the level sequence and splitting of the intermediate (1s22 s 2 p63 s ) 13 p3 /2,J =1 /2 ,3 /2 overlapping resonances owing to their finite lifetime (linewidth). We therefore suggest that accurate measurements of the angular distribution and linear polarization might help identify the sequence and small splittings of closely spaced energy levels, even if they cannot be spectroscopically resolved.

  18. Energy levels of one-dimensional systems satisfying the minimal length uncertainty relation

    NASA Astrophysics Data System (ADS)

    Bernardo, Reginald Christian S.; Esguerra, Jose Perico H.

    2016-10-01

    The standard approach to calculating the energy levels for quantum systems satisfying the minimal length uncertainty relation is to solve an eigenvalue problem involving a fourth- or higher-order differential equation in quasiposition space. It is shown that the problem can be reformulated so that the energy levels of these systems can be obtained by solving only a second-order quasiposition eigenvalue equation. Through this formulation the energy levels are calculated for the following potentials: particle in a box, harmonic oscillator, Pöschl-Teller well, Gaussian well, and double-Gaussian well. For the particle in a box, the second-order quasiposition eigenvalue equation is a second-order differential equation with constant coefficients. For the harmonic oscillator, Pöschl-Teller well, Gaussian well, and double-Gaussian well, a method that involves using Wronskians has been used to solve the second-order quasiposition eigenvalue equation. It is observed for all of these quantum systems that the introduction of a nonzero minimal length uncertainty induces a positive shift in the energy levels. It is shown that the calculation of energy levels in systems satisfying the minimal length uncertainty relation is not limited to a small number of problems like particle in a box and the harmonic oscillator but can be extended to a wider class of problems involving potentials such as the Pöschl-Teller and Gaussian wells.

  19. Exploring the energy landscape of the charge transport levels in organic semiconductors at the molecular scale.

    PubMed

    Cornil, J; Verlaak, S; Martinelli, N; Mityashin, A; Olivier, Y; Van Regemorter, T; D'Avino, G; Muccioli, L; Zannoni, C; Castet, F; Beljonne, D; Heremans, P

    2013-02-19

    strongly interacting electron-hole pairs can potentially escape from their Coulomb well, a process that is at the heart of photoconversion or molecular doping. Yet they do, with near-quantitative yield in some cases. Limited screening by the low dielectric medium in organic materials leads to subtle static and dynamic electronic polarization effects that strongly impact the energy landscape for charges, which offers a rationale for this apparent inconsistency. In this Account, we use different theoretical approaches to predict the energy landscape of charge carriers at the molecular level and review a few case studies highlighting the role of electrostatic interactions in conjugated organic molecules. We describe the pros and cons of different theoretical approaches that provide access to the energy landscape defining the motion of charge carriers. We illustrate the applications of these approaches through selected examples involving OFETs, OLEDs, and solar cells. The three selected examples collectively show that energetic disorder governs device performances and highlights the relevance of theoretical tools to probe energy landscapes in molecular assemblies.

  20. Idaho Senior Center Activities, Activity Participation Level, and Managers' Perceptions of Activity Success.

    ERIC Educational Resources Information Center

    Girvan, James T.; Harris, Frances

    A survey completed by managers of 77 senior centers in Idaho revealed that meals, blood pressure screening, and games and trips were the most successful activities offered. Alzheimer's support groups, library books for loan, and exercise classes were the least successful. Possible reasons for the success or failure of these activities were…

  1. Physical Activity Level of Urban Pregnant Women in Tianjin, China: A Cross-Sectional Study

    PubMed Central

    Zhang, Yan; Dong, Shengwen; Zuo, Jianhua; Hu, Xiangqin; Zhang, Hua; Zhao, Yue

    2014-01-01

    Objective To determine the physical activity level and factors influencing physical activity among pregnant urban Chinese women. Methods This prospective cross-sectional study enrolled 1056 pregnant women (18–44 years of age) in Tianjin, China. Their socio-demographic characteristics were recorded, and the Pregnancy Physical Activity Questionnaire was used to assess their physical activity during pregnancy. The data were analyzed by multinomial logistic regression with adjustment for potential confounders. Results Median total energy expenditure of pregnant women in each of the three trimesters ranged from 18.50 to 21.90 metabolic equivalents of task (METs) h/day. They expended 1.76–1.85 MET h/day on moderate and vigorous activities and 0.11 MET h/day on exercise. Only 117 of the women (11.1%) met the international guideline for physical activity in pregnancy (≥150 min moderate intensity exercise per week). The most frequent reason given for not being more physically active was the fear of miscarriage. Higher education level (OR: 4.11, 95% CI: 1.59–10.62), habitual exercise before pregnancy (OR: 2.14, 95% CI: 1.39–3.28), and husbands who exercised regularly (OR: 2.21, 95% CI: 1.33–3.67) significantly increased the odds of meeting the guideline (p<0.001). A low pre gravid body mass index (OR: 0.42, 95% CI: 0.20–0.87) significantly decreased the odds (p<0.001). Conclusions Few urban Chinese pregnant women met the recommended physical activity guideline. They also expended little energy exercising. Future interventions should be based on the clinic environment and targeting family members as well as the subjects. All pregnant women should be targeted, not just those in high-risk groups. PMID:25286237

  2. Directed transport of active particles over asymmetric energy barriers.

    PubMed

    Koumakis, N; Maggi, C; Di Leonardo, R

    2014-08-21

    We theoretically and numerically investigate the transport of active colloids to target regions, delimited by asymmetric energy barriers. We show that it is possible to introduce a generalized effective temperature that is related to the local variance of particle velocities. The stationary probability distributions can be derived from a simple diffusion equation in the presence of an inhomogeneous effective temperature resulting from the action of external force fields. In particular, transition rates over asymmetric energy barriers can be unbalanced by having different effective temperatures over the two slopes of the barrier. By varying the type of active noise, we find that equal values of diffusivity and persistence time may produce strongly varied effective temperatures and thus stationary distributions.

  3. A study on the energy bands of multi-quantum wells in the quantum cascade laser structure by deep-level transient spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, Jin Soak; Kim, Eun Kyu; Han, Il Ki; Song, Jin Dong; Lee, Jung Il; Lee, Sejoon; Shon, Yoon; Kim, D. Y.

    2006-08-01

    We have investigated the defect states and confined energy levels of three quantum wells (QWs) in the quantum cascade laser (QCL) structure by capacitance-voltage and deep-level transient spectroscopy methods. Defect states with activation energies in the range of 0.49-0.88 eV were obtained in the GaAs capping layer, and their origins were considered as EL3 and EL2 families, which are well-known deep levels of GaAs materials. The densities of these defects in the GaAs capping layer of the QCL structure were about 3-12% of the donor concentration. The confined energy levels of QWs showed activation energies of about 130 meV and 230 meV from the top of the AlGaAs barrier, and their carrier confinement ability was measured to be about 0.5% of the donor concentration.

  4. Flexibility in metabolic rate and activity level determines individual variation in overwinter performance.

    PubMed

    Auer, Sonya K; Salin, Karine; Anderson, Graeme J; Metcalfe, Neil B

    2016-11-01

    Energy stores are essential for the overwinter survival of many temperate and polar animals, but individuals within a species often differ in how quickly they deplete their reserves. These disparities in overwinter performance may be explained by differences in their physiological and behavioral flexibility in response to food scarcity. However, little is known about whether individuals exhibit correlated or independent changes in these traits, and how these phenotypic changes collectively affect their winter energy use. We examined individual flexibility in both standard metabolic rate and activity level in response to food scarcity and their combined consequences for depletion of lipid stores among overwintering brown trout (Salmo trutta). Metabolism and activity tended to decrease, yet individuals exhibited striking differences in their physiological and behavioral flexibility. The rate of lipid depletion was negatively related to decreases in both metabolic and activity rates, with the smallest lipid loss over the simulated winter period occurring in individuals that had the greatest reductions in metabolism and/or activity. However, changes in metabolism and activity were negatively correlated; those individuals that decreased their SMR to a greater extent tended to increase their activity rates, and vice versa, suggesting among-individual variation in strategies for coping with food scarcity.

  5. Raman active high energy excitations in URu2Si2

    NASA Astrophysics Data System (ADS)

    Buhot, Jonathan; Gallais, Yann; Cazayous, Maximilien; Sacuto, Alain; Piekarz, Przemysław; Lapertot, Gérard; Aoki, Dai; Méasson, Marie-Aude

    2017-02-01

    We have performed Raman scattering measurements on URu2Si2 single crystals on a large energy range up to ∼1300 cm-1 and in all the Raman active symmetries as a function of temperature down to 15 K. A large excitation, active only in the Eg symmetry, is reported. It has been assigned to a crystal electric field excitation on the Uranium site. We discuss how this constrains the crystal electric field scheme of the Uranium ions. Furthermore, three excitations in the A1g symmetry are observed. They have been associated to double Raman phonon processes consistently with ab initio calculations of the phonons dispersion.

  6. Active Noise Control Experiments using Sound Energy Flu

    NASA Astrophysics Data System (ADS)

    Krause, Uli

    2015-03-01

    This paper reports on the latest results concerning the active noise control approach using net flow of acoustic energy. The test set-up consists of two loudspeakers simulating the engine noise and two smaller loudspeakers which belong to the active noise system. The system is completed by two acceleration sensors and one microphone per loudspeaker. The microphones are located in the near sound field of the loudspeakers. The control algorithm including the update equation of the feed-forward controller is introduced. Numerical simulations are performed with a comparison to a state of the art method minimising the radiated sound power. The proposed approach is experimentally validated.

  7. High-energy radiation from active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Sikora, Marek

    1994-01-01

    Two recent findings concerning high-energy radiation properties of active galactic nuclei -- discovery of breaks in hard X-ray spectra of Seyfert galaxies, and discovery of huge fluxes of hard gamma rays from blazars -- seem to press us to change our standard views about radiation production in these objects. I review briefly the existing radiation models, confront them with the newest observations, and discuss newly emerging theoretical pictures which attempt to account for the discoveries.

  8. Fuel feeds function: Energy balance and bovine peripheral blood mononuclear cell activation.

    PubMed

    Schwarm, A; Viergutz, T; Kuhla, B; Hammon, H M; Schweigel-Röntgen, M

    2013-01-01

    A general phenomenon in peripartum mammals is the breakdown of (acquired) immunity. The incidence of parasite load, disease and inflammation often rise during the specific energetically demanding time of pregnancy and lactation. In this period, blood leukocytes display decreased DNA synthesis in response to mitogens in vitro. Leukocyte activation, the phase of the cell cycle preceding the DNA synthetic phase has hardly been investigated, but the few studies suggest that leukocyte activation may also be impaired by the limited energy/nutrient availability. Leukocyte activation is characterized by manifold processes, thus, we used the cellular oxygen consumption rate (OCR) as a measure of ATP turnover to support all these processes. We hypothesized that the activation of peripheral blood mononuclear cells (PBMC) - in terms of oxygen consumed over basal levels after in vitro stimulation - is altered by energy balance around parturition. We studied peripartum high-yielding dairy cows because they undergo substantial fluctuations in energy intake, energy output and body fat mass. We established a fluorescence-based test strategy allowing for long-term (≥24h) quantification of O(2)-consumption and studied the peripartum period from 5 weeks ante partum to 5 weeks postpartum. In addition, we determined cellular lactate production, DNA/RNA synthesis and cell size and zoo-technical parameters such as animal energy intake and milk yield were assessed, as well as selected plasma parameters, e.g. glucose concentration. The basal OCR of PBMC from pregnant, non-lactating cows (n=6, -5 weeks ante partum) was 1.19±0.15 nmol min(-1) (10(7)cells)(-1) and increased to maximum levels of 2.54±0.49 nmol min(-1) (10(7)cells)(-1) in phytohemagglutinin (PHA)-stimulated PBMC. The basal OCR did not change over the peripartum period. Whereas the activation indices, herein defined as the PHA-induced 24h-increase of OCR above baseline, amounted to 1.1±0.3, 4.2±0.3, 4.1±1.1, 2.1±0.3, and

  9. Spectrum and energy levels of quadruply-ionized molybdenum (Mo V)

    NASA Astrophysics Data System (ADS)

    Reader, Joseph; Tauheed, Ahmad

    2015-07-01

    The spectrum of quadruply-ionized molybdenum Mo V was observed from 200 to 4700 Å with sliding spark discharges on 10.7 m normal- and grazing-incidence spectrographs. The existing analyses of this spectrum (Tauheed et al 1985 Phys. Scr. 31 369; Cabeza et al 1986 Phys. Scr. 34 223) were extended to include the 5s2, 5p2, 5s5d, 5s6s, 4d5f, and 4d5g configurations as well as the missing 3H6 level of 4d4f and about 75 levels of the core-excited configuration 4p54d3. The values of the 4d5d 1S0, 5s5p 1P1, and 4d6p 3P0 levels were revised. There are now about 900 lines classified as transitions between 66 even parity and 191 odd parity energy levels. Of these, about 600 lines and 130 levels are new. From the optimized energy level values, Ritz-type wavelengths were determined for about 380 lines, with uncertainties varying from 0.0003 to 0.002 Å. The observed configurations were theoretically interpreted by means of Hartree-Fock calculations and least-squares fits of the energy parameters to the observed levels. The fitted parameters were used to calculate oscillator strengths for all classified lines. A few unclassified lines and undesignated levels are also given. An improved value for the ionization energy was obtained by combining the observed energy of the 4d5g configuration with an ab initio calculation of its term value. The adopted value is 438 900 ± 150 cm-1 (54.417 ± 0.019 eV).

