Science.gov

Sample records for activation enhances cell

  1. Mast cells enhance T cell activation: Importance of mast cell-derived TNF

    NASA Astrophysics Data System (ADS)

    Nakae, Susumu; Suto, Hajime; Kakurai, Maki; Sedgwick, Jonathon D.; Tsai, Mindy; Galli, Stephen J.

    2005-05-01

    Mast cells are not only important effector cells in immediate hypersensitivity reactions and immune responses to pathogens but also can contribute to T cell-mediated disorders. However, the mechanisms by which mast cells might influence T cells in such settings are not fully understood. We find that mast cells can enhance proliferation and cytokine production in multiple T cell subsets. Mast cell-dependent enhancement of T cell activation can be promoted by FcRI-dependent mast cell activation, TNF production by both mast cells and T cells, and mast cell-T cell contact. However, at high concentrations of cells, mast cells can promote T cell activation independent of IgE or TNF. Finally, mast cells also can promote T cell activation by means of soluble factors. These findings identify multiple mechanisms by which mast cells can influence T cell proliferation and cytokine production. allergy | asthma | autoimmunity | cytokines | immune response

  2. CCL5 activation of CCR5 regulates cell metabolism to enhance proliferation of breast cancer cells

    PubMed Central

    Gao, Darrin; Rahbar, Ramtin; Fish, Eleanor N.

    2016-01-01

    In earlier studies, we showed that CCL5 enhances proliferation and survival of MCF-7 breast cancer cells in an mTOR-dependent manner and we provided evidence that, for T cells, CCL5 activation of CCR5 results in increased glycolysis and enhanced ATP production. Increases in metabolic activity of cancer cells, specifically increased glycolytic activity and increased expression of glucose transporters, are associated with tumour progression. In this report, we provide evidence that CCL5 enhances the proliferation of human breast cancer cell lines (MDA-MB-231, MCF-7) and mouse mammary tumour cells (MMTV-PyMT), mediated by CCR5 activation. Concomitant with enhanced proliferation we show that CCL5 increases cell surface expression of the glucose transporter GLUT1, and increases glucose uptake and ATP production by these cells. Blocking CCL5-inducible glucose uptake abrogates the enhanced proliferation induced by CCL5. We provide evidence that increased glucose uptake is associated with enhanced glycolysis, as measured by extracellular acidification. Moreover, CCL5 enhances the invasive capacity of these breast cancer cells. Using metabolomics, we demonstrate that the metabolic signature of CCL5-treated primary mouse mammary tumour cells reflects increased anabolic metabolism. The implications are that CCL5–CCR5 interactions in the tumour microenvironment regulate metabolic events, specifically glycolysis, to promote tumour proliferation and invasion. PMID:27335323

  3. CCL5 activation of CCR5 regulates cell metabolism to enhance proliferation of breast cancer cells.

    PubMed

    Gao, Darrin; Rahbar, Ramtin; Fish, Eleanor N

    2016-06-01

    In earlier studies, we showed that CCL5 enhances proliferation and survival of MCF-7 breast cancer cells in an mTOR-dependent manner and we provided evidence that, for T cells, CCL5 activation of CCR5 results in increased glycolysis and enhanced ATP production. Increases in metabolic activity of cancer cells, specifically increased glycolytic activity and increased expression of glucose transporters, are associated with tumour progression. In this report, we provide evidence that CCL5 enhances the proliferation of human breast cancer cell lines (MDA-MB-231, MCF-7) and mouse mammary tumour cells (MMTV-PyMT), mediated by CCR5 activation. Concomitant with enhanced proliferation we show that CCL5 increases cell surface expression of the glucose transporter GLUT1, and increases glucose uptake and ATP production by these cells. Blocking CCL5-inducible glucose uptake abrogates the enhanced proliferation induced by CCL5. We provide evidence that increased glucose uptake is associated with enhanced glycolysis, as measured by extracellular acidification. Moreover, CCL5 enhances the invasive capacity of these breast cancer cells. Using metabolomics, we demonstrate that the metabolic signature of CCL5-treated primary mouse mammary tumour cells reflects increased anabolic metabolism. The implications are that CCL5-CCR5 interactions in the tumour microenvironment regulate metabolic events, specifically glycolysis, to promote tumour proliferation and invasion. PMID:27335323

  4. Enhanced Efflux Activity Facilitates Drug Tolerance in Dormant Bacterial Cells

    PubMed Central

    Pu, Yingying; Zhao, Zhilun; Li, Yingxing; Zou, Jin; Ma, Qi; Zhao, Yanna; Ke, Yuehua; Zhu, Yun; Chen, Huiyi; Baker, Matthew A.B.; Ge, Hao; Sun, Yujie; Xie, Xiaoliang Sunney; Bai, Fan

    2016-01-01

    Summary Natural variations in gene expression provide a mechanism for multiple phenotypes to arise in an isogenic bacterial population. In particular, a sub-group termed persisters show high tolerance to antibiotics. Previously, their formation has been attributed to cell dormancy. Here we demonstrate that bacterial persisters, under β-lactam antibiotic treatment, show less cytoplasmic drug accumulation as a result of enhanced efflux activity. Consistently, a number of multi-drug efflux genes, particularly the central component TolC, show higher expression in persisters. Time-lapse imaging and mutagenesis studies further establish a positive correlation between tolC expression and bacterial persistence. The key role of efflux systems, among multiple biological pathways involved in persister formation, indicates that persisters implement a positive defense against antibiotics prior to a passive defense via dormancy. Finally, efflux inhibitors and antibiotics together effectively attenuate persister formation, suggesting a combination strategy to target drug tolerance. PMID:27105118

  5. LY2109761 enhances cisplatin antitumor activity in ovarian cancer cells

    PubMed Central

    Gao, Yuxiu; Shan, Ning; Zhao, Cheng; Wang, Yunhai; Xu, Fuliang; Li, Jiacun; Yu, Xiaoqian; Gao, Lifeng; Yi, Zhengjun

    2015-01-01

    Background and Objective: Ovarian cancer is among the most lethal of all malignancies in women. While chemotherapy is the preferred treatment modality, chemoresistance severely limits treatment success. Because transforming growth factor-beta (TGF-β) could increase survival of ovarian cancer cells in the presence of cisplatin, we conducted a preclinical study of the antitumor effects of the TGF-β type I (TβRI) and type II (TβRII) kinase inhibitor LY2109761 in combination with cisplatin. Methods: SKOV3, OV-90 and SKOV3DDP cells were treated with LY2109761, and/or cisplatin, and cell viability, apoptosis mRNA and protein expression levels were then evaluated. Furthermore, the efficacy of LY2109761 combined with cisplatin was further examined in established xenograft models. Results: LY2109761 was sufficient to induce spontaneous apoptosis of ovarian cancer cells. Combination with LY2109761 significantly augmented the cytotoxicity of cisplatin in both parental and cisplatin resistant ovarian cancer cells. LY2109761 significantly increased apoptotic cell death in cisplatin-resistant cells. Combination treatment of LY2109761 and cisplatin showed antiproliferative effects and induced a greater rate of apoptosis than the sum of the single-treatment rates and promoted tumor regression in established parental and cisplatin resistant ovarian cancer xenograft models. Conclusions: Chemotherapeutic approaches using LY2109761 might enhance the treatment benefit of the cisplatin in the treatment of ovarian cancer patients. PMID:26191185

  6. Surface plasmon enhanced cell microscopy with blocked random spatial activation

    NASA Astrophysics Data System (ADS)

    Son, Taehwang; Oh, Youngjin; Lee, Wonju; Yang, Heejin; Kim, Donghyun

    2016-03-01

    We present surface plasmon enhanced fluorescence microscopy with random spatial sampling using patterned block of silver nanoislands. Rigorous coupled wave analysis was performed to confirm near-field localization on nanoislands. Random nanoislands were fabricated in silver by temperature annealing. By analyzing random near-field distribution, average size of localized fields was found to be on the order of 135 nm. Randomly localized near-fields were used to spatially sample F-actin of J774 cells (mouse macrophage cell-line). Image deconvolution algorithm based on linear imaging theory was established for stochastic estimation of fluorescent molecular distribution. The alignment between near-field distribution and raw image was performed by the patterned block. The achieved resolution is dependent upon factors including the size of localized fields and estimated to be 100-150 nm.

  7. Activation of enhancer elements by the homeobox gene Cdx2 is cell line specific.

    PubMed Central

    Taylor, J K; Levy, T; Suh, E R; Traber, P G

    1997-01-01

    Cdx2 is a caudal-related homeodomain transcription factor that is expressed in complex patterns during mouse development and at high levels in the intestinal epithelium of adult mice. Cdx2 activates transcription of intestinal gene promoters containing specific binding sites. Moreover, Cdx2 has been shown to induce intestinal differentiation in cell lines. In this study, we show that Cdx2 is able to bind to two well defined enhancer elements in the HoxC8 gene. We then demonstrate that Cdx2 is able to activate transcription of heterologous promoters when its DNA binding element is placed in an enhancer context. Furthermore, the ability to activate enhancer elements is cell-line dependent. When the Cdx2 activation domain was linked to the Gal4 DNA binding domain, the chimeric protein was able to activate Gal4 enhancer constructs in an intestinal cell line, but was unable to activate transcription in NIH3T3 cells. These data suggest that there are cell-specific factors that allow the Cdx2 activation domain to function in the activation of enhancer elements. We hypothesize that either a co-activator protein or differential phosphorylation of the activation domain may be the mechanism for intestinal cell line-specific function of Cdx2 and possibly in other tissues in early development. PMID:9171078

  8. An atlas of active enhancers across human cell types and tissues

    NASA Astrophysics Data System (ADS)

    Andersson, Robin; Gebhard, Claudia; Miguel-Escalada, Irene; Hoof, Ilka; Bornholdt, Jette; Boyd, Mette; Chen, Yun; Zhao, Xiaobei; Schmidl, Christian; Suzuki, Takahiro; Ntini, Evgenia; Arner, Erik; Valen, Eivind; Li, Kang; Schwarzfischer, Lucia; Glatz, Dagmar; Raithel, Johanna; Lilje, Berit; Rapin, Nicolas; Bagger, Frederik Otzen; Jørgensen, Mette; Andersen, Peter Refsing; Bertin, Nicolas; Rackham, Owen; Burroughs, A. Maxwell; Baillie, J. Kenneth; Ishizu, Yuri; Shimizu, Yuri; Furuhata, Erina; Maeda, Shiori; Negishi, Yutaka; Mungall, Christopher J.; Meehan, Terrence F.; Lassmann, Timo; Itoh, Masayoshi; Kawaji, Hideya; Kondo, Naoto; Kawai, Jun; Lennartsson, Andreas; Daub, Carsten O.; Heutink, Peter; Hume, David A.; Jensen, Torben Heick; Suzuki, Harukazu; Hayashizaki, Yoshihide; Müller, Ferenc; Consortium, The Fantom; Forrest, Alistair R. R.; Carninci, Piero; Rehli, Michael; Sandelin, Albin

    2014-03-01

    Enhancers control the correct temporal and cell-type-specific activation of gene expression in multicellular eukaryotes. Knowing their properties, regulatory activity and targets is crucial to understand the regulation of differentiation and homeostasis. Here we use the FANTOM5 panel of samples, covering the majority of human tissues and cell types, to produce an atlas of active, in vivo-transcribed enhancers. We show that enhancers share properties with CpG-poor messenger RNA promoters but produce bidirectional, exosome-sensitive, relatively short unspliced RNAs, the generation of which is strongly related to enhancer activity. The atlas is used to compare regulatory programs between different cells at unprecedented depth, to identify disease-associated regulatory single nucleotide polymorphisms, and to classify cell-type-specific and ubiquitous enhancers. We further explore the utility of enhancer redundancy, which explains gene expression strength rather than expression patterns. The online FANTOM5 enhancer atlas represents a unique resource for studies on cell-type-specific enhancers and gene regulation.

  9. Interleukin-2 from Adaptive T Cells Enhances Natural Killer Cell Activity against Human Cytomegalovirus-Infected Macrophages

    PubMed Central

    Wu, Zeguang; Frascaroli, Giada; Bayer, Carina; Schmal, Tatjana

    2015-01-01

    ABSTRACT Control of human cytomegalovirus (HCMV) requires a continuous immune surveillance, thus HCMV is the most important viral pathogen in severely immunocompromised individuals. Both innate and adaptive immunity contribute to the control of HCMV. Here, we report that peripheral blood natural killer cells (PBNKs) from HCMV-seropositive donors showed an enhanced activity toward HCMV-infected autologous macrophages. However, this enhanced response was abolished when purified NK cells were applied as effectors. We demonstrate that this enhanced PBNK activity was dependent on the interleukin-2 (IL-2) secretion of CD4+ T cells when reexposed to the virus. Purified T cells enhanced the activity of purified NK cells in response to HCMV-infected macrophages. This effect could be suppressed by IL-2 blocking. Our findings not only extend the knowledge on the immune surveillance in HCMV—namely, that NK cell-mediated innate immunity can be enhanced by a preexisting T cell antiviral immunity—but also indicate a potential clinical implication for patients at risk for severe HCMV manifestations due to immunosuppressive drugs, which mainly suppress IL-2 production and T cell responsiveness. IMPORTANCE Human cytomegalovirus (HCMV) is never cleared by the host after primary infection but instead establishes a lifelong latent infection with possible reactivations when the host′s immunity becomes suppressed. Both innate immunity and adaptive immunity are important for the control of viral infections. Natural killer (NK) cells are main innate effectors providing a rapid response to virus-infected cells. Virus-specific T cells are the main adaptive effectors that are critical for the control of the latent infection and limitation of reinfection. In this study, we found that IL-2 secreted by adaptive CD4+ T cells after reexposure to HCMV enhances the activity of NK cells in response to HCMV-infected target cells. This is the first direct evidence that the adaptive T cells can

  10. Suppression of albumin enhancer activity by H-ras and AP-1 in hepatocyte cell lines.

    PubMed Central

    Hu, J; Isom, H C

    1994-01-01

    We demonstrated, using a transient transfection assay, that the albumin enhancer increased the expression of the albumin promoter in a highly differentiated, simian virus 40 (SV40)-immortalized hepatocyte cell line, CWSV1, but was not functional in two ras-transformed cell lines (NR3 and NR4) derived from CWSV1 by stable transfection with the T24ras oncogene. A transient cotransfection assay showed that T24ras and normal c-Ha-ras were each able to inhibit the activity of the albumin enhancer in an immortal hepatocyte cell line. DNase I footprinting and gel mobility shift assays demonstrated that the DNA binding activities specific to the albumin enhancer were not decreased in the ras-transformed cells. ras also did not diminish the expression of HNF1 alpha, C/EBP alpha, HNF3 alpha, HNF3 beta, or HNF3 gamma but did significantly increase AP-1 binding activity. Three AP-1 binding sites were identified within the albumin enhancer, and DNA binding activities specific to these AP-1 sites were induced in the ras-transformed hepatocytes. Subsequent functional assays showed that overexpression of c-jun and c-fos inhibited the activity of the albumin enhancer. Site-directed mutagenesis of the AP-1 binding sites in the albumin enhancer partially abrogated the suppressing effect of ras and c-jun/c-fos on the enhancer. These functional studies therefore supported the results of the structural studies with AP-1. We conclude that the activity of the albumin enhancer is subject to regulation by ras signaling pathways and that the effect of ras on the albumin enhancer activity may be mediated by AP-1. Images PMID:8114691

  11. Neoadjuvant immunotherapy enhances radiosensitivity through natural killer cell activation.

    PubMed

    Chi, Chau-Hwa; Wang, Yu-Shan; Yang, Chieh-Han; Chi, Kwan-Hwa

    2010-02-01

    We investigated whether natural killer (NK) cells in the tumor microenvironment have a radiosensitization effect. The radiosensitization effect of combined CpG and Herceptin((R)) (Genentech, Inc., South San Francisco, CA) (CpG/Herceptin), given before or after radiation, was evaluated by using a murine colon cancer cell line overexpressing human HER2/neu, CT26HER2/neu. In vitro radiosensitization effects were investigated by coculture of CT26HER2/neu with splenocytes, CpG, and Herceptin before applying radiation. Tumor cells, cocultured with CpG-pretreated splenocytes and Herceptin, were more vulnerable to radiation damage. In BALB/c mice injected with CT26HER2/neu, CpG/Herceptin administered before radiotherapy was associated with a better retardation of tumor growth than when administered after radiotherapy. The radiosensitization effect was significantly abrogated by NK-cell depletion, indicating that NK cells play an essential role in it. Further, surviving mice treated with CpG or CpG/Herceptin and reverse transcriptase were resistant to renewed tumor challenge, suggesting the presence of an induced immune response to the tumor. Neoadjuvant immunotherapy with CpG/Herceptin may improve response to radiotherapy of HER2/neu-expressing tumors. PMID:20187795

  12. Enhanced effector responses in activated CD8+ T cells deficient in diacylglycerol kinases.

    PubMed

    Riese, Matthew J; Wang, Liang-Chuan S; Moon, Edmund K; Joshi, Rohan P; Ranganathan, Anjana; June, Carl H; Koretzky, Gary A; Albelda, Steven M

    2013-06-15

    Recent clinical trials have shown promise in the use of chimeric antigen receptor (CAR)-transduced T cells; however, augmentation of their activity may broaden their clinical use and improve their efficacy. We hypothesized that because CAR action requires proteins essential for T-cell receptor (TCR) signal transduction, deletion of negative regulators of these signaling pathways would enhance CAR signaling and effector T-cell function. We tested CAR activity and function in T cells that lacked one or both isoforms of diacylglycerol kinase (dgk) expressed highly in T cells, dgkα and dgkζ, enzymes that metabolize the second messenger diacylglycerol (DAG) and limit Ras/ERK activation. We found that primary murine T cells transduced with CARs specific for the human tumor antigen mesothelin showed greatly enhanced cytokine production and cytotoxicity when cocultured with a murine mesothelioma line that stably expresses mesothelin. In addition, we found that dgk-deficient CAR-transduced T cells were more effective in limiting the growth of implanted tumors, both concurrent with and after establishment of tumor. Consistent with our studies in mice, pharmacologic inhibition of dgks also augments function of primary human T cells transduced with CARs. These results suggest that deletion of negative regulators of TCR signaling enhances the activity and function of CAR-expressing T cells and identify dgks as potential targets for improving the clinical potential of CARs. PMID:23576561

  13. Osthole enhances glucose uptake through activation of AMP-activated protein kinase in skeletal muscle cells.

    PubMed

    Lee, Wei-Hwa; Lin, Ren-Jye; Lin, Shyr-Yi; Chen, Yu-Chien; Lin, Hsiu-Ming; Liang, Yu-Chih

    2011-12-28

    AMP-activated protein kinase (AMPK) is an energy sensor that regulates cellular metabolism. Activation of AMPK in skeletal muscles, the liver, and adipose tissues results in a favorable metabolic milieu for preventing and treating type 2 diabetes, i.e., decreased levels of circulating glucose, plasma lipids, and ectopic fat accumulation and enhanced insulin sensitivity. Osthole was extracted from a Chinese herbal medicine, and we found that it had glucose lowering activity in our previous study. However, the detailed glucose lowering mechanisms of osthole are still unclear. In this study, we used skeletal muscle cells to examine the underlying molecular mechanisms of osthole's glucose lowering activity. A Western blot analysis revealed that osthole significantly induced phosphorylation of AMPK and acetyl-CoA carboxylase (ACC). Next, we found that osthole significantly increased the level of translocation of glucose transporter 4 (GLUT4) to plasma membranes and glucose uptake in a dose-dependent manner. Osthole-induced glucose uptake was reversed by treatment with Compound C, an AMPK inhibitor, suggesting that osthole-induced glucose uptake was mediated in an AMPK-dependent manner. The increase in the AMP:ATP ratio was involved in osthole's activation of AMPK. Finally, we found that osthole counteracted hyperglycemia in mice with streptozotocin-induced diabetes. These results suggest that the increase in the AMP:ATP ratio by osthole triggered activation of the AMPK signaling pathway and led to increases in plasma membrane GLUT4 content and glucose uptake level. Therefore, osthole might have potential as an antidiabetic agent for treating diabetes. PMID:22098542

  14. The glucagon-like peptide 1 receptor agonist enhances intrinsic peroxisome proliferator-activated receptor γ activity in endothelial cells

    SciTech Connect

    Onuma, Hirohisa; Inukai, Kouichi Kitahara, Atsuko; Moriya, Rie; Nishida, Susumu; Tanaka, Toshiaki; Katsuta, Hidenori; Takahashi, Kazuto; Sumitani, Yoshikazu; Hosaka, Toshio; Ishida, Hitoshi

    2014-08-22

    Highlights: • PPARγ activation was involved in the GLP-1-mediated anti-inflammatory action. • Exendin-4 enhanced endogenous PPARγ transcriptional activity in HUVECs. • H89, a PKA inhibitor, abolished GLP-1-induced PPARγ enhancement. • The anti-inflammatory effects of GLP-1 may be explained by PPARγ activation. - Abstract: Recent studies have suggested glucagon-like peptide-1 (GLP-1) signaling to exert anti-inflammatory effects on endothelial cells, although the precise underlying mechanism remains to be elucidated. In the present study, we investigated whether PPARγ activation is involved in the GLP-1-mediated anti-inflammatory action on endothelial cells. When we treated HUVEC cells with 0.2 ng/ml exendin-4, a GLP-1 receptor agonist, endogenous PPARγ transcriptional activity was significantly elevated, by approximately 20%, as compared with control cells. The maximum PPARγ activity enhancing effect of exendin-4 was observed 12 h after the initiation of incubation with exendin-4. As H89, a PKA inhibitor, abolished GLP-1-induced PPARγ enhancement, the signaling downstream from GLP-1 cross-talk must have been involved in PPARγ activation. In conclusion, our results suggest that GLP-1 has the potential to induce PPARγ activity, partially explaining the anti-inflammatory effects of GLP-1 on endothelial cells. Cross-talk between GLP-1 signaling and PPARγ activation would have major impacts on treatments for patients at high risk for cardiovascular disease.

  15. Interleukin-21 enhances NK cell activation in response to antibody-coated targets.

    PubMed

    Roda, Julie M; Parihar, Robin; Lehman, Amy; Mani, Aruna; Tridandapani, Susheela; Carson, William E

    2006-07-01

    NK cells express an activating FcR (FcgammaRIIIa) that mediates Ab-dependent cellular cytotoxicity and the production of immune modulatory cytokines in response to Ab-coated targets. IL-21 has antitumor activity in murine models that depends in part on its ability to promote NK cell cytotoxicity and IFN-gamma secretion. We hypothesized that the NK cell response to FcR stimulation would be enhanced by the administration of IL-21. Human NK cells cultured with IL-21 and immobilized IgG or human breast cancer cells coated with a therapeutic mAb (trastuzumab) secreted large amounts of IFN-gamma. Increased secretion of TNF-alpha and the chemokines IL-8, MIP-1alpha, and RANTES was also observed under these conditions. NK cell IFN-gamma production was dependent on distinct signals mediated by the IL-21R and the FcR and was abrogated in STAT1-deficient NK cells. Supernatants derived from NK cells that had been stimulated with IL-21 and mAb-coated breast cancer cells were able to drive the migration of naive and activated T cells in an in vitro chemotaxis assay. IL-21 also enhanced NK cell lytic activity against Ab-coated tumor cells. Coadministration of IL-21 and Ab-coated tumor cells to immunocompetent mice led to synergistic production of IFN-gamma by NK cells. Furthermore, the administration of IL-21 augmented the effects of an anti-HER2/neu mAb in a murine tumor model, an effect that required IFN-gamma. These findings demonstrate that IL-21 significantly enhances the NK cell response to Ab-coated targets and suggest that IL-21 would be an effective adjuvant to administer in combination with therapeutic mAbs. PMID:16785506

  16. Chronic alcohol consumption enhances iNKT cell maturation and activation

    SciTech Connect

    Zhang, Hui Zhang, Faya; Zhu, Zhaohui; Luong, Dung; Meadows, Gary G.

    2015-01-15

    Alcohol consumption exhibits diverse effects on different types of immune cells. NKT cells are a unique T cell population and play important immunoregulatory roles in different types of immune responses. The effects of chronic alcohol consumption on NKT cells remain to be elucidated. Using a mouse model of chronic alcohol consumption, we found that alcohol increases the percentage of NKT cells, especially iNKT cells in the thymus and liver, but not in the spleen or blood. Alcohol consumption decreases the percentage of NK1.1{sup −} iNKT cells in the total iNKT cell population in all of the tissues and organs examined. In the thymus, alcohol consumption increases the number of NK1.1{sup +}CD44{sup hi} mature iNKT cells but does not alter the number of NK1.1{sup −} immature iNKT cells. A BrdU incorporation assay shows that alcohol consumption increases the proliferation of thymic NK1.1{sup −} iNKT cells, especially the NK1.1{sup −}CD44{sup lo} Stage I iNKT cells. The percentage of NKG2A{sup +} iNKT cells increases in all of the tissues and organs examined; whereas CXCR3{sup +} iNKT cells only increases in the thymus of alcohol-consuming mice. Chronic alcohol consumption increases the percentage of IFN-γ-producing iNKT cells and increases the blood concentration of IFN-γ and IL-12 after in vivo α-galactosylceramide (αGalCer) stimulation. Consistent with the increased cytokine production, the in vivo activation of iNKT cells also enhances the activation of dendritic cells (DC) and NK, B, and T cells in the alcohol-consuming mice. Taken together the data indicate that chronic alcohol consumption enhances iNKT cell maturation and activation, which favors the Th1 immune response. - Highlights: • Chronic alcohol consumption increases iNKT cells in the thymus and liver • Chronic alcohol consumption enhances thymic Stage I iNKT cell proliferation • Chronic alcohol consumption enhances iNKT cell maturation in thymus and periphery • Chronic alcohol

  17. PKCδ activated by c-MET enhances infiltration of human glioblastoma cells through NOTCH2 signaling

    PubMed Central

    Kang, Seok-Gu; Kim, Rae-Kwon; Cui, Yan-Hong; Lee, Hae-June; Kim, Min-Jung; Lee, Jae-Seong; Kim, In-Gyu; Suh, Yongjoon; Lee, Su-Jae

    2016-01-01

    Poor prognosis of glioblastoma (GBM) is attributable to the propensity of tumor cells to infiltrate into the brain parenchyma. Protein kinase C (PKC) isozymes are highly expressed or aberrantly activated in GBM. However, how this signaling node translates to GBM cell invasiveness remains unknown. Here, we report that among PKC isoforms, PKCδ is strongly associated with infiltration of GBM cells. Notably, PKCδ enhanced Tyr418 phosphorylation of the non-receptor tyrosine kinase SRC, which in turn activated STAT3 and subsequent NOTCH2 signaling, ultimately leading to GBM cell invasiveness. Furthermore, we showed that PKCδ was aberrantly activated in GBM cells by c-MET, a receptor tyrosine kinase hyperactivated in GBM. In agreement, inhibition either component in the c-MET/PKCδ/SRC/STAT3 signaling axis effectively blocked the NOTCH2 signaling and invasiveness of GBM cells. Taken together, our findings shed a light on the signaling mechanisms behind the constitutive activation of PKCδ signaling in GBM. PMID:26700818

  18. Activation of the canonical Wnt/{beta}-catenin pathway enhances monocyte adhesion to endothelial cells

    SciTech Connect

    Lee, Dong Kun . E-mail: leedk@memorialhealthsource.com; Nathan Grantham, R.; Trachte, Aaron L.; Mannion, John D.; Wilson, Colleen L.

    2006-08-18

    Monocyte adhesion to vascular endothelium has been reported to be one of the early processes in the development of atherosclerosis. In an attempt to develop strategies to prevent or delay atherosclerosis progression, we analyzed effects of the Wnt/{beta}-catenin signaling pathway on monocyte adhesion to various human endothelial cells. Adhesion of fluorescein-labeled monocytes to various human endothelial cells was analyzed under a fluorescent microscope. Unlike sodium chloride, lithium chloride enhanced monocyte adhesion to endothelial cells in a dose-dependent manner. We further demonstrated that inhibitors for glycogen synthase kinase (GSK)-3{beta} or proteosome enhanced monocyte-endothelial cell adhesion. Results of semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) indicated that activation of Wnt/{beta}-catenin pathway did not change expression levels of mRNA for adhesion molecules. In conclusion, the canonical Wnt/{beta}-catenin pathway enhanced monocyte-endothelial cell adhesion without changing expression levels of adhesion molecules.

  19. Chronic alcohol consumption enhances iNKT cell maturation and activation.

    PubMed

    Zhang, Hui; Zhang, Faya; Zhu, Zhaohui; Luong, Dung; Meadows, Gary G

    2015-01-15

    Alcohol consumption exhibits diverse effects on different types of immune cells. NKT cells are a unique T cell population and play important immunoregulatory roles in different types of immune responses. The effects of chronic alcohol consumption on NKT cells remain to be elucidated. Using a mouse model of chronic alcohol consumption, we found that alcohol increases the percentage of NKT cells, especially iNKT cells in the thymus and liver, but not in the spleen or blood. Alcohol consumption decreases the percentage of NK1.1(-) iNKT cells in the total iNKT cell population in all of the tissues and organs examined. In the thymus, alcohol consumption increases the number of NK1.1(+)CD44(hi) mature iNKT cells but does not alter the number of NK1.1(-) immature iNKT cells. A BrdU incorporation assay shows that alcohol consumption increases the proliferation of thymic NK1.1(-) iNKT cells, especially the NK1.1(-)CD44(lo) Stage I iNKT cells. The percentage of NKG2A(+) iNKT cells increases in all of the tissues and organs examined; whereas CXCR3(+) iNKT cells only increases in the thymus of alcohol-consuming mice. Chronic alcohol consumption increases the percentage of IFN-γ-producing iNKT cells and increases the blood concentration of IFN-γ and IL-12 after in vivo α-galactosylceramide (αGalCer) stimulation. Consistent with the increased cytokine production, the in vivo activation of iNKT cells also enhances the activation of dendritic cells (DC) and NK, B, and T cells in the alcohol-consuming mice. Taken together the data indicate that chronic alcohol consumption enhances iNKT cell maturation and activation, which favors the Th1 immune response. PMID:25499027

  20. Tim-3 enhances FcεRI-proximal signaling to modulate mast cell activation.

    PubMed

    Phong, Binh L; Avery, Lyndsay; Sumpter, Tina L; Gorman, Jacob V; Watkins, Simon C; Colgan, John D; Kane, Lawrence P

    2015-12-14

    T cell (or transmembrane) immunoglobulin and mucin domain protein 3 (Tim-3) has attracted significant attention as a novel immune checkpoint receptor (ICR) on chronically stimulated, often dysfunctional, T cells. Antibodies to Tim-3 can enhance antiviral and antitumor immune responses. Tim-3 is also constitutively expressed by mast cells, NK cells and specific subsets of macrophages and dendritic cells. There is ample evidence for a positive role for Tim-3 in these latter cell types, which is at odds with the model of Tim-3 as an inhibitory molecule on T cells. At this point, little is known about the molecular mechanisms by which Tim-3 regulates the function of T cells or other cell types. We have focused on defining the effects of Tim-3 ligation on mast cell activation, as these cells constitutively express Tim-3 and are activated through an ITAM-containing receptor for IgE (FcεRI), using signaling pathways analogous to those in T cells. Using a variety of gain- and loss-of-function approaches, we find that Tim-3 acts at a receptor-proximal point to enhance Lyn kinase-dependent signaling pathways that modulate both immediate-phase degranulation and late-phase cytokine production downstream of FcεRI ligation. PMID:26598760

  1. Tim-3 enhances FcεRI-proximal signaling to modulate mast cell activation

    PubMed Central

    Phong, Binh L.; Avery, Lyndsay; Sumpter, Tina L.; Gorman, Jacob V.; Watkins, Simon C.; Colgan, John D.

    2015-01-01

    T cell (or transmembrane) immunoglobulin and mucin domain protein 3 (Tim-3) has attracted significant attention as a novel immune checkpoint receptor (ICR) on chronically stimulated, often dysfunctional, T cells. Antibodies to Tim-3 can enhance antiviral and antitumor immune responses. Tim-3 is also constitutively expressed by mast cells, NK cells and specific subsets of macrophages and dendritic cells. There is ample evidence for a positive role for Tim-3 in these latter cell types, which is at odds with the model of Tim-3 as an inhibitory molecule on T cells. At this point, little is known about the molecular mechanisms by which Tim-3 regulates the function of T cells or other cell types. We have focused on defining the effects of Tim-3 ligation on mast cell activation, as these cells constitutively express Tim-3 and are activated through an ITAM-containing receptor for IgE (FcεRI), using signaling pathways analogous to those in T cells. Using a variety of gain- and loss-of-function approaches, we find that Tim-3 acts at a receptor-proximal point to enhance Lyn kinase-dependent signaling pathways that modulate both immediate-phase degranulation and late-phase cytokine production downstream of FcεRI ligation. PMID:26598760

  2. Immunoregulatory function of human intestinal mucosa lymphoid cells: evidence for enhanced suppressor cell activity in inflammatory bowel disease.

    PubMed Central

    Fiocchi, C; Youngman, K R; Farmer, R G

    1983-01-01

    Abnormalities in immune regulation at the gut level may be relevant to the pathogenesis of inflammatory bowel disease, but little is known about the immunoregulatory properties of intestinal mononuclear cells. Therefore, we wished to see if lymphoid cells derived from the lamina propria of surgically resected bowel specimens have any modulatory effect upon the immune response of peripheral blood mononuclear cells from patients with ulcerative colitis or Crohn's disease. When autologous peripheral blood and intestinal lamina propria lymphoid cells were mixed at different ratios and cultured in the presence of phytohaemagglutinin, we were able to show that intestinal mononuclear cells had the capacity to modify the mitogenic response of the cultured cells. These intestinal immunoregulatory cells, when obtained from mucosa affected by inflammatory bowel disease, express a significantly enhanced suppressor cell activity as compared with those from non-inflamed control mucosa. Such suppressor cell activity varies with cell concentration and requires cell proliferation, but it is independent of anatomical origin (small vs large bowel), type of inflammatory bowel disease (ulcerative colitis vs Crohn's disease) or immunosuppressive therapy. These findings point to an important functional difference between inflammatory bowel disease and control intestinal mucosa mononuclear cells. The enhanced suppressor activity of lamina propria mononuclear cells may be associated with impairment of cell-mediated immunity at the gut level. This may be related to the pathogenesis of inflammatory bowel disease by leading to defective intestinal immune regulatory events, which may not be detectable at the peripheral level. PMID:6223862

  3. FOXD3 Regulates Pluripotent Stem Cell Potential by Simultaneously Initiating and Repressing Enhancer Activity.

    PubMed

    Krishnakumar, Raga; Chen, Amy F; Pantovich, Marisol G; Danial, Muhammad; Parchem, Ronald J; Labosky, Patricia A; Blelloch, Robert

    2016-01-01

    Early development is governed by the ability of pluripotent cells to retain the full range of developmental potential and respond accurately to developmental cues. This property is achieved in large part by the temporal and contextual regulation of gene expression by enhancers. Here, we evaluated regulation of enhancer activity during differentiation of embryonic stem to epiblast cells and uncovered the forkhead transcription factor FOXD3 as a major regulator of the developmental potential of both pluripotent states. FOXD3 bound to distinct sites in the two cell types priming enhancers through a dual-functional mechanism. It recruited the SWI/SNF chromatin remodeling complex ATPase BRG1 to promote nucleosome removal while concurrently inhibiting maximal activation of the same enhancers by recruiting histone deacetylases1/2. Thus, FOXD3 prepares cognate genes for future maximal expression by establishing and simultaneously repressing enhancer activity. Through switching of target sites, FOXD3 modulates the developmental potential of pluripotent cells as they differentiate. PMID:26748757

  4. Enhancement of endothelial cell migration by constitutively active LPA{sub 1}-expressing tumor cells

    SciTech Connect

    Kitayoshi, Misaho; Kato, Kohei; Tanabe, Eriko; Yoshikawa, Kyohei; Fukui, Rie; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer Mutated LPA{sub 1} stimulates cell migration of endothelial cells. Black-Right-Pointing-Pointer VEGF expressions are increased by mutated LPA{sub 1}. Black-Right-Pointing-Pointer LPA signaling via mutated LPA{sub 1} is involved in angiogenesis. Black-Right-Pointing-Pointer Mutated LPA{sub 1} promotes cancer cell progression. -- Abstract: Lysophosphatidic acid (LPA) receptors belong to G protein-coupled transmembrane receptors (LPA receptors; LPA{sub 1} to LPA{sub 6}). They indicate a variety of cellular response by the interaction with LPA, including cell proliferation, migration and differentiation. Recently, we have reported that constitutive active mutated LPA{sub 1} induced the strong biological effects of rat neuroblastoma B103 cells. In the present study, we examined the effects of mutated LPA{sub 1} on the interaction between B103 cells and endothelial F-2 cells. Each LPA receptor expressing B103 cells were maintained in serum-free DMEM and cell motility assay was performed with a Cell Culture Insert. When F-2 cells were cultured with conditioned medium from Lpar1 and Lpar3-expressing cells, the cell motility of F-2 cells was significantly higher than control cells. Interestingly, the motile activity of F-2 cells was strongly induced by mutated LPA{sub 1} than other cells, correlating with the expression levels of vascular endothelial growth factor (Vegf)-A and Vegf-C. Pretreatment of LPA signaling inhibitors inhibited F-2 cell motility stimulated by mutated LPA{sub 1}. These results suggest that activation of LPA signaling via mutated LPA{sub 1} may play an important role in the promotion of angiogenesis in rat neuroblastoma cells.

  5. Long-range enhancer activity determines Myc sensitivity to Notch inhibitors in T cell leukemia

    PubMed Central

    Yashiro-Ohtani, Yumi; Wang, Hongfang; Zang, Chongzhi; Arnett, Kelly L.; Bailis, Will; Ho, Yugong; Knoechel, Birgit; Lanauze, Claudia; Louis, Lumena; Forsyth, Katherine S.; Chen, Sujun; Chung, Yoonjie; Schug, Jonathan; Blobel, Gerd A.; Liebhaber, Stephen A.; Bernstein, Bradley E.; Blacklow, Stephen C.; Liu, Xiaole Shirley; Aster, Jon C.; Pear, Warren S.

    2014-01-01

    Notch is needed for T-cell development and is a common oncogenic driver in T-cell acute lymphoblastic leukemia. The protooncogene c-Myc (Myc) is a critical target of Notch in normal and malignant pre-T cells, but how Notch regulates Myc is unknown. Here, we identify a distal enhancer located >1 Mb 3′ of human and murine Myc that binds Notch transcription complexes and physically interacts with the Myc proximal promoter. The Notch1 binding element in this region activates reporter genes in a Notch-dependent, cell-context–specific fashion that requires a conserved Notch complex binding site. Acute changes in Notch activation produce rapid changes in H3K27 acetylation across the entire enhancer (a region spanning >600 kb) that correlate with Myc expression. This broad Notch-influenced region comprises an enhancer region containing multiple domains, recognizable as discrete H3K27 acetylation peaks. Leukemia cells selected for resistance to Notch inhibitors express Myc despite epigenetic silencing of enhancer domains near the Notch transcription complex binding sites. Notch-independent expression of Myc in resistant cells is highly sensitive to inhibitors of bromodomain containing 4 (Brd4), a change in drug sensitivity that is accompanied by preferential association of the Myc promoter with more 3′ enhancer domains that are strongly dependent on Brd4 for function. These findings indicate that altered long-range enhancer activity can mediate resistance to targeted therapies and provide a mechanistic rationale for combined targeting of Notch and Brd4 in leukemia. PMID:25369933

  6. SIRT2 activates G6PD to enhance NADPH production and promote leukaemia cell proliferation.

    PubMed

    Xu, Shuang-Nian; Wang, Tian-Shi; Li, Xi; Wang, Yi-Ping

    2016-01-01

    Like most other types of cancer cells, leukaemia cells undergo metabolic reprogramming to support rapid proliferation through enhancing biosynthetic processes. Pentose phosphate pathway (PPP) plays a pivotal role in meeting the anabolic demands for cancer cells. However, the molecular mechanism by which PPP contributes to leukaemia remains elusive. Here, we report that leukaemia cell proliferation is dependent on the oxidative branch of PPP, in particular the first and rate-limiting enzyme glucose-6-phosphate dehydrogenase (G6PD). Knockdown of G6PD reduces NADPH level in acute myeloid leukaemia (AML) cell lines. Exogenous lipid supplements partially restore the proliferation of G6PD-depleted cells. Deacetylase SIRT2 promotes NADPH production through deacetylating G6PD at lysine 403 (K403). Activation of G6PD by SIRT2 supports the proliferation and clonogenic activity of leukaemia cells. Chemical inhibitors against SIRT2 suppress G6PD activity, leading to reduced cell proliferation of leukaemia cells, but not normal hematopoietic stem and progenitor cells. Importantly, SIRT2 is overexpressed in clinical AML samples, while K403 acetylation is downregulated and G6PD catalytic activity is increased comparing to that of normal control. Together, our study reveals that acetylation regulation of G6PD is involved in the metabolic reprogramming of AML, and SIRT2 serves as a promising target for further therapeutic investigations. PMID:27586085

  7. SIRT2 activates G6PD to enhance NADPH production and promote leukaemia cell proliferation

    PubMed Central

    Xu, Shuang-Nian; Wang, Tian-Shi; Li, Xi; Wang, Yi-Ping

    2016-01-01

    Like most other types of cancer cells, leukaemia cells undergo metabolic reprogramming to support rapid proliferation through enhancing biosynthetic processes. Pentose phosphate pathway (PPP) plays a pivotal role in meeting the anabolic demands for cancer cells. However, the molecular mechanism by which PPP contributes to leukaemia remains elusive. Here, we report that leukaemia cell proliferation is dependent on the oxidative branch of PPP, in particular the first and rate-limiting enzyme glucose-6-phosphate dehydrogenase (G6PD). Knockdown of G6PD reduces NADPH level in acute myeloid leukaemia (AML) cell lines. Exogenous lipid supplements partially restore the proliferation of G6PD-depleted cells. Deacetylase SIRT2 promotes NADPH production through deacetylating G6PD at lysine 403 (K403). Activation of G6PD by SIRT2 supports the proliferation and clonogenic activity of leukaemia cells. Chemical inhibitors against SIRT2 suppress G6PD activity, leading to reduced cell proliferation of leukaemia cells, but not normal hematopoietic stem and progenitor cells. Importantly, SIRT2 is overexpressed in clinical AML samples, while K403 acetylation is downregulated and G6PD catalytic activity is increased comparing to that of normal control. Together, our study reveals that acetylation regulation of G6PD is involved in the metabolic reprogramming of AML, and SIRT2 serves as a promising target for further therapeutic investigations. PMID:27586085

  8. Cytoplasmic myosin exposed apoptotic cells appear with caspase-3 activation and enhance CLL cell viability

    PubMed Central

    Cui, Xiaoxuan; Zhang, Lu; Magli, Amanda R.; Catera, Rosa; Yan, Xiao-Jie; Griffin, Daniel O.; Rothstein, Thomas L.; Barrientos, Jacqueline; Kolitz, Jonathan E.; Allen, Steven L.; Rai, Kanti R.; Chiorazzi, Nicholas; Chu, Charles C.

    2015-01-01

    The degree of chronic lymphocytic leukemia (CLL) B-cell antigen receptor (BCR) binding to myosin exposed apoptotic cells (MEACs) correlates with worse patient outcomes, suggesting a link to disease activity. Therefore, we studied MEAC formation and the effects of MEAC binding on CLL cells. In cell line studies, both intrinsic (spontaneous or camptothecin-induced) and extrinsic (FasL- or anti-Fas-induced) apoptosis created a high percent of MEACs over time in a process associated with caspase-3 activation, leading to cytoplasmic myosin cleavage and trafficking to cell membranes. The involvement of common apoptosis pathways suggests that most cells can produce MEACs and indeed CLL cells themselves form MEACs. Consistent with the idea that MEAC formation may be a signal to remove dying cells, we found that natural IgM antibodies bind to MEACs. Functionally, co-culture of MEACs with CLL cells, regardless of immunoglobulin heavy chain variable region gene mutation status, improved leukemic cell viability. Based on inhibitor studies, this improved viability involved BCR signaling molecules. These results support the hypothesis that stimulation of CLL cells with antigen, such as those on MEACs, promotes CLL cell viability, which in turn could lead to progression to worse disease. PMID:26220042

  9. Niclosamide enhances ROS-mediated cell death through c-Jun activation.

    PubMed

    Lee, Sae-lo-oom; Son, A-Rang; Ahn, Jiyeon; Song, Jie-Young

    2014-06-01

    Radiotherapy is an effective treatment modality in the clinical treatment of cancers, and has been combined with chemotherapy in order to improve therapeutic efficacy. Therefore, we aimed to develop small molecules that enhance the cytotoxic effects of radiotherapy. In this study, we provide evidence that niclosamide is an effective radiosensitizer in non-small cell lung cancer cells. Using a cell-based high-throughput viability screen of 1040 compounds in combination with γ-ionizing radiation (IR), we found niclosamide, an FDA-approved antihelminthic agent, had a radiosensitizing effect on H1299 human lung cancer cells. Pretreatment with niclosamide enhanced IR- induced cell death of H1299 in a dose-dependent manner via apoptosis compared with IR or niclosamide alone. The combined treatment induced significantly more phosphorylation of p38 MAPK and c-Jun in H1299 cells than IR or niclosamide alone. Since IR induces apoptosis through generation of reactive oxygen species (ROS), hydrogen peroxide (H2O2) was employed as another ROS generator and we found that niclosamide also sensitized cells to H2O2. Niclosamide pretreatment also induced c-Jun and its phosphorylation in the presence of H2O2, thereby enhancing apoptosis. N-acetyl-L-cysteine (NAC) treatment abolished both cell death and c-Jun activation induced by the combination treatments. Knockdown of c-Jun also decreased PARP cleavage and clonogenic cell survival in niclosamide- and IR-treated H1299 cells. Our findings suggest that niclosamide could be a promising radiosensitizer in lung cancer patients through activation of the p38 MAPK-c-Jun axis. PMID:24750999

  10. ASPP1 and ASPP2 bind active RAS, potentiate RAS signalling and enhance p53 activity in cancer cells

    PubMed Central

    Wang, Y; Godin-Heymann, N; Dan Wang, X; Bergamaschi, D; Llanos, S; Lu, X

    2013-01-01

    RAS mutations occur frequently in human cancer and activated RAS signalling contributes to tumour development and progression. Apart from its oncogenic effects on cell growth, active RAS has tumour-suppressive functions via its ability to induce cellular senescence and apoptosis. RAS is known to induce p53-dependent cell cycle arrest, yet its effect on p53-dependent apoptosis remains unclear. We report here that apoptosis-stimulating protein of p53 (ASPP) 1 and 2, two activators of p53, preferentially bind active RAS via their N-terminal RAS-association domains (RAD). Additionally, ASPP2 colocalises with and contributes to RAS cellular membrane localisation and potentiates RAS signalling. In cancer cells, ASPP1 and ASPP2 cooperate with oncogenic RAS to enhance the transcription and apoptotic function of p53. Thus, loss of ASPP1 and ASPP2 in human cancer cells may contribute to the full transforming property of RAS oncogene. PMID:23392125

  11. Enhancement of cell biomass and cell activity of astaxanthin-rich Haematococcus pluvialis.

    PubMed

    Sun, Han; Kong, Qing; Geng, Zhaoyan; Duan, Liangfei; Yang, Min; Guan, Bin

    2015-06-01

    Fed-batch culture and the transformation conditions of Haematococcus pluvialis in a 5L photobioreactor were investigated. Methods of feeding model, low temperature at night and proper feeding time were used to increase both cell biomass and cell activity. Dry cell weight of 1.87 g/L which was 2.0-fold of batch culture and the specific growth rate of 0.43 d(-1) suggested the superduper results of these methods to increase the dry cell weight in the short cultivation time. Furthermore, mixed lights of blue and white (ratio of 3:1) at 7000 xl were used to expedite the morphologic changes of H. pluvialis from green cells to red cyst cells with the yield of 91.8±2.53 mg/L. PMID:25802050

  12. Identification of Small Activating RNAs that Enhance Endogenous OCT4 Expression in Human Mesenchymal Stem Cells

    PubMed Central

    Wang, Ji; Huang, Vera; Ye, Lin; Bárcena, Alicia; Lin, Guiting; Lue, Tom F.

    2015-01-01

    Ectopic overexpression of transcription factors has been used to reprogram cell fate. For example, virus-mediated overexpression of four transcription factors OCT4, SOX2, MYC, and KLF4, known as Yamanaka factors, can convert somatic cells to induced pluripotent stem (iPS) cells. However, gene-specific switch-on of endogenous gene production without the use of foreign DNA remains a challenge. The small RNA machinery that comprised small RNAs and Argonaute proteins is known to silence gene expression, but can be repurposed to activate gene expression when directed to gene promoters, a phenomenon known as RNA activation or RNAa. By screening of dsRNAs targeting OCT4 promoter, we identified a small activating RNA (saRNA) that activated OCT4 expression in several types of human mesenchymal stem cells (MSCs). We found that saRNA-induced OCT4 activation can be further enhanced by a histone deacetylase inhibitor, valproic acid. Furthermore, introducing OCT4 saRNA in combination with viruses encoding the remaining three Yamanaka factors (SOX2, MYC, and KLF4) into MSCs led to the derivation of partially reprogrammed iPS cells. Findings from this study suggest that, with further optimization, RNAa can be a powerful tool to reprogram cell fate by inducing the expression of endogenous genes. PMID:25232932

  13. Suberoylanilide hydroxamic acid synergistically enhances the antitumor activity of etoposide in Ewing sarcoma cell lines.

    PubMed

    Unland, Rebekka; Clemens, Dagmar; Heinicke, Ulrike; Potratz, Jenny C; Hotfilder, Marc; Fulda, Simone; Wardelmann, Eva; Frühwald, Michael C; Dirksen, Uta

    2015-09-01

    Ewing sarcomas (ES) are highly malignant tumors arising in bone and soft tissues. Given the poor outcome of affected patients with primary disseminated disease or at relapse, there is a clear need for new targeted therapies. The HDAC inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA, Vorinostat) inhibits ES tumor growth and induces apoptosis in vitro and in vivo. Thus, SAHA may be considered a novel treatment. However, it is most likely that not a single agent but a combination of agents with synergistic mechanisms will help improve the prognosis in high-risk ES patients. Therefore, the aim of the present study was to assess a putative synergistic effect of SAHA in combination with conventional chemotherapeutic agents. The antitumor activity of SAHA in combination with conventional chemotherapeutics (doxorubicin, etoposide, rapamycin, topotecan) was assessed using an MTT cell proliferation assay on five well-characterized ES cell lines (CADO-ES-1, RD-ES, TC-71, SK-ES-1, SK-N-MC) and a newly established ES cell line (DC-ES-15). SAHA antagonistically affected the antiproliferative effect of doxorubicin and topotecan in the majority of the ES cell lines, but synergistically enhanced the antiproliferative activity of etoposide. In functional analyses, pretreatment with SAHA significantly increased the effects of etoposide on apoptosis and clonogenicity. The in-vitro analyses presented in this work show that SAHA synergistically enhances the antitumor activity of etoposide in ES cells. Sequential treatment with etoposide combined with SAHA may represent a new therapeutic approach in ES. PMID:26053276

  14. Activation Domain-Mediated Enhancement of Activator Binding to Chromatin in Mammalian Cells

    NASA Astrophysics Data System (ADS)

    Bunker, Christopher A.; Kingston, Robert E.

    1996-10-01

    DNA binding by transcriptional activators is typically an obligatory step in the activation of gene expression. Activator binding and subsequent steps in transcription are repressed by genomic chromatin. Studies in vitro have suggested that overcoming this repression is an important function of some activation domains. Here we provide quantitative in vivo evidence that the activation domain of GAL4-VP16 can increase the affinity of GAL4 for its binding site on genomic DNA in mammalian cells. Moreover, the VP16 activation domain has a much greater stimulatory effect on expression from a genomic reporter gene than on a transiently transfected reporter gene, where factor binding is more permissive. We found that not all activation domains showed a greater activation potential in a genomic context, suggesting that only some activation domains can function in vivo to alleviate the repressive effects of chromatin. These data demonstrate the importance of activation domains in relieving chromatin-mediated repression in vivo and suggest that one way they function is to increase binding of the activator itself.

  15. PLEKHG3 enhances polarized cell migration by activating actin filaments at the cell front.

    PubMed

    Nguyen, Trang Thi Thu; Park, Wei Sun; Park, Byung Ouk; Kim, Cha Yeon; Oh, Yohan; Kim, Jin Man; Choi, Hana; Kyung, Taeyoon; Kim, Cheol-Hee; Lee, Gabsang; Hahn, Klaus M; Meyer, Tobias; Heo, Won Do

    2016-09-01

    Cells migrate by directing Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division control protein 42 (Cdc42) activities and by polymerizing actin toward the leading edge of the cell. Previous studies have proposed that this polarization process requires a local positive feedback in the leading edge involving Rac small GTPase and actin polymerization with PI3K likely playing a coordinating role. Here, we show that the pleckstrin homology and RhoGEF domain containing G3 (PLEKHG3) is a PI3K-regulated Rho guanine nucleotide exchange factor (RhoGEF) for Rac1 and Cdc42 that selectively binds to newly polymerized actin at the leading edge of migrating fibroblasts. Optogenetic inactivation of PLEKHG3 showed that PLEKHG3 is indispensable both for inducing and for maintaining cell polarity. By selectively binding to newly polymerized actin, PLEKHG3 promotes local Rac1/Cdc42 activation to induce more local actin polymerization, which in turn promotes the recruitment of more PLEKHG3 to induce and maintain cell front. Thus, autocatalytic reinforcement of PLEKHG3 localization to the leading edge of the cell provides a molecular basis for the proposed positive feedback loop that is required for cell polarization and directed migration. PMID:27555588

  16. B Cell Super-Enhancers and Regulatory Clusters Recruit AID Tumorigenic Activity

    PubMed Central

    Qian, Jason; Wang, Qiao; Dose, Marei; Pruett, Nathanael; Kieffer-Kwon, Kyong-Rim; Resch, Wolfgang; Liang, Genqing; Tang, Zhonghui; Mathé, Ewy; Benner, Christopher; Dubois, Wendy; Nelson, Steevenson; Vian, Laura; Oliveira, Thiago Y.; Jankovic, Mila; Hakim, Ofir; Gazumyan, Anna; Pavri, Rushad; Awasthi, Parirokh; Song, Bin; Liu, Geng; Chen, Longyun; Zhu, Shida; Feigenbaum, Lionel; Staudt, Louis; Murre, Cornelis; Ruan, Yijun; Robbiani, Davide F.; Pan-Hammarström, Qiang; Nussenzweig, Michel C.; Casellas, Rafael

    2014-01-01

    SUMMARY The antibody gene mutator activation-induced cytidine deaminase (AID) promiscuously damages oncogenes, leading to chromosomal translocations and tumorigenesis. Why nonimmunoglobulin loci are susceptible to AID activity is unknown. Here, we study AID-mediated lesions in the context of nuclear architecture and the B cell regulome. We show that AID targets are not randomly distributed across the genome but are predominantly grouped within super-enhancers and regulatory clusters. Unexpectedly, in these domains, AID deaminates active promoters and eRNA+ enhancers interconnected in some instances over megabases of linear chromatin. Using genome editing, we demonstrate that 3D-linked targets cooperate to recruit AID-mediated breaks. Furthermore, a comparison of hypermutation in mouse B cells, AID-induced kataegis in human lymphomas, and translocations in MEFs reveals that AID damages different genes in different cell types. Yet, in all cases, the targets are predominantly associated with topological complex, highly transcribed super-enhancers, demonstrating that these compartments are key mediators of AID recruitment. PMID:25483777

  17. Enhanced IMP3 Expression Activates NF-кB Pathway and Promotes Renal Cell Carcinoma Progression

    PubMed Central

    Pei, Xuelian; Li, Muhan; Zhan, Jun; Yu, Yu; Wei, Xiaofan; Guan, Lizhao; Aydin, Hakan; Elson, Paul; Zhou, Ming; He, Huiying; Zhang, Hongquan

    2015-01-01

    Background Insulin-like growth factor 2 mRNA binding protein 3 (IMP3) is expressed in metastatic and a subset of primary renal cell carcinoma (RCC). However, the role of IMP3 in RCC progression was poorly understood. We aim to uncover the mechanism of IMP3 in regulating clear cell RCC (CCRCC) progression and validate the prognostic significance of IMP3 in localized CCRCC. Methods Caki-1 cells stably overexpressing IMP3 and Achn cells with knockdown of IMP3 were analyzed for cell migration and invasion by Transwell assay. RNA-seq was used to profile gene expression in IMP3-expressing Caki-1 cells. A cohort of 469 localized CCRCC patients were examined for IMP3 expression by immunohistochemistry using tumor tissue array. Results IMP3 promoted Caki-1 cell migration and invasion, whereas knockdown of IMP3 by RNAi inhibited Achn cell migration and invasion. Enhanced IMP3 expression activated NF-кB pathway and through which, it functioned in promoting the RCC cell migration. IMP3 expression in localized CCRCC was found to be associated with higher nuclear grade, higher T stage, necrosis and sarcomatoid differentiation (p< 0.001). Enhanced IMP3 expression was correlated with shorter recurrence-free and overall survivals. Multivariable analysis validated IMP3 as an independent prognostic factor for localized CCRCC patients. Conclusion IMP3 promotes RCC cell migration and invasion by activation of NF-кB pathway. IMP3 is validated to be an independent prognostic marker for localized CCRCC. PMID:25919292

  18. Zinc deficiency enhanced inflammatory response by increasing immune cell activation and inducing IL6 promoter demethylation

    PubMed Central

    Wong, Carmen P.; Rinaldi, Nicole A.; Ho, Emily

    2015-01-01

    Scope Zinc deficiency results in immune dysfunction and promotes systemic inflammation. The objective of this study was to examine the effects of zinc deficiency on cellular immune activation and epigenetic mechanisms that promote inflammation. This work is potentially relevant to the aging population given that age-related immune defects, including chronic inflammation, coincide with declining zinc status. Methods and results An in vitro cell culture system and the aged mouse model were used to characterize immune activation and DNA methylation profiles that may contribute to the enhanced proinflammatory response mediated by zinc deficiency. Zinc deficiency up-regulated cell activation markers ICAM1, MHC class II, and CD86 in THP1 cells, that coincided with increased IL1β and IL6 responses following LPS stimulation. A decreased zinc status in aged mice was similarly associated with increased ICAM1 and IL6 gene expression. Reduced IL6 promoter methylation was observed in zinc deficient THP1 cells, as well as in aged mice and human lymphoblastoid cell lines derived from aged individuals. Conclusion Zinc deficiency induced inflammatory response in part by eliciting aberrant immune cell activation and altered promoter methylation. Our results suggested potential interactions between zinc status, epigenetics, and immune function, and how their dysregulation could contribute to chronic inflammation. PMID:25656040

  19. Potential chemoprevention activity of pterostilbene by enhancing the detoxifying enzymes in the HT-29 cell line.

    PubMed

    Harun, Zaliha; Ghazali, Ahmad Rohi

    2012-01-01

    Detoxifying enzymes are present in most epithelial cells of the human gastrointestinal tract where they protect against xenobiotics which may cause cancer. Induction of examples such as glutathione S-transferase (GST) and its thiol conjugate, glutathione (GSH) as well as NAD(P)H: quinoneoxidoreductase (NQO1) facilitate the excretion of carcinogens and thus preventing colon carcinogenesis. Pterostilbene, an analogue of resveratrol, has demonstrated numerous pharmacological activities linked with chemoprevention. This study was conducted to investigate the potential of pterostilbene as a chemopreventive agent using the HT-29 colon cancer cell line to study the modulation of GST and NQO1 activities as well as the GSH level. Initially, our group, established the optimum dose of 24 hours pterostilbene treatment using MTT assays. Then, effects of pterostilbene (0-50 μM) on GST and NQO1 activity and GSH levels were determined using GST, NQO1 and Ellman assays, respectively. MTT assay of pterostilbene (0-100 μM) showed no cytotoxicity toward the HT-29 cell line. Treatment increased GST activity in the cell line significantly (p<0.05) at 12.5 and 25.0 μM. In addition, treatment at 50 μM increased the GSH level significantly (p<0.05). Pterostilbene also enhanced NQO1 activity significantly (p<0.05) at 12.5 μM and 50 μM. Hence, pterostilbene is a potential chemopreventive agent capable of modulation of detoxifiying enzyme levels in HT-29 cells. PMID:23464466

  20. TNF-a stimulation enhances ROS-dependent cell migration via NF-?B activation in liver cells.

    PubMed

    Kastl, Lena; Sauer, Sven; Beissbarth, Tim; Becker, Michael; Krammer, Peter; Gülow, Karsten

    2014-10-01

    Development of hepatocellular carcinoma (HCC) is accompanied by a continuous increase in generation of reactive oxygen species (ROS). TNF-a was used in murine hepatocytes as stimulus to identify the primary source of ROS generation. Using specific inhibitors targeting the different complexes of the respiratory chain we detected the mitochondria as main producer of ROS. TNF-a altered mitochondrial integrity by mimicking a mild uncoupling effect in liver cells. siRNA mediated downregulation of essential assembly factors for complex I and complex III led to an inhibition of ROS production. Therefore, ROS is generated by the mitochondrial respiratory chain upon TNF-a stimulation. ROS activated NF-?B and subsequently enhanced migration of liver cells. Thus, we identified complex I and complex III of the respiratory chain as point of ROS release after TNF-a treatment in hepatocytes which enhances cell migration by activating NF-?B signaling. PMID:26461342

  1. Enhanced photocurrent density in graphene/Si based solar cell (GSSC) by optimizing active layer thickness

    SciTech Connect

    Rosikhin, Ahmad Hidayat, Aulia Fikri; Syuhada, Ibnu; Winata, Toto

    2015-12-29

    Thickness dependent photocurrent density in active layer of graphene/Si based solar cell has been investigated via analytical – simulation study. This report is a preliminary comparison of experimental and analytical investigation of graphene/Si based solar cell. Graphene sheet was interfaced with Si thin film forming heterojunction solar cell that was treated as a device model for photocurrent generator. Such current can be enhanced by optimizing active layer thickness and involving metal oxide as supporting layer to shift photons absorption. In this case there are two type of devices model with and without TiO{sub 2} in which the silicon thickness varied at 20 – 100 nm. All of them have examined and also compared with each other to obtain an optimum value. From this calculation it found that generated currents almost linear with thickness but there are saturated conditions that no more enhancements will be achieved. Furthermore TiO{sub 2} layer is effectively increases photon absorption but reducing device stability, maximum current is fluctuates enough. This may caused by the disturbance of excitons diffusion and resistivity inside each layer. Finally by controlling active layer thickness, it is quite useful to estimate optimization in order to develop the next solar cell devices.

  2. Enhanced oxygen reduction activity and solid oxide fuel cell performance with a nanoparticles-loaded cathode.

    PubMed

    Zhang, Xiaomin; Liu, Li; Zhao, Zhe; Tu, Baofeng; Ou, Dingrong; Cui, Daan; Wei, Xuming; Chen, Xiaobo; Cheng, Mojie

    2015-03-11

    Reluctant oxygen-reduction-reaction (ORR) activity has been a long-standing challenge limiting cell performance for solid oxide fuel cells (SOFCs) in both centralized and distributed power applications. We report here that this challenge has been tackled with coloading of (La,Sr)MnO3 (LSM) and Y2O3 stabilized zirconia (YSZ) nanoparticles within a porous YSZ framework. This design dramatically improves ORR activity, enhances fuel cell output (200-300% power improvement), and enables superior stability (no observed degradation within 500 h of operation) from 600 to 800 °C. The improved performance is attributed to the intimate contacts between nanoparticulate YSZ and LSM particles in the three-phase boundaries in the cathode. PMID:25686380

  3. Enhancing cellular uptake of activable cell-penetrating peptide-doxorubicin conjugate by enzymatic cleavage.

    PubMed

    Shi, Nian-Qiu; Gao, Wei; Xiang, Bai; Qi, Xian-Rong

    2012-01-01

    The use of activable cell-penetrating peptides (ACPPs) as molecular imaging probes is a promising new approach for the visualization of enzymes. The cell-penetrating function of a polycationic cell-penetrating peptide (CPP) is efficiently blocked by intramolecular electrostatic interactions with a polyanionic peptide. Proteolysis of a proteinase-sensitive substrate present between the CPP and polyanionic peptide affords dissociation of both domains and enables the activated CPP to enter cells. This ACPP strategy could also be used to modify antitumor agents for tumor-targeting therapy. Here, we aimed to develop a conjugate of ACPP with antitumor drug doxorubicin (DOX) sensitive to matrix metalloproteinase-2 and -9 (MMP-2/9) for tumor-targeting therapy purposes. The ACPP-DOX conjugate was successfully synthesized. Enzymatic cleavage of ACPP-DOX conjugate by matrix metalloproteinase (MMP)-2/9 indicated that the activation of ACPP-DOX occurred in an enzyme concentration-dependent manner. Flow cytometry and laser confocal microscope studies revealed that the cellular uptake of ACPP-DOX was enhanced after enzymatic-triggered activation and was higher in HT-1080 cells (overexpressed MMPs) than in MCF-7 cells (under-expressed MMPs). The antiproliferative assay showed that ACPP had little toxicity and that ACPP-DOX effectively inhibited HT-1080 cell proliferation. These experiments revealed that the ACPP-DOX conjugate could be triggered by MMP-2/9, which enabled the activated CPP-DOX to enter cells. ACPP-DOX conjugate may be a potential prodrug delivery system used to carry antitumor drugs for MMP-related tumor therapy. PMID:22619516

  4. Vaccine activation of the nutrient sensor GCN2 in dendritic cells enhances antigen presentation.

    PubMed

    Ravindran, Rajesh; Khan, Nooruddin; Nakaya, Helder I; Li, Shuzhao; Loebbermann, Jens; Maddur, Mohan S; Park, Youngja; Jones, Dean P; Chappert, Pascal; Davoust, Jean; Weiss, David S; Virgin, Herbert W; Ron, David; Pulendran, Bali

    2014-01-17

    The yellow fever vaccine YF-17D is one of the most successful vaccines ever developed in humans. Despite its efficacy and widespread use in more than 600 million people, the mechanisms by which it stimulates protective immunity remain poorly understood. Recent studies using systems biology approaches in humans have revealed that YF-17D-induced early expression of general control nonderepressible 2 kinase (GCN2) in the blood strongly correlates with the magnitude of the later CD8(+) T cell response. We demonstrate a key role for virus-induced GCN2 activation in programming dendritic cells to initiate autophagy and enhanced antigen presentation to both CD4(+) and CD8(+) T cells. These results reveal an unappreciated link between virus-induced integrated stress response in dendritic cells and the adaptive immune response. PMID:24310610

  5. Troglitazone enhances tamoxifen-induced growth inhibitory activity of MCF-7 cells

    SciTech Connect

    Yu, Hong-Nu; Noh, Eun-Mi; Lee, Young-Rae; Roh, Si-Gyun; Song, Eun-Kyung; Han, Myung-Kwan; Lee, Yong-Chul; Shim, In Kyong; Lee, Seung Jin; Jung, Sung Hoo; Kim, Jong-Suk Youn, Hyun Jo

    2008-12-05

    Peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) ligands have been identified as a potential source of therapy for human cancers. However, PPAR{gamma} ligands have a limitation for breast cancer therapy, since estrogen receptor {alpha} (ER{sub {alpha}}) negatively interferes with PPAR{gamma} signaling in breast cancer cells. Here we show that ER{sub {alpha}} inhihits PPAR{gamma} transactivity and ER{sub {alpha}}-mediated inhibition of PPAR{gamma} transactivity is blocked by tamoxifen, an estrogen receptor blocker. The activation of ER{sub {alpha}} with 17-{beta}-estradiol blocked PPRE transactivity induced by troglitazone, a PPAR{gamma} ligand, indicating the resistance of ER{sub {alpha}}-positive breast cancer cells to troglitazone. Indeed, troglitazone inhibited the growth of ER{sub {alpha}}-negative MDA-MB-231 cells more than that of ER{sub {alpha}}-positive MCF-7 cells. Combination of troglitazone with tamoxifen led to a marked increase in growth inhibition of ER{sub {alpha}}-positive MCF-7 cells compared to either agent alone. Our data indicates that troglitazone enhances the growth inhibitory activity of tamoxifen in ER{sub {alpha}}-positive MCF-7 cells.

  6. Stem cell-based gene therapy activated using magnetic hyperthermia to enhance the treatment of cancer.

    PubMed

    Yin, Perry T; Shah, Shreyas; Pasquale, Nicholas J; Garbuzenko, Olga B; Minko, Tamara; Lee, Ki-Bum

    2016-03-01

    Stem cell-based gene therapies, wherein stem cells are genetically engineered to express therapeutic molecules, have shown tremendous potential for cancer applications owing to their innate ability to home to tumors. However, traditional stem cell-based gene therapies are hampered by our current inability to control when the therapeutic genes are actually turned on, thereby resulting in detrimental side effects. Here, we report the novel application of magnetic core-shell nanoparticles for the dual purpose of delivering and activating a heat-inducible gene vector that encodes TNF-related apoptosis-inducing ligand (TRAIL) in adipose-derived mesenchymal stem cells (AD-MSCs). By combining the tumor tropism of the AD-MSCs with the spatiotemporal MCNP-based delivery and activation of TRAIL expression, this platform provides an attractive means with which to enhance our control over the activation of stem cell-based gene therapies. In particular, we found that these engineered AD-MSCs retained their innate ability to proliferate, differentiate, and, most importantly, home to tumors, making them ideal cellular carriers. Moreover, exposure of the engineered AD-MSCS to mild magnetic hyperthermia resulted in the selective expression of TRAIL from the engineered AD-MSCs and, as a result, induced significant ovarian cancer cell death in vitro and in vivo. PMID:26720500

  7. Enhanced cell growth by nanoengineering zirconia to stimulate electrostatic fibronectin activation

    NASA Astrophysics Data System (ADS)

    Rubinstein, A. I.; Sabirianov, R. F.; Namavar, F.

    2014-02-01

    We address the enhanced bone growth on designed nanocrystalline zirconia implants as reported by in vivo experiments. In vitro experiments demonstrate that the activation of adhesive proteins on nanoengineered zirconia stimulates cell adhesion and growth as shown by confocal microscopy. Fibrillar fibronectin (FN) forms a matrix assembly on the nanostructured surface in the cell adhesion process. We discuss the importance of FN dimer activation due to its immobilization on the designed nanocrystalline ZrO2 implant fabricated by ion beam assisted deposition. The Monte-Carlo analysis indicates that FN activation on the surface can be promoted by selective electrostatic interactions between negatively charged ZrO2 surface patches and oppositely charged FN domains.

  8. Enhancement of phagocytotic activity by prion protein in PrP-deficient macrophage cells.

    PubMed

    Uraki, Ryuta; Sakudo, Akikazu; Ando, Saeko; Kitani, Hiroshi; Onodera, Takashi

    2010-10-01

    Macrophages, especially follicular dendritic cells, contribute to the pathogenesis of prion diseases by accumulating an abnormal isoform of prion protein (PrPSc), which is converted from the cellular isoform of prion protein (PrPC). As information on the function of PrPC in macrophages is limited, we have established a prion protein (PrP) gene (Prnp)-deficient macrophage cell line from the bone marrow of ZrchI Prnp-/- mice. These cells expressed macrophage specific proteins (F4/80 and MOMA-2) and displayed phagocytotic properties. The Prnp-/- macrophage cell line (MplZ) showed shorter pseudopodium extension and less phagocytotic activity than a Prnp+/+ macrophage cell line (MWF). In addition, the MplZ cells were more sensitive to serum deprivation than the MWF cells and underwent apoptotic cell death in these conditions. These findings suggest that PrPC enhances the incorporation of materials possibly including PrPSc and decreases the sensitivity of cells to oxidative stress, which may be induced by PrPSc accumulation. PMID:20818492

  9. Enhancing dendritic cell activation and HIV vaccine effectiveness through nanoparticle vaccination.

    PubMed

    Glass, Joshua J; Kent, Stephen J; De Rose, Robert

    2016-06-01

    Novel vaccination approaches are needed to prevent and control human immunodeficiency virus (HIV) infection. A growing body of literature demonstrates the potential of nanotechnology to modulate the human immune system and generate targeted, controlled immune responses. In this Review, we summarize important advances in how 'nanovaccinology' can be used to develop safe and effective vaccines for HIV. We highlight the central role of dendritic cells in the immune response to vaccination and describe how nanotechnology can be used to enhance delivery to and activation of these important antigen-presenting cells. Strategies employed to improve biodistribution are discussed, including improved lymph node delivery and mucosal penetration concepts, before detailing methods to enhance the humoral and/or cellular immune response to vaccines. We conclude with a commentary on the current state of nanovaccinology. PMID:26783186

  10. Proteolytic activation of latent TGF-beta precedes caspase-3 activation and enhances apoptotic death of lung epithelial cells.

