Science.gov

Sample records for activation enhances cell

  1. Mast cells enhance T cell activation: Importance of mast cell-derived TNF

    NASA Astrophysics Data System (ADS)

    Nakae, Susumu; Suto, Hajime; Kakurai, Maki; Sedgwick, Jonathon D.; Tsai, Mindy; Galli, Stephen J.

    2005-05-01

    Mast cells are not only important effector cells in immediate hypersensitivity reactions and immune responses to pathogens but also can contribute to T cell-mediated disorders. However, the mechanisms by which mast cells might influence T cells in such settings are not fully understood. We find that mast cells can enhance proliferation and cytokine production in multiple T cell subsets. Mast cell-dependent enhancement of T cell activation can be promoted by FcRI-dependent mast cell activation, TNF production by both mast cells and T cells, and mast cell-T cell contact. However, at high concentrations of cells, mast cells can promote T cell activation independent of IgE or TNF. Finally, mast cells also can promote T cell activation by means of soluble factors. These findings identify multiple mechanisms by which mast cells can influence T cell proliferation and cytokine production. allergy | asthma | autoimmunity | cytokines | immune response

  2. Parthenolide enhances dacarbazine activity against melanoma cells.

    PubMed

    Koprowska, Kamila; Hartman, Mariusz L; Sztiller-Sikorska, Malgorzata; Czyz, Malgorzata E

    2013-09-01

    Dacarbazine induces a clinical response only in 15% of melanoma patients. New treatment strategies may involve combinations of drugs with different modes of action to target the tumor heterogeneity. We aimed to determine whether the combined treatment of heterogeneous melanoma cell populations in vitro with the alkylating agent dacarbazine and the nuclear factor-κB inhibitor parthenolide could be more effective than either drug alone. A panel of melanoma cell lines, including highly heterogeneous populations derived from surgical specimens, was treated with dacarbazine and parthenolide. The effect of drugs on the viable cell number was examined using an acid phosphatase activity assay, and the combination effect was determined by median-effect analysis. Cell death and cell-cycle arrest were assessed by flow cytometry. Gene expression was measured by real-time PCR and changes in the protein levels were evaluated by western blotting. Secretion of vascular endothelial growth factor and interleukin-8 was determined using an enzyme-linked immunosorbent assay. The self-renewing capacity was assessed using a clonogenic assay. Dacarbazine was less effective in heterogeneous melanoma populations than in the A375 cell line. Parthenolide and dacarbazine synergistically reduced the viable cell numbers. Both drugs induced cell-cycle arrest and apoptotic cell death. Importantly, parthenolide abrogated the baseline and dacarbazine-induced vascular endothelial growth factor secretion from melanoma cells in heterogeneous populations, whereas interleukin-8 secretion was not significantly affected by either drug. Parthenolide eradicated melanoma cells with self-renewing capacity also in cultures simultaneously treated with dacarbazine. The combination of parthenolide and dacarbazine might be considered as a new therapeutic modality against metastatic melanoma.

  3. STATs Shape the Active Enhancer Landscape of T Cell Populations

    PubMed Central

    Vahedi, Golnaz; Takahashi, Hayato; Nakayamada, Shingo; Sun, Hong-wei; Sartorelli, Vittorio; Kanno, Yuka; O’Shea, John J.

    2012-01-01

    SUMMARY Signaling pathways are intimately involved in cellular differentiation, allowing cells to respond to their environment by regulating gene expression. While enhancers are recognized as key elements that regulate selective gene expression, the interplay between signaling pathways and actively used enhancer elements is not clear. Here, we use CD4+ T cells as a model of differentiation, mapping the acquisition of cell-type-specific enhancer elements in T-helper 1 (Th1) and Th2 cells. Our data establish that STAT proteins have a major impact on the acquisition of lineage-specific enhancers and the suppression of enhancers associated with alternative cell fates. Transcriptome analysis further supports a functional role for enhancers regulated by STATs. Importantly, expression of lineage-defining master regulators in STAT-deficient cells fails to fully recover the chromatin signature of STAT-dependent enhancers. Thus, these findings point to a critical role of STATs as environmental sensors in dynamically molding the specialized enhancer architecture of differentiating cells. PMID:23178119

  4. Discrete elements within the SV40 enhancer region display different cell-specific enhancer activities.

    PubMed Central

    Ondek, B; Shepard, A; Herr, W

    1987-01-01

    The SV40 enhancer contains three genetically defined elements, called A, B and C, that can functionally compensate for one another. By using short, synthetic DNA oligonucleotides, we show that each of these elements can act autonomously as an enhancer when present as multiple tandem copies. Analysis of a progressive series of B element oligomers shows a single element is ineffective as an enhancer and that the activity of two or more elements increases with copy number. Assay in five different cell lines of two separate enhancers containing six tandem copies of either the B or C element shows that these elements possess different cell-specific activities. Parallel oligomer enhancer constructs containing closely spaced double point mutations display no enhancer activity in any of the cell lines tested, indicating that these elements represent single units of enhancer function. These elements contain either a 'core' or 'octamer' consensus sequence but these consensus sequences alone are not sufficient for enhancer activity. The different cell-specific activities of the B and C elements are consistent with functional interactions with different trans-acting factors. We discuss how tandem duplication of such dissimilar elements, as in the wild-type SV40 72-bp repeats, can serve to expand the conditions under which an enhancer can function. Images Fig. 2. Fig. 3. Fig. 4. PMID:3036487

  5. Shed syndecan-2 enhances tumorigenic activities of colon cancer cells

    PubMed Central

    Choi, Sojoong; Choi, Youngsil; Jun, Eunsung; Kim, In-San; Kim, Seong-Eun; Jung, Sung-Ae; Oh, Eok-Soo

    2015-01-01

    Because earlier studies showed the cell surface heparan sulfate proteoglycan, syndecan-2, sheds from colon cancer cells in culture, the functional roles of shed syndecan-2 were assessed. A non-cleavable mutant of syndecan-2 in which the Asn148-Leu149 residues were replaced with Asn148-Ile149, had decreased shedding, less cancer-associated activities of syndecan-2 in vitro, and less syndecan-2-mediated metastasis of mouse melanoma cells in vivo, suggesting the importance of shedding on syndecan-2-mediated pro-tumorigenic functions. Indeed, shed syndecan-2 from cancer-conditioned media and recombinant shed syndecan-2 enhanced cancer-associated activities, and depletion of shed syndecan-2 abolished these effects. Similarly, shed syndecan-2 was detected from sera of patients from advanced carcinoma (625.9 ng/ml) and promoted cancer-associated activities. Furthermore, a series of syndecan-2 deletion mutants showed that the tumorigenic activity of shed syndecan-2 resided in the C-terminus of the extracellular domain and a shed syndecan-2 synthetic peptide (16 residues) was sufficient to establish subcutaneous primary growth of HT29 colon cancer cells, pulmonary metastases (B16F10 cells), and primary intrasplenic tumor growth and liver metastases (4T1 cells). Taken together, these results demonstrate that shed syndecan-2 directly enhances colon cancer progression and may be a promising therapeutic target for controlling colon cancer development. PMID:25686828

  6. Enhanced Efflux Activity Facilitates Drug Tolerance in Dormant Bacterial Cells

    PubMed Central

    Pu, Yingying; Zhao, Zhilun; Li, Yingxing; Zou, Jin; Ma, Qi; Zhao, Yanna; Ke, Yuehua; Zhu, Yun; Chen, Huiyi; Baker, Matthew A.B.; Ge, Hao; Sun, Yujie; Xie, Xiaoliang Sunney; Bai, Fan

    2016-01-01

    Summary Natural variations in gene expression provide a mechanism for multiple phenotypes to arise in an isogenic bacterial population. In particular, a sub-group termed persisters show high tolerance to antibiotics. Previously, their formation has been attributed to cell dormancy. Here we demonstrate that bacterial persisters, under β-lactam antibiotic treatment, show less cytoplasmic drug accumulation as a result of enhanced efflux activity. Consistently, a number of multi-drug efflux genes, particularly the central component TolC, show higher expression in persisters. Time-lapse imaging and mutagenesis studies further establish a positive correlation between tolC expression and bacterial persistence. The key role of efflux systems, among multiple biological pathways involved in persister formation, indicates that persisters implement a positive defense against antibiotics prior to a passive defense via dormancy. Finally, efflux inhibitors and antibiotics together effectively attenuate persister formation, suggesting a combination strategy to target drug tolerance. PMID:27105118

  7. Active screen plasma nitriding enhances cell attachment to polymer surfaces

    NASA Astrophysics Data System (ADS)

    Kaklamani, Georgia; Bowen, James; Mehrban, Nazia; Dong, Hanshan; Grover, Liam M.; Stamboulis, Artemis

    2013-05-01

    Active screen plasma nitriding (ASPN) is a well-established technique used for the surface modification of materials, the result of which is often a product with enhanced functional performance. Here we report the modification of the chemical and mechanical properties of ultra-high molecular weight poly(ethylene) (UHMWPE) using 80:20 (v/v) N2/H2 ASPN, followed by growth of 3T3 fibroblasts on the treated and untreated polymer surfaces. ASPN-treated UHMWPE showed extensive fibroblast attachment within 3 h of seeding, whereas fibroblasts did not successfully attach to untreated UHMWPE. Fibroblast-coated surfaces were maintained for up to 28 days, monitoring their metabolic activity and morphology throughout. The chemical properties of the ASPN-treated UHMWPE surface were studied using X-ray photoelectron spectroscopy, revealing the presence of Csbnd N, Cdbnd N, and Ctbnd N chemical bonds. The elastic modulus, surface topography, and adhesion properties of the ASPN-treated UHMWPE surface were studied over 28 days during sample storage under ambient conditions and during immersion in two commonly used cell culture media.

  8. Particle-Cell Contact Enhances Antibacterial Activity of Silver Nanoparticles

    PubMed Central

    Bondarenko, Olesja; Ivask, Angela; Käkinen, Aleksandr; Kurvet, Imbi; Kahru, Anne

    2013-01-01

    Background It is generally accepted that antibacterial properties of Ag nanoparticles (AgNPs) are dictated by their dissolved fraction. However, dissolution-based concept alone does not fully explain the toxic potency of nanoparticulate silver compared to silver ions. Methodology/Principal Findings Herein, we demonstrated that the direct contact between bacterial cell and AgNPs' surface enhanced the toxicity of nanosilver. More specifically, cell-NP contact increased the cellular uptake of particle-associated Ag ions – the single and ultimate cause of toxicity. To prove that, we evaluated the toxicity of three different AgNPs (uncoated, PVP-coated and protein-coated) to six bacterial strains: Gram-negative Escherichia coli, Pseudomonas fluorescens, P. putida and P. aeruginosa and Gram-positive Bacillus subtilis and Staphylococcus aureus. While the toxicity of AgNO3 to these bacteria varied only slightly (the 4-h EC50 ranged from 0.3 to 1.2 mg Ag/l), the 4-h EC50 values of protein-coated AgNPs for various bacterial strains differed remarkably, from 0.35 to 46 mg Ag/l. By systematically comparing the intracellular and extracellular free Ag+ liberated from AgNPs, we demonstrated that not only extracellular dissolution in the bacterial test environment but also additional dissolution taking place at the particle-cell interface played an essential role in antibacterial action of AgNPs. The role of the NP-cell contact in dictating the antibacterial activity of Ag-NPs was additionally proven by the following observations: (i) separation of bacterial cells from AgNPs by particle-impermeable membrane (cut-off 20 kDa, ∼4 nm) significantly reduced the toxicity of AgNPs and (ii) P. aeruginosa cells which tended to attach onto AgNPs, exhibited the highest sensitivity to all forms of nanoparticulate Ag. Conclusions/Significance Our findings provide new insights into the mode of antibacterial action of nanosilver and explain some discrepancies in this field, showing that

  9. Magnetic Field-Induced T Cell Receptor Clustering by Nanoparticles Enhances T Cell Activation and Stimulates Antitumor Activity

    PubMed Central

    2015-01-01

    Iron–dextran nanoparticles functionalized with T cell activating proteins have been used to study T cell receptor (TCR) signaling. However, nanoparticle triggering of membrane receptors is poorly understood and may be sensitive to physiologically regulated changes in TCR clustering that occur after T cell activation. Nano-aAPC bound 2-fold more TCR on activated T cells, which have clustered TCR, than on naive T cells, resulting in a lower threshold for activation. To enhance T cell activation, a magnetic field was used to drive aggregation of paramagnetic nano-aAPC, resulting in a doubling of TCR cluster size and increased T cell expansion in vitro and after adoptive transfer in vivo. T cells activated by nano-aAPC in a magnetic field inhibited growth of B16 melanoma, showing that this novel approach, using magnetic field-enhanced nano-aAPC stimulation, can generate large numbers of activated antigen-specific T cells and has clinically relevant applications for adoptive immunotherapy. PMID:24564881

  10. Naringenin enhances NK cell lysis activity by increasing the expression of NKG2D ligands on Burkitt's lymphoma cells.

    PubMed

    Kim, Jeong Hwa; Lee, Jae Kwon

    2015-11-01

    Natural killer (NK) cells are capable of identifying and killing tumor cells as well as virus infected cells without pre-sensitization. NK cells express activating and inhibitory receptors, and can distinguish between normal and tumor cells. The present study was designed to demonstrate the importance of the expression level of NKG2D ligands on the Burkitt's lymphoma cell line, Raji, in enhancing NK cell cytolytic activity. Various flavonoids were used as stimulants to enhance the expression of NKG2D ligands. NK cell lysis activity against Raji was not changed by pre-treatment of Raji with luteolin, kaempferol, taxifolin and hesperetin. However, treatment of Raji with naringenin showed increased sensitivity to NK cell lysis than untreated control cells. The activity of naringenin was due to enhanced NKG2D ligand expression. These results provide evidence that narigenin's antitumor activity may be due to targeting of NKG2D ligand expression and suggests a possible immunotherapeutic role for cancer treatment.

  11. Leptin deficiency in vivo enhances the ability of splenic dendritic cells to activate T cells

    PubMed Central

    Ramirez, Oscar

    2014-01-01

    Leptin is a pleiotropic adipokine that is critical for regulating food intake and energy expenditure and also participates in functions of the immune system, including those of antigen-presenting cells. Here, we assess the effect of leptin deficiency on the function splenic dendritic cells (sDC). sDC from leptin-deficient mice (Lepob) were evaluated ex vivo for phenotype, ability to respond to inflammatory stimuli, to acquire and process antigens and to activate T cells. The data show that Lepob sDC express activation markers similar to controls and respond similarly to LPS activation or anti-CD40 cross-linking. In addition, antigen acquisition and processing by Lepob sDC was similar to controls. However, Lepob sDC elicited higher production of IFN-γ in mixed lymphocyte reactions and increased production of IL-2 by antigen-specific T-cell hybridoma relative to controls. To assess Lepob sDC activation of T cells in vivo, Lepob and control mice were infected systemically with Mycobacterium avium. Lepob mice were significantly better at neutralizing the infection as measured by splenic bacterial load over time. This was mirrored with an increased percentage of activated T cells in M. avium-infected Lepob mice. Thus, although no changes were detected in sDC phenotype, activation, antigen processing or presentation, these DC surprisingly presented an enhanced ability to activate T cells ex vivo and in vivo. These data demonstrate that leptin can modulate DC function and suggest that leptin may dampen T-cell responsiveness in the physiological setting. PMID:24966213

  12. Human Cytomegalovirus Infection Enhances NK Cell Activity In Vitro

    PubMed Central

    Tschan-Plessl, Astrid; Stern, Martin; Schmied, Laurent; Retière, Christelle; Hirsch, Hans H.; Garzoni, Christian; van Delden, Christian; Boggian, Katia; Mueller, Nicolas J.; Berger, Christoph; Villard, Jean; Manuel, Oriol; Meylan, Pascal; Terszowski, Grzegorz

    2016-01-01

    Background Occurring frequently after solid organ and hematopoietic stem cell transplantation, cytomegalovirus (CMV) replication remains a relevant cause of mortality and morbidity in affected patients. Despite these adverse effects, an increased alloreactivity of natural killer (NK) cells after CMV infection has been assumed, but the underlying physiopathological mechanisms have remained elusive. Methods We used serial analyses of NK cells before and after CMV infection in kidney transplant recipients as an in vivo model for CMV primary infection to explore the imprint of CMV infection using every patient as their own control: We analyzed NK cell phenotype and function in 47 CMV seronegative recipients of CMV seropositive kidney grafts, who developed CMV primary infection posttransplant. Seronegative recipients of seronegative kidney grafts served as controls. Results We observed a significant increase of NKG2C expressing NK cells after CMV infection (mean increase, 17.5%; 95% confidence interval [95% CI], 10.2-24.9, P < 0.001), whereas cluster of differentiation (CD)57 expressing cells decreased (mean decrease, 14.1%; 95% CI, 8.0-20.2; P < 0.001). Analysis of killer immunoglobulin-like receptor (KIR) expression showed an increase of cells expressing KIR2DL1 as their only inhibitory KIR in patients carrying the cognate ligand HLA-C2 (mean increase, 10.0%; 95% CI, 1.7-18.3; P = 0.018). In C2-negative individuals, KIR2DL1 expression decreased (mean decrease, 3.9%; 95% CI, 1.6-6.2; P = 0.001). As for activating KIR, there was no conclusive change pattern. Most importantly, we observed a significantly higher NK cell degranulation and IFNγ production in response to different target cells (target K562, CD107a: mean increase, 9.9%; 95% CI, 4.8-15.0; P < 0.001; IFNγ: mean increase, 6.6%; 95% CI, 1.6-11.1; P < 0.001; target MRC-5, CD107a: mean increase, 6.9%; 95% CI, 0.7-13.1; P = 0.03; IFNγ: mean increase, 4.8%; 95% CI, 1.7-7.8; P = 0.002). Conclusions We report

  13. An atlas of active enhancers across human cell types and tissues

    NASA Astrophysics Data System (ADS)

    Andersson, Robin; Gebhard, Claudia; Miguel-Escalada, Irene; Hoof, Ilka; Bornholdt, Jette; Boyd, Mette; Chen, Yun; Zhao, Xiaobei; Schmidl, Christian; Suzuki, Takahiro; Ntini, Evgenia; Arner, Erik; Valen, Eivind; Li, Kang; Schwarzfischer, Lucia; Glatz, Dagmar; Raithel, Johanna; Lilje, Berit; Rapin, Nicolas; Bagger, Frederik Otzen; Jørgensen, Mette; Andersen, Peter Refsing; Bertin, Nicolas; Rackham, Owen; Burroughs, A. Maxwell; Baillie, J. Kenneth; Ishizu, Yuri; Shimizu, Yuri; Furuhata, Erina; Maeda, Shiori; Negishi, Yutaka; Mungall, Christopher J.; Meehan, Terrence F.; Lassmann, Timo; Itoh, Masayoshi; Kawaji, Hideya; Kondo, Naoto; Kawai, Jun; Lennartsson, Andreas; Daub, Carsten O.; Heutink, Peter; Hume, David A.; Jensen, Torben Heick; Suzuki, Harukazu; Hayashizaki, Yoshihide; Müller, Ferenc; Consortium, The Fantom; Forrest, Alistair R. R.; Carninci, Piero; Rehli, Michael; Sandelin, Albin

    2014-03-01

    Enhancers control the correct temporal and cell-type-specific activation of gene expression in multicellular eukaryotes. Knowing their properties, regulatory activity and targets is crucial to understand the regulation of differentiation and homeostasis. Here we use the FANTOM5 panel of samples, covering the majority of human tissues and cell types, to produce an atlas of active, in vivo-transcribed enhancers. We show that enhancers share properties with CpG-poor messenger RNA promoters but produce bidirectional, exosome-sensitive, relatively short unspliced RNAs, the generation of which is strongly related to enhancer activity. The atlas is used to compare regulatory programs between different cells at unprecedented depth, to identify disease-associated regulatory single nucleotide polymorphisms, and to classify cell-type-specific and ubiquitous enhancers. We further explore the utility of enhancer redundancy, which explains gene expression strength rather than expression patterns. The online FANTOM5 enhancer atlas represents a unique resource for studies on cell-type-specific enhancers and gene regulation.

  14. An atlas of active enhancers across human cell types and tissues

    PubMed Central

    Miguel-Escalada, Irene; Hoof, Ilka; Bornholdt, Jette; Boyd, Mette; Chen, Yun; Zhao, Xiaobei; Schmidl, Christian; Suzuki, Takahiro; Ntini, Evgenia; Arner, Erik; Valen, Eivind; Li, Kang; Schwarzfischer, Lucia; Glatz, Dagmar; Raithel, Johanna; Lilje, Berit; Rapin, Nicolas; Bagger, Frederik Otzen; Jørgensen, Mette; Andersen, Peter Refsing; Bertin, Nicolas; Rackham, Owen; Burroughs, A. Maxwell; Baillie, J. Kenneth; Ishizu, Yuri; Shimizu, Yuri; Furuhata, Erina; Maeda, Shiori; Negishi, Yutaka; Mungall, Christopher J.; Meehan, Terrence F.; Lassmann, Timo; Itoh, Masayoshi; Kawaji, Hideya; Kondo, Naoto; Kawai, Jun; Lennartsson, Andreas; Daub, Carsten O.; Heutink, Peter; Hume, David A.; Jensen, Torben Heick; Suzuki, Harukazu; Hayashizaki, Yoshihide; Müller, Ferenc; Forrest, Alistair R.R.; Carninci, Piero

    2016-01-01

    SUMMARY Enhancers control the correct temporal and cell type-specific activation of gene expression in higher eukaryotes. Knowing their properties, regulatory activity and targets is crucial to understand the regulation of differentiation and homeostasis. We use the FANTOM5 panel of samples covering the majority of human tissues and cell types to produce an atlas of active, in vivo transcribed enhancers. We show that enhancers share properties with CpG-poor mRNA promoters but produce bidirectional, exosome-sensitive, relatively short unspliced RNAs, the generation of which is strongly related to enhancer activity. The atlas is used to compare regulatory programs between different cells at unprecedented depth, identify disease-associated regulatory single nucleotide polymorphisms, and classify cell type-specific and ubiquitous enhancers. We further explore the utility of enhancer redundancy, which explains gene expression strength rather than expression patterns. The online FANTOM5 enhancer atlas represents a unique resource for studies on cell type-specific enhancers and gene regulation. PMID:24670763

  15. An atlas of active enhancers across human cell types and tissues.

    PubMed

    Andersson, Robin; Gebhard, Claudia; Miguel-Escalada, Irene; Hoof, Ilka; Bornholdt, Jette; Boyd, Mette; Chen, Yun; Zhao, Xiaobei; Schmidl, Christian; Suzuki, Takahiro; Ntini, Evgenia; Arner, Erik; Valen, Eivind; Li, Kang; Schwarzfischer, Lucia; Glatz, Dagmar; Raithel, Johanna; Lilje, Berit; Rapin, Nicolas; Bagger, Frederik Otzen; Jørgensen, Mette; Andersen, Peter Refsing; Bertin, Nicolas; Rackham, Owen; Burroughs, A Maxwell; Baillie, J Kenneth; Ishizu, Yuri; Shimizu, Yuri; Furuhata, Erina; Maeda, Shiori; Negishi, Yutaka; Mungall, Christopher J; Meehan, Terrence F; Lassmann, Timo; Itoh, Masayoshi; Kawaji, Hideya; Kondo, Naoto; Kawai, Jun; Lennartsson, Andreas; Daub, Carsten O; Heutink, Peter; Hume, David A; Jensen, Torben Heick; Suzuki, Harukazu; Hayashizaki, Yoshihide; Müller, Ferenc; Forrest, Alistair R R; Carninci, Piero; Rehli, Michael; Sandelin, Albin

    2014-03-27

    Enhancers control the correct temporal and cell-type-specific activation of gene expression in multicellular eukaryotes. Knowing their properties, regulatory activity and targets is crucial to understand the regulation of differentiation and homeostasis. Here we use the FANTOM5 panel of samples, covering the majority of human tissues and cell types, to produce an atlas of active, in vivo-transcribed enhancers. We show that enhancers share properties with CpG-poor messenger RNA promoters but produce bidirectional, exosome-sensitive, relatively short unspliced RNAs, the generation of which is strongly related to enhancer activity. The atlas is used to compare regulatory programs between different cells at unprecedented depth, to identify disease-associated regulatory single nucleotide polymorphisms, and to classify cell-type-specific and ubiquitous enhancers. We further explore the utility of enhancer redundancy, which explains gene expression strength rather than expression patterns. The online FANTOM5 enhancer atlas represents a unique resource for studies on cell-type-specific enhancers and gene regulation.

  16. TNFα enhances cancer stem cell-like phenotype via Notch-Hes1 activation in oral squamous cell carcinoma cells.

    PubMed

    Lee, Sung Hee; Hong, Hannah S; Liu, Zi Xiao; Kim, Reuben H; Kang, Mo K; Park, No-Hee; Shin, Ki-Hyuk

    2012-07-20

    Cancer stem-like cell (CSC; also known as tumor initiating cell) is defined as a small subpopulation of cancer cells within a tumor and isolated from various primary tumors and cancer cell lines. CSCs are highly tumorigenic and resistant to anticancer treatments. In this study, we found that prolonged exposure to tumor necrosis factor alpha (TNFα), a major proinflammatory cytokine, enhances CSC phenotype of oral squamous cell carcinoma (OSCC) cells, such as an increase in tumor sphere-forming ability, stem cell-associated genes expression, chemo-radioresistance, and tumorigenicity. Moreover, activation of Notch1 signaling was detected in the TNFα-exposed cells, and suppression of Notch1 signaling inhibited CSC phenotype. Furthermore, we demonstrated that inhibition of a Notch downstream target, Hes1, led to suppression of CSC phenotype in the TNFα-exposed cells. We also found that Hes1 expression is commonly upregulated in OSCC lesions compared to precancerous dysplastic lesions, suggesting the possible involvement of Hes1 in OSCC progression and CSC in vivo. In conclusion, inflammatory cytokine exposure may enhance CSC phenotype of OSCC, in part by activating the Notch-Hes1 pathway.

  17. Doxorubicin enhances the capacity of B cells to activate T cells in urothelial urinary bladder cancer.

    PubMed

    Zirakzadeh, A Ali; Kinn, Johan; Krantz, David; Rosenblatt, Robert; Winerdal, Malin E; Hu, Jin; Hartana, Ciputra Adijaya; Lundgren, Christian; Bergman, Emma Ahlén; Johansson, Markus; Holmström, Benny; Hansson, Johan; Sidikii, Alexander; Vasko, Janos; Marits, Per; Sherif, Amir; Winqvist, Ola

    2016-12-24

    Cancer is currently treated by a combination of therapies, including chemotherapy which is believed to suppress the immune system. Combination of immunotherapy and chemotherapy correlates with improved survival but needs careful planning in order to achieve a synergistic effect. In this study, we have demonstrated that doxorubicin treatment of B cells resulted in increased expression of CD86 and concordantly increased CD4(+) T cell activation in the presence of superantigen, an effect that was inhibited by the addition of a CD86 blocking antibody. Furthermore, doxorubicin resulted in decreased expression of the anti-inflammatory cytokines IL-10 and TNF-α. Finally, B cells from urinary bladder cancer patients, treated with a neoadjuvant regiment containing doxorubicin, displayed increased CD86-expression. We conclude that doxorubicin induces CD86 expression on B cells and hence enhances their antigen-presenting ability in vitro, a finding verified in patients. Development of tailored time and dose schedules may increase the effectiveness of combining chemotherapy and immunotherapy.

  18. The glucagon-like peptide 1 receptor agonist enhances intrinsic peroxisome proliferator-activated receptor γ activity in endothelial cells

    SciTech Connect

    Onuma, Hirohisa; Inukai, Kouichi Kitahara, Atsuko; Moriya, Rie; Nishida, Susumu; Tanaka, Toshiaki; Katsuta, Hidenori; Takahashi, Kazuto; Sumitani, Yoshikazu; Hosaka, Toshio; Ishida, Hitoshi

    2014-08-22

    Highlights: • PPARγ activation was involved in the GLP-1-mediated anti-inflammatory action. • Exendin-4 enhanced endogenous PPARγ transcriptional activity in HUVECs. • H89, a PKA inhibitor, abolished GLP-1-induced PPARγ enhancement. • The anti-inflammatory effects of GLP-1 may be explained by PPARγ activation. - Abstract: Recent studies have suggested glucagon-like peptide-1 (GLP-1) signaling to exert anti-inflammatory effects on endothelial cells, although the precise underlying mechanism remains to be elucidated. In the present study, we investigated whether PPARγ activation is involved in the GLP-1-mediated anti-inflammatory action on endothelial cells. When we treated HUVEC cells with 0.2 ng/ml exendin-4, a GLP-1 receptor agonist, endogenous PPARγ transcriptional activity was significantly elevated, by approximately 20%, as compared with control cells. The maximum PPARγ activity enhancing effect of exendin-4 was observed 12 h after the initiation of incubation with exendin-4. As H89, a PKA inhibitor, abolished GLP-1-induced PPARγ enhancement, the signaling downstream from GLP-1 cross-talk must have been involved in PPARγ activation. In conclusion, our results suggest that GLP-1 has the potential to induce PPARγ activity, partially explaining the anti-inflammatory effects of GLP-1 on endothelial cells. Cross-talk between GLP-1 signaling and PPARγ activation would have major impacts on treatments for patients at high risk for cardiovascular disease.

  19. Chronic alcohol consumption enhances iNKT cell maturation and activation

    SciTech Connect

    Zhang, Hui Zhang, Faya; Zhu, Zhaohui; Luong, Dung; Meadows, Gary G.

    2015-01-15

    Alcohol consumption exhibits diverse effects on different types of immune cells. NKT cells are a unique T cell population and play important immunoregulatory roles in different types of immune responses. The effects of chronic alcohol consumption on NKT cells remain to be elucidated. Using a mouse model of chronic alcohol consumption, we found that alcohol increases the percentage of NKT cells, especially iNKT cells in the thymus and liver, but not in the spleen or blood. Alcohol consumption decreases the percentage of NK1.1{sup −} iNKT cells in the total iNKT cell population in all of the tissues and organs examined. In the thymus, alcohol consumption increases the number of NK1.1{sup +}CD44{sup hi} mature iNKT cells but does not alter the number of NK1.1{sup −} immature iNKT cells. A BrdU incorporation assay shows that alcohol consumption increases the proliferation of thymic NK1.1{sup −} iNKT cells, especially the NK1.1{sup −}CD44{sup lo} Stage I iNKT cells. The percentage of NKG2A{sup +} iNKT cells increases in all of the tissues and organs examined; whereas CXCR3{sup +} iNKT cells only increases in the thymus of alcohol-consuming mice. Chronic alcohol consumption increases the percentage of IFN-γ-producing iNKT cells and increases the blood concentration of IFN-γ and IL-12 after in vivo α-galactosylceramide (αGalCer) stimulation. Consistent with the increased cytokine production, the in vivo activation of iNKT cells also enhances the activation of dendritic cells (DC) and NK, B, and T cells in the alcohol-consuming mice. Taken together the data indicate that chronic alcohol consumption enhances iNKT cell maturation and activation, which favors the Th1 immune response. - Highlights: • Chronic alcohol consumption increases iNKT cells in the thymus and liver • Chronic alcohol consumption enhances thymic Stage I iNKT cell proliferation • Chronic alcohol consumption enhances iNKT cell maturation in thymus and periphery • Chronic alcohol

  20. Enhanced Effector Responses in Activated CD8+ T Cells Deficient in Diacylglycerol Kinases

    PubMed Central

    Riese, Matthew J.; Wang, Liang-Chuan S.; Moon, Edmund K.; Joshi, Rohan P.; Ranganathan, Anjana; June, Carl H.; Koretzky, Gary A.; Albelda, Steven M.

    2013-01-01

    Recent clinical trials have shown promise in the use of chimeric antigen receptor(CAR)-transduced T cells; however, augmentation of their activity may broaden their clinical utility and improve their efficacy. We hypothesized that, since CAR action requires proteins essential for TCR signal transduction, deletion of negative regulators of these signaling pathways would enhance CAR signaling and effector T cell function. We tested CAR activity and function in T cells that lacked one or both isoforms of diacylglycerol kinase (dgk) expressed highly in T cells, dgkα and dgkζ, enzymes that metabolize the second messenger diacylglycerol (DAG) and limit Ras/ERK activation. We found that primary murine T cells transduced with CARs specific for the human tumor antigen mesothelin demonstrated greatly enhanced cytokine production and cytotoxicity when co-cultured with a murine mesothelioma line that stably expresses mesothelin. Additionally, we found that dgk-deficient CAR-transduced T cells were more effective in limiting the growth of implanted tumors, both concurrent with and after establishment of tumor. Consistent with our studies in mice, pharmacologic inhibition of dgks also augments function of primary human T cells transduced with CARs. These results suggest that deletion of negative regulators of TCR signaling enhances the activity and function of CAR-expressing T cells and identify dgks as potential targets for improving the clinical potential of CARs. PMID:23576561

  1. Antibody-dependent cellular cytotoxicity toward neuroblastoma enhanced by activated invariant natural killer T cells.

    PubMed

    Mise, Naoko; Takami, Mariko; Suzuki, Akane; Kamata, Toshiko; Harada, Kazuaki; Hishiki, Tomoro; Saito, Takeshi; Terui, Keita; Mitsunaga, Tetsuya; Nakata, Mitsuyuki; Ikeuchi, Takayuki; Nakayama, Toshinori; Yoshida, Hideo; Motohashi, Shinichiro

    2016-03-01

    Anti-ganglioside GD2 antibodies mainly work through antibody-dependent cellular cytotoxicity (ADCC) and have demonstrated clinical benefit for children with neuroblastoma. However, high-risk neuroblastoma still has a high recurrence rate. For further improvement in patient outcomes, ways to maximize the cytotoxic effects of anti-GD2 therapies with minimal toxicity are required. Activated invariant natural killer T (iNKT) cells enhance both innate and type I acquired anti-tumor immunity by producing several kinds of cytokines. In this report, we investigated the feasibility of combination therapy using iNKT cells and an anti-GD2 antibody. Although some of the expanded iNKT cells expressed natural killer (NK) cell markers, including FcγR, iNKT cells were not directly associated with ADCC. When co-cultured with activated iNKT cells, granzyme A, granzyme B and interferon gamma (IFNγ) production from NK cells were upregulated, and the cytotoxicity of NK cells treated with anti-GD2 antibodies was increased. Not only cytokines produced by activated iNKT cells, but also NK-NKT cell contact or NK cell-dendritic cell contact contributed to the increase in NK cell cytotoxicity and further IFNγ production by iNKT cells and NK cells. In conclusion, iNKT cell-based immunotherapy could be an appropriate candidate for anti-GD2 antibody therapy for neuroblastoma.

  2. Activation of the canonical Wnt/{beta}-catenin pathway enhances monocyte adhesion to endothelial cells

    SciTech Connect

    Lee, Dong Kun . E-mail: leedk@memorialhealthsource.com; Nathan Grantham, R.; Trachte, Aaron L.; Mannion, John D.; Wilson, Colleen L.

    2006-08-18

    Monocyte adhesion to vascular endothelium has been reported to be one of the early processes in the development of atherosclerosis. In an attempt to develop strategies to prevent or delay atherosclerosis progression, we analyzed effects of the Wnt/{beta}-catenin signaling pathway on monocyte adhesion to various human endothelial cells. Adhesion of fluorescein-labeled monocytes to various human endothelial cells was analyzed under a fluorescent microscope. Unlike sodium chloride, lithium chloride enhanced monocyte adhesion to endothelial cells in a dose-dependent manner. We further demonstrated that inhibitors for glycogen synthase kinase (GSK)-3{beta} or proteosome enhanced monocyte-endothelial cell adhesion. Results of semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) indicated that activation of Wnt/{beta}-catenin pathway did not change expression levels of mRNA for adhesion molecules. In conclusion, the canonical Wnt/{beta}-catenin pathway enhanced monocyte-endothelial cell adhesion without changing expression levels of adhesion molecules.

  3. Tim-3 enhances FcεRI-proximal signaling to modulate mast cell activation.

    PubMed

    Phong, Binh L; Avery, Lyndsay; Sumpter, Tina L; Gorman, Jacob V; Watkins, Simon C; Colgan, John D; Kane, Lawrence P

    2015-12-14

    T cell (or transmembrane) immunoglobulin and mucin domain protein 3 (Tim-3) has attracted significant attention as a novel immune checkpoint receptor (ICR) on chronically stimulated, often dysfunctional, T cells. Antibodies to Tim-3 can enhance antiviral and antitumor immune responses. Tim-3 is also constitutively expressed by mast cells, NK cells and specific subsets of macrophages and dendritic cells. There is ample evidence for a positive role for Tim-3 in these latter cell types, which is at odds with the model of Tim-3 as an inhibitory molecule on T cells. At this point, little is known about the molecular mechanisms by which Tim-3 regulates the function of T cells or other cell types. We have focused on defining the effects of Tim-3 ligation on mast cell activation, as these cells constitutively express Tim-3 and are activated through an ITAM-containing receptor for IgE (FcεRI), using signaling pathways analogous to those in T cells. Using a variety of gain- and loss-of-function approaches, we find that Tim-3 acts at a receptor-proximal point to enhance Lyn kinase-dependent signaling pathways that modulate both immediate-phase degranulation and late-phase cytokine production downstream of FcεRI ligation.

  4. Tim-3 enhances FcεRI-proximal signaling to modulate mast cell activation

    PubMed Central

    Phong, Binh L.; Avery, Lyndsay; Sumpter, Tina L.; Gorman, Jacob V.; Watkins, Simon C.; Colgan, John D.

    2015-01-01

    T cell (or transmembrane) immunoglobulin and mucin domain protein 3 (Tim-3) has attracted significant attention as a novel immune checkpoint receptor (ICR) on chronically stimulated, often dysfunctional, T cells. Antibodies to Tim-3 can enhance antiviral and antitumor immune responses. Tim-3 is also constitutively expressed by mast cells, NK cells and specific subsets of macrophages and dendritic cells. There is ample evidence for a positive role for Tim-3 in these latter cell types, which is at odds with the model of Tim-3 as an inhibitory molecule on T cells. At this point, little is known about the molecular mechanisms by which Tim-3 regulates the function of T cells or other cell types. We have focused on defining the effects of Tim-3 ligation on mast cell activation, as these cells constitutively express Tim-3 and are activated through an ITAM-containing receptor for IgE (FcεRI), using signaling pathways analogous to those in T cells. Using a variety of gain- and loss-of-function approaches, we find that Tim-3 acts at a receptor-proximal point to enhance Lyn kinase-dependent signaling pathways that modulate both immediate-phase degranulation and late-phase cytokine production downstream of FcεRI ligation. PMID:26598760

  5. Blockade of constitutively activated ERK signaling enhances cytotoxicity of microtubule-destabilizing agents in tumor cells.

    PubMed

    Tanimura, Susumu; Uchiyama, Aya; Watanabe, Kazushi; Yasunaga, Masahiro; Inada, Yoshiyuki; Kawabata, Takumi; Iwashita, Ken-Ichi; Noda, Sinji; Ozaki, Kei-Ichi; Kohno, Michiaki

    2009-01-16

    The extracellular signal-regulated kinase (ERK) signaling pathway is constitutively activated in many human tumor cell types. Given the cytoprotective role of this pathway, we examined whether its specific blockade might sensitize human tumor cells to the induction of apoptosis by various anticancer drugs. Although blockade of ERK signaling alone did not induce substantial cell death, it resulted in marked and selective enhancement of the induction of apoptosis by microtubule-destabilizing agents in tumor cells in which the ERK pathway is constitutively activated. The synergistic activation of c-Jun NH(2)-terminal kinase by the combination of an ERK pathway inhibitor and a microtubule-destabilizing agent appeared to be responsible, at least in part, for this effect. These results suggest that administration of the combination of an ERK pathway inhibitor and a microtubule-destabilizing agent is a potential chemotherapeutic strategy for the treatment of tumor cells with constitutive activation of the ERK pathway.

  6. T-Cell Activation under Hypoxic Conditions Enhances IFN-γ Secretion

    PubMed Central

    Roman, Jessica; Rangasamy, Tirumalai; Guo, Jia; Sugunan, Siva; Meednu, Nida; Packirisamy, Gopinath; Shimoda, Larissa A.; Golding, Amit; Semenza, Gregg; Georas, Steve N.

    2010-01-01

    Secondary lymphoid organs and peripheral tissues are characterized by hypoxic microenvironments, both in the steady state and during inflammation. Although hypoxia regulates T-cell metabolism and survival, very little is known about whether or how hypoxia influences T-cell activation. We stimulated mouse CD4+ T cells in vitro with antibodies directed against the T-cell receptor (CD3) and CD28 under normoxic (20% O2) and hypoxic (1% O2) conditions. Here we report that stimulation under hypoxic conditions augments the secretion of effector CD4+ T-cell cytokines, especially IFN-γ. The enhancing effects of hypoxia on IFN-γ secretion were independent of mouse strain, and were also unaffected using CD4+ T cells from mice lacking one copy of the gene encoding hypoxia-inducible factor-1α. Using T cells from IFN-γ receptor–deficient mice and promoter reporter studies in transiently transfected Jurkat T cells, we found that the enhancing effects of hypoxia on IFN-γ expression were not due to effects on IFN-γ consumption or proximal promoter activity. In contrast, deletion of the transcription factor, nuclear erythroid 2 p45–related factor 2 attenuated the enhancing effect of hypoxia on IFN-γ secretion and other cytokines. We conclude that hypoxia is a previously underappreciated modulator of effector cytokine secretion in CD4+ T cells. PMID:19372249

  7. Enhancement of endothelial cell migration by constitutively active LPA{sub 1}-expressing tumor cells

    SciTech Connect

    Kitayoshi, Misaho; Kato, Kohei; Tanabe, Eriko; Yoshikawa, Kyohei; Fukui, Rie; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer Mutated LPA{sub 1} stimulates cell migration of endothelial cells. Black-Right-Pointing-Pointer VEGF expressions are increased by mutated LPA{sub 1}. Black-Right-Pointing-Pointer LPA signaling via mutated LPA{sub 1} is involved in angiogenesis. Black-Right-Pointing-Pointer Mutated LPA{sub 1} promotes cancer cell progression. -- Abstract: Lysophosphatidic acid (LPA) receptors belong to G protein-coupled transmembrane receptors (LPA receptors; LPA{sub 1} to LPA{sub 6}). They indicate a variety of cellular response by the interaction with LPA, including cell proliferation, migration and differentiation. Recently, we have reported that constitutive active mutated LPA{sub 1} induced the strong biological effects of rat neuroblastoma B103 cells. In the present study, we examined the effects of mutated LPA{sub 1} on the interaction between B103 cells and endothelial F-2 cells. Each LPA receptor expressing B103 cells were maintained in serum-free DMEM and cell motility assay was performed with a Cell Culture Insert. When F-2 cells were cultured with conditioned medium from Lpar1 and Lpar3-expressing cells, the cell motility of F-2 cells was significantly higher than control cells. Interestingly, the motile activity of F-2 cells was strongly induced by mutated LPA{sub 1} than other cells, correlating with the expression levels of vascular endothelial growth factor (Vegf)-A and Vegf-C. Pretreatment of LPA signaling inhibitors inhibited F-2 cell motility stimulated by mutated LPA{sub 1}. These results suggest that activation of LPA signaling via mutated LPA{sub 1} may play an important role in the promotion of angiogenesis in rat neuroblastoma cells.

  8. Enhanced CCR5+/CCR3+ T helper cell ratio in patients with active cutaneous lupus erythematosus.

    PubMed

    Freutel, S; Gaffal, E; Zahn, S; Bieber, T; Tüting, T; Wenzel, J

    2011-10-01

    Cutaneous lupus erythematosus (CLE) is characterized by enhanced interferon α (IFNα) levels in serum and in tissue. Since IFNα promotes a Th1-biased immune response, we hypothesized that a Th1-associated chemokine receptor profile should be a typical finding in patients with active CLE. Therefore, peripheral blood mononuclear cells were isolated from patients with different CLE subsets (n = 15), healthy controls (n = 13) and patients under immunotherapy with IFNα (n = 7). T helper cells were analysed by flow cytometry for the expression of the chemokines receptor CCR5, indicative for Th1 cells, and of CCR3, indicating Th2. In addition, intracellular levels of the type I IFN-inducible MxA protein were measured. Patients with widespread active CLE skin lesions had a significantly increased expression of CCR5, whereas expression of CCR3 was decreased when compared with healthy controls. MxA expression was significantly enhanced in all investigated CLE subtypes, with the highest levels in patients with widespread skin lesions. The enhanced CCR5/CCR3 ratio closely correlated with the MxA levels in peripheral lymphocytes and with disease activity. Our analyses revealed that active CLE is associated with a systemic type I IFN effect that appears to induce a shift towards a Th1-associated chemokine receptor profile. The CCR5/CCR3 T-helper cell ratio might therefore represent an indirect marker for the disease activity in CLE.

  9. Enhanced production of prostaglandins and plasminogen activator during activation of human articular chondrocytes by products of mononuclear cells.

    PubMed

    Meats, J E; McGuire, M K; Ebsworth, N M; Englis, D J; Russell, R G

    1984-01-01

    We have examined the way in which products of cultured human blood mononuclear cells activate human articular chondrocytes. Conditioned medium from mononuclear cells enhanced the production of prostaglandin E by cultured human chondrocytes and also stimulated fibrinolytic activity in these cultures. These two effects may be interrelated, since the increased fibrinolysis in response to products of mononuclear cells was partially inhibited by indomethacin, an inhibitor of prostaglandin biosynthesis. The increased fibrinolysis is probably attributable to plasminogen activator, since it was strongly dependent on the presence of plasminogen. Increased amounts of PGE and chondroitin sulphate were also released from intact fragments of cartilage exposed to medium from cultured mononuclear cells. The time course and dose dependence of these effects were studied. The addition of exogenous arachidonic acid markedly enhanced production of PGE2. Ultrogel AcA54 was used to fractionate medium from cultured mononuclear cells and the chondrocyte-stimulating activity eluted with an apparent molecular weight between 12 000 and 25 000 daltons. Adherent and non-adherent mononuclear blood cells were also partially separated and conditioned medium from each was assayed for chondrocyte-stimulating factors. Both populations released factor(s) which increased the production of prostaglandin E by chondrocytes, but more activity came from the adherent mononuclear cells. The possible interrelationship between the chondrocyte activating factor studied here and others described in the literature is discussed.

  10. Cytoplasmic myosin exposed apoptotic cells appear with caspase-3 activation and enhance CLL cell viability

    PubMed Central

    Cui, Xiaoxuan; Zhang, Lu; Magli, Amanda R.; Catera, Rosa; Yan, Xiao-Jie; Griffin, Daniel O.; Rothstein, Thomas L.; Barrientos, Jacqueline; Kolitz, Jonathan E.; Allen, Steven L.; Rai, Kanti R.; Chiorazzi, Nicholas; Chu, Charles C.

    2015-01-01

    The degree of chronic lymphocytic leukemia (CLL) B-cell antigen receptor (BCR) binding to myosin exposed apoptotic cells (MEACs) correlates with worse patient outcomes, suggesting a link to disease activity. Therefore, we studied MEAC formation and the effects of MEAC binding on CLL cells. In cell line studies, both intrinsic (spontaneous or camptothecin-induced) and extrinsic (FasL- or anti-Fas-induced) apoptosis created a high percent of MEACs over time in a process associated with caspase-3 activation, leading to cytoplasmic myosin cleavage and trafficking to cell membranes. The involvement of common apoptosis pathways suggests that most cells can produce MEACs and indeed CLL cells themselves form MEACs. Consistent with the idea that MEAC formation may be a signal to remove dying cells, we found that natural IgM antibodies bind to MEACs. Functionally, co-culture of MEACs with CLL cells, regardless of immunoglobulin heavy chain variable region gene mutation status, improved leukemic cell viability. Based on inhibitor studies, this improved viability involved BCR signaling molecules. These results support the hypothesis that stimulation of CLL cells with antigen, such as those on MEACs, promotes CLL cell viability, which in turn could lead to progression to worse disease. PMID:26220042

  11. Circumvention of regulatory CD4(+) T cell activity during cross-priming strongly enhances T cell-mediated immunity.

    PubMed

    Heit, Antje; Gebhardt, Friedemann; Lahl, Katharina; Neuenhahn, Michael; Schmitz, Frank; Anderl, Florian; Wagner, Hermann; Sparwasser, Tim; Busch, Dirk H; Kastenmüller, Kathrin

    2008-06-01

    Immunization with purified antigens is a safe and practical vaccination strategy but is generally unable to induce sustained CD8(+) T cell-mediated protection against intracellular pathogens. Most efforts to improve the CD8(+) T cell immunogenicity of these vaccines have focused on co-administration of adjuvant to support cross-presentation and dendritic cell maturation. In addition, it has been shown that CD4(+) T cell help during the priming phase contributes to the generation of protective CD8(+) memory T cells. In this report we demonstrate that the depletion of CD4(+) T cells paradoxically enhances long-lasting CD8-mediated protective immunity upon protein vaccination. Functional and genetic in vivo inactivation experiments attribute this enhancement primarily to MHC class II-restricted CD4(+) regulatory T cells (Treg), which appear to physiologically suppress the differentiation process towards long-living effector memory T cells. Since, in functional terms, this suppression by Treg largely exceeds the positive effects of conventional CD4(+) T cell help, even the absence of all CD4(+) T cells or lack of MHC class II-mediated interactions on priming dendritic cells result in enhanced CD8(+) T cell immunogenicity. These findings have important implications for the improvement of vaccines against intracellular pathogens or tumors, especially in patients with highly active Treg.

  12. Fasting enhances TRAIL-mediated liver natural killer cell activity via HSP70 upregulation.

    PubMed

    Dang, Vu T A; Tanabe, Kazuaki; Tanaka, Yuka; Tokumoto, Noriaki; Misumi, Toshihiro; Saeki, Yoshihiro; Fujikuni, Nobuaki; Ohdan, Hideki

    2014-01-01

    Acute starvation, which is frequently observed in clinical practice, sometimes augments the cytolytic activity of natural killer cells against neoplastic cells. In this study, we investigated the molecular mechanisms underlying the enhancement of natural killer cell function by fasting in mice. The total number of liver resident natural killer cells in a unit weight of liver tissue obtained from C57BL/6J mice did not change after a 3-day fast, while the proportions of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)+ and CD69+ natural killer cells were significantly elevated (n = 7, p <0.01), as determined by flow cytometric analysis. Furthermore, we found that TRAIL- natural killer cells that were adoptively transferred into Rag-2-/- γ chain-/- mice could convert into TRAIL+ natural killer cells in fasted mice at a higher proportion than in fed mice. Liver natural killer cells also showed high TRAIL-mediated antitumor function in response to 3-day fasting. Since these fasted mice highly expressed heat shock protein 70 (n = 7, p <0.05) in liver tissues, as determined by western blot, the role of this protein in natural killer cell activation was investigated. Treatment of liver lymphocytes with 50 µg/mL of recombinant heat shock protein 70 led to the upregulation of both TRAIL and CD69 in liver natural killer cells (n = 6, p <0.05). In addition, HSP70 neutralization by intraperitoneally injecting an anti- heat shock protein 70 monoclonal antibody into mice prior to fasting led to the downregulation of TRAIL expression (n = 6, p <0.05). These findings indicate that acute fasting enhances TRAIL-mediated liver natural killer cell activity against neoplastic cells through upregulation of heat shock protein 70.

  13. CXCL13/CXCR5 signaling enhances BCR-triggered B-cell activation by shaping cell dynamics.

    PubMed

    Sáez de Guinoa, Julia; Barrio, Laura; Mellado, Mario; Carrasco, Yolanda R

    2011-08-11

    Continuous migration of B cells at the follicle contrasts with their stable arrest after encounter with antigen. Two main ligand/receptor pairs are involved in these cell behaviors: the chemokine CXCL13/chemokine receptor CXCR5 and antigen/BCR. Little is known regarding the interplay between CXCR5 and BCR signaling in the modulation of B-cell dynamics and its effect on B-cell activation. We used a 2-dimensional model to study B-cell migration and antigen recognition in real time, and found that BCR signaling strength alters CXCL13-mediated migration, leading to a heterogeneous B-cell behavior pattern. In addition, we demonstrate that CXCL13/CXCR5 signaling does not impair BCR-triggered immune synapse formation and that CXCR5 is excluded from the central antigen cluster. CXCL13/CXCR5 signaling enhances BCR-mediated B-cell activation in at least 2 ways: (1) it assists antigen gathering at the synapse by promoting membrane ruffling and lymphocyte function-associated antigen 1 (LFA-1)-supported adhesion, and (2) it allows BCR signaling integration in motile B cells through establishment of LFA-1-supported migratory junctions. Both processes require functional actin cytoskeleton and non-muscle myosin II motor protein. Therefore, the CXCL13/CXCR5 signaling effect on shaping B-cell dynamics is an effective mechanism that enhances antigen encounter and BCR-triggered B-cell activation.

  14. Discovery of Novel Small Molecules that Activate Satellite Cell Proliferation and Enhance Repair of Damaged Muscle.

    PubMed

    Billin, Andrew N; Bantscheff, Marcus; Drewes, Gerard; Ghidelli-Disse, Sonja; Holt, Jason A; Kramer, Henning F; McDougal, Alan J; Smalley, Terry L; Wells, Carrow I; Zuercher, William J; Henke, Brad R

    2016-02-19

    Skeletal muscle progenitor stem cells (referred to as satellite cells) represent the primary pool of stem cells in adult skeletal muscle responsible for the generation of new skeletal muscle in response to injury. Satellite cells derived from aged muscle display a significant reduction in regenerative capacity to form functional muscle. This decrease in functional recovery has been attributed to a decrease in proliferative capacity of satellite cells. Hence, agents that enhance the proliferative abilities of satellite cells may hold promise as therapies for a variety of pathological settings, including repair of injured muscle and age- or disease-associated muscle wasting. Through phenotypic screening of isolated murine satellite cells, we identified a series of 2,4-diaminopyrimidines (e.g., 2) that increased satellite cell proliferation. Importantly, compound 2 was effective in accelerating repair of damaged skeletal muscle in an in vivo mouse model of skeletal muscle injury. While these compounds were originally prepared as c-Jun N-terminal kinase 1 (JNK-1) inhibitors, structure-activity analyses indicated JNK-1 inhibition does not correlate with satellite cell activity. Screening against a broad panel of kinases did not result in identification of an obvious molecular target, so we conducted cell-based proteomics experiments in an attempt to identify the molecular target(s) responsible for the potentiation of the satellite cell proliferation. These data provide the foundation for future efforts to design improved small molecules as potential therapeutics for muscle repair and regeneration.

  15. Proliferation-Related Activity in Endothelial Cells Is Enhanced by Micropower Plasma

    PubMed Central

    Suzuki, Kotaro

    2016-01-01

    Nonthermal plasma has received a lot of attention as a medical treatment technique in recent years. It can easily create various reactive chemical species (ROS) and is harmless to living body. Although plasma at gas-liquid interface has a potential for a biomedical application, the interactions between the gas-liquid plasma and living cells remain unclear. Here, we show characteristics of a micropower plasma with 0.018 W of the power input, generated at gas-liquid interface. We also provide the evidence of plasma-induced enhancement in proliferation activity of endothelial cells. The plasma produced H2O2, HNO2, and HNO3 in phosphate buffered saline containing Mg++ and Ca++ (PBS(+)), and their concentration increased linearly during 600-second discharge. The value of pH in PBS(+) against the plasma discharge time was stable at about 7.0. Temperature in PBS(+) rose monotonically, and its rise was up to 0.8°C at the bottom of a cell-cultured dish by the plasma discharge for 600 s. Short-time treatment of the plasma enhanced proliferation activity of endothelial cells. In contrast, the treatment of H2O2 does not enhance the cell proliferation. Thus, the ROS production and the nuclear factor-kappa B (NF-κB) activation due to the plasma treatment might be related to enhancement of the cell proliferation. Our results may potentially provide the basis for developing the biomedical applications using the gas-liquid plasma. PMID:28058258

  16. IL-27 Directly Enhances Germinal Center B Cell Activity and Potentiates Lupus in Sanroque Mice.

    PubMed

    Vijayan, Dipti; Mohd Redzwan, Norhanani; Avery, Danielle T; Wirasinha, Rushika C; Brink, Robert; Walters, Giles; Adelstein, Stephen; Kobayashi, Masao; Gray, Paul; Elliott, Michael; Wong, Melanie; King, Cecile; Vinuesa, Carola G; Ghilardi, Nico; Ma, Cindy S; Tangye, Stuart G; Batten, Marcel

    2016-10-15

    Germinal centers (GC) give rise to high-affinity and long-lived Abs and are critical in immunity and autoimmunity. IL-27 supports GCs by promoting survival and function of T follicular helper cells. We demonstrate that IL-27 also directly enhances GC B cell function. Exposure of naive human B cells to rIL-27 during in vitro activation enhanced their differentiation into CD20(+)CD38(+)CD27(low)CD95(+)CD10(+) cells, consistent with the surface marker phenotype of GC B cells. This effect was inhibited by loss-of-function mutations in STAT1 but not STAT3 To extend these findings, we studied the in vivo effects of IL-27 signals to B cells in the GC-driven Roquin(san/san) lupus mouse model. Il27ra(-/-)Roquin(san/san) mice exhibited significantly reduced GCs, IgG2a(c)(+) autoantibodies, and nephritis. Mixed bone marrow chimeras confirmed that IL-27 acts through B cell- and CD4(+) T cell-intrinsic mechanisms to support GCs and alter the production of pathogenic Ig isotypes. To our knowledge, our data provide the first evidence that IL-27 signals directly to B cells promote GCs and support the role of IL-27 in lupus.

  17. Activation of the complement cascade enhances motility of leukemic cells by downregulating expression of HO-1

    PubMed Central

    Abdelbaset-Ismail, A; Borkowska-Rzeszotek, S; Kubis, E; Bujko, K; Brzeźniakiewicz-Janus, K; Bolkun, L; Kloczko, J; Moniuszko, M; Basak, G W; Wiktor-Jedrzejczak, W; Ratajczak, M Z

    2017-01-01

    As a crucial arm of innate immunity, the complement cascade (ComC) is involved both in mobilization of normal hematopoietic stem/progenitor cells (HSPCs) from bone marrow (BM) into peripheral blood and in their homing to BM. Despite the fact that ComC cleavage fragments alone do not chemoattract normal HSPCs, we found that leukemia cell lines as well as clonogenic blasts from chronic myeloid leukemia and acute myeloid leukemia patients respond robustly to C3 and C5 cleavage fragments by chemotaxis and increased adhesion. This finding was supported by the detection of C3a and C5a receptors in cells from human malignant hematopoietic cell lines and patient blasts at the mRNA (reverse transcriptase-polymerase chain reaction) and protein level (fluorescence-activated cell sorting), and by the demonstration that these receptors respond to stimulation by C3a and C5a by phosphorylation of p42/44 and p38 mitogen-activated protein kinases (MAPK), and protein kinase B (PKB/AKT). We also found that inducible heme oxygenase 1 (HO-1) is a negative regulator of ComC-mediated trafficking of leukemic cells, and that stimulation of leukemic cells by C3 or C5 cleavage fragments activates p38 MAPK, which downregulates HO-1 expression, rendering cells more mobile. We conclude that activation of the ComC in leukemia/lymphoma patients (for example, as a result of accompanying infections) enhances the motility of malignant cells and contributes to their spread in a p38 MAPK–HO-1-dependent manner. Therefore, inhibition of p38 MAPK or upregulation of HO-1 by small-molecule modulators would have a beneficial effect on ameliorating cell migration-mediated expansion of leukemia/lymphoma cells when the ComC becomes activated. PMID:27451975

  18. Enhancement of cell biomass and cell activity of astaxanthin-rich Haematococcus pluvialis.

    PubMed

    Sun, Han; Kong, Qing; Geng, Zhaoyan; Duan, Liangfei; Yang, Min; Guan, Bin

    2015-06-01

    Fed-batch culture and the transformation conditions of Haematococcus pluvialis in a 5L photobioreactor were investigated. Methods of feeding model, low temperature at night and proper feeding time were used to increase both cell biomass and cell activity. Dry cell weight of 1.87 g/L which was 2.0-fold of batch culture and the specific growth rate of 0.43 d(-1) suggested the superduper results of these methods to increase the dry cell weight in the short cultivation time. Furthermore, mixed lights of blue and white (ratio of 3:1) at 7000 xl were used to expedite the morphologic changes of H. pluvialis from green cells to red cyst cells with the yield of 91.8±2.53 mg/L.

  19. Isolation and Analysis of Novel Electrochemically Active Bacteria for Enhanced Power Generation in Microbial Fuel Cells

    DTIC Science & Technology

    2009-03-07

    ISOLATION AND ANALYSIS OF NOVEL ELECTROCHEMICALLY ACTIVE BACTERIA FOR ENHANCED POWER GENERATION IN MICROBIAL FUEL CELLS B.E. Logan, J.M. Regan...new exoelectrogenic bacteria during this project. We isolated Rhodopseudomonas palustris DX-1, and demonstrated for the first time that a pure culture... isolated Ochrobactrum anthropi YZ-1, which had the remarkable characteristic that it was unable to respire using hydrous Fe(lll) oxide but produced

  20. Dobesilate enhances endothelial nitric oxide synthase-activity in macro- and microvascular endothelial cells

    PubMed Central

    Suschek, Christoph; Kolb, Hubert; Kolb-Bachofen, Victoria

    1997-01-01

    Dobesilate is used for normalizing vascular dysfunction in a number of diseases. In search for an effect on endothelial NO production, macrovascular endothelial cells from rat aorta, microvascular endothelial cells from rat exocrine pancreatic tissue, and capillary endothelial cells from rat islets, were cultured in the presence or absence of Mg-Dobesilate. The activity of constitutive nitric oxide synthase (ecNOS) in resident cells as well as of inducible nitric oxide synthase (iNOS) in cytokine-activated cells was measured indirectly by recording the citrulline concentrations in culture supernatants.In each of the different endothelial cells Mg-Dobesilate incubation (0.25–1 mM) for 24 h led to a significant and concentration-dependent increase in ecNOS-activities. With cytokine-activated endothelial cell cultures only moderate effects were seen with little or no concentration-dependency. Addition of the NOS-inhibitor NG-monomethyl-L-arginine led to a significant suppression of citrulline formation in all cultures as an evidence for the enzyme specificity of these effects.iNOS- and ecNOS-specific reverse transcription and semi-quantitative polymerase chain reaction (RT–PCR) with RNA from resident or cytokine-activated endothelial cells gave no evidence for an increase in NOS-specific mRNA after Mg-Dobesilate-treatment. Furthermore, Dobesilate-mediated enhancement of NO synthesis in resting endothelial cells was not due to iNOS induction in these cells, as no iNOS-specific signal was found by RT–PCR. PMID:9421302

  1. Enhanced bone-forming activity of side population cells in the periodontal ligament.

    PubMed

    Ninomiya, Tadashi; Hiraga, Toru; Hosoya, Akihiro; Ohnuma, Kiyoshi; Ito, Yuzuru; Takahashi, Masafumi; Ito, Susumu; Asashima, Makoto; Nakamura, Hiroaki

    2014-04-01

    Regeneration of alveolar bone is critical for the successful treatment of periodontal diseases. The periodontal ligament (PDL) has been widely investigated as a source of cells for the regeneration of periodontal tissues. In the present study where we attempted to develop an effective strategy for alveolar bone regeneration, we examined the osteogenic potential of side population (SP) cells, a stem cell-containing population that has been shown to be highly abundant in several kinds of tissues, in PDL cells. Isolated SP cells from the rat PDL exhibited a superior ability to differentiate into osteoblastic cells compared with non-SP (NSP) and unsorted PDL cells in vitro. The mRNA expressions of osteoblast markers and bone morphogenetic protein (BMP) 2 were significantly upregulated in SP cells and were further increased by osteogenic induction. To examine the bone-forming activity of SP cells in vivo, PDL SP cells isolated from green fluorescent protein (GFP)-transgenic rats were transplanted with hydroxyapatite (HA) disks into wild-type animals. SP cells exhibited a high ability to induce the mineralized matrix compared with NSP and unsorted PDL cells. At 12 weeks after the implantation, some of the pores in the HA disks with SP cells were filled with mineralized matrices, which were positive for bone matrix proteins, such as osteopontin, bone sialoprotein, and osteocalcin. Furthermore, osteoblast- and osteocyte-like cells on and in the bone-like mineralized matrices were GFP positive, suggesting that the matrices were directly formed by the transplanted cells. These results suggest that PDL SP cells possess enhanced osteogenic potential and could be a potential source for cell-based regenerative therapy for alveolar bone.

  2. HSPB1 Enhances SIRT2-Mediated G6PD Activation and Promotes Glioma Cell Proliferation

    PubMed Central

    Cao, Fei; Chen, Mantao; Zheng, Xiujue; Zhan, Renya

    2016-01-01

    Heat shock proteins belong to a conserved protein family and are involved in multiple cellular processes. Heat shock protein 27 (Hsp27), also known as heat HSPB1, participates in cellular responses to not only heat shock, but also oxidative or chemical stresses. However, the contribution of HSPB1 to anti-oxidative response remains unclear. Here, we show that HSPB1 activates G6PD in response to oxidative stress or DNA damage. HSPB1 enhances the binding between G6PD and SIRT2, leading to deacetylation and activation of G6PD. Besides, HSPB1 activates G6PD to sustain cellular NADPH and pentose production in glioma cells. High expression of HSPB1 correlates with poor survivalrate of glioma patients. Together, our study uncovers the molecular mechanism by which HSPB1 activates G6PD to protect cells from oxidative and DNA damage stress. PMID:27711253

  3. PLEKHG3 enhances polarized cell migration by activating actin filaments at the cell front

    PubMed Central

    Nguyen, Trang Thi Thu; Park, Wei Sun; Park, Byung Ouk; Kim, Cha Yeon; Oh, Yohan; Kim, Jin Man; Choi, Hana; Kyung, Taeyoon; Kim, Cheol-Hee; Lee, Gabsang; Hahn, Klaus M.; Meyer, Tobias; Heo, Won Do

    2016-01-01

    Cells migrate by directing Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division control protein 42 (Cdc42) activities and by polymerizing actin toward the leading edge of the cell. Previous studies have proposed that this polarization process requires a local positive feedback in the leading edge involving Rac small GTPase and actin polymerization with PI3K likely playing a coordinating role. Here, we show that the pleckstrin homology and RhoGEF domain containing G3 (PLEKHG3) is a PI3K-regulated Rho guanine nucleotide exchange factor (RhoGEF) for Rac1 and Cdc42 that selectively binds to newly polymerized actin at the leading edge of migrating fibroblasts. Optogenetic inactivation of PLEKHG3 showed that PLEKHG3 is indispensable both for inducing and for maintaining cell polarity. By selectively binding to newly polymerized actin, PLEKHG3 promotes local Rac1/Cdc42 activation to induce more local actin polymerization, which in turn promotes the recruitment of more PLEKHG3 to induce and maintain cell front. Thus, autocatalytic reinforcement of PLEKHG3 localization to the leading edge of the cell provides a molecular basis for the proposed positive feedback loop that is required for cell polarization and directed migration. PMID:27555588

  4. Cationic Phosphorus Dendrimer Enhances Photodynamic Activity of Rose Bengal against Basal Cell Carcinoma Cell Lines.

    PubMed

    Dabrzalska, Monika; Janaszewska, Anna; Zablocka, Maria; Mignani, Serge; Majoral, Jean Pierre; Klajnert-Maculewicz, Barbara

    2017-04-06

    In the last couple of decades, photodynamic therapy emerged as a useful tool in the treatment of basal cell carcinoma. However, it still meets limitations due to unfavorable properties of photosensitizers such as poor solubility or lack of selectivity. Dendrimers, polymers widely studied in biomedical field, may play a role as photosensitizer carriers and improve the efficacy of photodynamic treatment. Here, we describe the evaluation of an electrostatic complex of cationic phosphorus dendrimer and rose bengal in such aspects as singlet oxygen production, cellular uptake, and phototoxicity against three basal cell carcinoma cell lines. Rose bengal-cationic dendrimer complex in molar ratio 5:1 was compared to free rose bengal. Obtained results showed that the singlet oxygen production in aqueous medium was significantly higher for the complex than for free rose bengal. The cellular uptake of the complex was 2-7-fold higher compared to a free photosensitizer. Importantly, rose bengal, rose bengal-dendrimer complex, and dendrimer itself showed no dark toxicity against all three cell lines. Moreover, we observed that phototoxicity of the complex was remarkably enhanced presumably due to high cellular uptake. On the basis of the obtained results, we conclude that rose bengal-cationic dendrimer complex has a potential in photodynamic treatment of basal cell carcinoma.

  5. Enhanced photocurrent density in graphene/Si based solar cell (GSSC) by optimizing active layer thickness

    SciTech Connect

    Rosikhin, Ahmad Hidayat, Aulia Fikri; Syuhada, Ibnu; Winata, Toto

    2015-12-29

    Thickness dependent photocurrent density in active layer of graphene/Si based solar cell has been investigated via analytical – simulation study. This report is a preliminary comparison of experimental and analytical investigation of graphene/Si based solar cell. Graphene sheet was interfaced with Si thin film forming heterojunction solar cell that was treated as a device model for photocurrent generator. Such current can be enhanced by optimizing active layer thickness and involving metal oxide as supporting layer to shift photons absorption. In this case there are two type of devices model with and without TiO{sub 2} in which the silicon thickness varied at 20 – 100 nm. All of them have examined and also compared with each other to obtain an optimum value. From this calculation it found that generated currents almost linear with thickness but there are saturated conditions that no more enhancements will be achieved. Furthermore TiO{sub 2} layer is effectively increases photon absorption but reducing device stability, maximum current is fluctuates enough. This may caused by the disturbance of excitons diffusion and resistivity inside each layer. Finally by controlling active layer thickness, it is quite useful to estimate optimization in order to develop the next solar cell devices.

  6. Enhanced oxygen reduction activity and solid oxide fuel cell performance with a nanoparticles-loaded cathode.

    PubMed

    Zhang, Xiaomin; Liu, Li; Zhao, Zhe; Tu, Baofeng; Ou, Dingrong; Cui, Daan; Wei, Xuming; Chen, Xiaobo; Cheng, Mojie

    2015-03-11

    Reluctant oxygen-reduction-reaction (ORR) activity has been a long-standing challenge limiting cell performance for solid oxide fuel cells (SOFCs) in both centralized and distributed power applications. We report here that this challenge has been tackled with coloading of (La,Sr)MnO3 (LSM) and Y2O3 stabilized zirconia (YSZ) nanoparticles within a porous YSZ framework. This design dramatically improves ORR activity, enhances fuel cell output (200-300% power improvement), and enables superior stability (no observed degradation within 500 h of operation) from 600 to 800 °C. The improved performance is attributed to the intimate contacts between nanoparticulate YSZ and LSM particles in the three-phase boundaries in the cathode.

  7. Enhanced activation of B cells in a granulocyte colony-stimulating factor-mobilized peripheral blood stem cell graft.

    PubMed

    Tayebi, H; Lapierre, V; Saas, P; Lienard, A; Sutton, L; Milpied, N; Attal, M; Cahn, J Y; Kuentz, M; Blaise, D; Hervé, P; Tiberghien, P; Robinet, E

    2001-09-01

    In a randomized study that compared human leucocyte antigen-identical allogeneic granulocyte colony-stimulating factor (G-CSF)-mobilized peripheral blood stem cell (PBSC) versus bone marrow (BM) transplantation, the expression of activation markers, CD23, CD25 and CD45RO by B cells, was compared in blood before and after G-CSF mobilization and in PBSC versus BM grafts. The fractions of CD23+ and CD25+ B cells were higher in PBSC than in BM grafts. Moreover, we observed a G-CSF-induced increase in B-cell fractions in blood as well as in PBSC grafts when compared with BM grafts. Such an enhanced B-cell activation could contribute to the accelerated kinetics of immuno-haematological reconstitution, the occurrence of acute haemolysis in the ABO minor incompatibility setting, as well as the increased incidence of chronic graft-versus-host disease observed after PBSC transplantation.

  8. NOD1 Cooperates with TLR2 to Enhance T Cell Receptor-Mediated Activation in CD8 T Cells

    PubMed Central

    Mercier, Blandine C.; Debaud, Anne-Laure; Tomkowiak, Martine; Marvel, Jacqueline; Bonnefoy, Nathalie

    2012-01-01

    Pattern recognition receptors (PRR), like Toll-like receptors (TLR) and NOD-like receptors (NLR), are involved in the detection of microbial infections and tissue damage by cells of the innate immune system. Recently, we and others have demonstrated that TLR2 can additionally function as a costimulatory receptor on CD8 T cells. Here, we establish that the intracytosolic receptor NOD1 is expressed and functional in CD8 T cells. We show that C12-iEDAP, a synthetic ligand for NOD1, has a direct impact on both murine and human CD8 T cells, increasing proliferation and effector functions of cells activated via their T cell receptor (TCR). This effect is dependent on the adaptor molecule RIP2 and is associated with an increased activation of the NF-κB, JNK and p38 signaling pathways. Furthermore, we demonstrate that NOD1 stimulation can cooperate with TLR2 engagement on CD8 T cells to enhance TCR-mediated activation. Altogether our results indicate that NOD1 might function as an alternative costimulatory receptor in CD8 T cells. Our study provides new insights into the function of NLR in T cells and extends to NOD1 the recent concept that PRR stimulation can directly control T cell functions. PMID:22848741

  9. Troglitazone enhances tamoxifen-induced growth inhibitory activity of MCF-7 cells

    SciTech Connect

    Yu, Hong-Nu; Noh, Eun-Mi; Lee, Young-Rae; Roh, Si-Gyun; Song, Eun-Kyung; Han, Myung-Kwan; Lee, Yong-Chul; Shim, In Kyong; Lee, Seung Jin; Jung, Sung Hoo; Kim, Jong-Suk Youn, Hyun Jo

    2008-12-05

    Peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) ligands have been identified as a potential source of therapy for human cancers. However, PPAR{gamma} ligands have a limitation for breast cancer therapy, since estrogen receptor {alpha} (ER{sub {alpha}}) negatively interferes with PPAR{gamma} signaling in breast cancer cells. Here we show that ER{sub {alpha}} inhihits PPAR{gamma} transactivity and ER{sub {alpha}}-mediated inhibition of PPAR{gamma} transactivity is blocked by tamoxifen, an estrogen receptor blocker. The activation of ER{sub {alpha}} with 17-{beta}-estradiol blocked PPRE transactivity induced by troglitazone, a PPAR{gamma} ligand, indicating the resistance of ER{sub {alpha}}-positive breast cancer cells to troglitazone. Indeed, troglitazone inhibited the growth of ER{sub {alpha}}-negative MDA-MB-231 cells more than that of ER{sub {alpha}}-positive MCF-7 cells. Combination of troglitazone with tamoxifen led to a marked increase in growth inhibition of ER{sub {alpha}}-positive MCF-7 cells compared to either agent alone. Our data indicates that troglitazone enhances the growth inhibitory activity of tamoxifen in ER{sub {alpha}}-positive MCF-7 cells.

  10. Stem cell-based gene therapy activated using magnetic hyperthermia to enhance the treatment of cancer.

    PubMed

    Yin, Perry T; Shah, Shreyas; Pasquale, Nicholas J; Garbuzenko, Olga B; Minko, Tamara; Lee, Ki-Bum

    2016-03-01

    Stem cell-based gene therapies, wherein stem cells are genetically engineered to express therapeutic molecules, have shown tremendous potential for cancer applications owing to their innate ability to home to tumors. However, traditional stem cell-based gene therapies are hampered by our current inability to control when the therapeutic genes are actually turned on, thereby resulting in detrimental side effects. Here, we report the novel application of magnetic core-shell nanoparticles for the dual purpose of delivering and activating a heat-inducible gene vector that encodes TNF-related apoptosis-inducing ligand (TRAIL) in adipose-derived mesenchymal stem cells (AD-MSCs). By combining the tumor tropism of the AD-MSCs with the spatiotemporal MCNP-based delivery and activation of TRAIL expression, this platform provides an attractive means with which to enhance our control over the activation of stem cell-based gene therapies. In particular, we found that these engineered AD-MSCs retained their innate ability to proliferate, differentiate, and, most importantly, home to tumors, making them ideal cellular carriers. Moreover, exposure of the engineered AD-MSCS to mild magnetic hyperthermia resulted in the selective expression of TRAIL from the engineered AD-MSCs and, as a result, induced significant ovarian cancer cell death in vitro and in vivo.

  11. Social observation enhances cross-environment activation of hippocampal place cell patterns.

    PubMed

    Mou, Xiang; Ji, Daoyun

    2016-10-03

    Humans and animals frequently learn through observing or interacting with others. The local enhancement theory proposes that presence of social subjects in an environment facilitates other subjects' understanding of the environment. To explore the neural basis of this theory, we examined hippocampal place cells, which represent spatial information, in rats as they stayed in a small box while a demonstrator rat running on a separate, nearby linear track, and as they ran on the same track themselves. We found that place cell firing sequences during self-running on the track also appeared in the box. This cross-environment activation occurred even prior to any self-running experience on the track and was absent without a demonstrator. Our data thus suggest that social observation can facilitate the observer's spatial representation of an environment without actual self-exploration. This finding may contribute to neural mechanisms of local enhancement.

  12. Macrophages enhance the radiosensitizing activity of lipid A: A novel role for immune cells in tumor cell radioresponse

    SciTech Connect

    Ridder, Mark de . E-mail: Mark.De.Ridder@vub.ac.be; Verovski, Valeri N.; Darville, Martine I.; Berge, Dirk L. van den; Monsaert, Christinne; Eizirik, Decio L.; Storme, Guy A.

    2004-10-01

    Purpose: This study examines whether activated macrophages may radiosensitize tumor cells through the release of proinflammatory mediators. Methods and materials: RAW 264.7 macrophages were activated by lipid A, and the conditioned medium (CM) was analyzed for the secretion of cytokines and the production of nitric oxide (NO) through inducible nitric oxide synthase (iNOS). EMT-6 tumor cells were exposed to CM and analyzed for hypoxic cell radiosensitivity. The role of nuclear factor (NF)-{kappa}B in the transcriptional activation of iNOS was examined by luciferase reporter gene assay. Results: Clinical immunomodulator lipid A, at a plasma-relevant concentration of 3 {mu}g/mL, stimulated RAW 264.7 macrophages to release NO, tumor necrosis factor (TNF)-{alpha}, and other cytokines. This in turn activated iNOS-mediated NO production in EMT-6 tumor cells and drastically enhanced their radiosensitivity. Radiosensitization was abrogated by the iNOS inhibitor aminoguanidine but not by a neutralizing anti-TNF-{alpha} antibody. The mechanism of iNOS induction was linked to NF-{kappa}B but not to JAK/STAT signaling. Interferon-{gamma} further increased the NO production by macrophages to a level that caused radiosensitization of EMT-6 cells through the bystanding effect of diffused NO. Conclusions: We demonstrate for the first time that activated macrophages may radiosensitize tumor cells through the induction of NO synthesis, which occurs in both tumor and immune cells.

  13. Gold Nanoparticles Enhance the Anticancer Activity of Gallic Acid against Cholangiocarcinoma Cell Lines.

    PubMed

    Rattanata, Narintorn; Daduang, Sakda; Wongwattanakul, Molin; Leelayuwat, Chanvit; Limpaiboon, Temduang; Lekphrom, Ratsami; Sandee, Alisa; Boonsiri, Patcharee; Chio-Srichan, Sirinart; Daduang, Jureerut

    2015-01-01

    Gold nanoparticles (GNPs) were conjugated with gallic acid (GA) at various concentrations between 30 and 150 μM and characterized using transmission electron microscopy (TEM) and UV-Vis spectroscopy (UV-VIS). The anticancer activities of the gallic acid-stabilized gold nanoparticles against well-differentiated (M213) and moderately differentiated (M214) adenocarcinomas were then determined using a neutral red assay. The GA mechanism of action was evaluated using Fourier transform infrared (FTIR) microspectroscopy. Distinctive features of the FTIR spectra between the control and GA-treated cells were confirmed by principal component analysis (PCA). The surface plasmon resonance spectra of the GNPs had a maximum absorption at 520 nm, whereas GNPs-GA shifted the maximum absorption values. In an in vitro study, the complexed GNPs-GA had an increased ability to inhibit the proliferation of cancer cells that was statistically significant (P<0.0001) in both M213 and M214 cells compared to GA alone, indicating that the anticancer activity of GA can be improved by conjugation with GNPs. Moreover, PCA revealed that exposure of the tested cells to GA resulted in significant changes in their cell membrane lipids and fatty acids, which may enhance the efficacy of this anticancer activity regarding apoptosis pathways.