  10. Levels of physical activity and predictors of mortality in COPD*

    PubMed Central

    Nyssen, Samantha Maria; dos Santos, Júlia Gianjoppe; Barusso, Marina Sallum; de Oliveira, Antônio Delfino; Lorenzo, Valéria Amorim Pires Di; Jamami, Mauricio

    2013-01-01

    OBJECTIVE: To compare the Body mass index, airway Obstruction, Dyspnea, and Exercise capacity (BODE) index scores and its individual components between COPD patients with and without severe physical inactivity, as well as to correlate the number of steps/day with scores of physical activity questionnaires, age, and the BODE index (including its components). METHODS: We included 30 patients, who were evaluated for body composition, pulmonary function (FEV1), perception of dyspnea (modified Medical Research Council scale), and exercise capacity (six-minute walk distance [6MWD]). The patients also completed the International Physical Activity Questionnaire (IPAQ), short version, and the modified Baecke questionnaire (mBQ). The level of physical activity was assessed by the number of steps/day (as determined by pedometer), using the cut-off of 4,580 steps/day to form two groups: no severe physical inactivity (SPI−) and severe physical inactivity (SPI+). We used the Mann-Whitney test or t-test, as well as Pearson's or Spearman's correlation tests, in the statistical analysis. RESULTS: In comparison with the SPI− group, the SPI+ group showed more advanced age, higher mBQ scores (leisure domain), lower 6MWD (in m and % of predicted), and lower IPAQ scores (metabolic equivalent-walk/week domain and total). The IPAQ scores showed weak correlations with steps/day (r = 0.399), age (r = −0.459), and 6MWD-in m (r = 0.446) and in % of predicted (r = 0.422). CONCLUSIONS: In our sample, the cut-off of 4,580 steps/day was not sensitive enough to identify differences between the groups when compared with the predictors of mortality. The IPAQ, short version score correlated with steps/day. PMID:24473759

  11. Modeling of moisture diffusivity, activation energy and energy consumption in fluidized bed drying of rough rice

    NASA Astrophysics Data System (ADS)

    Khanali, Majid; Banisharif, Alireza; Rafiee, Shahin

    2016-11-01

    The present work was an attempt to assess the effective moisture diffusivity, activation energy, and energy consumption of rough rice in a batch fluidized bed dryer. Drying experiments were conducted at drying air temperatures of 50, 60, and 70 °C, superficial fluidization velocities of 2.3, 2.5, and 2.8 m/s, and solids holdup of 1.32 kg. Drying kinetics showed that the whole fluidized bed drying of rough rice occurred in the falling rate period. The effective moisture diffusivity was described by an Arrhenius equation. The evaluated effective moisture diffusivity increased with drying air temperature and superficial fluidization velocity and was found to vary from 4.78 × 10-11 to 1.364 × 10-10 m2/s with R2 higher than 0.9643. The activation energy and the pre-exponential factor of Arrhenius equation were found to be in the range of 36.59-44.31 kJ/mol and 4.71 × 10-5-7.15 × 10-4 m2/s, respectively. Both maximum values of the specific energy consumption of 74.73 MJ/kg and the total energy need of 12.43 MJ were obtained at 60 °C drying air temperature and 2.8 m/s superficial fluidization velocity. Both minimum values of the specific energy consumption of 29.98 MJ/kg and the total energy need of 4.85 MJ were obtained under drying air temperature of 70 °C and superficial fluidization velocity of 2.3 m/s.

  12. Higher-order JWKB expressions for the energy levels and the wavefunction at the origin

    SciTech Connect

    Pasupathy, J.; Singh, V.

    1980-09-01

    An exact quantization condition is derived for the energy levels of a particle in a radial potential assumed finite at the origin. This is used to derive corrections to the semiclassical JWKB quantization condition. The normalization integral of the wavefunction is further related to the energy derivative of wavefunction at origin and use this expression to derive the corrections to the semiclassical JWKB expressions for the wavefunction at origin. An application to upsilon leptonic decay width is also given.

  13. High level predictions on the potential energy hypersurface of the nitric oxide dimer

    SciTech Connect

    Huang, Q.; Magers, D.H.; Leszczynski, J.

    1994-12-31

    The potential energy hypersurface of the NO dimer is investigated at the SCF and MP2 levels of theory using three spit-valence basis sets: 6-31G(d), 6-311G(2d), 6-311G(3df). Seven minimum energy conformers are identified. Their molecular structures, energetics, and harmonic vibrational frequencies are discussed and compared to available experimental data.

  14. Method and system for in vivo measurement of bone tissue using a two level energy source

    NASA Technical Reports Server (NTRS)

    Cameron, J. R.; Judy, P. F. (Inventor)

    1976-01-01

    Methods and apparatus are provided for radiologically determining the bone mineral content of living human bone tissue independently of the concurrent presence of adipose and other soft tissues. A target section of the body of the subject is irradiated with a beam of penetrative radiations of preselected energy to determine the attenuation of such beam with respect to the intensity of each of two radiations of different predetermined energy levels. The resulting measurements are then employed to determine bone mineral content.

  15. Advanced Quantum Mechanical Calculation of Superheavy Ions: Energy Levels, Radiation and Finite Nuclear Size Effects

    SciTech Connect

    Glushkov, Alexander V.; Gurnitskaya, E.P.; Loboda, A.V.

    2005-10-26

    Advanced quantum approach to calculation of spectra for superheavy ions with an account of relativistic, correlation, nuclear, radiative effects is developed and based on the gauge invariant quantum electrodynamics (QED) perturbation theory (PT). The Lamb shift polarization part is calculated in the Ueling approximation, self-energy part is defined within a new non-PT procedure of Ivanov-Ivanova. Calculation results for energy levels, hyperfine structure parameters of some heavy elements ions are presented.

  16. Effect of a metallic gate on the energy levels of a shallow donor

    SciTech Connect

    Slachmuylders, A. F.; Partoens, B.; Peeters, F. M.; Magnus, W.

    2008-02-25

    We have investigated the effect of a metallic gate on the bound states of a shallow donor located near the gate. We calculate the energy spectrum as a function of the distance between the metallic gate and the donor and find an anticrossing behavior in the energy levels for certain distances. We show how a transverse electric field can tune the average position of the electron with respect to the metallic gate and the impurity.

  17. Orbital Engineering in Nickelate Heterostructures Driven by Anisotropic Oxygen Hybridization rather than Orbital Energy Levels

    SciTech Connect

    Fabbris, G.; Meyers, D.; Okamoto, J.; Pelliciari, J.; Disa, A. S.; Huang, Y.; Chen, Z. -Y.; Wu, W. B.; Chen, C. T.; Ismail-Beigi, S.; Ahn, C. H.; Walker, F. J.; Huang, D. J.; Schmitt, T.; Dean, M. P. M.

    2016-09-30

    We used resonant inelastic x-ray scattering to investigate the electronic origin of orbital polarization in nickelate heterostructures taking LaTiO3-LaNiO3-3×(LaAlO3), a system with exceptionally large polarization, as a model system. Furthermore, we find that heterostructuring generates only minor changes in the Ni 3d orbital energy levels, contradicting the often-invoked picture in which changes in orbital energy levels generate orbital polarization. Instead, O K-edge x-ray absorption spectroscopy demonstrates that orbital polarization is caused by an anisotropic reconstruction of the oxygen ligand hole states. This also provides an explanation for the limited success of theoretical predictions based on tuning orbital energy levels and implies that future theories should focus on anisotropic hybridization as the most effective means to drive large changes in electronic structure and realize novel emergent phenomena.

  18. Orbital Engineering in Nickelate Heterostructures Driven by Anisotropic Oxygen Hybridization rather than Orbital Energy Levels

    DOE PAGES

    Fabbris, G.; Meyers, D.; Okamoto, J.; ...

    2016-09-30

    We used resonant inelastic x-ray scattering to investigate the electronic origin of orbital polarization in nickelate heterostructures taking LaTiO3-LaNiO3-3×(LaAlO3), a system with exceptionally large polarization, as a model system. Furthermore, we find that heterostructuring generates only minor changes in the Ni 3d orbital energy levels, contradicting the often-invoked picture in which changes in orbital energy levels generate orbital polarization. Instead, O K-edge x-ray absorption spectroscopy demonstrates that orbital polarization is caused by an anisotropic reconstruction of the oxygen ligand hole states. This also provides an explanation for the limited success of theoretical predictions based on tuning orbital energy levels andmore » implies that future theories should focus on anisotropic hybridization as the most effective means to drive large changes in electronic structure and realize novel emergent phenomena.« less

  19. Computing converged free energy differences between levels of theory via nonequilibrium work methods: Challenges and opportunities.

    PubMed

    Kearns, Fiona L; Hudson, Phillip S; Woodcock, Henry L; Boresch, Stefan

    2017-03-08

    We demonstrate that Jarzynski's equation can be used to reliably compute free energy differences between low and high level representations of systems. The need for such a calculation arises when employing the so-called "indirect" approach to free energy simulations with mixed quantum mechanical/molecular mechanical (QM/MM) Hamiltonians; a popular technique for circumventing extensive simulations involving quantum chemical computations. We have applied this methodology to several small and medium sized organic molecules, both in the gas phase and explicit solvent. Test cases include several systems for which the standard approach; that is, free energy perturbation between low and high level description, fails to converge. Finally, we identify three major areas in which the difference between low and high level representations make the calculation of ΔAlow→high difficult: bond stretching and angle bending, different preferred conformations, and the response of the MM region to the charge distribution of the QM region. © 2016 Wiley Periodicals, Inc.

  20. Correspondence between energy levels and evolution curves of fixed points in nonlinear Landau-Zener model

    NASA Astrophysics Data System (ADS)

    Liu, Xuan-Zuo; Tian, Dong-Ping; Chong, Bo

    2016-06-01

    Liu et al. [Phys. Rev. Lett. 90(17), 170404 (2003)] proved that the characters of transition probabilities in the adiabatic limit should be entirely determined by the topology of energy levels and the stability of fixed points in the classical Hamiltonian system, according to the adiabatic theorem. In the special case of nonlinear Landau-Zener model, we simplify their results to be that the properties of transition probabilities in the adiabatic limit should just be determined by the attributes of fixed points. It is because the topology of energy levels is governed by the behavior and symmetries of fixed points, and intuitively this fact is represented as a correspondence between energy levels and evolution curves of the fixed points which can be quantitatively described as the same complexity numbers.

  1. Probing the Crystal Structure, Composition-Dependent Absolute Energy Levels, and Electrocatalytic Properties of Silver Indium Sulfide Nanostructures.

    PubMed

    Saji, Pintu; Ganguli, Ashok K; Bhat, Mohsin A; Ingole, Pravin P

    2016-04-18

    The absolute electronic energy levels in silver indium sulfide (AIS) nanocrystals (NCs) with varying compositions and crystallographic phases have been determined by using cyclic voltammetry. Different crystallographic phases, that is, metastable cubic, orthorhombic, monoclinic, and a mixture of cubic and orthorhombic AIS NCs, were studied. The band gap values estimated from the cyclic voltammetry measurements match well with the band gap values calculated from the diffuse reflectance spectra measurements. The AIS nanostructures were found to show good electrocatalytic activity towards the hydrogen evolution reaction (HER). Our results clearly establish that the electronic and electrocatalytic properties of AIS NCs are strongly sensitive to the composition and crystal structure of AIS NCs. Monoclinic AIS was found to be the most active HER electrocatalyst, with electrocatalytic activity that is almost comparable to the MoS2 -based nanostructures reported in the literature, whereas cubic AIS was observed to be the least active of the studied crystallographic phases and compositions. In view of the HER activity and electronic band structure parameters observed herein, we hypothesize that the Fermi energy level of AIS NCs is an important factor that decides the electrocatalytic efficiency of these nanocomposites. The work presented herein, in addition to being the first of its kind regarding the composition and phase-dependence of electrochemical aspects of AIS NCs, also presents a simple solvothermal method for the synthesis of different crystallographic phases with various Ag/In molar ratios.

  2. Capacity Payments in Restructured Markets under Low and High Penetration Levels of Renewable Energy

    SciTech Connect

    Jenkin, Thomas; Beiter, Philipp; Margolis, Robert

    2016-02-01

    Growing levels of variable renewable energy resources arguably create new challenges for capacity market designs, because variable renewable energy suppresses wholesale energy prices while providing relatively little capacity. This effect becomes more pronounced the higher the variable renewable energy penetration in a market. The purpose of this report is threefold. First, we provide a brief outline of the purpose and design of various capacity markets using administratively determined capacity demand curves. Second, we discuss some of the main challenges raised in existing literature and a set of interviews that we conducted with market participants, regulators, and observers. Third, we consider some of the challenges to capacity markets that arise with higher variable renewable energy penetration.