    PubMed

    Solovyan, Victor T; Keski-Oja, Jorma

    2006-05-01

    Transforming growth factors beta (TGF-betas) are multifunctional cytokines, which are secreted in latent forms in large latent TGF-beta complexes (LL-TGF-beta) with subsequent deposition to the extracellular matrix (ECM). While a variety of mechanisms capable of activating latent TGF-beta in vitro have been described, the physiological conditions, which promote the activation of TGF-beta in vivo are poorly understood. Mink lung epithelial cells (Mv1Lu) are a widely used model for evaluation of the effects of exogenous TGF-beta both in transcriptional and growth inhibitor assays. We find here that apoptosis of Mv1Lu cells, induced either by staurosporine or serum deprivation, is accompanied by proteolytic processing of LL-TGF-beta and the activation of endogenous TGF-beta. Activation of TGF-beta preceded caspase-3 activation and was almost completely suppressed by the serine protease inhibitor, AEBSF. Both exogenous and endogenously activated TGF-betas were able to enhance the apoptotic response of Mv1Lu cells leading to potentiation of cell death. Potentiation of cell death by activated TGF-beta was associated with downregulation of Akt and p38 MAPK, which were both activated at the initial stages of Mv1Lu apoptosis and were suppressed by exogenous TGF-beta. Pharmacological interruption of either phosphoinositide-3-kinase (PI-3K)/Akt or p38 MAPK signaling by the specific inhibitors mimicked the effect of TGF-beta leading to potentiation of cell death. Current results suggest that proteolytic activation of endogenous TGF-beta is a component of the apoptotic response, capable of modulating the death of Mv1Lu cells by inhibition of both PI-3K/Akt and p38 MAPK-dependent survival pathways. PMID:16447253

  11. Specific activation of dendritic cells enhances clearance of Bacillus anthracis following infection.

    PubMed

    Thompson, Iain J T; Mann, Elizabeth R; Stokes, Margaret G; English, Nicholas R; Knight, Stella C; Williamson, Diane

    2014-01-01

    Dendritic cells are potent activators of the immune system and have a key role in linking innate and adaptive immune responses. In the current study we have used ex vivo pulsed bone marrow dendritic cells (BMDC) in a novel adoptive transfer strategy to protect against challenge with Bacillus anthracis, in a murine model. Pre-pulsing murine BMDC with either recombinant Protective Antigen (PA) or CpG significantly upregulated expression of the activation markers CD40, CD80, CD86 and MHC-II. Passive transfusion of mice with pulsed BMDC, concurrently with active immunisation with rPA in alum, significantly enhanced (p<0.001) PA-specific splenocyte responses seven days post-immunisation. Parallel studies using ex vivo DCs expanded from human peripheral blood and activated under the same conditions as the murine DC, demonstrated that human DCs had a PA dose-related significant increase in the markers CD40, CD80 and CCR7 and that the increases in CD40 and CD80 were maintained when the other activating components, CpG and HK B. anthracis were added to the rPA in culture. Mice vaccinated on a single occasion intra-muscularly with rPA and alum and concurrently transfused intra-dermally with pulsed BMDC, demonstrated 100% survival following lethal B. anthracis challenge and had significantly enhanced (p<0.05) bacterial clearance within 2 days, compared with mice vaccinated with rPA and alum alone. PMID:25380285

  12. Mismatch repair enhances convergent transcription-induced cell death at trinucleotide repeats by activating ATR.

    PubMed

    Chatterjee, Nimrat; Lin, Yunfu; Wilson, John H

    2016-06-01

    Trinucleotide repeat (TNR) expansion beyond a certain threshold results in some 20 incurable neurodegenerative disorders where disease anticipation positively correlates with repeat length. Long TNRs typically display a bias toward further expansion during germinal transmission from parents to offspring, and then are highly unstable in somatic tissues of affected individuals. Understanding mechanisms of TNR instability will provide insights into disease pathogenesis. Previously, we showed that enhanced convergent transcription at long CAG repeat tracks induces TNR instability and cell death via ATR activation. Components of TC-NER (transcription-coupled nucleotide excision repair) and RNaseH enzymes that resolve RNA/DNA hybrids oppose cell death, whereas the MSH2 component of MMR (mismatch repair) enhances cell death. The exact role of the MMR pathway during convergent transcription-induced cell death at CAG repeats is not well understood. In this study, we show that siRNA knockdowns of MMR components-MSH2, MSH3, MLHI, PMS2, and PCNA-reduce DNA toxicity. Furthermore, knockdown of MSH2, MLH1, and PMS2 significantly reduces the frequency of ATR foci formation. These observations suggest that MMR proteins activate DNA toxicity by modulating ATR foci formation during convergent transcription. PMID:27131875

  13. Enhancing the performance of BHJ solar cell via self-assembly templates in active layer

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Li, Hongfei; Yang, Zhenhua; Nam, Chang-Yong; Satija, Sushil; Rafailovich, Miriam

    The bulk heterojunction (BHJ) solar cell is an important example of a polymer solar cell technology that has been proposed in recent years. However, due to the disordered inner structures in the active layer, control of the inner structure within the active layer is required to enhance the efficiency. In our approach, a self-assembly of tertiary polymer blend film is confined between the air and solid interfaces. The principal has been proved using a blend of PMMA: P3HT: PCBM where we showed that the PMMA phase formed a column structure in the P3HT, which template the PCBM phase between the electrodes. Neutron reflectometry was used to demonstrate the confinement of PCBM at the interface between P3HT and PMMA in the active layer. The columnar structured template is investigated under atomic force microscopy (AFM) and transmission electron microscopy (TEM). SCLC mobility measurement indicated an obvious improvement on both hole and electron mobility. The different morphological structures formed via phase segregation are correlated with the performance of the PEV cells fabricated at the BNL-CFN and significant enhancement for the efficiency is observed.

  14. Gold Nanoparticles Enhance the Anticancer Activity of Gallic Acid against Cholangiocarcinoma Cell Lines.

    PubMed

    Rattanata, Narintorn; Daduang, Sakda; Wongwattanakul, Molin; Leelayuwat, Chanvit; Limpaiboon, Temduang; Lekphrom, Ratsami; Sandee, Alisa; Boonsiri, Patcharee; Chio-Srichan, Sirinart; Daduang, Jureerut

    2015-01-01

    Gold nanoparticles (GNPs) were conjugated with gallic acid (GA) at various concentrations between 30 and 150 μM and characterized using transmission electron microscopy (TEM) and UV-Vis spectroscopy (UV-VIS). The anticancer activities of the gallic acid-stabilized gold nanoparticles against well-differentiated (M213) and moderately differentiated (M214) adenocarcinomas were then determined using a neutral red assay. The GA mechanism of action was evaluated using Fourier transform infrared (FTIR) microspectroscopy. Distinctive features of the FTIR spectra between the control and GA-treated cells were confirmed by principal component analysis (PCA). The surface plasmon resonance spectra of the GNPs had a maximum absorption at 520 nm, whereas GNPs-GA shifted the maximum absorption values. In an in vitro study, the complexed GNPs-GA had an increased ability to inhibit the proliferation of cancer cells that was statistically significant (P<0.0001) in both M213 and M214 cells compared to GA alone, indicating that the anticancer activity of GA can be improved by conjugation with GNPs. Moreover, PCA revealed that exposure of the tested cells to GA resulted in significant changes in their cell membrane lipids and fatty acids, which may enhance the efficacy of this anticancer activity regarding apoptosis pathways. PMID:26514503

  15. NANOG alone induces germ cells in primed epiblast in vitro by activation of enhancers.

    PubMed

    Murakami, Kazuhiro; Günesdogan, Ufuk; Zylicz, Jan J; Tang, Walfred W C; Sengupta, Roopsha; Kobayashi, Toshihiro; Kim, Shinseog; Butler, Richard; Dietmann, Sabine; Surani, M Azim

    2016-01-21

    Nanog, a core pluripotency factor in the inner cell mass of blastocysts, is also expressed in unipotent primordial germ cells (PGCs) in mice, where its precise role is yet unclear. We investigated this in an in vitro model, in which naive pluripotent embryonic stem (ES) cells cultured in basic fibroblast growth factor (bFGF) and activin A develop as epiblast-like cells (EpiLCs) and gain competence for a PGC-like fate. Consequently, bone morphogenetic protein 4 (BMP4), or ectopic expression of key germline transcription factors Prdm1, Prdm14 and Tfap2c, directly induce PGC-like cells (PGCLCs) in EpiLCs, but not in ES cells. Here we report an unexpected discovery that Nanog alone can induce PGCLCs in EpiLCs, independently of BMP4. We propose that after the dissolution of the naive ES-cell pluripotency network during establishment of EpiLCs, the epigenome is reset for cell fate determination. Indeed, we found genome-wide changes in NANOG-binding patterns between ES cells and EpiLCs, indicating epigenetic resetting of regulatory elements. Accordingly, we show that NANOG can bind and activate enhancers of Prdm1 and Prdm14 in EpiLCs in vitro; BLIMP1 (encoded by Prdm1) then directly induces Tfap2c. Furthermore, while SOX2 and NANOG promote the pluripotent state in ES cells, they show contrasting roles in EpiLCs, as Sox2 specifically represses PGCLC induction by Nanog. This study demonstrates a broadly applicable mechanistic principle for how cells acquire competence for cell fate determination, resulting in the context-dependent roles of key transcription factors during development. PMID:26751055

  16. Glucose Enhances Basal or Melanocortin-Induced cAMP-Response Element Activity in Hypothalamic Cells.

    PubMed

    Breit, Andreas; Wicht, Kristina; Boekhoff, Ingrid; Glas, Evi; Lauffer, Lisa; Mückter, Harald; Gudermann, Thomas

    2016-07-01

    Melanocyte-stimulating hormone (MSH)-induced activation of the cAMP-response element (CRE) via the CRE-binding protein in hypothalamic cells promotes expression of TRH and thereby restricts food intake and increases energy expenditure. Glucose also induces central anorexigenic effects by acting on hypothalamic neurons, but the underlying mechanisms are not completely understood. It has been proposed that glucose activates the CRE-binding protein-regulated transcriptional coactivator 2 (CRTC-2) in hypothalamic neurons by inhibition of AMP-activated protein kinases (AMPKs), but whether glucose directly affects hypothalamic CRE activity has not yet been shown. Hence, we dissected effects of glucose on basal and MSH-induced CRE activation in terms of kinetics, affinity, and desensitization in murine, hypothalamic mHypoA-2/10-CRE cells that stably express a CRE-dependent reporter gene construct. Physiologically relevant increases in extracellular glucose enhanced basal or MSH-induced CRE-dependent gene transcription, whereas prolonged elevated glucose concentrations reduced the sensitivity of mHypoA-2/10-CRE cells towards glucose. Glucose also induced CRCT-2 translocation into the nucleus and the AMPK activator metformin decreased basal and glucose-induced CRE activity, suggesting a role for AMPK/CRTC-2 in glucose-induced CRE activation. Accordingly, small interfering RNA-induced down-regulation of CRTC-2 expression decreased glucose-induced CRE-dependent reporter activation. Of note, glucose also induced expression of TRH, suggesting that glucose might affect the hypothalamic-pituitary-thyroid axis via the regulation of hypothalamic CRE activity. These findings significantly advance our knowledge about the impact of glucose on hypothalamic signaling and suggest that TRH release might account for the central anorexigenic effects of glucose and could represent a new molecular link between hyperglycaemia and thyroid dysfunction. PMID:27144291

  17. CCL2 enhances pluripotency of human induced pluripotent stem cells by activating hypoxia related genes

    PubMed Central

    Hasegawa, Yuki; Tang, Dave; Takahashi, Naoko; Hayashizaki, Yoshihide; Forrest, Alistair R. R.; the FANTOM consortium; Suzuki, Harukazu

    2014-01-01

    Standard culture of human induced pluripotent stem cells (hiPSCs) requires basic Fibroblast Growth Factor (bFGF) to maintain the pluripotent state, whereas hiPSC more closely resemble epiblast stem cells than true naïve state ES which requires LIF to maintain pluripotency. Here we show that chemokine (C-C motif) ligand 2 (CCL2) enhances the expression of pluripotent marker genes through the phosphorylation of the signal transducer and activator of transcription 3 (STAT3) protein. Moreover, comparison of transcriptomes between hiPSCs cultured with CCL2 versus with bFGF, we found that CCL2 activates hypoxia related genes, suggesting that CCL2 enhanced pluripotency by inducing a hypoxic-like response. Further, we show that hiPSCs cultured with CCL2 can differentiate at a higher efficiency than culturing with just bFGF and we show CCL2 can be used in feeder-free conditions in the absence of LIF. Taken together, our finding indicates the novel functions of CCL2 in enhancing its pluripotency in hiPSCs. PMID:24957798

  18. FBI-1 Enhances ETS-1 Signaling Activity and Promotes Proliferation of Human Colorectal Carcinoma Cells

    PubMed Central

    Chen, Weihao; Yang, Yutao; Cui, Jiajun; Zhang, Dong; Linghu, Enqiang

    2014-01-01

    In this study, we investigated a potential regulatory role of FBI-1 in transcription factor activity of ETS-1. The protein interaction was identified between ETS-1 and FBI-1 in lovo cells. The accumulating data showed that FBI-1 promoted the recruitment of ETS-1 to endogenous promoter of its target genes and increase ETS-1 accumulation in the nuclear. Our work also indicated that the FBI-1 enhances ETS-1 transcription factor activity via down-regulating p53-mediated inhibition on ETS-1. Further, FBI-1 plays a role in regulation of colorectal carcinoma cells proliferation. These findings supported that FBI-1 might be a potential molecule target for treating colorectal carcinoma. PMID:24857950

  19. High glucose enhances progression of cholangiocarcinoma cells via STAT3 activation

    PubMed Central

    Saengboonmee, Charupong; Seubwai, Wunchana; Pairojkul, Chawalit; Wongkham, Sopit

    2016-01-01

    Epidemiological studies have indicated diabetes mellitus (DM) as a risk of cholangiocarcinoma (CCA), however, the effects and mechanisms of high glucose on progression of CCA remain unclear. This study reports for the first time of the enhancing effects of high glucose on aggressive phenotypes of CCA cells via STAT3 activation. CCA cells cultured in high glucose media exerted significantly higher rates of cell proliferation, adhesion, migration and invasion than those cultured in normal glucose. The phosphokinase array revealed STAT3 as the dominant signal activated in response to high glucose. Increased nuclear STAT3, p-STAT3 and its downstream target proteins, cyclin D1, vimentin and MMP2, were shown to be underling mechanisms of high glucose stimulation. The link of high glucose and STAT3 activation was confirmed in tumor tissues from CCA patients with DM that exhibited higher STAT3 activation than those without DM. Moreover, the levels of STAT3 activation were correlated with the levels of blood glucose. Finally, decreasing the level of glucose or using a STAT3 inhibitor could reduce the effects of high glucose. These findings suggest that controlling blood glucose or using a STAT3 inhibitor as an alternative approach may improve the therapeutic outcome of CCA patients with DM. PMID:26743134

  20. Biomimetic Protein Nanoparticles Facilitate Enhanced Dendritic Cell Activation and Cross-Presentation

    PubMed Central

    Molino, Nicholas M.; Anderson, Amanda K. L.; Nelson, Edward L.; Wang, Szu-Wen

    2013-01-01

    Many current cancer vaccine strategies suffer from the inability to mount a CD8 T cell response that is strong enough to overcome the low immunogenicity of tumors. Viruses naturally possess the sizes, geometries, and physical properties for which the immune system has evolved to recognize, and mimicking those properties with nanoparticles can produce robust platforms for vaccine design. Using the non-viral E2 core of pyruvate dehydrogenase, we have engineered a viral-mimicking vaccine platform capable of encapsulating dendritic cell (DC)-activating CpG molecules in an acid-releasable manner and displaying MHC I-restricted SIINFEKL peptide epitopes. Encapsulated CpG activated bone marrow-derived DCs at a 25- fold lower concentration in vitro when delivered with the E2 nanoparticle than with unbound CpG alone. Combining CpG and SIINFEKL within a single multifunctional particle induced ~ 3-fold greater SIINFEKL display on MHC I by DCs over unbound peptide. Importantly, combining CpG and SIINFEKL to the E2 nanoparticle for simultaneous temporal and spatial delivery to DCs showed increased and prolonged CD8 T cell activation, relative to free peptide or peptide-bound E2. By co-delivering peptide epitopes and CpG activator in a particle of optimal DC-uptake size, we demonstrate the ability of a non-infectious protein nanoparticle to mimic viral properties and facilitate enhanced DC activation and cross-presentation. PMID:24090491

  1. Anti-herpes Activity of Vinegar-processed Daphne genkwa Flos Via Enhancement of Natural Killer Cell Activity

    PubMed Central

    Uyangaa, Erdenebileg; Choi, Jin Young; Ryu, Hyung Won; Oh, Sei-Ryang

    2015-01-01

    Herpes simplex virus (HSV) is a common causative agent of genital ulceration and can lead to subsequent neurological disease in some cases. Here, using a genital infection model, we tested the efficacy of vinegar-processed flos of Daphne genkwa (vp-genkwa) to modulate vaginal inflammation caused by HSV-1 infection. Our data revealed that treatment with optimal doses of vp-genkwa after, but not before, HSV-1 infection provided enhanced resistance against HSV-1 infection, as corroborated by reduced mortality and clinical signs. Consistent with these results, treatment with vp-genkwa after HSV-1 infection reduced viral replication in the vaginal tract. Furthermore, somewhat intriguingly, treatment of vp-genkwa after HSV-1 infection increased the frequency and absolute number of CD3-NK1.1+NKp46+ natural killer (NK) cells producing interferon (IFN)-γ and granyzme B, which indicates that vp-genkwa treatment induces the activation of NK cells. Supportively, secreted IFN-γ was detected at an increased level in vaginal lavages of mice treated with vp-genkwa after HSV-1 infection. These results indicate that enhanced resistance to HSV-1 infection by treatment with vp-genkwa is associated with NK cell activation. Therefore, our data provide a valuable insight into the use of vp-genkwa to control clinical severity in HSV infection through NK cell activation. PMID:25922598

  2. Nerve growth factor enhances the CRE-dependent transcriptional activity activated by nobiletin in PC12 cells.

    PubMed

    Takito, Jiro; Kimura, Junko; Kajima, Koji; Uozumi, Nobuyuki; Watanabe, Makoto; Yokosuka, Akihito; Mimaki, Yoshihiro; Nakamura, Masanori; Ohizumi, Yasushi

    2016-07-01

    Prevention and treatment of Alzheimer disease are urgent problems for elderly people in developed countries. We previously reported that nobiletin, a poly-methoxylated flavone from the citrus peel, improved the symptoms in various types of animal models of memory loss and activated the cAMP responsive element (CRE)-dependent transcription in PC12 cells. Nobiletin activated the cAMP/PKA/MEK/Erk/MAPK signaling pathway without using the TrkA signaling activated by nerve growth factor (NGF). Here, we examined the effect of combination of nobiletin and NGF on the CRE-dependent transcription in PC12 cells. Although NGF alone had little effect on the CRE-dependent transcription, NGF markedly enhanced the CRE-dependent transcription induced by nobiletin. The NGF-induced enhancement was neutralized by a TrkA antagonist, K252a. This effect of NGF was effective on the early signaling event elicited by nobiletin. These results suggested that there was crosstalk between NGF and nobiletin signaling in activating the CRE-dependent transcription in PC12 cells. PMID:27128150

  3. Hyperoxia enhanced the production of plasminogen activator by cultured pulmonary artery endothelial cells

    SciTech Connect

    Phillips, P.G.; Ryan, T.J.; Birnby, L.; Tsan, M.F. New York State Health Lab., Albany )

    1990-02-26

    Pulmonary artery endothelial cell (EC) monolayers exposed to hyperoxia show increased permeability to albumin and marked alterations in actin filament distribution. The mechanism for these cytoskeletal changes is unknown. The authors now report that cells exposed to hyperoxia (95% O{sub 2}) produce significant quantities of urokinase-type plasminogen activators (u-PA). Zymographic analysis revealed that plasminogen-dependent caseinolytic activity in conditioned media from O{sub 2}-exposed cells was several fold higher than controls, especially at 48 hr. Cell-associated lytic activity was markedly increased at 48 and 72 hr when oxidative effects on the cytoskeleton were most apparent. Amidolytic assays confirmed these findings. (1) Conditioned media, CTA U/ml (mean {+-} SEM): Control 0.73{+-}0.05 vs 48 hr O{sub 2} 2.09{+-}0.50, (2) Cell-associated activity (preparations enriched for adhesion plaques), CTA mU/10{sup 6} cells: Control 0.17{+-}0.06; O{sub 2}: 24 hr 0.18{+-}0.07; 48 hr 0.46{+-}0.08; 72 hr 0.48{+-}0.08; O{sub 2} 48 hr or 72 hr vs Control. Immunocytochemical analysis demonstrated breakdown and restructuring of fibronectin and collagen components of the extracellular matrix at 48 and 72 hours. They conclude that hyperoxia enhanced both PA production and dismantling of matrix by EC. These changes may in part be responsible for some of the actin filament alterations which occur in conjunction with O{sub 2}-induced permeability increases.

  4. Acidic phospholipids govern the enhanced activation of IgG-B cell receptor

    PubMed Central

    Chen, Xiangjun; Pan, Weiling; Sui, Yinqiang; Li, Hua; Shi, Xiaoshan; Guo, Xingdong; Qi, Hai; Xu, Chenqi; Liu, Wanli

    2015-01-01

    B cells that express the isotype-switched IgG-B cell receptor (IgG-BCR) are one of the driving forces for antibody memory. To allow for a rapid memory IgG antibody response, IgG-BCR evolved into a highly effective signalling machine. Here, we report that the positively charged cytoplasmic domain of mIgG (mIgG-tail) specifically interacts with negatively charged acidic phospholipids. The key immunoglobulin tail tyrosine (ITT) in mIgG-tail is thus sequestered in the membrane hydrophobic core in quiescent B cells. Pre-disruption of such interaction leads to excessive recruitment of BCRs and inflated BCR signalling upon antigen stimulation, resulting in hyperproliferation of primary B cells. Physiologically, membrane-sequestered mIgG-tail can be released by antigen engagement or Ca2+ mobilization in the initiation of B cell activation. Our studies suggest a novel regulatory mechanism for how dynamic association of mIgG-tail with acidic phospholipids governs the enhanced activation of IgG-BCR. PMID:26440273

  5. Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress.

    PubMed

    Lu, Jun; Chen, Jian; Xu, Nianjun; Wu, Jun; Kang, Yani; Shen, Tingting; Kong, Hualei; Ma, Chao; Cheng, Ming; Shao, Zhifeng; Xu, Ling; Zhao, Xiaodong

    2016-09-01

    Application of cisplatin (DDP) for treating lung cancer is restricted due to its toxicity and lung cancer's drug resistance. In this study, we examined the effect of Jinfukang (JFK), an effective herbal medicine against lung cancer, on DDP-induced cytotoxicity in lung cancer cells. Morphologically, we observed that JFK increases DDP-induced pro-apoptosis in A549 cells in a synergistic manner. Transcriptome profiling analysis indicated that the combination of JFK and DDP regulates genes involved in apoptosis-related signaling pathways. Moreover, we found that the combination of JFK and DDP produces synergistic pro-apoptosis effect in other lung cancer cell lines, such as NCI-H1975, NCI-H1650, and NCI-H2228. Particularly, we demonstrated that AIFM2 is activated by the combined treatment of JFK and DDP and partially mediates the synergistic pro-apoptosis effect. Collectively, this study not only offered the first evidence that JFK promotes DDP-induced cytotoxicity, and activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress, but also provided a novel insight for improving cytotoxicity by combining JFK with DDP to treat lung cancer cells. PMID:27392435

  6. Enhancement of melphalan activity by buthionine sulfoximine and electroporation in melanoma cells.

    PubMed

    Ongaro, Alessia; Pellati, Agnese; De Mattei, Monica; De Terlizzi, Francesca; Rossi, Carlo R; Campana, Luca G

    2015-03-01

    Melphalan represents the reference drug for locoregional chemotherapy of melanoma; nevertheless, treatment failure may occur because of resistance to chemotherapy. Refractory melanoma cells show either an increased capability of drug inactivation, which is known to be associated with elevated intracellular levels of glutathione (GSH), or a decreased melphalan uptake. The aim of this study was to explore a biochemical and a biophysical strategy, and their combination, to overcome melphalan resistance in melanoma cells. The biochemical strategy was based on the treatment of melanoma cells with DL-buthionine (S,R)-sulfoximine (BSO) to deplete the GSH levels, thus reducing melphalan inactivation. In the biophysical strategy, cell membrane electroporation was used to increase melphalan uptake. The SK-MEL 28-resistant human melanoma cell line was pretreated with 50 μmol/l BSO for 24 h and then treated with increasing melphalan doses, with or without electroporation. Spectrophotometric quantification of cell viability was used to determine melphalan cytotoxicity. Intracellular total GSH was measured using a kinetic enzymatic assay. BSO induced 3.50-fold GSH depletion in untreated cells and a similar reduction was also maintained in melphalan-treated cells. BSO pretreatment produced a 2.46-fold increase in melphalan cytotoxicity. Electroporation increased melphalan cytotoxicity 1.42-fold. The combination of both BSO pretreatment with melphalan plus electroporation led to a 4.40-fold increase in melphalan cytotoxicity compared with melphalan alone. Pretreatment with BSO and cell membrane permeabilization by electroporation enhanced the cytotoxic activity of melphalan in melanoma cells. Their rational combination deserves further investigation and may improve the efficacy of locoregional chemotherapy of melanoma. PMID:25514113

  7. Berbamine enhances the antineoplastic activity of gemcitabine in pancreatic cancer cells by activating transforming growth factor-β/Smad signaling.

    PubMed

    Jin, Xiaoli; Wu, Yulian

    2014-05-01

    Drug-resistance to gemcitabine chemotherapy in pancreatic cancer is still an unsolved problem. Combinations of other chemotherapy drugs with gemcitabine have been shown to increase the efficacy of gemcitabine-based treatment. In this study, the effect of berbamine on the antitumor activity of gemcitabine was evaluated in human pancreatic cancer cell lines Bxpc-3 and Panc-1, and the underlying mechanisms were explored. Our results demonstrated that berbamine exhibited a time- and dose-dependent inhibitory effect in the pancreatic cancer cell lines. Berbamine enhanced gemcitabine-induced cell growth inhibition and apoptosis in these cells. Combined treatment of berbamine and gemcitabine resulted in down-regulation of anti-apoptotic proteins (Bcl-2, Bcl-xL) and up-regulation of pro-apoptotic proteins (Bax, Bid). More importantly, berbamine treatment in combination with gemcitabine activated the transforming growth factor-β/Smad (TGF-β/Smad) signaling pathway, as a result of a decrease in Smad7 and an increase in transforming growth factor-β receptor II (TβRII) expression. Changes in downstream targets of Smad7, such as up-regulation of p21 and down-regulation of c-Myc and Cyclin D1 were also observed. Therefore, berbamine could enhance the antitumor activity of gemcitabine by inhibiting cell growth and inducing apoptosis, possibly through the regulation of the expression of apoptosis-related proteins and the activation of TGF-β/Smad signaling pathway. Our study indicates that berbamine may be a promising candidate to be used in combination with gemcitabine for pancreatic cancer treatment. PMID:24619961

  8. Enhancement of anti-leukemia activity of NK cells in vitro and in vivo by inhibition of leukemia cell-induced NK cell damage

    PubMed Central

    Arriga, Roberto; Caratelli, Sara; Coppola, Andrea; Spagnoli, Giulio Cesare; Venditti, Adriano; Amadori, Sergio; Lanzilli, Giulia; Lauro, Davide; Palomba, Patrizia; Sconocchia, Tommaso; Del Principe, Maria Ilaria; Maurillo, Luca; Buccisano, Francesco; Capuani, Barbara; Ferrone, Soldano; Sconocchia, Giuseppe

    2016-01-01

    Acute myeloid leukemia (AML) cells induce, in vitro, NK cell abnormalities (NKCAs) including apoptosis and activating receptor down-regulation. The potential negative impact of AML cells on the therapeutic efficacy of NK cell-based strategies prompted us to analyze the mechanisms underlying NKCAs and to develop approaches to protect NK cells from NKCAs. NKCA induction by the AML leukemia cells target a subpopulation of peripheral blood NK cells and is interleukin-2 independent but is abrogated by a long-term culture of NK (LTNK) cells at 37°C. LTNK cells displayed a significantly enhanced ability to damage AML cells in vitro and inhibited the subcutaneous growth of ML-2 cells grafted into CB17 SCID mice. Actinomycin D restored the susceptibility of LTNK cells to NKCAs while TAPI-0, a functional analog of the tissue inhibitor of metalloproteinase (TIMP) 3, inhibits ML-2 cell-induced NKCAs suggesting that the generation of NK cell resistance to NKCAs involves RNA transcription and metalloproteinase (MPP) inactivation. This conclusion is supported by the reduced susceptibility to AML cell-induced NKCAs of LTNK cells in which TIMP3 gene and protein are over-expressed. This information may contribute to the rational design of targeted strategies to enhance the efficacy of NK cell-based-immunotherapy of AML with haploidentical NK cells. PMID:26655503

  9. Affinity and dose of TCR engagement yield proportional enhancer and gene activity in CD4+ T cells

    PubMed Central

    Allison, Karmel A; Sajti, Eniko; Collier, Jana G; Gosselin, David; Troutman, Ty Dale; Stone, Erica L; Hedrick, Stephen M; Glass, Christopher K

    2016-01-01

    Affinity and dose of T cell receptor (TCR) interaction with antigens govern the magnitude of CD4+ T cell responses, but questions remain regarding the quantitative translation of TCR engagement into downstream signals. We find that while the response of mouse CD4+ T cells to antigenic stimulation is bimodal, activated cells exhibit analog responses proportional to signal strength. Gene expression output reflects TCR signal strength, providing a signature of T cell activation. Expression changes rely on a pre-established enhancer landscape and quantitative acetylation at AP-1 binding sites. Finally, we show that graded expression of activation genes depends on ERK pathway activation, suggesting that an ERK-AP-1 axis plays an important role in translating TCR signal strength into proportional activation of enhancers and genes essential for T cell function. DOI: http://dx.doi.org/10.7554/eLife.10134.001 PMID:27376549

  10. Cooperative antiproliferative and differentiation-enhancing activity of medicinal plant extracts in acute myeloid leukemia cells.

    PubMed

    Zhamanbayeva, Gulzhan T; Aralbayeva, Araylim N; Murzakhmetova, Maira K; Tuleukhanov, Sultan T; Danilenko, Michael

    2016-08-01

    Acute myeloid leukemia (AML) is an aggressive hematopoietic malignancy with poor prognosis and limited treatment options. Sea buckthorn (Hippophae rhamnoides) berries, dog rose (Rosa canina) rosehips, and garden sage (Salvia officinalis) and oregano (Origanum vulgare) aerial parts are widely used in traditional medicine and exhibit antitumor effects in preclinical models. However, these plants remain scarcely tested for antileukemic activity. Here, we show that their water-ethanol leaf extracts reduced the growth and viability of AML cells and, at non-cytotoxic doses, potentiated cell differentiation induced by a low concentration of 1α,25-dihydroxyvitamin D3, the hormonal form of vitamin D, in a cell type-dependent manner. The latter effect was accompanied by upregulation of the vitamin D receptor protein components and its transcriptional activity. Furthermore, at minimally effective doses the extracts cooperated with one another to produce marked cytostatic effects associated with a partial S-phase arrest and a modest induction of apoptosis. In contrast, these combinations only slightly affected the growth and viability of proliferating normal human peripheral blood mononuclear cells. In addition, the extracts strongly inhibited microsomal lipid peroxidation and protected normal erythrocytes against hypoosmotic shock. Our results suggest that further exploration of the enhanced antileukemic effects of the combinations tested here may lead to the development of alternative therapeutic and preventive approaches against AML. PMID:27470342

  11. Fermented soshiho-tang with Lactobacillus plantarum enhances the antiproliferative activity in vascular smooth muscle cell

    PubMed Central

    2014-01-01

    Background Soshiho-tang (SST) is a traditional medicine widely used for the treatment of chronic hepatitis. SST has been shown to confer a variety of pharmacological activities, including prevention of hepatotoxicity, promotion of liver regeneration, and modulation of liver fibrosis. In this study, we investigated the antiproliferative activity of native and fermented (FSST) formulations of SST in vascular smooth muscle cells (VSMCs) and examined the potential underlying mechanisms driving these effects. Methods SST, along with preparations fermented with Lactobacillus plantarum KFRI-144 (S-A144), L. amylophilus KFRI-161 (S-A161) and L. bulgaricus KFRI-344 (S-A344), were investigated to determine their effects on the proliferation and viability of VSMCs, along with the signalling pathways underlying these effects. Results S-A144 exhibited a strong, dose-dependent inhibition of VSMC proliferation relative to untreated controls, but the others did not affect. In addition, S-A144 significantly decreased the phosphorylation of Akt and PLCγ1 in a dose-dependent manner and induced cell cycle arrest at the G0/G1 phase characterised by decreased expression of CDKs, cyclins and PCNA. Conclusions The findings suggest that S-A144 exhibit enhanced inhibition of PDGF-BB-induced VSMC proliferation comparison to S-AOR through the suppression of cell cycle progression and expression of cell cycle-related proteins, along with the downregulation of Akt phosphorylation. PMID:24580756

  12. The Elevated Secreted Immunoglobulin D Enhanced the Activation of Peripheral Blood Mononuclear Cells in Rheumatoid Arthritis

    PubMed Central

    Chen, Hengshi; Zhang, Lingling; Chang, Yan; Yan, Shangxue; Dai, Xing; Ma, Yang; Huang, Qiong; Wei, Wei

    2016-01-01

    Immunoglobulin D (IgD) is a surface immunoglobulin that is expressed as either membrane IgD (mIgD) or secreted IgD (sIgD). Researchers have shown that sIgD is often elevated in patients with autoimmune diseases. The possible roles of sIgD on the function of peripheral blood mononuclear cells (PBMCs) in rheumatoid arthritis (RA) are still unclear. In this study, we compared the expression of sIgD, mIgD and IgD receptor (IgDR) in RA patients and healthy controls, and investigated the effect of sIgD on the function of PBMCs. We found that the levels of sIgD, mIgD and IgDR were significantly higher in RA patients compared with healthy controls. The concentrations of sIgD were positively correlated with soluble receptor activator of nuclear factor-κB ligand (sRANKL), rheumatoid factor (RF) and C-reactive protein (CRP) in RA patients. Strikingly, IgD could enhance the proliferation of PBMCs and induce IL-1α, IL-1β, TNF-α, IL-6 and IL-10 production from PBMCs. Moreover, the percentage of activated T cell subsets (CD4+CD69+, CD4+CD154+) and activated B cell subsets (CD19+CD23+, CD19+CD21+, CD19+IgD+ and CD19-CD138+) were increased by IgD. The percentage of unactivated T cell subset (CD4+CD62L+) and immature B cell subset (CD19+IgM+IgD-) were decreased by IgD in PBMCs. Furthermore, the expressions of IgDR on T and B cells were significantly increased by treatment with IgD. Our results demonstrate that IgD enhanced the activation of PBMCs, which may contribute to RA pathogenesis. Therefore, IgD could be a potential novel immunotherapeutic target for the management of RA. PMID:26814717

  13. Enhancing activity of N-glycosylation for constitutive proteins secretions in non-polarized cells

    SciTech Connect

    Akiyama, Nobutake; Ohno, Yuji; Fukuda, Takahiro; Manome, Yosinobu; Saito, Saburo

    2009-04-17

    Several fusion proteins of mouse Interleukins (mILs) and the enhanced green fluorescent protein (EGFP) were expressed in fibroblast and epithelial cells. Among these proteins, the mIL-31 derivative was the most efficiently secreted into the medium in a N-glycosylation-dependent manner. From the analysis of deletion mutants, the minimal structure for constitutive secretions consisted of a signal peptide and N-glycosylation. Introduction of the signal sequence from mIL-31 to human p53 protein failed to secrete the products, but further addition of the N-glycosylation site resulted in constitutive secretion of biologically active p53 protein into the medium in the N-glycosylated form. In this report, we showed the importance of N-glycosylation for constitutive protein secretions, especially using non-polarized cells.

  14. Imatinib enhances human melanoma cell susceptibility to TRAIL-induced cell death: Relationship to Bcl-2 family and caspase activation.

    PubMed

    Hamaï, A; Richon, C; Meslin, F; Faure, F; Kauffmann, A; Lecluse, Y; Jalil, A; Larue, L; Avril, M F; Chouaib, S; Mehrpour, M

    2006-12-01

    sensitivity in G1 cells, indicating that the expression level of c-FLIP(L) and its interaction with TRAIL receptor2 play a crucial role in determining TRAIL resistance in metastatic melanoma cells. Our results also show that imatinib enhances TRAIL-induced cell death independently of BH3-interacting domain death agonist translocation, in a process involving the Bax:Bcl-X(L) ratio, Bax:Bcl-X(L)/Bcl-2 translocation, cytochrome c release and caspase activation. Our data indicate that imatinib sensitizes T1 cells by directly downregulating c-FLIP(L), with the use of an alternative pathway for antitumor activity, because PDGFRalpha is not activated in T1 cells and these cells do not express c-kit, c-ABL or PDGFRbeta. Caspase cascade activation and mitochondria also play a key role in the imatinib-mediated sensitization of melanoma cells to the proapoptotic action of TRAIL. PMID:16983347

  15. NANOG alone induces germ cells in primed epiblast in vitro by activation of enhancers

    PubMed Central

    Zylicz, Jan J.; Tang, Walfred W. C.; Sengupta, Roopsha; Kobayashi, Toshihiro; Kim, Shinseog; Butler, Richard; Dietmann, Sabine; Surani, M. Azim

    2015-01-01

    Nanog, a core pluripotency factor in the inner cell mass of blastocysts, is also expressed in unipotent primordial germ cells (PGC) in mice1, where its precise role is yet unclear2-4. We investigated this in an in vitro model, where naïve pluripotent embryonic stem cells (ESCs) cultured in bFGF/ActivinA develop as epiblast-like cells (EpiLCs), and gain competence for PGC-like fate5. Consequently, bone morphogenetic protein (BMP4), or ectopic expression of key germline transcription factors Prdm1/ Prdm14/ Tfap2c, directly induce PGC-like cells (PGCLCs) in EpiLCs, but not in ESCs6-8. Here we report an unexpected discovery that Nanog alone can induce PGCLCs in EpiLCs, independently of BMP4. We propose that following the dissolution of the naïve ESC pluripotency network during establishment of EpiLCs9,10, the epigenome is reset for cell fate determination. Indeed, we found genome-wide changes in NANOG binding pattern between ESCs and EpiLCs, indicating epigenetic resetting of regulatory elements. Accordingly, we show that NANOG can bind and activate enhancers of Prdm1 and Prdm14 in EpiLCs in vitro; BLIMP1 (encoded by Prdm1) then directly induces Tfap2c. Furthermore, while SOX2 and NANOG promote the pluripotent state in ESCs, they show contrasting roles in EpiLCs since Sox2 specifically represses PGCLC induction by Nanog. This study demonstrates a broadly applicable mechanistic principle for how cells acquire competence for cell fate determination, resulting in the context-dependent roles of key transcription factors during development. PMID:26751055

  16. TMEPAI/PMEPA1 enhances tumorigenic activities in lung cancer cells.

    PubMed

    Vo Nguyen, Thanh Thao; Watanabe, Yukihide; Shiba, Aya; Noguchi, Masayuki; Itoh, Susumu; Kato, Mitsuyasu

    2014-03-01

    TMEPAI/PMEPA1 is a transmembrane protein that was originally identified as a prostatic RNA, the synthesis of which is induced by testosterone or its derivatives. We have recently identified TMEPAI as a direct target gene of transforming growth factor-β (TGF-β)/Smad signaling that participates in negative feedback control of the duration and intensity of TGF-β/Smad signaling. TMEPAI is constitutively and highly expressed in many types of cancer and is associated with poor prognosis. Here, we report that TMEPAI is highly expressed in the lung adenocarcinoma cell lines Calu3, NCI-H23, and RERF-LC-KJ. Expression of TMEPAI in these cancer cells was significantly suppressed by a TGF-β receptor kinase antagonist, SB208, and by TGF-β neutralizing antibodies. These results suggest that constitutive expression of TMEPAI in these cancer cells depends on autocrine TGF-β stimulation. Knockdown of TMEPAI in Calu3 and NCI-H23 cells enhanced levels of Smad2 phosphorylation and significantly suppressed cell proliferation in the presence of TGF-β, indicating that highly expressed TMEPAI suppresses levels of Smad phosphorylation in these cancer cells and reduces the growth inhibitory effects of TGF-β/Smad signaling. Furthermore, knockdown of TMEPAI in Calu3 and NCI-H23 cells suppressed sphere formation in vitro and tumor formation in s.c. tissues and in lungs after tail vein injection in NOD-SCID mice in vivo. Together, these experiments indicate that TMEPAI promotes tumorigenic activities in lung cancer cells. PMID:24438557

  17. Neisseria gonorrhoeae enhances HIV-1 infection of primary resting CD4+ T cells through TLR2 activation.

    PubMed

    Ding, Jian; Rapista, Aprille; Teleshova, Natalia; Mosoyan, Goar; Jarvis, Gary A; Klotman, Mary E; Chang, Theresa L

    2010-03-15

    Sexually transmitted infections increase the likelihood of HIV-1 transmission. We investigated the effect of Neisseria gonorrheae (gonococcus [GC]) exposure on HIV replication in primary resting CD4(+) T cells, a major HIV target cell during the early stage of sexual transmission of HIV. GC and TLR2 agonists, such as peptidylglycan (PGN), Pam(3)CSK(4), and Pam(3)C-Lip, a GC-derived synthetic lipopeptide, but not TLR4 agonists including LPS or GC lipooligosaccharide enhanced HIV-1 infection of primary resting CD4(+) T cells after viral entry. Pretreatment of CD4(+) cells with PGN also promoted HIV infection. Anti-TLR2 Abs abolished the HIV enhancing effect of GC and Pam(3)C-Lip, indicating that GC-mediated enhancement of HIV infection of resting CD4(+) T cells was through TLR2. IL-2 was required for TLR2-mediated HIV enhancement. PGN and GC induced cell surface expression of T cell activation markers and HIV coreceptors, CCR5 and CXCR4. The maximal postentry HIV enhancing effect was achieved when PGN was added immediately after viral exposure. Kinetic studies and analysis of HIV DNA products indicated that GC exposure and TLR2 activation enhanced HIV infection at the step of nuclear import. We conclude that GC enhanced HIV infection of primary resting CD4(+) T cells through TLR2 activation, which both increased the susceptibility of primary CD4(+) T cells to HIV infection as well as enhanced HIV-infected CD4(+) T cells at the early stage of HIV life cycle after entry. This study provides a molecular mechanism by which nonulcerative sexually transmitted infections mediate enhancement of HIV infection and has implication for HIV prevention and therapeutics. PMID:20147631

  18. Successful Interferon Therapy Reverses Enhanced Hepatic Progenitor Cell Activation in Patients with Chronic Hepatitis C.

    PubMed

    Noritake, Hidenao; Kobayashi, Yoshimasa; Ooba, Yukimasa; Matsunaga, Erika; Ohta, Kazuyoshi; Shimoyama, Shin; Yamazaki, Satoru; Chida, Takeshi; Kawata, Kazuhito; Sakaguchi, Takanori; Suda, Takafumi

    2015-12-01

    The enhanced accumulation of hepatic progenitor cells (HPCs) is related to the risk of progression to hepatocellular carcinoma (HCC). Interferon (IFN) treatment reduces HCC risk in patients with chronic hepatitis C virus (HCV) infection. However, the underlying mechanisms remain unclear. The aim of this study was to examine the effects of IFN treatment on HPC activation in HCV patients. Immunohistochemical detection and computer-assisted quantitative image analyses of cytokeratin 7 (CK7) were performed to evaluate HPC activation in paired pre- and post-treatment liver biopsies from 18 HCV patients with sustained virological response (SVR) to IFN-based therapy and from 23 patients without SVR, as well as normal liver tissues obtained from surgical resection specimens of 10 patients. Pretreatment HCV livers showed increased CK7 immunoreactivity, compared with normal livers (HCV: median, 1.38%; normal: median, 0.69%, P=0.006). IFN treatment reduced hepatic CK7 immunoreactivity (median, 1.57% pre-IFN vs. 0.69% post-IFN, P=0.006) in SVR patients, but not in non-SVR patients. The development of HCC following IFN treatment was encountered in 3 non-SVR patients who showed high post-IFN treatment CK7 immunoreactivity (>4%). Successful IFN therapy can reverse enhanced HPC activation in HCV patients, which may contribute to the reduced risk of HCC development in these patients. PMID:26308703

  19. Effectiveness and Student Perceptions of an Active Learning Activity Using a Headline News Story to Enhance In-Class Learning of Cell Cycle Regulation

    ERIC Educational Resources Information Center

    Dirks-Naylor, Amie J.

    2016-01-01

    An active learning activity was used to engage students and enhance in-class learning of cell cycle regulation in a PharmD level integrated biological sciences course. The aim of the present study was to determine the effectiveness and perception of the in-class activity. After completion of a lecture on the topic of cell cycle regulation,…

  20. Enhanced antitumoral activity of doxorubicin against lung cancer cells using biodegradable poly(butylcyanoacrylate) nanoparticles

    PubMed Central

    Melguizo, Consolación; Cabeza, Laura; Prados, Jose; Ortiz, Raúl; Caba, Octavio; Rama, Ana R; Delgado, Ángel V; Arias, José L

    2015-01-01

    Doxorubicin (Dox) is widely used for the combined chemotherapy of solid tumors. However, the use of these drug associations in lung cancer has low antitumor efficacy. To improve its efficacious delivery and activity in lung adenocarcinoma cells, we developed a biodegradable and noncytotoxic nanoplatform based on biodegradable poly(butylcyanoacrylate) (PBCA). The reproducible formulation method was based on an anionic polymerization process of the PBCA monomer, with the antitumor drug being entrapped within the nanoparticle (NP) matrix during its formation. Improved drug-entrapment efficiencies and sustained (biphasic) drug-release properties were made possible by taking advantage of the synthesis conditions (drug, monomer, and surfactant-agent concentrations). Dox-loaded NPs significantly enhanced cellular uptake of the drug in the A549 and LL/2 lung cancer cell lines, leading to a significant improvement of the drug’s antitumoral activity. In vivo studies demonstrated that Dox-loaded NPs clearly reduced tumor volumes and increased mouse-survival rates compared to the free drug. These results demonstrated that PBCA NPs may be used to optimize the antitumor activity of Dox, thus exhibiting a potential application in chemotherapy against lung adenocarcinoma. PMID:26715840

  1. Interferon-α/β enhances temozolomide activity against MGMT-positive glioma stem-like cells.

    PubMed

    Shen, Dong; Guo, Cheng-Cheng; Wang, Jing; Qiu, Zhi-Kun; Sai, Ke; Yang, Qun-Ying; Chen, Yin-Sheng; Chen, Fu-Rong; Wang, Jie; Panasci, Lawrence; Chen, Zhong-Ping

    2015-11-01

    Glioma is one of the most common primary tumors of the central nervous system in adults. Glioblastoma (GBM) is the most lethal type of glioma, whose 5-year survival is 9.8% at best. Glioma stem-like cells (GSCs) play an important role in recurrence and treatment resistance. MGMT is a DNA repair protein that removes DNA adducts and therefore attenuates treatment efficiency. It has been reported that interferon-α/β (IFN-α/β) downregulates the level of MGMT and sensitizes glioma cells to temozolomide. In the present study, we assessed whether IFN-α/β is able to sensitize GSCs to temozolomide by modulating MGMT expression. Upon the treatment of IFN-α/β, the efficacy of temozolomide against MGMT‑positive GSCs was markedly enhanced by combination treatment with IFN-α/β when compared with the temozolomide single agent group, and MGMT expression was markedly decreased at the same time. Further mechanistic study showed that IFN-α/β suppressed the NF-κB activity, which further mediated the sensitization of MGMT‑positive GSCs to temozolomide. Our data therefore demonstrated that the application of IFN-α/β is a promising agent with which to enhance temozolomide efficiency and reduce drug resistance, and our findings shed light on improving clinical outcomes and prolonging the survival of patients with malignant gliomas. PMID:26329778

  2. Production of lentiviral vectors with enhanced efficiency to target dendritic cells by attenuating mannosidase activity of mammalian cells

    PubMed Central

    2011-01-01

    Background Dendritic cells (DCs) are antigen-presenting immune cells that interact with T cells and have been widely studied for vaccine applications. To achieve this, DCs can be manipulated by lentiviral vectors (LVs) to express antigens to stimulate the desired antigen-specific T cell response, which gives this approach great potential to fight diseases such as cancers, HIV, and autoimmune diseases. Previously we showed that LVs enveloped with an engineered Sindbis virus glycoprotein (SVGmu) could target DCs through a specific interaction with DC-SIGN, a surface molecule predominantly expressed by DCs. We hypothesized that SVGmu interacts with DC-SIGN in a mannose-dependent manner, and that an increase in high-mannose structures on the glycoprotein surface could result in higher targeting efficiencies of LVs towards DCs. It is known that 1-deoxymannojirimycin (DMJ) can inhibit mannosidase, which is an enzyme that removes high-mannose structures during the glycosylation process. Thus, we investigated the possibility of generating LVs with enhanced capability to modify DCs by supplying DMJ during vector production. Results Through western blot analysis and binding tests, we were able to infer that binding of SVGmu to DC-SIGN is directly related to amount of high-mannose structures on SVGmu. We also found that the titer for the LV (FUGW/SVGmu) produced with DMJ against 293T.DCSIGN, a human cell line expressing the human DC-SIGN atnibody, was over four times higher than that of vector produced without DMJ. In addition, transduction of a human DC cell line, MUTZ-3, yielded a higher transduction efficiency for the LV produced with DMJ. Conclusion We conclude that LVs produced under conditions with inhibited mannosidase activity can effectively modify cells displaying the DC-specific marker DC-SIGN. This study offers evidence to support the utilization of DMJ in producing LVs that are enhanced carriers for the development of DC-directed vaccines. PMID:21276219

  3. Maternal uterine NK cell-activating receptor KIR2DS1 enhances placentation.

    PubMed

    Xiong, Shiqiu; Sharkey, Andrew M; Kennedy, Philippa R; Gardner, Lucy; Farrell, Lydia E; Chazara, Olympe; Bauer, Julien; Hiby, Susan E; Colucci, Francesco; Moffett, Ashley

    2013-10-01

    Reduced trophoblast invasion and vascular conversion in decidua are thought to be the primary defect of common pregnancy disorders including preeclampsia and fetal growth restriction. Genetic studies suggest these conditions are linked to combinations of polymorphic killer cell Ig-like receptor (KIR) genes expressed by maternal decidual NK cells (dNK) and HLA-C genes expressed by fetal trophoblast. Inhibitory KIR2DL1 and activating KIR2DS1 both bind HLA-C2, but confer increased risk or protection from pregnancy disorders, respectively. The mechanisms underlying these genetic associations with opposing outcomes are unknown. We show that KIR2DS1 is highly expressed in dNK, stimulating strong activation of KIR2DS1+ dNK. We used microarrays to identify additional responses triggered by binding of KIR2DS1 or KIR2DL1 to HLA-C2 and found different responses in dNK coexpressing KIR2DS1 with KIR2DL1 compared with dNK only expressing KIR2DL1. Activation of KIR2DS1+ dNK by HLA-C2 stimulated production of soluble products including GM-CSF, detected by intracellular FACS and ELISA. We demonstrated that GM-CSF enhanced migration of primary trophoblast and JEG-3 trophoblast cells in vitro. These findings provide a molecular mechanism explaining how recognition of HLA class I molecules on fetal trophoblast by an activating KIR on maternal dNK may be beneficial for placentation. PMID:24091323

  4. Chloroquine enhances the chemotherapeutic activity of 5-fluorouracil in a colon cancer cell line via cell cycle alteration.

    PubMed

    Choi, Jung-Hye; Yoon, Jin Sun; Won, Young-Woong; Park, Byeong-Bae; Lee, Young Yiul

    2012-07-01

    Autophagy is a conserved catabolic process that degrades cytoplasmic proteins and organelles for recycling. The role of autophagy in tumorigenesis is controversial because autophagy can be either protective or damaging to tumor cells, and its effects may change during tumor progression. A number of cancer cell lines have been exposed to chloroquine, an anti-malarial drug, with the aim of inhibiting cell growth and inducing cell death. In addition, chloroquine inhibits a late phase of autophagy. This study was conducted to investigate the anti-cancer effect of autophagy inhibition, using chloroquine together with 5-fluorouracil (5-FU) in a colon cancer cell line. Human colon cancer DLD-1 cells were treated with 5-FU (10 μΜ) or chloroquine (100 μΜ), or a combination of both. Autophagy was evaluated by western blot analysis of microtubule-associated protein light chain3 (LC3). Proliferative activity, alterations of the cell cycle, and apoptosis were measured by MTT assays, flow cytometry, and western blotting. LC3-II protein increased after treatment with 5-FU, and chloroquine potentiated the cytotoxicity of 5-FU. MTT assays showed that 5-FU inhibited proliferation of the DLD-1 cells and that chloroquine enhanced this inhibitory effect of 5-FU. The combination of 5-FU and chloroquine induced G1 arrest, up-regulation of p27 and p53, and down-regulation of CDK2 and cyclin D1. These results suggest that chloroquine may potentiate the anti-cancer effect of 5-FU via cell cycle inhibition. Chloroquine potentiates the anti-cancer effect of 5-FU in colon cancer cells. Supplementation of conventional chemotherapy with chloroquine may provide a new cancer therapy modality. PMID:22716215

  5. Aberrant Activation of Notch Signaling Inhibits PROX1 Activity to Enhance the Malignant Behavior of Thyroid Cancer Cells.

    PubMed

    Choi, Dongwon; Ramu, Swapnika; Park, Eunkyung; Jung, Eunson; Yang, Sara; Jung, Wonhyeuk; Choi, Inho; Lee, Sunju; Kim, Kyu Eui; Seong, Young Jin; Hong, Mingu; Daghlian, George; Kim, Daniel; Shin, Eugene; Seo, Jung In; Khatchadourian, Vicken; Zou, Mengchen; Li, Wei; De Filippo, Roger; Kokorowski, Paul; Chang, Andy; Kim, Steve; Bertoni, Ana; Furlanetto, Tania Weber; Shin, Sung; Li, Meng; Chen, Yibu; Wong, Alex; Koh, Chester; Geliebter, Jan; Hong, Young-Kwon

    2016-02-01

    Papillary thyroid cancer (PTC) is one of the most common endocrine malignancies associated with significant morbidity and mortality. Although multiple studies have contributed to a better understanding of the genetic alterations underlying this frequently arising disease, the downstream molecular effectors that impact PTC pathogenesis remain to be further defined. Here, we report that the regulator of cell fate specification, PROX1, becomes inactivated in PTC through mRNA downregulation and cytoplasmic mislocalization. Expression studies in clinical specimens revealed that aberrantly activated NOTCH signaling promoted PROX1 downregulation and that cytoplasmic mislocalization significantly altered PROX1 protein stability. Importantly, restoration of PROX1 activity in thyroid carcinoma cells revealed that PROX1 not only enhanced Wnt/β-catenin signaling but also regulated several genes known to be associated with PTC, including thyroid cancer protein (TC)-1, SERPINA1, and FABP4. Furthermore, PROX1 reexpression suppressed the malignant phenotypes of thyroid carcinoma cells, such as proliferation, motility, adhesion, invasion, anchorage-independent growth, and polyploidy. Moreover, animal xenograft studies demonstrated that restoration of PROX1 severely impeded tumor formation and suppressed the invasiveness and the nuclear/cytoplasmic ratio of PTC cells. Taken together, our findings demonstrate that NOTCH-induced PROX1 inactivation significantly promotes the malignant behavior of thyroid carcinoma and suggest that PROX1 reactivation may represent a potential therapeutic strategy to attenuate disease progression. PMID:26609053

  6. Downregulation of Heme Oxygenase 1 (HO-1) Activity in Hematopoietic Cells Enhances Their Engraftment After Transplantation.

    PubMed

    Adamiak, Mateusz; Moore, Joseph B; Zhao, John; Abdelbaset-Ismail, Ahmed; Grubczak, Kamil; Rzeszotek, Sylwia; Wysoczynski, Marcin; Ratajczak, Mariusz Z

    2016-01-01

    Heme oxygenase 1 (HO-1) is an inducible stress-response enzyme that not only catalyzes the degradation of heme (e.g., released from erythrocytes) but also has an important function in various physiological and pathophysiological states associated with cellular stress, such as ischemic/reperfusion injury. HO-1 has a well-documented anti-inflammatory potential, and HO-1 has been reported to have a negative effect on adhesion and migration of neutrophils in acute inflammation in a model of peritonitis. This finding is supported by our recent observation that hematopoietic stem progenitor cells (HSPCs) from HO-1 KO mice are easy mobilizers, since they respond better to peripheral blood chemotactic gradients than wild-type littermates. Based on these findings, we hypothesized that transient inhibition of HO-1 by nontoxic small-molecule inhibitors would enhance migration of HSPCs in response to bone marrow chemoattractants and thereby facilitate their homing. To directly address this issue, we generated several human hematopoietic cell lines in which HO-1 was upregulated or downregulated. We also exposed murine and human BM-derived cells to small-molecule activators and inhibitors of HO-1. Our results indicate that HO-1 is an inhibitor of hematopoietic cell migration in response to crucial BM homing chemoattractants such as stromal-derived factor 1 (SDF-1) and sphingosine-1-phosphate (S1P). Most importantly, our in vitro and in vivo animal experiments demonstrate for the first time that transiently inhibiting HO-1 activity in HSPCs by small-molecule inhibitors improves HSPC engraftment. We propose that this simple and inexpensive strategy could be employed in the clinical setting to improve engraftment of HSPCs, particularly in those situations in which the number of HSPCs available for transplant is limited (e.g., when transplanting umbilical cord blood). PMID:27412411

  7. Aloin enhances cisplatin antineoplastic activity in B16-F10 melanoma cells by transglutaminase-induced differentiation.

    PubMed

    Tabolacci, Claudio; Rossi, Stefania; Lentini, Alessandro; Provenzano, Bruno; Turcano, Lorenzo; Facchiano, Francesco; Beninati, Simone

    2013-01-01

    Aloin, a natural anthracycline from aloe plant, is a hydroxyanthraquinone derivative shown to have antitumor properties. This study demonstrated that aloin exerted inhibition of cell proliferation, adhesion and invasion abilities of B16-F10 melanoma cells under non-cytotoxic concentrations. Furthermore, aloin induced melanoma cell differentiation through the enhancement of melanogenesis and transglutaminase activity. To improve the growth-inhibiting effect of anticancer agents, we found that the combined treatment of cells with aloin and low doses of cisplatin increases the antiproliferative activity of aloin. The results suggest that aloin possesses antineoplastic and antimetastatic properties, exerted likely through the induction of melanoma cell differentiation. PMID:22139409

  8. PKR activation enhances replication of classical swine fever virus in PK-15 cells.

    PubMed

    Liu, Wen-Jun; Yang, You-Tian; Zhao, Ming-Qiu; Dong, Xiao-Ying; Gou, Hong-Chao; Pei, Jing-Jing; Chen, Jin-Ding

    2015-06-01

    Classical swine fever (CSF) is a highly contagious swine disease that is responsible for economic losses worldwide. Protein kinase R (PK)R is an important protein in the host viral response; however, the role of PKR in CSFV infection remains unknown. This issue was addressed in the present study using the PK-15 swine kidney cell line. We found that CSFV infection increased the phosphorylation of eukaryotic translation initiation factor (eIF)2α and its kinase PKR. However, the expression of viral proteins continued to increase. Furthermore, PKR overexpression enhanced CSFV replication, while PKR inhibition resulted in reduced CSFV replication and an increase in interferon (IFN) induction. In addition, PKR was responsible for eIF2α phosphorylation in CSFV-infected cells. These results suggest that the activation of PKR during CSFV infection is beneficial to the virus. The virus is able to commandeer the host cell's translation machinery for viral protein synthesis while evading innate immune defenses. PMID:25899421

  9. Complexation study and anticellular activity enhancement by doxorubicin-cyclodextrin complexes on a multidrug-resistant adenocarcinoma cell line.

    PubMed

    Al-Omar, A; Abdou, S; De Robertis, L; Marsura, A; Finance, C

    1999-04-19

    Ability of molecular complexes of [Doxorubicin (DX)-cyclodextrin (Cd)] to enhance the anticellular activity of antineoplastic drug Doxorubicin and to reverse its multidrug resistance has been investigated. A spectroscopic study of the alpha, beta, and gamma-[DX-Cds] complexes has been investigated in relation to their biological effects on a multidrug resistant (MDR) human rectal adenocarcinoma cell line (HRT-18). A ten fold enhancement of DX anticellular activity in presence of beta-cyclodextrin alone was detected. PMID:10328296

  10. Tumor cell migration and invasion are enhanced by depletion of Rap1 GTPase-activating protein (Rap1GAP).

    PubMed

    Tsygankova, Oxana M; Wang, Hongbin; Meinkoth, Judy L

    2013-08-23

    The functional significance of the widespread down-regulation of Rap1 GTPase-activating protein (Rap1GAP), a negative regulator of Rap activity, in human tumors is unknown. Here we show that human colon cancer cells depleted of Rap1GAP are endowed with more aggressive migratory and invasive properties. Silencing Rap1GAP enhanced the migration of confluent and single cells. In the latter, migration distance, velocity, and directionality were increased. Enhanced migration was a consequence of increased endogenous Rap activity as silencing Rap expression selectively abolished the migration of Rap1GAP-depleted cells. ROCK-mediated cell contractility was suppressed in Rap1GAP-depleted cells, which exhibited a spindle-shaped morphology and abundant membrane protrusions. Tumor cells can switch between Rho/ROCK-mediated contractility-based migration and Rac1-mediated mesenchymal motility. Strikingly, the migration of Rap1GAP-depleted, but not control cells required Rac1 activity, suggesting that loss of Rap1GAP alters migratory mechanisms. Inhibition of Rac1 activity restored membrane blebbing and increased ROCK activity in Rap1GAP-depleted cells, suggesting that Rac1 contributes to the suppression of contractility. Collectively, these findings identify Rap1GAP as a critical regulator of aggressive tumor cell behavior and suggest that the level of Rap1GAP expression influences the migratory mechanisms that are operative in tumor cells. PMID:23864657

  11. Fibroblast Growth Factor-9 Activates c-Kit Progenitor Cells and Enhances Angiogenesis in the Infarcted Diabetic Heart

    PubMed Central

    Singla, Dinender; Wang, Jing

    2016-01-01

    We hypothesized that fibroblast growth factor-9 (FGF-9) would enhance angiogenesis via activating c-kit positive stem cells in the infarcted nondiabetic and diabetic heart. In brief, animals were divided into three groups: Sham, MI, and MI+FGF-9. Two weeks following MI or sham surgery, our data suggest that treatment with FGF-9 significantly diminished vascular apoptosis compared to the MI group in both C57BL/6 and db/db mice (p < 0.05). Additionally, the number of c-kit+ve/SM α-actin+ve cells and c-kit+ve/CD31+ve cells were greatly enhanced in the MI+FGF-9 groups relative to the MI suggesting FGF-9 enhances c-Kit cell activation and their differentiation into vascular smooth muscle cells and endothelial cells, respectively (p < 0.05). Histology shows that the total number of vessels were quantified for all groups and our data suggest that the FGF-9 treated groups had significantly more vessels than their MI counterparts (p < 0.05). Finally, echocardiographic data suggests a significant improvement in left ventricular output, as indicated by fractional shortening and ejection fraction in both nondiabetic and diabetic animals treated with FGF-9 (p < 0.05). Overall, our data suggests FGF-9 has the potential to attenuate vascular cell apoptosis, activate c-Kit progenitor cells, and enhance angiogenesis and neovascularization in C57BL/6 and db/db mice leading to improved cardiac function. PMID:26682010

  12. Lineage-specific enhancers activate self-renewal genes in macrophages and embryonic stem cells

    PubMed Central

    Soucie, Erinn L.; Weng, Ziming; Geirsdóttir, Laufey; Molawi, Kaaweh; Maurizio, Julien; Fenouil, Romain; Mossadegh-Keller, Noushine; Gimenez, Gregory; VanHille, Laurent; Beniazza, Meryam; Favret, Jeremy; Berruyer, Carole; Perrin, Pierre; Hacohen, Nir; Andrau, J.-C.; Ferrier, Pierre; Dubreuil, Patrice; Sidow, Arend; Sieweke, Michael H.

    2016-01-01

    Differentiated macrophages can self-renew in tissues and expand long-term in culture, but the gene regulatory mechanisms that accomplish self-renewal in the differentiated state have remained unknown. Here we show that in mice, the transcription factors MafB and c-Maf repress a macrophage-specific enhancer repertoire associated with a gene network controlling self-renewal. Single cell analysis revealed that, in vivo, proliferating resident macrophages can access this network by transient down-regulation of Maf transcription factors. The network also controls embryonic stem cell self-renewal but is associated with distinct embryonic stem cell-specific enhancers. This indicates that distinct lineage-specific enhancer platforms regulate a shared network of genes that control self-renewal potential in both stem and mature cells. PMID:26797145

  13. Indolic Uremic Solutes Enhance Procoagulant Activity of Red Blood Cells through Phosphatidylserine Exposure and Microparticle Release

    PubMed Central

    Gao, Chunyan; Ji, Shuting; Dong, Weijun; Qi, Yushan; Song, Wen; Cui, Debin; Shi, Jialan

    2015-01-01

    Increased accumulation of indolic uremic solutes in the blood of uremic patients contributes to the risk of thrombotic events. Red blood cells (RBCs), the most abundant blood cells in circulation, may be a privileged target of these solutes. However, the effect of uremic solutes indoxyl sulfate (IS) and indole-3-acetic acid (IAA) on procoagulant activity (PCA) of erythrocyte is unclear. Here, RBCs from healthy adults were treated with IS and IAA (mean and maximal concentrations reported in uremic patients). Phosphatidylserine (PS) exposure of RBCs and their microparticles (MPs) release were labeled with Alexa Fluor 488-lactadherin and detected by flow cytometer. Cytosolic Ca2+ ([Ca2+]) with Fluo 3/AM was analyzed by flow cytometer. PCA was assessed by clotting time and purified coagulation complex assays. We found that PS exposure, MPs generation, and consequent PCA of RBCs at mean concentrations of IS and IAA enhanced and peaked in maximal uremic concentrations. Moreover, 128 nM lactadherin, a PS inhibitor, inhibited over 90% PCA of RBCs and RMPs. Eryptosis or damage, by indolic uremic solutes was due to, at least partially, the increase of cytosolic [Ca2+]. Our results suggest that RBC eryptosis in uremic solutes IS and IAA plays an important role in thrombus formation through releasing RMPs and exposing PS. Lactadherin acts as an efficient anticoagulant in this process. PMID:26516916

  14. Indolic uremic solutes enhance procoagulant activity of red blood cells through phosphatidylserine exposure and microparticle release.

    PubMed

    Gao, Chunyan; Ji, Shuting; Dong, Weijun; Qi, Yushan; Song, Wen; Cui, Debin; Shi, Jialan

    2015-11-01

    Increased accumulation of indolic uremic solutes in the blood of uremic patients contributes to the risk of thrombotic events. Red blood cells (RBCs), the most abundant blood cells in circulation, may be a privileged target of these solutes. However, the effect of uremic solutes indoxyl sulfate (IS) and indole-3-acetic acid (IAA) on procoagulant activity (PCA) of erythrocyte is unclear. Here, RBCs from healthy adults were treated with IS and IAA (mean and maximal concentrations reported in uremic patients). Phosphatidylserine (PS) exposure of RBCs and their microparticles (MPs) release were labeled with Alexa Fluor 488-lactadherin and detected by flow cytometer. Cytosolic Ca(2+) ([Ca(2+)]) with Fluo 3/AM was analyzed by flow cytometer. PCA was assessed by clotting time and purified coagulation complex assays. We found that PS exposure, MPs generation, and consequent PCA of RBCs at mean concentrations of IS and IAA enhanced and peaked in maximal uremic concentrations. Moreover, 128 nM lactadherin, a PS inhibitor, inhibited over 90% PCA of RBCs and RMPs. Eryptosis or damage, by indolic uremic solutes was due to, at least partially, the increase of cytosolic [Ca(2+)]. Our results suggest that RBC eryptosis in uremic solutes IS and IAA plays an important role in thrombus formation through releasing RMPs and exposing PS. Lactadherin acts as an efficient anticoagulant in this process. PMID:26516916

  15. Enhanced antiproliferative activity of carboplatin-loaded chitosan-alginate nanoparticles in a retinoblastoma cell line.

    PubMed

    Parveen, Suphiya; Mitra, Moutushy; Krishnakumar, S; Sahoo, Sanjeeb K

    2010-08-01

    In the present study the potential of carboplatin-loaded chitosan-alginate nanoparticles (CANPs) for the treatment of retinoblastoma was investigated. The carboplatin-loaded CANPs were approximately 300 nm in size, exhibited a high zeta potential of approximately 36 mV and drug encapsulation of approximately 20 wt.%. The CANPs were further characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry and transmission electron microscopy. In vitro release studies revealed fast release of approximately 25% of the drug during the first 24h, followed by sustained release. CANPs demonstrated greater and sustained antiproliferative activity of the drug in a dose- and time-dependent manner (carboplatin IC(50)=0.56 microg ml(-1), carboplatin-loaded CANPs IC(50)=0.004 microg ml(-1)), as well as an enhanced apoptotic effect as compared with the drug in solution in a retinoblastoma cell line (Y79). The higher cytotoxic effect of CANPs may be due to their greater cellular uptake as compared with native carboplatin. It was also demonstrated that clathrin-mediated endocytosis plays a key role in the internalization of CANPs in the Y79 cell line. In conclusion, biodegradable chitosan nanoparticles could be used as an effective ocular drug delivery system for sustained intracellular delivery of carboplatin for the treatment of retinoblastoma. PMID:20149903

  16. Preparation and characterization of Pt supported on graphene with enhanced electrocatalytic activity in fuel cell

    NASA Astrophysics Data System (ADS)

    Xin, Yuchen; Liu, Jian-guo; Zhou, Yong; Liu, Wenming; Gao, Jian; Xie, Yun; Yin, Ying; Zou, Zhigang

    Pt nanoparticles are deposited onto graphene sheets via synchronous reduction of H 2PtCl 6 and graphene oxide (GO) suspension using NaBH 4. Lyophilization is introduced to avoid irreversible aggregation of graphene (G) sheets, which happens during conventional drying process. Pt/G catalysts reveal a high catalytic activity for both methanol oxidation and oxygen reduction reaction compared to Pt supported on carbon black (Pt/C). The performance of Pt/G catalysts is further improved after heat treatment in N 2 atmosphere at 300 °C for 2 h, and the peak current density of methanol oxidation for Pt/G after heat treatment is almost 3.5 times higher than Pt/C. Transmission electron microscope (TEM) images show that the Pt particles are uniformly distributed on graphene sheets. X-ray photoelectron spectroscopy (XPS) results demonstrate that the interaction between Pt and graphene is enhanced during annealing. It suggests that graphene has provided a new way to improve electrocatalytic activity of catalyst for fuel cell.

  17. Cell-Demanded VEGF Release via Nanocapsules Elicits Different Receptor Activation Dynamics and Enhanced Angiogenesis.