  14. Treponemal infection specifically enhances node T-cell regulation of macrophage activity.

    PubMed Central

    Tabor, D R; Bagasra, O; Jacobs, R F

    1986-01-01

    Hamsters experimentally inoculated in the inguinal region with Treponema pallidum subsp. endemicum develop considerable pathology at that site. We examined the cell populations from these inguinal lymph nodes to determine their intercellular responses to infection. In vitro, syphilitic-node T cells markedly suppressed C3b receptor-mediated ingestion (C3bMI) in syphilitic macrophages derived from sites both proximal and distal to the inoculation. This activity was more pronounced when node T cells rather than peritoneal T cells were used. When treponemal preparations or live treponemes were added to the coculture system, the suppression was specifically enhanced, whereas the addition of heterologous agents did not promote this effect. Syphilitic macrophages from either compartment cultured alone showed no significant inhibition of C3bMI. In parallel studies on syphilitic macrophages, we observed that the expression of Ia quickly became elevated and was sustained throughout the infection. Moreover, in vitro culturing of the syphilitic-node T cells with these macrophages did not alter this function. These observations suggest that the syphilitic node contains a subpopulation of T cells that can selectively suppress macrophage C3bMI activity and concurrently regulate their cellular response to treponemal infection. PMID:3531014

  15. CCL2 enhances pluripotency of human induced pluripotent stem cells by activating hypoxia related genes.

    PubMed

    Hasegawa, Yuki; Tang, Dave; Takahashi, Naoko; Hayashizaki, Yoshihide; Forrest, Alistair R R; Suzuki, Harukazu

    2014-06-24

    Standard culture of human induced pluripotent stem cells (hiPSCs) requires basic Fibroblast Growth Factor (bFGF) to maintain the pluripotent state, whereas hiPSC more closely resemble epiblast stem cells than true naïve state ES which requires LIF to maintain pluripotency. Here we show that chemokine (C-C motif) ligand 2 (CCL2) enhances the expression of pluripotent marker genes through the phosphorylation of the signal transducer and activator of transcription 3 (STAT3) protein. Moreover, comparison of transcriptomes between hiPSCs cultured with CCL2 versus with bFGF, we found that CCL2 activates hypoxia related genes, suggesting that CCL2 enhanced pluripotency by inducing a hypoxic-like response.Further, we show that hiPSCs cultured with CCL2 can differentiate at a higher efficiency than culturing withjust bFGF and we show CCL2 can be used in feeder-free conditions [corrected]. Taken together, our finding indicates the novel functions of CCL2 in enhancing its pluripotency in hiPSCs.

  16. FBI-1 enhances ETS-1 signaling activity and promotes proliferation of human colorectal carcinoma cells.

    PubMed

    Zhu, Min; Li, Mingyang; Zhang, Fan; Feng, Fan; Chen, Weihao; Yang, Yutao; Cui, Jiajun; Zhang, Dong; Linghu, Enqiang

    2014-01-01

    In this study, we investigated a potential regulatory role of FBI-1 in transcription factor activity of ETS-1. The protein interaction was identified between ETS-1 and FBI-1 in lovo cells. The accumulating data showed that FBI-1 promoted the recruitment of ETS-1 to endogenous promoter of its target genes and increase ETS-1 accumulation in the nuclear. Our work also indicated that the FBI-1 enhances ETS-1 transcription factor activity via down-regulating p53-mediated inhibition on ETS-1. Further, FBI-1 plays a role in regulation of colorectal carcinoma cells proliferation. These findings supported that FBI-1 might be a potential molecule target for treating colorectal carcinoma.

  17. FBI-1 Enhances ETS-1 Signaling Activity and Promotes Proliferation of Human Colorectal Carcinoma Cells

    PubMed Central

    Chen, Weihao; Yang, Yutao; Cui, Jiajun; Zhang, Dong; Linghu, Enqiang

    2014-01-01

    In this study, we investigated a potential regulatory role of FBI-1 in transcription factor activity of ETS-1. The protein interaction was identified between ETS-1 and FBI-1 in lovo cells. The accumulating data showed that FBI-1 promoted the recruitment of ETS-1 to endogenous promoter of its target genes and increase ETS-1 accumulation in the nuclear. Our work also indicated that the FBI-1 enhances ETS-1 transcription factor activity via down-regulating p53-mediated inhibition on ETS-1. Further, FBI-1 plays a role in regulation of colorectal carcinoma cells proliferation. These findings supported that FBI-1 might be a potential molecule target for treating colorectal carcinoma. PMID:24857950

  18. High glucose enhances progression of cholangiocarcinoma cells via STAT3 activation.

    PubMed

    Saengboonmee, Charupong; Seubwai, Wunchana; Pairojkul, Chawalit; Wongkham, Sopit

    2016-01-08

    Epidemiological studies have indicated diabetes mellitus (DM) as a risk of cholangiocarcinoma (CCA), however, the effects and mechanisms of high glucose on progression of CCA remain unclear. This study reports for the first time of the enhancing effects of high glucose on aggressive phenotypes of CCA cells via STAT3 activation. CCA cells cultured in high glucose media exerted significantly higher rates of cell proliferation, adhesion, migration and invasion than those cultured in normal glucose. The phosphokinase array revealed STAT3 as the dominant signal activated in response to high glucose. Increased nuclear STAT3, p-STAT3 and its downstream target proteins, cyclin D1, vimentin and MMP2, were shown to be underling mechanisms of high glucose stimulation. The link of high glucose and STAT3 activation was confirmed in tumor tissues from CCA patients with DM that exhibited higher STAT3 activation than those without DM. Moreover, the levels of STAT3 activation were correlated with the levels of blood glucose. Finally, decreasing the level of glucose or using a STAT3 inhibitor could reduce the effects of high glucose. These findings suggest that controlling blood glucose or using a STAT3 inhibitor as an alternative approach may improve the therapeutic outcome of CCA patients with DM.

  19. Enhancement of natural killer cell activity of aged mice by modified arabinoxylan rice bran (MGN-3/Biobran).

    PubMed

    Ghoneum, Mamdooh; Abedi, Sarah

    2004-12-01

    The present study is aimed to examine the possibility of enhancement of natural killer (NK) cell activity in aged C57BL/6 and C3H mice using MGN-3, a modified arabinoxylan from rice bran. Intraperitoneal injection of MGN-3 (10 mg kg(-1) per day) caused a remarkable increase in the peritoneal NK activity as early as 2 days (35.2 lytic units), and the level remained elevated through day 14. The control aged mice had a level of 5.8 lytic units. Enhancement in NK activity was associated with an increase in both the binding capacity of NK cells to tumour targets and in the granular content as measured by BLT-esterase activity. Treatment did not alter the percentage of peritoneal NK cells. Data showed that peritoneal macrophages inhibit NK activity. In conclusion, MGN-3 enhances murine NK activity of aged mice and may be useful for enhancing NK function in aged humans.

  20. Nerve growth factor enhances the CRE-dependent transcriptional activity activated by nobiletin in PC12 cells.

    PubMed

    Takito, Jiro; Kimura, Junko; Kajima, Koji; Uozumi, Nobuyuki; Watanabe, Makoto; Yokosuka, Akihito; Mimaki, Yoshihiro; Nakamura, Masanori; Ohizumi, Yasushi

    2016-07-01

    Prevention and treatment of Alzheimer disease are urgent problems for elderly people in developed countries. We previously reported that nobiletin, a poly-methoxylated flavone from the citrus peel, improved the symptoms in various types of animal models of memory loss and activated the cAMP responsive element (CRE)-dependent transcription in PC12 cells. Nobiletin activated the cAMP/PKA/MEK/Erk/MAPK signaling pathway without using the TrkA signaling activated by nerve growth factor (NGF). Here, we examined the effect of combination of nobiletin and NGF on the CRE-dependent transcription in PC12 cells. Although NGF alone had little effect on the CRE-dependent transcription, NGF markedly enhanced the CRE-dependent transcription induced by nobiletin. The NGF-induced enhancement was neutralized by a TrkA antagonist, K252a. This effect of NGF was effective on the early signaling event elicited by nobiletin. These results suggested that there was crosstalk between NGF and nobiletin signaling in activating the CRE-dependent transcription in PC12 cells.

  1. Pevonedistat, a NEDD8-activating enzyme inhibitor, is active in mantle cell lymphoma and enhances rituximab activity in vivo

    PubMed Central

    Czuczman, Natalie M.; Barth, Matthew J.; Gu, Juan; Neppalli, Vishala; Mavis, Cory; Frys, Sarah E.; Hu, Qiang; Liu, Song; Klener, Pavel; Vockova, Petra; Czuczman, Myron S.

    2016-01-01

    Mantle cell lymphoma (MCL) is characterized by an aggressive clinical course and inevitable development of refractory disease, stressing the need to develop alternative therapeutic strategies. To this end, we evaluated pevonedistat (MLN4924), a novel potent and selective NEDD8-activating enzyme inhibitor in a panel of MCL cell lines, primary MCL tumor cells, and 2 distinct murine models of human MCL. Pevonedistat exposure resulted in a dose-, time-, and caspase-dependent cell death in the majority of the MCL cell lines and primary tumor cells tested. Of interest, in the MCL cell lines with lower half-maximal inhibitory concentration (0.1-0.5 μM), pevonedistat induced G1-phase cell cycle arrest, downregulation of Bcl-xL levels, decreased nuclear factor (NF)-κB activity, and apoptosis. In addition, pevonedistat exhibited additive/synergistic effects when combined with cytarabine, bendamustine, or rituximab. In vivo, as a single agent, pevonedistat prolonged the survival of 2 MCL-bearing mouse models when compared with controls. Pevonedistat in combination with rituximab led to improved survival compared with rituximab or pevonedistat monotherapy. Our data suggest that pevonedistat has significant activity in MCL preclinical models, possibly related to effects on NF-κB activity, Bcl-xL downregulation, and G1 cell cycle arrest. Our findings support further investigation of pevonedistat with or without rituximab in the treatment of MCL. PMID:26675347

  2. Activation of KLF1 Enhances the Differentiation and Maturation of Red Blood Cells from Human Pluripotent Stem Cells.

    PubMed

    Yang, Cheng-Tao; Ma, Rui; Axton, Richard A; Jackson, Melany; Taylor, A Helen; Fidanza, Antonella; Marenah, Lamin; Frayne, Jan; Mountford, Joanne C; Forrester, Lesley M

    2016-12-27

    Blood transfusion is widely used in the clinic but the source of red blood cells (RBCs) is dependent on donors, procedures are susceptible to transfusion-transmitted infections and complications can arise from immunological incompatibility. Clinically-compatible and scalable protocols that allow the production of RBCs from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) have been described but progress to translation has been hampered by poor maturation and fragility of the resultant cells. Genetic programming using transcription factors has been used to drive lineage determination and differentiation so we used this approach to assess whether exogenous expression of the Erythroid Krüppel-like factor 1 (EKLF/KLF1) could augment the differentiation and stability of iPSC-derived RBCs. To activate KLF1 at defined time points during later stages of the differentiation process and to avoid transgene silencing that is commonly observed in differentiating pluripotent stem cells, we targeted a tamoxifen-inducible KLF1-ER(T2) expression cassette into the AAVS1 locus. Activation of KLF1 at day 10 of the differentiation process when hematopoietic progenitor cells were present, enhanced erythroid commitment and differentiation. Continued culture resulted the appearance of more enucleated cells when KLF1 was activated which is possibly due to their more robust morphology. Globin profiling indicated that these conditions produced embryonic-like erythroid cells. This study demonstrates the successful use of an inducible genetic programing strategy that could be applied to the production of many other cell lineages from human induced pluripotent stem cells with the integration of programming factors into the AAVS1 locus providing a safer and more reproducible route to the clinic. Stem Cells 2016.

  3. Irradiation enhances dendritic cell potential antitumor activity by inducing tumor cell expressing TNF-α.

    PubMed

    Chang, Lijia; Zhang, Zhengzheng; Chen, Fang; Zhang, Wen; Song, Shuang; Song, Shuxia

    2017-03-01

    Dendritic cells (DCs)-based tumor vaccines have shown to be the promising methods for inducing therapeutic antitumor response. However, DCs alone rarely carry curative antitumor activity, and the immunosuppressive microenvironment may contribute to this defect of DC vaccinal function. Irradiation in combination with DCs has been shown to promote immune-mediated tumor destruction in preclinical studies. However, little is known about how irradiation alters the tumor microenvironment, and what host pathways modulate the activity of administrated DCs. In this study, BALB/c mice and the 4T1 breast cancer cell line were used in a tumor-bearing model. The tumor-bearing mice were irradiated locally up to 10 Gy for 3 consecutive days or a single dose of 30 Gy using a cesium source. Studies of dynamic change of the tumor microenvironment in irradiated versus untreated tumors revealed that there was no obvious change on IL-10, IL-6 and TGF-β expression or production, whereas increased TNF-α level within the first 2 weeks of irradiation. The increased TNF-α level is exactly right timing window for DCs injection, corresponding to the significant elevation of intratumoral CD8(+) T infiltration and the regression of tumor size. With attention to scheduling, combination X-ray with DCs i.t. injection may offer a practical strategy to improve treatment outcomes.

  4. Senescence-induced loss in photosynthesis enhances cell wall beta-glucosidase activity.

    PubMed

    Mohapatra, Pranab Kishor; Patro, Lichita; Raval, Mukesh Kumar; Ramaswamy, Nemmara Krishnan; Biswal, Udaya Chand; Biswal, Basanti

    2010-03-01

    A link between senescence-induced decline in photosynthesis and activity of beta-glucosidase is examined in the leaves of Arabidopsis. The enzyme is purified and characterized. The molecular weight of the enzyme is 58 kDa. It shows maximum activity at pH 5.5 and at temperature of 50 degrees C. Photosynthetic measurements and activity of the enzyme are conducted at different developmental stages including senescence of leaves. Senescence causes a significant loss in total chlorophyll, stomatal conductance, rate of evaporation and in the ability of the leaves for carbon dioxide fixation. The process also brings about a decline in oxygen evolution, quantum yield of photosystem II (PS II) and quantum efficiency of PS II photochemistry of thylakoid membrane. The loss in photosynthesis is accompanied by a significant increase in the activity of the cell wall-bound beta-glucosidase that breaks down polysaccharides to soluble sugars. The loss in photosynthesis as a signal for the enhancement in the activity of the enzyme is confirmed from the observation that incubation of excised mature leaves in continuous dark or in light with a photosynthesis inhibitor 3-(3,4-dichlorophenyl)-1, 1-dimethylurea (DCMU) that leads to sugar starvation enhances the activity of the enzyme. The work suggests that in the background of photosynthetic decline, the polysaccharides bound to cell wall that remains intact even during late phase of senescence may be the last target of senescing leaves for a possible source of sugar for remobilization and completion of the energy-dependent senescence program.

  5. Enhancement of oligodendrocyte differentiation from murine embryonic stem cells by an activator of gp130 signaling.

    PubMed

    Zhang, Peilin; Chebath, Judith; Lonai, Peter; Revel, Michel

    2004-01-01

    Embryonic stem (ES) cells derived from the inner cell mass of blastocyst-stage embryos are a potential large scale source of oligodendrocytes and of their progenitors for transplantation into the central nervous system for the repair of demyelinating lesions. We found previously that interleukin-6 (IL-6) fused to its soluble receptor (IL-6R), a potent activator of the gp130 receptor, induces myelin gene expression in Schwann cells of embryonic dorsal root ganglia. Like leukemia inhibitory factor, IL-6R/IL-6 inhibits the differentiation of murine ES cells into embryoid bodies. In the present study, we show that this recombinant cytokine may be efficiently used to stimulate the differentiation of oligodendrocytes if added to ES cell-derived neural precursors. IL-6R/IL-6 leads to an increase in early chondroitin sulfate proteoglycan positive and late O4 positive progenitors and to a stimulation of maturation into O1 and myelin basic protein expressing oligodendrocytes. Expression of the genes for transcription factor genes Olig-1 and Sox10, which appear early in the oligodendrocyte lineage, was stimulated by IL-6R/IL-6 addition. We conclude that this cytokine can significantly enhance the derivation of oligodendrocytes from ES cells.

  6. Cooperative antiproliferative and differentiation-enhancing activity of medicinal plant extracts in acute myeloid leukemia cells.

    PubMed

    Zhamanbayeva, Gulzhan T; Aralbayeva, Araylim N; Murzakhmetova, Maira K; Tuleukhanov, Sultan T; Danilenko, Michael

    2016-08-01

    Acute myeloid leukemia (AML) is an aggressive hematopoietic malignancy with poor prognosis and limited treatment options. Sea buckthorn (Hippophae rhamnoides) berries, dog rose (Rosa canina) rosehips, and garden sage (Salvia officinalis) and oregano (Origanum vulgare) aerial parts are widely used in traditional medicine and exhibit antitumor effects in preclinical models. However, these plants remain scarcely tested for antileukemic activity. Here, we show that their water-ethanol leaf extracts reduced the growth and viability of AML cells and, at non-cytotoxic doses, potentiated cell differentiation induced by a low concentration of 1α,25-dihydroxyvitamin D3, the hormonal form of vitamin D, in a cell type-dependent manner. The latter effect was accompanied by upregulation of the vitamin D receptor protein components and its transcriptional activity. Furthermore, at minimally effective doses the extracts cooperated with one another to produce marked cytostatic effects associated with a partial S-phase arrest and a modest induction of apoptosis. In contrast, these combinations only slightly affected the growth and viability of proliferating normal human peripheral blood mononuclear cells. In addition, the extracts strongly inhibited microsomal lipid peroxidation and protected normal erythrocytes against hypoosmotic shock. Our results suggest that further exploration of the enhanced antileukemic effects of the combinations tested here may lead to the development of alternative therapeutic and preventive approaches against AML.

  7. Affinity and dose of TCR engagement yield proportional enhancer and gene activity in CD4+ T cells

    PubMed Central

    Allison, Karmel A; Sajti, Eniko; Collier, Jana G; Gosselin, David; Troutman, Ty Dale; Stone, Erica L; Hedrick, Stephen M; Glass, Christopher K

    2016-01-01

    Affinity and dose of T cell receptor (TCR) interaction with antigens govern the magnitude of CD4+ T cell responses, but questions remain regarding the quantitative translation of TCR engagement into downstream signals. We find that while the response of mouse CD4+ T cells to antigenic stimulation is bimodal, activated cells exhibit analog responses proportional to signal strength. Gene expression output reflects TCR signal strength, providing a signature of T cell activation. Expression changes rely on a pre-established enhancer landscape and quantitative acetylation at AP-1 binding sites. Finally, we show that graded expression of activation genes depends on ERK pathway activation, suggesting that an ERK-AP-1 axis plays an important role in translating TCR signal strength into proportional activation of enhancers and genes essential for T cell function. DOI: http://dx.doi.org/10.7554/eLife.10134.001 PMID:27376549

  8. Enhancing activity of N-glycosylation for constitutive proteins secretions in non-polarized cells

    SciTech Connect

    Akiyama, Nobutake; Ohno, Yuji; Fukuda, Takahiro; Manome, Yosinobu; Saito, Saburo

    2009-04-17

    Several fusion proteins of mouse Interleukins (mILs) and the enhanced green fluorescent protein (EGFP) were expressed in fibroblast and epithelial cells. Among these proteins, the mIL-31 derivative was the most efficiently secreted into the medium in a N-glycosylation-dependent manner. From the analysis of deletion mutants, the minimal structure for constitutive secretions consisted of a signal peptide and N-glycosylation. Introduction of the signal sequence from mIL-31 to human p53 protein failed to secrete the products, but further addition of the N-glycosylation site resulted in constitutive secretion of biologically active p53 protein into the medium in the N-glycosylated form. In this report, we showed the importance of N-glycosylation for constitutive protein secretions, especially using non-polarized cells.

  9. H3K4 mono- and di-methyltransferase MLL4 is required for enhancer activation during cell differentiation

    PubMed Central

    Lee, Ji-Eun; Wang, Chaochen; Xu, Shiliyang; Cho, Young-Wook; Wang, Lifeng; Feng, Xuesong; Baldridge, Anne; Sartorelli, Vittorio; Zhuang, Lenan; Peng, Weiqun; Ge, Kai

    2013-01-01

    Enhancers play a central role in cell-type-specific gene expression and are marked by H3K4me1/2. Active enhancers are further marked by H3K27ac. However, the methyltransferases responsible for H3K4me1/2 on enhancers remain elusive. Furthermore, how these enzymes function on enhancers to regulate cell-type-specific gene expression is unclear. In this study, we identify MLL4 (KMT2D) as a major mammalian H3K4 mono- and di-methyltransferase with partial functional redundancy with MLL3 (KMT2C). Using adipogenesis and myogenesis as model systems, we show that MLL4 exhibits cell-type- and differentiation-stage-specific genomic binding and is predominantly localized on enhancers. MLL4 co-localizes with lineage-determining transcription factors (TFs) on active enhancers during differentiation. Deletion of Mll4 markedly decreases H3K4me1/2, H3K27ac, Mediator and Polymerase II levels on enhancers and leads to severe defects in cell-type-specific gene expression and cell differentiation. Together, these findings identify MLL4 as a major mammalian H3K4 mono- and di-methyltransferase essential for enhancer activation during cell differentiation. DOI: http://dx.doi.org/10.7554/eLife.01503.001 PMID:24368734

  10. GALNT6 expression enhances aggressive phenotypes of ovarian cancer cells by regulating EGFR activity.

    PubMed

    Lin, Tzu-Chi; Chen, Syue-Ting; Huang, Min-Chuan; Huang, John; Hsu, Chia-Lang; Juan, Hsueh-Fen; Lin, Ho-Hsiung; Chen, Chi-Hau

    2017-03-28

    Ovarian cancer is the most lethal of the gynecologic malignancies. N-acetylgalactosaminyltransferase 6 (GALNT6), an enzyme that mediates the initial step of mucin type-O glycosylation, has been reported to regulate mammary carcinogenesis. However, the expression and role of GALNT6 in ovarian cancer are still unclear. Here we showed that high GALNT6 expression correlates with increased recurrence, lymph node metastasis, and chemoresistance in ovarian endometrioid and clear cell carcinomas; and higher GALNT6 levels are significantly associated with poorer patient survivals. GALNT6 knockdown with two independent siRNAs significantly suppressed viability, migration, and invasion of ovarian cancer cells. Using phospho-RTK array and Western blot analyses, we identified EGFR as a critical target of GALNT6. GALNT6 knockdown decreased phosphorylation of EGFR, whereas GALNT6 overexpression increased the phosphorylation. Lectin pull-down assays with Vicia villosa agglutinin (VVA) indicated that GALNT6 was able to modify O-glycans on EGFR. Moreover, the GALNT6-enhanced invasive behavior was significantly reversed by erlotinib, an EGFR inhibitor. Our results suggest that GALNT6 expression is associated with poor prognosis of ovarian cancer and enhances the aggressive behavior of ovarian cancer cells by regulating EGFR activity.

  11. Enhancement of anti-leukemia activity of NK cells in vitro and in vivo by inhibition of leukemia cell-induced NK cell damage

    PubMed Central

    Arriga, Roberto; Caratelli, Sara; Coppola, Andrea; Spagnoli, Giulio Cesare; Venditti, Adriano; Amadori, Sergio; Lanzilli, Giulia; Lauro, Davide; Palomba, Patrizia; Sconocchia, Tommaso; Del Principe, Maria Ilaria; Maurillo, Luca; Buccisano, Francesco; Capuani, Barbara; Ferrone, Soldano; Sconocchia, Giuseppe

    2016-01-01

    Acute myeloid leukemia (AML) cells induce, in vitro, NK cell abnormalities (NKCAs) including apoptosis and activating receptor down-regulation. The potential negative impact of AML cells on the therapeutic efficacy of NK cell-based strategies prompted us to analyze the mechanisms underlying NKCAs and to develop approaches to protect NK cells from NKCAs. NKCA induction by the AML leukemia cells target a subpopulation of peripheral blood NK cells and is interleukin-2 independent but is abrogated by a long-term culture of NK (LTNK) cells at 37°C. LTNK cells displayed a significantly enhanced ability to damage AML cells in vitro and inhibited the subcutaneous growth of ML-2 cells grafted into CB17 SCID mice. Actinomycin D restored the susceptibility of LTNK cells to NKCAs while TAPI-0, a functional analog of the tissue inhibitor of metalloproteinase (TIMP) 3, inhibits ML-2 cell-induced NKCAs suggesting that the generation of NK cell resistance to NKCAs involves RNA transcription and metalloproteinase (MPP) inactivation. This conclusion is supported by the reduced susceptibility to AML cell-induced NKCAs of LTNK cells in which TIMP3 gene and protein are over-expressed. This information may contribute to the rational design of targeted strategies to enhance the efficacy of NK cell-based-immunotherapy of AML with haploidentical NK cells. PMID:26655503

  12. Enhancement of anti-leukemia activity of NK cells in vitro and in vivo by inhibition of leukemia cell-induced NK cell damage.

    PubMed

    Arriga, Roberto; Caratelli, Sara; Coppola, Andrea; Spagnoli, Giulio Cesare; Venditti, Adriano; Amadori, Sergio; Lanzilli, Giulia; Lauro, Davide; Palomba, Patrizia; Sconocchia, Tommaso; Del Principe, Maria Ilaria; Maurillo, Luca; Buccisano, Francesco; Capuani, Barbara; Ferrone, Soldano; Sconocchia, Giuseppe

    2016-01-12

    Acute myeloid leukemia (AML) cells induce, in vitro, NK cell abnormalities (NKCAs) including apoptosis and activating receptor down-regulation. The potential negative impact of AML cells on the therapeutic efficacy of NK cell-based strategies prompted us to analyze the mechanisms underlying NKCAs and to develop approaches to protect NK cells from NKCAs. NKCA induction by the AML leukemia cells target a subpopulation of peripheral blood NK cells and is interleukin-2 independent but is abrogated by a long-term culture of NK (LTNK) cells at 37°C. LTNK cells displayed a significantly enhanced ability to damage AML cells in vitro and inhibited the subcutaneous growth of ML-2 cells grafted into CB17 SCID mice. Actinomycin D restored the susceptibility of LTNK cells to NKCAs while TAPI-0, a functional analog of the tissue inhibitor of metalloproteinase (TIMP) 3, inhibits ML-2 cell-induced NKCAs suggesting that the generation of NK cell resistance to NKCAs involves RNA transcription and metalloproteinase (MPP) inactivation. This conclusion is supported by the reduced susceptibility to AML cell-induced NKCAs of LTNK cells in which TIMP3 gene and protein are over-expressed. This information may contribute to the rational design of targeted strategies to enhance the efficacy of NK cell-based-immunotherapy of AML with haploidentical NK cells.

  13. The Novel Toll-Like Receptor 2 Agonist SUP3 Enhances Antigen Presentation and T Cell Activation by Dendritic Cells

    PubMed Central

    Guo, Xueheng; Wu, Ning; Shang, Yingli; Liu, Xin; Wu, Tao; Zhou, Yifan; Liu, Xin; Huang, Jiaoyan; Liao, Xuebin; Wu, Li

    2017-01-01

    Dendritic cells (DCs) are highly specialized antigen-presenting cells that play crucial roles in innate and adaptive immunity. Previous studies suggested that Toll-like receptor (TLR) agonists could be used as potential adjuvants, as activation of TLRs can boost DC-induced immune responses. TLR2 agonists have been shown to enhance DC-mediated immune responses. However, classical TLR2 agonists such as Pam3CSK4 are not stable enough in vivo, which limits their clinical applications. In this study, a novel structurally stable TLR2 agonist named SUP3 was designed. Functional analysis showed that SUP3 induced much stronger antitumor response than Pam3CSK4 by promoting cytotoxic T lymphocytes activation in vivo. This effect was achieved through the following mechanisms: SUP3 strongly enhanced the ability of antigen cross-presentation by DCs and subsequent T cell activation. SUP3 upregulated the expression of costimulatory molecules on DCs and increased antigen deposition in draining lymph nodes. More interestingly, SUP3 induced less amount of pro-inflammatory cytokine production in vivo compared to other TLR agonists such as lipopolysaccharide. Taken together, SUP3 could serve as a novel promising immune adjuvant in vaccine development and immune modulations. PMID:28270814

  14. NANOG alone induces germ cells in primed epiblast in vitro by activation of enhancers

    PubMed Central

    Zylicz, Jan J.; Tang, Walfred W. C.; Sengupta, Roopsha; Kobayashi, Toshihiro; Kim, Shinseog; Butler, Richard; Dietmann, Sabine; Surani, M. Azim

    2015-01-01

    Nanog, a core pluripotency factor in the inner cell mass of blastocysts, is also expressed in unipotent primordial germ cells (PGC) in mice1, where its precise role is yet unclear2-4. We investigated this in an in vitro model, where naïve pluripotent embryonic stem cells (ESCs) cultured in bFGF/ActivinA develop as epiblast-like cells (EpiLCs), and gain competence for PGC-like fate5. Consequently, bone morphogenetic protein (BMP4), or ectopic expression of key germline transcription factors Prdm1/ Prdm14/ Tfap2c, directly induce PGC-like cells (PGCLCs) in EpiLCs, but not in ESCs6-8. Here we report an unexpected discovery that Nanog alone can induce PGCLCs in EpiLCs, independently of BMP4. We propose that following the dissolution of the naïve ESC pluripotency network during establishment of EpiLCs9,10, the epigenome is reset for cell fate determination. Indeed, we found genome-wide changes in NANOG binding pattern between ESCs and EpiLCs, indicating epigenetic resetting of regulatory elements. Accordingly, we show that NANOG can bind and activate enhancers of Prdm1 and Prdm14 in EpiLCs in vitro; BLIMP1 (encoded by Prdm1) then directly induces Tfap2c. Furthermore, while SOX2 and NANOG promote the pluripotent state in ESCs, they show contrasting roles in EpiLCs since Sox2 specifically represses PGCLC induction by Nanog. This study demonstrates a broadly applicable mechanistic principle for how cells acquire competence for cell fate determination, resulting in the context-dependent roles of key transcription factors during development. PMID:26751055

  15. Enhancement of UV-induced nucleotide excision repair activity upon forskolin treatment is cell growth-dependent

    PubMed Central

    Lee, Jeong-Min; Park, Jeong-Min; Kang, Tae-Hong

    2016-01-01

    Forskolin (FSK), an adenylyl cyclase activator, has recently been shown to enhance nucleotide excision repair (NER) upon UV exposure. However, our study revealed that this effect was detected in human skin epithelial ARPE19 cells only in growing cells, but not in non-cycling cells. When the cells were grown at low density (70% confluence), FSK was capable of stimulating cAMP responsive element binding (CREB) phosphorylation, a marker for FSK-stimulated PKA activation, and resulted in a significant increase of NER activity compared to control treatment. However, cells grown under 100% confluent conditions showed neither FSK-induced CREB phosphorylation nor the resulting NER enhancement. These findings indicate that cellular growth is critical for FSK-induced NER enhancement and suggest that cellular growth conditions should be considered as a variable while evaluating a reagent’s pharmacotherapeutic efficacy. [BMB Reports 2016; 49(10): 566-571] PMID:27470212

  16. Enhancement of UV-induced nucleotide excision repair activity upon forskolin treatment is cell growth-dependent.

    PubMed

    Lee, Jeong-Min; Park, Jeong-Min; Kang, Tae-Hong

    2016-10-01

    Forskolin (FSK), an adenylyl cyclase activator, has recently been shown to enhance nucleotide excision repair (NER) upon UV exposure. However, our study revealed that this effect was detected in human skin epithelial ARPE19 cells only in growing cells, but not in non-cycling cells. When the cells were grown at low density (70% confluence), FSK was capable of stimulating cAMP responsive element binding (CREB) phosphorylation, a marker for FSK-stimulated PKA activation, and resulted in a significant increase of NER activity compared to control treatment. However, cells grown under 100% confluent conditions showed neither FSK-induced CREB phosphorylation nor the resulting NER enhancement. These findings indicate that cellular growth is critical for FSK-induced NER enhancement and suggest that cellular growth conditions should be considered as a variable while evaluating a reagent's pharmacotherapeutic efficacy. [BMB Reports 2016; 49(10): 566-571].

  17. Effectiveness and Student Perceptions of an Active Learning Activity Using a Headline News Story to Enhance In-Class Learning of Cell Cycle Regulation

    ERIC Educational Resources Information Center

    Dirks-Naylor, Amie J.

    2016-01-01

    An active learning activity was used to engage students and enhance in-class learning of cell cycle regulation in a PharmD level integrated biological sciences course. The aim of the present study was to determine the effectiveness and perception of the in-class activity. After completion of a lecture on the topic of cell cycle regulation,…

  18. Lenalidomide enhances antigen-specific activity and decreases CD45RA expression of T cells from patients with multiple myeloma.

    PubMed

    Neuber, Brigitte; Herth, Isabelle; Tolliver, Claudia; Schoenland, Stefan; Hegenbart, Ute; Hose, Dirk; Witzens-Harig, Mathias; Ho, Anthony D; Goldschmidt, Hartmut; Klein, Bernard; Hundemer, Michael

    2011-07-15

    The aim of this study was to investigate whether the specific T cell response against the multiple myeloma Ag HM1.24 is enhanced by the immunomodulatory drug lenalidomide (Revlimid). Ag-specific CD3(+)CD8(+) T cells against the HM1.24 Ag were expanded in vitro by dendritic cells in 29 healthy donors and 26 patients with plasma cell dyscrasias. Ag-specific activation was analyzed by IFN-γ, granzyme B, and perforin secretion using ELISA, ELISPOT assay, and intracellular staining, and generation of Ag-specific T cells was analyzed by tetramer staining. Expression of T cell maturation markers (CD45RA, CD45R0, CCR7, and CD28) was investigated by flow cytometry. We found that activation of HM1.24-specific T cells from healthy donors and patients with plasma cell dyscrasias was enhanced significantly by lenalidomide and furthermore that the impact of lenalidomide on T cells depends on the duration of the exposure. Notably, lenalidomide supports the downregulation of CD45RA on T cells upon activation, observed in healthy donors and in patients in vitro and also in patients during lenalidomide therapy in vivo. We showed for the first time, to our knowledge, that lenalidomide enhances the Ag-specific activation of T cells and the subsequent downregulation of CD45RA expression of T cells in vitro and in vivo.

  19. Competition studies with repressors and activators of viral enhancer function in F9 mouse embryonal carcinoma cells.

    PubMed Central

    Sleigh, M J; Lockett, T J; Kelly, J; Lewy, D

    1987-01-01

    DNA competition studies have been used to investigate the presence of a repressor of viral enhancer function in F9 mouse embryonal carcinoma cells. The complete polyoma virus enhancer region, cotransfected into F9 cells with the SV40 promoter/enhancer attached to a chloramphenicol acetyl transferase marker gene, induced a small increase in pSV2CAT expression. This can be explained by preferential but weak binding by polyoma sequences of a molecule repressing pSV2CAT transcription. Repressor activity substantially disappeared when the cells were induced to differentiate by retinoic acid. Repressor binding was localised to one half of the polyoma enhancer, but was lost on further fragmentation of this region. It appears that multiple sequence elements may be required for repressor binding and that these are at least partially separable from the complement of elements binding enhancer activating molecules. PMID:3035489

  20. β-Catenin Enhances Odontoblastic Differentiation of Dental Pulp Cells through Activation of Runx2

    PubMed Central

    Han, Nana; Zheng, Yong; Li, Ran; Li, Xianyu; Zhou, Mi; Niu, Yun; Zhang, Qi

    2014-01-01

    An intense stimulus can cause death of odontoblasts and initiate odontoblastic differentiation of stem/progenitor cell populations of dental pulp cells (DPCs), which is followed by reparative dentin formation. However, the mechanism of odontoblastic differentiation during reparative dentin formation remains unclear. This study was to determine the role of β-catenin, a key player in tooth development, in reparative dentin formation, especially in odontoblastic differentiation. We found that β-catenin was expressed in odontoblast-like cells and DPCs beneath the perforation site during reparative dentin formation after direct pulp capping. The expression of β-catenin was also significantly upregulated during odontoblastic differentiation of in vitro cultured DPCs. The expression pattern of runt-related transcription factor 2 (Runx2) was similar to that of β-catenin. Immunofluorescence staining indicated that Runx2 was also expressed in β-catenin–positive odontoblast-like cells and DPCs during reparative dentin formation. Knockdown of β-catenin disrupted odontoblastic differentiation, which was accompanied by a reduction in β-catenin binding to the Runx2 promoter and diminished expression of Runx2. In contrast, lithium chloride (LiCl) induced accumulation of β-catenin produced the opposite effect to that caused by β-catenin knockdown. In conclusion, it was reported in this study for the first time that β-catenin can enhance the odontoblastic differentiation of DPCs through activation of Runx2, which might be the mechanism involved in odontoblastic differentiation during reparative dentin formation. PMID:24520423

  1. Enhanced antitumoral activity of doxorubicin against lung cancer cells using biodegradable poly(butylcyanoacrylate) nanoparticles

    PubMed Central

    Melguizo, Consolación; Cabeza, Laura; Prados, Jose; Ortiz, Raúl; Caba, Octavio; Rama, Ana R; Delgado, Ángel V; Arias, José L

    2015-01-01

    Doxorubicin (Dox) is widely used for the combined chemotherapy of solid tumors. However, the use of these drug associations in lung cancer has low antitumor efficacy. To improve its efficacious delivery and activity in lung adenocarcinoma cells, we developed a biodegradable and noncytotoxic nanoplatform based on biodegradable poly(butylcyanoacrylate) (PBCA). The reproducible formulation method was based on an anionic polymerization process of the PBCA monomer, with the antitumor drug being entrapped within the nanoparticle (NP) matrix during its formation. Improved drug-entrapment efficiencies and sustained (biphasic) drug-release properties were made possible by taking advantage of the synthesis conditions (drug, monomer, and surfactant-agent concentrations). Dox-loaded NPs significantly enhanced cellular uptake of the drug in the A549 and LL/2 lung cancer cell lines, leading to a significant improvement of the drug’s antitumoral activity. In vivo studies demonstrated that Dox-loaded NPs clearly reduced tumor volumes and increased mouse-survival rates compared to the free drug. These results demonstrated that PBCA NPs may be used to optimize the antitumor activity of Dox, thus exhibiting a potential application in chemotherapy against lung adenocarcinoma. PMID:26715840

  2. Interferon-α/β enhances temozolomide activity against MGMT-positive glioma stem-like cells.

    PubMed

    Shen, Dong; Guo, Cheng-Cheng; Wang, Jing; Qiu, Zhi-Kun; Sai, Ke; Yang, Qun-Ying; Chen, Yin-Sheng; Chen, Fu-Rong; Wang, Jie; Panasci, Lawrence; Chen, Zhong-Ping

    2015-11-01

    Glioma is one of the most common primary tumors of the central nervous system in adults. Glioblastoma (GBM) is the most lethal type of glioma, whose 5-year survival is 9.8% at best. Glioma stem-like cells (GSCs) play an important role in recurrence and treatment resistance. MGMT is a DNA repair protein that removes DNA adducts and therefore attenuates treatment efficiency. It has been reported that interferon-α/β (IFN-α/β) downregulates the level of MGMT and sensitizes glioma cells to temozolomide. In the present study, we assessed whether IFN-α/β is able to sensitize GSCs to temozolomide by modulating MGMT expression. Upon the treatment of IFN-α/β, the efficacy of temozolomide against MGMT‑positive GSCs was markedly enhanced by combination treatment with IFN-α/β when compared with the temozolomide single agent group, and MGMT expression was markedly decreased at the same time. Further mechanistic study showed that IFN-α/β suppressed the NF-κB activity, which further mediated the sensitization of MGMT‑positive GSCs to temozolomide. Our data therefore demonstrated that the application of IFN-α/β is a promising agent with which to enhance temozolomide efficiency and reduce drug resistance, and our findings shed light on improving clinical outcomes and prolonging the survival of patients with malignant gliomas.

  3. Antibody production using a ciliate generates unusual antibody glycoforms displaying enhanced cell-killing activity

    PubMed Central

    Calow, Jenny; Bockau, Ulrike; Struwe, Weston B.; Nowaczyk, Marc M.; Loser, Karin; Crispin, Max

    2016-01-01

    ABSTRACT Antibody glycosylation is a key parameter in the optimization of antibody therapeutics. Here, we describe the production of the anti-cancer monoclonal antibody rituximab in the unicellular ciliate, Tetrahymena thermophila. The resulting antibody demonstrated enhanced antibody-dependent cell-mediated cytotoxicity, which we attribute to unusual N-linked glycosylation. Detailed chromatographic and mass spectrometric analysis revealed afucosylated, oligomannose-type glycans, which, as a whole, displayed isomeric structures that deviate from the typical human counterparts, but whose branches were equivalent to fragments of metabolic intermediates observed in human glycoproteins. From the analysis of deposited crystal structures, we predict that the ciliate glycans adopt protein-carbohydrate interactions with the Fc domain that closely mimic those of native complex-type glycans. In addition, terminal glucose structures were identified that match biosynthetic precursors of human glycosylation. Our results suggest that ciliate-based expression systems offer a route to large-scale production of monoclonal antibodies exhibiting glycosylation that imparts enhanced cell killing activity. PMID:27594301

  4. Social observation enhances cross-environment activation of hippocampal place cell patterns

    PubMed Central

    Mou, Xiang; Ji, Daoyun

    2016-01-01

    Humans and animals frequently learn through observing or interacting with others. The local enhancement theory proposes that presence of social subjects in an environment facilitates other subjects' understanding of the environment. To explore the neural basis of this theory, we examined hippocampal place cells, which represent spatial information, in rats as they stayed in a small box while a demonstrator rat running on a separate, nearby linear track, and as they ran on the same track themselves. We found that place cell firing sequences during self-running on the track also appeared in the box. This cross-environment activation occurred even prior to any self-running experience on the track and was absent without a demonstrator. Our data thus suggest that social observation can facilitate the observer’s spatial representation of an environment without actual self-exploration. This finding may contribute to neural mechanisms of local enhancement. DOI: http://dx.doi.org/10.7554/eLife.18022.001 PMID:27692067

  5. Interleukin-37 Enhances the Suppressive Activity of Naturally Occurring CD4+CD25+ Regulatory T Cells

    PubMed Central

    Wang, Da-Wei; Dong, Ning; Wu, Yao; Zhu, Xiao-Mei; Wang, Chun-Ting; Yao, Yong-Ming

    2016-01-01

    Naturally occurring CD4+CD25+ regulatory T cells (Tregs) are essential for the suppression of autoimmunity and can control the immune-mediated pathology during the early phase of sepsis. Our previous data showed that silencing interleukin-37 (IL-37) in human CD4+CD25+ Tregs obviously reduced the suppressive activity of CD4+CD25+ Tregs. Here, we found that rhIL-37 stimulation markedly enhanced the suppressive activity of CD4+CD25+ Tregs isolated from naive C57BL/6 J mice in the absence or presence of lipopolysaccharide (LPS). Treatment with rhIL-37 could significantly upregulate the expression of cytotoxic T-lymphocyte-associated antigen (CTLA)-4 and forkhead/winged helix transcription factor p3 (Foxp3) on CD4+CD25+ Tregs. Also, rhIL-37 stimulation promoted the production of transforming growth factor-β1 (TGF-β1) but not IL-10 in the supernatants of cultured CD4+CD25+ Tregs. Pretreated CD4+CD25+ Tregs with rhIL-37 in the presence or absence of LPS were cocultured with CD4+CD25− T cells, ratio of IL-4/interferon-γ in the supernatants obviously increased in IL-37-stimulated groups. In addition, early administration of IL-37 significantly improved the survival rate of septic mice induced by cecal ligation and puncture. Taken together, we concluded that rhIL-37 enhances the suppressive activity of CD4+CD25+ Tregs and might be a potential immunomodulator for the treatment of septic complications. PMID:27941849

  6. Enhanced radiation-induced cytotoxic effect by 2-ME in glioma cells is mediated by induction of cell cycle arrest and DNA damage via activation of ATM pathways.

    PubMed

    Zou, Huichao; Zhao, Shiguang; Zhang, Jianhua; Lv, Gongwei; Zhang, Xu; Yu, Hongwei; Wang, Huibo; Wang, Ligang

    2007-12-14

    Glioblastoma multiform is the most common malignant primary brain tumor in adults, but there remains no effective therapeutic approach. 2-methoxyestradiol (2-ME), which is a naturally occurring metabolite of 17beta-estradiol, was shown to enhance radiotherapeutic effect in certain tumors; however, whether 2-ME can also enhance the sensitivity of glioma cells to radiotherapy remains unknown. The present study, therefore, was to address this issue using two human glioma cell lines (T98G and U251MG). These cells were irradiated with and without 2-ME and then clonogenic assay, apoptosis assay, DNA damage, and cell cycle change were examined. Results showed that 2-ME significantly enhances radiation-induced cell death in both glioma cells, shown by decreasing cell viability and increasing apoptotic cell death. No such radiosensitizing effect was observed if cells pre-treated with Estrodiol, suggesting the specifically radiosensitizing effect of 2-ME rather than a general effect of estrodials. The enhanced radio-cytotoxic effect in glioma cells by 2-ME was found to be associated with its enhancement of G(2)/M arrest and DNA damage, and phosphorylated ATM protein kinases as well as cell cycle checkpoint protein Chk2. Furthermore, inhibition of ATM by ATM inhibitor abolished 2-ME-activated Chk2 and enhanced radio-cytotoxic effects. These results suggest that 2-ME enhancement of the sensitivity of glioma cell lines to radiotherapy is mediated by induction of G2/M cell cycle arrest and increased DNA damage via activation of ATM kinases.

  7. FOXP1 enhances tumor cell migration by repression of NFAT1 transcriptional activity in MDA-MB-231 cells.

    PubMed

    Oskay Halacli, Sevil

    2017-01-01

    Until now, forkhead box P1 (FOXP1) has been identified as a tumor suppressor in several correlation studies in breast cancer. Although FOXP1 is defined as a transcriptional repressor that interacts with other transcription factors in various mechanistic studies, there is no study that explains its repressor functions in breast cancer biology. This study demonstrated the repressor function of FOXP1 on nuclear factor of activated T cells (NFAT1) and the migratory effect of this repression in MDA-MB-231 breast cancer cells. Co-immunoprecipitation experiments were performed for the investigation of protein-protein interaction between two transcription factors. Protein-protein interaction on DNA was investigated with EMSA and transcriptional effects of FOXP1 on NFAT1, luciferase reporter assay was performed. Wound healing assay was used to analyze the effects of overexpression of FOXP1 on tumor cell migration. This study showed that FOXP1 has protein-protein interaction with NFAT1 on DNA and enhances breast cancer cell migration by repressing NFAT1 transcriptional activity and FOXP1 shows oncogenic function by regulating breast cancer cell motility.

  8. Hypoxia preconditioning of mesenchymal stromal cells enhances PC3 cell lymphatic metastasis accompanied by VEGFR-3/CCR7 activation.

    PubMed

    Huang, Xin; Su, Kunkai; Zhou, Limin; Shen, Guofang; Dong, Qi; Lou, Yijia; Zheng, Shu

    2013-12-01

    Mesenchymal stromal cells (MSCs) in bone marrow may enhance tumor metastases through the secretion of chemokines. MSCs have been reported to home toward the hypoxic tumor microenvironment in vivo. In this study, we investigated prostate cancer PC3 cell behavior under the influence of hypoxia preconditioned MSCs and explored the related mechanism of prostate cancer lymphatic metastases in mice. Transwell assays revealed that VEGF-C receptor, VEGFR-3, as well as chemokine CCL21 receptor, CC chemokine receptor 7 (CCR7), were responsible for the migration of PC3 cells toward hypoxia preconditioned MSCs. Knock-in Ccr7 in PC3 cells also improved cell migration in vitro. Furthermore, when PC3 cells were labeled using the hrGfp-lentiviral vector, and were combined with hypoxia preconditioned MSCs for xenografting, it resulted in an enhancement of lymph node metastases accompanied by up-regulation of VEGFR-3 and CCR7 in primary tumors. Both PI3K/Akt/IκBα and JAK2/STAT3 signaling pathways were activated in xenografts in the presence of hypoxia-preconditioned MSCs. Unexpectedly, the p-VEGFR-2/VEGFR-2 ratio was attenuated accompanied by decreased JAK1 expression, indicating a switching-off of potential vascular signal within xenografts in the presence of hypoxia-preconditioned MSCs. Unlike results from other studies, VEGF-C maintained a stable expression in both conditions, which indicated that hypoxia preconditioning of MSCs did not influence VEGF-C secretion. Our results provide the new insights into the functional molecular events and signalings influencing prostate tumor metastases, suggesting a hopeful diagnosis and treatment in new approaches.

  9. Abrupt reflow enhances cytokine-induced proinflammatory activation of endothelial cells during simulated shock and resuscitation.

    PubMed

    Li, Ranran; Zijlstra, Jan G; Kamps, Jan A A M; van Meurs, Matijs; Molema, Grietje

    2014-10-01

    Circulatory shock and resuscitation are associated with systemic hemodynamic changes, which may contribute to the development of MODS (multiple organ dysfunction syndrome). In this study, we used an in vitro flow system to simulate the consecutive changes in blood flow as occurring during hemorrhagic shock and resuscitation in vivo. We examined the kinetic responses of different endothelial genes in human umbilical vein endothelial cells preconditioned to 20 dyne/cm unidirectional laminar shear stress for 48 h to flow cessation and abrupt reflow, respectively, as well as the effect of flow cessation and reflow on tumor necrosis factor-α (TNF-α)-induced endothelial proinflammatory activation. Endothelial CD31 and VE-cadherin were not affected by the changes in flow in the absence or presence of TNF-α. The messenger RNA levels of proinflammatory molecules E-selectin, VCAM-1 (vascular cell adhesion molecule 1), and IL-8 (interleukin 8) were significantly induced by flow cessation respectively acute reflow, whereas ICAM-1 (intercellular adhesion molecule 1) was downregulated on flow cessation and induced by subsequent acute reflow. Flow cessation also affected the Ang/Tie2 (Angiopoietin/Tie2 receptor tyrosine kinase) system by downregulating Tie2 and inducing its endothelial ligand Ang2, an effect that was further extended on acute reflow. Furthermore, the induction of proinflammatory adhesion molecules by TNF-α under flow cessation was significantly enhanced on subsequent acute reflow. This study demonstrated that flow alterations per se during shock and resuscitation contribute to endothelial activation and that these alterations interact with proinflammatory factors coexisting in vivo such as TNF-α. The abrupt reflow-related enhancement of cytokine-induced endothelial proinflammatory activation supports the concept that sudden regain of flow during resuscitation has an aggravating effect on endothelial activation, which may play a significant role in vascular

  10. Lineage-specific enhancers activate self-renewal genes in macrophages and embryonic stem cells

    PubMed Central

    Soucie, Erinn L.; Weng, Ziming; Geirsdóttir, Laufey; Molawi, Kaaweh; Maurizio, Julien; Fenouil, Romain; Mossadegh-Keller, Noushine; Gimenez, Gregory; VanHille, Laurent; Beniazza, Meryam; Favret, Jeremy; Berruyer, Carole; Perrin, Pierre; Hacohen, Nir; Andrau, J.-C.; Ferrier, Pierre; Dubreuil, Patrice; Sidow, Arend; Sieweke, Michael H.

    2016-01-01

    Differentiated macrophages can self-renew in tissues and expand long-term in culture, but the gene regulatory mechanisms that accomplish self-renewal in the differentiated state have remained unknown. Here we show that in mice, the transcription factors MafB and c-Maf repress a macrophage-specific enhancer repertoire associated with a gene network controlling self-renewal. Single cell analysis revealed that, in vivo, proliferating resident macrophages can access this network by transient down-regulation of Maf transcription factors. The network also controls embryonic stem cell self-renewal but is associated with distinct embryonic stem cell-specific enhancers. This indicates that distinct lineage-specific enhancer platforms regulate a shared network of genes that control self-renewal potential in both stem and mature cells. PMID:26797145

  11. Indolic uremic solutes enhance procoagulant activity of red blood cells through phosphatidylserine exposure and microparticle release.

    PubMed

    Gao, Chunyan; Ji, Shuting; Dong, Weijun; Qi, Yushan; Song, Wen; Cui, Debin; Shi, Jialan

    2015-10-28

    Increased accumulation of indolic uremic solutes in the blood of uremic patients contributes to the risk of thrombotic events. Red blood cells (RBCs), the most abundant blood cells in circulation, may be a privileged target of these solutes. However, the effect of uremic solutes indoxyl sulfate (IS) and indole-3-acetic acid (IAA) on procoagulant activity (PCA) of erythrocyte is unclear. Here, RBCs from healthy adults were treated with IS and IAA (mean and maximal concentrations reported in uremic patients). Phosphatidylserine (PS) exposure of RBCs and their microparticles (MPs) release were labeled with Alexa Fluor 488-lactadherin and detected by flow cytometer. Cytosolic Ca(2+) ([Ca(2+)]) with Fluo 3/AM was analyzed by flow cytometer. PCA was assessed by clotting time and purified coagulation complex assays. We found that PS exposure, MPs generation, and consequent PCA of RBCs at mean concentrations of IS and IAA enhanced and peaked in maximal uremic concentrations. Moreover, 128 nM lactadherin, a PS inhibitor, inhibited over 90% PCA of RBCs and RMPs. Eryptosis or damage, by indolic uremic solutes was due to, at least partially, the increase of cytosolic [Ca(2+)]. Our results suggest that RBC eryptosis in uremic solutes IS and IAA plays an important role in thrombus formation through releasing RMPs and exposing PS. Lactadherin acts as an efficient anticoagulant in this process.

  12. Enhanced Follicular Dendritic Cell-B Cell Interaction in HIV and SIV Infections and its Potential Role in Polyclonal B Cell Activation

    PubMed Central

    Lewis, Mark. G.; Kosco-Vilbois, Marie H.

    1998-01-01

    Human immunodeficiency virus (HIV) infections have been characterized by both polyclonal Bcell activation and enhanced responsiveness to B-cell growth factors on one hand and the loss of specific antibody (Ab) responses and refractoriness to the normal signals for B-cell activation on the other. Histopathological studies of lymph node from HIV- and simian immunodeficiency virus (SIV)-infected individuals have indicated initial follicular hyperplasia and the appearance of large irregular germinal centers that undergo progressive involution concomitant with follicular dendritic-cell (FDC) disruption. During this process, follicular dendritic-cell -enriched lymph-node-cell cultures exhibit increased ability to induce cluster formation (“in vitro germinal centers”), lymphocyte proliferation and antibody production compared to uninfected controls. This paper discusses how enhanced FDC-B-cell interaction within SIV-infected germinal centers may result in a reduced ability to select high-affinity B cells and alter the dynamics of antibodyproducing- cell and memory-cell generation resulting in the observed hyperactivity. PMID:9716906

  13. Global analysis of transcription in castration-resistant prostate cancer cells uncovers active enhancers and direct androgen receptor targets

    PubMed Central

    Toropainen, Sari; Niskanen, Einari A.; Malinen, Marjo; Sutinen, Päivi; Kaikkonen, Minna U.; Palvimo, Jorma J.

    2016-01-01

    Androgen receptor (AR) is a male sex steroid-activated transcription factor (TF) that plays a critical role in prostate cancers, including castration-resistant prostate cancers (CRPC) that typically express amplified levels of the AR. CRPC-derived VCaP cells display an excessive number of chromatin AR-binding sites (ARBs) most of which localize to distal inter- or intragenic regions. Here, we analyzed direct transcription programs of the AR in VCaP cells using global nuclear run-on sequencing (GRO-seq) and integrated the GRO-seq data with the ARB and VCaP cell-specific TF-binding data. Androgen immediately activated transcription of hundreds of protein-coding genes, including IGF-1 receptor and EGF receptor. Androgen also simultaneously repressed transcription of a large number of genes, including MYC. As functional enhancers have been postulated to produce enhancer-templated non-coding RNAs (eRNAs), we also analyzed the eRNAs, which revealed that only a fraction of the ARBs reside at functional enhancers. Activation of these enhancers was most pronounced at the sites that also bound PIAS1, ERG and HDAC3, whereas binding of HDAC3 and PIAS1 decreased at androgen-repressed enhancers. In summary, our genome-wide data of androgen-regulated enhancers and primary target genes provide new insights how the AR can directly regulate cellular growth and control signaling pathways in CPRC cells. PMID:27641228

  14. Cell-Demanded VEGF Release via Nanocapsules Elicits Different Receptor Activation Dynamics and Enhanced Angiogenesis.

    PubMed

    Zhu, Suwei; Segura, Tatiana

    2016-06-01

    Although the delivery of vascular endothelial growth factor (VEGF) with extended release profiles has consistently shown beneficial therapeutic effects compared with bolus delivery, [Martino, M. M., F. Tortelli, M. Mochizuki, S. Traub, D. Ben-David, G. A. Kuhn, R. Muller, E. Livne, S. A. Eming, and J. A. Hubbell. Sci. Transl. Med. 3(100):100ra189, 2011; Martino, M. M., P. S. Briquez, A. Ranga, M. P. Lutolf, and J. A. Hubbell. Proc. Natl. Acad. Sci. USA. 110(12):4563-4568, 2013; Amiram, M., K. M. Luginbuhl, X. Li, M. N. Feinglos, and A. Chilkoti. Proc. Natl. Acad. Sci. USA. 110(8):2792-2797, 2013] it remains unclear if the reason is solely due to the physical availability and the reduced degradation of the protein. Here we studied the activation of VEGF receptor 2 (VR-2) by sustained released VEGF compared with bolus delivered VEGF to unveil that sustained delivery system alters the dynamics of receptor activation and affects the actions of cells between sprouting and proliferation. We utilized a protein nanocapsule delivery strategy that releases VEGF as mediated by extracellular proteases. These protein nanocapsules were synthesized through an aqueous assembly of a nanogel-peptide shell around the protein, leading to one to two proteins encapsulated per nanocapsule. Receptor activation studies revealed differential dynamics of receptor activation for slowly released VEGF compared with bolus delivered VEGF. As expected sustained released VEGF via nanocapsules resulted in enhanced vascular sprouting in vitro and in vivo. These studies demonstrate the physical presentation of VEGF, in this case of a slow release with time, can affect its molecular mechanism of actions and cause alterations in cellular responses and therapeutic outcomes.

  15. Luteolin enhances cholinergic activities in PC12 cells through ERK1/2 and PI3K/Akt pathways.

    PubMed

    El Omri, Abdelfatteh; Han, Junkyu; Kawada, Kiyokazu; Ben Abdrabbah, Manef; Isoda, Hiroko

    2012-02-09

    Luteolin, a 3', 4', 5, 7-tetrahydroxyflavone, is an active compound in Rosmarinus officinalis (Lamiacea), and has been reported to exert several benefits in neuronal cells. However cholinergic-induced activities of luteolin still remain unknown. Neuronal differentiation encompasses an elaborate developmental program which plays a key role in the development of the nervous system. The advent of several cell lines, like PC12 cells, able to differentiate in culture proved to be the turning point for gaining and understanding of molecular neuroscience. In this work, we investigated the ability of luteolin to induce PC12 cell differentiation and its effect on cholinergic activities. Our findings showed that luteolin treatment significantly induced neurite outgrowth extension, enhanced acetylcholinesterase (AChE) activity, known as neuronal differentiation marker, and increased the level of total choline and acetylcholine in PC12 cells. In addition, luteolin persistently, activated extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt; while the addition of pharmacological MEK/ERK1/2 inhibitor (U0126) and PI3k/Akt inhibitor (LY294002) attenuated luteolin-induced AChE activity and neurite outgrowth in PC12 cells. The above findings suggest that luteolin induces neurite outgrowth and enhanced cholinergic activities, at least in part, through the activation of ERK1/2 and Akt signaling.

  16. Activation of cyclic amp/protein kinase: a signaling pathway enhances osteoblast cell adhesion on biomaterials for regenerative engineering.

    PubMed

    Lo, Kevin W-H; Ashe, Keshia M; Kan, Ho Man; Lee, Duron A; Laurencin, Cato T

    2011-04-01

    Osteoblast cell adhesion on biomaterials is an important goal for implants to be useful in bone regeneration technologies. The adhesion of osteoblastic cells to biomaterials has been investigated in the field of bone regenerative engineering. Previous work from our group demonstrated that osteoblastic cells adhering to biodegradable biomaterials require the expression of integrins on the cell surface. However, the underlying molecular signaling mechanism is still not fully clear. We report here that cyclic adenosine monophosphate (cAMP), a small signaling molecule, regulates osteoblast cell adhesion to biomaterial surfaces. We used an in vitro cell adhesion assay to demonstrate that at 0.1 mM, 8-Br-cAMP, a cell-permeable cAMP analog, significantly enhances osteoblast-like cells' (MC3T3-E1) adherence to biomaterials. Moreover, we demonstrate that a commonly used cAMP-elevating agent, forskolin, promotes cell adhesion similar to that of the cell permeable cAMP analog. By using different target-specific cAMP analogs: 8-CPT-2Me-cAMP which specifically activates exchange protein activated by cAMP (Epac), and 6-Bnz-cAMP which specifically activates protein kinase A (PKA), we observed that the PKA signaling pathway plays a dominant role in this process. Thus, this report suggests a new method to enhance osteoblast cell adhesion on biodegradable biomaterials for bone regenerative engineering applications.

  17. Dendritic Cell-Mediated Phagocytosis but Not Immune Activation Is Enhanced by Plasmin

    PubMed Central

    Borg, Rachael J.; Samson, Andre L.; Au, Amanda E.-L.; Scholzen, Anja; Fuchsberger, Martina; Kong, Ying Y.; Freeman, Roxann; Mifsud, Nicole A.; Plebanski, Magdalena; Medcalf, Robert L.

    2015-01-01

    Removal of dead cells in the absence of concomitant immune stimulation is essential for tissue homeostasis. We recently identified an injury-induced protein misfolding event that orchestrates the plasmin-dependent proteolytic degradation of necrotic cells. As impaired clearance of dead cells by the innate immune system predisposes to autoimmunity, we determined whether plasmin could influence endocytosis and immune cell stimulation by dendritic cells – a critical cell that links the innate and adaptive immune systems. We find that plasmin generated on the surface of necrotic cells enhances their phagocytic removal by human monocyte-derived dendritic cells. Plasmin also promoted phagocytosis of protease-resistant microparticles by diverse mouse dendritic cell sub-types both in vitro and in vivo. Together with an increased phagocytic capacity, plasmin-treated dendritic cells maintain an immature phenotype, exhibit reduced migration to lymph nodes, increase their expression/release of the immunosuppressive cytokine TGF-β, and lose their capacity to mount an allogeneic response. Collectively, our findings support a novel role for plasmin formed on dead cells and other phagocytic targets in maintaining tissue homeostasis by increasing the phagocytic function of dendritic cells while simultaneously decreasing their immunostimulatory capacity consistent with producing an immunosuppressive state. PMID:26132730

  18. Enhancement of NK cell-mediated lysis of non-small lung cancer cells by nPKC activator, ingenol 3,20 dibenzoate.

    PubMed

    Gong, Chenyuan; Yao, Chao; Xu, Zihang; Ni, Zhongya; Zhu, Xiaowen; Wang, Lixin; Yan, Xuewei; Zhou, Wuxiong; Zhu, Shiguo

    2017-03-01

    The IFN-γ production is crucial for NK cell-mediated lysis of cancer cells. Thus increasing the IFN-γ production by NK cells may be an ideal strategy to improve their tumoricidal effect. Since the focus on new drug development has shifted towards natural products, limited information is out there about natural products that enhance the IFN-γ production by NK cells. In this study, through a high-throughput screening, we have identified a natural product ingenol 3,20 dibenzoate (IDB), an activator of tumor suppressor protein kinase C (PKC) isozymes, could increase the IFN-γ production and degranulation by NK cells, especially when NK cells were stimulated by non-small lung cancer (NSCLC) cells. IDB also significantly enhanced the NK cell-mediated lysis of NSCLC cells. Furthermore, PKC inhibitor, sotrastaurin abrogated IDB-induced IFN-γ production, degranulation and cytotoxicity, but did not affect IFN-γ production by NK cells without IDB treatment and NSCLC cell stimulation. The IFN-γ neutralization reversed the IDB-induced enhancement of NK cell mediated killing. In conclusion, our study indicated that IDB enhanced NK cell-mediated lysis of NSCLC cells is dependent on specific PKC mediated IFN-γ production and degranulation. Thus, IDB may have a promising application in clinic for NK cell-based cancer immunotherapy.

  19. Effects of complexation with in vivo enhancing monoclonal antibodies on activity of growth hormone in two responsive cell culture systems.

    PubMed

    Beattie, J; Borromeo, V; Bramani, S; Secchi, C; Baumbach, W R; Mockridge, J

    1999-12-01

    We describe the properties of three monoclonal antibodies (MAbs) to ovine GH, two of which have previously been shown to enhance, in vivo, the biological activity of bovine and ovine growth hormone. We have examined the effects of these MAbs on GH activity in two appropriate GH-responsive cell culture systems, investigating both acute signalling effects (Janus-activated kinase (Jak)-2 tyrosine phosphorylation -5 min) and longer-term (MTT-formazan production -24 h) effects of hormone-antibody complexes. In the 3T3-F442A pre-adipocyte cell line (which has been demonstrated to be GH responsive), we show that complexation of recombinant bovine (rb) GH with either of the two enhancing anti-ovine GH MAbs (OA11 and OA15) and the non-enhancing MAb, OA14, attenuates the ability of GH to stimulate tyrosine phosphorylation of Jak-2 at a 5-min time point. Using the mouse myeloid cell line, FDC-P1, stably transfected with the full-length ovine GH receptor (oGHR), we demonstrate that rbGH causes a dose-dependent increase in MTT-formazan production by these cells. Further, we demonstrate that OA11 and OA14, but not OA15, cause a decrease in this stimulatory activity of rbGH over a hormone concentration range of 5-50 ng/ml at both 24 and 48 h. We conclude that the different in vitro activities of the two in vivo enhancing MAbs are most probably related to the time-courses over which these two assays are performed, and also to the relative affinities between antibody, hormone and receptor. In addition, the in vitro inhibitory activity of the enhancing MAb OA11 in both short- and long-term bioassay lends further support to an exclusively in vivo model for MAb-mediated enhancement of GH action.

  20. Gemcitabine enhances cell invasion via activating HAb18G/CD147-EGFR-pSTAT3 signaling

    PubMed Central

    Wu, Xiao-Qing; Wu, Bo; Xu, Liang; Jiang, Jian-Li; Li, Ling; Chen, Zhi-Nan

    2016-01-01

    Pancreatic cancer, one of the most lethal cancers, has very poor 5-year survival partly due to gemcitabine resistance. Recently, it was reported that chemotherapeutic agents may act as stressors to induce adaptive responses and to promote chemoresistance in cancer cells. During long-term drug treatment, the minority of cancer cells survive and acquire an epithelial-mesenchymal transition phenotype with increased chemo-resistance and metastasis. However, the short-term response of most cancer cells remains unclear. This study aimed to investigate the short-term response of pancreatic cancer cells to gemcitabine stress and to explore the corresponding mechanism. Our results showed that gemcitabine treatment for 24 hours enhanced pancreatic cancer cell invasion. In gemcitabine-treated cells, HAb18G/CD147 was up-regulated; and HAb18G/CD147 down-regulation or inhibition attenuated gemcitabine-enhanced invasion. Mechanistically, HAb18G/CD147 promoted gemcitabine-enhanced invasion by activating the EGFR (epidermal growth factor receptor)-STAT3 (signal transducer and activator of transcription 3) signaling pathway. Inhibition of EGFR-STAT3 signaling counteracted gemcitabine-enhanced invasion, and which relied on HAb18G/CD147 levels. In pancreatic cancer tissues, EGFR was highly expressed and positively correlated with HAb18G/CD147. These data indicate that pancreatic cancer cells enhance cell invasion via activating HAb18G/CD147-EGFR-pSTAT3 signaling. Our findings suggest that inhibiting HAb18G/CD147 is a potential strategy for overcoming drug stress-associated resistance in pancreatic cancer. PMID:27556697

  1. Bisphosphonates Inhibit Stellate Cell Activity and Enhance Antitumor Effects of Nanoparticle Albumin Bound-Paclitaxel in Pancreatic Ductal Adenocarcinoma

    PubMed Central

    Gonzalez-Villasana, Vianey; Rodriguez-Aguayo, Cristian; Arumugam, Thiruvengadam; Cruz-Monserrate, Zobeida; Fuentes-Mattei, Enrique; Deng, Defeng; Hwang, Rosa F.; Wang, Huamin; Ivan, Cristina; Garza, Raul Joshua; Cohen, Evan; Gao, Hui; Armaiz-Pena, Guillermo N.; Monroig-Bosque, Paloma del C.; Philip, Bincy; Rashed, Mohammed H.; Aslan, Burcu; Erdogan, Mumin Alper; Gutierrez-Puente, Yolanda; Ozpolat, Bulent; Reuben, James M.; Sood, Anil K.; Logsdon, Craig; Lopez-Berestein, Gabriel

    2014-01-01

    Pancreatic stellate cells (PSCs) have been recognized as the principal cells responsible for the production of fibrosis in PDAC. Recently PSCs have been noted to share characteristics with cells of monocyte-macrophage lineage (MML cells). Thus, we tested whether PSCs could be targeted with the nitrogen-containing bisphosphonates (NBPs) [pamidronate (Pam) or zoledronic acid (ZA)], which are potent MML cell inhibitors. In addition, we tested NBPs treatment combination with nanoparticle albumin-bound paclitaxel (nab-paclitaxel) to enhance antitumor activity. In vitro we observed that PSCs possess α-naphthyl butyrate esterase (ANBE) enzyme activity, a specific marker of MML cells. Moreover NBPs inhibited PSCs proliferation, activation, release of macrophage chemoattractant protein-1 (MCP-1) and type I collagen expression. NBPs also induced PSC apoptosis and cell cycle arrest in the G1 phase. In vivo, NBPs inactivated PSCs; reduced fibrosis; inhibited tumor volume, tumor weight, peritoneal dissemination, angiogenesis, and cell proliferation; and increased apoptosis in an orthotopic murine model of PDAC. These in vivo antitumor effects were enhanced when NBPs were combined with nab-paclitaxel but not gemcitabine (Gem). Our study suggests that targeting PSCs and tumor cells with NBPs in combination with nab-paclitaxel may be a novel therapeutic approach to PDAC. PMID:25193509

  2. Targeting of pegylated liposomal mitomycin-C prodrug to the folate receptor of cancer cells: Intracellular activation and enhanced cytotoxicity.

    PubMed

    Patil, Yogita; Amitay, Yasmine; Ohana, Patricia; Shmeeda, Hilary; Gabizon, Alberto

    2016-03-10

    Mitomycin C (MMC) is a powerful anti-bacterial, anti-fungal and anti-tumor antibiotic, often active against multidrug resistant cells. Despite a broad spectrum of antitumor activity, MMC clinical use is relatively limited due to its fast clearance and dose-limiting toxicity. To exploit the potential antitumor activity of MMC and reduce its toxicity we have previously developed a formulation of pegylated liposomes with a lipophilic prodrug of MMC (PL-MLP), activated by endogenous reducing agents which are abundant in the tumor cell environment in the form of different thiols. PL-MLP has minimal in vitro cytotoxicity unless reducing agents are added to the cell culture to activate the prodrug. In the present study, we hypothesized that targeting PL-MLP via folate receptors will facilitate intracellular activation of prodrug and enhance cytotoxic activity without added reducing agents. We grafted a lipophilic folate conjugate (folate-PEG(5000)-DSPE) to formulate folate targeted liposomes (FT-PL-MLP) and examined in vitro cell uptake and cytotoxic activity in cancer cell lines with high folate receptors (HiFR). 3H-cholesterol-hexadecyl ether (3H-Chol)-radiolabeled liposomes were prepared to study liposome-cell binding in parallel to cellular uptake of prodrug MLP. 3H-Chol and MLP cell uptake levels were 4-fold and 9-fold greater in KB HiFR cells when FT-PL-MLP is compared to non-targeted PL-MLP liposomes. The cytotoxic activity of FT-PL-MLP liposomes was significantly increased up to ~5-fold compared with PL-MLP liposomes in all tested HiFR expressing cell lines. The enhanced uptake and intracytoplasmic liposome delivery was confirmed by confocal fluorescence studies with Rhodamine-labeled liposomes. In vivo, no significant differences in pharmacokinetics and biodistribution were observed when PL-MLP was compared to FT-PL-MLP by the intravenous route. However, when liposomes were directly injected into the peritoneal cavity of mice with malignant ascites of J6456 Hi

  3. Detecting kinase activities from single cell lysate using concentration-enhanced mobility shift assay.

    PubMed

    Cheow, Lih Feng; Sarkar, Aniruddh; Kolitz, Sarah; Lauffenburger, Douglas; Han, Jongyoon

    2014-08-05

    Electrokinetic preconcentration coupled with mobility shift assays can give rise to very high detection sensitivities. We describe a microfluidic device that utilizes this principle to detect cellular kinase activities by simultaneously concentrating and separating substrate peptides with different phosphorylation states. This platform is capable of reliably measuring kinase activities of single adherent cells cultured in nanoliter volume microwells. We also describe a novel method utilizing spacer peptides that significantly increase separation resolution while maintaining high concentration factors in this device. Thus, multiplexed kinase measurements can be implemented with single cell sensitivity. Multiple kinase activity profiling from single cell lysate could potentially allow us to study heterogeneous activation of signaling pathways that can lead to multiple cell fates.

  4. Taxifolin enhances andrographolide-induced mitotic arrest and apoptosis in human prostate cancer cells via spindle assembly checkpoint activation.

    PubMed

    Zhang, Zhong Rong; Al Zaharna, Mazen; Wong, Matthew Man-Kin; Chiu, Sung-Kay; Cheung, Hon-Yeung

    2013-01-01

    Andrographolide (Andro) suppresses proliferation and triggers apoptosis in many types of cancer cells. Taxifolin (Taxi) has been proposed to prevent cancer development similar to other dietary flavonoids. In the present study, the cytotoxic and apoptotic effects of the addition of Andro alone and Andro and Taxi together on human prostate carcinoma DU145 cells were assessed. Andro inhibited prostate cancer cell proliferation by mitotic arrest and activation of the intrinsic apoptotic pathway. Although the effect of Taxi alone on DU145 cell proliferation was not significant, the combined use of Taxi with Andro significantly potentiated the anti-proliferative effect of increased mitotic arrest and apoptosis by enhancing the cleavage of poly(ADP-ribose) polymerase, and caspases-7 and -9. Andro together with Taxi enhanced microtubule polymerization in vitro, and they induced the formation of twisted and elongated spindles in the cancer cells, thus leading to mitotic arrest. In addition, we showed that depletion of MAD2, a component in the spindle assembly checkpoint (SAC), alleviated the mitotic block induced by the two compounds, suggesting that they trigger mitotic arrest by SAC activation. This study suggests that the anti-cancer activity of Andro can be significantly enhanced in combination with Taxi by disrupting microtubule dynamics and activating the SAC.

  5. P2X(7) receptor activation enhances SK3 channels- and cystein cathepsin-dependent cancer cells invasiveness.

    PubMed

    Jelassi, B; Chantôme, A; Alcaraz-Pérez, F; Baroja-Mazo, A; Cayuela, M L; Pelegrin, P; Surprenant, A; Roger, S

    2011-05-05

    ATP-gated P2X(7) receptors (P2X(7)R) are unusual plasma membrane ion channels that have been extensively studied in immune cells. More recently, P2X(7)R have been described as potential cancer cell biomarkers. However, mechanistic links between P2X(7)R and cancer cell processes are unknown. Here, we show, in the highly aggressive human breast cancer cell line MDA-MB-435s, that P2X(7) receptor is highly expressed and fully functional. Its activation is responsible for the extension of neurite-like cellular prolongations, of the increase in cell migration by 35% and in cell invasion through extracellular matrix by 150%. The change in cancer cell morphology and the increased migration appeared to be due to the activation of Ca(2+)-activated SK3 potassium channels. The enhanced invasion through the extracellular matrix was related to the increase of mature forms of cysteine cathepsins in the extracellular medium, which was independent of SK3 channel activity and not associated with cell death. Pharmacological targeting of P2X(7)R in vivo was crucial for cell invasiveness in a zebrafish model of metastases. Our results demonstrate a novel mechanistic link between P2X(7)R functionality in cancer cells and invasiveness, a key parameter in tumour growth and in the development of metastases. They also suggest a potential therapeutic role for the newly developed P2X(7)R antagonists.

  6. Messenger RNA encoding constitutively active Toll-like receptor 4 enhances effector functions of human T cells

    PubMed Central

    Pato, A; Eisenberg, G; Machlenkin, A; Margalit, A; Cafri, G; Frankenburg, S; Merims, S; Peretz, T; Lotem, M; Gross, G

    2015-01-01

    Adoptive T cell therapy of cancer employs a large number of ex-vivo-propagated T cells which recognize their targets either by virtue of their endogenous T cell receptor (TCR) or via genetic reprogramming. However, both cell-extrinsic and intrinsic mechanisms often diminish the in-vivo potency of these therapeutic T cells, limiting their clinical efficacy and broader use. Direct activation of human T cells by Toll-like receptor (TLR) ligands induces T cell survival and proliferation, boosts the production of proinflammatory cytokines and augments resistance to regulatory T cell (Treg) suppression. Removal of the TLR ligand-binding region results in constitutive signalling triggered by the remaining cytosolic Toll/interleukin-1 receptor (TIR) domain. The use of such TIR domains therefore offers an ideal means for equipping anti-tumour T cells with the arsenal of functional attributes required for improving current clinical protocols. Here we show that constitutively active (ca)TLR-4 can be expressed efficiently in human T cells using mRNA electroporation. The mere expression of caTLR-4 mRNA in polyclonal CD8 and CD4 T cells induced the production of interferon (IFN)-γ, triggered the surface expression of CD25, CD69 and 4-1BB and up-regulated a panel of cytokines and chemokines. In tumour-infiltrating lymphocytes prepared from melanoma patients, caTLR-4 induced robust IFN-γ secretion in all samples tested. Furthermore, caTLR-4 enhanced the anti-melanoma cytolytic activity of tumour-infiltrating lymphocytes and augmented the secretion of IFN-γ, tumour necrosis factor (TNF)-α and granulocyte–macrophage colony-stimulating factor (GM-CSF) for at least 4 days post-transfection. Our results demonstrate that caTLR-4 is capable of exerting multiple T cell-enhancing effects and can potentially be used as a genetic adjuvant in adoptive cell therapy. PMID:26212048

  7. SG2NA enhances cancer cell survival by stabilizing DJ-1 and thus activating Akt

    SciTech Connect

    Tanti, Goutam Kumar Pandey, Shweta; Goswami, Shyamal K.