  3. Intrinsic deep hole trap levels in Cu2O with self-consistent repulsive Coulomb energy

    NASA Astrophysics Data System (ADS)

    Huang, Bolong

    2016-03-01

    The large error of the DFT+U method on full-filled shell metal oxides is due to the residue of self-energy from the localized d orbitals of cations and p orbitals of the anions. U parameters are selfconsistently found to achieve the analytical self-energy cancellation. The improved band structures based on relaxed lattices of Cu2O are shown based on minimization of self-energy error. The experimentally reported intrinsic p-type trap levels are contributed by both Cu-vacancy and the O-interstitial defects in Cu2O. The latter defect has the lowest formation energy but contributes a deep hole trap level while the Cuvacancy has higher energy cost but acting as a shallow acceptor. Both present single-particle levels spread over nearby the valence band edge, consistent to the trend of defects transition levels. By this calculation approach, we also elucidated the entanglement of strong p-d orbital coupling to unravel the screened Coulomb potential of fully filled shells.

  4. Energy levels, radiative rates, and lifetimes for transitions in W LVIII

    SciTech Connect

    Aggarwal, Kanti M. Keenan, Francis P.

    2014-11-15

    Energy levels and radiative rates are reported for transitions in Cl-like W LVIII. Configuration interaction (CI) has been included among 44 configurations (generating 4978 levels) over a wide energy range up to 363 Ryd, and the general-purpose relativistic atomic structure package (GRASP) adopted for the calculations. Since no other results of comparable complexity are available, calculations have also been performed with the flexible atomic code (FAC), which help in assessing the accuracy of our results. Energies are listed for the lowest 400 levels (with energies up to ∼98 Ryd), which mainly belong to the 3s{sup 2}3p{sup 5}, 3s3p{sup 6}, 3s{sup 2}3p{sup 4}3d, 3s{sup 2}3p{sup 3}3d{sup 2}, 3s3p{sup 4}3d{sup 2}, 3s{sup 2}3p{sup 2}3d{sup 3}, and 3p{sup 6}3d configurations, and radiative rates are provided for four types of transitions, i.e. E1, E2, M1, and M2. Our energy levels are assessed to be accurate to better than 0.5%, whereas radiative rates (and lifetimes) should be accurate to better than 20% for a majority of the strong transitions.

  5. New Perspectives on Spontaneous Brain Activity: Dynamic Networks and Energy Matter

    PubMed Central

    Tozzi, Arturo; Zare, Marzieh; Benasich, April A.

    2016-01-01

    Spontaneous brain activity has received increasing attention as demonstrated by the exponential rise in the number of published article on this topic over the last 30 years. Such “intrinsic” brain activity, generated in the absence of an explicit task, is frequently associated with resting-state or default-mode networks (DMN)s. The focus on characterizing spontaneous brain activity promises to shed new light on questions concerning the structural and functional architecture of the brain and how they are related to “mind”. However, many critical questions have yet to be addressed. In this review, we focus on a scarcely explored area, specifically the energetic requirements and constraints of spontaneous activity, taking into account both thermodynamical and informational perspectives. We argue that the “classical” definitions of spontaneous activity do not take into account an important feature, that is, the critical thermodynamic energetic differences between spontaneous and evoked brain activity. Spontaneous brain activity is associated with slower oscillations compared with evoked, task-related activity, hence it exhibits lower levels of enthalpy and “free-energy” (i.e., the energy that can be converted to do work), thus supporting noteworthy thermodynamic energetic differences between spontaneous and evoked brain activity. Increased spike frequency during evoked activity has a significant metabolic cost, consequently, brain functions traditionally associated with spontaneous activity, such as mind wandering, require less energy that other nervous activities. We also review recent empirical observations in neuroscience, in order to capture how spontaneous brain dynamics and mental function can be embedded in a non-linear dynamical framework, which considers nervous activity in terms of phase spaces, particle trajectories, random walks, attractors and/or paths at the edge of the chaos. This takes us from the thermodynamic free-energy, to the realm

  6. A single-phase multi-level D-STATCOM inverter using modular multi-level converter (MMC) topology for renewable energy sources

    NASA Astrophysics Data System (ADS)

    Sotoodeh, Pedram

    This dissertation presents the design of a novel multi-level inverter with FACTS capability for small to mid-size (10-20kW) permanent-magnet wind installations using modular multi-level converter (MMC) topology. The aim of the work is to design a new type of inverter with D-STATCOM option to provide utilities with more control on active and reactive power transfer of distribution lines. The inverter is placed between the renewable energy source, specifically a wind turbine, and the distribution grid in order to fix the power factor of the grid at a target value, regardless of wind speed, by regulating active and reactive power required by the grid. The inverter is capable of controlling active and reactive power by controlling the phase angle and modulation index, respectively. The unique contribution of the proposed work is to combine the two concepts of inverter and D-STATCOM using a novel voltage source converter (VSC) multi-level topology in a single unit without additional cost. Simulations of the proposed inverter, with 5 and 11 levels, have been conducted in MATLAB/Simulink for two systems including 20 kW/kVAR and 250 W/VAR. To validate the simulation results, a scaled version (250 kW/kVAR) of the proposed inverter with 5 and 11 levels has been built and tested in the laboratory. Experimental results show that the reduced-scale 5- and 11-level inverter is able to fix PF of the grid as well as being compatible with IEEE standards. Furthermore, total cost of the prototype models, which is one of the major objectives of this research, is comparable with market prices.

  7. The levelized cost of energy for distributed PV : a parametric study.

    SciTech Connect

    Goodrich, Alan C.; Cameron, Christopher P.

    2010-06-01

    The maturation of distributed solar PV as an energy source requires that the technology no longer compete on module efficiency and manufacturing cost ($/Wp) alone. Solar PV must yield sufficient energy (kWh) at a competitive cost (c/kWh) to justify its system investment and ongoing maintenance costs. These metrics vary as a function of system design and interactions between parameters, such as efficiency and area-related installation costs. The calculation of levelized cost of energy includes energy production and costs throughout the life of the system. The life of the system and its components, the rate at which performance degrades, and operation and maintenance requirements all affect the cost of energy. Cost of energy is also affected by project financing and incentives. In this paper, the impact of changes in parameters such as efficiency and in assumptions about operating and maintenance costs, degradation rate and system life, system design, and financing will be examined in the context of levelized cost of energy.

  8. The efficacy of low-level 940 nm laser therapy with different energy intensities on bone healing.

    PubMed

    Atasoy, Kerem Turgut; Korkmaz, Yavuz Tolga; Odaci, Ersan; Hanci, Hatice

    2017-01-05

    The aim of this study was to evaluate the efficacy of low-level 940 nm laser therapy with energy intensities of 5, 10 and 20 J/cm2 on bone healing in an animal model. A total of 48 female adult Wistar rats underwent surgery to create bone defects in the right tibias. Low-level laser therapy (LLLT) was applied immediately after surgery and on post-operative days 2, 4, 6, 8, 10 and 12 in three study groups with energy intensities of 5 J/cm2, 10 J/cm2 and 20 J/cm2 using a 940 nm Gallium-Aluminium-Arsenide (Ga-Al-As) laser, while one control group underwent only the tibia defect surgery. All animals were sacrificed 4 or 8 weeks post-surgery. Fibroblasts, osteoblasts, osteocytes, osteoclasts and newly formed vessels were evaluated by a histological examination. No significant change was observed in the number of osteocytes, osteoblasts, osteoclasts and newly formed vessels at either time period across all laser groups. Although LLLT with the 10 J/cm2 energy density increased fibroblast activity at the 4th week in comparison with the 5 and 20 J/cm2 groups, no significant change was observed between the laser groups and the control group. These results indicate that low-level 940 nm laser with different energy intensities may not have marked effects on the bone healing process in both phases of bone formation.

  9. Diurnal Patterns of Physical Activity in Relation to Activity Induced Energy Expenditure in 52 to 83 Years-Old Adults

    PubMed Central

    Bonomi, Alberto G.; Westerterp, Klaas R.

    2016-01-01

    Background Ageing is associated with a declining physical activity level (PAL) and changes in the diurnal activity pattern. Changes in the activity pattern might help explaining the age-associated reduction of physical activity. Objective The aims were to investigate diurnal activity patterns within groups of older adults classified by PAL, to investigate diurnal activity patterns within age-groups and to investigate the association between the drop in activity and aerobic fitness. Methods Thirty-one healthy subjects aged between 52 and 83y were recruited for the study. Subjects were divided in sedentary (PAL<1.75), moderately active (1.75active (1.90energy expenditure measurements obtained with the doubly labelled water technique. Diurnal activity patterns were based on activity counts from an accelerometer during wake time and then divided in four quarters of equal time length. Additionally, aerobic fitness was measured as maximal oxygen uptake. Results Subjects had a PAL between 1.43 and 2.34 and an aerobic fitness between 18 and 49 ml/kg/min. Overall, activity patterns showed a peak in the first quarter of wake time (around 10AM) followed by a gradual decline of, on average, 5% per hour. Active subjects reached their peak in the first quarter and remained active until after the third quarter (11% drop each quarter on average). Moderately active and sedentary subjects reached their peak during the second quarter with a decrease during the third quarter (respectively 29% and 17% drop each quarter on average). The drop in physical activity between the first and the second half of the wake time was negatively associated with aerobic fitness (r = -0.39, p<0.05). Conclusion Active older adults maintained a larger amount of body movement for longer during their wake time. Diurnal physical activity declined more in adults ≥66 years old with lower aerobic fitness. PMID:27936145

  10. Energy levels and zero field splitting parameter for Fe2+ doped in ZnS

    NASA Astrophysics Data System (ADS)

    Ivaşcu, Simona

    2013-11-01

    The aim of present paper is to report the results on the modeling of the crystal field parameters of Fe2+ doped in host matrix ZnS, simulate the energy levels scheme and calculate the zero field splitting parameter D of such system. The crystal field parameters were modeled in the frame of the superposition model of crystal field and the simulation of the energy levels scheme and calculation of the zero field splitting parameters done by diagonalization the Hamiltonian of Fe2+:ZnS system. The obtained results were disscused and compared with experimental data. Satisfactory agreement have been obtained.

  11. Tuning the HOMO and LUMO energy levels of organic chromophores for dye sensitized solar cells.

    PubMed

    Hagberg, Daniel P; Marinado, Tannia; Karlsson, Karl Martin; Nonomura, Kazuteru; Qin, Peng; Boschloo, Gerrit; Brinck, Tore; Hagfeldt, Anders; Sun, Licheng

    2007-12-07

    A series of organic chromophores have been synthesized in order to approach optimal energy level composition in the TiO2-dye-iodide/triiodide system in the dye-sensitized solar cells. HOMO and LUMO energy level tuning is achieved by varying the conjugation between the triphenylamine donor and the cyanoacetic acid acceptor. This is supported by spectral and electrochemical experiments and TDDFT calculations. These results show that energetic tuning of the chromophores was successful and fulfilled the thermodynamic criteria for dye-sensitized solar cells, electrical losses depending on the size and orientation of the chromophores were observed.

  12. New blue emissive conjugated small molecules with low lying HOMO energy levels for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Trupthi Devaiah, C.; Hemavathi, B.; Ahipa, T. N.

    2017-03-01

    Versatile conjugated small molecules bearing cyanopyridone core (CP1-5), composed of various donor/acceptor moieties at position - 4 and - 6 have been designed, developed and characterized. Their solvatochromic studies were conducted and analyzed using Lippert-Mataga, Kamlet-Taft and Catalan solvent scales and interesting results were obtained. The polarizability/dipolarity of the solvent greatly influenced the spectra. The electrochemical studies were carried out using cyclic voltammetry to calculate the HOMO-LUMO energy levels. The study revealed that the synthesized conjugated small molecules possess low lying HOMO energy levels which can be exploited for application in various fields of optoelectronics.

  13. Improving assessment of daily energy expenditure by identifying types of physical activity with a single accelerometer.

    PubMed

    Bonomi, A G; Plasqui, G; Goris, A H C; Westerterp, K R

    2009-09-01

    Accelerometers are often used to quantify the acceleration of the body in arbitrary units (counts) to measure physical activity (PA) and to estimate energy expenditure. The present study investigated whether the identification of types of PA with one accelerometer could improve the estimation of energy expenditure compared with activity counts. Total energy expenditure (TEE) of 15 subjects was measured with the use of double-labeled water. The physical activity level (PAL) was derived by dividing TEE by sleeping metabolic rate. Simultaneously, PA was measured with one accelerometer. Accelerometer output was processed to calculate activity counts per day (AC(D)) and to determine the daily duration of six types of common activities identified with a classification tree model. A daily metabolic value (MET(D)) was calculated as mean of the MET compendium value of each activity type weighed by the daily duration. TEE was predicted by AC(D) and body weight and by AC(D) and fat-free mass, with a standard error of estimate (SEE) of 1.47 MJ/day, and 1.2 MJ/day, respectively. The replacement in these models of AC(D) with MET(D) increased the explained variation in TEE by 9%, decreasing SEE by 0.14 MJ/day and 0.18 MJ/day, respectively. The correlation between PAL and MET(D) (R(2) = 51%) was higher than that between PAL and AC(D) (R(2) = 46%). We conclude that identification of activity types combined with MET intensity values improves the assessment of energy expenditure compared with activity counts. Future studies could develop models to objectively assess activity type and intensity to further increase accuracy of the energy expenditure estimation.