    PubMed

    Zhu, Suwei; Segura, Tatiana

    2016-06-01

    Although the delivery of vascular endothelial growth factor (VEGF) with extended release profiles has consistently shown beneficial therapeutic effects compared with bolus delivery, [Martino, M. M., F. Tortelli, M. Mochizuki, S. Traub, D. Ben-David, G. A. Kuhn, R. Muller, E. Livne, S. A. Eming, and J. A. Hubbell. Sci. Transl. Med. 3(100):100ra189, 2011; Martino, M. M., P. S. Briquez, A. Ranga, M. P. Lutolf, and J. A. Hubbell. Proc. Natl. Acad. Sci. USA. 110(12):4563-4568, 2013; Amiram, M., K. M. Luginbuhl, X. Li, M. N. Feinglos, and A. Chilkoti. Proc. Natl. Acad. Sci. USA. 110(8):2792-2797, 2013] it remains unclear if the reason is solely due to the physical availability and the reduced degradation of the protein. Here we studied the activation of VEGF receptor 2 (VR-2) by sustained released VEGF compared with bolus delivered VEGF to unveil that sustained delivery system alters the dynamics of receptor activation and affects the actions of cells between sprouting and proliferation. We utilized a protein nanocapsule delivery strategy that releases VEGF as mediated by extracellular proteases. These protein nanocapsules were synthesized through an aqueous assembly of a nanogel-peptide shell around the protein, leading to one to two proteins encapsulated per nanocapsule. Receptor activation studies revealed differential dynamics of receptor activation for slowly released VEGF compared with bolus delivered VEGF. As expected sustained released VEGF via nanocapsules resulted in enhanced vascular sprouting in vitro and in vivo. These studies demonstrate the physical presentation of VEGF, in this case of a slow release with time, can affect its molecular mechanism of actions and cause alterations in cellular responses and therapeutic outcomes. PMID:26940611

  18. Exposure of Plasmodium sporozoites to the intracellular concentration of potassium enhances infectivity and reduces cell passage activity.

    PubMed

    Kumar, Kota Arun; Garcia, Celia R S; Chandran, Vandana R; Van Rooijen, N; Zhou, Yingyao; Winzeler, Elizabeth; Nussenzweig, Victor

    2007-11-01

    Malaria sporozoites migrate through several cells prior to a productive invasion that involves the formation of a parasitophorous vacuole (PV) where sporozoites undergo transformation into Exo-erythorcytic forms (EEFs). The precise mechanism leading to sporozoite activation for invasion is unknown, but prior traversal of host cells is required. During cell migration sporozoites are exposed to large shifts in K(+) concentration. We report here that incubation of sporozoites to the intracellular K(+) concentration enhances 8-10 times the infectivity of Plasmodium berghei and 4-5 times the infectivity of Plasmodium yoelli sporozoites for a hepatocyte cell line, while simultaneously decreasing cell passage activity. The K(+) enhancing effect was time and concentration dependent, and was significantly decreased by K(+) channel inhibitors. Potassium-treated P. berghei sporozoites also showed enhanced numbers of EEFs in non-permissive cell lines. Treated sporozoites had reduced infectivity for mice, but infectivity was enhanced upon Kupffer cell depletion. Transcriptional analysis of K(+) treated and control sporozoites revealed a high degree of correlation in their levels of gene expression, indicating that the observed phenotypic changes are not due to radical changes in gene transcription. Only seven genes were upregulated by more than two-fold in K(+) treated sporozoites. The highest level was noted in PP2C, a phosphatase known to dephosphorylate the AKT potassium channel in plants. PMID:17714805

  19. Human cancer cells with stem cell-like phenotype exhibit enhanced sensitivity to the cytotoxicity of IL-2 and IL-15 activated natural killer cells.

    PubMed

    Yin, Tao; Wang, Guoping; He, Sisi; Liu, Qin; Sun, Jianhong; Wang, Yongsheng

    2016-02-01

    Tumors harbor a population of cancer stem cells (CSCs) which can drive tumor progression and therapeutical resistance. Nature killer (NK) cells are best known for their ability to directly recognize and kill malignant cells. However, the susceptibility of cancer stem cells to NK cells is not fully understood. Here we demonstrated that human CD44+CD24- breast CSCs were shown enhanced sensitivity to IL-2 and IL-15 activated NK cells. CD44+CD24- CSCs expressed higher levels of NKG2D ligands ULBP1, ULBP2 and MICA. Blockade assay showed that the sensitivity of CSCs to NK cells-mediated lysis was mainly dependent on NKG2D. Furthermore, redox oxygen species (ROS)-low tumor cells were more sensitive to NK cells. The presence of antioxidant enzymes inhibitor L-S,R-buthionine sulfoximine or H2O2 retarded the cytotoxicity of NK cells to CD44+CD24- CSCs. In addition, NK cells could readily target CD133+ colonal CSCs. Our findings provide novel targets for NK cells-based immunotherapy and are of great importance for translational medicine. PMID:26677760

  20. Bisphosphonates Inhibit Stellate Cell Activity and Enhance Antitumor Effects of Nanoparticle Albumin Bound-Paclitaxel in Pancreatic Ductal Adenocarcinoma

    PubMed Central

    Gonzalez-Villasana, Vianey; Rodriguez-Aguayo, Cristian; Arumugam, Thiruvengadam; Cruz-Monserrate, Zobeida; Fuentes-Mattei, Enrique; Deng, Defeng; Hwang, Rosa F.; Wang, Huamin; Ivan, Cristina; Garza, Raul Joshua; Cohen, Evan; Gao, Hui; Armaiz-Pena, Guillermo N.; Monroig-Bosque, Paloma del C.; Philip, Bincy; Rashed, Mohammed H.; Aslan, Burcu; Erdogan, Mumin Alper; Gutierrez-Puente, Yolanda; Ozpolat, Bulent; Reuben, James M.; Sood, Anil K.; Logsdon, Craig; Lopez-Berestein, Gabriel

    2014-01-01

    Pancreatic stellate cells (PSCs) have been recognized as the principal cells responsible for the production of fibrosis in PDAC. Recently PSCs have been noted to share characteristics with cells of monocyte-macrophage lineage (MML cells). Thus, we tested whether PSCs could be targeted with the nitrogen-containing bisphosphonates (NBPs) [pamidronate (Pam) or zoledronic acid (ZA)], which are potent MML cell inhibitors. In addition, we tested NBPs treatment combination with nanoparticle albumin-bound paclitaxel (nab-paclitaxel) to enhance antitumor activity. In vitro we observed that PSCs possess α-naphthyl butyrate esterase (ANBE) enzyme activity, a specific marker of MML cells. Moreover NBPs inhibited PSCs proliferation, activation, release of macrophage chemoattractant protein-1 (MCP-1) and type I collagen expression. NBPs also induced PSC apoptosis and cell cycle arrest in the G1 phase. In vivo, NBPs inactivated PSCs; reduced fibrosis; inhibited tumor volume, tumor weight, peritoneal dissemination, angiogenesis, and cell proliferation; and increased apoptosis in an orthotopic murine model of PDAC. These in vivo antitumor effects were enhanced when NBPs were combined with nab-paclitaxel but not gemcitabine (Gem). Our study suggests that targeting PSCs and tumor cells with NBPs in combination with nab-paclitaxel may be a novel therapeutic approach to PDAC. PMID:25193509

  1. Targeting of pegylated liposomal mitomycin-C prodrug to the folate receptor of cancer cells: Intracellular activation and enhanced cytotoxicity.

    PubMed

    Patil, Yogita; Amitay, Yasmine; Ohana, Patricia; Shmeeda, Hilary; Gabizon, Alberto

    2016-03-10

    Mitomycin C (MMC) is a powerful anti-bacterial, anti-fungal and anti-tumor antibiotic, often active against multidrug resistant cells. Despite a broad spectrum of antitumor activity, MMC clinical use is relatively limited due to its fast clearance and dose-limiting toxicity. To exploit the potential antitumor activity of MMC and reduce its toxicity we have previously developed a formulation of pegylated liposomes with a lipophilic prodrug of MMC (PL-MLP), activated by endogenous reducing agents which are abundant in the tumor cell environment in the form of different thiols. PL-MLP has minimal in vitro cytotoxicity unless reducing agents are added to the cell culture to activate the prodrug. In the present study, we hypothesized that targeting PL-MLP via folate receptors will facilitate intracellular activation of prodrug and enhance cytotoxic activity without added reducing agents. We grafted a lipophilic folate conjugate (folate-PEG(5000)-DSPE) to formulate folate targeted liposomes (FT-PL-MLP) and examined in vitro cell uptake and cytotoxic activity in cancer cell lines with high folate receptors (HiFR). 3H-cholesterol-hexadecyl ether (3H-Chol)-radiolabeled liposomes were prepared to study liposome-cell binding in parallel to cellular uptake of prodrug MLP. 3H-Chol and MLP cell uptake levels were 4-fold and 9-fold greater in KB HiFR cells when FT-PL-MLP is compared to non-targeted PL-MLP liposomes. The cytotoxic activity of FT-PL-MLP liposomes was significantly increased up to ~5-fold compared with PL-MLP liposomes in all tested HiFR expressing cell lines. The enhanced uptake and intracytoplasmic liposome delivery was confirmed by confocal fluorescence studies with Rhodamine-labeled liposomes. In vivo, no significant differences in pharmacokinetics and biodistribution were observed when PL-MLP was compared to FT-PL-MLP by the intravenous route. However, when liposomes were directly injected into the peritoneal cavity of mice with malignant ascites of J6456 Hi

  2. Enhanced digestion of waste activated sludge using microbial electrolysis cells at ambient temperature.

    PubMed

    Asztalos, Joseph R; Kim, Younggy

    2015-12-15

    This study examined the effects of the microbial electrolysis cell (MEC) reactions on anaerobic digestion of waste activated sludge from municipal wastewater treatment under ambient temperature conditions (22-23 °C). Two lab-scale digesters, a control anaerobic digester and an electrically-assisted digester (EAD - equipped with a MEC bioanode and cathode) were operated under three solids retention times (SRT = 7, 10 and 14 days) at 22.5 ± 0.5 °C. A numerical model was also built by including the MEC electrode reactions in Anaerobic Digestion Model No.1. In experiments, the EAD showed reduced concentration of acetic acid, propionic acid, n-butyric acid and iso-butyric acid. This improved performance of the EAD is thought to be achieved by direct oxidation of the short-chain fatty acids at the bioanode as well as indirect contribution of low acetic acid concentration to enhancing beta-oxidation. The VSS and COD removal was consistently higher in the EAD by 5-10% compared to the control digester for all SRT conditions at 22.5 ± 0.5 °C. When compared to mathematical model results, this additional COD removal in the EAD was equivalent to that which would be achieved with conventional digesters at mesophilic temperatures. The magnitude of electric current in the EAD was governed by the organic loading rate while conductivity and acetic acid concentration showed negligible effects on current generation. Very high methane content (∼95%) in the biogas from both the EAD and control digester implies that the waste activated sludge contained large amounts of lipids and other complex polymeric substances compared to primary sludge. PMID:26051356

  3. Autophagy activation and enhanced mitophagy characterize the Purkinje cells of pcd mice prior to neuronal death

    PubMed Central

    Chakrabarti, Lisa; Eng, Jeremiah; Ivanov, Nishi; Garden, Gwenn A; La Spada, Albert R

    2009-01-01

    Purkinje cells are a class of specialized neurons in the cerebellum, and are among the most metabolically active of all neurons, as they receive immense synaptic stimulation, and provide the only efferent output from the cerebellum. Degeneration of Purkinje cells is a common feature of inherited ataxias in humans and mice. To understand Purkinje neuron degeneration, investigators have turned to naturally occurring Purkinje cell degeneration phenotypes in mice to identify key regulatory proteins and cellular pathways. The Purkinje cell degeneration (pcd) mouse is a recessive mutant characterized by complete and dramatic post-natal, cell autonomous Purkinje neuron degeneration and death. As the basis of Purkinje cell death in pcd is unresolved, and contradictory data has emerged for the role of autophagy in Purkinje cell degeneration, we studied the mechanism of Purkinje cell death in pcd mice. BAX null status did not suppress Purkinje neuron death in pcd mice, indicating that classic apoptosis is not responsible for Purkinje cell loss. Interestingly, LC3 Western blot analysis and GFP-LC3 immunostaining of degenerating pcd cerebellum revealed activation of the autophagy pathway. Ultrastructural studies confirmed increased autophagy pathway activity in Purkinje cells, and yielded evidence for mitophagy, in agreement with LC3 immunoblotting of cerebellar fractions. As p62 levels were decreased in pcd cerebellum, our findings suggest that pcd Purkinje cell neurons can execute effective autophagy. However, our results support a role for dysregulated autophagy activation in pcd, and suggest that increased or aberrant mitophagy contributes to the Purkinje cell degeneration in pcd mice. PMID:19640278

  4. Rab5 is required in metastatic cancer cells for Caveolin-1-enhanced Rac1 activation, migration and invasion.

    PubMed

    Díaz, Jorge; Mendoza, Pablo; Ortiz, Rina; Díaz, Natalia; Leyton, Lisette; Stupack, Dwayne; Quest, Andrew F G; Torres, Vicente A

    2014-06-01

    Rab5 is a small GTPase that regulates early endosome trafficking and other cellular processes, including cell adhesion and migration. Specifically, Rab5 promotes Rac1 activation and cancer cell migration, but little is known about the upstream regulators of Rab5. We have previously shown that the scaffolding protein Caveolin-1 (CAV1) promotes Rac1 activation and migration of cancer cells. Here, we hypothesized that CAV1 stimulates Rab5 activation, leading to increased Rac1 activity and cell migration. Expression of CAV1 in B16-F10 mouse melanoma and HT-29(US) human colon adenocarcinoma cells increased the GTP loading of Rab5, whereas shRNA-mediated targeting of endogenous CAV1 in MDA-MB-231 breast cancer cells decreased Rab5-GTP levels. Accordingly, shRNA-mediated downregulation of Rab5 decreased CAV1-mediated Rac1 activation, cell migration and invasion in B16-F10 and HT-29(US) cells. Expression of CAV1 was accompanied by increased recruitment of Tiam1, a Rac1 guanine nucleotide exchange factor (GEF), to Rab5-positive early endosomes. Using the inhibitor NSC23766, Tiam1 was shown to be required for Rac1 activation and cell migration induced by CAV1 and Rab5. Mechanistically, we provide evidence implicating p85α (also known as PIK3R1), a Rab5 GTPase-activating protein (GAP), in CAV1-dependent effects, by showing that CAV1 recruits p85α, precluding p85α-mediated Rab5 inactivation and increasing cell migration. In summary, these studies identify a novel CAV1-Rab5-Rac1 signaling axis, whereby CAV1 prevents Rab5 inactivation, leading to increased Rac1 activity and enhanced tumor cell migration and invasion. PMID:24659799

  5. Regulation of Pancreatic β Cell Mass by Cross-Interaction between CCAAT Enhancer Binding Protein β Induced by Endoplasmic Reticulum Stress and AMP-Activated Protein Kinase Activity

    PubMed Central

    Matsuda, Tomokazu; Takahashi, Hiroaki; Mieda, Yusuke; Shimizu, Shinobu; Kawamoto, Takeshi; Matsuura, Yuki; Takai, Tomoko; Suzuki, Emi; Kanno, Ayumi; Koyanagi-Kimura, Maki; Asahara, Shun-ichiro; Bartolome, Alberto; Yokoi, Norihide; Inoue, Hiroshi; Ogawa, Wataru; Seino, Susumu; Kido, Yoshiaki

    2015-01-01

    During the development of type 2 diabetes, endoplasmic reticulum (ER) stress leads to not only insulin resistance but also to pancreatic beta cell failure. Conversely, cell function under various stressed conditions can be restored by reducing ER stress by activating AMP-activated protein kinase (AMPK). However, the details of this mechanism are still obscure. Therefore, the current study aims to elucidate the role of AMPK activity during ER stress-associated pancreatic beta cell failure. MIN6 cells were loaded with 5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide (AICAR) and metformin to assess the relationship between AMPK activity and CCAAT enhancer binding protein β (C/EBPβ) expression levels. The effect of C/EBPβ phosphorylation on expression levels was also investigated. Vildagliptin and metformin were administered to pancreatic beta cell-specific C/EBPβ transgenic mice to investigate the relationship between C/EBPβ expression levels and AMPK activity in the pancreatic islets. When pancreatic beta cells are exposed to ER stress, the accumulation of the transcription factor C/EBPβ lowers the AMP/ATP ratio, thereby decreasing AMPK activity. In an opposite manner, incubation of MIN6 cells with AICAR or metformin activated AMPK, which suppressed C/EBPβ expression. In addition, administration of the dipeptidyl peptidase-4 inhibitor vildagliptin and metformin to pancreatic beta cell-specific C/EBPβ transgenic mice decreased C/EBPβ expression levels and enhanced pancreatic beta cell mass in proportion to the recovery of AMPK activity. Enhanced C/EBPβ expression and decreased AMPK activity act synergistically to induce ER stress-associated pancreatic beta cell failure. PMID:26091000

  6. Messenger RNA encoding constitutively active Toll-like receptor 4 enhances effector functions of human T cells.

    PubMed

    Pato, A; Eisenberg, G; Machlenkin, A; Margalit, A; Cafri, G; Frankenburg, S; Merims, S; Peretz, T; Lotem, M; Gross, G

    2015-11-01

    Adoptive T cell therapy of cancer employs a large number of ex-vivo-propagated T cells which recognize their targets either by virtue of their endogenous T cell receptor (TCR) or via genetic reprogramming. However, both cell-extrinsic and intrinsic mechanisms often diminish the in-vivo potency of these therapeutic T cells, limiting their clinical efficacy and broader use. Direct activation of human T cells by Toll-like receptor (TLR) ligands induces T cell survival and proliferation, boosts the production of proinflammatory cytokines and augments resistance to regulatory T cell (Treg) suppression. Removal of the TLR ligand-binding region results in constitutive signalling triggered by the remaining cytosolic Toll/interleukin-1 receptor (TIR) domain. The use of such TIR domains therefore offers an ideal means for equipping anti-tumour T cells with the arsenal of functional attributes required for improving current clinical protocols. Here we show that constitutively active (ca)TLR-4 can be expressed efficiently in human T cells using mRNA electroporation. The mere expression of caTLR-4 mRNA in polyclonal CD8 and CD4 T cells induced the production of interferon (IFN)-γ, triggered the surface expression of CD25, CD69 and 4-1BB and up-regulated a panel of cytokines and chemokines. In tumour-infiltrating lymphocytes prepared from melanoma patients, caTLR-4 induced robust IFN-γ secretion in all samples tested. Furthermore, caTLR-4 enhanced the anti-melanoma cytolytic activity of tumour-infiltrating lymphocytes and augmented the secretion of IFN-γ, tumour necrosis factor (TNF)-α and granulocyte-macrophage colony-stimulating factor (GM-CSF) for at least 4 days post-transfection. Our results demonstrate that caTLR-4 is capable of exerting multiple T cell-enhancing effects and can potentially be used as a genetic adjuvant in adoptive cell therapy. PMID:26212048

  7. SG2NA enhances cancer cell survival by stabilizing DJ-1 and thus activating Akt

    SciTech Connect

    Tanti, Goutam Kumar Pandey, Shweta; Goswami, Shyamal K.

    2015-08-07

    SG2NA in association with striatin and zinedin forms a striatin family of WD-40 repeat proteins. This family of proteins functions as scaffold in different signal transduction pathways. They also act as a regulatory subunit of protein phosphatase 2A. We have shown that SG2NA which evolved first in the metazoan evolution among the striatin family members expresses different isoforms generated out of alternative splicing. We have also shown that SG2NA protects cells from oxidative stress by recruiting DJ-1 and Akt to mitochondria and membrane in the post-mitotic neuronal cells. DJ-1 is both cancer and Parkinson's disease related protein. In the present study we have shown that SG2NA protects DJ-1 from proteasomal degradation in cancer cells. Hence, downregulation of SG2NA reduces DJ-1/Akt colocalization in cancer cells resulting in the reduction of anchorage dependent and independent growth. Thus SG2NA enhances cancer cell survival. Reactive oxygen species enhances SG2NA, DJ-1 and Akt trimerization. Removal of the reactive oxygen species by N-acetyl-cysteine thus reduces cancer cell growth. - Highlights: • Reactive oxygen species (ROS) play potential role in cancer cell proliferation. • It enhances the association between DJ-1 and Akt mediated by SG2NA. • In cancer cells SG2NA stabilizes DJ-1 by inhibiting it from proteosomal degradation. • DJ-1 then activates Akt and cancer cells get their property of enhanced proliferation by sustained activation of Akt. • Further study on this field could lead to new target for cancer therapy.

  8. The bone marrow microenvironment enhances multiple myeloma progression by exosome-mediated activation of myeloid-derived suppressor cells

    PubMed Central

    Wang, Jinheng; De Veirman, Kim; De Beule, Nathan; Maes, Ken; De Bruyne, Elke; Van Valckenborgh, Els

    2015-01-01

    Exosomes, extracellular nanovesicles secreted by various cell types, modulate the bone marrow (BM) microenvironment by regulating angiogenesis, cytokine release, immune response, inflammation, and metastasis. Interactions between bone marrow stromal cells (BMSCs) and multiple myeloma (MM) cells play crucial roles in MM development. We previously reported that BMSC-derived exosomes directly promote MM cell growth, whereas the other possible mechanisms for supporting MM progression by these exosomes are still not clear. Here, we investigated the effect of BMSC-derived exosomes on the MM BM cells with specific emphasis on myeloid-derived suppressor cells (MDSCs). BMSC-derived exosomes were able to be taken up by MM MDSCs and induced their expansion in vitro. Moreover, these exosomes directly induced the survival of MDSCs through activating STAT3 and STAT1 pathways and increasing the anti-apoptotic proteins Bcl-xL and Mcl-1. Inhibition of these pathways blocked the enhancement of MDSC survival. Furthermore, these exosomes increased the nitric oxide release from MM MDSCs and enhanced their suppressive activity on T cells. Taken together, our results demonstrate that BMSC-derived exosomes activate MDSCs in the BM through STAT3 and STAT1 pathways, leading to increased immunosuppression which favors MM progression. PMID:26556857

  9. Enhanced cellular activities of polycaprolactone/alginate-based cell-laden hierarchical scaffolds for hard tissue engineering applications.

    PubMed

    Lee, HyeongJin; Kim, GeunHyung

    2014-09-15

    Biomedical scaffolds have been widely investigated because they are essential for support and promotion of cell adhesion, proliferation and differentiation in three-dimensional (3D) structures. An ideal scaffold should be highly porous to enable efficient nutrient and oxygen transfer and have a 3D structure that provides optimal micro-environmental conditions for the seeded cells to obtain homogeneous growth after a long culture period. In this study, new hierarchical osteoblast-like cell (MG-63)-laden scaffolds consisting of micro-sized struts/inter-layered micro-nanofibres and cell-laden hydrogel struts with mechanically stable and biologically superior properties were introduced. Poly(ethylene oxide) (PEO) was used as a sacrificial component to generate pores within the cell-laden hydrogel struts to attain a homogeneous cell distribution and rapid cell growth in the scaffold interior. The alginate-based cell-laden struts with PEO induced fast/homogeneous cell release, in contrast to nonporous cell-laden struts. Various weight fractions (0.5, 1, 2, 3 and 3.5 wt%) of PEO were used, of which 2 wt% PEO in the cell-laden strut resulted in the most appropriate cell release and enhanced biological activities (cell proliferation and calcium deposition), compared to nonporous cell-laden struts. PMID:24974244

  10. Targeting KIT on innate immune cells to enhance the antitumor activity of checkpoint inhibitors.

    PubMed

    Stahl, Maximilian; Gedrich, Richard; Peck, Ronald; LaVallee, Theresa; Eder, Joseph Paul

    2016-06-01

    Innate immune cells such as mast cells and myeloid-derived suppressor cells are key components of the tumor microenvironment. Recent evidence indicates that levels of myeloid-derived suppressor cells in melanoma patients are associated with poor survival to checkpoint inhibitors. This suggests that targeting both the innate and adaptive suppressive components of the immune system will maximize clinical benefit and elicit more durable responses in cancer patients. Preclinical data suggest that targeting signaling by the receptor tyrosine kinase KIT, particularly on mast cells, may modulate innate immune cell numbers and activity in tumors. Here, we review data highlighting the importance of the KIT signaling in regulating antitumor immune responses and the potential benefit of combining selective KIT inhibitors with immune checkpoint inhibitors. PMID:27349976

  11. Interluekin-12 enhances the function and anti-tumor activity in murine and human CD8+ T cells

    PubMed Central

    Rubinstein, Mark P.; Su, Ee Wern; Suriano, Samantha; Cloud, Colleen A.; Andrijauskaite, Kristina; Kesarwani, Pravin; Schwartz, Kristina M.; Williams, Katelyn; Johnson, C. Bryce; Li, Mingli; Scurti, Gina M.; Salem, Mohamed L.; Paulos, Chrystal M.; Garrett-Mayer, Elizabeth; Mehrotra, Shikhar; Cole, David J.

    2016-01-01

    Mouse CD8+ T cells conditioned with Interleukin (IL)-12 ex vivo mediate the potent regression of established melanoma when transferred into lymphodepleted mice. However, the quantitative and qualitative changes induced by IL-12 in the responding mouse CD8+ T cells have not been well defined. Moreover, the mechanisms by which IL-12-conditioning impacts human CD8+ T cells, and how such cells might be expanded prior to infusion into patients is not known. We found that ex vivo IL-12-conditioning of mouse CD8+ T cells led to a 10- to 100-fold increase in persistence and anti-tumor efficacy upon adoptive transfer into lymphodepleted mice. The enhancing effect of IL-12 was associated with maintenance of functional avidity. Importantly, in the context of ongoing ACT clinical trials, human CD8+ T cells genetically modified with a tyrosinase-specific T-cell receptor exhibited significantly enhanced functional activity when conditioned with IL-12 as indicated by heightened granzyme B expression and elevated peptide-specific CD107a degranulation. This effect was sustainable despite the 20 days of in vitro cellular expansion required to expand cells over 1,000-fold allowing adequate cell numbers for administration to cancer patients. Overall, these findings support the efficacy and feasibility of ex vivo IL-12-conditioning of TCR-modified human CD8+ T cells for adoptive transfer and cancer therapy. PMID:25676709

  12. Mechanism of Siglec-8-mediated Cell Death in IL-5-activated Eosinophils: Role for ROS-enhanced MEK/ERK Activation

    PubMed Central

    Kano, Gen; Almanan, Maha; Bochner, Bruce S.; Zimmermann, Nives

    2014-01-01

    Background Siglec-8 is expressed on human eosinophils, where its ligation induces cell death. Paradoxically, Siglec-8-mediated cell death is markedly enhanced by the presence of the activation and survival factor IL-5 and becomes independent of caspase activity. Objective In this report we investigate the mechanism of Siglec-8-mediated cell death in activated eosinophils. Methods Human peripheral blood eosinophils were treated with agonistic anti-Siglec-8 antibody and IL-5, and cell death was determined by flow cytometry and morphology. Phosphorylation of MAPK was determined by phospho-luminex, flow cytometry, and Western blotting. ROS accumulation was determined by dihydrorhodamine (DHR) fluorescence. Results Co-stimulation with anti-Siglec-8 and IL-5 significantly increased the rate and proportion of cells dying by necrosis accompanied by granule release as compared to stimulation with anti-Siglec-8 alone, in which apoptosis predominated. Together with the caspase-independent mode of cell death in co-stimulated cells, these findings suggest the activation of a specific and distinct biochemical pathway of cell death during anti-Siglec-8/IL-5 co-stimulation. Phosphorylation of ERK1/2 and MEK1 was significantly enhanced and sustained in co42 stimulated cells compared to cells stimulated with IL-5 alone; anti-Siglec-8 alone did not cause ERK1/2 phosphorylation. MEK1 inhibitors blocked anti-Siglec-8/IL-5-induced cell death. ROS accumulation was induced by Siglec-8 ligation in a MEK-independent manner. In contrast, ROS inhibitor prevented the anti-Siglec-8/IL-5-induced enhancement of ERK phosphorylation and cell death. Exogenous ROS mimicked stimulation by anti-Siglec-8 and was sufficient to induce enhanced cell death in IL-5-treated cells. Collectively, these data suggest that the enhancement of ERK phosphorylation is downstream of ROS generation. Conclusions In activated eosinophils, ligation of Siglec-8 leads to ROS-dependent enhancement of IL-5-induced ERK

  13. Coating Solid Lipid Nanoparticles with Hyaluronic Acid Enhances Antitumor Activity against Melanoma Stem-like Cells

    PubMed Central

    Shen, Hongxin; Shi, Sanjun; Zhang, Zhirong; Gong, Tao; Sun, Xun

    2015-01-01

    Successful anticancer chemotherapy requires targeting tumors efficiently and further potential to eliminate cancer stem cell (CSC) subpopulations. Since CD44 is present on many types of CSCs, and it binds specially to hyaluronic acid (HA), we tested whether coating solid lipid nanoparticles with hyaluronan (HA-SLNs)would allow targeted delivery of paclitaxel (PTX) to CD44-overexpressing B16F10 melanoma cells. First, we developed a model system based on melanoma stem-like cells for experiments in vitro and in mouse xenografts, and we showed that cells expressing high levels of CD44 (CD44+) displayed a strong CSC phenotype while cells expressing low levels of CD44 (CD44-) did not. This phenotype included sphere and colony formation, higher proportion of side population cells, expression of CSC-related markers (ALDH, CD133, Oct-4) and tumorigenicity in vivo. Next we showed that administering PTX-loaded HA-SLNs led to efficient intracellular delivery of PTX and induced substantial apoptosis in CD44+ cells in vitro. In the B16F10-CD44+ lung metastasis model, PTX-loaded HA-SLNs targeted the tumor-bearing lung tissues well and subsequently exhibited significant antitumor effects with a relative low dose of PTX, which provided significant survival benefit without evidence of adverse events. These findings suggest that the HA-SLNs targeting system shows promise for enhancing cancer therapy. PMID:25897340

  14. CCL21/IL21-armed oncolytic adenovirus enhances antitumor activity against TERT-positive tumor cells.

    PubMed

    Li, Yang; Li, Yi-Fei; Si, Chong-Zhan; Zhu, Yu-Hui; Jin, Yan; Zhu, Tong-Tong; Liu, Ming-Yuan; Liu, Guang-Yao

    2016-07-15

    Multigene-armed oncolytic adenoviruses are capable of efficiently generating a productive antitumor immune response. The chemokine (C-C motif) ligand 21 (CCL21) binds to CCR7 on naïve T cells and dendritic cells (DCs) to promote their chemoattraction to the tumor and resultant antitumor activity. Interleukin 21 (IL21) promotes survival of naïve T cells while maintaining their CCR7 surface expression, which increases their capacity to transmigrate in response to CCL21 chemoattraction. IL21 is also involved in NK cell differentiation and B cell activation and proliferation. The generation of effective antitumor immune responses is a complex process dependent upon coordinated interactions of various subsets of effector cells. Using the AdEasy system, we aimed to construct an oncolytic adenovirus co-expressing CCL21 and IL21 that could selectively replicate in TERTp-positive tumor cells (Ad-CCL21-IL21 virus). The E1A promoter of these oncolytic adenoviruses was replaced by telomerase reverse transcriptase promoter (TERTp). Ad-CCL21-IL21 was constructed from three plasmids, pGTE-IL21, pShuttle-CMV-CCL21 and AdEasy-1 and was homologously recombined and propagated in the Escherichia coli strain BJ5183 and the packaging cell line HEK-293, respectively. Our results showed that our targeted and armed oncolytic adenoviruses Ad-CCL21-IL21 can induce apoptosis in TERTp-positive tumor cells to give rise to viral propagation, in a dose-dependent manner. Importantly, we confirm that these modified oncolytic adenoviruses do not replicate efficiently in normal cells even under high viral loads. Additionally, we investigate the role of Ad-CCL21-IL21 in inducing antitumor activity and tumor specific cytotoxicity of CTLs in vitro. This study suggests that Ad-CCL21-IL21 is a promising targeted tumor-specific oncolytic adenovirus. PMID:27157859

  15. Natural killer cell activation enhances immune pathology and promotes chronic infection by limiting CD8+ T-cell immunity.

    PubMed

    Lang, Philipp A; Lang, Karl S; Xu, Haifeng C; Grusdat, Melanie; Parish, Ian A; Recher, Mike; Elford, Alisha R; Dhanji, Salim; Shaabani, Namir; Tran, Charles W; Dissanayake, Dilan; Rahbar, Ramtin; Ghazarian, Magar; Brüstle, Anne; Fine, Jason; Chen, Peter; Weaver, Casey T; Klose, Christoph; Diefenbach, Andreas; Häussinger, Dieter; Carlyle, James R; Kaech, Susan M; Mak, Tak W; Ohashi, Pamela S

    2012-01-24

    Infections with HIV, hepatitis B virus, and hepatitis C virus can turn into chronic infections, which currently affect more than 500 million patients worldwide. It is generally thought that virus-mediated T-cell exhaustion limits T-cell function, thus promoting chronic disease. Here we demonstrate that natural killer (NK) cells have a negative impact on the development of T-cell immunity by using the murine lymphocytic choriomeningitis virus. NK cell-deficient (Nfil3(-/-), E4BP4(-/-)) mice exhibited a higher virus-specific T-cell response. In addition, NK cell depletion caused enhanced T-cell immunity in WT mice, which led to rapid virus control and prevented chronic infection in lymphocytic choriomeningitis virus clone 13- and reduced viral load in DOCILE-infected animals. Further experiments showed that NKG2D triggered regulatory NK cell functions, which were mediated by perforin, and limited T-cell responses. Therefore, we identified an important role of regulatory NK cells in limiting T-cell immunity during virus infection. PMID:22167808

  16. Enhancing the Function of CD34+ Cells by Targeting Plasminogen Activator Inhibitor-1

    PubMed Central

    Hazra, Sugata; Stepps, Valerie; Bhatwadekar, Ashay D.; Caballero, Sergio; Boulton, Michael E.; Higgins, Paul J.; Nikonova, Elena V.; Pepine, Carl J.; Thut, Catherine; Finney, Eva M.; Stone, David J.; Bartelmez, Stephen H.; Grant, Maria B.

    2013-01-01

    Previously, we showed that transient inhibition of TGF- β1 resulted in correction of key aspects of diabetes-induced CD34+ cell dysfunction. In this report, we examine the effect of transient inhibition of plasminogen activator inhibitor-1 (PAI-1), a major gene target of TGF-β1 activation. Using gene array studies, we examined CD34+ cells isolated from a cohort of longstanding diabetic individuals, free of microvascular complications despite suboptimal glycemic control, and found that the cells exhibited reduced transcripts of both TGF-β1 and PAI-1 compared to age, sex, and degree of glycemic control-matched diabetic individuals with microvascular complications. CD34+ cells from diabetic subjects with microvascular complications consistently exhibited higher PAI-1 mRNA than age-matched non-diabetic controls. TGF- β1 phosphorodiamidate morpholino oligo (PMO) reduced PAI-1 mRNA in diabetic (p<0.01) and non-diabetic (p=0.05) CD34+ cells. To reduce PAI-1 in human CD34+ cells, we utilized PAI-1 siRNA, lentivirus expressing PAI-1 shRNA or PAI-1 PMO. We found that inhibition of PAI-1 promoted CD34+ cell proliferation and migration in vitro, likely through increased PI3(K) activity and increased cGMP production. Using a retinal ischemia reperfusion injury model in mice, we observed that recruitment of diabetic CD34+ cells to injured acellular retinal capillaries was greater after PAI-1-PMO treatment compared with control PMO-treated cells. Targeting PAI-1 offers a promising therapeutic strategy for restoring vascular reparative function in defective diabetic progenitors. PMID:24223881

  17. Aspirin and atenolol enhance metformin activity against breast cancer by targeting both neoplastic and microenvironment cells.

    PubMed

    Talarico, Giovanna; Orecchioni, Stefania; Dallaglio, Katiuscia; Reggiani, Francesca; Mancuso, Patrizia; Calleri, Angelica; Gregato, Giuliana; Labanca, Valentina; Rossi, Teresa; Noonan, Douglas M; Albini, Adriana; Bertolini, Francesco

    2016-01-01

    Metformin can induce breast cancer (BC) cell apoptosis and reduce BC local and metastatic growth in preclinical models. Since Metformin is frequently used along with Aspirin or beta-blockers, we investigated the effect of Metformin, Aspirin and the beta-blocker Atenolol in several BC models. In vitro, Aspirin synergized with Metformin in inducing apoptosis of triple negative and endocrine-sensitive BC cells, and in activating AMPK in BC and in white adipose tissue (WAT) progenitors known to cooperate to BC progression. Both Aspirin and Atenolol added to the inhibitory effect of Metformin against complex I of the respiratory chain. In both immune-deficient and immune-competent preclinical models, Atenolol increased Metformin activity against angiogenesis, local and metastatic growth of HER2+ and triple negative BC. Aspirin increased the activity of Metformin only in immune-competent HER2+ BC models. Both Aspirin and Atenolol, when added to Metformin, significantly reduced the endothelial cell component of tumor vessels, whereas pericytes were reduced by the addition of Atenolol but not by the addition of Aspirin. Our data indicate that the addition of Aspirin or of Atenolol to Metformin might be beneficial for BC control, and that this activity is likely due to effects on both BC and microenvironment cells. PMID:26728433

  18. Aspirin and atenolol enhance metformin activity against breast cancer by targeting both neoplastic and microenvironment cells

    PubMed Central

    Talarico, Giovanna; Orecchioni, Stefania; Dallaglio, Katiuscia; Reggiani, Francesca; Mancuso, Patrizia; Calleri, Angelica; Gregato, Giuliana; Labanca, Valentina; Rossi, Teresa; Noonan, Douglas M.; Albini, Adriana; Bertolini, Francesco

    2016-01-01

    Metformin can induce breast cancer (BC) cell apoptosis and reduce BC local and metastatic growth in preclinical models. Since Metformin is frequently used along with Aspirin or beta-blockers, we investigated the effect of Metformin, Aspirin and the beta-blocker Atenolol in several BC models. In vitro, Aspirin synergized with Metformin in inducing apoptosis of triple negative and endocrine-sensitive BC cells, and in activating AMPK in BC and in white adipose tissue (WAT) progenitors known to cooperate to BC progression. Both Aspirin and Atenolol added to the inhibitory effect of Metformin against complex I of the respiratory chain. In both immune-deficient and immune-competent preclinical models, Atenolol increased Metformin activity against angiogenesis, local and metastatic growth of HER2+ and triple negative BC. Aspirin increased the activity of Metformin only in immune-competent HER2+ BC models. Both Aspirin and Atenolol, when added to Metformin, significantly reduced the endothelial cell component of tumor vessels, whereas pericytes were reduced by the addition of Atenolol but not by the addition of Aspirin. Our data indicate that the addition of Aspirin or of Atenolol to Metformin might be beneficial for BC control, and that this activity is likely due to effects on both BC and microenvironment cells. PMID:26728433

  19. ENHANCEMENT OF NATURAL KILLER CELL ACTIVITY AND INTERFERON PRODUCTION BY MANGANESE IN YOUNG MICE

    EPA Science Inventory

    The effect that MnCl2 has on murine splenic natural killer (NK) cell activity was investigated in infant (10 days old), pre-weanling (18 days old) and weanling (24 days old) C57BL/6J mice. Both MnCl2 and Poly I:C caused elevations in serum interferon levels. Time-course studies r...

  20. Up‐modulation of interferon‐γ mediates the enhancement of spontanous cytotoxicity in prolactin‐activated natural killer cells

    PubMed Central

    Matera, L; Contarini, M; Bellone, G; Forno, B; Biglino, A

    1999-01-01

    Prolactin (PRL) has been shown to participate in lymphocyte activation. In particular, the constitutive natural killer (NK) and the lymphokine‐activated killer (LAK) cytotoxicity of CD56+ CD16+ cells is increased by its physiological to supraphysiological concentrations. As PRL has been shown to up‐regulate the production of interferon‐γ (IFN‐γ) by peripheral blood mononuclear cells, we studied its effect on IFN‐γ production by NK cells as a possible mechanism of autocrine activation of cytotoxicity. Released and intracellular IFN‐γ, as well as IFN‐γ mRNA expression, were increased by pituitary and recombinant human PRL, which stimulated optimal NK and LAK cytotoxicity. Treatment with blocking anti‐IFN‐γ monoclonal antibody (mAb) selectively affected PRL‐increased killing of K562 targets, demonstrating that PRL‐mediated enhancement of spontaneous cytotoxicity depends, at least in part, on up‐regulation of IFN‐γ. PMID:10583598

  1. Tanshinone-1 induces tumor cell killing, enhanced by inhibition of secondary activation of signaling networks

    PubMed Central

    Xu, L; Feng, J-M; Li, J-X; Zhu, J-M; Song, S-S; Tong, L-J; Chen, Y; Yang, X-Y; Shen, Y-Y; Lian, F-L; Li, Y-P; Lin, D-H; Ding, J; Miao, Z-H

    2013-01-01

    Tumor multidrug resistance (MDR) can result from overexpression of drug transporters and deregulation of cellular signaling transduction. New agents and strategies are required for overcoming MDR. Here, we report that tanshinone-1, a bioactive ingredient in traditional Chinese medicine, directly killed MDR tumor cells and their corresponding parental cells, which was potentiated by inhibition of secondary activation of signaling networks. Tanshinone-1 was slightly more potent at inducing cytotoxicity and apoptosis in MDR cells than in corresponding parental cells. Tanshinone-1-induced MDR cell killing was independent of the function and expression of drug transporters but was partially correlated with the phosphatase-dependent reduction of phospho-705-Stat3, which secondarily activated p38-, AKT-, and ERK-involved signaling networks. Cotreatments with p38, AKT, and ERK inhibitors potentiated the anti-MDR effects of tanshinone-1. Our study presents a model for MDR cell killing using a compound of natural origin. This model could lead to new therapeutic strategies for targeting signaling network(s) in MDR cancers as well as new strategies for multitarget design. PMID:24201804

  2. Neutrophil elastase enhances the proliferation and decreases apoptosis of leukemia cells via activation of PI3K/Akt signaling

    PubMed Central

    YANG, RONG; ZHONG, LIANG; YANG, XIAO-QUN; JIANG, KAI-LING; LI, LIU; SONG, HAO; LIU, BEI-ZHONG

    2016-01-01

    Neutrophil elastase (NE) is a neutrophil-derived serine proteinase with specificity for a broad range of substrates. NE has been reported to be associated with the pathogenesis of several conditions, particularly that of pulmonary diseases. Previous studies have shown that NE can cleave the pro-myelocyte - retinoic acid receptor-alpha chimeric protein and is important for the development of acute pro-myelocytic leukemia. To further elucidate the role of NE in acute pro-myelocytic leukemia, the present study successfully constructed a lentiviral vector containing the NE gene (LV5-NE), which was transfected into NB4 acute pro-myelocytic leukemia cells. The effects of NE overexpression in NB4 cells were detected using a Cell-Counting Kit-8 assay, flow cytometry and western blot analysis. The results showed that NE significantly promoted the proliferation of NB4 cells, inhibited cell apoptosis and apoptotic signaling, and led the activation of Akt. In an additional experiment, a vector expressing small hairpin RNA targeting NE was constructed to assess the effects of NE knockdown in U937 cells. Western blot analysis revealed that apoptotic signaling was increased, while Akt activation was decreased following silencing of NE. The results of the present study may indicate that NE activates the phosphoinositide-3 kinase/Akt signaling pathway in leukemia cells to inhibit apoptosis and enhance cell proliferation, and may therefore represent a molecular target for the treatment of pro-myelocytic leukemia. PMID:27035679

  3. Expression of the platelet-activating factor receptor enhances benzyl isothiocyanate-induced apoptosis in murine and human melanoma cells.

    PubMed

    Sahu, Ravi Prakash

    2015-07-01

    Melanoma cells often express platelet-activating factor receptor (PAF-R), which has been demonstrated to increase metastatic behavior. However, the effect of PAF-R on the responsiveness of melanoma to naturally occurring cytotoxic agents remains to be elucidated. The present study aimed to determine the relative cytotoxicity and mechanism of benzyl isothiocyanate (BITC), a component of cruciferous vegetables, in melanoma cells expressing PAF-R. To evaluate the importance of PAF-R signaling in melanoma cell growth, PAF-R-negative murine B16F10 cells were transduced with a retrovirus containing the cDNA for PAF-R to generate cells stably expressing PAF-R (B16-PAF-R) or an empty vector (MSCV) to generate PAF-R-deficient B16-MSCV control cells. Activation of PAF-R, using the PAF-R agonist, 1-hexadecyl-2-N-methylcarbamoyl-3-glycerophosphocholine, induced an increase in the proliferation of B16-PAF-R cells compared with the B16-MSCV cells. Reverse transcription quantitative polymerase chain reaction revealed the presence of functional PAF-R in human melanoma SK23MEL cells, but not in SK5MEL cells. The present study investigated the effect of BITC treatments on the survival of murine and human melanoma cells, in the presence or absence of functional PAF-R. The results revealed that treatment with BITC decreased the survival rate of the PAF-R-positive and negative murine and human melanoma cells. However, the expression of PAF-R substantially augmented BITC-mediated cytotoxicity in the PAF-R-positive cells at lower concentrations compared with the PAF-R-negative cells. In order to determine the underlying mechanism, flow cytometric analysis was used, which demonstrated a significant increase in the generation of reactive oxygen species (ROS) in the B16-PAF-R cells compared with the B16-MSCV cells, which enhanced apoptosis by BITC, as measured by increased caspase-3/7 luminescence. Notably, the BITC-mediated decreased cell survival rate, increased ROS and increased

  4. On involvement of transcription factors nuclear factor kappa-light-chain-enhancer of activated B cells, activator protein-1 and signal transducer and activator of transcription-3 in photodynamic therapy-induced death of crayfish neurons and satellite glial cells.

    PubMed

    Berezhnaya, Elena; Neginskaya, Marya; Kovaleva, Vera; Sharifulina, Svetlana; Ischenko, Irina; Komandirov, Maxim; Rudkovskii, Mikhail; Uzdensky, Anatoly B

    2015-07-01

    Photodynamic therapy (PDT) is currently used in the treatment of brain tumors. However, not only malignant cells but also neighboring normal neurons and glial cells are damaged during PDT. In order to study the potential role of transcription factors-nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), activator protein (AP-1), and signal transducer and activator of transcription-3 (STAT-3)-in photodynamic injury of normal neurons and glia, we photosensitized the isolated crayfish mechanoreceptor consisting of a single sensory neuron enveloped by glial cells. Application of different inhibitors and activators showed that transcription factors NF-κB (inhibitors caffeic acid phenethyl ester and parthenolide, activator betulinic acid), AP-1 (inhibitor SR11302), and STAT-3 (inhibitors stattic and cucurbitacine) influenced PDT-induced death and survival of neurons and glial cells in different ways. These experiments indicated involvement of NF-κB in PDT-induced necrosis of neurons and apoptosis of glial cells. However, in glial cells, it played the antinecrotic role. AP-1 was not involved in PDT-induced necrosis of neurons and glia, but mediated glial apoptosis. STAT-3 was involved in PDT-induced apoptosis of glial cells and necrosis of neurons and glia. Therefore, signaling pathways that regulate cell death and survival in neurons and glial cells are different. Using various inhibitors or activators of transcription factors, one can differently influence the sensitivity and resistance of neurons and glial cells to PDT. PMID:26160345

  5. On involvement of transcription factors nuclear factor kappa-light-chain-enhancer of activated B cells, activator protein-1 and signal transducer and activator of transcription-3 in photodynamic therapy-induced death of crayfish neurons and satellite glial cells

    NASA Astrophysics Data System (ADS)

    Berezhnaya, Elena; Neginskaya, Marya; Kovaleva, Vera; Sharifulina, Svetlana; Ischenko, Irina; Komandirov, Maxim; Rudkovskii, Mikhail; Uzdensky, Anatoly B.

    2015-07-01

    Photodynamic therapy (PDT) is currently used in the treatment of brain tumors. However, not only malignant cells but also neighboring normal neurons and glial cells are damaged during PDT. In order to study the potential role of transcription factors-nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), activator protein (AP-1), and signal transducer and activator of transcription-3 (STAT-3)-in photodynamic injury of normal neurons and glia, we photosensitized the isolated crayfish mechanoreceptor consisting of a single sensory neuron enveloped by glial cells. Application of different inhibitors and activators showed that transcription factors NF-κB (inhibitors caffeic acid phenethyl ester and parthenolide, activator betulinic acid), AP-1 (inhibitor SR11302), and STAT-3 (inhibitors stattic and cucurbitacine) influenced PDT-induced death and survival of neurons and glial cells in different ways. These experiments indicated involvement of NF-κB in PDT-induced necrosis of neurons and apoptosis of glial cells. However, in glial cells, it played the antinecrotic role. AP-1 was not involved in PDT-induced necrosis of neurons and glia, but mediated glial apoptosis. STAT-3 was involved in PDT-induced apoptosis of glial cells and necrosis of neurons and glia. Therefore, signaling pathways that regulate cell death and survival in neurons and glial cells are different. Using various inhibitors or activators of transcription factors, one can differently influence the sensitivity and resistance of neurons and glial cells to PDT.

  6. TIMP-2 Modulates VEGFR-2 Phosphorylation and Enhances Phosphodiesterase Activity in Endothelial Cells

    PubMed Central

    Lee, Seo-Jin; Tsang, Patricia; Diaz, Tere; Wei, Bei-yang; Stetler-Stevenson, William George

    2010-01-01

    In the present study we examine the effects of tissue inhibitor of metalloproteinases-2 (TIMP-2) on the phosphorylation status of specific phosphotyrosine residues on the vascular endothelial cell growth factor receptor-2 (VEGFR-2) cytoplasmic tail and examine the effects on associated downstream signaling pathways. In order to focus on metalloproteinase-independent mechanisms, we utilized the TIMP-2 analog known as Ala+TIMP-2 that is deficient in matrix metalloproteinase (MMP) inhibitory activity. Our experiments are designed to compare the effects of VEGF-A stimulation with or without Ala+TIMP-2 pretreatment, as well as basal responses in human microvascular endothelial cells. Our results show that Ala+TIMP-2 selectively alters the phosphorylation pattern of VEGFR-2 following VEGF-A stimulation and disrupts the downstream activation of PLC-γ, Ca+2 flux, Akt, and eNOS, as well as decreasing cGMP levels. Moreover, we observed an Ala+TIMP-2-induced reduction in cGMP levels typically elevated by exogenous NO donors implicating Ala+TIMP-2 in the direct activation of an isobutylmethylxanthine (IBMX)-sensitive cGMP phosphodiesterase activity. TIMP-2 suppression of endothelial mitogenesis and angiogenesis involves at least two mechanisms, one mediated by protein tyrosine phosphatase inhibition of VEGFR-2 activation and downstream signaling and a second mechanism involving direct activation of an IBMX-sensitive phosphodiesterase activity. PMID:20084057

  7. Tetrandrine identified in a small molecule screen to activate mesenchymal stem cells for enhanced immunomodulation

    PubMed Central

    Yang, Zijiang; Concannon, John; Ng, Kelvin S.; Seyb, Kathleen; Mortensen, Luke J.; Ranganath, Sudhir; Gu, Fangqi; Levy, Oren; Tong, Zhixiang; Martyn, Keir; Zhao, Weian; Lin, Charles P.; Glicksman, Marcie A.; Karp, Jeffrey M.

    2016-01-01

    Pre-treatment or priming of mesenchymal stem cells (MSC) prior to transplantation can significantly augment the immunosuppressive effect of MSC-based therapies. In this study, we screened a library of 1402 FDA-approved bioactive compounds to prime MSC. We identified tetrandrine as a potential hit that activates the secretion of prostaglandin E2 (PGE2), a potent immunosuppressive agent, by MSC. Tetrandrine increased MSC PGE2 secretion through the NF-κB/COX-2 signaling pathway. When co-cultured with mouse macrophages (RAW264.7), tetrandrine-primed MSC attenuated the level of TNF-α secreted by RAW264.7. Furthermore, systemic transplantation of primed MSC into a mouse ear skin inflammation model significantly reduced the level of TNF-α in the inflamed ear, compared to unprimed cells. Screening of small molecules to pre-condition cells prior to transplantation represents a promising strategy to boost the therapeutic potential of cell therapy. PMID:27457881

  8. Tetrandrine identified in a small molecule screen to activate mesenchymal stem cells for enhanced immunomodulation.

    PubMed

    Yang, Zijiang; Concannon, John; Ng, Kelvin S; Seyb, Kathleen; Mortensen, Luke J; Ranganath, Sudhir; Gu, Fangqi; Levy, Oren; Tong, Zhixiang; Martyn, Keir; Zhao, Weian; Lin, Charles P; Glicksman, Marcie A; Karp, Jeffrey M

    2016-01-01

    Pre-treatment or priming of mesenchymal stem cells (MSC) prior to transplantation can significantly augment the immunosuppressive effect of MSC-based therapies. In this study, we screened a library of 1402 FDA-approved bioactive compounds to prime MSC. We identified tetrandrine as a potential hit that activates the secretion of prostaglandin E2 (PGE2), a potent immunosuppressive agent, by MSC. Tetrandrine increased MSC PGE2 secretion through the NF-κB/COX-2 signaling pathway. When co-cultured with mouse macrophages (RAW264.7), tetrandrine-primed MSC attenuated the level of TNF-α secreted by RAW264.7. Furthermore, systemic transplantation of primed MSC into a mouse ear skin inflammation model significantly reduced the level of TNF-α in the inflamed ear, compared to unprimed cells. Screening of small molecules to pre-condition cells prior to transplantation represents a promising strategy to boost the therapeutic potential of cell therapy. PMID:27457881

  9. Stretch-induced human myometrial cytokines enhance immune cell recruitment via endothelial activation

    PubMed Central

    Lee, Yu-Hui; Shynlova, Oksana; Lye, Stephen J

    2015-01-01

    Spontaneous term labour is associated with amplified inflammatory events in the myometrium including cytokine production and leukocyte infiltration; however, potential mechanisms regulating such events are not fully understood. We hypothesized that mechanical stretch of the uterine wall by the growing fetus facilitates peripheral leukocyte extravasation into the term myometrium through the release of various cytokines by uterine myocytes. Human myometrial cells (hTERT-HM) were subjected to static mechanical stretch; stretch-conditioned media was collected and analysed using 48-plex Luminex assay and ELISA. Effect of stretch-conditioned media on cell adhesion molecule expression of human uterine microvascular endothelial cells (UtMVEC-Myo) was detected by quantitative polymerase chain reaction (qPCR) and flow cytometry; functional assays testing leukocyte–endothelial interactions: adhesion of leukocytes to endothelial cells and transendothelial migration of calcein-labelled primary human neutrophils as well as migration of THP-1 monocytic cells were assessed by fluorometry. The current in vitro study demonstrated that mechanical stretch (i) directly induces secretion of multiple cytokines and chemokines by hTERT-HM cells (IL-6, CXCL8, CXCL1, migration inhibitory factor (MIF), VEGF, G-CSF, IL-12p70, bFGF and platelet-derived growth factor subunit B (PDGF-bb), P<0.05); stretch-induced cytokines (ii) enhance leukocyte adhesion to the endothelium of the surrounding uterine microvasculature by (iii) inducing the expression of endothelial cell adhesion molecules and (iv) directing the transendothelial migration of peripheral leukocytes. (vi) Chemokine-neutralizing antibodies and broad-spectrum chemokine inhibitor block leukocyte migration. Our data provide a proof of mechanical regulation for leukocyte recruitment from the uterine blood vessels to the myometrium, suggesting a putative mechanism for the leukocyte infiltrate into the uterus during labour and postpartum

  10. Development of Genetically Modified Chinese Hamster Ovary Host Cells for the Enhancement of Recombinant Tissue Plasminogen Activator Expression

    PubMed Central

    Rahimpour, Azam; Ahani, Roshanak; Najaei, Azita; Adeli, Ahmad; Barkhordari, Farzaneh; Mahboudi, Fereidoun

    2016-01-01

    Background Chinese hamster ovary (CHO) cells are the most commonly used host system for the expression of high quality recombinant proteins. However, the development of stable, high-yielding CHO cell lines is a major bottleneck in the industrial manufacturing of therapeutic proteins. Therefore, different strategies such as the generation of more efficient expression vectors and establishment of genetically engineered host cells have been employed to increase the efficiency of cell line development. In order to examine the possibility of generating improved CHO host cells, cell line engineering approaches were developed based on ceramide transfer protein (CERT), and X-box binding protein 1s (XBP1s). Methods CHO cells were transfected with CERT S132A, a mutant variant of CERT which is resistant to phosphorylation, or XBP1s expression plasmids, and then stable cell pools were generated. Transient expression of t-PA was examined in engineered cell pools in comparison to un-modified CHO host cells. Results Overexpression of CERT S132A led to the enhancement of recombinant tissue plasminogen activator (t-PA) expression in transient expression by 50%. On the other hand, it was observed that the ectopic expression of the XBP1s, did not improve the t-PA expression level. Conclusion The results obtained in this study indicate successful development of the improved CHO host cells through CERT S132A overexpression. PMID:27547109

  11. Ribavirin and alpha interferon enhance death receptor-mediated apoptosis and caspase activation in human hepatoma cells.

    PubMed

    Schlosser, Stephan F; Schuler, Markus; Berg, Christoph P; Lauber, Kirsten; Schulze-Osthoff, Klaus; Schmahl, Friedrich Wilhelm; Wesselborg, Sebastian

    2003-06-01

    The molecular mechanisms underlying the clinical effects of alpha interferon (IFN) and ribavirin are not understood. Elimination of infected cells occurs in part by cytotoxic T lymphocytes (CTLs) expressing CD95 ligand and thereby attacking target cells which are positive for the death receptor CD95. Since many viruses have evolved mechanisms to inhibit apoptosis, the opposite, namely, promotion of apoptosis, could be a strategy to strengthen the host antiviral response. In the present study, we have asked whether the antiviral substances IFN and ribavirin could support CD95-mediated apoptosis by interfering with the activation of caspases, a family of proteases known for their essential role in apoptosis. HepG2 cells, stimulated with the agonistic anti-CD95 antibody, served as a minimal model to mimic the CD95 stimulation occurring during a CTL attack of target cells in vivo. Apoptosis was quantitated by flow cytometric detection of hypodiploid nuclei. Caspase activity was measured by cytofluorometry, immunocytochemistry, and immunoblot analysis. IFN and ribavirin sensitized HepG2 cells for CD95-mediated apoptosis. This effect was correlated with an increase in CD95-mediated caspase activation and enhanced cleavage of the caspase substrate poly(ADP-ribose) polymerase. Furthermore, the positive effect on CD95-mediated caspase activation by IFN and ribavirin was confirmed by immunocytochemistry for activated caspase-3 and by immunoblot detection of activated caspase-3, caspase-7, and caspase-8. Our data demonstrate that the antiviral substances IFN and ribavirin are able to sensitize for CD95-mediated apoptosis. IFN and ribavirin also enhance CD95-mediated caspase activation, which might in part be responsible for the apoptosis-promoting effect of these antiviral compounds. PMID:12760867

  12. A novel adjuvant Ling Zhi-8 enhances the efficacy of DNA cancer vaccine by activating dendritic cells.

    PubMed

    Lin, Chi-Chen; Yu, Yen-Ling; Shih, Chia-Chiao; Liu, Ko-Jiunn; Ou, Keng-Liang; Hong, Ling-Zong; Chen, Jody D C; Chu, Ching-Liang

    2011-07-01

    DNA vaccine has been suggested to use in cancer therapy, but the efficacy remains to be improved. The immunostimulatory effect of a fungal immunomodulatory protein Ling Zhi-8 (LZ-8) isolated from Ganoderma lucidum has been reported. In this study, we tested the adjuvanticity of LZ-8 for HER-2/neu DNA vaccine against p185(neu) expressing tumor MBT-2 in mice. We found that recombinant LZ-8 stimulated mouse bone marrow-derived dendritic cells (DCs) via TLR4 and its stimulatory effect was not due to any microbe contaminant. In addition, LZ-8 enhanced the ability of DCs to induce antigen-specific T cell activation in vitro and in a subunit vaccine model in vivo. Surprisingly, LZ-8 cotreatment strongly improved the therapeutic effect of DNA vaccine against MBT-2 tumor in mice. This increase in antitumor activity was attributed to the enhancement of vaccine-induced Th1 and CTL responses. Consistent with the results from DCs, the promoting effect of LZ-8 on DNA vaccine was diminished when the MBT-2 tumor cells were grown in TLR4 mutant mice. Thus, we concluded that LZ-8 may be a promising adjuvant to enhance the efficacy of DNA vaccine by activating DCs via TLR4. PMID:21499904

  13. Indomethacin Analogues that Enhance Doxorubicin Cytotoxicity in Multidrug Resistant Cells without Cox Inhibitory Activity.

    PubMed

    Arisawa, Mitsuhiro; Kasaya, Yayoi; Obata, Tohru; Sasaki, Takuma; Ito, Mika; Abe, Hiroshi; Ito, Yoshihiro; Yamano, Akihito; Shuto, Satoshi

    2011-05-12

    Conformationally restricted indomethacin analogues were designed and prepared from the corresponding 2-substituted indoles, which were synthesized by a one-pot isomerization/enamide-ene metathesis as the key reaction. Conformational analysis by calculations, NMR studies, and X-ray crystallography suggested that these analogues were conformationally restricted in the s-cis or the s-trans form due to the 2-substituent as expected. Their biological activities on cyclooxygenase-1 (COX-1) inhibition, cyclooxygenase-2 (COX-2) inhibition, and modulation of MRP-1-mediated multidrug resistance (MDR) are described. Some of these indomethacin analogues enhanced doxorubicin cytotoxicity, although they do not have any COX inhibitory activity, which suggests that the MDR-modulating effect of an NSAID can be unassociated with its COX-inhibitory activity. This may be an entry into the combination chemotherapy of doxorubicin with a MDR modulator. PMID:24900317

  14. Enhanced HMGB1 Expression May Contribute to Th17 Cells Activation in Rheumatoid Arthritis

    PubMed Central

    Shi, Yan; Sandoghchian Shotorbani, Siamak; Su, Zhaoliang; Liu, Yanfang; Tong, Jia; Zheng, Dong; Chen, Jianguo; Liu, Yingzhao; Xu, Yan; Jiao, Zhijun; Wang, Shengjun; Lu, Liwei; Huang, Xinxiang; Xu, Huaxi

    2012-01-01

    Rheumatoid arthritis(RA) is a common autoimmune disease associated with Th17 cells, but what about the effect of high-mobility group box chromosomal protein 1 (HMGB1) and the relationship between Th17-associated factors and HMGB1 in RA remains unknown. In the present study, we investigated the mRNA levels of HMGB1, RORγt, and IL-17 in peripheral blood mononuclear cells (PBMCs) from patients with rheumatoid arthritis by quantitative real-time PCR (RT-qPCR), and the concentrations of HMGB1, IL-17, and IL-23 in plasma were detected by ELISA. And then, the effect of HMGB1 on Th17 cells differentiation was analyzed in vitro. Our clinical studies showed that the mRNAs of HMGB1, RORγt, and IL-17 in patients were higher than that in health control (P < 0.05), especially in active RA patients (P < 0.05). The plasma HMGB1, IL-17, and IL-23 in RA patients were also higher than that in health control (P < 0.05); there was a positive correlation between the expression levels of HMGB1 and the amount of CRP, ERS, and RF in plasma. In vitro, the IL-17-produced CD4+T cells were increased with 100 ng/mL rHMGB1 for 12h, which indicated that the increased HMGB1 might contribute to Th17 cells activation in RA patients. PMID:22110531

  15. eckol enhances heme oxygenase-1 expression through activation of Nrf2/JNK pathway in HepG2 cells.

    PubMed

    Jun, Young-Jin; Lee, Minsup; Shin, Taisun; Yoon, Nayoung; Kim, Ji-Hoe; Kim, Hyeung-Rak

    2014-01-01

    Eckol isolated from Ecklonia stolonifera was previously reported to exhibit cytoprotective activity with its intrinsic antioxidant activity in in vitro studies. In this study, we characterized the mechanism underlying the eckol-mediated the expression of heme oxygenase-1 (HO-1). Eckol suppressed the production of intracellular reactive oxygen species and increased glutathione level in HepG2 cells. Eckol treatment enhanced the expression of HO-1 at the both level of protein and mRNA in HepG2 cells. Enhanced expression of HO-1 by eckol was presumed to be the activation of the nuclear factor erythroid-derived 2-like 2 (Nrf2) demonstrated by its nuclear translocation and increased transcriptional activity. c-Jun NH2-terminal kinases (JNKs) and PI3K/Akt contributed to Nrf2-mediated HO-1 expression. These results demonstrate that the eckol-mediated expression of HO-1 in HepG2 cells is regulated by Nrf2 activation via JNK and PI3K/Akt signaling pathways, suggesting that eckol may be used as a natural antioxidant and cytoprotective agent. PMID:25268719

  16. Cell-cell contact between marrow stromal cells and myeloma cells via VCAM-1 and alpha(4)beta(1)-integrin enhances production of osteoclast-stimulating activity.

    PubMed

    Michigami, T; Shimizu, N; Williams, P J; Niewolna, M; Dallas, S L; Mundy, G R; Yoneda, T

    2000-09-01

    Myeloma is a unique hematologic malignancy that exclusively homes in the bone marrow and induces massive osteoclastic bone destruction presumably by producing cytokines that promote the differentiation of the hematopoietic progenitors to osteoclasts (osteoclastogenesis). It is recognized that neighboring bone marrow stromal cells influence the expression of the malignant phenotype in myeloma cells. This study examined the role of the interactions between myeloma cells and neighboring stromal cells in the production of osteoclastogenic factors to elucidate the mechanism underlying extensive osteoclastic bone destruction. A murine myeloma cell line 5TGM1, which causes severe osteolysis, expresses alpha(4)beta(1)-integrin and tightly adheres to the mouse marrow stromal cell line ST2, which expresses the vascular cell adhesion molecule-1 (VCAM-1), a ligand for alpha(4)beta(1)-integrin. Co-cultures of 5TGM1 with primary bone marrow cells generated tartrate-resistant acid phosphatase-positive multinucleated bone-resorbing osteoclasts. Co-cultures of 5TGM1 with ST2 showed increased production of bone-resorbing activity and neutralizing antibodies against VCAM-1 or alpha(4)beta(1)-integrin inhibited this. The 5TGM1 cells contacting recombinant VCAM-1 produced increased osteoclastogenic and bone-resorbing activity. The activity was not blocked by the neutralizing antibody to known osteoclastogenic cytokines including interleukin (IL)-1, IL-6, tumor necrosis factor, or parathyroid hormone-related peptide. These data suggest that myeloma cells are responsible for producing osteoclastogenic activity and that establishment of direct contact with marrow stromal cells via alpha(4)beta(1)-integrin/VCAM-1 increases the production of this activity by myeloma cells. They also suggest that the presence of stromal cells may provide a microenvironment that allows exclusive colonization of myeloma cells in the bone marrow. (Blood. 2000;96:1953-1960) PMID:10961900

  17. Activation of Sterol-response Element-binding Proteins (SREBP) in Alveolar Type II Cells Enhances Lipogenesis Causing Pulmonary Lipotoxicity*

    PubMed Central

    Plantier, Laurent; Besnard, Valérie; Xu, Yan; Ikegami, Machiko; Wert, Susan E.; Hunt, Alan N.; Postle, Anthony D.; Whitsett, Jeffrey A.