    2015-08-07

    SG2NA in association with striatin and zinedin forms a striatin family of WD-40 repeat proteins. This family of proteins functions as scaffold in different signal transduction pathways. They also act as a regulatory subunit of protein phosphatase 2A. We have shown that SG2NA which evolved first in the metazoan evolution among the striatin family members expresses different isoforms generated out of alternative splicing. We have also shown that SG2NA protects cells from oxidative stress by recruiting DJ-1 and Akt to mitochondria and membrane in the post-mitotic neuronal cells. DJ-1 is both cancer and Parkinson's disease related protein. In the present study we have shown that SG2NA protects DJ-1 from proteasomal degradation in cancer cells. Hence, downregulation of SG2NA reduces DJ-1/Akt colocalization in cancer cells resulting in the reduction of anchorage dependent and independent growth. Thus SG2NA enhances cancer cell survival. Reactive oxygen species enhances SG2NA, DJ-1 and Akt trimerization. Removal of the reactive oxygen species by N-acetyl-cysteine thus reduces cancer cell growth. - Highlights: • Reactive oxygen species (ROS) play potential role in cancer cell proliferation. • It enhances the association between DJ-1 and Akt mediated by SG2NA. • In cancer cells SG2NA stabilizes DJ-1 by inhibiting it from proteosomal degradation. • DJ-1 then activates Akt and cancer cells get their property of enhanced proliferation by sustained activation of Akt. • Further study on this field could lead to new target for cancer therapy.

  8. Multi-cellular natural killer (NK) cell clusters enhance NK cell activation through localizing IL-2 within the cluster

    PubMed Central

    Kim, Miju; Kim, Tae-Jin; Kim, Hye Mi; Doh, Junsang; Lee, Kyung-Mi

    2017-01-01

    Multi-cellular cluster formation of natural killer (NK) cells occurs during in vivo priming and potentiates their activation to IL-2. However, the precise mechanism underlying this synergy within NK cell clusters remains unclear. We employed lymphocyte-laden microwell technologies to modulate contact-mediated multi-cellular interactions among activating NK cells and to quantitatively assess the molecular events occurring in multi-cellular clusters of NK cells. NK cells in social microwells, which allow cell-to-cell contact, exhibited significantly higher levels of IL-2 receptor (IL-2R) signaling compared with those in lonesome microwells, which prevent intercellular contact. Further, CD25, an IL-2R α chain, and lytic granules of NK cells in social microwells were polarized toward MTOC. Live cell imaging of lytic granules revealed their dynamic and prolonged polarization toward neighboring NK cells without degranulation. These results suggest that IL-2 bound on CD25 of one NK cells triggered IL-2 signaling of neighboring NK cells. These results were further corroborated by findings that CD25-KO NK cells exhibited lower proliferation than WT NK cells, and when mixed with WT NK cells, underwent significantly higher level of proliferation. These data highlights the existence of IL-2 trans-presentation between NK cells in the local microenvironment where the availability of IL-2 is limited. PMID:28074895

  9. Multi-cellular natural killer (NK) cell clusters enhance NK cell activation through localizing IL-2 within the cluster

    NASA Astrophysics Data System (ADS)

    Kim, Miju; Kim, Tae-Jin; Kim, Hye Mi; Doh, Junsang; Lee, Kyung-Mi

    2017-01-01

    Multi-cellular cluster formation of natural killer (NK) cells occurs during in vivo priming and potentiates their activation to IL-2. However, the precise mechanism underlying this synergy within NK cell clusters remains unclear. We employed lymphocyte-laden microwell technologies to modulate contact-mediated multi-cellular interactions among activating NK cells and to quantitatively assess the molecular events occurring in multi-cellular clusters of NK cells. NK cells in social microwells, which allow cell-to-cell contact, exhibited significantly higher levels of IL-2 receptor (IL-2R) signaling compared with those in lonesome microwells, which prevent intercellular contact. Further, CD25, an IL-2R α chain, and lytic granules of NK cells in social microwells were polarized toward MTOC. Live cell imaging of lytic granules revealed their dynamic and prolonged polarization toward neighboring NK cells without degranulation. These results suggest that IL-2 bound on CD25 of one NK cells triggered IL-2 signaling of neighboring NK cells. These results were further corroborated by findings that CD25-KO NK cells exhibited lower proliferation than WT NK cells, and when mixed with WT NK cells, underwent significantly higher level of proliferation. These data highlights the existence of IL-2 trans-presentation between NK cells in the local microenvironment where the availability of IL-2 is limited.

  10. Trichloroethylene and Its Oxidative Metabolites Enhance the Activated State and Th1 Cytokine Gene Expression in Jurkat Cells.

    PubMed

    Pan, Yao; Wei, Xuetao; Hao, Weidong

    2015-08-28

    Trichloroethylene (TCE) is an occupational and ubiquitous environmental contaminant, and TCE exposure will increase the risk of autoimmune diseases and allergic diseases. T cells play an important role in the pathogenesis of TCE-related immune disorders, but the effect of TCE and its oxidative metabolites, trichloroacetic acid (TCA) and dichloroacetic acid (DCA), on the activation of human T cells is still unknown. In this study, Jurkat cells were pre-treated with TCE, TCA and DCA overnight and then stimulated with phorbol 12-myristate 13-acetate and ionomycin for another 4, 8 and 24 hours. IL-2 secretion was detected by ELISA; the expressions of CD25 and CD69 were tested by flow cytometry; and IFN-γ and IL-2 mRNA expression levels were investigated by real-time PCR. The results showed that TCE and its oxidative metabolites, TCA and DCA, significantly enhanced IL-2 releasing and the expression of T cell activation markers, CD25 and CD69. Consistent with this result, these compounds markedly up-regulated the expression levels of IFN-γ and IL-2 mRNA. Collectively, these findings suggest that TCE and its metabolites, TCA and DCA, might enhance the activation of T cells and disrupt various activities of peripheral T cells.

  11. Trichloroethylene and Its Oxidative Metabolites Enhance the Activated State and Th1 Cytokine Gene Expression inJurkat Cells

    PubMed Central

    Pan, Yao; Wei, Xuetao; Hao, Weidong

    2015-01-01

    Trichloroethylene (TCE) is an occupational and ubiquitous environmental contaminant, and TCE exposure will increase the risk of autoimmune diseases and allergic diseases. T cells play an important role in the pathogenesis of TCE-related immune disorders, but the effect of TCE and its oxidative metabolites, trichloroacetic acid (TCA) and dichloroacetic acid (DCA), on the activation of human T cells is still unknown. In this study, Jurkat cells were pre-treated with TCE, TCA and DCA overnight and then stimulated with phorbol 12-myristate 13-acetate and ionomycin for another 4, 8 and 24 hours. IL-2 secretion was detected by ELISA; the expressions of CD25 and CD69 were tested by flow cytometry; and IFN-γ and IL-2 mRNA expression levels were investigated by real-time PCR. The results showed that TCE and its oxidative metabolites, TCA and DCA, significantly enhanced IL-2 releasing and the expression of T cell activation markers, CD25 and CD69. Consistent with this result, these compounds markedly up-regulated the expression levels of IFN-γ and IL-2 mRNA. Collectively, these findings suggest that TCE and its metabolites, TCA and DCA, might enhance the activation of T cells and disrupt various activities of peripheral T cells. PMID:26343699

  12. PKCθ-Mediated PDK1 Phosphorylation Enhances T Cell Activation by Increasing PDK1 Stability

    PubMed Central

    Kang, Jung-Ah; Choi, Hyunwoo; Yang, Taewoo; Cho, Steve K.; Park, Zee-Yong; Park, Sung-Gyoo

    2017-01-01

    PDK1 is essential for T cell receptor (TCR)-mediated activation of NF-κB, and PDK1-induced phosphorylation of PKCθ is important for TCR-induced NF-κB activation. However, inverse regulation of PDK1 by PKCθ during T cell activation has not been investigated. In this study, we found that PKCθ is involved in human PDK1 phosphorylation and that its kinase activity is crucial for human PDK1 phosphorylation. Mass spectrometry analysis of wild-type PKCθ or of kinase-inactive form of PKCθ revealed that PKCθ induced phosphorylation of human PDK1 at Ser-64. This PKCθ-induced PDK1 phosphorylation positively regulated T cell activation and TCR-induced NF-κB activation. Moreover, phosphorylation of human PDK1 at Ser-64 increased the stability of human PDK1 protein. These results suggest that Ser-64 is an important phosphorylation site that is part of a positive feedback loop for human PDK1-PKCθ-mediated T cell activation. PMID:28152304

  13. Dietary probiotic supplementation enhances natural killer cell activity in the elderly: an investigation of age-related immunological changes.

    PubMed

    Gill, H S; Rutherfurd, K J; Cross, M L

    2001-07-01

    Many elderly subjects are at increased risk of infectious and noninfectious diseases due to an age-related decline in lymphoid cell activity (immunosenescence). Noninvasive means of enhancing cellular immunity are therefore desirable in the elderly. Previous reports have suggested that dietary supplementation could represent an effective means of enhancing the activity of circulating natural killer (NK) cells in the elderly. In the present study, we have conducted a pre-post intervention trial to determine the impact of dietary supplementation with probiotic lactic acid bacteria (LAB) on peripheral blood NK cell activity in healthy elderly subjects. Twenty-seven volunteers consumed low-fat/low-lactose milk supplemented with known immunostimulatory LAB strains (Lactobacillus rhamnosus HN001 or Bifidobacterium lactis HN019) for a period of 3 weeks. A dietary run-in of milk alone was shown to have no significant effect on NK cells. In contrast, the proportion of CD56-positive lymphocytes in peripheral circulation was higher following consumption of either LAB strain, and ex vivo PBMC tumoricidal activity against K562 cells was also increased. Supplementation with HN001 or HN019 increased tumoricidal activity by an average of 101 and 62%, respectively; these increases were significantly correlated with age, with subjects older than 70 years experiencing significantly greater improvements than those under 70 years. These results demonstrate that dietary consumption of probiotic LAB in a milk-based diet may offer benefit to elderly consumers to combat some of the deleterious effects of immunosenescence on cellular immunity.

  14. TLR3 or TLR4 Activation Enhances Mesenchymal Stromal Cell-Mediated Treg Induction via Notch Signaling.

    PubMed

    Rashedi, Iran; Gómez-Aristizábal, Alejandro; Wang, Xing-Hua; Viswanathan, Sowmya; Keating, Armand

    2017-01-01

    Mesenchymal stromal cells (MSCs) are the subject of numerous clinical trials, largely due to their immunomodulatory and tissue regenerative properties. Toll-like receptors (TLRs), especially TLR3 and TLR4, are highly expressed on MSCs and their activation can significantly modulate the immunosuppressive and anti-inflammatory functions of MSCs. While MSCs can recruit and promote the generation of regulatory T cells (Tregs), the effect of TLR activation on MSC-mediated Treg induction is unknown. In this study, we investigated the effect of ligand-mediated activation of TLR3 and TLR4 on Treg induction by human MSCs. We found that generation of Tregs in human CD4(+) lymphocyte and MSC cocultures was enhanced by either TLR3 or TLR4 activation of MSCs and that the increase was abolished by TLR3 and TLR4 gene-silencing. Augmented Treg induction by TLR-activated MSCs was cell contact-dependent and associated with increased gene expression of the Notch ligand, Delta-like 1. Moreover, inhibition of Notch signaling abrogated the augmented Treg levels in the MSC cocultures. Our data show that TLR3 or TLR4 activation of MSCs increases Treg induction via the Notch pathway and suggest new means to enhance the potency of MSCs for treating disorders with an underlying immune dysfunction, including steroid resistant acute graft-versus-host disease. Stem Cells 2017;35:265-275.

  15. Redox-responsive mesoporous selenium delivery of doxorubicin targets MCF-7 cells and synergistically enhances its anti- tumor activity.

    PubMed

    Zhao, Shuang; Yu, Qianqian; Pan, Jiali; Zhou, Yanhui; Cao, Chengwen; Ouyang, Jian-Ming; Liu, Jie

    2017-03-03

    To reduce the side effects and enhance the anti-tumor activities of anticancer drugs in the clinic, the use of nano mesoporous materials, with mesoporous silica (MSN) being the best-studied, has become an effective method of drug delivery. In this study, we successfully synthesized mesoporous selenium (MSe) nanoparticles and first introduced them to the field of drug delivery. Loading MSe with doxorubicin (DOX) is mainly driven by the physical adsorption mechanism of the mesopores, and our results demonstrated that MSe could synergistically enhance the antitumor activity of DOX. Coating the surface of MSe@DOX with Human serum albumin (HSA) generated a unique redox-responsive nanoparticle (HSA-MSe@DOX) that demonstrated glutathione-dependent drug release, increased tumor-targeting effects and enhanced cellular uptake throug nanoparticle interact with SPARC in MCF-7 cells. In vitro, HSA-MSe@DOX prominently induced cancer cell toxicity by synergistically enhancing the effects of MSe and DOX. Moreover, HSA-MSe@DOX possessed tumor-targeting abilities in tumor-bearing nude mice and not only decreased the side effects associated with DOX, but also enhanced its antitumor activity. Therefore, HSA-MSe@DOX is a promising new drug that warrants further evaluation in the treatments of tumors.

  16. Wound repair and proliferation of bronchial epithelial cells enhanced by bombesin receptor subtype 3 activation.

    PubMed

    Tan, Yu-Rong; Qi, Ming-Ming; Qin, Xiao-Qun; Xiang, Yang; Li, Xiang; Wang, Yue; Qu, Fei; Liu, Hui-Jun; Zhang, Jian-Song

    2006-07-01

    The present study was designed to investigate the role of bombesin receptor subtype 3 (BRS-3) in airway wound repair. The results showed that: (1) There was few expression of BRS-3 mRNA in the control group. In contrast, the expression of BRS-3 mRNA was gradually increased in the early 2 days, and peaked on the fourth day, and then decreased in the ozone-stressed AHR animal. BRS-3 mRNA was distributed in the ciliated columnar epithelium, monolayer columnar epithelium cells, scattered mesenchymal cells and Type II alveolar cells; (2) The wound repair and proliferation of bronchial epithelial cells (BECs) were accelerated in a concentration-dependent manner by BRS-3 activation with P3513, which could be inhibited by PKA inhibitor H89. The study demostrated that activation of BRS-3 may play an important role in wound repair of AHR.

  17. Bio-active molecules modified surfaces enhanced mesenchymal stem cell adhesion and proliferation.

    PubMed

    Mobasseri, Rezvan; Tian, Lingling; Soleimani, Masoud; Ramakrishna, Seeram; Naderi-Manesh, Hossein

    2017-01-29

    Surface modification of the substrate as a component of in vitro cell culture and tissue engineering, using bio-active molecules including extracellular matrix (ECM) proteins or peptides derived ECM proteins can modulate the surface properties and thereby induce the desired signaling pathways in cells. The aim of this study was to evaluate the behavior of human bone marrow mesenchymal stem cells (hBM-MSCs) on glass substrates modified with fibronectin (Fn), collagen (Coll), RGD peptides (RGD) and designed peptide (R-pept) as bio-active molecules. The glass coverslips were coated with fibronectin, collagen, RGD peptide and R-peptide. Bone marrow mesenchymal stem cells were cultured on different substrates and the adhesion behavior in early incubation times was investigated using scanning electron microscopy (SEM) and confocal microscopy. The MTT assay was performed to evaluate the effect of different bio-active molecules on MSCs proliferation rate during 24 and 72 h. Formation of filopodia and focal adhesion (FA) complexes, two steps of cell adhesion process, were observed in MSCs cultured on bio-active molecules modified coverslips, specifically in Fn coated and R-pept coated groups. SEM image showed well adhesion pattern for MSCs cultured on Fn and R-pept after 2 h incubation, while the shape of cells cultured on Coll and RGD substrates indicated that they might experience stress condition in early hours of culture. Investigation of adhesion behavior, as well as proliferation pattern, suggests R-peptide as a promising bio-active molecule to be used for surface modification of substrate in supporting and inducing cell adhesion and proliferation.

  18. Atorvastatin and pitavastatin enhance lipoprotein lipase production in L6 skeletal muscle cells through activation of adenosine monophosphate-activated protein kinase.

    PubMed

    Ohira, Masahiro; Endo, Kei; Saiki, Atsuhito; Miyashita, Yoh; Terai, Kensuke; Murano, Takeyoshi; Watanabe, Fusako; Tatsuno, Ichiro; Shirai, Kohji

    2012-10-01

    Pravastatin and atorvastatin increase the serum level of lipoprotein lipase (LPL) mass in vivo but do not increase LPL activity in 3T3-L1 preadipocytes in vitro. LPL is mainly produced by adipose tissue and skeletal muscle cells. Metformin enhances LPL in skeletal muscle through adenosine monophosphate-activated protein kinase (AMPK) activation but not in adipocytes. This study aimed to examine the effect of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) on LPL production and to investigate the mechanism by which statins enhance skeletal muscle cell LPL production. L6 skeletal muscle cells were incubated with pravastatin, simvastatin, atorvastatin or pitavastatin. LPL activity, protein levels and mRNA expression were measured. Atorvastatin and pitavastatin significantly increased LPL activity, protein levels and mRNA expression in L6 skeletal muscle cells at 1 μmol/L, but neither statin had an effect at 10 μmol/L. We measured AMPK to clarify the mechanism by which statins increase LPL production in skeletal muscle cells. At 1 μmol/L, both atorvastatin and pitavastatin enhanced AMPK activity, but this enhancement was abolished when AMPK signaling was blocked by compound C. The increased expressions of LPL protein and mRNA by atorvastatin and pitavastatin were reduced by compound C. In addition, mevalonic acid abolished atorvastatin- and pitavastatin-induced AMPK activation and LPL expression. These results suggest that atorvastatin and pitavastatin increase LPL activity, protein levels and LPL mRNA expression by activating AMPK in skeletal muscle cells.

  19. Optogenetically enhanced pituitary corticotroph cell activity post-stress onset causes rapid organizing effects on behaviour

    PubMed Central

    De Marco, Rodrigo J.; Thiemann, Theresa; Groneberg, Antonia H.; Herget, Ulrich; Ryu, Soojin

    2016-01-01

    The anterior pituitary is the major link between nervous and hormonal systems, which allow the brain to generate adequate and flexible behaviour. Here, we address its role in mediating behavioural adjustments that aid in coping with acutely threatening environments. For this we combine optogenetic manipulation of pituitary corticotroph cells in larval zebrafish with newly developed assays for measuring goal-directed actions in very short timescales. Our results reveal modulatory actions of corticotroph cell activity on locomotion, avoidance behaviours and stimulus responsiveness directly after the onset of stress. Altogether, the findings uncover the significance of endocrine pituitary cells for rapidly optimizing behaviour in local antagonistic environments. PMID:27646867

  20. Jasmonic and salicylic acids enhanced phytochemical production and biological activities in cell suspension cultures of spine gourd (Momordica dioica Roxb).

    PubMed

    Chung, Ill-Min; Rekha, Kaliyaperumal; Rajakumar, Govindasamy; Thiruvengadam, Muthu

    2017-03-01

    In vitro cell suspension culture was established for the production of commercially valuable phytochemicals in Momordica dioica. The influence of elicitors in jasmonic acid (JA) and salicylic acid (SA) increased their effect on phytochemical production and biomass accumulation in M. dioica. The results indicate that compared with non-elicited cultures, JA- and SA-elicited cell suspension cultures had significantly enhanced phenolic, flavonoid, and carotenoid production, as well as antioxidant, antimicrobial, and antiproliferative activities. Furthermore, elicited cultures produced 22 phenolic compounds, such as flavonols, hydroxycinnamic acids, and hydroxybenzoic acids. Greater biomass production, phytochemical accumulation, and biological activity occurred in JA- than in SA-elicited cell cultures. This study is the first to successfully establish M. dioica cell suspension cultures for the production of phenolic compounds and carotenoids, as well as for biomass accumulation.

  1. YAP Inhibition by Resveratrol via Activation of AMPK Enhances the Sensitivity of Pancreatic Cancer Cells to Gemcitabine.

    PubMed

    Jiang, Zhengdong; Chen, Xin; Chen, Ke; Sun, Liankang; Gao, Luping; Zhou, Cancan; Lei, Meng; Duan, Wanxing; Wang, Zheng; Ma, Qingyong; Ma, Jiguang

    2016-09-23

    Resveratrol, a natural polyphenol present in most plants, inhibits the growth of numerous cancers both in vitro and in vivo. Aberrant expression of YAP has been reported to activate multiple growth-regulatory pathways and confer anti-apoptotic abilities to many cancer cells. However, the role of resveratrol in YES-activated protein (YAP) expression and that of YAP in pancreatic cancer cells' response to gemcitabine resistance remain elusive. In this study, we found that resveratrol suppressed the proliferation and cloning ability and induced the apoptosis of pancreatic cancer cells. These multiple biological effects might result from the activation of AMP-activation protein kinase (AMPK) (Thr172) and, thus, the induction of YAP cytoplasmic retention, Ser127 phosphorylation, and the inhibition of YAP transcriptional activity by resveratrol. YAP silencing by siRNA or resveratrol enhanced the sensitivity of gemcitabine in pancreatic cancer cells. Taken together, these findings demonstrate that resveratrol could increase the sensitivity of pancreatic cancer cells to gemcitabine by inhibiting YAP expression. More importantly, our work reveals that resveratrol is a potential anticancer agent for the treatment of pancreatic cancer, and YAP may serve as a promising target for sensitizing pancreatic cancer cells to chemotherapy.

  2. Dysregulated miR34a/diacylglycerol kinase ζ interaction enhances T-cell activation in acquired aplastic anemia

    PubMed Central

    Sun, Yuan-xin; Li, Hui; Feng, Qi; Li, Xin; Yu, Ying-yi; Zhou, Li-wei; Gao, Yan; Li, Guo-sheng; Ren, Juan; Ma, Chun-hong; Gao, Cheng-jiang; Peng, Jun

    2017-01-01

    Acquired aplastic anemia is an idiopathic paradigm of human bone marrow failure syndrome, which involves active destruction of hematopoietic stem cells and progenitors by cytotoxic T cells in the bone marrow. Aberrant expression of microRNAs in T cells has been shown to lead to development of certain autoimmune diseases. In the present study, we performed a microarray analysis of miRNA expression in bone marrow CD3+ T cells from patients with aplastic anemia and healthy controls. Overexpression of miR34a and underexpression of its target gene diacylglycerol kinase (DGK) ζ in bone marrow mononuclear cells were validated in 41 patients and associated with the severity of aplastic anemia. Further, the level of miR34a was higher in naïve T cells from patients than from controls. The role of miR34a and DGKζ in aplastic anemia was investigated in a murine model of immune-mediated bone marrow failure using miR34a−/− mice. After T-cell receptor stimulation in vitro, lymph node T cells from miR34a−/− mice demonstrated reduced activation and proliferation accompanied with a less profound down-regulation of DGKζ expression and decreased ERK phosphorylation compared to those from wild-type C57BL6 control mice. Infusion of 5 × 106 miR34a−/− lymph node T cells into sublethally irradiated CB6F1 recipients led to increased Lin-Sca1+CD117+ cells and less vigorous expansion of CD8+ T cells than injection of same number of wild-type lymph node cells. Our study demonstrates that the miR34a/DGKζ dysregulation enhances T-cell activation in aplastic anemia and targeting miR34a may represent a novel molecular therapeutic approach for patients with aplastic anemia. PMID:28008152

  3. Dysregulated miR34a/diacylglycerol kinase ζ interaction enhances T-cell activation in acquired aplastic anemia.

    PubMed

    Sun, Yuan-Xin; Li, Hui; Feng, Qi; Li, Xin; Yu, Ying-Yi; Zhou, Li-Wei; Gao, Yan; Li, Guo-Sheng; Ren, Juan; Ma, Chun-Hong; Gao, Cheng-Jiang; Peng, Jun

    2017-01-24

    Acquired aplastic anemia is an idiopathic paradigm of human bone marrow failure syndrome, which involves active destruction of hematopoietic stem cells and progenitors by cytotoxic T cells in the bone marrow. Aberrant expression of microRNAs in T cells has been shown to lead to development of certain autoimmune diseases. In the present study, we performed a microarray analysis of miRNA expression in bone marrow CD3+ T cells from patients with aplastic anemia and healthy controls. Overexpression of miR34a and underexpression of its target gene diacylglycerol kinase (DGK) ζ in bone marrow mononuclear cells were validated in 41 patients and associated with the severity of aplastic anemia. Further, the level of miR34a was higher in naïve T cells from patients than from controls. The role of miR34a and DGKζ in aplastic anemia was investigated in a murine model of immune-mediated bone marrow failure using miR34a-/- mice. After T-cell receptor stimulation in vitro, lymph node T cells from miR34a-/- mice demonstrated reduced activation and proliferation accompanied with a less profound down-regulation of DGKζ expression and decreased ERK phosphorylation compared to those from wild-type C57BL6 control mice. Infusion of 5 × 106 miR34a-/- lymph node T cells into sublethally irradiated CB6F1 recipients led to increased Lin-Sca1+CD117+ cells and less vigorous expansion of CD8+ T cells than injection of same number of wild-type lymph node cells. Our study demonstrates that the miR34a/DGKζ dysregulation enhances T-cell activation in aplastic anemia and targeting miR34a may represent a novel molecular therapeutic approach for patients with aplastic anemia.

  4. Tetrandrine identified in a small molecule screen to activate mesenchymal stem cells for enhanced immunomodulation

    PubMed Central

    Yang, Zijiang; Concannon, John; Ng, Kelvin S.; Seyb, Kathleen; Mortensen, Luke J.; Ranganath, Sudhir; Gu, Fangqi; Levy, Oren; Tong, Zhixiang; Martyn, Keir; Zhao, Weian; Lin, Charles P.; Glicksman, Marcie A.; Karp, Jeffrey M.

    2016-01-01

    Pre-treatment or priming of mesenchymal stem cells (MSC) prior to transplantation can significantly augment the immunosuppressive effect of MSC-based therapies. In this study, we screened a library of 1402 FDA-approved bioactive compounds to prime MSC. We identified tetrandrine as a potential hit that activates the secretion of prostaglandin E2 (PGE2), a potent immunosuppressive agent, by MSC. Tetrandrine increased MSC PGE2 secretion through the NF-κB/COX-2 signaling pathway. When co-cultured with mouse macrophages (RAW264.7), tetrandrine-primed MSC attenuated the level of TNF-α secreted by RAW264.7. Furthermore, systemic transplantation of primed MSC into a mouse ear skin inflammation model significantly reduced the level of TNF-α in the inflamed ear, compared to unprimed cells. Screening of small molecules to pre-condition cells prior to transplantation represents a promising strategy to boost the therapeutic potential of cell therapy. PMID:27457881

  5. Tetrandrine identified in a small molecule screen to activate mesenchymal stem cells for enhanced immunomodulation.

    PubMed

    Yang, Zijiang; Concannon, John; Ng, Kelvin S; Seyb, Kathleen; Mortensen, Luke J; Ranganath, Sudhir; Gu, Fangqi; Levy, Oren; Tong, Zhixiang; Martyn, Keir; Zhao, Weian; Lin, Charles P; Glicksman, Marcie A; Karp, Jeffrey M

    2016-07-26

    Pre-treatment or priming of mesenchymal stem cells (MSC) prior to transplantation can significantly augment the immunosuppressive effect of MSC-based therapies. In this study, we screened a library of 1402 FDA-approved bioactive compounds to prime MSC. We identified tetrandrine as a potential hit that activates the secretion of prostaglandin E2 (PGE2), a potent immunosuppressive agent, by MSC. Tetrandrine increased MSC PGE2 secretion through the NF-κB/COX-2 signaling pathway. When co-cultured with mouse macrophages (RAW264.7), tetrandrine-primed MSC attenuated the level of TNF-α secreted by RAW264.7. Furthermore, systemic transplantation of primed MSC into a mouse ear skin inflammation model significantly reduced the level of TNF-α in the inflamed ear, compared to unprimed cells. Screening of small molecules to pre-condition cells prior to transplantation represents a promising strategy to boost the therapeutic potential of cell therapy.

  6. Muscarinic activation enhances the anti-proliferative effect of paclitaxel in murine breast tumor cells.

    PubMed

    Español, Alejandro Javier; Jacob, Guillermina; Dmytrenko, Ganna; Sales, María Elena

    2013-10-01

    Muscarinic acetylcholine receptors (mAChR) are expressed in cells without nervous origin. mAChR are up-regulated in tumor cells and their stimulation can modulate tumor growth. In this work we investigated the ability of mAChR activation to induce tumor cell death. We studied the action of a combination of low doses of the muscarinic agonist carbachol plus paclitaxel, a chemotherapeutic agent frequently used in breast cancer treatment, in terms of effectiveness. Long term treatment with carbachol exerted anti-proliferative actions on LM2 and LM3 murine mammary adenocarcinoma cells, similarly to paclitaxel. The combination of carbachol with paclitaxel at submaximal concentrations, added during 20 h decreased tumor cell proliferation in a more potent manner than each drug added separately. This effect was reverted by the muscarinic antagonist atropine, and was due to a potentiation of tumor cell apoptosis tested by TUNEL assay. This treatment did not affect the proliferation of the non tumorigenic mammary cell line NMuMG. In conclusion, the combination of a muscarinic agonist plus paclitaxel should be tested as a useful therapeutic tool in breast cancer treatment.

  7. Calcitriol and its analogues enhance the antiproliferative activity of gefitinib in breast cancer cells.

    PubMed

    Segovia-Mendoza, Mariana; Díaz, Lorenza; González-González, María Elena; Martínez-Reza, Isela; García-Quiroz, Janice; Prado-Garcia, Heriberto; Ibarra-Sánchez, María J; Esparza-López, José; Larrea, Fernando; García-Becerra, Rocío

    2015-04-01

    Coexpression of EGFR and HER2 has been associated with poor disease outcome, high rates of metastasis and resistance to conventional treatments in breast cancer. Gefitinib, a tyrosine kinase inhibitor, reduces both cell proliferation and tumor growth of breast cancer cells expressing EGFR and/or HER2. On the other hand, calcitriol and some of its synthetic analogs are important antineoplastic agents in different breast cancer subtypes. Herein, we evaluated the effects of the combined treatment of gefitinib with calcitriol or its analogs on cell proliferation in breast cancer cells. The presence of EGFR, HER2 and vitamin D receptor were evaluated by Western blot in two established breast cancer cell lines: SUM-229PE, SKBR3 and a primary breast cancer-derived cell line. The antiproliferative effects of gefitinib alone or in combination with calcitriol and its analogs, calcipotriol and EB1089, were assessed by growth assay using a DNA content-based method. Inhibitory concentrations on cell proliferation were calculated by non-linear regression analysis using sigmoidal fitting of dose-response curves. Pharmacological effects of the drug combinations were calculated by the Chou-Talalay method. Phosphorylation of ERK1/2 MAPK was evaluated by Western blot. Gene expression of EGFR, HER2 and BIM was assessed by real time PCR. BIM protein levels were analyzed in cells by flow cytometry. The effects of the drugs alone or combinated on cell cycle phases were determined using propidium iodide. Apoptosis was evaluated by detection of subG1 peak and determination of active caspase 3 by flow cytometry. Gefitinib, calcitriol, calcipotriol and EB1089 inhibited cell proliferation in a dose dependent manner. The combinations of gefitinib with calcitriol or its analogs were more effective to inhibit cell growth than each compound alone in all breast cancer cells studied. The gene expression of EGFR and HER2 was downregulated and not affected, respectively, by the combined treatment

  8. On involvement of transcription factors nuclear factor kappa-light-chain-enhancer of activated B cells, activator protein-1 and signal transducer and activator of transcription-3 in photodynamic therapy-induced death of crayfish neurons and satellite glial cells

    NASA Astrophysics Data System (ADS)

    Berezhnaya, Elena; Neginskaya, Marya; Kovaleva, Vera; Sharifulina, Svetlana; Ischenko, Irina; Komandirov, Maxim; Rudkovskii, Mikhail; Uzdensky, Anatoly B.

    2015-07-01

    Photodynamic therapy (PDT) is currently used in the treatment of brain tumors. However, not only malignant cells but also neighboring normal neurons and glial cells are damaged during PDT. In order to study the potential role of transcription factors-nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), activator protein (AP-1), and signal transducer and activator of transcription-3 (STAT-3)-in photodynamic injury of normal neurons and glia, we photosensitized the isolated crayfish mechanoreceptor consisting of a single sensory neuron enveloped by glial cells. Application of different inhibitors and activators showed that transcription factors NF-κB (inhibitors caffeic acid phenethyl ester and parthenolide, activator betulinic acid), AP-1 (inhibitor SR11302), and STAT-3 (inhibitors stattic and cucurbitacine) influenced PDT-induced death and survival of neurons and glial cells in different ways. These experiments indicated involvement of NF-κB in PDT-induced necrosis of neurons and apoptosis of glial cells. However, in glial cells, it played the antinecrotic role. AP-1 was not involved in PDT-induced necrosis of neurons and glia, but mediated glial apoptosis. STAT-3 was involved in PDT-induced apoptosis of glial cells and necrosis of neurons and glia. Therefore, signaling pathways that regulate cell death and survival in neurons and glial cells are different. Using various inhibitors or activators of transcription factors, one can differently influence the sensitivity and resistance of neurons and glial cells to PDT.

  9. Decreased Gaq expression in T cells correlates with enhanced cytokine production and disease activity in systemic lupus erythematosus

    PubMed Central

    Luo, Jiao; Yu, Bing; Qian, Hongyan; Duan, Lihua; Shi, Guixiu

    2016-01-01

    Aberrant T cell immune responses appear central to the development of systemic lupus erythematosus (SLE). We previously reported that Gαq, the alpha subunit of Gq, regulates T and B cell immune responses, promoting autoimmunity. To address whether Gαq contributes to the pathogenesis of SLE, Gαq mRNA expression was studied using real time-PCR in PBMCs and T cells from SLE patients as well as age- and sex-matched healthy controls. Our results showed that Gαq mRNA expression was decreased in PBMCs and T cells from SLE patients compared to healthy individuals. Correlation analyses showed that Gαq expression in T cells from SLE patients was associated with disease severity (as per SLE Disease Activity Index), the presence of lupus nephritis, and expression of Th1, Th2 and Th17 cytokines. In keeping with clinical results, T-helper cell subsets (Th1, Th2 and Th17) were over-represented in Gαq knockout mice. In addition, Gαq expression in SLE T cells was negatively correlated with the expression of Bcl-2, an anti-apoptotic gene, and positively correlated with the expression of Bax, a pro-apoptotic gene. These data suggest that reduced Gαq levels in T cells may promote enhanced and prolonged T cell activation, contributing to the clinical manifestations of SLE. PMID:27965465

  10. Mitotane enhances doxorubicin cytotoxic activity by inhibiting P-gp in human adrenocortical carcinoma cells.

    PubMed

    Gagliano, Teresa; Gentilin, Erica; Benfini, Katiuscia; Di Pasquale, Carmelina; Tassinari, Martina; Falletta, Simona; Feo, Carlo; Tagliati, Federico; Uberti, Ettore Degli; Zatelli, Maria Chiara

    2014-12-01

    Mitotane is currently employed as adjuvant therapy as well as in the medical treatment of adrenocortical carcinoma (ACC), alone or in combination with chemotherapeutic agents. It was previously demonstrated that mitotane potentiates chemotherapeutic drugs cytotoxicity in cancer cells displaying chemoresistance due to P-glycoprotein (P-gp), an efflux pump involved in cancer multidrug resistance. The majority of ACC expresses high levels of P-gp and is highly chemoresistent. The aim of our study was to explore in vitro whether mitotane, at concentrations lower than those currently reached in vivo, may sensitize ACC cells to the cytotoxic effects of doxorubicin and whether this effect is due to a direct action on P-gp. NCI-H295 and SW13 cell lines as well as 4 adrenocortical neoplasia primary cultures were treated with mitotane and doxorubicin, and cell viability was measured by MTT assay. P-gp activity was measured by calcein and P-gp-Glo assays. P-gp expression was evaluated by Western blot. We found that very low mitotane concentrations sensitize ACC cells to the cytotoxic effects of doxorubicin, depending on P-gp expression. In addition, mitotane directly inhibits P-gp detoxifying function, allowing doxorubicin cytotoxic activity. These data provide the basis for the greater efficacy of combination therapy (mitotane plus chemotherapeutic drugs) on ACC patients. Shedding light on mitotane mechanisms of action could result in an improved design of drug therapy for patients with ACC.

  11. NLRP3 inflammasome activation in mesenchymal stem cells inhibits osteogenic differentiation and enhances adipogenic differentiation.

    PubMed

    Wang, Linghao; Chen, Ke; Wan, Xinxing; Wang, Fang; Guo, Zi; Mo, Zhaohui

    2017-03-18

    Osteoporosis is one of the most common skeletal disease featured by osteopenia and adipose accumulation in bone tissue. NLRP3 inflammasome activation is an essential player in aging-related chronic diseases like osteoporosis, particularly due to the causal caspase-1 activation and its correlation to adipose accumulation in bone tissue. Moreover, the expression of anti-aging/senescence SIRT1 was reported to decline along with aging. As the major cellular contributor of bone formation, mesenchymal stem cells (MSCs) are multipotent stem cells processing mutually exclusive differentiatability toward osteocytes or adipocytes. Therefore, we hypothesized that NLRP3 inflammasome activation promotes adipogenesis and repress osteogenesis in MSCs via inhibiting SIRT1 expression. We activated NLRP3 inflammasome in human MSCs via lipopolysaccharide and palmitic acid (LPS/PA) treatment for self-renewal maintenance, adipogenic differentiation or osteogenic differentiation. LPS/PA treatment significantly increased NLRP3 expression, decreased SIRT1 expression and promoted caspase-1 activity in MSCs. LPS/PA treatment also boosted adipogenesis of MSCs and suppressed osteogenesis. Moreover, inhibition of caspase-1 activity repressed adipogenic differentiation and partially improved osteogenic differentiation of MSCs with LPS/PA treatment. Our study demonstrated the pivotal roles of NLRP3 inflammasome and downstream mediator caspase-1 for the progress of osteo-differentiation MSCs, and offered novel therapeutic target of treatment for osteoporosis.

  12. Enhancement of adenylate cyclase activity by phorbol ester: effects on the inhibitory pathway in S49 lymphoma cells

    SciTech Connect

    Bell, J.D.; Brunton, L.L.

    1986-05-01

    12-0-tetradecanoylphorbol-13-acetate (TPA) enhances the apparent V/sub max/ of adenylate cyclase (AC) in S49 lymphoma cells. This effect does not result from an increased rate of activation of the catalytic subunit by the stimulatory GTP binding transducer protein (G/sub s/). In wild type (WT) membranes this enhancement seems to involve a GTP binding protein since TPA enhances forskolin-stimulated AC activity by 30% in the presence of GTP (10 ..mu..M) or Gpp(NH)p (1 ..mu..M) but not in the absence of guanine nucleotide. The authors obtain comparable results in the cyc- variant that lacks the GTP binding subunit of G/sub s/ responsible for stimulating AC, suggesting the importance of a different GTP binding protein. Blockade of the activity of the inhibitory GTP binding protein (G/sub i/) by high concentrations of Mg/sup + +/ (approx.100 mM) or Mn/sup + +/ (approx.1 mM) abolishes the effect of TPA to enhance AC activity in WT membranes. The time course of Gpp(NH)p-mediated inhibition of AC reveals a characteristic lag prior to steady state, indicative of the rate of G/sub i/ activation; TPA increases this lag 3-4 fold. The authors conclude that reduction in the rate of activation of G/sub i/ by guanine nucleotide is one mechanism by which phorbol esters enhance guanine nucleotide-dependent activity of AC, hypothetically via the phosphorylation of G/sub i/ by protein kinase C.

  13. YAP Inhibition by Resveratrol via Activation of AMPK Enhances the Sensitivity of Pancreatic Cancer Cells to Gemcitabine

    PubMed Central

    Jiang, Zhengdong; Chen, Xin; Chen, Ke; Sun, Liankang; Gao, Luping; Zhou, Cancan; Lei, Meng; Duan, Wanxing; Wang, Zheng; Ma, Qingyong; Ma, Jiguang

    2016-01-01

    Resveratrol, a natural polyphenol present in most plants, inhibits the growth of numerous cancers both in vitro and in vivo. Aberrant expression of YAP has been reported to activate multiple growth-regulatory pathways and confer anti-apoptotic abilities to many cancer cells. However, the role of resveratrol in YES-activated protein (YAP) expression and that of YAP in pancreatic cancer cells’ response to gemcitabine resistance remain elusive. In this study, we found that resveratrol suppressed the proliferation and cloning ability and induced the apoptosis of pancreatic cancer cells. These multiple biological effects might result from the activation of AMP-activation protein kinase (AMPK) (Thr172) and, thus, the induction of YAP cytoplasmic retention, Ser127 phosphorylation, and the inhibition of YAP transcriptional activity by resveratrol. YAP silencing by siRNA or resveratrol enhanced the sensitivity of gemcitabine in pancreatic cancer cells. Taken together, these findings demonstrate that resveratrol could increase the sensitivity of pancreatic cancer cells to gemcitabine by inhibiting YAP expression. More importantly, our work reveals that resveratrol is a potential anticancer agent for the treatment of pancreatic cancer, and YAP may serve as a promising target for sensitizing pancreatic cancer cells to chemotherapy. PMID:27669292

  14. Polymethoxylated flavones potentiate the cytolytic activity of NK leukemia cell line KHYG-1 via enhanced expression of granzyme B.

    PubMed

    Saito, Takeshi; Abe, Daigo; Nogata, Yoichi

    2015-01-16

    Polymethoxylated flavones (PMFs) are found in the peel tissues of some citrus species. Here, we report that PMFs, such as nobiletin, potentiate the cytolytic activity of KHYG-1 natural killer (NK) leukemia cells. Nobiletin markedly enhanced the expression of granzyme B, a serine protease that plays critical roles in the cytolytic activity of NK cells. The potentiated cytolytic activity induced by nobiletin was canceled by the granzyme B inhibitor Z-AAD-CMK. Nobiletin also increased the levels of phosphorylated CREB, ERK1/2, and p38 MAPK in KHYG-1 cells, which are known to participate in NK cell function. Inhibition of an upstream kinase of ERK1/2 failed to reduce the granzyme B expression and KHYG-1 cytolytic activity. Meanwhile, inhibition of p38 MAPK attenuated both granzyme B expression and KHYG-1 cytolytic activity. These results suggest that the primary role of nobiletin in KHYG-1 cytolytic activity lies in upregulation of granzyme B expression, at least in part, mediated through p38 MAPK function.

  15. The enhancement of reproduction and biodegradation activity of eukaryiotic cells by humic acids.

    PubMed

    Siglova, M; Cejkova, A; Masak, J; Jirku, V; Snajdr, J; Valina, O

    2003-01-01

    Fourteen samples of humic acids (HA) were screened for ability to influence reproduction and biodegradation activity of eukaryotic cells in the presence of chosen toxic pollutants. Microorganisms Candida maltosa and Rhodotorula mucilaginosa (soil isolates) were used for all tests. It was observed during our experiments that some samples of humic acids served as a protection against the high concentration of toxic pollutants (phenol, naphtalene etc). This effect can be widely used in many bioremediation technologies.

  16. Vitamin C enhances anticancer activity in methotrexate‑treated Hep3B hepatocellular carcinoma cells.

    PubMed

    Yiang, Giou-Teng; Chou, Pei-Lun; Hung, Yu-Ting; Chen, Jen-Ni; Chang, Wei-Jung; Yu, Yung-Luen; Wei, Chyou-Wei

    2014-09-01

    Methotrexate (MTX) has been widely used for rheumatoid arthritis therapy for a long time. MTX is also used as an anticancer drug for various tumors. However, many studies have shown that high-dose MTX treatment for cancer therapy may cause liver and renal damage. Alhough the mechanisms involved in MTX-induced liver and renal damage require further research, many studies have indicated that MTX-induced cytotoxicity is associated with increases in oxidative stress and caspase activation. In order to reduce MTX-induced side-effects and increase anticancer efficiency, currently, combination treatments of low-dose MTX and other anticancer drugs are considered and applied for various tumor treatments. The present study showed that MTX induces increases in H2O2 levels and caspase-9/-3 activation leading to cell death in hepatocellular carcinoma Hep3B cells. Importantly, this study is the first to demonstrate that vitamin C can efficiently aid low-dose MTX in inducing cell death in Hep3B cells. Therefore, the present study provides a possible powerful therapeutic method for tumors using a combined treatment of vitamin C and low-dose MTX.

  17. Vitamin C enhances anticancer activity in methotrexate-treated Hep3B hepatocellular carcinoma cells

    PubMed Central

    YIANG, GIOU-TENG; CHOU, PEI-LUN; HUNG, YU-TING; CHEN, JEN-NI; CHANG, WEI-JUNG; YU, YUNG-LUEN; WEI, CHYOU-WEI

    2014-01-01

    Methotrexate (MTX) has been widely used for rheumatoid arthritis therapy for a long time. MTX is also used as an anticancer drug for various tumors. However, many studies have shown that high-dose MTX treatment for cancer therapy may cause liver and renal damage. Alhough the mechanisms involved in MTX-induced liver and renal damage require further research, many studies have indicated that MTX-induced cytotoxicity is associated with increases in oxidative stress and caspase activation. In order to reduce MTX-induced side-effects and increase anticancer efficiency, currently, combination treatments of low-dose MTX and other anticancer drugs are considered and applied for various tumor treatments. The present study showed that MTX induces increases in H2O2 levels and caspase-9/-3 activation leading to cell death in hepatocellular carcinoma Hep3B cells. Importantly, this study is the first to demonstrate that vitamin C can efficiently aid low-dose MTX in inducing cell death in Hep3B cells. Therefore, the present study provides a possible powerful therapeutic method for tumors using a combined treatment of vitamin C and low-dose MTX. PMID:24969544

  18. Biological energy from the igneous rock enhances cell growth and enzyme activity.

    PubMed

    Lin, Y; Kuo, H; Chen, C; Kuo, S

    2000-08-01

    Some effects from natural resources might be ignored and unused by humans. Environmental hormesis could be a phenomena necessary to bio-organism existence on earth. Since 1919, radiation and some heavy metal hormesis from the environment were proved in various reports. In this study, igneous rock with very low radioactivity and high ferrous activity was measured by multichannel analyzer and inductively coupled plasma analyzer. The water treated by igneous rock, both directly soaked or indirectly in contact, induced increased activities of glucose oxidase, catalase, peroxidase, and superoxide dismutase. It also increased cell growth of SC-M1, HCT-15, Raji, and fibroblast cell lines. The water after treatment of igneous rock had no change in pH values, but displayed decreased conductivity values. We assume that the igneous rock could transfer energy to water to change the molecular structure or conformation of water cluster, or by radiation hormesis effect could then induce increased enzyme activity and cell growth. It is also possible that the energy from rock may combine radiation hormesis with other transferable biological energy forms to change water cluster conformation.

  19. Enhanced in vitro cell activity on silicon-doped vaterite/poly(lactic acid) composites.

    PubMed

    Obata, Akiko; Tokuda, Shingo; Kasuga, Toshihiro

    2009-01-01

    A biodegradable composite with silicon-species releasability was prepared using poly(l-lactic acid) (PLLA) and silicon-doped vaterite (SiV) particles. SiV with particle diameters of approximately 1 mum was prepared using aminopropyltriethoxysilane (APTES) as the silicon species by a carbonation process and then mixed with PLLA in methylene chloride according to a SiV to PLLA weight ratio of 1:2, resulting in the preparation of composite slurry. A composite film was prepared by dipping a cover glass in the slurry. The composite films were incubated in a culture medium for 7 days and the silicon concentration of the medium was measured to estimate the species releasability of the composites. A trace amount of silicon species was continuously released from the composites for 7 days, the amount depending on the content of APTES in SiV. On the composite releasing silicon species, mouse osteoblast-like cells (MC3T3-E1 cells) were significantly stimulated to proliferate and differentiate in comparison with those on a composite containing no silicon species. The proliferation of the cells on the composites releasing larger amounts of silicon species (0.51mgl(-1)day(-1)) was higher than that on the composites releasing smaller amount of the species (0.21mgl(-1)day(-1)). The silicon species in the composites were effective in enhancing the cellular functions. The composites were expected to be useful as a scaffold material for bone tissue engineering.

  20. Infection of human monocyte-derived dendritic cells by ANDES Hantavirus enhances pro-inflammatory state, the secretion of active MMP-9 and indirectly enhances endothelial permeability

    PubMed Central

    2011-01-01

    Background Andes virus (ANDV), a rodent-borne Hantavirus, is the major etiological agent of Hantavirus cardiopulmonary syndrome (HCPS) in South America, which is mainly characterized by a vascular leakage with high rate of fatal outcomes for infected patients. Currently, neither specific therapy nor vaccines are available against this pathogen. ANDV infects both dendritic and epithelial cells, but in despite that the severity of the disease directly correlates with the viral RNA load, considerable evidence suggests that immune mechanisms rather than direct viral cytopathology are responsible for plasma leakage in HCPS. Here, we assessed the possible effect of soluble factors, induced in viral-activated DCs, on endothelial permeability. Activated immune cells, including DC, secrete gelatinolytic matrix metalloproteases (gMMP-2 and -9) that modulate the vascular permeability for their trafficking. Methods A clinical ANDES isolate was used to infect DC derived from primary PBMC. Maturation and pro-inflammatory phenotypes of ANDES-infected DC were assessed by studying the expression of receptors, cytokines and active gMMP-9, as well as some of their functional status. The ANDES-infected DC supernatants were assessed for their capacity to enhance a monolayer endothelial permeability using primary human vascular endothelial cells (HUVEC). Results Here, we show that in vitro primary DCs infected by a clinical isolate of ANDV shed virus RNA and proteins, suggesting a competent viral replication in these cells. Moreover, this infection induces an enhanced expression of soluble pro-inflammatory factors, including TNF-α and the active gMMP-9, as well as a decreased expression of anti-inflammatory cytokines, such as IL-10 and TGF-β. These viral activated cells are less sensitive to apoptosis. Moreover, supernatants from ANDV-infected DCs were able to indirectly enhance the permeability of a monolayer of primary HUVEC. Conclusions Primary human DCs, that are primarily

  1. Copper enhances EDNO (endothelium-derived nitric oxide) activity by cultured human vascular endothelial cells.

    PubMed

    Kishimoto, T; Oguri, T; Ueda, D; Tada, M

    1996-06-01

    The effect of copper sulfate (Cu) on viable cell number, endothelium-derived nitric oxide (EDNO), and nitric oxide synthase (NOS) in cultured human umbilical vascular endothelial cells (HUVEC) was investigated. The viable cell number was not affected by the addition of Cu (1.0-500.0 microM). To assess the effect of EDNO by HUVEC, platelet aggregation experiments were performed, using cuvettes lined with HUVEC. Thrombin (0.05 units/ml)-induced platelet aggregation was markedly inhibited in the presence of HUVEC compared with aggregation in the absence of HUVEC. The HUVEC-dependent anti-platelet aggregatory effect was slightly reduced when HUVEC were pretreated with indomethacin (IND; 1.0 micro M), an inhibitor of the cyclo-oxygenase pathway. However, the thrombin-induced platelet aggregation in the presence of HUVEC pretreated with IND was smaller than that in the absence of HUVEC, which is dependent on EDNO. The anti-platelet aggregatory effect of HUVEC pretreated with IND was increased dose-dependently by 48-hour pretreatment of HUVEC with Cu (1.0-100.0 microM). To assess the effect of Cu on NOS, HUVEC were stained with NOS/NADPH diaphorase. However, there were no significant differences in the NOS-positive HUVEC cell count between cells without Cu and those with various concentrations of Cu. These findings suggest that Cu stimulates the activity of EDNO, which action may be dependent on Cu decreasing EDNO-oxidative damage.

  2. EB66 cell line, a duck embryonic stem cell-derived substrate for the industrial production of therapeutic monoclonal antibodies with enhanced ADCC activity

    PubMed Central

    Olivier, Stéphane; Jacoby, Marine; Brillon, Cédric; Bouletreau, Sylvana; Mollet, Thomas; Nerriere, Olivier; Angel, Audrey; Danet, Sévérine; Souttou, Boussad; Guehenneux, Fabienne; Gauthier, Laurent; Berthomé, Mathilde; Vié, Henri; Beltraminelli, Nicola

    2010-01-01

    Monoclonal antibodies (mAbs) represent the fastest growing class of therapeutic proteins. The increasing demand for mAb manufacturing and the associated high production costs call for the pharmaceutical industry to improve its current production processes or develop more efficient alternative production platforms. The experimental control of IgG fucosylation to enhance antibody dependent cell cytotoxicity (ADCC) activity constitutes one of the promising strategies to improve the efficacy of monoclonal antibodies and to potentially reduce the therapeutic cost. We report here that the EB66 cell line derived from duck embryonic stem cells can be efficiently genetically engineered to produce mAbs at yields beyond a 1 g/L, as suspension cells grown in serum-free culture media. EB66 cells display additional attractive growth characteristics such as a very short population doubling time of 12–14 h, a capacity to reach very high cell density (>30 million cells/mL) and a unique metabolic profile resulting in low ammonium and lactate accumulation and low glutamine consumption, even at high cell densities. Furthermore, mAbs produced on EB66 cells display a naturally reduced fucose content resulting in strongly enhanced ADCC activity. The EB66 cells have therefore the potential to evolve as a novel cellular platform for the production of high potency therapeutic antibodies. PMID:20562528

  3. Aurora inhibitor MLN8237 in combination with docetaxel enhances apoptosis and anti-tumor activity in mantle cell lymphoma.

    PubMed

    Qi, Wenqing; Cooke, Laurence S; Liu, Xiaobing; Rimsza, Lisa; Roe, Denise J; Manziolli, Ann; Persky, Daniel O; Miller, Thomas P; Mahadevan, Daruka

    2011-04-01

    Auroras (A and B) are oncogenic serine/threonine kinases that play key roles in the mitotic phase of the eukaryotic cell cycle. Analysis of the leukemia lymphoma molecular profiling project (LLMPP) database indicates Aurora over-expression correlates with poor prognosis. A tissue microarray (TMA) composed of 20 paired mantle cell lymphoma (MCL) patients demonstrated >75% of patients had high levels Aurora expression. Aurora A and B were also found elevated in 13 aggressive B-NHL cell lines. MLN8237, an Aurora inhibitor induced G2/M arrest with polyploidy and abrogated Aurora A and histone-H3 phosphorylation. MLN8237 inhibited aggressive B-NHL cell proliferation at an IC(50) of 10-50 nM and induced apoptosis in a dose- and time-dependent manner. Low dose combinations of MLN8237+docetaxel enhanced apoptosis by ~3-4-fold in cell culture compared to single agents respectively. A mouse xenograft model of MCL demonstrated that MLN8237 (10 or 30 mg/kg) or docetaxel (10mg/kg) alone had modest anti-tumor activity. However, MLN8237 plus docetaxel demonstrated a statistically significant tumor growth inhibition and enhanced survival compared to single agent therapy. Together, our results suggest that MLN8237 plus docetaxel may represent a novel therapeutic strategy that could be evaluated in early phase trials in relapsed/refractory aggressive B-cell NHL.

  4. Enhanced Production of Anthraquinones and Phenolic Compounds and Biological Activities in the Cell Suspension Cultures of Polygonum multiflorum.

    PubMed

    Thiruvengadam, Muthu; Rekha, Kaliyaperumal; Rajakumar, Govindasamy; Lee, Taek-Jun; Kim, Seung-Hyun; Chung, Ill-Min

    2016-11-16

    Anthraquinones (AQs) and phenolic compounds are important phytochemicals that are biosynthesized in cell suspension cultures of Polygonum multiflorum. We wanted to optimize the effects of plant growth regulators (PGRs), media, sucrose, l-glutamine, jasmonic acid (JA), and salicylic acid (SA) for the production of phytochemicals and biomass accumulation in a cell suspension culture of P. multiflorum. The medium containing Murashige and Skoog (MS) salts and 4% sucrose supplemented with 1 mg/L 2,4-dichlorophenoxyacetic acid, 0.5 mg/L thidiazuron, and 100 µM l-glutamine at 28 days of cell suspension culture was suitable for biomass accumulation and AQ production. Maximum biomass accumulation (12.5 and 12.35 g fresh mass (FM); 3 and 2.93 g dry mass (DM)) and AQ production (emodin 295.20 and 282 mg/g DM; physcion 421.55 and 410.25 mg/g DM) were observed using 100 µM JA and SA, respectively. JA- and SA-elicited cell cultures showed several-fold higher biomass accumulation and AQ production than the control cell cultures. Furthermore, the cell suspension cultures effectively produced 23 phenolic compounds, such as flavonols and hydroxycinnamic and hydroxybenzoic acid derivatives. PGR-, JA-, and SA-elicited cell cultures produced a higher amount of AQs and phenolic compounds. Because of these metabolic changes, the antioxidant, antimicrobial, and anticancer activities were high in the PGR-, JA-, and SA-elicited cell cultures. The results showed that the elicitors (JA and SA) induced the enhancement of biomass accumulation and phytochemical (AQs and phenolic compounds) production as well as biological activities in the cell suspension cultures of P. multiflorum. This optimized protocol can be developed for large-scale biomass accumulation and production of phytochemicals (AQs and phenolic compounds) from cell suspension cultures, and the phytochemicals can be used for various biological activities.

  5. Enhanced Production of Anthraquinones and Phenolic Compounds and Biological Activities in the Cell Suspension Cultures of Polygonum multiflorum

    PubMed Central

    Thiruvengadam, Muthu; Rekha, Kaliyaperumal; Rajakumar, Govindasamy; Lee, Taek-Jun; Kim, Seung-Hyun; Chung, Ill-Min

    2016-01-01

    Anthraquinones (AQs) and phenolic compounds are important phytochemicals that are biosynthesized in cell suspension cultures of Polygonum multiflorum. We wanted to optimize the effects of plant growth regulators (PGRs), media, sucrose, l-glutamine, jasmonic acid (JA), and salicylic acid (SA) for the production of phytochemicals and biomass accumulation in a cell suspension culture of P. multiflorum. The medium containing Murashige and Skoog (MS) salts and 4% sucrose supplemented with 1 mg/L 2,4-dichlorophenoxyacetic acid, 0.5 mg/L thidiazuron, and 100 µM l-glutamine at 28 days of cell suspension culture was suitable for biomass accumulation and AQ production. Maximum biomass accumulation (12.5 and 12.35 g fresh mass (FM); 3 and 2.93 g dry mass (DM)) and AQ production (emodin 295.20 and 282 mg/g DM; physcion 421.55 and 410.25 mg/g DM) were observed using 100 µM JA and SA, respectively. JA- and SA-elicited cell cultures showed several-fold higher biomass accumulation and AQ production than the control cell cultures. Furthermore, the cell suspension cultures effectively produced 23 phenolic compounds, such as flavonols and hydroxycinnamic and hydroxybenzoic acid derivatives. PGR-, JA-, and SA-elicited cell cultures produced a higher amount of AQs and phenolic compounds. Because of these metabolic changes, the antioxidant, antimicrobial, and anticancer activities were high in the PGR-, JA-, and SA-elicited cell cultures. The results showed that the elicitors (JA and SA) induced the enhancement of biomass accumulation and phytochemical (AQs and phenolic compounds) production as well as biological activities in the cell suspension cultures of P. multiflorum. This optimized protocol can be developed for large-scale biomass accumulation and production of phytochemicals (AQs and phenolic compounds) from cell suspension cultures, and the phytochemicals can be used for various biological activities. PMID:27854330

  6. Nanoparticle-mediated combinatorial targeting of multiple human dendritic cell (DC) subsets leads to enhanced T cell activation via IL-15-dependent DC crosstalk.

    PubMed

    Sehgal, Kartik; Ragheb, Ragy; Fahmy, Tarek M; Dhodapkar, Madhav V; Dhodapkar, Kavita M

    2014-09-01

    Most vaccines depend on coadministration of Ags and adjuvants that activate APCs. Nanoparticles (NPs) have emerged as an attractive vehicle for synchronized delivery of Ags and adjuvants to APCs and can be targeted to specific cell types, such as dendritic cells (DCs), which are potent APCs. Which subset of human DCs should be targeted for optimal activation of T cell immunity, however, remains unknown. In this article, we describe a poly-lactic-coglycolic acid-based NP platform, wherein avidin-decorated NPs can be targeted to multiple human DC subsets via biotinylated Abs. Both BDCA3(+) and monocyte-derived DC-SIGN(+) NP-loaded DCs were equally effective at generating Ag-specific human T cells in culture, including against complex peptide mixtures from viral and tumor Ags across multiple MHC molecules. Ab-mediated targeting of NPs to distinct DC subsets led to enhanced T cell immunity. However, combination targeting to both DC-SIGN and BDCA3(+) DCs led to significantly greater activation of T cells compared with targeting either DC subset alone. Enhanced T cell activation following combination targeting depended on DC-mediated cytokine release and was IL-15 dependent. These data demonstrate that simultaneous targeting of multiple DC subsets may improve NP vaccines by engaging DC crosstalk and provides a novel approach to improving vaccines against pathogens and tumors.

  7. Selenate Enhances STAT3 Transcriptional Activity in Endothelial Cells: Differential Actions of Selenate and Selenite on LIF Cytokine Signaling and Cell Viability

    PubMed Central

    Alturkmani, Hani J.; Zgheib, Carlos; Zouein, Fouad A.; Alshaaer, Nour Eddin F.; Kurdi, Mazen; Booz, George W.

    2012-01-01

    Sodium selenate may have utility in treating Alzheimer’s disease and diabetes; however, its impact on the associated proinflammatory cytokine signaling of endothelial cells has not been investigated. We report that treatment of human microvascular endothelial cells with sodium selenate at a pharmacological dose (100 μM) enhanced tyrosine phosphorylation of nuclear STAT3 on Y705 in response to IL-6-type cytokine, leukemia inhibitory factor (LIF), indicative of enhanced STAT3 activity. Accordingly, STAT3 nuclear binding to DNA was increased, as well as LIF-induced gene expression of chemokine (C-C motif) ligand 2 (CCL2). CCL2 plays a key role in inflammatory processes associated with neuronal degenerative and vascular diseases. The enhancing action of selenate on LIF-induced STAT3 Y705 phosphorylation was replicated by vanadate and a specific inhibitor of protein tyrosine phosphatase, non-receptor type 1 (PTP1B). Moreover, we observed that selenite, the cellular reduction bioproduct of selenate but not selenate itself, inhibited enzymatic activity of human recombinant PTP1B. Our findings support the conclusion that in human microvascular endothelial cells selenate has a vanadate-like effect in inhibiting PTP1B and enhancing proinflammatory STAT3 activation. These findings raise the possibility that beneficial actions of supranutritional levels of selenate for treating Alzheimer’s and diabetes may be offset by a proinflammatory action on endothelial cells. PMID:22366233

  8. Selenate enhances STAT3 transcriptional activity in endothelial cells: differential actions of selenate and selenite on LIF cytokine signaling and cell viability.

    PubMed

    Alturkmani, Hani J; Zgheib, Carlos; Zouein, Fouad A; Alshaaer, Nour Eddin F; Kurdi, Mazen; Booz, George W

    2012-04-01

    Sodium selenate may have utility in treating Alzheimer's disease and diabetes; however, its impact on the associated proinflammatory cytokine signaling of endothelial cells has not been investigated. We report that treatment of human microvascular endothelial cells with sodium selenate at a pharmacological dose (100 μM) enhanced tyrosine phosphorylation of nuclear STAT3 on Y705 in response to IL-6-type cytokine, leukemia inhibitory factor (LIF), indicative of enhanced STAT3 activity. Accordingly, STAT3 nuclear binding to DNA was increased, as well as LIF-induced gene expression of chemokine (C-C motif) ligand 2 (CCL2). CCL2 plays a key role in inflammatory processes associated with neuronal degenerative and vascular diseases. The enhancing action of selenate on LIF-induced STAT3 Y705 phosphorylation was replicated by vanadate and a specific inhibitor of protein tyrosine phosphatase, non-receptor type 1 (PTP1B). Moreover, we observed that selenite, the cellular reduction bioproduct of selenate but not selenate itself, inhibited enzymatic activity of human recombinant PTP1B. Our findings support the conclusion that in human microvascular endothelial cells selenate has a vanadate-like effect in inhibiting PTP1B and enhancing proinflammatory STAT3 activation. These findings raise the possibility that beneficial actions of supranutritional levels of selenate for treating Alzheimer's and diabetes may be offset by a proinflammatory action on endothelial cells.

  9. Immature human dendritic cells enhance their migration through KCa3.1 channel activation.

    PubMed

    Crottès, David; Félix, Romain; Meley, Daniel; Chadet, Stéphanie; Herr, Florence; Audiger, Cindy; Soriani, Olivier; Vandier, Christophe; Roger, Sébastien; Angoulvant, Denis; Velge-Roussel, Florence

    2016-04-01

    Migration capacity is essential for dendritic cells (DCs) to present antigen to T cells for the induction of immune response. The DC migration is supposed to be a calcium-dependent process, while not fully understood. Here, we report a role of the KCa3.1/IK1/SK4 channels in the migration capacity of both immature (iDC) and mature (mDC) human CD14(+)-derived DCs. KCa3.1 channels were shown to control the membrane potential of human DC and the Ca(2+) entry, which is directly related to migration capacities. The expression of migration marker such as CCR5 and CCR7 was modified in both types of DCs by TRAM-34 (100nM). But, only the migration of iDC was decreased by use of both TRAM-34 and KCa3.1 siRNA. Confocal analyses showed a close localization of CCR5 with KCa3.1 in the steady state of iDC. Finally, the implication of KCa3.1 seems to be limited to the migration capacities as T cell activation of DCs appeared unchanged. Altogether, these results demonstrated that KCa3.1 channels have a pro-migratory effect on iDC migration. Our findings suggest that KCa3.1 in human iDC play a major role in their migration and constitute an attractive target for the cell therapy optimization.

  10. Butyrate activates the monocarboxylate transporter MCT4 expression in breast cancer cells and enhances the antitumor activity of 3-bromopyruvate.

    PubMed

    Queirós, Odília; Preto, Ana; Pacheco, António; Pinheiro, Céline; Azevedo-Silva, João; Moreira, Roxana; Pedro, Madalena; Ko, Young H; Pedersen, Peter L; Baltazar, Fátima; Casal, Margarida

    2012-02-01

    Most malignant tumors exhibit the Warburg effect, which consists in increased glycolysis rates with production of lactate, even in the presence of oxygen. Monocarboxylate transporters (MCTs), maintain these glycolytic rates, by mediating the influx and/or efflux of lactate and are overexpressed in several cancer cell types. The lactate and pyruvate analogue 3-bromopyruvate (3-BP) is an inhibitor of the energy metabolism, which has been proposed as a specific antitumor agent. In the present study, we aimed at determining the effect of 3-BP in breast cancer cells and evaluated the putative role of MCTs on this effect. Our results showed that the three breast cancer cell lines used presented different sensitivities to 3-BP: ZR-75-1 ER (+)>MCF-7 ER (+)>SK-BR-3 ER (-). We also demonstrated that 3-BP reduced lactate production, induced cell morphological alterations and increased apoptosis. The effect of 3-BP appears to be cytotoxic rather than cytostatic, as a continued decrease in cell viability was observed after removal of 3-BP. We showed that pre-incubation with butyrate enhanced significantly 3-BP cytotoxicity, especially in the most resistant breast cancer cell line, SK-BR-3. We observed that butyrate treatment induced localization of MCT1 in the plasma membrane as well as overexpression of MCT4 and its chaperone CD147. Our results thus indicate that butyrate pre-treatment potentiates the effect of 3-BP, most probably by increasing the rates of 3-BP transport through MCT1/4. This study supports the potential use of butyrate as adjuvant of 3-BP in the treatment of breast cancer resistant cells, namely ER (-).

  11. Enhancing cell nucleus accumulation and DNA cleavage activity of anti-cancer drug via graphene quantum dots.

    PubMed

    Wang, Chong; Wu, Congyu; Zhou, Xuejiao; Han, Ting; Xin, Xiaozhen; Wu, Jiaying; Zhang, Jingyan; Guo, Shouwu

    2013-10-04

    Graphene quantum dots (GQDs) maintain the intrinsic layered structural motif of graphene but with smaller lateral size and abundant periphery carboxylic groups, and are more compatible with biological system, thus are promising nanomaterials for therapeutic applications. Here we show that GQDs have a superb ability in drug delivery and anti-cancer activity boost without any pre-modification due to their unique structural properties. They could efficiently deliver doxorubicin (DOX) to the nucleus through DOX/GQD conjugates, because the conjugates assume different cellular and nuclear internalization pathways comparing to free DOX. Also, the conjugates could enhance DNA cleavage activity of DOX markedly. This enhancement combining with efficient nuclear delivery improved cytotoxicity of DOX dramatically. Furthermore, the DOX/GQD conjugates could also increase the nuclear uptake and cytotoxicity of DOX to drug-resistant cancer cells indicating that the conjugates may be capable to increase chemotherapy efficacy of anti-cancer drugs that are suboptimal due to the drug resistance.

  12. Intratumoral delivery of CpG-conjugated anti-MUC1 antibody enhances NK cell anti-tumor activity

    PubMed Central

    Schettini, Jorge; Kidiyoor, Amritha; Besmer, Dahlia M.; Tinder, Teresa L.; Roy, Lopamudra Das; Lustgarten, Joseph; Gendler, Sandra J.

    2013-01-01

    Monoclonal antibodies (mAbs) against tumor-associated antigens are useful anticancer agents. Antibody-dependent cellular cytotoxicity (ADCC) is one of the major mechanisms responsible for initiating natural killer cell (NK)-mediated killing of tumors. However, the regulation of ADCC via NK cells is poorly understood. We have investigated the cytolytic activity of NK cells against pancreatic cancer cells that were coated with an antibody directed against the human tumor antigen, Mucin-1 designated HMFG-2, either alone or conjugated to CpG oligodeoxynucleotide (CpG ODN). Conjugated antibodies were tested for their ability to elicit ADCC in vitro and in vivo against pancreatic cancer cells. NK cells cultured in the presence of immobilized CpG ODN, HMFG-2 Ab, or CpG ODN-conjugated HMFG-2 Ab were able to up-regulate perforin similarly. Interestingly, a significant higher ADCC was observed when CpG ODN-conjugated HMFG-2-coated tumor cells were co-cultured with NK cells compared to unconjugated HMFG-2 Ab or CpG ODN alone. Moreover, MyD88-deficient NK cells can perform ADCC in vitro. Furthermore, intratumoral injections of CpG ODN-conjugated HMFG-2 induced a significant reduction in tumor burden in vivo in an established model of pancreatic tumor in nude mice compared to CpG ODN or the HMFG-2 alone. Depletion of macrophages or NK cells before treatment confirmed that both cells were required for the anti-tumor response in vivo. Results also suggest that CpG ODN and HMFG-2 Ab could be sensed by NK cells on the mAb-coated tumor cells triggering enhanced ADCC in vitro and in vivo. PMID:22543528

  13. Transcription factor activity of estrogen receptor α activation upon nonylphenol or bisphenol A treatment enhances the in vitro proliferation, invasion, and migration of neuroblastoma cells

    PubMed Central

    Ma, Hongda; Yao, Yao; Wang, Changli; Zhang, Liyu; Cheng, Long; Wang, Yiren; Wang, Tao; Liang, Erguang; Jia, Hui; Ye, Qinong; Hou, Mingxiao; Feng, Fan

    2016-01-01

    Many kinds of endocrine-disrupting chemicals (EDCs), for example, the environmental estrogens bisphenol A and nonylphenol, may regulate the activity of estrogen receptor α (ERα) and therefore induce potential disruption of normal endocrine function. However, the involvement of EDCs in human cancers, especially in endocrine-related cancer neuroblastoma regulation, is not very clear. In this work, results showed that upon bisphenol A or nonylphenol treatment, the transcription factor activity of ERα was significantly increased in neuroblastoma cell line SH-SY5Y. Bisphenol A and nonylphenol could enhance ERα activity via recruiting it to the target gene promoter. Furthermore, treatment of bisphenol A and nonylphenol enhanced the in vitro proliferation, invasion, and migration ability of neuroblastoma cells. By investigating the role of EDC-induced ERα upregulation, our data extend the understanding of the function of EDCs and further suggest that ERα might be a potential therapeutic target in human neuroblastoma treatment. PMID:27366082

  14. Engineering an improved cell cycle-regulatable herpes simplex virus type 1 amplicon vector with enhanced transgene expression in proliferating cells yet attenuated activities in resting cells.

    PubMed

    Wang, Grace Y; Ho, Ivy A W; Sia, Kian C; Miao, L; Hui, Kam M; Lam, Paula Y P

    2007-03-01

    We previously generated a herpes simplex virus type 1 (HSV-1)-based amplicon vector (denoted pC8-36) in which gene expression from the minimal cyclin A promoter is repressed by preventing the binding of a trans-activating protein, Gal4-NF-YA, to it through selective interaction with the transcriptional repressor protein CDF-1. Because CDF-1 is absent in actively dividing cells, transgene expression conferred by the pC8-36 vector is therefore cell cycle dependent. As gene therapy evolves to become a promising therapeutic modality for many human diseases, there is an increasing need to further improve the kinetics of gene regulation. In the present study, we examined whether the availability of more binding sites for CDF-1 repressor proteins could enhance transgene expression. Using an overlap extension polymerase chain reaction (PCR) method, the CDE and CHR elements within the minimum cyclin A promoter were multimerized to contain two, three, and six copies of the designated CDE/CHR sequence. Interestingly, our results demonstrated that six-copy CDE/CHR sequence motifs (pC8-6CC-Luc) conferred an approximately 20-fold increase in the ratio of cell cycle regulation compared with the previous reported construct. Further, the overall transcriptional activities mediated by pC8-6CC-Luc were stronger compared with the native human survivin promoter, which consists of three copies of the CDE element and one copy of the CHR element. pC8-6CC-Luc contained, in essence, only the synthetic six-copy CDE/CHR sequence motif (about 262 bp). In comparison with other native endogenous promoters, which usually contain many other transcription binding sites, pC8-6CC-Luc amplicon vectors should confer better regulated and consistent transgene expression and may be considered a gene delivery vector of choice to target actively proliferating tumor cells.

  15. Cytokine-induced activation of glial cells in the mouse brain is enhanced at an advanced age.

    PubMed

    Deng, X-H; Bertini, G; Xu, Y-Z; Yan, Z; Bentivoglio, M

    2006-08-25

    Numerous neurological diseases which include neuroinflammatory components exhibit an age-related prevalence. The aging process is characterized by an increase of inflammatory mediators both systemically and in the brain, which may prime glial cells. However, little information is available on age-related changes in the glial response of the healthy aging brain to an inflammatory challenge. This problem was here examined using a mixture of the proinflammatory cytokines interferon-gamma and tumor necrosis factor-alpha, which was injected intracerebroventricularly in young (2-3.5 months), middle-aged (10-11 months) and aged (18-21 months) mice. Vehicle (phosphate-buffered saline) was used as control. After a survival of 1 or 2 days (all age groups) or 4 days (young and middle-aged animals), immunohistochemically labeled astrocytes and microglia were investigated both qualitatively and quantitatively. In all age groups, astrocytes were markedly activated in periventricular as well as in deeper brain regions 2 days following cytokine treatment, whereas microglia activation was already evident at 24 h. Interestingly, cytokine-induced activation of both astrocytes and microglia was significantly more marked in the brain of aged animals, in which it included numerous ameboid microglia, than of younger age groups. Moderate astrocytic activation was also seen in the hippocampal CA1 field of vehicle-treated aged mice. FluoroJade B histochemistry and the terminal deoxynucleotidyl transferase-mediated UTP nick-end labeling technique, performed at 2 days after cytokine administration, did not reveal ongoing cell death phenomena in young or aged animals. This indicated that glial cell changes were not secondary to neuronal death. Altogether, the findings demonstrate for the first time enhanced activation of glial cells in the old brain, compared with young and middle-aged subjects, in response to cytokine exposure. Interestingly, the results also suggest that such enhancement

  16. Sphingosine-1-phosphate enhances satellite cell activation in dystrophic muscles through a S1PR2/STAT3 signaling pathway.

    PubMed

    Loh, Kenneth C; Leong, Weng-In; Carlson, Morgan E; Oskouian, Babak; Kumar, Ashok; Fyrst, Henrik; Zhang, Meng; Proia, Richard L; Hoffman, Eric P; Saba, Julie D

    2012-01-01

    Sphingosine-1-phosphate (S1P) activates a widely expressed family of G protein-coupled receptors, serves as a muscle trophic factor and activates muscle stem cells called satellite cells (SCs) through unknown mechanisms. Here we show that muscle injury induces dynamic changes in S1P signaling and metabolism in vivo. These changes include early and profound induction of the gene encoding the S1P biosynthetic enzyme SphK1, followed by induction of the catabolic enzyme sphingosine phosphate lyase (SPL) 3 days later. These changes correlate with a transient increase in circulating S1P levels after muscle injury. We show a specific requirement for SphK1 to support efficient muscle regeneration and SC proliferation and differentiation. Mdx mice, which serve as a model for muscular dystrophy (MD), were found to be S1P-deficient and exhibited muscle SPL upregulation, suggesting that S1P catabolism is enhanced in dystrophic muscle. Pharmacological SPL inhibition increased muscle S1P levels, improved mdx muscle regeneration and enhanced SC proliferation via S1P receptor 2 (S1PR2)-dependent inhibition of Rac1, thereby activating Signal Transducer and Activator of Transcription 3 (STAT3), a central player in inflammatory signaling. STAT3 activation resulted in p21 and p27 downregulation in a S1PR2-dependent fashion in myoblasts. Our findings suggest that S1P promotes SC progression through the cell cycle by repression of cell cycle inhibitors via S1PR2/STAT3-dependent signaling and that SPL inhibition may provide a therapeutic strategy for MD.

  17. Enhanced production of nitric oxide in A549 cells through activation of TRPA1 ion channel by cold stress.

    PubMed

    Sun, Wenwu; Wang, Zhonghua; Cao, Jianping; Wang, Xu; Han, Yaling; Ma, Zhuang

    2014-08-31

    The respiratory epithelium is exposed to the external environment, and inhalation of cold air is common during the season of winter. In addition, the lung is a major source of nitric oxide (NO). However, the effect of cold stress on the production of NO is still unclear. In the present work, We measured the change of NO in single cell with DACF-DA and the change in cytosolic Ca(2+) concentration ([Ca(2+)]c) in A549 cell. We observed that cold stress (from 20 °C to 5 °C) induced an increase of NO in A549 cell, which was completely abolished by applying an extracellular Ca(2+) free medium. Further experiments showed that cold-sensing transient receptor potential subfamily member 1 (TRPA1) channel agonist (allyl isothiocyanate, AITC) increased the production of NO and the level of [Ca(2+)]c in A549 cell. Additionally, TRPA1 inhibitor, Ruthenium red (RR) and camphor, significantly blocked the enhanced production of NO and the rise of [Ca(2+)]c induced by AITC or cold stimulation, respectively. Taken together, these data indicated that cold-induced TRPA1 activation was responsible for the enhanced production of NO in A549 cell.

  18. Mast cell growth-enhancing activity (MEA) is structurally related and functionally identical to the novel mouse T cell growth factor P40/TCGFIII (interleukin 9).

    PubMed

    Hültner, L; Druez, C; Moeller, J; Uyttenhove, C; Schmitt, E; Rüde, E; Dörmer, P; Van Snick, J

    1990-06-01

    We have previously shown that certain bone marrow-derived mast cell (BMMC) lines proliferate in response to a mast cell growth-enhancing activity (MEA) that is distinct from interleukin (IL) 3 and IL 4. Here we provide evidence that MEA is identical with the recently cloned mouse T cell growth factor P40. The evidence is as follows: (a) recombinant P40 displayed all the biological activities ascribed to MEA: it supported the growth of MEA-sensitive BMMC lines, it induced IL 6 secretion by these cells, and it enhanced survival of primary mast cell cultures; (b) highly purified MEA stimulated the growth of P40-dependent cell lines; (c) a rabbit monospecific antiserum directed against P40 specifically inhibited the action of MEA on BMMC; (d) specific binding sites for P40 were detected on BMMC and (e) MEA competed with P40 for binding to P40-dependent T cells, indicating that the two molecules interact with the same receptor. These observations further extend the range of biological activities ascribed to P40 and warrant its proposed designation as IL9.