  14. Energy level shifts at the silica/Ru(0001) heterojunction driven by surface and interface dipoles

    DOE PAGES

    Wang, Mengen; Zhong, Jian -Qiang; Kestell, John; ...

    2016-09-12

    Charge redistribution at heterogeneous interfaces is a fundamental aspect of surface chemistry. Manipulating the amount of charges and the magnitude of dipole moments at the interface in a controlled way has attracted tremendous attention for its potential to modify the activity of heterogeneous catalysts in catalyst design. Two-dimensional ultrathin silica films with well-defined atomic structures have been recently synthesized and proposed as model systems for heterogeneous catalysts studies. R. Wlodarczyk et al. (Phys. Rev. B, 85, 085403 (2012)) have demonstrated that the electronic structure of silica/Ru(0001) can be reversibly tuned by changing the amount of interfacial chemisorbed oxygen. Here wemore » carried out systematic investigations to understand the underlying mechanism through which the electronic structure at the silica/Ru(0001) interface can be tuned. As corroborated by both in situ X-ray photoelectron spectroscopy and density functional theory calculations, the observed interface energy level alignments strongly depend on the surface and interfacial charge transfer induced dipoles at the silica/Ru(0001) heterojunction. These observations may help to understand variations in catalytic performance of the model system from the viewpoint of the electronic properties at the confined space between the silica bilayer and the Ru(0001) surface. As a result, the same behavior is observed for the aluminosilicate bilayer, which has been previously proposed as a model system for zeolites.« less

  15. Energy level shifts at the silica/Ru(0001) heterojunction driven by surface and interface dipoles

    SciTech Connect

    Wang, Mengen; Zhong, Jian -Qiang; Kestell, John; Waluyo, Iradwikanari; Stacchiola, Dario J.; Boscoboinik, J. Anibal; Lu, Deyu

    2016-09-12

    Charge redistribution at heterogeneous interfaces is a fundamental aspect of surface chemistry. Manipulating the amount of charges and the magnitude of dipole moments at the interface in a controlled way has attracted tremendous attention for its potential to modify the activity of heterogeneous catalysts in catalyst design. Two-dimensional ultrathin silica films with well-defined atomic structures have been recently synthesized and proposed as model systems for heterogeneous catalysts studies. R. Wlodarczyk et al. (Phys. Rev. B, 85, 085403 (2012)) have demonstrated that the electronic structure of silica/Ru(0001) can be reversibly tuned by changing the amount of interfacial chemisorbed oxygen. Here we carried out systematic investigations to understand the underlying mechanism through which the electronic structure at the silica/Ru(0001) interface can be tuned. As corroborated by both in situ X-ray photoelectron spectroscopy and density functional theory calculations, the observed interface energy level alignments strongly depend on the surface and interfacial charge transfer induced dipoles at the silica/Ru(0001) heterojunction. These observations may help to understand variations in catalytic performance of the model system from the viewpoint of the electronic properties at the confined space between the silica bilayer and the Ru(0001) surface. As a result, the same behavior is observed for the aluminosilicate bilayer, which has been previously proposed as a model system for zeolites.

  16. Associations between Socio-Motivational Factors, Physical Education Activity Levels and Physical Activity Behavior among Youth

    ERIC Educational Resources Information Center

    Ning, Weihong; Gao, Zan; Lodewyk, Ken

    2012-01-01

    This study examined the relationships between established socio-motivational factors and children's physical activity levels daily and during physical education classes. A total of 307 middle school students (149 boys, 158 girls) from a suburban public school in the Southern United States participated in this study. Participants completed…

  17. Effects of a Classroom-Based Physical Activity Program on Children's Physical Activity Levels

    ERIC Educational Resources Information Center

    Goh, Tan Leng; Hannon, James; Webster, Collin Andrew; Podlog, Leslie William; Brusseau, Timothy; Newton, Maria

    2014-01-01

    High levels of physical inactivity are evident among many American children. To address this problem, providing physical activity (PA) during the school day within the CSPAP framework, is one strategy to increase children's PA. Thus, the purpose of this study was to examine the effects of a classroom-based PA program on children's PA. Two hundred…

  18. Metabolic Activity and Energy Charge of Excised Maize Root Tips under Anoxia

    PubMed Central

    Saglio, Pierre H.; Raymond, Philippe; Pradet, Alain

    1980-01-01

    Energy charge and fermentative metabolism under anoxia were monitored in excised maize root tips after various times of aging in air and were related to their soluble sugar content. The energy charge value, which was 0.9 in air irrespective of the time of aging, dropped to a lower value within minutes of transfer to a nitrogen atmosphere. This value was dependent upon sugar content of the tissues which was itself a function of aging. The energy charge value after transfer to nitrogen was 0.6 in freshly excised tissue but only 0.2 in tissue aged for 4 hours. When aged tissues supplied with 0.2 molar glucose were transferred to nitrogen, the energy charge was 0.6, irrespective of the time of aging. When 0.2 molar glucose was added under nitrogen, energy charge rose to 0.6. This rise was faster in root tips aged for 8 hours than those aged for 24 hours. The rate of ethanol plus lactate production (representing 60 and 10%, respectively, of the total sugar consumption in anoxia) was closely correlated to the level of energy charge. It is concluded that, in anoxia, there is a quantitative relationship between the energy charge value and the level of metabolic activity via fermentative pathways. PMID:16661575

  19. An efficient method for energy levels calculation using full symmetry and exact kinetic energy operator: tetrahedral molecules.

    PubMed

    Nikitin, A V; Rey, M; Tyuterev, Vl G

    2015-03-07

    A simultaneous use of the full molecular symmetry and of an exact kinetic energy operator (KEO) is of key importance for accurate predictions of vibrational levels at a high energy range from a potential energy surface (PES). An efficient method that permits a fast convergence of variational calculations would allow iterative optimization of the PES parameters using experimental data. In this work, we propose such a method applied to tetrahedral AB4 molecules for which a use of high symmetry is crucial for vibrational calculations. A symmetry-adapted contracted angular basis set for six redundant angles is introduced. Simple formulas using this basis set for explicit calculation of the angular matrix elements of KEO and PES are reported. The symmetric form (six redundant angles) of vibrational KEO without the sin(q)(-2) type singularity is derived. The efficient recursive algorithm based on the tensorial formalism is used for the calculation of vibrational matrix elements. A good basis set convergence for the calculations of vibrational levels of the CH4 molecule is demonstrated.

  20. An efficient method for energy levels calculation using full symmetry and exact kinetic energy operator: Tetrahedral molecules

    SciTech Connect

    Nikitin, A. V.; Rey, M.; Tyuterev, Vl. G.

    2015-03-07

    A simultaneous use of the full molecular symmetry and of an exact kinetic energy operator (KEO) is of key importance for accurate predictions of vibrational levels at a high energy range from a potential energy surface (PES). An efficient method that permits a fast convergence of variational calculations would allow iterative optimization of the PES parameters using experimental data. In this work, we propose such a method applied to tetrahedral AB{sub 4} molecules for which a use of high symmetry is crucial for vibrational calculations. A symmetry-adapted contracted angular basis set for six redundant angles is introduced. Simple formulas using this basis set for explicit calculation of the angular matrix elements of KEO and PES are reported. The symmetric form (six redundant angles) of vibrational KEO without the sin(q){sup −2} type singularity is derived. The efficient recursive algorithm based on the tensorial formalism is used for the calculation of vibrational matrix elements. A good basis set convergence for the calculations of vibrational levels of the CH{sub 4} molecule is demonstrated.

  1. 75 FR 47756 - Announcement of Grant Application Deadlines and Funding Levels for the Assistance to High Energy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-09

    ... States Department of Energy. Home energy means any energy source or fuel used by a household for purposes... gas (propane), other petroleum products, wood and other biomass fuels, coal, wind, and solar energy. Fuels used for subsistence activities in remote rural areas are also included. High energy...

  2. Energy levels and radiative transition rates for Ge XXXI, As XXXII, and Se XXXIII

    SciTech Connect

    Aggarwal, Sunny Singh, J.; Jha, A.K.S.; Mohan, Man

    2014-07-15

    Fine-structure energies of the 67 levels belonging to the 1s{sup 2}, 1s 2l, 1s3l, 1s4l, 1s5l, and 1s6l configurations of Ge XXXI, As XXXII, and Se XXXIII have been calculated using the General-Purpose Relativistic Atomic Structure Package. In addition, radiative rates, oscillator strengths, transition wavelengths, and line strengths have been calculated for all electric dipole, magnetic dipole, electric quadrupole, and magnetic quadrupole transitions among these levels. Lifetimes are also presented for all excited levels of these three ions. We have compared our results with the results available in the literature and the accuracy of the data is assessed. We predict new energy levels, oscillator strengths, and transition probabilities where no other theoretical or experimental results are available, which will form the basis for future experimental work.

  3. Influence of lanthanide ion energy levels on luminescence of corresponding metalloporphyrins.

    PubMed

    Zhao, Huimin; Zang, Lixin; Guo, Chengshan

    2017-03-15

    Lanthanide (Ln) porphyrins exhibit diverse luminescence properties that have not been fully explained yet. A series of Ln ions (Ln ions = La(3+), Ce(3+), Pr(3+), Nd(3+), Sm(3+), Eu(3+), Gd(3+), Tb(3+), Dy(3+), Ho(3+), Er(3+), Tm(3+), Yb(3+), and Lu(3+)) were coordinated with hematoporphyrin monomethyl ether (HMME), and their luminescence properties and related differences were studied. Spectral analysis indicated that all Ln-HMMEs exhibit fluorescence emission. Gd- and Lu-HMMEs were the only lanthanide-HMMEs displaying strong molecular π-π room-temperature phosphorescence (RTP) with quantum yield ΦP > 10(-3). Tb(3+) can also induce RTP from HMME but ΦP of Tb-HMME is much smaller (ΦP ∼ 10(-4)). The observed luminescence property differences were analyzed in detail, focusing on the 4f energy levels of Ln ions. These levels mostly lie below the lowest singlet (S1) and triplet (T1) excited states of HMME, resulting in energy transfer from the T1 state in HMME to Ln ions and, therefore, in the absence of RTP from the corresponding metalloporphyrins. Gd(3+) and Lu(3+) are the only lanthanide ions not possessing such 4f energy levels, avoiding T1 quenching in Gd- and Lu-HMMEs. Although Tb(3+) has low-lying 4f energy levels, the corresponding transition from the ground state is partly forbidden, resulting in weak energy transfer from HMME to Tb(3+) that accounts for the low RTP quantum yield of the corresponding complex. Thus, our results indicate that the luminescence property differences of lanthanide porphyrins are due to the disparate energy levels of the Ln ions.

  4. Energy management and control of active distribution systems

    NASA Astrophysics Data System (ADS)

    Shariatzadeh, Farshid

    Advancements in the communication, control, computation and information technologies have driven the transition to the next generation active power distribution systems. Novel control techniques and management strategies are required to achieve the efficient, economic and reliable grid. The focus of this work is energy management and control of active distribution systems (ADS) with integrated renewable energy sources (RESs) and demand response (DR). Here, ADS mean automated distribution system with remotely operated controllers and distributed energy resources (DERs). DER as active part of the next generation future distribution system includes: distributed generations (DGs), RESs, energy storage system (ESS), plug-in hybrid electric vehicles (PHEV) and DR. Integration of DR and RESs into ADS is critical to realize the vision of sustainability. The objective of this dissertation is the development of management architecture to control and operate ADS in the presence of DR and RES. One of the most challenging issues for operating ADS is the inherent uncertainty of DR and RES as well as conflicting objective of DER and electric utilities. ADS can consist of different layers such as system layer and building layer and coordination between these layers is essential. In order to address these challenges, multi-layer energy management and control architecture is proposed with robust algorithms in this work. First layer of proposed multi-layer architecture have been implemented at the system layer. Developed AC optimal power flow (AC-OPF) generates fair price for all DR and non-DR loads which is used as a control signal for second layer. Second layer controls DR load at buildings using a developed look-ahead robust controller. Load aggregator collects information from all buildings and send aggregated load to the system optimizer. Due to the different time scale at these two management layers, time coordination scheme is developed. Robust and deterministic controllers

  5. Simultaneous determination of interfacial energy and growth activation energy from induction time measurements

    NASA Astrophysics Data System (ADS)

    Shiau, Lie-Ding; Wang, Hsu-Pei

    2016-05-01

    A model is developed in this work to calculate the interfacial energy and growth activation energy of a crystallized substance from induction time data without the knowledge of the actual growth rate. Induction time data for αL-glutamic acid measured with a turbidity probe for various supersaturations at temperatures from 293 to 313 K are employed to verify the developed model. In the model a simple empirical growth rate with growth order 2 is assumed because experiments are conducted at low supersaturation. The results indicate for αL-glutamic acid that the growth activation energy is 39 kJ/mol, which suggests that the growth rate of small nuclei in the agitated induction time experiments is integration controlled. The interfacial energy obtained from the current model is in the range of 5.2-7.4 mJ/m2, which is slightly greater than that obtained from the traditional method (ti-1∝J) for which the value is in the range 4.1-5.7 mJ/m2.