    2012-01-01

    Pulmonary inflammation is associated with altered lipid synthesis and clearance related to diabetes, obesity, and various inherited metabolic disorders. In many tissues, lipogenesis is regulated at the transcriptional level by the activity of sterol-response element-binding proteins (SREBP). The role of SREBP activation in the regulation of lipid metabolism in the lung was assessed in mice in which both Insig1 and Insig2 genes, encoding proteins that bind and inhibit SREBPs in the endoplasmic reticulum, were deleted in alveolar type 2 cells. Although deletion of either Insig1 or Insig2 did not alter SREBP activity or lipid homeostasis, deletion of both genes (Insig1/2Δ/Δ mice) activated SREBP1, causing marked accumulation of lipids that consisted primarily of cholesterol esters and triglycerides in type 2 epithelial cells and alveolar macrophages. Neutral lipids accumulated in type 2 cells in association with the increase in mRNAs regulating fatty acid, cholesterol synthesis, and inflammation. Although bronchoalveolar lavage fluid phosphatidylcholine was modestly decreased, lung phospholipid content and lung function were maintained. Insig1/2Δ/Δ mice developed lung inflammation and airspace abnormalities associated with the accumulation of lipids in alveolar type 2 cells, alveolar macrophages, and within alveolar spaces. Deletion of Insig1/2 activated SREBP-enhancing lipogenesis in respiratory epithelial cells resulting in lipotoxicity-related lung inflammation and tissue remodeling. PMID:22267724

  18. Targeting Survivin Inhibits Renal Cell Carcinoma Progression and Enhances the Activity of Temsirolimus.

    PubMed

    Carew, Jennifer S; Espitia, Claudia M; Zhao, Weiguo; Mita, Monica M; Mita, Alain C; Nawrocki, Steffan T

    2015-06-01

    Elevated expression of the antiapoptotic factor survivin has been implicated in cancer cell survival and disease progression. However, its specific contribution to renal cell carcinoma (RCC) pathogenesis is not well defined. We investigated the roles of survivin in RCC tumor progression, resistance to mTOR inhibitors, and evaluated the therapeutic activity of the survivin suppressant YM155 in RCC models. Here, we report that survivin expression levels were significantly higher in RCC cell lines compared with normal renal cells. Stable targeted knockdown of survivin completely abrogated the ability of 786-O RCC tumors to grow in mice, thus demonstrating its importance as a regulator of RCC tumorigenesis. We next explored multiple strategies to therapeutically inhibit survivin function in RCC. Treatment with the mTOR inhibitor temsirolimus partially diminished survivin levels and this effect was augmented by the addition of YM155. Further analyses revealed that, in accordance with their combined anti-survivin effects, YM155 significantly improved the anticancer activity of temsirolimus in a panel of RCC cell lines in vitro and in xenograft models in vivo. Similar to pharmacologic inhibition of survivin, shRNA-mediated silencing of survivin expression not only inhibited RCC tumor growth, but also significantly sensitized RCC cells to temsirolimus therapy. Subsequent experiments demonstrated that the effectiveness of this dual survivin/mTOR inhibition strategy was mediated by a potent decrease in survivin levels and corresponding induction of apoptosis. Our findings establish survivin inhibition as a novel approach to improve RCC therapy that warrants further investigation. PMID:25808836

  19. Novel chimeric peptide with enhanced cell specificity and anti-inflammatory activity.

    PubMed

    Kim, Young-Min; Kim, Nam-Hong; Lee, Jong-Wan; Jang, Jin-Sun; Park, Yung-Hoon; Park, Seong-Cheol; Jang, Mi-Kyeong

    2015-07-31

    An antimicrobial peptide (AMP), Hn-Mc, was designed by combining the N-terminus of HPA3NT3 and the C-terminus of melittin. This chimeric AMP exhibited potent antibacterial activity with low minimal inhibitory concentrations (MICs), ranging from 1 to 2 μM against four drug-susceptible bacteria and ten drug-resistant bacteria. Moreover, the hemolysis and cytotoxicity was reduced significantly compared to those of the parent peptides, highlighting its high cell selectivity. The morphological changes in the giant unilamellar vesicles and bacterial cell surfaces caused by the Hn-Mc peptide suggested that it killed the microbial cells by damaging the membrane envelope. An in vivo study also demonstrated the antibacterial activity of the Hn-Mc peptide in a mouse model infected with drug-resistant bacteria. In addition, the chimeric peptide inhibited the expression of lipopolysaccharide (LPS)-induced cytokines in RAW 264.7 cells by preventing the interaction between LPS and Toll-like receptors. These results suggest that this chimeric peptide is an antimicrobial and anti-inflammatory candidate as a pharmaceutic agent. PMID:26028561

  20. Biological energy from the igneous rock enhances cell growth and enzyme activity.

    PubMed

    Lin, Y; Kuo, H; Chen, C; Kuo, S

    2000-08-01

    Some effects from natural resources might be ignored and unused by humans. Environmental hormesis could be a phenomena necessary to bio-organism existence on earth. Since 1919, radiation and some heavy metal hormesis from the environment were proved in various reports. In this study, igneous rock with very low radioactivity and high ferrous activity was measured by multichannel analyzer and inductively coupled plasma analyzer. The water treated by igneous rock, both directly soaked or indirectly in contact, induced increased activities of glucose oxidase, catalase, peroxidase, and superoxide dismutase. It also increased cell growth of SC-M1, HCT-15, Raji, and fibroblast cell lines. The water after treatment of igneous rock had no change in pH values, but displayed decreased conductivity values. We assume that the igneous rock could transfer energy to water to change the molecular structure or conformation of water cluster, or by radiation hormesis effect could then induce increased enzyme activity and cell growth. It is also possible that the energy from rock may combine radiation hormesis with other transferable biological energy forms to change water cluster conformation. PMID:11056378

  1. Active control of the nucleation temperature enhances freezing survival of multipotent mesenchymal stromal cells.

    PubMed

    Lauterboeck, L; Hofmann, N; Mueller, T; Glasmacher, B

    2015-12-01

    Cryopreservation is a technique that has been extensively used for storage of multipotent mesenchymal stromal cells (MSCs) in regenerative medicine. Therefore, improving current cryopreservation procedures in terms of increasing cell viability and functionality is important. In this study, we optimized the cryopreservation protocol of MSCs derived from the common marmoset Callithrix jacchus (cj), which can be used as a non-human primate model in various pathological and transplantation studies and have a great potential for regenerative medicine. We have investigated the effect of the active control of the nucleation temperature using induced nucleation at a broad range of temperatures and two different dimethylsulfoxide concentrations (Me2SO, 5% (v/v) and 10%, (v/v)) to evaluate the overall effect on the viability, metabolic activity and recovery of cells after thawing. Survival rate and metabolic activity displayed an optimum when ice formation was induced at -10 °C. Cryomicroscopy studies indicated differences in ice crystal morphologies as well as differences in intracellular ice formation with different nucleation temperatures. High subzero nucleation temperatures resulted in larger extracellular ice crystals and cellular dehydration, whereas low subzero nucleation temperatures resulted in smaller ice crystals and intracellular ice formation. PMID:26499840

  2. Estrogen-deficient osteoporosis enhances the recruitment and activity of osteoclasts by breast cancer cells.

    PubMed

    Salamanna, Francesca; Pagani, Stefania; Maglio, Melania; Borsari, Veronica; Giavaresi, Gianluca; Martelli, Alberto M; Buontempo, Francesca; Fini, Milena

    2016-01-01

    To reduce the burden of bone metastases, the pathophysiology of the metastatic niche should be elucidated and targeted. The aim of the present study was to assess the effect of tumor cells on osteoclast (OC) recruitment and activity in the presence of altered bone remodelling. Peripheral blood mononuclear cells (PBMC) were isolated from healthy and ovariectomized (OVX) rats and co-cultured with MRMT-1 rat breast carcinoma cells or with their conditioned medium for 1 and 2 weeks. Alamar Blue viability test, synthesis of cathepsin K, transforming growth factor-beta 1 (TGF-β1), tumor necrosis factor alpha (TNF-α), vascular endothelial growth factor (VEGF), metalloproteinase (MMP)-7, MMP-9, FITC-conjugate phalloidin staining and tartrate-resistant acid phosphatase (TRAP) staining were evaluated. The results indicate that breast carcinoma cells induced different responses in PBMC derived from rats affected by estrogen deficiency osteoporosis (OP) in comparison with healthy ones, with a significant increase in proliferation rate, OC differentiation, synthesis of TNF-α, MMP-7 and MMP-9. The data support the "proof of concept" that OP due to estrogen deficiency might offer a receptive site for cancer cells to form bone metastases. PMID:26254457

  3. Infection of human monocyte-derived dendritic cells by ANDES Hantavirus enhances pro-inflammatory state, the secretion of active MMP-9 and indirectly enhances endothelial permeability

    PubMed Central

    2011-01-01

    Background Andes virus (ANDV), a rodent-borne Hantavirus, is the major etiological agent of Hantavirus cardiopulmonary syndrome (HCPS) in South America, which is mainly characterized by a vascular leakage with high rate of fatal outcomes for infected patients. Currently, neither specific therapy nor vaccines are available against this pathogen. ANDV infects both dendritic and epithelial cells, but in despite that the severity of the disease directly correlates with the viral RNA load, considerable evidence suggests that immune mechanisms rather than direct viral cytopathology are responsible for plasma leakage in HCPS. Here, we assessed the possible effect of soluble factors, induced in viral-activated DCs, on endothelial permeability. Activated immune cells, including DC, secrete gelatinolytic matrix metalloproteases (gMMP-2 and -9) that modulate the vascular permeability for their trafficking. Methods A clinical ANDES isolate was used to infect DC derived from primary PBMC. Maturation and pro-inflammatory phenotypes of ANDES-infected DC were assessed by studying the expression of receptors, cytokines and active gMMP-9, as well as some of their functional status. The ANDES-infected DC supernatants were assessed for their capacity to enhance a monolayer endothelial permeability using primary human vascular endothelial cells (HUVEC). Results Here, we show that in vitro primary DCs infected by a clinical isolate of ANDV shed virus RNA and proteins, suggesting a competent viral replication in these cells. Moreover, this infection induces an enhanced expression of soluble pro-inflammatory factors, including TNF-α and the active gMMP-9, as well as a decreased expression of anti-inflammatory cytokines, such as IL-10 and TGF-β. These viral activated cells are less sensitive to apoptosis. Moreover, supernatants from ANDV-infected DCs were able to indirectly enhance the permeability of a monolayer of primary HUVEC. Conclusions Primary human DCs, that are primarily

  4. Retention of Endogenous Viable Cells Enhances the Anti-Inflammatory Activity of Cryopreserved Amnion

    PubMed Central

    Duan-Arnold, Yi; Gyurdieva, Alexandra; Johnson, Amy; Uveges, Thomas E.; Jacobstein, Douglas A.; Danilkovitch, Alla

    2015-01-01

    Objective: Human amniotic membrane (hAM) has been used to treat wounds for more than 100 years. However, widespread use of fresh hAM has been limited due to its short shelf life and safety concerns. To overcome these concerns, different preservation methods have been introduced. The majority of these methods result in devitalized hAM (dev-hAM). Recently, we developed a cryopreservation method that retains all hAM components intact (int-hAM), including viable endogenous cells. To understand the advantages of retaining viable cells in preserved hAM, we compared the anti-inflammatory properties of int-hAM and dev-hAM. Approach: The tissue composition of int-hAM and dev-hAM was compared with fresh hAM through histology and cell viability analysis. We also evaluated the ability of int-hAM and dev-hAM to regulate tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α), and IL-10 release when co-cultured with immune cells; to produce prostaglandin E2 (PGE2) on TNF-α stimulation; and to inhibit proteases. Results: Int-hAM maintained the structural and cellular integrity of fresh hAM. Int-hAM had >80% cell viability post-thaw and remained viable for at least a week in culture. Viable cells were not detected in dev-hAM. Compared with dev-hAM, int-hAM showed significantly greater downregulation of TNF-α and IL-1α, upregulation of PGE2 and IL-10, and stronger inhibition of collagenase. Innovation and Conclusion: A new cryopreservation method has been developed to retain all native components of hAM. For the first time, we show that viable endogenous cells significantly augment the anti-inflammatory activity of cryopreserved hAM. PMID:26401419

  5. Endothelial cell-derived nitric oxide enhances aerobic glycolysis in astrocytes via HIF-1α-mediated target gene activation.

    PubMed

    Brix, Britta; Mesters, Jeroen R; Pellerin, Luc; Jöhren, Olaf

    2012-07-11

    Astrocytes exhibit a prominent glycolytic activity, but whether such a metabolic profile is influenced by intercellular communication is unknown. Treatment of primary cultures of mouse cortical astrocytes with the nitric oxide (NO) donor DetaNONOate induced a time-dependent enhancement in the expression of genes encoding various glycolytic enzymes as well as transporters for glucose and lactate. Such an effect was shown to be dependent on the hypoxia-inducible factor HIF-1α, which is stabilized and translocated to the nucleus to exert its transcriptional regulation. NO action was dependent on both the PI3K/Akt/mTOR and MEK signaling pathways and required the activation of COX, but was independent of the soluble guanylate cyclase pathway. Furthermore, as a consequence of NO treatment, an enhanced lactate production and release by astrocytes was evidenced, which was prevented by downregulating HIF-1α. Several brain cell types represent possible sources of NO. It was found that endothelial cells, which express the endothelial NO synthase (eNOS) isoform, constitutively produced the largest amount of NO in culture. When astrocytes were cocultured with primary cultures of brain vascular endothelial cells, stabilization of HIF-1α and an enhancement in glucose transporter-1, hexokinase-2, and monocarboxylate transporter-4 expression as well as increased lactate production was found in astrocytes. This effect was inhibited by the NOS inhibitor l-NAME and was not seen when astrocytes were cocultured with primary cultures of cortical neurons. Our findings suggest that endothelial cell-derived NO participates to the maintenance of a high glycolytic activity in astrocytes mediated by astrocytic HIF-1α activation. PMID:22787058

  6. Vorinostat Enhances Cytotoxicity of SN-38 and Temozolomide in Ewing Sarcoma Cells and Activates STAT3/AKT/MAPK Pathways

    PubMed Central

    Sampson, Valerie B.; Vetter, Nancy S.; Kamara, Davida F.; Collier, Anderson B.; Gresh, Renee C.; Kolb, E. Anders

    2015-01-01

    Histone deacetylase inhibitors (HDACi) have been evaluated in patients with Ewing sarcoma (EWS) but demonstrated limited activity. To better understand the potential for HDACi in EWS, we evaluated the combination of the HDACi vorinostat, with DNA damaging agents SN-38 (the active metabolite of irinotecan and topoisomerase 1 inhibitor) plus the alkylating agent temozolomide (ST). Drugs were evaluated in sequential and simultaneous combinations in two EWS cell lines. Results demonstrate that cell viability, DNA damage and reactive oxygen species (ROS) production are dependent on the sequence of drug administration. Enhanced cytotoxicity is exhibited in vitro in EWS cell lines treated with ST administered before vorinostat, which was modestly higher than concomitant treatment and superior to vorinostat administered before ST. Drug combinations downregulate cyclin D1 to induce G0/G1 arrest and promote apoptosis by cleavage of caspase-3 and PARP. When ST is administered before or concomitantly with vorinostat there is activation of STAT3, MAPK and the p53 pathway. In contrast, when vorinostat is administered before ST, there is DNA repair, increased AKT phosphorylation and reduced H2B acetylation. Inhibition of AKT using the small molecule inhibitor MK-2206 did not restore H2B acetylation. Combining ST with the dual ALK and IGF-1R inhibitor, AZD3463 simultaneously inhibited STAT3 and AKT to enhance the cytotoxic effects of ST and further reduce cell growth suggesting that STAT3 and AKT activation were in part mediated by ALK and IGF-1R signaling. In summary, potent antiproliferative and proapoptotic activity were demonstrated for ST induced DNA damage before or simultaneous with HDAC inhibition and cell death was mediated through the p53 pathway. These observations may aid in designing new protocols for treating pediatric patients with high-risk EWS. PMID:26571493

  7. Aurora inhibitor MLN8237 in combination with docetaxel enhances apoptosis and anti-tumor activity in mantle cell lymphoma.

    PubMed

    Qi, Wenqing; Cooke, Laurence S; Liu, Xiaobing; Rimsza, Lisa; Roe, Denise J; Manziolli, Ann; Persky, Daniel O; Miller, Thomas P; Mahadevan, Daruka

    2011-04-01

    Auroras (A and B) are oncogenic serine/threonine kinases that play key roles in the mitotic phase of the eukaryotic cell cycle. Analysis of the leukemia lymphoma molecular profiling project (LLMPP) database indicates Aurora over-expression correlates with poor prognosis. A tissue microarray (TMA) composed of 20 paired mantle cell lymphoma (MCL) patients demonstrated >75% of patients had high levels Aurora expression. Aurora A and B were also found elevated in 13 aggressive B-NHL cell lines. MLN8237, an Aurora inhibitor induced G2/M arrest with polyploidy and abrogated Aurora A and histone-H3 phosphorylation. MLN8237 inhibited aggressive B-NHL cell proliferation at an IC(50) of 10-50 nM and induced apoptosis in a dose- and time-dependent manner. Low dose combinations of MLN8237+docetaxel enhanced apoptosis by ~3-4-fold in cell culture compared to single agents respectively. A mouse xenograft model of MCL demonstrated that MLN8237 (10 or 30 mg/kg) or docetaxel (10mg/kg) alone had modest anti-tumor activity. However, MLN8237 plus docetaxel demonstrated a statistically significant tumor growth inhibition and enhanced survival compared to single agent therapy. Together, our results suggest that MLN8237 plus docetaxel may represent a novel therapeutic strategy that could be evaluated in early phase trials in relapsed/refractory aggressive B-cell NHL. PMID:21291867

  8. Disruption of CD8+ Treg activity results in expansion of T follicular helper cells and enhanced antitumor immunity.

    PubMed

    Alvarez Arias, Diana A; Kim, Hye-Jung; Zhou, Penghui; Holderried, Tobias A W; Wang, Xuan; Dranoff, Glenn; Cantor, Harvey

    2014-03-01

    Tumor growth is associated with the inhibition of host antitumor immune responses that can impose serious obstacles to cancer immunotherapy. To define the potential contribution of Qa-1-restricted CD8 regulatory T cells (Treg) to the development of tumor immunity, we studied B6.Qa-1 D227K mice that harbor a point mutation in the MHC class Ib molecule Qa-1 that impairs CD8 Treg suppressive activity. Here, we report that the growth of B16 melanoma is substantially delayed in these Qa-1-mutant mice after therapeutic immunization with B16 melanoma cells engineered to express granulocyte macrophage colony-stimulating factor compared with Qa-1 B6-WT controls. Reduced tumor growth is associated with enhanced expansion of follicular T helper cells, germinal center B cells, and high titers of antitumor autoantibodies, which provoke robust antitumor immune responses in concert with tumor-specific cytolytic T cells. Analysis of tumor-infiltrating T cells revealed that the Qa-1 DK mutation was associated with an increase in the ratio of CD8(+) T effectors compared with CD8 Tregs. These data suggest that the CD8(+) T effector-Treg ratio may provide a useful prognostic index for cancer development and raise the possibility that depletion or inactivation of CD8 Tregs represents a potentially effective strategy to enhance antitumor immunity. PMID:24778317

  9. Depletion of tyrosyl DNA phosphodiesterase 2 activity enhances etoposide-mediated double-strand break formation and cell killing.

    PubMed

    Kont, Yasemin Saygideger; Dutta, Arijit; Mallisetty, Apurva; Mathew, Jeena; Minas, Tsion; Kraus, Christina; Dhopeshwarkar, Priyanka; Kallakury, Bhaskar; Mitra, Sankar; Üren, Aykut; Adhikari, Sanjay

    2016-07-01

    DNA topoisomerase 2 (Top2) poisons, including common anticancer drugs etoposide and doxorubicin kill cancer cells by stabilizing covalent Top2-tyrosyl-DNA 5'-phosphodiester adducts and DNA double-strand breaks (DSBs). Proteolytic degradation of the covalently attached Top2 leaves a 5'-tyrosylated blocked termini which is removed by tyrosyl DNA phosphodiesterase 2 (TDP2), prior to DSB repair through non-homologous end joining (NHEJ). Thus, TDP2 confers resistance of tumor cells to Top2-poisons by repairing such covalent DNA-protein adducts, and its pharmacological inhibition could enhance the efficacy of Top2-poisons. We discovered NSC111041, a selective inhibitor of TDP2, by optimizing a high throughput screening (HTS) assay for TDP2's 5'-tyrosyl phosphodiesterase activity and subsequent validation studies. We found that NSC111041 inhibits TDP2's binding to DNA without getting intercalated into DNA and enhanced etoposide's cytotoxicity synergistically in TDP2-expressing cells but not in TDP2 depleted cells. Furthermore, NSC111041 enhanced formation of etoposide-induced γ-H2AX foci presumably by affecting DSB repair. Immuno-histochemical analysis showed higher TDP2 expression in a sub-set of different type of tumor tissues. These findings underscore the feasibility of clinical use of suitable TDP2 inhibitors in adjuvant therapy with Top2-poisons for a sub-set of cancer patients with high TDP2 expression. PMID:27235629

  10. Inhibition of PARP1 by small interfering RNA enhances docetaxel activity against human prostate cancer PC3 cells

    SciTech Connect

    Wu, Wenqi; Kong, Zhenzhen; Duan, Xiaolu; Zhu, Hanliang; Li, Shujue; Zeng, Shaohua; Liang, Yeping; Iliakis, George; Gui, Zhiming; Yang, Dong

    2013-12-06

    Highlights: •PARP1 siRNA enhances docetaxel’s activity against PC3 cells. •PARP1 siRNA enhances docetaxel’s activity against EGFR/Akt/FOXO1 pathway. •PARP1 siRNA and PARP1 inhibitor differently affect the phosphorylation and expression of FOXO1. -- Abstract: Though poly(ADP-ribose) polymerase 1 (PARP1) inhibitors have benefits in combination with radiotherapy in prostate cancers, few is known about the exactly role and underlying mechanism of PARP1 in combination with chemotherapy agents. Here our data revealed that inhibition of PARP1 by small interfering RNA (siRNA) could enhance docetaxel’s activity against PC3 cells, which is associated with an accelerate repression of EGF/Akt/FOXO1 signaling pathway. Our results provide a novel role of PARP1 in transcription regulation of EGFR/Akt/FOXO1 signaling pathway and indicate that PARP1 siRNA combined with docetaxel can be an innovative treatment strategy to potentially improve outcomes in CRPC patients.

  11. Effectiveness and student perceptions of an active learning activity using a headline news story to enhance in-class learning of cell cycle regulation.

    PubMed

    Dirks-Naylor, Amie J

    2016-06-01

    An active learning activity was used to engage students and enhance in-class learning of cell cycle regulation in a PharmD level integrated biological sciences course. The aim of the present study was to determine the effectiveness and perception of the in-class activity. After completion of a lecture on the topic of cell cycle regulation, students completed a 10-question multiple-choice quiz before and after engaging in the activity. The activity involved reading of a headline news article published by ScienceDaily.com entitled "One Gene Lost Equals One limb Regained." The name of the gene was deleted from the article and, thus, the end goal of the activity was to determine the gene of interest by the description in the story. The activity included compiling a list of all potential gene candidates before sufficient information was given to identify the gene of interest (p21). A survey was completed to determine student perceptions of the activity. Quiz scores improved by an average of 20% after the activity (40.1 ± 1.95 vs. 59.9 ± 2.14,P< 0.0001,n= 96). Students enjoyed the activity, found the news article interesting, and believed that the activity improved their understanding of cell cycle regulation. The majority of students agreed that the in-class activity piqued their interest for learning the subject matter and also agreed that if they understand a concept during class, they are more likely to want to study that concept outside of class. In conclusion, the activity improved in-class understanding and enhanced interest in cell cycle regulation. PMID:27068993

  12. Enhanced Anti-HIV Functional Activity Associated with Gag-Specific CD8 T-Cell Responses▿ †

    PubMed Central

    Julg, B.; Williams, K. L.; Reddy, S.; Bishop, K.; Qi, Y.; Carrington, M.; Goulder, P. J.; Ndung'u, T.; Walker, B. D.

    2010-01-01

    Effective HIV-specific T-cell immunity requires the ability to inhibit virus replication in the infected host, but the functional characteristics of cells able to mediate this effect are not well defined. Since Gag-specific CD8 T cells have repeatedly been associated with lower viremia, we examined the influence of Gag specificity on the ability of unstimulated CD8 T cells from chronically infected persons to inhibit virus replication in autologous CD4 T cells. Persons with broad (≥6; n = 13) or narrow (≤1; n = 13) Gag-specific responses, as assessed by gamma interferon enzyme-linked immunospot assay, were selected from 288 highly active antiretroviral therapy (HAART)-naive HIV-1 clade C-infected South Africans, matching groups for total magnitude of HIV-specific CD8 T-cell responses and CD4 T-cell counts. CD8 T cells from high Gag responders suppressed in vitro replication of a heterologous HIV strain in autologous CD4 cells more potently than did those from low Gag responders (P < 0.003) and were associated with lower viral loads in vivo (P < 0.002). As previously shown in subjects with low viremia, CD8 T cells from high Gag responders exhibited a more polyfunctional cytokine profile and a stronger ability to proliferate in response to HIV stimulation than did low Gag responders, which mainly exhibited monofunctional CD8 T-cell responses. Furthermore, increased polyfunctionality was significantly correlated with greater inhibition of viral replication in vitro. These data indicate that enhanced suppression of HIV replication is associated with broader targeting of Gag. We conclude that it is not the overall magnitude but rather the breadth, magnitude, and functional capacity of CD8 T-cell responses to certain conserved proteins, like Gag, which predict effective antiviral HIV-specific CD8 T-cell function. PMID:20335261

  13. Intratumoral delivery of CpG-conjugated anti-MUC1 antibody enhances NK cell anti-tumor activity

    PubMed Central

    Schettini, Jorge; Kidiyoor, Amritha; Besmer, Dahlia M.; Tinder, Teresa L.; Roy, Lopamudra Das; Lustgarten, Joseph; Gendler, Sandra J.

    2013-01-01

    Monoclonal antibodies (mAbs) against tumor-associated antigens are useful anticancer agents. Antibody-dependent cellular cytotoxicity (ADCC) is one of the major mechanisms responsible for initiating natural killer cell (NK)-mediated killing of tumors. However, the regulation of ADCC via NK cells is poorly understood. We have investigated the cytolytic activity of NK cells against pancreatic cancer cells that were coated with an antibody directed against the human tumor antigen, Mucin-1 designated HMFG-2, either alone or conjugated to CpG oligodeoxynucleotide (CpG ODN). Conjugated antibodies were tested for their ability to elicit ADCC in vitro and in vivo against pancreatic cancer cells. NK cells cultured in the presence of immobilized CpG ODN, HMFG-2 Ab, or CpG ODN-conjugated HMFG-2 Ab were able to up-regulate perforin similarly. Interestingly, a significant higher ADCC was observed when CpG ODN-conjugated HMFG-2-coated tumor cells were co-cultured with NK cells compared to unconjugated HMFG-2 Ab or CpG ODN alone. Moreover, MyD88-deficient NK cells can perform ADCC in vitro. Furthermore, intratumoral injections of CpG ODN-conjugated HMFG-2 induced a significant reduction in tumor burden in vivo in an established model of pancreatic tumor in nude mice compared to CpG ODN or the HMFG-2 alone. Depletion of macrophages or NK cells before treatment confirmed that both cells were required for the anti-tumor response in vivo. Results also suggest that CpG ODN and HMFG-2 Ab could be sensed by NK cells on the mAb-coated tumor cells triggering enhanced ADCC in vitro and in vivo. PMID:22543528

  14. Intratumoral delivery of CpG-conjugated anti-MUC1 antibody enhances NK cell anti-tumor activity.

    PubMed

    Schettini, Jorge; Kidiyoor, Amritha; Besmer, Dahlia M; Tinder, Teresa L; Roy, Lopamudra Das; Lustgarten, Joseph; Gendler, Sandra J; Mukherjee, Pinku

    2012-11-01

    Monoclonal antibodies (mAbs) against tumor-associated antigens are useful anticancer agents. Antibody-dependent cellular cytotoxicity (ADCC) is one of the major mechanisms responsible for initiating natural killer cell (NK)-mediated killing of tumors. However, the regulation of ADCC via NK cells is poorly understood. We have investigated the cytolytic activity of NK cells against pancreatic cancer cells that were coated with an antibody directed against the human tumor antigen, Mucin-1 designated HMFG-2, either alone or conjugated to CpG oligodeoxynucleotide (CpG ODN). Conjugated antibodies were tested for their ability to elicit ADCC in vitro and in vivo against pancreatic cancer cells. NK cells cultured in the presence of immobilized CpG ODN, HMFG-2 Ab, or CpG ODN-conjugated HMFG-2 Ab were able to up-regulate perforin similarly. Interestingly, a significant higher ADCC was observed when CpG ODN-conjugated HMFG-2-coated tumor cells were co-cultured with NK cells compared to unconjugated HMFG-2 Ab or CpG ODN alone. Moreover, MyD88-deficient NK cells can perform ADCC in vitro. Furthermore, intratumoral injections of CpG ODN-conjugated HMFG-2 induced a significant reduction in tumor burden in vivo in an established model of pancreatic tumor in nude mice compared to CpG ODN or the HMFG-2 alone. Depletion of macrophages or NK cells before treatment confirmed that both cells were required for the anti-tumor response in vivo. Results also suggest that CpG ODN and HMFG-2 Ab could be sensed by NK cells on the mAb-coated tumor cells triggering enhanced ADCC in vitro and in vivo. PMID:22543528

  15. Butyrate activates the monocarboxylate transporter MCT4 expression in breast cancer cells and enhances the antitumor activity of 3-bromopyruvate.

    PubMed

    Queirós, Odília; Preto, Ana; Pacheco, António; Pinheiro, Céline; Azevedo-Silva, João; Moreira, Roxana; Pedro, Madalena; Ko, Young H; Pedersen, Peter L; Baltazar, Fátima; Casal, Margarida

    2012-02-01

    Most malignant tumors exhibit the Warburg effect, which consists in increased glycolysis rates with production of lactate, even in the presence of oxygen. Monocarboxylate transporters (MCTs), maintain these glycolytic rates, by mediating the influx and/or efflux of lactate and are overexpressed in several cancer cell types. The lactate and pyruvate analogue 3-bromopyruvate (3-BP) is an inhibitor of the energy metabolism, which has been proposed as a specific antitumor agent. In the present study, we aimed at determining the effect of 3-BP in breast cancer cells and evaluated the putative role of MCTs on this effect. Our results showed that the three breast cancer cell lines used presented different sensitivities to 3-BP: ZR-75-1 ER (+)>MCF-7 ER (+)>SK-BR-3 ER (-). We also demonstrated that 3-BP reduced lactate production, induced cell morphological alterations and increased apoptosis. The effect of 3-BP appears to be cytotoxic rather than cytostatic, as a continued decrease in cell viability was observed after removal of 3-BP. We showed that pre-incubation with butyrate enhanced significantly 3-BP cytotoxicity, especially in the most resistant breast cancer cell line, SK-BR-3. We observed that butyrate treatment induced localization of MCT1 in the plasma membrane as well as overexpression of MCT4 and its chaperone CD147. Our results thus indicate that butyrate pre-treatment potentiates the effect of 3-BP, most probably by increasing the rates of 3-BP transport through MCT1/4. This study supports the potential use of butyrate as adjuvant of 3-BP in the treatment of breast cancer resistant cells, namely ER (-). PMID:22350013

  16. Immature human dendritic cells enhance their migration through KCa3.1 channel activation.

    PubMed

    Crottès, David; Félix, Romain; Meley, Daniel; Chadet, Stéphanie; Herr, Florence; Audiger, Cindy; Soriani, Olivier; Vandier, Christophe; Roger, Sébastien; Angoulvant, Denis; Velge-Roussel, Florence

    2016-04-01

    Migration capacity is essential for dendritic cells (DCs) to present antigen to T cells for the induction of immune response. The DC migration is supposed to be a calcium-dependent process, while not fully understood. Here, we report a role of the KCa3.1/IK1/SK4 channels in the migration capacity of both immature (iDC) and mature (mDC) human CD14(+)-derived DCs. KCa3.1 channels were shown to control the membrane potential of human DC and the Ca(2+) entry, which is directly related to migration capacities. The expression of migration marker such as CCR5 and CCR7 was modified in both types of DCs by TRAM-34 (100nM). But, only the migration of iDC was decreased by use of both TRAM-34 and KCa3.1 siRNA. Confocal analyses showed a close localization of CCR5 with KCa3.1 in the steady state of iDC. Finally, the implication of KCa3.1 seems to be limited to the migration capacities as T cell activation of DCs appeared unchanged. Altogether, these results demonstrated that KCa3.1 channels have a pro-migratory effect on iDC migration. Our findings suggest that KCa3.1 in human iDC play a major role in their migration and constitute an attractive target for the cell therapy optimization. PMID:27020659

  17. Enhancing Cell Nucleus Accumulation and DNA Cleavage Activity of Anti-Cancer Drug via Graphene Quantum Dots

    NASA Astrophysics Data System (ADS)

    Wang, Chong; Wu, Congyu; Zhou, Xuejiao; Han, Ting; Xin, Xiaozhen; Wu, Jiaying; Zhang, Jingyan; Guo, Shouwu

    2013-10-01

    Graphene quantum dots (GQDs) maintain the intrinsic layered structural motif of graphene but with smaller lateral size and abundant periphery carboxylic groups, and are more compatible with biological system, thus are promising nanomaterials for therapeutic applications. Here we show that GQDs have a superb ability in drug delivery and anti-cancer activity boost without any pre-modification due to their unique structural properties. They could efficiently deliver doxorubicin (DOX) to the nucleus through DOX/GQD conjugates, because the conjugates assume different cellular and nuclear internalization pathways comparing to free DOX. Also, the conjugates could enhance DNA cleavage activity of DOX markedly. This enhancement combining with efficient nuclear delivery improved cytotoxicity of DOX dramatically. Furthermore, the DOX/GQD conjugates could also increase the nuclear uptake and cytotoxicity of DOX to drug-resistant cancer cells indicating that the conjugates may be capable to increase chemotherapy efficacy of anti-cancer drugs that are suboptimal due to the drug resistance.

  18. Simvastatin and zinc synergistically enhance osteoblasts activity and decrease the acute response of inflammatory cells.

    PubMed

    Montazerolghaem, Maryam; Ning, Yi; Engqvist, Håkan; Karlsson Ott, Marjam; Tenje, Maria; Mestres, Gemma

    2016-02-01

    Several ceramic biomaterials have been suggested as promising alternatives to autologous bone to replace or restore bone after trauma or disease. The osteoinductive potential of most scaffolds is often rather low by themselves and for this reason growth factors or drugs have been supplemented to these synthetic materials. Although some growth factors show good osteoinductive potential their drawback is their high cost and potential severe side effects. In this work the combination of the well-known drug simvastatin (SVA) and the inorganic element Zinc (Zn) is suggested as a potential additive to bone grafts in order to increase their bone regeneration/formation. MC3T3-E1 cells were cultured with Zn (10 and 25 µM) and SVA (0.25 and 0.4 µM) for 10 days to evaluate proliferation and differentiation, and for 22 days to evaluate secretion of calcium deposits. The combination of Zn (10 µM) and SVA (0.25 µM) significantly enhanced cell differentiation and mineralization in a synergetic manner. In addition, the release of reactive oxygen species (ROS) from primary human monocytes in contact with the same concentrations of Zn and SVA was evaluated by chemiluminescence. The combination of the additives decreased the release of ROS, although Zn and SVA separately caused opposite effects. This work shows that a new combination of additives can be used to increase the osteoinductive capacity of porous bioceramics. PMID:26704540

  19. [miR-126 knockdown enhances the activity of murine CD4(+);T cells in vivo and promotes their differentiation into Th1 cells].

    PubMed

    Cui, Panpan; Hu, Yan; Tao, Yijing; Chen, Chao; Zhao, Juanjuan; Guo, Mengmeng; Zhou, Ya; Xu, Lin

    2016-03-01

    Objective To investigate the change of CD4(+);T cell activity in microRNA-126 (miR-126) knockdown (KD) mice and explore its significance. Methods The expression level of mature miR-126 in CD4(+);CD62L(+);T cells purified by magnetic-activated cell sorting (MACS) was analyzed by real-time PCR using specific probe. Furthermore, the expression levels of CD69, CD62L and CD44 molecules, as well as intracellular proliferating nuclear antigen Ki-67, in CD4(+);T cells in miR-126 KD mice were detected by fluorescence-activated cell sorting (FACS). Moreover, the apoptosis of CD4(+);T cells was analyzed by annexin V/PI staining assay combined with flow cytometry. Finally, the relative expressions of function-related cytokines including interleukine 4 (IL-4), IL-10, IL-12, transforming growth factor (TGF-β), interferon (IFN-γ) and tumor necrosis factor (TNF-α) in CD4(+);T cells were determined by real-time PCR. Results Compared with wild-type (WT) mice, the expression level of mature miR-126 in CD4(+);T cells in miR-126 KD mice was dramatically reduced. Furthermore, the proportion of CD62L(+); in CD4(+);T cells also decreased significantly, while the proportions of CD69(+);, CD44(+); and Ki-67(+); cells were remarkably elevated. Meanwhile, the apoptosis proportion of CD4(+);T cells in vivo dropped dramatically in miR-126 KD mice. Finally, the mRNA expressions of IL-4 and IL-10 in CD4(+);T cells were significantly downregulated, but IL-12, TGF-β, TNF-α and IFN-γ mRNAs were obviously up-regulated. Conclusion miR-126 knockdown could significantly enhance the functional activity of CD4(+); T cells in vivo and promote cell differentiation into Th1 cells. PMID:26927555

  20. Enhanced cyclooxygenase-2 expression levels and metalloproteinase 2 and 9 activation by Hexachlorobenzene in human endometrial stromal cells.

    PubMed

    Chiappini, Florencia; Bastón, Juan Ignacio; Vaccarezza, Agustina; Singla, José Javier; Pontillo, Carolina; Miret, Noelia; Farina, Mariana; Meresman, Gabriela; Randi, Andrea

    2016-06-01

    Hexachlorobenzene (HCB) is an organochlorine pesticide that induces toxic reproductive effects in laboratory animals. It is a dioxin-like compound and a weak ligand of the aryl hydrocarbon receptor (AhR). Endometriosis is characterized by the presence of functional endometrial tissues outside the uterine cavity. Experimental studies indicate that exposure to organochlorines can interfere with both hormonal regulation and immune function to promote endometriosis. Altered expression of metalloproteinases (MMPs) in patients with endometriosis, suggests that MMPs may play a critical role. In the endometriotic lesions, prostaglandin E2 (PGE2) produced by cyclooxygenase-2 (COX-2), binds to its EP4 receptor (EP4), and via c-Src kinase induces MMPs activation, promoting endometriosis. We examined the HCB action on MMP-2 and MMP-9 activities and expression, COX-2 levels, PGE2 signaling, and the AhR involvement in HCB-induced effects. We have used different in vitro models: (1) human endometrial stromal cell line T-HESC, (2) primary cultures of Human Uterine Fibroblast (HUF), and (3) primary cultures of endometrial stromal cells from eutopic endometrium of control (CESC) and subjects with endometriosis (EESC). Our results show that HCB enhances MMP-2 and MMP-9 activities in T-HESC, HUF and ESC cells. The MMP-9 levels were elevated in all models, while the MMP-2 expression only increased in ESC cells. HCB enhanced COX-2 and EP4 expression, PGE2 secretion and the c-Src kinase activation in T-HESC. Besides, we observed that AhR is implicated in these HCB-induced effects. In conclusion, our results show that HCB exposure could contribute to endometriosis development, affecting inflammation and invasion parameters of human endometrial cells. PMID:27038655

  1. Endosomolytic activity of cationic liposomes enhances the delivery of human immunodeficiency virus-1 trans-activator protein (TAT) to mammalian cells.

    PubMed

    Huang, L; Farhood, H; Serbina, N; Teepe, A G; Barsoum, J

    1995-12-26

    We have explored the use of cationic liposomes to deliver the human immunodeficiency virus-1 trans-activator protein tat using a reporter gene expression assay. The human epidermoid carcinoma cell A431 stably transfected with a reporter gene under the control of human immunodeficiency virus-1 promoter was used as a target cell. Phosphatidylcholine-containing cationic liposomes had no detectable tat delivery activity. In contrast, delivery of tat was enhanced by up to 150-fold using cationic liposomes enriched with dioleoyl phosphatidylethanolamine (DOPE), a lipid which readily transforms a bilayer into a nonbilayer structure. Enhanced delivery of tat by DOPE-containing liposomes was most likely the result of the endosomolytic activity of the liposome. This phospholipid-rich formulation showed no toxicity at concentrations sufficient for maximal delivery of tat. A variety of cationic liposome formulations which contain DOPE were tested successfully for tat delivery. PMID:8554596

  2. Transcription factor activity of estrogen receptor α activation upon nonylphenol or bisphenol A treatment enhances the in vitro proliferation, invasion, and migration of neuroblastoma cells

    PubMed Central

    Ma, Hongda; Yao, Yao; Wang, Changli; Zhang, Liyu; Cheng, Long; Wang, Yiren; Wang, Tao; Liang, Erguang; Jia, Hui; Ye, Qinong; Hou, Mingxiao; Feng, Fan

    2016-01-01

    Many kinds of endocrine-disrupting chemicals (EDCs), for example, the environmental estrogens bisphenol A and nonylphenol, may regulate the activity of estrogen receptor α (ERα) and therefore induce potential disruption of normal endocrine function. However, the involvement of EDCs in human cancers, especially in endocrine-related cancer neuroblastoma regulation, is not very clear. In this work, results showed that upon bisphenol A or nonylphenol treatment, the transcription factor activity of ERα was significantly increased in neuroblastoma cell line SH-SY5Y. Bisphenol A and nonylphenol could enhance ERα activity via recruiting it to the target gene promoter. Furthermore, treatment of bisphenol A and nonylphenol enhanced the in vitro proliferation, invasion, and migration ability of neuroblastoma cells. By investigating the role of EDC-induced ERα upregulation, our data extend the understanding of the function of EDCs and further suggest that ERα might be a potential therapeutic target in human neuroblastoma treatment. PMID:27366082

  3. Role of cyclic AMP in promoting the thromboresistance of human endothelial cells by enhancing thrombomodulin and decreasing tissue factor activities.

    PubMed Central

    Archipoff, G.; Beretz, A.; Bartha, K.; Brisson, C.; de la Salle, C.; Froget-Léon, C.; Klein-Soyer, C.; Cazenave, J. P.

    1993-01-01

    1. The effects of forskolin, prostaglandin E1 (PGE1), dibutyryl cyclic AMP (db cyclic AMP), dibutyryl cyclic GMP (db cyclic GMP) and 3-isobutyl-l-methyl-xanthine (IBMX) were investigated on the expression of tissue factor and thrombomodulin activities on the surface of human saphenous vein endothelial cells (HSVEC) in culture. 2. Forskolin (10(-6) to 10(-4) M), PGE1 (10(-7) to 10(-5) M) and db cyclic AMP (10(-4) to 10(-3) M) caused a concentration-dependent decrease of cytokine-induced tissue factor activity. 3. Similar concentrations of forskolin, PGE1 and db cyclic AMP enhanced significantly constitutive thrombomodulin activity and reversed the decrease of this activity caused by interleukin-1 (IL-1). 4. IBMX (10(-4) M) decreased tissue factor activity and enhanced the effect of forskolin on tissue factor and thrombomodulin activities. 5. Forskolin (10(-4) M) decreased the IL-1-induced tissue factor mRNA and increased the thrombomodulin mRNA level. IL-1 did not change the thrombomodulin mRNA level after 2 h of incubation with HSVEC in culture. 6. Dibutyryl cyclic GMP (10(-4) M to 10(-3) M) did not influence tissue factor or thrombomodulin activity. 7. Our data suggest that elevation of intracellular cyclic AMP levels may participate in the regulation of tissue factor and thrombomodulin expression, thus contributing to promote or restore antithrombotic properties of the endothelium. Images Figure 5 Figure 6 PMID:7684300

  4. Livin enhances tumorigenesis by regulating the mitogen-activated protein kinase signaling pathway in human hypopharyngeal squamous cell carcinoma.

    PubMed

    Kim, Sun-Ae; Yoon, Tae Mi; Lee, Dong Hoon; Lee, Joon Kyoo; Park, Young-Lan; Chung, Ik-Joo; Joo, Young-Eun; Lim, Sang Chul

    2016-07-01

    Livin, a member of the human inhibitor of apoptosis protein (IAP) family, is expressed at high levels in various human cancer tissues and may have prognostic significance. The aim of the present study was to evaluate the effect of Livin on tumor cell behavior and oncogenic signaling pathways in human hypopharyngeal squamous cell carcinoma (HSCC). Reverse transcription‑quantitative polymerase chain reaction and western blot analyses were used to determine the mRNA and protein expression levels, respectively. A cell proliferation assay and cell cycle analysis were used to assess the functional effects of small interfering RNA‑mediated Livin knockdown. Livin was overexpressed in fresh HSCC tissues, compared with the adjacent normal mucosa. Livin knockdown led to significantly reduced cell proliferation and cell cycle arrest in the G1 phase of the human HSCC cells. The expression levels of c‑myc, cyclin D1, cyclin D3, cyclin‑dependent kinase (CDK)4 and CDK6 were decreased. The phosphorylation levels of extracellular signal‑regulated kinase 1/2, p38, c‑Jun N-terminal kinase and Akt were also decreased by Livin knockdown in the HSCC cells. Taken together, the results of the present study suggested that Livin may enhance tumorigenesis by modulating the mitogen‑activated/Akt signaling pathways in human HSCC. PMID:27175933

  5. Sphingosine-1-Phosphate Enhances Satellite Cell Activation in Dystrophic Muscles through a S1PR2/STAT3 Signaling Pathway

    PubMed Central

    Carlson, Morgan E.; Oskouian, Babak; Kumar, Ashok; Fyrst, Henrik; Zhang, Meng; Proia, Richard L.; Hoffman, Eric P.; Saba, Julie D.

    2012-01-01

    Sphingosine-1-phosphate (S1P) activates a widely expressed family of G protein-coupled receptors, serves as a muscle trophic factor and activates muscle stem cells called satellite cells (SCs) through unknown mechanisms. Here we show that muscle injury induces dynamic changes in S1P signaling and metabolism in vivo. These changes include early and profound induction of the gene encoding the S1P biosynthetic enzyme SphK1, followed by induction of the catabolic enzyme sphingosine phosphate lyase (SPL) 3 days later. These changes correlate with a transient increase in circulating S1P levels after muscle injury. We show a specific requirement for SphK1 to support efficient muscle regeneration and SC proliferation and differentiation. Mdx mice, which serve as a model for muscular dystrophy (MD), were found to be S1P-deficient and exhibited muscle SPL upregulation, suggesting that S1P catabolism is enhanced in dystrophic muscle. Pharmacological SPL inhibition increased muscle S1P levels, improved mdx muscle regeneration and enhanced SC proliferation via S1P receptor 2 (S1PR2)-dependent inhibition of Rac1, thereby activating Signal Transducer and Activator of Transcription 3 (STAT3), a central player in inflammatory signaling. STAT3 activation resulted in p21 and p27 downregulation in a S1PR2-dependent fashion in myoblasts. Our findings suggest that S1P promotes SC progression through the cell cycle by repression of cell cycle inhibitors via S1PR2/STAT3-dependent signaling and that SPL inhibition may provide a therapeutic strategy for MD. PMID:22606352

  6. Sphingosine-1-phosphate enhances satellite cell activation in dystrophic muscles through a S1PR2/STAT3 signaling pathway.

    PubMed

    Loh, Kenneth C; Leong, Weng-In; Carlson, Morgan E; Oskouian, Babak; Kumar, Ashok; Fyrst, Henrik; Zhang, Meng; Proia, Richard L; Hoffman, Eric P; Saba, Julie D

    2012-01-01

    Sphingosine-1-phosphate (S1P) activates a widely expressed family of G protein-coupled receptors, serves as a muscle trophic factor and activates muscle stem cells called satellite cells (SCs) through unknown mechanisms. Here we show that muscle injury induces dynamic changes in S1P signaling and metabolism in vivo. These changes include early and profound induction of the gene encoding the S1P biosynthetic enzyme SphK1, followed by induction of the catabolic enzyme sphingosine phosphate lyase (SPL) 3 days later. These changes correlate with a transient increase in circulating S1P levels after muscle injury. We show a specific requirement for SphK1 to support efficient muscle regeneration and SC proliferation and differentiation. Mdx mice, which serve as a model for muscular dystrophy (MD), were found to be S1P-deficient and exhibited muscle SPL upregulation, suggesting that S1P catabolism is enhanced in dystrophic muscle. Pharmacological SPL inhibition increased muscle S1P levels, improved mdx muscle regeneration and enhanced SC proliferation via S1P receptor 2 (S1PR2)-dependent inhibition of Rac1, thereby activating Signal Transducer and Activator of Transcription 3 (STAT3), a central player in inflammatory signaling. STAT3 activation resulted in p21 and p27 downregulation in a S1PR2-dependent fashion in myoblasts. Our findings suggest that S1P promotes SC progression through the cell cycle by repression of cell cycle inhibitors via S1PR2/STAT3-dependent signaling and that SPL inhibition may provide a therapeutic strategy for MD. PMID:22606352

  7. Enhanced anticancer activity of nanopreparation containing an MMP2-sensitive PEG-drug conjugate and cell-penetrating moiety.

    PubMed

    Zhu, Lin; Wang, Tao; Perche, Federico; Taigind, Anton; Torchilin, Vladimir P

    2013-10-15

    In response to the challenges of cancer chemotherapeutics, including poor physicochemical properties, low tumor targeting, insufficient tumor cell internalization/bioavailability, and side effects, we developed a unique tumor-targeted micellar drug-delivery platform. Using paclitaxel as a model therapeutic, a nanopreparation composed of a matrix metalloproteinase 2 (MMP2)-sensitive self-assembly PEG 2000-paclitaxel conjugate (as a prodrug and MMP 2-sensitive moiety), transactivating transcriptional activator peptide-PEG1000-phosphoethanolamine (PE) (a cell-penetrating enhancer), and PEG1000-PE (a nanocarrier building block) was prepared. Several major drug delivery strategies, including self-assembly, PEGylation, the enhanced permeability and retention effect, stimulus sensitivity, a cell-penetrating moiety, and the concept of prodrug, were used in design of this nanoparticle in a collaborative manner. The nanopreparation allowed superior cell internalization, cytotoxicity, tumor targeting, and antitumor efficacy in vitro and in vivo over its nonsensitive counterpart, free paclitaxel and conventional micelles. This uniquely engineered nanoparticle has potential for effective intracellular delivery of drug into cancer cells. PMID:24062440

  8. Activation of RARα induces autophagy in SKBR3 breast cancer cells and depletion of key autophagy genes enhances ATRA toxicity.

    PubMed

    Brigger, D; Schläfli, A M; Garattini, E; Tschan, M P

    2015-01-01

    All-trans retinoic acid (ATRA), a pan-retinoic acid receptor (RAR) agonist, is, along with other retinoids, a promising therapeutic agent for the treatment of a variety of solid tumors. On the one hand, preclinical studies have shown promising anticancer effects of ATRA in breast cancer; on the other hand, resistances occurred. Autophagy is a cellular recycling process that allows the degradation of bulk cellular contents. Tumor cells may take advantage of autophagy to cope with stress caused by anticancer drugs. We therefore wondered if autophagy is activated by ATRA in mammary tumor cells and if modulation of autophagy might be a potential novel treatment strategy. Indeed, ATRA induces autophagic flux in ATRA-sensitive but not in ATRA-resistant human breast cancer cells. Moreover, using different RAR agonists as well as RARα-knockdown breast cancer cells, we demonstrate that autophagy is dependent on RARα activation. Interestingly, inhibition of autophagy in breast cancer cells by either genetic or pharmacological approaches resulted in significantly increased apoptosis under ATRA treatment and attenuated epithelial differentiation. In summary, our findings demonstrate that ATRA-induced autophagy is mediated by RARα in breast cancer cells. Furthermore, inhibition of autophagy results in enhanced apoptosis. This points to a potential novel treatment strategy for a selected group of breast cancer patients where ATRA and autophagy inhibitors are applied simultaneously. PMID:26313912

  9. Activation of RARα induces autophagy in SKBR3 breast cancer cells and depletion of key autophagy genes enhances ATRA toxicity

    PubMed Central

    Brigger, D; Schläfli, A M; Garattini, E; Tschan, M P

    2015-01-01

    All-trans retinoic acid (ATRA), a pan-retinoic acid receptor (RAR) agonist, is, along with other retinoids, a promising therapeutic agent for the treatment of a variety of solid tumors. On the one hand, preclinical studies have shown promising anticancer effects of ATRA in breast cancer; on the other hand, resistances occurred. Autophagy is a cellular recycling process that allows the degradation of bulk cellular contents. Tumor cells may take advantage of autophagy to cope with stress caused by anticancer drugs. We therefore wondered if autophagy is activated by ATRA in mammary tumor cells and if modulation of autophagy might be a potential novel treatment strategy. Indeed, ATRA induces autophagic flux in ATRA-sensitive but not in ATRA-resistant human breast cancer cells. Moreover, using different RAR agonists as well as RARα-knockdown breast cancer cells, we demonstrate that autophagy is dependent on RARα activation. Interestingly, inhibition of autophagy in breast cancer cells by either genetic or pharmacological approaches resulted in significantly increased apoptosis under ATRA treatment and attenuated epithelial differentiation. In summary, our findings demonstrate that ATRA-induced autophagy is mediated by RARα in breast cancer cells. Furthermore, inhibition of autophagy results in enhanced apoptosis. This points to a potential novel treatment strategy for a selected group of breast cancer patients where ATRA and autophagy inhibitors are applied simultaneously. PMID:26313912

  10. Oridonin enhances the anticancer activity of NVP-BEZ235 against neuroblastoma cells in vitro and in vivo through autophagy.

    PubMed

    Zhang, Li-Di; Liu, Zhen; Liu, Hua; Ran, Dong-Mei; Guo, Jia-Hui; Jiang, Bin; Wu, Ying-Li; Gao, Feng-Hou

    2016-08-01

    The aberrant activation of PI3K/Akt/mTOR signaling pathway plays an important role in the oncogenesis, prognosis and chemotherapy resistance of neuroblastoma. However, NVP-BEZ235, a potent dual PI3K and mTOR inhibitor have not shown beneficial effects on neuroblastoma especially in terms of apoptosis induction as a single agent. We therefore attempted to explore an effective combination regimen to enhance the anticancer activity of NVP-BEZ235. Interestingly, we found that oridonin, a natural biologically active compound extracted from the Chinese medicinal herb Rabdosia rubescens, combined with NVP-BEZ235 markedly induced apoptosis of neuroblastoma cells. Notably, the synergistic activation of the apoptotic pathway was accompanied with enhanced autophagy as evidenced by significant decreased p62 expression as well as upregulated conversion of LC3-II. Suppression of the Beclin-1, a core component of the autophagy machinery, by means of shRNA resulted in diminished synergistic antitumor effect. Furthermore, the co-treatment with oridonin and NVP-BEZ235 was also much more effective than either agent alone in inhibiting the growth of neuroblastoma xenografts and in inducing tumor cells apoptosis. Taken together, our results suggest that the combination of NVP-BEZ235 and oridonin is a novel and potential strategy for neuroblastoma therapy. PMID:27278249

  11. Interaction with activated monocytes enhances cytokine expression and suppressive activity of human CD4+CD45RO+CD25+CD127low regulatory T cells

    PubMed Central

    Walter, Gina J.; Evans, Hayley G.; Menon, Bina; Gullick, Nicola J.; Kirkham, Bruce W.; Cope, Andrew P.; Geissmann, Frédéric; Taams, Leonie S.

    2014-01-01

    Objective Despite the high frequency of CD4+ T cells with a regulatory phenotype (CD25+CD127lowFoxP3+) in the joints of patients with rheumatoid arthritis (RA), inflammation persists. One possible explanation is that human Tregs are converted into pro-inflammatory IL-17-producing cells by inflammatory mediators and thereby lose their suppressive function. We investigated whether activated monocytes, which are potent producers of inflammatory cytokines and abundantly present in the rheumatic joint, induce pro-inflammatory cytokine expression in human Tregs and impair their regulatory function. Methods The presence and phenotype of CD4+CD45RO+CD25+CD127low T cells (memory Tregs) and CD14+ monocytes in the peripheral blood (PB) and synovial fluid (SF) from patients with RA was investigated by flow cytometry. FACS-sorted memory Tregs from healthy controls were co-cultured with autologous activated monocytes and stimulated with anti-CD3 monoclonal antibody. Intracellular cytokine expression, phenotype and function of cells were determined by flow cytometry, ELISA and proliferation assays. Results Patients with RA showed higher frequencies of CD4+CD45RO+CD25+CD127low Tregs and activated CD14+ monocytes in SF relative to PB. In vitro-activated monocytes induced an increase in the percentage of IL-17+, IFNγ+ and TNF-α+, but also IL-10+ Tregs. The observed increase in IL-17+ and IFNγ+ Tregs was driven by monocyte-derived IL-1β, IL-6 and TNF-α and was mediated by both CD14+CD16− and CD14+CD16+ monocyte subsets. Despite enhanced cytokine expression, cells maintained their CD25+FoxP3+CD39+ Treg phenotype and showed enhanced capacity to suppress proliferation and IL-17 production by effector T cells. Conclusion Tregs exposed to a pro-inflammatory environment show increased cytokine expression as well as enhanced suppressive activity. PMID:23280063

  12. Prophylactic effect of Korean mistletoe (Viscum album coloratum) extract on tumor metastasis is mediated by enhancement of NK cell activity.

    PubMed

    Yoon, T J; Yoo, Y C; Kang, T B; Baek, Y J; Huh, C S; Song, S K; Lee, K H; Azuma, I; Kim, J B

    1998-01-01

    We here demonstrated the prophylactic effect of an extract (KM-110) from Viscum album coloratum, a Korean mistletoe, on tumor metastasis produced by highly metastatic tumor cells, colon 26-M3.1 carcinoma, B16-BL6 melanoma and L5178Y-ML25 lymphoma cells, using experimental models in mice. Intravenous (i.v.) administration of KM-110 (100 microg/mouse) 2 days before tumor inoculation significantly inhibited lung metastasis of B16-BL6 and colon 26-M3.1 cells, and liver and spleen metastasis of L5178Y-ML25 cells. The prophylactic effect of KM-110 on tumor metastasis was evident with various administration routes, i.e. subcutaneous, oral, intranasal as well as i.v., and was dependent upon the dose of KM-110 administered. Furthermore, mice given KM-110 (100 microg) 2 days before tumor inoculation showed significantly prolonged survival rates compared with the untreated mice. In a time course analysis of NK activity, i.v. administration of KM-110 (100 microg) significantly augmented NK cytotoxicity to Yac-a tumor cells from 1 to 3 days after KM-110 treatment. Furthermore, depletion NK cells by injection of rabbit anti-asialo GM1 serum completely abolished the inhibitory effect of KM-110 on lung metastasis of colon 26-M3.1 cells. These results suggest that KM-110 possesses immunopotentiating activity which enhances the host defense system against tumors, and that its prophylactic effect on tumor metastasis is mediated by NK cell activation. PMID:9730252

  13. Enhancement of the activity of phenoxodiol by cisplatin in prostate cancer cells

    PubMed Central

    McPherson, R A C; Galettis, P T; de Souza, P L

    2009-01-01

    Phenoxodiol is a novel isoflav-3-ene, currently undergoing clinical trials, that has a broad in vitro activity against a number of human cancer cell lines. Phenoxodiol alone inhibited DU145 and PC3 in a dose- and time-dependent manner with IC50 values of 8±1 and 38±9 μM, respectively. The combination of phenoxodiol and cisplatin was synergistic in DU145, and additive in PC3, as assessed by the Chou–Talalay method. Carboplatin was also synergistic in combination with phenoxodiol in DU145 cells. The activity of the phenoxodiol and cisplatin combination was confirmed in vivo using a DU145 xenograft model in nude mice. Pharmacokinetic data from these mice suggest that the mechanism of synergy may occur through a pharmacodynamic mechanism. An intracellular cisplatin accumulation assay showed a 35% (P<0.05) increase in the uptake of cisplatin when it was combined in a ratio of 1 μM: 5 μM phenoxodiol, resulting in a 300% (P<0.05) increase in DNA adducts. Taken together, our results suggest that phenoxodiol has interesting properties that make combination therapy with cisplatin or carboplatin appealing. PMID:19209173

  14. Loss of TET2 in hematopoietic cells leads to DNA hypermethylation of active enhancers and induction of leukemogenesis.

    PubMed

    Rasmussen, Kasper D; Jia, Guangshuai; Johansen, Jens V; Pedersen, Marianne T; Rapin, Nicolas; Bagger, Frederik O; Porse, Bo T; Bernard, Olivier A; Christensen, Jesper; Helin, Kristian

    2015-05-01

    DNA methylation is tightly regulated throughout mammalian development, and altered DNA methylation patterns are a general hallmark of cancer. The methylcytosine dioxygenase TET2 is frequently mutated in hematological disorders, including acute myeloid leukemia (AML), and has been suggested to protect CG dinucleotide (CpG) islands and promoters from aberrant DNA methylation. In this study, we present a novel Tet2-dependent leukemia mouse model that closely recapitulates gene expression profiles and hallmarks of human AML1-ETO-induced AML. Using this model, we show that the primary effect of Tet2 loss in preleukemic hematopoietic cells is progressive and widespread DNA hypermethylation affecting up to 25% of active enhancer elements. In contrast, CpG island and promoter methylation does not change in a Tet2-dependent manner but increases relative to population doublings. We confirmed this specific enhancer hypermethylation phenotype in human AML patients with TET2 mutations. Analysis of immediate gene expression changes reveals rapid deregulation of a large number of genes implicated in tumorigenesis, including many down-regulated tumor suppressor genes. Hence, we propose that TET2 prevents leukemic transformation by protecting enhancers from aberrant DNA methylation and that it is the combined silencing of several tumor suppressor genes in TET2 mutated hematopoietic cells that contributes to increased stem cell proliferation and leukemogenesis. PMID:25886910

  15. Loss of TET2 in hematopoietic cells leads to DNA hypermethylation of active enhancers and induction of leukemogenesis

    PubMed Central

    Rasmussen, Kasper D.; Jia, Guangshuai; Johansen, Jens V.; Pedersen, Marianne T.; Rapin, Nicolas; Bagger, Frederik O.; Porse, Bo T.; Bernard, Olivier A.; Christensen, Jesper

    2015-01-01

    DNA methylation is tightly regulated throughout mammalian development, and altered DNA methylation patterns are a general hallmark of cancer. The methylcytosine dioxygenase TET2 is frequently mutated in hematological disorders, including acute myeloid leukemia (AML), and has been suggested to protect CG dinucleotide (CpG) islands and promoters from aberrant DNA methylation. In this study, we present a novel Tet2-dependent leukemia mouse model that closely recapitulates gene expression profiles and hallmarks of human AML1-ETO-induced AML. Using this model, we show that the primary effect of Tet2 loss in preleukemic hematopoietic cells is progressive and widespread DNA hypermethylation affecting up to 25% of active enhancer elements. In contrast, CpG island and promoter methylation does not change in a Tet2-dependent manner but increases relative to population doublings. We confirmed this specific enhancer hypermethylation phenotype in human AML patients with TET2 mutations. Analysis of immediate gene expression changes reveals rapid deregulation of a large number of genes implicated in tumorigenesis, including many down-regulated tumor suppressor genes. Hence, we propose that TET2 prevents leukemic transformation by protecting enhancers from aberrant DNA methylation and that it is the combined silencing of several tumor suppressor genes in TET2 mutated hematopoietic cells that contributes to increased stem cell proliferation and leukemogenesis. PMID:25886910

  16. Mutant Fusion Proteins with Enhanced Fusion Activity Promote Measles Virus Spread in Human Neuronal Cells and Brains of Suckling Hamsters

    PubMed Central

    Shirogane, Yuta; Suzuki, Satoshi O.; Ikegame, Satoshi; Koga, Ritsuko

    2013-01-01

    Subacute sclerosing panencephalitis (SSPE) is a fatal degenerative disease caused by persistent measles virus (MV) infection in the central nervous system (CNS). From the genetic study of MV isolates obtained from SSPE patients, it is thought that defects of the matrix (M) protein play a crucial role in MV pathogenicity in the CNS. In this study, we report several notable mutations in the extracellular domain of the MV fusion (F) protein, including those found in multiple SSPE strains. The F proteins with these mutations induced syncytium formation in cells lacking SLAM and nectin 4 (receptors used by wild-type MV), including human neuronal cell lines, when expressed together with the attachment protein hemagglutinin. Moreover, recombinant viruses with these mutations exhibited neurovirulence in suckling hamsters, unlike the parental wild-type MV, and the mortality correlated with their fusion activity. In contrast, the recombinant MV lacking the M protein did not induce syncytia in cells lacking SLAM and nectin 4, although it formed larger syncytia in cells with either of the receptors. Since human neuronal cells are mainly SLAM and nectin 4 negative, fusion-enhancing mutations in the extracellular domain of the F protein may greatly contribute to MV spread via cell-to-cell fusion in the CNS, regardless of defects of the M protein. PMID:23255801

  17. Surface-Enhanced Raman Scattering Active Plasmonic Nanoparticles with Ultrasmall Interior Nanogap for Multiplex Quantitative Detection and Cancer Cell Imaging.

    PubMed

    Li, Jiuxing; Zhu, Zhi; Zhu, Bingqing; Ma, Yanli; Lin, Bingqian; Liu, Rudi; Song, Yanling; Lin, Hui; Tu, Song; Yang, Chaoyong

    2016-08-01

    Due to its large enhancement effect, nanostructure-based surface-enhanced Raman scattering (SERS) technology had been widely applied for bioanalysis and cell imaging. However, most SERS nanostructures suffer from poor signal reproducibility, which hinders the application of SERS nanostructures in quantitative detection. We report an etching-assisted approach to synthesize SERS-active plasmonic nanoparticles with 1 nm interior nanogap for multiplex quantitative detection and cancer cell imaging. Raman dyes and methoxy poly(ethylene glycol) thiol (mPEG-SH) were attached to gold nanoparticles (AuNPs) to prepare gold cores. Next, Ag atoms were deposited on gold cores in the presence of Pluronic F127 to form a Ag shell. HAuCl4 was used to etch the Ag shell and form an interior nanogap in Au@AgAuNPs, leading to increased Raman intensity of dyes. SERS intensity distribution of Au@AgAuNPs was found to be more uniform than that of aggregated AuNPs. Finally, Au@AgAuNPs were used for multiplex quantitative detection and cancer cell imaging. With the advantages of simple and rapid preparation of Au@AgAuNPs with highly uniform, stable, and reproducible Raman intensity, the method reported here will widen the applications of SERS-active nanoparticles in diagnostics and imaging. PMID:27385563

  18. Cyclic AMP enhances agonist-induced Ca2+ entry into endothelial cells by activation of potassium channels and membrane hyperpolarization.

    PubMed Central

    Graier, W F; Kukovetz, W R; Groschner, K

    1993-01-01

    The mechanism underlying cyclic AMP (cAMP)-mediated amplification of agonist-induced Ca2+ responses in endothelial cells was investigated in pig endothelial cells. Forskolin, adenosine and isoprenaline, as well as the membrane-permeant cAMP analogue dibutyryl cAMP, enhanced bradykinin-induced rises in intracellular free Ca2+ as well as bradykinin-induced Mn2+ entry. These agents were also found to hyperpolarize endothelial cells without increasing intracellular Ca2+ by itself, i.e. in the absence of bradykinin. Both amplification of bradykinin effects and the hyperpolarizing action was blocked by the protein kinase inhibitor H-8. The involvement of K+ channels in the hyperpolarizing effects of forskolin was consequently studied in perforated outside-out vesicles. Two different types of K+ channels were recorded, one of which had a large conductance (170 pS) and was activated by forskolin. We suggest that stimulation of endothelial adenylate cyclase results in activation of large-conductance K+ channels and consequently in membrane hyperpolarization, which in turn enhances bradykinin-induced entry of Ca2+ by increasing its electrochemical gradient. PMID:8385935

  19. Cell Growth Enhancement

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Exogene Corporation uses advanced technologies to enhance production of bio-processed substances like proteins, antibiotics and amino acids. Among them are genetic modification and a genetic switch. They originated in research for Jet Propulsion Laboratory. Extensive experiments in cell growth through production of hemoglobin to improve oxygen supply to cells were performed. By improving efficiency of oxygen use by cells, major operational expenses can be reduced. Greater product yields result in decreased raw material costs and more efficient use of equipment. A broad range of applications is cited.

  20. Silodosin inhibits the growth of bladder cancer cells and enhances the cytotoxic activity of cisplatin via ELK1 inactivation

    PubMed Central

    Kawahara, Takashi; Ide, Hiroki; Kashiwagi, Eiji; Patterson, John D; Inoue, Satoshi; Shareef, Hasanain Khaleel; Aljarah, Ali Kadhim; Zheng, Yichun; Baras, Alexander S; Miyamoto, Hiroshi

    2015-01-01

    Silodosin, a selective α1A-adrenergic blocker prescribed for the symptomatic treatment of benign prostatic hyperplasia, was previously shown to decrease the expression of ELK1, a c-fos proto-oncogene regulator and a well-described downstream target of the PKC/Raf-1/ERK pathway, in human prostate smooth muscle cells. PKC/Raf-1/ERK activation has also been implicated in drug resistance. In the current study, we assessed the effects of silodosin on ELK1 expression/activity in bladder cancer cells as well as on their proliferation in the presence or absence of chemotherapeutic drugs, including cisplatin and gemcitabine. In bladder cancer cell lines, silodosin reduced the expression of ELK1 (mRNA/protein) and its downstream target, c-fos gene, as well as the transcriptional activity of ELK1. While silodosin alone (up to 10 μM) insignificantly affected the growth of bladder cancer cells cultured in androgen depleted conditions or those expressing ELK1-short hairpin RNA, it considerably inhibited the viability of androgen receptor (AR)-positive/ELK1-positive cells in the presence of androgens. Silodosin also inhibited the migration of ELK1-positive cells with or without a functional AR, but not that of ELK1 knockdown cells. Interestingly, silodosin treatment or ELK1 silencing resulted in increases in drug sensitivity to cisplatin, but not to gemcitabine, even in AR-negative cells or AR-positive cells cultured in an androgen-depleted condition. In addition, silodosin decreased the expression of NF-κB, a key regulator of chemoresistance, and its transcriptional activity. Moreover, immunohistochemistry in bladder cancer specimens from patients who received neoadjuvant chemotherapy revealed that phospho-ELK1 positivity strongly correlated with chemoresistance. Silodosin was thus found to not only inhibit cell viability and migration but also enhance the cytotoxic activity of cisplatin in bladder cancer lines via inactivating ELK1. Our results suggest that combined

  1. REG Iα activates c-Jun through MAPK pathways to enhance the radiosensitivity of squamous esophageal cancer cells.

    PubMed

    Wakita, Akiyuki; Motoyama, Satoru; Sato, Yusuke; Koyota, Souichi; Usami, Shuetsu; Yoshino, Kei; Sasaki, Tomohiko; Imai, Kazuhiro; Saito, Hajime; Minamiya, Yoshihiro

    2015-07-01

    Identification of the key molecules that mediate susceptibility to anticancer treatments would be highly desirable. Based on clinical and cell biological studies, we recently proposed that regenerating gene (REG) Iα may be such a molecule. In the present study, we hypothesized that REG Iα increases radiosensitivity through activation of mitogen-activated protein kinase (MAPK) pathways. To test that idea, we transfected TE-5 and TE-9 squamous esophageal cancer cells with REG Iα and examined its involvement in MAPK signaling and its effect on susceptibility to radiotherapy. We found that REG Iα-expressing cells showed increased expression of c-Jun messenger RNA (mRNA) and phospho-c-Jun protein mediated via the c-Jun N-terminal kinase (JNK) pathway and extracellular signal-regulated kinase (ERK) pathway, as well as increased radiosensitivity. Immunohistochemical analysis confirmed the activation of c-Jun in tumors expressing REG Iα. Collectively, these findings suggest that REG Iα activates c-Jun via the JNK and ERK pathway, thereby enhancing radiosensitivity. PMID:25656613

  2. Activin A enhances MMP-7 activity via the transcription factor AP-1 in an esophageal squamous cell carcinoma cell line.

    PubMed

    Yoshinaga, Keiji; Mimori, Koshi; Inoue, Hiroshi; Kamohara, Yukio; Yamashita, Keishi; Tanaka, Fumiaki; Mori, Masaki

    2008-09-01

    Activin A, a member of the transforming growth factor beta (TGF-beta) superfamily, is often overexpressed in solid carcinomas. We have previously reported that the expression of activin A is associated with lymph node metastasis in esophageal cancer. In the current study, our goal was to clarify the molecular mechanisms underlying the aggressive behavior of tumors expressing high levels of activin A. Using cDNA microarrays, the gene expression profile of a human esophageal carcinoma cell line (KYSE170) stably transfected with activin betaA (Act-betaA, a subunit of activin A) was compared with those of control human esophageal carcinoma cell lines. We found that expression of MMP-7 was higher in the Act-betaA transfectants than in the control cells. To reveal the mechanism of expression of MMP-7 mediated by activin A, we evaluated mRNA expression of MMP-7 and Act-betaA with or without activin A neutralizing antibody, using real-time PCR and Northern blot analysis. We also performed promoter analysis of the MMP-7 promoter and assessed c-Jun and Smad2/3 expression. MMP-7 expression in the transfectants was correlated with the level of Act-betaA expression and was reduced by activin A neutralizing antibody. The Act-betaA transfectants had higher MMP-7 promoter activity than control cells. MMP-7 promoter activity was not affected by mutation in the Smad binding site, while mutation of the AP-1 binding site did reduce activity. Moreover, the expression of c-Jun was increased in Act-betaA transfectants. These results indicate that activin A may modulate the expression of MMP-7 via AP-1 and not through Smad2/3. PMID:18695873

  3. Enhanced desalination performance of membrane capacitive deionization cells by packing the flow chamber with granular activated carbon.

    PubMed

    Bian, Yanhong; Yang, Xufei; Liang, Peng; Jiang, Yong; Zhang, Changyong; Huang, Xia

    2015-11-15

    A new design of membrane capacitive deionization (MCDI) cell was constructed by packing the cell's flow chamber with granular activated carbon (GAC). The GAC packed-MCDI (GAC-MCDI) delivered higher (1.2-2.5 times) desalination rates than the regular MCDI at all test NaCl concentrations (∼ 100-1000 mg/L). The greatest performance enhancement by packed GAC was observed when treating saline water with an initial NaCl concentration of 100 mg/L. Several different GAC materials were tested and they all exhibited similar enhancement effects. Comparatively, packing the MCDI's flow chamber with glass beads (GB; non-conductive) and graphite granules (GG; conductive but with lower specific surface area than GAC) resulted in inferior desalination performance. Electrochemical impedance spectroscopy (EIS) analysis showed that the GAC-MCDI had considerably smaller internal resistance than the regular MCDI (∼ 19.2 ± 1.2 Ω versus ∼ 1222 ± 15 Ω at 100 mg/L NaCl). The packed GAC also decreased the ionic resistance across the flow chamber (∼ 1.49 ± 0.05 Ω versus ∼ 1130 ± 12 Ω at 100 mg/L NaCl). The electric double layer (EDL) formed on the GAC surface was considered to store salt ions during electrosorption, and facilitate the ion transport in the flow chamber because of the higher ion conductivity in the EDLs than in the bulk solution, thereby enhancing the MCDI's desalination rate. PMID:26360230

  4. Mannose binding lectin plays a crucial role in innate immunity against yeast by enhanced complement activation and enhanced uptake of polymorphonuclear cells

    PubMed Central

    van Asbeck, Eveline C; Hoepelman, Andy IM; Scharringa, Jelle; Herpers, Bjorn L; Verhoef, Jan

    2008-01-01

    Background Mannose binding lectin (MBL) is an important host defence protein against opportunistic fungal pathogens. This carbohydrate-binding protein, an opsonin and lectin pathway activator, binds through multiple lectin domains to the repeating sugar arrays displayed on the surface of a wide range of clinically relevant microbial species. We investigated the contribution of MBL to antifungal innate immunity towards C. parapsilosis in vitro. Results High avidity binding was observed between MBL and C. albicans and C. parapsilosis. Addition of MBL to MBL deficient serum increased the deposition of C4 and C3b and enhanced the uptake of C. albicans, C. parapsilosis and acapsular C. neoformans by polymorphonuclear cells (PMNs). Compared to other microorganisms, such as Escherichia coli, Staphylococcus aureus and Cryptococcus neoformans, C. parapsilosis and Candida albicans were potent activators of the lectin pathway. Conclusion Our results suggest that MBL plays a crucial role in the innate immunity against infections caused by yeast by increasing uptake by PMN. PMID:19094203

  5. Soluble Factors Released by Endogenous Viable Cells Enhance the Antioxidant and Chemoattractive Activities of Cryopreserved Amniotic Membrane

    PubMed Central

    Duan-Arnold, Yi; Gyurdieva, Alexandra; Johnson, Amy; Jacobstein, Douglas A.; Danilkovitch, Alla

    2015-01-01

    Objective: Regulation of oxidative stress and recruitment of key cell types are activities of human amniotic membrane (hAM) that contribute to its benefits for wound treatment. Progress in tissue preservation has led to commercialization of hAM. The majority of hAM products are devitalized with various degrees of matrix alteration. Data show the importance of hAM matrix preservation, but little is known about the advantages of retaining viable endogenous cells. In this study, we compared the antioxidant and chemoattractive properties of viable intact cryopreserved hAM (int-hAM) and devitalized cryopreserved hAM (dev-hAM) to determine the benefits of cell preservation. Approach: We evaluated the ability of int-hAM and dev-hAM to protect fibroblasts from oxidant-induced cell damage, to suppress oxidants, and to recruit fibroblasts and keratinocytes in vitro. Results: Both the int-hAM–derived conditioned medium (CM) and the int-hAM tissue rescued significantly more fibroblasts from oxidant-induced damage than dev-hAM (844% and 93% more, respectively). The int-hAM CM showed a 202% greater antioxidant capacity than dev-hAM. The int-hAM CM enhanced the recruitment of fibroblasts and normal and diseased keratinocytes to a greater extent than dev-hAM (1,555%, 315%, and 151% greater, respectively). Innovation and Conclusion: Int-hAM, in which all native components are preserved, including endogenous viable cells, demonstrated a significantly greater antioxidant and fibroblast and keratinocyte chemoattractive potential compared to dev-hAM, in which viable cells are destroyed. The release of soluble factors that protect fibroblasts from oxidative injury by hAM containing viable cells is a mechanism of hAM antioxidant activity, which is a novel finding of this study. PMID:26029483

  6. Enhancement of phenolics, resveratrol and antioxidant activity by nitrogen enrichment in cell suspension culture of Vitis vinifera.