  19. Loss of TET2 in hematopoietic cells leads to DNA hypermethylation of active enhancers and induction of leukemogenesis

    PubMed Central

    Rasmussen, Kasper D.; Jia, Guangshuai; Johansen, Jens V.; Pedersen, Marianne T.; Rapin, Nicolas; Bagger, Frederik O.; Porse, Bo T.; Bernard, Olivier A.; Christensen, Jesper

    2015-01-01

    DNA methylation is tightly regulated throughout mammalian development, and altered DNA methylation patterns are a general hallmark of cancer. The methylcytosine dioxygenase TET2 is frequently mutated in hematological disorders, including acute myeloid leukemia (AML), and has been suggested to protect CG dinucleotide (CpG) islands and promoters from aberrant DNA methylation. In this study, we present a novel Tet2-dependent leukemia mouse model that closely recapitulates gene expression profiles and hallmarks of human AML1-ETO-induced AML. Using this model, we show that the primary effect of Tet2 loss in preleukemic hematopoietic cells is progressive and widespread DNA hypermethylation affecting up to 25% of active enhancer elements. In contrast, CpG island and promoter methylation does not change in a Tet2-dependent manner but increases relative to population doublings. We confirmed this specific enhancer hypermethylation phenotype in human AML patients with TET2 mutations. Analysis of immediate gene expression changes reveals rapid deregulation of a large number of genes implicated in tumorigenesis, including many down-regulated tumor suppressor genes. Hence, we propose that TET2 prevents leukemic transformation by protecting enhancers from aberrant DNA methylation and that it is the combined silencing of several tumor suppressor genes in TET2 mutated hematopoietic cells that contributes to increased stem cell proliferation and leukemogenesis. PMID:25886910

  20. Cell Growth Enhancement

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Exogene Corporation uses advanced technologies to enhance production of bio-processed substances like proteins, antibiotics and amino acids. Among them are genetic modification and a genetic switch. They originated in research for Jet Propulsion Laboratory. Extensive experiments in cell growth through production of hemoglobin to improve oxygen supply to cells were performed. By improving efficiency of oxygen use by cells, major operational expenses can be reduced. Greater product yields result in decreased raw material costs and more efficient use of equipment. A broad range of applications is cited.

  1. Metabolic inhibition enhances Ca(2+)-activated K+ current in smooth muscle cells of rabbit portal vein.

    PubMed

    Miller, A L; Morales, E; Leblanc, N R; Cole, W C

    1993-12-01

    The effect of metabolic inhibition on macroscopic and single-channel K+ currents in isolated rabbit portal vein myocytes was investigated by patch-clamp technique. Depression of adenosine triphosphate synthesis was produced by 2-deoxy-D-glucose (10 mM) and either cyanide (2 mM) or dinitrophenol (50 microM). Outward quasi-steady-state current evoked by a ramp protocol and outward time-dependent current during step depolarizations were increased during metabolic inhibition. The reversal potential for quasi-steady-state current shifted negatively toward equilibrium potential of K+ during treatment consistent with a role for K+ conductance and hyperpolarization of membrane potential. The macroscopic K+ current affected was 1) voltage dependent, 2) inhibited by intracellular Ca2+ chelation and low tetraethylammonium ion (1 mM) but unaffected by 4-aminopyridine (2 mM), and 3) associated with a rise in intracellular Ca2+ assessed by indo 1. Metabolic inhibition caused an increase in voltage-dependent large-conductance K+ channel (120-130 pS) activity in cell-attached patches of myocytes bathed in physiological solution (140 mM K+ in pipette). The channels were blocked in a flickery fashion by tetraethylammonium ion (0.5 mM) and inhibited with charybdotoxin (100 nM). We conclude that metabolic inhibition increases the activity of large-conductance Ca(2+)-activated K+ channels in vascular smooth muscle.

  2. Enhanced electricity generation by using algae biomass and activated sludge in microbial fuel cell.

    PubMed

    Rashid, Naim; Cui, Yu-Feng; Saif Ur Rehman, Muhammad; Han, Jong-In

    2013-07-01

    Recently, interest is growing to explore low-cost and sustainable means of energy production. In this study, we have exploited the potential of sustainable energy production from wastes. Activated sludge and algae biomass are used as substrates in microbial fuel cell (MFC) to produce electricity. Activated sludge is used at anode as inoculum and nutrient source. Various concentrations (1-5 g/L) of dry algae biomass are tested. Among tested concentrations, 5 g/L (5000 mg COD/L) produced the highest voltage of 0.89 V and power density of 1.78 W/m(2) under 1000 Ω electric resistance. Pre-treated algae biomass and activated sludge are also used at anode. They give low power output than without pre-treatment. Spent algae biomass is tested to replace whole (before oil extraction) algae biomass as a substrate, but it gives low power output. This work has proved the concept of using algae biomass in MFC for high energy output.

  3. Protein-bound polysaccharide activates dendritic cells and enhances OVA-specific T cell response as vaccine adjuvant

    PubMed Central

    Engel, Abbi L.; Sun, Guan-Cheng; Gad, Ekram; Rastetter, Lauren R.; Strobe, Katie; Yang, Yi; Dang, Yushe; Disis, Mary L; Lu, Hailing

    2013-01-01

    Protein-bound polysaccharide-K (PSK) is a hot water extract from Trametes versicolor mushroom. It has been used traditionally in Asian countries for its immune stimulating and anti-cancer effects. We have recently found that PSK can activate toll-like receptor 2 (TLR2). TLR2 is highly expressed on dendritic cells (DC), so the currently study was undertaken to evaluate the effect of PSK on DC activation and the potential of using PSK as a vaccine adjuvant. In vitro experiments using mouse bone marrow-derived DC (BMDC) demonstrated that PSK induces DC maturation as shown by dose-dependent increase in the expression of CD80, CD86, MHCII, and CD40. PSK also induces the production of multiple inflammatory cytokines by DC, including IL-12, TNF-α, and IL-6, at both mRNA and protein levels. In vivo experiments using PSK as an adjuvant to OVAp323-339 vaccine showed that PSK as adjuvant leads to enlarged draining lymph nodes with higher number of activated DC. PSK also stimulates proliferation of OVA-specific T cells, and induces T cells that produce multiple cytokines, IFN-γ, IL-2, and TNF-α. Altogether, these results demonstrate the ability of PSK to activate DC in vitro and in vivo and the potential of using PSK as a novel vaccine adjuvant. PMID:23735481

  4. HMGB1 enhances immune suppression by facilitating the differentiation and suppressive activity of myeloid-derived suppressor cells.

    PubMed

    Parker, Katherine H; Sinha, Pratima; Horn, Lucas A; Clements, Virginia K; Yang, Huan; Li, Jianhua; Tracey, Kevin J; Ostrand-Rosenberg, Suzanne

    2014-10-15

    Chronic inflammation often precedes malignant transformation and later drives tumor progression. Likewise, subversion of the immune system plays a role in tumor progression, with tumoral immune escape now well recognized as a crucial hallmark of cancer. Myeloid-derived suppressor cells (MDSC) are elevated in most individuals with cancer, where their accumulation and suppressive activity are driven by inflammation. Thus, MDSCs may define an element of the pathogenic inflammatory processes that drives immune escape. The secreted alarmin HMGB1 is a proinflammatory partner, inducer, and chaperone for many proinflammatory molecules that MDSCs develop. Therefore, in this study, we examined HMGB1 as a potential regulator of MDSCs. In murine tumor systems, HMGB1 was ubiquitous in the tumor microenvironment, activating the NF-κB signal transduction pathway in MDSCs and regulating their quantity and quality. We found that HMGB1 promotes the development of MDSCs from bone marrow progenitor cells, contributing to their ability to suppress antigen-driven activation of CD4(+) and CD8(+) T cells. Furthermore, HMGB1 increased MDSC-mediated production of IL-10, enhanced crosstalk between MDSCs and macrophages, and facilitated the ability of MDSCs to downregulate expression of the T-cell homing receptor L-selectin. Overall, our results revealed a pivotal role for HMGB1 in the development and cancerous contributions of MDSCs.

  5. Suppression of death receptor 5 enhances cancer cell invasion and metastasis through activation of caspase-8/TRAF2-mediated signaling.

    PubMed

    Oh, You-Take; Yue, Ping; Wang, Dongsheng; Tong, Jing-Shan; Chen, Zhuo G; Khuri, Fadlo R; Sun, Shi-Yong

    2015-12-01

    The role of death receptor 5 (DR5), a well-known cell surface pro-apoptotic protein, in the negative regulation of invasion and metastasis of human cancer cells and the underlying mechanisms are largely unknown and were hence the focus of this study. In this report, we have demonstrated that DR5 functions to suppress invasion and metastasis of human cancer cells, as evidenced by enhanced cancer cell invasion and metastasis upon genetic suppression of DR5 either by gene knockdown or knockout. When DR5 is suppressed, FADD and caspase-8 may recruit and stabilize TRAF2 to form a metastasis and invasion signaling complex, resulting in activation of ERK and JNK/AP-1 signaling that mediate the elevation and activation of matrix metalloproteinase-1 (MMP1) and eventual promotion of cancer invasion and metastasis. Our findings thus highlight a novel non-apoptotic function of DR5 as a suppressor of human cancer cell invasion and metastasis and suggest a basic working model elucidating the underlying biology.

  6. Inhibition of constitutively activated phosphoinositide 3-kinase/AKT pathway enhances antitumor activity of chemotherapeutic agents in breast cancer susceptibility gene 1-defective breast cancer cells.

    PubMed

    Yi, Yong Weon; Kang, Hyo Jin; Kim, Hee Jeong; Hwang, Jae Seok; Wang, Antai; Bae, Insoo

    2013-09-01

    Loss or decrease of wild type BRCA1 function, by either mutation or reduced expression, has a role in hereditary and sporadic human breast and ovarian cancers. We report here that the PI3K/AKT pathway is constitutively active in BRCA1-defective human breast cancer cells. Levels of phospho-AKT are sustained even after serum starvation in breast cancer cells carrying deleterious BRCA1 mutations. Knockdown of BRCA1 in MCF7 cells increases the amount of phospho-AKT and sensitizes cells to small molecule protein kinase inhibitors (PKIs) targeting the PI3K/AKT pathway. Restoration of wild type BRCA1 inhibits the activated PI3K/AKT pathway and de-sensitizes cells to PKIs targeting this pathway in BRCA1 mutant breast cancer cells, regardless of PTEN mutations. In addition, clinical PI3K/mTOR inhibitors, PI-103, and BEZ235, showed anti-proliferative effects on BRCA1 mutant breast cancer cell lines and synergism in combination with chemotherapeutic drugs, cisplatin, doxorubicin, topotecan, and gemcitabine. BEZ235 synergizes with the anti-proliferative effects of gemcitabine by enhancing caspase-3/7 activity. Our results suggest that the PI3K/AKT pathway can be an important signaling pathway for the survival of BRCA1-defective breast cancer cells and pharmacological inhibition of this pathway is a plausible treatment for a subset of breast cancers.

  7. Selected activities of Citrus maxima Merr. fruits on human endothelial cells: enhancing cell migration and delaying cellular aging.

    PubMed

    Buachan, Paiwan; Chularojmontri, Linda; Wattanapitayakul, Suvara K

    2014-04-21

    Endothelial injury and damage as well as accumulated reactive oxygen species (ROS) in aging play a significant role in the development of cardiovascular disease (CVD). Recent studies show an association of high citrus fruit intake with a lower risk of CVD and stroke but the mechanisms involved are not fully understood. This study investigated the effects of pummelo (Citrus maxima Merr. var. Tubtim Siam, CM) fruit extract on human umbilical vein endothelial cell (HUVECs) migration and aging. The freeze-dried powder of fruit extract was characterized for antioxidant capacity (FRAP assay) and certain natural antioxidants, including ascorbic acid, gallic acid, hesperidin, and naringin (HPLC). Short-term (48 h) co-cultivation of HUVECs with CM enhanced cell migration as evaluated by a scratch wound assay and Boyden chamber assay. A long-term treatment with CM for 35 days significantly increased HUVEC proliferation capability as indicated by population doubling level (PDL). CM also delayed the onset of aging phenotype shown by senescence-associated β-galactosidase (SA-β-gal) staining. Furthermore, CM was able to attenuate increased ROS levels in aged cells when determined by 2',7'-dichlorodihydrofluorescein diacetate (DCDHF) while eNOS mRNA expression was increased but the eNOS protein level was not changed. Thus, further in vivo and clinical studies are warranted to support the use of pummelo as a functional fruit for endothelial health and CVD risk reduction.

  8. Prolactin and estrogen enhance the activity of activating protein 1 in breast cancer cells: role of extracellularly regulated kinase 1/2-mediated signals to c-fos.

    PubMed

    Gutzman, Jennifer H; Nikolai, Sarah E; Rugowski, Debra E; Watters, Jyoti J; Schuler, Linda A

    2005-07-01

    Despite the important roles of both prolactin (PRL) and 17beta-estradiol (E2) in normal mammary development as well as in breast cancer, and coexpression of the estrogen receptor (ER) and PRL receptor in many mammary tumors, the interactions between PRL and E2 in breast cancer have not been well studied. The activating protein 1 (AP-1) transcription factor, a known regulator of processes essential for normal growth and development as well as carcinogenesis, is a potential site for cross-talk between these hormones in breast cancer cells. Here we demonstrate that PRL and E2 cooperatively enhance the activity of AP-1 in MCF-7-derived cells. In addition to the acute PRL-induced ERK1/2 activation, PRL and E2 also individually elicited delayed, sustained rises in levels of phosphorylated p38 and especially ERK1/2. Together, these hormones increased the dynamic phosphorylation of ERK1/2 and c-Fos, and induced c-fos promoter activity. Synergistic activation of the transcription factor, Elk-1, reflected the PRL-E2 interaction at ERK1/2 and is a likely mechanism for activation of the c-fos promoter via the serum response element. The enhanced AP-1 activity resulting from the interaction of these hormones may increase expression of many target genes that are critical for oncogenesis and may contribute to neoplastic progression.

  9. Enhanced desalination performance of membrane capacitive deionization cells by packing the flow chamber with granular activated carbon.

    PubMed

    Bian, Yanhong; Yang, Xufei; Liang, Peng; Jiang, Yong; Zhang, Changyong; Huang, Xia

    2015-11-15

    A new design of membrane capacitive deionization (MCDI) cell was constructed by packing the cell's flow chamber with granular activated carbon (GAC). The GAC packed-MCDI (GAC-MCDI) delivered higher (1.2-2.5 times) desalination rates than the regular MCDI at all test NaCl concentrations (∼ 100-1000 mg/L). The greatest performance enhancement by packed GAC was observed when treating saline water with an initial NaCl concentration of 100 mg/L. Several different GAC materials were tested and they all exhibited similar enhancement effects. Comparatively, packing the MCDI's flow chamber with glass beads (GB; non-conductive) and graphite granules (GG; conductive but with lower specific surface area than GAC) resulted in inferior desalination performance. Electrochemical impedance spectroscopy (EIS) analysis showed that the GAC-MCDI had considerably smaller internal resistance than the regular MCDI (∼ 19.2 ± 1.2 Ω versus ∼ 1222 ± 15 Ω at 100 mg/L NaCl). The packed GAC also decreased the ionic resistance across the flow chamber (∼ 1.49 ± 0.05 Ω versus ∼ 1130 ± 12 Ω at 100 mg/L NaCl). The electric double layer (EDL) formed on the GAC surface was considered to store salt ions during electrosorption, and facilitate the ion transport in the flow chamber because of the higher ion conductivity in the EDLs than in the bulk solution, thereby enhancing the MCDI's desalination rate.

  10. Myricetin and methyl eugenol combination enhances the anticancer activity, cell cycle arrest and apoptosis induction of cis-platin against HeLa cervical cancer cell lines.

    PubMed

    Yi, Jin-Ling; Shi, Song; Shen, Yan-Li; Wang, Ling; Chen, Hai-Yan; Zhu, Jun; Ding, Yan

    2015-01-01

    Drug combination therapies are common practice in the treatment of cancer. In this study, we evaluated the anticancer effects of myricetin (MYR), methyl eugenol (MEG) and cisplatin (CP) both separately as well as in combination against cervical cancer (HeLa) cells. To demonstrate whether MYR and MEG enhance the anticancer activity of CP against cervical cancer cells, we treated HeLa cells with MYR and MEG alone or in combination with cisplatin and evaluated cell growth and apoptosis using MTT (3 (4, 5 dimethyl thiazol 2yl) 2, 5 diphenyltetrazolium bromide) assay, LDH release assay, flow cytometry and fluorescence microscopy. The results revealed that, as compared to single drug treatment, the combination of MYR or MEG with CP resulted in greater effect in inhibiting cancer cell growth and inducing apoptosis. Cell apoptosis induction, Caspase-3 activity, cell cycle arrest and mitochondrial membrane potential loss were systematically studied to reveal the mechanisms of synergy between MYR, MEG and CP. Combination of MYR or MEG with CP resulted in more potent apoptosis induction as revealed by fluorescence microscopy using Hoechst 33258 and AO-ETBR staining. The combination treatment also increased the number of cells in G0/G1 phase dramatically as compared to single drug treatment. Mitochondrial membrane potential loss (ΛΨm) as well as Caspase-3 activity was much higher in combination treatment as compared to single drug treatment. Findings of this investigation suggest that MYR and MEG combined with cisplatin is a potential clinical chemotherapeutic approach in human cervical cancer.

  11. Mast cell growth-enhancing activity (MEA) stimulates interleukin 6 production in a mouse bone marrow-derived mast cell line and a malignant subline.

    PubMed

    Hültner, L; Moeller, J

    1990-09-01

    A novel mast cell growth-enhancing activity (MEA/P40/interleukin 9 [IL-9]) purified from the conditioned medium of a murine interleukin 2 (IL-2)-dependent Mlsa-specific T-cell line (MLS4.2) was tested for its capacity to induce interleukin 6 (IL-6) production in a mouse bone marrow-derived factor-dependent mast cell line (L138.8A). This interleukin 3 (IL-3)/interleukin 4 (IL-4)/MEA-responsive cell line was demonstrated recently to express IL-6 mRNA and to secrete IL-6 when cultured with IL-3/IL-4. Now we were able to show that conditioned medium from L138.8A mast cells stimulated with MEA alone contained growth factor activity for the IL-6-dependent mouse hybridoma cell line 7TD1 that was completely blocked by the monoclonal anti-IL-6 antibody 6B4. A dose-response study including IL-3, IL-4, and MEA tested either alone or in different combinations revealed that among these growth factors MEA was the most potent inducer of IL-6 in L138.8A cells. Moreover, IL-4 but not IL-3 had a strong synergistic effect on MEA-induced IL-6 production. The autonomous malignant mast cell subline L138Cauto also showed enhanced IL-6 production when stimulated with MEA. Our findings indicate that MEA (IL-9) not only provides a proliferation signal, but also leads to a marked functional activation of responsive mast cells.

  12. Purification of soluble beta-glucan with immune-enhancing activity from the cell wall of yeast.

    PubMed

    Lee, J N; Lee, D Y; Ji, I H; Kim, G E; Kim, H N; Sohn, J; Kim, S; Kim, C W

    2001-04-01

    Beta-glucan, one of the major cell wall components of Saccharomyces cerevisiae, has been found to enhance immune functions, especially by activating macrophages. However, a major obstacle to the clinical application of beta-(1-->3)-glucan is its low solubility in aqueous media. In this study, soluble beta-glucan, free of mannoprotein, was prepared, and its effects on TNF-alpha secretion and phagocytosis by macrophages were evaluated. Beta-glucan was first rendered soluble from the yeast cell wall by alkaline extraction (glucan-p1). The extract contained 2.8% of protein which was subsequently removed by successive DEAE-cellulose and ConA chromatography. Beta-glucan thus prepared was completely free of mannoprotein and was soluble at neutral pH (glucan-p3). The effects of beta-glucan on phagocytosis and TNF-alpha release activity were investigated. While glucan-p1 moderately induced TNF-alpha secretion at 200 microg/ml (550 pg of TNF-alpha/5 x 10(5) cells), glucan-p3 markedly stimulated macrophages at 200 microg/ml (2,860 pg of TNF-alpha/5 x 10(5) cells). Furthermore, glucan-p3 stimulated phagocytosis about 20% more than glucan-p1 did. In conclusion, we purified water-soluble beta-glucan which was completely devoid of mannoprotein and effectively stimulated the macrophage function, enabling it to be used as an intravenous injection for sepsis.

  13. Enhanced HSP70 lysine methylation promotes proliferation of cancer cells through activation of Aurora kinase B

    PubMed Central

    Cho, Hyun-Soo; Shimazu, Tadahiro; Toyokawa, Gouji; Daigo, Yataro; Maehara, Yoshihiko; Hayami, Shinya; Ito, Akihiro; Masuda, Ken; Ikawa, Noriko; Field, Helen I.; Tsuchiya, Eiju; Ohnuma, Shin-ichi; Ponder, Bruce A.J.; Yoshida, Minoru; Nakamura, Yusuke; Hamamoto, Ryuji

    2012-01-01

    Although heat-shock protein 70 (HSP70), an evolutionarily highly conserved molecular chaperone, is known to be post-translationally modified in various ways such as phosphorylation, ubiquitination and glycosylation, physiological significance of lysine methylation has never been elucidated. Here we identify dimethylation of HSP70 at Lys-561 by SETD1A. Enhanced HSP70 methylation was detected in various types of human cancer by immunohistochemical analysis, although the methylation was barely detectable in corresponding non-neoplastic tissues. Interestingly, methylated HSP70 predominantly localizes to the nucleus of cancer cells, whereas most of the HSP70 protein locates to the cytoplasm. Nuclear HSP70 directly interacts with Aurora kinase B (AURKB) in a methylation-dependent manner and promotes AURKB activity in vitro and in vivo. We also find that methylated HSP70 has a growth-promoting effect in cancer cells. Our findings demonstrate a crucial role of HSP70 methylation in human carcinogenesis. PMID:22990868

  14. Actinomycin D enhances killing of cancer cells by immunotoxin RG7787 through activation of the extrinsic pathway of apoptosis

    PubMed Central

    Liu, Xiu Fen; Xiang, Laiman; Zhou, Qi; Carralot, Jean-Philippe; Prunotto, Marco; Niederfellner, Gerhard; Pastan, Ira

    2016-01-01

    RG7787 is a mesothelin-targeted immunotoxin designed to have low-immunogenicity, high-cytotoxic activity and fewer side effects. RG7787 kills many types of mesothelin-expressing cancer cells lines and causes tumor regressions in mice. Safety and immunogenicity of RG7787 is now being assessed in a phase I trial. To enhance the antitumor activity of RG7787, we screened for clinically used drugs that can synergize with RG7787. Actinomycin D is a potent transcription inhibitor that is used for treating several cancers. We report here that actinomycin D and RG7787 act synergistically to kill many mesothelin-positive cancer cell lines and produce major regressions of pancreatic and stomach cancer xenografts. Analyses of RNA expression show that RG7787 or actinomycin D alone and together increase levels of TNF/TNFR family members and NF-κB–regulated genes. Western blots revealed the combination changed apoptotic protein levels and enhanced cleavage of Caspases and PARP. PMID:27601652

  15. AZD1480 delays tumor growth in a melanoma model while enhancing the suppressive activity of myeloid-derived suppressor cells

    PubMed Central

    Maenhout, Sarah K.; Four, Stephanie Du; Corthals, Jurgen; Neyns, Bart; Thielemans, Kris; Aerts, Joeri L.

    2014-01-01

    AZD1480 is a potent, competitive small-molecule inhibitor of JAK1/2 kinase which inhibits STAT3 phosphorylation and tumor growth. Here we investigated the effects of AZD1480 on the function of different immune cell populations in a melanoma model. When MO4 tumor-bearing mice were treated with AZD1480 we observed a strong inhibition of tumor growth as well as a prolonged survival. Moreover, a significant decrease in the percentage of myeloid-derived suppressor cells (MDSCs) was observed after treatment with AZD1480. However, AZD1480 enhanced the suppressive capacity of murine MDSCs while at the same time impairing the proliferative as well as the IFN-γ secretion capacity of murine T cells. The addition of AZD1480 to co-cultures of human MDSCs and T cells does not affect the suppressive activity of MDSCs but it does reduce the IFN-γ secretion and the proliferative capacity of T cells. We showed that although AZD1480 has the ability to delay the tumor growth of MO4 tumor-bearing mice, this drug has detrimental effects on several aspects of the immune system. These data indicate that systemic targeting of the JAK/STAT pathway by JAK1/2 inhibition can have divergent effects on tumor growth and anti-tumor immune responses. PMID:25149535

  16. Novel 4-anilinoquinazoline derivatives featuring an 1-adamantyl moiety as potent EGFR inhibitors with enhanced activity against NSCLC cell lines.

    PubMed

    Yu, Haiqing; Li, Yanxia; Ge, Yang; Song, Zhendong; Wang, Changyuan; Huang, Shanshan; Jin, Yue; Han, Xu; Zhen, Yuhong; Liu, Kexin; Zhou, Youwen; Ma, Xiaodong

    2016-03-03

    With the aim of overcoming gefitinib resistance, a series of novel quinazoline derivatives bearing an adamantyl group on the aniline ring were synthesized as potent epidermal growth factor receptor (EGFR) inhibitors. Most of these analogues are comparable to gefitinib in their ability to inhibit non-small cell lung cancer (NSCLC) cell lines, and several also exhibited significantly enhanced anti-tumor potency. Specifically, compound 3d, with an IC50 value of 2.06 μM against A431 cells with the wild-type EGFR and of 0.009 μM against the gefitinib-sensitive cells, displayed approximately 5-fold higher potency than the lead compound to inhibit the cells harboring the EGFR(T790M) mutant. In addition, the molecular simulation and Western blot analysis results also indicated that these compounds effectively interfered with the EGFR(T790M) activity, and may serve as a new alternative structure to develop more effective antitumor agents.

  17. Nonreduction-Active Hole-Transporting Layers Enhancing Open-Circuit Voltage and Efficiency of Planar Perovskite Solar Cells.

    PubMed

    Liu, Tiefeng; Jiang, Fangyuan; Qin, Fei; Meng, Wei; Jiang, Youyu; Xiong, Sixing; Tong, Jinhui; Li, Zaifang; Liu, Yun; Zhou, Yinhua

    2016-12-14

    Inverted planar perovskite solar cells using poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as the hole-transporting layer (HTL) are very attractive because of their low-temperature and easy processing. However, the planar cells with the PEDOT:PSS HTL typically display lower open-circuit voltage (VOC) (about 0.90 V) than that of devices with TiO2-based conventional structure (1.0-1.1 V). The underlying reasons are still not clear. In this work, we report the PEDOT:PSS that is intrinsically p-doped can be chemically reduced by methylamine iodide (MAI) and MAPbI3. The reaction reduces the work function (WF) of PEDOT:PSS, which suppresses the efficient hole collection and yields lower VOC. To overcome this issue, we adopt undoped semiconducting polymers that are intrinsically nonreduction-active (NRA) as the HTL for inverted planar perovskite solar cells. The cells display enhanced VOC from 0.88 ± 0.04 V (PEDOT:PSS HTL, reference cells) to 1.02 ± 0.03 V (P3HT HTL) and 1.04 ± 0.03 V (PTB7 and PTB-Th HTL). The power conversion efficiency (PCE) of the devices with these NRA HTL reaches about 17%.

  18. Adiponectin enhances osteogenic differentiation in human adipose-derived stem cells by activating the APPL1-AMPK signaling pathway

    SciTech Connect

    Chen, Tong; Wu, Yu-wei; Lu, Hui; Guo, Yuan; Tang, Zhi-hui

    2015-05-29

    Human adipose-derived stem cells (hASCs) are multipotent progenitor cells with multi-lineage differentiation potential including osteogenesis and adipogenesis. While significant progress has been made in understanding the transcriptional control of hASC fate, little is known about how hASC differentiation is regulated by the autocrine loop. The most abundant adipocytokine secreted by adipocytes, adiponectin (APN) plays a pivotal role in glucose metabolism and energy homeostasis. Growing evidence suggests a positive association between APN and bone formation yet little is known regarding the direct effects of APN on hASC osteogenesis. Therefore, this study was designed to investigate the varied osteogenic effects and regulatory mechanisms of APN in the osteogenic commitment of hASCs. We found that APN enhanced the expression of osteoblast-related genes in hASCs, such as osteocalcin, alkaline phosphatase, and runt-related transcription factor-2 (Runx2, also known as CBFa1), in a dose- and time-dependent manner. This was further confirmed by the higher expression levels of alkaline phosphatase and increased formation of mineralization nodules, along with the absence of inhibition of cell proliferation. Importantly, APN at 1 μg/ml was the optimal concentration, resulting in maximum deposition of calcium nodules, and was significant superior to bone morphogenetic protein 2. Mechanistically, we found for the first time that APN increased nuclear translocation of the leucine zipper motif (APPL)-1 as well as AMP-activated protein kinase (AMPK) phosphorylation, which were reversed by pretreatment with APPL1 siRNA. Our results indicate that APN promotes the osteogenic differentiation of hASCs by activating APPL1-AMPK signaling, suggesting that manipulation of APN is a novel therapeutic target for controlling hASC fate. - Highlights: • Adiponectin enhances osteogenic differentiation in human adipose-derived stem cells. • The knock-down of APPL1 block the enhancement of

  19. Fc-mediated activity of EGFR x c-Met bispecific antibody JNJ-61186372 enhanced killing of lung cancer cells.

    PubMed

    Grugan, Katharine D; Dorn, Keri; Jarantow, Stephen W; Bushey, Barbara S; Pardinas, Jose R; Laquerre, Sylvie; Moores, Sheri L; Chiu, Mark L

    2017-01-01

    Epidermal growth factor receptor (EGFR) mutant non-small cell lung cancers acquire resistance to EGFR tyrosine kinase inhibitors through multiple mechanisms including c-Met receptor pathway activation. We generated a bispecific antibody targeting EGFR and c-Met (JNJ-61186372) demonstrating anti-tumor activity in wild-type and mutant EGFR settings with c-Met pathway activation. JNJ-61186372 was engineered with low fucosylation (<10 %), resulting in enhanced antibody-dependent cell-mediated cytotoxicity and FcγRIIIa binding. In vitro and in vivo studies with the single-arm EGFR or c-Met versions of JNJ-61186372 identified that the Fc-activity of JNJ-61186372 is mediated by binding of the anti-EGFR arm and required for inhibition of EGFR-driven tumor cells. In a tumor model driven by both EGFR and c-Met, treatment with Fc-silent JNJ-61186372 or with c-Met single-arm antibody reduced tumor growth inhibition compared to treatment with JNJ-61186372, suggesting that the Fc function of JNJ-61186372 is essential for maximal tumor inhibition. Moreover in this same model, downregulation of both EGFR and c-Met receptors was observed upon treatment with Fc-competent JNJ-61186372, suggesting that the Fc interactions are necessary for down-modulation of the receptors in vivo and for efficacy. These Fc-mediated activities, in combination with inhibition of both the EGFR and c-Met signaling pathways, highlight the multiple mechanisms by which JNJ-61186372 combats therapeutic resistance in EGFR mutant patients.

  20. Fc-mediated activity of EGFR x c-Met bispecific antibody JNJ-61186372 enhanced killing of lung cancer cells

    PubMed Central

    Grugan, Katharine D.; Dorn, Keri; Bushey, Barbara S.; Pardinas, Jose R.; Laquerre, Sylvie; Moores, Sheri L.; Chiu, Mark L.

    2017-01-01

    ABSTRACT Epidermal growth factor receptor (EGFR) mutant non-small cell lung cancers acquire resistance to EGFR tyrosine kinase inhibitors through multiple mechanisms including c-Met receptor pathway activation. We generated a bispecific antibody targeting EGFR and c-Met (JNJ-61186372) demonstrating anti-tumor activity in wild-type and mutant EGFR settings with c-Met pathway activation. JNJ-61186372 was engineered with low fucosylation (<10 %), resulting in enhanced antibody-dependent cell-mediated cytotoxicity and FcγRIIIa binding. In vitro and in vivo studies with the single-arm EGFR or c-Met versions of JNJ-61186372 identified that the Fc-activity of JNJ-61186372 is mediated by binding of the anti-EGFR arm and required for inhibition of EGFR-driven tumor cells. In a tumor model driven by both EGFR and c-Met, treatment with Fc-silent JNJ-61186372 or with c-Met single-arm antibody reduced tumor growth inhibition compared to treatment with JNJ-61186372, suggesting that the Fc function of JNJ-61186372 is essential for maximal tumor inhibition. Moreover in this same model, downregulation of both EGFR and c-Met receptors was observed upon treatment with Fc-competent JNJ-61186372, suggesting that the Fc interactions are necessary for down-modulation of the receptors in vivo and for efficacy. These Fc-mediated activities, in combination with inhibition of both the EGFR and c-Met signaling pathways, highlight the multiple mechanisms by which JNJ-61186372 combats therapeutic resistance in EGFR mutant patients. PMID:27786612

  1. The weak, fine-tuned binding of ubiquitous transcription factors to the Il-2 enhancer contributes to its T cell-restricted activity.

    PubMed Central

    Hentsch, B; Mouzaki, A; Pfeuffer, I; Rungger, D; Serfling, E

    1992-01-01

    The T lymphocyte-specific enhancers of the murine and human Interleukin 2 (Il-2) genes harbour several binding sites for ubiquitous transcription factors. All these sites for the binding of AP-1, NF-kB or Oct-1 are non-canonical sites, i.e. they differ in one or a few base pairs from consensus sequences for the optimal binding of these factors. Although the factors bind weakly to these sites, the latter are functionally important because their mutation to non-binding sites results in a decrease of inducible activity of the Il-2 enhancer. Conversion of three sites to canonical binding sites of Octamer factors, AP-1 and NF-kB results in a drastic increase in enhancer activity and the induction of the Il-2 enhancer in non-T cells, such as B cell lines, murine L cells and human HeLa cells. The introduction of two or three canonical sites into the enhancer leads to a further increase of its activity. Il-2 enhancer induction is also observed in B cells when the concentration of AP-1 and Oct factors increases as a result of cotransfections with FosB and Octamer expression plasmids. When Il-2 enhancer constructs carrying canonical factor binding sites were injected into Xenopus oocytes the strong binding of ubiquitous factors substantially overcomes the silencing effect of negatively acting factors present in resting primary T lymphocytes. These results suggest a fine-tuned interplay between ubiquitous and lymphoid-specific factors binding to and transactivating the Il-2 enhancer and show that the binding affinity of ubiquitous factors to the enhancer contributes to its cell-type specific activity. Moreover, we believe that a dramatic increase of transcriptional activity brought about by single point mutations at strategic important factor binding sites may also have relevance to the activation of nuclear oncogenes. Images PMID:1614851

  2. Cimetidine synergizes with Praziquantel to enhance the immune response of HBV DNA vaccine via activating cytotoxic CD8(+) T cell.

    PubMed

    Xie, Xiaoping; Geng, Shuang; Liu, Hu; Li, Chaofan; Yang, Yuqin; Wang, Bin

    2014-01-01

    Previously, we have reported that either CIM or PZQ, 2 clinical drugs, could be used to develop as adjuvants on HBV DNA vaccine to elicit both humoral and cellular immune responses. Here, we demonstrate that combinations of CIM and PZQ as adjuvants for a HBV DNA vaccine, could induce much stronger antigen specific CD4(+) and CD8(+) T cell responses compared either with CIM or PZQ alone. The synergistic effects of CIM plus PZQ to HBV DNA vaccine were observed on a higher IgG2a/IgG1 ratio, an increase of HBsAg-specific CD4(+) T cells capable of producing IFN-γ or IL-17A and a robust IFN-γ-, IL-17A-, or TNF-α-producing CD8(+) T cells to HBsAg. Most importantly, the antigen-specific CTL response was also elevated significantly, which is critical for the eradication of hepatitis B virus (HBV) infected cells. Using an HBsAg transgenic mouse model, the expression of HBsAg in the hepatic cells was also significantly reduced after immunized with pCD-S 2 in the presence of 0.5% CIM and 0.25% PZQ. Further investigations demonstrated that the synergistic effects of combination of CIM and PZQ were dependent on enhanced cytotoxic CD8(+) T cells, which was correlated with impaired activities of regulatory T cells. Therefore, combinations of CIM and PZQ have great potential to be used as effective adjuvants on DNA-based vaccinations for the treatment of chronic hepatitis B.

  3. Enhancer of zeste homologue 2 plays an important role in neuroblastoma cell survival independent of its histone methyltransferase activity.

    PubMed

    Bate-Eya, Laurel T; Gierman, Hinco J; Ebus, Marli E; Koster, Jan; Caron, Huib N; Versteeg, Rogier; Dolman, M Emmy M; Molenaar, Jan J

    2017-04-01

    Neuroblastoma is predominantly characterised by chromosomal rearrangements. Next to V-Myc Avian Myelocytomatosis Viral Oncogene Neuroblastoma Derived Homolog (MYCN) amplification, chromosome 7 and 17q gains are frequently observed. We identified a neuroblastoma patient with a regional 7q36 gain, encompassing the enhancer of zeste homologue 2 (EZH2) gene. EZH2 is the histone methyltransferase of lysine 27 of histone H3 (H3K27me3) that forms the catalytic subunit of the polycomb repressive complex 2. H3K27me3 is commonly associated with the silencing of genes involved in cellular processes such as cell cycle regulation, cellular differentiation and cancer. High EZH2 expression correlated with poor prognosis and overall survival independent of MYCN amplification status. Unexpectedly, treatment of 3 EZH2-high expressing neuroblastoma cell lines (IMR32, CHP134 and NMB), with EZH2-specific inhibitors (GSK126 and EPZ6438) resulted in only a slight G1 arrest, despite maximum histone methyltransferase activity inhibition. Furthermore, colony formation in cell lines treated with the inhibitors was reduced only at concentrations much higher than necessary for complete inhibition of EZH2 histone methyltransferase activity. Knockdown of the complete protein with three independent shRNAs resulted in a strong apoptotic response and decreased cyclin D1 levels. This apoptotic response could be rescued by overexpressing EZH2ΔSET, a truncated form of wild-type EZH2 lacking the SET transactivation domain necessary for histone methyltransferase activity. Our findings suggest that high EZH2 expression, at least in neuroblastoma, has a survival function independent of its methyltransferase activity. This important finding highlights the need for studies on EZH2 beyond its methyltransferase function and the requirement for compounds that will target EZH2 as a complete protein.

  4. Loss of Mel-18 enhances breast cancer stem cell activity and tumorigenicity through activating Notch signaling mediated by the Wnt/TCF pathway.

    PubMed

    Won, Hee-Young; Lee, Jeong-Yeon; Shin, Dong-Hui; Park, Ji-Hye; Nam, Jeong-Seok; Kim, Hyoung-Chin; Kong, Gu

    2012-12-01

    Mel-18 has been proposed as a negative regulator of Bmi-1, a cancer stem cell (CSC) marker, but it is still unclear whether Mel-18 is involved in CSC regulation. Here, we examined the effect of Mel-18 on the stemness of human breast CSCs. In Mel-18 small hairpin RNA (shRNA)-transduced MCF-7 cells, side population (SP) cells and breast CSC surface marker (CD44(+)/CD24(-)/ESA(+))-expressing cells, which imply a CSC population, were enriched. Moreover, the self-renewal of CSCs was enhanced by Mel-18 knockdown, as measured by the ability for tumorsphere formation in vitro and tumor-initiating capacity in vivo. Similarly, Mel-18 overexpression inhibited the number and self-renewal activity of breast CSCs in SK-BR-3 cells. Furthermore, our data showed that Mel-18 blockade up-regulated the expression of the Wnt/TCF target Jagged-1, a Notch ligand, and consequently activated the Notch pathway. Pharmacologic inhibition of the Notch and Wnt pathways abrogated Mel-18 knockdown-mediated tumorsphere formation ability. Taken together, our findings suggest that Mel-18 is a novel negative regulator of breast CSCs that inhibits the stem cell population and in vitro and in vivo self-renewal through the inactivation of Wnt-mediated Notch signaling.

  5. Anti-proliferative activity of oral anti-hyperglycemic agents on human vascular smooth muscle cells: thiazolidinediones (glitazones) have enhanced activity under high glucose conditions

    PubMed Central

    Little, Peter J; Osman, Narin; de Dios, Stephanie T; Cemerlang, Nelly; Ballinger, Mandy; Nigro, Julie

    2007-01-01

    Background Inhibition of vascular smooth muscle cell (vSMC) proliferation by oral anti-hyperglycemic agents may have a role to play in the amelioration of vascular disease in diabetes. Thiazolidinediones (TZDs) inhibit vSMC proliferation but it has been reported that they anomalously stimulate [3H]-thymidine incorporation. We investigated three TZDs, two biguanides and two sulfonylureas for their ability of inhibit vSMC proliferation. People with diabetes obviously have fluctuating blood glucose levels thus we determined the effect of media glucose concentration on the inhibitory activity of TZDs in a vSMC preparation that grew considerably more rapidly under high glucose conditions. We further explored the mechanisms by which TZDs increase [3H]-thymidine incorporation. Methods VSMC proliferation was investigated by [3H]-thymidine incorporation into DNA and cell counting. Activation and inhibition of thymidine kinase utilized short term [3H]-thymidine uptake. Cell cycle events were analyzed by FACS. Results VSMC cells grown for 3 days in DMEM with 5% fetal calf serum under low (5 mM glucose) and high (25 mM glucose) increased in number by 2.5 and 4.7 fold, respectively. Rosiglitazone and pioglitazone showed modest but statistically significantly greater inhibitory activity under high versus low glucose conditions (P < 0.05 and P < 0.001, respectively). We confirmed an earlier report that troglitazone (at low concentrations) causes enhanced incorporation of [3H]-thymidine into DNA but did not increase cell numbers. Troglitazone inhibited serum mediated thymidine kinase induction in a concentration dependent manner. FACS analysis showed that troglitazone and rosiglitazone but not pioglitazone placed a slightly higher percentage of cells in the S phase of a growing culture. Of the biguanides, metformin had no effect on proliferation assessed as [3H]-thymidine incorporation or cell numbers whereas phenformin was inhibitory in both assays albeit at high concentrations

  6. Aqueous Extract of Solanum nigrum Leaf Activates Autophagic Cell Death and Enhances Docetaxel-Induced Cytotoxicity in Human Endometrial Carcinoma Cells

    PubMed Central

    Tai, Cheng-Jeng; Wang, Chien-Kai; Chang, Yu-Jia; Lin, Chi-Shian; Tai, Chen-Jei

    2012-01-01

    Chemotherapy is the main approach in dealing with advanced and recurrent endometrial cancer. An effective complementary ingredient can be helpful in improving the clinical outcome. Aqueous extract of Solanum nigrum leaf (AE-SN) is a principal ingredient for treating cancer patients in traditional Chinese medicinal practice but lacks sufficient evidence to verify its tumor suppression efficacy. This study evaluated the antitumor effects of AE-SN and also assessed the synergistic effects of AE-SN with docetaxel On the human endometrial cancer cell lines, HEC1A, HEC1B, and KLE. The activation of apoptotic markers, caspase-3 and poly-ADP-ribose polymerase, and autophagic marker, microtubule-associated protein 1 light chain 3 A/B, wAS determined to clarify the cell death pathways responsible for AE-SN induced tumor cell death. Results indicated that AE-SN-treatment has significant cytotoxicity on the tested endometrial cancer cells with accumulation of LC3 A/B II and demonstrated a synergistic effect of AE-SN and docetaxel in HEC1A and HEC1B cells, but not KLE cells. In conclusion, AE-SN treatment was effective in suppressing endometrial cancer cells via the autophagic pathway and was also capable of enhancing the cytotoxicity of docetaxel in human endometrial cancer cells. Our results provide meaningful evidence for integrative cancer therapy in the future. PMID:23304219

  7. Carboxylation of multiwalled carbon nanotube enhanced its biocompatibility with L02 cells through decreased activation of mitochondrial apoptotic pathway.

    PubMed

    Liu, Zhenbao; Dong, Xia; Song, Liping; Zhang, Hailing; Liu, Lanxia; Zhu, Dunwan; Song, Cunxian; Leng, Xigang

    2014-03-01

    Modification of carbon nanotubes (CNTs) with carboxyl group is one of the widely used strategies to increase their water dispersibility. Various molecules can be further coupled to the surface of carboxylated CNTs for the desired applications. However, the effect of carboxylation of CNTs on their cytotoxicity is far from being completely understood. In this study, the impact of carboxylated multiwalled CNT (MWCNT-COOH) on human normal liver cell line L02 was studied and compared with pristine multiwalled CNT (p-MWCNT). The data accumulated in this study revealed that modification with carboxyl group reduced the toxicity of MWCNT on L02 cells, probably due to the decreased activation of mitochondria mediated apoptotic pathway. Both p-MWCNT and MWCNT-COOH, when reaching to certain concentration, induced significant decrease in the mitochondrial membrane potential, enhanced release of cytochrome c from the mitochondria to cytoplasm as well as activation of caspase-9, and -3. However, the changes induced by MWCNT-COOH were significantly milder than that by p-MWCNT. Our observation suggests that carboxylated MWCNTs might be safer for in vivo application as compared with p-MWCNT.

  8. [Enhanced BK(Ca) single-channel activities in cerebrovascular smooth muscle cells of simulated microgravity rats.].

    PubMed

    Xie, Man-Jiang; Zhang, Li-Fan; Ma, Jin; Cheng, Hong-Wei

    2005-08-25

    The aim of the present study was to investigate the changes in single-channel currents of large conductance calcium-activated potassium channels (BK(Ca) channels) in cerebral vascular smooth muscle cells (VSMCs) of rats after 1-week simulated microgravity. Sprague-Dawley rats were subjected to tail-suspension (SUS) to simulate cardiovascular deconditioning due to microgravity. Cytosolic calcium ([Ca(2+)](i)) was examined by laser-scanning confocal microscopy with calcium-sensitive-dye Fluo-3/AM as fluorescent probe. Single-channel currents of BK(Ca) channels were measured with cell-attached membrane patches bathed in symmetrical high potassium solution. The [Ca(2+)](i)i level was significantly higher in cerebrovascular myocytes of SUS than that of control (CON) rats. The probability of open (Po) and the mean open time (To) of BK(Ca) channels in cerebral VSMCs significantly increased in SUS as compared with CON. However, there were no significant differences in the unitary conductance and mean close time (Tc) between the two groups. The results obtained suggest that both the elevated [Ca(2+)](i) and enhanced single-channel activities of BK(Ca) channels in cerebral VSMCs might be among the electrophysiological mechanisms that mediate the increased vasoreactivity and hypertrophic change in cerebral arteries during adaptation to simulated microgravity in rats.

  9. Astroglial Activation by an Enriched Environment after Transplantation of Mesenchymal Stem Cells Enhances Angiogenesis after Hypoxic-Ischemic Brain Injury

    PubMed Central

    Cho, Sung-Rae; Suh, Hwal; Yu, Ji Hea; Kim, Hyongbum (Henry); Seo, Jung Hwa; Seo, Cheong Hoon

    2016-01-01

    Transplantation of mesenchymal stem cells (MSCs) has paracrine effects; however, the effects are known to be largely limited. Here we investigated the combination effects of cell transplantation and enriched environment (EE) in a model of hypoxic-ischemic brain injury. Brain damage was induced in seven-day-old mice by unilateral carotid artery ligation and exposure to hypoxia (8% O2 for 90 min). At six weeks of age, the mice were randomly assigned to four groups: phosphate-buffered saline (PBS)-control (CON), PBS-EE, MSC-CON, and MSC-EE. Rotarod and grip strength tests were performed to evaluate neurobehavioral functions. Histologic evaluations were also performed to confirm the extent of astrocyte activation and endogenous angiogenesis. An array-based multiplex ELISA and Western blot were used to identify growth factors in vivo and in vitro. Two weeks after treatment, levels of astrocyte density and angiogenic factors were increased in MSC-EE mice, but glial scarring was not increased. Eight weeks after treatment, angiogenesis was increased, and behavioral outcomes were synergistically improved in the MSC-EE group. Astrocytes co-cultured with MSCs expressed higher levels of angiogenic factors than astrocytes cultured alone. The mechanisms of this synergistic effect included enhanced repair processes, such as increased endogenous angiogenesis and upregulation of angiogenic factors released from activated astrocytes. PMID:27649153

  10. Tissue kallikrein-modified human endothelial progenitor cell implantation improves cardiac function via enhanced activation of akt and increased angiogenesis.

    PubMed

    Yao, Yuyu; Sheng, Zulong; Li, YeFei; Fu, Cong; Ma, Genshan; Liu, Naifeng; Chao, Julie; Chao, Lee

    2013-05-01

    Endothelial progenitor cells (EPCs) have been shown to enhance angiogenesis not only by incorporating into the vasculature but also by secreting cytokines, thereby serving as an ideal vehicle for gene transfer. As tissue kallikrein (TK) has pleiotropic effects in inhibiting apoptosis and oxidative stress, and promoting angiogenesis, we evaluated the salutary potential of kallikrein-modified human EPCs (hEPCs; Ad.hTK-hEPCs) after acute myocardial infarction (MI). We genetically modified hEPCs with a TK gene and evaluated cell survival, engraftment, revascularization, and functional improvement in a nude mouse left anterior descending ligation model. hEPCs were manipulated to overexpress the TK gene. In vitro, the antiapoptotic and paracrine effects were assessed under oxidative stress. TK protects hEPCs from oxidative stress-induced apoptosis via inhibition of activation of caspase-3 and -9, induction of Akt phosphorylation, and secretion of vascular endothelial growth factor. In vivo, the Ad.hTK-hEPCs were transplanted after MI via intracardiac injection. The surviving cells were tracked after transplantation using near-infrared optical imaging. Left ventricular (LV) function was evaluated by transthoracic echocardiography. Capillary density was quantified using immunohistochemical staining. Engrafted Ad.hTK-hEPCs exhibited advanced protection against ischemia by increasing LV ejection fraction. Compared with Ad.Null-hEPCs, transplantation with Ad.hTK-hEPCs significantly decreased cardiomyocyte apoptosis in association with increased retention of transplanted EPCs in the myocardium. Capillary density and arteriolar density in the infarct border zone was significantly higher in Ad.hTK-hEPC-transplanted mice than in Ad.Null-hEPC-treated mice. Transplanted hEPCs were clearly incorporated into CD31(+) capillaries. These results indicate that implantation of kallikrein-modified EPCs in the heart provides advanced benefits in protection against ischemia-induced MI by

  11. Triptolide Enhances the Tumoricidal Activity of TRAIL Against Renal Cell Carcinoma

    PubMed Central

    James, Britnie R.; Murphy, Katherine A.; Schwertfeger, Kathryn L.; Sangwan, Veena; Banerjee, Sulagna; Saluja, Ashok K.; Griffith, Thomas S.

    2015-01-01

    Renal cell carcinoma (RCC) is resistant to traditional cancer therapies, and metastatic RCC (mRCC) is incurable. The shortcomings in current therapeutic options for patients with mRCC provide the rationale for the development of novel treatment protocols. TNF-related apoptosis-inducing ligand (TRAIL) has proven to be a potent inducer of tumor cell death in vitro and in vivo, and a number of TRAIL death receptor agonists (recombinant TRAIL or TRAIL death receptor-specific mAb) has been developed and tested clinically. Unfortunately the clinical efficacy of TRAIL has been underwhelming and is likely due to a number of possible mechanisms that render tumors resistant to TRAIL, prompting the search for drugs that increase tumor cell susceptibility to TRAIL. The objective of this study was to determine the effectiveness of combining the diterpene triepoxide triptolide, or its water-soluble prodrug, Minnelide, with TRAIL receptor agonists against RCC in vitro or in vivo, respectively. TRAIL-induced apoptotic death of human RCC cells was increased in the presence of triptolide. The triptolide-induced sensitization was accompanied by increased TRAIL-R2 (DR5) and decreased HSP70 expression. In vivo treatment of mice bearing orthotopic RCC (Renca) tumors showed the combination of Minnelide and agonistic anti-DR5 mAb significantly decreased tumor burden and increased animal survival compared to either therapy alone. Our data suggest triptolide/Minnelide sensitizes RCC cells to TRAIL-induced apoptosis through altered TRAIL death receptor and heat shock protein expression. PMID:26426449

  12. Myricetin and methyl eugenol combination enhances the anticancer activity, cell cycle arrest and apoptosis induction of cis-platin against HeLa cervical cancer cell lines

    PubMed Central

    Yi, Jin-Ling; Shi, Song; Shen, Yan-Li; Wang, Ling; Chen, Hai-Yan; Zhu, Jun; Ding, Yan

    2015-01-01

    Drug combination therapies are common practice in the treatment of cancer. In this study, we evaluated the anticancer effects of myricetin (MYR), methyl eugenol (MEG) and cisplatin (CP) both separately as well as in combination against cervical cancer (HeLa) cells. To demonstrate whether MYR and MEG enhance the anticancer activity of CP against cervical cancer cells, we treated HeLa cells with MYR and MEG alone or in combination with cisplatin and evaluated cell growth and apoptosis using MTT (3 (4, 5 dimethyl thiazol 2yl) 2, 5 diphenyltetrazolium bromide) assay, LDH release assay, flow cytometry and fluorescence microscopy. The results revealed that, as compared to single drug treatment, the combination of MYR or MEG with CP resulted in greater effect in inhibiting cancer cell growth and inducing apoptosis. Cell apoptosis induction, Caspase-3 activity, cell cycle arrest and mitochondrial membrane potential loss were systematically studied to reveal the mechanisms of synergy between MYR, MEG and CP. Combination of MYR or MEG with CP resulted in more potent apoptosis induction as revealed by fluorescence microscopy using Hoechst 33258 and AO-ETBR staining. The combination treatment also increased the number of cells in G0/G1 phase dramatically as compared to single drug treatment. Mitochondrial membrane potential loss (ΛΨm) as well as Caspase-3 activity was much higher in combination treatment as compared to single drug treatment. Findings of this investigation suggest that MYR and MEG combined with cisplatin is a potential clinical chemotherapeutic approach in human cervical cancer. PMID:25972998

  13. Sunitinib enhances the antitumor responses of agonistic CD40-antibody by reducing MDSCs and synergistically improving endothelial activation and T-cell recruitment

    PubMed Central

    van Hooren, Luuk; Georganaki, Maria; Huang, Hua; Mangsbo, Sara M.; Dimberg, Anna

    2016-01-01

    CD40-activating immunotherapy has potent antitumor effects due to its ability to activate dendritic cells and induce cytotoxic T-cell responses. However, its efficacy is limited by immunosuppressive cells in the tumor and by endothelial anergy inhibiting recruitment of T-cells. Here, we show that combining agonistic CD40 monoclonal antibody (mAb) therapy with vascular targeting using the tyrosine kinase inhibitor sunitinib decreased tumor growth and improved survival in B16.F10 melanoma and T241 fibrosarcoma. Treatment of tumor-bearing mice with anti-CD40 mAb led to increased activation of CD11c+ dendritic cells in the tumor draining lymph node, while sunitinib treatment reduced vessel density and decreased accumulation of CD11b+Gr1+ myeloid derived suppressor cells. The expression of ICAM-1 and VCAM-1 adhesion molecules was up-regulated on tumor endothelial cells only when anti-CD40 mAb treatment was combined with sunitinib. This was associated with enhanced intratumoral infiltration of CD8+ cytotoxic T-cells. Our results show that combining CD40-stimulating immunotherapy with sunitinib treatment exerts potent complementary antitumor effects mediated by dendritic cell activation, a reduction in myeloid derived suppressor cells and increased endothelial activation, resulting in enhanced recruitment of cytotoxic T-cells. PMID:27385210

  14. Degradable Organically-Derivatized Polyoxometalate with Enhanced Activity against Glioblastoma Cell Line

    PubMed Central

    She, Shan; Bian, Shengtai; Huo, Ruichao; Chen, Kun; Huang, Zehuan; Zhang, Jiangwei; Hao, Jian; Wei, Yongge

    2016-01-01

    High efficacy and low toxicity are critical for cancer treatment. Polyoxometalates (POMs) have been reported as potential candidates for cancer therapy. On accounts of the slow clearance of POMs, leading to long-term toxicity, the clinical application of POMs in cancer treatment is restricted. To address this problem, a degradable organoimido derivative of hexamolybdate is developed by modifying it with a cleavable organic group, leading to its degradation. Of note, this derivative exhibits favourable pharmacodynamics towards human malignant glioma cell (U251), the ability to penetrate across blood brain barrier and low toxicity towards rat pheochromocytoma cell (PC12). This line of research develops an effective POM-based agent for glioblastoma inhibition and will pave a new way to construct degradable anticancer agents for clinical cancer therapy. PMID:27658479

  15. Degradable Organically-Derivatized Polyoxometalate with Enhanced Activity against Glioblastoma Cell Line

    NASA Astrophysics Data System (ADS)

    She, Shan; Bian, Shengtai; Huo, Ruichao; Chen, Kun; Huang, Zehuan; Zhang, Jiangwei; Hao, Jian; Wei, Yongge

    2016-09-01

    High efficacy and low toxicity are critical for cancer treatment. Polyoxometalates (POMs) have been reported as potential candidates for cancer therapy. On accounts of the slow clearance of POMs, leading to long-term toxicity, the clinical application of POMs in cancer treatment is restricted. To address this problem, a degradable organoimido derivative of hexamolybdate is developed by modifying it with a cleavable organic group, leading to its degradation. Of note, this derivative exhibits favourable pharmacodynamics towards human malignant glioma cell (U251), the ability to penetrate across blood brain barrier and low toxicity towards rat pheochromocytoma cell (PC12). This line of research develops an effective POM-based agent for glioblastoma inhibition and will pave a new way to construct degradable anticancer agents for clinical cancer therapy.

  16. Enhanced killing activity of regulatory T cells ameliorates inflammation and autoimmunity.

    PubMed

    Askenasy, Nadir

    2013-08-01

    Regulatory T cells (Treg) are pivotal suppressor elements in immune homeostasis with potential therapeutic applications in inflammatory and autoimmune disorders. Using Treg as vehicles for targeted immunomodulation, a short-lived Fas-ligand (FasL) chimeric protein (killer Treg) was found efficient in preventing the progression of autoimmune insulitis in NOD mice, and amelioration of chronic colitis and graft versus host disease. The main mechanisms of disease suppression by killer Treg are: a) in the acute phase induction of apoptosis in effector cells at the site of inflammation decreases the pathogenic burden, and b) persistent increase in FoxP3⁺ Treg with variable CD25 co-expression induced by FasL sustains disease suppression over extended periods of time. Reduced sensitivity of Treg to receptor-mediated apoptosis under inflammatory conditions makes them optimal vehicles for targeted immunotherapy using apoptotic agents.

  17. Oxidative modification enhances lipoprotein(a)-induced overproduction of plasminogen activator inhibitor-1 in cultured vascular endothelial cells.

    PubMed

    Ren, S; Man, R Y; Angel, A; Shen, G X

    1997-01-03

    Elevated levels of plasma lipoprotein (a) [Lp(a)] have been considered as a strong risk factor for premature cardiovascular diseases. Plasminogen activator inhibitor-1 (PAI-1) is the major physiological inhibitor of plasminogen activators (PA). Increases in PAI-1 levels with or without a reduction in PA levels have been frequently found in coronary artery disease patients. The present paper examined the effects of oxidized Lp(a) on the production of PAI-1 in cultured human umbilical vein endothelial cells (HUVEC). Lp(a) and Lp(a)-free, low density lipoprotein (LDL) were prepared using lysine-Sepharose 4B affinity chromatography. Incubations with 10(-8) M levels of native Lp(a) moderately increased the levels of biologically active PAI-1 in post-culture medium of HUVEC compared to that with equimolar concentrations of native Lp(a)-free LDL. The release of PAI-1 induced by Lp(a) was enhanced by oxidative modification with copper ion. The stimulation of oxidized Lp(a) on PAI-1 production reached plateau in EC treated with 10-20 nM oxidized Lp(a) modified by microM CuSO4. Treatment with 0.2 micrograms/ml of actinomycin D significantly reduced native and oxidized Lp(a)-induced PAI-1 overproduction in EC. Increases in the steady state levels of PAI-1 mRNA were detected in native or oxidized Lp(a)-treated EC. The effect of Lp(a)-free oxidized LDL on PAI-1 production was significantly weaker than the equimolar amount of oxidized Lp(a) but stronger than that of native LDL. Treatments with oxidized Lp(a) increased cell-associated PAI-1 to a similar extent as that in native Lp(a)-treated EC. The results of the present paper demonstrate that oxidative modification enhances Lp(a)-induced PAI-1 production in vascular endothelial cells at RNA transcription level, which suggests that oxidization potentially amplifies the anti-fibrinolytic and thrombotic effect of Lp(a).

  18. Enhanced catalytic activity and inhibited biofouling of cathode in microbial fuel cells through controlling hydrophilic property

    NASA Astrophysics Data System (ADS)

    Li, Da; Liu, Jia; Wang, Haiman; Qu, Youpeng; Zhang, Jie; Feng, Yujie

    2016-11-01

    The hydrophilicity of activated carbon cathode directly determines the distribution of three-phase interfaces where oxygen reduction occurs. In this study, activated carbon cathodes are fabricated by using hydrophobic polytetrafluoroethylene (PTFE) and amphiphilic LA132 at various weight ratio to investigate the effect of hydrophilic property on cathode performance. Contact angle tests confirm the positive impact of LA132 content on hydrophilicity. Cathode with 67 wt% LA132 content shows the highest electrochemical activity as exchange current density increases by 71% and charge transfer resistance declines by 44.6% compared to that of PTFE cathode, probably due to the extended reaction interfaces by optimal hydrophilicity of cathode so that oxygen reduction is facilitated. As a result, the highest power density of 1171 ± 71 mW m-2 is obtained which is 14% higher than PTFE cathode. In addition to the hydrophilicity, this cathode had more negative charged surface of catalyst layer, therefore the protein content of cathodic biofilm decreased by 47.5%, indicating the effective bacterial inhibition when 67 wt% LA132 is used. This study shows that the catalytic activity of cathode is improved by controlling proper hydrophilicity of cathode, and that biofilm can be reduced by increasing hydrophilicity and lowering the surface potential.

  19. Efficiency enhancement of solution-processed inverted organic solar cells with a carbon-nanotube-doped active layer

    NASA Astrophysics Data System (ADS)

    Lin, Wen-Kai; Su, Shui-Hsiang; Yeh, Meng-Cheng; Huang, Yang-Chan; Yokoyama, Meiso

    2016-01-01

    Solution-processed titanium-doped ZnO (TZO) is synthesized by the sol-gel method to be the electron-transporting layer (ETL) in an inverted organic solar cell (IOSC). Carbon nanotubes (CNTs) are doped into an active layer of poly(3-hexylthiophene):[6,6]-phenyl C 61 butyric acid methyl ester (P3HT:PCBM). The addition of CNTs in the P3HT:PCBM composite increases the conjugation length of P3HT:PCBM:CNTs, which simultaneously enhances the capacity of the composite to absorb solar energy radiation. Vanadium oxide (V2O5) was spin-coated onto the active layer to be a hole-transporting layer (HTL). The power conversion efficiency (PCE) results indicate that the V2O5 nanobelt structure possesses better phase separation and provides a more efficient surface area for the P3HT:PCBM:CNT active layer to increase photocurrent. The optimized IOSCs exhibited an open circuit voltage (Voc), a short-circuit current density (Jsc), a fill factor (FF), and a PCE of 0.55 V, 6.50 mA/cm2, 58.34%, and 2.20%, respectively, under simulated AM1.5G illumination of 100 mW/cm2.

  20. LIMD1 antagonizes E2F1 activity and cell cycle progression by enhancing Rb function in cancer cells.

    PubMed

    Mayank, Adarsh K; Sharma, Shipra; Deshwal, Ravi K; Lal, Sunil K

    2014-07-01

    Tumour suppressor genes restrain inappropriate cell growth and division, as well as stimulate cell death to maintain tissue homeostasis. Loss of function leads to abnormal cellular behaviour, including hyperproliferation of cell and perturbation of cell cycle regulation. LIMD1 is a tumour suppressor gene located at chromosome 3p21.3, a region commonly deleted in many solid malignancies. LIMD1 interacts with retinoblastoma (Rb) and is involved in Rb-mediated downregulation of E2F1-target genes. However, the role of LIMD1 in cell cycle regulation remains unclear. We propose that LIMD1 induces cell cycle arrest, utilising Rb-E2F1 axis, and show that ectopic expression of LIMD1 in A549 cells results in hypo-phosphorylation that potentiates Rb function, which correlates with downregulation of E2F1. In agreement with these observations, LIMD1 overexpression retards cell cycle progression and blocks S-phase entry, as cells accumulate in G0/G1 phase and have reduced incorporation of BrdU. Most significantly, LIMD1-dependent effects on Rb function and cell cycle are reversed on depletion of endogenous LIMD1, underscoring its centrality in Rb-mediated cell cycle regulation. Hence, our findings provide new insight into cell cycle control by Rb-LIMD1 nexus.

  1. Tyrosine phosphorylation of RNA polymerase II CTD is associated with antisense promoter transcription and active enhancers in mammalian cells

    PubMed Central

    Descostes, Nicolas; Heidemann, Martin; Spinelli, Lionel; Schüller, Roland; Maqbool, Muhammad Ahmad; Fenouil, Romain; Koch, Frederic; Innocenti, Charlène; Gut, Marta; Gut, Ivo; Eick, Dirk; Andrau, Jean-Christophe

    2014-01-01

    In mammals, the carboxy-terminal domain (CTD) of RNA polymerase (Pol) II consists of 52 conserved heptapeptide repeats containing the consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. Post-translational modifications of the CTD coordinate the transcription cycle and various steps of mRNA maturation. Here we describe Tyr1 phosphorylation (Tyr1P) as a hallmark of promoter (5′ associated) Pol II in mammalian cells, in contrast to what was described in yeast. Tyr1P is predominantly found in antisense orientation at promoters but is also specifically enriched at active enhancers. Mutation of Tyr1 to phenylalanine (Y1F) prevents the formation of the hyper-phosphorylated Pol IIO form, induces degradation of Pol II to the truncated Pol IIB form, and results in a lethal phenotype. Our results suggest that Tyr1P has evolved specialized and essential functions in higher eukaryotes associated with antisense promoter and enhancer transcription, and Pol II stability. DOI: http://dx.doi.org/10.7554/eLife.02105.001 PMID:24842994

  2. Peripheral viral infection induced microglial sensome genes and enhanced microglial cell activity in the hippocampus of neonatal piglets.

    PubMed

    Ji, Peng; Schachtschneider, Kyle M; Schook, Lawrence B; Walker, Frederick R; Johnson, Rodney W

    2016-05-01

    Although poorly understood, early-life infection is predicted to affect brain microglial cells, making them hypersensitive to subsequent stimuli. To investigate this, we assessed gene expression in hippocampal tissue obtained from a previously published study reporting increased microglial cell activity and reduced hippocampal-dependent learning in neonatal piglets infected with porcine reproductive and respiratory syndrome virus (PRRSV), a virus that induces interstitial pneumonia. Infection altered expression of 455 genes, of which 334 were up-regulated and 121 were down-regulated. Functional annotation revealed that immune function genes were enriched among the up-regulated differentially expressed genes (DEGs), whereas calcium binding and synaptic vesicle genes were enriched among the down-regulated DEGs. Twenty-six genes encoding part of the microglia sensory apparatus (i.e., the sensome) were up-regulated (e.g., IL1R1, TLR2, and TLR4), whereas 15 genes associated with the synaptosome and synaptic receptors (e.g., NPTX2, GABRA2, and SLC5A7) were down-regulated. As the sensome may foretell microglia reactivity, we next inoculated piglets with culture medium or PRRSV at PD 7 and assessed hippocampal microglia morphology and function at PD 28 when signs of infection were waning. Consistent with amplification of the sensome, microglia from PRRSV piglets had enhanced responsiveness to chemoattractants, increased phagocytic activity, and secreted more TNFα in response to lipopolysaccharide and Poly I:C. Immunohistochemical staining indicated PRRSV infection increased microglia soma length and length-to-width ratio. Bipolar rod-like microglia not evident in hippocampus of control piglets, were present in infected piglets. Collectively, this study suggests early-life infection alters the microglia sensome as well as microglial cell morphology and function.

  3. P2Y1 Receptor Activation of the TRPV4 Ion Channel Enhances Purinergic Signaling in Satellite Glial Cells*

    PubMed Central

    Rajasekhar, Pradeep; Poole, Daniel P.; Liedtke, Wolfgang; Bunnett, Nigel W.; Veldhuis, Nicholas A.

    2015-01-01

    Transient receptor potential (TRP) ion channels of peripheral sensory pathways are important mediators of pain, itch, and neurogenic inflammation. They are expressed by primary sensory neurons and by glial cells in the central nervous system, but their expression and function in satellite glial cells (SGCs) of sensory ganglia have not been explored. SGCs tightly ensheath neurons of sensory ganglia and can regulate neuronal excitability in pain and inflammatory states. Using a modified dissociation protocol, we isolated neurons with attached SGCs from dorsal root ganglia of mice. SGCs, which were identified by expression of immunoreactive Kir4.1 and glutamine synthetase, were closely associated with neurons, identified using the pan-neuronal marker NeuN. A subpopulation of SGCs expressed immunoreactive TRP vanilloid 4 (TRPV4) and responded to the TRPV4-selective agonist GSK1016790A by an influx of Ca2+ ions. SGCs did not express functional TRPV1, TRPV3, or TRP ankyrin 1 channels. Responses to GSK1016790A were abolished by the TRPV4 antagonist HC067047 and were absent in SGCs from Trpv4−/− mice. The P2Y1-selective agonist 2-methylthio-ADP increased [Ca2+]i in SGCs, and responses were prevented by the P2Y1-selective antagonist MRS2500. P2Y1 receptor-mediated responses were enhanced in TRPV4-expressing SGCs and HEK293 cells, suggesting that P2Y1 couples to and activates TRPV4. PKC inhibitors prevented P2Y1 receptor activation of TRPV4. Our results provide the first evidence for expression of TRPV4 in SGCs and demonstrate that TRPV4 is a purinergic receptor-operated channel in SGCs of sensory ganglia. PMID:26475857

  4. Enhanced GABAA receptor-mediated activity following activation of NMDA receptors in Cajal-Retzius cells in the developing mouse neocortex

    PubMed Central

    Chan, Chun-Hung; Yeh, Hermes H

    2003-01-01

    Cajal-Retzius (CR) cells are among the earliest generated population of neurons in the developing neocortex and have been implicated in regulating cortical lamination. In rodents, CR cells are transient, being present only up to 2–3 weeks after birth. Although previous electrophysiological studies have demonstrated the presence of NMDA and GABAA receptors in CR cells, little is known about the functional properties of these receptors. Using whole-cell patch-clamp techniques in neocortical slices, we confirmed the presence of D-aminophosphonovaleric acid (APV)- and ifenprodil-sensitive NMDA receptors, and found that the functional expression of this receptor subtype is strain specific. The NMDA-induced response was consistently accompanied by overriding current transients that were blocked by APV and ifenprodil. In addition, bicuculline readily abolished these transients without affecting the NMDA-induced current response. The generation of these overriding current transients was dependent upon intracellular Ca2+ and was prevented by dialysis with the high-affinity Ca2+-chelator BAPTA. Overall, this study uncovered a synergistic interaction between these receptors, whereby activation of NMDA receptors leads to enhanced GABAA receptor-mediated activity through a Ca2+-dependent mechanism. PMID:12730335

  5. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers.

    PubMed

    Peng, Luying; Li, Zhong-Rong; Green, Robert S; Holzman, Ian R; Lin, Jing

    2009-09-01

    Butyrate, one of the SCFA, promotes the development of the intestinal barrier. However, the molecular mechanisms underlying the butyrate regulation of the intestinal barrier are unknown. To test the hypothesis that the effect of butyrate on the intestinal barrier is mediated by the regulation of the assembly of tight junctions involving the activation of the AMP-activated protein kinase (AMPK), we determined the effect of butyrate on the intestinal barrier by measuring the transepithelial electrical resistance (TER) and inulin permeability in a Caco-2 cell monolayer model. We further used a calcium switch assay to study the assembly of epithelial tight junctions and determined the effect of butyrate on the assembly of epithelial tight junctions and AMPK activity. We demonstrated that the butyrate treatment increased AMPK activity and accelerated the assembly of tight junctions as shown by the reorganization of tight junction proteins, as well as the development of TER. AMPK activity was also upregulated by butyrate during calcium switch-induced tight junction assembly. Compound C, a specific AMPK inhibitor, inhibited the butyrate-induced activation of AMPK. The facilitating effect of butyrate on the increases in TER in standard culture media, as well as after calcium switch, was abolished by compound C. We conclude that butyrate enhances the intestinal barrier by regulating the assembly of tight junctions. This dynamic process is mediated by the activation of AMPK. These results suggest an intriguing link between SCFA and the intracellular energy sensor for the development of the intestinal barrier.

  6. A vaccine that co-targets tumor cells and cancer associated fibroblasts results in enhanced antitumor activity by inducing antigen spreading.

    PubMed

    Gottschalk, Stephen; Yu, Feng; Ji, Minjun; Kakarla, Sunitha; Song, Xiao-Tong

    2013-01-01

    Dendritic cell (DC) vaccines targeting only cancer cells have produced limited antitumor activity in most clinical studies. Targeting cancer-associated fibroblasts (CAFs) in addition to cancer cells may enhance antitumor effects, since CAFs, the central component of the tumor stroma, directly support tumor growth and contribute to the immunosuppressive tumor microenvironment. To co-target CAFs and tumor cells we developed a new compound DC vaccine that encodes an A20-specific shRNA to enhance DC function, and targets fibroblast activation protein (FAP) expressed in CAFs and the tumor antigen tyrosine-related protein (TRP)2 (DC-shA20-FAP-TRP2). DC-shA20-FAP-TRP2 vaccination induced robust FAP- and TRP2-specific T-cell responses, resulting in greater antitumor activity in the B16 melanoma model in comparison to monovalent vaccines or a vaccine encoding antigens and a control shRNA. DC-shA20-FAP-TRP2 vaccination enhanced tumor infiltration of CD8-positive T cells, and induced antigen-spreading resulting in potent antitumor activity. Thus, co-targeting of tumor cells and CAFs results in the induction of broad-based tumor-specific T-cell responses and has the potential to improve current vaccine approaches for cancer.

  7. A Vaccine That Co-Targets Tumor Cells and Cancer Associated Fibroblasts Results in Enhanced Antitumor Activity by Inducing Antigen Spreading

    PubMed Central

    Gottschalk, Stephen; Yu, Feng; Ji, Minjun; Kakarla, Sunitha; Song, Xiao-Tong

    2013-01-01

    Dendritic cell (DC) vaccines targeting only cancer cells have produced limited antitumor activity in most clinical studies. Targeting cancer-associated fibroblasts (CAFs) in addition to cancer cells may enhance antitumor effects, since CAFs, the central component of the tumor stroma, directly support tumor growth and contribute to the immunosuppressive tumor microenvironment. To co-target CAFs and tumor cells we developed a new compound DC vaccine that encodes an A20-specific shRNA to enhance DC function, and targets fibroblast activation protein (FAP) expressed in CAFs and the tumor antigen tyrosine-related protein (TRP)2 (DC-shA20-FAP-TRP2). DC-shA20-FAP-TRP2 vaccination induced robust FAP- and TRP2-specific T-cell responses, resulting in greater antitumor activity in the B16 melanoma model in comparison to monovalent vaccines or a vaccine encoding antigens and a control shRNA. DC-shA20-FAP-TRP2 vaccination enhanced tumor infiltration of CD8-positive T cells, and induced antigen-spreading resulting in potent antitumor activity. Thus, co-targeting of tumor cells and CAFs results in the induction of broad-based tumor-specific T-cell responses and has the potential to improve current vaccine approaches for cancer. PMID:24349329

  8. Functional activation of Src family kinase yes protein is essential for the enhanced malignant properties of human melanoma cells expressing ganglioside GD3.

    PubMed

    Hamamura, Kazunori; Tsuji, Momoko; Hotta, Hiroshi; Ohkawa, Yuki; Takahashi, Masataka; Shibuya, Hidenobu; Nakashima, Hideyuki; Yamauchi, Yoshio; Hashimoto, Noboru; Hattori, Hisashi; Ueda, Minoru; Furukawa, Keiko; Furukawa, Koichi

    2011-05-27

    The possible roles of Src family kinases in the enhanced malignant properties of melanomas related to GD3 expression were analyzed. Among Src family kinases only Yes, not Fyn or Src, was functionally involved in the increased cell proliferation and invasion of GD3-expressing transfectant cells (GD3+). Yes was located upstream of p130Cas and paxillin and at an equivalent level to focal adhesion kinase. Yes underwent autophosphorylation even before serum treatment and showed stronger kinase activity in GD3+ cells than in GD3- cells following serum treatment. Coimmunoprecipitation experiments revealed that Yes bound to focal adhesion kinase or p130Cas more strongly in GD3+ cells than in GD3- cells. As a possible mechanism for the enhancing effects of GD3 on cellular phenotypes, it was shown that majority of Yes was localized in glycolipid-enriched microdomain/rafts in GD3+ cells even before serum treatment, whereas it was scarcely detected in glycolipid-enriched microdomain/rafts in GD3- cells. An in vitro kinase assay of Yes revealed that coexistence of GD3 with Yes in membranous environments enhances the kinase activity of GD3- cell-derived Yes toward enolase, p125, and Yes itself. Knockdown of GD3 synthase resulted in the alleviation of tumor phenotypes and reduced activation levels of Yes. Taken together, these results suggest a role of GD3 in the regulation of Src family kinases.

  9. Intradermally administered TLR4 agonist GLA-SE enhances the capacity of human skin DCs to activate T cells and promotes emigration of Langerhans cells.

    PubMed

    Schneider, Laura P; Schoonderwoerd, Antoinet J; Moutaftsi, Magdalini; Howard, Randall F; Reed, Steven G; de Jong, Esther C; Teunissen, Marcel B M

    2012-06-13

    The natural TLR4 agonist lipopolysaccharide (LPS) has notable adjuvant activity. However, it is not useful as a vaccine adjuvant due to its toxicity. Glucopyranosyl lipid A (GLA) is a synthetic derivative of the lipid A tail of LPS with limited cytotoxicity, but strong potential to induce immune responses in mice, guinea pigs, non-human primates, and humans. In this study we determined how this synthetic TLR4 agonist affects the function of different subsets of human skin dendritic cells (DCs). The effect of GLA in an aqueous formulation (GLA-AF) or in an oil-in-water emulsion (GLA-SE) was compared to that of LPS and TLR3 agonist poly(I:C) using a human skin explant model with intradermal injections for the administration of the agonists. Intradermal injection of GLA-SE or LPS, but not GLA-AF, enhanced the emigration of CD1a(high)/langerin(+) Langerhans cells (LCs), but not dermal DCs (DDCs). LCs and CD14(-) DDCs exhibited an enhanced mature phenotype following intradermal administration of either of the two GLA formulations tested, similar to DCs that emigrated from LPS-injected skin. However, only injection of GLA-SE resulted in a significant increase in the production of the wide range of cytokines that is observed with LPS. Moreover, DCs that emigrated from GLA-SE-injected skin induced stronger CD4(+) T-cell activation, as indicated by a more pronounced T-cell proliferation, than DCs from skin injected with GLA-AF or LPS. Altogether, our data show that GLA-SE has a notable potency to stimulate the function of skin DCs, indicating that GLA-SE may be a good candidate as adjuvant for vaccines administered via the intradermal route.

  10. Murine retroviral neurovirulence correlates with an enhanced ability ofvirus to infect selectively, replicate in, and activate resident microglial cells.

    PubMed Central

    Baszler, T. V.; Zachary, J. F.