  6. Pyrolysis of activated sludge: energy analysis and its technical feasibility.

    PubMed

    Agarwal, Manu; Tardio, James; Venkata Mohan, S

    2015-02-01

    A comprehensive study on the potential of pyrolysis of activated sludge to generate substances that can be used to produce energy was evaluated for its technical and environmental viability. The products of the process viz., pyrolysis gas, pyrolysis oil and char can readily be used by the major energy consumers viz., electricity and transportation. Based on the results obtained it is estimated that a 1 ton capacity process for pyrolysis of activated sludge can serve the electrical needs of a maximum of 239, 95 and 47 Indian houses per day, considering lower middle class, middle class and upper middle class, respectively. In addition the process would also produce the daily methane (CNG) requirement of 128 public transport buses. The process was determined to be technically feasible at low and medium temperatures for both, pyrolysis gas and electrical energy. The gas generated could be utilized as fuel directly while the oil generated would require pretreatment before its potential application. The process is potentially sustainable when commercialized and can self-sustain in continuous mode of operation in biorefinery context.

  7. Extensive and accurate energy levels and transition rates for Al-like Zn XVIII

    NASA Astrophysics Data System (ADS)

    Si, R.; Zhang, C. Y.; Liu, Y. W.; Chen, Z. B.; Guo, X. L.; Li, S.; Yan, J.; Chen, C. Y.; Wang, K.

    2017-03-01

    Energy levels and transition rates for electric-dipole (E1), electric-quadrupole (E2), magnetic-dipole (M1), and magnetic-quadrupole (M2) transitions of the lowest 393 levels arising from the 3l3 (0 ≤ l ⩽ 2), 3s2 4 l (0 ≤ l ⩽ 3), 3 s 3 p 4 l (0 ≤ l ⩽ 3), 3p2 4 l (0 ≤ l ⩽ 2), 3 s 3 d 4 l (0 ≤ l ⩽ 1), and 3s2 5 l (0 ≤ l ⩽ 4) configurations in Al-like Zn are calculated through the multi-configuration Dirac-Hartree-Fock (MCDHF) method and second-order many-body perturbation theory (MBPT). In the MCDHF calculation, valence-valence and core-valence correlations with the 2 p and 2 s electrons are taken into account. The effect of Breit interaction and quantum electrodynamics corrections on excitation level energies and level lifetimes are assessed though the MCDHF and MBPT calculations. The two sets of level energies are in excellent agreement of better than 0.1%, while the level lifetimes mostly agree to within 2%. Comparisons are also made with experimental measurements and other theoretical results to assess the accuracy of our calculations.

  8. Energy level alignment at hybridized organic-metal interfaces from a GW projection approach

    NASA Astrophysics Data System (ADS)

    Chen, Yifeng; Tamblyn, Isaac; Quek, Su Ying

    Energy level alignments at organic-metal interfaces are of profound importance in numerous (opto)electronic applications. Standard density functional theory (DFT) calculations generally give incorrect energy level alignments and missing long-range polarization effects. Previous efforts to address this problem using the many-electron GW method have focused on physisorbed systems where hybridization effects are insignificant. Here, we use state-of-the-art GW methods to predict the level alignment at the amine-Au interface, where molecular levels do hybridize with metallic states. This non-trivial hybridization implies that DFT result is a poor approximation to the quasiparticle states. However, we find that the self-energy operator is approximately diagonal in the molecular basis, allowing us to use a projection approach to predict the level alignments. Our results indicate that the metallic substrate reduces the HOMO-LUMO gap by 3.5 4.0 eV, depending on the molecular coverage/presence of Au adatoms. Our GW results are further compared with those of a simple image charge model that describes the level alignment in physisorbed systems. Syq and YC acknowledge Grant NRF-NRFF2013-07 and the medium-sized centre program from the National Research Foundation, Singapore.

  9. Vibrational Energy Levels via Finite-Basis Calculations Using a Quasi-Analytic Form of the Kinetic Energy.

    PubMed

    Vázquez, Juana; Harding, Michael E; Stanton, John F; Gauss, Jürgen

    2011-05-10

    A variational method for the calculation of low-lying vibrational energy levels of molecules with small amplitude vibrations is presented. The approach is based on the Watson Hamiltonian in rectilinear normal coordinates and characterized by a quasi-analytic integration over the kinetic energy operator (KEO). The KEO beyond the harmonic approximation is represented by a Taylor series in terms of the rectilinear normal coordinates around the equilibrium configuration. This formulation of the KEO enables its extension to arbitrary order until numerical convergence is reached for those states describing small amplitude motions and suitably represented with a rectilinear system of coordinates. A Gauss-Hermite quadrature grid representation of the anharmonic potential is used for all the benchmark examples presented. Results for a set of molecules with linear and nonlinear configurations, i.e., CO2, H2O, and formyl fluoride (HFCO), illustrate the performance of the method and the versatility of our implementation.

  10. Entropy Generation and Human Aging: Lifespan Entropy and Effect of Physical Activity Level

    NASA Astrophysics Data System (ADS)

    Silva, Carlos; Annamalai, Kalyan

    2008-06-01

    The first and second laws of thermodynamics were applied to biochemical reactions typical of human metabolism. An open-system model was used for a human body. Energy conservation, availability and entropy balances were performed to obtain the entropy generated for the main food components. Quantitative results for entropy generation were obtained as a function of age using the databases from the U.S. Food and Nutrition Board (FNB) and Centers for Disease Control and Prevention (CDC), which provide energy requirements and food intake composition as a function of age, weight and stature. Numerical integration was performed through human lifespan for different levels of physical activity. Results were presented and analyzed. Entropy generated over the lifespan of average individuals (natural death) was found to be 11,404 kJ/ºK per kg of body mass with a rate of generation three times higher on infants than on the elderly. The entropy generated predicts a life span of 73.78 and 81.61 years for the average U.S. male and female individuals respectively, which are values that closely match the average lifespan from statistics (74.63 and 80.36 years). From the analysis of the effect of different activity levels, it is shown that entropy generated increases with physical activity, suggesting that exercise should be kept to a “healthy minimum” if entropy generation is to be minimized.

  11. Energy levels of neutral and singly ionized berkelium, /sup 249/Bk I and II

    SciTech Connect

    Worden, E.F.; Conway, J.G.; Blaise, J.

    1987-09-01

    Energy-level analyses of the observed emission spectrum of berkelium have yielded 179 odd and 186 even levels of neutral berkelium Bk I, and 42 odd and 117 even levels of singly ionized berkelium Bk II. The levels are tabulated with the J value, the g value, the configuration and hyperfine constants A and B, and the width given for many of the levels. The ground states of Bk I and Bk II are (Rn)5f/sup 9/7s/sup 2/ /sup 6/H/sup 0//sub 15/2/ and (Rn)5f/sup 9/7s /sup 7/H/sup 0//sub 8/, respectively. A table lists the lowest level of each identified electronic configuration of Bk I and Bk II.

  12. On-Site Renewable Energy and Green Buildings: A System-Level Analysis.

    PubMed

    Al-Ghamdi, Sami G; Bilec, Melissa M

    2016-05-03

    Adopting a green building rating system (GBRSs) that strongly considers use of renewable energy can have important environmental consequences, particularly in developing countries. In this paper, we studied on-site renewable energy and GBRSs at the system level to explore potential benefits and challenges. While we have focused on GBRSs, the findings can offer additional insight for renewable incentives across sectors. An energy model was built for 25 sites to compute the potential solar and wind power production on-site and available within the building footprint and regional climate. A life-cycle approach and cost analysis were then completed to analyze the environmental and economic impacts. Environmental impacts of renewable energy varied dramatically between sites, in some cases, the environmental benefits were limited despite the significant economic burden of those renewable systems on-site and vice versa. Our recommendation for GBRSs, and broader policies and regulations, is to require buildings with higher environmental impacts to achieve higher levels of energy performance and on-site renewable energy utilization, instead of fixed percentages.

  13. Iowa Developed Energy Activity Sampler (IDEAS), Grades 7-12: Language Arts.

    ERIC Educational Resources Information Center

    Simonis, Doris G.

    Presented is the Language Arts component of the Iowa Developed Energy Activity Sampler (IDEAS), a multidisciplinary energy education program designed for infusion into the curriculum of grades 7-12. Among the lessons included are an energy debate, puzzles, energy poetry, and energy life styles. Also contained in the IDEAS program are activity sets…

  14. Iowa Developed Energy Activity Sampler: 6-12. Social Studies. Revised 1987.

    ERIC Educational Resources Information Center

    Iowa State Dept. of Education, Des Moines.

    Thirty-eight energy related classroom activities for sixth to twelfth grade are included in this document. The activities are based on the following conceptual themes: (1) energy is basic; (2) energy's usefulness is limited; (3) energy exchanges affect the environment; (4) energy conservation is essential; and (5) people can develop and share…

  15. Effects of Seismological and Soil Parameters on Earthquake Energy demand in Level Ground Sand Deposits

    NASA Astrophysics Data System (ADS)

    nabili, sara; shahbazi majd, nafiseh

    2013-04-01

    any specified level were estimated by three several method including the strain energy in which is the areas of hysteresis loops, the arias intensity and the kinetic energy computed from the acceleration time histories at its corresponding level. Finally, the dependency of the demand energy to the soil and seismological parameters was shown by means of several diagrams.

  16. Nonadiabatic coupling reduces the activation energy in thermally activated delayed fluorescence.

    PubMed

    Gibson, J; Penfold, T J

    2017-03-22

    The temperature dependent rate of a thermally activated process is given by the Arrhenius equation. The exponential decrease in the rate with activation energy, which this imposes, strongly promotes processes with small activation barriers. This criterion is one of the most challenging during the design of thermally activated delayed fluorescence (TADF) emitters used in organic light emitting diodes. The small activation energy is usually achieved with donor-acceptor charge transfer complexes. However, this sacrifices the radiative rate and is therefore incommensurate with the high luminescence quantum yields required for applications. Herein we demonstrate that the spin-vibronic mechanism, operative for efficient TADF, overcomes this limitation. Nonadiabatic coupling between the lowest two triplet states give rise to a strong enhancement of the rate of reserve intersystem crossing via a second order mechanism and promotes population transfer between the T1 to T2 states. Consequently the rISC mechanism is actually operative between initial and final state exhibiting an energy gap that is smaller than between the T1 and S1 states. This contributes to the small activation energies for molecules exhibiting a large optical gap, identifies limitations of the present design procedures and provides a basis from which to construct TADF molecules with simultaneous high radiative and rISC rates.

  17. Mitochondrial DNA sequence variation is associated with free-living activity energy expenditure in the elderly.

    PubMed

    Tranah, Gregory J; Lam, Ernest T; Katzman, Shana M; Nalls, Michael A; Zhao, Yiqiang; Evans, Daniel S; Yokoyama, Jennifer S; Pawlikowska, Ludmila; Kwok, Pui-Yan; Mooney, Sean; Kritchevsky, Stephen; Goodpaster, Bret H; Newman, Anne B; Harris, Tamara B; Manini, Todd M; Cummings, Steven R

    2012-09-01

    The decline in activity energy expenditure underlies a range of age-associated pathological conditions, neuromuscular and neurological impairments, disability, and mortality. The majority (90%) of the energy needs of the human body are met by mitochondrial oxidative phosphorylation (OXPHOS). OXPHOS is dependent on the coordinated expression and interaction of genes encoded in the nuclear and mitochondrial genomes. We examined the role of mitochondrial genomic variation in free-living activity energy expenditure (AEE) and physical activity levels (PAL) by sequencing the entire (~16.5 kilobases) mtDNA from 138 Health, Aging, and Body Composition Study participants. Among the common mtDNA variants, the hypervariable region 2 m.185G>A variant was significantly associated with AEE (p=0.001) and PAL (p=0.0005) after adjustment for multiple comparisons. Several unique nonsynonymous variants were identified in the extremes of AEE with some occurring at highly conserved sites predicted to affect protein structure and function. Of interest is the p.T194M, CytB substitution in the lower extreme of AEE occurring at a residue in the Qi site of complex III. Among participants with low activity levels, the burden of singleton variants was 30% higher across the entire mtDNA and OXPHOS complex I when compared to those having moderate to high activity levels. A significant pooled variant association across the hypervariable 2 region was observed for AEE and PAL. These results suggest that mtDNA variation is associated with free-living AEE in older persons and may generate new hypotheses by which specific mtDNA complexes, genes, and variants may contribute to the maintenance of activity levels in late life.