    PubMed

    Sae-Lee, Napaporn; Kerdchoechuen, Orapin; Laohakunjit, Natta

    2014-01-01

    Ammonium nitrate (NH4NO3), an important nitrogen source (34% N), has been used as an elicitor to stimulate plant growth and development as well as induce secondary metabolites under controlled conditions. In the present paper, we investigated the enhancement of cell biomass, total phenolics, resveratrol levels, and antioxidant activity of Vitis vinifera cv. Pok Dum by nitrogen enrichment (MS medium supplemented with NH4NO3 at 0, 500, 1,000, 5,000 and 10,000 mg/L). The highest accumulations of biomass, phenolics and resveratrol contents were observed at 8.8-fold (86.6 g DW/L), 15.9-fold (71.91 mg GAE/g DW) and 5.6-fold (277.89 µg/g DW) by the 14th day, in the medium supplemented with 500 mg/L NH4NO3. Moreover, the antioxidant activities of cultured grape cells estimated by the DPPH· and ABTS·+ assay were positively correlated with phenolics and resveratrol, and the maximum activity was also observed in cultured cells with 500 mg/L NH4NO3 at 176.11 and 267.79 mmol TE/100 g DW, respectively. PMID:24962393

  7. INF-γ Enhances Nox2 Activity by Upregulating phox Proteins When Applied to Differentiating PLB-985 Cells but Does Not Induce Nox2 Activity by Itself

    PubMed Central

    Ellison, Michael A.; Thurman, Gail; Gearheart, Christy M.; Seewald, Ryan H.; Porter, Christopher C.; Ambruso, Daniel R.

    2015-01-01

    Background The cytokine and drug interferon-γ enhances superoxide anion production by the antimicrobicidal Nox2 enzyme of neutrophils. Because mature neutrophils have a short lifespan, we hypothesized that the effects of interferon-γ on these cells might be mediated by its prolonged exposure to differentiating neutrophil precursors in the bone marrow rather than its brief exposure to mature circulating neutrophils. Effects of INF-γ on Nox2 Activity To address this possibility we exposed the myeloid PLB-985 cell line to interferon-γ for 3 days in the presence of dimethyl sulfoxide which induces terminal differentiation of these cells. Interferon-γ was found to enhance superoxide production by Nox2 in a concentration dependent manner. In contrast, application of interferon-γ alone for 3 days failed to induce detectible Nox2 activity. Additionally, application of interferon-γ for 3 hours to pre-differentiated PLB-985 cells, which models studies using isolated neutrophils, was much less effective at enhancing superoxide anion production. Effects of INF-γ on phox Protein Levels Addition of interferon-γ during differentiation was found to upregulate the Nox2 proteins gp91phox and p47phox in concert with elevated transcription of their genes. The p22phox protein was upregulated in the absence of increased transcription presumably reflecting stabilization resulting from binding to the elevated gp91phox. Thus, increased levels of gp91phox, p47phox and p22phox likely account for the interferon-γ mediated enhancement of dimethyl sulfoxide-induced Nox2 activity. In contrast, although interferon-γ alone also increased various phox proteins and their mRNAs, the pattern was very different to that seen with interferon-γ plus dimethyl sulfoxide. In particular, p47phox was not induced thus explaining the inability of interferon -γ alone to enhance Nox2 activity. Short application of interferon-γ to already differentiated cells failed to increase any phox proteins

  8. Oct2 enhances antibody-secreting cell differentiation through regulation of IL-5 receptor α chain expression on activated B cells

    PubMed Central

    Emslie, Dianne; D'Costa, Kathy; Hasbold, Jhagvaral; Metcalf, Donald; Takatsu, Kiyoshi; Hodgkin, Philip O.; Corcoran, Lynn M.

    2008-01-01

    Mice lacking a functional gene for the Oct2 transcriptional activator display several developmental and functional deficiencies in the B lymphocyte lineage. These include defective B cell receptor (BCR) and Toll-like receptor 4 signaling, an absence of B-1 and marginal zone populations, and globally reduced levels of serum immunoglobulin (Ig) in naive and immunized animals. Oct2 was originally identified through its ability to bind to regulatory regions in the Ig loci, but genetic evidence has not supported an essential role for Oct2 in the expression of Ig genes. We describe a new Oct2-mediated role in B cells. Oct2 augments the ability of activated B cells to differentiate to antibody-secreting plasma cells (ASCs) under T cell–dependent conditions through direct regulation of the gene encoding the α chain of the interleukin (IL) 5 receptor. Ectopic expression of IL-5Rα in oct2-deficient B cells largely restores their ability to differentiate to functional ASCs in vitro but does not correct other phenotypic defects in the mutants, such as the maturation and specialization of peripheral B cells, which must therefore rely on distinct Oct2 target genes. IL-5 augments ASC differentiation in vitro, and we show that IL-5 directly activates the plasma cell differentiation program by enhancing blimp1 expression. PMID:18250192

  9. Infection of vascular endothelial cells with herpes simplex virus enhances tissue factor activity and reduces thrombomodulin expression.

    PubMed Central

    Key, N S; Vercellotti, G M; Winkelmann, J C; Moldow, C F; Goodman, J L; Esmon, N L; Esmon, C T; Jacob, H S

    1990-01-01

    Latent infection of vascular cells with herpes-viruses may play a pathogenic role in the development of human atherosclerosis. In a previous study, we found that cultured human umbilical vein endothelial cells (HUVECs) infected with herpes simplex virus 1 (HSV-1) became procoagulant, exemplified both by their enhanced assembly of the prothrombinase complex and by their inability to reduce adhesion of platelets. We now report two further procoagulant consequences of endothelial HSV infection: loss of surface thrombomodulin (TM) activity and induction of synthesis of tissue factor. Within 4 hr of infection of HUVECs, TM activity measured by thrombin-dependent protein C activation declined 21 +/- 3% (P less than 0.05) and by 18 hr, 48 +/- 5% (P less than 0.001). Similar significant TM decrements accompanied infection of bovine aortic endothelial cells. Identical TM loss was induced with HSV-2 infection but not with adenovirus infection. Decreased surface expression of TM antigen (measured by the specific binding of a polyclonal antibody to bovine TM) closely paralleled the loss of TM activity. As examined by Northern blotting, these losses apparently reflected rapid onset (within 4 hr of HSV infection) loss of mRNA for TM. In contrast, HSV infection induced a viral-dose-dependent increase in synthesis of tissue factor protein, adding to the procoagulant state. The results indicate that loss of endothelial protein-synthetic capacity is not a universal effect of HSV infection. We suggest that the procoagulant state induced by reduction in TM activity and amplified tissue factor activity accompanying HSV infection of endothelium could contribute to deposition of thrombi on atherosclerotic plaques and to the "coagulant-necrosis" state that characterizes HSV-infected mucocutaneous lesions. Images PMID:2169619

  10. AZD1480 delays tumor growth in a melanoma model while enhancing the suppressive activity of myeloid-derived suppressor cells.

    PubMed

    Maenhout, Sarah K; Du Four, Stephanie; Corthals, Jurgen; Neyns, Bart; Thielemans, Kris; Aerts, Joeri L

    2014-08-30

    AZD1480 is a potent, competitive small-molecule inhibitor of JAK1/2 kinase which inhibits STAT3 phosphorylation and tumor growth. Here we investigated the effects of AZD1480 on the function of different immune cell populations in a melanoma model. When MO4 tumor-bearing mice were treated with AZD1480 we observed a strong inhibition of tumor growth as well as a prolonged survival. Moreover, a significant decrease in the percentage of myeloid-derived suppressor cells (MDSCs) was observed after treatment with AZD1480. However, AZD1480 enhanced the suppressive capacity of murine MDSCs while at the same time impairing the proliferative as well as the IFN-γ secretion capacity of murine T cells. The addition of AZD1480 to co-cultures of human MDSCs and T cells does not affect the suppressive activity of MDSCs but it does reduce the IFN-γ secretion and the proliferative capacity of T cells. We showed that although AZD1480 has the ability to delay the tumor growth of MO4 tumor-bearing mice, this drug has detrimental effects on several aspects of the immune system. These data indicate that systemic targeting of the JAK/STAT pathway by JAK1/2 inhibition can have divergent effects on tumor growth and anti-tumor immune responses. PMID:25149535

  11. Novel 4-anilinoquinazoline derivatives featuring an 1-adamantyl moiety as potent EGFR inhibitors with enhanced activity against NSCLC cell lines.

    PubMed

    Yu, Haiqing; Li, Yanxia; Ge, Yang; Song, Zhendong; Wang, Changyuan; Huang, Shanshan; Jin, Yue; Han, Xu; Zhen, Yuhong; Liu, Kexin; Zhou, Youwen; Ma, Xiaodong

    2016-03-01

    With the aim of overcoming gefitinib resistance, a series of novel quinazoline derivatives bearing an adamantyl group on the aniline ring were synthesized as potent epidermal growth factor receptor (EGFR) inhibitors. Most of these analogues are comparable to gefitinib in their ability to inhibit non-small cell lung cancer (NSCLC) cell lines, and several also exhibited significantly enhanced anti-tumor potency. Specifically, compound 3d, with an IC50 value of 2.06 μM against A431 cells with the wild-type EGFR and of 0.009 μM against the gefitinib-sensitive cells, displayed approximately 5-fold higher potency than the lead compound to inhibit the cells harboring the EGFR(T790M) mutant. In addition, the molecular simulation and Western blot analysis results also indicated that these compounds effectively interfered with the EGFR(T790M) activity, and may serve as a new alternative structure to develop more effective antitumor agents. PMID:26829280

  12. AZD1480 delays tumor growth in a melanoma model while enhancing the suppressive activity of myeloid-derived suppressor cells

    PubMed Central

    Maenhout, Sarah K.; Four, Stephanie Du; Corthals, Jurgen; Neyns, Bart; Thielemans, Kris; Aerts, Joeri L.

    2014-01-01

    AZD1480 is a potent, competitive small-molecule inhibitor of JAK1/2 kinase which inhibits STAT3 phosphorylation and tumor growth. Here we investigated the effects of AZD1480 on the function of different immune cell populations in a melanoma model. When MO4 tumor-bearing mice were treated with AZD1480 we observed a strong inhibition of tumor growth as well as a prolonged survival. Moreover, a significant decrease in the percentage of myeloid-derived suppressor cells (MDSCs) was observed after treatment with AZD1480. However, AZD1480 enhanced the suppressive capacity of murine MDSCs while at the same time impairing the proliferative as well as the IFN-γ secretion capacity of murine T cells. The addition of AZD1480 to co-cultures of human MDSCs and T cells does not affect the suppressive activity of MDSCs but it does reduce the IFN-γ secretion and the proliferative capacity of T cells. We showed that although AZD1480 has the ability to delay the tumor growth of MO4 tumor-bearing mice, this drug has detrimental effects on several aspects of the immune system. These data indicate that systemic targeting of the JAK/STAT pathway by JAK1/2 inhibition can have divergent effects on tumor growth and anti-tumor immune responses. PMID:25149535

  13. Themis1 enhances T cell receptor signaling during thymocyte development by promoting Vav1 activity and Grb2 stability.

    PubMed

    Zvezdova, Ekaterina; Mikolajczak, Judith; Garreau, Anne; Marcellin, Marlène; Rigal, Lise; Lee, Jan; Choi, Seeyoung; Blaize, Gaëtan; Argenty, Jérémy; Familiades, Julien; Li, Liqi; Gonzalez de Peredo, Anne; Burlet-Schiltz, Odile; Love, Paul E; Lesourne, Renaud

    2016-01-01

    The T cell signaling protein Themis1 is essential for the positive and negative selection of thymocytes in the thymus. Although the developmental defect that results from the loss of Themis1 suggests that it enhances T cell receptor (TCR) signaling, Themis1 also recruits Src homology 2 domain-containing phosphatase-1 (SHP-1) to the vicinity of TCR signaling complexes, suggesting that it has an inhibitory role in TCR signaling. We used TCR signaling reporter mice and quantitative proteomics to explore the role of Themis1 in developing T cells. We found that Themis1 acted mostly as a positive regulator of TCR signaling in vivo when receptors were activated by positively selecting ligands. Proteomic analysis of the Themis1 interactome identified SHP-1, the TCR-associated adaptor protein Grb2, and the guanine nucleotide exchange factor Vav1 as the principal interacting partners of Themis1 in isolated mouse thymocytes. Analysis of TCR signaling in Themis1-deficient and Themis1-overexpressing mouse thymocytes demonstrated that Themis1 promoted Vav1 activity both in vitro and in vivo. The reduced activity of Vav1 and the impaired T cell development in Themis1(-/-) mice were due in part to increased degradation of Grb2, which suggests that Themis1 is required to maintain the steady-state abundance of Grb2 in thymocytes. Together, these data suggest that Themis1 acts as a positive regulator of TCR signaling in developing T cells, and identify a mechanism by which Themis1 regulates thymic selection. PMID:27188442

  14. Clonal evolution enhances leukemia propagating cell frequency in T-cell acute lymphoblastic leukemia through Akt/mTORC1 pathway activation

    PubMed Central

    Blackburn, Jessica S.; Liu, Sali; Wilder, Jayme L.; Dobrinski, Kimberly P.; Lobbardi, Riadh; Moore, Finola E.; Martinez, Sarah A.; Chen, Eleanor Y.; Lee, Charles; Langenau, David M.

    2014-01-01

    SUMMARY Clonal evolution and intratumoral heterogeneity drive cancer progression through unknown molecular mechanisms. To address this issue, functional differences between single T-cell acute lymphoblastic leukemia (T-ALL) clones were assessed using a zebrafish transgenic model. Functional variation was observed within individual clones, with a minority of clones enhancing growth rate and leukemia propagating potential with time. Akt pathway activation was acquired in a subset of these evolved clones, which increased the number of leukemia propagating cells through activating mTORC1, elevated growth rate likely by stabilizing the Myc protein, and rendered cells resistant to dexamethasone, which was reversed by combined treatment with an Akt inhibitor. Thus, T-ALL clones spontaneously and continuously evolve to drive leukemia progression even in the absence of therapy-induced selection. PMID:24613413

  15. Adiponectin enhances osteogenic differentiation in human adipose-derived stem cells by activating the APPL1-AMPK signaling pathway

    SciTech Connect

    Chen, Tong; Wu, Yu-wei; Lu, Hui; Guo, Yuan; Tang, Zhi-hui

    2015-05-29

    Human adipose-derived stem cells (hASCs) are multipotent progenitor cells with multi-lineage differentiation potential including osteogenesis and adipogenesis. While significant progress has been made in understanding the transcriptional control of hASC fate, little is known about how hASC differentiation is regulated by the autocrine loop. The most abundant adipocytokine secreted by adipocytes, adiponectin (APN) plays a pivotal role in glucose metabolism and energy homeostasis. Growing evidence suggests a positive association between APN and bone formation yet little is known regarding the direct effects of APN on hASC osteogenesis. Therefore, this study was designed to investigate the varied osteogenic effects and regulatory mechanisms of APN in the osteogenic commitment of hASCs. We found that APN enhanced the expression of osteoblast-related genes in hASCs, such as osteocalcin, alkaline phosphatase, and runt-related transcription factor-2 (Runx2, also known as CBFa1), in a dose- and time-dependent manner. This was further confirmed by the higher expression levels of alkaline phosphatase and increased formation of mineralization nodules, along with the absence of inhibition of cell proliferation. Importantly, APN at 1 μg/ml was the optimal concentration, resulting in maximum deposition of calcium nodules, and was significant superior to bone morphogenetic protein 2. Mechanistically, we found for the first time that APN increased nuclear translocation of the leucine zipper motif (APPL)-1 as well as AMP-activated protein kinase (AMPK) phosphorylation, which were reversed by pretreatment with APPL1 siRNA. Our results indicate that APN promotes the osteogenic differentiation of hASCs by activating APPL1-AMPK signaling, suggesting that manipulation of APN is a novel therapeutic target for controlling hASC fate. - Highlights: • Adiponectin enhances osteogenic differentiation in human adipose-derived stem cells. • The knock-down of APPL1 block the enhancement of

  16. Engineering interface and surface of noble metal nanoparticle nanotubes toward enhanced catalytic activity for fuel cell applications.

    PubMed

    Cui, Chun-Hua; Yu, Shu-Hong

    2013-07-16

    In order for fuel cells to have commercial viability as alternative fuel sources, researchers need to develop highly active and robust fuel cell electrocatalysts. In recent years, the focus has been on the design and synthesis of novel catalytic materials with controlled interface and surface structures. Another goal is to uncover potential catalytic activity and selectivity, as well as understand their fundamental catalytic mechanisms. Scientists have achieved great progress in the experimental and theoretical investigation due to the urgent demand for broad commercialization of fuel cells in automotive applications. However, there are still three main problems: cost, performance, and stability. To meet these targets, the catalyst needs to have multisynergic functions. In addition, the composition and structure changes of the catalysts during the reactions still need to be explored. Activity in catalytic nanomaterials is generally controlled by the size, shape, composition, and interface and surface engineering. As such, one-dimensional nanostructures such as nanowires and nanotubes are of special interest. However, these structures tend to lose the nanoparticle morphology and inhibit the use of catalysts in both fuel cell anodes and cathodes. In 2003, Rubinstein and co-workers proposed the idea of nanoparticle nanotubes (NNs), which combine the geometry of nanotubes and the morphology of nanoparticles. This concept gives both the high surface-to-volume ratio and the size effect, which are both appealing in electrocatalyst design. In this Account, we describe our developments in the construction of highly active NNs with unique surface and heterogeneous interface structures. We try to clarify enhanced activity and stability in catalytic systems by taking into account the activity impact factors. We briefly introduce material structural effects on the electrocatalytic reactivity including metal oxide/metal and metal/metal interfaces, dealloyed pure Pt, and mixed Pt

  17. Sca-1+ cells from fetal heart with high aldehyde dehydrogenase activity exhibit enhanced gene expression for self-renewal, proliferation, and survival.

    PubMed

    Dey, Devaveena; Pan, Guodong; Varma, Nadimpalli Ravi S; Palaniyandi, Suresh Selvaraj

    2015-01-01

    Stem/progenitor cells from multiple tissues have been isolated based on enhanced activity of cytosolic aldehyde dehydrogenase (ALDH) enzyme. ALDH activity has emerged as a reliable marker for stem/progenitor cells, such that ALDH(bright/high) cells from multiple tissues have been shown to possess enhanced stemness properties (self-renewal and multipotency). So far though, not much is known about ALDH activity in specific fetal organs. In this study, we sought to analyze the presence and activity of the ALDH enzyme in the stem cell antigen-1-positive (Sca-1+) cells of fetal human heart. Biochemical assays showed that a subpopulation of Sca-1+ cells (15%) possess significantly high ALDH1 activity. This subpopulation showed increased expression of self-renewal markers compared to the ALDH(low) fraction. The ALDH(high) fraction also exhibited significant increase in proliferation and pro-survival gene expression. In addition, only the ALDH(high) and not the ALDH(low) fraction could give rise to all the cell types of the original population, demonstrating multipotency. ALDH(high) cells showed increased resistance against aldehyde challenge compared to ALDH(low) cells. These results indicate that ALDH(high) subpopulation of the cultured human fetal cells has enhanced self-renewal, multipotency, high proliferation, and survival, indicating that this might represent a primitive stem cell population within the fetal human heart. PMID:25861413

  18. Galectin-3 Enhances Migration of Minature Pig Bone Marrow Mesenchymal Stem Cells Through Inhibition of RhoA-GTP Activity

    PubMed Central

    Gao, Qian; Xia, Ying; Liu, Lan; Huang, Lei; Liu, Yang; Zhang, Xue; Xu, Kui; Wei, Jingliang; Hu, Yanqing; Mu, Yulian; Li, Kui

    2016-01-01

    Bone marrow mesenchymal stem cells (BM-MSCs) are used in tissue engineering because of their migration characters. However, BM-MSCs have limitations in terms of reaching injuries and self-renewal. Therefore, enhancement of BM-MSC migration is important for therapeutic applications. Here, we assessed whether galectin-3 (Gal-3) increases the migration of minature pig BM-MSCs. Gal-3 was knocked down by short hairpin RNA (shRNA) or overexpressed using a lentiviral vector in Wuzhishan minature pig BM-MSCs. Proliferation and migration assays showed that knockdown of Gal-3 impaired BM-MSC proliferation and migration, whereas Gal-3 overexpression promoted these behaviors. RhoA-GTP activity was upregulated in Gal-3 shRNA-transfected BM-MSCs, while Rac-1- and Cdc42-GTP showed no changes. Western blotting indicated downregulation of p-AKT (ser473) and p-Erk1/2 after serum starvation for 12 h in Gal-3-knockdown BM-MSCs. p-AKT (ser473) expression was upregulated after serum starvation for 6 h, and p-Erk1/2 expression was unchanged in Gal-3-overexpressing BM-MSCs. Treatment with C3 transferase or Y27632 enhanced migration, whereas Gal-3 knockdown impaired migration in treated cells. These results demonstrate that Gal-3 may enhance BM-MSC migration, mainly through inhibiting RhoA-GTP activity, increasing p-AKT (ser473) expression, and regulating p-Erk1/2 levels. Our study suggests a novel function of Gal-3 in regulating minature pig BM-MSC migration, which may be beneficial for therapeutic applications. PMID:27215170

  19. Galectin-3 Enhances Migration of Minature Pig Bone Marrow Mesenchymal Stem Cells Through Inhibition of RhoA-GTP Activity.

    PubMed

    Gao, Qian; Xia, Ying; Liu, Lan; Huang, Lei; Liu, Yang; Zhang, Xue; Xu, Kui; Wei, Jingliang; Hu, Yanqing; Mu, Yulian; Li, Kui

    2016-01-01

    Bone marrow mesenchymal stem cells (BM-MSCs) are used in tissue engineering because of their migration characters. However, BM-MSCs have limitations in terms of reaching injuries and self-renewal. Therefore, enhancement of BM-MSC migration is important for therapeutic applications. Here, we assessed whether galectin-3 (Gal-3) increases the migration of minature pig BM-MSCs. Gal-3 was knocked down by short hairpin RNA (shRNA) or overexpressed using a lentiviral vector in Wuzhishan minature pig BM-MSCs. Proliferation and migration assays showed that knockdown of Gal-3 impaired BM-MSC proliferation and migration, whereas Gal-3 overexpression promoted these behaviors. RhoA-GTP activity was upregulated in Gal-3 shRNA-transfected BM-MSCs, while Rac-1- and Cdc42-GTP showed no changes. Western blotting indicated downregulation of p-AKT (ser473) and p-Erk1/2 after serum starvation for 12 h in Gal-3-knockdown BM-MSCs. p-AKT (ser473) expression was upregulated after serum starvation for 6 h, and p-Erk1/2 expression was unchanged in Gal-3-overexpressing BM-MSCs. Treatment with C3 transferase or Y27632 enhanced migration, whereas Gal-3 knockdown impaired migration in treated cells. These results demonstrate that Gal-3 may enhance BM-MSC migration, mainly through inhibiting RhoA-GTP activity, increasing p-AKT (ser473) expression, and regulating p-Erk1/2 levels. Our study suggests a novel function of Gal-3 in regulating minature pig BM-MSC migration, which may be beneficial for therapeutic applications. PMID:27215170

  20. Fetal Immune Activation to Malaria Antigens Enhances Susceptibility to In Vitro HIV Infection in Cord Blood Mononuclear Cells

    PubMed Central

    Steiner, Kevin; Myrie, Latoya; Malhotra, Indu; Mungai, Peter; Muchiri, Eric; Dent, Arlene; King, Christopher L.

    2010-01-01

    Mother-to-child-transmission (MTCT) of human immunodeficiency virus (HIV) remains a significant cause of new HIV infections in many countries. To examine whether fetal immune activation as a consequence of prenatal exposure to parasitic antigens increases the risk of MTCT, cord blood mononuclear cells (CBMCs) from Kenyan and North American newborns were examined for relative susceptibility to HIV infection in vitro. Kenyan CBMCs were 3-fold more likely to be infected with HIV than were North American CBMCs (P = .03). Kenyan CBMCs with recall responses to malaria antigens demonstrated enhanced susceptibility to HIV when compared with Kenyan CBMCs lacking recall responses to malaria (P = .03). CD4+ T cells from malaria-sensitized newborns expressed higher levels of CD25 and human leukocyte antigen DR ex vivo, which is consistent with increased immune activation. CD4+ T cells were the primary reservoir of infection at day 4 after virus exposure. Thus, prenatal exposure and in utero priming to malaria may increase the risk of MTCT. PMID:20687848

  1. Cholinergic activation enhances retinoic acid-induced differentiation in the human NB-4 acute promyelocytic leukemia cell line.

    PubMed

    Chotirat, Sadudee; Suriyo, Tawit; Hokland, Marianne; Hokland, Peter; Satayavivad, Jutamaad; Auewarakul, Chirayu U

    2016-07-01

    The non-neuronal cholinergic system (NNCS) has been shown to play a role in regulating hematopoietic differentiation. We determined the expression of cholinergic components in leukemic cell lines by Western blotting and in normal leukocyte subsets by flow cytometry and found a heterogeneous expression of choline acetyltransferase (ChAT), acetylcholinesterase (AChE), choline transporter (CHT), M3 muscarinic acetylcholine receptor (M3-mAChR) and α7 nicotinic acetylcholine receptor (α7-nAChR). We then evaluated NNCS role in differentiation of human NB-4 acute promyelocytic leukemia cell line and discovered a dramatic induction of M3-mAChR after all-trans retinoic acid (ATRA) treatment (p<0.0001). Adding carbachol which is a cholinergic agonist to the ATRA treatment resulted in an increase of a granulocytic differentiation marker (CD11b) as compared with ATRA treatment alone (p<0.05), indicating that cholinergic activation enhanced ATRA in inducing NB-4 maturation. The combination of carbachol and ATRA treatment for 72h also resulted in decreased viability and increased cleaved caspase-3 expression when compared with ATRA treatment alone (p<0.05). However, this combination did not cause poly (ADP-ribose) polymerase (PARP) cleavage. Overall, we have shown that NB-4 cells expressed M3-mAChR in a differentiation-dependent manner and cholinergic stimulation induced maturation and death of ATRA-induced differentiated NB-4 cells. PMID:27282572

  2. 17β-Oestradiol enhances the expansion and activation of myeloid-derived suppressor cells via signal transducer and activator of transcription (STAT)-3 signalling in human pregnancy.

    PubMed

    Pan, T; Zhong, L; Wu, S; Cao, Y; Yang, Q; Cai, Z; Cai, X; Zhao, W; Ma, N; Zhang, W; Zhang, H; Zhou, J

    2016-07-01

    During a successful pregnancy, the maternal immune system plays a critical role in maintaining immunotolerance towards semi-allogeneic fetal antigens. Recent studies have indicated that myeloid-derived suppressor cells (MDSCs) are active players in establishing fetal-maternal tolerance; however, the underlying mechanism remains poorly understood. In this study, we observed a significant expansion of monocytic MDSCs (M-MDSCs) in the peripheral blood of pregnant women, which suppressed T cell responses in a reactive oxygen species-dependent manner and required cell-cell contact. The number of M-MDSCs correlated positively with serum oestrogen and progesterone levels. Administration of 17β-oestradiol, but not progesterone, enhanced both the expansion and suppressive activity of M-MDSCs through signal transducer and activator of transcription (STAT)-3. Pretreatment with STAT-3 inhibitor JSI-124 almost completely abrogated the effects of 17β-oestradiol on MDSCs. Collectively, these results demonstrate that 17β-oestradiol-induced STAT-3 signalling plays an important role in both the expansion and activation of MDSCs during human pregnancy, which may benefit the development of novel therapeutic strategies for prevention of immune-related miscarriage. PMID:26969967

  3. Toll-like receptor activation enhances cell-mediated immunity induced by an antibody vaccine targeting human dendritic cells

    PubMed Central

    Ramakrishna, Venky; Vasilakos, John P; Tario, Joseph D; Berger, Marc A; Wallace, Paul K; Keler, Tibor

    2007-01-01

    Previously, we have successfully targeted the mannose receptor (MR) expressed on monocyte-derived dendritic cells (DCs) using a fully human MR-specific antibody, B11, as a vehicle to deliver whole protein tumor antigens such as the human chorionic gonadotropin hormone (hCGβ). Since MRs play a role in bridging innate immunity with adaptive immunity we have explored several toll-like receptor (TLR)-specific ligands that may synergize with MR targeting and be applicable as adjuvants in the clinic. We demonstrate that antigen-specific helper and cytolytic T cells from both healthy donors and cancer patients were effectively primed with B11-hCGβ-treated autologous DCs when a combination of one or several TLR ligands is used. Specifically, concomitant signaling of DCs via TLR3 with dsRNA (poly I:C) and DC TLR 7/8 with Resiquimod (R-848), respectively, elicited efficient antigen presentation-mediated by MR-targeting. We demonstrate that MR and TLRs contribute towards maturation and activation of DCs by a mechanism that may be driven by a combination of adjuvant and antibody vaccines that specifically deliver antigenic targets to DCs. PMID:17254349

  4. Using ammonium bicarbonate as pore former in activated carbon catalyst layer to enhance performance of air cathode microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Li, Da; Qu, Youpeng; Liu, Jia; He, Weihua; Wang, Haiman; Feng, Yujie

    2014-12-01

    The rolling catalyst layers in air cathode microbial fuel cells (MFCs) are prepared by introducing NH4HCO3 as pore former (PF) with four PF/activated carbon mass ratios of 0.1, 0.2, 0.3 and 1.0. The maximum power density of 892 ± 8 mW m-2 is obtained by cathodes with the mass ratio of 0.2, which is 33% higher than that of the control reactor (without PF, 671 ± 22 mW m-2). Pore analysis indicates the porosity increases by 38% and the major pore range concentrates between 0.5 μm-0.8 μm which likely facilitates to enrich the active reaction sites compared to 0.8 μm-3.0 μm in the control and other PF-cathodes. In addition, pore structure endows the cathode improved exchange current density by 2.4 times and decreased charge transfer resistance by 44%, which are the essential reasons to enhance the oxygen reduction. These results show that addition of NH4HCO3 proves an effective way to change the porosity and pore distribution of catalyst layers and then enhance the MFC performance.

  5. Methamphetamine activates nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and induces human immunodeficiency virus (HIV) transcription in human microglial cells

    PubMed Central

    Wires, Emily S.; Alvarez, David; Dobrowolski, Curtis; Wang, Yun; Morales, Marisela; Karn, Jonathan; Harvey, Brandon K.

    2012-01-01

    Human immunodeficiency virus (HIV) primarily infects glial cells in the central nervous system (CNS). Recent evidence suggests that HIV-infected individuals who abuse drugs such as methamphetamine (METH) have higher viral loads and experience more severe neurological complications than HIV-infected individuals who do not abuse drugs. The aim of this study was to determine the effect of METH on HIV expression from the HIV long terminal repeats (LTR) promoter and on an HIV integrated provirus in microglial cells, the primary host cells for HIV in the CNS. Primary human microglial cells immortalized with SV40 T-antigen (CHME-5 cells) were co-transfected with an HIV LTR reporter and the HIV Tat gene, a key regulator of viral replication and gene expression, and exposed to METH. Our results demonstrate that METH treatment induced LTR activation, an effect potentiated in the presence of Tat. We also found that METH increased the nuclear translocation of the nuclear factor kappa B (NF-κB), a key cellular transcriptional regulator of the LTR promoter, and the activity of an NF-κB-specific reporter plasmid in CHME-5 cells. The presence of a dominant-negative regulator of NF-κB blocked METH-related activation of the HIV LTR. Furthermore, treatment of HIV-latently infected CHME-5 (CHME-5/HIV) cells with METH induced HIV expression in a dose-dependent manner, and nuclear translocation of the p65 subunit of NF-κB. These results suggest that METH can stimulate HIV gene expression in microglia cells through activation of the NF-κB signaling pathway. This mechanism may outline the initial biochemical events leading to the observed increased neurodegeneration in HIV-positive individuals who use METH. PMID:22618514

  6. Chondroitinase and growth factors enhance activation and oligodendrocyte differentiation of endogenous neural precursor cells after spinal cord injury.

    PubMed

    Karimi-Abdolrezaee, Soheila; Schut, Desiree; Wang, Jian; Fehlings, Michael G

    2012-01-01

    The adult spinal cord harbours a population of multipotent neural precursor cells (NPCs) with the ability to replace oligodendrocytes. However, despite this capacity, proliferation and endogenous remyelination is severely limited after spinal cord injury (SCI). In the post-traumatic microenvironment following SCI, endogenous spinal NPCs mainly differentiate into astrocytes which could contribute to astrogliosis that exacerbate the outcomes of SCI. These findings emphasize a key role for the post-SCI niche in modulating the behaviour of spinal NPCs after SCI. We recently reported that chondroitin sulphate proteoglycans (CSPGs) in the glial scar restrict the outcomes of NPC transplantation in SCI by reducing the survival, migration and integration of engrafted NPCs within the injured spinal cord. These inhibitory effects were attenuated by administration of chondroitinase (ChABC) prior to NPC transplantation. Here, in a rat model of compressive SCI, we show that perturbing CSPGs by ChABC in combination with sustained infusion of growth factors (EGF, bFGF and PDGF-AA) optimize the activation and oligodendroglial differentiation of spinal NPCs after injury. Four days following SCI, we intrathecally delivered ChABC and/or GFs for seven days. We performed BrdU incorporation to label proliferating cells during the treatment period after SCI. This strategy increased the proliferation of spinal NPCs, reduced the generation of new astrocytes and promoted their differentiation along an oligodendroglial lineage, a prerequisite for remyelination. Furthermore, ChABC and GF treatments enhanced the response of non-neural cells by increasing the generation of new vascular endothelial cells and decreasing the number of proliferating macrophages/microglia after SCI. In conclusions, our data strongly suggest that optimization of the behaviour of endogenous spinal NPCs after SCI is critical not only to promote endogenous oligodendrocyte replacement, but also to reverse the otherwise

  7. Myricetin and methyl eugenol combination enhances the anticancer activity, cell cycle arrest and apoptosis induction of cis-platin against HeLa cervical cancer cell lines

    PubMed Central

    Yi, Jin-Ling; Shi, Song; Shen, Yan-Li; Wang, Ling; Chen, Hai-Yan; Zhu, Jun; Ding, Yan

    2015-01-01

    Drug combination therapies are common practice in the treatment of cancer. In this study, we evaluated the anticancer effects of myricetin (MYR), methyl eugenol (MEG) and cisplatin (CP) both separately as well as in combination against cervical cancer (HeLa) cells. To demonstrate whether MYR and MEG enhance the anticancer activity of CP against cervical cancer cells, we treated HeLa cells with MYR and MEG alone or in combination with cisplatin and evaluated cell growth and apoptosis using MTT (3 (4, 5 dimethyl thiazol 2yl) 2, 5 diphenyltetrazolium bromide) assay, LDH release assay, flow cytometry and fluorescence microscopy. The results revealed that, as compared to single drug treatment, the combination of MYR or MEG with CP resulted in greater effect in inhibiting cancer cell growth and inducing apoptosis. Cell apoptosis induction, Caspase-3 activity, cell cycle arrest and mitochondrial membrane potential loss were systematically studied to reveal the mechanisms of synergy between MYR, MEG and CP. Combination of MYR or MEG with CP resulted in more potent apoptosis induction as revealed by fluorescence microscopy using Hoechst 33258 and AO-ETBR staining. The combination treatment also increased the number of cells in G0/G1 phase dramatically as compared to single drug treatment. Mitochondrial membrane potential loss (ΛΨm) as well as Caspase-3 activity was much higher in combination treatment as compared to single drug treatment. Findings of this investigation suggest that MYR and MEG combined with cisplatin is a potential clinical chemotherapeutic approach in human cervical cancer. PMID:25972998

  8. C/EBPα Activates Pre-existing and De Novo Macrophage Enhancers during Induced Pre-B Cell Transdifferentiation and Myelopoiesis.

    PubMed

    van Oevelen, Chris; Collombet, Samuel; Vicent, Guillermo; Hoogenkamp, Maarten; Lepoivre, Cyrille; Badeaux, Aimee; Bussmann, Lars; Sardina, Jose Luis; Thieffry, Denis; Beato, Miguel; Shi, Yang; Bonifer, Constanze; Graf, Thomas

    2015-08-11

    Transcription-factor-induced somatic cell conversions are highly relevant for both basic and clinical research yet their mechanism is not fully understood and it is unclear whether they reflect normal differentiation processes. Here we show that during pre-B-cell-to-macrophage transdifferentiation, C/EBPα binds to two types of myeloid enhancers in B cells: pre-existing enhancers that are bound by PU.1, providing a platform for incoming C/EBPα; and de novo enhancers that are targeted by C/EBPα, acting as a pioneer factor for subsequent binding by PU.1. The order of factor binding dictates the upregulation kinetics of nearby genes. Pre-existing enhancers are broadly active throughout the hematopoietic lineage tree, including B cells. In contrast, de novo enhancers are silent in most cell types except in myeloid cells where they become activated by C/EBP factors. Our data suggest that C/EBPα recapitulates physiological developmental processes by short-circuiting two macrophage enhancer pathways in pre-B cells. PMID:26235892

  9. Inhibition of histone deacetylase activity in reduced oxygen environment enhances the osteogenesis of mouse adipose-derived stromal cells.

    PubMed

    Xu, Yue; Hammerick, Kyle E; James, Aaron W; Carre, Antoine L; Leucht, Philipp; Giaccia, Amato J; Longaker, Michael T

    2009-12-01

    Recent studies suggest that oxygen tension has a great impact on the osteogenic differentiation capacity of mesenchymal cells derived from adipose tissue: reduced oxygen impedes osteogenesis. We have found that expansion of mouse adipose-derived stromal cells (mASCs) in reduced oxygen tension (10%) results in increased cell proliferation along with induction of histone deacetylase (HDAC) activity. In this study, we utilized two HDAC inhibitors (HDACi), sodium butyrate (NaB) and valproic acid (VPA), and studied their effects on mASCs expanded in various oxygen tensions (21%, 10%, and 1% O(2)). Significant growth inhibition was observed with NaB or VPA treatment in each oxygen tension. Osteogenesis was enhanced by treatment with NaB or VPA, particularly in reduced oxygen tensions (10% and 1% O(2)). Conversely, adipogenesis was decreased with treatments of NaB or VPA at all oxygen tensions. Finally, NaB- or VPA-treated, reduced oxygen tension-exposed (1% O(2)) ASCs were grafted into surgically created mouse tibial defects and resulted in significantly increased bone regeneration. In conclusion, HDACi significantly promote the osteogenic differentiation of mASCs exposed to reduced oxygen tension; HDACi may hold promise for future clinical applications of ASCs for skeletal regeneration. PMID:19505250

  10. Inhibition of Histone Deacetylase Activity in Reduced Oxygen Environment Enhances the Osteogenesis of Mouse Adipose-Derived Stromal Cells

    PubMed Central

    Xu, Yue; Hammerick, Kyle E.; James, Aaron W.; Carre, Antoine L.; Leucht, Philipp; Giaccia, Amato J.

    2009-01-01

    Recent studies suggest that oxygen tension has a great impact on the osteogenic differentiation capacity of mesenchymal cells derived from adipose tissue: reduced oxygen impedes osteogenesis. We have found that expansion of mouse adipose-derived stromal cells (mASCs) in reduced oxygen tension (10%) results in increased cell proliferation along with induction of histone deacetylase (HDAC) activity. In this study, we utilized two HDAC inhibitors (HDACi), sodium butyrate (NaB) and valproic acid (VPA), and studied their effects on mASCs expanded in various oxygen tensions (21%, 10%, and 1% O2). Significant growth inhibition was observed with NaB or VPA treatment in each oxygen tension. Osteogenesis was enhanced by treatment with NaB or VPA, particularly in reduced oxygen tensions (10% and 1% O2). Conversely, adipogenesis was decreased with treatments of NaB or VPA at all oxygen tensions. Finally, NaB- or VPA-treated, reduced oxygen tension–exposed (1% O2) ASCs were grafted into surgically created mouse tibial defects and resulted in significantly increased bone regeneration. In conclusion, HDACi significantly promote the osteogenic differentiation of mASCs exposed to reduced oxygen tension; HDACi may hold promise for future clinical applications of ASCs for skeletal regeneration. PMID:19505250

  11. Nitric oxide release combined with nonsteroidal antiinflammatory activity prevents muscular dystrophy pathology and enhances stem cell therapy

    PubMed Central

    Brunelli, Silvia; Sciorati, Clara; D'Antona, Giuseppe; Innocenzi, Anna; Covarello, Diego; Galvez, Beatriz G.; Perrotta, Cristiana; Monopoli, Angela; Sanvito, Francesca; Bottinelli, Roberto; Ongini, Ennio; Cossu, Giulio; Clementi, Emilio

    2007-01-01

    Duchenne muscular dystrophy is a relatively common disease that affects skeletal muscle, leading to progressive paralysis and death. There is currently no resolutive therapy. We have developed a treatment in which we combined the effects of nitric oxide with nonsteroidal antiinflammatory activity by using HCT 1026, a nitric oxide-releasing derivative of flurbiprofen. Here, we report the results of long-term (1-year) oral treatment with HCT 1026 of two murine models for limb girdle and Duchenne muscular dystrophies (α-sarcoglycan-null and mdx mice). In both models, HCT 1026 significantly ameliorated the morphological, biochemical, and functional phenotype in the absence of secondary effects, efficiently slowing down disease progression. HCT 1026 acted by reducing inflammation, preventing muscle damage, and preserving the number and function of satellite cells. HCT 1026 was significantly more effective than the corticosteroid prednisolone, which was analyzed in parallel. As an additional beneficial effect, HCT 1026 enhanced the therapeutic efficacy of arterially delivered donor stem cells, by increasing 4-fold their ability to migrate and reconstitute muscle fibers. The therapeutic strategy we propose is not selective for a subset of mutations; it provides ground for immediate clinical experimentation with HCT 1026 alone, which is approved for use in humans; and it sets the stage for combined therapies with donor or autologous, genetically corrected stem cells. PMID:17182743

  12. Enhancing anti-melanoma immunity by electrochemotherapy and in vivo dendritic-cell activation

    PubMed Central

    Gerlini, Gianni; Di Gennaro, Paola; Borgognoni, Lorenzo

    2012-01-01

    Combining electrochemotherapy with dendritic cell-based immunotherapy is a promising strategy against human metastatic melanoma that deserves to be clinically assessed. While electrochemotherapy induces a rapid regression of metastases, immunotherapy generates systemic anticancer immunity, contributes to eradicate the tumor and maintains an immunological memory to control relapse. PMID:23264927

  13. Triptolide enhances the tumoricidal activity of TRAIL against renal cell carcinoma.

    PubMed

    Brincks, Erik L; Kucaba, Tamara A; James, Britnie R; Murphy, Katherine A; Schwertfeger, Kathryn L; Sangwan, Veena; Banerjee, Sulagna; Saluja, Ashok K; Griffith, Thomas S

    2015-12-01

    Renal cell carcinoma (RCC) is resistant to traditional cancer therapies, and metastatic RCC (mRCC) is incurable. The shortcomings in current therapeutic options for patients with mRCC provide the rationale for the development of novel treatment protocols. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has proven to be a potent inducer of tumor cell death in vitro and in vivo, and a number of TRAIL death receptor agonists (recombinant TRAIL or TRAIL death receptor-specific mAb) have been developed and tested clinically. Unfortunately the clinical efficacy of TRAIL has been underwhelming and is likely due to a number of possible mechanisms that render tumors resistant to TRAIL, prompting the search for drugs that increase tumor cell susceptibility to TRAIL. The objective of this study was to determine the effectiveness of combining the diterpene triepoxide triptolide, or its water-soluble prodrug, Minnelide, with TRAIL receptor agonists against RCC in vitro or in vivo, respectively. TRAIL-induced apoptotic death of human RCC cells was increased in the presence of triptolide. The triptolide-induced sensitization was accompanied by increased TRAIL-R2 (DR5) and decreased heat shock protein 70 expression. In vivo treatment of mice bearing orthotopic RCC (Renca) tumors showed the combination of Minnelide and agonistic anti-DR5 mAb significantly decreased tumor burden and increased animal survival compared to either therapy alone. Our data suggest triptolide/Minnelide sensitizes RCC cells to TRAIL-induced apoptosis through altered TRAIL death receptor and heat shock protein expression. PMID:26426449

  14. ESR detection of 1O2 reveals enhanced redox activity in illuminated cell cultures.

    PubMed

    Lavi, Ronit; Sinyakov, Michael; Samuni, Amram; Shatz, Smadar; Friedmann, Harry; Shainberg, Asher; Breitbart, Haim; Lubart, Rachel

    2004-09-01

    Low-energy visible light (LEVL) has previously been found to modulate various processes in different biological systems. One explanation for the stimulatory effect of LEVL is light-induced reactive oxygen species formation. In the present study, both sperm and skin cells were illuminated with LEVL and were found to generate singlet oxygen (1O2). The detection of 1O2 was performed using a trapping probe, 2,2,6,6-tetramethyl-4-piperidone, coupled with electron paramagnetic resonance spectroscopy. In addition, we have shown that, together with O2 generation, LEVL illumination increases the reductive capacity of the cells, which explains the difficulties encountered in 1O2 detection. The potential of visible light to change the cellular redox state may explain the recently observed biostimulative effects exerted by LEVL. PMID:15621706

  15. Efficiency enhancement of solution-processed inverted organic solar cells with a carbon-nanotube-doped active layer

    NASA Astrophysics Data System (ADS)

    Lin, Wen-Kai; Su, Shui-Hsiang; Yeh, Meng-Cheng; Huang, Yang-Chan; Yokoyama, Meiso

    2016-01-01

    Solution-processed titanium-doped ZnO (TZO) is synthesized by the sol-gel method to be the electron-transporting layer (ETL) in an inverted organic solar cell (IOSC). Carbon nanotubes (CNTs) are doped into an active layer of poly(3-hexylthiophene):[6,6]-phenyl C 61 butyric acid methyl ester (P3HT:PCBM). The addition of CNTs in the P3HT:PCBM composite increases the conjugation length of P3HT:PCBM:CNTs, which simultaneously enhances the capacity of the composite to absorb solar energy radiation. Vanadium oxide (V2O5) was spin-coated onto the active layer to be a hole-transporting layer (HTL). The power conversion efficiency (PCE) results indicate that the V2O5 nanobelt structure possesses better phase separation and provides a more efficient surface area for the P3HT:PCBM:CNT active layer to increase photocurrent. The optimized IOSCs exhibited an open circuit voltage (Voc), a short-circuit current density (Jsc), a fill factor (FF), and a PCE of 0.55 V, 6.50 mA/cm2, 58.34%, and 2.20%, respectively, under simulated AM1.5G illumination of 100 mW/cm2.

  16. The Amaranthus leucocarpus lectin enhances the anti-CD3 antibody-mediated activation of human peripheral blood CD4+ T cells.

    PubMed

    Urrea, Francisco; Ortiz-Quintero, Blanca; Sanchez-Garcia, Francisco Javier; Blanco-Favela, Francisco; Garfias, Yonathan; Lascurain, Ricardo; Zenteno, Edgar

    2010-08-01

    Activation of CD4(+) T cells plays a main role in adaptive immune response by regulating cellular and humoral immunity via processes associated with changes in cell surface oligosaccharide receptors. Lectins are glycoproteins that specifically recognize oligosaccharides and have been used to characterize changes in oligosaccharides present on T cell surface and their effects on activation. A lectin from Amaranthus leucocarpus seeds (ALL) is specific for glycoprotein structures containing galactose-N-acetylgalactosamine and is able to bind to human and murine CD4(+) T cells, however, its effect on activation remains unclear. We examined the effect of ALL on the activation of peripheral blood human CD4(+) T cells and analyzed cell proliferation, expression of the activation-associated molecule CD25, secretion of the activation-dependent cytokine interleukin (IL)-2 and intracellular calcium influx changes using flow cytometry. CD4(+) T cells were stimulated with anti-CD3 antibodies that provided the first activation signal in the presence or absence of ALL. ALL alone did not induce CD4(+) T cell activation but when also stimulated with anti-CD3 antibodies, ALL up-regulated CD25 expression, cell proliferation, IL-2 secretion and an intracellular calcium influx in a dose-dependent manner. In addition, ALL recognized CD4(+) T cells expressing the CD69 and Ki67 molecules expressed only by activated T cells and induced production of the TH1-type cytokine interferon-gamma. Our findings indicate that ALL binds to human activated CD4(+) T cells and enhances the degree of activation of CD4(+) T cells that are stimulated with anti-CD3 antibodies. ALL provides a new tool for analyzing T cell activation mechanisms. PMID:20644342

  17. The distal upstream promoter in Ly49 genes, Pro1, is active in mature NK cells and T cells, does not require TATA boxes, and displays enhancer activity1

    PubMed Central

    Gays, Frances; Taha, Sally; Brooks, Colin G.

    2016-01-01

    Missing self recognition of MHC class I molecules is mediated in murine species through the stochastic expression of CD94/NKG2 and Ly49 receptors on NK cells. Previous studies have suggested that the stochastic expression of Ly49 receptors is achieved through the use of an alternate upstream promoter, designated Pro1, that is active only in immature NK cells, and operates via the mutually exclusive binding of transcription initiation complexes to closely opposed forward and reverse TATA boxes, forward transcription being transiently required to activate the downstream promoters, Pro2/Pro3, that are subsequently responsible for transcription in mature NK cells. Here we report that Pro1 transcripts are not restricted to immature NK cells but are also found in mature NK cells and T cells, and that Pro1-fragments display strong promoter activity in mature NK cell and T cell lines as well as in immature NK cells. However, the strength of promoter activity in vitro does not correlate well with Ly49 expression in vivo and forward promoter activity is generally weak or undetectable, suggesting that components outside of Pro1 are required for efficient forward transcription. Indeed, conserved sequences immediately upstream and downstream of the core Pro1 region were found to inhibit or enhance promoter activity. Most surprisingly, promoter activity does not require either the forward or reverse TATA boxes, but is instead dependent on residues in the largely invariant central region of Pro1. Importantly, Pro1 displays strong enhancer activity suggesting that this may be its principal function in vivo. PMID:25926675

  18. Peripheral viral infection induced microglial sensome genes and enhanced microglial cell activity in the hippocampus of neonatal piglets.

    PubMed

    Ji, Peng; Schachtschneider, Kyle M; Schook, Lawrence B; Walker, Frederick R; Johnson, Rodney W

    2016-05-01

    Although poorly understood, early-life infection is predicted to affect brain microglial cells, making them hypersensitive to subsequent stimuli. To investigate this, we assessed gene expression in hippocampal tissue obtained from a previously published study reporting increased microglial cell activity and reduced hippocampal-dependent learning in neonatal piglets infected with porcine reproductive and respiratory syndrome virus (PRRSV), a virus that induces interstitial pneumonia. Infection altered expression of 455 genes, of which 334 were up-regulated and 121 were down-regulated. Functional annotation revealed that immune function genes were enriched among the up-regulated differentially expressed genes (DEGs), whereas calcium binding and synaptic vesicle genes were enriched among the down-regulated DEGs. Twenty-six genes encoding part of the microglia sensory apparatus (i.e., the sensome) were up-regulated (e.g., IL1R1, TLR2, and TLR4), whereas 15 genes associated with the synaptosome and synaptic receptors (e.g., NPTX2, GABRA2, and SLC5A7) were down-regulated. As the sensome may foretell microglia reactivity, we next inoculated piglets with culture medium or PRRSV at PD 7 and assessed hippocampal microglia morphology and function at PD 28 when signs of infection were waning. Consistent with amplification of the sensome, microglia from PRRSV piglets had enhanced responsiveness to chemoattractants, increased phagocytic activity, and secreted more TNFα in response to lipopolysaccharide and Poly I:C. Immunohistochemical staining indicated PRRSV infection increased microglia soma length and length-to-width ratio. Bipolar rod-like microglia not evident in hippocampus of control piglets, were present in infected piglets. Collectively, this study suggests early-life infection alters the microglia sensome as well as microglial cell morphology and function. PMID:26872419

  19. P2Y1 Receptor Activation of the TRPV4 Ion Channel Enhances Purinergic Signaling in Satellite Glial Cells.

    PubMed

    Rajasekhar, Pradeep; Poole, Daniel P; Liedtke, Wolfgang; Bunnett, Nigel W; Veldhuis, Nicholas A

    2015-11-27

    Transient receptor potential (TRP) ion channels of peripheral sensory pathways are important mediators of pain, itch, and neurogenic inflammation. They are expressed by primary sensory neurons and by glial cells in the central nervous system, but their expression and function in satellite glial cells (SGCs) of sensory ganglia have not been explored. SGCs tightly ensheath neurons of sensory ganglia and can regulate neuronal excitability in pain and inflammatory states. Using a modified dissociation protocol, we isolated neurons with attached SGCs from dorsal root ganglia of mice. SGCs, which were identified by expression of immunoreactive Kir4.1 and glutamine synthetase, were closely associated with neurons, identified using the pan-neuronal marker NeuN. A subpopulation of SGCs expressed immunoreactive TRP vanilloid 4 (TRPV4) and responded to the TRPV4-selective agonist GSK1016790A by an influx of Ca(2+) ions. SGCs did not express functional TRPV1, TRPV3, or TRP ankyrin 1 channels. Responses to GSK1016790A were abolished by the TRPV4 antagonist HC067047 and were absent in SGCs from Trpv4(-/-) mice. The P2Y1-selective agonist 2-methylthio-ADP increased [Ca(2+)]i in SGCs, and responses were prevented by the P2Y1-selective antagonist MRS2500. P2Y1 receptor-mediated responses were enhanced in TRPV4-expressing SGCs and HEK293 cells, suggesting that P2Y1 couples to and activates TRPV4. PKC inhibitors prevented P2Y1 receptor activation of TRPV4. Our results provide the first evidence for expression of TRPV4 in SGCs and demonstrate that TRPV4 is a purinergic receptor-operated channel in SGCs of sensory ganglia. PMID:26475857

  20. Porcine Adipose-Derived Mesenchymal Stem Cells Retain Their Stem Cell Characteristics and Cell Activities While Enhancing the Expression of Liver-Specific Genes after Acute Liver Failure

    PubMed Central

    Hu, Chenxia; Zhou, Ning; Li, Jianzhou; Shi, Ding; Cao, Hongcui; Li, Jun; Li, Lanjuan

    2016-01-01

    Acute liver failure (ALF) is a kind of complicated syndrome. Furthermore, adipose-derived mesenchymal stem cells (ADMSCs) can serve as a useful cell resource for autotransplantation due to their abundance and micro-invasive accessability. However, it is unknown how ALF will influence the characteristics of ADMSCs and whether ADMSCs from patients suffering from end-stage liver diseases are potential candidates for autotransplantation. This study was designed to compare various properties of ALF-derived ADMSCs with normal ADMSCs in pig models, with regard to their cellular morphology, cell proliferative ability, cell apoptosis, expression of surface antigens, mitochondrial and lysosomal activities, multilineage potency, and expression of liver-specific genes. Our results showed that ALF does not influence the stem cell characteristics and cell activities of ADMSCs. Intriguingly, the expression levels of several liver-specific genes in ALF-derived ADMSCs are higher than in normal ADMSCs. In conclusion, our findings indicate that the stem cell characteristics and cell activities of ADMSCs were not altered by ALF and these cells can serve as a new source for regenerative medicine. PMID:26742034

  1. Adiponectin Enhances Antibacterial Activity of Hematopoietic Cells by Suppressing Bone Marrow Inflammation.

    PubMed

    Masamoto, Yosuke; Arai, Shunya; Sato, Tomohiko; Yoshimi, Akihide; Kubota, Naoto; Takamoto, Iseki; Iwakura, Yoichiro; Yoshimura, Akihiko; Kadowaki, Takashi; Kurokawa, Mineo

    2016-06-21

    Obesity has been shown to increase the morbidity of infections, however, the underlying mechanisms remain largely unknown. Here we demonstrate that obesity caused adiponectin deficiency in the bone marrow (BM), which led to an inflamed BM characterized by increased tumor necrosis factor (TNF) production from bone marrow macrophages. Hematopoietic stem and progenitor cells (HSPCs) chronically exposed to excessive TNF in obese marrow aberrantly expressed cytokine signaling suppressor SOCS3, impairing JAK-STAT mediated signal transduction and cytokine-driven cell proliferation. Accordingly, both obese and adiponectin-deficient mice showed attenuated clearance of infected Listeria monocytogenes, indicating that obesity or loss of adiponectin is critical for exacerbation of infection. Adiponectin treatment restored the defective HSPC proliferation and bacterial clearance of obese and adiponectin-deficient mice, affirming the importance of adiponectin against infection. Taken together, our findings demonstrate that obesity impairs hematopoietic response against infections through a TNF-SOCS3-STAT3 axis, highlighting adiponectin as a legitimate target against obesity-related infections. PMID:27317261

  2. Enhancing DPYSL3 gene expression via a promoter-targeted small activating RNA approach suppresses cancer cell motility and metastasis

    PubMed Central

    Li, Changlin; Jiang, Wencong; Hu, Qingting; Li, Long-cheng; Dong, Liang; Chen, Ruibao; Zhang, Yinghong; Tang, Yuzhe; Thrasher, J. Brantley; Liu, Chang-Bai; Li, Benyi

    2016-01-01

    To explore a novel strategy in suppressing tumor metastasis, we took the advantage of a recent RNA activation (RNAa) theory and used small double-strand RNA molecules, termed as small activating RNAs (saRNA) that are complimentary to target gene promoter, to enhance transcription of metastasis suppressor gene. The target gene in this study is Dihydro-pyrimidinase-like 3 (DPYSL3, protein name CRMP4), which was identified as a metastatic suppressor in prostate cancers. There are two transcriptional variants of DPYSL3 gene in human genome, of which the variant 2 is the dominant transcript (DPYSL3v2, CRMP4a) but is also significantly down-regulated in primary prostate cancers. A total of 8 saRNAs for DPYSL3v1 and 14 saRNAs for DPYSL3v2 were tested in multiple prostate cancer cell lines. While none of the saRNAs significantly altered DPYSL3v1 expression, 4 saRNAs showed a strong enhancing effect on DPYSL3v2 expression, resulting in reduced cell mobility in vitro. To achieve a prostate cancer-specific delivery for in vivo testing, we conjugated the most potent saV2-9 RNA molecule with the prostate-specific membrane antigen (PSMA)-targeting aptamer A10-3.2. The conjugates successful increased DPYSL3v2 gene expression in PSMA-positive but not PSMA-negative prostate cancer cells. In nude mice bearing orthotopic xenograft of prostate cancer, a 10-day consecutive treatment with the saV2-9 conjugates significantly suppress distal metastasis compared to the control saRNAs. Analysis of xenograft tissues revealed that DPYSL3v2 expression was largely increased in saV2-9 conjugate-treated group compared to the control group. In conclusion, DPYSL3v2 promoter-targeted saRNA molecules might be used as an adjunctive therapy to suppress prostate cancer metastasis. PMID:27014974

  3. A novel PP2A enhancer induces caspase-independent apoptosis of MKN28 gastric cancer cells with high MEK activity.

    PubMed

    Tsuchiya, Ayako; Kanno, Takeshi; Shimizu, Tadashi; Nakao, Syuhei; Tanaka, Akito; Tabata, Chiharu; Nakano, Takashi; Nishizaki, Tomoyuki

    2014-05-28

    The newly synthesized phosphatidylinositol (PI) derivative 1,2-O-bis-[8-{2-(2-pentyl-cyclopropylmethyl)-cyclopropyl}-octanoyl]-sn-glycero-3-phosphatidyl-D-1-inositol (diDCP-LA-PI) significantly enhanced protein phosphatase 2A (PP2A) activity in the cell-free assay. This prompted to assess the antitumor effect of diDCP-LA-PI. diDCP-LA-PI attenuated phosphorylation of mitogen-activated protein kinase (MAPK) kinase (MEK) in Lu65 human lung cancer and MKN28 human gastric cancer cells with high MEK activity. diDCP-LA-PI reduced cell viability in Lu65 and MKN28 cells, but otherwise such effect was not found in 786-O human renal cancer and HUH-7 human hepatoma cells with relatively low MEK activity. For Lu65 and MKN28 cells diDCP-LA-PI increased terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive cells, but no significant activation of caspase-3, -8, or -9 was obtained. For MKN28 cells diDCP-LA-PI-induced reduction of MEK phosphorylation and cell viability was prevented by knocking-down PP2Ac. Taken together, these results indicate that diDCP-LA-PI induces caspase-independent apoptosis of Lu65 and MKN28 human cancer cells, for the latter cells by suppressing MEK activity through PP2A-catalyzed dephosphorylation. PMID:24508028

  4. Docetaxel enhances apoptosis and G2/M cell cycle arrest by suppressing mitogen-activated protein kinase signaling in human renal clear cell carcinoma.

    PubMed

    Han, T D; Shang, D H; Tian, Y

    2016-01-01

    Tremendous efforts have been made in renal cell carcinoma (RCC) patients' research; however, clinical findings in patients have been disappointing. The aims of our study were to identify better or alternative therapeutic methods that can reverse chemotherapy resistance and to enhance sensitivity to docetaxel (DOX)-based chemotherapy drugs. We evaluated the anti-proliferative effect of DOX against RCC cells. DOX was found to suppress proliferation of RCC cells under in vitro and in vivo settings. Flow cytometric analysis revealed that DOX suppressed cell growth by induction of both apoptosis and G2/M cell cycle arrest in a dose-dependent manner. Various patterns of gene expression were observed by cluster analysis. In addition, based on network analysis using the ingenuity pathway analysis software, DOX was found to suppress phosphorylation of extracellular signal-regulated kinase 1/2 and p38, suggesting that the mitogen-activated protein kinase signaling pathway plays a vital role in the anti-proliferative effect of DOX against RCC. PMID:26909952

  5. ΔNp63 promotes stem cell activity in mammary gland development and basal-like breast cancer by enhancing Fzd7 expression and Wnt signaling

    PubMed Central

    Chakrabarti, Rumela; Wei, Yong; Hwang, Julie; Hang, Xiang; Blanco, Mario Andres; Choudhury, Abrar; Tiede, Benjamin; Romano, Rose-Anne; DeCoste, Christina; Mercatali, Laura; Ibrahim, Toni; Amadori, Dino; Kannan, Nagarajan; Eaves, Connie J; Sinha, Satrajit; Kang, Yibin

    2014-01-01

    Emerging evidence suggests that cancer is populated and maintained by tumor initiating cells (TICs) with stem-like properties similar to that of adult tissue stem cells. Despite recent advances, the molecular regulatory mechanisms that may be shared between normal and malignant stem cells remain poorly understood. Here we show that the ΔNp63 isoform of the Trp63 transcription factor promotes normal mammary stem cell (MaSC) activity by increasing the expression of the Wnt receptor Fzd7, thereby enhancing Wnt signaling. Importantly, Fzd7-dependent enhancement of Wnt signaling by ΔNp63 also governs tumor initiating activity of the basal subtype of breast cancer. These findings establish ΔNp63 as a key regulator of stem cells in both normal and malignant mammary tissues and provide direct evidence that breast cancer TICs and normal MaSCs share common regulatory mechanisms. PMID:25241036

  6. Methyl Jasmonate Enhances Antioxidant Activity, Flavonoid Content and Antiproliferation of Human Cancer Cells in Blackberries (Rubus spp.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of preharvest methyl jasmonate (MJ) application on fruit quality, antioxidant activity and flavonoid content in blackberries (Rubus spp.) were determined. Anticancer activity against human lung A549 cells and HL-60 leukemia cells was also evaluated. Three blackberry cultivars (Chester T...

  7. FLT3 ligand administration after hematopoietic cell transplantation increases circulating dendritic cell precursors that can be activated by CpG oligodeoxynucleotides to enhance T-cell and natural killer cell function.

    PubMed

    Chen, Wei; Chan, Anissa S H; Dawson, Amanda J; Liang, Xueqing; Blazar, Bruce R; Miller, Jeffrey S

    2005-01-01

    Dendritic cells (DCs) are key effectors in innate immunity and play critical roles in triggering adaptive immune responses. FLT3 ligand (FLT3-L) is essential for DC development from hematopoietic progenitors. In a phase I clinical trial, we demonstrated that immunotherapy with subcutaneous injection of FLT3-L is safe and well tolerated in cancer patients recovering from autologous hematopoietic cell transplantation (HCT). FLT3-L administration significantly increased the frequency and absolute number of blood DC precursors without affecting other mature cell lineages during the 6-week course of FLT3-L therapy. After 14 days of FLT3-L administration, the number of blood CD11c + DCs, plasmacytoid DCs (PDCs), and CD14 + monocytes increased by 5.3-, 2.9-, 3.8-fold, respectively, and was maintained at increased levels throughout FLT3-L therapy. FLT3-L-increased blood DCs in HCT patients were immature and had modest enhancing effects on in vitro T-cell proliferation to antigens and natural killer (NK) cell function. The addition of type B CpG oligodeoxynucleotides (ODNs) to peripheral blood mononuclear cells obtained from HCT patients receiving FLT3-L therapy induced rapid maturation of both CD11c + DCs and PDCs and enhanced T-cell proliferative responses. In addition, CpG ODN induced potent activation of NK cells from FLT3-L-treated patients with increased surface CD69 expression and augmented cytotoxicity. CpG ODN-induced activation of NK cells was primarily via an indirect mechanism through PDCs. These findings suggest that FLT3-L mobilization of DC precursors followed by a specific DC stimulus such as CpG ODN may provide a novel strategy to manipulate antitumor immunity in patients after HCT. PMID:15625541

  8. Calcium Alginate Gels as Stem Cell Matrix – Making Paracrine Stem Cell Activity Available for Enhanced Healing after Surgery

    PubMed Central

    Schmitt, Andreas; Rödel, Philipp; Anamur, Cihad; Seeliger, Claudine; Imhoff, Andreas B.; Herbst, Elmar; Vogt, Stephan; van Griensven, Martijn; Winter, Gerhard; Engert, Julia

    2015-01-01

    Regeneration after surgery can be improved by the administration of anabolic growth factors. However, to locally maintain these factors at the site of regeneration is problematic. The aim of this study was to develop a matrix system containing human mesenchymal stem cells (MSCs) which can be applied to the surgical site and allows the secretion of endogenous healing factors from the cells. Calcium alginate gels were prepared by a combination of internal and external gelation. The gelling behaviour, mechanical stability, surface adhesive properties and injectability of the gels were investigated. The permeability of the gels for growth factors was analysed using bovine serum albumin and lysozyme as model proteins. Human MSCs were isolated, cultivated and seeded into the alginate gels. Cell viability was determined by AlamarBlue assay and fluorescence microscopy. The release of human VEGF and bFGF from the cells was determined using an enzyme-linked immunoassay. Gels with sufficient mechanical properties were prepared which remained injectable through a syringe and solidified in a sufficient time frame after application. Surface adhesion was improved by the addition of polyethylene glycol 300,000 and hyaluronic acid. Humans MSCs remained viable for the duration of 6 weeks within the gels. Human VEGF and bFGF was found in quantifiable concentrations in cell culture supernatants of gels loaded with MSCs and incubated for a period of 6 weeks. This work shows that calcium alginate gels can function as immobilization matrices for human MSCs. PMID:25793885

  9. Tumor necrosis factor receptor p75 mediates cell-specific activation of nuclear factor kappa B and induction of human cytomegalovirus enhancer.

    PubMed

    Laegreid, A; Medvedev, A; Nonstad, U; Bombara, M P; Ranges, G; Sundan, A; Espevik, T

    1994-03-11

    The functional role of human tumor necrosis factor receptor (TNFR) p75 was studied by the use of TNFR p75-specific agonistic antibodies. Human SW480T adenocarcinoma cells, stably transfected with a reporter construct containing beta-galactosidase under the control of human cytomegalovirus immediate early enhancer, were stimulated with anti-TNFR p75 polyclonal antiserum or monoclonal antibodies followed by measurement of beta-galactosidase activity and analysis by electrophoretic mobility shift assays. It was found that cross-linking of TNFR p75 led to strong induction of the human cytomegalovirus enhancer as well as activation of nuclear factor-kappa B (NF-kappa B). Stimulation of TNFR p75 also mediated activation of NF-kappa B in human KYM-1 rhabdomyosarcoma cells but not in other cell types such as U937 and HL-60 monocytic cells or in Eahy 926 endothelial cells. NF-kappa B activation induced by TNFR p75 was delayed approximately 15 min compared with NF-kappa B activation induced by TNFR p55, indicating that the two TNFRs activate NF-kappa B through different signaling pathways. The data presented in this study identify intracellular responses mediated by TNFR p75 which have not been reported previously and suggest that TNFR p75-induced activation of NF-kappa B is strictly cell type-specific. PMID:8126005

  10. Persistent STAT3 Activation in Colon Cancer Is Associated with Enhanced Cell Proliferation and Tumor Growth1

    PubMed Central

    Corvinus, Florian M; Orth, Carina; Moriggl, Richard; Tsareva, Svetlana A; Wagner, Stefan; Pfitzner, Edith B; Baus, Daniela; Kaufmann, Roland; Huberb, Lukas A; Zatloukal, Kurt; Beug, Hartmut; Öhlschläger, Peter; Schütz, Alexander; Halbhuber, Karl-Jürgen; Friedrich, Karlheinz

    2005-01-01

    Abstract Colorectal carcinoma (CRC) is a major cause of morbidity and mortality in Western countries. It has so far been molecularly defined mainly by alterations of the Wnt pathway. We show here for the first time that aberrant activities of the signal transducer and activator of transcription STAT3 actively contribute to this malignancy and, thus, are a potential therapeutic target for CRC. Constitutive STAT3 activity was found to be abundant in dedifferentiated cancer cells and infiltrating lymphocytes of CRC samples, but not in non-neoplastic colon epithelium. Cell lines derived from malignant colorectal tumors lost persistent STAT3 activity in culture. However, implantation of colon carcinoma cells into nude mice resulted in restoration of STAT3 activity, suggesting a role of an extracellular stimulus within the tumor microenvironment as a trigger for STAT activation. STAT3 activity in CRC cells triggered through interleukin-6 or through a constitutively active STAT3 mutant promoted cancer cell multiplication, whereas STAT3 inhibition through a dominant-negative variant impaired IL-6-driven proliferation. Blockade of STAT3 activation in CRC-derived xenograft tumors slowed down their development, arguing for a contribution of STAT3 to colorectal tumor growth. PMID:16036105

  11. Antibody-assisted enhancement of biological activities of CXCL14 in human monocytic leukemia-derived THP-1 cells and high fat diet-induced obese mice.