    1991-01-01

    To determine the biologic basis of ts1 MoMuLV neurovirulence in vivo, newborn CFW/D mice were inoculated with neurovirulent ts1 MoMuLV and nonneurovirulent wt MoMuLV and the temporal response to virus infection in the central nervous system (CNS), spleen, and thymus was studied comparatively. Experimental procedures included single and double labeling in situ immunohistochemistry with selective morphometric analyses, and steady state immunoblotting of viral proteins. Cellular targets for virus infection were identical for both ts1 and wt MoMuLV and consisted sequentially of 1) splenic megakaryocytes, 2) splenic and thymic lymphocytes, 3) CNS capillary endothelial cells, and 4) CNS pericytes and microglia. Resident microglial cells served as the major reservor and amplifier of virus infection in the CNS of ts1 MoMuLV-infected mice; a similar but much less significant role was played by microglia in wt MoMuLV-infected mice. The genesis and progression of severe spongiform lesions in ts1 MoMuLV-infected mice were both temporally and spatially correlated with amplified virus infection of microglia, and hyperplasia and hypertrophy of both virus-infected and nonvirus-infected microglial cells. Direct virus infection of neurons was never observed. The development of clinical neurologic disease and spongiform lesions in ts1 MoMuLV-infected mice correlated with the accumulation of both viral gag and env gene products in the CNS; there was no selective accumulation of env precursor polyprotein Pr80env. When compared to wt MoMuLV-infected mice, the neurovirulence of ts1 MoMuLV-infected mice occurred by an enhanced ability to replicate in the CNS and to infect and activate more microglia, rather than by a fundamental change in cellular tropism or topography of virus infection. Images Figure 5 Figure 1 Figure 2 Figure 3 Figure 4 p666-a Figure 8 PMID:2000941

  11. ΔNp63 promotes stem cell activity in mammary gland development and basal-like breast cancer by enhancing Fzd7 expression and Wnt signalling.

    PubMed

    Chakrabarti, Rumela; Wei, Yong; Hwang, Julie; Hang, Xiang; Andres Blanco, Mario; Choudhury, Abrar; Tiede, Benjamin; Romano, Rose-Anne; DeCoste, Christina; Mercatali, Laura; Ibrahim, Toni; Amadori, Dino; Kannan, Nagarajan; Eaves, Connie J; Sinha, Satrajit; Kang, Yibin

    2014-10-01

    Emerging evidence suggests that cancer is populated and maintained by tumour-initiating cells (TICs) with stem-like properties similar to those of adult tissue stem cells. Despite recent advances, the molecular regulatory mechanisms that may be shared between normal and malignant stem cells remain poorly understood. Here we show that the ΔNp63 isoform of the Trp63 transcription factor promotes normal mammary stem cell (MaSC) activity by increasing the expression of the Wnt receptor Fzd7, thereby enhancing Wnt signalling. Importantly, Fzd7-dependent enhancement of Wnt signalling by ΔNp63 also governs tumour-initiating activity of the basal subtype of breast cancer. These findings establish ΔNp63 as a key regulator of stem cells in both normal and malignant mammary tissues and provide direct evidence that breast cancer TICs and normal MaSCs share common regulatory mechanisms.

  12. Dexamethasone enhances serum deprivation-induced necrotic death of rat C6 glioma cells through activation of glucocorticoid receptors.

    PubMed

    Morita, K; Ishimura, K; Tsuruo, Y; Wong, D L

    1999-01-23

    Glucocorticoids have been shown to be neurotoxic and appear to play a role in neuronal cell loss during aging and following neuropathological insults. However, very little is known about the effects of these steroid hormones on glial cells. The effect of the synthetic glucocorticoid dexamethasone (DEX) on glial cell viability was therefore examined by measuring neutral red uptake into rat C6 glioma cells. Serum deprivation markedly reduced cell viability, and this effect was significantly enhanced by DEX. Electrophoretic analysis showed that the cell damage induced by either serum deprivation alone or in combination with DEX was not accompanied by the degradation of DNA into nucleosomic fragments. Electron microscopic studies confirmed that serum deprivation and glucocorticoid treatment caused necrotic cell death. Furthermore, the effect of DEX on cell viability could be mimicked by the glucocorticoid receptor agonist RU28362, and completely prevented by the glucocorticoid receptor antagonist RU38486. These results indicate that dexamethasone can enhance the necrotic death of glioma cells induced by serum deprivation, suggesting that glucocorticoids may be involved in the chronic alteration of brain function arising from neuropathological damage to glial cells.

  13. Methyl Jasmonate Enhances Antioxidant Activity, Flavonoid Content and Antiproliferation of Human Cancer Cells in Blackberries (Rubus spp.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of preharvest methyl jasmonate (MJ) application on fruit quality, antioxidant activity and flavonoid content in blackberries (Rubus spp.) were determined. Anticancer activity against human lung A549 cells and HL-60 leukemia cells was also evaluated. Three blackberry cultivars (Chester T...

  14. Tumor STAT1 transcription factor activity enhances breast tumor growth and immune suppression mediated by myeloid-derived suppressor cells.

    PubMed

    Hix, Laura M; Karavitis, John; Khan, Mohammad W; Shi, Yihui H; Khazaie, Khashayarsha; Zhang, Ming

    2013-04-26

    Previous studies had implicated the IFN-γ transcription factor signal transducer and activator of transcription 1 (STAT1) as a tumor suppressor. However, accumulating evidence has correlated increased STAT1 activation with increased tumor progression in multiple types of cancer, including breast cancer. Indeed, we present evidence that tumor up-regulation of STAT1 activity in human and mouse mammary tumors correlates with increasing disease progression to invasive carcinoma. A microarray analysis comparing low aggressive TM40D and highly aggressive TM40D-MB mouse mammary carcinoma cells revealed significantly higher STAT1 activity in the TM40D-MB cells. Ectopic overexpression of constitutively active STAT1 in TM40D cells promoted mobilization of myeloid-derived suppressor cells (MDSCs) and inhibition of antitumor T cells, resulting in aggressive tumor growth in tumor-transplanted, immunocompetent mice. Conversely, gene knockdown of STAT1 in the metastatic TM40D-MB cells reversed these events and attenuated tumor progression. Importantly, we demonstrate that in human breast cancer, the presence of tumor STAT1 activity and tumor-recruited CD33(+) myeloid cells correlates with increasing disease progression from ductal carcinoma in situ to invasive carcinoma. We conclude that STAT1 activity in breast cancer cells is responsible for shaping an immunosuppressive tumor microenvironment, and inhibiting STAT1 activity is a promising immune therapeutic approach.

  15. Phase Differential Enhancement of FLIM to Distinguish FRET Components of a Biosensor for Monitoring Molecular Activity of Membrane Type 1 Matrix Metalloproteinase in Live Cells

    PubMed Central

    Eichorst, John Paul; Huang, He

    2012-01-01

    Fluorescence lifetime-resolved imaging microscopy (FLIM) has been used to monitor the enzymatic activity of a proteolytic enzyme, Membrane Type 1 Matrix Metalloproteinase (MT1-MMP), with a recently developed FRET-based biosensor in vitro and in live HeLa and HT1080 cells. MT1-MMP is a collagenaise that is involved in the destruction of extra-cellular matrix (ECM) proteins, as well as in various cellular functions including migration. The increased expression of MT1-MMP has been positively correlated with the invasive potential of tumor cells. However, the precise spatiotemporal activation patterns of MT1-MMP in live cells are still not well-established. The activity of MT1-MMP was examined with our biosensor in live cells. Imaging of live cells was performed with full-field frequency-domain FLIM. Image analysis was carried out both with polar plots and phase differential enhancement. Phase differential enhancement, which is similar to phase suppression, is shown to facilitate the differentiation between different conformations of the MT1-MMP biosensor in live cells when the lifetime differences are small. FLIM carried out in differential enhancement or phase suppression modes, requires only two acquired phase images, and permits rapid imaging of the activity of MT1-MMP in live cells. PMID:21519891

  16. Calcium alginate gels as stem cell matrix-making paracrine stem cell activity available for enhanced healing after surgery.

    PubMed

    Schmitt, Andreas; Rödel, Philipp; Anamur, Cihad; Seeliger, Claudine; Imhoff, Andreas B; Herbst, Elmar; Vogt, Stephan; van Griensven, Martijn; Winter, Gerhard; Engert, Julia

    2015-01-01

    Regeneration after surgery can be improved by the administration of anabolic growth factors. However, to locally maintain these factors at the site of regeneration is problematic. The aim of this study was to develop a matrix system containing human mesenchymal stem cells (MSCs) which can be applied to the surgical site and allows the secretion of endogenous healing factors from the cells. Calcium alginate gels were prepared by a combination of internal and external gelation. The gelling behaviour, mechanical stability, surface adhesive properties and injectability of the gels were investigated. The permeability of the gels for growth factors was analysed using bovine serum albumin and lysozyme as model proteins. Human MSCs were isolated, cultivated and seeded into the alginate gels. Cell viability was determined by AlamarBlue assay and fluorescence microscopy. The release of human VEGF and bFGF from the cells was determined using an enzyme-linked immunoassay. Gels with sufficient mechanical properties were prepared which remained injectable through a syringe and solidified in a sufficient time frame after application. Surface adhesion was improved by the addition of polyethylene glycol 300,000 and hyaluronic acid. Humans MSCs remained viable for the duration of 6 weeks within the gels. Human VEGF and bFGF was found in quantifiable concentrations in cell culture supernatants of gels loaded with MSCs and incubated for a period of 6 weeks. This work shows that calcium alginate gels can function as immobilization matrices for human MSCs.

  17. Calcium Alginate Gels as Stem Cell Matrix – Making Paracrine Stem Cell Activity Available for Enhanced Healing after Surgery

    PubMed Central

    Schmitt, Andreas; Rödel, Philipp; Anamur, Cihad; Seeliger, Claudine; Imhoff, Andreas B.; Herbst, Elmar; Vogt, Stephan; van Griensven, Martijn; Winter, Gerhard; Engert, Julia

    2015-01-01

    Regeneration after surgery can be improved by the administration of anabolic growth factors. However, to locally maintain these factors at the site of regeneration is problematic. The aim of this study was to develop a matrix system containing human mesenchymal stem cells (MSCs) which can be applied to the surgical site and allows the secretion of endogenous healing factors from the cells. Calcium alginate gels were prepared by a combination of internal and external gelation. The gelling behaviour, mechanical stability, surface adhesive properties and injectability of the gels were investigated. The permeability of the gels for growth factors was analysed using bovine serum albumin and lysozyme as model proteins. Human MSCs were isolated, cultivated and seeded into the alginate gels. Cell viability was determined by AlamarBlue assay and fluorescence microscopy. The release of human VEGF and bFGF from the cells was determined using an enzyme-linked immunoassay. Gels with sufficient mechanical properties were prepared which remained injectable through a syringe and solidified in a sufficient time frame after application. Surface adhesion was improved by the addition of polyethylene glycol 300,000 and hyaluronic acid. Humans MSCs remained viable for the duration of 6 weeks within the gels. Human VEGF and bFGF was found in quantifiable concentrations in cell culture supernatants of gels loaded with MSCs and incubated for a period of 6 weeks. This work shows that calcium alginate gels can function as immobilization matrices for human MSCs. PMID:25793885

  18. Inhibition of Geobacter dechlorinators at elevated trichloroethene concentrations is explained by a reduced activity rather than by an enhanced cell decay.

    PubMed

    Philips, Jo; Haest, Pieter Jan; Springael, Dirk; Smolders, Erik

    2013-02-05

    Microbial dechlorination of trichloroethene (TCE) is inhibited at elevated TCE concentrations. A batch experiment and modeling analysis were performed to examine whether this self-inhibition is related to an enhanced cell decay or a reduced dechlorination activity at increasing TCE concentrations. The batch experiment combined four different initial TCE concentrations (1.4-3.0 mM) and three different inoculation densities (4.0 × 10(5) to 4.0 × 10(7)Geobacter cells·mL(-1)). Chlorinated ethene concentrations and Geobacter 16S rRNA gene copy numbers were measured. The time required for complete conversion of TCE to cis-DCE increased with increasing initial TCE concentration and decreasing inoculation density. Both an enhanced decay and a reduced activity model fitted the experimental results well, although the reduced activity model better described the lag phase and microbial decay in some treatments. In addition, the reduced activity model succeeded in predicting the reactivation of the dechlorination reaction in treatments in which the inhibiting TCE concentration was lowered after 80 days. In contrast, the enhanced decay model predicted a Geobacter cell density that was too low to allow recovery for these treatments. Conclusively, our results suggest that TCE self-inhibition is related to a reduced dechlorination activity rather than to an enhanced cell decay at elevated TCE concentrations.

  19. One base pair change abolishes the T cell-restricted activity of a kB-like proto-enhancer element from the interleukin 2 promoter.

    PubMed Central

    Briegel, K; Hentsch, B; Pfeuffer, I; Serfling, E

    1991-01-01

    The inducible, T cell-specific enhancers of murine and human Interleukin 2 (Il-2) genes contain the kB-like sequence GGGATTTCACC as an essential cis-acting enhancer motif. When cloned in multiple copies this so-called TCEd (distal T cell element) acts as an inducible proto-enhancer element in E14 T lymphoma cells, but not in HeLa cells. In extracts of induced, Il-2 secreting El4 cells three individual protein factors bind to TCEd DNA. The binding of the most prominent factor, named TCF-1 (T cell factor 1), is correlated with the proto-enhancer activity of TCEd. TCF-1 consists of two polypeptides of about 50 kD and 105 kD; the former seems to be related to the 50 kD polypeptide of NF-kB. Purified NF-kB is also able to bind to the TCEd, but TCF-1 binds stronger than NF-kB to TCEd DNA. The conversion of the TCEd to a 'perfect' NF-kB binding site leads to a tighter binding of NF-kB to TCEd DNA and, as a functional consequence, to the activity of the 'converted' TCEd motifs in HeLa cells. Thus, the substitution of the underlined A residue to a C within the GGGATTTCACC motif abolishes its T cell-restricted activity and leads to its functioning in both El4 cells and HeLa cells. These results indicate that lymphocyte-specific factors binding to the TCEd are involved in the control of T cell specific-transcription of the Il-2 gene. Images PMID:1945879

  20. Activation of Wnt signaling pathway by AF1q enriches stem-like population and enhance mammosphere formation of breast cells.

    PubMed

    Tse, Charlotte Olivia; Kim, Soojin; Park, Jino

    2017-03-18

    Wnt signaling pathway is believed to be responsible for control over various types of stem cells and may act as a niche factor to maintain stem cells in a self-renewing state. Moreover, dysregulated Wnt signaling pathway is strongly associated with several diseases including cancer. Previously, we have shown that AF1q associates with a poor prognosis in leukemia, myelodysplastic syndromes, multiple myeloid, ovarian cancer, and breast cancer. Also, AF1q plays a pivotal role as an oncogene and metastasis enhancer in breast cancer via activation of Wnt signaling pathway. AF1q is highly expressed in stem cells, and this expression is diminished by differentiation. To understand the role of AF1q in stem-like population, we examined stem-like cells derived from breast cells which dysregulated Wnt signaling pathway by alteration of AF1q expression. The effect of Wnt signaling pathway by AF1q on EMT marker expression, stem cell marker expression, and sphere formation was determined. Activated Wnt signaling pathway by AF1q enriched stem-like population showed enhanced sphere formation ability. Interestingly, Wnt signaling pathway inhibitor, Quercetin, decreased the sphere formation in these cells. These results suggest that AF1q would have a role as an enhancer in generation of stem-like population through activation of Wnt signaling pathway.

  1. Prostaglandin E2 stimulates S100A8 expression by activating protein kinase A and CCAAT/enhancer-binding-protein-beta in prostate cancer cells.

    PubMed

    Miao, Lin; Grebhardt, Sina; Shi, Jiandang; Peipe, Isabelle; Zhang, Ju; Mayer, Doris

    2012-11-01

    S100A8 and S100A9 are strongly expressed in epithelial cells of human prostate cancer. However, the regulation of their expression is unclear. Here we show that S100A8 and to a lesser extent S100A9 mRNA expression is induced by prostaglandin E2 in a dose and time-dependent manner in PC-3 prostate cancer cells as well as in BPH-1 benign prostatic epithelial cells. Prostanoid receptor EP2 antagonist AH6809 and EP4 antagonist AH23848, as well as protein kinase A inhibitor H89, inhibited prostaglandin E2 mediated increase in S100A8 mRNA expression as well as promoter activity. Sequence analysis detected a potential binding site of the transcription factor CCAAT/enhancer-binding-protein-beta within the proximal S100A8 promoter. CCAAT/enhancer-binding-protein-beta overexpression increased S100A8 mRNA and protein expression as well as its promoter activity. The latter was prevented by mutation of the potential CCAAT/enhancer-binding-protein-beta binding site within the S100A8 promoter. Chromatin immunoprecipitation revealed increased binding of CCAAT/enhancer-binding-protein-beta to the S100A8 promoter in prostaglandin E2 treated cells. Knockdown of CCAAT/enhancer-binding-protein-beta by siRNA blocked prostaglandin E2 mediated induction of S100A8 promoter activity and mRNA expression. Our results indicate that in prostate cancer cells, S100A8 expression is stimulated by prostaglandin E2 via EP2 and EP4 receptors through activation of the protein kinase A signaling pathway and subsequent stimulation of CCAAT/enhancer-binding-protein-beta binding to the S100A8 promoter.

  2. Phytoestrogens genistein and daidzin enhance the acetylcholinesterase activity of the rat pheochromocytoma cell line PC12 by binding to the estrogen receptor.

    PubMed

    Isoda, Hiroko; Talorete, Terence P N; Kimura, Momoko; Maekawa, Takaaki; Inamori, Yuhei; Nakajima, Nobuyoshi; Seki, Humitake

    2002-11-01

    Some compounds derived from plants have been known to possess estrogenic properties and can thus alter the physiology of higher organisms. Genistein and daidzin are examples of these phytoestrogens, which have recently been the subject of extensive research. In this study, genistein and daidzin were found to enhance the acetylcholinesterase (AChE) activity of the rat neuronal cell line PC12 at concentrations as low as 0.08 muM by binding to the estrogen receptor (ER). Results have shown that this enhancement was effectively blocked by the known estrogen receptor antagonist tamoxifen, indicating the involvement of the ER in AChE induction. That genistein and daidzin are estrogenic were confirmed in a cell proliferation assay using the human breast cancer cell line MCF7. This proliferation was also blocked by tamoxifen, again indicating the involvement of the ER. On the other hand, incubating the PC12 cells in increasing concentrations of 17 beta-estradiol (E2) did not lead to enhanced AChE activity, even in the presence of genistein or daidzin. This suggests that mere binding of an estrogenic compound to the ER does not necessarily lead to enhanced AChE activity. Moreover, the effect of the phytoestrogens on AChE activity cannot be expressed in the presence of E2 since they either could not compete with the natural ligand in binding to the ER or that E2 down-regulates its own receptor. This study clearly suggests that genistein and daidzin enhance AChE activityin PC12 cells by binding to the ER; however, the actual mechanism of enhancement is not known.

  3. The LTR enhancer of ERV-9 human endogenous retrovirus is active in oocytes and progenitor cells in transgenic zebrafish and humans

    PubMed Central

    Pi, Wenhu; Yang, Zhongan; Wang, Jian; Ruan, Ling; Yu, Xiuping; Ling, Jianhua; Krantz, Sanford; Isales, Carlos; Conway, Simon J.; Lin, Shuo; Tuan, Dorothy

    2004-01-01

    The solitary LTRs of ERV-9 human endogenous retrovirus are middle repetitive DNAs associated with 3,000–4,000 human gene loci including the β-globin gene locus where the ERV-9 LTR is juxtaposed to the locus control region (β-LCR) far upstream of the globin genes. The ERV-9 LTRs are conserved during primate evolution, but their function in the primate genomes is unknown. Here, we show that in transgenic zebrafish harboring the β-globin ERV-9 LTR coupled to the GFP gene, the LTR enhancer was active and initiated synthesis of GFP mRNA in oocytes but not in spermatozoa, and GFP expression in the embryos was maternally inherited. The LTR enhancer was active also in stem/progenitor cell regions of adult tissues of transgenic zebrafish. In human tissues, ERV-9 LTR enhancer was active also in oocytes and stem/progenitor cells but not in spermatozoa and a number of differentiated, adult somatic cells. Transcriptional analyses of the human β-globin gene locus showed that the β-globin ERV-9 LTR enhancer initiated RNA synthesis from the LTR in the direction of the downstream β locus control region and globin genes in ovary and erythroid progenitor cells. The findings suggest that, during oogenesis, ERV-9 LTR enhancers in the human genome could activate the cis-linked gene loci to synthesize maternal mRNAs required for early embryogenesis. Alternatively, the ERV-9 LTR enhancers, in initiating RNA syntheses into the downstream genomic DNAs, could transcriptionally potentiate and preset chromatin structure of the cis-linked gene loci in oocytes and adult stem/progenitor cells. PMID:14718667

  4. Alanine substitution of conserved residues in the cytoplasmic tail of herpes simplex virus gB can enhance or abolish cell fusion activity and viral entry

    SciTech Connect

    Ruel, Nancy . E-mail: n-ruel@northwestern.edu; Zago, Anna . E-mail: anna_zago@acgtinc.com; Spear, Patricia G. . E-mail: p-spear@northwestern.edu

    2006-03-01

    Herpes simplex virus (HSV) glycoprotein B (gB) is one of the four viral glycoproteins required for viral entry and cell fusion and is highly conserved among herpesviruses. Mutants of HSV type 2 gB were generated by substituting conserved residues in the cytoplasmic tail with alanine or by deleting 41 amino acids from the C-terminus. Some of the mutations abolished cell fusion activity and also prevented transport of gB to the cell surface, identifying residues in the gB cytoplasmic tail that are critical for intracellular transport of this glycoprotein. These mutations also prevented production of infectious virus, possibly because the mutant forms of gB were not transported to the site of envelopment. Other mutations, particularly the deletion, significantly enhanced cell fusion activity. These mutations, as well as others described previously, identify regions of the gB cytoplasmic domain that modulate cell fusion activity.

  5. Immunosuppressive activity enhances central carbon metabolism and bioenergetics in myeloid-derived suppressor cells in vitro models

    PubMed Central

    2012-01-01

    Background The tumor microenvironment contains a vast array of pro- and anti-inflammatory cytokines that alter myelopoiesis and lead to the maturation of immunosuppressive cells known as myeloid-derived suppressor cells (MDSCs). Incubating bone marrow (BM) precursors with a combination of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-6 (IL-6) generated a tumor-infiltrating MDSC-like population that impaired anti-tumor specific T-cell functions. This in vitro experimental approach was used to simulate MDSC maturation, and the cellular metabolic response was then monitored. A complementary experimental model that inhibited L-arginine (L-Arg) metabolizing enzymes in MSC-1 cells, an immortalized cell line derived from primary MDSCs, was used to study the metabolic events related to immunosuppression. Results Exposure of BM cells to GM-CSF and IL-6 activated, within 24 h, L-Arg metabolizing enzymes which are responsible for the MDSCs immunosuppressive potential. This was accompanied by an increased uptake of L-glutamine (L-Gln) and glucose, the latter being metabolized by anaerobic glycolysis. The up-regulation of nutrient uptake lead to the accumulation of TCA cycle intermediates and lactate as well as the endogenous synthesis of L-Arg and the production of energy-rich nucleotides. Moreover, inhibition of L-Arg metabolism in MSC-1 cells down-regulated central carbon metabolism activity, including glycolysis, glutaminolysis and TCA cycle activity, and led to a deterioration of cell bioenergetic status. The simultaneous increase of cell specific concentrations of ATP and a decrease in ATP-to-ADP ratio in BM-derived MDSCs suggested cells were metabolically active during maturation. Moreover, AMP-activated protein kinase (AMPK) was activated during MDSC maturation in GM-CSF and IL-6–treated cultures, as revealed by the continuous increase of AMP-to-ATP ratios and the phosphorylation of AMPK. Likewise, AMPK activity was decreased in MSC-1

  6. Probiotics enhance the effect of allergy immunotherapy on regulating antigen specific B cell activity in asthma patients.

    PubMed

    Liu, Jun; Chen, Feng-Hong; Qiu, Shu-Qi; Yang, Li-Tao; Zhang, Huan-Ping; Liu, Jiang-Qi; Geng, Xiao-Rui; Yang, Gui; Liu, Zhi-Qiang; Li, Jing; Liu, Zhi-Gang; Li, Hua-Bin; Yang, Ping-Chang

    2016-01-01

    Immune regulatory system dysfunction plays a role in the pathogenesis of asthma. The therapeutic effect of allergic asthma is to be improved. The immune regulatory function of probiotics has been recognized. This study tests a hypothesis that Clostridium butyricum (CB) enhances the effect of allergen specific immunotherapy (AIT) on asthma. In this study patients with allergic asthma were treated with AIT or/and CB for six months. The therapeutic effect and IgE production of the patients were observed. The results showed that administration with AIT alone alleviated the asthma symptoms; but the serum levels of interleukin (IL)-4, IL-5, IL-13 and specific IgE were not altered, which was markedly improved by the administration with CB plus AIT. Such effects were maintained only for two months in the patients treated with AIT alone; but maintained more than 12 months in those patients treated with both AIT and CB. CB facilitated AIT to induce IL-10(+) B cells (B10 cells) in asthma patients. AIT/CB therapy converted antigen specific B cells to antigen specific regulatory B cells. Butyrate modulated the gene transcription of IgE and IL-10 in the allergen specific B cells. In conclusion, administration of CB can enhance the therapeutic effect of AIT in the treatment of allergic asthma via facilitating generation of B10 cells.

  7. Probiotics enhance the effect of allergy immunotherapy on regulating antigen specific B cell activity in asthma patients

    PubMed Central

    Liu, Jun; Chen, Feng-hong; Qiu, Shu-Qi; Yang, Li-Tao; Zhang, Huan-Ping; Liu, Jiang-Qi; Geng, Xiao-Rui; Yang, Gui; Liu, Zhi-Qiang; Li, Jing; Liu, Zhi-Gang; Li, Hua-Bin; Yang, Ping-Chang

    2016-01-01

    Immune regulatory system dysfunction plays a role in the pathogenesis of asthma. The therapeutic effect of allergic asthma is to be improved. The immune regulatory function of probiotics has been recognized. This study tests a hypothesis that Clostridium butyricum (CB) enhances the effect of allergen specific immunotherapy (AIT) on asthma. In this study patients with allergic asthma were treated with AIT or/and CB for six months. The therapeutic effect and IgE production of the patients were observed. The results showed that administration with AIT alone alleviated the asthma symptoms; but the serum levels of interleukin (IL)-4, IL-5, IL-13 and specific IgE were not altered, which was markedly improved by the administration with CB plus AIT. Such effects were maintained only for two months in the patients treated with AIT alone; but maintained more than 12 months in those patients treated with both AIT and CB. CB facilitated AIT to induce IL-10+ B cells (B10 cells) in asthma patients. AIT/CB therapy converted antigen specific B cells to antigen specific regulatory B cells. Butyrate modulated the gene transcription of IgE and IL-10 in the allergen specific B cells. In conclusion, administration of CB can enhance the therapeutic effect of AIT in the treatment of allergic asthma via facilitating generation of B10 cells. PMID:28078000

  8. Enhancement of CYP3A4 activity in Hep G2 cells by lentiviral transfection of hepatocyte nuclear factor-1 alpha.

    PubMed

    Chiang, Tsai-Shin; Yang, Kai-Chiang; Chiou, Ling-Ling; Huang, Guan-Tarn; Lee, Hsuan-Shu

    2014-01-01

    Human hepatoma cell lines are commonly used as alternatives to primary hepatocytes for the study of drug metabolism in vitro. However, the phase I cytochrome P450 (CYP) enzyme activities in these cell lines occur at a much lower level than their corresponding activities in primary hepatocytes, and thus these cell lines may not accurately predict drug metabolism. In the present study, we selected hepatocyte nuclear factor-1 alpha (HNF1α) from six transcriptional regulators for lentiviral transfection into Hep G2 cells to optimally increase their expression of the CYP3A4 enzyme, which is the major CYP enzyme in the human body. We subsequently found that HNF1α-transfected Hep G2 enhanced the CYP3A4 expression in a time- and dose-dependent manner and the activity was noted to increase with time and peaked 7 days. With a multiplicity of infection (MOI) of 100, CYP3A4 expression increased 19-fold and enzyme activity more than doubled at day 7. With higher MOI (1,000 to 3,000), the activity increased 8- to 10-fold; however, it was noted the higher MOI, the higher cell death rate and lower cell survival. Furthermore, the CYP3A4 activity in the HNF1α-transfected cells could be induced by CYP3A4-specific inducer, rifampicin, and metabolized nifedipine in a dose-dependent manner. With an MOI of 3,000, nifedipine-metabolizing activity was 6-fold of control and as high as 66% of primary hepatocytes. In conclusion, forceful delivery of selected transcriptional regulators into human hepatoma cells might be a valuable method to enhance the CYP activity for a more accurate determination of drug metabolism in vitro.

  9. Altered differentiation, diminished pathogenicity, and regulatory activity of myelin-specific T cells expressing an enhanced affinity TCR

    PubMed Central

    Alli, Rajshekhar; Nguyen, Phuong; Geiger, Terrence L.

    2011-01-01

    Whereas increased affinity enhances T cell competitiveness after immunization, the role of affinity in modulating the pathogenicity of self-reactive T cells is less established. To assess this, we generated two myelin-specific, class II MHC-restricted TCR that differ only in a buried hydroxymethyl that forms a common TRBV variant. The variation, predicted to increase TCR stability, resulted in a ~3log10 difference in TCR sensitivity with preserved fine specificity. The high affinity TCR markedly diminished T cell pathogenicity. T cells were not deleted, did not upregulate Foxp3, and barring disease induction were predominantly naïve. However, high affinity CD4+ T cells showed an altered cytokine profile characterized by the production of protective cytokines prior to experimental allergic encephalomyelitis induction and decreased effector cytokines after. Further, the high affinity TCR promoted the development of CD4−CD8− and CD8+ T cells that possessed low intrinsic pathogenicity, were protective even in small numbers when transferred into wild type mice and in mixed chimeras, and outcompete CD4+ T cells during disease development. Therefore TCR affinities exceeding an upper affinity threshold may impede the development of autoimmunity through altered development and functional maturation of T cells, including diminished intrinsic CD4+ T-cell pathogenicity and the development of CD4− Foxp3− regulatory populations. PMID:22025553

  10. Whole Blood Activation Results in Enhanced Detection of T Cell and Monocyte Cytokine Production by Flow Cytometry

    NASA Technical Reports Server (NTRS)

    Sams, Clarence F.; Crucian, Brian E.

    2001-01-01

    An excellent monitor of the immune balance of peripheral circulating cells is to determine their cytokine production patterns in response to stimuli. Using flow cytometry a positive identification of cytokine producing cells in a mixed culture may be achieved. Recently, the ability to assess cytokine production following a wholeblood activation culture has been described. We compared whole blood culture to standard PBMC culture and determined the individual cytokine secretion patterns for both T cells and monocytes via flow cytometry. For T cells cytokine assessment following PMA +ionomycin activation: (1) a significantly greater percentages of T cells producing IFNgamma and IL-2 were observed following whole-blood culture; (2) altered T cell cytokine production kinetics were observed by varying whole blood culture times. In addition, a four-color cytometric analysis was used to allow accurate phenotyping and quantitation of cytokine producing lymphocyte populations. Using this technique we found IFNgamma production to be significantly elevated in the CD3+/CD8+ T cell population as compared to the CD3+/CD8- population following five hours of whole blood activation. Conversely, IL-2 and IL-10 production were significantly elevated in the CD3+/CD8- T cell population as compared to the CD3+/CD8+ population. Monocyte cytokine production was assessed in both culture systems following LPS activation for 24 hours. A three-color flow cytometric was used to assess two cytokines in conjunction with CD 14. The cytokine pairs used for analysis were IL-1a/IL-12, and IL-10ITNFa. Nearly all monocytes were stimulated to produce IL-1a, IL-12 and TNFalpha equally well in both culture systems. Monocyte production of IL-10 was significantly elevated following whole blood culture as compared to PBMC culture. IL-12 producing monocytes appeared to be a distinct subpopulation of the IL-1a producing set, whereas IL-10 and TNFa producing monocytes were largely mutually exclusive. IL-10 and

  11. Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge.

    PubMed

    Lu, Lu; Xing, Defeng; Ren, Nanqi

    2012-05-01

    Renewable H(2) production from a plentiful biomass, waste activated sludge (WAS), can be achieved by fermentation, but the yields are low. The use of a microbial electrolysis cell (MEC) can increase the H(2) production yields to several times that of fermentation. We have proved that the enhancement of H(2) production was due to the ability of MECs to use a wider range of organic matter in WAS than in fermentation. To support this result strongly, we here investigated the microbial community structures of WAS and anode biofilms in WAS-fed MECs. A pyrosequencing analysis based on the bacterial 16S rRNA gene showed that dominant populations in MECs were more diverse than those in WAS (inoculum and substrate) after enrichment, and there was a clear distinction between MECs and WAS in microbial community structure. Diverse acid-producing bacteria and exoelectrogens (predominance of Geobacter) were detected in MECs but they were only rarely found in WAS. It has been reported that these acid-producing bacteria can ferment various sugars and amines with acetate, propionate, and butyrate as their major by-products. This was consistent with our chemical analyses. Detected exoelectrogens are known to use these organic acids (mainly acetate) and certain sugars to directly produce current for H(2) generation at the cathodes in the MECs. Using quantitative real-time PCR, we demonstrated that a consistent feed of alkaline-pretreated WAS containing large amounts of acetate led to a predominance of acetoclastic methanogens, while hydrogenotrophic methanogens were abundant in MECs fed both raw and alkaline-pretreated WAS. Syntrophic interactions between phylogenetically diverse microbial populations in anodophilic biofilms were found to drive the efficient cascade utilization of organic matter in WAS.

  12. Barium carbonate nanoparticle to enhance oxygen reduction activity of strontium doped lanthanum ferrite for solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Hong, Tao; Chen, Fanglin; Xia, Changrong

    2015-03-01

    BaCO3 nanoparticles are demonstrated as outstanding catalysts for high-temperature oxygen reduction reaction (ORR) on the La0.8Sr0.2FeO3-δ (LSF) cathode for solid oxide fuel cells (SOFCs) based on ytrria-stabilized zirconia (YSZ) electrolytes. Thermal gravitational and X-ray diffraction measurements show that BaCO3 is stable and chemically compatible with LSF under the fabrication and operation conditions of intermediate-temperature SOFCs. The BaCO3 nanoparticles can greatly reduce the interfacial polarization resistance; from 2.96 to 0.84 Ω cm2 at 700 °C when 12.9wt% BaCO3 is infiltrated to the porous LSF electrode on the YSZ electrolyte. Electrochemical impedance spectroscopy shows that there is about one order of magnitude decrease in the low-frequency resistance, indicating that BaCO3 nanoparticles can greatly enhance the surface steps for ORR. Electrical conductivity relaxation investigation indicates about one order of magnitude increase in the chemical oxygen surface exchange coefficient when BaCO3 is applied, directly demonstrating significant increase in the kinetics for ORR. In addition, LSF cathodes with infiltrated BaCO3 nanoparticles have shown excellent stability and substantially enhanced cell performance as demonstrated with single cells, suggesting BaCO3 nanoparticles are very effective in enhancing ORR on LSF.

  13. Dehydration induced loss of photosynthesis in Arabidopsis leaves during senescence is accompanied by the reversible enhancement in the activity of cell wall β-glucosidase.

    PubMed

    Patro, Lichita; Mohapatra, Pranab Kishor; Biswal, Udaya Chand; Biswal, Basanti

    2014-08-01

    The physiology of loss of photosynthetic production of sugar and the consequent cellular sugar reprogramming during senescence of leaves experiencing environmental stress largely remains unclear. We have shown that leaf senescence in Arabidopsis thaliana causes a significant reduction in the rate of oxygen evolution and net photosynthetic rate (Pn). The decline in photosynthesis is further aggravated by dehydration. During dehydration, primary photochemical reaction of thylakoids and net photosynthesis decrease in parallel with the increase in water deficit. Senescence induced loss in photosynthesis is accompanied by a significant increase in the activity of cell wall hydrolyzing enzyme such as β-glucosidase associated with cell wall catabolism. The activity of this enzyme is further enhanced when the senescing leaves experience dehydration stress. It is possible that both senescence and stress separately or in combination result in the loss in photosynthesis which could be a signal for an enhancement in the activity of β-glucosidase that breaks down cell wall polysaccharides to sugar to sustain respiration for metabolic activities of plants experiencing stress. Thus dehydration response of cell wall hydrolases of senescing leaves is considered as plants' strategy to have cell wall polysaccharides as an alternative energy source for completion of energy requiring senescence process, stress survival and maintenance of recovery potential of energy deficit cells in the background of loss in photosynthesis. Withdrawal of stress (rehydration) distinctly exhibits recovery of photosynthesis and suppression of enzyme activity. Retention of the signaling for sugar reprogramming through breakdown of cell wall polysaccharides in the senescing leaves exposed to severe drought stress suggests that senescing leaves like mature ones possess potential for stress recovery. The precise mechanism of stress adaptation of senescing leaves is yet to be known. A significant

  14. Immunoglobulin D enhances immune surveillance by activating antimicrobial, proinflammatory and B cell-stimulating programs in basophils.

    PubMed

    Chen, Kang; Xu, Weifeng; Wilson, Melanie; He, Bing; Miller, Norman W; Bengtén, Eva; Edholm, Eva-Stina; Santini, Paul A; Rath, Poonam; Chiu, April; Cattalini, Marco; Litzman, Jiri; B Bussel, James; Huang, Bihui; Meini, Antonella; Riesbeck, Kristian; Cunningham-Rundles, Charlotte; Plebani, Alessandro; Cerutti, Andrea

    2009-08-01

    Immunoglobulin D (IgD) is an enigmatic antibody isotype that mature B cells express together with IgM through alternative RNA splicing. Here we report active T cell-dependent and T cell-independent IgM-to-IgD class switching in B cells of the human upper respiratory mucosa. This process required activation-induced cytidine deaminase (AID) and generated local and circulating IgD-producing plasmablasts reactive to respiratory bacteria. Circulating IgD bound to basophils through a calcium-mobilizing receptor that induced antimicrobial, opsonizing, inflammatory and B cell-stimulating factors, including cathelicidin, interleukin 1 (IL-1), IL-4 and B cell-activating factor (BAFF), after IgD crosslinking. By showing dysregulation of IgD class-switched B cells and 'IgD-armed' basophils in autoinflammatory syndromes with periodic fever, our data indicate that IgD orchestrates an ancestral surveillance system at the interface between immunity and inflammation.

  15. Non-small cell lung cancer-derived soluble mediators enhance apoptosis in activated T lymphocytes through an I kappa B kinase-dependent mechanism.

    PubMed

    Batra, Raj K; Lin, Ying; Sharma, Sherven; Dohadwala, Mariam; Luo, Jie; Pold, Mehis; Dubinett, Steven M

    2003-02-01

    T lymphocyte survival is critical for the development and maintenance of an effective host antitumor immune response; however, the tumor environment can negatively impact T-cell survival. Lymphocytes exposed to tumor supernatants (TSNs) were evaluated for apoptosis after mitogen stimulation. TSN was observed to significantly enhance phorbol 12-myristate 13-acetate/ionomycin- and anti-CD3-stimulated lymphocyte apoptosis. Enhanced lymphocyte apoptosis was associated with an impairment of nuclear factor kappa B nuclear translocation and diminished I kappa B alpha degradation. In lymphocytes stimulated after exposure to TSNs, cytoplasmic I kappa B alpha persisted as a result of alterations in I kappa B kinase (IKK) activity. Accordingly, although there were no apparent differences in IKK component concentrations, lymphocytes preexposed to TSNs exhibited markedly reduced IKK activity. We conclude that non-small cell lung cancer-derived soluble factors promote apoptosis in activated lymphocytes by an IKK-dependent pathway.

  16. EPO-independent functional EPO receptor in breast cancer enhances estrogen receptor activity and promotes cell proliferation

    SciTech Connect

    Reinbothe, Susann; Larsson, Anna-Maria; Vaapil, Marica; Wigerup, Caroline; Sun, Jianmin; Jögi, Annika; Neumann, Drorit; Rönnstrand, Lars; Påhlman, Sven

    2014-02-28

    Highlights: • New anti-human EPOR antibody confirms full-length EPOR expression in breast cancer cells. • Proliferation of breast cancer cells is not affected by rhEPO treatment in vitro. • EPOR knockdown impairs proliferation of ERa positive breast cancer cells. • EPOR knockdown reduces AKT phosphorylation and ERa activity. - Abstract: The main function of Erythropoietin (EPO) and its receptor (EPOR) is the stimulation of erythropoiesis. Recombinant human EPO (rhEPO) is therefore used to treat anemia in cancer patients. However, clinical trials have indicated that rhEPO treatment might promote tumor progression and has a negative effect on patient survival. In addition, EPOR expression has been detected in several cancer forms. Using a newly produced anti-EPOR antibody that reliably detects the full-length isoform of the EPOR we show that breast cancer tissue and cells express the EPOR protein. rhEPO stimulation of cultured EPOR expressing breast cancer cells did not result in increased proliferation, overt activation of EPOR (receptor phosphorylation) or a consistent activation of canonical EPOR signaling pathway mediators such as JAK2, STAT3, STAT5, or AKT. However, EPOR knockdown experiments suggested functional EPO receptors in estrogen receptor positive (ERα{sup +}) breast cancer cells, as reduced EPOR expression resulted in decreased proliferation. This effect on proliferation was not seen in ERα negative cells. EPOR knockdown decreased ERα activity further supports a mechanism by which EPOR affects proliferation via ERα-mediated mechanisms. We show that EPOR protein is expressed in breast cancer cells, where it appears to promote proliferation by an EPO-independent mechanism in ERα expressing breast cancer cells.

  17. Specific detection of RT activity in culture supernantants of retrovirus-producing cells, using synthetic DNA as competitor in polymerase enhanced reverse transcriptase assay.

    PubMed

    Voisset, C; Tönjes, R R; Breyton, P; Mandrand, B; Paranhos-Baccalà, G

    2001-05-01

    The polymerase enhanced reverse transcriptase (PERT) assay is a highly sensitive assay for the detection of reverse transcriptase (RT) activity in culture supernatants of retrovirus-producing cells. However, some cellular DNA-dependent DNA polymerases exhibit RT-like activities in this assay. A synthetic DNA competitor which suppresses the RT-like activities of cellular DNA-dependent DNA polymerases was used in a modified PERT assay technique for specific detection of RT activity in culture supernatants of retrovirus-producing cells. We determined the optimum condition of the assay and evaluated its specificity. This improved PERT assay is easy to perform and is able to detect minute amounts of purified RT, as well as RT in crude cell lysates and concentrated culture supernatants.

  18. 11R-P53 and GM-CSF Expressing Oncolytic Adenovirus Target Cancer Stem Cells with Enhanced Synergistic Activity

    PubMed Central

    Lv, Sai-qun; Ye, Zhen-long; Liu, Pin-yi; Huang, Yao; Li, Lin-fang; Liu, Hui; Zhu, Hai-li; Jin, Hua-jun; Qian, Qi-jun

    2017-01-01

    Targeting cancer stem cells with oncolytic virus (OV) holds great potential for thorough elimination of cancer cells. Based on our previous studies, we here established 11R-P53 and mGM-CSF carrying oncolytic adenovirus (OAV) SG655-mGMP and investigated its therapeutic effect on hepatocellular carcinoma stem cells Hep3B-C and teratoma stem cells ECCG5. Firstly, the augmenting effect of 11R in our construct was tested and confirmed by examining the expression of EGFP with Fluorescence and FCM assays after transfecting Hep3B-C and ECCG5 cells with OVA SG7605-EGFP and SG7605-11R-EGFP. Secondly, the expressions of 11R-P53 and GM-CSF in Hep3B-C and ECCG5 cells after transfection with OAV SG655-mGMP were detected by Western blot and Elisa assays, respectively. Thirdly, the enhanced growth inhibitory and augmented apoptosis inducing effects of OAV SG655-mGMP on Hep3B-C and ECCG5 cells were tested with FCM assays by comparing with the control, wild type 5 adenovirus, 11R-P53 carrying OVA in vitro. Lastly, the in vivo therapeutic effect of OAV SG655-mGMP toward ECCG5 cell-formed xenografts was studied by measuring tumor volumes post different treatments with PBS, OAV SG655-11R-P53, OAV SG655-mGM-CSF and OAV SG655-mGMP. Treatment with OAV SG655-mGMP induced significant xenograft growth inhibition, inflammation factor AIF1 expression and immune cells infiltration. Therefore, our OAV SG655-mGMP provides a novel platform to arm OVs to target cancer stem cells. PMID:28243324

  19. Enhancement of amygdalin activated with β-D-glucosidase on HepG2 cells proliferation and apoptosis.

    PubMed

    Zhou, Cunshan; Qian, Lichun; Ma, Haile; Yu, Xiaojie; Zhang, Youzuo; Qu, Wenjuan; Zhang, Xiaoxu; Xia, Wei

    2012-09-01

    The growth inhibition and induction of apoptosis brought by amygdalin and activated with β-D-glucosidase were tested for cytoactivity in HepG2 cells. The MTT viability assay showed that all samples had effects on HepG2 proliferation in dose and time response manners. IC50 of stand-alone amygdalin and activation with β-D-glucosidase on the proliferation of HepG2 cells for 48 h were 458.10 mg/mL and 3.2 mg/mL, respectively. Moreover, apoptotic cells were determined by AO/EB (acridine orange/ethidium bromide) fluorescent staining method and Annexin V-FITC/PI staining flow cytometry cell cycle analysis. With increasing of amygdalin concentration and the incubation time, the apoptotic rate was heightened. Compared with the control, there was significant difference (p<0.01). Together, these findings indicate that amygdalin had no strong anti-HepG2 activity; however the ingredients of amygdalin activated with β-D-glucosidase had a higher and efficient anti-HepG2 activity. It was therefore suggested that this combination strategy may be applicable for treating tumors with a higher activity.

  20. Enhancer-promoter activity of human papillomavirus type 16 long control regions isolated from cell lines SiHa and CaSki and cervical cancer biopsies.

    PubMed

    Kozuka, T; Aoki, Y; Nakagawa, K; Ohtomo, K; Yoshikawa, H; Matsumoto, K; Yoshiike, K; Kanda, T

    2000-03-01

    Expression of human papillomavirus 16 (HPV-16) oncogenes is markedly higher in cervical cancer cells than in precancerous cells, and the elevated expression is believed to be required for the malignant phenotypes. We compared cancer cell lines CaSki (with 200 to 400 copies of HPV-16 DNA per cell) and SiHa (with one to two copies of HPV-16 DNA per cell) for the E7 expression in cells and the enhancer-promoter activity of the isolated viral long control region (LCR). Although these parameters per cell were 10-fold higher in CaSki than in SiHa, the levels of the E7 mRNA and protein per HPV DNA copy were 10- to 20-fold higher in SiHa than in CaSki. Characterization of the isolated LCRs showed that, whereas the LCR from CaSki resembled the prototype in structure and activity, the LCR from SiHa, with a deletion of 38 base pairs, enhanced transcription from P97 as assayed by using a plasmid capable of expressing luciferase. The upregulation appeared to be due to removal of one of the silencer YY1-binding sites. Furthermore, we isolated and characterized LCRs from 51 cervical cancer patients' biopsies. Among them, one with a deletion including YY1-binding sites and the other with a substitution in a YY1-motif were found to enhance the transcription. These findings suggest that mutation affecting YY1-motifs in the LCR is one of the mechanisms enhancing the viral oncogene expression in the course of progression of cancer cells.

  1. Adipose tissue hyperplasia with enhanced adipocyte-derived stem cell activity in Tc1(C8orf4)-deleted mice.

    PubMed

    Jang, Hayoung; Kim, Minsung; Lee, Soyoung; Kim, Jungtae; Woo, Dong-Cheol; Kim, Kyung Won; Song, Kyuyoung; Lee, Inchul

    2016-10-24

    Adipose tissue hyperplasia with increased number of adipocytes is implicated in a protective rather than deleterious effect on obesity-associated metabolic disorder. It is poorly understood how the adipose tissue cellularity is regulated. Tc1 is a gene of vertebrates that regulates diverse downstream genes. Young Tc1-deleted mice fed on standard chow diet show expanded adipose tissue with smaller adipocytes in size compared to wild type controls, representing adipose tissue hyperplasia. Tc1(-/-) mice show enhanced glucose tolerance and reduced serum lipids. Adipocyte-derived stem cells (ADSCs) from Tc1(-/-) mice show enhanced proliferative and adipogenic capacity compared to wild type controls, suggesting that the adipose hyperplasia is regulated at the stem cell level. PPARγ and CEBPα are up-regulated robustly in Tc1(-/-) ADSCs upon induction for adipogenesis. Wisp2 and Dlk1, inhibitors of adipogenesis, are down-regulated in Tc1(-/-) ADSCs compared to controls. Tc1-transfected NIH3T3 cells show higher β-catenin reporter signals than vector transfected controls, suggesting a role of canonical Wnt signaling in the Tc1-dependent adipose regulation. Our data support that Tc1 is a novel regulator for adipose stem cells. Adipose tissue hyperplasia may be implicated in the metabolic regulation of Tc1(-/-) mice.

  2. Adipose tissue hyperplasia with enhanced adipocyte-derived stem cell activity in Tc1(C8orf4)-deleted mice

    PubMed Central

    Jang, Hayoung; Kim, Minsung; Lee, Soyoung; Kim, Jungtae; Woo, Dong-Cheol; Kim, Kyung Won; Song, Kyuyoung; Lee, Inchul

    2016-01-01

    Adipose tissue hyperplasia with increased number of adipocytes is implicated in a protective rather than deleterious effect on obesity-associated metabolic disorder. It is poorly understood how the adipose tissue cellularity is regulated. Tc1 is a gene of vertebrates that regulates diverse downstream genes. Young Tc1-deleted mice fed on standard chow diet show expanded adipose tissue with smaller adipocytes in size compared to wild type controls, representing adipose tissue hyperplasia. Tc1−/− mice show enhanced glucose tolerance and reduced serum lipids. Adipocyte-derived stem cells (ADSCs) from Tc1−/− mice show enhanced proliferative and adipogenic capacity compared to wild type controls, suggesting that the adipose hyperplasia is regulated at the stem cell level. PPARγ and CEBPα are up-regulated robustly in Tc1−/− ADSCs upon induction for adipogenesis. Wisp2 and Dlk1, inhibitors of adipogenesis, are down-regulated in Tc1−/− ADSCs compared to controls. Tc1-transfected NIH3T3 cells show higher β-catenin reporter signals than vector transfected controls, suggesting a role of canonical Wnt signaling in the Tc1-dependent adipose regulation. Our data support that Tc1 is a novel regulator for adipose stem cells. Adipose tissue hyperplasia may be implicated in the metabolic regulation of Tc1−/− mice. PMID:27775060

  3. Enhancement of BCG-induced Th1 immune response through Vgamma9Vdelta2 T cell activation with non-peptidic drugs.

    PubMed

    Martino, Angelo; Casetti, Rita; Poccia, Fabrizio

    2007-01-22

    Since drug-activated gammadelta T cells promote dendritic cell (DC) maturation, we analyzed the effect of combining gammadelta T cell specific drugs with BCG in vitro. BCG-induced DC maturation was increased by bromohydrin-pirophosphate (BrHPP) or zoledronate (Zol)-activated gammadelta T cells. Specifically, the co-culture with activated Vgamma9Vdelta2 T cells with BCG-infected DC resulted in a significant increase of the expression of CD80, CD86, CD40 and CD25 molecules on DC. Moreover, DC were able to produce increased levels of TNF-alpha and synthesize ex novo IL-15 without altering the IL-10/IL-12 immunoregulatory pathway. Finally, the Th1 immunity induced by BCG-infected DC on naïve CD4 T cells was increased by gammadelta T cell activation with BrHpp or Zol. These data indicate that gammadelta T cell triggering drugs could be used to enhance the BCG induced Th1 immunity.

  4. Enhanced anti-tumor activity induced by adoptive T cell transfer and the adjunctive use of the HDAC Inhibitor LAQ824

    PubMed Central

    Vo, Dan D.; Prins, Robert M.; Begley, Jonathan L.; Donahue, Timothy R.; Morris, Lilah F.; Bruhn, Kevin W.; de la Rocha, Pilar; Yang, Meng-Yin; Mok, Stephen; Garban, Hermes J.; Craft, Noah; Economou, James S.; Marincola, Francesco M.; Wang, Ena; Ribas, Antoni

    2009-01-01

    Tumors grow in the presence of antigen-specific T cells, suggesting the existence of intrinsic cancer cell escape mechanisms. We hypothesized that a histone deacetylase (HDAC) inhibitor could sensitize tumor cells to immunotherapy because this class of agents has been reported to increase tumor antigen expression and shift gene expression to a pro-apoptotic milieu in cancer cells. To test this question, we treated B16 murine melanoma with the combination of the HDAC inhibitor LAQ824 together with the adoptive transfer (AT) of gp100 melanoma antigen-specific pmel-1 T cells. The combined therapy significantly improved antitumor activity through several mechanisms: 1) increase in MHC and tumor-associated antigen (TAA) expression by tumor cells; 2) decrease in competing endogenous lymphocytes in recipient mice, resulting in a proliferative advantage for the adoptively transferred cells; and 3) improvement in the functional activity of the adoptively transferred lymphocytes. We confirmed the beneficial effects of this HDAC inhibitor as sensitizer to immunotherapy in a different model of prophylactic prime-boost vaccination with the melanoma antigen tyrosinase-related protein-2 (TRP2), which also demonstrated a significant improvement in antitumor activity against B16 melanoma. In conclusion, the HDAC inhibitor LAQ824 significantly enhances tumor immunotherapy through effects on target tumor cells as well as improving the antitumor activity of tumor antigen-specific lymphocytes. PMID:19861533

  5. Novel Quinazoline Derivatives Bearing Various 4-Aniline Moieties as Potent EGFR Inhibitors with Enhanced Activity Against NSCLC Cell Lines.

    PubMed

    Wang, Changyan; Sun, Yajun; Zhu, Xingqi; Wu, Bin; Wang, Qiao; Zhen, Yuhong; Shu, Xiaohong; Liu, Kexin; Zhou, Youwen; Ma, Xiaodong

    2016-04-01

    A class of novel quinazoline derivatives bearing various C-4 aniline moieties was synthesized and biologically evaluated as potent epidermal growth factor receptor (EGFR) inhibitors for intervention of non-small-cell lung cancer (NSCLC). Most of these inhibitors are comparable to gefitinib in inhibiting these cancer cell lines, and several of them even displayed superior inhibitory activity. In particular, analogue 5b with an IC50 of 0.10 μm against the EGFR wild-type A431 cells and 5c with an IC50 of 0.001 μm against the gefitinib-sensitive HCC827 cells (EGFR del E746-A750) was identified as highly active EGFR inhibitors. It was also significant that the discovered analogue 2f, not only has high potency against the gefitinib-sensitive cells (IC50 = 0.031 μm), but also possesses remarkably improved activity against the gefitinib-resistant cells. In addition, the enzymatic assays and the Western blot analysis for evaluating the effects of the typical inhibitors indicated that these molecules strongly interfere with the EGFR target.

  6. NECAB3 Promotes Activation of Hypoxia-inducible factor-1 during Normoxia and Enhances Tumourigenicity of Cancer Cells

    PubMed Central

    Nakaoka, Hiroki J.; Hara, Toshiro; Yoshino, Seiko; Kanamori, Akane; Matsui, Yusuke; Shimamura, Teppei; Sato, Hiroshi; Murakami, Yoshinori; Seiki, Motoharu; Sakamoto, Takeharu

    2016-01-01

    Unlike most cells, cancer cells activate hypoxia inducible factor-1 (HIF-1) to use glycolysis even at normal oxygen levels, or normoxia. Therefore, HIF-1 is an attractive target in cancer therapy. However, the regulation of HIF-1 during normoxia is not well characterised, although Mint3 was recently found to activate HIF-1 in cancer cells and macrophages by suppressing the HIF-1 inhibitor, factor inhibiting HIF-1 (FIH-1). In this study, we analysed Mint3-binding proteins to investigate the mechanism by which Mint3 regulates HIF-1. Yeast two-hybrid screening using Mint3 as bait identified N-terminal EF-hand calcium binding protein 3 (NECAB3) as a novel factor regulating HIF-1 activity via Mint3. NECAB3 bound to the phosphotyrosine-binding domain of Mint3, formed a ternary complex with Mint3 and FIH-1, and co-localised with Mint3 at the Golgi apparatus. Depletion of NECAB3 decreased the expression of HIF-1 target genes and reduced glycolysis in normoxic cancer cells. NECAB3 mutants that binds Mint3 but lacks an intact monooxygenase domain also inhibited HIF-1 activation. Inhibition of NECAB3 in cancer cells by either expressing shRNAs or generating a dominant negative mutant reduced tumourigenicity. Taken together, the data indicate that NECAB3 is a promising new target for cancer therapy. PMID:26948053

  7. A Disease-associated Mutant of NLRC4 Shows Enhanced Interaction with SUG1 Leading to Constitutive FADD-dependent Caspase-8 Activation and Cell Death.

    PubMed

    Raghawan, Akhouri Kishore; Sripada, Anand; Gopinath, Gayathri; Pushpanjali, Pendyala; Kumar, Yatender; Radha, Vegesna; Swarup, Ghanshyam

    2017-01-27

    Nod-like receptor family card containing 4 (NLRC4)/Ipaf is involved in recognition of pathogen-associated molecular patterns leading to caspase-1 activation and cytokine release, which mediate protective innate immune response. Point mutations in NLRC4 cause autoinflammatory syndromes. Although all the mutations result in constitutive caspase-1 activation, their phenotypic presentations are different, implying that these mutations cause different alterations in properties of NLRC4. NLRC4 interacts with SUG1 and induces caspase-8-mediated cell death. Here, we show that one of the autoinflammatory syndrome-causing mutants of NLRC4, H443P, but not T337A and V341A, constitutively activates caspase-8 and induces apoptotic cell death in human lung epithelial cells. Compared with wild type NLRC4, the H443P mutant shows stronger interaction with SUG1 and with ubiquitinated cellular proteins. Phosphorylation of NLRC4 at Ser(533) plays a crucial role in caspase-8 activation and cell death. However, H443P mutant does not require Ser(533) phosphorylation for caspase-8 activation and cell death. Caspase-8 activation by NLRC4 and its H443P mutant are dependent on the adaptor protein FADD. A phosphomimicking mutant of NLRC4, S533D does not require SUG1 activity for inducing cell death. Ubiquitin-tagged NLRC4 could induce cell death and activate caspase-8 independent of Ser(533) phosphorylation. Our work suggests that SUG1-mediated signaling results in enhanced ubiquitination and regulates FADD-dependent caspase-8 activation by NLRC4. We show that the autoinflammation-associated H443P mutant is altered in interaction with SUG1 and ubiquitinated proteins, triggering constitutive caspase-8-mediated cell death dependent on FADD but independent of Ser(533) phosphorylation.

  8. T3 enhances thyroid cancer cell proliferation through TRβ1/Oct-1-mediated cyclin D1 activation.

    PubMed

    Perri, Anna; Catalano, Stefania; Bonofiglio, Daniela; Vizza, Donatella; Rovito, Daniela; Qi, Hongyan; Aquila, Saveria; Panza, Salvatore; Rizza, Pietro; Lanzino, Marilena; Andò, Sebastiano

    2014-01-25

    Several studies have demonstrated that thyroid hormone T3 promotes cancer cell growth, even though the molecular mechanism involved in such processes still needs to be elucidated. In this study we demonstrated that T3 induced proliferation in papillary thyroid carcinoma cell lines concomitantly with an up-regulation of cyclin D1 expression, that is a critical mitogen-regulated cell-cycle control element. Our data revealed that T3 enhanced the recruitment of the TRβ1/Oct-1 complex on Octamer-transcription factor-1 site within cyclin D1 promoter, leading to its transactivation. In addition, silencing of TRβ1 or Oct-1 expression by RNA interference reversed both increased cell proliferation and up-regulation of cyclin D1, underlying the important role of both transcriptional factors in mediating these effects. Finally, T3-induced increase in cell growth was abrogated after knocking down cyclin D1 expression. All these findings highlight a new molecular mechanism by which T3 promotes thyroid cancer cell growth.

  9. Synchrotron activation radiotherapy: Effects of dose-rate and energy spectra to tantalum oxide nanoparticles selective tumour cell radiosentization enhancement

    NASA Astrophysics Data System (ADS)

    Engels, E.; Lerch, M.; Tehei, M.; Konstantinov, K.; Guatelli, S.; Rosenfeld, A.; Corde, S.

    2017-01-01

    Synchrotron radiation is unique in its ability to deliver dose at high dose rates using kiloelectronvolt photons. We are investigating the use of Tantalum pentoxide (Ta2O5) nano-structured particles (NSPs) that are to date unexplored in synchrotron radiation fields as they have high atomic number (Z=73) are biocompatible and are therefore potential radio sensitizers. We exposed cell culture flasks containing 9L gliosarcoma tumour cells or Madin-Darby Canine Kidney (MDCK) non-tumour cells to the NSPs and treated the cells using a broad synchrotron beam (140 keV median energy; average dose rate of 50 Gy/s) at the Australian Synchrotron. We compare the results with those from similar cells treated using a conventional 150 kVp orthovoltage field (dose rate of 0.0127 Gy/s). The results reveal that the high dose-rate synchrotron irradiation is more effective at killing the 9L cells relative to the MDCK cells than the orthovoltage irradiation. On the other hand, the NSPs are more effective at radiosensitizing the 9L cells compared to the MDCK cells in the orthovoltage radiation field, which is due to the NSP energy dependence in the kilovoltage energy range. Both the dose rate and energy spectrum need to be considered in future studies with synchrotron activation radiotherapy (SART).

  10. Esterification of Ginsenoside Rh2 Enhanced Its Cellular Uptake and Antitumor Activity in Human HepG2 Cells.

    PubMed

    Chen, Fang; Deng, Ze-Yuan; Zhang, Bing; Xiong, Zeng-Xing; Zheng, Shi-Lian; Tan, Chao-Li; Hu, Jiang-Ning

    2016-01-13

    Our previous research had indicated that the octyl ester derivative of ginsenoside Rh2 (Rh2-O) might have a higher bioavailability than Rh2 in the Caco-2 cell line. The aim of this study was to investigate the cellular uptake and antitumor effects of Rh2-O in human HepG2 cells as well as its underlying mechanism compared with Rh2. Results showed that Rh2-O exhibited a higher cellular uptake (63.24%) than Rh2 (36.76%) when incubated with HepG2 cells for 24 h. Rh2-O possessed a dose- and time-dependent inhibitory effect against the proliferation of HepG2 cells. The IC50 value of Rh2-O for inhibition of HepG2 cell proliferation was 20.15 μM, which was roughly half the value of Rh2. Rh2-O induced apoptosis of HepG2 cells through a mitochondrial-mediated intrinsic pathway. In addition, the accumulation of ROS was detected in Rh2-O-treated HepG2 cells, which participated in the apoptosis of HepG2 cells. Conclusively, the findings above all suggested that Rh2-O as well as Rh2 inducing HepG2 cells apoptosis might involve similar mechanisms; however, Rh2-O had better antitumor activities than Rh2, probably due to its higher cellular uptake.

  11. Arachidonic acid enhances TPA-induced differentiation in human leukemia HL-60 cells via reactive oxygen species-dependent ERK activation.

    PubMed

    Chien, Chih-Chiang; Wu, Ming-Shun; Shen, Shing-Chuan; Yang, Liang-Yo; Wu, Wen-Shin; Chen, Yen-Chou

    2013-04-01

    The phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), is a potent stimulator of differentiation in human leukemia cells; however, the effects of arachidonic acid (AA) on TPA-induced differentiation are still unclear. In the present study, we investigated the contribution of AA to TPA-induced differentiation of human leukemia HL-60 cells. We found that treatment of HL-60 cells with TPA resulted in increases in cell attachment and nitroblue tetrazolium (NBT)-positive cells, which were significantly enhanced by the addition of AA. Stimulation of TPA-induced intracellular reactive oxygen species (ROS) production by AA was detected in HL-60 cells via a DCHF-DA analysis, and the addition of the antioxidant, N-acetyl-cysteine (NAC), was able to reduce TPA+AA-induced differentiation in accordance with suppression of intracellular peroxide elevation by TPA+AA. Furthermore, activation of extracellular-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) by TPA+AA was identified in HL-60 cells, and the ERK inhibitor, PD98059, but not the JNK inhibitor, SP600125, inhibited TPA+AA-induced NBT-positive cells. Suppression of TPA+AA-induced ERK protein phosphorylation by PD98059 and NAC was detected, and AA enhanced ERK protein phosphorylation by TPA was in HL-60 cells. AA clearly increased TPA-induced HL-60 cell differentiation, as evidenced by a marked increase in CD11b expression, which was inhibited by NAC and PD98059 addition. Eicosapentaenoic acid (EPA) as well as AA showed increased intracellular peroxide production and differentiation of HL-60 cells elicited by TPA. Evidence of AA potentiation of differentiation by TPA in human leukemia cells HL-60 via activation of ROS-dependent ERK protein phosphorylation was first demonstrated herein.

  12. PTEN enhances G2/M arrest in etoposide-treated MCF‑7 cells through activation of the ATM pathway.

    PubMed

    Zhang, Ruopeng; Zhu, Li; Zhang, Lirong; Xu, Anli; Li, Zhengwei; Xu, Yijuan; He, Pei; Wu, Maoqing; Wei, Fengxiang; Wang, Chenhong

    2016-05-01

    As an effective tumor suppressor, phosphatase and tensin homolog (PTEN) has attracted the increased attention of scientists. Recent studies have shown that PTEN plays unique roles in the DNA damage response (DDR) and can interact with the Chk1 pathway. However, little is known about how PTEN contributes to DDR through the ATM-Chk2 pathway. It is well-known that etoposide induces G2/M arrest in a variety of cell lines, including MCF-7 cells. The DNA damage-induced G2/M arrest results from the activation of protein kinase ataxia telangiectasia mutated (ATM), followed by the activation of Chk2 that subsequently inactivates CDC25C, resulting in G2/M arrest. In the present study, we assessed the contribution of PTEN to the etoposide-induced G2/M cell cycle arrest. PTEN was knocked down in MCF-7 cells by specific shRNA, and the effects of PTEN on the ATM-Chk2 pathway were investigated through various approaches. The results showed that knockdown of PTEN strongly antagonized ATM activation in response to etoposide treatment, and thereby reduced the phosphorylation level of ATM substrates, including H2AX, P53 and Chk2. Furthermore, depletion of PTEN reduced the etoposide-induced phosphorylation of CDC25C and strikingly compromised etoposide-induced G2/M arrest in the MCF-7 cells. Altogether, we demonstrated that PTEN plays a unique role in etoposide-induced G2/M arrest by facilitating the activation of the ATM pathway, and PTEN was required for the proper activation of checkpoints in response to DNA damage in MCF-7 cells.

  13. Rho A and the Rho kinase pathway regulate fibroblast contraction: Enhanced contraction in constitutively active Rho A fibroblast cells

    SciTech Connect

    Nobe, Koji; Nobe, Hiromi; Yoshida, Hiroko; Kolodney, Michael S.; Paul, Richard J.; Honda, Kazuo

    2010-08-20

    Research highlights: {yields} Mechanisms of fibroblast cell contraction in collagen matrix. {yields} Assessed an isometric force development using 3D-reconstituted-fibroblast fiber. {yields} Constitutively active Rho A induced the over-contraction of fibroblast cells. {yields} Rho A and Rho kinase pathway has a central role in fibroblast cell contraction. -- Abstract: Fibroblast cells play a central role in the proliferation phase of wound healing processes, contributing to force development. The intracellular signaling pathways regulating this non-muscle contraction are only partially understood. To study the relations between Rho A and contractile responses, constitutively active Rho A (CA-Rho A) fibroblast cells were reconstituted into fibers and the effects of calf serum (CS) on isometric force were studied. CS-induced force in CA-Rho A fibroblast fibers was twice as large as that in wild type (NIH 3T3) fibroblast fibers. During this response, the translocation of Rho A from the cytosol to the membrane was detected by Rho A activity assays and Western blot analysis. Pre-treatment with a Rho specific inhibitor (C3-exoenzyme) suppressed translocation as well as contraction. These results indicate that Rho A activation is essential for fibroblast contraction. The Rho kinase inhibitor ( (Y27632)) inhibited both NIH 3T3 and CA-Rho A fibroblast fiber contractions. Activation of Rho A is thus directly coupled with Rho kinase activity. We conclude that the translocation of Rho A from the cytosol to the membrane and the Rho kinase pathway can regulate wound healing processes mediated by fibroblast contraction.

  14. Hypoxic preconditioning of human cardiosphere-derived cell sheets enhances cellular functions via activation of the PI3K/Akt/mTOR/HIF-1α pathway

    PubMed Central

    Tanaka, Yuya; Hosoyama, Tohru; Mikamo, Akihito; Kurazumi, Hiroshi; Nishimoto, Arata; Ueno, Koji; Shirasawa, Bungo; Hamano, Kimikazu

    2017-01-01

    Cell sheet technology is a promising therapeutic strategy for the treatment of ischemic diseases such as myocardial infarction. We recently developed a novel protocol, termed “hypoxic preconditioning,” capable of augmenting the therapeutic efficacy of cell sheets. Following this protocol, the pro-angiogenic and anti-fibrotic activity of cell sheets were enhanced by brief incubation of cell sheets under hypoxic culture conditions. However, the precise molecular mechanism underlying the hypoxic preconditioning of cell sheets is unclear. In the present study, we examined signal transducers in cell sheets to identify those responsive to hypoxic preconditioning, using cardiosphere-derived cell (CDC) sheets. We initially tested whether sheet-like structures were suitable for hypoxic preconditioning by comparing them with individual cells. Hypoxic preconditioning was more effective in sheeted cells than in individual cells. Expression of hypoxia inducible factor-1α (HIF-1α) and mammalian target of rapamycin (mTOR) were induced upon hypoxic preconditioning of cell sheets, as was the phosphoinositide 3-kinase (PI3K)/Akt pathway. In addition, hypoxic preconditioning increased phosphorylation of epidermal growth factor receptor (EGFR) and heat shock protein 60 (HSP60) in CDC sheets. Our findings provide novel insights into the utility of hypoxic preconditioning in cell sheet-based technologies for the treatment of ischemic diseases. PMID:28337294

  15. Genome Wide Mapping of NR4A Binding Reveals Cooperativity with ETS Factors to Promote Epigenetic Activation of Distal Enhancers in Acute Myeloid Leukemia Cells

    PubMed Central

    Duren, Ryan P.; Boudreaux, Seth P.; Conneely, Orla M.

    2016-01-01

    Members of the NR4A subfamily of orphan nuclear receptors regulate cell fate decisions via both genomic and non-genomic mechanisms in a cell and tissue selective manner. NR4As play a key role in maintenance of hematopoietic stem cell homeostasis and are critical tumor suppressors of acute myeloid leukemia (AML). Expression of NR4As is broadly silenced in leukemia initiating cell enriched populations from human patients relative to normal hematopoietic stem/progenitor cells. Rescue of NR4A expression in human AML cells inhibits proliferation and reprograms AML gene signatures via transcriptional mechanisms that remain to be elucidated. By intersecting an acutely regulated NR4A1 dependent transcriptional profile with genome wide NR4A binding distribution, we now identify an NR4A targetome of 685 genes that are directly regulated by NR4A1. We show that NR4As regulate gene transcription primarily through interaction with distal enhancers that are co-enriched for NR4A1 and ETS transcription factor motifs. Using a subset of NR4A activated genes, we demonstrate that the ETS factors ERG and FLI-1 are required for activation of NR4A bound enhancers and NR4A target gene induction. NR4A1 dependent recruitment of ERG and FLI-1 promotes binding of p300 histone acetyltransferase to epigenetically activate NR4A bound enhancers via acetylation at histone H3K27. These findings disclose novel epigenetic mechanisms by which NR4As and ETS factors cooperate to drive NR4A dependent gene transcription in human AML cells. PMID:26938745

  16. β-Adrenoceptor activation enhances L-type calcium channel currents in anterior piriform cortex pyramidal cells of neonatal mice: implication for odor learning.

    PubMed

    Ghosh, Abhinaba; Mukherjee, Bandhan; Chen, Xihua; Yuan, Qi

    2017-03-01

    Early odor preference learning occurs in one-week-old rodents when a novel odor is paired with a tactile stimulation mimicking maternal care. β-Adrenoceptors and L-type calcium channels (LTCCs) in the anterior piriform cortex (aPC) are critically involved in this learning. However, whether β-adrenoceptors interact directly with LTCCs in aPC pyramidal cells is unknown. Here we show that pyramidal cells expressed significant LTCC currents that declined with age. β-Adrenoceptor activation via isoproterenol age-dependently enhanced LTCC currents. Nifedipine-sensitive, isoproterenol enhancement of calcium currents was only observed in post-natal day 7-10 mice. APC β-adrenoceptor activation induced early odor preference learning was blocked by nifedipine coinfusion.

  17. A genomic region encompassing a newly identified exon provides enhancing activity sufficient for normal myo7aa expression in zebrafish sensory hair cells.

    PubMed

    Ernest, Sylvain; Rosa, Frédéric M

    2015-09-01

    MYO7A is an unconventional myosin involved in the structural organization of hair bundles at the apex of sensory hair cells (SHCs) where it serves mechanotransduction in the process of hearing and balance. Mutations of MYO7A are responsible for abnormal shaping of hair bundles, resulting in human deafness and murine deafness/circling behavior. Myo7aa, expressed in SHCs of the inner ear and lateral line of zebrafish, causes circling behavior and abnormal hair cell function when deficient in mariner mutant. This work identifies a new hair cell-specific enhancer, highly conserved between species, located within Intron 2-3 of zebrafish myosin 7a (myo7aa) gene. This enhancer is contained within a 761-bp DNA fragment that encompasses a newly identified Exon of myo7aa and whose activity does not depend on orientation. Compensation of mariner mutation by expression of mCherry-Myo7aa fusion protein under the control of this 761-bp DNA fragment results in recovery of balance, normal hair bundle shape and restored hair cell function. Two smaller adjacent fragments (344-bp and 431-bp), extracted from the 761-bp fragment, both show hair cell-specific enhancing activity, with apparently reduced intensity and coverage. These data should help understand the role of Myo7aa in sensory hair cell differentiation and function. They provide tools to decipher how myo7aa gene is expressed and regulated in SHCs by allowing the identification of potential transcription factors involved in this process. The discovered enhancer could represent a new target for the identification of deafness-causing mutations affecting human MYO7A.

  18. Cocaine Enhances DC to T-cell HIV-1 Transmission by Activating DC-SIGN/LARG/LSP1 Complex and Facilitating Infectious Synapse Formation

    PubMed Central

    Prasad, Anil; Kulkarni, Rutuja; Jiang, Shuxian; Groopman, Jerome E.

    2017-01-01

    DC-SIGN is a dendritic cell surface structure which participates in binding and transmission of HIV-1. Here, for the first time we demonstrate that cocaine induces over expression of DC-SIGN and significantly enhances virus transfer from DCs to T-cells by increasing the binding and internalization of HIV-1 in DCs. We found that cocaine activates a DC-SIGN mediated ‘signalosome’ complex by enhancing its association with LARG and LSP1. Further, LARG was observed to participate in DC-SIGN mediated internalization of HIV-1 in DCs. Intracellular trafficking studies of HIV-1 in cocaine treated DCs revealed increased co-localization of HIV-1 with endosomal or multi vesicular body (MVB) markers such as CD81 and VPS4 and decreased co-localization with the phagolysomal marker LAMP1; this signified altered intracellular trafficking and decreased degradation of HIV-1 in cocaine treated DCs. Furthermore, we found that cocaine induced activation of LARG which in turn activated Rho A and the focal adhesion molecules FAK, Pyk2 and paxillin. This signaling cascade enhanced the formation of an infectious synapse between DCs and T-cells. Our study provides insight into the molecular mechanisms of cocaine’s contribution to key components in HIV pathogenesis and highlights novel targets for interrupting the virus life cycle in substance using hosts. PMID:28094782

  19. Activation of the erythroid K-Cl cotransporter Kcc1 enhances sickle cell disease pathology in a humanized mouse model.

    PubMed

    Brown, Fiona C; Conway, Ashlee J; Cerruti, Loretta; Collinge, Janelle E; McLean, Catriona; Wiley, James S; Kile, Ben T; Jane, Stephen M; Curtis, David J

    2015-12-24

    We used an N-ethyl-N-nitrosurea-based forward genetic screen in mice to identify new genes and alleles that regulate erythropoiesis. Here, we describe a mouse line expressing an activated form of the K-Cl cotransporter Slc12a4 (Kcc1), which results in a semi-dominant microcytosis of red cells. A missense mutation from methionine to lysine in the cytoplasmic tail of Kcc1 impairs phosphorylation of adjacent threonines required for inhibiting cotransporter activity. We bred Kcc1(M935K) mutant mice with a humanized mouse model of sickle cell disease to directly explore the relevance of the reported increase in KCC activity in disease pathogenesis. We show that a single mutant allele of Kcc1 induces widespread sickling and tissue damage, leading to premature death. This mouse model reveals important new insights into the regulation of K-Cl cotransporters and provides in vivo evidence that increased KCC activity worsened end-organ damage and diminished survival in sickle cell disease.

  20. Enhanced natural killer cell activation by exopolysaccharides derived from yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1.

    PubMed

    Makino, Seiya; Sato, Asako; Goto, Ayako; Nakamura, Marie; Ogawa, Miho; Chiba, Yoshika; Hemmi, Jun; Kano, Hiroshi; Takeda, Kazuyoshi; Okumura, Ko; Asami, Yukio

    2016-02-01

    Yogurt is generally recognized as a beneficial food for our health, but research into its physiological effects has focused mainly on intestinal dysfunctions such as constipation and diarrhea. We previously found yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1 (hereafter OLL1073R-1) could reduce risks of catching the common cold and flu in human trials. It was assumed that immunostimulatory exopolysaccharide (EPS) produced from OLL1073R-1 play an important role in this context. However, few studies have examined the immunostimulatory effects of traditional Bulgarian yogurts fermented with different strains of lactobacilli and their metabolites. Therefore, we screened 139 L. delbrueckii ssp. bulgaricus strains and identified OLL1073R-1 as the most robust producer of EPS. This strain was also the only strain that induced the production of IFN-γ in vitro. Oral administration of the EPS or yogurt fermented with OLL1073R-1 and Streptococcus thermophilus OLS3059 (OLL1073R-1 yogurt) augmented natural killer (NK) cell activity and induced IFN-γ production in spleen cells in mice, whereas 2 other yogurts fermented with other strains had no effect on NK cell activity. Cellular preparations of the OLL1073R-1 strain also slightly augmented NK cell activity, but were less effective than EPS itself. The EPS-dependent stimulation of NK cell activity was abrogated in IFN-γ knockout mice and in myeloid differentiation factor 88 knockout mice. Furthermore, IFN-γ production from spleen cells stimulated with EPS was completely blocked with both anti-IL-12 and anti-IL-18 antibodies in vitro. These findings suggest that NK cell activation by OLL1073R-1 yogurt is EPS-dependent, occurs via IL-12- and IL-18-mediated IFN-γ production, and requires myeloid differentiation factor 88. We showed that traditional Bulgarian yogurt could exert immunostimulatory effects by selecting starter strains and part of the mechanisms depend on IFN-γ inducible EPS produced

  1. IL-33 Enhances Humoral Immunity Against Chronic HBV Infection Through Activating CD4(+)CXCR5(+) TFH Cells.

    PubMed

    Zhao, Ping-Wei; Shi, Xu; Li, Cong; Ayana, Desalegn Admassu; Niu, Jun-Qi; Feng, Jun-Yan; Wang, Juan; Jiang, Yan-Fang

    2015-06-01

    This study aimed to investigate the potential effect of interleukin 33 (IL-33) on humoral responses to hepatitis B virus (HBV) and the possible mechanisms underlying the action of IL-33 in regulating follicular helper T (TFH) cells. The impact of IL-33 treatment on the levels of serum HBV DNA, HBsAg, HBeAg, HBsAb, and HBeAb, as well as the frequencies of CD4(+)CXCR5(+) TFH cells in wild-type HBV transgenic (HBV-Tg) mice and in a transwell coculture of HepG2.2.15 with IL-33-treated peripheral blood mononuclear cells (PBMCs) were determined. Furthermore, the gene transcription profiles in IL-33-treated TFH cells were determined by microarrays. IL-33 treatment significantly reduced the levels of serum HBV DNA, HBsAg, and HBeAg, but increased the levels of HBsAb and HBeAb in HBV-Tg mice, accompanied by increased frequency of splenic infiltrating CD4(+)CXCR5(+) TFH cells in HBV-Tg. Similarly, coculture of HepG2.2.15 cells with IL-33-treated PBMCs reduced the levels of HBV DNA, HBsAg, and HBeAg, but increased the levels of HBsAb and HBeAb. Microarray analyses indicated that IL-33 significantly modulated the transcription of many genes involved in regulating TFH activation and differentiation. Our findings suggest that IL-33 may activate TFH cells, promoting humoral responses to HBV during the pathogenic process.