  18. Analysing domestic activity to reduce household energy consumption.

    PubMed

    Fréjus, Myriam; Guibourdenche, Julien

    2012-01-01

    This paper presents our reflections on the issue of behavioral change according to energy conservation constraints and on the status of sustainability in the design of ambient interactive systems at home. We point out how ergonomics contributes to the study of human factors underlying energy consumption. Relating to situated cognition and human computer interaction, our approach relies both on the ergonomic evaluation of feedback consumption displays and on the modeling of domestic activities in order to identify household concerns in real settings. We present empirical results to illustrate this global approach. The results of those studies allow the design of interactive systems: informative and pedagogical systems as well as pervasive and adaptive ambient systems. In our approach, sustainability is taken into account as a design criterion, as security could be, whereas the main design purpose is to aid households in their daily life in order to build a "sustainable situation".

  19. Activation Energies of Fragmentations of Disaccharides by Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Kuki, Ákos; Nagy, Lajos; Szabó, Katalin E.; Antal, Borbála; Zsuga, Miklós; Kéki, Sándor

    2014-03-01

    A simple multiple collision model for collision induced dissociation (CID) in quadrupole was applied for the estimation of the activation energy (Eo) of the fragmentation processes for lithiated and trifluoroacetated disaccharides, such as maltose, cellobiose, isomaltose, gentiobiose, and trehalose. The internal energy-dependent rate constants k(Eint) were calculated using the Rice-Ramsperger-Kassel-Marcus (RRKM) or the Rice-Ramsperger-Kassel (RRK) theory. The Eo values were estimated by fitting the calculated survival yield (SY) curves to the experimental ones. The calculated Eo values of the fragmentation processes for lithiated disaccharides were in the range of 1.4-1.7 eV, and were found to increase in the order trehalose < maltose < isomaltose < cellobiose < gentiobiose.

  20. Determination of the ionization energy of vanadium levels in zinc selenide

    SciTech Connect

    Makhniy, V. P.; Kinzerskaya, O. V.

    2012-02-15

    By comparing the experimental spectra of optical absorption and photoconductivity with those calculated using the Lucovsky formulas, it is established that the V impurity in ZnSe forms acceptor levels with the ionization energy 0.62 eV.

  1. Energy Levels in Helium and Neon Atoms by an Electron-Impact Method.

    ERIC Educational Resources Information Center

    Taylor, N.; And Others

    1981-01-01

    Electronic energy levels in noble gas atoms may be determined with a simple teaching apparatus incorporating a resonance potentials tube in which the electron beam intensity is held constant. The resulting spectra are little inferior to those obtained by more elaborate electron-impact methods and complement optical emission spectra. (Author/SK)

  2. Exploring Learners' Conceptual Resources: Singapore a Level Students' Explanations in the Topic of Ionisation Energy

    ERIC Educational Resources Information Center

    Taber, Keith S.; Tan, Kim Chwee Daniel

    2007-01-01

    This paper describes findings from a study to explore Singapore A-level (Grades 11 and 12, 16-19 yr old) students' understanding of ionisation energy, an abstract and complex topic that is featured in school chemistry courses. Previous research had reported that students in the United Kingdom commonly use alternative notions based on the perceived…

  3. Improved Experimental and Theoretical Energy Levels of Carbon I from Solar Infrared Spectra

    NASA Technical Reports Server (NTRS)

    Chang, Edward S.; Geller, Murray

    1997-01-01

    We have improved the energy levels in neutral carbon using high resolution infrared solar spectra. The main source is the ATMOS spectrum measured by the Fourier transaform spectroscopy technique from 600 to 4800 cm-1, supplemented by the MARK IV balloon data, covering from 4700 to 5700 cm-1.

  4. Prospective Physics Teachers' Level of Understanding Energy, Power and Force Concepts

    ERIC Educational Resources Information Center

    Saglam-Arslan, Aysegul; Kurnaz, Mehmet Altan

    2009-01-01

    The aim of this study is to determine prospective physics teachers' level of understanding of the concepts of energy and the related concepts of force and power. The study was carried out with the participation of 56 physics education department students at a university in Karadeniz region. All participants had previously taken an introductory…

  5. Saturation of Energy Levels in Analytical Atomic Fluorescence Spectrometry. II. Experimental.

    DTIC Science & Technology

    1981-01-30

    RESEARCH Contract N14-76-C-0838 Task Ao. NR 051-622 TECHNICAL REPORT NO. 34 SATURATION OF ENERGY LEVELS IN ANALYTICAL ATOMIC FLUORESCENCE SPECTROMETRY II...an assumption which is valid only if the daral o’l of 111, cxcilIatio n pulse is mucl ) longer than the fluorescence life- time of the tjaii!,ition

  6. Energy Related Technology Programs at the Non-Baccalaureate Postsecondary Level.

    ERIC Educational Resources Information Center

    Brooking, Walter J.

    Guidelines are presented for institution administrators considering the initiation of programs to train energy-related technicians at the associate degree level. Two essential preliminary steps are outlined: Acquiring and analyzing all available information about the proposed field including national legislation and surveying the probable need for…

  7. Entropy-Energy Inequality for a Qutrit on the Example of a Three-Level Atom

    NASA Astrophysics Data System (ADS)

    Man'ko, V. I.; Markovich, L. A.

    2017-03-01

    We consider the entropy-energy inequality for a three-level atom implemented on superconducting circuits with the Josephson junction. It is suggested to use the positivity of the relative entropy of the qutritquantum system for verification of tomography of quantum states of qudits. The relations obtained are considered in detail on the example of the temperature density matrix.

  8. Peculiarities of collisional excitation transfer with excited screened energy levels of atoms

    SciTech Connect

    Gerasimov, V. A.; Gerasimov, V. V.; Pavlinskiy, A. V.

    2007-09-15

    We report an experimental discovery of deviations from the known regularities in collisional excitation transfer processes for metal atoms. The collisional excitation transfer with excited screened energy levels of thulium and dysprosium atoms is studied. The selecting role of the screening 6s shell in collisional excitation transfer is shown.

  9. First-principles approach to calculating energy level alignment at aqueous semiconductor interfaces

    DOE PAGES

    Kharche, Neerav; Muckerman, James T.; Hybertsen, Mark S.

    2014-10-21

    A first-principles approach is demonstrated for calculating the relationship between an aqueous semiconductor interface structure and energy level alignment. The physical interface structure is sampled using density functional theory based molecular dynamics, yielding the interface electrostatic dipole. The GW approach from many-body perturbation theory is used to place the electronic band edge energies of the semiconductor relative to the occupied 1b₁ energy level in water. The application to the specific cases of nonpolar (101¯0 ) facets of GaN and ZnO reveals a significant role for the structural motifs at the interface, including the degree of interface water dissociation and themore » dynamical fluctuations in the interface Zn-O and O-H bond orientations. As a result, these effects contribute up to 0.5 eV.« less

  10. First-principles approach to calculating energy level alignment at aqueous semiconductor interfaces

    SciTech Connect

    Kharche, Neerav; Muckerman, James T.; Hybertsen, Mark S.

    2014-10-21

    A first-principles approach is demonstrated for calculating the relationship between an aqueous semiconductor interface structure and energy level alignment. The physical interface structure is sampled using density functional theory based molecular dynamics, yielding the interface electrostatic dipole. The GW approach from many-body perturbation theory is used to place the electronic band edge energies of the semiconductor relative to the occupied 1benergy level in water. The application to the specific cases of nonpolar (101¯0 ) facets of GaN and ZnO reveals a significant role for the structural motifs at the interface, including the degree of interface water dissociation and the dynamical fluctuations in the interface Zn-O and O-H bond orientations. As a result, these effects contribute up to 0.5 eV.

  11. Energy levels and radiative data for Kr-like W38+ from MCDHF and RMBPT calculations

    NASA Astrophysics Data System (ADS)

    Guo, XueLing; Grumer, Jon; Brage, Tomas; Si, Ran; Chen, ChongYang; Jönsson, Per; Wang, Kai; Yan, Jun; Hutton, Roger; Zou, YaMing

    2016-07-01

    Energies, transition rates, line strengths and lifetimes have been computed for all levels of the 4p 6 and 4p 54d configurations of W38+ by using the multi-configuration Dirac-Hartree-Fock (MCDHF) method as well as relativistic many-body perturbation theory. We investigate systematically correlation, relativistic and quantum electro-dynamical (QED) effects of different properties, including excitation energies and transition rates. We demonstrate that it is important to include the core-valence correlation of rather deep subshells (including 3d and 3p) to reach close to spectroscopic accuracy for the transition energies. We also show that high-multipole transitions (E3, M2) are important for the lifetime of some metastable levels of 4p 54d ({}3{F}3,{}1{D}2,{}3{D}2). The present results are in good agreement with experiments and of considerably higher accuracy than those achieved in previous theoretical works.

  12. Variational Calculations of Ro-Vibrational Energy Levels and Transition Intensities for Tetratomic Molecules

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    A description is given of an algorithm for computing ro-vibrational energy levels for tetratomic molecules. The expressions required for evaluating transition intensities are also given. The variational principle is used to determine the energy levels and the kinetic energy operator is simple and evaluated exactly. The computational procedure is split up into the determination of one dimensional radial basis functions, the computation of a contracted rotational-bending basis, followed by a final variational step coupling all degrees of freedom. An angular basis is proposed whereby the rotational-bending contraction takes place in three steps. Angular matrix elements of the potential are evaluated by expansion in terms of a suitable basis and the angular integrals are given in a factorized form which simplifies their evaluation. The basis functions in the final variational step have the full permutation symmetries of the identical particles. Sample results are given for HCCH and BH3.

  13. First-Principles Approach to Calculating Energy Level Alignment at Aqueous Semiconductor Interfaces

    NASA Astrophysics Data System (ADS)

    Kharche, Neerav; Muckerman, James T.; Hybertsen, Mark S.

    2014-10-01

    A first-principles approach is demonstrated for calculating the relationship between an aqueous semiconductor interface structure and energy level alignment. The physical interface structure is sampled using density functional theory based molecular dynamics, yielding the interface electrostatic dipole. The GW approach from many-body perturbation theory is used to place the electronic band edge energies of the semiconductor relative to the occupied 1b1 energy level in water. The application to the specific cases of nonpolar (101 ¯0) facets of GaN and ZnO reveals a significant role for the structural motifs at the interface, including the degree of interface water dissociation and the dynamical fluctuations in the interface Zn-O and O-H bond orientations. These effects contribute up to 0.5 eV.

  14. A comparison of fatigue and energy levels at 6 weeks and 14 to 19 months postpartum.

    PubMed

    Troy, N W

    1999-05-01

    It has been assumed that women recover from pregnancy and childbirth within 6 weeks. Recent research shows that women's fatigue levels are the same, or higher, at 6 weeks postpartum as at the time of delivery. This study determined the differences in primiparous women's fatigue and energy levels at 6 weeks and 14 to 19 months postpartum. Determinations of how some contributing factors and outcomes of postpartum fatigue relate to each other and to fatigue and energy at 14 to 19 months postpartum were also made. Analyses revealed that women are more fatigued and less energetic at 14 to 19 months than they were at 6 weeks postpartum. Quality of sleep did not correlate with fatigue or energy. At 14 to 19 months postpartum return to full functional status is almost complete, with household and infant care responsibilities being most complete. The women were experiencing mild life crises of various sorts, were somewhat depressed, and were gratified in the mothering role.

  15. Design and experiment study of a semi-active energy-regenerative suspension system

    NASA Astrophysics Data System (ADS)

    Shi, Dehua; Chen, Long; Wang, Ruochen; Jiang, Haobin; Shen, Yujie

    2015-01-01

    A new kind of semi-active energy-regenerative suspension system is proposed to recover suspension vibration energy, as well as to reduce the suspension cost and demands for the motor-rated capacity. The system consists of an energy-regenerative damper and a DC-DC converter-based energy-regenerative circuit. The energy-regenerative damper is composed of an electromagnetic linear motor and an adjustable shock absorber with three regulating levels. The linear motor just works as the generator to harvest the suspension vibration energy. The circuit can be used to improve the system’s energy-regenerative performance and to continuously regulate the motor’s electromagnetic damping force. Therefore, although the motor works as a generator and damps the isolation without an external power source, the motor damping force is controllable. The damping characteristics of the system are studied based on a two degrees of freedom vehicle vibration model. By further analyzing the circuit operation characteristics under different working modes, the double-loop controller is designed to track the desired damping force. The external-loop is a fuzzy controller that offers the desired equivalent damping. The inner-loop controller, on one hand, is used to generate the pulse number and the frequency to control the angle and the rotational speed of the step motor; on the other hand, the inner-loop is used to offer the duty cycle of the energy-regenerative circuit. Simulations and experiments are conducted to validate such a new suspension system. The results show that the semi-active energy-regenerative suspension can improve vehicle ride comfort with the controllable damping characteristics of the linear motor. Meanwhile, it also ensures energy regeneration.

  16. Investigation on the low energy conformational surface of tabun to probe the role of its different conformers on biological activity

    NASA Astrophysics Data System (ADS)

    Paukku, Yuliya; Michalkova, Andrea; Majumdar, D.; Leszczynski, Jerzy

    2006-05-01

    Conformational studies have been carried out on the two different enantiomers of tabun at the density functional and second order Møller-Plesset perturbation levels of theory to generate low energy potential energy surfaces in the gas phase as well as in aqueous environment. The structures of the low energy conformers together with their molecular electrostatic potential surfaces have been compared with those of the non-aged acetylcholinesterase-tabun complex to locate the active conformer of this molecule.