    PubMed

    Tanegashima, Kosuke; Suzuki, Kenji; Nakayama, Yuki; Hara, Takahiko

    2010-04-15

    CXCL14 is a CXC-type chemokine acting on tissue macrophages, immature dendritic cells, natural killer cells, and epithelial tumor cells. It also serves as a metabolic regulator in obese mice by blunting insulin activity. In contrast to other CXC chemokines, it remains to be clarified how CXCL14 activates its putative receptors on the cell surface and whether it induces chemokinesis. This is mainly due to the insufficient sensitivity of currently available bioassays for CXCL14. In this study, we found that the anti-CXCL14 monoclonal antibody, MAB730, remarkably enhances the activities of CXCL14 in human monocytic leukemia-derived THP-1 cells and immature dendritic cells. MAB730 augmented CXCL14-mediated chemotaxis and chemokinesis with distinct dose requirement. Chemotaxis inducing activity was retained in the MAB730 F(ab')(2) fraction, but not in the Fab fraction, implying that ligand dimerization is involved in the MAB730-assisted enhancement of CXCL14 activity. In addition, MAB730 was more efficient than heparin at inhibiting CXCL14 binding to low affinity receptors on THP-1 cells. Finally, in vivo administration of MAB730 antibody into high fat diet-induced obese mice increased whole body insulin resistance and glucose intolerance. These unique properties of MAB730 will be useful for elucidating the molecular mechanism of cellular responses elicited by CXCL14. PMID:20083103

  12. Sp and GATA factors are critical for Apolipoprotein AI downstream enhancer activity in human HepG2 cells.

    PubMed

    Ivanov, Gleb S; Kater, Jessie M; Jha, Shivkumar H; Stutius, Erica A; Sabharwal, Ravleen; Tricarico, Marisa D; Ginsburg, Geoffrey S; Ozer, Josef S

    2003-12-24

    The factors that bind to the hepatic-specific human apolipoprotein AI (apoAI) 48-bp downstream enhancer (DSE) were identified and characterized by electrophoretic mobility shift assays. A significant homology was shown between the histone 4 (H4) promoters and the hepatic-specific human apoAI DSE at Sp1 and H4TF2 binding sites. Human HepG2 nuclear extracts were used to form four specific complexes with the DSE (referred to as apoAI DSE-1, -2, -3, and -4). The apoAI DSE-1 and -2 complexes showed similar binding specificity to the Sp/H4TF1 consensus site within the apoAI DSE. The apoAI DSE-1 complex was predominantly recognized by anti-Sp1 and Sp3 sera in gel shift assays, indicating that the DSE was recognized by multiple Sp family members. Nuclear extracts that were prepared from retinoic acid treated HepG2 cells showed increased levels of Sp factors in gel shift and Western blot assays. The apoAI DSE-2 complex was identified as H4TF1 and formed in the absence of magnesium chloride. The apoAI DSE-3 complex bound to a consensus GATA element within the DSE that was recognized by recombinant human GATA-6 as well. The apoAI DSE-3 complex was completely disrupted by a GATA-4 antibody in EMSA. GATA-4 and -6 were detected in nuclear extracts prepared from retinoic acid treated HepG2 cells using Western blot assays. The highest apoAI DSE-3 levels were observed with retinoic acid treated HepG2 cell nuclear extracts in EMSA. ApoAI DSE-4 is a multi-factor complex that includes an Sp/H4TF1 factor and either H4TF2 or apoAI DSE-3. Because apoAI DSE mutations revealed transcription defects in transient transfection assays, we conclude that the entire DSE sequence is required for full apoAI transcriptional activity in HepG2 cells. PMID:14659877

  13. Alanine substitution of conserved residues in the cytoplasmic tail of herpes simplex virus gB can enhance or abolish cell fusion activity and viral entry

    SciTech Connect

    Ruel, Nancy . E-mail: n-ruel@northwestern.edu; Zago, Anna . E-mail: anna_zago@acgtinc.com; Spear, Patricia G. . E-mail: p-spear@northwestern.edu

    2006-03-01

    Herpes simplex virus (HSV) glycoprotein B (gB) is one of the four viral glycoproteins required for viral entry and cell fusion and is highly conserved among herpesviruses. Mutants of HSV type 2 gB were generated by substituting conserved residues in the cytoplasmic tail with alanine or by deleting 41 amino acids from the C-terminus. Some of the mutations abolished cell fusion activity and also prevented transport of gB to the cell surface, identifying residues in the gB cytoplasmic tail that are critical for intracellular transport of this glycoprotein. These mutations also prevented production of infectious virus, possibly because the mutant forms of gB were not transported to the site of envelopment. Other mutations, particularly the deletion, significantly enhanced cell fusion activity. These mutations, as well as others described previously, identify regions of the gB cytoplasmic domain that modulate cell fusion activity.

  14. Dieckol enhances the expression of antioxidant and detoxifying enzymes by the activation of Nrf2-MAPK signalling pathway in HepG2 cells.

    PubMed

    Lee, Min-Sup; Lee, Bonggi; Park, Kyoung-Eun; Utsuki, Tadanobu; Shin, Taisun; Oh, Chul Woong; Kim, Hyeung-Rak

    2015-05-01

    Dieckol was previously reported to exhibit antioxidant and anticancer activities in vitro studies. In this study, we characterised the mechanism underlying the dieckol-mediated expression of antioxidant and detoxifying enzymes. Dieckol suppressed the production of intracellular reactive oxygen species in the presence or absence of H2O2 and increased glutathione level in HepG2 cells. Dieckol enhanced the activities of antioxidant enzymes, and the expression of detoxifying enzymes including heme oxygenase-1 (HO-1), NAD(P)H:quinine oxidoreductase 1 (NQO1), and glutathione S-transferase (GST) in HepG2 cells. Enhanced expression of antioxidant and detoxifying enzymes by dieckol was presumed to be the activation of the nuclear factor erythroid-derived 2-like 2 (Nrf2) demonstrated by its nuclear translocation and transcriptional activity via activation of mitogen-activated protein kinases in HepG2 cells. Furthermore, we demonstrated dieckol induced the expression of HO-1 in mouse liver. These results demonstrate that the dieckol-mediated cytoprotection in HepG2 cells is mediated through a ROS-independent up-regulation of antioxidant and detoxifying enzymes via Nrf2 activation as well as its intrinsic antioxidant activity, suggesting that dieckol may be used as a natural cytoprotective agent. PMID:25529716

  15. Characterization of a novel maitake (Grifola frondosa) protein that activates natural killer and dendritic cells and enhances antitumor immunity in mice.

    PubMed

    Tsao, Yao-Wei; Kuan, Yen-Chou; Wang, Jia-Lin; Sheu, Fuu

    2013-10-16

    Grifola frondosa, also known as maitake, is a culinary mushroom with immune-enhancing and antitumor effects. Numerous studies have investigated the activity of maitake polysaccharide extracts, but studies of maitake proteins are scarce. In this study, we purified and characterized a new G. frondosa protein, GFP, from maitake fruiting bodies. GFP is a nonglucan heterodimeric 83 kDa protein that consists of two 41 kDa subunits. GFP induced interferon-γ secretion by murine splenocytes and natural killer cells and activated the maturation of bone marrow-derived dendritic cells (BMDCs) via a TLR4-dependent mechanism. GFP-treated BMDCs promoted a Th1 response and exhibited significant antitumor activity when transferred into tumor-bearing mice. In conclusion, we are the first to reveal the critical role of GFP in modulating the immune response and to link the immune-enhancing effects of maitake to its antitumor activities. PMID:24020458

  16. Enhancement of CYP3A4 Activity in Hep G2 Cells by Lentiviral Transfection of Hepatocyte Nuclear Factor-1 Alpha

    PubMed Central

    Chiang, Tsai-Shin; Yang, Kai-Chiang; Chiou, Ling-Ling; Huang, Guan-Tarn; Lee, Hsuan-Shu

    2014-01-01

    Human hepatoma cell lines are commonly used as alternatives to primary hepatocytes for the study of drug metabolism in vitro. However, the phase I cytochrome P450 (CYP) enzyme activities in these cell lines occur at a much lower level than their corresponding activities in primary hepatocytes, and thus these cell lines may not accurately predict drug metabolism. In the present study, we selected hepatocyte nuclear factor-1 alpha (HNF1α) from six transcriptional regulators for lentiviral transfection into Hep G2 cells to optimally increase their expression of the CYP3A4 enzyme, which is the major CYP enzyme in the human body. We subsequently found that HNF1α-transfected Hep G2 enhanced the CYP3A4 expression in a time- and dose-dependent manner and the activity was noted to increase with time and peaked 7 days. With a multiplicity of infection (MOI) of 100, CYP3A4 expression increased 19-fold and enzyme activity more than doubled at day 7. With higher MOI (1,000 to 3,000), the activity increased 8- to 10-fold; however, it was noted the higher MOI, the higher cell death rate and lower cell survival. Furthermore, the CYP3A4 activity in the HNF1α-transfected cells could be induced by CYP3A4-specific inducer, rifampicin, and metabolized nifedipine in a dose-dependent manner. With an MOI of 3,000, nifedipine-metabolizing activity was 6-fold of control and as high as 66% of primary hepatocytes. In conclusion, forceful delivery of selected transcriptional regulators into human hepatoma cells might be a valuable method to enhance the CYP activity for a more accurate determination of drug metabolism in vitro. PMID:24733486

  17. Integrin α(V)β(3)-targeted magnetic nanohybrids with enhanced antitumor efficacy, cell cycle arrest ability, and encouraging anti-cell-migration activity.

    PubMed

    Ding, Guo-Bin; Wang, Yan; Guo, Yi; Xu, Li

    2014-10-01

    Organic/inorganic nanohybrids, which integrate advantages of the biocompatibility of organic polymers and diversified functionalities of inorganic nanoparticles, have been extensively investigated in recent years. Herein, we report the construction of arginine-glycine-aspartic acid-cysteine (RGDC) tetrapeptide functionalized and 10-hydroxycamptothecin (HCPT)-encapsulated magnetic nanohybrids (RFHEMNs) for integrin αVβ3-targeted drug delivery. The obtained RFHEMNs were near-spherical in shape with a homogeneous size about 50 nm, and exhibited a superparamagnetic behavior. In vitro drug release study showed a sustained and pH-dependent release profile. Cell viability tests revealed that RFHEMNs displayed a significant enhancement of cytotoxicity against αVβ3-overexpressing A549 cells, as compared to free HCPT and nontargeting micelles. Flow cytometry analysis indicated that this cytotoxic effect was associated with dose-dependent S phase arrest. Finally, RFHEMNs exerted encouraging anti-cell-migration activity as determined by an in vitro wound-healing assay and a transwell assay. Overall, we envision that this tumor-targeting nanoscale drug delivery system may be of great application potential in chemotherapy of primary tumor and their metastases. PMID:25207865

  18. Whole Blood Activation Results in Enhanced Detection of T Cell and Monocyte Cytokine Production by Flow Cytometry

    NASA Technical Reports Server (NTRS)

    Sams, Clarence F.; Crucian, Brian E.

    2001-01-01

    An excellent monitor of the immune balance of peripheral circulating cells is to determine their cytokine production patterns in response to stimuli. Using flow cytometry a positive identification of cytokine producing cells in a mixed culture may be achieved. Recently, the ability to assess cytokine production following a wholeblood activation culture has been described. We compared whole blood culture to standard PBMC culture and determined the individual cytokine secretion patterns for both T cells and monocytes via flow cytometry. For T cells cytokine assessment following PMA +ionomycin activation: (1) a significantly greater percentages of T cells producing IFNgamma and IL-2 were observed following whole-blood culture; (2) altered T cell cytokine production kinetics were observed by varying whole blood culture times. In addition, a four-color cytometric analysis was used to allow accurate phenotyping and quantitation of cytokine producing lymphocyte populations. Using this technique we found IFNgamma production to be significantly elevated in the CD3+/CD8+ T cell population as compared to the CD3+/CD8- population following five hours of whole blood activation. Conversely, IL-2 and IL-10 production were significantly elevated in the CD3+/CD8- T cell population as compared to the CD3+/CD8+ population. Monocyte cytokine production was assessed in both culture systems following LPS activation for 24 hours. A three-color flow cytometric was used to assess two cytokines in conjunction with CD 14. The cytokine pairs used for analysis were IL-1a/IL-12, and IL-10ITNFa. Nearly all monocytes were stimulated to produce IL-1a, IL-12 and TNFalpha equally well in both culture systems. Monocyte production of IL-10 was significantly elevated following whole blood culture as compared to PBMC culture. IL-12 producing monocytes appeared to be a distinct subpopulation of the IL-1a producing set, whereas IL-10 and TNFa producing monocytes were largely mutually exclusive. IL-10 and

  19. Leaf extracts from Moricandia arvensis promote antiproliferation of human cancer cells, induce apoptosis, and enhance antioxidant activity.

    PubMed

    Skandrani, Ines; Boubaker, Jihed; Bhouri, Wissem; Limem, Ilef; Kilani, Soumaya; Ben Sghaier, Mohamed; Neffati, Aicha; Bouhlel, Ines; Ghedira, Kamel; Chekir-Ghedira, Leila

    2010-01-01

    The in vitro antiproliferative, apoptotic, and antioxidant activities from leaf extracts of Moricandia arvensis, which are used in traditional cooking and medicines, were investigated. The MTT assay revealed that only TOF (total oligomer flavonoids), ethyl acetate (EA), chloroform (Chl), and petroleum ether (PE) extracts inhibited the proliferation of K562 cells. Apoptosis plays a very important role in the treatment of cancer by promoting the apoptosis of cancer cells and limiting the concurrent death of normal cells. Thus, the possible effects of M. arvensis extracts on the induction of apoptosis in human leukemic cells (K562 cells) were investigated. The electrophoretic analysis of DNA fragmentation confirms that TOF, Chl, PE, and EA extracts provoke DNA fragmentation. Using the lipid peroxidation inhibitory assay, the antioxidant capacity of M. arvensis extracts was evaluated by the ability of each extract to inhibit malondialdehyde formation. It was revealed that EA and TOF extracts are the most active in scavenging the hydroxyl radicals. PMID:19995267

  20. Activation of OCT4 enhances ex vivo expansion of human cord blood hematopoietic stem and progenitor cells by regulating HOXB4 expression

    PubMed Central

    Huang, Xinxin; Lee, Man-Ryul; Cooper, Scott; Hangoc, Giao; Hong, Ki-Sung; Chung, Hyung-Min; Broxmeyer, Hal E.

    2015-01-01

    Although hematopoietic stem cells (HSC) are the best-characterized and the most clinically used adult stem cells, efforts are still needed to understand how to best ex vivo expand these cells. Here we present our unexpected finding that OCT4 is involved in the enhancement of cytokine-induced expansion capabilities of human cord blood (CB) HSC. Activation of OCT4 by OAC1 in CB CD34+ cells enhanced ex vivo expansion of HSC, as determined by a rigorously defined set of markers for human HSC, and in vivo short-term and long-term repopulating ability in NSG mice. Limiting dilution analysis revealed that OAC1 treatment resulted in 3.5 fold increase in the number of SCID Repopulating Cells (SRC) compared with that in Day 0 uncultured CD34+ cells and 6.3 fold increase compared with that in cells treated with control vehicle. Hematopoietic progenitor cells, as assessed by in vitro colony formation, were also enhanced. Furthermore, we showed that OAC1 treatment led to OCT4-mediated upregulation of HOXB4. Consistently, siRNA-mediated knockdown of HOXB4 expression suppressed effects of OAC1 on ex vivo expansion of HSC. Our study has identified the OCT4-HOXB4 axis in ex vivo expansion of human CB HSC. PMID:26202933

  1. Reduced TCR‐dependent activation through citrullination of a T‐cell epitope enhances Th17 development by disruption of the STAT3/5 balance

    PubMed Central

    Tibbitt, Christopher; Falconer, Jane; Stoop, Jeroen; van Eden, Willem; Robinson, John H.

    2016-01-01

    Citrullination is a post‐translational modification of arginine that commonly occurs in inflammatory tissues. Because T‐cell receptor (TCR) signal quantity and quality can regulate T‐cell differentiation, citrullination within a T‐cell epitope has potential implications for T‐cell effector function. Here, we investigated how citrullination of an immunedominant T‐cell epitope affected Th17 development. Murine naïve CD4+ T cells with a transgenic TCR recognising p89‐103 of the G1 domain of aggrecan (agg) were co‐cultured with syngeneic bone marrow‐derived dendritic cells (BMDC) presenting the native or citrullinated peptides. In the presence of pro‐Th17 cytokines, the peptide citrullinated on residue 93 (R93Cit) significantly enhanced Th17 development whilst impairing the Th2 response, compared to the native peptide. T cells responding to R93Cit produced less IL‐2, expressed lower levels of the IL‐2 receptor subunit CD25, and showed reduced STAT5 phosphorylation, whilst STAT3 activation was unaltered. IL‐2 blockade in native p89‐103‐primed T cells enhanced the phosphorylated STAT3/STAT5 ratio, and concomitantly enhanced Th17 development. Our data illustrate how a post‐translational modification of a TCR contact point may promote Th17 development by altering the balance between STAT5 and STAT3 activation in responding T cells, and provide new insight into how protein citrullination may influence effector Th‐cell development in inflammatory disorders. PMID:27173727

  2. Loss of beta1-integrin enhances TGF-beta1-induced collagen expression in epithelial cells via increased alphavbeta3-integrin and Rac1 activity.

    PubMed

    Hayashida, Tomoko; Jones, Jonathan C R; Lee, Carrie K; Schnaper, H William

    2010-10-01

    Transforming growth factor β (TGF-β) promotes tissue fibrosis via the receptor-specific Smad pathway and non-canonical pathways. We recently reported that TGF-β1-stimulated collagen expression by cultured kidney cells requires integrin-dependent activation of focal adhesion kinase (FAK) and consequent ERK MAP kinase activity leading to Smad3 linker region phosphorylation. Here, we defined a role for αvβ3-integrin in this non-canonical pathway. A human kidney tubular cell line in which β1-integrin was knocked down (β1-k/d) demonstrated enhanced type I collagen mRNA expression and promoter activity. A second shRNA to either αv-integrin or β3-integrin, but not to another αv-binding partner, β6-integrin, abrogated the enhanced COL1A2 promoter activity in β1-k/d cells. Although αvβ3-integrin surface expression levels were not different, αvβ3-integrins colocalized with sites of focal adhesion significantly more in β1-k/d cells, and activated αvβ3-integrin was detected only in β1-k/d cells. Further, the collagen response was decreased by a function-blocking antibody or a peptide inhibitor of αvβ3-integrin. In cells lacking αvβ3-integrin, the responses were attenuated, whereas the response was enhanced in αvβ3-overexpressing cells. Rac1 and ERK, previously defined mediators for this non-canonical pathway, showed increased activities in β1-k/d cells. Finally, inhibition of αvβ3-integrin decreased Rac1 activity and COL1A2 promoter activity in β1-k/d cells. Together, our results indicate that decreasing β1 chain causes αvβ3-integrin to become functionally dominant and promotes renal cell fibrogenesis via Rac1-mediated ERK activity. PMID:20650890

  3. Barium carbonate nanoparticle to enhance oxygen reduction activity of strontium doped lanthanum ferrite for solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Hong, Tao; Chen, Fanglin; Xia, Changrong

    2015-03-01

    BaCO3 nanoparticles are demonstrated as outstanding catalysts for high-temperature oxygen reduction reaction (ORR) on the La0.8Sr0.2FeO3-δ (LSF) cathode for solid oxide fuel cells (SOFCs) based on ytrria-stabilized zirconia (YSZ) electrolytes. Thermal gravitational and X-ray diffraction measurements show that BaCO3 is stable and chemically compatible with LSF under the fabrication and operation conditions of intermediate-temperature SOFCs. The BaCO3 nanoparticles can greatly reduce the interfacial polarization resistance; from 2.96 to 0.84 Ω cm2 at 700 °C when 12.9wt% BaCO3 is infiltrated to the porous LSF electrode on the YSZ electrolyte. Electrochemical impedance spectroscopy shows that there is about one order of magnitude decrease in the low-frequency resistance, indicating that BaCO3 nanoparticles can greatly enhance the surface steps for ORR. Electrical conductivity relaxation investigation indicates about one order of magnitude increase in the chemical oxygen surface exchange coefficient when BaCO3 is applied, directly demonstrating significant increase in the kinetics for ORR. In addition, LSF cathodes with infiltrated BaCO3 nanoparticles have shown excellent stability and substantially enhanced cell performance as demonstrated with single cells, suggesting BaCO3 nanoparticles are very effective in enhancing ORR on LSF.

  4. Self-enhanced targeted delivery of a cell wall- and membrane-active antibiotics, daptomycin, against staphylococcal pneumonia.

    PubMed

    Jiang, Hong; Xiong, Meimei; Bi, Qiuyan; Wang, Ying; Li, Chong

    2016-07-01

    Considering that some antibacterial agents can identify the outer structure of pathogens like cell wall and/or cell membrane, we explored a self-enhanced targeted delivery strategy by which a small amount of the antibiotic molecules were modified on the surface of carriers as targeting ligands of certain bacteria while more antibiotic molecules were loaded inside the carriers, and thus has the potential to improve the drug concentration at the infection site, enhance efficacy and reduce potential toxicity. In this study, a novel targeted delivery system against methicillin-resistant Staphylococcus aureus (MRSA) pneumonia was constructed with daptomycin, a lipopeptide antibiotic, which can bind to the cell wall of S. aureus via its hydrophobic tail. Daptomycin was conjugated with N-hydroxysuccinimidyl-polyethylene glycol-1,2-distearoyl-sn-glycero-3-phosphoethanolamine to synthesize a targeting compound (Dapt-PEG-DSPE) which could be anchored on the surface of liposomes, while additional daptomycin molecules were encapsulated inside the liposomes. These daptomycin-modified, daptomycin-loaded liposomes (DPD-L[D]) showed specific binding to MRSA as detected by flow cytometry and good targeting capabilities in vivo to MRSA-infected lungs in a pneumonia model. DPD-L[D] exhibited more favorable antibacterial efficacy against MRSA than conventional PEGylated liposomal daptomycin both in vitro and in vivo. Our study demonstrates that daptomycin-modified liposomes can enhance MRSA-targeted delivery of encapsulated antibiotic, suggesting a novel drug delivery approach for existing antimicrobial agents. PMID:27471672

  5. EPO-independent functional EPO receptor in breast cancer enhances estrogen receptor activity and promotes cell proliferation

    SciTech Connect

    Reinbothe, Susann; Larsson, Anna-Maria; Vaapil, Marica; Wigerup, Caroline; Sun, Jianmin; Jögi, Annika; Neumann, Drorit; Rönnstrand, Lars; Påhlman, Sven

    2014-02-28

    Highlights: • New anti-human EPOR antibody confirms full-length EPOR expression in breast cancer cells. • Proliferation of breast cancer cells is not affected by rhEPO treatment in vitro. • EPOR knockdown impairs proliferation of ERa positive breast cancer cells. • EPOR knockdown reduces AKT phosphorylation and ERa activity. - Abstract: The main function of Erythropoietin (EPO) and its receptor (EPOR) is the stimulation of erythropoiesis. Recombinant human EPO (rhEPO) is therefore used to treat anemia in cancer patients. However, clinical trials have indicated that rhEPO treatment might promote tumor progression and has a negative effect on patient survival. In addition, EPOR expression has been detected in several cancer forms. Using a newly produced anti-EPOR antibody that reliably detects the full-length isoform of the EPOR we show that breast cancer tissue and cells express the EPOR protein. rhEPO stimulation of cultured EPOR expressing breast cancer cells did not result in increased proliferation, overt activation of EPOR (receptor phosphorylation) or a consistent activation of canonical EPOR signaling pathway mediators such as JAK2, STAT3, STAT5, or AKT. However, EPOR knockdown experiments suggested functional EPO receptors in estrogen receptor positive (ERα{sup +}) breast cancer cells, as reduced EPOR expression resulted in decreased proliferation. This effect on proliferation was not seen in ERα negative cells. EPOR knockdown decreased ERα activity further supports a mechanism by which EPOR affects proliferation via ERα-mediated mechanisms. We show that EPOR protein is expressed in breast cancer cells, where it appears to promote proliferation by an EPO-independent mechanism in ERα expressing breast cancer cells.

  6. A novel steroid receptor co-activator protein (SRAP) as an alternative form of steroid receptor RNA-activator gene: expression in prostate cancer cells and enhancement of androgen receptor activity.

    PubMed Central

    Kawashima, Hidenori; Takano, Haruna; Sugita, Syozo; Takahara, Yuki; Sugimura, Kazunobu; Nakatani, Tatsuya

    2003-01-01

    We have cloned a cDNA coding for a novel steroid receptor co-activator protein termed SRAP from a rat prostate library. Although the nucleotide sequence of the SRAP has 78.2% identity to that of the human steroid receptor RNA activator (SRA), a novel RNA molecule which was reported to act as an RNA transcript without being translated into protein [Lanz, McKenna, Onate, Albrecht, Wong, Tsai, Tsai and O'Malley (1999) Cell 97, 17-27], the cDNA of SRAP is capable of generating a functional protein. Glutathione S-transferase pull-down assays showed that SRAP associates with the partial androgen receptor (AR) protein composed of a DNA-binding domain and an activation function 2. Luciferase assays demonstrated that SRAP enhances the transactivation activity of the AR, the glucocorticoid receptor and the peroxisome proliferator-activated receptor gamma(1) in a ligand-dependent manner. Using a green fluorescent protein (GFP) fusion-protein construct, we demonstrated in vivo translation of the GFP-SRAP fusion protein in HeLa cells co-transfected with pSG5AR and reporter gene in the presence of 5 alpha-dihydrotestosterone (DHT). Co-transfection of the GFP-SRAP fusion protein expression plasmid enhanced the transactivation activity of AR whereas incorporation of mutations in SRAP of the fusion protein resulted in loss of enhancement of the transactivation activity. Northern blot analysis and reverse transcriptase PCR assays showed that SRAP and SRA are expressed in rat and human prostate cancer cell lines respectively. In HeLa cells and the human prostate cancer cells line DU-145, co-transfected with SRAP, the DHT-dependent transactivation activities of AR were not completely inhibited by the anti-androgen flutamide, but the transactivation activities still remained high even in the presence of 5 microM flutamide, suggesting that SRAP may play an important role in enhancing AR activity in prostate cancer. PMID:12350225

  7. Discoidin Domain Receptors Promote α1β1- and α2β1-Integrin Mediated Cell Adhesion to Collagen by Enhancing Integrin Activation

    PubMed Central

    Xu, Huifang; Bihan, Dominique; Chang, Francis; Huang, Paul H.; Farndale, Richard W.; Leitinger, Birgit

    2012-01-01

    The discoidin domain receptors, DDR1 and DDR2, are receptor tyrosine kinases that bind to and are activated by collagens. Similar to collagen-binding β1 integrins, the DDRs bind to specific motifs within the collagen triple helix. However, these two types of collagen receptors recognize distinct collagen sequences. While GVMGFO (O is hydroxyproline) functions as a major DDR binding motif in fibrillar collagens, integrins bind to sequences containing Gxx’GEx”. The DDRs are thought to regulate cell adhesion, but their roles have hitherto only been studied indirectly. In this study we used synthetic triple-helical collagen-derived peptides that incorporate either the DDR-selective GVMGFO motif or integrin-selective motifs, such as GxOGER and GLOGEN, in order to selectively target either type of receptor and resolve their contributions to cell adhesion. Our data using HEK293 cells show that while cell adhesion to collagen I was completely inhibited by anti-integrin blocking antibodies, the DDRs could mediate cell attachment to the GVMGFO motif in an integrin-independent manner. Cell binding to GVMGFO was independent of DDR receptor signalling and occurred with limited cell spreading, indicating that the DDRs do not mediate firm adhesion. However, blocking the interaction of DDR-expressing cells with collagen I via the GVMGFO site diminished cell adhesion, suggesting that the DDRs positively modulate integrin-mediated cell adhesion. Indeed, overexpression of the DDRs or activation of the DDRs by the GVMGFO ligand promoted α1β1 and α2β1 integrin-mediated cell adhesion to medium- and low-affinity integrin ligands without regulating the cell surface expression levels of α1β1 or α2β1. Our data thus demonstrate an adhesion-promoting role of the DDRs, whereby overexpression and/or activation of the DDRs leads to enhanced integrin-mediated cell adhesion as a result of higher integrin activation state. PMID:23284937

  8. Novel Quinazoline Derivatives Bearing Various 4-Aniline Moieties as Potent EGFR Inhibitors with Enhanced Activity Against NSCLC Cell Lines.

    PubMed

    Wang, Changyan; Sun, Yajun; Zhu, Xingqi; Wu, Bin; Wang, Qiao; Zhen, Yuhong; Shu, Xiaohong; Liu, Kexin; Zhou, Youwen; Ma, Xiaodong

    2016-04-01

    A class of novel quinazoline derivatives bearing various C-4 aniline moieties was synthesized and biologically evaluated as potent epidermal growth factor receptor (EGFR) inhibitors for intervention of non-small-cell lung cancer (NSCLC). Most of these inhibitors are comparable to gefitinib in inhibiting these cancer cell lines, and several of them even displayed superior inhibitory activity. In particular, analogue 5b with an IC50 of 0.10 μm against the EGFR wild-type A431 cells and 5c with an IC50 of 0.001 μm against the gefitinib-sensitive HCC827 cells (EGFR del E746-A750) was identified as highly active EGFR inhibitors. It was also significant that the discovered analogue 2f, not only has high potency against the gefitinib-sensitive cells (IC50 = 0.031 μm), but also possesses remarkably improved activity against the gefitinib-resistant cells. In addition, the enzymatic assays and the Western blot analysis for evaluating the effects of the typical inhibitors indicated that these molecules strongly interfere with the EGFR target. PMID:26613384

  9. NECAB3 Promotes Activation of Hypoxia-inducible factor-1 during Normoxia and Enhances Tumourigenicity of Cancer Cells

    PubMed Central

    Nakaoka, Hiroki J.; Hara, Toshiro; Yoshino, Seiko; Kanamori, Akane; Matsui, Yusuke; Shimamura, Teppei; Sato, Hiroshi; Murakami, Yoshinori; Seiki, Motoharu; Sakamoto, Takeharu

    2016-01-01

    Unlike most cells, cancer cells activate hypoxia inducible factor-1 (HIF-1) to use glycolysis even at normal oxygen levels, or normoxia. Therefore, HIF-1 is an attractive target in cancer therapy. However, the regulation of HIF-1 during normoxia is not well characterised, although Mint3 was recently found to activate HIF-1 in cancer cells and macrophages by suppressing the HIF-1 inhibitor, factor inhibiting HIF-1 (FIH-1). In this study, we analysed Mint3-binding proteins to investigate the mechanism by which Mint3 regulates HIF-1. Yeast two-hybrid screening using Mint3 as bait identified N-terminal EF-hand calcium binding protein 3 (NECAB3) as a novel factor regulating HIF-1 activity via Mint3. NECAB3 bound to the phosphotyrosine-binding domain of Mint3, formed a ternary complex with Mint3 and FIH-1, and co-localised with Mint3 at the Golgi apparatus. Depletion of NECAB3 decreased the expression of HIF-1 target genes and reduced glycolysis in normoxic cancer cells. NECAB3 mutants that binds Mint3 but lacks an intact monooxygenase domain also inhibited HIF-1 activation. Inhibition of NECAB3 in cancer cells by either expressing shRNAs or generating a dominant negative mutant reduced tumourigenicity. Taken together, the data indicate that NECAB3 is a promising new target for cancer therapy. PMID:26948053

  10. Esterification of Ginsenoside Rh2 Enhanced Its Cellular Uptake and Antitumor Activity in Human HepG2 Cells.

    PubMed

    Chen, Fang; Deng, Ze-Yuan; Zhang, Bing; Xiong, Zeng-Xing; Zheng, Shi-Lian; Tan, Chao-Li; Hu, Jiang-Ning

    2016-01-13

    Our previous research had indicated that the octyl ester derivative of ginsenoside Rh2 (Rh2-O) might have a higher bioavailability than Rh2 in the Caco-2 cell line. The aim of this study was to investigate the cellular uptake and antitumor effects of Rh2-O in human HepG2 cells as well as its underlying mechanism compared with Rh2. Results showed that Rh2-O exhibited a higher cellular uptake (63.24%) than Rh2 (36.76%) when incubated with HepG2 cells for 24 h. Rh2-O possessed a dose- and time-dependent inhibitory effect against the proliferation of HepG2 cells. The IC50 value of Rh2-O for inhibition of HepG2 cell proliferation was 20.15 μM, which was roughly half the value of Rh2. Rh2-O induced apoptosis of HepG2 cells through a mitochondrial-mediated intrinsic pathway. In addition, the accumulation of ROS was detected in Rh2-O-treated HepG2 cells, which participated in the apoptosis of HepG2 cells. Conclusively, the findings above all suggested that Rh2-O as well as Rh2 inducing HepG2 cells apoptosis might involve similar mechanisms; however, Rh2-O had better antitumor activities than Rh2, probably due to its higher cellular uptake. PMID:26672619

  11. Aqueous extract of Crataegus azarolus protects against DNA damage in human lymphoblast Cell K562 and enhances antioxidant activity.

    PubMed

    Mustapha, Nadia; Bouhlel, Inès; Chaabane, Fadwa; Bzéouich, Imèn Mokdad; Ghedira, Kamel; Hennebelle, Thierry; Chekir-Ghedira, Leila

    2014-02-01

    The present study was carried out to characterize the cellular antioxidant effect of the aqueous extract of Crataegus azarolus and its antigenotoxic potential using human myelogenous cells, K562. The antioxidant capacity of this extract was evaluated by determining its cellular antioxidant activity (CAA) in K562 cells. Also, preceding antigenotoxicity assessment, its eventual genotoxicity property was investigated by evaluating its capacity to induce the DNA degradation of treated cell nuclei. As no genotoxicity was detected at different exposure times, its ability to protect cell DNA against H2O2 oxidative effect was investigated, using the "comet assay." It appears that 800 μg/mL of extract inhibited the genotoxicity induced by H2O2 with a rate of 41.30 %, after 4 h of incubation. In addition, this extract revealed a significant cellular antioxidant capacity against the reactive oxygen species in K562 cells. PMID:24347159

  12. Thiram activates NF-kappaB and enhances ICAM-1 expression in human microvascular endothelial HMEC-1 cells.

    PubMed

    Kurpios-Piec, Dagmara; Grosicka-Maciąg, Emilia; Woźniak, Katarzyna; Kowalewski, Cezary; Kiernozek, Ewelina; Szumiło, Maria; Rahden-Staroń, Iwonna

    2015-02-01

    Thiram (TMTD) is a fungicidal and bactericidal agent used as antiseptic, seed disinfectant and animal repellent. In the light of known properties, thiram is considered to be used as an inhibitor of angiogenesis and/or inflammation. Since angiogenesis requires the growth of vascular endothelial cells we have used microvascular endothelial cell line HMEC-1 to elucidate the effect of thiram on normal and stimulated cells. We cultured HMEC-1 cells in the presence of thiram at low concentration (0.5 µg/mL or 2 µg/mL) (0.2 µM or 0.8 µM) or TNF-α (10 ng/mL) alone, and thiram together with TNF-α. TNF-α was used as a cytokine that triggers changes characteristic for inflammatory state of the cell. We carried out an in vitro study aimed at assessing generation of reactive oxygen species (ROS), activation of NF-κB, and expression of cell adhesion molecules ICAM-1, VCAM-1, PECAM-1. It was found that TMTD produced ROS and activated NF-κB. Activation of NF-κB was concurrent with an increase in ICAM-1 expression on the surface of HMEC-1 cells. ICAM-1 reflects intensity of inflammation in endothelial cell milieu. The expression of VCAM-1 and PECAM-1 on these cells was not changed by thiram. It was also found that stimulation of the HMEC-1 cells with the pro-inflammatory cytokine TNF-α caused activation of ICAM-1 and VCAM-1 expression with concomitant decrease of PECAM-1 cell surface expression above the control levels. Treatment with thiram and TNF-α changed cellular response compared with effects observed after treatment with TNF-α alone, i.e. further increase of ICAM-1 expression and impairment of the TNF-α effect on PECAM-1 and VCAM-1 expression. This study demonstrated that thiram acts as a pro-oxidant, and elicits in endothelial cell environment effects characteristic for inflammation. However, when it is present concurrently with pro-inflammatory cytokine TNF-α interferes with its action. PMID:25752435

  13. The Central Hinge Link Truncation of the Antimicrobial Peptide Fowlicidin-3 Enhances Its Cell Selectivity without Antibacterial Activity Loss.

    PubMed

    Qu, Pei; Gao, Wei; Chen, Huixian; Li, Dan; Yang, Na; Zhu, Jian; Feng, Xingjun; Liu, Chunlong; Li, Zhongqiu

    2016-05-01

    Antimicrobial peptides (AMPs) have been paid considerable attention because of their broad-spectrum antimicrobial activity and a reduced possibility of the development of bacterial drug resistance. Fowlicidin-3 (Fow-3) is an identified type of chicken cathelicidin AMP that has exhibited considerable antimicrobial activity and cytotoxicity. To reduce cell toxicity and improve cell selectivity, several truncated peptides of fowlicidin-3, Fow-3(1-15), Fow-3(1-19), Fow-3(1-15-20-27), and Fow-3(20-27), were synthesized. Our results indicated that neither the N- nor C-terminal segment alone [Fow-3(1-15), Fow-3(1-19), Fow-3(20-27)] was sufficient to confer antibacterial activity. However, Fow-3(1-19) with the inclusion of the central hinge link (-AGIN-) retained substantial cell toxicity, which other analogs lost. Fow-3(1-15-20-27) displayed potent antimicrobial activity for a wide range of Gram-negative and Gram-positive bacteria and no obvious hemolytic activity or cytotoxicity. The central link region was shown to be critically important in the function of cell toxicity but was not relevant to antibacterial activity. Fow-3(1-15-20-27) maintained antibacterial activity in the presence of physiological concentrations of salts. The results from fluorescence spectroscopy, scanning electron microcopy, and transmission electron microcopy showed that Fow-3(1-15-20-27) as well as fowlicidin-3 killed bacterial cells by increasing membrane permeability and damaging the membrane envelope integrity. Fow-3(1-15-20-27) could be a promising antimicrobial agent for clinical application. PMID:26902768

  14. Anti-cancer drug 3,3′-diindolylmethane activates Wnt4 signaling to enhance gastric cancer cell stemness and tumorigenesis

    PubMed Central

    Gong, Aihua; Fu, Hailong; Zhang, Xu; Shi, Hui; Sun, Yaoxiang; Wu, Lijun; Pan, Zhaoji; Mao, Fei; Zhu, Wei; Qian, Hui; Xu, Wenrong

    2016-01-01

    As a natural health supplement, 3,3′-diindolylmethane (DIM) is proposed as a preventive and chemotherapeutic agent for cancer by inhibiting cell proliferation and inducing cell apoptosis. However, we found that in contrary to high level of DIM (30 μM), low level of DIM (1 μM and 10 μM) obviously promoted gastric cancer cell growth and migration. In addition, we found that low level of DIM increased the expression of stemness factors and enhanced the pluripotency of gastric cancer cells. Low level of DIM promoted gastric cancer progression by inducing the PORCN-dependent secretion of Wnt4 and the activation of β-catenin signaling. Wnt4 knockdown reversed the effects of low level of DIM on gastric cancer cells. The results of in vivo studies showed that gastric cancer cells treated with low level of DIM (1 μM) grew faster and expressed higher level of Wnt4 than control cells. Taken together, our findings indicate that low level of DIM activates autocrine Wnt4 signaling to enhance the progression of gastric cancer, which may suggest an adverse aspect of DIM in cancer therapy. Our findings will provide a new aspect for the safety of DIM in its clinical application. PMID:26918831

  15. PTEN enhances G2/M arrest in etoposide-treated MCF‑7 cells through activation of the ATM pathway.

    PubMed

    Zhang, Ruopeng; Zhu, Li; Zhang, Lirong; Xu, Anli; Li, Zhengwei; Xu, Yijuan; He, Pei; Wu, Maoqing; Wei, Fengxiang; Wang, Chenhong

    2016-05-01

    As an effective tumor suppressor, phosphatase and tensin homolog (PTEN) has attracted the increased attention of scientists. Recent studies have shown that PTEN plays unique roles in the DNA damage response (DDR) and can interact with the Chk1 pathway. However, little is known about how PTEN contributes to DDR through the ATM-Chk2 pathway. It is well-known that etoposide induces G2/M arrest in a variety of cell lines, including MCF-7 cells. The DNA damage-induced G2/M arrest results from the activation of protein kinase ataxia telangiectasia mutated (ATM), followed by the activation of Chk2 that subsequently inactivates CDC25C, resulting in G2/M arrest. In the present study, we assessed the contribution of PTEN to the etoposide-induced G2/M cell cycle arrest. PTEN was knocked down in MCF-7 cells by specific shRNA, and the effects of PTEN on the ATM-Chk2 pathway were investigated through various approaches. The results showed that knockdown of PTEN strongly antagonized ATM activation in response to etoposide treatment, and thereby reduced the phosphorylation level of ATM substrates, including H2AX, P53 and Chk2. Furthermore, depletion of PTEN reduced the etoposide-induced phosphorylation of CDC25C and strikingly compromised etoposide-induced G2/M arrest in the MCF-7 cells. Altogether, we demonstrated that PTEN plays a unique role in etoposide-induced G2/M arrest by facilitating the activation of the ATM pathway, and PTEN was required for the proper activation of checkpoints in response to DNA damage in MCF-7 cells. PMID:26986476

  16. Rho A and the Rho kinase pathway regulate fibroblast contraction: Enhanced contraction in constitutively active Rho A fibroblast cells

    SciTech Connect

    Nobe, Koji; Nobe, Hiromi; Yoshida, Hiroko; Kolodney, Michael S.; Paul, Richard J.; Honda, Kazuo

    2010-08-20

    Research highlights: {yields} Mechanisms of fibroblast cell contraction in collagen matrix. {yields} Assessed an isometric force development using 3D-reconstituted-fibroblast fiber. {yields} Constitutively active Rho A induced the over-contraction of fibroblast cells. {yields} Rho A and Rho kinase pathway has a central role in fibroblast cell contraction. -- Abstract: Fibroblast cells play a central role in the proliferation phase of wound healing processes, contributing to force development. The intracellular signaling pathways regulating this non-muscle contraction are only partially understood. To study the relations between Rho A and contractile responses, constitutively active Rho A (CA-Rho A) fibroblast cells were reconstituted into fibers and the effects of calf serum (CS) on isometric force were studied. CS-induced force in CA-Rho A fibroblast fibers was twice as large as that in wild type (NIH 3T3) fibroblast fibers. During this response, the translocation of Rho A from the cytosol to the membrane was detected by Rho A activity assays and Western blot analysis. Pre-treatment with a Rho specific inhibitor (C3-exoenzyme) suppressed translocation as well as contraction. These results indicate that Rho A activation is essential for fibroblast contraction. The Rho kinase inhibitor ( (Y27632)) inhibited both NIH 3T3 and CA-Rho A fibroblast fiber contractions. Activation of Rho A is thus directly coupled with Rho kinase activity. We conclude that the translocation of Rho A from the cytosol to the membrane and the Rho kinase pathway can regulate wound healing processes mediated by fibroblast contraction.

  17. Stromal Cell-Derived Factor-1α Activation of Tissue Engineered Endothelial Progenitor Cell Matrix Enhances Ventricular Function after Myocardial Infarction by Inducing Neovasculogenesis

    PubMed Central

    Frederick, John R.; Fitzpatrick, J. Raymond; McCormick, Ryan C.; Harris, David A.; Kim, Ah-Young; Muenzer, Jeffrey R.; Marotta, Nicole; Smith, Maximilian J.; Cohen, Jeffrey E.; Hiesinger, William; Atluri, Pavan; Woo, Y. Joseph

    2014-01-01

    Background Myocardial ischemia causes cardiomyocyte death, adverse ventricular remodeling, and ventricular dysfunction. Endothelial progenitor cells (EPC) have been shown to ameliorate this process, particularly when activated with stromal cell-derived factor-1α (SDF). We hypothesized that implantation of a tissue engineered extracellular matrix scaffold seeded with EPCs primed with SDF could induce neovasculogenesis, prevent adverse remodeling, and preserve ventricular function after myocardial infarction (MI). Methods and Results Lewis rats (n=82) underwent left anterior descending artery ligation to induce MI. EPCs were cultured on a vitronectin/collagen scaffold, and primed with SDF to generate the activated EPC matrix (EPCM). EPCM was sutured to the anterolateral left ventricular (LV) wall including the region of ischemia.. At four weeks, when compared to controls, borderzone myocardial tissue demonstrated increased levels of VEGF in the EPCM group. Vessel density as assessed by immunohistochemical microscopy was significantly increased in the EPCM group (4.1 vs 6.2 vessels/high-powered field, p<0.001), and microvascular perfusion measured by lectin microangiography was enhanced four-fold (0.7 vs. 2.7% vessel volume/section volume, p=0.04). Ventricular geometry and scar fraction assessed by analysis of sectioned hearts exhibited significantly preserved LV internal diameter (9.7mm vs. 8.6mm, p=0.005) and decreased infarct scar expressed as percent of total section area (16% vs. 7%, p=0.002) when compared to all other groups. In addition, EPCM animals showed a significant preservation of function as measured by echocardiography, pressure volume-conductance, and Doppler flow. Conclusions Extracellular matrix seeded with EPCs primed with SDF induces borderzone neovasculogenesis, attenuates adverse ventricular remodeling, and preserves ventricular function after MI. PMID:20837901

  18. Neutral Polymer Micelle Carriers with pH-Responsive, Endosome-Releasing Activity Modulate Antigen Trafficking to Enhance CD8 T-Cell Responses

    PubMed Central

    Keller, Salka; Wilson, John T; Patilea, Gabriela I; Kern, Hanna B; Convertine, Anthony J; Stayton, Patrick S

    2014-01-01

    Synthetic subunit vaccines need to induce CD8+ cytotoxic T-cell (CTL) responses for effective vaccination against intracellular pathogens. Most subunit vaccines primarily generate humoral immune responses, with a weaker than desired CD8+ cytotoxic T-cell response. Here, a neutral, pH-responsive polymer micelle carrier that alters intracellular antigen trafficking was shown to enhance CD8+ T-cell responses with a correlated increase in cytosolic delivery and a decrease in exocytosis. Polymer diblock carriers consisted of a N-(2-hydroxypropyl) methacrylamide corona block with pendant pyridyl disulfide groups for reversible conjugation of thiolated ovalbumin, and a tercopolymer ampholytic core-forming block composed of propylacrylic acid (PAA), dimethylaminoethyl methacrylate (DMAEMA), and butyl methacrylate (BMA). The diblock copolymers self-assembled into 25–30 nm diameter micellar nanoparticles. Conjugation of ovalbumin to the micelles significantly enhanced antigen cross-presentation in vitro relative to free ovalbumin, an unconjugated physical mixture of ovalbumin and polymer, and a non pH-responsive micelle-ovalbumin control. Mechanistic studies in a murine dendritic cell line (DC2.4) demonstrated micelle-mediated enhancements in intracellular antigen retention and cytosolic antigen accumulation. Approximately 90% of initially internalized ovalbumin-conjugated micelles were retained in cells after 1.5 h, compared to only ~40% for controls. Furthermore, cells dosed with conjugates displayed 67-fold higher cytosolic antigen levels relative to soluble ovalbumin 4 h post uptake. Subcutaneous immunization of mice with ovalbumin-polymer conjugates significantly enhanced antigen-specific CD8+ T cell responses (0.4 % IFN-γ+ of CD8+) compared to immunization with soluble protein, ovalbumin and polymer mixture, and the control micelle without endosome-releasing activity. Additionally, pH-responsive carrier facilitated antigen delivery to antigen presenting cells in the

  19. Glucose enhances insulin promoter activity in MIN6 beta-cells independently of changes in intracellular Ca2+ concentration and insulin secretion.

    PubMed Central

    Kennedy, H J; Rafiq, I; Pouli, A E; Rutter, G A

    1999-01-01

    Recent studies have suggested that glucose may activate insulin gene transcription through increases in intracellular Ca(2+) concentration, possibly acting via the release of stored insulin. We have investigated this question by dynamic photon-counting imaging of insulin- and c-fos-promoter-firefly luciferase reporter construct activity. Normalized to constitutive viral promoter activity, insulin promoter activity in MIN6 beta-cells was increased 1.6-fold after incubation at 30 mM compared with 3 mM glucose, but was unaltered at either glucose concentration by the presence of insulin (100 nM) or the Ca(2+) channel inhibitor, verapamil (100 microM). Increases in intracellular [Ca(2+)] achieved by plasma membrane depolarization with KCl failed to enhance either insulin or c-fos promoter activity in MIN6 cells, but increased c-fos promoter activity 5-fold in AtT20 cells. Together, these results demonstrate that glucose can exert a direct effect on insulin promoter activity in islet beta-cells, via a signalling pathway which does not require increases in intracellular [Ca(2+)] nor insulin release and insulin receptor activation. PMID:10455011

  20. Human immunoglobulin production in immunodeficient mice: enhancement by immunosuppression of host and in vitro activation of human mononuclear cells.

    PubMed Central

    Cavacini, L A; Kennel, M; Lally, E V; Posner, M R; Quinn, A

    1992-01-01

    The affect of host and donor related factors on successful engraftment of human cells into mice was examined to minimize the variability that has been observed in successful development of human-mouse chimera for the study of human disease and immune physiology and regulation. Human immunoglobulin production in severe combined immunodeficiency (SCID) mice engrafted with human peripheral blood mononuclear cells (PBMC) was augmented by immunosuppressing recipient mice and activating donor PBMC. Immunosuppression of recipient mice with 3 Gy of gamma-irradiation induced a 10-fold increase in human IgG in the sera of engrafted SCID mice. Variation in production of human IgG in recipient mice correlated with preinjection phenotype and activation status of injected PBMC. Mice injected with PBMC with a low CD4/CD8 ratio (less than 0.5) produced no detectable circulating human immunoglobulin. When the CD4/CD8 ratio was greater than 1.5, human IgG was detected in sera of PBMC-recipient SCID mice. Serum IgG increased 10-fold following in vitro activation of donor PBMC with anti-CD3, IL-2 and Staphylococcus aureus. Successful engraftment and serum IgG production was evidenced by an increase in the recovery of activated human IgG+ cells in the spleens of mice with maximal IgG production. Optimization of functional engraftment required modification of both the host (SCID mice) and the donor cells. PMID:1395094

  1. Enhancement of Anti-Hypoxic Activity and Differentiation of Cardiac Stem Cells by Supernatant Fluids from Cultured Macrophages that Phagocytized Dead Mesenchymal Stem Cells

    PubMed Central

    Liu, Liang; Jin, Xian; Zhou, Zhong’e; Shen, Chengxing

    2016-01-01

    Background: Most mesenchymal stem cells (MSCs) die shortly after transplantation into a myocardial infarcted area. Dead MSCs (dMSCs) are phagocytized by macrophages (pMΦ) in vivo and in vitro; however, the effects of pMΦ on cardiac stem cells (CSCs) remain unknown. Methods: MSCs, CSCs, and macrophages were obtained from bone marrow, hearts, and peritoneal cavity of mice, respectively. dMSCs were harvested after hypoxia for 24 h, and incubated with macrophages (2:1) for another 2 days with or without lipopolysaccharide (LPS, 50 ng/mL) and sorted by flow cytometry to obtain pMΦ. Viability and apoptosis of CSCs were respectively evaluated with the cell counting kit-8 (CCk-8) assay and Annexin V-PE/7-AAD staining at 0, 6, 12, and 24 h of culture with supernatant fluids from macrophages (MΦ), LPS-stimulated macrophages (LPS-pMΦ), pMΦ, and MSCs. GATA-4 and c-TnI expression was measured by flow cytometry on the seventh day. Expression of inflammation and growth factors was assessed by real-time polymerase chain reaction (RT-PCR) in MΦ, LPS-pMΦ, and pMΦ cells. Results: pMΦ expressed higher levels of interleukin-10 (IL-10) and transforming growth factor-β (TGF-β)and lower levels of tumor necrosis factor-α(TNF-α)and IL-6 than LPS-pMΦ, higher levels of growth factors and of GATA-4 and c-TnI at the 7th day, which were similar to those in MSCs. CSCs cultured with supernatant fluids of pMΦ exhibited higher proliferative, anti-hypoxic, and differentiation activities. Conclusion: The supernatant fluids of macrophages that had phagocytized dead MSCs encouraged changes in phenotype and growth factor expression, enhanced proliferation, differentiation, and anti-hypoxic activity of CSCs, which is relevant to understanding the persistent therapeutic effect of MSCs after their massive demise upon transplantation in myocardial infarction. Furthermore, some miRNAs or proteins which were extracted from the supernatant fluids may give us a new insight into the treatment of

  2. Genome Wide Mapping of NR4A Binding Reveals Cooperativity with ETS Factors to Promote Epigenetic Activation of Distal Enhancers in Acute Myeloid Leukemia Cells

    PubMed Central

    Duren, Ryan P.; Boudreaux, Seth P.; Conneely, Orla M.

    2016-01-01

    Members of the NR4A subfamily of orphan nuclear receptors regulate cell fate decisions via both genomic and non-genomic mechanisms in a cell and tissue selective manner. NR4As play a key role in maintenance of hematopoietic stem cell homeostasis and are critical tumor suppressors of acute myeloid leukemia (AML). Expression of NR4As is broadly silenced in leukemia initiating cell enriched populations from human patients relative to normal hematopoietic stem/progenitor cells. Rescue of NR4A expression in human AML cells inhibits proliferation and reprograms AML gene signatures via transcriptional mechanisms that remain to be elucidated. By intersecting an acutely regulated NR4A1 dependent transcriptional profile with genome wide NR4A binding distribution, we now identify an NR4A targetome of 685 genes that are directly regulated by NR4A1. We show that NR4As regulate gene transcription primarily through interaction with distal enhancers that are co-enriched for NR4A1 and ETS transcription factor motifs. Using a subset of NR4A activated genes, we demonstrate that the ETS factors ERG and FLI-1 are required for activation of NR4A bound enhancers and NR4A target gene induction. NR4A1 dependent recruitment of ERG and FLI-1 promotes binding of p300 histone acetyltransferase to epigenetically activate NR4A bound enhancers via acetylation at histone H3K27. These findings disclose novel epigenetic mechanisms by which NR4As and ETS factors cooperate to drive NR4A dependent gene transcription in human AML cells. PMID:26938745

  3. Knocking Down Nucleolin Expression Enhances the Radiosensitivity of Non-Small Cell Lung Cancer by Influencing DNA-PKcs Activity.

    PubMed

    Xu, Jian-Yu; Lu, Shan; Xu, Xiang-Ying; Hu, Song-Liu; Li, Bin; Qi, Rui-Xue; Chen, Lin; Chang, Joe Y

    2015-01-01

    Nucleolin (C23) is an important anti-apoptotic protein that is ubiquitously expressed in exponentially growing eukaryotic cells. In order to understand the impact of C23 in radiation therapy, we attempted to investigate the relationship of C23 expression with the radiosensitivity of human non-small cell lung cancer (NSCLC) cells. We investigated the role of C23 in activating the catalytic subunit of DNA-dependent protein kinase (DNA- PKcs), which is a critical protein for DNA double-strand breaks (DSBs) repair. As a result, we found that the expression of C23 was negatively correlated with the radiosensitivity of NSCLC cell lines. In vitro clonogenic survival assays revealed that C23 knockdown increased the radiosensitivity of a human lung adenocarcinoma cell line, potentially through the promotion of radiation-induced apoptosis and adjusting the cell cycle to a more radiosensitive stage. Immunofluorescence data revealed an increasing quantity of γ-H2AX foci and decreasing radiation-induced DNA damage repair following knockdown of C23. To further clarify the mechanism of C23 in DNA DSBs repair, we detected the expression of DNA-PKcs and C23 proteins in NSCLC cell lines. C23 might participate in DNA DSBs repair for the reason that the expression of DNA-PKcs decreased at 30, 60, 120 and 360 minutes after irradiation in C23 knockdown cells. Especially, the activity of DNA-PKcs phosphorylation sites at the S2056 and T2609 was significantly suppressed. Therefore we concluded that C23 knockdown can inhibit DNA-PKcs phosphorylation activity at the S2056 and T2609 sites, thus reducing the radiation damage repair and increasing the radiosensitivity of NSCLC cells. Taken together, the inhibition of C23 expression was shown to increase the radiosensitivity of NSCLC cells, as implied by the relevance to the notably decreased DNA-PKcs phosphorylation activity at the S2056 and T2609 clusters. Further research on targeted C23 treatment may promote effectiveness of radiotherapy

  4. RSK2-induced stress tolerance enhances cell survival signals mediated by inhibition of GSK3β activity

    SciTech Connect

    Lee, Cheol-Jung; Lee, Mee-Hyun; Lee, Ji-Young; Song, Ji Hong; Lee, Hye Suk; Cho, Yong-Yeon

    2013-10-11

    Highlights: •We demonstrated a novel function of RSK2 in stress tolerance. •RSK2 deficiency enhanced apoptosis by calcium stress. •RSK2-mediated GSK3β phosphorylation at serine 9 increased calcium-induced stress tolerance. •Calcium stress-induced apoptosis inhibited by adding back of RSK2 into RSK2{sup −/−} MEFs. -- Abstract: Our previous studies demonstrated that RSK2 plays a key role in cell proliferation and transformation induced by tumor promoters such as epidermal growth factor (EGF) in mouse and human skin cells. However, no direct evidence has been found regarding the relationship of RSK2 and cell survival. In this study, we found that RSK2 interacted and phosphorylated GSK3β at Ser9. Notably, GSK3β phosphorylation at Ser9 was suppressed in RSK2{sup −/−} MEFs compared with RSK2{sup +/+} MEFs by stimulation of EGF and calcium ionophore A23187, a cellular calcium stressor. In proliferation, we found that RSK2 deficiency suppressed cell proliferation compared with RSK2{sup +/+} MEFs. In contrast, GSK3β{sup −/−} MEFs induced the cell proliferation compared with GSK3β{sup +/+} MEFs. Importantly, RSK2{sup −/−} MEFs were induced severe cellular morphology change by A23187 and enhanced G1/G0 and sub-G1 accumulation of the cell cycle phase compared with RSK2{sup +/+} MEFs. The sub-G1 induction in RSK2{sup −/−} MEFs by A23187 was correlated with increase of cytochrome c release, caspase-3 cleavage and apoptotic DNA fragmentation compared with RSK2{sup +/+} MEFs. Notably, return back of RSK2 into RSK2{sup −/−} MEFs restored A23187-induced morphological change, and decreased apoptosis, apoptotic DNA fragmentation and caspase-3 induction compared with RSK2{sup −/−}/mock MEFs. Taken together, our results demonstrated that RSK2 plays an important role in stress-tolerance and cell survival, resulting in cell proliferation and cancer development.

  5. p28-Mediated Activation of p53 in G2-M Phase of the Cell Cycle Enhances the Efficacy of DNA Damaging and Antimitotic Chemotherapy.

    PubMed

    Yamada, Tohru; Das Gupta, Tapas K; Beattie, Craig W

    2016-04-15

    p28 is an anionic cell-penetrating peptide of 28 amino acids that activates wild-type and mutated p53, leading subsequently to selective inhibition of CDK2 and cyclin A expression and G2-M cell-cycle arrest. In this study, we investigated the cytotoxic effects of p28 treatment alone and in combination with DNA-damaging and antimitotic agents on human cancer cells. p28 enhanced the cytotoxic activity of lower concentrations (IC20-50) of DNA-damaging drugs (doxorubicin, dacarbazine, temozolamide) or antimitotic drugs (paclitaxel and docetaxel) in a variety of cancer cells expressing wild-type or mutated p53. Mechanistic investigations revealed that p28 induced a post-translational increase in the expression of wild-type or mutant p53 and p21, resulting in cell-cycle inhibition at the G2-M phase. The enhanced activity of these anticancer agents in combination with p28 was facilitated through the p53/p21/CDK2 pathway. Taken together, these results highlight a new approach to maximize the efficacy of chemotherapeutic agents while reducing dose-related toxicity. Cancer Res; 76(8); 2354-65. ©2016 AACR. PMID:26921335

  6. A T cell controlled molecular pathway regulating the IgH locus: CD40-mediated activation of the IgH 3' enhancer.

    PubMed Central

    Grant, P A; Andersson, T; Neurath, M F; Arulampalam, V; Bauch, A; Müller, R; Reth, M; Pettersson, S

    1996-01-01

    Immunoglobulin heavy chain (IgH) class switch recombination and regulation of IgH expression levels are processes suggested to be controlled by the IgH 3' enhancer. Here we demonstrate that CD40 or IgM receptor stimulation of primary B cells results in transactivation of this enhancer. 4-Hydroxy-3-nitrophenylacetyl (NIP)-BSA induction of a K46 B cell line expressing a chimeric NIP-specific CD40 single chain receptor results in a ligand receptor-dependent response of a 3' enhancer ETS/AP-1 minimal promoter construct. Gel retardation analysis and genomic footprinting experiments reveal that CD40 or IgM induction recruits NFAB (nuclear factors of activated B cells) to the ETS/AP-1 motif. While IgM signalling recruits c-Fos, JunB and Elf-1 (NFAB-I), only JunB and Elf-1 were observed following CD40 signalling (NFAB-II). CD40 signalling, however, induces a Fos family-related partner for JunB, which may account for the transcriptional activity observed by NFAB-II in K46 cells. We propose a model whereby CD40 and IgM receptor-mediated signalling converge in the process of 3' enhancer activation in B lymphocytes. Our data provide a putative molecular explanation as to why CD40L-deficient mice, and possibly patients with hyper-IgM syndrome, are unable to undergo T cell-dependent class switch recombination but respond properly upon lipopolysaccharide-induced switch recombination. Images PMID:8978695

  7. A genomic region encompassing a newly identified exon provides enhancing activity sufficient for normal myo7aa expression in zebrafish sensory hair cells.

    PubMed

    Ernest, Sylvain; Rosa, Frédéric M

    2015-09-01

    MYO7A is an unconventional myosin involved in the structural organization of hair bundles at the apex of sensory hair cells (SHCs) where it serves mechanotransduction in the process of hearing and balance. Mutations of MYO7A are responsible for abnormal shaping of hair bundles, resulting in human deafness and murine deafness/circling behavior. Myo7aa, expressed in SHCs of the inner ear and lateral line of zebrafish, causes circling behavior and abnormal hair cell function when deficient in mariner mutant. This work identifies a new hair cell-specific enhancer, highly conserved between species, located within Intron 2-3 of zebrafish myosin 7a (myo7aa) gene. This enhancer is contained within a 761-bp DNA fragment that encompasses a newly identified Exon of myo7aa and whose activity does not depend on orientation. Compensation of mariner mutation by expression of mCherry-Myo7aa fusion protein under the control of this 761-bp DNA fragment results in recovery of balance, normal hair bundle shape and restored hair cell function. Two smaller adjacent fragments (344-bp and 431-bp), extracted from the 761-bp fragment, both show hair cell-specific enhancing activity, with apparently reduced intensity and coverage. These data should help understand the role of Myo7aa in sensory hair cell differentiation and function. They provide tools to decipher how myo7aa gene is expressed and regulated in SHCs by allowing the identification of potential transcription factors involved in this process. The discovered enhancer could represent a new target for the identification of deafness-causing mutations affecting human MYO7A. PMID:25556989

  8. [Enhanced control of proliferation in telomerized cells].

    PubMed

    Egorov, E E; Moldaver, M V; Vishniakova, Kh S; Terekhov, S M; Dashinimaev, E B; Cheglakov, I B; Toropygin, I Iu; Iarygin, K N; Chumakov, P M; Korochkin, L I; Antonova, G A; Rybalkina, E Iu; Saburina, I N; Burnaevskiĭ, N S; Zelenin, A V

    2007-01-01

    Clones of telomerized fibroblasts of adult human skin have earlier been obtained. It was shown that despite their fast growth in mass cultures, these cells poorly form colonies. Conditioned medium, antioxidants, and reduced partial oxygen pressure enhanced their colony formation, but not to the level characteristic of the initial cells. The conditioned medium of telomerized cells enhanced colony formation to a much greater extent than that of the initial cells. A study of proteome of the telomerized fibroblasts has revealed changes in the activities of tens of genes. A general trend consists in weakening and increased lability of the cytoskeleton and in activation of the mechanisms controlling protein degradation. However, these changes are not very pronounced. During the formation of immortal telomerized cells, selection takes place, which appears to determine changes in the expression of some genes. It was proposed that a decrease in the capacity of telomerized cells for colony formation is due to increased requirements of these cells to cell-cell contacts. The rate of cell growth reached that characteristic of mass cultures only in the largest colonies. In this respect, the telomerized fibroblasts resembled stem cells: they are capable of self-maintenance, but "escape" to differentiation in the absence of the corresponding microenvironment (niche), which is represented by other fibroblasts. Non-dividing cells in the test of colony formation should be regarded as differentiated cells, since they have no features of degradation, preserve their viability, actively move, grow, phagocytized debris, etc. It was also shown that telomerization did not prevent differentiation of myoblasts and human neural stem cells. Thus, the results obtained suggest the existence of normal mechanisms underlying the regulation of proliferation in the telomerized cells, which opens possibilities of their use in cell therapy, especially in the case of autotransplantation to senior people

  9. Inhibition of postbinding target cell lysis and of lymphokine-induced enhancement of human natural killer cell activity by in vitro exposure to ultraviolet B radiation

    SciTech Connect

    Elmets, C.A.; Larson, K.; Urda, G.A.; Schacter, B.

    1987-01-01

    In vitro exposure of human peripheral blood mononuclear cells (PBMC) to ultraviolet B (uvB) radiation has been shown to inhibit natural killer (NK) cell-mediated cytotoxicity in a dose-dependent fashion. The purpose of this study was to examine the manner by which uvB produced these deleterious effects. Inhibition of NK activity was not due to lethal injury to NK cells since the viability of cell populations enriched for NK activity was greater than 90% with the uvB doses employed. uvB appeared to directly affect NK cells since procedures which removed suppressor mechanisms, such as removal of monocytes and pharmacologic inhibition of the cyclooxygenase pathway, failed to reverse the response. Furthermore, no suppression of activity of unirradiated NK cells could be produced by coincubation of unirradiated NK cells with uv-irradiated NK cells. When the single cell assay for binding and killing was employed to determine at which stage in the lytic sequence inhibition occurred, it was found that binding was normal but lysis of bound targets and the recycling capacity of active NK cells were markedly reduced. At uvB doses above 50 J/m2, both interferon alpha (IFN-alpha) and interleukin 2 (IL-2) were ineffective in augmenting NK cell-mediated cytotoxic reactions after cells had been irradiated with uvB. Furthermore, incubation of NK cells with IFN-alpha prior to irradiation failed to protect against the inhibitory effects. These studies provide evidence that in vitro exposure of NK cells to uvB radiation inhibits their function by a direct nonlethal effect and that this inhibition occurs selectively at the postbinding stage of target cell lysis.

  10. Activation of Toll-like receptor 3 amplifies mesenchymal stem cell trophic factors and enhances therapeutic potency.

    PubMed

    Mastri, Michalis; Shah, Zaeem; McLaughlin, Terence; Greene, Christopher J; Baum, Leah; Suzuki, Gen; Lee, Techung

    2012-11-15

    Clinical trials of bone marrow mesenchymal stem cell (MSC) therapy have thus far demonstrated moderate and inconsistent benefits, indicating an urgent need to improve therapeutic efficacy. Although administration of sufficient cells is necessary to achieve maximal therapeutic benefits, documented MSC clinical trials have largely relied on injections of ∼1 × 10(6) cells/kg, which appears too low to elicit a robust therapeutic response according to published preclinical studies. However, repeated cell passaging necessary for large-scale expansion of MSC causes cellular senescence and reduces stem cell potency. Using the RNA mimetic polyinosinic-polycytidylic acid [poly(I:C)] to engage MSC Toll-like receptor 3 (TLR3), we found that poly(I:C), signaling through multiple mitogen-activated protein kinase pathways, induced therapeutically relevant trophic factors such as interleukin-6-type cytokines, stromal-derived factor 1, hepatocyte growth factor, and vascular endothelial growth factor while slightly inhibiting the proliferation and migration potentials of MSC. At the suboptimal injection dose of 1 × 10(6) cells/kg, poly(I:C)-treated MSC, but not untreated MSC, effectively stimulated regeneration of the failing hamster heart 1 mo after cell administration. The regenerating heart exhibited increased CD34(+)/Ki67(+) and CD34(+)/GATA4(+) progenitor cells in the presence of decreased inflammatory cells and cytokines. Cardiac functional improvement was associated with a ∼50% reduction in fibrosis, a ∼40% reduction in apoptosis, and a ∼55% increase in angiogenesis, culminating in prominent cardiomyogenesis evidenced by abundant distribution of small myocytes and a ∼90% increase in wall thickening. These functional, histological, and molecular characterizations thus establish the utility of TLR3 engagement for enabling the low-dose MSC therapy that may be translated to more efficacious clinical applications. PMID:22843797

  11. The selection and function of cell type-specific enhancers.

    PubMed

    Heinz, Sven; Romanoski, Casey E; Benner, Christopher; Glass, Christopher K

    2015-03-01

    The human body contains several hundred cell types, all of which share the same genome. In metazoans, much of the regulatory code that drives cell type-specific gene expression is located in distal elements called enhancers. Although mammalian genomes contain millions of potential enhancers, only a small subset of them is active in a given cell type. Cell type-specific enhancer selection involves the binding of lineage-determining transcription factors that prime enhancers. Signal-dependent transcription factors bind to primed enhancers, which enables these broadly expressed factors to regulate gene expression in a cell type-specific manner. The expression of genes that specify cell type identity and function is associated with densely spaced clusters of active enhancers known as super-enhancers. The functions of enhancers and super-enhancers are influenced by, and affect, higher-order genomic organization. PMID:25650801

  12. Enhanced natural killer cell activation by exopolysaccharides derived from yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1.

    PubMed

    Makino, Seiya; Sato, Asako; Goto, Ayako; Nakamura, Marie; Ogawa, Miho; Chiba, Yoshika; Hemmi, Jun; Kano, Hiroshi; Takeda, Kazuyoshi; Okumura, Ko; Asami, Yukio

    2016-02-01

    Yogurt is generally recognized as a beneficial food for our health, but research into its physiological effects has focused mainly on intestinal dysfunctions such as constipation and diarrhea. We previously found yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1 (hereafter OLL1073R-1) could reduce risks of catching the common cold and flu in human trials. It was assumed that immunostimulatory exopolysaccharide (EPS) produced from OLL1073R-1 play an important role in this context. However, few studies have examined the immunostimulatory effects of traditional Bulgarian yogurts fermented with different strains of lactobacilli and their metabolites. Therefore, we screened 139 L. delbrueckii ssp. bulgaricus strains and identified OLL1073R-1 as the most robust producer of EPS. This strain was also the only strain that induced the production of IFN-γ in vitro. Oral administration of the EPS or yogurt fermented with OLL1073R-1 and Streptococcus thermophilus OLS3059 (OLL1073R-1 yogurt) augmented natural killer (NK) cell activity and induced IFN-γ production in spleen cells in mice, whereas 2 other yogurts fermented with other strains had no effect on NK cell activity. Cellular preparations of the OLL1073R-1 strain also slightly augmented NK cell activity, but were less effective than EPS itself. The EPS-dependent stimulation of NK cell activity was abrogated in IFN-γ knockout mice and in myeloid differentiation factor 88 knockout mice. Furthermore, IFN-γ production from spleen cells stimulated with EPS was completely blocked with both anti-IL-12 and anti-IL-18 antibodies in vitro. These findings suggest that NK cell activation by OLL1073R-1 yogurt is EPS-dependent, occurs via IL-12- and IL-18-mediated IFN-γ production, and requires myeloid differentiation factor 88. We showed that traditional Bulgarian yogurt could exert immunostimulatory effects by selecting starter strains and part of the mechanisms depend on IFN-γ inducible EPS produced

  13. T-cell activation is enhanced by targeting IL-10 cytokine production in toll-like receptor-stimulated macrophages

    PubMed Central

    Walk, Ryan M; Elliott, Steven T; Blanco, Felix C; Snyder, Jason A; Jacobi, Ashley M; Rose, Scott D; Behlke, Mark A; Salem, Aliasger K; Vukmanovic, Stanislav; Sandler, Anthony D

    2012-01-01

    Toll-like receptor (TLR) agonists represent potentially useful cancer vaccine adjuvants in their ability to stimulate antigen-presenting cells (APCs) and subsequently amplify the cytotoxic T-cell response. The purpose of this study was to characterize APC responses to TLR activation and to determine the subsequent effect on lymphocyte activation. We exposed murine primary bone marrow-derived macrophages to increasing concentrations of agonists to TLRs 2, 3, 4, and 9. This resulted in a dose-dependent increase in production of not only tumor necrosis factor–alpha (TNF-α), a surrogate marker of the proinflammatory response, but also interleukin 10 (IL-10), a well-described inhibitory cytokine. Importantly, IL-10 secretion was not induced by low concentrations of TLR agonists that readily produced TNF-α. We subsequently stimulated lymphocytes with anti-CD3 antibody in the presence of media from macrophages activated with higher doses of TLR agonists and observed suppression of interferon gamma release. Use of both IL-10 knockout macrophages and IL-10 small-interfering RNA (siRNA) ablated this suppressive effect. Finally, IL-10 siRNA was successfully used to suppress CpG-induced IL-10 production in vivo. We conclude that TLR-mediated APC stimulation can induce a paradoxical inhibitory effect on T-cell activation mediated by IL-10.

  14. Intratumoral hu14.18-IL-2 (IC) induces local and systemic antitumor effects that involve both activated T and NK cells as well as enhanced IC retention.