  2. Intratumoral hu14.18-IL-2 (IC) induces local and systemic antitumor effects that involve both activated T and NK cells as well as enhanced IC retention.

    PubMed

    Yang, Richard K; Kalogriopoulos, Nicholas A; Rakhmilevich, Alexander L; Ranheim, Erik A; Seo, Songwon; Kim, Kyungmann; Alderson, Kory L; Gan, Jacek; Reisfeld, Ralph A; Gillies, Stephen D; Hank, Jacquelyn A; Sondel, Paul M

    2012-09-01

    hu14.18-IL-2 (IC) is an immunocytokine consisting of human IL-2 linked to hu14.18 mAb, which recognizes the GD2 disialoganglioside. Phase 2 clinical trials of i.v. hu14.18-IL-2 (i.v.-IC) in neuroblastoma and melanoma are underway and have already demonstrated activity in neuroblastoma. We showed previously that intratumoral hu14.18-IL-2 (IT-IC) results in enhanced antitumor activity in mouse models compared with i.v.-IC. The studies presented in this article were designed to determine the mechanisms involved in this enhanced activity and to support the future clinical testing of intratumoral administration of immunocytokines. Improved survival and inhibition of growth of both local and distant tumors were observed in A/J mice bearing s.c. NXS2 neuroblastomas treated with IT-IC compared with those treated with i.v.-IC or control mice. The local and systemic antitumor effects of IT-IC were inhibited by depletion of NK cells or T cells. IT-IC resulted in increased NKG2D receptors on intratumoral NKG2A/C/E⁺ NKp46⁺ NK cells and NKG2A/C/E⁺ CD8⁺ T cells compared with control mice or mice treated with i.v.-IC. NKG2D levels were augmented more in tumor-infiltrating lymphocytes compared with splenocytes, supporting the localized nature of the intratumoral changes induced by IT-IC treatment. Prolonged retention of IC at the tumor site was seen with IT-IC compared with i.v.-IC. Overall, IT-IC resulted in increased numbers of activated T and NK cells within tumors, better IC retention in the tumor, enhanced inhibition of tumor growth, and improved survival compared with i.v.-IC.

  3. Inhibition of postbinding target cell lysis and of lymphokine-induced enhancement of human natural killer cell activity by in vitro exposure to ultraviolet B radiation

    SciTech Connect

    Elmets, C.A.; Larson, K.; Urda, G.A.; Schacter, B.

    1987-01-01

    In vitro exposure of human peripheral blood mononuclear cells (PBMC) to ultraviolet B (uvB) radiation has been shown to inhibit natural killer (NK) cell-mediated cytotoxicity in a dose-dependent fashion. The purpose of this study was to examine the manner by which uvB produced these deleterious effects. Inhibition of NK activity was not due to lethal injury to NK cells since the viability of cell populations enriched for NK activity was greater than 90% with the uvB doses employed. uvB appeared to directly affect NK cells since procedures which removed suppressor mechanisms, such as removal of monocytes and pharmacologic inhibition of the cyclooxygenase pathway, failed to reverse the response. Furthermore, no suppression of activity of unirradiated NK cells could be produced by coincubation of unirradiated NK cells with uv-irradiated NK cells. When the single cell assay for binding and killing was employed to determine at which stage in the lytic sequence inhibition occurred, it was found that binding was normal but lysis of bound targets and the recycling capacity of active NK cells were markedly reduced. At uvB doses above 50 J/m2, both interferon alpha (IFN-alpha) and interleukin 2 (IL-2) were ineffective in augmenting NK cell-mediated cytotoxic reactions after cells had been irradiated with uvB. Furthermore, incubation of NK cells with IFN-alpha prior to irradiation failed to protect against the inhibitory effects. These studies provide evidence that in vitro exposure of NK cells to uvB radiation inhibits their function by a direct nonlethal effect and that this inhibition occurs selectively at the postbinding stage of target cell lysis.

  4. Activation of group I metabotropic glutamate receptors enhances persistent sodium current and rhythmic bursting in main olfactory bulb external tufted cells

    PubMed Central

    Ennis, Matthew

    2013-01-01

    Rhythmically bursting olfactory bulb external tufted (ET) cells are thought to play a key role in synchronizing glomerular network activity to respiratory-driven sensory input. Whereas spontaneous bursting in these cells is intrinsically generated by interplay of several voltage-dependent currents, bursting strength and frequency can be modified by local intrinsic and centrifugal synaptic input. Activation of metabotropic glutamate receptors (mGluRs) engages a calcium-dependent cation current (ICAN) that increases rhythmic bursting, but mGluRs may also modulate intrinsic mechanisms involved in bursting. Here, we used patch-clamp electrophysiology in rat olfactory bulb slices to investigate whether mGluRs modulate two key intrinsic currents involved in ET cell burst initiation: persistent sodium (INaP) and hyperpolarization-activated cation (Ih) currents. Using a BAPTA-based internal solution to block ICAN, we found that the mGluR1/5 agonist DHPG enhanced INaP but did not alter Ih. INaP enhancement consisted of increased current at membrane potentials between −60 and −50 mV and a hyperpolarizing shift in activation threshold. Both effects would be predicted to shorten the interburst interval. In agreement, DHPG modestly depolarized (∼3.5 mV) ET cells and increased burst frequency without effect on other major burst parameters. This increase was inversely proportional to the basal burst rate such that slower ET cells exhibited the largest increases. This may enable ET cells with slow intrinsic burst rates to pace with faster sniff rates. Taken with other findings, these results indicate that multiple neurotransmitter mechanisms are engaged to fine-tune rhythmic ET cell bursting to context- and state-dependent changes in sniffing frequency. PMID:24225539

  5. Increased 1-aminocyclopropane-1-carboxylate deaminase activity enhances Agrobacterium tumefaciens-mediated gene delivery into plant cells.

    PubMed

    Someya, Tatsuhiko; Nonaka, Satoko; Nakamura, Kouji; Ezura, Hiroshi

    2013-10-01

    Agrobacterium-mediated transformation is a useful tool for the genetic modification in plants, although its efficiency is low for several plant species. Agrobacterium-mediated transformation has three major steps in laboratory-controlled experiments: the delivery of T-DNA into plant cells, the selection of transformed plant cells, and the regeneration of whole plants from the selected cells. Each of these steps must be optimized to improve the efficiency of Agrobacterium-mediated plant transformation. It has been reported that increasing the number of cells transformed by T-DNA delivery can improve the frequency of stable transformation. Previously, we demonstrated that a reduction in ethylene production by plant cells during cocultivation with A. tumefaciens-expressing 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase resulted in increased T-DNA delivery into the plant cells. In this study, to further improve T-DNA delivery by A. tumefaciens, we modified the expression cassette of the ACC deaminase gene using vir gene promoter sequences. The ACC deaminase gene driven by the virD1 promoter was expressed at a higher level, resulting in a higher ACC deaminase activity in this A. tumefaciens strain than in the strain with the lac promoter used in a previous study. The newly developed A. tumefaciens strain improves the delivery of T-DNA into Solanum lycopersicum (tomato) and Erianthus ravennae plants and thus may be a powerful tool for the Agrobacterium-mediated genetic engineering of plants.

  6. SHP2 phosphatase promotes mast cell chemotaxis toward stem cell factor via enhancing activation of the Lyn/Vav/Rac signaling axis.

    PubMed

    Sharma, Namit; Everingham, Stephanie; Ramdas, Baskar; Kapur, Reuben; Craig, Andrew W B

    2014-05-15

    SHP2 protein-tyrosine phosphatase (encoded by Ptpn11) positively regulates KIT (CD117) signaling in mast cells and is required for mast cell survival and homeostasis in mice. In this study, we uncover a role of SHP2 in promoting chemotaxis of mast cells toward stem cell factor (SCF), the ligand for KIT receptor. Using an inducible SHP2 knockout (KO) bone marrow-derived mast cell (BMMC) model, we observed defects in SCF-induced cell spreading, polarization, and chemotaxis. To address the mechanisms involved, we tested whether SHP2 promotes activation of Lyn kinase that was previously shown to promote mast cell chemotaxis. In SHP2 KO BMMCs, SCF-induced phosphorylation of the inhibitory C-terminal residue (pY507) was elevated compared with control cells, and phosphorylation of activation loop (pY396) was diminished. Because Lyn also was detected by substrate trapping assays, these results are consistent with SHP2 activating Lyn directly by dephosphorylation of pY507. Further analyses revealed a SHP2- and Lyn-dependent pathway leading to phosphorylation of Vav1, Rac activation, and F-actin polymerization in SCF-treated BMMCs. Treatment of BMMCs with a SHP2 inhibitor also led to impaired chemotaxis, consistent with SHP2 promoting SCF-induced chemotaxis of mast cells via a phosphatase-dependent mechanism. Thus, SHP2 inhibitors may be useful to limit SCF/KIT-induced mast cell recruitment to inflamed tissues or the tumor microenvironment.

  7. Engineering the cellular protein secretory pathway for enhancement of recombinant tissue plasminogen activator expression in Chinese hamster ovary cells: effects of CERT and XBP1s genes.

    PubMed

    Rahimpour, Azam; Vaziri, Behrouz; Moazzami, Reza; Nematollahi, Leila; Barkhordari, Farzaneh; Kokabee, Leila; Adeli, Ahmad; Mahboudi, Fereidoun

    2013-08-01

    Cell line development is the most critical and also the most time-consuming step in the production of recombinant therapeutic proteins. In this regard, a variety of vector and cell engineering strategies have been developed for generating high-producing mammalian cells; however, the cell line engineering approach seems to show various results on different recombinant protein producer cells. In order to improve the secretory capacity of a recombinant tissue plasminogen activator (t-PA)-producing Chinese hamster ovary (CHO) cell line, we developed cell line engineering approaches based on the ceramide transfer protein (CERT) and X-box binding protein 1 (XBP1) genes. For this purpose, CERT S132A, a mutant form of CERT that is resistant to phosphorylation, and XBP1s were overexpressed in a recombinant t-PA-producing CHO cell line. Overexpression of CERT S132A increased the specific productivity of t-PA-producing CHO cells up to 35%. In contrast, the heterologous expression of XBP1s did not affect the t-PA expression rate. Our results suggest that CERTS132A- based secretion engineering could be an effective strategy for enhancing recombinant t- PA production in CHO cells.

  8. Isorhamnetin flavonoid synergistically enhances the anticancer activity and apoptosis induction by cis-platin and carboplatin in non-small cell lung carcinoma (NSCLC).

    PubMed

    Zhang, Bao-Yi; Wang, Yan-Ming; Gong, Hai; Zhao, Hui; Lv, Xiao-Yan; Yuan, Guang-Hui; Han, Shao-Rong

    2015-01-01

    The development of novel antitumor drugs for the treatment of non-small cell lung carcinoma NSCLC is imperative in order to improve the efficacy of lung cancer therapy and prognosis. In the current study, we demonstrated the antitumor activity of isorhamnetin and its combinations with cisplatin and carboplatin against A-549 lung cancer cells. In order to assess the anticancer enhancing effect of isorhamnetin on cisplatin and carboplatin, A-549 cells were treated with isorhamnetin, cisplatin, carboplatin and their combinations and cell viability, cell apoptosis, cell cycle arrest as well as loss of mitochondrial membrane potential were evaluated by MTT assay, flow cytometry, confocal microscopy and fluorescence microscopy. The effect of the drugs on cancer cell migration, microtubule depolymerization as well activation of caspases was also studied. The results revealed that, as compared to single drug treatment, the combination of isorhamnetin with cisplatin and carboplatin resulted in greater effect in inhibiting cancer cell growth and inducing apoptosis. Combination of isorhamnetin with cisplatin and carboplatin resulted in more potent apoptosis induction as revealed by fluorescence microscopy using AO/PI double staining. Isorhamnetin and its combinations also triggered microtubule distortion and depolymerization. The combination of isorhamnetin with cisplatin and carboplatin increased the number of cells in G2/M phase dramatically as compared to single drug treatment. Moreover, isorhamnetin and its combinations with known anticancer drugs induced disruption of the mitochondrial membrane potential as well as activation of caspases 3, 9 and poly-(ADP-ribose) polymerase in A-549 cells. Isorhamnetin as well as its combinations with cisplatin and carboplatin resulted in inhibition of cancer cell migration significantly. Results of the current study suggest that isorhamnetin combinations with cisplatin and carboplatin might be a potential clinical chemotherapeutic

  9. Adapted physical exercise enhances activation and differentiation potential of satellite cells in the skeletal muscle of old mice.

    PubMed

    Cisterna, Barbara; Giagnacovo, Marzia; Costanzo, Manuela; Fattoretti, Patrizia; Zancanaro, Carlo; Pellicciari, Carlo; Malatesta, Manuela

    2016-05-01

    During ageing, a progressive loss of skeletal muscle mass and a decrease in muscle strength and endurance take place, in the condition termed sarcopenia. The mechanisms of sarcopenia are complex and still unclear; however, it is known that muscle atrophy is associated with a decline in the number and/or efficiency of satellite cells, the main contributors to muscle regeneration. Physical exercise proved beneficial in sarcopenia; however, knowledge of the effect of adapted physical exercise on the myogenic properties of satellite cells in aged muscles is limited. In this study the amount and activation state of satellite cells as well as their proliferation and differentiation potential were assessed in situ by morphology, morphometry and immunocytochemistry at light and transmission electron microscopy on 28-month-old mice submitted to adapted aerobic physical exercise on a treadmill. Sedentary age-matched mice served as controls, and sedentary adult mice were used as a reference for an unperturbed control at an age when the capability of muscle regeneration is still high. The effect of physical exercise in aged muscles was further analysed by comparing the myogenic potential of satellite cells isolated from old running and old sedentary mice using an in vitro system that allows observation of the differentiation process under controlled experimental conditions. The results of this ex vivo and in vitro study demonstrated that adapted physical exercise increases the number and activation of satellite cells as well as their capability to differentiate into structurally and functionally correct myotubes (even though the age-related impairment in myotube formation is not fully reversed): this evidence further supports adapted physical exercise as a powerful, non-pharmacological approach to counteract sarcopenia and the age-related deterioration of satellite cell capabilities even at very advanced age.

  10. Aspirin enhances the cytotoxic activity of bortezomib against myeloma cells via suppression of Bcl-2, survivin and phosphorylation of AKT

    PubMed Central

    Ding, Jiang-Hua; Yuan, Li-Ya; Chen, Guo-An

    2017-01-01

    In our previous study, it was found that aspirin (ASA) exerted antimyeloma actions in vivo and in vitro. The resistance to bortezomib (BTZ) in multiple myeloma (MM) is partly due to AKT activation and the upregulation of survivin induced by BTZ, which are the targets of ASA in gastric and ovarian cancer, respectively. Thus, the present study investigated the interaction between ASA and BTZ in MM and further clarified the underlying mechanisms. MM1.S and RPMI-8226 cell lines harboring the N- and K-Ras mutations, respectively, were treated with 2.5 mM ASA, 10 nM BTZ and ASA+BTZ for different durations. The proliferation and apoptosis of the cells were determined, and the underlying mechanisms governing the interaction of ASA and BTZ were examined in the MM cells. Treatment with ASA+BTZ caused higher rates of proliferative inhibition and apoptosis in the MM1.S and RPMI-8226 cells in time-dependent manner, compared with either agent alone. A drug interaction assay revealed the additive effect of ASA and BTZ on the myeloma cells. ASA alone inhibited the levels of phosphorylated AKT (p-AKT) and survivin, whereas BTZ alone augmented the levels of p-AKT and survivin. Of note, ASA markedly decreased the upregulation of p-AKT and survivin induced by BTZ. Treatment with ASA+BTZ significantly suppressed the level of Bcl-2, compared with either agent alone. ASA may potentiate the antimyeloma activity of BTZ against myeloma cells via suppression of AKT phosphorylation, survivin and Bcl-2, indicating the potential of ASA+BTZ in treating MM, particularly for cases of BTZ-refractory/relapsed MM. PMID:28356941

  11. Cerium Oxide Nanoparticle Modified Scaffold Interface Enhances Vascularization of Bone Grafts by Activating Calcium Channel of Mesenchymal Stem Cells.

    PubMed

    Xiang, Junyu; Li, Jianmei; He, Jian; Tang, Xiangyu; Dou, Ce; Cao, Zhen; Yu, Bo; Zhao, Chunrong; Kang, Fei; Yang, Lu; Dong, Shiwu; Yang, Xiaochao

    2016-02-01

    Insufficient blood perfusion is one of the critical problems that hamper the clinical application of tissue engineering bone (TEB). Current methods for improving blood vessel distribution in TEB mainly rely on delivering exogenous angiogenic factors to promote the proliferation, migration, differentiation, and vessel formation of endothelial cells (ECs) and/or endothelial progenitor cells (EPCs). However, obstacles including limited activity preservation, difficulty in controlled release, and high cost obstructed the practical application of this strategy. In this study, TEB scaffold were modified with cerium oxide nanoparticles (CNPs) and the effects of CNPs existed at the scaffold surface on the growth and paracrine behavior of mesenchymal stem cells (MSCs) were investigated. The CNPs could improve the proliferation and inhibit the apoptosis of MSCs. Meanwhile, the interaction between the cell membrane and the nanoparticle surface could activate the calcium channel of MSCs leading to the rise of intracellular free Ca(2+) level, which subsequently augments the stability of HIF-1α. These chain reactions finally resulted in high expression of angiogenic factor VEGF. The improved paracrine of VEGF could thereby promote the proliferation, differentiation, and tube formation ability of EPCs. Most importantly, in vivo ectopic bone formation experiment demonstrated this method could significantly improve the blood vessel distribution inside of TEB.

  12. Ceramide mediates FasL-induced caspase 8 activation in colon carcinoma cells to enhance FasL-induced cytotoxicity by tumor-specific cytotoxic T lymphocytes

    PubMed Central

    Coe, Genevieve L.; Redd, Priscilla S.; Paschall, Amy V.; Lu, Chunwan; Gu, Lilly; Cai, Houjian; Albers, Thomas; Lebedyeva, Iryna O.; Liu, Kebin

    2016-01-01

    FasL-mediated cytotoxicity is one of the mechanisms that CTLs use to kill tumor cells. However, human colon carcinoma often deregulates the Fas signaling pathway to evade host cancer immune surveillance. We aimed at testing the hypothesis that novel ceramide analogs effectively modulate Fas function to sensitize colon carcinoma cells to FasL-induced apoptosis. We used rational design and synthesized twenty ceramide analogs as Fas function modulators. Five ceramide analogs, IG4, IG7, IG14, IG17, and IG19, exhibit low toxicity and potent activity in sensitization of human colon carcinoma cells to FasL-induced apoptosis. Functional deficiency of Fas limits both FasL and ceramide analogs in the induction of apoptosis. Ceramide enhances FasL-induced activation of the MAPK, NF-κB, and caspase 8 despite induction of potent tumor cell death. Finally, a sublethal dose of several ceramide analogs significantly increased CTL-mediated and FasL-induced apoptosis of colon carcinoma cells. We have therefore developed five novel ceramide analogs that act at a sublethal dose to enhance the efficacy of tumor-specific CTLs, and these ceramide analogs hold great promise for further development as adjunct agents in CTL-based colon cancer immunotherapy. PMID:27487939

  13. Dendropanoxide induces autophagy through ERK1/2 activation in MG-63 human osteosarcoma cells and autophagy inhibition enhances dendropanoxide-induced apoptosis.

    PubMed

    Lee, Ji-Won; Kim, Kyoung-Sook; An, Hyun-Kyu; Kim, Cheorl-Ho; Moon, Hyung-In; Lee, Young-Choon

    2013-01-01

    Anticancer effects of dendropanoxide (DP) newly isolated from leaves and stem of Dendropanax morbifera Leveille were firstly investigated in this study. DP inhibited cell proliferation and induced apoptosis in dose- and time-dependent manner in MG-63 human osteosarcoma cells, which was dependent on the release of cytochrome c to the cytosol and the activation of caspases. Moreover, the DP-treated cells exhibited autophagy, as characterized by the punctuate patterns of microtubule-associated protein 1 light chain 3 (LC3) by confocal microscopy and the appearance of autophagic vacuoles by MDC staining. The expression levels of ATG7, Beclin-1 and LC3-II were also increased by DP treatment. Inhibition of autophagy by 3-methyladenine (3-MA) and wortmannin (Wort) significantly enhanced DP-induced apoptosis. DP treatment also caused a time-dependent increase in protein levels of extracellular signal-regulated kinase 1 and 2 (ERK1/2), and inhibition of ERK1/2 phosphorylation with U0126 resulted in a decreased DP-induced autophagy that was accompanied by an increased apoptosis and a decreased cell viability. These results indicate a cytoprotective function of autophagy against DP-induced apoptosis and suggest that the combination of DP treatment with autophagy inhibition may be a promising strategy for human osteosarcoma control. Taken together, this study demonstrated for the first time that DP could induce autophagy through ERK1/2 activation in human osteosarcoma cells and autophagy inhibition enhanced DP-induced apoptosis.

  14. Peroxisome proliferator-activated receptor-γ activation enhances insulin-stimulated glucose disposal by reducing ped/pea-15 gene expression in skeletal muscle cells: evidence for involvement of activator protein-1.

    PubMed

    Ungaro, Paola; Mirra, Paola; Oriente, Francesco; Nigro, Cecilia; Ciccarelli, Marco; Vastolo, Viviana; Longo, Michele; Perruolo, Giuseppe; Spinelli, Rosa; Formisano, Pietro; Miele, Claudia; Beguinot, Francesco

    2012-12-14

    The gene network responsible for inflammation-induced insulin resistance remains enigmatic. In this study, we show that, in L6 cells, rosiglitazone- as well as pioglitazone-dependent activation of peroxisome proliferator-activated receptor-γ (PPARγ) represses transcription of the ped/pea-15 gene, whose increased activity impairs glucose tolerance in mice and humans. Rosiglitazone enhanced insulin-induced glucose uptake in L6 cells expressing the endogenous ped/pea-15 gene but not in cells expressing ped/pea-15 under the control of an exogenous promoter. The ability of PPARγ to affect ped/pea-15 expression was also lost in cells and in C57BL/6J transgenic mice expressing ped/pea-15 under the control of an exogenous promoter, suggesting that ped/pea-15 repression may contribute to rosiglitazone action on glucose disposal. Indeed, high fat diet mice showed insulin resistance and increased ped/pea-15 levels, although these effects were reduced by rosiglitazone treatment. Both supershift and ChIP assays revealed the presence of the AP-1 component c-JUN at the PED/PEA-15 promoter upon 12-O-tetradecanoylphorbol-13-acetate stimulation of the cells. In these experiments, rosiglitazone treatment reduced c-JUN presence at the PED/PEA-15 promoter. This effect was not associated with a decrease in c-JUN expression. In addition, c-jun silencing in L6 cells lowered ped/pea-15 expression and caused nonresponsiveness to rosiglitazone, although c-jun overexpression enhanced the binding to the ped/pea-15 promoter and blocked the rosiglitazone effect. These results indicate that PPARγ regulates ped/pea-15 transcription by inhibiting c-JUN binding at the ped/pea-15 promoter. Thus, ped/pea-15 is downstream of a major PPARγ-regulated inflammatory network. Repression of ped/pea-15 transcription might contribute to the PPARγ regulation of muscle sensitivity to insulin.

  15. Activation of TRPV4 channel in pancreatic INS-1E beta cells enhances glucose-stimulated insulin secretion via calcium-dependent mechanisms.

    PubMed

    Skrzypski, M; Kakkassery, M; Mergler, S; Grötzinger, C; Khajavi, N; Sassek, M; Szczepankiewicz, D; Wiedenmann, B; Nowak, K W; Strowski, M Z

    2013-10-01

    Transient receptor potential channel vanilloid type 4 (TRPV4) is a Ca(2+)- and Mg(2+)-permeable cation channel that influences oxidative metabolism and insulin sensitivity. The role of TRPV4 in pancreatic beta cells is largely unknown. Here, we characterize the role of TRPV4 in controlling intracellular Ca(2+) and insulin secretion in INS-1E beta cells. Osmotic, thermal or pharmacological activation of TRPV4 caused a rapid rise of intracellular Ca(2+) and enhanced glucose-stimulated insulin secretion. In the presence of the TRPV channel blocker ruthenium red (RuR) or after suppression of TRPV4 protein production, TRPV4 activators failed to increase [Ca(2+)]i and insulin secretion in INS-1E cells.

  16. sPLA2 -IIA Overexpression in Mice Epidermis Depletes Hair Follicle Stem Cells and Induces Differentiation Mediated Through Enhanced JNK/c-Jun Activation.

    PubMed

    Sarate, Rahul M; Chovatiya, Gopal L; Ravi, Vagisha; Khade, Bharat; Gupta, Sanjay; Waghmare, Sanjeev K

    2016-09-01

    Secretory phospholipase A2 Group-IIA (sPLA2 -IIA) catalyzes the hydrolysis of the sn-2 position of glycerophospholipids to yield fatty acids and lysophospholipids. sPLA2 -IIA is deregulated in various cancers; however, its role in hair follicle stem cell (HFSC) regulation is obscure. Here we report a transgenic mice overexpressing sPLA2 -IIA (K14-sPLA2 -IIA) showed depletion of HFSC pool. This was accompanied with increased differentiation, loss of ortho-parakeratotic organization and enlargement of sebaceous gland, infundibulum and junctional zone. The colony forming efficiency of keratinocytes was significantly reduced. Microarray profiling of HFSCs revealed enhanced level of epithelial mitogens and transcription factors, c-Jun and FosB that may be involved in proliferation and differentiation. Moreover, K14-sPLA2 -IIA keratinocytes showed enhanced activation of EGFR and JNK1/2 that led to c-Jun activation, which co-related with enhanced differentiation. Further, depletion of stem cells in bulge is associated with high levels of chromatin silencing mark, H3K27me3 and low levels of an activator mark, H3K9ac suggestive of alteration in gene expression contributing toward stem cells differentiation. Our results, first time uncovered that overexpression of sPLA2 -IIA lead to depletion of HFSCs and differentiation associated with altered histone modification. Thus involvement of sPLA2 -IIA in stem cells regulation and disease pathogenesis suggest its prospective clinical implications. Stem Cells 2016;34:2407-2417.

  17. Enhanced NIF neutron activation diagnostics.

    PubMed

    Yeamans, C B; Bleuel, D L; Bernstein, L A

    2012-10-01

    The NIF neutron activation diagnostic suite relies on removable activation samples, leading to operational inefficiencies and a fundamental lower limit on the half-life of the activated product that can be observed. A neutron diagnostic system measuring activation of permanently installed samples could remove these limitations and significantly enhance overall neutron diagnostic capabilities. The physics and engineering aspects of two proposed systems are considered: one measuring the (89)Zr/(89 m)Zr isomer ratio in the existing Zr activation medium and the other using potassium zirconate as the activation medium. Both proposed systems could improve the signal-to-noise ratio of the current system by at least a factor of 5 and would allow independent measurement of fusion core velocity and fuel areal density.

  18. Enhanced NIF neutron activation diagnostics

    SciTech Connect

    Yeamans, C. B.; Bleuel, D. L.; Bernstein, L. A.

    2012-10-15

    The NIF neutron activation diagnostic suite relies on removable activation samples, leading to operational inefficiencies and a fundamental lower limit on the half-life of the activated product that can be observed. A neutron diagnostic system measuring activation of permanently installed samples could remove these limitations and significantly enhance overall neutron diagnostic capabilities. The physics and engineering aspects of two proposed systems are considered: one measuring the {sup 89}Zr/{sup 89m}Zr isomer ratio in the existing Zr activation medium and the other using potassium zirconate as the activation medium. Both proposed systems could improve the signal-to-noise ratio of the current system by at least a factor of 5 and would allow independent measurement of fusion core velocity and fuel areal density.

  19. Glucocorticoid receptor-mediated suppression of the interleukin 2 gene expression through impairment of the cooperativity between nuclear factor of activated T cells and AP-1 enhancer elements

    PubMed Central

    1992-01-01

    The immunosuppressant hormone dexamethasone (Dex) interferes with T cell-specific signals activating the enhancer sequences directing interleukin 2 (IL-2) transcription. We report that the Dex-dependent downregulation of 12-O-tetradecanoyl-phorbol-13-acetate (TPA) and calcium ionophore-induced activity of the IL-2 enhancer are mediated by glucocorticoid receptor (GR) via a process that requires intact NH2- and COOH-terminal and DNA-binding domains. Functional analysis of chloramphenicol acetyltransferase (CAT) vectors containing internal deletions of the -317 to +47 bp IL-2 enhancer showed that the GR- responsive elements mapped to regions containing nuclear factor of activated T cells protein (NFAT) (-279 to -263 bp) and AP-1 (-160 to - 150 bp) motifs. The AP-1 motif binds TPA and calcium ionophore-induced nuclear factor(s) containing fos protein. TPA and calcium ionophore- induced transcriptional activation of homo-oligomers of the NFAT element were not inhibited by Dex, while AP-1 motif concatemers were not stimulated by TPA and calcium ionophore. When combined, NFAT and AP- 1 motifs significantly synergized in directing CAT transcription. Such a synergism was impaired by specific mutations affecting the trans- acting factor binding to either NFAT or AP-1 motifs. In spite of the lack of hormone regulation of isolated cis elements, TPA/calcium ionophore-mediated activation of CAT vectors containing a combination of the NFAT and the AP-1 motifs became suppressible by Dex. Our results show that the IL-2-AP-1 motif confers GR sensitivity to a flanking region containing a NFAT element and suggest that synergistic cooperativity between the NFAT and AP-1 sites allows GR to mediate the Dex inhibition of IL-2 gene transcription. Therefore, a Dex-modulated second level of IL-2 enhancer regulation, based on a combinatorial modular interplay, appears to be present. PMID:1740658

  20. A heterodimer of HEB and an E12-related protein interacts with the CD4 enhancer and regulates its activity in T-cell lines.

    PubMed Central

    Sawada, S; Littman, D R

    1993-01-01

    A T-lymphocyte-specific enhancer located 13 kb upstream of the murine CD4 gene was recently shown to be required for the developmentally regulated expression of CD4. We have previously identified three nuclear protein binding sites in this enhancer; one of these sites, CD4-3, is essential for expression and contains two E-box core motifs (CANNTG) adjacent to each other in the sequence TAACAGGTGTCAGCTGGT. In electrophoretic mobility shift assays using the CD4-3 oligonucleotide as a probe, three nuclear protein complexes, termed CD4-3A, -B, and -C, were detected with nuclear extracts from T-cell lines. CD4-3A, which involves nuclear protein binding to the 5' E-box, was detected only with nuclear extracts from lymphoid cells. Specific antisera were used to show that the CD4-3A complex contains a heterodimer or heterooligomer of basic helix-loop-helix transcriptional factors, E12 or a related factor and HEB, which is expressed predominantly in thymus. Consistent with this finding, in vitro-translated E12 and HEB proteins, as homodimers or heterodimers, bound preferentially to the 5' E-box. Point mutations in the 5' E-box, but not in the 3' E-box, abolished CD4 enhancer activity. Furthermore, overexpression of Id, a protein that forms inactive heterodimers with E12/E47, blocked CD4 enhancer activity in T cells. These results suggest that a heterodimer composed of HEB and E12 or a closely related protein plays a critical role in CD4 enhancer function by interacting with the 5' E-box motif of the CD4-3 site in vivo. Images PMID:8355705

  1. ATP1B3 Protein Modulates the Restriction of HIV-1 Production and Nuclear Factor κ Light Chain Enhancer of Activated B Cells (NF-κB) Activation by BST-2*

    PubMed Central

    Nishitsuji, Hironori; Sugiyama, Ryuichi; Abe, Makoto; Takaku, Hiroshi

    2016-01-01

    Here, we identify ATP1B3 and fibrillin-1 as novel BST-2-binding proteins. ATP1B3 depletion in HeLa cells (BST-2-positive cells), but not 293T cells (BST-2-negative cells), induced the restriction of HIV-1 production in a BST-2-dependent manner. In contrast, fibrillin-1 knockdown reduced HIV-1 production in 293T and HeLa cells in a BST-2-independent manner. Moreover, NF-κB activation was enhanced by siATP1B3 treatment in HIV-1- and HIV-1ΔVpu-infected HeLa cells. In addition, ATP1B3 silencing induced high level BST-2 expression on the surface of HeLa cells. These results indicate that ATP1B3 is a co-factor that accelerates BST-2 degradation and reduces BST-2-mediated restriction of HIV-1 production and NF-κB activation. PMID:26694617

  2. Impact of Enhanced Production of Endogenous Heme Oxygenase-1 by Pitavastatin on Survival and Functional Activities of Bone Marrow-derived Mesenchymal Stem Cells.

    PubMed

    Kawashiri, Masa-Aki; Nakanishi, Chiaki; Tsubokawa, Toshinari; Shimojima, Masaya; Yoshida, Shohei; Yoshimuta, Tsuyoshi; Konno, Tetsuo; Yamagishi, Masakazu; Hayashi, Kenshi

    2015-06-01

    Although mesenchymal stem cells (MSCs) have a therapeutic potential for the repair of tissue injuries, their poor viability in damaged tissue limits their effectiveness. Statins can induce an increased production of heme oxygenase-1 (HO-1), which may prevent this detrimental effect in MSCs. We investigated the protective effect of statin-induced overexpression of HO-1 by examining changes in gene expression and function in MSCs after pitavastatin treatment. The relative expression of the HO-1 and endothelial nitric oxide synthase genes in MSCs was significantly increased after treatment with pitavastatin (MSCs). Immunocytological analysis showed that MSCs also stained with phospho-Akt. After exposure to oxidative stress, MSCs showed increased resistance to induced cell death compared with control MSCs. Under serum starvation conditions, MSCs treated with 1 μM pitavastatin showed enhanced cell proliferation and a marked increase in vascular endothelial growth factor production compared with control MSCs. Interestingly, MSCs showed enhanced tube formation under both normoxia and hypoxia. These results demonstrate that pitavastatin can enhance endogenous HO-1 expression in MSCs, which may protect the cells into the environment of oxidative stress with partial activation of endothelial nitric oxide synthase and Akt phosphorylation.

  3. Pancreatic adenocarcinoma up-regulated factor (PAUF) enhances the accumulation and functional activity of myeloid-derived suppressor cells (MDSCs) in pancreatic cancer.

    PubMed

    Song, Jinhoi; Lee, Jaemin; Kim, Jinsil; Jo, Seongyea; Kim, Yeon Jeong; Baek, Ji Eun; Kwon, Eun-Soo; Lee, Kwang-Pyo; Yang, Siyoung; Kwon, Ki-Sun; Kim, Dong-Uk; Kang, Tae Heung; Park, Yun-Yong; Chang, Suhwan; Cho, Hee Jun; Kim, Song Cheol; Koh, Sang Seok; Kim, Seokho

    2016-08-09

    Pancreatic cancer is characterized by an immunosuppressive tumor microenvironment (TME) with a profound immune infiltrate populated by a significant number of myeloid-derived suppressor cells (MDSCs). MDSCs have been increasingly recognized for their role in immune evasion and cancer progression as well as their potential as a target for immunotherapy. However, not much is known about the mechanisms regulating their behavior and function in the pancreatic TME. Here we report that pancreatic adenocarcinoma up-regulated factor (PAUF), a soluble protein involved in pancreatic tumorigenesis and metastasis, plays a role as an enhancer of tumor-infiltrating MDSC and its functional activity. We show that PAUF enhanced the accumulation of MDSCs in the spleen and tumor tissues of PAUF-overexpressing tumor cell-injected mice. In addition, PAUF was found to enhance the immunosuppressive function of MDSCs via the TLR4-mediated signaling pathway, which was demonstrated by PAUF-induced increased levels of arginase, nitric oxide (NO), and reactive oxygen species (ROS). The role of PAUF in modulating the functional properties of MDSCs was further demonstrated by the use of a PAUF-neutralizing antibody that caused a decreased number of tumor-infiltrating MDSCs and reduced MDSC immunosuppressive activity. The observations made in mice were confirmed in human pancreatic cancer patient-derived MDSCs, supporting the clinical relevance of our findings. Collectively, we conclude that the PAUF is a powerful and multifunctional promoter of tumor growth through increase and functional activation of MDSCs, suggesting therapeutic potential for targeting PAUF in pancreatic cancers.

  4. Mucosal Targeting of a BoNT/A Subunit Vaccine Adjuvanted with a Mast Cell Activator Enhances Induction of BoNT/A Neutralizing Antibodies in Rabbits

    PubMed Central

    Staats, Herman F.; Fielhauer, Jeffrey R.; Thompson, Afton L.; Tripp, Alice A.; Sobel, Ashley E.; Maddaloni, Massimo; Abraham, Soman N.; Pascual, David W.

    2011-01-01

    Background We previously reported that the immunogenicity of Hcβtre, a botulinum neurotoxin A (BoNT/A) immunogen, was enhanced by fusion to an epithelial cell binding domain, Ad2F, when nasally delivered to mice with cholera toxin (CT). This study was performed to determine if Ad2F would enhance the nasal immunogenicity of Hcβtre in rabbits, an animal model with a nasal cavity anatomy similar to humans. Since CT is not safe for human use, we also tested the adjuvant activity of compound 48/80 (C48/80), a mast cell activating compound previously determined to safely exhibit nasal adjuvant activity in mice. Methods New Zealand White or Dutch Belted rabbits were nasally immunized with Hcβtre or Hcβtre-Ad2F alone or combined with CT or C48/80, and serum samples were tested for the presence of Hcβtre-specific binding (ELISA) or BoNT/A neutralizing antibodies. Results Hcβtre-Ad2F nasally administered with CT induced serum anti-Hcβtre IgG ELISA and BoNT/A neutralizing antibody titers greater than those induced by Hcβtre + CT. C48/80 provided significant nasal adjuvant activity and induced BoNT/A-neutralizing antibodies similar to those induced by CT. Conclusions Ad2F enhanced the nasal immunogenicity of Hcβtre, and the mast cell activator C48/80 was an effective adjuvant for nasal immunization in rabbits, an animal model with a nasal cavity anatomy similar to that in humans. PMID:21304600

  5. Enhanced IL-1beta production in response to the activation of hippocampal glial cells impairs neurogenesis in aged mice.

    PubMed

    Kuzumaki, Naoko; Ikegami, Daigo; Imai, Satoshi; Narita, Michiko; Tamura, Rie; Yajima, Marie; Suzuki, Atsuo; Miyashita, Kazuhiko; Niikura, Keiichi; Takeshima, Hideyuki; Ando, Takayuki; Ushijima, Toshikazu; Suzuki, Tsutomu; Narita, Minoru

    2010-09-01

    A variety of mechanisms that contribute to the accumulation of age-related damage and the resulting brain dysfunction have been identified. Recently, decreased neurogenesis in the hippocampus has been recognized as one of the mechanisms of age-related brain dysfunction. However, the molecular mechanism of decreased neurogenesis with aging is still unclear. In the present study, we investigated whether aging decreases neurogenesis accompanied by the activation of microglia and astrocytes, which increases the expression of IL-1beta in the hippocampus, and whether in vitro treatment with IL-1beta in neural stem cells directly impairs neurogenesis. Ionized calcium-binding adaptor molecule 1 (Iba1)-positive microglia and glial fibrillary acidic protein (GFAP)-positive astrocytes were increased in the dentate gyrus of the hippocampus of 28-month-old mice. Furthermore, the mRNA level of IL-1beta was significantly increased without related histone modifications. Moreover, a significant increase in lysine 9 on histone H3 (H3K9) trimethylation at the promoter of NeuroD (a neural progenitor cell marker) was observed in the hippocampus of aged mice. In vitro treatment with IL-1beta in neural stem cells prepared from whole brain of E14.5 mice significantly increased H3K9 trimethylation at the NeuroD promoter. These findings suggest that aging may decrease hippocampal neurogenesis via epigenetic modifications accompanied by the activation of microglia and astrocytes with the increased expression of IL-1beta in the hippocampus.

  6. Extracellular phosphates enhance activities of voltage-gated proton channels and production of reactive oxygen species in murine osteoclast-like cells.

    PubMed

    Li, Guangshuai; Miura, Katsuyuki; Kuno, Miyuki

    2017-02-01

    Osteoclasts are highly differentiated bone-resorbing cells and play a significant role in bone remodelling. In the resorption pit, inorganic phosphate (Pi) concentrations increase because of degradation of hydroxyapatite. We studied effects of extracellular Pi on voltage-gated H(+) channels in osteoclast-like cells derived from a macrophage cell line (RAW264). Extracellular Pi (1.25-20 mM) increased the H(+) channel currents dose dependently and reversibly. The Pi-induced increases were attenuated by removal of extracellular Na(+) and by phosphonoformic acid, a blocker of Na(+)-dependent Pi transporters. Pi increased the maximal conductance, decreased activation time constant, increased deactivation time constant, and shifted the conductance-voltage relationship to more negative voltages. The most marked change was enhanced gating which was mainly caused by elevation of intracellular Pi levels. The Pi-induced enhanced gating was partially inhibited by protein kinase C (PKC) inhibitors, GF109203X and staurosporine, indicating that PKC-mediated phosphorylation was involved in part. The increase in the maximal conductance was mainly due to accompanying decrease in intracellular pH. These effects of Pi were not affected by intracellular Mg(2+), bafilomycin A1 (V-ATPase inhibitor) and removal of intracellular ATP. Extracellular Pi also upregulated reactive oxygen species (ROS). Diphenyleneiodonium chloride, an inhibitor of NADPH oxidases, decreased ROS production and partially attenuated the enhanced gating. In the cells during later passages where osteoclastogenesis declined, H(+) channel activities and ROS production were both modest. These results suggest that, in osteoclasts, ambient Pi is a common enhancer for H(+) channels and ROS production and that potentiation of H(+) channels may help ROS production.

  7. Cholesterol enhances amyloid {beta} deposition in mouse retina by modulating the activities of A{beta}-regulating enzymes in retinal pigment epithelial cells

    SciTech Connect

    Wang, Jiying; Ohno-Matsui, Kyoko; Morita, Ikuo

    2012-08-10

    age-matched mice fed standard rodent chow diet did not. Activities and mRNA levels of NEP and {alpha}-secretase were significantly lower in native RPE cells freshly isolated from cholesterol-enriched chow fed mice compared to standard rodent chow fed mice. These findings suggest that cholesterol enhances subretinal A{beta} accumulation by modulating the activities of enzymes degrading and processing A{beta} in RPE cells in senescent subjects.

  8. Orally Administered Salacia reticulata Extract Reduces H1N1 Influenza Clinical Symptoms in Murine Lung Tissues Putatively Due to Enhanced Natural Killer Cell Activity

    PubMed Central

    Romero-Pérez, Gustavo A.; Egashira, Masayo; Harada, Yuri; Tsuruta, Takeshi; Oda, Yuriko; Ueda, Fumitaka; Tsukahara, Takamitsu; Tsukamoto, Yasuhiro; Inoue, Ryo

    2016-01-01

    Influenza is a major cause of respiratory tract infection. Although most cases do not require further hospitalization, influenza periodically causes epidemics in humans that can potentially infect and kill millions of people. To countermeasure this threat, new vaccines need to be developed annually to match emerging influenza viral strains with increased resistance to existing vaccines. Thus, there is a need for finding and developing new anti-influenza viral agents as alternatives to current treatments. Here, we tested the antiviral effects of an extract from the stems and roots of Salacia reticulata (SSRE), a plant rich in phytochemicals, such as salacinol, kotalanol, and catechins, on H1N1 influenza virus-infected mice. Following oral administration of 0.6 mg/day of SSRE, the incidence of coughing decreased in 80% of mice, and only one case of severe pulmonary inflammation was detected. Moreover, when compared with mice given Lactobacillus casei JCM1134, a strain previously shown to help increase in vitro natural killer (NK) cell activity, SSRE-administered mice showed greater and equal NK cell activity in splenocytes and pulmonary cells, respectively, at high effector cell:target cell ratios. Next, to test whether or not SSRE would exert protective effects against influenza in the absence of gut microbiota, mice were given antibiotics before being inoculated influenza virus and subsequently administered SSRE. SSRE administration induced an increase in NK cell activity in splenocytes and pulmonary cells at levels similar to those detected in mice not treated with antibiotics. Based on our results, it can be concluded that phytochemicals in the SSRE exerted protective effects against influenza infection putatively via modulation of the immune response, including enhancement of NK cell activity, although some protective effects were not necessarily through modulation of gut microbiota. Further investigation is necessary to elucidate the molecular mechanisms

  9. Combined Therapy with Cytokine-Induced Killer Cells and Oncolytic Adenovirus Expressing IL-12 Induce Enhanced Antitumor Activity in Liver Tumor Model

    PubMed Central

    Shan, Juanjuan; Shen, Junjie; Liu, Limei; Xu, Yanmin; Xia, Feng; Bie, Ping; Zhang, Xia; Cui, Youhong; Bian, Xiu-wu; Qian, Cheng

    2012-01-01

    Both adoptive immunotherapy and gene therapy hold a great promise for treatment of malignancies. However, these strategies exhibit limited anti-tumor activity, when they are used alone. In this study, we explore whether combination of cytokine-induced killer (CIK) adoptive immunotherapy with oncolytic adenovirus-mediated transfer of human interleukin-12 (hIL-12) gene induce the enhanced antitumor potency. Our results showed that oncolytic adenovirus carrying hIL-12 (AdCN205-IL12) could produce high levels of hIL-12 in liver cancer cells, as compared with replication-defective adenovirus expressing hIL-12 (Ad-IL12). AdCN205-IL12 could specifically induce cytotoxocity to liver cancer cells. Combination of CIK cells with AdCN205-IL12 could induce higher antitumor activity to liver cancer cells in vitro than that induced by either CIK or AdCN205-IL12 alone, or combination of CIK and control vector AdCN205-GFP. Furthermore, treatment of the established liver tumors with the combined therapy of CIK cells and AdCN205-IL12 resulted in tumor regression and long-term survival. High level expression of hIL-12 in tumor tissues could increase traffic of CIK cells to tumor tissues and enhance their antitumor activities. Our study provides a novel strategy for the therapy of cancer by the combination of CIK adoptive immunotherapy with oncolytic adenovirus-mediated transfer of immune stimulatory molecule hIL-12. PMID:23028626

  10. Antcin B and its ester derivative from Antrodia camphorata induce apoptosis in hepatocellular carcinoma cells involves enhancing oxidative stress coincident with activation of intrinsic and extrinsic apoptotic pathway.

    PubMed

    Hsieh, Yun-Chih; Rao, Yerra Koteswara; Whang-Peng, Jacqueline; Huang, Chi-Ying F; Shyue, Song-Kun; Hsu, Shih-Lan; Tzeng, Yew-Min

    2011-10-26

    The triterpenoids methylantcinate B (MAB) and antcin B (AB), isolated from the medicinal mushroom Antrodia camphorata , have been identified as strong cytotoxic agents against various type of cancer cells; however, the mechanisms of MAB- and AB-induced cytotoxicity have not been adequately explored. This study investigated the roles of caspase cascades, reactive oxygen species (ROS), DNA damage, mitochondrial disruption, and Bax and Bcl-2 proteins in MAB- and AB-induced apoptosis of hepatocellular carcinoma (HCC) HepG2 cells. Here, we showed that MAB and AB induced apoptosis in HepG2 cells, as characterized by increased DNA fragmentation, cleavage of PARP, sub-G1 population, chromatin condensation, loss of mitochondrial membrane potential, and release of cytochrome c. Increasing the levels of caspase-2, -3, -8, and -9 activities was involved in MAB- and AB-induced apoptosis, and they could be attenuated by inhibitors of specific caspases, indicating that MAB and AB triggered the caspase-dependent apoptotic pathway. Additionally, the enhanced apoptotic effect correlates with high expression of Fas, Fas ligand, as well as Bax and decreased protein levels of Bcl-(XL) and Bcl-2, suggesting that both the extrinsic and intrinsic apoptosis pathways were involved in the apoptotic processes. Incubation of HepG2 cells with antioxidant enzymes superoxide dismutase and catalase and antioxidants N-acetylcysteine and ascorbic acid attenuated the ROS generation and apoptosis induced by MAB and AB, which indicate that ROS plays a pivotal role in cell death. NADPH oxidase activation was observed in MAB- and AB-stimulated HepG2 cells; however, inhibition of such activation by diphenylamine significantly blocked MAB- and AB-induced ROS production and increased cell viability. Taken together, our results provide the first evidence that triterpenoids MAB and AB induced a NADPH oxidase-provoked oxidative stress and extrinsic and intrinsic apoptosis as a critical mechanism of cause cell

  11. CYP2S1 depletion enhances colorectal cell proliferation is associated with PGE2-mediated activation of β-catenin signaling

    SciTech Connect

    Yang, Chao; Li, Changyuan; Li, Minle; Tong, Xuemei; Hu, Xiaowen; Yang, Xuhan; Yan, Xiaomei; He, Lin; Wan, Chunling

    2015-02-15

    Colorectal epithelial cancer is one of the most common cancers in the world and its 5-year survival rate is still relatively low. Cytochrome P450 (CYP) enzymes in epithelial cells lining the alimentary tract play an important role in the oxidative metabolism of a wide range of xenobiotics, including (pro-)carcinogens and endogenous compounds. Although CYP2S1, a member of CYP family, strongly expressed in many extrahepatic tissues, the role of CYP2S1 in cancer remains unclear. To investigate whether CYP2S1 involves in colorectal carcinogenesis, cell proliferation was analyzed in HCT116 cells depleted of CYP2S1 using small hairpin interfering RNA. Our data show that CYP2S1 knockdown promotes cell proliferation through increasing the level of endogenous prostaglandin E2(PGE2). PGE2, in turn, reduces phosphorylation of β-catenin and activates β-catenin signaling, which contributes to the cell proliferation. Furthermore, CYP2S1 knockdown increase tumor growth in xenograft mouse model. In brief, these results demonstrate that CYP2S1 regulates colorectal cancer growth through associated with PGE2-mediated activation of β-catenin signaling. - Highlights: • Knockdown of CYP2S1 expression improve HCT116 cell proliferation in vitro and in vivo. • Elevate PGE2 production in CYP2S1 knockdown cell is associated with its proliferation. • Elevate PGE2 level in CYP2S1 knockdown cells enhance β-catenin accumulation. • β-catenin activate TCF/LEF and target gene expression thus promote cell proliferation.

  12. Mixotrophic operation of photo-bioelectrocatalytic fuel cell under anoxygenic microenvironment enhances the light dependent bioelectrogenic activity.

    PubMed

    Chandra, Rashmi; Venkata Subhash, G; Venkata Mohan, S

    2012-04-01

    Electrogenic activity of photo-bioelectrocatalytic /photo-biological fuel cell (PhFC) was evaluated in a mixotrophic mode under anoxygenic microenvironment using photosynthetic consortia as biocatalyst. An acetate rich wastewater was used as anolyte for harnessing energy along with additional treatment. Mixotrophic operation facilitated good electrogenic activity and wastewater treatment associated with biomass growth. PhFC operation documented feasible microenvironment for the growth of photosynthetic bacteria compared to algae which was supported by pigment (total chlorophyll and bacteriochlorophyll) and diversity analysis. Pigment data also illustrated the association between bacterial and algal species. The synergistic interaction between anoxygenic and oxygenic photosynthesis was found to be suitable for PhFC operation. Light dependent deposition of electrons at electrode was relatively higher compared to dark dependent electron deposition under anoxygenic condition. PhFC documented for good volatile fatty acids removal by utilizing them as electron donor. Bioelectrochemical behavior of PhFC was evaluated by voltammetric and chronoamperometry analysis.

  13. Gibberellin (GA3) enhances cell wall invertase activity and mRNA levels in elongating dwarf pea (Pisum sativum) shoots

    NASA Technical Reports Server (NTRS)

    Wu, L. L.; Mitchell, J. P.; Cohn, N. S.; Kaufman, P. B.

    1993-01-01

    The invertase (EC 3.2.1.26) purified from cell walls of dwarf pea stems to homogeneity has a molecular mass of 64 kilodaltons (kD). Poly(A)+RNA was isolated from shoots of dwarf pea plants, and a cDNA library was constructed using lambda gt11 as an expression vector. The expression cDNA library was screened with polyclonal antibodies against pea cell wall invertase. One invertase cDNA clone was characterized as a full-length cDNA with 1,863 base pairs. Compared with other known invertases, one homologous region in the amino acid sequence was found. The conserved motif, Asn-Asp-Pro-Asn-Gly, is located near the N-terminal end of invertase. Northern blot analysis showed that the amount of invertase mRNA (1.86 kb) was rapidly induced to a maximal level 4 h after GA3 treatment, then gradually decreased to the control level. The mRNA level at 4 h in GA3-treated peas was fivefold higher than that of the control group. The maximal increase in activity of pea cell wall invertase elicited by GA3 occcured at 8 h after GA3 treatment. This invertase isoform was shown immunocytochemically to be localized in the cell walls, where a 10-fold higher accumulation occurred in GA3-treated tissue compared with control tissue. This study indicates that the expression of the pea shoot cell-wall invertase gene could be regulated by GA3 at transcriptional and/or translational levels.

  14. Disruption of thioredoxin metabolism enhances the toxicity of transforming growth factor β-activated kinase 1 (TAK1) inhibition in KRAS-mutated colon cancer cells

    PubMed Central

    Hrabe, Jennifer E.; O’Leary, Brianne R.; Fath, Melissa A.; Rodman, Samuel N.; Button, Anna M.; Domann, Frederick E.; Spitz, Douglas R.; Mezhir, James J.

    2015-01-01

    Transforming growth factor β-activated kinase 1 (TAK1) is critical for survival of many KRAS mutated colorectal cancer cells, and TAK1 inhibition with 5Z-7-oxozeaenol has been associated with oxidative stress leading to tumor cell killing. When SW 620 and HCT 116 human colon cancer cells were treated with 5 µM 5Z-7-oxozeaenol, cell viability, growth, and clonogenic survival were significantly decreased. Consistent with TAK1 inhibition being causally related to thiol-mediated oxidative stress, 10 mM N-acetylcysteine (NAC) partially reversed the growth inhibitory effects of 5Z-7-oxozeaenol. In addition, 5Z-7-oxozeaenol also increased steady-state levels of H2DCFDA oxidation as well as increased levels of total glutathione (GSH) and glutathione disulfide (GSSG). Interestingly, depletion of GSH using buthionine sulfoximine did not significantly potentiate 5Z-7-oxozeaenol toxicity in either cell line. In contrast, pre-treatment of cells with auranofin (Au) to inhibit thioredoxin reductase activity significantly increased levels of oxidized thioredoxin as well as sensitized cells to 5Z-7-oxozeaenol-induced growth inhibition and clonogenic cell killing. These results were confirmed in SW 620 murine xenografts, where treatment with 5Z-7-oxozeaenol or with Au plus 5Z-7-oxozeaenol significantly inhibited growth, with Au plus 5Z-7-oxozeaenol trending toward greater growth inhibition compared to 5Z-7-oxozeaenol alone. These results support the hypothesis that thiol-mediated oxidative stress is causally related to TAK1-induced colon cancer cell killing. In addition, these results support the hypothesis that thioredoxin metabolism is a critical target for enhancing colon cancer cell killing via TAK1 inhibition and could represent an effective therapeutic strategy in patients with these highly resistant tumors. PMID:26114584

  15. Enhanced activity of Au-Fe/C anodic electrocatalyst for direct borohydride-hydrogen peroxide fuel cell

    NASA Astrophysics Data System (ADS)

    Yi, Lanhua; Wei, Wei; Zhao, Caixian; Tian, Li; Liu, Jing; Wang, Xianyou

    2015-07-01

    Carbon supported Au-Fe bimetallic nanocatalysts (Au-Fe/C) are facilely prepared via a modified NaBH4 reduction method in aqueous solution at room temperature, and used as the anode electrocatalyst of direct borohydride-hydrogen peroxide fuel cell (DBHFC). The physical and electrochemical properties of the Au-Fe/C electrocatalysts are characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), cyclic voltammetry (CV), rotating disc electrode (RDE) voltammetry, chronoamperometry (CA), chronopotentiometry (CP), and fuel cell test. The results show that Au-Fe/C catalysts display higher catalytic activity for the direct electrooxidation of BH4- than carbon supported pure Au nanocatalyst (Au/C), especially Au50Fe50/C catalyst presents the highest catalytic activity among all as-prepared catalysts. Besides, the single DBHFC with Au50Fe50/C anode and Au/C cathode obtains the maximum power density as high as 34.9 mW cm-2 at 25 °C.

  16. JAM-A promotes wound healing by enhancing both homing and secretory activities of mesenchymal stem cells.

    PubMed

    Wu, Minjuan; Ji, Shizhao; Xiao, Shichu; Kong, Zhengdong; Fang, He; Zhang, Yunqing; Ji, Kaihong; Zheng, Yongjun; Liu, Houqi; Xia, Zhaofan

    2015-10-01

    The homing ability and secretory function of mesenchymal stem cells (MSCs) are key factors that influence cell involvement in wound repair. These factors are controlled by multilayer regulatory circuitry, including adhesion molecules, core transcription factors (TFs) and certain other regulators. However, the role of adhesion molecules in this regulatory circuitry and their underlying mechanism remain undefined. In the present paper, we demonstrate that an adhesion molecule, junction adhesion molecule A (JAM-A), may function as a key promoter molecule to regulate skin wound healing by MSCs. In in vivo experiments, we show that JAM-A up-regulation promoted both MSC homing to full-thickness skin wounds and wound healing-related cytokine secretion by MSCs. In vitro experiments also showed that JAM-A promoted MSC proliferation and migration by activating T-cell lymphoma invasion and metastasis 1 (Tiam1). We suggest that JAM-A up-regulation can increase the proliferation, cytokine secretion and wound-homing ability of MSCs, thus accelerating the repair rate of full-thickness skin defects. These results may provide insights into a novel and potentially effective approach to improve the efficacy of MSC treatment.

  17. Sulforaphane enhances the anticancer activity of taxanes against triple negative breast cancer by killing cancer stem cells.

    PubMed

    Burnett, Joseph P; Lim, Gi; Li, Yanyan; Shah, Ronak B; Lim, Rebekah; Paholak, Hayley J; McDermott, Sean P; Sun, Lichao; Tsume, Yasuhiro; Bai, Shuhua; Wicha, Max S; Sun, Duxin; Zhang, Tao

    2017-05-28

    Triple negative breast cancer (TNBC) typically exhibits rapid progression, high mortality and faster relapse rates relative to other breast cancer subtypes. In this report we examine the combination of taxanes (paclitaxel or docetaxel) with a breast cancer stem cell (CSC)-targeting agent sulforaphane for use against TNBC. We demonstrate that paclitaxel or docetaxel treatment induces IL-6 secretion and results in expansion of CSCs in TNBC cell lines. Conversely, sulforaphane is capable of preferentially eliminating CSCs, by inhibiting NF-κB p65 subunit translocation, downregulating p52 and consequent downstream transcriptional activity. Sulforaphane also reverses taxane-induced aldehyde dehydrogenase-positive (ALDH+) cell enrichment, and dramatically reduces the size and number of primary and secondary mammospheres formed. In vivo in an advanced treatment orthotopic mouse xenograft model together with extreme limiting dilution analysis (ELDA), the combination of docetaxel and sulforaphane exhibits a greater reduction in primary tumor volume and significantly reduces secondary tumor formation relative to either treatment alone. These results suggest that treatment of TNBCs with cytotoxic chemotherapy would be greatly benefited by the addition of sulforaphane to prevent expansion of and eliminate breast CSCs.

  18. Enhanced oxygen reduction reaction activity of iron-containing nitrogen-doped carbon nanotubes for alkaline direct methanol fuel cell application

    NASA Astrophysics Data System (ADS)

    Ratso, Sander; Kruusenberg, Ivar; Sarapuu, Ave; Rauwel, Protima; Saar, Rando; Joost, Urmas; Aruväli, Jaan; Kanninen, Petri; Kallio, Tanja; Tammeveski, Kaido

    2016-11-01

    Non-precious metal catalysts for electrochemical oxygen reduction reaction are synthesised by pyrolysis of multi-walled carbon nanotubes in the presence of nitrogen and iron precursors. For the physico-chemical characterisation of the catalysts transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction are used. The electrocatalytic activity of the catalysts for oxygen reduction is studied in 0.1 M KOH solution using the rotating disk electrode method. The Fe-containing nitrogen-doped carbon nanotubes exhibit an enhanced electrocatalytic performance as compared to metal-free counterparts and their electrocatalytic activity is comparable to that of commercial Pt/C catalyst. Alkaline direct methanol fuel cell tests also show performance close to Pt/C. Thus, these materials can be considered as promising cathode catalysts for application in alkaline fuel cells.

  19. Enhanced DNA repair of bleomycin-induced 3'-phosphoglycolate termini at the transcription start sites of actively transcribed genes in human cells.

    PubMed

    Murray, Vincent; Chen, Jon K; Galea, Anne M

    2014-11-01

    The anti-tumour agent, bleomycin, cleaves DNA to give 3'-phosphoglycolate and 5'-phosphate termini. The removal of 3'-phosphoglycolate to give 3'-OH ends is a very important step in the DNA repair of these lesions. In this study, next-generation DNA sequencing was utilised to investigate the repair of these 3'-phosphoglycolate termini at the transcription start sites (TSSs) of genes in HeLa cells. The 143,600 identified human TSSs in HeLa cells comprised 82,596 non-transcribed genes and 61,004 transcribed genes; and the transcribed genes were divided into quintiles of 12,201 genes comprising the top 20%, 20-40%, 40-60%, 60-80%, 80-100% of expressed genes. Repair of bleomycin-induced 3'-phosphoglycolate termini was enhanced at actively transcribed genes. The top 20% and 20-40% quintiles had a very similar level of enhanced repair, the 40-60% quintile was intermediate, while the 60-80% and 80-100% quintiles were close to the low level of enhancement found in non-transcribed genes. There were also interesting differences regarding bleomycin repair on the sense and antisense strands of DNA at TSSs. The sense strand had highly enhanced repair between 0 and 250bp relative to the TSS, while for the antisense strand highly enhanced repair was between 150 and 450bp. Repair of DNA damage is a major mechanism of resistance to anti-tumour drugs and this study provides an insight into this process in human tumour cells.

  20. Transforming growth factor-{beta} inhibits CCAAT/enhancer-binding protein expression and PPAR{gamma} activity in unloaded bone marrow stromal cells

    SciTech Connect

    Ahdjoudj, S.; Kaabeche, K.; Holy, X.; Fromigue, O.; Modrowski, D.; Zerath, E.; Marie, P.J. . E-mail: pierre.marie@larib.inserm.fr

    2005-02-01

    The molecular mechanisms regulating the adipogenic differentiation of bone marrow stromal cells in vivo remain largely unknown. In this study, we investigated the regulatory effects of transforming growth factor beta-2 (TGF-{beta}2) on transcription factors involved in adipogenic differentiation induced by hind limb suspension in rat bone marrow stromal cells in vivo. Time course real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR) analysis of gene expression showed that skeletal unloading progressively increases the expression of CCAAT/enhancer-binding protein (C/EBP){alpha} and C/EBP{beta} {alpha} at 5 days in bone marrow stromal cells resulting in increased peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}2) transcripts at 7 days. TGF-{beta}2 administration in unloaded rats corrected the rise in C/EBP{alpha} and C/EBP{beta} transcripts induced by unloading in bone marrow stromal cells. This resulted in inhibition of PPAR{gamma}2 expression that was associated with increased Runx2 expression. Additionally, the inhibition of C/EBP{alpha} and C/EBP{beta} expression by TGF-{beta}2 was associated with increased PPAR{gamma} serine phosphorylation in bone marrow stromal cells, a mechanism that inhibits PPAR{gamma} transactivating activity. The sequential inhibitory effect of TGF-{beta}2 on C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma}2 resulted in reduced LPL expression and abolition of bone marrow stromal cell adipogenic differentiation, which contributed to prevent bone loss induced by skeletal unloading. We conclude that TGF-{beta}2 inhibits the excessive adipogenic differentiation of bone marrow stromal cells induced by skeletal unloading by inhibiting C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma} expression and activity, which provides a sequential mechanism by which TGF-{beta}2 regulates adipogenic differentiation of bone marrow stromal cells in vivo.

  1. Hydrogen sulfide potentiates interleukin-1{beta}-induced nitric oxide production via enhancement of extracellular signal-regulated kinase activation in rat vascular smooth muscle cells

    SciTech Connect

    Jeong, Sun-Oh; Pae, Hyun-Ock; Oh, Gi-Su; Jeong, Gil-Saeng; Lee, Bok-Soo; Lee, Seoul; Kim, Du Yong; Rhew, Hyun Yul; Lee, Kang-Min; Chung, Hun-Taeg . E-mail: htchung@wonkwang.ac.kr

    2006-07-07

    Hydrogen sulfide (H{sub 2}S) and nitric oxide (NO) are endogenously synthesized from L-cysteine and L-arginine, respectively. They might constitute a cooperative network to regulate their effects. In this study, we investigated whether H{sub 2}S could affect NO production in rat vascular smooth muscle cells (VSMCs) stimulated with interleukin-1{beta} (IL-1{beta}). Although H{sub 2}S by itself showed no effect on NO production, it augmented IL-{beta}-induced NO production and this effect was associated with increased expression of inducible NO synthase (iNOS) and activation of nuclear factor (NF)-{kappa}B. IL-1{beta} activated the extracellular signal-regulated kinase 1/2 (ERK1/2), and this activation was also enhanced by H{sub 2}S. Inhibition of ERK1/2 activation by the selective inhibitor U0126 inhibited IL-1{beta}-induced NF-{kappa}B activation, iNOS expression, and NO production either in the absence or presence of H{sub 2}S. Our findings suggest that H{sub 2}S enhances NO production and iNOS expression by potentiating IL-1{beta}-induced NF-{kappa}B activation through a mechanism involving ERK1/2 signaling cascade in rat VSMCs.

  2. Enhanced activity and stability of Pt/TiO2/carbon fuel cell electrocatalyst prepared using a glucose modifier

    NASA Astrophysics Data System (ADS)

    Odetola, Christopher; Trevani, Liliana; Easton, E. Bradley

    2015-10-01

    Two TiO2-C composite materials were prepared through a conventional sol gel synthesis using Vulcan XC-72 carbon black. The carbon was initially functionalised to form acid treated Vulcan (ATV) prior to TiO2 deposition. In one composite, the ATV was further modified through glucose adsorption (G-ATV) in order to facilitate the growth of small and uniform TiO2 nanoparticles on the carbon surface. Platinum nanoparticles were deposited on TiO2/G-ATV and TiO2/ATV supports through reduction of H2PtCl6 with NaBH4 at 0 °C. The electrochemical properties of the two composite catalysts were compared with in house Pt/C catalyst. We observed a three-fold increase in TiO2 loading (14 wt%) on glucose doped carbon surface compared with just acid treated support (5 wt%). The beginning of life (BOL) electrochemical active surface area (ECSA) of Pt/14 wt%TiO2/G-ATV catalyst was 40.4 m2 g-1 compared to 37.1 m2 g-1 obtained for Pt on 5 wt% TiO2/ATV despite increased TiO2 loadings on the former. Furthermore these composite catalysts showed enhanced oxygen reduction activity and better durability during accelerated stress tests which was attributed to an electronic interaction between Pt and the TiO2 on the support.

  3. Epigenetic Upregulation of Metallothionein 2A by Diallyl Trisulfide Enhances Chemosensitivity of Human Gastric Cancer Cells to Docetaxel Through Attenuating NF-κB Activation

    PubMed Central

    Pan, Yuanming; Lin, Shuye; Xing, Rui; Zhu, Min; Lin, Bonan; Cui, Jiantao; Li, Wenmei; Gao, Jing; Shen, Lin; Zhao, Yuanyuan; Guo, Mingzhou; Wang, Ji Ming

    2016-01-01

    Abstract Aims: Metallothionein 2A (MT2A) and nuclear factor-kappaB (NF-κB) are both involved in carcinogenesis and cancer chemosensitivity. We previously showed decreased expression of MT2A and IκB-α in human gastric cancer (GC) associated with poor prognosis of GC patients. The present study investigated the effect of diallyl trisulfide (DATS), a garlic-derived compound, and docetaxel (DOC) on regulation of MT2A in relation to NF-κB in GC cells. Results: DATS attenuated NF-κB signaling in GC cells, resulting in G2/M cell cycle arrest and apoptosis, culminating in the inhibition of cell proliferation and tumorigenesis in nude mice. The anti-GC effect of DATS was attributable to its capacity to epigenetically upregulate MT2A, which in turn enhanced transcription of IκB-α to suppress NF-κB activation in GC cells. The combination of DATS with DOC exhibited a synergistic anti-GC activity accompanied by MT2A upregulation and NF-κB inactivation. Histopathologic analysis of GC specimens from patients showed a significant increase in MT2A expression following DOC treatment. GC patients with high MT2A expression in tumor specimens showed significantly improved response to chemotherapy and prolonged survival compared with those with low MT2A expression in tumors. Innovation and Conclusion: We conclude that DATS exerts its anti-GC activity and enhances chemosensitivity of GC to DOC by epigenetic upregulation of MT2A to attenuate NF-κB signaling. Our findings delineate a mechanistic basis of MT2A/NF-κB signaling for DATS- and DOC-mediated anti-GC effects, suggesting that MT2A may be a chemosensitivity indicator in GC patients receiving DOC-based treatment and a promising target for more effective treatment of GC by combination of DATS and DOC. Antioxid. Redox Signal. 24, 839–854. PMID:26801633

  4. [Ag85B and BCG enhance immune activity of dendritic cells in patients with initially treated tuberculosis].

    PubMed

    Guo, Yun; Su, Yuanyuan; Sun, Yang; Guan, Weiwei; Yang, Li; Zhang, Zhi; Wang, Yuling; Dai, Erhei

    2016-06-01

    Objective To investigate the regulatory effects of Mycobacterium tuberculosis major secreted protein Ag85B and Bacillus Calmette-Guerin (BCG) on the immune function of dendritic cells (DCs) in the patients with tuberculosis who have received an initial treatment. Methods The peripheral blood mononuclear cells were collected and separated in 26 healthy subjects and 31 patients with tuberculosis who had been treated initially. Every specimen was divided into 4 groups and DCs were induced and cultured. On the 6th day, the DCs in the three experimental groups were treated by lipopolysaccharide (LPS), BCG, Ag85B, respectively and no-treated DCs served as a control group. After 24-hour treatment, DCs were collected and examined for the levels of CD83, CD86, HLA-DR and CD11c using flow cytometry. Moreover, the levels of interleukin 12 (IL-12), IL-10 and interferon γ (IFN-γ) in the supernatants were measured by ELISA. Results The expression levels of CD83 and IL-10 in the patient control group were significantly lower than those in healthy subject control group. The levels of CD83, CD86 and IFN-γ in the Ag85B treated group were obviously high than those in the control group. The level of IFN-γ in the BCG treated group was significantly high than that in the control group. The levels of CD83, CD86, HLA-DR and IL-10 in the LPS treated group were remarkably higher than those in the control group. The levels of CD83, CD86 and IL-10 in the healthy subject LPS treated group were significantly higher than those in the healthy subject control group. Conclusion The immune-enhancing effect of Ag85B on DCs is superior to that of BCG in the patients with initially treated tuberculosis.

  5. Pore development in carbonized hemoglobin by concurrently generated MgO template for activity enhancement as fuel cell cathode catalyst.

    PubMed

    Maruyama, Jun; Hasegawa, Takahiro; Amano, Taiji; Muramatsu, Yasuji; Gullikson, Eric M; Orikasa, Yuki; Uchimoto, Yoshiharu

    2011-12-01

    Various carbon materials with a characteristic morphology and pore structure have been produced using template methods in which a carbon-template composite is once formed and the characteristic features derived from the template are generated after the template removal. In this study, hemoglobin, which is a natural compound that could be abundantly and inexpensively obtained, was used as the carbon material source to produce a carbonaceous noble-metal-free fuel cell cathode catalyst. Magnesium oxide was used as the template concurrently generated with the hemoglobin carbonization from magnesium acetate mixed with hemoglobin as the starting material mixture to enable pore development for improving the activity of the carbonized hemoglobin for the cathodic oxygen reduction. After removal of the MgO template, the substantially developed pores were generated in the carbonized hemoglobin with an amorphous structure observed by total-electron-yield X-ray absorption. The extended X-ray absorption fine structure at the Fe-K edge indicated that Fe was coordinated with four nitrogen atoms (Fe-N(4) moiety) in the carbonized hemoglobin. The oxygen reduction activity of the carbonized hemoglobin evaluated using rotating disk electrodes was dependent on the pore structure. The highly developed pores led to an improved activity.

  6. EGF-like peptide-enhanced cell movement in Dictyostelium is mediated by protein kinases and the activity of several cytoskeletal proteins.

    PubMed

    Huber, Robert J; O'Day, Danton H

    2012-09-01

    DdEGFL1, a synthetic epidermal growth factor-like (EGFL) peptide based on the first EGFL repeat of the extracellular matrix, cysteine-rich, calmodulin-binding protein CyrA, has previously been shown to sustain the threonine phosphorylation of a 210kDa protein during the starvation of Dictyostelium cells. Immunoprecipitation coupled with a LC/MS/MS analysis identified the 210kDa protein as vinculin B (VinB). VinB shares sequence similarity with mammalian vinculin, a protein that links the actin cytoskeleton to the plasma membrane. Both threonine phosphorylated VinB (P-VinB) and VinB-GFP localized to the cytoplasm and cytoskeleton of Dictyostelium amoebae. VinB-GFP was also shown to be threonine phosphorylated and co-immunoprecipitated with established vinculin-binding cytoskeletal proteins (e.g. myosin II heavy chain, actin, alpha-actinin, talin). P-VinB and VinB-GFP were detected in DdEGFL1 pull-down assays, which also identified a 135kDa phosphothreonine protein and two phosphotyrosine proteins (35 and 32kDa) as potential components of the DdEGFL1 signaling pathway. DdEGFL1-enhanced cell movement required the cytoskeletal proteins talin B and paxillin B and tyrosine kinase activity mediated by PKA signaling, however VinB threonine phosphorylation was shown to be independent of PI3K/PLA2 signaling and PI3K and PKA kinase activity. Finally, VinB-GFP over-expression suppressed DdEGFL1-enhanced random cell movement, but not folic acid-mediated chemotaxis. Together, this study provides the first evidence for VinB function plus new insight into the signaling pathway(s) mediating EGFL repeat/peptide-enhanced cell movement in Dictyostelium. This information is integrated into an emerging model that summarizes existing knowledge.

  7. Expansion and Activation of CD103(+) Dendritic Cell Progenitors at the Tumor Site Enhances Tumor Responses to Therapeutic PD-L1 and BRAF Inhibition.

    PubMed

    Salmon, Hélène; Idoyaga, Juliana; Rahman, Adeeb; Leboeuf, Marylène; Remark, Romain; Jordan, Stefan; Casanova-Acebes, Maria; Khudoynazarova, Makhzuna; Agudo, Judith; Tung, Navpreet; Chakarov, Svetoslav; Rivera, Christina; Hogstad, Brandon; Bosenberg, Marcus; Hashimoto, Daigo; Gnjatic, Sacha; Bhardwaj, Nina; Palucka, Anna Karolina; Brown, Brian D; Brody, Joshua; Ginhoux, Florent; Merad, Miriam

    2016-04-19

    Large numbers of melanoma lesions develop resistance to targeted inhibition of mutant BRAF or fail to respond to checkpoint blockade. We explored whether modulation of intratumoral antigen-presenting cells (APCs) could increase responses to these therapies. Using mouse melanoma models, we found that CD103(+) dendritic cells (DCs) were the only APCs transporting intact antigens to the lymph nodes and priming tumor-specific CD8(+) T cells. CD103(+) DCs were required to promote anti-tumoral effects upon blockade of the checkpoint ligand PD-L1; however, PD-L1 inhibition only led to partial responses. Systemic administration of the growth factor FLT3L followed by intratumoral poly I:C injections expanded and activated CD103(+) DC progenitors in the tumor, enhancing responses to BRAF and PD-L1 blockade and protecting mice from tumor rechallenge. Thus, the paucity of activated CD103(+) DCs in tumors limits checkpoint-blockade efficacy and combined FLT3L and poly I:C therapy can enhance tumor responses to checkpoint and BRAF blockade.

  8. Alpha-phellandrene, a natural active monoterpene, influences a murine WEHI-3 leukemia model in vivo by enhancing macrophague phagocytosis and natural killer cell activity.

    PubMed

    Lin, Jen-Jyh; Lu, Kung-Wen; Ma, Yi-Shih; Tang, Nou-Ying; Wu, Ping-Ping; Wu, Chih-Chung; Lu, Hsu-Feng; Lin, Jaung-Geng; Chung, Jing-Gung

    2014-01-01

    α-phellandrene (α-PA), a cyclic monoterpene, is a natural compound reported to promote immune responses in normal BALB/c mice. The effects of α-PA on immune responses in a leukemia mouse model were examined. Mice were injected with mouse leukemia WEHI-3 cells and subsequently treated orally with or without α-PA (0, 25 and 50 mg/kg) and olive oil as positive control for two weeks. Leukocytes and splenocytes were isolated and cell markers for CD3, CD19, CD11b and Mac-3, phagocytosis and natural killer cell cytoxicity effects were analyzed by flow cytometry. α-PA increased the percentage of CD3 (T-cell marker), CD19 (B-cell marker) and MAC3 (macrophages) markers but reduced the percentage of CD11b (monocytes) cell surface markers. α-PA (25 and 50 mg/kg) increased phagocytosis of macrophages from blood samples and treatment promoted natural killer cell activity at 25 mg/kg from splenocytes. α-PA at 25 mg/kg also increased B- and T-cell proliferation.

  9. Screening with a novel cell-based assay for TAZ activators identifies a compound that enhances myogenesis in C2C12 cells and facilitates muscle repair in a muscle injury model.

    PubMed

    Yang, Zeyu; Nakagawa, Kentaro; Sarkar, Aradhan; Maruyama, Junichi; Iwasa, Hiroaki; Bao, Yijun; Ishigami-Yuasa, Mari; Ito, Shigeru; Kagechika, Hiroyuki; Hata, Shoji; Nishina, Hiroshi; Abe, Shinya; Kitagawa, Masanobu; Hata, Yutaka

    2014-05-01

    The transcriptional coactivator with a PDZ-binding motif (TAZ) cooperates with various transcriptional factors and plays various roles. Immortalized human mammalian epithelial MCF10A cells form spheres when TAZ is overexpressed and activated. We developed a cell-based assay using sphere formation by TAZ-expressing MCF10A cells as a readout to screen 18,458 chemical compounds for TAZ activators. Fifty compounds were obtained, and 47 were confirmed to activate the TAZ-dependent TEAD-responsive reporter activity in HEK293 cells. We used the derived subset of compounds as a TAZ activator candidate minilibrary and searched for compounds that promote myogenesis in mouse C2C12 myoblast cells. In this study, we focused on one compound, IBS008738. IBS008738 stabilizes TAZ, increases the unphosphorylated TAZ level, enhances the association of MyoD with the myogenin promoter, upregulates MyoD-dependent gene transcription, and competes with myostatin in C2C12 cells. TAZ knockdown verifies that the effect of IBS008738 depends on endogenous TAZ in C2C12 cells. IBS008738 facilitates muscle repair in cardiotoxin-induced muscle injury and prevents dexamethasone-induced muscle atrophy. Thus, this cell-based assay is useful to identify TAZ activators with a variety of cellular outputs. Our findings also support the idea that TAZ is a potential therapeutic target for muscle atrophy.