  17. Light, nutrients, and food-chain length constrain planktonic energy transfer efficiency across multiple trophic levels.

    PubMed

    Dickman, Elizabeth M; Newell, Jennifer M; González, María J; Vanni, Michael J

    2008-11-25

    The efficiency of energy transfer through food chains [food chain efficiency (FCE)] is an important ecosystem function. It has been hypothesized that FCE across multiple trophic levels is constrained by the efficiency at which herbivores use plant energy, which depends on plant nutritional quality. Furthermore, the number of trophic levels may also constrain FCE, because herbivores are less efficient in using plant production when they are constrained by carnivores. These hypotheses have not been tested experimentally in food chains with 3 or more trophic levels. In a field experiment manipulating light, nutrients, and food-chain length, we show that FCE is constrained by algal food quality and food-chain length. FCE across 3 trophic levels (phytoplankton to carnivorous fish) was highest under low light and high nutrients, where algal quality was best as indicated by taxonomic composition and nutrient stoichiometry. In 3-level systems, FCE was constrained by the efficiency at which both herbivores and carnivores converted food into production; a strong nutrient effect on carnivore efficiency suggests a carryover effect of algal quality across 3 trophic levels. Energy transfer efficiency from algae to herbivores was also higher in 2-level systems (without carnivores) than in 3-level systems. Our results support the hypothesis that FCE is strongly constrained by light, nutrients, and food-chain length and suggest that carryover effects across multiple trophic levels are important. Because many environmental perturbations affect light, nutrients, and food-chain length, and many ecological services are mediated by FCE, it will be important to apply these findings to various ecosystem types.

  18. Effects of curricular activity on students' situational motivation and physical activity levels.

    PubMed

    Gao, Zan; Hannon, James C; Newton, Maria; Huang, Chaoqun

    2011-09-01

    The purpose of this study was to examine (a) the effects of three curricular activities on students'situational motivation (intrinsic motivation [IM], identified regulation [IR], external regulation, and amotivation [AM]) and physical activity (PA) levels, and (b) the predictive strength of situational motivation to PA levels. Four hundred twelve students in grades 7-9 participated in three activities (cardiovascular fitness, ultimate football, and Dance Dance Revolution [DDR]) in physical education. ActiGraph GT1M accelerometers were used to measure students' PA levels for three classes for each activity. Students also completed a Situational Motivation Scale (Guay, Vallerand, & Blanchard, 2000) at the end of each class. Multivariate analysis of variance revealed that students spent significantly higher percentages of time in moderate-to-vigorous PA (MVPA) in fitness and football classes than they did in DDR class. Students reported higher lM and IR toward fitness than DDR They also scored higher in IR toward fitness than football. In contrast, students displayed significantly lower AM toward fitness than football and DDR Hierarchical Linear Modeling revealed that IM was the only positive predictor for time in MVPA (p = .02), whereas AM was the negative predictor (p < .01). The findings are discussed in regard to the implications for educational practice.

  19. Millimeter-Wave Measurements of High Level and Low Level Activity Glass Melts

    SciTech Connect

    Woskov, Paul P.; Sundaram, S.K.; Daniel, William E., Jr.

    2006-06-01

    The primary objectives of the current research is to develop on-line sensors for characterizing molten glass in high-level and low-activity waste glass melters using millimeter-wave (MMW) technology and to use this technology to do novel research of melt dynamics. Existing and planned waste glass melters lack sophisticated diagnostics due to the hot, corrosive, and radioactive melter environments. Without process control diagnostics, the Defense Waste Processing Facility (DWPF) and the Waste Treatment Plant (WTP) under construction at Hanford operate by a feed forward process control scheme that relies on predictive models with large uncertainties. This scheme severely limits production throughput and waste loading. Also operations at DWPF have shown susceptibility to anomalies such as pouring, foaming, and combustion gas build up, which can seriously disrupt operations. Future waste chemistries will be even more challenging. The scientific goals of this project are to develop new reliable on-line monitoring capability for important glass process parameters such as temperature profiles, emissivity, density, viscosity, and other characteristics using the unique advantages of millimeter wave electromagnetic radiation that can be eventually implemented in the operating melters. Once successfully developed and implemented, significant cost savings would be realized in melter operations by increasing production through put, reduced storage volumes (through higher waste loading), and reduced risks (prevention or mitigation of anomalies).

  20. Are self-reported physical activity levels associated with perceived desirability of activity-friendly communities?

    PubMed

    Librett, John J; Yore, Michelle M; Schmid, Thomas L; Kohl, Harold W

    2007-09-01

    People living in activity-friendly communities (AFCs) are more active but the self-selection influence is unknown. From 4856 respondents we explored mediating variables with expressed desire to live in AFCs. Association with desire to live in AFCs included ages 18-24 years (odds ratio [OR]=1.9), African American (OR=1.9) or Hispanic (OR=1.5), and believing AFCs would support activity-based transportation (OR=2.4). Regular physical activity (PA) was marginally associated with desire to live in AFCs (OR=1.3). These findings suggest that PA may be a significant factor in communities of this style. Strategies for social marketing along with changes to the built environment to increase PA levels are discussed.

  1. Energy in Mexico: a profile of solar energy activity in its national context

    SciTech Connect

    Hawkins, D.

    1980-04-01

    The geopolitical, economic, and cultural aspects of the United States of Mexico are presented. Mexico's energy profile includes the following: energy policy objectives, government energy structure, organizations for implementation, indigeneous energy sources, imported energy sources, solar energy research and development, solar energy organizations and solar energy related legislation and administrative policies. International agreements, contacts, manufacturers, and projects are listed. (MRH)

  2. Fermi level pinning and the charge transfer contribution to the energy of adsorption at semiconducting surfaces

    SciTech Connect

    Krukowski, Stanisław; Kempisty, Paweł; Strak, Paweł; Sakowski, Konrad

    2014-01-28

    It is shown that charge transfer, the process analogous to formation of semiconductor p-n junction, contributes significantly to adsorption energy at semiconductor surfaces. For the processes without the charge transfer, such as molecular adsorption of closed shell systems, the adsorption energy is determined by the bonding only. In the case involving charge transfer, such as open shell systems like metal atoms or the dissociating molecules, the energy attains different value for the Fermi level differently pinned. The Density Functional Theory (DFT) simulation of species adsorption at different surfaces, such as SiC(0001) or GaN(0001) confirms these predictions: the molecular adsorption is independent on the coverage, while the dissociative process adsorption energy varies by several electronvolts.

  3. Energies and Electric Dipole Transitions for Low-Lying Levels of Protactinium IV and Uranium V

    NASA Astrophysics Data System (ADS)

    Ürer, Güldem; Özdemir, Leyla

    2012-02-01

    We have reported a relativistic multiconfiguration Dirac-Fock (MCDF) study on low-lying level structures of protactinium IV (Z =91) and uranium V (Z =92) ions. Excitation energies and electric dipole (E1) transition parameters (wavelengths, oscillator strengths, and transition rates) for these low-lying levels have been given. We have also investigated the influence of the transverse Breit and quantum electrodynamic (QED) contributions besides correlation effects on the level structure. A comparison has been made with a few available data for these ions in the literature.

  4. Density Functional Theory Calculations of Activation Energies for Carrier Capture by Defects in Semiconductors

    NASA Astrophysics Data System (ADS)

    Modine, N. A.; Wright, A. F.; Lee, S. R.

    The rate of defect-induced carrier recombination is determined by both defect levels and carrier capture cross-sections. Density functional theory (DFT) has been widely and successfully used to predict defect levels, but only recently has work begun to focus on using DFT to determine carrier capture cross-sections. Lang and Henry developed the theory of carrier-capture by multiphonon emission in the 1970s and showed that carrier-capture cross-sections differ between defects primarily due to differences in their carrier capture activation energies. We present an approach to using DFT to calculate carrier capture activation energies that does not depend on an assumed configuration coordinate and that fully accounts for anharmonic effects, which can substantially modify carrier activation energies. We demonstrate our approach for intrinisic defects in GaAs and GaN and discuss how our results depend on the choice of exchange-correlation functional and the treatment of spin polarization. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  5. Physical activity and energy expenditure: findings from the Ibadan Pregnant Women's Survey.

    PubMed

    Adeniyi, Ade F; Ogwumike, Omoyemi O

    2014-06-01

    Physical activity, if there are no medical caveats, is beneficial to all people including pregnant women. This study examined the level of physical activity in a group of pregnant Nigerian women. Pregnancy Physical Activity Questionnaire was used to assess the physical activity of 453 pregnant women. The mean age of participants was 30.89 +/- 4.44 years, 222 (49.0%) were sedentary, and only 46 (10.2%) presented with moderate activity level. The highest amount of energy (75.9 MET-h x wk(-1)) was expended on household activities. Women in the third trimester of pregnancy had more than three times the risk of being sedentary (OR = 3.26, 95% CI = 2.11-4.56) but the risk reduced by 58% in gravid > or = 5 women. Most of the pregnant women recorded physical activity that was lower than the recommended level, which could lead to unfavourable health outcomes for mother and child. Efforts to promote physical activity in pregnant women in this environment are desirable.

  6. Heat Mining or Replenishable Geothermal Energy? A Project for Advanced-Level Physics Students

    ERIC Educational Resources Information Center

    Dugdale, Pam

    2014-01-01

    There is growing interest in the use of low enthalpy geothermal (LEG) energy schemes, whereby heated water is extracted from sandstone aquifers for civic heating projects. While prevalent in countries with volcanic activity, a recently proposed scheme for Manchester offered the perfect opportunity to engage students in the viability of this form…

  7. Adenylate nucleotide levels and energy charge in Arthrobacter crystallopoietes during growth and starvation.

    PubMed

    Leps, W T; Ensign, J C

    1979-07-01

    The adenylate nucleotide concentrations, based on internal water space, were determined in cells of Arthrobacter crystallopoietes during growth and starvation and the energy charge of the cells was calculated. The energy charge of spherical cells rose during the first 10 h of growth, then remained nearly constant for as long as 20 h into the stationary phase. The energy charge of rod-shaped cells rose during the first 4 h of growth, then remained constant during subsequent growth and decreased in the stationary growth phase. Both spherical and rod-shaped cells excreted adenosine monophosphate but not adenosine triphosphate or adenosine diphosphate during starvation. The intracellular energy charge of spherical cells declined during the initial 10 h and then remained constant for 1 week of starvation at a value of 0.78. The intracellular energy charge of rod-shaped cells declined during the first 24 h of starvation, remained constant for the next 80 h, then decreased to a value of 0.73 after a total of 168 h starvation. Both cell forms remained more than 90% viable during this time. Addition of a carbon and energy source to starving cells resulted in an increase in the ATP concentration and as a result the energy charge increased to the smae levels as found during growth.

  8. Cascade splitting of two atomic energy levels due to multiphoton absorption

    NASA Astrophysics Data System (ADS)

    Ruan, Ya-Ping; Jia, Feng-Dong; Sun, Zhen; Lv, Shuang-Fei; Qing, Bo; Huang, Wei; Xue, Ping; Xu, Xiang-Yuan; Dai, Xing-Can; Zhong, Zhi-Ping

    2014-09-01

    We have theoretically and experimentally studied the spectroscopic properties of dressed levels in a strong monochromatic field, and propose a model of cascade splitting of two atomic energy levels. In this model two related dressed levels can be split into four levels, and transitions connecting four new levels will constitute spectroscopic structures. Two types of proof-in-principle experiments are performed to verify the model. One experiment measures the probe absorption spectra of a degenerate two-level atomic system with two strong monochromatic coupling fields. The system consists of 52S1/2,F=2 and 52P3/2,F'=3 states of Rb87 atoms in a magneto-optical trap (MOT) as well as the cooling beams and an additional coupling field. New spectral features are observed and proven to be due to the transitions of new levels generated by splitting of the dressed levels. The other experiment measures the pump-probe spectra in a degenerate two-level atomic system with one strong monochromatic coupling field. The system consists of 52S1/2,F=2 and 52P3/2,F'=3 states of the Rb87 atom in a magneto-optical trap and one coupling field. We have observed spectral features that obviously differ from the prediction that comes from the two-level dressed-atom approach. They cannot be explained by existing theories. The model of cascade splitting of two atomic energy levels is employed to explain the observations in these two types of experiments.

  9. Energy levels and radiative rates for Cr-like Cu VI and Zn VII

    NASA Astrophysics Data System (ADS)

    Aggarwal, K. M.; Bogdanovich, P.; Keenan, F. P.; Kisielius, R.

    2016-09-01

    Energy levels and radiative rates (A-values) for transitions in Cr-like Cu VI and Zn VII are reported. These data are determined in the quasi-relativistic approach (QR), by employing a very large configuration interaction (CI) expansion which is highly important for these ions. No radiative rates are available in the literature to compare with our results, but our calculated energies are in close agreement with those compiled by NIST and other available theoretical data, for a majority of the levels. The A-values (and resultant lifetimes) are listed for all significantly contributing E1, E2 and M1 radiative transitions among the energetically lowest 322 levels of each ion.