    PubMed

    Yang, Richard K; Kalogriopoulos, Nicholas A; Rakhmilevich, Alexander L; Ranheim, Erik A; Seo, Songwon; Kim, Kyungmann; Alderson, Kory L; Gan, Jacek; Reisfeld, Ralph A; Gillies, Stephen D; Hank, Jacquelyn A; Sondel, Paul M

    2012-09-01

    hu14.18-IL-2 (IC) is an immunocytokine consisting of human IL-2 linked to hu14.18 mAb, which recognizes the GD2 disialoganglioside. Phase 2 clinical trials of i.v. hu14.18-IL-2 (i.v.-IC) in neuroblastoma and melanoma are underway and have already demonstrated activity in neuroblastoma. We showed previously that intratumoral hu14.18-IL-2 (IT-IC) results in enhanced antitumor activity in mouse models compared with i.v.-IC. The studies presented in this article were designed to determine the mechanisms involved in this enhanced activity and to support the future clinical testing of intratumoral administration of immunocytokines. Improved survival and inhibition of growth of both local and distant tumors were observed in A/J mice bearing s.c. NXS2 neuroblastomas treated with IT-IC compared with those treated with i.v.-IC or control mice. The local and systemic antitumor effects of IT-IC were inhibited by depletion of NK cells or T cells. IT-IC resulted in increased NKG2D receptors on intratumoral NKG2A/C/E⁺ NKp46⁺ NK cells and NKG2A/C/E⁺ CD8⁺ T cells compared with control mice or mice treated with i.v.-IC. NKG2D levels were augmented more in tumor-infiltrating lymphocytes compared with splenocytes, supporting the localized nature of the intratumoral changes induced by IT-IC treatment. Prolonged retention of IC at the tumor site was seen with IT-IC compared with i.v.-IC. Overall, IT-IC resulted in increased numbers of activated T and NK cells within tumors, better IC retention in the tumor, enhanced inhibition of tumor growth, and improved survival compared with i.v.-IC. PMID:22844125

  15. Graphene Nanoribbons Elicit Cell Specific Uptake and Delivery Via Activation of Epidermal Growth Factor Receptor Enhanced by Human PapillomaVirus E5 Protein

    PubMed Central

    Chowdhury, Sayan Mullick; Mannepalli, Prady; Sitharaman, Balaji

    2014-01-01

    Ligands such as peptides, antibodies or other epitopes bind and activate specific cell receptors, and are employed for targeted cellular delivery of pharmaceuticals such as drugs, genes and imaging agents. Herein, we show that oxidized graphene nanoribbons, non-covalently functionalized with PEG-DSPE (1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-N[amino(polyethyleneglycol)]) (O-GNR-PEG-DSPE) activate epidermal growth factor receptors (EGFRs). This activation generates predominantly dynamin-dependent macropinocytosis-like response, and results in significant O-GNR-PEG-DSPE uptake into cells with high EGFR expression. Cells with an integrated human papillomavirus (HPV) genome also show increased uptake due to the modulation of the activated EFGR by the viral protein E5. We demonstrate that this cell specific uptake of O-GNR-PEG-DSPE can be exploited to achieve significantly enhanced drug efficacies even in drug resistant cells. These results have implications towards the development of active targeting and delivery agents without ligand functionalization for use in the diagnosis and treatment of pathologies that overexpress EGFR or mediated by HPV. PMID:24980059

  16. Activating Transcription Factor 3 regulates in part the enhanced tumour cell cytotoxicity of the histone deacetylase inhibitor M344 and cisplatin in combination

    PubMed Central

    2010-01-01

    Background Activating Transcription Factor (ATF) 3 is a key regulator of the cellular integrated stress response whose expression has also been correlated with pro-apoptotic activities in tumour cell models. Combination treatments with chemotherapeutic drugs, such as cisplatin, and histone deacetylase (HDAC) inhibitors have been demonstrated to enhance tumour cell cytotoxicity. We recently demonstrated a role for ATF3 in regulating cisplatin-induced apoptosis and others have shown that HDAC inhibition can also induce cellular stress. In this study, we evaluated the role of ATF3 in regulating the co-operative cytotoxicity of cisplatin in combination with an HDAC inhibitor. Results The HDAC inhibitor M344 induced ATF3 expression at the protein and mRNA level in a panel of human derived cancer cell lines as determined by Western blot and quantitative RT-PCR analyses. Combination treatment with M344 and cisplatin lead to increased induction of ATF3 compared with cisplatin alone. Utilizing the MTT cell viability assay, M344 treatments also enhanced the cytotoxic effects of cisplatin in these cancer cell lines. The mechanism of ATF3 induction by M344 was found to be independent of MAPKinase pathways and dependent on ATF4, a known regulator of ATF3 expression. ATF4 heterozygote (+/-) and knock out (-/-) mouse embryonic fibroblast (MEF) as well as chromatin immunoprecipitation (ChIP) assays were utilized in determining the mechanistic induction of ATF3 by M344. We also demonstrated that ATF3 regulates the enhanced cytotoxicity of M344 in combination with cisplatin as evidenced by attenuation of cytotoxicity in shRNAs targeting ATF3 expressing cells. Conclusion This study identifies the pro-apoptotic factor, ATF3 as a novel target of M344, as well as a mediator of the co-operative effects of cisplatin and M344 induced tumour cell cytotoxicity. PMID:20828393

  17. Ricin enhances IgE responses by inhibiting a subpopulation of early-activated IgE regulatory CD8+ T cells.

    PubMed Central

    Diaz-Sanchez, D; Lee, T H; Kemeny, D M

    1993-01-01

    Ricin, a toxic lectin from castor beans greatly enhances IgE responses to bee venom phospholipase A2 (PLA2) in high and low IgE responder strains of rat. The increase in IgE is accompanied by a 60% reduction in the number of CD8+ but not CD4+ T cells in the spleen. Optimal enhancement of IgE by ricin occurs when it is given at the same time as the antigen or 24 hr later, suggesting that it acts on cells which were activated as a consequence of immunization. Radio ligand-binding studies with 125I ricin were used to compare the number of ricin binding sites on CD4+ and CD8+ T cells. No difference was seen in either the affinity or the number of receptors for ricin on the CD4+ and CD8+ T cells of unimmunized rats. In contrast, CD8+ T cells taken from rats which had been immunized with 10 micrograms of PLA2 24 hr earlier demonstrated considerably more ricin receptors (3.9 x 10(7) +/- 2.2 x 10(6) binding sites/cell) than CD4+ T cells (3.19 x 10(6) +/- 1.08 x 10(6) binding sites/cell). However the affinity of the receptors for ricin was unchanged. Cytofluorographic analysis with fluorescein isothiocyanate (FITC)-labelled ricin confirmed these observations and indicated that increased ricin binding occurred on a subpopulation of CD8+ T cells. The effect of CD8+ T cells on IgE regulation was investigated by adoptive transfer. 1 x 10(8) highly purified (> 98%) splenic CD8+ T cells collected from Brown Norway rats 3 days after immunization with 10 micrograms of PLA2 were adoptively transferred to naive, syngeneic recipients. The IgE antibody response to PLA2 + A1(OH)3 seen in these animals was reduced by 91%. Adoptive transfer of CD4+ T cells from the same donor animals did not induce suppression and nor did adoptive transfer of CD8+ T cells from animals given both ricin and PLA2. However, when recipients of CD8+ T cells taken from rats immunized with PLA2 were immunized with a different antigen [ovalbumin (OVA)] and A1(OH)3 the IgE antibody response was also suppressed

  18. Focal Adhesion Kinase Inhibitors in Combination with Erlotinib Demonstrate Enhanced Anti-Tumor Activity in Non-Small Cell Lung Cancer

    PubMed Central

    Howe, Grant A.; Xiao, Bin; Zhao, Huijun; Al-Zahrani, Khalid N.; Hasim, Mohamed S.; Villeneuve, James; Sekhon, Harmanjatinder S.; Goss, Glenwood D.; Sabourin, Luc A.; Dimitroulakos, Jim; Addison, Christina L.

    2016-01-01

    Blockade of epidermal growth factor receptor (EGFR) activity has been a primary therapeutic target for non-small cell lung cancers (NSCLC). As patients with wild-type EGFR have demonstrated only modest benefit from EGFR tyrosine kinase inhibitors (TKIs), there is a need for additional therapeutic approaches in patients with wild-type EGFR. As a key component of downstream integrin signalling and known receptor cross-talk with EGFR, we hypothesized that targeting focal adhesion kinase (FAK) activity, which has also been shown to correlate with aggressive stage in NSCLC, would lead to enhanced activity of EGFR TKIs. As such, EGFR TKI-resistant NSCLC cells (A549, H1299, H1975) were treated with the EGFR TKI erlotinib and FAK inhibitors (PF-573,228 or PF-562,271) both as single agents and in combination. We determined cell viability, apoptosis and 3-dimensional growth in vitro and assessed tumor growth in vivo. Treatment of EGFR TKI-resistant NSCLC cells with FAK inhibitor alone effectively inhibited cell viability in all cell lines tested; however, its use in combination with the EGFR TKI erlotinib was more effective at reducing cell viability than either treatment alone when tested in both 2- and 3-dimensional assays in vitro, with enhanced benefit seen in A549 cells. This increased efficacy may be due in part to the observed inhibition of Akt phosphorylation when the drugs were used in combination, where again A549 cells demonstrated the most inhibition following treatment with the drug combination. Combining erlotinib with FAK inhibitor was also potent in vivo as evidenced by reduced tumor growth in the A549 mouse xenograft model. We further ascertained that the enhanced sensitivity was irrespective of the LKB1 mutational status. In summary, we demonstrate the effectiveness of combining erlotinib and FAK inhibitors for use in known EGFR wild-type, EGFR TKI resistant cells, with the potential that a subset of cell types, which includes A549, could be particularly

  19. Ceramide mediates FasL-induced caspase 8 activation in colon carcinoma cells to enhance FasL-induced cytotoxicity by tumor-specific cytotoxic T lymphocytes

    PubMed Central

    Coe, Genevieve L.; Redd, Priscilla S.; Paschall, Amy V.; Lu, Chunwan; Gu, Lilly; Cai, Houjian; Albers, Thomas; Lebedyeva, Iryna O.; Liu, Kebin

    2016-01-01

    FasL-mediated cytotoxicity is one of the mechanisms that CTLs use to kill tumor cells. However, human colon carcinoma often deregulates the Fas signaling pathway to evade host cancer immune surveillance. We aimed at testing the hypothesis that novel ceramide analogs effectively modulate Fas function to sensitize colon carcinoma cells to FasL-induced apoptosis. We used rational design and synthesized twenty ceramide analogs as Fas function modulators. Five ceramide analogs, IG4, IG7, IG14, IG17, and IG19, exhibit low toxicity and potent activity in sensitization of human colon carcinoma cells to FasL-induced apoptosis. Functional deficiency of Fas limits both FasL and ceramide analogs in the induction of apoptosis. Ceramide enhances FasL-induced activation of the MAPK, NF-κB, and caspase 8 despite induction of potent tumor cell death. Finally, a sublethal dose of several ceramide analogs significantly increased CTL-mediated and FasL-induced apoptosis of colon carcinoma cells. We have therefore developed five novel ceramide analogs that act at a sublethal dose to enhance the efficacy of tumor-specific CTLs, and these ceramide analogs hold great promise for further development as adjunct agents in CTL-based colon cancer immunotherapy. PMID:27487939

  20. Ceramide mediates FasL-induced caspase 8 activation in colon carcinoma cells to enhance FasL-induced cytotoxicity by tumor-specific cytotoxic T lymphocytes.

    PubMed

    Coe, Genevieve L; Redd, Priscilla S; Paschall, Amy V; Lu, Chunwan; Gu, Lilly; Cai, Houjian; Albers, Thomas; Lebedyeva, Iryna O; Liu, Kebin

    2016-01-01

    FasL-mediated cytotoxicity is one of the mechanisms that CTLs use to kill tumor cells. However, human colon carcinoma often deregulates the Fas signaling pathway to evade host cancer immune surveillance. We aimed at testing the hypothesis that novel ceramide analogs effectively modulate Fas function to sensitize colon carcinoma cells to FasL-induced apoptosis. We used rational design and synthesized twenty ceramide analogs as Fas function modulators. Five ceramide analogs, IG4, IG7, IG14, IG17, and IG19, exhibit low toxicity and potent activity in sensitization of human colon carcinoma cells to FasL-induced apoptosis. Functional deficiency of Fas limits both FasL and ceramide analogs in the induction of apoptosis. Ceramide enhances FasL-induced activation of the MAPK, NF-κB, and caspase 8 despite induction of potent tumor cell death. Finally, a sublethal dose of several ceramide analogs significantly increased CTL-mediated and FasL-induced apoptosis of colon carcinoma cells. We have therefore developed five novel ceramide analogs that act at a sublethal dose to enhance the efficacy of tumor-specific CTLs, and these ceramide analogs hold great promise for further development as adjunct agents in CTL-based colon cancer immunotherapy. PMID:27487939

  1. Adapted physical exercise enhances activation and differentiation potential of satellite cells in the skeletal muscle of old mice.

    PubMed

    Cisterna, Barbara; Giagnacovo, Marzia; Costanzo, Manuela; Fattoretti, Patrizia; Zancanaro, Carlo; Pellicciari, Carlo; Malatesta, Manuela

    2016-05-01

    During ageing, a progressive loss of skeletal muscle mass and a decrease in muscle strength and endurance take place, in the condition termed sarcopenia. The mechanisms of sarcopenia are complex and still unclear; however, it is known that muscle atrophy is associated with a decline in the number and/or efficiency of satellite cells, the main contributors to muscle regeneration. Physical exercise proved beneficial in sarcopenia; however, knowledge of the effect of adapted physical exercise on the myogenic properties of satellite cells in aged muscles is limited. In this study the amount and activation state of satellite cells as well as their proliferation and differentiation potential were assessed in situ by morphology, morphometry and immunocytochemistry at light and transmission electron microscopy on 28-month-old mice submitted to adapted aerobic physical exercise on a treadmill. Sedentary age-matched mice served as controls, and sedentary adult mice were used as a reference for an unperturbed control at an age when the capability of muscle regeneration is still high. The effect of physical exercise in aged muscles was further analysed by comparing the myogenic potential of satellite cells isolated from old running and old sedentary mice using an in vitro system that allows observation of the differentiation process under controlled experimental conditions. The results of this ex vivo and in vitro study demonstrated that adapted physical exercise increases the number and activation of satellite cells as well as their capability to differentiate into structurally and functionally correct myotubes (even though the age-related impairment in myotube formation is not fully reversed): this evidence further supports adapted physical exercise as a powerful, non-pharmacological approach to counteract sarcopenia and the age-related deterioration of satellite cell capabilities even at very advanced age. PMID:26739770

  2. Corticosteroid-Induced MKP-1 Represses Pro-Inflammatory Cytokine Secretion by Enhancing Activity of Tristetraprolin (TTP) in ASM Cells.

    PubMed

    Prabhala, Pavan; Bunge, Kristin; Ge, Qi; Ammit, Alaina J

    2016-10-01

    Exaggerated cytokine secretion drives pathogenesis of a number of chronic inflammatory diseases, including asthma. Anti-inflammatory pharmacotherapies, including corticosteroids, are front-line therapies and although they have proven clinical utility, the molecular mechanisms responsible for their actions are not fully understood. The corticosteroid-inducible gene, mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1, DUSP1) has emerged as a key molecule responsible for the repressive effects of steroids. MKP-1 is known to deactivate p38 MAPK phosphorylation and can control the expression and activity of the mRNA destabilizing protein-tristetraprolin (TTP). But whether corticosteroid-induced MKP-1 acts via p38 MAPK-mediated modulation of TTP function in a pivotal airway cell type, airway smooth muscle (ASM), was unknown. While pretreatment of ASM cells with the corticosteroid dexamethasone (preventative protocol) is known to reduce ASM synthetic function in vitro, the impact of adding dexamethasone after stimulation (therapeutic protocol) had not been explored. Whether dexamethasone modulates TTP in a p38 MAPK-dependent manner in this cell type was also unknown. We address this herein and utilize an in vitro model of asthmatic inflammation where ASM cells were stimulated with the pro-asthmatic cytokine tumor necrosis factor (TNF) and the impact of adding dexamethasone 1 h after stimulation assessed. IL-6 mRNA expression and protein secretion was significantly repressed by dexamethasone acting in a temporally distinct manner to increase MKP-1, deactivate p38 MAPK, and modulate TTP phosphorylation status. In this way, dexamethasone-induced MKP-1 acts via p38 MAPK to switch on the mRNA destabilizing function of TTP to repress pro-inflammatory cytokine secretion from ASM cells. J. Cell. Physiol. 231: 2153-2158, 2016. © 2016 Wiley Periodicals, Inc. PMID:26825339

  3. Cerium Oxide Nanoparticle Modified Scaffold Interface Enhances Vascularization of Bone Grafts by Activating Calcium Channel of Mesenchymal Stem Cells.

    PubMed

    Xiang, Junyu; Li, Jianmei; He, Jian; Tang, Xiangyu; Dou, Ce; Cao, Zhen; Yu, Bo; Zhao, Chunrong; Kang, Fei; Yang, Lu; Dong, Shiwu; Yang, Xiaochao

    2016-02-01

    Insufficient blood perfusion is one of the critical problems that hamper the clinical application of tissue engineering bone (TEB). Current methods for improving blood vessel distribution in TEB mainly rely on delivering exogenous angiogenic factors to promote the proliferation, migration, differentiation, and vessel formation of endothelial cells (ECs) and/or endothelial progenitor cells (EPCs). However, obstacles including limited activity preservation, difficulty in controlled release, and high cost obstructed the practical application of this strategy. In this study, TEB scaffold were modified with cerium oxide nanoparticles (CNPs) and the effects of CNPs existed at the scaffold surface on the growth and paracrine behavior of mesenchymal stem cells (MSCs) were investigated. The CNPs could improve the proliferation and inhibit the apoptosis of MSCs. Meanwhile, the interaction between the cell membrane and the nanoparticle surface could activate the calcium channel of MSCs leading to the rise of intracellular free Ca(2+) level, which subsequently augments the stability of HIF-1α. These chain reactions finally resulted in high expression of angiogenic factor VEGF. The improved paracrine of VEGF could thereby promote the proliferation, differentiation, and tube formation ability of EPCs. Most importantly, in vivo ectopic bone formation experiment demonstrated this method could significantly improve the blood vessel distribution inside of TEB. PMID:26824825

  4. Polyamine depletion enhances the roscovitine-induced apoptosis through the activation of mitochondria in HCT116 colon carcinoma cells.

    PubMed

    Arısan, Elif Damla; Coker, Ajda; Palavan-Ünsal, Narçin

    2012-02-01

    Small molecule inhibitors of cyclin-dependent kinases (CDKs) show high therapeutic potential in various cancer types which are characterized by the accumulation of transformed cells due to impaired apoptotic machinery. Roscovitine, a CDK inhibitor showed to be a potent apoptotic inducer in several cancer cells. Polyamines, putrescine, spermidine and spermine, are biogenic amines involved in many cellular processes, including apoptosis. In this study, we explored the potential role of polyamines in roscovitine-induced apoptosis in HCT116 colon cancer cells. Roscovitine induced apoptosis by activating mitochondrial pathway caspases and modulating the expression of Bcl-2 family members. Depletion of polyamines by treatment with difluoromethylornithine (DFMO) increased roscovitine-induced apoptosis. Transient silencing of ornithine decarboxylase, polyamine biosynthesis enzyme and special target of DFMO also increased roscovitine-induced apoptosis in HCT116 cells. Interestingly, additional putrescine treatment was found pro-apoptotic due to the presence of non-functional ornithine decarboxylase (ODC). Finally, roscovitine altered polyamine catabolic pathway and led to decrease in putrescine and spermidine levels. Therefore, the metabolic regulation of polyamines may dictate the power of roscovitine induced apoptotic responses in HCT116 colon cancer cells. PMID:21809075

  5. Enhancement of paclitaxel activity against hormone-refractory prostate cancer cells in vitro and in vivo by quinacrine.

    PubMed Central

    de Souza, P. L.; Castillo, M.; Myers, C. E.

    1997-01-01

    Cytoplasmic phospholipase A2 (PLA2) is known to be phosphorylated and activated by MAP kinase (Lin et al 1993, Cell 72: 269-278), an important downstream component of signal transduction, whereas paclitaxel has been shown to inhibit isoprenylation of ras proteins (Danesi et al 1995, Mol Pharmacol 47: 1106-1111). Given that quinacrine (Q), a PLA2 inhibitor, and paclitaxel (P) might act at different sites in the cell signalling pathway, our aim was to test whether they were synergistic in combination against prostate cancer cells. Cell viability of PC-3, PC-3M and DU145 cells in 96 - well plates was assessed 96 h after drugs were added concurrently. Using Chou analysis, we demonstrated synergy for the combination against all three cell lines. Further, synergy was present under both conservative (mutually non-exclusive) and non-conservative (mutually exclusive) models. Studies in the nude mouse xenograft model support the finding of synergy in vitro. In DU145-bearing mice, Q (50 mg kg(-1)) and P (0.5 mg kg(-1)) given daily for 12 consecutive days, either concurrently or sequentially, was more effective than either drug alone, at twice the dose intensity. In an enzyme-linked immunosorbent (ELISA) apoptosis assay, arachidonic acid was able to partially reverse Q- and P-induced apoptosis, suggesting PLA2 pathway involvement. Finally, the combination of lovastatin, another inhibitor of ras isoprenylation, and quinacrine had synergistic inhibitory effects on the growth of PC-3 cells in vitro, suggesting that the combination of these two classes of compounds might serve as an attractive therapeutic approach for prostate cancer. Images Figure 4 PMID:9184173

  6. Detection of UV-induced activation of NF-kappaB in a recombinant human cell line by means of Enhanced Green Fluorescent Protein (EGFP).

    PubMed

    Hellweg, Christine E; Baumstark-Khan, Christa

    2007-08-01

    The cellular protection reaction known as ultraviolet (UV) response leads to increased transcription of several genes. Parts of this transcriptional response are transmitted via activation of the Nuclear factor kappaB (NF-kappaB). The contribution of different UV radiation qualities to this process is not yet known. In a previous work, a stably transfected human cell line was developed which indicates activation of the NF-kappaB pathway by fluorescence of the reporters Enhanced Green Fluorescent Protein (EGFP) and its destabilized variant (d2EGFP) thereby allowing a fast and reliable monitoring of UV effects on the NF-kappaB pathway. Cells were exposed to a mercury low-pressure lamp or to simulated sunlight of different wavelength ranges and subjected to flow cytometric analysis after different post-irradiation periods. Growth capacity of cells after UV irradiation was quantified using a luminance measurement of crystal violet stained cell layers. In contrast to UVC and UVB, UVA radiation induced d2EGFP expression and NF-kappaB activation in a non-cytotoxic dose range. These results show that NF-kappaB plays a role in the UVA-induced gene activation in a non-cytotoxic dose range in a human epithelial cell line. PMID:17429671

  7. Fruit Extract from Pyropolyporus fomentarius (L. ex Fr.) Teng Induces Mitochondria-Dependent Apoptosis in Leukemia Cells but Enhances Immunomodulatory Activities of Splenic Lymphocytes.

    PubMed

    Li, Yixiang; Zhou, Yuetao; Wang, Xiaobing; Wang, Pan; Xiao, Yaping; Cheng, Xiaoxia; Zhang, Yanhua; Liu, Yilin; Liu, Quanhong

    2016-01-01

    Pyropolyporus fomentarius (L. ex Fr.) Teng is a unique woody mushroom due to its medicinal value with numerous pharmacological activities. This study presented the potential antitumor and immunomodulatory properties of ethanol extract of P. fomentarius. The results showed that P. fomentarius extract inhibited the viability of murine leukemia L1210 cells in a dose-dependent manner with IC50 value of 69.35 μg/ml. Flow cytometry analysis demonstrated that the extract induced apoptosis in L1210 cells. Additionally, the decline of mitochondrial membrane potential was observed as well as the changes of caspase-3, caspase-9, Bcl-2, and Bax, suggesting that proapoptosis effect of the extract involved mitochondria-related pathway. Simultaneously, the P. fomentarius extract significantly enhanced the proliferation and activation of splenic lymphocytes in a dose-dependent manner. This P. fomentarius extract has potential applications as a natural antitumor agent with immunomodulatory activity. PMID:27115601

  8. JAK2 inhibitor combined with DC-activated AFP-specific T-cells enhances antitumor function in a Fas/FasL signal-independent pathway

    PubMed Central

    Liu, Yang; Wang, Yue-ru; Ding, Guang-hui; Yang, Ting-song; Yao, Le; Hua, Jie; He, Zhi-gang; Qian, Ming-ping

    2016-01-01

    Objective Combination therapy for cancer is more effective than using only standard chemo- or radiotherapy. Our previous results showed that dendritic cell-activated α-fetoprotein (AFP)-specific T-cells inhibit tumor in vitro and in vivo. In this study, we focused on antitumor function of CD8+ T-cells combined with or without JAK2 inhibitor. Methods Proliferation and cell cycle were analyzed by CCK-8 and flow cytometry. Western blot was used to analyze the expression level of related protein and signaling pathway. Results We demonstrated reduced viability and induction of apoptosis of tumor cells with combination treatment. Intriguingly, cell cycle was blocked at the G1 phase by using AFP-specific CD8+ T-cells combined with JAK2 inhibitor (AG490). Furthermore, an enhanced expression of BAX but no influence on Fas/FasL was detected from the tumor cells. Conclusion These results indicate a Fas/FasL-independent pathway for cellular apoptosis in cancer therapies with the treatment of AFP-specific CD8+ T-cells combined with JAK2 inhibitor. PMID:27499636

  9. Pre-activation of mesenchymal stem cells with TNF-α, IL-1β and nitric oxide enhances its paracrine effects on radiation-induced intestinal injury

    PubMed Central

    Chen, Hao; Min, Xiao-Hui; Wang, Qi-Yi; Leung, Felix W.; Shi, Liu; Zhou, Yu; Yu, Tao; Wang, Chuan-Ming; An, Geng; Sha, Wei-Hong; Chen, Qi-Kui

    2015-01-01

    Conditioned medium from mesenchymal stem cells (MSC-CM) may represent a promising alternative to MSCs transplantation, however, the low concentrations of growth factors in non-activated MSC-CM hamper its clinical application. Recent data indicated that the paracrine potential of MSCs could be enhanced by inflammatory factors. Herein, we pre-activated bone-marrow-derived MSCs under radiation-induced inflammatory condition (MSCIEC-6(IR)) and investigated the evidence and mechanism for the differential effects of MSC-CMIEC-6(IR) and non-activated MSC-CM on radiation-induced intestinal injury (RIII). Systemic infusion of MSC-CMIEC-6(IR), but not non-activated MSC-CM, dramatically improved intestinal damage and survival of irradiated rats. Such benefits may involve the modulation of epithelial regeneration and inflammation, as indicated by the regeneration of intestinal epithelial/stem cells, the regulation of the pro-/anti-inflammatory cytokine balance. The mechanism for the superior paracrine efficacy of MSCIEC-6(IR) is related to a higher secretion of regenerative, immunomodulatory and trafficking molecules, including the pivotal factor IGF-1, induced by TNF-α, IL-1β and nitric oxide partially via a heme oxygenase-1 dependent mechanism. Together, our findings suggest that pre-activation of MSCs with TNF-α, IL-1β and nitric oxide enhances its paracine effects on RIII via a heme oxygenase-1 dependent mechanism, which may help us to maximize the paracrine potential of MSCs. PMID:25732721

  10. Enhancement of Platinum Mass Activity on the Surface of Polymer-wrapped Carbon Nanotube-Based Fuel Cell Electrocatalysts

    PubMed Central

    Hafez, Inas H.; Berber, Mohamed R.; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2014-01-01

    Cost reduction and improved durability are the two major targets for accelerating the commercialization of polymer electrolyte membrane fuel cells (PEFCs). To achieve these goals, the development of a novel method to fabricate platinum (Pt)-based electrocatalysts with a high mass activity, deposited on durable conductive support materials, is necessary. In this study, we describe a facile approach to grow homogeneously dispersed Pt nanoparticles (Pt) with a narrow diameter distribution in a highly controllable fashion on polymer-wrapped carbon nanotubes (CNTs). A PEFC cell employing a composite with the smallest Pt nanoparticle size (2.3 nm diameter) exhibited a ~8 times higher mass activity compared to a cell containing Pt with a 3.7 nm diameter. This is the first example of the diamter control of Pt on polymer-wrapped carbon supporting materials, and the study opens the door for the development of a future-generation of PEFCs using a minimal amount of Pt. PMID:25221915

  11. Cholesterol enhances amyloid {beta} deposition in mouse retina by modulating the activities of A{beta}-regulating enzymes in retinal pigment epithelial cells

    SciTech Connect

    Wang, Jiying; Ohno-Matsui, Kyoko; Morita, Ikuo

    2012-08-10

    age-matched mice fed standard rodent chow diet did not. Activities and mRNA levels of NEP and {alpha}-secretase were significantly lower in native RPE cells freshly isolated from cholesterol-enriched chow fed mice compared to standard rodent chow fed mice. These findings suggest that cholesterol enhances subretinal A{beta} accumulation by modulating the activities of enzymes degrading and processing A{beta} in RPE cells in senescent subjects.

  12. Docetaxel loaded oleic acid-coated hydroxyapatite nanoparticles enhance the docetaxel-induced apoptosis through activation of caspase-2 in androgen independent prostate cancer cells.

    PubMed

    Luo, Yun; Ling, You; Guo, Wusheng; Pang, Jun; Liu, Weipeng; Fang, Youqiang; Wen, Xinqiao; Wei, Kun; Gao, Xin

    2010-10-15

    Docetaxel (Dtxl) remains the preferred choice of improving the survival of patients with hormone refractory prostate cancer (HRPC), but many patients suffer from modest drug response and significant toxicity. In the present study, we investigated the efficiency of novel Dtxl loaded-[1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-carboxy(polyethylene glycol)]2000 (DSPE-PEG-COOH) stabilized-oleic acid (OA) coated hydroxyapatite (HA) nanoparticles (Dtxl-NPs) and gained insights into the molecular mechanism of the apoptosis induced by these novel Dtxl-loaded nanoparticles. The drug encapsulation efficiency of Dtxl was 83.6% and the sustained drug release was observed over 30days. The Dtxl-NPs exhibited significantly more cytotoxicity in both prostate cancer cell lines (PC3 and DU145) compared with Dtxl in vitro and increased the Dtxl-induced apoptosis in the PC3 cells. Cell cycle analysis showed that the PC3 cells treated with Dtxl-NPs exhibited significant arrest in the G2-M phase but a higher sub-G(0)/G(1) population when compared with Dtxl. The enhanced apoptosis induced by Dtxl-NPs in the PC3 cells was associated with the changes in mitochondrial membrane potential (MMP) and seemed to involve the activation of caspase-2. The kinetic studies of caspases demonstrated an early activation of caspase-2 in Dtxl-NPs-induced apoptosis in PC3 cells, which differs from Dtxl-induced apoptosis. The inhibition of caspase-2 activation by small interfering RNA (siRNA) knockdown resulted in the significant inhibition of Dtxl-NPs-induced disruption of MMP and Dtxl-NPs-induced apoptosis, indicating that the activation of caspase-2 was the critical event before the mitochondrial depolarization in the PC3 cells. Our findings showed that nanoparticles, more than simple drug carriers, may play an active role in mediating the biological effects. PMID:20655966

  13. Orally Administered Salacia reticulata Extract Reduces H1N1 Influenza Clinical Symptoms in Murine Lung Tissues Putatively Due to Enhanced Natural Killer Cell Activity.

    PubMed

    Romero-Pérez, Gustavo A; Egashira, Masayo; Harada, Yuri; Tsuruta, Takeshi; Oda, Yuriko; Ueda, Fumitaka; Tsukahara, Takamitsu; Tsukamoto, Yasuhiro; Inoue, Ryo

    2016-01-01

    Influenza is a major cause of respiratory tract infection. Although most cases do not require further hospitalization, influenza periodically causes epidemics in humans that can potentially infect and kill millions of people. To countermeasure this threat, new vaccines need to be developed annually to match emerging influenza viral strains with increased resistance to existing vaccines. Thus, there is a need for finding and developing new anti-influenza viral agents as alternatives to current treatments. Here, we tested the antiviral effects of an extract from the stems and roots of Salacia reticulata (SSRE), a plant rich in phytochemicals, such as salacinol, kotalanol, and catechins, on H1N1 influenza virus-infected mice. Following oral administration of 0.6 mg/day of SSRE, the incidence of coughing decreased in 80% of mice, and only one case of severe pulmonary inflammation was detected. Moreover, when compared with mice given Lactobacillus casei JCM1134, a strain previously shown to help increase in vitro natural killer (NK) cell activity, SSRE-administered mice showed greater and equal NK cell activity in splenocytes and pulmonary cells, respectively, at high effector cell:target cell ratios. Next, to test whether or not SSRE would exert protective effects against influenza in the absence of gut microbiota, mice were given antibiotics before being inoculated influenza virus and subsequently administered SSRE. SSRE administration induced an increase in NK cell activity in splenocytes and pulmonary cells at levels similar to those detected in mice not treated with antibiotics. Based on our results, it can be concluded that phytochemicals in the SSRE exerted protective effects against influenza infection putatively via modulation of the immune response, including enhancement of NK cell activity, although some protective effects were not necessarily through modulation of gut microbiota. Further investigation is necessary to elucidate the molecular mechanisms

  14. Orally Administered Salacia reticulata Extract Reduces H1N1 Influenza Clinical Symptoms in Murine Lung Tissues Putatively Due to Enhanced Natural Killer Cell Activity

    PubMed Central

    Romero-Pérez, Gustavo A.; Egashira, Masayo; Harada, Yuri; Tsuruta, Takeshi; Oda, Yuriko; Ueda, Fumitaka; Tsukahara, Takamitsu; Tsukamoto, Yasuhiro; Inoue, Ryo

    2016-01-01

    Influenza is a major cause of respiratory tract infection. Although most cases do not require further hospitalization, influenza periodically causes epidemics in humans that can potentially infect and kill millions of people. To countermeasure this threat, new vaccines need to be developed annually to match emerging influenza viral strains with increased resistance to existing vaccines. Thus, there is a need for finding and developing new anti-influenza viral agents as alternatives to current treatments. Here, we tested the antiviral effects of an extract from the stems and roots of Salacia reticulata (SSRE), a plant rich in phytochemicals, such as salacinol, kotalanol, and catechins, on H1N1 influenza virus-infected mice. Following oral administration of 0.6 mg/day of SSRE, the incidence of coughing decreased in 80% of mice, and only one case of severe pulmonary inflammation was detected. Moreover, when compared with mice given Lactobacillus casei JCM1134, a strain previously shown to help increase in vitro natural killer (NK) cell activity, SSRE-administered mice showed greater and equal NK cell activity in splenocytes and pulmonary cells, respectively, at high effector cell:target cell ratios. Next, to test whether or not SSRE would exert protective effects against influenza in the absence of gut microbiota, mice were given antibiotics before being inoculated influenza virus and subsequently administered SSRE. SSRE administration induced an increase in NK cell activity in splenocytes and pulmonary cells at levels similar to those detected in mice not treated with antibiotics. Based on our results, it can be concluded that phytochemicals in the SSRE exerted protective effects against influenza infection putatively via modulation of the immune response, including enhancement of NK cell activity, although some protective effects were not necessarily through modulation of gut microbiota. Further investigation is necessary to elucidate the molecular mechanisms

  15. Chromatin remodeling effects on enhancer activity.

    PubMed

    García-González, Estela; Escamilla-Del-Arenal, Martín; Arzate-Mejía, Rodrigo; Recillas-Targa, Félix

    2016-08-01

    During organism development, a diversity of cell types emerges with disparate, yet stable profiles of gene expression with distinctive cellular functions. In addition to gene promoters, the genome contains enhancer regulatory sequences, which are implicated in cellular specialization by facilitating cell-type and tissue-specific gene expression. Enhancers are DNA binding elements characterized by highly sophisticated and various mechanisms of action allowing for the specific interaction of general and tissue-specific transcription factors (TFs). However, eukaryotic organisms package their genetic material into chromatin, generating a physical barrier for TFs to interact with their cognate sequences. The ability of TFs to bind DNA regulatory elements is also modulated by changes in the chromatin structure, including histone modifications, histone variants, ATP-dependent chromatin remodeling, and the methylation status of DNA. Furthermore, it has recently been revealed that enhancer sequences are also transcribed into a set of enhancer RNAs with regulatory potential. These interdependent processes act in the context of a complex network of chromatin interactions, which together contributes to a renewed vision of how gene activation is coordinated in a cell-type-dependent manner. In this review, we describe the interplay between genetic and epigenetic aspects associated with enhancers and discuss their possible roles on enhancer function. PMID:27026300

  16. Berberine enhances the anti‑tumor activity of tamoxifen in drug‑sensitive MCF‑7 and drug‑resistant MCF‑7/TAM cells.

    PubMed

    Wen, Chunjie; Wu, Lanxiang; Fu, Lijuan; Zhang, Xue; Zhou, Honghao

    2016-09-01

    Berberine, an isoquinoline alkaloid, has been previously demonstrated to possess anti‑breast cancer properties. Tamoxifen is widely used in the prevention and treatment of estrogen receptor-positive breast cancer. Thus, the aim of the present study was to assess whether berberine enhanced the anticancer effect of tamoxifen, and the underlying mechanism involved in this combined effect in tamoxifen-sensitive (MCF-7) and tamoxifen-resistant (MCF-7/TAM) cells using MTS, flow cytometry and western blot assays. The results indicated that berberine demonstrated dose‑ and time‑dependent anti‑proliferative activity in MCF‑7 and MCF‑7/TAM cells. Furthermore, the combination of berberine and tamoxifen induced cell growth inhibition more effectively than tamoxifen alone. The present study also demonstrated that combinational treatment is more effective in inducing G1 phase arrest and activating apoptosis compared tamoxifen alone, which may be due to upregulation of P21 expression and downregulation of the B‑cell CLL/lymphoma 2(Bcl‑2)/Bcl‑2 associated X protein ratio. The results of the present study suggested that berberine may potentially be useful as an adjuvant agent in cancer chemotherapy to enhance the effect of tamoxifen, which will be useful for anti‑tumor therapy and further research. PMID:27432642

  17. Overexpression of myristoylated alanine-rich C-kinase substrate enhances activation of phospholipase D by protein kinase C in SK-N-MC human neuroblastoma cells.

    PubMed Central

    Morash, S C; Rosé, S D; Byers, D M; Ridgway, N D; Cook, H W

    1998-01-01

    Signal transduction can involve the activation of protein kinase C (PKC) and the subsequent phosphorylation of protein substrates, including myristoylated alanine-rich C kinase substrate (MARCKS). Previously we showed that stimulation of phosphatidylcholine (PtdCho) synthesis by PMA in SK-N-MC human neuroblastoma cells required overexpression of MARCKS, whereas PKCalpha alone was insufficient. We have now investigated the role of MARCKS in PMA-stimulated PtdCho hydrolysis by phospholipase D (PLD). Overexpression of MARCKS enhanced PLD activity 1.3-2.5-fold compared with vector controls in unstimulated cells, and 3-4-fold in cells stimulated with 100 nM PMA. PMA-stimulated PLD activity was blocked by the PKC inhibitor bisindolylmaleimide. Activation of PLD by PMA was linear with time to 60 min, whereas stimulation of PtdCho synthesis by PMA in clones overexpressing MARCKS was observed after a 15 min time lag, suggesting that the hydrolysis of PtdCho by PLD preceded synthesis. The formation of phosphatidylbutanol by PLD was greatest when PtdCho was the predominantly labelled phospholipid, indicating that PtdCho was the preferred, but not the only, phospholipid substrate for PLD. Cells overexpressing MARCKS had 2-fold higher levels of PKCalpha than in vector control cells analysed by Western blot analysis; levels of PKCbeta and PLD were similar in all clones. The loss of both MARCKS and PKCalpha expression at higher subcultures of the clones was paralleled by the loss of stimulation of PLD activity and PtdCho synthesis by PMA. Our results show that MARCKS is an essential link in the PKC-mediated activation of PtdCho-specific PLD in these cells and that the stimulation of PtdCho synthesis by PMA is a secondary response. PMID:9601059

  18. Carbonization and activation of inexpensive semicoke-packed electrodes to enhance power generation of microbial fuel cells.

    PubMed

    Wei, Jincheng; Liang, Peng; Zuo, Kuichang; Cao, Xiaoxin; Huang, Xia

    2012-06-01

    A simple and low-cost modification method was developed to improve the power generation performance of inexpensive semicoke electrode in microbial fuel cells (MFCs). After carbonization and activation with water vapor at 800-850 °C, the MFC with the activated coke (modified semicoke) anode produced a maximum power density of 74 Wm(-3) , 17 Wm(-3) , and 681 mWm(-2) (normalized to anodic liquid volume, total reactor volume, and projected membrane surface area, respectively), which was 124 % higher than MFCs using a semicoke anode (33 Wm(-3) , 8 Wm(-3) , and 304 mWm(-2) ). When they were used as biocathode materials, activated coke produced a maximum power density of 177 Wm(-3) , 41 Wm(-3) , and 1628 mWm(-2) (normalized to cathodic liquid volume, total reactor volume, and projected membrane surface area, respectively), which was 211 % higher than that achieved by MFCs using a semicoke cathode (57 Wm(-3) , 13 Wm(-3) , and 524 mWm(-2) ). A substantial increase was also noted in the conductivity, C/O mass ratio, and specific area for activated coke, which reduced the ohmic resistance, increased biomass density, and promoted electron transfer between bacteria and electrode surface. The activated coke anode also produced a higher Coulombic efficiency and chemical oxygen demand removal rate than the semicoke anode. PMID:22639403

  19. Self-Assembling Glucagon-Like Peptide 1-Mimetic Peptide Amphiphiles for Enhanced Activity and Proliferation of Insulin-Secreting Cells

    PubMed Central

    Khan, Saahir; Sur, Shantanu; Newcomb, Christina J.; Appelt, Elizabeth A.

    2012-01-01

    Current treatment for type 1 diabetes mellitus requires daily insulin injections that fail to produce physiological glycemic control. Islet cell transplantation has been proposed as a permanent cure but is limited by loss of β-cell viability and function. These limitations could potentially be overcome by relying on the activity of glucagon-like peptide 1 (GLP-1), which acts on β-cells to promote insulin release, proliferation, and survival. We have developed a peptide amphiphile (PA) molecule incorporating a peptide mimetic for GLP-1. This GLP-1-mimetic PA self-assembles into one-dimensional nanofibers that stabilize the active secondary structure of GLP-1 and can be cross-linked by calcium ions to form a macroscopic gel capable of cell encapsulation and 3-dimensional culture. The GLP-1-mimetic PA nanofibers were found to stimulate insulin secretion from rat insulinoma (RINm5f) cells to a significantly greater extent than the mimetic peptide alone and to a level equivalent to that of the clinically used agonist exendin-4. The activity of the GLP-1-mimetic PA is glucose-dependent, lipid-raft dependent, and partially PKA-dependent consistent with native GLP-1. The GLP-1-mimetic PA also completely abrogates inflammatory cytokine-induced cell death to the level of untreated controls. When used as a PA gel to encapsulate RINm5f cells, the GLP-1-mimetic PA stimulates insulin secretion and proliferation in a cytokine-resistant manner that is significantly greater than a non-bioactive PA gel containing exendin-4. Due to its self-assembling property and bioactivity, the GLP-1-mimetic PA can be incorporated into previously developed islet cell transplantation protocols with the potential for significant enhancement of β-cell viability and function. PMID:22342354

  20. CYP2S1 depletion enhances colorectal cell proliferation is associated with PGE2-mediated activation of β-catenin signaling

    SciTech Connect

    Yang, Chao; Li, Changyuan; Li, Minle; Tong, Xuemei; Hu, Xiaowen; Yang, Xuhan; Yan, Xiaomei; He, Lin; Wan, Chunling

    2015-02-15

    Colorectal epithelial cancer is one of the most common cancers in the world and its 5-year survival rate is still relatively low. Cytochrome P450 (CYP) enzymes in epithelial cells lining the alimentary tract play an important role in the oxidative metabolism of a wide range of xenobiotics, including (pro-)carcinogens and endogenous compounds. Although CYP2S1, a member of CYP family, strongly expressed in many extrahepatic tissues, the role of CYP2S1 in cancer remains unclear. To investigate whether CYP2S1 involves in colorectal carcinogenesis, cell proliferation was analyzed in HCT116 cells depleted of CYP2S1 using small hairpin interfering RNA. Our data show that CYP2S1 knockdown promotes cell proliferation through increasing the level of endogenous prostaglandin E2(PGE2). PGE2, in turn, reduces phosphorylation of β-catenin and activates β-catenin signaling, which contributes to the cell proliferation. Furthermore, CYP2S1 knockdown increase tumor growth in xenograft mouse model. In brief, these results demonstrate that CYP2S1 regulates colorectal cancer growth through associated with PGE2-mediated activation of β-catenin signaling. - Highlights: • Knockdown of CYP2S1 expression improve HCT116 cell proliferation in vitro and in vivo. • Elevate PGE2 production in CYP2S1 knockdown cell is associated with its proliferation. • Elevate PGE2 level in CYP2S1 knockdown cells enhance β-catenin accumulation. • β-catenin activate TCF/LEF and target gene expression thus promote cell proliferation.

  1. Addition of niclosamide to palladium(II) saccharinate complex of terpyridine results in enhanced cytotoxic activity inducing apoptosis on cancer stem cells of breast cancer.

    PubMed

    Karakas, Didem; Cevatemre, Buse; Aztopal, Nazlihan; Ari, Ferda; Yilmaz, Veysel Turan; Ulukaya, Engin

    2015-09-01

    Wnt signaling is one of the core signaling pathways of cancer stem cells (CSCs). It is re-activated in CSCs and plays essential role in the survival, self-renewal and proliferation of these cells. Therefore, we aimed to evaluate the cytotoxic effects of palladium(II) complex which is formulated as [PdCl(terpy)](sac)2H2O and its combination with niclosamide which is an inhibitor of Wnt signaling pathway associated with breast cancer stem cells. Characteristic cell surface markers (CD44(+)/CD24(-)) were determined by flow cytometry in CSCs. ATP viability assay was used to determine the cytotoxic activity. The mode of cell death was evaluated morphologically using fluorescence microscopy and biochemically using M30 ELISA assay as well as performing qPCR. Our study demonstrated that the combination of niclosamide (1.5 μM) and Pd(II) complex (12.5, 25 and 50 μM) at 48 h has enhanced cytotoxic activity resulted from the induction of apoptosis (indicated by the presence of pyknotic nuclei, increments in M30 and over expression of proapoptotic genes of TNFRSF10A and FAS). Importantly, the addition of niclosamide resulted in the suppression of autophagy (proved by the decrease in ATG5 gene levels) that might have contributed to the enhanced cytotoxicity. In conclusion, the application of this combination may be regarded as a novel and effective approach for the treatment of breast cancer due to its promising cytotoxic effect on cancer stem cells that cause recurrence of the disease. PMID:26234907

  2. Combination treatment with hypoxia-activated prodrug evofosfamide (TH-302) and mTOR inhibitors results in enhanced antitumor efficacy in preclinical renal cell carcinoma models

    PubMed Central

    Sun, Jessica D; Ahluwalia, Dharmendra; Liu, Qian; Li, Wenwu; Wang, Yan; Meng, Fanying; Bhupathi, Deepthi; Matteucci, Mark D; Hart, Charles P

    2015-01-01

    Tumors often consist of hypoxic regions which are resistant to chemo- and radiotherapy. Evofosfamide (also known as TH-302), a 2-nitroimidazole triggered hypoxia-activated prodrug, preferentially releases the DNA cross-linker bromo-isophosphoramide mustard in hypoxic cells. The intracellular kinase mTOR plays a key role in multiple pathways which are important in cancer progression. Here we investigated the enhanced efficacy profile and possible mechanisms of evofosfamide in combination with mTOR inhibitor (mTORi) everolimus or temsirolimus in renal cell carcinoma (RCC) xenograft models. The antitumor activities of the mTORi everolimus or temsirolimus alone, evofosfamide alone, or the combination were investigated in the 786-O and Caki-1 RCC cells in vitro and in vivo xenograft models. Two schedules were tested in which evofosfamide was started on the same day as the mTORi or 1 week after. Combination mechanisms were investigated by measuring a panel of pharmacodynamic biomarkers by immunohistochemistry. Antitumor efficacy in both RCC xenograft models was enhanced by the combination of evofosfamide and mTORi. Evofosfamide reduced the increased hypoxia induced by mTORi. Combination treatment induced increased DNA damage, decreased cell proliferation, and decreased survivin. Addition of mTORi did not change evofosfamide-mediated cytotoxicity in 786-O or Caki-1 cells in vitro which might suggest cell non-autonomous effects, specifically increased tumor hypoxia, are important for the in vivo combination activity. Taken together, evofosfamide potentiates the antitumor efficacy of mTOR inhibitors and inhibits the increased tumor hypoxia caused by mTOR inhibition. These studies provide a translational rationale for combining evofosfamide with mTOR inhibitors in clinical studies. PMID:26328245

  3. Enhanced anti-tumor activity of trichosanthin after combination with a human-derived cell-penetrating peptide, and a possible mechanism of activity.

    PubMed

    Lu, Ye-Zhou; Li, Peng-Fei; Li, Yan-Zhong; Luo, Fan; Guo, Chao; Lin, Bin; Cao, Xue-Wei; Zhao, Jian; Wang, Fu-Jun

    2016-07-01

    Trichosanthin (TCS), a type I ribosome-inactivating protein (RIP-I) and renowned Chinese traditional medicine, displays a broad spectrum of biological and pharmacological properties. Particularly, its anti-tumor activity has received a great deal of attention. However, the cellular mechanism for TCS uptake varies with different tumor cell lines, leading to discrepancies in its reported ability to penetrate cells. In this study, HBD, a human derived cell-penetrating peptide (CPP), was used to improve the delivery of TCS into several types of tumor cells, including HeLa cells. Recombinant TCS (rTCS) with or without the fused HBD peptide was expressed in Escherichia coli cells and successfully purified by Ni-NTA affinity chromatography. The cellular uptake efficiency of FITC-labelled-rTCS-HBD was observed in HeLa cells and compared with the uptake efficiency of non-HBD conjugated rTCS under the same conditions using laser confocal microscopy. Moreover, the IC50 value of rTCS-HBD in the tested tumor cells was much lower than that of rTCS, indicating that HBD could efficiently deliver the rTCS into tumor cells. When compared with rTCS, rTCS-HBD induced higher rates of apoptosis in HeLa cells as analyzed by flow cytometry. Furthermore, the apoptotic events observed in HeLa cells incubated with HBD-fused rTCS included activation of Caspase-9, decrease in the Bcl-2/Bax ratio, and cleavage of PARP. These results strongly suggest the participation of mitochondria in apoptosis. This report illustrates one possible method for achieving the efficient transport of TCS into cells using a CPP as a vector, and increases the likelihood that TCS can be used in the clinic. PMID:27050721

  4. Enhanced NIF neutron activation diagnostics

    SciTech Connect

    Yeamans, C. B.; Bleuel, D. L.; Bernstein, L. A.

    2012-10-15

    The NIF neutron activation diagnostic suite relies on removable activation samples, leading to operational inefficiencies and a fundamental lower limit on the half-life of the activated product that can be observed. A neutron diagnostic system measuring activation of permanently installed samples could remove these limitations and significantly enhance overall neutron diagnostic capabilities. The physics and engineering aspects of two proposed systems are considered: one measuring the {sup 89}Zr/{sup 89m}Zr isomer ratio in the existing Zr activation medium and the other using potassium zirconate as the activation medium. Both proposed systems could improve the signal-to-noise ratio of the current system by at least a factor of 5 and would allow independent measurement of fusion core velocity and fuel areal density.

  5. Anti-CD40 Ab- or 8-oxo-dG-enhanced Treg cells reduce development of experimental autoimmune encephalomyelitis via down-regulating migration and activation of mast cells.

    PubMed

    Hong, Gwan Ui; Kim, Nam Goo; Jeoung, Dooil; Ro, Jai Youl

    2013-07-15

    This study investigated whether anti-CD40 Ab and 8-oxo-dG attenuate mast cell migration and EAE development. Anti-CD40 Ab and 8-oxo-dG reduced EAE scores, mast cell numbers, expression of adhesion molecules, OX40L and Act1, levels of TNF-α, LTs, expression of cytokines, and co-localization of Treg cells and mast cells, all of which are increased in EAE-brain tissues. Each treatment enhanced Treg cells, expression of OX40, and cytokines related to suppressive function of Treg cells in EAE brain tissues. Act-BMMCs with Treg cells reduced expression of OX40L and CCL2/CCR2, VCAM-1, PECAM-1, [Ca²⁺]i levels, release of mediators, various signaling molecules, Act1 related to IL-17a signals versus those in act-BMMCs without Treg cells. The data suggest that IL-10- and IL-35-producing Foxp3⁺-Treg cells, enhanced by anti-CD40 Ab or 8-oxo-dG, suppress migration of mast cells through down-regulating the expression of adhesion molecules, and suppress mast cell activation through cell-to-cell cross-talk via OX40/OX40L in EAE development. PMID:23622820

  6. miR-155 augments CD8+ T-cell antitumor activity in lymphoreplete hosts by enhancing responsiveness to homeostatic γc cytokines

    PubMed Central

    Ji, Yun; Wrzesinski, Claudia; Yu, Zhiya; Hu, Jinhui; Gautam, Sanjivan; Hawk, Nga V.; Telford, William G.; Palmer, Douglas C.; Franco, Zulmarie; Sukumar, Madhusudhanan; Roychoudhuri, Rahul; Clever, David; Klebanoff, Christopher A.; Surh, Charles D.; Waldmann, Thomas A.; Restifo, Nicholas P.; Gattinoni, Luca

    2015-01-01

    Lymphodepleting regimens are used before adoptive immunotherapy to augment the antitumor efficacy of transferred T cells by removing endogenous homeostatic “cytokine sinks.” These conditioning modalities, however, are often associated with severe toxicities. We found that microRNA-155 (miR-155) enabled tumor-specific CD8+ T cells to mediate profound antitumor responses in lymphoreplete hosts that were not potentiated by immune-ablation. miR-155 enhanced T-cell responsiveness to limited amounts of homeostatic γc cytokines, resulting in delayed cellular contraction and sustained cytokine production. miR-155 restrained the expression of the inositol 5-phosphatase Ship1, an inhibitor of the serine-threonine protein kinase Akt, and multiple negative regulators of signal transducer and activator of transcription 5 (Stat5), including suppressor of cytokine signaling 1 (Socs1) and the protein tyrosine phosphatase Ptpn2. Expression of constitutively active Stat5a recapitulated the survival advantages conferred by miR-155, whereas constitutive Akt activation promoted sustained effector functions. Our results indicate that overexpression of miR-155 in tumor-specific T cells can be used to increase the effectiveness of adoptive immunotherapies in a cell-intrinsic manner without the need for life-threatening, lymphodepleting maneuvers. PMID:25548153

  7. Perfluorooctanoic acid enhances colorectal cancer DLD-1 cells invasiveness through activating NF-κB mediated matrix metalloproteinase-2/-9 expression

    PubMed Central

    Miao, Chen; Ma, Jun; Zhang, Yajie; Chu, Yimin; Li, Ji; Kuai, Rong; Wang, Saiyu; Peng, Haixia

    2015-01-01

    Objective: Perfluorooctanoic acid (PFOA) is widely used in consumer products and detected in human serum. Our study meant to elucidate the uncovered molecular mechanisms underlying the PFOA induced colorectal cancer cell DLD-1 invasion and matrix metalloproteinases (MMP) expression. Methods and results: Trans-well filter assay appeared that PFOA treatment stimulated DLD-1 cells invasion significantly. Meanwhile, the results of luciferase reporter, quantitative real-time PCR, western blotting, and gelatin zymography showed that PFOA induced MMP-2/-9 expression and enzyme activation levels consistently (P < 0.05 each). Subsequently, western blotting and immunofluorescence assay demonstrated that PFOA could enhance nuclear factor kappaB (NF-κB) activity by stimulating NF-κB translocation into nuclear in DLD-1 cells. Furthermore, JSH-23, a well-known NF-κB inhibitor, could reverse the PFOA induced colorectal cancer cell invasion and MMP-2/-9 expression. Conclusions: Our study confirmed that PFOA could induce colorectal cancer cell DLD-1 invasive ability and MMP-2/-9 expression through activating NF-κB, which deserves more concerns on environmental pollutant-resulted public health risk. PMID:26617761

  8. Gibberellin (GA3) enhances cell wall invertase activity and mRNA levels in elongating dwarf pea (Pisum sativum) shoots

    NASA Technical Reports Server (NTRS)

    Wu, L. L.; Mitchell, J. P.; Cohn, N. S.; Kaufman, P. B.

    1993-01-01

    The invertase (EC 3.2.1.26) purified from cell walls of dwarf pea stems to homogeneity has a molecular mass of 64 kilodaltons (kD). Poly(A)+RNA was isolated from shoots of dwarf pea plants, and a cDNA library was constructed using lambda gt11 as an expression vector. The expression cDNA library was screened with polyclonal antibodies against pea cell wall invertase. One invertase cDNA clone was characterized as a full-length cDNA with 1,863 base pairs. Compared with other known invertases, one homologous region in the amino acid sequence was found. The conserved motif, Asn-Asp-Pro-Asn-Gly, is located near the N-terminal end of invertase. Northern blot analysis showed that the amount of invertase mRNA (1.86 kb) was rapidly induced to a maximal level 4 h after GA3 treatment, then gradually decreased to the control level. The mRNA level at 4 h in GA3-treated peas was fivefold higher than that of the control group. The maximal increase in activity of pea cell wall invertase elicited by GA3 occcured at 8 h after GA3 treatment. This invertase isoform was shown immunocytochemically to be localized in the cell walls, where a 10-fold higher accumulation occurred in GA3-treated tissue compared with control tissue. This study indicates that the expression of the pea shoot cell-wall invertase gene could be regulated by GA3 at transcriptional and/or translational levels.

  9. Mixotrophic operation of photo-bioelectrocatalytic fuel cell under anoxygenic microenvironment enhances the light dependent bioelectrogenic activity.

    PubMed

    Chandra, Rashmi; Venkata Subhash, G; Venkata Mohan, S

    2012-04-01

    Electrogenic activity of photo-bioelectrocatalytic /photo-biological fuel cell (PhFC) was evaluated in a mixotrophic mode under anoxygenic microenvironment using photosynthetic consortia as biocatalyst. An acetate rich wastewater was used as anolyte for harnessing energy along with additional treatment. Mixotrophic operation facilitated good electrogenic activity and wastewater treatment associated with biomass growth. PhFC operation documented feasible microenvironment for the growth of photosynthetic bacteria compared to algae which was supported by pigment (total chlorophyll and bacteriochlorophyll) and diversity analysis. Pigment data also illustrated the association between bacterial and algal species. The synergistic interaction between anoxygenic and oxygenic photosynthesis was found to be suitable for PhFC operation. Light dependent deposition of electrons at electrode was relatively higher compared to dark dependent electron deposition under anoxygenic condition. PhFC documented for good volatile fatty acids removal by utilizing them as electron donor. Bioelectrochemical behavior of PhFC was evaluated by voltammetric and chronoamperometry analysis. PMID:22297047

  10. Elastic mismatch enhances cell motility

    NASA Astrophysics Data System (ADS)

    Bresler, Yony; Palmieri, Benoit; Grant, Martin

    In recent years, the study of physics phenomena in cancer has drawn considerable attention. In cancer metastasis, a soft cancer cell leaves the tumor, and must pass through the endothelium before reaching the bloodstream. Using a phase-field model we have shown that the elasticity mismatch between cells alone is sufficient to enhance the motility of thesofter cancer cell by means of bursty migration, in agreement with experiment. We will present further characterization of these behaviour, as well as new possible applications for this model.

  11. Endothelial cells enhance migration of meniscus cells

    PubMed Central

    Yuan, Xiaoning; Eng, George M.; Arkonac, Derya E.; Chao, Pen-hsiu Grace; Vunjak-Novakovic, Gordana

    2014-01-01

    Objective To study the interactions between vascular endothelial cells and meniscal fibrochondrocytes from the inner avascular and outer vascular regions of the meniscus, and identify angiogenic factors that enhance cell migration and integrative repair. Methods Bovine meniscal fibrochondrocytes (bMFCs) from the inner and outer regions of meniscus were cultured for seven days with and without human umbilical vein endothelial cells (HUVECs) in a micropatterned three-dimensional hydrogel system for cell migration. Angiogenic factors secreted by HUVECs were probed for their role in paracrine mechanisms governing bMFC migration, and applied to a full-thickness defect model of meniscal repair in explants from the inner and outer regions over four weeks. Results Endothelial cells enhanced migration of inner and outer bMFCs in the micropatterned system via endothelin-1 (ET-1) signaling. Supplementation of ET-1 significantly enhanced integration strength of full-thickness defects in inner and outer explants, and cell migration at the macro-scale, compared to controls without ET-1 treatment. Conclusion We report for the first time that bMFCs from both the avascular and vascular regions respond to the presence of endothelial cells with increased migration. Paracrine signaling by endothelial cells regulates the bMFCs differentially by region, but we identify ET-1 as an angiogenic factor that stimulates migration of inner and outer cells at the micro-scale, and integrative repair of inner and outer explants at the macro-scale. These findings reveal the regional interactions between vasculature and MFCs, and suggest ET-1 as a potential new treatment modality for avascular meniscal injuries, in order to prevent the development of osteoarthritis. PMID:25307081

  12. Preconditioning chemotherapy with paclitaxel and cisplatin enhances the antitumor activity of cytokine induced-killer cells in a murine lung carcinoma model.

    PubMed

    Huang, Xiang; Huang, Guichun; Song, Haizhu; Chen, Longbang

    2011-08-01

    Adoptive cell therapy involving the use of ex vivo generated cytokine-induced killer cells (CIKs) provides a promising approach to immunotherapy. However, the therapeutic activity of CIKs is limited by the immunosuppressive factors active in the host. It has become increasingly apparent that manipulation of the recipient immune system with the preconditioning regimen is essential to guarantee the antitumor effect of subsequent adoptive cell therapy. In our study, paclitaxel (PTX) and cisplatin (DDP) were used as preconditioning drugs combined with CIKs to illustrate the potential mechanisms underlying the synergic antitumor effect against Lewis lung cancer cells in vitro and in vivo. We found that 3LL cells displayed an increased sensitization to CIKs-induced lysis after treatment with PTX or DDP in vitro. Significant inhibition of tumor growth was observed in mice treated with combinatorial chemo-immunotherapy with respect to untreated or single regimen treated ones. Prior chemotherapy markedly enhanced the intratumoral accumulation of CD3(+) T lymphocytes and the homing of CIKs to the spleen and tumor. Moreover, the frequencies of intratumoral and splenic regulatory T cells (Tregs) were significantly decreased after chemotherapy pretreatment. Our findings provide a new rationale for combining immunotherapy and chemotherapy to induce a synergistic antitumor response in patients with lung cancer. PMID:20878978

  13. Transforming growth factor-{beta} inhibits CCAAT/enhancer-binding protein expression and PPAR{gamma} activity in unloaded bone marrow stromal cells

    SciTech Connect

    Ahdjoudj, S.; Kaabeche, K.; Holy, X.; Fromigue, O.; Modrowski, D.; Zerath, E.; Marie, P.J. . E-mail: pierre.marie@larib.inserm.fr

    2005-02-01

    The molecular mechanisms regulating the adipogenic differentiation of bone marrow stromal cells in vivo remain largely unknown. In this study, we investigated the regulatory effects of transforming growth factor beta-2 (TGF-{beta}2) on transcription factors involved in adipogenic differentiation induced by hind limb suspension in rat bone marrow stromal cells in vivo. Time course real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR) analysis of gene expression showed that skeletal unloading progressively increases the expression of CCAAT/enhancer-binding protein (C/EBP){alpha} and C/EBP{beta} {alpha} at 5 days in bone marrow stromal cells resulting in increased peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}2) transcripts at 7 days. TGF-{beta}2 administration in unloaded rats corrected the rise in C/EBP{alpha} and C/EBP{beta} transcripts induced by unloading in bone marrow stromal cells. This resulted in inhibition of PPAR{gamma}2 expression that was associated with increased Runx2 expression. Additionally, the inhibition of C/EBP{alpha} and C/EBP{beta} expression by TGF-{beta}2 was associated with increased PPAR{gamma} serine phosphorylation in bone marrow stromal cells, a mechanism that inhibits PPAR{gamma} transactivating activity. The sequential inhibitory effect of TGF-{beta}2 on C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma}2 resulted in reduced LPL expression and abolition of bone marrow stromal cell adipogenic differentiation, which contributed to prevent bone loss induced by skeletal unloading. We conclude that TGF-{beta}2 inhibits the excessive adipogenic differentiation of bone marrow stromal cells induced by skeletal unloading by inhibiting C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma} expression and activity, which provides a sequential mechanism by which TGF-{beta}2 regulates adipogenic differentiation of bone marrow stromal cells in vivo.

  14. The Proteasome Inhibitor Bortezomib Enhances ATRA-Induced Differentiation of Neuroblastoma Cells via the JNK Mitogen-Activated Protein Kinase Pathway

    PubMed Central

    Luo, Peihua; Lin, Meili; Li, Lin; Yang, Bo; He, Qiaojun

    2011-01-01

    Neuroblastoma (NB) is the most common extracranial solid tumor in childhood. Differentiated human NBs are associated with better outcome and lower stage; induction of differentiation is considered to be therapeutically advantageous. All-trans retinoic acid (ATRA) has been shown to induce the differentiation of neuroblastoma (NB) cell lines. The proteasome inhibitor bortezomib inhibits cell growth and angiogenesis in NBs. Here, we investigated the synergistic effect between bortezomib and ATRA in inducing NB cell differentiation in different NB cell lines. Bortezomib combined with ATRA had a significantly enhanced antiproliferative effect. This inhibition was characterized by a synergistic increase in neuronal differentiation. At the same time, the combination therapy showed little neuronal toxicity which was assessed in primary cultures of rat cerebellar granule cells by the MTT assay, PI staining. The combination of bortezomib and ATRA triggered increased differentiation through the activation of proteins, including RARα, RARβ, RARγ, p-JNK and p21, compared with ATRA treatment alone. Using JNK inhibitor SP600125 to block JNK-dependent activity, the combination therapy-induced neuronal differentiation was partially attenuated. In addition, p21 shRNA had no effect on the combination therapy-induced neuronal differentiation. The in vivo antitumor activities were examined in human NB cell xenografts and GFP-labeled human NB cell xenografts. Treatment of human NB cell CHP126-bearing nude mice with ATRA plus bortezomib resulted in more significant tumor growth inhibition than mice treated with either drug alone. These findings provide the rationale for the development of a new therapeutic strategy for NB based on the pharmacological combination of ATRA and bortezomib. PMID:22087283

  15. Enhanced activity of Au-Fe/C anodic electrocatalyst for direct borohydride-hydrogen peroxide fuel cell

    NASA Astrophysics Data System (ADS)

    Yi, Lanhua; Wei, Wei; Zhao, Caixian; Tian, Li; Liu, Jing; Wang, Xianyou

    2015-07-01

    Carbon supported Au-Fe bimetallic nanocatalysts (Au-Fe/C) are facilely prepared via a modified NaBH4 reduction method in aqueous solution at room temperature, and used as the anode electrocatalyst of direct borohydride-hydrogen peroxide fuel cell (DBHFC). The physical and electrochemical properties of the Au-Fe/C electrocatalysts are characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), cyclic voltammetry (CV), rotating disc electrode (RDE) voltammetry, chronoamperometry (CA), chronopotentiometry (CP), and fuel cell test. The results show that Au-Fe/C catalysts display higher catalytic activity for the direct electrooxidation of BH4- than carbon supported pure Au nanocatalyst (Au/C), especially Au50Fe50/C catalyst presents the highest catalytic activity among all as-prepared catalysts. Besides, the single DBHFC with Au50Fe50/C anode and Au/C cathode obtains the maximum power density as high as 34.9 mW cm-2 at 25 °C.

  16. Polyvalent effect enhances diglycosidic antiplasmodial activity.

    PubMed

    Zhang, Wen-Qiang; He, Yun; Yu, Qun; Liu, Hai-Peng; Wang, De-Min; Li, Xiao-Bin; Luo, Jian; Meng, Xin; Qin, Hai-Juan; Lucchi, Naomi W; Udhayakumar, Venkatachalam; Iyer, Suri S; Yang, Yang; Yu, Peng

    2016-10-01

    An efficient and facile total synthesis of diglycoside Matayoside D isolated from the root bark of Matayba guianensis with antiplasmodial activity have been accomplished in 11 steps with 5% overall yields starting from commercially available glucose and rhamnose. Furthermore, a class of the diglycosidic derivatives with different lengths of the linker and valences were also prepared and evaluated for their antiplasmodial activities against chloroquine-susceptible (3D7) and chloroquine-resistant (W2) strains of Plasmodium falciparum. Low valent and short linker attached diglycoside show no enhancement of the antiplasmodial activity while polyvalent conjugates showed enhanced antiplasmodial activity with IC50 value at least 20 fold better than that of the corresponding diglycosidic monomer. The polyvalent diglycoside were non-cytotoxic against normal mammalian cells under 50,000 μg/L. PMID:27318984

  17. Epigenetic Upregulation of Metallothionein 2A by Diallyl Trisulfide Enhances Chemosensitivity of Human Gastric Cancer Cells to Docetaxel Through Attenuating NF-κB Activation

    PubMed Central

    Pan, Yuanming; Lin, Shuye; Xing, Rui; Zhu, Min; Lin, Bonan; Cui, Jiantao; Li, Wenmei; Gao, Jing; Shen, Lin; Zhao, Yuanyuan; Guo, Mingzhou; Wang, Ji Ming

    2016-01-01

    Abstract Aims: Metallothionein 2A (MT2A) and nuclear factor-kappaB (NF-κB) are both involved in carcinogenesis and cancer chemosensitivity. We previously showed decreased expression of MT2A and IκB-α in human gastric cancer (GC) associated with poor prognosis of GC patients. The present study investigated the effect of diallyl trisulfide (DATS), a garlic-derived compound, and docetaxel (DOC) on regulation of MT2A in relation to NF-κB in GC cells. Results: DATS attenuated NF-κB signaling in GC cells, resulting in G2/M cell cycle arrest and apoptosis, culminating in the inhibition of cell proliferation and tumorigenesis in nude mice. The anti-GC effect of DATS was attributable to its capacity to epigenetically upregulate MT2A, which in turn enhanced transcription of IκB-α to suppress NF-κB activation in GC cells. The combination of DATS with DOC exhibited a synergistic anti-GC activity accompanied by MT2A upregulation and NF-κB inactivation. Histopathologic analysis of GC specimens from patients showed a significant increase in MT2A expression following DOC treatment. GC patients with high MT2A expression in tumor specimens showed significantly improved response to chemotherapy and prolonged survival compared with those with low MT2A expression in tumors. Innovation and Conclusion: We conclude that DATS exerts its anti-GC activity and enhances chemosensitivity of GC to DOC by epigenetic upregulation of MT2A to attenuate NF-κB signaling. Our findings delineate a mechanistic basis of MT2A/NF-κB signaling for DATS- and DOC-mediated anti-GC effects, suggesting that MT2A may be a chemosensitivity indicator in GC patients receiving DOC-based treatment and a promising target for more effective treatment of GC by combination of DATS and DOC. Antioxid. Redox Signal. 24, 839–854. PMID:26801633

  18. Enhanced activity and stability of Pt/TiO2/carbon fuel cell electrocatalyst prepared using a glucose modifier

    NASA Astrophysics Data System (ADS)

    Odetola, Christopher; Trevani, Liliana; Easton, E. Bradley

    2015-10-01

    Two TiO2-C composite materials were prepared through a conventional sol gel synthesis using Vulcan XC-72 carbon black. The carbon was initially functionalised to form acid treated Vulcan (ATV) prior to TiO2 deposition. In one composite, the ATV was further modified through glucose adsorption (G-ATV) in order to facilitate the growth of small and uniform TiO2 nanoparticles on the carbon surface. Platinum nanoparticles were deposited on TiO2/G-ATV and TiO2/ATV supports through reduction of H2PtCl6 with NaBH4 at 0 °C. The electrochemical properties of the two composite catalysts were compared with in house Pt/C catalyst. We observed a three-fold increase in TiO2 loading (14 wt%) on glucose doped carbon surface compared with just acid treated support (5 wt%). The beginning of life (BOL) electrochemical active surface area (ECSA) of Pt/14 wt%TiO2/G-ATV catalyst was 40.4 m2 g-1 compared to 37.1 m2 g-1 obtained for Pt on 5 wt% TiO2/ATV despite increased TiO2 loadings on the former. Furthermore these composite catalysts showed enhanced oxygen reduction activity and better durability during accelerated stress tests which was attributed to an electronic interaction between Pt and the TiO2 on the support.