  10. Screening with a Novel Cell-Based Assay for TAZ Activators Identifies a Compound That Enhances Myogenesis in C2C12 Cells and Facilitates Muscle Repair in a Muscle Injury Model

    PubMed Central

    Yang, Zeyu; Nakagawa, Kentaro; Sarkar, Aradhan; Maruyama, Junichi; Iwasa, Hiroaki; Bao, Yijun; Ishigami-Yuasa, Mari; Ito, Shigeru; Kagechika, Hiroyuki; Hata, Shoji; Nishina, Hiroshi; Abe, Shinya; Kitagawa, Masanobu

    2014-01-01

    The transcriptional coactivator with a PDZ-binding motif (TAZ) cooperates with various transcriptional factors and plays various roles. Immortalized human mammalian epithelial MCF10A cells form spheres when TAZ is overexpressed and activated. We developed a cell-based assay using sphere formation by TAZ-expressing MCF10A cells as a readout to screen 18,458 chemical compounds for TAZ activators. Fifty compounds were obtained, and 47 were confirmed to activate the TAZ-dependent TEAD-responsive reporter activity in HEK293 cells. We used the derived subset of compounds as a TAZ activator candidate minilibrary and searched for compounds that promote myogenesis in mouse C2C12 myoblast cells. In this study, we focused on one compound, IBS008738. IBS008738 stabilizes TAZ, increases the unphosphorylated TAZ level, enhances the association of MyoD with the myogenin promoter, upregulates MyoD-dependent gene transcription, and competes with myostatin in C2C12 cells. TAZ knockdown verifies that the effect of IBS008738 depends on endogenous TAZ in C2C12 cells. IBS008738 facilitates muscle repair in cardiotoxin-induced muscle injury and prevents dexamethasone-induced muscle atrophy. Thus, this cell-based assay is useful to identify TAZ activators with a variety of cellular outputs. Our findings also support the idea that TAZ is a potential therapeutic target for muscle atrophy. PMID:24550007

  11. PAR-2 activation enhances weak acid-induced ATP release through TRPV1 and ASIC sensitization in human esophageal epithelial cells.

    PubMed

    Wu, Liping; Oshima, Tadayuki; Shan, Jing; Sei, Hiroo; Tomita, Toshihiko; Ohda, Yoshio; Fukui, Hirokazu; Watari, Jiro; Miwa, Hiroto

    2015-10-15

    Esophageal visceral hypersensitivity has been proposed to be the pathogenesis of heartburn sensation in nonerosive reflux disease. Protease-activated receptor-2 (PAR-2) is expressed in human esophageal epithelial cells and is believed to play a role in inflammation and sensation. PAR-2 activation may modulate these responses through adenosine triphosphate (ATP) release, which is involved in transduction of sensation and pain. The transient receptor potential vanilloid receptor 1 (TRPV1) and acid-sensing ion channels (ASICs) are both acid-sensitive nociceptors. However, the interaction among these molecules and the mechanisms of heartburn sensation are still not clear. We therefore examined whether ATP release in human esophageal epithelial cells in response to acid is modulated by TRPV1 and ASICs and whether PAR-2 activation influences the sensitivity of TRPV1 and ASICs. Weak acid (pH 5) stimulated the release of ATP from primary human esophageal epithelial cells (HEECs). This effect was significantly reduced after pretreatment with 5-iodoresiniferatoxin (IRTX), a TRPV1-specific antagonist, or with amiloride, a nonselective ASIC blocker. TRPV1 and ASIC3 small interfering RNA (siRNA) transfection also decreased weak acid-induced ATP release. Pretreatment of HEECs with trypsin, tryptase, or a PAR-2 agonist enhanced weak acid-induced ATP release. Trypsin treatment led to the phosphorylation of TRPV1. Acid-induced ATP release enhancement by trypsin was partially blocked by IRTX, amiloride, or a PAR-2 antagonist. Conversely, acid-induced ATP release was augmented by PAR-2 activation through TRPV1 and ASICs. These findings suggested that the pathophysiology of heartburn sensation or esophageal hypersensitivity may be associated with the activation of PAR-2, TRPV1, and ASICs.

  12. PA residues in the 2009 H1N1 pandemic influenza virus enhance avian influenza virus polymerase activity in mammalian cells.

    PubMed

    Bussey, Kendra A; Desmet, Emily A; Mattiacio, Jonelle L; Hamilton, Alice; Bradel-Tretheway, Birgit; Bussey, Howard E; Kim, Baek; Dewhurst, Stephen; Takimoto, Toru

    2011-07-01

    The 2009 pandemic influenza virus (pH1N1) is a swine-origin reassortant containing human, avian, and swine influenza genes. We have previously shown that the polymerase complex of the pH1N1 strain A/California/04/2009 (Cal) is highly active in mammalian 293T cells, despite the avian origin of both its PA and PB2. In this study, we analyzed the polymerase residues that are responsible for high pH1N1 polymerase activity in the mammalian host. Characterization of polymerase complexes containing various combinations of Cal and avian influenza virus A/chicken/Nanchang/3-120/01 (H3N2) (Nan) by reporter gene assay indicates that Cal PA, but not PB2, is a major contributing factor to high Cal polymerase activity in 293T cells. In particular, Cal PA significantly activates the otherwise inactive Nan polymerase at 37 and 39°C but not at the lower temperature of 34°C. Further analysis using site-directed mutagenesis showed that the Cal PA residues 85I, 186S, and 336M contribute to enhanced activity of the Cal polymerase. Recombinant A/WSN/33 (H1N1) (WSN) viruses containing Nan NP and polymerase (PA, PB1, PB2) genes with individual mutations in PA at residues 85, 186, and 336 produced higher levels of viral protein than the virus containing wild-type (WT) Nan PA. Interestingly, compared to the WT, the virus containing the 85I mutation grew faster in human A549 cells and the 336M mutation most significantly enhanced pathogenicity in a mouse model, among the three PA mutations tested. Our results suggest that multiple mutations in PA, which were rarely present in previous influenza isolates, are involved in mammalian adaptation and pathogenicity of the 2009 pH1N1.

  13. Insulin-like growth factor-I extends in vitro replicative life span of skeletal muscle satellite cells by enhancing G1/S cell cycle progression via the activation of phosphatidylinositol 3'-kinase/Akt signaling pathway

    NASA Technical Reports Server (NTRS)

    Chakravarthy, M. V.; Abraha, T. W.; Schwartz, R. J.; Fiorotto, M. L.; Booth, F. W.

    2000-01-01

    Interest is growing in methods to extend replicative life span of non-immortalized stem cells. Using the insulin-like growth factor I (IGF-I) transgenic mouse in which the IGF-I transgene is expressed during skeletal muscle development and maturation prior to isolation and during culture of satellite cells (the myogenic stem cells of mature skeletal muscle fibers) as a model system, we elucidated the underlying molecular mechanisms of IGF-I-mediated enhancement of proliferative potential of these cells. Satellite cells from IGF-I transgenic muscles achieved at least five additional population doublings above the maximum that was attained by wild type satellite cells. This IGF-I-induced increase in proliferative potential was mediated via activation of the phosphatidylinositol 3'-kinase/Akt pathway, independent of mitogen-activated protein kinase activity, facilitating G(1)/S cell cycle progression via a down-regulation of p27(Kip1). Adenovirally mediated ectopic overexpression of p27(Kip1) in exponentially growing IGF-I transgenic satellite cells reversed the increase in cyclin E-cdk2 kinase activity, pRb phosphorylation, and cyclin A protein abundance, thereby implicating an important role for p27(Kip1) in promoting satellite cell senescence. These observations provide a more complete dissection of molecular events by which increased local expression of a growth factor in mature skeletal muscle fibers extends replicative life span of primary stem cells than previously known.

  14. Postnatal Treadmill Exercise Alleviates Prenatal Stress-Induced Anxiety in Offspring Rats by Enhancing Cell Proliferation Through 5-Hydroxytryptamine 1A Receptor Activation

    PubMed Central

    2016-01-01

    Purpose: Stress during pregnancy is a risk factor for the development of anxiety-related disorders in offspring later in life. The effects of treadmill exercise on anxiety-like behaviors and hippocampal cell proliferation were investigated using rats exposed to prenatal stress. Methods: Exposure of pregnant rats to a hunting dog in an enclosed room was used to induce stress. Anxiety-like behaviors of offspring were evaluated using the elevated plus maze test. Immunohistochemistry for the detection of 5-bromo-2ʹ- deoxyuridine and doublecortin (DCX) in the hippocampal dentate gyrus and 5-hydroxytryptamine 1A receptors (5-HT1A) in the dorsal raphe was conducted. Brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) levels in the hippocampus were evaluated by western blot analysis. Results: Offspring of maternal rats exposed to stress during pregnancy showed anxiety-like behaviors. Offspring also showed reduced expression of BDNF, TrkB, and DCX in the dentate gyrus, decreased cell proliferation in the hippocampus, and reduced 5-HT1A expression in the dorsal raphe. Postnatal treadmill exercise by offspring, but not maternal exercise during pregnancy, enhanced cell proliferation and expression of these proteins. Conclusions: Postnatal treadmill exercise ameliorated anxiety-like behaviors in offspring of stressed pregnant rats, and the alleviating effect of exercise on these behaviors is hypothesized to result from enhancement of cell proliferation through 5-HT1A activation in offspring rats. PMID:27230461

  15. In trans promoter activation by enhancers in transient transfection.

    PubMed

    Smirnov, N A; Akopov, S B; Didych, D A; Nikolaev, L G

    2017-03-01

    Earlier, it was reported that the strong cytomegalovirus enhancer can activate the cytomegalovirus promoter in trans, i.e. as a separate plasmid co-transfected with a promoter-reporter gene construct. Here we demonstrate that the ability of enhancers to activate promoters in trans in transient transfection experiments is a property of not only viral regulatory elements but also of various genomic enhancers and promoters. Enhancer-promoter activation in trans is promoter- and cell type-specific, and accompanied by physical interaction between promoter and enhancer as revealed by chromosome conformation capture assays. Thus, promoter activation in transient co-transfection of promoters and enhancers shares a number of important traits with long-distance promoter activation by enhancers in living cells and may therefore serve as a model of this fundamental cellular process.

  16. Camptothecin enhances the frequency of oligonucleotide-directed gene repair in mammalian cells by inducing DNA damage and activating homologous recombination.

    PubMed

    Ferrara, Luciana; Kmiec, Eric B

    2004-01-01

    Camptothecin (CPT) is an anticancer drug that promotes DNA breakage at replication forks and the formation of lesions that activate the processes of homologous recombination (HR) and nonhomologous end joining. We have taken advantage of the CPT-induced damage response by coupling it to gene repair directed by synthetic oligonucleotides, a process in which a mutant base pair is converted into a wild-type one. Here, we show that pretreating DLD-1 cells with CPT leads to a significant stimulation in the frequency of correction of an integrated mutant enhanced green fluorescent protein gene. The stimulation is dose-dependent and coincident with the formation of double-strand DNA breaks. Caffeine, but not vanillin, blocks the enhancement of gene repair suggesting that, in this system, HR is the pathway most responsible for elevating the frequency of correction. The involvement of HR is further proven by studies in which wortmannin was seen to inhibit gene repair at high concentrations but not at lower levels that are known to inhibit DNA-PK activity. Taken together, our results suggest that DNA damage induced by CPT activates a cellular response that stimulates gene repair in mammalian cells.

  17. Jaeumganghwa-Tang Induces Apoptosis via the Mitochondrial Pathway and Lactobacillus Fermentation Enhances Its Anti-Cancer Activity in HT1080 Human Fibrosarcoma Cells

    PubMed Central

    Kim, Aeyung; Im, Minju; Hwang, Youn-Hwan; Yang, Hye Jin; Ma, Jin Yeul

    2015-01-01

    Jaeumganghwa-tang (JGT, Zi-yin-jiang-huo-tang in Chinese and Jiin-koka-to in Japanese) is an oriental herbal formula that has long been used as a traditional medicine to treat respiratory and kidney diseases. Recent studies revealed that JGT exhibited potent inhibitory effects on allergies, inflammation, pain, convulsions, and prostate hyperplasia. Several constituent herbs in JGT induce apoptotic cancer cell death. However, the anti-cancer activity of JGT has not been examined. In this study, we investigated the anti-cancer effects of JGT using highly tumorigenic HT1080 human fibrosarcoma cells and elucidated the underlying mechanisms. In addition, we examined whether the Lactobacillus fermentation of JGT enhanced its anti-cancer activity using an in vivo xenograft model because fermentation of herbal extracts is thought to strengthen their therapeutic effects. Data revealed that JGT suppressed the growth of cancer cells efficiently by stimulating G1 cell cycle arrest and then inducing apoptotic cell death by causing mitochondrial damage and activating caspases. The phosphorylation of p38 and ERK also played a role in JGT-induced cell death. In vitro experiments demonstrated that JGT fermented with Lactobacillus acidophilus, designated fJGT162, elicited similar patterns of cell death as did non-fermented JGT. Meanwhile, the daily oral administration of 120 mg/kg fJGT162 to HT1080-bearing BALB/c nude mice suppressed tumor growth dramatically (up to 90%) compared with saline treatment, whereas the administration of non-fermented JGT suppressed tumor growth by ~70%. Collectively, these results suggest that JGT and fJGT162 are safe and useful complementary and alternative anti-cancer herbal therapies, and that Lactobacillus fermentation improves the in vivo anti-cancer efficacy of JGT significantly. PMID:26020238

  18. Immobilization of a Metal-Nitrogen-Carbon Catalyst on Activated Carbon with Enhanced Cathode Performance in Microbial Fuel Cells.

    PubMed

    Yang, Wulin; Logan, Bruce E

    2016-08-23

    Applications of microbial fuel cells (MFCs) are limited in part by low power densities mainly due to cathode performance. Successful immobilization of an Fe-N-C co-catalyst on activated carbon (Fe-N-C/AC) improved the oxygen reduction reaction to nearly a four-electron transfer, compared to a twoelectron transfer achieved using AC. With acetate as the fuel, the maximum power density was 4.7±0.2 W m(-2) , which is higher than any previous report for an air-cathode MFC. With domestic wastewater as a fuel, MFCs with the Fe-N-C/AC cathode produced up to 0.8±0.03 W m(-2) , which was twice that obtained with a Pt-catalyzed cathode. The use of this Fe-N-C/AC catalyst can therefore substantially increase power production, and enable broader applications of MFCs for renewable electricity generation using waste materials.

  19. Stable enhanced green fluorescent protein expression after differentiation and transplantation of reporter human induced pluripotent stem cells generated by AAVS1 transcription activator-like effector nucleases.

    PubMed

    Luo, Yongquan; Liu, Chengyu; Cerbini, Trevor; San, Hong; Lin, Yongshun; Chen, Guokai; Rao, Mahendra S; Zou, Jizhong

    2014-07-01

    Human induced pluripotent stem (hiPS) cell lines with tissue-specific or ubiquitous reporter genes are extremely useful for optimizing in vitro differentiation conditions as well as for monitoring transplanted cells in vivo. The adeno-associated virus integration site 1 (AAVS1) locus has been used as a "safe harbor" locus for inserting transgenes because of its open chromatin structure, which permits transgene expression without insertional mutagenesis. However, it is not clear whether targeted transgene expression at the AAVS1 locus is always protected from silencing when driven by various promoters, especially after differentiation and transplantation from hiPS cells. In this paper, we describe a pair of transcription activator-like effector nucleases (TALENs) that enable more efficient genome editing than the commercially available zinc finger nuclease at the AAVS1 site. Using these TALENs for targeted gene addition, we find that the cytomegalovirus-immediate early enhancer/chicken β-actin/rabbit β-globin (CAG) promoter is better than cytomegalovirus 7 and elongation factor 1α short promoters in driving strong expression of the transgene. The two independent AAVS1, CAG, and enhanced green fluorescent protein (EGFP) hiPS cell reporter lines that we have developed do not show silencing of EGFP either in undifferentiated hiPS cells or in randomly and lineage-specifically differentiated cells or in teratomas. Transplanting cardiomyocytes from an engineered AAVS1-CAG-EGFP hiPS cell line in a myocardial infarcted mouse model showed persistent expression of the transgene for at least 7 weeks in vivo. Our results show that high-efficiency targeting can be obtained with open-source TALENs and that careful optimization of the reporter and transgene constructs results in stable and persistent expression in vitro and in vivo.

  20. Enhanced excision repair and lack of PSII activity contribute to higher UV survival of Chlamydomonas reinhardtii cells in dark.

    PubMed

    Chaudhari, Vishalsingh R; Vyawahare, Aniket; Bhattacharjee, Swapan K; Rao, Basuthkar J

    2015-03-01

    Plant cells are known to differentiate their responses to stress depending up on the light conditions. We observed that UVC sensitive phenotype of light grown asynchronous Chlamydomonas reinhardtii culture (Light culture: LC) can be converted to relatively resistant form by transfer to dark condition (Dark culture: DC) before UVC exposure. The absence of photosystem II (PSII) function, by either atrazine treatment in wild type or in D1 (psbA) null mutant, conferred UV protection even in LC. We provide an indirect support for involvement of reactive oxygen species (ROS) signalling by showing higher UV survival on exposures to mild dose of H2O2 or Methyl Viologen. Circadian trained culture also showed a rhythmic variation in UV sensitivity in response to alternating light-dark (12 h:12 h) entrainment, with maximum UV survival at the end of 12 h dark and minimum at the end of 12 h light. This rhythm failed to maintain in "free running" conditions, making it a non-circadian phenotype. Moreover, atrazine strongly inhibited rhythmic UV sensitivity and conferred a constitutively high resistance, without affecting internal circadian rhythm marker expression. Dampening of UV sensitivity rhythm in Thymine-dimer excision repair mutant (cc-888) suggested the involvement of DNA repair in this phenomenon. DNA excision repair (ER) assays in cell-free extracts revealed that dark incubated cells exhibit higher ER compared to those growing in light, underscoring the role of ER in conferring differential UV sensitivity in dark versus light incubation. We suggest that multiple factors such as ROS changes triggered by differences in PSII activity, concomitant with differential ER efficiency collectively contribute to light-dark (12 h: 12 h) rhythmicity in C. reinhardtii UV sensitivity.

  1. Nerve growth factor enhances voltage-gated Na+ channel activity and Transwell migration in Mat-LyLu rat prostate cancer cell line.

    PubMed

    Brackenbury, William J; Djamgoz, Mustafa B A

    2007-03-01

    The highly dynamic nature of voltage-gated Na+ channel (VGSC) expression and its controlling mechanism(s) are not well understood. In this study, we investigated the possible involvement of nerve growth factor (NGF) in regulating VGSC activity in the strongly metastatic Mat-LyLu cell model of rat prostate cancer (PCa). NGF increased peak VGSC current density in a time- and dose-dependent manner. NGF also shifted voltage to peak and the half-activation voltage to more positive potentials, and produced currents with faster kinetics of activation; sensitivity to the VGSC blocker tetrodotoxin (TTX) was not affected. The NGF-induced increase in peak VGSC current density was suppressed by both the pan-trk antagonist K252a, and the protein kinase A (PKA) inhibitor KT5720. NGF did not affect the Nav1.7 mRNA level, but the total VGSC alpha-subunit protein level was upregulated. NGF potentiated the cells' migration in Transwell assays, and this was not affected by TTX. We concluded that NGF upregulated functional VGSC expression in Mat-LyLu cells, with PKA as a signaling intermediate, but enhancement of migration by NGF was independent of VGSC activity.

  2. Ferric reductase activity of low molecular weight human milk fraction is associated with enhanced iron solubility and uptake in Caco-2 cells.

    PubMed

    Pullakhandam, Raghu; Nair, Madhavan Krishnapillai; Kasula, Sunanda; Kilari, Sreenivasulu; Thippande, Tippeswamy Gowda

    2008-09-19

    It is known that the fractional absorption of extrinsic iron from human milk is higher in infants and adults. A low molecular weight milk fraction has been proposed to increase the bioavailability of iron from human milk. Nevertheless, the mechanisms remained elusive. Here in we demonstrate ferric reductase activity (Km7.73x10(-6)M) in low molecular weight human milk fraction (10kF, filtrate derived from ultra filtration of milk whey through 10kDa cutoff membrane), which increased ferric iron solubility and iron uptake in Caco-2 cells. The 10kF fraction was as effective as ascorbic acid (1:20 iron to ascorbic acid) in increasing the ferric iron solubility and uptake in Caco-2 cells. Further, gel filtration chromatography on peptide column led to co-elution of ferric reductase and iron solubilization activities at an apparent molecular mass of <1500Da. Interestingly, only these fractions containing ferric reductase activity also stimulated the uptake of iron in Caco-2 cells. Thus, it is concluded that human milk possesses ferric reductase activity and is associated with ferric iron solubilization and enhanced absorption.

  3. Clusterin facilitates COMMD1 and I-κB degradation to enhance NF-κB activity in prostate cancer cells

    PubMed Central

    Zoubeidi, Amina; Ettinger, Susan; Beraldi, Eliana; Hadaschik, Boris; Zardan, Anousheh; Klomp, Leo WJ; Nelson, Colleen C.; Rennie, Paul S.; Gleave, Martin E.

    2009-01-01

    Secretory clusterin (sCLU) is a stress-activated, cytoprotective chaperone that confers broad-spectrum cancer treatment resistance and its targeted inhibitor (OGX-011) is currently in Phase II trials for prostate, lung, and breast cancer. However, molecular mechanisms by which sCLU inhibits treatment-induced apoptosis in prostate cancer remain incompletely defined. We report that sCLU increases NF-κB nuclear translocation and transcriptional activity by serving as a ubiquitin binding protein that enhances COMMD1 and I-κB proteasomal degradation by interacting with members of the SCF-βTrCP E3 ligase family. Knockdown of sCLU in prostate cancer cells stabilizes COMMD1 and I-κB, thereby sequestrating NF-κB in the cytoplasm and decreasing NF-κB transcriptional activity. Comparative microarray profiling of sCLU over-expressing and knockdown prostate cancer cells confirmed that the expression of many NF-κB regulated genes positively correlate with sCLU levels. We propose that elevated levels of sCLU promote prostate cancer cell survival by facilitating degradation of COMMD1 and I-κB, thereby activating the canonical NF-κB pathway. PMID:20068069

  4. Cardiosphere-derived cells from pediatric end-stage heart failure patients have enhanced functional activity due to the heat shock response regulating the secretome.

    PubMed

    Sharma, Sudhish; Mishra, Rachana; Simpson, David; Wehman, Brody; Colletti, Evan J; Deshmukh, Savitha; Datla, Srinivasa Raju; Balachandran, Keerti; Guo, Yin; Chen, Ling; Siddiqui, Osama T; Kaushal, Shalesh; Kaushal, Sunjay

    2015-04-01

    We have demonstrated that human neonatal cardiosphere-derived cells (CDCs) derived from the young are more regenerative due to their robust secretome. However, it is unclear how the decompensated pediatric heart impacts the functional activity of their CDCs. Our aim was to characterize the potency of pediatric CDCs derived from normal functioning myocardium of control heart disease (CHD) patients to those generated from age-matched end stage heart failure (ESHF) patients and to determine the mechanisms involved. ESHF-derived CDCs contained a higher number of c-kit(+) , Islet-1(+) , and Sca-1(+) cells. When transplanted into an infarcted rodent model, ESHF-derived CDCs significantly demonstrated higher restoration of ventricular function, prevented adverse remodeling, and enhanced angiogenesis when compared with CHD patients. The superior functional recovery of the ESHF-derived CDCs was mediated in part by increased SDF-1α and VEGF-A secretion resulting in augmented recruitment of endogenous stem cells and proliferation of cardiomyocytes. We determined the mechanism is due to the secretome directed by the heat shock response (HSR), which is supported by three lines of evidence. First, gain of function studies demonstrated that increased HSR induced the lower functioning CHD-derived CDCs to significantly restore myocardial function. Second, loss-of function studies targeting the HSR impaired the ability of the ESHF-derived CDCs to functionally recover the injured myocardium. Finally, the native ESHF myocardium had an increased number of c-kit(+) cardiac stem cells. These findings suggest that the HSR enhances the functional activity of ESHF-derived CDCs by increasing their secretome activity, notably SDF-1α and VEGF-A.

  5. Adiponectin enhances bone marrow mesenchymal stem cell resistance to flow shear stress through AMP-activated protein kinase signaling

    PubMed Central

    Zhao, Lin; Fan, Chongxi; Zhang, Yu; Yang, Yang; Wang, Dongjin; Deng, Chao; Hu, Wei; Ma, Zhiqiang; Jiang, Shuai; Di, Shouyi; Qin, Zhigang; Lv, Jianjun; Sun, Yang; Yi, Wei

    2016-01-01

    Adiponectin has been demonstrated to protect the cardiovascular system and bone marrow mesenchymal stem cells (BMSCs). However, it is unclear whether adiponectin can protect BMSCs against flow shear stress (FSS). In this study, our aim was to explore the effects of adiponectin on BMSCs and to explore the role of AMP-activated protein kinase (AMPK) signaling in this process. Shear stress significantly inhibits the survival and increases the apoptosis of BMSCs in an intensity-dependent manner. The expression levels of TGF-β, bFGF, VEGF, PDGF, and Bcl2 are simultaneously reduced, and the phosphorylation levels of AMPK and ACC, as well as the expression level of Bax, are increased. Supplementation with adiponectin promotes the survival of BMSCs; reverses the changes in the expression levels of TGF-β, bFGF, VEGF, PDGF, Bcl2, and Bax; and further amplifies the phosphorylation of AMPK and ACC. Furthermore, the protective effects of adiponectin can be partially neutralized by AMPK siRNA. In summary, we have demonstrated for the first time that adiponectin can effectively protect BMSCs from FSS and that this effect depends, at least in part, on the activation of AMPK signaling. PMID:27418435

  6. Enhanced Catalytic Activity of Pt Supported on Nitrogen-Doped Reduced Graphene Oxide Electrodes for Fuel Cells.

    PubMed

    Sun, Qizhong; Park, Soo-Jin; Kim, Seok

    2015-11-01

    We report an efficient method for the synthesis of nitrogen-doped reduced graphene oxide supported Pt nanocatalysts (Pt/N-RGO). Nitrogen-doped reduced graphene oxide (N-RGO) was prepared by pyrolysis of graphene oxide with cyanamide as a nitrogen source. Then, the Pt nanoparticles were deposited over N-RGO by one-step chemical polyol reduction process. The morphology and structure of as-prepared catalysts were characterized by transmission electron microscopy (TEM), and X-ray diffraction (XRD). Subsequently, electrocatalytic activities of the catalysts were evaluated by cyclic voltammetry (CV). As a result, the Pt/N-RGO catalysts exhibit the superior electrochemical activity toward methanol oxidation in compared with that of Pt loaded on undoped reduced graphene oxide (Pt/RGO) and Pt/carbon blacks (Pt/C). This was mainly attributed to the better distribution of Pt nanoparticles as well as the synergistic electrochemical effects of the nitrogen doped supports. These results demonstrate that N-RGO could be a promising candidate as a high performance catalyst support for a fuel cell application.

  7. Inhibition of basal JNK activity by small interfering RNAs enhances cisplatin sensitivity and decreases DNA repair in T98G glioblastoma cells.

    PubMed

    Parra, Eduardo; Gutiérrez, Luis; Ferreira, Jorge

    2015-01-01

    Inhibition of basal Jun kinase (JNK) activity by small interfering RNAs (siRNAs) enhances cisplatin sensitivity and decreases DNA repair in T98G glioblastoma cells. Although the JNK pathway has been extensively studied in recent years, little is known concerning the signaling pathways that control their expression in glioma cells. The aim of the present study was to assess the role of c-Jun-NH2-terminal kinases (JNKs) in the regulation of T98G glioblastoma cells treated with cisplatin in the presence or absence of siRNAs against JNK1 and JNK2. Addition of either small interfering JNK1-siRNA or JNK2-siRNA induced decreased DNA repair and sensitized the T98G glioblastoma cells to the DNA damaging drug cisplatin (cis-diamminedichloroplatinum). This effect was associated with reduced cell survival and loss of anchorage‑independent colony formation. The results indicate that effective inhibition of the JNK pathway significantly sensitizes glioblastoma cells to cisplatin, a compound of proven clinical value whose spectrum of application is limited by resistance phenomena.

  8. Irradiation enhances susceptibility of tumor cells to the antitumor effects of TNF-α activated adipose derived mesenchymal stem cells in breast cancer model

    PubMed Central

    Mohammadpour, Hemn; Pourfathollah, Ali Akbar; Nikougoftar Zarif, Mahin; Shahbazfar, Amir Ali

    2016-01-01

    Gene modified or cytokine activated mesenchymal stem cells (MSCs) have been used as a treatment in various types of cancer. Moreover, irradiation is usually applied as either a standard primary or adjuvant therapy. Here, we showed that the expression of TNF related apoptosis-inducing ligand (TRAIL) and Dickouf-3 (Dkk-3), the promising anticancer proteins, increased in murine adipose-derived mesenchymal stromal cells (AD-MSCs) following activation with TNF-α, resulting in the induction of apoptosis in cancer cells. Also, anticancer effects of TNF-α activated AD-MSCs were intensified with irradiation. In vivo results showed that TNF-α preactivated AD-MSCs combined with irradiation decreased tumor size and increased survival rate in tumor bearing mice. On the other hands, both TNF-α preactivated AD-MSCs with or without irradiation prevented metastasis in ling and liver, and increased apoptosis in tumor mass. Finally, flowcytometry assay demonstrated that naïve AD-MSCs combined with irradiation but not TNF-α activated MSCs with irradiation increased Treg population in lymph node and spleen. Altogether, obtained results suggest that TNF-α activated MSCs combined with irradiation therapy can serve as new strategy in breast cancer therapy. PMID:27329316

  9. Activation of the aryl hydrocarbon receptor pathway enhances cancer cell invasion by upregulating the MMP expression and is associated with poor prognosis in upper urinary tract urothelial cancer.

    PubMed

    Ishida, Masaru; Mikami, Shuji; Kikuchi, Eiji; Kosaka, Takeo; Miyajima, Akira; Nakagawa, Ken; Mukai, Makio; Okada, Yasunori; Oya, Mototsugu

    2010-02-01

    Aryl hydrocarbon receptor (AhR) and the activation of the AhR pathway are involved in xenobiotic-induced toxicity and carcinogenesis. Although xenobiotics, such as cigarette smoke, contribute to the development of urothelial carcinoma (UC), the relationship between AhR and UC is unclear. In the present study, we investigated AhR expression in 209 patients with upper urinary tract UC. The nuclear expression of AhR was significantly associated with histological grade, pathological T stage, lymphovascular invasion and lymph node involvement. A multivariate Cox analysis revealed that nuclear AhR expression was a significant and independent predictor for disease-specific survival (hazard ratio = 2.469, P = 0.013). To determine whether the AhR pathway can be activated in the T24 UC cell line, we examined the expression of cytochrome P450 (CYP) 1A1 and CYP1B1, which are target genes of the AhR pathway, following exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a ligand of AhR. TCDD treatment upregulated the expression levels of AhR, CYP1A1 and CYP1B1. TCDD enhanced T24 cell invasion associated with the upregulation of matrix metalloproteinase (MMP)-1 and MMP-9. Furthermore, targeting AhR messenger RNA (mRNA) expression in T24 cells with small interfering RNA (siRNA) downregulated the mRNA expression of AhR, CYP1A1, CYP1B1, MMP-1, MMP-2 and MMP-9; furthermore, the cells transfected with siRNA for AhR showed decreased invasion activity in comparison with the cells transfected with a non-targeting siRNA. Our results therefore suggest that AhR plays a role in the invasiveness of UC cells and can serve as a marker for the prognosis of upper urinary tract UC.

  10. Targeting NF-κB/AP-2β signaling to enhance antitumor activity of cisplatin by melatonin in hepatocellular carcinoma cells

    PubMed Central

    Hao, Jiaojiao; Li, Zhenglin; Zhang, Changlin; Yu, Wendan; Tang, Zhipeng; Li, Yixin; Feng, Xu; Gao, Yue; Liu, Quentin; Huang, Wenlin; Guo, Wei; Deng, Wuguo

    2017-01-01

    Cisplatin is a common chemotherapeutic drug for cancer treatment, but its effect is limited because of its cytotoxicity and chemoresistance. The combinational use of cisplatin with some natural compounds has provided a potential option to improve its effect and lower its side effects in cancer treatment. Here, we investigated the role of melatonin in the regulation of cisplatin-mediated antitumor activity in hepatocellular carcinoma cells. The combined treatment of cisplatin with melatonin significantly inhibited cell proliferation and resulted in a corresponding decrease of the IC50 values of cisplatin in four hepatocellular carcinoma cell lines. Cotreatment with melatonin also increased the cisplatin-induced apoptosis in hepatocellular carcinoma cells compared with cisplatin treatment alone. Further mechanism studies showed that the combined treatment of melatonin and cisplatin enhanced the cleavage of caspase-3, caspase-9 and poly-(ADP-ribose) polymerase (PARP), decreased the expression of Bcl-2 and p-IKKα/β, suppressed the nuclear translocation of NF-κB p50/p65 proteins, and abrogated the binding of p65 to COX-2 promoter, thereby inhibiting COX-2 expression. Furthermore, melatonin was found to synergistically enhance cisplatin-mediated inhibition of AP-2β and hTERT expression. Overexpression of AP-2β reversely rescued this inhibition mediated by the combined treatment of these two drugs. Collectively, our results demonstrated that melatonin sensitizes the cisplatin-mediated growth suppression of cells via the inactivation of NF-κB/COX-2 and AP-2β/hTERT signaling in hepatocellular carcinoma cells. PMID:28123844

  11. How Soluble GARP Enhances TGFβ Activation

    PubMed Central

    Fridrich, Sven; Hahn, Susanne A.; Linzmaier, Marion; Felten, Matthias; Zwarg, Jenny; Lennerz, Volker; Tuettenberg, Andrea; Stöcker, Walter

    2016-01-01

    GARP (glycoprotein A repetitions predominant) is a cell surface receptor on regulatory T-lymphocytes, platelets, hepatic stellate cells and certain cancer cells. Its described function is the binding and accommodation of latent TGFβ (transforming growth factor), before the activation and release of the mature cytokine. For regulatory T cells it was shown that a knockdown of GARP or a treatment with blocking antibodies dramatically decreases their immune suppressive capacity. This confirms a fundamental role of GARP in the basic function of regulatory T cells. Prerequisites postulated for physiological GARP function include membrane anchorage of GARP, disulfide bridges between the propeptide of TGFβ and GARP and connection of this propeptide to αvβ6 or αvβ8 integrins of target cells during mechanical TGFβ release. Other studies indicate the existence of soluble GARP complexes and a functionality of soluble GARP alone. In order to clarify the underlying molecular mechanism, we expressed and purified recombinant TGFβ and a soluble variant of GARP. Surprisingly, soluble GARP and TGFβ formed stable non-covalent complexes in addition to disulfide-coupled complexes, depending on the redox conditions of the microenvironment. We also show that soluble GARP alone and the two variants of complexes mediate different levels of TGFβ activity. TGFβ activation is enhanced by the non-covalent GARP-TGFβ complex already at low (nanomolar) concentrations, at which GARP alone does not show any effect. This supports the idea of soluble GARP acting as immune modulator in vivo. PMID:27054568

  12. Inecalcitol, an analog of 1,25D₃, displays enhanced antitumor activity through the induction of apoptosis in a squamous cell carcinoma model system

    PubMed Central

    Ma, Yingyu; Yu, Wei-Dong; Hidalgo, Alejandro A.; Luo, Wei; Delansorne, Remi; Johnson, Candace S.; Trump, Donald L.

    2013-01-01

    Epidemiological data suggest an important role of vitamin D signaling in cancer development and progression, and experimental studies demonstrate that the active vitamin D metabolite 1α, 25-dihydroxyvitamin D₃ (1,25D₃) has broad spectrum antitumor activity. Hypercalcemia has often been suggested to limit the clinical application of these data. The 14-epi-analog of 1,25D₃, inecalcitol [19-nor-14-epi-23-yne-1,25-(OH)₂D₃; TX522], was developed to have superagonistic antitumor activities but low hypercalcemia potential. We examined the antitumor activity of inecalcitol and the underlying mechanisms in a murine squamous cell carcinoma (SCC) model system. In vitro, compared with 1,25D₃, inecalcitol showed enhanced vitamin D receptor (VDR)-mediated transcriptional activity. Inecalcitol suppressed SCC cell proliferation in a dose-dependent manner with an IC₅₀ value 30 times lower than that of 1,25D₃. Both inecalcitol and 1,25D₃ induced a comparable level of G₀/G₁ cell cycle arrest in SCC cells. The level of apoptosis induced by inecalcitol was markedly higher than that of 1,25D₃. Apoptosis was mediated through the activation of the caspase 8/10- caspase 3 pathway. Further, inecalcitol markedly inhibited the mRNA and protein expression of c-IAP1 and XIAP compared with 1,25D₃. In vivo, inecalcitol inhibits SCC tumor growth in a dose-dependent fashion. Notably, inecalcitol induced a significantly higher level of apoptosis in the SCC xenograft model. While in vitro inecalcitol demonstrates apparent enhanced VDR binding and antiproliferative effects compared to 1,25D₃, in vivo these advantages disappear; at doses of inecalcitol that have equivalent antitumor effects, similar hypercalcemia is seen. This may be explained by the pharmacokinetics of 1,25D₃ vs. inecalcitol and attributed to the much shorter serum half-life of inecalcitol.We show that inecalcitol has potent antitumor activity in the SCC model system, and this is associated with a

  13. Surface-enhanced Raman imaging of red blood cell membrane with highly uniform active substrates obtained using block copolymers self-assembly

    NASA Astrophysics Data System (ADS)

    Zito, Gianluigi; Malafronte, Anna; Dochshanov, Alden; Rusciano, Giulia; Auriemma, Finizia; Pesce, Giuseppe; De Rosa, Claudio; Sasso, Antonio

    2013-05-01

    In this communication, we discuss the application of ordered, ultrahigh-density templates of nano-textured Ag-particles obtained by self-assembling of inorganic-containing polystyrene-block-poly(4-vinylpyridine) copolymer (PS-b-P4VP) micelles, for the spectroscopic surface-enhanced Raman imaging in-vitro of red blood cells (RBCs) and its capability to identify the vibrational fingerprint of the plasma membrane of the cell physisorbed to the SERS substrate. Hexagonal arrays of PS-b-P4VP micelles, with selective inclusion of Ag nanoparticles (NPs) in the polar core, prepared by in situ reduction of a suitable precursor, are obtained by polymer self-assembly upon fast solvent evaporation during spin coating on the supporting substrate. UV irradiation and/or plasma oxygen treatment remove the polymer matrix leaving immobilized nano-islands of Ag-NPs. Such a kind of SERS-active substrate consists of a reproducible and uniform twodimensional hexagonal array of silver clusters with a diameter ranging from 25 to 30 nm (single particles having typically diameters of 5 nm) and nano-island gap distances of the order of 5-8 nm on silicon and 15 nm on glass , while giving rise to high enhancement factors and addressing the issue of SERS reproducibility. The basic substrate supporting the plasmonic coating used in this work is either of silicon or glass. This last allows working in back scattering configuration permitting real time monitoring, via microscopy, of the RBCs on which Raman measurements are being carried out. The template is thus applied for surface-enhanced Raman analysis of the red blood cell (RBC) membrane in confocal micro-Raman configuration demonstrating to have SERS imaging potential thanks to the uniformity of the nano-textured substrate. The first experimental evidence of SERS imaging of a red blood cell membrane in-vitro is demonstrated.

  14. Beta-adrenoceptor Activation by Norepinephrine Enhances Lipopolysaccharide-induced Matrix Metalloproteinase-9 Expression Through the ERK/JNK-c-Fos Pathway in Human THP-1 Cells

    PubMed Central

    Yin, Xiang; Zhou, Linli; Han, Fei; Han, Jie; Zhang, Yuanyuan; Sun, Zewei; Zhao, Wenting; Wang, Zhen

    2017-01-01

    Aim: Atherosclerosis is a chronic inflammatory disease, which leads to thrombosis and acute coronary syndrome. Matrix metalloproteinase-9 (MMP-9) is involved in the stability of the extracellular matrix (ECM) and atherosclerosis plaque. Until now, it is established that lipopolysaccharide (LPS) and norepinephrine (NE) are associated with the pathological process of atherosclerosis. However, the combined effect of LPS and NE on MMP-9 is unclear. We investigated the combined effect of LPS and NE on MMP-9 expression in human monocytes and the mechanism involved in the process. Methods: THP-1 cells were cultured and treated with LPS and/or NE. MMP-9 and TIMP-1 gene and protein expression were detected by real time PCR and ELISA, respectively. MMP-9 activity was detected by gelatin zymography. Adrenoceptor antagonists and MAPKs inhibitors were used to clarify the mechanism. Pathway-related proteins were detected by Western blot. Results: We found that NE enhances LPS-induced MMP-9 and TIMP-1 expression as well as MMP-9 activity in THP-1 cells. This effect is reversed by the beta (β)-adrenoceptor antagonist propranolol, extracellular signal-regulated kinases (ERK) inhibitor U0126, and c-Jun N-terminal kinase (JNK) inhibitor SP600125. NE enhances LPS-induced ERK/JNK phosphorylation. NE up-regulates LPS-induced c-Fos expression, which is counteracted by propranolol, U0126, and SP600125. Furthermore, c-Fos silence reverses the effect of NE on MMP-9 activity. Conclusions: Our results suggest that NE enhances LPS-induced MMP-9 expression through β-adrenergic receptor and downstream ERK/JNK-c-Fos pathway. This study may help us to understand the combined effect and mechanism of NE/LPS on MMP-9 expression. PMID:27237101

  15. Pancreatic adenocarcinoma up-regulated factor (PAUF) enhances the accumulation and functional activity of myeloid-derived suppressor cells (MDSCs) in pancreatic cancer

    PubMed Central

    Jo, Seongyea; Kim, Yeon Jeong; Baek, Ji Eun; Kwon, Eun-Soo; Lee, Kwang-Pyo; Yang, Siyoung; Kwon, Ki-Sun; Kim, Dong-Uk; Kang, Tae Heung; Park, Yun-Yong; Chang, Suhwan; Cho, Hee Jun; Kim, Song Cheol; Koh, Sang Seok; Kim, Seokho

    2016-01-01

    Pancreatic cancer is characterized by an immunosuppressive tumor microenvironment (TME) with a profound immune infiltrate populated by a significant number of myeloid-derived suppressor cells (MDSCs). MDSCs have been increasingly recognized for their role in immune evasion and cancer progression as well as their potential as a target for immunotherapy. However, not much is known about the mechanisms regulating their behavior and function in the pancreatic TME. Here we report that pancreatic adenocarcinoma up-regulated factor (PAUF), a soluble protein involved in pancreatic tumorigenesis and metastasis, plays a role as an enhancer of tumor-infiltrating MDSC and its functional activity. We show that PAUF enhanced the accumulation of MDSCs in the spleen and tumor tissues of PAUF-overexpressing tumor cell-injected mice. In addition, PAUF was found to enhance the immunosuppressive function of MDSCs via the TLR4-mediated signaling pathway, which was demonstrated by PAUF-induced increased levels of arginase, nitric oxide (NO), and reactive oxygen species (ROS). The role of PAUF in modulating the functional properties of MDSCs was further demonstrated by the use of a PAUF-neutralizing antibody that caused a decreased number of tumor-infiltrating MDSCs and reduced MDSC immunosuppressive activity. The observations made in mice were confirmed in human pancreatic cancer patient-derived MDSCs, supporting the clinical relevance of our findings. Collectively, we conclude that the PAUF is a powerful and multifunctional promoter of tumor growth through increase and functional activation of MDSCs, suggesting therapeutic potential for targeting PAUF in pancreatic cancers. PMID:27322081

  16. Parathyroid hormone enhances fluid shear-induced [Ca2+]i signaling in osteoblastic cells through activation of mechanosensitive and voltage-sensitive Ca2+ channels

    NASA Technical Reports Server (NTRS)

    Ryder, K. D.; Duncan, R. L.

    2001-01-01

    Osteoblasts respond to both fluid shear and parathyroid hormone (PTH) with a rapid increase in intracellular calcium concentration ([Ca2+]i). Because both stimuli modulate the kinetics of the mechanosensitive cation channel (MSCC), we postulated PTH would enhance the [Ca2+]i response to fluid shear by increasing the sensitivity of MSCCs. After a 3-minute preflow at 1 dyne/cm2, MC3T3-E1 cells were subjected to various levels of shear and changes in [Ca2+]i were assessed using Fura-2. Pretreatment with 50 nM bovine PTH(1-34) [bPTH(1-34)] significantly enhanced the shear magnitude-dependent increase in [Ca2+]i. Gadolinium (Gd3+), an MSCC blocker, significantly inhibited the mean peak [Ca2+]i response to shear and shear + bPTH(1-34). Nifedipine (Nif), an L-type voltage-sensitive Ca2+ channel (VSCC) blocker, also significantly reduced the [Ca2+]i response to shear + bPTH(1-34), but not to shear alone, suggesting VSCC activation plays an interactive role in the action of these stimuli together. Activation of either the protein kinase C (PKC) or protein kinase A (PKA) pathways with specific agonists indicated that PKC activation did not alter the Ca2+ response to shear, whereas PKA activation significantly increased the [Ca2+]i response to lower magnitudes of shear. bPTH(1-34), which activates both pathways, induced the greatest [Ca2+]i response at each level of shear, suggesting an interaction of these pathways in this response. These data indicate that PTH significantly enhances the [Ca2+]i response to shear primarily via PKA modulation of the MSCC and VSCC.

  17. A mammary cell-specific enhancer in mouse mammary tumor virus DNA is composed of multiple regulatory elements including binding sites for CTF/NFI and a novel transcription factor, mammary cell-activating factor.

    PubMed Central

    Mink, S; Härtig, E; Jennewein, P; Doppler, W; Cato, A C

    1992-01-01

    Mouse mammary tumor virus (MMTV) is a milk-transmitted retrovirus involved in the neoplastic transformation of mouse mammary gland cells. The expression of this virus is regulated by mammary cell type-specific factors, steroid hormones, and polypeptide growth factors. Sequences for mammary cell-specific expression are located in an enhancer element in the extreme 5' end of the long terminal repeat region of this virus. This enhancer, when cloned in front of the herpes simplex thymidine kinase promoter, endows the promoter with mammary cell-specific response. Using functional and DNA-protein-binding studies with constructs mutated in the MMTV long terminal repeat enhancer, we have identified two main regulatory elements necessary for the mammary cell-specific response. These elements consist of binding sites for a transcription factor in the family of CTF/NFI proteins and the transcription factor mammary cell-activating factor (MAF) that recognizes the sequence G Pu Pu G C/G A A G G/T. Combinations of CTF/NFI- and MAF-binding sites or multiple copies of either one of these binding sites but not solitary binding sites mediate mammary cell-specific expression. The functional activities of these two regulatory elements are enhanced by another factor that binds to the core sequence ACAAAG. Interdigitated binding sites for CTF/NFI, MAF, and/or the ACAAAG factor are also found in the 5' upstream regions of genes encoding whey milk proteins from different species. These findings suggest that mammary cell-specific regulation is achieved by a concerted action of factors binding to multiple regulatory sites. Images PMID:1328867

  18. Tumour suppressor PTEN enhanced enzyme activity of GPx, SOD and catalase by suppression of PI3K/AKT pathway in non-small cell lung cancer cell lines.

    PubMed

    Akca, Hakan; Demiray, Aydin; Aslan, Mutay; Acikbas, Ibrahim; Tokgun, Onur

    2013-06-01

    Phosphates and tensin homologue deleted on chromosome 10 (PTEN) is a tumour suppressor gene which dephosphorilates phosphoinositol 3,4,5 triphosphates. Therefore PTEN can regulate PI3K/AKT pathway in cells. Because of promoter methylation or gene deletion, PTEN expression is commonly decreased or lost in non-small cell lung cancer (NSCLC) cell lines. Therefore, we hypothesized that PTEN could regulate the activity of superoxide dismutase (CuZnSOD), glutathione peroxidase (GPx) and catalase. We first recreated PTENwt, G129R and G129E expressions in lung cell lines, in which endogenous PTEN expression was not detected. Then, we showed that PTEN could suppress AKT activity by its lipid phosphatase domain. We then examined the effect of recreated PTEN expressions in NSCLC cells. While PTENwt expression caused enhanced activity of SOD, GPx and catalase in transfected cells lines, neither G129R nor G129E expression effected enzyme activities. These results suggest that PTEN can up-regulate SOD, GPx and catalase activity by inhibition of PI3K/AKT pathway in NSCLC cell lines.

  19. Theaflavins enhance intestinal barrier of Caco-2 Cell monolayers through the expression of AMP-activated protein kinase-mediated Occludin, Claudin-1, and ZO-1.

    PubMed

    Park, Ha-Young; Kunitake, Yuri; Hirasaki, Naoto; Tanaka, Mitsuru; Matsui, Toshiro

    2015-01-01

    We investigated the effect of theaflavins (TFs) on membrane barrier of Caco-2 cells. For fluorescein-transport experiments, the apparent permeability (Papp) of fluorescein in Caco-2 cells pretreated with 20 μM TFs were significantly decreased compared with that in untreated cells. Although the respective monomeric catechins did not show any Papp reduction, purpurogallin pretreatment resulted in a significant Papp reduction similar to that of TF-3'-O-gallate (TF3'G) pretreatment. This indicates that the benzotropolone moiety may play a crucial role in the Papp reduction or tight junction (TJ)-closing effect induced by TFs. In TF-3'-O-gallate-pretreated Caco-2 cells, fluorescein transport was completely restored by compound C (AMPK inhibitor). In addition, TF3'G significantly increased both the mRNA and protein expression of TJ-related proteins (occludin, claudin-1, and ZO-1) as well as the phosphorylation of AMPK. It was, thus, concluded that TFs could enhance intestinal barrier function by increasing the expression of TJ-related proteins through the activation of AMPK in Caco-2 cells.

  20. Combination of the human anti-CD30 antibody 5F11 with cytostatic drugs enhances its antitumor activity against Hodgkin and anaplastic large cell lymphoma cell lines.

    PubMed

    Heuck, Friederike; Ellermann, Julia; Borchmann, Peter; Rothe, Achim; Hansen, Hinrich; Engert, Andreas; von Strandmann, Elke Pogge

    2004-01-01

    Due to its selective overexpression on the malignant cells of Hodgkin's lymphoma (HL) and large cell anaplastic lymphoma (ALCL), CD30 is an excellent target for immunotherapy of these diseases. The fully human monoclonal anti-CD30-antibody 5F11 has been shown to be effective against CD30-expressing cell lines both in vitro and in vivo. In addition, 5F11 shows promising antitumor activity in phase 1/2 clinical trials. To extend these promising results, the authors evaluated combinations of 5F11 with conventional cytostatic drugs against a variety of lymphoma cell lines in vitro. Most combinations tested showed at least additive cytotoxic effects on the HL-derived cell lines L428, L540, and L1236 and the ALCL-derived cell line Karpas 299 as measured by proliferation assays (XTT) and the induction of apoptosis (annexin-V FACS analysis). The most impressive results were detected with the combination of 5F11 and gemcitabine or etoposide. The data suggest that the combination of the human antibody 5F11 with conventional chemotherapy might be beneficial in the combined chemo-immunotherapy of CD30-positive lymphomas.

  1. Melatonin inhibits AP-2β/hTERT, NF-κB/COX-2 and Akt/ERK and activates caspase/Cyto C signaling to enhance the antitumor activity of berberine in lung cancer cells.

    PubMed

    Lu, Jian-Jun; Fu, Lingyi; Tang, Zhipeng; Zhang, Changlin; Qin, Lijun; Wang, Jingshu; Yu, Zhenlong; Shi, Dingbo; Xiao, Xiangsheng; Xie, Fangyun; Huang, Wenlin; Deng, Wuguo

    2016-01-19

    Melatonin, a molecule produced throughout the animal and plant kingdoms, and berberine, a plant derived agent, both exhibit antitumor and multiple biological and pharmacological effects, but they have never been combined altogether for the inhibition of human lung cancers. In this study, we investigated the role and underlying mechanisms of melatonin in the regulation of antitumor activity of berberine in lung cancer cells. Treatment with melatonin effectively increased the berberine-mediated inhibitions of cell proliferation, colony formation and cell migration, thereby enhancing the sensitivities of lung cancer cells to berberine. Melatonin also markedly increased apoptosis induced by berberine. Further mechanism study showed that melatonin promoted the cleavage of caspse-9 and PARP, enhanced the inhibition of Bcl2, and triggered the releasing of cytochrome C (Cyto C), thereby increasing the berberine-induced apoptosis. Melatonin also enhanced the berberine-mediated inhibition of telomerase reverses transcriptase (hTERT) by down-regulating the expression of AP-2β and its binding on hTERT promoter. Moreover, melatonin enhanced the berberine-mediated inhibition of cyclooxygenase 2 (COX-2) by inhibiting the nuclear translocation of NF-κB and its binding on COX-2 promoter. Melatonin also increased the berberine-mediated inhibition of the phosphorylated Akt and ERK. Collectively, our results demonstrated that melatonin enhanced the antitumor activity of berberine by activating caspase/Cyto C and inhibiting AP-2β/hTERT, NF-κB/COX-2 and Akt/ERK signaling pathways. Our findings provide new insights in exploring the potential therapeutic strategies and novel targets for lung cancer treatment.

  2. Gefitinib resistance in HCC mahlavu cells: upregulation of CD133 expression, activation of IGF-1R signaling pathway, and enhancement of IGF-1R nuclear translocation.

    PubMed

    Bodzin, Adam S; Wei, Zhengyu; Hurtt, Reginald; Gu, Tina; Doria, Cataldo

    2012-07-01

    Hepatocellular carcinoma (HCC) is the major form of primary liver cancer which accounts for more than half million deaths annually worldwide. While the incidence of HCC is still on the rise, options of treatment are limited and the overall survival rate is poor. The acquisition of cancer drug resistance remains one of the key hurdles to successful treatment. Clearly, a thorough understanding of the underlying mechanisms is needed for new strategies to design novel treatments and/or to improve the current therapies. In the present study, we examined the expression of cancer stem cell (CSC) marker CD133, the activation of insulin-like growth factor 1 receptor (IGF-1R) signaling, and the nuclear translocation of IGF-1R in HCC Mahlavu cells under the treatment of gefitinib, a cancer drug that inhibits epidermal growth factor receptor (EGFR) pathway. Our results demonstrated that Mahlavu cells exhibited strong gefitinib resistance and the CD133 expression level was dramatically increased (from 3.88% to 32%) after drug treatment. In addition, the gefitinib treated cells displayed increased levels of phosphorylation in IGF-1R and Akt, indicating the intensified activation of this cancer-associated signaling pathway. Moreover, we revealed that IGF-1R underwent nuclear translocation in gefitinib treated cells using confocal microscopy. The IGF-1R nuclear translocation was enhanced under gefitinib treatment and appeared in a dose-dependent manner. Our findings suggest that increased IGF-1R nuclear translocation after gefitinib treatment may contribute to the drug resistance and IGF1-R activation, which might also associate with the upregulation of CD133 expression.

  3. PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation.

    PubMed

    Noman, Muhammad Zaeem; Desantis, Giacomo; Janji, Bassam; Hasmim, Meriem; Karray, Saoussen; Dessen, Philippe; Bronte, Vincenzo; Chouaib, Salem

    2014-05-05

    Tumor-infiltrating myeloid cells such as myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) form an important component of the hypoxic tumor microenvironment. Here, we investigated the influence of hypoxia on immune checkpoint receptors (programmed death [PD]-1 and CTLA-4) and their respective ligands (PD-1 ligand 1 [PD-L1], PD-L2, CD80, and CD86) on MDSCs. We demonstrate that MDSCs at the tumor site show a differential expression of PD-L1 as compared with MDSCs from peripheral lymphoid organ (spleen). Hypoxia caused a rapid, dramatic, and selective up-regulation of PD-L1 on splenic MDSCs in tumor-bearing mice. This was not limited to MDSCs, as hypoxia also significantly increased the expression of PD-L1 on macrophages, dendritic cells, and tumor cells. Furthermore, PD-L1 up-regulation under hypoxia was dependent on hypoxia-inducible factor-1α (HIF-1α) but not HIF-2α. Chromatin immunoprecipitation and luciferase reporter assay revealed direct binding of HIF-1α to a transcriptionally active hypoxia-response element (HRE) in the PD-L1 proximal promoter. Blockade of PD-L1 under hypoxia enhanced MDSC-mediated T cell activation and was accompanied by the down-regulation of MDSCs IL-6 and IL-10. Finally, neutralizing antibodies against IL-10 under hypoxia significantly abrogated the suppressive activity of MDSCs. Simultaneous blockade of PD-L1 along with inhibition of HIF-1α may thus represent a novel approach for cancer immunotherapy.

  4. Angiotensin II enhances epithelial-to-mesenchymal transition through the interaction between activated hepatic stellate cells and the stromal cell-derived factor-1/CXCR4 axis in intrahepatic cholangiocarcinoma.

    PubMed

    Okamoto, Koichi; Tajima, Hidehiro; Nakanuma, Shinichi; Sakai, Seisho; Makino, Isamu; Kinoshita, Jun; Hayashi, Hironori; Nakamura, Keishi; Oyama, Katsunobu; Nakagawara, Hisatoshi; Fujita, Hideto; Takamura, Hiroyuki; Ninomiya, Itasu; Kitagawa, Hirohisa; Fushida, Sachio; Fujimura, Takashi; Harada, Shinichi; Wakayama, Tomohiko; Iseki, Shoichi; Ohta, Tetsuo

    2012-08-01

    We previously reported that hepatic stellate cells (HSCs) activated by angiotensin II (AngII) facilitate stromal fibrosis and tumor progression in intrahepatic cholangiocarcinoma (ICC). AngII has been known as a growth factor which can promote epithelial-to-mesenchymal transition (EMT) in renal epithelial cells, alveolar epithelial cells and peritoneal mesothelial cells. However, in the past, the relationship between AngII and stromal cell-derived factor-1 (SDF-1) in the microenvironment around cancer and the role of AngII on EMT of cancer cells has not been reported in detail. SDF-1 and its specific receptor, CXCR4, are now receiving attention as a mechanism of cell progression and metastasis. In this study, we examined whether activated HSCs promote tumor fibrogenesis, tumor progression and distant metastasis by mediating EMT via the AngII/AngII type 1 receptor (AT-1) and the SDF-1/CXCR4 axis. Two human ICC cell lines and a human HSC line, LI-90, express CXCR4. Significantly higher concentration of SDF-1α was released into the supernatant of LI-90 cells to which AngII had been added. SDF-1α increased the proliferative activity of HSCs and enhanced the activation of HSCs as a growth factor. Furthermore, addition of SDF-1α and AngII enhanced the increase of the migratory capability and vimentin expression, reduced E-cadherin expression, and translocated the expression of β-catenin into the nucleus and cytoplasm in ICC cells. Co-culture with HSCs also enhanced the migratory capability of ICC cells. These findings suggest that SDF-1α, released from activated HSCs and AngII, play important roles in cancer progression, tumor fibrogenesis, and migration in autocrine and paracrine fashion by mediating EMT. Our mechanistic findings may provide pivotal insights into the molecular mechanism of the AngII and SDF-1α-initiated signaling pathway that regulates fibrogenesis in cancerous stroma, tumor progression and meta-stasis of tumor cells expressing AT-1 and CXCR4.

  5. Long interspersed nucleotide acid element-1 ORF-1 protein promotes proliferation and invasion of human colorectal cancer LoVo cells through enhancing ETS-1 activity.

    PubMed

    Li, M Y; Zhu, M; Feng, F; Cai, F Y; Fan, K C; Jiang, H; Wang, Z Q; Linghu, E Q

    2014-04-14

    The human proto-oncogene long interspersed nucleotide acid element-1 (LINE-1) open reading frame-1 protein (ORF-1p) is involved in the progress of several cancers. The transcription factor ETS-1 can mediate the transcription of some downstream genes that play specific roles in the regulation of cancerous cell invasion and metastasis. In this study, the effects of LINE-1 ORF-1p on ETS-1 activity and on the proliferation and invasion of human colorectal cancer LoVo cells were investigated. Results showed that the overexpression of LINE-1 ORF-1p enhanced the transcription of ETS-1 downstream genes and increased their protein levels, and downregulation of the LINE-1 ORF-1p level by small interfering RNA (siRNA) reduced the transcriptional activation of ETS-1. In addition, overexpression of LINE-1 ORF-1p promoted LoVo cell proliferation and anchor-independent growth, and a knockdown of the LINE-1 protein level by siRNA reduced the proliferation and anchor-independent growth ability of LoVo cells. In vivo data revealed that LINE-1 ORF-1p overexpression increased LoVo tumor growth in nude mice, whereas the siRNA knockdown of endogenous LINE-1 ORF-1p expression decreased LoVo cell growth in nude mice. Therefore, LINE- 1 ORF-1p could promote LoVo cell proliferation and invasion both in vitro and in vivo, indicating that it might be a useful molecular target for the treatment of human colorectal cancer.

  6. Endothelin-1 enhances the expression of the androgen receptor via activation of the c-Myc pathway in prostate cancer cells

    PubMed Central

    Lee, June G; Zheng, Rong; McCafferty-Cepero, Jennifer M; Burnstein, Kerry L; Nanus, David M; Shen, Ruoqian

    2008-01-01

    Increasing evidence suggests that androgen independent prostate cancer maintains a functional androgen receptor (AR) pathway despite the low levels of circulating androgen following androgen withdrawal, the molecular mechanisms of which are not well defined yet. To address this question, we investigated the effects of ET-1 on AR expression. Western analysis and RT-PCR revealed that in the presence of ET-1, levels of AR significantly increased in a time- and dose- dependent manner in LNCaP cells. Pre-treatments with inhibitors of Src and Phosphoinositide Kinase 3 (PI-3K) suppressed ET-1-induced AR expression. As ET-1 was reported to cause a transient increase in c-Myc mRNA levels, we examined the involvement of c-Myc in ET-1-mediated AR expression. Transient transfection of c-Myc siRNA neutralized ET-1-induced AR expression, suggesting that AR induction by ET-1 is c-Myc dependent. AR can regulate the transcription of its own gene via a mechanism in which c-Myc plays a crucial role. Therefore, we assessed if ET-1-induced-c-Myc leads to the enhancement of AR transcription. Reporter gene assays using the previously identified AR gene enhancer containing a c-Myc binding site were conducted in LNCaP cells. We found that ET-1 induced reporter gene activity from the construct containing the wild type but not mutant c-Myc binding site. Chromatin immunoprecipitation assays confirmed that ET-1 increased interaction between c-Myc and c-Myc binding sites in AR enhancer, suggesting that ET-1-induced AR transcription occurs via c-Myc-mediated AR transcription. Together, these data support the notion that ET-1, via Src/PI-3K signaling, augments c-Myc expression leading to enhanced AR expression in prostate cancer. PMID:18623111

  7. Carthamus tinctorius Enhances the Antitumor Activity of Dendritic Cell Vaccines via Polarization toward Th1 Cytokines and Increase of Cytotoxic T Lymphocytes

    PubMed Central

    Chang, Jia-Ming; Hung, Le-Mei; Chyan, Yau-Jan; Cheng, Chun-Ming; Wu, Rey-Yuh

    2011-01-01

    Carthamus tinctorius (CT), also named safflower, is a traditional Chinese medicine widely used to improve blood circulation. CT also has been studied for its antitumor activity in certain cancers. To investigate the effects of CT on the dendritic cell (DC)-based vaccine in cancer treatment, cytokine secretion of mouse splenic T lymphocytes and the maturation of DCs in response to CT were analyzed. To assess the antitumor activity of CT extract on mouse CD117+ (c-kit)-derived DCs pulsed with JC mammal tumor antigens, the JC tumor was challenged by the CT-treated DC vaccine in vivo. CT stimulated IFN-γ and IL-10 secretion of splenic T lymphocytes and enhanced the maturation of DCs by enhancing immunological molecule expression. When DC vaccine was pulsed with tumor antigens along with CT extract, the levels of TNF-α and IL-1β were dramatically increased with a dose-dependent response and more immunologic and co-stimulatory molecules were expressed on the DC surface. In addition, CT-treated tumor lysate-pulsed DC vaccine reduced the tumor weight in tumor-bearing mice by 15.3% more than tumor lysate-pulsed DC vaccine without CT treatment. CT polarized cytokine secretion toward the Th1 pathway and also increased the population of cytotoxic T lymphocytes ex vivo. In conclusion, CT activates DCs might promote the recognition of antigens and facilitate antigen presentation to Th1 immune responses. PMID:19001481

  8. The enhancement of phase 2 enzyme activities by sodium butyrate in normal intestinal epithelial cells is associated with Nrf2 and p53.

    PubMed

    Yaku, Keisuke; Enami, Yuka; Kurajyo, Chika; Matsui-Yuasa, Isao; Konishi, Yotaro; Kojima-Yuasa, Akiko

    2012-11-01

    Dietary fiber fermentation by the colonic bacterial flora produces short-chain fatty acids, acetate, propionate and butyrate. Among them, butyrate is considered to be the major energy substrate for colonocytes and, at least in rats, seems to protect against colonic carcinogenesis. In this study, we examined the effect and the mechanisms of short-chain fatty acids on the activity of phase 2 enzymes. Sodium butyrate increased phase 2 enzyme activities in normal rat small intestine epithelial cells, Glutathione S-transferase and NAD(P)H:quinone oxidoreductase (NQO) in a dose-dependent manner(;) however, other short-chain fatty acids did not increase them. The mechanism of the induction of phase 2 enzymes with sodium butyrate sodium butyrate, but not other short-chain fatty acids was related to the increase of NF-E2-related factor 2 (Nrf2) nuclear translocation and the decrease in the levels of nuclear fraction p53. Sodium butyrate also caused enhancement of Nrf2 mRNA levels and suppression of p53 mRNA levels. Sodium butyrate enhances the activities of phase 2 enzymes via an increase in the Nrf2 protein levels in the nucleus and a decrease in the mRNA and protein levels of p53.

  9. Enhanced electrocatalytic activity of the Au-electrodeposited Pt nanoparticles-coated conducting oxide for the quantum dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Yoon, Yeung-Pil; Kim, Jae-Hong; Kang, Soon-Hyung; Kim, Hyunsoo; Choi, Chel-Jong; Kim, Kyong-Kook; Ahn, Kwang-Soon

    2014-08-01

    Au was electrodeposited potentiostatically at 0.3 V for 5 min on nanoporous Pt nanoparticle-coated F-doped SnO2 (FTO/Pt) substrates. For comparison, Au-electrodeposited FTO (FTO/Au) and Au-uncoated FTO/Pt were prepared. FTO/Au showed large-sized Au clusters dispersed sparsely over FTO, which resulted in lower electrocatalytic activity than FTO/Pt. In contrast, FTO/Pt exhibited poor stability unlike FTO/Au due to poisoning by the adsorption of sulfur species. The Au-electrodeposited FTO/Pt (FTO/Pt/Au) consisted of small Au clusters deposited over the entire area of Pt due to the effective Au nucleation provided by nanoporous metallic Pt. FTO/Pt/Au exhibited enhanced electrocatalytic activity and excellent stability because the small Au particles well-dispersed over the nanoporous metallic Pt network provided numerous electrochemical reaction sites, and the Pt surface was not exposed to the electrolyte. When FTO/Pt/Au was used as the counter electrode (CE) of a quantum dot-sensitized solar cell, the significantly enhanced electrocatalytic activity of the FTO/Pt/Au CE facilitated the reduction reaction of Sn2- + 2e- (CE) → Sn-12- + S2- at the CE/electrolyte interface, resulting in a significantly hindered recombination reaction, Sn2- + 2e- (TiO2 in the photoanode) → Sn-12- + S2-, and significantly improved overall energy conversion efficiency.

  10. mTOR pathway activation in multiple myeloma cell lines and primary tumour cells: pomalidomide enhances cytoplasmic-nuclear shuttling of mTOR protein

    PubMed Central

    Guglielmelli, Tommasina; Giugliano, Emilia; Brunetto, Vanessa; Rapa, Ida; Cappia, Susanna; Giorcelli, Jessica; Rrodhe, Sokol; Papotti, Mauro; Saglio, Giuseppe

    2015-01-01

    mTOR is a protein kinase that plays a central role in regulating critical cellular processes. We evaluated the activation and cellular localization of the mTOR pathway in multiple myeloma (MM) and analyzed the role of pomalidomide in regulating mTOR. By immunohistochemistry cytoplasmic p-mTOR stained positive in 57 out 101 (57.6%) cases with a nuclear p-mTOR localization in 14 out 101 samples (13.8%). In the 70 MM samples analyzed for the entire pathway, p-mTOR expression significantly correlated with p-AKT, p-P70S6K, and p-4E-BP1 suggesting that the AKT/mTOR pathway is activated in a subset of MM patients. Immunofluorescence assays demonstrated that mTOR protein is distributed throughout the cytoplasm and the nucleus at baseline in MM cell lines and in plasma cells of 13 MM patients and that pomalidomide facilitated the shift of the mTOR protein in the nucleus. By western blotting, treatment with pomalidomide increased nuclear mTOR and p-mTOR expression levels in the nucleus with a concomitant decrease of the cytoplasmic fractions while does not seem to affect significantly AKT phosphorylation status. In MM cells the anti-myeloma activity of pomalidomide may be mediated by the regulation of the mTOR pathway. PMID:26097872

  11. NSOM/QD-based direct visualization of CD3-induced and CD28-enhanced nanospatial coclustering of TCR and coreceptor in nanodomains in T cell activation.

    PubMed

    Zhong, Liyun; Zeng, Gucheng; Lu, Xiaoxu; Wang, Richard C; Gong, Guangming; Yan, Lin; Huang, Dan; Chen, Zheng W

    2009-06-17

    Direct molecular imaging of nano-spatial relationship between T cell receptor (TCR)/CD3 and CD4 or CD8 co-receptor before and after activation of a primary T cell has not been reported. We have recently innovated application of near-field scanning optical microscopy (NSOM) and immune-labeling quantum dots (QD) to image Ag-specific TCR response during in vivo clonal expansion, and now up-graded the NSOM/QD-based nanotechnology through dipole-polarization and dual-color imaging. Using this imaging system scanning cell-membrane molecules at a best-optical lateral resolution, we demonstrated that CD3, CD4 or CD8 molecules were distinctly distributed as single QD-bound molecules or nano-clusters equivalent to 2-4 QD fluorescence-intensity/size on cell-membrane of un-stimulated primary T cells, and approximately 6-10% of CD3 were co-clustering with CD4 or CD8 as 70-110 nm nano-clusters without forming nano-domains. The ligation of TCR/CD3 on CD4 or CD8 T cells led to CD3 nanoscale co-clustering or interaction with CD4 or CD8 co-receptors forming 200-500 nm nano-domains or >500 nm micro-domains. Such nano-spatial co-clustering of CD3 and CD4 or CD3 and CD8 appeared to be an intrinsic event of TCR/CD3 ligation, not purely limited to MHC engagement, and be driven by Lck phosphorylation. Importantly, CD28 co-stimulation remarkably enhanced TCR/CD3 nanoscale co-clustering or interaction with CD4 co-receptor within nano- or micro-domains on the membrane. In contrast, CD28 co-stimulation did not enhance CD8 clustering or CD3-CD8 co-clustering in nano-domains although it increased molecular number and density of CD3 clustering in the enlarged nano-domains. These nanoscale findings provide new insights into TCR/CD3 interaction with CD4 or CD8 co-receptor in T-cell activation.

  12. Active Dendrites Enhance Neuronal Dynamic Range

    PubMed Central

    Gollo, Leonardo L.; Kinouchi, Osame; Copelli, Mauro

    2009-01-01

    Since the first experimental evidences of active conductances in dendrites, most neurons have been shown to exhibit dendritic excitability through the expression of a variety of voltage-gated ion channels. However, despite experimental and theoretical efforts undertaken in the past decades, the role of this excitability for some kind of dendritic computation has remained elusive. Here we show that, owing to very general properties of excitable media, the average output of a model of an active dendritic tree is a highly non-linear function of its afferent rate, attaining extremely large dynamic ranges (above 50 dB). Moreover, the model yields double-sigmoid response functions as experimentally observed in retinal ganglion cells. We claim that enhancement of dynamic range is the primary functional role of active dendritic conductances. We predict that neurons with larger dendritic trees should have larger dynamic range and that blocking of active conductances should lead to a decrease in dynamic range. PMID:19521531

  13. Enhanced hydrogen production from waste activated sludge by cascade utilization of organic matter in microbial electrolysis cells.

    PubMed

    Lu, Lu; Xing, Defeng; Liu, Bingfeng; Ren, Nanqi

    2012-03-15

    Fermentative hydrogen production from waste activated sludge (WAS) has low H2 yield because WAS contains limited amounts of carbohydrate suitable for use by hydrogen-producing bacteria. Here, augmentation of hydrogen production from WAS by microbial electrolysis cells (MECs) was implemented. H2 yields of 3.89±0.39 mg-H2/g-DS (5.67±0.61 mg-H2/g-VSS) from raw WAS and 6.78±0.94 mg-H2/g-DS (15.08±1.41 mg-H2/g-VSS) from alkaline-pretreated WAS were obtained in the two-chamber MECs (TMECs). This was several times higher than yields obtained previously by fermentation. Single-chamber MECs (SMECs) with low internal resistance showed a H2 production rate that 13 times that of TMECs with similar H2 yield when alkaline-pretreated WAS was used. However, methanogenesis was detected after several batch cycles. A yield balance calculation revealed that carbohydrates were not the only substrates for electrohydrogenesis. Protein and its acidification products, such as volatile fatty acids are also responsible for a portion of H2 generation in MEC. Characterization of WAS in TMECs by three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy with parallel factor analysis indicated that electrohydrogenesis reacted on the extracellular polymeric substances and intracellular substances of WAS. Cascade utilization of organic matter in MECs increased hydrogen production from WAS. MECs showed high hydrogen yield from WAS, fewer H2 sinks, and insensitivity to temperature. Optimizing MEC configurations and operation conditions and improving the pretreatment processes of WAS are necessary before practical application can take place on a large scale.

  14. Long-term forskolin stimulation induces AMPK activation and thereby enhances tight junction formation in human placental trophoblast BeWo cells.

    PubMed

    Egawa, M; Kamata, H; Kushiyama, A; Sakoda, H; Fujishiro, M; Horike, N; Yoneda, M; Nakatsu, Y; Ying, Guo; Jun, Zhang; Tsuchiya, Y; Takata, K; Kurihara, H; Asano, T

    2008-12-01

    BeWo cells, derived from human choriocarcinoma, have been known to respond to forskolin or cAMP analogues by differentiating into multinucleated cells- like syncytiotrophoblasts on the surfaces of chorionic villi of the human placenta. In this study, we demonstrated that long-term treatment with forskolin enhances the tight junction (TJ) formation in human placental BeWo cells. Interestingly, AMPK activation and phosphorylation of acetyl-CoA carboxylase (ACC), a molecule downstream from AMPK, were induced by long-term incubation (>12h) with forskolin, despite not being induced by acute stimulation with forskolin. In addition, co-incubation with an AMPK inhibitor, compound C, as well as overexpression of an AMPK dominant negative mutant inhibited forskolin-induced TJ formation. Thus, although the molecular mechanism underlying AMPK activation via the forskolin stimulation is unclear, the TJ formation induced by forskolin is likely to be mediated by the AMPK pathway. Taking into consideration that TJs are present in the normal human placenta, this mechanism may be important for forming the placental barrier system between the fetal and maternal circulations.

  15. Enhanced electrocatalytic activity of electrodeposited F-doped SnO2/Cu2S electrodes for quantum dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Vinh Quy, Vu Hong; Kim, Jae-Hong; Kang, Soon-Hyung; Choi, Cheol-Jong; Rajesh, John Anthuvan; Ahn, Kwang-Soon

    2016-06-01

    Copper sulfide (Cu2S) films were deposited on F-doped SnO2 (FTO) substrates via the electrodeposition (ED) of copper (Cu) nanoparticles followed by sulfurization. The Cu nanoparticles were deposited on FTO substrates for various ED times ranging from 10 to 30 min at a constant -0.4 V. The FTO/Cu films consisted of flower-like nanoparticles comprised of randomly-clustering nanoflakes. The Cu nanoparticles electrodeposited for 10 min (FTO/Cu (10 min)) were dispersed sparsely over the FTO substrate, whereas the FTO/Cu (20 and 30 min) provided increased coverage. Unlike FTO/Cu2S (10 min), the FTO/Cu2S (20 and 30 min) consisted of vertically-standing large Cu2S nanosheets with numerous small nanosheets in between. This was attributed to the sufficient number of Cu seed nanoflakes, which not only facilitate ion transport of the redox couple but also increased the surface area, leading to significantly enhanced electrocatalytic activity. The quantum dot-sensitized solar cell (QD-SSC) with FTO/Cu2S (20 min) exhibited a significantly improved cell efficiency of 4.58%, compared to those with Pt and FTO/Cu2S (10 min). The QD-SSC with the FTO/Cu2S (30 min) showed similar cell efficiency to that with the FTO/Cu2S (20 min), despite the larger surface area because of its amorphous crystallographic structure offsetting the electrocatalytic activity.

  16. Pharmacologically active microcarriers delivering BDNF within a hydrogel: Novel strategy for human bone marrow-derived stem cells neural/neuronal differentiation guidance and therapeutic secretome enhancement.

    PubMed

    Kandalam, Saikrishna; Sindji, Laurence; Delcroix, Gaëtan J-R; Violet, Fabien; Garric, Xavier; André, Emilie M; Schiller, Paul C; Venier-Julienne, Marie-Claire; des Rieux, Anne; Guicheux, Jérôme; Montero-Menei, Claudia N

    2017-02-01

    Stem cells combined with biodegradable injectable scaffolds releasing growth factors hold great promises in regenerative medicine, particularly in the treatment of neurological disorders. We here integrated human marrow-isolated adult multilineage-inducible (MIAMI) stem cells and pharmacologically active microcarriers (PAMs) into an injectable non-toxic silanized-hydroxypropyl methylcellulose (Si-HPMC) hydrogel. The goal is to obtain an injectable non-toxic cell and growth factor delivery device. It should direct the survival and/or neuronal differentiation of the grafted cells, to safely transplant them in the central nervous system, and enhance their tissue repair properties. A model protein was used to optimize the nanoprecipitation conditions of the neuroprotective brain-derived neurotrophic factor (BDNF). BDNF nanoprecipitate was encapsulated in fibronectin-coated (FN) PAMs and the in vitro release profile evaluated. It showed a prolonged, bi-phasic, release of bioactive BDNF, without burst effect. We demonstrated that PAMs and the Si-HPMC hydrogel increased the expression of neural/neuronal differentiation markers of MIAMI cells after 1week. Moreover, the 3D environment (PAMs or hydrogel) increased MIAMI cells secretion of growth factors (b-NGF, SCF, HGF, LIF, PlGF-1, SDF-1α, VEGF-A & D) and chemokines (MIP-1α & β, RANTES, IL-8). These results show that PAMs delivering BDNF combined with Si-HPMC hydrogel represent a useful novel local delivery tool in the context of neurological disorders. It not only provides neuroprotective BDNF but also bone marrow-derived stem cells that benefit from that environment by displaying neural commitment and an improved neuroprotective/reparative secretome. It provides preliminary evidence of a promising pro-angiogenic, neuroprotective and axonal growth-promoting device for the nervous system.