  10. Magnetic field dependence of energy levels in biased bilayer graphene quantum dots

    NASA Astrophysics Data System (ADS)

    da Costa, D. R.; Zarenia, M.; Chaves, Andrey; Farias, G. A.; Peeters, F. M.

    2016-02-01

    Using the tight-binding approach, we study the influence of a perpendicular magnetic field on the energy levels of hexagonal, triangular, and circular bilayer graphene (BLG) quantum dots (QDs) with zigzag and armchair edges. We obtain the energy levels for AB (Bernal)-stacked BLG QDs in both the absence and the presence of a perpendicular electric field (i.e., biased BLG QDs). We find different regions in the spectrum of biased QDs with respect to the crossing point between the lowest-electron and -hole Landau levels of a biased BLG sheet. Those different regions correspond to electron states that are localized at the center, edge, or corner of the BLG QD. Quantum Hall corner states are found to be absent in circular BLG QDs. The spatial symmetry of the carrier density distribution is related to the symmetry of the confinement potential, the position of zigzag edges, and the presence or absence of interlayer inversion symmetry.

  11. Effects of Dietary Energy Levels on the Physiological Parameters and Reproductive Performance of Gestating Gilts

    PubMed Central

    Jin, S. S.; Jung, S. W.; Jang, J. C.; Chung, W. L.; Jeong, J. H.; Kim, Y. Y.

    2016-01-01

    This experiment was conducted to investigate the effects of dietary energy levels on the physiological parameters and reproductive performance of gestating first parity sows. A total of 52 F1 gilts (Yorkshire×Landrace) were allocated to 4 dietary treatments using a completely randomized design. Each treatment contained diets with 3,100, 3,200, 3,300, or 3,400 kcal of metabolizable energy (ME)/kg, and the daily energy intake of the gestating gilts in each treatment were 6,200, 6,400, 6,600, and 6,800 kcal of ME, respectively. During gestation, the body weight (p = 0.04) and weight gain (p = 0.01) of gilts linearly increased with increasing dietary energy levels. Backfat thickness was not affected at d110 of gestation by dietary treatments, but increased linearly (p = 0.05) from breeding to d 110 of gestation. There were no significant differences on the litter size or litter birth weight. During lactation, the voluntary feed intake of sows tended to decrease when the dietary energy levels increased (p = 0.08). No difference was observed in backfat thickness of the sows within treatments; increasing energy levels linearly decreased the body weight of sows (p<0.05) at d 21 of lactation and body weight gain during lactation (p<0.01). No significant differences were observed in the chemical compositions of colostrum and milk. Therefore, these results indicated that high-energy diets influenced the bodyweight and backfat thickness of sows during gestation and lactation. NRC (2012) suggested that the energy requirement of the gestation gilt should be between 6,678 and 7,932 kcal of ME/d. Similarly, our results suggested that 3,100 kcal of ME/kg is not enough to maintain the reproductive performance for gilts during gestation with 2 kg feed daily. Gilts in the treatment 3,400 kcal of ME/kg have a higher weaning number of piglets, but bodyweight and backfat loss were higher than other treatments during lactation. But bodyweight and backfat loss were higher than other

  12. Postgraduation Activities: All Degree Levels in Pennsylvania, 1980.

    ERIC Educational Resources Information Center

    Donny, William F.

    The employment of graduates of all degree levels in Pennsylvania institutions of higher education was assessed in 1980, based on data for 48,162 graduates, or 54.3 percent of the graduates at all degree levels. Attention was directed to the proportions of graduates in each degree field and level: (1) employed in their fields of preparation, (2)…

  13. Physical Activity Energy Expenditure in Dutch Adolescents: Contribution of Active Transport to School, Physical Education, and Leisure Time Activities

    ERIC Educational Resources Information Center

    Slingerland, Menno; Borghouts, Lars B.; Hesselink, Matthijs K. C.

    2012-01-01

    Background: Detailed knowledge about physical activity energy expenditure (PAEE) can guide the development of school interventions aimed at reducing overweight in adolescents. However, relevant components of PAEE have never been objectively quantified in this population. This study investigated the contribution of active transport to and from…

  14. Moderate-to-high levels of exercise are associated with higher resting energy expenditure in community-dwelling postmenopausal women

    PubMed Central

    Froehle, Andrew W.; Hopkins, Susan R.; Natarajan, Loki; Schoeninger, Margaret J.

    2013-01-01

    Postmenopausal women experience an age-related decline in resting energy expenditure (REE), which is a risk factor for energy imbalance and metabolic disease. Exercise, by association with greater lean tissue mass and other factors, has the potential to mediate REE decline, but the relationship between exercise and REE in postmenopausal women is not well characterized. This study tests the hypothesis that exercise energy expenditure (EEE) is positively associated with REE, opposing the effects of age and menopause. The study tests this hypothesis in a cross-sectional sample of healthy postmenopausal women (N = 31, aged 49 - 72 years) with habitual exercise volumes at or above levels consistent with current clinical recommendations. Subjects kept four weeks of exercise diaries quantifying exercise activity, and were measured for body composition, maximal oxygen uptake, and REE. Multiple regression analysis was used to test for relationships between EEE, age, body composition, and REE. EEE and lean tissue mass (fat-free mass: FFM; and fat-free mass index: FFMI) exhibited significant, positive relationships with REE. The relationship between REE and EEE remained significant even after controlling for lean tissue mass. These results support the hypothesis that exercise is positively associated with REE, counter to the negative effects of age and menopause, and indicate a continuous relationship between exercise and REE across the moderate-to-high exercise range. Exercise at levels at and above current clinical guidelines may, in part, ameliorate risk for energy imbalance and metabolic disease through a positive relationship with REE. PMID:24053522

  15. Energy levels and transition rates for helium-like ions with Z = 10-36

    NASA Astrophysics Data System (ADS)

    Si, R.; Guo, X. L.; Wang, K.; Li, S.; Yan, J.; Chen, C. Y.; Brage, T.; Zou, Y. M.

    2016-08-01

    Aims: Helium-like ions provide an important X-ray spectral diagnostics in astrophysical and high-temperature fusion plasmas. An interpretation of the observed spectra provides information on temperature, density, and chemical compositions of the plasma. Such an analysis requires information for a wide range of atomic parameters, including energy levels and transition rates. Our aim is to provide a set of accurate energy levels and transition rates for helium-like ions with Z = 10-36. Methods: The second-order many-body perturbation theory (MBPT) was adopted in this paper. To support our MBPT results, we performed an independent calculation using the multiconfiguration Dirac-Hartree-Fock (MCDHF) method. Results: We provide accurate energies for the lowest singly excited 70 levels among 1snl(n ≤ 6,l ≤ (n-1)) configurations and the lowest doubly excited 250 levels arising from the K-vacancy 2ln'l'(n' ≤ 6,l' ≤ (n'-1)) configurations of helium-like ions with Z = 10-36. Wavelengths, transition rates, oscillator strengths, and line strengths are calculated for the E1, M1, E2, and M2 transitions among these levels. The radiative lifetimes are reported for all the calculated levels. Conclusions: Our MBPT results for singly excited n ≤ 2 levels show excellent agreement with other elaborate calculations, while those for singly excited n ≥ 3 and doubly excited levels show significant improvements over previous theoretical results. Our results will be very helpful for astrophysical line identification and plasma diagnostics. Full Tables 1 and 2 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A141

  16. Activation energy for a model ferrous-ferric half reaction from transition path sampling.

    PubMed

    Drechsel-Grau, Christof; Sprik, Michiel

    2012-01-21

    Activation parameters for the model oxidation half reaction of the classical aqueous ferrous ion are compared for different molecular simulation techniques. In particular, activation free energies are obtained from umbrella integration and Marcus theory based thermodynamic integration, which rely on the diabatic gap as the reaction coordinate. The latter method also assumes linear response, and both methods obtain the activation entropy and the activation energy from the temperature dependence of the activation free energy. In contrast, transition path sampling does not require knowledge of the reaction coordinate and directly yields the activation energy [C. Dellago and P. G. Bolhuis, Mol. Simul. 30, 795 (2004)]. Benchmark activation energies from transition path sampling agree within statistical uncertainty with activation energies obtained from standard techniques requiring knowledge of the reaction coordinate. In addition, it is found that the activation energy for this model system is significantly smaller than the activation free energy for the Marcus model, approximately half the value, implying an equally large entropy contribution.

  17. Validating Accelerometry as a Measure of Physical Activity and Energy Expenditure in Chronic Stroke

    PubMed Central

    Serra, Monica C.; Balraj, Elizabeth; DiSanzo, Beth L.; Ivey, Frederick M.; Hafer-Macko, Charlene E.; Treuth, Margarita S.; Ryan, Alice S.

    2016-01-01

    Background Accelerometers can objectively measure steps taken per day in individuals without gait deficits, but accelerometers also have the ability to estimate frequency, intensity, and duration of physical activity. However, thresholds to distinguish varying levels of activity intensity using the Actical brand accelerometer are standardized only for the general population and may underestimate intensity in stroke. Objective To derive Actical activity count thresholds specific to stroke disability for use in more accurately gauging time spent at differing activity levels. Methods Men (n=18) and women (n=10) with chronic hemiparetic gait (4±2 years latency, 43% Caucasian, 56% African American, ages of 47–83 yrs, BMI 19 – 48 kg/m2) participated in the study. Actical accelerometers were placed on the non-paretic hip to obtain accelerometry counts during eight activities of varying intensity: 1) watching TV; 2) seated stretching; 3) standing stretching; 4) floor sweeping; 5) stepping in place; 6) over-ground walking; 7) lower speed treadmill walking (1.0 mph at 4% incline); and 8) higher speed treadmill walking (2.0 mph at 4% incline). Simultaneous portable monitoring (Cosmed K4b2) enabled quantification of energy cost for each activity in metabolic equivalents (METs, or oxygen consumption in multiples of resting level). Measurements were obtained for 10 min of standard rest and 5 minutes during each of the eight activities. Results Regression analysis yielded the following new stroke-specific Actical minimum thresholds: 125 counts per minute (cpm) for sedentary/light activity, 667 cpm for light/moderate activity, and 1546 cpm for moderate/vigorous activity. Conclusion Our revised cut-points better reflect activity levels after stroke and suggest significantly lower thresholds relative to those observed for the general population of healthy individuals. We conclude that the standard, commonly applied Actical thresholds are inappropriate for this unique population

  18. Physical activity and total energy expenditure of child-bearing Gambian village women.

    PubMed

    Lawrence, M; Whitehead, R G

    1988-02-01

    In a longitudinal study of pregnancy and lactation levels of physical activity and total energy expenditure (TEE) were measured in 32 rural Gambian women using an activity diary technique. TEE, which was higher than previously measured food intake in this community, ranged from a minimum of 9.6 MJ (2300 kcal)/d (1.7 X BMR) in the months January-March to a maximum of 11.3 MJ (2700 kcal)/d (2 X BMR) during the agricultural season (July-October). During pregnancy and early lactation women went less often to the fields and also reduced the amount of time spent walking and performing household tasks. Standardizing for season and for changes in BMR and the energy cost of activity, reductions in physical activity reduced TEE by 0.59 +/- 0.08 MJ (140 +/- 18 kcal)/d between the 28th week of gestation and 4 weeks post-partum (P less than 0.001). While reduced physical activity may have had an adverse effect on agricultural productivity, energy was spared for other processes including fetal growth and milk output immediately post-partum. Dietary supplementation was without effect on activity pattern.

  19. Social Studies. Iowa Developed Energy Activity Sampler, 6-12. Revised.

    ERIC Educational Resources Information Center

    Iowa State Dept. of Education, Des Moines. Div. of Instructional Services.

    The revised Iowa Developed Energy Activity Sampler (IDEAS) was compiled using the original IDEAS program and the Energy Conservation Activity Packets (ECAPS). This document provides activities for teachers to use with students in teaching social studies. The activities are intended to demonstrate the impact of energy technology on today's society.…

  20. Relationship between tactics and energy expenditure according to level of experience in badminton.

    PubMed

    Dieu, Olivier; Blondeau, Thomas; Vanhelst, Jérémy; Fardy, Paul S; Bui-Xuân, Gilles; Mikulovic, Jacques

    2014-10-01

    Research on racket sports has traditionally focused on expert players and has treated energy expenditure and tactics as independent factors. These prior studies could not assess how energy expenditure and tactics changed as a function of experience and skill. Here, the specific relationship between playing tactics and energy expenditure in badminton were assessed. Participants were classified into five stages of badminton experience on the basis of conative criteria: structural (physical abilities), technical (technical skills), and functional (tactics). The physical activity of 99 players (47 beginners, 15 intermediates, 30 advanced, and 7 experts) was measured using a three-axis accelerometer during a badminton set (21 points, no extra scoring). The results showed that physical activity (counts/sec.) ranged between about 115 (Stage 1) and 155 (Stage 5), and differed significantly across the conative stages. For Stages 2 and 4, defined by an increase in use of tactics, physical activity increased substantially. For Stage 3, defined by a decrease in use of tactics, physical activity decreased significantly. Thus, tactically-oriented play appears to be closely related to physical activity.