  17. Enhanced anti-tumor activity by the combination of a conditionally replicating adenovirus mediated interleukin-24 and dacarbazine against melanoma cells via induction of apoptosis.

    PubMed

    Jiang, Guan; Liu, Yan-Qun; Wei, Zhi-Ping; Pei, Dong-Sheng; Mao, Li-Jun; Zheng, Jun-Nian

    2010-08-28

    Malignant melanoma is one of the most lethal and aggressive human malignancies. It is notoriously resistant to all of the current therapeutic modalities, including chemotherapy. Suppressed apoptosis and extraordinary invasiveness are the distinctive features that contribute to the malignancy of melanoma. Dacarbazine (DTIC) has been considered as the gold standard for melanoma treatment with a response rate of 15-20%. Unfortunately, the resistance to this chemotherapeutic agent occurs frequently. ZD55-IL-24 is a selective conditionally replicating adenovirus that can mediate the expression of interleukin-24 (IL-24) gene, which has a strong anti-tumor effect. In this study, we hypothesized that a combination of ZD55-IL-24-mediated gene virotherapy and chemotherapy using DTIC would produce an increased cytotoxicity against human melanoma cells in comparison with these agents alone. Our results showed that the combination of ZD55-IL-24 and DTIC significantly enhanced the anti-tumor activity by more effectively inducing apoptosis in melanoma cells than either agent used alone without any overlapping toxicity against normal cells. This additive or synergistic effect of ZD55-IL-24 in combination with DTIC in killing human malignant melanoma cells implies a promising novel approach for melanoma therapy.

  18. Heregulin/ErbB3 Signaling Enhances CXCR4-Driven Rac1 Activation and Breast Cancer Cell Motility via Hypoxia-Inducible Factor 1α

    PubMed Central

    Lopez-Haber, Cynthia; Barrio-Real, Laura; Casado-Medrano, Victoria

    2016-01-01

    The growth factor heregulin (HRG), a ligand of ErbB3 and ErbB4 receptors, contributes to breast cancer development and the promotion of metastatic disease, and its expression in breast tumors has been associated with poor clinical outcome and resistance to therapy. In this study, we found that breast cancer cells exposed to sustained HRG treatment show markedly enhanced Rac1 activation and migratory activity in response to the CXCR4 ligand SDF-1/CXCL12, effects mediated by P-Rex1, a Rac-guanine nucleotide exchange factor (GEF) aberrantly expressed in breast cancer. Notably, HRG treatment upregulates surface expression levels of CXCR4, a G protein-coupled receptor (GPCR) implicated in breast cancer metastasis and an indicator of poor prognosis in breast cancer patients. A detailed mechanistic analysis revealed that CXCR4 upregulation and sensitization of the Rac response/motility by HRG are mediated by the transcription factor hypoxia-inducible factor 1α (HIF-1α) via ErbB3 and independently of ErbB4. HRG caused prominent induction in the nuclear expression of HIF-1α, which transcriptionally activates the CXCR4 gene via binding to a responsive element located in positions −1376 to −1372 in the CXCR4 promoter, as revealed by mutagenesis analysis and chromatin immunoprecipitation (ChIP). Our results uncovered a novel function for ErbB3 in enhancing breast cancer cell motility and sensitization of the P-Rex1/Rac1 pathway through HIF-1α-mediated transcriptional induction of CXCR4. PMID:27185877

  19. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    SciTech Connect

    Zhang, Yu; Duan, Junxin; Tang, Lan; Wu, Wenping

    2015-06-09

    Provided are isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. Also provided are nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  20. Hochu-ekki-to combined with interferon-gamma moderately enhances daily activity of chronic fatigue syndrome mice by increasing NK cell activity, but not neuroprotection.

    PubMed

    Chen, Rui; Moriya, Junji; Luo, Xianwen; Yamakawa, Jun-ichi; Takahashi, Takashi; Sasaki, Kenroh; Yoshizaki, Fumihiko

    2009-06-01

    The purpose of this study was to evaluate the beneficial effect of Hochu-ekki-to (TJ-41) combined with interferon-gamma (IFN gamma) on daily activity, immunological and neurological alternation in a mouse model of chronic fatigue syndrome (CFS). CFS was induced by 6 times of repeated injection of Brucella abortus antigen every 2 weeks. Both single TJ-41 and TJ-41 combined with IFN gamma increased running activity and thymus weight of CFS mice, while thicker thymic cortex together with elevation of natural killer cell activity was only found in the combined treatment group. No significant improvement was observed in the atrophic brain and decreased expression level of brain-derived neurotrophic factor and Bcl-2 mRNA in hippocampus in both treatment groups. Our results suggest that TJ-41 combined with IFN gamma might have a protective effect on the marked reduction in the activity in a model of CFS via normalization of host immune responses, but not neuroprotection.

  1. Fluoride-containing podophyllum derivatives exhibit antitumor activities through enhancing mitochondrial apoptosis pathway by increasing the expression of caspase-9 in HeLa cells

    PubMed Central

    Zhao, Wei; Yang, Yong; Zhang, Ya-Xuan; Zhou, Chen; Li, Hong-Mei; Tang, Ya-Ling; Liang, Xin-Hua; Chen, Tao; Tang, Ya-Jie

    2015-01-01

    This work aims to provide sampling of halogen-containing aniline podophyllum derivatives and their mode of action with an in-depth comparison among fluorine, chloride and bromide for clarifying the important role and impact of fluorine substitution on enhancing antitumor activity, with an emphasis on the development of drug rational design for antitumor drug. The tumor cytotoxicity of fluoride-containing aniline podophyllum derivatives were in general improved by 10–100 times than those of the chloride and bromide-containing aniline podophyllum derivatives since fluoride could not only strongly solvated in protic solvents but also forms tight ion pairs in most aprotic solvents. When compared with chloride and bromide, the higher electronegativity fluoride substituted derivatives significantly enhanced mitochondrial apoptosis pathway by remarkably increasing the expression of caspase-9 in HeLa cells. The current findings would stimulate an enormous amount of research directed toward exploiting novel leading compounds based on podophyllum derivatives, especially for the fluoride-substituted structures with promising antitumor activity. PMID:26608216

  2. MicroRNA-130a and -130b enhance activation of hepatic stellate cells by suppressing PPARγ expression: A rat fibrosis model study

    SciTech Connect

    Lu, Le; Wang, Jinlong; Lu, Hongwei; Zhang, Guoyu; Liu, Yang; Wang, Jiazhong; Zhang, Yafei; Shang, Hao; Ji, Hong; Chen, Xi; Duan, Yanxia; Li, Yiming

    2015-09-25

    Hepatic stellate cells (HSCs) are the primary sources of extracellular matrix (ECM) in normal and fibrotic liver. Peroxisome proliferator-activated receptor gamma (PPARγ) maintains HSCs in a quiescent state, and its downregulation induces HSC activation. MicroRNAs (miRNAs) can induce PPARγ mRNA degradation, but the mechanism by which miRNAs regulate PPARγ in rat HSCs is unclear. This study aimed to investigate some miRNAs which putatively bind to the 3′-untranslated region (3′-UTR) of PPARγ mRNA, and increase expression of ECM genes in rat HSCs. In carbon tetrachloride injection (CCl{sub 4}) and common bile duct ligation (CBDL) liver fibrosis models, miRNAs miR-130a, miR-130b, miR-301a, miR-27b and miR-340 levels were found to be increased and PPARγ expression decreased. Overexpression of miR-130a and miR-130b enhanced cell proliferation by involving Runx3. MiR-130a and miR-130b decreased PPARγ expression by targeting the 3′-UTR of PPARγ mRNA in rat HSC-T6 cells. Transforming growth factor-β1 (TGF-β1) may mediate miR-130a and miR-130b overexpression, PPARγ downregulation, and ECM genes overexpression in cell culture. These findings suggest that miR-130a and miR-130b are involved in downregulation of PPARγ in liver fibrosis. - Highlights: • MiR-130a and miR-130b are increased and PPARγ is decreased in liver fibrosis models. • MiR-130a and miR-130b decreased PPARγ by targeting the 3′-UTR of PPARγ mRNA. • MiR-130a and miR-130b enhanced HSC cell proliferation by involving Runx3. • TGF-β1 may mediate miR-130a and miR-130b overexpression.

  3. IDH1 R132H Mutation Enhances Cell Migration by Activating AKT-mTOR Signaling Pathway, but Sensitizes Cells to 5-FU Treatment as NADPH and GSH Are Reduced

    PubMed Central

    Qiu, Jiangdong; Huang, Keting; Wu, Mindan; Xia, Chunlin

    2017-01-01

    Aim of study Mutations of isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) gene were recently discovered in vast majority of World Health Organization (WHO) grade II/III gliomas. This study is to understand the effects of IDH1 R132H mutation in gliomagenesis and to develop new strategies to treat glioma with IDH1 R132H mutation. Materials and methods Over expression of IDH1 R132H in U87MG cells was done by transfecting cells with IDH1 R132H plasmid. MTT assay, scratch repair assay and western blot were performed to study effects of IDH1 R132H mutation on cell proliferation, migration, regulating AKT-mTOR signaling pathway and cell death respectively. NADP+/NADPH and GSH quantification assays were performed to evaluate effects of IDH1 R132H mutation on the production of antioxidant NADPH and GSH. Results We found that over expression of IDH1 R132H mutation decreased cell proliferation consistent with previous reports; however, it increased cell migration and enhanced AKT-mTOR signaling pathway activation. Mutations in isocitrate dehydrogenase (IDH) 1 also change the function of the enzymes and cause them to produce 2-hydroxyglutarate and not produce NADPH. We tested the level of NADPH and GSH and demonstrated that IDH1 R132H mutant stable cells had significantly low NADPH and GSH level compared to control or IDH1 wild type stable cells. The reduced antioxidants (NADPH and GSH) sensitized U87MG cells with IDH R132H mutant to 5-FU treatment. Conclusion Our study highlights the important role of IHD1 R132H mutant in up- regulating AKT-mTOR signaling pathway and enhancing cell migration. Furthermore, we demonstrate that IDH1 R132H mutation affects cellular redox status and sensitizes gliomas cells with IDH1 R132H mutation to 5FU treatment. PMID:28052098

  4. Activation of the A2B adenosine receptor in B16 melanomas induces CXCL12 expression in FAP-positive tumor stromal cells, enhancing tumor progression

    PubMed Central

    Sorrentino, Claudia; Miele, Lucio; Porta, Amalia; Pinto, Aldo; Morello, Silvana

    2016-01-01

    The A2B receptor (A2BR) can mediate adenosine-induced tumor proliferation, immunosuppression and angiogenesis. Targeting the A2BR has proved to be therapeutically effective in some murine tumor models, but the mechanisms of these effects are still incompletely understood. Here, we report that pharmacologic inhibition of A2BR with PSB1115, which inhibits tumor growth, decreased the number of fibroblast activation protein (FAP)-expressing cells in tumors in a mouse model of melanoma. This effect was associated with reduced expression of fibroblast growth factor (FGF)-2. Treatment of melanoma-associated fibroblasts with the A2BR agonist Bay60-6583 enhanced CXCL12 and FGF2 expression. This effect was abrogated by PSB1115. The A2AR agonist CGS21680 did not induce CXCL12 or FGF2 expression in tumor associated fibroblasts. Similar results were obtained under hypoxic conditions in skin-derived fibroblasts, which responded to Bay60-6583 in an A2BR-dependent manner, by stimulating pERK1/2. FGF2 produced by Bay60-6583-treated fibroblasts directly enhanced the proliferation of melanoma cells. This effect could be reversed by PSB1115 or an anti-FGF2 antibody. Interestingly, melanoma growth in mice receiving Bay60-6583 was attenuated by inhibition of the CXCL12/CXCR4 pathway with AMD3100. CXCL12 and its receptor CXCR4 are involved in angiogenesis and immune-suppression. Treatment of mice with AMD3100 reduced the number of CD31+ cells induced by Bay60-6583. Conversely, CXCR4 blockade did not affect the accumulation of tumor-infiltrating MDSCs or Tregs. Together, our data reveal an important role for A2BR in stimulating FGF2 and CXCL12 expression in melanoma-associated fibroblasts. These factors contribute to create a tumor-promoting microenvironment. Our findings support the therapeutic potential of PSB1115 for melanoma. PMID:27590504

  5. Radiation Enhances Regulatory T Cell Representation

    SciTech Connect

    Kachikwu, Evelyn L.; Iwamoto, Keisuke S.; Liao, Yu-Pei; DeMarco, John J.; Agazaryan, Nzhde; Economou, James S.; McBride, William H.; Schaue, Doerthe

    2011-11-15

    Purpose: Immunotherapy could be a useful adjunct to standard cytotoxic therapies such as radiation in patients with micrometastatic disease, although successful integration of immunotherapy into treatment protocols will require further understanding of how standard therapies affect the generation of antitumor immune responses. This study was undertaken to evaluate the impact of radiation therapy (RT) on immunosuppressive T regulatory (Treg) cells. Methods and Materials: Treg cells were identified as a CD4{sup +}CD25{sup hi}Foxp3{sup +} lymphocyte subset, and their fate was followed in a murine TRAMP C1 model of prostate cancer in mice with and without RT. Results: CD4{sup +}CD25{sup hi}Foxp3{sup +} Treg cells increased in immune organs after local leg or whole-body radiation. A large part, but not all, of this increase after leg-only irradiation could be ascribed to radiation scatter and Treg cells being intrinsically more radiation resistant than other lymphocyte subpopulations, resulting in their selection. Their functional activity on a per-cell basis was not affected by radiation exposure. Similar findings were made with mice receiving local RT to murine prostate tumors growing in the leg. The importance of the Treg cell population in the response to RT was shown by systemic elimination of Treg cells, which greatly enhanced radiation-induced tumor regression. Conclusions: We conclude that Treg cells are more resistant to radiation than other lymphocytes, resulting in their preferential increase. Treg cells may form an important homeostatic mechanism for tissues injured by radiation, and in a tumor context, they may assist in immune evasion during therapy. Targeting this population may allow enhancement of radiotherapeutic benefit through immune modulation.

  6. An oncolytic adenovirus that expresses the HAb18 and interleukin 24 genes exhibits enhanced antitumor activity in hepatocellular carcinoma cells

    PubMed Central

    Yuan, Sujing; Fang, Xianlong; Xu, Yanni; Ni, Aimin; Liu, Xin-Yuan; Chu, Liang

    2016-01-01

    Hepatocellular carcinoma (HCC) is characterized by alterations in multiple genes. High expression of CD147 on the surface of HCC cells promotes proliferation. The monoclonal antibody HAb18 recognizes CD147. We constructed an oncolytic adenoviral vector to express HAb18 (ZD55-HAb18) in HCC cells. Interleukin 24 (IL24) was co-expressed through the use of an F2A linker. ZD55-HAb18-IL24 decreased HCC cell viability to a greater degree than either ZD55-HAb18 or ZD55-IL24 alone. ZD55-HAb18-IL24 also induced apoptosis and autophagy in PLC/PRF/5 HCC cells. Intratumoral injection of ZD55-HAb18-IL24 repressed tumor growth in a PLC/PRF/5 xenograft model. Our results suggest that antibody-antitumor gene conjugation elicited a stronger antitumor effect than the antibody alone, and that this strategy could broaden the applications of antibody-based therapies in HCC. PMID:27528029

  7. Dietary Supplementation with White Button Mushroom Enhances Natural Killer Cell Activity in C57BL/6 Mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mushrooms have been shown to possess anti-tumor, anti-viral, and anti-bacterial properties. These effects of mushrooms are suggested to be due to their ability to modulate immune cell functions. However, majority of these studies evaluated the effect of administering extracts of exotic mushrooms thr...

  8. Hepatocyte growth factor (HGF) enhances cardiac commitment of differentiating embryonic stem cells by activating PI3 kinase

    SciTech Connect

    Roggia, Cristiana; Ukena, Christian; Boehm, Michael; Kilter, Heiko . E-mail: kilter@med-in.uni-saarland.de

    2007-03-10

    Hepatocyte growth factor (HGF) is a pleiotropic cytokine promoting proliferation, migration and survival in several cell types. HGF and its cognate receptor c-Met are expressed in cardiac cells during early cardiogenesis, but data concerning its role in cardiac differentiation of embryonic stem cells (ESCs) and the underlying molecular mechanisms involved are limited. In the present study we show that HGF significantly increases the number of beating embryoid bodies of differentiating ESCs without affecting beating frequency. Furthermore, HGF up-regulates the expression of the cardiac-specific transcription factors Nkx 2.5 and GATA-4 and of markers of differentiated cardiomyocytes, i.e. {alpha}-MHC, {beta}-MHC, ANF, MLC2v and Troponin T. The HGF-induced increase in Nkx 2.5 expression was inhibited by co-treatment with the PI3 kinase inhibitors Wortmannin and LY294002, but not by its inactive homolog LY303511, suggesting an involvement of the PI3 kinase/Akt pathway in this effect. We conclude that HGF is an important growth factor involved in cardiac differentiation and/or proliferation of ESCs and may therefore be critical for the in vitro generation of pre- or fully differentiated cardiomyocytes as required for clinical use of embryonic stem cells in cardiac diseases.

  9. Enhancing Beta-Catenin Activity via GSK3beta Inhibition Protects PC12 Cells against Rotenone Toxicity through Nurr1 Induction

    PubMed Central

    Wei, Lei; Mo, Mingshu; Feng, Junmin; Sun, Congcong; Xiao, Yousheng; Luo, Qin; Li, Shaomin; Yang, Xinling; Xu, Pingyi

    2016-01-01

    Parkinson’s disease (PD) is characterized by progressive degeneration of dopaminergic (DA) neurons in the substantial nigra pars compacta. Increasing evidence showed that Wnt/β-catenin pathway and the orphan nuclear receptor Nurr1 play crucial roles in the survival and functional maintenance of DA neurons in the midbrain and GSK-3β antagonists LiCl and SB216763 were used to activate Wnt/β-catenin pathway experimentally. However, the detail mechanism underlying the neuroprotection against apoptosis on DA neuron is still unclear and the interaction between Wnt/β-catenin and Nurr1 remains undisclosed. In this study, using cell biological assay we investigated the function of Wnt/β-catenin and its crosstalk with Nurr1 on the course of PC12 cell degeneration in vitro. Our data showed that PC12 cell viability was inhibited by rotenone, but attenuated by GSK-3β antagonists LiCl or SB216763. The activity of Wnt/β-catenin pathway was deregulated on exposure of rotenone in a concentration-dependent manner. After the interference of β-catenin with siRNA, LiCl or SB216763 failed to protect PC12 cells from apoptosis by the rotenone toxicity. Our data confirmed that Wnt/β-catenin signaling activated by LiCl or SB216763 enhanced Nurr1 expression to 2.75 ± 0.55 and 4.06 ± 0.41 folds respectively compared with control detected by real-time PCR and the interaction of β-catenin with Nurr1 was identified by co-immunoprecipitate analysis. In conclusion, the data suggested that Wnt/β-catenin and Nurr1 are crucial factors in the survival of DA neurons, and the activation of Wnt/β-catenin pathway exerts protective effects on DA neurons partly by mean of a co-active pattern with Nurr1. This finding may shed a light on the potential treatment of Parkinson disease. PMID:27045591

  10. Enhancement of bone marrow allografts from nude mice into mismatched recipients by T cells void of graft-versus-host activity

    SciTech Connect

    Lapidot, T.; Lubin, I.; Terenzi, A.; Faktorowich, Y.; Erlich, P.; Reisner, Y. )

    1990-06-01

    Transplantation of 8 x 10(6) C57BL/6-Nu+/Nu+ (nude) bone marrow cells into C3H/HeJ recipients after conditioning with 8 Gy of total body irradiation has resulted in a markedly higher rate of graft rejection or graft failure compared to that found in recipients of normal C57BL/6 or C57BL/6-Bg+/Bg+ (beige) T-cell-depleted bone marrow. Mixing experiments using different numbers of nude bone marrow cells with or without mature thymocytes (unagglutinated by peanut agglutinin) revealed that engraftment of allogeneic T-cell-depleted bone marrow is T-cell dependent. To ensure engraftment, a large inoculum of nude bone marrow must be supplemented with a trace number of donor T cells, whereas a small bone marrow dose from nude donors requires a much larger number of T cells for engraftment. Marked enhancement of donor type chimerism was also found when F1 thymocytes were added to nude bone marrow cells, indicating that the enhancement of bone marrow engraftment by T cells is not only mediated by alloreactivity against residual host cells but may rather be generated by growth factors, the release of which may require specific interactions between T cells and stem cells or between T cells and bone marrow stroma cells.

  11. Near-IR activity of hybrid solar cells: Enhancement of efficiency by dissociating excitons generated in PbS nanoparticles

    NASA Astrophysics Data System (ADS)

    Guchhait, Asim; Rath, Arup K.; Pal, Amlan J.

    2010-02-01

    Photovoltaic devices based on PbS nanoparticles remained inactive in the near-IR region due to a not-so-favorable energy band-diagram that does not allow dissociation of excitons generated in PbS. In this work, with the introduction of TiO2 nanostructures in the PbS-based hybrid system, we show an enhancement of photovoltaic performance in both visible and near-IR regions. The addition of TiO2 increases the power conversion efficiency from 0.006% to 0.12%. With the aid of energy band-diagram, we show that excitons generated in PbS even in the near-IR range can now become dissociated to yield photocurrent in the external circuit.

  12. Enhanced electrocatalytic activity of the Au-electrodeposited Pt nanoparticles-coated conducting oxide for the quantum dot-sensitized solar cells

    SciTech Connect

    Yoon, Yeung-Pil; Kim, Jae-Hong; Ahn, Kwang-Soon; Kang, Soon-Hyung; Kim, Hyunsoo; Choi, Chel-Jong; Kim, Kyong-Kook

    2014-08-25

    Au was electrodeposited potentiostatically at 0.3 V for 5 min on nanoporous Pt nanoparticle-coated F-doped SnO{sub 2} (FTO/Pt) substrates. For comparison, Au-electrodeposited FTO (FTO/Au) and Au-uncoated FTO/Pt were prepared. FTO/Au showed large-sized Au clusters dispersed sparsely over FTO, which resulted in lower electrocatalytic activity than FTO/Pt. In contrast, FTO/Pt exhibited poor stability unlike FTO/Au due to poisoning by the adsorption of sulfur species. The Au-electrodeposited FTO/Pt (FTO/Pt/Au) consisted of small Au clusters deposited over the entire area of Pt due to the effective Au nucleation provided by nanoporous metallic Pt. FTO/Pt/Au exhibited enhanced electrocatalytic activity and excellent stability because the small Au particles well-dispersed over the nanoporous metallic Pt network provided numerous electrochemical reaction sites, and the Pt surface was not exposed to the electrolyte. When FTO/Pt/Au was used as the counter electrode (CE) of a quantum dot-sensitized solar cell, the significantly enhanced electrocatalytic activity of the FTO/Pt/Au CE facilitated the reduction reaction of S{sub n}{sup 2− }+ 2e{sup −} (CE) → S{sub n−1}{sup 2−} + S{sup 2−} at the CE/electrolyte interface, resulting in a significantly hindered recombination reaction, S{sub n}{sup 2− }+ 2e{sup −} (TiO{sub 2} in the photoanode) → S{sub n-1}{sup 2−} + S{sup 2−}, and significantly improved overall energy conversion efficiency.

  13. Heligmosomoides polygyrus bakeri infection activates colonic FoxP3+ T cells enhancing their capacity to prevent colitis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Helminthic infections protect mice from colitis in murine models of inflammatory bowel disease and also may protect people. Helminths like Heligmosomoides bakeri (Hpb) can induce Tregs. Experiments explored if Hpb infection could protect mice from colitis through activation of colonic Treg and exam...

  14. Heat Shock Enhances the Expression of the Human T Cell Leukemia Virus Type-I (HTLV-I) Trans-Activator (Tax) Antigen in Human HTLV-I Infected Primary and Cultured T Cells.

    PubMed

    Kunihiro, Marie; Fujii, Hideki; Miyagi, Takuya; Takahashi, Yoshiaki; Tanaka, Reiko; Fukushima, Takuya; Ansari, Aftab A; Tanaka, Yuetsu

    2016-07-11

    The environmental factors that lead to the reactivation of human T cell leukemia virus type-1 (HTLV-I) in latently infected T cells in vivo remain unknown. It has been previously shown that heat shock (HS) is a potent inducer of HTLV-I viral protein expression in long-term cultured cell lines. However, the precise HTLV-I protein(s) and mechanisms by which HS induces its effect remain ill-defined. We initiated these studies by first monitoring the levels of the trans-activator (Tax) protein induced by exposure of the HTLV-I infected cell line to HS. HS treatment at 43 °C for 30 min for 24 h led to marked increases in the level of Tax antigen expression in all HTLV-I-infected T cell lines tested including a number of HTLV-I-naturally infected T cell lines. HS also increased the expression of functional HTLV-I envelope gp46 antigen, as shown by increased syncytium formation activity. Interestingly, the enhancing effect of HS was partially inhibited by the addition of the heat shock protein 70 (HSP70)-inhibitor pifithlin-μ (PFT). In contrast, the HSP 70-inducer zerumbone (ZER) enhanced Tax expression in the absence of HS. These data suggest that HSP 70 is at least partially involved in HS-mediated stimulation of Tax expression. As expected, HS resulted in enhanced expression of the Tax-inducible host antigens, such as CD83 and OX40. Finally, we confirmed that HS enhanced the levels of Tax and gp46 antigen expression in primary human CD4⁺ T cells isolated from HTLV-I-infected humanized NOD/SCID/γc null (NOG) mice and HTLV-I carriers. In summary, the data presented herein indicate that HS is one of the environmental factors involved in the reactivation of HTLV-I in vivo via enhanced Tax expression, which may favor HTLV-I expansion in vivo.

  15. Heat Shock Enhances the Expression of the Human T Cell Leukemia Virus Type-I (HTLV-I) Trans-Activator (Tax) Antigen in Human HTLV-I Infected Primary and Cultured T Cells

    PubMed Central

    Kunihiro, Marie; Fujii, Hideki; Miyagi, Takuya; Takahashi, Yoshiaki; Tanaka, Reiko; Fukushima, Takuya; Ansari, Aftab A.; Tanaka, Yuetsu

    2016-01-01

    The environmental factors that lead to the reactivation of human T cell leukemia virus type-1 (HTLV-I) in latently infected T cells in vivo remain unknown. It has been previously shown that heat shock (HS) is a potent inducer of HTLV-I viral protein expression in long-term cultured cell lines. However, the precise HTLV-I protein(s) and mechanisms by which HS induces its effect remain ill-defined. We initiated these studies by first monitoring the levels of the trans-activator (Tax) protein induced by exposure of the HTLV-I infected cell line to HS. HS treatment at 43 °C for 30 min for 24 h led to marked increases in the level of Tax antigen expression in all HTLV-I-infected T cell lines tested including a number of HTLV-I-naturally infected T cell lines. HS also increased the expression of functional HTLV-I envelope gp46 antigen, as shown by increased syncytium formation activity. Interestingly, the enhancing effect of HS was partially inhibited by the addition of the heat shock protein 70 (HSP70)-inhibitor pifithlin-μ (PFT). In contrast, the HSP 70-inducer zerumbone (ZER) enhanced Tax expression in the absence of HS. These data suggest that HSP 70 is at least partially involved in HS-mediated stimulation of Tax expression. As expected, HS resulted in enhanced expression of the Tax-inducible host antigens, such as CD83 and OX40. Finally, we confirmed that HS enhanced the levels of Tax and gp46 antigen expression in primary human CD4+ T cells isolated from HTLV-I-infected humanized NOD/SCID/γc null (NOG) mice and HTLV-I carriers. In summary, the data presented herein indicate that HS is one of the environmental factors involved in the reactivation of HTLV-I in vivo via enhanced Tax expression, which may favor HTLV-I expansion in vivo. PMID:27409630

  16. Leptin Enhances Cholangiocarcinoma Cell Growth

    PubMed Central

    Fava, Giammarco; Alpini, Gianfranco; Rychlicki, Chiara; Saccomanno, Stefania; DeMorrow, Sharon; Trozzi, Luciano; Candelaresi, Cinzia; Venter, Julie; Di Sario, Antonio; Marzioni, Marco; Bearzi, Italo; Glaser, Shannon; Alvaro, Domenico; Marucci, Luca; Francis, Heather; Svegliati-Baroni, Gianluca; Benedetti, Antonio

    2008-01-01

    Cholangiocarcinoma is a strongly aggressive malignancy with a very poor prognosis. Effective therapeutic strategies are lacking because molecular mechanisms regulating cholangiocarcinoma cell growth are unknown. Furthermore, experimental in vivo animal models useful to study the pathophysiologic mechanisms of malignant cholangiocytes are lacking. Leptin, the hormone regulating caloric homeostasis, which is increased in obese patients, stimulates the growth of several cancers, such as hepatocellular carcinoma. The aim of this study was to define if leptin stimulates cholangiocarcinoma growth. We determined the expression of leptin receptors in normal and malignant human cholangiocytes. Effects on intrahepatic cholangiocarcinoma (HuH-28) cell proliferation, migration, and apoptosis of the in vitro exposure to leptin, together with the intracellular pathways, were then studied. Moreover, cholangiocarcinoma was experimentally induced in obese fa/fa Zucker rats, a genetically established animal species with faulty leptin receptors, and in their littermates by chronic feeding with thioacetamide, a potent carcinogen. After 24 weeks, the effect of leptin on cholangiocarcinoma development and growth was assessed. Normal and malignant human cholangiocytes express leptin receptors. Leptin increased the proliferation and the metastatic potential of cholangiocarcinoma cells in vitro through a signal transducers and activators of transcription 3–dependent activation of extracellular signal-regulated kinase 1/2. Leptin increased the growth and migration, and was antiapoptotic for cholangiocarcinoma cells. Moreover, the loss of leptin function reduced the development and the growth of cholangiocarcinoma. The experimental carcinogenesis model induced by thioacetamide administration is a valid and reproducible method to study cholangiocarcinoma pathobiology. Modulation of the leptin-mediated signal could be considered a valid tool for the prevention and treatment of

  17. An Inactivated Antibiotic-Exposed Whole-Cell Vaccine Enhances Bactericidal Activities Against Multidrug-Resistant Acinetobacter baumannii

    PubMed Central

    Shu, Meng-Hooi; MatRahim, NorAziyah; NorAmdan, NurAsyura; Pang, Sui-Ping; Hashim, Sharina H.; Phoon, Wai-Hong; AbuBakar, Sazaly

    2016-01-01

    Vaccination may be an alternative treatment for infection with multidrug-resistance (MDR) Acinetobacter baumannii. The study reported here evaluated the bactericidal antibody responses following immunization of mice using an inactivated whole-cell vaccine derived from antibiotic-exposed MDR A. baumannii (I-M28-47-114). Mice inoculated with I-M28-47 (non-antibiotic-exposed control) and I-M28-47-114 showed a high IgG antibody response by day 5 post-inoculation. Sera from mice inoculated with I-M28-47-114 collected on day 30 resulted in 80.7 ± 12.0% complement-mediated bacteriolysis in vitro of the test MDR A. baumannii treated with imipenem, which was a higher level of bacteriolysis over sera from mice inoculated with I-M28-47. Macrophage-like U937 cells eliminated 49.3 ± 11.6% of the test MDR A. baumannii treated with imipenem when opsonized with sera from mice inoculated with I-M28-47-114, which was a higher level of elimination than observed for test MDR A. baumannii opsonized with sera from mice inoculated with I-M28-47. These results suggest that vaccination with I-M28-47-114 stimulated antibody responses capable of mounting high bactericidal killing of MDR A. baumannii. Therefore, the inactivated antibiotic-exposed whole-cell vaccine (I-M28-47-114) has potential for development as a candidate vaccine for broad clearance and protection against MDR A. baumannii infections. PMID:26923424

  18. Enhanced suppressor cell activity as a mechanism of immunosuppression by 2,3,7,8-tetrachlorodibenzo-p-dioxin

    SciTech Connect

    Clark, D.A.; Gauldie, J.; Szewczuk, M.R.; Sweeney, G.

    1981-11-01

    TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin), a toxic halogenated aromatic hydrocarbon, acts in the body as a cumulative poison. The chronic immunotoxic effects of TCDD were studied in C57B1/6 male mice. Total doses of 100 ..mu..g/kg or greater produced cellular depletion in thymus, spleen, and lymph nodes, and the animals appeared sick. No cellular depletion was seen following 0.4 ..mu..g/kg, and only thymus was affected by 4 and 40 ..mu..g/kg. The antibody response to SRBC and TNP-Brucella abortus was impaired following ..mu..g/kg and the generation of alloantigen-specific cytotoxic T cells (CTL) was sensitive to as little as 0.004 ..mu..g/kg TCDD. In vitro analysis of the mechanism of suppression using limiting dilution techniques showed that TCDD did not deplete the precursors of CTL but generated cells capable of suppressing CTL generation in vitro.

  19. Dimethyl fumarate attenuates 6-OHDA-induced neurotoxicity in SH-SY5Y cells and in animal model of Parkinson's disease by enhancing Nrf2 activity.

    PubMed

    Jing, X; Shi, H; Zhang, C; Ren, M; Han, M; Wei, X; Zhang, X; Lou, H

    2015-02-12

    Oxidative stress is central to the pathology of several neurodegenerative diseases, including Parkinson's disease (PD), and therapeutics designed to enhance antioxidant potential could have clinical value. In this study, we investigated whether dimethyl fumarate (DMF) has therapeutic effects in cellular and animal model of PD, and explore the role of nuclear transcription factor related to NF-E2 (Nrf2) in this process. Treatment of animals and dopaminergic SH-SY5Y cells with DMF resulted in increased nuclear levels of active Nrf2, with subsequent upregulation of antioxidant target genes. The cytotoxicity of 6-hydroxydopamine (6-OHDA) was reduced by pre-treatment with DMF in SH-SY5Y cells. The increase in the reactive oxygen species caused by 6-OHDA treatment was also attenuated by DMF in SH-SY5Y cells. The neuroprotective effects of DMF against 6-OHDA neurotoxicity were dependent on Nrf2, since treatment with Nrf2 siRNA failed to block against 6-OHDA neurotoxicity and induce Nrf2-dependent cytoprotective genes in SH-SY5Y cells. In vivo, DMF oral administration was shown to upregulate mRNA and protein levels of Nrf2 and Nrf2-regulated cytoprotective genes, attenuate 6-OHDA induced striatal oxidative stress and inflammation in C57BL/6 mice. Moreover, DMF ameliorated dopaminergic neurotoxicity in 6-OHDA-induced PD animal models as evidenced by amelioration of locomotor dysfunction, loss in striatal dopamine, and reductions in dopaminergic neurons in the substantia nigra and striatum. Taken together, these data strongly suggest that DMF may be beneficial for the treatment of neurodegenerative diseases like PD.

  20. Ubiquitin C-terminal hydrolase L1 (UCH-L1) acts as a novel potentiator of cyclin-dependent kinases to enhance cell proliferation independently of its hydrolase activity.

    PubMed

    Kabuta, Tomohiro; Mitsui, Takeshi; Takahashi, Masaki; Fujiwara, Yuuki; Kabuta, Chihana; Konya, Chiho; Tsuchiya, Yukihiro; Hatanaka, Yusuke; Uchida, Kenko; Hohjoh, Hirohiko; Wada, Keiji

    2013-05-03

    Dysregulation of cell proliferation and the cell cycle are associated with various diseases, such as cancer. Cyclin-dependent kinases (CDKs) play central roles in cell proliferation and the cell cycle. Ubiquitin C-terminal hydrolase L1 (UCH-L1) is expressed in a restricted range of tissues, including the brain and numerous types of cancer. However, the molecular functions of UCH-L1 remain elusive. In this study, we found that UCH-L1 physically interacts with CDK1, CDK4, and CDK5, enhancing their kinase activity. Using several mutants of UCH-L1, we showed that this enhancement is dependent upon interaction levels between UCH-L1 and CDKs but is independent of the known ubiquitin-related functions of UCH-L1. Gain- and loss-of-function studies revealed that UCH-L1 enhances proliferation of multiple cell types, including human cancer cells. Inhibition of the interaction between UCH-L1 and cell cycle-associated CDK resulted in the abolishment of UCH-L1-induced enhancement of cell proliferation. RNA interference of UCH-L1 reduced the growth of human xenograft tumors in mice. We concluded that UCH-L1 is a novel regulator of the kinase activities of CDKs. We believe that our findings from this study will significantly contribute to our understanding of cell cycle-associated diseases.

  1. Dynamic contrast-enhanced computed tomography to assess early activity of cetuximab in squamous cell carcinoma of the head and neck

    PubMed Central

    Schmitz, Sandra; Rommel, Denis; Michoux, Nicolas; Lhommel, Renaud; Hanin, François-Xavier; Duprez, Thierry; Machiels, Jean-Pascal

    2015-01-01

    Background Cetuximab, a monoclonal antibody targeting the Epidermal Growth Factor Receptor (EGFR), has demonstrated activity in various tumor types. Using dynamic contrast-enhanced computed tomography (DCE-CT), we investigated the early activity of cetuximab monotherapy in previously untreated patients with squamous cell carcinoma of the head and neck (SCCHN). Methods Treatment-naïve patients with SCCHN received cetuximab for 2 weeks before curative surgery. Treatment activity was evaluated by DCE-CT at baseline and before surgery. Tumor vascular and interstitial characteristics were evaluated using the Brix two-compartment kinetic model. Modifications of the perfusion parameters (blood flow Fp, extravascular space ve, vascular space vp, and transfer constant PS) were assessed between both time points. DCE data were compared to FDG-PET and histopathological examination obtained simultaneously. Plasmatic vascular markers were investigated at different time points. Results Fourteen patients had evaluable DCE-CT parameters at both time points. A significant increase in the extravascular extracellular space ve accessible to the tracer was observed but no significant differences were found for the other kinetic parameters (Fp, vp or PS). Significant correlations were found between DCE parameters and the other two modalities. Plasmatic VEGF, PDGF-BB and IL-8 decreased as early as 2 hours after cetuximab infusion. Conclusions Early activity of cetuximab on tumor interstitial characteristics was detected by DCE-CT. Modifications of plasmatic vascular markers are not sufficient to confirm anti-angiogenic cetuximab activity in vivo. Further investigation is warranted to determine to what extent DCE-CT parameters are modified and to evaluate whether they are able to predict treatment outcome. PMID:25810697

  2. UV-C irradiation of HSV-1 infected fibroblasts (HSV-FS) enhances human natural killer (NK) cell activity against these targets

    SciTech Connect

    Pettera, L.; Fitzgerald-Bocarsly, P. )

    1991-03-11

    Expression of Herpes Simplex Virus Type 1 (HSV-1) immediate early gene products has been bound to be sufficient for NK cell mediated lysis of HSV-1 infected FS. To block the targets at various stages in the infectious cycle, HSV-FS were irradiated with UV light for 1 min at 2, 6, and 20 hr post-infection. NK mediated lysis of 2 hr and 5 hr UV treated HSV-FS was 2-fold higher than non-UV treated HSV-FS despite a {gt}99% inhibition in virus yield. In contrast, 20 hr infected targets were lysed less well than 2 and 6 hr targets despite strong glycoprotein expression and induction of high levels of interferon-alpha (IFN-{alpha}) production by effector PBMC's; this lysis was not enhanced by UV treatment. Since NK lysis of HSV-FS has been found to be dependent on an HLA-DR{sup +} accessory cell (AC), lysis of irradiated HSV-FS by PBMC's depleted of AC was measured. Such depletion eradicated NK lysis of the UV treated HSV-FS indicating that irradiation does not overcome the AC requirement for NK lysis. UV irradiation of another HLA-DR{sup +} dependent target, Vesicular Stomatitis Virus (VSV) infected FS led to a dramatic reduction in both NK lysis and IFN-{alpha} induction. HSV-1 is a DNA virus whose genes are expressed in a cascade fashion whereas VSV is an RNA virus. The authors hypothesize that the enhancement in AC dependent NK activity observed for UV irradiated HSV-FS, but not VSV-FS, targets is due to overproduction of either a cellular or viral gene product which specifically occurs early in the HSV-1 infectious cycle and is downregulated by 20 hr post-infection.

  3. Computational Identification of Active Enhancers in Model Organisms

    PubMed Central

    Wang, Chengqi; Zhang, Michael Q.; Zhang, Zhihua

    2013-01-01

    As a class of cis-regulatory elements, enhancers were first identified as the genomic regions that are able to markedly increase the transcription of genes nearly 30 years ago. Enhancers can regulate gene expression in a cell-type specific and developmental stage specific manner. Although experimental technologies have been developed to identify enhancers genome-wide, the design principle of the regulatory elements and the way they rewire the transcriptional regulatory network tempo-spatially are far from clear. At present, developing predictive methods for enhancers, particularly for the cell-type specific activity of enhancers, is central to computational biology. In this review, we survey the current computational approaches for active enhancer prediction and discuss future directions. PMID:23685394

  4. Enhanced cell-wall damage mediated, antibacterial activity of core-shell ZnO@Ag heterojunction nanorods against Staphylococcus aureus and Pseudomonas aeruginosa.

    PubMed

    Ponnuvelu, Dinesh Veeran; Suriyaraj, Shanmugam Prema; Vijayaraghavan, Thiruvenkatam; Selvakumar, Rajendran; Pullithadathail, Biji

    2015-07-01

    Hybrid ZnO@Ag core-shell nanorods have been synthesized by a synthetic strategy based on seed mediated growth. Formation of core-shell nanostructures was confirmed by UV- diffused reflectance spectroscopy (UV-DRS), X-ray diffraction studies, field emission scanning electron microscopy and high resolution transmission electron microscopy. UV-DRS analysis of hybrid core-shell nanorods suggests the possibility of interfacial electron transfer between surface anchored Ag nanoclusters and ZnO nanorods. Successful decoration of Ag nanoclusters with an average diameter of ~7 ± 0.5 nm was observed forming the heterojunctions on the surface of the ZnO nanorods. An enhanced antibacterial property was observed for the ZnO@Ag core-shell nanorods against both Staphylococcus aureus and Pseudomonas aeruginosa lbacteria. The synergetic antibacterial activity of ZnO@Ag nanorods was found to be more prominent against Gram-positive bacteria than Gram-negative bacteria. The plausible reason for this enhanced antibacterial activity of the core-shell nanorods can be attributed to the physical damage caused by the interaction of the material with outer cell wall layer due to the production of reactive oxygen species by interfacial electron transfer between ZnO nanorods and plasmonic Ag nanoclusters. Overall, the ZnO@Ag core-shell nanorods were found to be promising materials that could be developed further as an effective antibacterial agent against wide range of microorganisms to control spreading and persistence of bacterial infections.

  5. Enhanced electrocatalytic activity of PANI and CoFe2O4/PANI composite supported on graphene for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Mohanraju, Karuppannan; Sreejith, Vasudevan; Ananth, Ramaiyan; Cindrella, Louis

    2015-06-01

    New catalysts of reduced graphene oxide (rGO) with poly aniline (PANI) and cobalt ferrite (CF) have been successfully prepared by simple chemical reduction method. Their electrocatalytic activity for oxygen reduction reaction (ORR) was evaluated. Semi-crystalline nature of CF was analyzed by X-ray diffraction (XRD) study. Surface morphology by HR-SEM showed features of CF particles and PANI film on graphene sheets. FT-IR studies revealed changes in C-N and Cdbnd N stretching vibrations of PANI confirming bonding of PANI to graphene sheets. Raman spectrum showed presence of PANI on distorted graphene layers. TG/DTA revealed thermal stability and extent of loading of CF in composite. ORR performance was studied using catalyst modified rotating disc electrode (RDE). A maximum kinetic current density of -3.46 mA cm-2 at -0.2 V was obtained for CF/PANI/rGO. Tafel slope, onset and half wave potentials for the catalyst were obtained from ORR response. Durability studies showed that synthesized electrocatalyst has better stability and methanol tolerance than commercial Pt/C catalyst. To the best of our knowledge, this is the first study aiming enhancement of ORR activity using PANI and CoFe2O4 on graphene support. A trace amount of Pt in the composite boosted the performance of single PEM fuel cell.

  6. Cloned Hemoglobin Genes Enhance Growth Of Cells

    NASA Technical Reports Server (NTRS)

    Khosla, Chaitan; Bailey, James E.

    1991-01-01

    Experiments show that portable deoxyribonucleic acid (DNA) sequences incorporated into host cells make them produce hemoglobins - oxygen-binding proteins essential to function of red blood cells. Method useful in several biotechnological applications. One, enhancement of growth of cells at higher densities. Another, production of hemoglobin to enhance supplies of oxygen in cells, for use in chemical reactions requiring oxygen, as additive to serum to increase transport of oxygen, and for binding and separating oxygen from mixtures of gases.

  7. Small-molecule BH3 mimetic and pan-Bcl-2 inhibitor AT-101 enhances the antitumor efficacy of cisplatin through inhibition of APE1 repair and redox activity in non-small-cell lung cancer

    PubMed Central

    Ren, Tao; Shan, Jinlu; Li, Mengxia; Qing, Yi; Qian, Chengyuan; Wang, Guangjie; Li, Qing; Lu, Guoshou; Li, Chongyi; Peng, Yu; Luo, Hao; Zhang, Shiheng; Yang, Yuxing; Cheng, Yi; Wang, Dong; Zhou, Shu-Feng

    2015-01-01

    AT-101 is a BH3 mimetic and pan-Bcl-2 inhibitor that has shown potent anticancer activity in non-small-cell lung cancer (NSCLC) in murine models, but failed to show clinical efficacy when used in combination with docetaxel in NSCLC patients. Our recent study has demonstrated that AT-101 enhanced the antitumor effect of cisplatin (CDDP) in a murine model of NSCLC via inhibition of the interleukin-6/signal transducer and activator of transcription 3 (STAT3) pathway. This study explored the underlying mechanisms for the enhanced anticancer activity of CDDP by AT-101. Our results show that, when compared with monotherapy, AT-101 significantly enhanced the inhibitory effects of CDDP on proliferation and migration of A549 cells and on tube formation and migration in human umbilical vein endothelial cells. AT-101 promoted the proapoptotic activity of CDDP in A549 cells. AT-101 also enhanced the inhibitory effect of CDDP on DNA repair and redox activities of apurinic/apyrimidinic endonuclease 1 (APE1) in A549 cells. In tumor tissues from nude mice treated with AT-101 plus CDDP or monotherapy, the combination therapy resulted in greater inhibition of angiogenesis and tumor cell proliferation than the monotherapy. These results suggest that AT-101 can enhance the antitumor activity of CDDP in NSCLC via inhibition of APE1 DNA repair and redox activities and by angiogenesis and induction of apoptosis, but other mechanisms cannot be excluded. We are now conducting a Phase II trial to examine the clinical efficacy and safety profile of combined use of AT-101 plus CDDP in advanced NSCLC patients. PMID:26089640

  8. Enhanced expression of PD-L1 in oral squamous cell carcinoma-derived CD11b(+)Gr-1(+) cells and its contribution to immunosuppressive activity.

    PubMed

    Fuse, Hiroki; Tomihara, Kei; Heshiki, Wataru; Yamazaki, Manabu; Akyu-Takei, Rie; Tachinami, Hidetake; Furukawa, Ken-Ichiro; Sakurai, Kotaro; Rouwan, Moniruzzaman; Noguchi, Makoto

    2016-08-01

    Cancer is often associated with dysregulation of both the humoral and cellular immune response, which in some instances is believed to result from changes in immune cell populations. For example, immunosuppressive CD11b(+)Gr-1(+) myeloid-derived suppressor cells have been shown to proliferate in the tumor microenvironment and surrounding tissues, highlighting the relationship between tumor growth and impairment of the immune response. However, the role of myeloid-derived suppressor cells in cancer progression has not been fully characterized because these cells are heterogeneous with properties influenced by the type and location of the tumor. Here, we show that CD11b(+)Gr-1(+) cells are elevated in the peripheral blood, spleen, and tumor of mice with oral squamous cell carcinoma. The phenotype and function of these cells varied depending on the tissue of origin. In particular, CD11b(+)Gr-1(+) cells in tumors expressed PD-L1 more abundantly than those in other tissues. Accordingly, CD11b(+)Gr-1(+) cells from tumors, but not from the spleen, suppressed T cell proliferation in vitro. The results suggest that tumor-derived or immune factors result in the accumulation of phenotypically and functionally diverse populations of CD11b(+)Gr-1(+) cells in mice with oral squamous cell carcinoma. The data also indicate that PD-L1 expression in CD11b(+)Gr-1(+) cells contributes to immune suppression, implying that targeting both myeloid-derived suppressor cells and PD-L1 would be an effective immunotherapeutic strategy against oral cancer.

  9. Dodeca-2(E),4(E)-dienoic acid isobutylamide enhances glucose uptake in 3T3-L1 cells via activation of Akt signaling.

    PubMed

    Choi, Kyeong-Mi; Kim, Wonkyun; Hong, Jin Tae; Yoo, Hwan-Soo

    2017-02-01

    Dodeca-2(E),4(E)-dienoic acid isobutylamide (DDI), an alkamide derived from the plant Echinacea purpurea, promotes adipocyte differentiation and activates peroxisome proliferator-activated receptor γ, which is associated with enhanced insulin sensitivity. In the present study, we investigated whether DDI may increase glucose uptake through activation of the insulin signaling pathway in 3T3-L1 adipocytes. DDI increased insulin-stimulated glucose uptake, and expression and translocation of glucose transporter 4 in adipocytes treated with sub-optimal levels of insulin. Additionally, DDI enhanced Akt phosphorylation, whereas phosphoinositide 3-kinase/Akt inhibitors suppressed DDI-induced glucose uptake. These results suggest that DDI may improve insulin sensitivity through the activation of Akt signaling, which leads to enhanced glucose uptake.

  10. Inhibition of γ-secretase activity synergistically enhances tumour necrosis factor-related apoptosis-inducing ligand induced apoptosis in T-cell acute lymphoblastic leukemia cells via upregulation of death receptor 5

    PubMed Central

    Greene, Lisa M.; Nathwani, Seema M.; Zisterer, Daniela M.

    2016-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is a rare and aggressive hematopoietic malignancy prone to relapse and drug resistance. Half of all T-ALL patients exhibit mutations in Notch1, which leads to aberrant Notch1 associated signaling cascades. Notch1 activation is mediated by the γ-secretase cleavage of the Notch1 receptor into the active intracellular domain of Notch1 (NCID). Clinical trials of γ-secretase small molecule inhibitors (GSIs) as single agents for the treatment of T-ALL have been unsuccessful. The present study demonstrated, using immunofluorescence and western blotting, that blocking γ-secretase activity in T-ALL cells with N-[(3,5-difluorophenyl) acetyl]-L-alanyl-2-phenyl] glycine-1,1-dimethylethyl ester (DAPT) downregulated NCID and upregulated the tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor 5 (DR5). Upregulation of DR5 restored the sensitivity of T-ALL cells to TRAIL. Combination index revealed that the combined treatment of DAPT and TRAIL synergistically enhanced apoptosis compared with treatment with either drug alone. TRAIL combined with the clinically evaluated γ-secretase inhibitor 3-[(1r, 4s)-4-(4-chlorophenylsulfonyl)-4-(2, 5-difluorophenyl) cyclohexyl] propanoic acid (MK-0752) also significantly enhanced TRAIL-induced cell death compared with either drug alone. DAPT/TRAIL apoptotic synergy was dependent on the extrinsic apoptotic pathway and was associated with a decrease in BH3 interacting-domain death agonist and x-linked inhibitor of apoptosis. In conclusion, γ-secretase inhibition represents a potential therapeutic strategy to overcome TRAIL resistance for the treatment of T-ALL. PMID:27698877

  11. Novel Inhaled Combination Powder Containing Amorphous Colistin and Crystalline Rifapentine with Enhanced Antimicrobial Activities against Planktonic Cells and Biofilm of Pseudomonas aeruginosa for Respiratory Infections.

    PubMed

    Zhou, Qi Tony; Sun, Si-Ping; Chan, John Gar Yan; Wang, Ping; Barraud, Nicolas; Rice, Scott A; Wang, Jiping; Li, Jian; Chan, Hak-Kim

    2015-08-03

    Colistin has been increasingly used for the treatment of respiratory infections caused by Gram-negative bacteria. Unfortunately parenteral administration of colistin can cause severe adverse effects. This study aimed to develop an inhaled combination dry powder formulation of colistin and rifapentine for the treatment of respiratory infections. The combination formulation was produced by spray-drying rifapentine particles suspended in an aqueous colistin solution. The combination dry powder had enhanced antimicrobial activities against planktonic cells and biofilm cultures of Pseudomonas aeruginosa, with both minimum inhibitory concentration (MIC) and minimum biofilm inhibitory concentration (MBIC) values (2 and 4 mg/L, respectively) being half that of pure colistin (MIC 4 mg/L and MBIC 8 mg/L) and 1/16th that of pure rifapentine (MIC 32 mg/L and MBIC 64 mg/L). High aerosol performance, as measured via an Aerolizer device, was observed with emitted doses>89% and fine particle fraction (FPF) total>76%. The proportion of submicron particles of rifapentine particles was minimized by the attachment of colistin, which increased the overall particle mass and aerodynamic size distribution. Using the spray-drying method described here, stable particles of amorphous colistin and crystalline rifapentine were distributed homogeneously in each stage of the impinger. Unlike the colistin alone formulation, no deterioration in aerosol performance was found for the combination powder when exposed to a high relative humidity of 75%. In our previous study, surface coating by rifampicin contributed to the moisture protection of colistin. Here, a novel approach with a new mechanism was proposed whereby moisture protection was attributed to the carrier effect of elongated crystalline rifapentine particles, which minimized contact between hygroscopic colistin particles. This inhaled combination antibiotic formulation with enhanced aerosol dispersion efficiency and in vitro efficacy

  12. Transcription activator-like effector nuclease (TALEN)-mediated CLYBL targeting enables enhanced transgene expression and one-step generation of dual reporter human induced pluripotent stem cell (iPSC) and neural stem cell (NSC) lines.

    PubMed

    Cerbini, Trevor; Funahashi, Ray; Luo, Yongquan; Liu, Chengyu; Park, Kyeyoon; Rao, Mahendra; Malik, Nasir; Zou, Jizhong

    2015-01-01

    Targeted genome engineering to robustly express transgenes is an essential methodology for stem cell-based research and therapy. Although designer nucleases have been used to drastically enhance gene editing efficiency, targeted addition and stable expression of transgenes to date is limited at single gene/locus and mostly PPP1R12C/AAVS1 in human stem cells. Here we constructed transcription activator-like effector nucleases (TALENs) targeting the safe-harbor like gene CLYBL to mediate reporter gene integration at 38%-58% efficiency, and used both AAVS1-TALENs and CLYBL-TALENs to simultaneously knock-in multiple reporter genes at dual safe-harbor loci in human induced pluripotent stem cells (iPSCs) and neural stem cells (NSCs). The CLYBL-TALEN engineered cell lines maintained robust reporter expression during self-renewal and differentiation, and revealed that CLYBL targeting resulted in stronger transgene expression and less perturbation on local gene expression than PPP1R12C/AAVS1. TALEN-mediated CLYBL engineering provides improved transgene expression and options for multiple genetic modification in human stem cells.

  13. T cell activation.

    PubMed

    Smith-Garvin, Jennifer E; Koretzky, Gary A; Jordan, Martha S

    2009-01-01

    This year marks the 25th anniversary of the first Annual Review of Immunology article to describe features of the T cell antigen receptor (TCR). In celebration of this anniversary, we begin with a brief introduction outlining the chronology of the earliest studies that established the basic paradigm for how the engaged TCR transduces its signals. This review continues with a description of the current state of our understanding of TCR signaling, as well as a summary of recent findings examining other key aspects of T cell activation, including cross talk between the TCR and integrins, the role of costimulatory molecules, and how signals may negatively regulate T cell function.Acronyms and DefinitionsAdapter protein: cellular protein that functions to bridge molecular interactions via characteristic domains able to mediate protein/protein or protein/lipid interactions Costimulation: signals delivered to T cells by cell surface receptors other than the TCR itself that potentiate T cell activation cSMAC: central supramolecular activation cluster Immunoreceptor tyrosine-based activation motif (ITAM): a short peptide sequence in the cytoplasmic tails of key surface receptors on hematopoietic cells that is characterized by tyrosine residues that are phosphorylated by Src family PTKs, enabling the ITAM to recruit activated Syk family kinases Inside-out signaling: signals initiated by engagement of immunoreceptors that lead to conformational changes and clustering of integrins, thereby increasing the affinity and avidity of the integrins for their ligands NFAT: nuclear factor of activated T cells PI3K: phosphoinositide 3-kinase PKC: protein kinase C PLC: phospholipase C pMHC: peptide major histocompatibility complex (MHC) complex pSMAC: peripheral supramolecular activation cluster PTK: protein tyrosine kinase Signal transduction: biochemical events linking surface receptor engagement to cellular responses TCR: T cell antigen receptor

  14. ETV6/ARG oncoprotein confers autonomous cell growth by enhancing c-Myc expression via signal transducer and activator of transcription 5 activation in the acute promyelocytic leukemia cell line HT93A.

    PubMed

    Iriyama, Noriyoshi; Hatta, Yoshihiro; Takei, Masami

    2015-01-01

    We investigated the role of ETV6/ARG fusion gene by exposing the HT93A cell line to nilotinib. HT93A cells were cultured with or without nilotinib±50 ng/mL of granulocyte colony-stimulating factor (G-CSF). Nilotinib treatment inhibited cell growth by increasing the percentage of cells in G0/G1 phase through the decrease of phosphorylated signal transducer and activator of transcription 3 (STAT3) (Y705), STAT5 (Y694) and c-Myc expression. After stimulation with G-CSF, STAT5 but not STAT3 was significantly phosphorylated in both nilotinib-treated and untreated cells. Moreover, combination therapy with nilotinib and G-CSF returned the expression level of c-Myc, cell growth and cell cycle distribution to the control level. These findings suggest that the ETV6/ARG oncoprotein contributes to autonomous cell growth by compensating for the requirement of growth factor through activating STAT5 signaling, which leads to the up-regulation of c-Myc. Our data suggest that ETV6/ARG oncoprotein is a potential target in the treatment of leukemia.

  15. Combined Use of Gene Expression Modeling and siRNA Screening Identifies Genes and Pathways Which Enhance the Activity of Cisplatin When Added at No Effect Levels to Non-Small Cell Lung Cancer Cells In Vitro.

    PubMed

    Leung, Ada W Y; Hung, Stacy S; Backstrom, Ian; Ricaurte, Daniel; Kwok, Brian; Poon, Steven; McKinney, Steven; Segovia, Romulo; Rawji, Jenna; Qadir, Mohammed A; Aparicio, Samuel; Stirling, Peter C; Steidl, Christian; Bally, Marcel B

    2016-01-01

    Platinum-based combination chemotherapy is the standard treatment for advanced non-small cell lung cancer (NSCLC). While cisplatin is effective, its use is not curative and resistance often emerges. As a consequence of microenvironmental heterogeneity, many tumour cells are exposed to sub-lethal doses of cisplatin. Further, genomic heterogeneity and unique tumor cell sub-populations with reduced sensitivities to cisplatin play a role in its effectiveness within a site of tumor growth. Being exposed to sub-lethal doses will induce changes in gene expression that contribute to the tumour cell's ability to survive and eventually contribute to the selective pressures leading to cisplatin resistance. Such changes in gene expression, therefore, may contribute to cytoprotective mechanisms. Here, we report on studies designed to uncover how tumour cells respond to sub-lethal doses of cisplatin. A microarray study revealed changes in gene expressions that occurred when A549 cells were exposed to a no-observed-effect level (NOEL) of cisplatin (e.g. the IC10). These data were integrated with results from a genome-wide siRNA screen looking for novel therapeutic targets that when inhibited transformed a NOEL of cisplatin into one that induced significant increases in lethality. Pathway analyses were performed to identify pathways that could be targeted to enhance cisplatin activity. We found that over 100 genes were differentially expressed when A549 cells were exposed to a NOEL of cisplatin. Pathways associated with apoptosis and DNA repair were activated. The siRNA screen revealed the importance of the hedgehog, cell cycle regulation, and insulin action pathways in A549 cell survival and response to cisplatin treatment. Results from both datasets suggest that RRM2B, CABYR, ALDH3A1, and FHL2 could be further explored as cisplatin-enhancing gene targets. Finally, pathways involved in repairing double-strand DNA breaks and INO80 chromatin remodeling were enriched in both

  16. Tumor hypoxia enhances non-small cell lung cancer metastasis by selectively promoting macrophage M2 polarization through the activation of ERK signaling

    PubMed Central

    Ma, Shenglin; Dong, Rong; Meng, Wen; Ying, Meidan; Weng, Qinjie; Chen, Zibo; Ma, Jian; Fang, Qingxia; He, Qiaojun; Yang, Bo

    2014-01-01

    Hypoxia is a common phenomenon occurring in the majority of human tumors and has been proved to play an important role in tumor progression. However, it remains unclear that whether the action of hypoxia on macrophages is a main driving force of hypoxia-mediated aggressive tumor behaviors. In the present study, we observe that high density of M2 macrophages is associated with metastasis in adenocarcinoma Non-Small Cell Lung Cancer (NSCLC) patients. By applying the in vivo hypoxia model, the results suggest that intermittent hypoxia significantly promotes the metastasis of Lewis lung carcinoma (LLC), accompanied with more CD209+ macrophages infiltrated in primary tumor tissue. More intriguingly, by skewing macrophages polarization away from the M1- to a tumor-promoting M2-like phenotype, hypoxia and IL-6 cooperate to enhance the LLC metastasis both in vitro and in vivo. In addition, we also demonstrate that skewing of macrophage M2 polarization by hypoxia relies substantially on activation of ERK signaling. Collectively, these observations unveil a novel tumor hypoxia concept involving the macrophage phenotype shift and provide direct evidence for lung cancer intervention through modulating the phenotype of macrophages. PMID:25313135

  17. MECHANISMS INVOLVED IN THE ENHANCED SUSCEPTIBILITY OF SENESCENT RATS TO THE HEPATOCARCINOGENIC EFFECT OF PEROXISOME PROLIFERATORS: ROLE OF PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR ALPHA (PPARA), CELL PROLIFERATION AND OXIDATIVE STRESS

    EPA Science Inventory

    Mechanisms involved in the ENHANCED SUSCEPTIBILITY of SENESCENT Rats TO THE HEPATOCARCINOGENIC EFFECT OF PEROXISOME PROLIFERATORS: Role of peroxisome proliferator-activated receptor alpha (PPARa), cell proliferation and oxidative stress

    Jihan A. Youssef1, Pierre Ammann2, B...

  18. Activation of protein phosphatase 2A in FLT3+ acute myeloid leukemia cells enhances the cytotoxicity of FLT3 tyrosine kinase inhibitors

    PubMed Central

    Lee, Erwin M.; Harrison, Celeste; Kahl, Richard; Flanagan, Hayley; Panicker, Nikita; Mashkani, Baratali; Don, Anthony S.; Morris, Jonathan; Toop, Hamish; Lock, Richard B.; Powell, Jason A.; Thomas, Daniel; Guthridge, Mark A.; Moore, Andrew; Ashman, Leonie K.; Skelding, Kathryn A.; Enjeti, Anoop; Verrills, Nicole M.

    2016-01-01

    Constitutive activation of the receptor tyrosine kinase Fms-like tyrosine kinase 3 (FLT3), via co-expression of its ligand or by genetic mutation, is common in acute myeloid leukemia (AML). In this study we show that FLT3 activation inhibits the activity of the tumor suppressor, protein phosphatase 2A (PP2A). Using BaF3 cells transduced with wildtype or mutant FLT3, we show that FLT3-induced PP2A inhibition sensitizes cells to the pharmacological PP2A activators, FTY720 and AAL(S). FTY720 and AAL(S) induced cell death and inhibited colony formation of FLT3 activated cells. Furthermore, PP2A activators reduced the phosphorylation of ERK and AKT, downstream targets shared by both FLT3 and PP2A, in FLT3/ITD+ BaF3 and MV4-11 cell lines. PP2A activity was lower in primary human bone marrow derived AML blasts compared to normal bone marrow, with blasts from FLT3-ITD patients displaying lower PP2A activity than WT-FLT3 blasts. Reduced PP2A activity was associated with hyperphosphorylation of the PP2A catalytic subunit, and reduced expression of PP2A structural and regulatory subunits. AML patient blasts were also sensitive to cell death induced by FTY720 and AAL(S), but these compounds had minimal effect on normal CD34+ bone marrow derived monocytes. Finally, PP2A activating compounds displayed synergistic effects when used in combination with tyrosine kinase inhibitors in FLT3-ITD+ cells. A combination of Sorafenib and FTY720 was also synergistic in the presence of a protective stromal microenvironment. Thus combining a PP2A activating compound and a FLT3 inhibitor may be a novel therapeutic approach for treating AML. PMID:27329844

  19. hnRNP H is a component of a splicing enhancer complex that activates a c-src alternative exon in neuronal cells.

    PubMed

    Chou, M Y; Rooke, N; Turck, C W; Black, D L

    1999-01-01

    The regulation of the c-src N1 exon is mediated by an intronic splicing enhancer downstream of the N1 5' splice site. Previous experiments showed that a set of proteins assembles onto the most conserved core of this enhancer sequence specifically in neuronal WERI-1 cell extracts. The most prominent components of this enhancer complex are the proteins hnRNP F, KSRP, and an unidentified protein of 58 kDa (p58). This p58 protein was purified from the WERI-1 cell nuclear extract by ammonium sulfate precipitation, Mono Q chromatography, and immunoprecipitation with anti-Sm antibody Y12. Peptide sequence analysis of purified p58 protein identified it as hnRNP H. Immunoprecipitation of hnRNP H cross-linked to the N1 enhancer RNA, as well as gel mobility shift analysis of the enhancer complex in the presence of hnRNP H-specific antibodies, confirmed that hnRNP H is a protein component of the splicing enhancer complex. Immunoprecipitation of splicing intermediates from in vitro splicing reactions with anti-hnRNP H antibody indicated that hnRNP H remains bound to the src pre-mRNA after the assembly of spliceosome. Partial immunodepletion of hnRNP H from the nuclear extract partially inactivated the splicing of the N1 exon in vitro. This inhibition of splicing can be restored by the addition of recombinant hnRNP H, indicating that hnRNP H is an important factor for N1 splicing. Finally, in vitro binding assays demonstrate that hnRNP H can interact with the related protein hnRNP F, suggesting that hnRNPs H and F may exist as a heterodimer in a single enhancer complex. These two proteins presumably cooperate with each other and with other enhancer complex proteins to direct splicing to the N1 exon upstream.

  20. Myeloid derived suppressor cells enhance IgE-mediated mast cell responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We previously demonstrated that enhanced development of myeloid derived suppressor cells (MDSC) in ADAM10 transgenic mice yielded resistance to infection with Nippostrongylus brasiliensis infection, and that co-culturing MDSC with IgE-activated mast cells enhanced cytokine production. In the current...

  1. Interleukin-4 (IL-4) enhances homotypic adhesion of activated B-chronic lymphocytic leukaemia (B-CLL) cells via a selective up-regulation of CD54.

    PubMed

    Carlsson, M; Söderberg, O; Nilsson, K

    1993-04-01

    It is well established that cell-to-cell contact modifies cytokine signalling but little is known on the role of homotypic cell adhesion for proliferation and differentiation of B cells. Homotypic adhesion involves mainly the interaction between the adhesion molecules Leukocyte Function Antigen-1 (LFA-1) and its ligand CD54 (ICAM-1). A well-characterized B-chronic lymphocytic leukaemia (B-CLL) clone (I-83) was used as a source of monoclonal B cells inducible to DNA synthesis and differentiation by using 12-O-tetradecanoyl-phorbol-13-acetate (TPA) in combination with interleukin-4 (IL-4) and thioredoxin (Trx)-containing supernatant from a T-cell hybridoma (BSF-MP6). This paper shows that IL-4 alone was able to induce aggregation of B-CLL cells and to strongly enhance TPA+BSF-MP6-induced aggregation. The results from studying the expression of CD11a and CD18, the two subunits of LFA-1, and CD54 during stimulated DNA synthesis and differentiation suggest that IL-4-induced, or enhanced, aggregation was mainly mediated by a selective up-regulation of CD54. It was further demonstrated by antibody blockade to either CD11a, CD18 or CD54 that aggregation could be inhibited without affecting induced DNA synthesis or differentiation.

  2. Combined Use of Gene Expression Modeling and siRNA Screening Identifies Genes and Pathways Which Enhance the Activity of Cisplatin When Added at No Effect Levels to Non-Small Cell Lung Cancer Cells In Vitro

    PubMed Central

    Leung, Ada W. Y.; Hung, Stacy S.; Backstrom, Ian; Ricaurte, Daniel; Kwok, Brian; Poon, Steven; McKinney, Steven; Segovia, Romulo; Rawji, Jenna; Qadir, Mohammed A.; Aparicio, Samuel; Stirling, Peter C.; Steidl, Christian; Bally, Marcel B.

    2016-01-01

    Platinum-based combination chemotherapy is the standard treatment for advanced non-small cell lung cancer (NSCLC). While cisplatin is effective, its use is not curative and resistance often emerges. As a consequence of microenvironmental heterogeneity, many tumour cells are exposed to sub-lethal doses of cisplatin. Further, genomic heterogeneity and unique tumor cell sub-populations with reduced sensitivities to cisplatin play a role in its effectiveness within a site of tumor growth. Being exposed to sub-lethal doses will induce changes in gene expression that contribute to the tumour cell’s ability to survive and eventually contribute to the selective pressures leading to cisplatin resistance. Such changes in gene expression, therefore, may contribute to cytoprotective mechanisms. Here, we report on studies designed to uncover how tumour cells respond to sub-lethal doses of cisplatin. A microarray study revealed changes in gene expressions that occurred when A549 cells were exposed to a no-observed-effect level (NOEL) of cisplatin (e.g. the IC10). These data were integrated with results from a genome-wide siRNA screen looking for novel therapeutic targets that when inhibited transformed a NOEL of cisplatin into one that induced significant increases in lethality. Pathway analyses were performed to identify pathways that could be targeted to enhance cisplatin activity. We found that over 100 genes were differentially expressed when A549 cells were exposed to a NOEL of cisplatin. Pathways associated with apoptosis and DNA repair were activated. The siRNA screen revealed the importance of the hedgehog, cell cycle regulation, and insulin action pathways in A549 cell survival and response to cisplatin treatment. Results from both datasets suggest that RRM2B, CABYR, ALDH3A1, and FHL2 could be further explored as cisplatin-enhancing gene targets. Finally, pathways involved in repairing double-strand DNA breaks and INO80 chromatin remodeling were enriched in both

  3. Xenotropic murine leukemia virus-related virus establishes an efficient spreading infection and exhibits enhanced transcriptional activity in prostate carcinoma cells.

    PubMed

    Rodriguez, Jason J; Goff, Stephen P

    2010-03-01

    Xenotropic murine leukemia virus-related virus (XMRV) is a novel human gammaretrovirus discovered in association with human prostate tumors. XMRV was first identified in prostate stromal cells surrounding the tumors of patients carrying a mutation in the HPC1 gene locus. To determine the tropism of XMRV in cell culture, we tested the ability of XMRV to spread and replicate in various prostate and nonprostate cell lines. We found that although the expression of XMRV viral proteins and the spread of infectious virus were minimal in a variety of cell lines, XMRV displayed robust expression and infection in LNCaP prostate tumor cells. The transcriptional activity of the XMRV long terminal repeat (LTR) was found to be higher than the Moloney murine leukemia virus LTRs in both LNCaP and WPMY-1 (simian virus 40-transformed prostate stromal cells). The U3 promoter of XMRV and a glucocorticoid response element (GRE) within the U3 were required for the transcriptional activity in LNCaP cells. Coexpression of the androgen receptor and stimulation with dihydrotestosterone stimulated XMRV-LTR-dependent transcription in 293T cells, and the GRE was required for this activity. These data suggest that XMRV may replicate more efficiently in LNCaP cells in part due to the transcriptional environment in LNCaP cells.

  4. TCRs genetically linked to CD28 and CD3ε do not mispair with endogenous TCR chains and mediate enhanced T cell persistence and anti-melanoma activity.

    PubMed

    Govers, Coen; Sebestyén, Zsolt; Roszik, János; van Brakel, Mandy; Berrevoets, Cor; Szöőr, Árpád; Panoutsopoulou, Konstantina; Broertjes, Marieke; Van, Tan; Vereb, György; Szöllősi, János; Debets, Reno

    2014-11-15

    Adoptive transfer of T cells that are gene engineered to express a defined TCR represents a feasible and promising therapy for patients with tumors. However, TCR gene therapy is hindered by the transient presence and effectiveness of transferred T cells, which are anticipated to be improved by adequate T cell costimulation. In this article, we report the identification and characterization of a novel two-chain TCR linked to CD28 and CD3ε (i.e., TCR:28ε). This modified TCR demonstrates enhanced binding of peptide-MHC and mediates enhanced T cell function following stimulation with peptide compared with wild-type TCR. Surface expression of TCR:28ε depends on the transmembrane domain of CD28, whereas T cell functions depend on the intracellular domains of both CD28 and CD3ε, with IL-2 production showing dependency on CD28:LCK binding. TCR:28ε, but not wild-type TCR, induces detectable immune synapses in primary human T cells, and such immune synapses show significantly enhanced accumulation of TCR transgenes and markers of early TCR signaling, such as phosphorylated LCK and ERK. Importantly, TCR:28ε does not show signs of off-target recognition, as evidenced by lack of TCR mispairing, as well as preserved specificity. Notably, when testing TCR:28ε in immune-competent mice, we observed a drastic increase in T cell survival, which was accompanied by regression of large melanomas with limited recurrence. Our data argue that TCR transgenes that contain CD28, and, thereby, may provide T cell costimulation in an immune-suppressive environment, represent candidate receptors to treat patients with tumors.

  5. Radiation Enhances Regulatory T Cell Representation

    PubMed Central

    Kachikwu, Evelyn L.; Iwamoto, Keisuke S.; Liao, Yu-Pei; DeMarco, John J.; Agazaryan, Nzhde; Economou, James S.; McBride, William H.; Schaue, Dörthe

    2010-01-01

    PURPOSE Immunotherapy (IT) could be a useful adjunct to standard cytotoxic therapies such as radiation in patients with micrometastatic disease although successful integration of IT into treatment protocols will require further understanding of how standard therapies affect the generation of anti-tumor immune responses. This study was undertaken to evaluate the impact of radiation therapy on immunosuppressive T regulatory (Treg) cells. MATERIALS and METHODS Tregs were identified as a CD4+CD25hiFoxp3+ lymphocyte subset and their fate followed in a murine TRAMP-C1 model of prostate cancer in mice with and without radiation therapy. RESULTS CD4+CD25hiFoxp3+ Treg cells increased in immune organs following local leg or whole body radiation. A large part, but not all, of this increase following leg-only irradiation could be ascribed to radiation scatter and Tregs being intrinsically more radiation resistant than other lymphocyte subpopulations resulting in their selection. Their functional activity on a per cell basis was not affected by radiation exposure. Similar findings were made with mice receiving local RT to murine prostate tumors growing in the leg. The importance of the Treg population in the response to RT was shown by systemic elimination of Tregs, which greatly enhanced radiation-induced tumor regression. CONCLUSIONS We conclude that Tregs are more resistant to radiation than other lymphocytes resulting in their preferential increase. Treg cells may form an important homeostatic mechanism for tissues injured by radiation, and in a tumor context may assist in immune evasion during therapy. Targeting this population may allow enhancement of radiotherapeutic benefit through immune modulation. PMID:21093169

  6. Raman activated cell sorting.

    PubMed

    Song, Yizhi; Yin, Huabing; Huang, Wei E

    2016-08-01

    Single cell Raman spectra (SCRS) are intrinsic biochemical profiles and 'chemical images' of single cells which can be used to characterise phenotypic changes, physiological states and functions of cells. On the base of SCRS, Raman activated cell sorting (RACS) provides a label-free cell sorting approach, which can link single cells to their chemical or phenotypic profiles. Overcoming naturally weak Raman signals, establishing Raman biomarker as sorting criteria to RACS and improving specific sorting technology are three challenges of developing RACS. Advances on Raman spectroscopy such as stimulated Raman scattering (SRS) and pre-screening helped to increase RACS sorting speed. Entire SCRS can be characterised using pattern recognition methods, and specific Raman bands can be extracted as biomarkers for RACS. Recent advances on cell sorting technologies based on microfluidic device and surface-ejection enable accurate and reliable single cell sorting from complex samples. A high throughput RACS will be achievable in near future by integrating fast Raman detection system such as SRS with microfluidic RACS and Raman activated cell ejection (RACE).

  7. Interleukin-2 enhances the production of tumor necrosis factor-alpha in activated B-type chronic lymphocytic leukemia (B-CLL) cells.

    PubMed

    Larsson, L G; Carlsson, M; Schena, M; Lantz, M; Caligaris-Cappio, F; Nilsson, K

    1993-02-01

    Tumor necrosis factor-alpha (TNF-alpha) has recently been implicated as a regulator growth and differentiation of normal and malignant B cells. We utilized a selected clone (I-83) of primary resting B-type chronic lymphocytic leukemia (B-CLL) cells, inducible to activation, growth and differentiation in vitro, as a model system to study the possible role of TNF-alpha as an autocrine growth factor for such cells. Our results show that unstimulated I-83 B-CLL cells produced a low level of TNF-alpha mRNA, as shown by Northern blot analysis, and cytoplasmic TNF-alpha, determined in individual cells by immunocytochemistry. Secreted TNF-alpha could, however, not be detected in the medium by ELISA. TNF-alpha synthesis and secretion was, however, induced to high levels by stimulation of the B-CLL cells with interleukin-2 (IL-2) after activation by 12-O-tetradecanoylphorbol-13-acetate (TPA) or Staphylococcus aureus Cowan strain I (SAC) and B-cell stimulatory factor-MP6 (thioredoxin). A moderate increase in TNF-alpha secretion was also induced by TPA or IL-2 alone. IL-4 did not have any major effects on the production of TNF-alpha in activated cells, but inhibited the IL-2-induced production of TNF-alpha in SAC-activated cells. The cell surface expression of TNF-alpha receptors (TNF-R), as determined by binding assay using 125I-labelled recombinant TNF-alpha (rTNF-alpha), was also induced after SAC or TPA activation, but shed receptors (TNF-binding proteins) were only observed after TPA activation. Exogenously added rTNF-alpha in combination with TPA or SAC induced a high level of DNA synthesis in I-83 B-CLL cells. The increased endogenous production and secretion of TNF-alpha during induced growth stimulation, the induced expression of TNF-R, and the mitogenic effect of TNF-alpha on activated B-CLL cells raise the question whether TNF-alpha may function as an autocrine co-stimulator of B-CLL cell growth as recently suggested. anti-TNF-alpha and anti-TNF-R antibodies

  8. Pretreatment of activated human CD8 T cells with IL-12 leads to enhanced TCR-induced signaling and cytokine production.

    PubMed

    Vacaflores, Aldo; Freedman, Samantha N; Chapman, Nicole M; Houtman, Jon C D

    2017-01-01

    During the immune response to pathogens and autoantigens, CD8T cells are exposed to numerous inflammatory agents including the cytokine IL-12. Previous studies have focused on how IL-12 regulates T cell functions when present during or after the activation of the T cell receptor (TCR). However, recent studies suggest that prior exposure to IL-12 also alters the TCR responsiveness of murine T cells. Whether similar phenomena occur in human activated CD8T cells and the mechanisms mediating these effects remain unexplored. In this study, we observed that pretreatment of human activated CD8T cells with IL-12 results in increased cytokine mRNA and protein production following subsequent TCR challenge. The potentiation of TCR-mediated cytokine release was transient and required low doses of IL-12 for at least 24h. Mechanistically, prior exposure to IL-12 increased the TCR induced activation of select MAPKs and AKT without altering the activation of more proximal TCR signaling molecules, suggesting that the IL-12 mediated changes in TCR signaling are responsible for the increased production of cytokines. Our data suggest that prior treatment with IL-12 potent