  19. Enhanced anti-tumor activity of a new curcumin-related compound against melanoma and neuroblastoma cells

    PubMed Central

    2010-01-01

    Background Sharing the common neuroectodermal origin, melanoma and neuroblastoma are tumors widely diffused among adult and children, respectively. Clinical prognosis of aggressive neuroectodermal cancers remains dismal, therefore the search for novel therapies against such tumors is warranted. Curcumin is a phytochemical compound widely studied for its antioxidant, anti-inflammatory and anti-cancer properties. Recently, we have synthesized and tested in vitro various curcumin-related compounds in order to select new anti-tumor agents displaying stronger and selective growth inhibition activity on neuroectodermal tumors. Results In this work, we have demonstrated that the new α,β-unsaturated ketone D6 was more effective in inhibiting tumor cells growth when compared to curcumin. Normal fibroblasts proliferation was not affected by this treatment. Clonogenic assay showed a significant dose-dependent reduction in both melanoma and neuroblastoma colony formation only after D6 treatment. TUNEL assay, Annexin-V staining, caspases activation and PARP cleavage unveiled the ability of D6 to cause tumor cell death by triggering apoptosis, similarly to curcumin, but with a stronger and quicker extent. These apoptotic features appear to be associated with loss of mitochondrial membrane potential and cytochrome c release. In vivo anti-tumor activity of curcumin and D6 was surveyed using sub-cutaneous melanoma and orthotopic neuroblastoma xenograft models. D6 treated mice exhibited significantly reduced tumor growth compared to both control and curcumin treated ones (Melanoma: D6 vs control: P < 0.001 and D6 vs curcumin P < 0.01; Neuroblastoma: D6 vs both control and curcumin: P < 0.001). Conclusions Our data indicate D6 as a good candidate to develop new therapies against neural crest-derived tumors. PMID:20525240

  20. Korean Red Ginseng Extract Enhances the Anticancer Effects of Imatinib Mesylate Through Abrogation p38 and STAT5 Activation in KBM-5 Cells.

    PubMed

    Jung, Sang Yoon; Kim, Chulwon; Kim, Wan-Seok; Lee, Seok-Geun; Lee, Jun-Hee; Shim, Bum Sang; Kim, Sung-Hoon; Ahn, Kyoo Seok; Ahn, Kwang Seok

    2015-07-01

    Although imatinib mesylate (IM) in the treatment of chronic myelogenous leukemia (CML) remains the best example of successful targeted therapy, majority of patients with CML suffer its toxicity profile and develop chemoresistance to existing therapeutic agents. Thus, there is a need to develop novel alternative therapies for the treatment of CML. Here, we investigated whether Korean red ginseng extract (KRGE) could suppress the proliferation and induce chemosensitization in human CML cells. Also, we used a human phospho-antibody array containing 46 antibodies against signaling molecules to examine a subset of phosphorylation events after treatment. Korean red ginseng extract broadly suppressed the proliferation of five different cell lines, but KRGE was found to be the most potent inducer of apoptosis against KBM-5 cells. It also abrogated the expression of Bcl-2 (B-cell lymphoma 2), Bcl-xL (B-cell lymphoma-extra large), survivin, inhibitors of apoptosis protein 1/2, COX-2 (Cyclooxygenase-2), cyclin D1, matrix metalloproteinase-9, and VEGF (Vascular endothelial growth factor), as well as upregulated the expression of pro-apoptotic gene products. Interestingly, KRGE also enhanced the cytotoxic and apoptotic effect of IM in KBM-5 cells. The combination treatment of KRGE and IM caused pronounced suppression of p38 and signal transducer and activator of transcription 5 phosphorylation and induced phosphorylation of p53 compared with the individual treatment. Our results demonstrate that KRGE can enhance the anticancer activity of IM and may have a substantial potential in the treatment of CML. PMID:25857479

  1. Insulin-like growth factor-I extends in vitro replicative life span of skeletal muscle satellite cells by enhancing G1/S cell cycle progression via the activation of phosphatidylinositol 3'-kinase/Akt signaling pathway

    NASA Technical Reports Server (NTRS)

    Chakravarthy, M. V.; Abraha, T. W.; Schwartz, R. J.; Fiorotto, M. L.; Booth, F. W.

    2000-01-01

    Interest is growing in methods to extend replicative life span of non-immortalized stem cells. Using the insulin-like growth factor I (IGF-I) transgenic mouse in which the IGF-I transgene is expressed during skeletal muscle development and maturation prior to isolation and during culture of satellite cells (the myogenic stem cells of mature skeletal muscle fibers) as a model system, we elucidated the underlying molecular mechanisms of IGF-I-mediated enhancement of proliferative potential of these cells. Satellite cells from IGF-I transgenic muscles achieved at least five additional population doublings above the maximum that was attained by wild type satellite cells. This IGF-I-induced increase in proliferative potential was mediated via activation of the phosphatidylinositol 3'-kinase/Akt pathway, independent of mitogen-activated protein kinase activity, facilitating G(1)/S cell cycle progression via a down-regulation of p27(Kip1). Adenovirally mediated ectopic overexpression of p27(Kip1) in exponentially growing IGF-I transgenic satellite cells reversed the increase in cyclin E-cdk2 kinase activity, pRb phosphorylation, and cyclin A protein abundance, thereby implicating an important role for p27(Kip1) in promoting satellite cell senescence. These observations provide a more complete dissection of molecular events by which increased local expression of a growth factor in mature skeletal muscle fibers extends replicative life span of primary stem cells than previously known.

  2. PAR-2 activation enhances weak acid-induced ATP release through TRPV1 and ASIC sensitization in human esophageal epithelial cells.

    PubMed

    Wu, Liping; Oshima, Tadayuki; Shan, Jing; Sei, Hiroo; Tomita, Toshihiko; Ohda, Yoshio; Fukui, Hirokazu; Watari, Jiro; Miwa, Hiroto

    2015-10-15

    Esophageal visceral hypersensitivity has been proposed to be the pathogenesis of heartburn sensation in nonerosive reflux disease. Protease-activated receptor-2 (PAR-2) is expressed in human esophageal epithelial cells and is believed to play a role in inflammation and sensation. PAR-2 activation may modulate these responses through adenosine triphosphate (ATP) release, which is involved in transduction of sensation and pain. The transient receptor potential vanilloid receptor 1 (TRPV1) and acid-sensing ion channels (ASICs) are both acid-sensitive nociceptors. However, the interaction among these molecules and the mechanisms of heartburn sensation are still not clear. We therefore examined whether ATP release in human esophageal epithelial cells in response to acid is modulated by TRPV1 and ASICs and whether PAR-2 activation influences the sensitivity of TRPV1 and ASICs. Weak acid (pH 5) stimulated the release of ATP from primary human esophageal epithelial cells (HEECs). This effect was significantly reduced after pretreatment with 5-iodoresiniferatoxin (IRTX), a TRPV1-specific antagonist, or with amiloride, a nonselective ASIC blocker. TRPV1 and ASIC3 small interfering RNA (siRNA) transfection also decreased weak acid-induced ATP release. Pretreatment of HEECs with trypsin, tryptase, or a PAR-2 agonist enhanced weak acid-induced ATP release. Trypsin treatment led to the phosphorylation of TRPV1. Acid-induced ATP release enhancement by trypsin was partially blocked by IRTX, amiloride, or a PAR-2 antagonist. Conversely, acid-induced ATP release was augmented by PAR-2 activation through TRPV1 and ASICs. These findings suggested that the pathophysiology of heartburn sensation or esophageal hypersensitivity may be associated with the activation of PAR-2, TRPV1, and ASICs. PMID:26294672

  3. Physical interactions between Ets and NF-kappaB/NFAT proteins play an important role in their cooperative activation of the human immunodeficiency virus enhancer in T cells.

    PubMed Central

    Bassuk, A G; Anandappa, R T; Leiden, J M

    1997-01-01

    The transcriptional regulatory elements of many inducible T-cell genes contain adjacent or overlapping binding sites for the Ets and NF-kappaB/NFAT families of transcription factors. Similar arrays of functionally important NF-kappaB/NFAT and Ets binding sites are present in the transcriptional enhancers of human immunodeficiency viruses types 1 and 2 (HIV-1 and HIV-2), suggesting that this pattern of nuclear protein binding sites reflects an evolutionarily conserved mechanism for regulating inducible T-cell gene expression that has been co-opted during HIV evolution. Despite these findings, the molecular mechanisms by which Ets and NF-kappaB/NFAT proteins cooperatively regulate inducible T-cell gene expression remained unknown. In the studies described in this report, we demonstrated a physical interaction between multiple Ets and NF-kappaB/NFAT proteins both in vitro and in activated normal human T cells. This interaction is mediated by the Ets domain of Ets proteins and the C-terminal region of the Rel homology domains of NF-kappaB/NFAT proteins. In addition, the Ets-NF-kappaB/NFAT interaction requires the presence of DNA binding sites for both proteins, as it is abolished by the DNA intercalating agents propidium iodide and ethidium bromide and enhanced by the presence of synthetic oligonucleotides containing binding sites for Ets and NF-kappaB proteins. A dominant-negative mutant of NF-kappaB p50 that binds DNA but fails to interact with Ets proteins inhibits the synergistic activation of the HIV-1 and HIV-2 enhancers by NF-kappaB (p50 + p65) and Ets-1, suggesting that physical interaction between Ets and NF-kappaB proteins is required for the transcriptional activity of the HIV-1 and HIV-2 enhancers. Taken together, these findings suggest that evolutionarily conserved physical interactions between Ets and NF-kappaB/NFAT proteins are important in regulating the inducible expression of T-cell genes and viruses. These interactions represent a potential target

  4. Jaeumganghwa-Tang Induces Apoptosis via the Mitochondrial Pathway and Lactobacillus Fermentation Enhances Its Anti-Cancer Activity in HT1080 Human Fibrosarcoma Cells

    PubMed Central

    Kim, Aeyung; Im, Minju; Hwang, Youn-Hwan; Yang, Hye Jin; Ma, Jin Yeul

    2015-01-01

    Jaeumganghwa-tang (JGT, Zi-yin-jiang-huo-tang in Chinese and Jiin-koka-to in Japanese) is an oriental herbal formula that has long been used as a traditional medicine to treat respiratory and kidney diseases. Recent studies revealed that JGT exhibited potent inhibitory effects on allergies, inflammation, pain, convulsions, and prostate hyperplasia. Several constituent herbs in JGT induce apoptotic cancer cell death. However, the anti-cancer activity of JGT has not been examined. In this study, we investigated the anti-cancer effects of JGT using highly tumorigenic HT1080 human fibrosarcoma cells and elucidated the underlying mechanisms. In addition, we examined whether the Lactobacillus fermentation of JGT enhanced its anti-cancer activity using an in vivo xenograft model because fermentation of herbal extracts is thought to strengthen their therapeutic effects. Data revealed that JGT suppressed the growth of cancer cells efficiently by stimulating G1 cell cycle arrest and then inducing apoptotic cell death by causing mitochondrial damage and activating caspases. The phosphorylation of p38 and ERK also played a role in JGT-induced cell death. In vitro experiments demonstrated that JGT fermented with Lactobacillus acidophilus, designated fJGT162, elicited similar patterns of cell death as did non-fermented JGT. Meanwhile, the daily oral administration of 120 mg/kg fJGT162 to HT1080-bearing BALB/c nude mice suppressed tumor growth dramatically (up to 90%) compared with saline treatment, whereas the administration of non-fermented JGT suppressed tumor growth by ~70%. Collectively, these results suggest that JGT and fJGT162 are safe and useful complementary and alternative anti-cancer herbal therapies, and that Lactobacillus fermentation improves the in vivo anti-cancer efficacy of JGT significantly. PMID:26020238

  5. Jaeumganghwa-Tang Induces Apoptosis via the Mitochondrial Pathway and Lactobacillus Fermentation Enhances Its Anti-Cancer Activity in HT1080 Human Fibrosarcoma Cells.

    PubMed

    Kim, Aeyung; Im, Minju; Hwang, Youn-Hwan; Yang, Hye Jin; Ma, Jin Yeul

    2015-01-01

    Jaeumganghwa-tang (JGT, Zi-yin-jiang-huo-tang in Chinese and Jiin-koka-to in Japanese) is an oriental herbal formula that has long been used as a traditional medicine to treat respiratory and kidney diseases. Recent studies revealed that JGT exhibited potent inhibitory effects on allergies, inflammation, pain, convulsions, and prostate hyperplasia. Several constituent herbs in JGT induce apoptotic cancer cell death. However, the anti-cancer activity of JGT has not been examined. In this study, we investigated the anti-cancer effects of JGT using highly tumorigenic HT1080 human fibrosarcoma cells and elucidated the underlying mechanisms. In addition, we examined whether the Lactobacillus fermentation of JGT enhanced its anti-cancer activity using an in vivo xenograft model because fermentation of herbal extracts is thought to strengthen their therapeutic effects. Data revealed that JGT suppressed the growth of cancer cells efficiently by stimulating G1 cell cycle arrest and then inducing apoptotic cell death by causing mitochondrial damage and activating caspases. The phosphorylation of p38 and ERK also played a role in JGT-induced cell death. In vitro experiments demonstrated that JGT fermented with Lactobacillus acidophilus, designated fJGT162, elicited similar patterns of cell death as did non-fermented JGT. Meanwhile, the daily oral administration of 120 mg/kg fJGT162 to HT1080-bearing BALB/c nude mice suppressed tumor growth dramatically (up to 90%) compared with saline treatment, whereas the administration of non-fermented JGT suppressed tumor growth by ~70%. Collectively, these results suggest that JGT and fJGT162 are safe and useful complementary and alternative anti-cancer herbal therapies, and that Lactobacillus fermentation improves the in vivo anti-cancer efficacy of JGT significantly. PMID:26020238

  6. Postnatal Treadmill Exercise Alleviates Prenatal Stress-Induced Anxiety in Offspring Rats by Enhancing Cell Proliferation Through 5-Hydroxytryptamine 1A Receptor Activation

    PubMed Central

    2016-01-01

    Purpose: Stress during pregnancy is a risk factor for the development of anxiety-related disorders in offspring later in life. The effects of treadmill exercise on anxiety-like behaviors and hippocampal cell proliferation were investigated using rats exposed to prenatal stress. Methods: Exposure of pregnant rats to a hunting dog in an enclosed room was used to induce stress. Anxiety-like behaviors of offspring were evaluated using the elevated plus maze test. Immunohistochemistry for the detection of 5-bromo-2ʹ- deoxyuridine and doublecortin (DCX) in the hippocampal dentate gyrus and 5-hydroxytryptamine 1A receptors (5-HT1A) in the dorsal raphe was conducted. Brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) levels in the hippocampus were evaluated by western blot analysis. Results: Offspring of maternal rats exposed to stress during pregnancy showed anxiety-like behaviors. Offspring also showed reduced expression of BDNF, TrkB, and DCX in the dentate gyrus, decreased cell proliferation in the hippocampus, and reduced 5-HT1A expression in the dorsal raphe. Postnatal treadmill exercise by offspring, but not maternal exercise during pregnancy, enhanced cell proliferation and expression of these proteins. Conclusions: Postnatal treadmill exercise ameliorated anxiety-like behaviors in offspring of stressed pregnant rats, and the alleviating effect of exercise on these behaviors is hypothesized to result from enhancement of cell proliferation through 5-HT1A activation in offspring rats. PMID:27230461

  7. Hes-1 SUMOylation by protein inhibitor of activated STAT1 enhances the suppressing effect of Hes-1 on GADD45α expression to increase cell survival

    PubMed Central

    2014-01-01

    Background Hairy and Enhancer of split 1 (Hes-1) is a transcriptional repressor that plays an important role in neuronal differentiation and development, but post-translational modifications of Hes-1 are much less known. In the present study, we aimed to investigate whether Hes-1 could be SUMO-modified and identify the candidate SUMO acceptors on Hes-1. We also wished to examine the role of the SUMO E3 ligase protein inhibitor of activated STAT1 (PIAS1) in SUMOylation of Hes-1 and the molecular mechanism of Hes-1 SUMOylation. Further, we aimed to identify the molecular target of Hes-1 and examine how Hes-1 SUMOylation affects its molecular target to affect cell survival. Results In this study, by using HEK293T cells, we have found that Hes-1 could be SUMO-modified and Hes-1 SUMOylation was greatly enhanced by the SUMO E3 ligase PIAS1 at Lys8, Lys27 and Lys39. Furthermore, Hes-1 SUMOylation stabilized the Hes-1 protein and increased the transcriptional suppressing activity of Hes-1 on growth arrest and DNA damage-inducible protein alpha (GADD45α) expression. Overexpression of GADD45α increased, whereas knockdown of GADD45αα expression decreased cell apoptosis. In addition, H2O2 treatment increased the association between PIAS1 and Hes-1 and enhanced the SUMOylation of Hes-1 for endogenous protection. Overexpression of Hes-1 decreased H2O2-induced cell death, but this effect was blocked by transfection of the Hes-1 triple sumo-mutant (Hes-1 3KR). Overexpression of PIAS1 further facilitated the anti-apoptotic effect of Hes-1. Moreover, Hes-1 SUMOylation was independent of Hes-1 phosphorylation and vice versa. Conclusions The present results revealed, for the first time, that Hes-1 could be SUMO-modified by PIAS1 and GADD45α is a novel target of Hes-1. Further, Hes-1 SUMOylation mediates cell survival through enhanced suppression of GADD45α expression. These results revealed a novel role of Hes-1 in addition to its involvement in Notch signaling. They also

  8. Clusterin facilitates COMMD1 and I-κB degradation to enhance NF-κB activity in prostate cancer cells

    PubMed Central

    Zoubeidi, Amina; Ettinger, Susan; Beraldi, Eliana; Hadaschik, Boris; Zardan, Anousheh; Klomp, Leo WJ; Nelson, Colleen C.; Rennie, Paul S.; Gleave, Martin E.

    2009-01-01

    Secretory clusterin (sCLU) is a stress-activated, cytoprotective chaperone that confers broad-spectrum cancer treatment resistance and its targeted inhibitor (OGX-011) is currently in Phase II trials for prostate, lung, and breast cancer. However, molecular mechanisms by which sCLU inhibits treatment-induced apoptosis in prostate cancer remain incompletely defined. We report that sCLU increases NF-κB nuclear translocation and transcriptional activity by serving as a ubiquitin binding protein that enhances COMMD1 and I-κB proteasomal degradation by interacting with members of the SCF-βTrCP E3 ligase family. Knockdown of sCLU in prostate cancer cells stabilizes COMMD1 and I-κB, thereby sequestrating NF-κB in the cytoplasm and decreasing NF-κB transcriptional activity. Comparative microarray profiling of sCLU over-expressing and knockdown prostate cancer cells confirmed that the expression of many NF-κB regulated genes positively correlate with sCLU levels. We propose that elevated levels of sCLU promote prostate cancer cell survival by facilitating degradation of COMMD1 and I-κB, thereby activating the canonical NF-κB pathway. PMID:20068069

  9. Enhanced excision repair and lack of PSII activity contribute to higher UV survival of Chlamydomonas reinhardtii cells in dark.

    PubMed

    Chaudhari, Vishalsingh R; Vyawahare, Aniket; Bhattacharjee, Swapan K; Rao, Basuthkar J

    2015-03-01

    Plant cells are known to differentiate their responses to stress depending up on the light conditions. We observed that UVC sensitive phenotype of light grown asynchronous Chlamydomonas reinhardtii culture (Light culture: LC) can be converted to relatively resistant form by transfer to dark condition (Dark culture: DC) before UVC exposure. The absence of photosystem II (PSII) function, by either atrazine treatment in wild type or in D1 (psbA) null mutant, conferred UV protection even in LC. We provide an indirect support for involvement of reactive oxygen species (ROS) signalling by showing higher UV survival on exposures to mild dose of H2O2 or Methyl Viologen. Circadian trained culture also showed a rhythmic variation in UV sensitivity in response to alternating light-dark (12 h:12 h) entrainment, with maximum UV survival at the end of 12 h dark and minimum at the end of 12 h light. This rhythm failed to maintain in "free running" conditions, making it a non-circadian phenotype. Moreover, atrazine strongly inhibited rhythmic UV sensitivity and conferred a constitutively high resistance, without affecting internal circadian rhythm marker expression. Dampening of UV sensitivity rhythm in Thymine-dimer excision repair mutant (cc-888) suggested the involvement of DNA repair in this phenomenon. DNA excision repair (ER) assays in cell-free extracts revealed that dark incubated cells exhibit higher ER compared to those growing in light, underscoring the role of ER in conferring differential UV sensitivity in dark versus light incubation. We suggest that multiple factors such as ROS changes triggered by differences in PSII activity, concomitant with differential ER efficiency collectively contribute to light-dark (12 h: 12 h) rhythmicity in C. reinhardtii UV sensitivity. PMID:25660990

  10. Enhanced Metabolizing Activity of Human ES Cell-Derived Hepatocytes Using a 3D Culture System with Repeated Exposures to Xenobiotics.

    PubMed

    Kim, Jong Hyun; Jang, Yu Jin; An, Su Yeon; Son, Jeongsang; Lee, Jaehun; Lee, Gyunggyu; Park, Ji Young; Park, Han-Jin; Hwang, Dong-Youn; Kim, Jong-Hoon; Han, Jiyou

    2015-09-01

    Highly homogeneous and functional stem cell-derived hepatocyte-like cells (HLCs) are considered a promising option in the cell-based therapy of liver disease and the development of effective in vitro toxicity screening tools. However, the purity of cells and expression and/or activity of drug metabolizing enzymes in stem cell-derived HLCs are usually too low to be useful for clinical or in vitro applications. Here, we describe a highly optimized hepatic differentiation protocol, which produces >90% (BGO1 and CHA15) albumin-positive HLCs with no purification process from human embryonic stem cell lines. In addition, we show that hepatic enzyme gene expressions and activities were significantly improved by generating 3D spheroidal aggregate of HLCs, compared with 2D HLCs. The 3D differentiation method increased expression of nuclear receptors (NRs) that regulate the proper expression of key hepatic enzymes. Furthermore, significantly increased hepatic functions such as albumin and urea secretion were observed in 3D hepatic spheroids, compared with 2D HLCs. HLCs in the spheroid exhibited morphological and ultrastructural features of normal hepatocytes. Importantly, we show that repeated exposures to xenobiotics facilitated further functional maturation of HLC, as confirmed by increased expression of genes for drug metabolizing enzymes and transcription factors. In conclusion, the 3D culture system with repeated exposures to xenobiotics may be a new strategy for enhancing hepatic metabolizing ability of stem cell-derived HLCs as a cell source for in vitro high-throughput hepatotoxicity models. PMID:26089346

  11. Overexpression of HSPA1A enhances the osteogenic differentiation of bone marrow mesenchymal stem cells via activation of the Wnt/β-catenin signaling pathway

    PubMed Central

    Zhang, Wei; Xue, Deting; Yin, Houfa; Wang, Shengdong; Li, Chao; Chen, Erman; Hu, Dongcai; Tao, Yiqing; Yu, Jiawei; Zheng, Qiang; Gao, Xiang; Pan, Zhijun

    2016-01-01

    HSPA1A, which encodes cognate heat shock protein 70, plays important roles in various cellular metabolic pathways. To investigate its effects on osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), its expression level was compared between undifferentiated and differentiated BMSCs. Rat HSPA1A overexpression in BMSCs increased osteoblast-specific gene expression, alkaline phosphatase activity, and mineral deposition in vitro. Moreover, it upregulated β-catenin and downregulated DKK1 and SOST. The enhanced osteogenesis due to HSPA1A overexpression was partly rescued by a Wnt/β-catenin inhibitor. Additionally, using a rat tibial fracture model, a sheet of HSPA1A-overexpressing BMSCs improved bone fracture healing, as determined by imaging and histological analysis. Taken together, these findings suggest that HSPA1A overexpression enhances osteogenic differentiation of BMSCs, partly through Wnt/β-catenin. PMID:27279016

  12. Adiponectin enhances bone marrow mesenchymal stem cell resistance to flow shear stress through AMP-activated protein kinase signaling

    PubMed Central

    Zhao, Lin; Fan, Chongxi; Zhang, Yu; Yang, Yang; Wang, Dongjin; Deng, Chao; Hu, Wei; Ma, Zhiqiang; Jiang, Shuai; Di, Shouyi; Qin, Zhigang; Lv, Jianjun; Sun, Yang; Yi, Wei

    2016-01-01

    Adiponectin has been demonstrated to protect the cardiovascular system and bone marrow mesenchymal stem cells (BMSCs). However, it is unclear whether adiponectin can protect BMSCs against flow shear stress (FSS). In this study, our aim was to explore the effects of adiponectin on BMSCs and to explore the role of AMP-activated protein kinase (AMPK) signaling in this process. Shear stress significantly inhibits the survival and increases the apoptosis of BMSCs in an intensity-dependent manner. The expression levels of TGF-β, bFGF, VEGF, PDGF, and Bcl2 are simultaneously reduced, and the phosphorylation levels of AMPK and ACC, as well as the expression level of Bax, are increased. Supplementation with adiponectin promotes the survival of BMSCs; reverses the changes in the expression levels of TGF-β, bFGF, VEGF, PDGF, Bcl2, and Bax; and further amplifies the phosphorylation of AMPK and ACC. Furthermore, the protective effects of adiponectin can be partially neutralized by AMPK siRNA. In summary, we have demonstrated for the first time that adiponectin can effectively protect BMSCs from FSS and that this effect depends, at least in part, on the activation of AMPK signaling. PMID:27418435

  13. Adiponectin enhances bone marrow mesenchymal stem cell resistance to flow shear stress through AMP-activated protein kinase signaling.

    PubMed

    Zhao, Lin; Fan, Chongxi; Zhang, Yu; Yang, Yang; Wang, Dongjin; Deng, Chao; Hu, Wei; Ma, Zhiqiang; Jiang, Shuai; Di, Shouyi; Qin, Zhigang; Lv, Jianjun; Sun, Yang; Yi, Wei

    2016-01-01

    Adiponectin has been demonstrated to protect the cardiovascular system and bone marrow mesenchymal stem cells (BMSCs). However, it is unclear whether adiponectin can protect BMSCs against flow shear stress (FSS). In this study, our aim was to explore the effects of adiponectin on BMSCs and to explore the role of AMP-activated protein kinase (AMPK) signaling in this process. Shear stress significantly inhibits the survival and increases the apoptosis of BMSCs in an intensity-dependent manner. The expression levels of TGF-β, bFGF, VEGF, PDGF, and Bcl2 are simultaneously reduced, and the phosphorylation levels of AMPK and ACC, as well as the expression level of Bax, are increased. Supplementation with adiponectin promotes the survival of BMSCs; reverses the changes in the expression levels of TGF-β, bFGF, VEGF, PDGF, Bcl2, and Bax; and further amplifies the phosphorylation of AMPK and ACC. Furthermore, the protective effects of adiponectin can be partially neutralized by AMPK siRNA. In summary, we have demonstrated for the first time that adiponectin can effectively protect BMSCs from FSS and that this effect depends, at least in part, on the activation of AMPK signaling. PMID:27418435

  14. Lending a helping hand, screening chemical libraries for compounds that enhance beta-hexosaminidase A activity in GM2 gangliosidosis cells.

    PubMed

    Tropak, Michael B; Mahuran, Don

    2007-10-01

    Enzyme enhancement therapy is an emerging therapeutic approach that has the potential to treat many genetic diseases. Candidate diseases are those associated with a mutant protein that has difficulty folding and/or assembling into active oligomers in the endoplasmic reticulum. Many lysosomal storage diseases are candidates for enzyme enhancement therapy and have the additional advantage of requiring only 5-10% of normal enzyme levels to reduce and/or prevent substrate accumulation. Our long experience in working with the beta-hexosaminidase (EC 3.2.1.52) isozymes system and its associated deficiencies (Tay-Sachs and Sandhoff disease) lead us to search for possible enzyme enhancement therapy-agents that could treat the chronic forms of these diseases which express 2-5% residual activity. Pharmacological chaperones are enzyme enhancement therapy-agents that are competitive inhibitors of the target enzyme. Each of the known beta-hexosaminidase inhibitors (low microm IC50) increased mutant enzyme levels to >or= 10% in chronic Tay-Sachs fibroblasts and also attenuated the thermo-denaturation of beta-hexosaminidase. To expand the repertoire of pharmacological chaperones to more 'drug-like' compounds, we screened the Maybridge library of 50,000 compounds using a real-time assay for noncarbohydrate-based beta-hexosaminidase inhibitors and identified several that functioned as pharmacological chaperones in patient cells. Two of these inhibitors had derivatives that had been tested in humans for other purposes. These observations lead us to screen the NINDS library of 1040 Food and Drug Administration approved compounds for pharmacological chaperones. Pyrimethamine, an antimalarial drug with well documented pharmacokinetics, was confirmed as a beta-hexosaminidase pharmacological chaperone and compared favorably with our best carbohydrate-based pharmacological chaperone in patient cells with various mutant genotypes. PMID:17894780

  15. Irradiation enhances susceptibility of tumor cells to the antitumor effects of TNF-α activated adipose derived mesenchymal stem cells in breast cancer model

    PubMed Central

    Mohammadpour, Hemn; Pourfathollah, Ali Akbar; Nikougoftar Zarif, Mahin; Shahbazfar, Amir Ali

    2016-01-01

    Gene modified or cytokine activated mesenchymal stem cells (MSCs) have been used as a treatment in various types of cancer. Moreover, irradiation is usually applied as either a standard primary or adjuvant therapy. Here, we showed that the expression of TNF related apoptosis-inducing ligand (TRAIL) and Dickouf-3 (Dkk-3), the promising anticancer proteins, increased in murine adipose-derived mesenchymal stromal cells (AD-MSCs) following activation with TNF-α, resulting in the induction of apoptosis in cancer cells. Also, anticancer effects of TNF-α activated AD-MSCs were intensified with irradiation. In vivo results showed that TNF-α preactivated AD-MSCs combined with irradiation decreased tumor size and increased survival rate in tumor bearing mice. On the other hands, both TNF-α preactivated AD-MSCs with or without irradiation prevented metastasis in ling and liver, and increased apoptosis in tumor mass. Finally, flowcytometry assay demonstrated that naïve AD-MSCs combined with irradiation but not TNF-α activated MSCs with irradiation increased Treg population in lymph node and spleen. Altogether, obtained results suggest that TNF-α activated MSCs combined with irradiation therapy can serve as new strategy in breast cancer therapy. PMID:27329316

  16. Irradiation enhances susceptibility of tumor cells to the antitumor effects of TNF-α activated adipose derived mesenchymal stem cells in breast cancer model.

    PubMed

    Mohammadpour, Hemn; Pourfathollah, Ali Akbar; Nikougoftar Zarif, Mahin; Shahbazfar, Amir Ali

    2016-01-01

    Gene modified or cytokine activated mesenchymal stem cells (MSCs) have been used as a treatment in various types of cancer. Moreover, irradiation is usually applied as either a standard primary or adjuvant therapy. Here, we showed that the expression of TNF related apoptosis-inducing ligand (TRAIL) and Dickouf-3 (Dkk-3), the promising anticancer proteins, increased in murine adipose-derived mesenchymal stromal cells (AD-MSCs) following activation with TNF-α, resulting in the induction of apoptosis in cancer cells. Also, anticancer effects of TNF-α activated AD-MSCs were intensified with irradiation. In vivo results showed that TNF-α preactivated AD-MSCs combined with irradiation decreased tumor size and increased survival rate in tumor bearing mice. On the other hands, both TNF-α preactivated AD-MSCs with or without irradiation prevented metastasis in ling and liver, and increased apoptosis in tumor mass. Finally, flowcytometry assay demonstrated that naïve AD-MSCs combined with irradiation but not TNF-α activated MSCs with irradiation increased Treg population in lymph node and spleen. Altogether, obtained results suggest that TNF-α activated MSCs combined with irradiation therapy can serve as new strategy in breast cancer therapy. PMID:27329316

  17. Incorporation of nanostructured hydroxyapatite and poly(N-isopropylacrylamide) in demineralized bone matrix enhances osteoblast and human mesenchymal stem cell activity.

    PubMed

    Nicoletti, Alessandro; Torricelli, Paola; Bigi, Adriana; Fornasari, Piermaria; Fini, Milena; Moroni, Lorenzo

    2015-01-01

    Demineralized bone matrix (DBM) is currently used in many clinical applications for bone augmentation and repair. DBM is normally characterized by the presence of bone morphogenetic proteins. In this study, the authors have optimized methods to obtain DBM under good manufacturing practice, resulting in enhanced bioactivity. The processed DBM can be used alone, together with nanostructured hydroxyapatite (nanoHA), or dispersed in a physiological carrier or hydrogel. In this study, osteoblasts (MG-63) and human bone marrow derived mesenchymal stem cells (hMSCs) were cultured on DBM pastes made in phosphate buffered saline solution or poly(N-isopropylacrylamide) (PNIPAAM) hydrogels with or without nanoHA. The authors observed that the presence of PNIPAAM reduced osteoblast adhesion, while the addition of nanoHA increased osteoblast adhesion, proliferation, interleukin-6 (IL-6) production, and reduced lactate dehydrogenase (LDH) production. Increasing concentrations of PNIPAAM in combination with nanoHA further increased osteoblast proliferation, and decreased IL-6 and LDH production. Incorporation of PNIPAAM in DBM enhanced hMSCs proliferation and collagen type-I production. Furthermore, a combination of PNIPAAM and nanoHA further increased alkaline phosphatase and osteocalcin production in hMSCs, independently from the concentration of PNIPAAM. This study shows that combinations of DBM with nanoHA and PNIPAAM seem to offer a promising route to enhance cell activity and induce osteogenic differentiation. PMID:26443012

  18. IL-15 Trans-Signaling with the Superagonist RLI Promotes Effector/Memory CD8+ T Cell Responses and Enhances Antitumor Activity of PD-1 Antagonists.

    PubMed

    Desbois, Mélanie; Le Vu, Pauline; Coutzac, Clélia; Marcheteau, Elie; Béal, Coralie; Terme, Magali; Gey, Alain; Morisseau, Sébastien; Teppaz, Géraldine; Boselli, Lisa; Jacques, Yannick; Béchard, David; Tartour, Eric; Cassard, Lydie; Chaput, Nathalie

    2016-07-01

    Tumors with the help of the surrounding environment facilitate the immune suppression in patients, and immunotherapy can counteract this inhibition. Among immunotherapeutic strategies, the immunostimulatory cytokine IL-15 could represent a serious candidate for the reactivation of antitumor immunity. However, exogenous IL-15 may have a limited impact on patients with cancer due to its dependency on IL-15Rα frequently downregulated in cancer patients. In this work, we studied the antitumor activity of the IL-15 superagonist receptor-linker-IL-15 (RLI), designed to bypass the need of endogenous IL-15Rα. RLI consists of human IL-15 covalently linked to the human IL-15Rα sushi(+) domain. In a mouse model of colorectal carcinoma, RLI as a stand-alone treatment could limit tumor outgrowth only when initiated at an early time of tumor development. At a later time, RLI was not effective, coinciding with the strong accumulation of terminally exhausted programmed cell death-1 (PD-1)(high) T cell Ig mucin-3(+) CD8(+) T cells, suggesting that RLI was not able to reactivate terminally exhausted CD8(+) T cells. Combination with PD-1 blocking Ab showed synergistic activity with RLI, but not with IL-15. RLI could induce a greater accumulation of memory CD8(+) T cells and a stronger effector function in comparison with IL-15. Ex vivo stimulation of tumor-infiltrated lymphocytes from 16 patients with renal cell carcinoma demonstrated 56% of a strong tumor-infiltrated lymphocyte reactivation with the combination anti-PD-1/RLI compared with 43 and 6% with RLI or anti-PD-1, respectively. Altogether, this work provides evidence that the sushi-IL-15Rα/IL-15 fusion protein RLI enhances antitumor activity of anti-PD-1 treatment and is a promising approach to stimulate host immunity. PMID:27217584

  19. Inecalcitol, an analog of 1,25D₃, displays enhanced antitumor activity through the induction of apoptosis in a squamous cell carcinoma model system

    PubMed Central

    Ma, Yingyu; Yu, Wei-Dong; Hidalgo, Alejandro A.; Luo, Wei; Delansorne, Remi; Johnson, Candace S.; Trump, Donald L.

    2013-01-01

    Epidemiological data suggest an important role of vitamin D signaling in cancer development and progression, and experimental studies demonstrate that the active vitamin D metabolite 1α, 25-dihydroxyvitamin D₃ (1,25D₃) has broad spectrum antitumor activity. Hypercalcemia has often been suggested to limit the clinical application of these data. The 14-epi-analog of 1,25D₃, inecalcitol [19-nor-14-epi-23-yne-1,25-(OH)₂D₃; TX522], was developed to have superagonistic antitumor activities but low hypercalcemia potential. We examined the antitumor activity of inecalcitol and the underlying mechanisms in a murine squamous cell carcinoma (SCC) model system. In vitro, compared with 1,25D₃, inecalcitol showed enhanced vitamin D receptor (VDR)-mediated transcriptional activity. Inecalcitol suppressed SCC cell proliferation in a dose-dependent manner with an IC₅₀ value 30 times lower than that of 1,25D₃. Both inecalcitol and 1,25D₃ induced a comparable level of G₀/G₁ cell cycle arrest in SCC cells. The level of apoptosis induced by inecalcitol was markedly higher than that of 1,25D₃. Apoptosis was mediated through the activation of the caspase 8/10- caspase 3 pathway. Further, inecalcitol markedly inhibited the mRNA and protein expression of c-IAP1 and XIAP compared with 1,25D₃. In vivo, inecalcitol inhibits SCC tumor growth in a dose-dependent fashion. Notably, inecalcitol induced a significantly higher level of apoptosis in the SCC xenograft model. While in vitro inecalcitol demonstrates apparent enhanced VDR binding and antiproliferative effects compared to 1,25D₃, in vivo these advantages disappear; at doses of inecalcitol that have equivalent antitumor effects, similar hypercalcemia is seen. This may be explained by the pharmacokinetics of 1,25D₃ vs. inecalcitol and attributed to the much shorter serum half-life of inecalcitol.We show that inecalcitol has potent antitumor activity in the SCC model system, and this is associated with a

  20. Curcumin enhances the antitumor effect of ABT-737 via activation of the ROS-ASK1-JNK pathway in hepatocellular carcinoma cells

    PubMed Central

    ZHENG, RUINIAN; YOU, ZHIJIAN; JIA, JUN; LIN, SHUNHUAN; HAN, SHUAI; LIU, AIXUE; LONG, HUIDONG; WANG, SENMING

    2016-01-01

    At present, the therapeutic treatment strategies for patients with hepatocellular carcinoma (HCC) remain unsatisfactory, and novel methods are urgently required to treat this disease. Members of the B cell lymphoma (Bcl)-2 family are anti-apoptotic proteins, which are commonly expressed at high levels in certain HCC tissues and positively correlate with the treatment resistance of patients with HCC. ABT-737, an inhibitor of Bcl-2 anti-apoptotic proteins, has been demonstrated to exhibit potent antitumor effects in several types of tumor, including HCC. However, treatment with ABT-737 alone also activates certain pro-survival signaling pathways, which attenuate the antitumor validity of ABT-737. Curcumin, which is obtained from Curcuma longa, is also an antitumor potentiator in multiple types of cancer. In the present study, the synergistic effect of curcumin and ABT-737 on HCC cells was investigated for the first time, to the best of our knowledge. It was found that curcumin markedly enhanced the antitumor effects of ABT-737 on HepG2 cells, which was partially dependent on the induction of apoptosis, according to western blot analysis and flow cytometric apoptosis analysis. In addition, the sustained activation of the ROS-ASK1-c-Jun N-terminal kinase pathway may be an important mediator of the synergistic effect of curcumin and ABT-737. Collectively, these results indicated that the combination of curcumin and ABT-737 can efficaciously induce the death of HCC cells, and may offer a potential treatment strategy for patients with HCC. PMID:26707143

  1. Enhanced Anticancer Activity of Gemcitabine in Combination with Noscapine via Antiangiogenic and Apoptotic Pathway against Non-Small Cell Lung Cancer

    PubMed Central

    Chougule, Mahavir B.; Patel, Apurva; Sachdeva, Pratik; Jackson, Tanise; Singh, Mandip

    2011-01-01

    Background The aim of this investigation was to evaluate the anticancer activity of Noscapine (Nos) and Gemcitabine (Gem) combination (NGC) against non-small cell lung cancer (NSCLC) and to elucidate the underlying mechanism of action. Methods Isobolographic method was used to calculate combination index values from cytotoxicity data. In vitro antiangiogenic and apoptotic activity of Nos, Gem and NGC was evaluated. For in vivo studies, female athymic Nu/nu mice were xenografted with H460 tumors and the efficacy of Nos, Gem, or NGC was determined. Protein expressions by immunohistochemical staining were evaluated in harvested tumor tissues. Results The CI values (<0.59) were suggestive of synergistic behavior between Nos and Gem. NGC treatment showed significantly inhibited tube formation and increased percentage of apoptotic cells. NGC, Gem and Nos treatment reduced tumor volume by 82.9±4.5 percent, 39.4±5.8 percent and 34.2±5.7 percent respectively. Specifically, NGC treatment decreased expression cell survival proteins; VEGF, CD31 staining and microvessel density and enhanced DNA fragmentation and cleaved caspase 3 levels compared to single agent treated and control groups. Conclusion Nos potentiated the anticancer activity of Gem in an additive to synergistic manner against lung cancer via antiangiogenic and apoptotic pathways. These findings suggest potential benefit for use of NGC chemotherapy for treatment of lung cancer. PMID:22102891

  2. Parathyroid hormone enhances fluid shear-induced [Ca2+]i signaling in osteoblastic cells through activation of mechanosensitive and voltage-sensitive Ca2+ channels

    NASA Technical Reports Server (NTRS)

    Ryder, K. D.; Duncan, R. L.

    2001-01-01

    Osteoblasts respond to both fluid shear and parathyroid hormone (PTH) with a rapid increase in intracellular calcium concentration ([Ca2+]i). Because both stimuli modulate the kinetics of the mechanosensitive cation channel (MSCC), we postulated PTH would enhance the [Ca2+]i response to fluid shear by increasing the sensitivity of MSCCs. After a 3-minute preflow at 1 dyne/cm2, MC3T3-E1 cells were subjected to various levels of shear and changes in [Ca2+]i were assessed using Fura-2. Pretreatment with 50 nM bovine PTH(1-34) [bPTH(1-34)] significantly enhanced the shear magnitude-dependent increase in [Ca2+]i. Gadolinium (Gd3+), an MSCC blocker, significantly inhibited the mean peak [Ca2+]i response to shear and shear + bPTH(1-34). Nifedipine (Nif), an L-type voltage-sensitive Ca2+ channel (VSCC) blocker, also significantly reduced the [Ca2+]i response to shear + bPTH(1-34), but not to shear alone, suggesting VSCC activation plays an interactive role in the action of these stimuli together. Activation of either the protein kinase C (PKC) or protein kinase A (PKA) pathways with specific agonists indicated that PKC activation did not alter the Ca2+ response to shear, whereas PKA activation significantly increased the [Ca2+]i response to lower magnitudes of shear. bPTH(1-34), which activates both pathways, induced the greatest [Ca2+]i response at each level of shear, suggesting an interaction of these pathways in this response. These data indicate that PTH significantly enhances the [Ca2+]i response to shear primarily via PKA modulation of the MSCC and VSCC.

  3. E1A represses apolipoprotein AI enhancer activity in liver cells through a pRb- and CBP-independent pathway.

    PubMed Central

    Kilbourne, E J; Evans, M J; Karathanasis, S K

    1998-01-01

    The apolipoprotein AI (apoAI) promoter/enhancer contains multiple cis -acting elements on which a variety of hepatocyte-enriched and ubiquitous transcription factors function synergistically to regulate liver-specific transcription. Adenovirus E1A proteins repress tissue-specific gene expression and disrupt the differentiated state in a variety of cell types. In this study expression of E1A 12Sor 13S in hepatoblastoma HepG2 cells repressed apoAI enhancer activity 8-fold. Deletion mapping analysis showed that inhibition by E1A was mediated by the apoAI promoter site B. E1A selectively inhibited the ability of HNF3beta and HNF3alpha to transactivate reporter genes controlled by the apoAI site B and the HNF3 binding site from the transthyretin promoter. The E1A-mediated repression of HNF3 activity was not reversed by overexpression of HNF3beta nor did E1A alter nuclear HNF3beta protein levels or inhibit HNF3 binding to DNA in mobility shift assays. Overexpression of two cofactors known to interact with E1A, pRb and CBP failed to overcome inhibition of HNF3 activity. Similarly, mutations in E1A that disrupt its interaction with pRb or CBP did not compromise its ability to repress HNF3beta transcriptional activity. These data suggest that E1A inhibits HNF3 activity by inactivating a limiting cofactor(s) distinct from pRb or CBP. PMID:9512550

  4. Enhancement of glucose uptake in muscular cell by soybean charged peptides isolated by electrodialysis with ultrafiltration membranes (EDUF): activation of the AMPK pathway.

    PubMed

    Roblet, Cyril; Doyen, Alain; Amiot, Jean; Pilon, Geneviève; Marette, André; Bazinet, Laurent

    2014-03-15

    Soy peptides consumption has been associated with beneficial effects in type 2 diabetes patients. However, the peptide fractions responsible for these effects, and their mechanisms of action, have not been identified yet. In this study, we have isolated soybean peptides by electrodialysis with an ultrafiltration membrane (EDUF) at 50 V/100 kDa, and tested them for their capacity to improve glucose uptake in L6 muscle cells. We observed that these fractions were able to significantly enhance glucose uptake in the presence of insulin. The reported bioactivity would be due to the low molecular weight peptides (300-500 Da) recovered. Moreover, we observed that an enhancement of glucose uptake was correlated to the activation of the AMPK enzyme, well known for its capacity to increase glucose uptake in muscle cells. To our knowledge, this is the first time that bioactive peptides with glucose uptake activity have been isolated from a complex soy matrix, and that the implication of AMPK in it is demonstrated. PMID:24206695

  5. ERα propelled aberrant global DNA hypermethylation by activating the DNMT1 gene to enhance anticancer drug resistance in human breast cancer cells

    PubMed Central

    Lv, Jinghuan; Ding, Haijian; Zhang, Xin A.; Shao, Lipei; Yang, Nan; Cheng, He; Sun, Luan; Zhu, Dongliang; Yang, Yin; Li, Andi; Han, Xiao; Sun, Yujie

    2016-01-01

    Drug-induced aberrant DNA methylation is the first identified epigenetic marker involved in chemotherapy resistance. Understanding how the aberrant DNA methylation is acquired would impact cancer treatment in theory and practice. In this study we systematically investigated whether and how ERα propelled aberrant global DNA hypermethylation in the context of breast cancer drug resistance. Our data demonstrated that anticancer drug paclitaxel (PTX) augmented ERα binding to the DNMT1 and DNMT3b promoters to activate DNMT1 and DNMT3b genes, enhancing the PTX resistance of breast cancer cells. In support of these observations, estrogen enhanced multi-drug resistance of breast cancer cells by up-regulation of DNMT1 and DNMT3b genes. Nevertheless, the aberrant global DNA hypermethylation was dominantly induced by ERα-activated-DNMT1, since DNMT1 over-expression significantly increased global DNA methylation and DNMT1 knockdown reversed the ERα-induced global DNA methylation. Altering DNMT3b expression had no detectable effect on global DNA methylation. Consistently, the expression level of DNMT1 was positively correlated with ERα in 78 breast cancer tissue samples shown by our immunohistochemistry (IHC) analysis and negatively correlated with relapse-free survival (RFS) and distance metastasis-free survival (DMFS) of ERα-positive breast cancer patients. This study provides a new perspective for understanding the mechanism underlying drug-resistance-facilitating aberrant DNA methylation in breast cancer and other estrogen dependent tumors. PMID:26980709

  6. How Soluble GARP Enhances TGFβ Activation

    PubMed Central

    Fridrich, Sven; Hahn, Susanne A.; Linzmaier, Marion; Felten, Matthias; Zwarg, Jenny; Lennerz, Volker; Tuettenberg, Andrea; Stöcker, Walter

    2016-01-01

    GARP (glycoprotein A repetitions predominant) is a cell surface receptor on regulatory T-lymphocytes, platelets, hepatic stellate cells and certain cancer cells. Its described function is the binding and accommodation of latent TGFβ (transforming growth factor), before the activation and release of the mature cytokine. For regulatory T cells it was shown that a knockdown of GARP or a treatment with blocking antibodies dramatically decreases their immune suppressive capacity. This confirms a fundamental role of GARP in the basic function of regulatory T cells. Prerequisites postulated for physiological GARP function include membrane anchorage of GARP, disulfide bridges between the propeptide of TGFβ and GARP and connection of this propeptide to αvβ6 or αvβ8 integrins of target cells during mechanical TGFβ release. Other studies indicate the existence of soluble GARP complexes and a functionality of soluble GARP alone. In order to clarify the underlying molecular mechanism, we expressed and purified recombinant TGFβ and a soluble variant of GARP. Surprisingly, soluble GARP and TGFβ formed stable non-covalent complexes in addition to disulfide-coupled complexes, depending on the redox conditions of the microenvironment. We also show that soluble GARP alone and the two variants of complexes mediate different levels of TGFβ activity. TGFβ activation is enhanced by the non-covalent GARP-TGFβ complex already at low (nanomolar) concentrations, at which GARP alone does not show any effect. This supports the idea of soluble GARP acting as immune modulator in vivo. PMID:27054568

  7. The phosphodiesterase 4 inhibitor roflumilast augments the Th17-promoting capability of dendritic cells by enhancing IL-23 production, and impairs their T cell stimulatory activity due to elevated IL-10.

    PubMed

    Bros, Matthias; Montermann, Evelyn; Cholaszczyńska, Anna; Reske-Kunz, Angelika B

    2016-06-01

    Phosphodiesterase 4 (PDE4) inhibitors serve to prevent degradation of the intracellular second messenger cAMP, resulting in broad anti-inflammatory effects on different cell types including immune cells. Agents that elevate cAMP levels via activation of adenylate cyclase have been shown to imprint a Th17-promoting capacity in dendritic cells (DCs). Therefore, we studied the potential of therapeutically relevant PDE inhibitors to induce a pronounced Th17-skewing capacity in DCs. Here we show that mouse bone marrow-derived (BM-) DCs when treated with the PDE4 inhibitor roflumilast (ROF, trade name: Daxas) in the course of stimulation with LPS (ROF-DCs) evoked elevated IL-17 levels in cocultured allogeneic T cells. In addition, as compared with control settings, levels of IFN-γ remained unaltered, while contents of Th2 cytokines (IL-5, IL-10) were diminished. ROF enhanced expression of the Th17-promoting factor IL-23 in BM-DCs. In line, neutralizing antibodies specific for IL-23 or IL-6 when applied to DC/T cell cocultures partially inhibited the IL17-promoting effect of ROF-DCs. Furthermore, ROF-DCs displayed a markedly diminished allogeneic T cell stimulatory capacity due to enhanced production of IL-10, which was restored upon application of IL-10 specific neutralizing antibody to DC/T cell cocultures. Both the IL-17-inducing and impaired T cell stimulatory capacity of BM-DCs were mimicked by a specific activator of protein kinase A, while stimulation of EPACs (exchange proteins of activated cAMP) did not yield such effects. Taken together, our findings suggest that PDE4 inhibitors aside from their broad overall anti-inflammatory effects may enhance the Th17-polarizing capacity in DCs as an unwanted side effect. PMID:27070502

  8. Interleukin-4 enhances trafficking and functional activities of GM-CSF-stimulated mouse myeloid-derived dendritic cells at late differentiation stage

    SciTech Connect

    Yin, Shu-Yi; Wang, Chien-Yu; Yang, Ning-Sun

    2011-09-10

    Mouse bone marrow-derived dendritic cells (BMDCs) are being employed as an important model for translational research into the development of DC-based therapeutics. For such use, the localization and specialized mobility of injected BMDCs within specific immune tissues are known to define their immunity and usefulness in vivo. In this study, we demonstrate that IL-4, a key driving factor for in vitro propagation and differentiation of BMDCs, when added during a late culture stage can enhance the in vivo trafficking activity of granulocyte-macrophage colony-stimulating factor (GM-CSF)-induced BMDCs. It suggests that the temporal control of IL-4 stimulation during the in vitro generation of DCs drastically affects the DC trafficking efficiency in vivo. With this modification of IL-4 stimulation, we also show that much less cytokine was needed to generate BMDCs with high purity and yield that secrete a high level of cytokines and possess a good capacity to induce proliferation of allogeneic CD4{sup +}T cells, as compared to the conventional method that uses a continuous supplement of GM-CSF and IL-4 throughout cultivation. These results provide us with an important know-how for differentiation of BMDCs from myeloid stem cells, and for use of other immune cells in related medical or stem cell applications.

  9. Cardiosphere Derived Cells from Pediatric End-Stage Heart Failure Patients Have Enhanced Functional Activity due to the Heat Shock Response Regulating the Secretome

    PubMed Central

    Sharma, Sudhish; Mishra, Rachana; Simpson, David; Wehman, Brody; Colletti, Evan J.; Deshmukh, Savitha; Datla, Srinivasa Raju; Balachandran, Keerti; Guo, Yin; Chen, Ling; Siddiqui, Osama T.; Kaushal, Shalesh; Kaushal, Sunjay

    2016-01-01

    We have demonstrated that human neonatal cardiosphere derived cells (CDCs) derived from the young are more regenerative due to their robust secretome. However, it is unclear how the decompensated pediatric heart impacts the functional activity of their CDCs. Our aim was to characterize the potency of pediatric CDCs derived from normal functioning myocardium of control heart disease (CHD) patients to those generated from age matched end stage heart failure (ESHF) patients and determine the mechanisms involved. ESHF derived CDCs contained a higher number of c-kit+, Islet-1+, and Sca-1+ cells. When transplanted into an infarcted rodent model, ESHF derived CDCs significantly demonstrated higher restoration of ventricular function, prevented adverse remodeling, and enhanced angiogenesis when compared to CHD patients. The superior functional recovery of the ESHF derived CDCs was mediated in part by increased SDF-1α and VEGF-A secretion resulting in augmented recruitment of endogenous stem cells and proliferation of cardiomyocytes. We determined the mechanism is due to the secretome directed by the heat shock response (HSR), which is supported by three lines of evidence. Firstly, gain of function studies demonstrated that increased HSR induced the lower functioning CHD derived CDCs to significantly restore myocardial function. Secondly, loss-of function studies targeting the HSR impaired the ability of the ESHF derived CDCs to functionally recover the injured myocardium. Finally, the native ESHF myocardium had an increased number of c-kit+ CSCs. These findings suggest that the HSR enhances the functional activity of ESHF derived CDCs by increasing their secretome activity, notably SDF-1α and VEGF-A. PMID:25752510

  10. Immobilization of a Metal-Nitrogen-Carbon Catalyst on Activated Carbon with Enhanced Cathode Performance in Microbial Fuel Cells.

    PubMed

    Yang, Wulin; Logan, Bruce E

    2016-08-23

    Applications of microbial fuel cells (MFCs) are limited in part by low power densities mainly due to cathode performance. Successful immobilization of an Fe-N-C co-catalyst on activated carbon (Fe-N-C/AC) improved the oxygen reduction reaction to nearly a four-electron transfer, compared to a twoelectron transfer achieved using AC. With acetate as the fuel, the maximum power density was 4.7±0.2 W m(-2) , which is higher than any previous report for an air-cathode MFC. With domestic wastewater as a fuel, MFCs with the Fe-N-C/AC cathode produced up to 0.8±0.03 W m(-2) , which was twice that obtained with a Pt-catalyzed cathode. The use of this Fe-N-C/AC catalyst can therefore substantially increase power production, and enable broader applications of MFCs for renewable electricity generation using waste materials. PMID:27416965

  11. Pokemon enhances proliferation, cell cycle progression and anti-apoptosis activity of colorectal cancer independently of p14ARF-MDM2-p53 pathway.

    PubMed

    Zhao, Yi; Yao, Yun-hong; Li, Li; An, Wei-fang; Chen, Hong-zen; Sun, Li-ping; Kang, Hai-xian; Wang, Sen; Hu, Xin-rong

    2014-12-01

    Pokemon has been showed to directly suppress p14(ARF) expression and also to overexpress in multiple cancers. However, p14(ARF)-MDM2-p53 pathway is usually aberrant in colorectal cancer (CRC). The aim is to confirm whether Pokemon plays a role in CRC and explore whether Pokemon works through p14(ARF)-MDM2-p53 pathway in CRC. Immunohistochemistry for Pokemon, p14(ARF) and Mtp53 protein was applied to 45 colorectal epitheliums (CREs), 42 colorectal adenomas (CRAs) and 66 CRCs. Pokemon was knocked down with RNAi technique in CRC cell line Lovo to detect mRNA expression of p14(ARF) with qRT-PCR, cell proliferation with CCK8 assay, and cell cycle and apoptosis with flowcytometry analysis. The protein expression rates were significantly higher in CRC (75.8%) than in CRE (22.2 %) or CRA (38.1%) for Pokemon and higher in CRC (53.0%) than in CRE (0) or CRA (4.8%) for Mtp53, but not significantly different in CRC (86.4 %) versus CRE (93.3%) or CRA (90.5 %) for p14(ARF). Higher expression rate of Pokemon was associated with lymph node metastasis and higher Duke's stage. After knockdown of Pokemon in Lovo cells, the mRNA level of p14(ARF) was not significantly changed, the cell proliferation ability was decreased by 20.6%, cell cycle was arrested by 55.7% in G0/G1 phase, and apoptosis rate was increased by 19.0%. Pokemon enhanced the oncogenesis of CRC by promoting proliferation, cell cycle progression and anti-apoptosis activity of CRC cells independently of p14(ARF)-MDM2-p53 pathway. This finding provided a novel idea for understanding and further studying the molecular mechanism of Pokemon on carcinogenesis of CRC. PMID:25367850

  12. Effects of the Concomitant Activation of ON and OFF Retinal Ganglion Cells on the Visual Thalamus: Evidence for an Enhanced Recruitment of GABAergic Cells

    PubMed Central

    Montesano, Giovanni; Belfiore, Marcello; Ripamonti, Maddalena; Arena, Alessandro; Lamanna, Jacopo; Ferro, Mattia; Zimarino, Vincenzo; Ambrosi, Alessandro; Malgaroli, Antonio

    2015-01-01

    A fundamental question in vision neuroscience is how parallel processing of Retinal Ganglion Cell (RGC) signals is integrated at the level of the visual thalamus. It is well-known that parallel ON-OFF pathways generate output signals from the retina that are conveyed to the dorsal lateral geniculate nucleus (dLGN). However, it is unclear how these signals distribute onto thalamic cells and how these two pathways interact. Here, by electrophysiological recordings and c-Fos expression analysis, we characterized the effects of pharmacological manipulations of the retinal circuit aimed at inducing either a selective activation of a single pathway, OFF RGCs [intravitreal L-(+)-2-Amino-4-phosphonobutyric, L-AP4] or an unregulated activity of all classes of RGCs (intravitreal 4-Aminopyridine, 4-AP). In in vivo experiments, the analysis of c-Fos expression in the dLGN showed that these two manipulations recruited active cells from the same area, the lateral edge of the dLGN. Despite this similarity, the unregulated co-activation of both ON and OFF pathways by 4-AP yielded a much stronger recruitment of GABAergic interneurons in the dLGN when compared to L-AP4 pure OFF activation. The increased activation of an inhibitory thalamic network by a high level of unregulated discharge of ON and OFF RGCs might suggest that cross-inhibitory pathways between opposing visual channels are presumably replicated at multiple levels in the visual pathway, thus increasing the filtering ability for non-informative or noisy visual signals. PMID:26635537

  13. Effects of the Concomitant Activation of ON and OFF Retinal Ganglion Cells on the Visual Thalamus: Evidence for an Enhanced Recruitment of GABAergic Cells.

    PubMed

    Montesano, Giovanni; Belfiore, Marcello; Ripamonti, Maddalena; Arena, Alessandro; Lamanna, Jacopo; Ferro, Mattia; Zimarino, Vincenzo; Ambrosi, Alessandro; Malgaroli, Antonio

    2015-01-01

    A fundamental question in vision neuroscience is how parallel processing of Retinal Ganglion Cell (RGC) signals is integrated at the level of the visual thalamus. It is well-known that parallel ON-OFF pathways generate output signals from the retina that are conveyed to the dorsal lateral geniculate nucleus (dLGN). However, it is unclear how these signals distribute onto thalamic cells and how these two pathways interact. Here, by electrophysiological recordings and c-Fos expression analysis, we characterized the effects of pharmacological manipulations of the retinal circuit aimed at inducing either a selective activation of a single pathway, OFF RGCs [intravitreal L-(+)-2-Amino-4-phosphonobutyric, L-AP4] or an unregulated activity of all classes of RGCs (intravitreal 4-Aminopyridine, 4-AP). In in vivo experiments, the analysis of c-Fos expression in the dLGN showed that these two manipulations recruited active cells from the same area, the lateral edge of the dLGN. Despite this similarity, the unregulated co-activation of both ON and OFF pathways by 4-AP yielded a much stronger recruitment of GABAergic interneurons in the dLGN when compared to L-AP4 pure OFF activation. The increased activation of an inhibitory thalamic network by a high level of unregulated discharge of ON and OFF RGCs might suggest that cross-inhibitory pathways between opposing visual channels are presumably replicated at multiple levels in the visual pathway, thus increasing the filtering ability for non-informative or noisy visual signals. PMID:26635537

  14. Angiotensin II enhances epithelial-to-mesenchymal transition through the interaction between activated hepatic stellate cells and the stromal cell-derived factor-1/CXCR4 axis in intrahepatic cholangiocarcinoma.

    PubMed

    Okamoto, Koichi; Tajima, Hidehiro; Nakanuma, Shinichi; Sakai, Seisho; Makino, Isamu; Kinoshita, Jun; Hayashi, Hironori; Nakamura, Keishi; Oyama, Katsunobu; Nakagawara, Hisatoshi; Fujita, Hideto; Takamura, Hiroyuki; Ninomiya, Itasu; Kitagawa, Hirohisa; Fushida, Sachio; Fujimura, Takashi; Harada, Shinichi; Wakayama, Tomohiko; Iseki, Shoichi; Ohta, Tetsuo

    2012-08-01

    We previously reported that hepatic stellate cells (HSCs) activated by angiotensin II (AngII) facilitate stromal fibrosis and tumor progression in intrahepatic cholangiocarcinoma (ICC). AngII has been known as a growth factor which can promote epithelial-to-mesenchymal transition (EMT) in renal epithelial cells, alveolar epithelial cells and peritoneal mesothelial cells. However, in the past, the relationship between AngII and stromal cell-derived factor-1 (SDF-1) in the microenvironment around cancer and the role of AngII on EMT of cancer cells has not been reported in detail. SDF-1 and its specific receptor, CXCR4, are now receiving attention as a mechanism of cell progression and metastasis. In this study, we examined whether activated HSCs promote tumor fibrogenesis, tumor progression and distant metastasis by mediating EMT via the AngII/AngII type 1 receptor (AT-1) and the SDF-1/CXCR4 axis. Two human ICC cell lines and a human HSC line, LI-90, express CXCR4. Significantly higher concentration of SDF-1α was released into the supernatant of LI-90 cells to which AngII had been added. SDF-1α increased the proliferative activity of HSCs and enhanced the activation of HSCs as a growth factor. Furthermore, addition of SDF-1α and AngII enhanced the increase of the migratory capability and vimentin expression, reduced E-cadherin expression, and translocated the expression of β-catenin into the nucleus and cytoplasm in ICC cells. Co-culture with HSCs also enhanced the migratory capability of ICC cells. These findings suggest that SDF-1α, released from activated HSCs and AngII, play important roles in cancer progression, tumor fibrogenesis, and migration in autocrine and paracrine fashion by mediating EMT. Our mechanistic findings may provide pivotal insights into the molecular mechanism of the AngII and SDF-1α-initiated signaling pathway that regulates fibrogenesis in cancerous stroma, tumor progression and meta-stasis of tumor cells expressing AT-1 and CXCR4

  15. Peroxidase-like activity of Fe3O4@carbon nanoparticles enhances ascorbic acid-induced oxidative stress and selective damage to PC-3 prostate cancer cells.

    PubMed

    An, Qiao; Sun, Chuanyu; Li, Dian; Xu, Ke; Guo, Jia; Wang, Changchun

    2013-12-26

    Ascorbic acid (AA) is capable of inhibiting cancer cell growth by perturbing the normal redox state of cells and causing toxic effects through the generation of abundant reactive-oxygen species (ROS). However, the clinical utility of AA at a tolerable dosage is plagued by a relatively low in vivo efficacy. This study describes the development of a peroxidase-like composite nanoparticle for use in an AA-mediated therapeutic strategy. On the basis of a high-throughput, one-pot solvothermal approach, Fe3O4@C nanoparticles (NPs) were synthesized and then modified with folic acid (FA) on the surface. Particular focus is concentrated on the assessment of peroxidase-like catalytic activity by a chromogenic reaction in the presence of H2O2. The carbon shell of Fe3O4@C NPs contains partially graphitized carbon and thus facilitates electron transfer in the catalytic decomposition of H2O2, leading to the production of highly reactive hydroxyl radicals. Along with magnetic responsiveness and receptor-binding specificity, the intrinsic peroxidase-like catalytic activity of Fe3O4@C-FA NPs pronouncedly promotes AA-induced oxidative stress in cancer cells and optimizes the ROS-mediated antineoplastic efficacy of exogenous AA. In vitro experiments using human prostate cancer PC-3 cells demonstrate that Fe3O4@C-FA NPs serve as a peroxidase mimic to create hydroxyl radicals from endogenous H2O2 that is yielded in response to exogenous AA via an oxidative stress process. The usage of a dual agent leads to the enhanced cytotoxicity of PC-3 cells, and, because of the synergistic effect of NPs, the administrated dosage of AA is reduced markedly. However, because normal cells (HEK 293T cells) appear to have a higher capacity to cope with additionally generated ROS than cancer cells, the NP-AA combination shows little damage in this case, proving that selective killing of cancer cells could be achieved owing to preferential accumulation of ROS in cancer cells. A possible ROS

  16. Melatonin inhibits AP-2β/hTERT, NF-κB/COX-2 and Akt/ERK and activates caspase/Cyto C signaling to enhance the antitumor activity of berberine in lung cancer cells

    PubMed Central

    Zhang, Changlin; Qin, Lijun; Wang, Jingshu; Yu, Zhenlong; Shi, Dingbo; Xiao, Xiangsheng; Xie, Fangyun; Huang, Wenlin; Deng, Wuguo

    2016-01-01

    Melatonin, a molecule produced throughout the animal and plant kingdoms, and berberine, a plant derived agent, both exhibit antitumor and multiple biological and pharmacological effects, but they have never been combined altogether for the inhibition of human lung cancers. In this study, we investigated the role and underlying mechanisms of melatonin in the regulation of antitumor activity of berberine in lung cancer cells. Treatment with melatonin effectively increased the berberine-mediated inhibitions of cell proliferation, colony formation and cell migration, thereby enhancing the sensitivities of lung cancer cells to berberine. Melatonin also markedly increased apoptosis induced by berberine. Further mechanism study showed that melatonin promoted the cleavage of caspse-9 and PARP, enhanced the inhibition of Bcl2, and triggered the releasing of cytochrome C (Cyto C), thereby increasing the berberine-induced apoptosis. Melatonin also enhanced the berberine-mediated inhibition of telomerase reverses transcriptase (hTERT) by down-regulating the expression of AP-2β and its binding on hTERT promoter. Moreover, melatonin enhanced the berberine-mediated inhibition of cyclooxygenase 2 (COX-2) by inhibiting the nuclear translocation of NF-κB and its binding on COX-2 promoter. Melatonin also increased the berberine-mediated inhibition of the phosphorylated Akt and ERK. Collectively, our results demonstrated that melatonin enhanced the antitumor activity of berberine by activating caspase/Cyto C and inhibiting AP-2β/hTERT, NF-κB/COX-2 and Akt/ERK signaling pathways. Our findings provide new insights in exploring the potential therapeutic strategies and novel targets for lung cancer treatment. PMID:26672764

  17. Melatonin inhibits AP-2β/hTERT, NF-κB/COX-2 and Akt/ERK and activates caspase/Cyto C signaling to enhance the antitumor activity of berberine in lung cancer cells.

    PubMed

    Lu, Jian-Jun; Fu, Lingyi; Tang, Zhipeng; Zhang, Changlin; Qin, Lijun; Wang, Jingshu; Yu, Zhenlong; Shi, Dingbo; Xiao, Xiangsheng; Xie, Fangyun; Huang, Wenlin; Deng, Wuguo

    2016-01-19

    Melatonin, a molecule produced throughout the animal and plant kingdoms, and berberine, a plant derived agent, both exhibit antitumor and multiple biological and pharmacological effects, but they have never been combined altogether for the inhibition of human lung cancers. In this study, we investigated the role and underlying mechanisms of melatonin in the regulation of antitumor activity of berberine in lung cancer cells. Treatment with melatonin effectively increased the berberine-mediated inhibitions of cell proliferation, colony formation and cell migration, thereby enhancing the sensitivities of lung cancer cells to berberine. Melatonin also markedly increased apoptosis induced by berberine. Further mechanism study showed that melatonin promoted the cleavage of caspse-9 and PARP, enhanced the inhibition of Bcl2, and triggered the releasing of cytochrome C (Cyto C), thereby increasing the berberine-induced apoptosis. Melatonin also enhanced the berberine-mediated inhibition of telomerase reverses transcriptase (hTERT) by down-regulating the expression of AP-2β and its binding on hTERT promoter. Moreover, melatonin enhanced the berberine-mediated inhibition of cyclooxygenase 2 (COX-2) by inhibiting the nuclear translocation of NF-κB and its binding on COX-2 promoter. Melatonin also increased the berberine-mediated inhibition of the phosphorylated Akt and ERK. Collectively, our results demonstrated that melatonin enhanced the antitumor activity of berberine by activating caspase/Cyto C and inhibiting AP-2β/hTERT, NF-κB/COX-2 and Akt/ERK signaling pathways. Our findings provide new insights in exploring the potential therapeutic strategies and novel targets for lung cancer treatment. PMID:26672764

  18. EBV-Encoded LMP1 Upregulates Igκ 3′Enhancer Activity and Igκ Expression in Nasopharyngeal Cancer Cells by Activating the Ets-1 through ERKs Signaling

    PubMed Central

    Zheng, Hui; Hu, Duosha; Li, Ming; Tao, Yongguang; Bode, Ann M.; Dong, Zigang; Cao, Ya

    2012-01-01

    Accumulating evidence indicates that epithelial cancer cells, including nasopharyngeal carcinoma (NPC) cells, express immunoglobulins (Igs). We previously found that the expression of the kappa light chain protein in NPC cells can be upregulated by the EBV-encoded latent membrane protein 1 (LMP1). In the present study, we used NPC cell lines as models and found that LMP1-augmented kappa production corresponds with elevations in ERKs phosphorylation. PD98059 attenuates LMP1-induced ERKs phosphorylation resulting in decreased expression of the kappa light chain. ERK-specific small interfering RNA blunts LMP1-induced kappa light chain gene expression. Luciferase reporter assays demonstrate that immunoglobulin κ 3′ enhancer (3′Eκ) is active in Igκ-expressing NPC cells and LMP1 upregulates the activity of 3′Eκ in NPC cells. Moreover, mutation analysis of the PU binding site in 3′Eκ and inhibition of the MEK/ERKs pathway by PD98059 indicate that the PU site is functional and LMP1-enhanced 3′Eκ activity is partly regulated by this site. PD98059 treatment also leads to a concentration-dependent inhibition of LMP1-induced Ets-1 expression and phosphorylation, which corresponds with a dose-dependent attenuation of LMP1-induced ERK phosphorylation and kappa light chain expression. Suppression of endogenous Ets-1 by small interfering RNA is accompanied by a decrease of Ig kappa light chain expression. Gel shift assays using nuclear extracts of NPC cells indicate that the transcription factor Ets-1 is recruited by LMP1 to the PU motif within 3′Eκ in vitro. ChIP assays further demonstrate Ets-1 binding to the PU motif of 3′Eκ in cells. These results suggest that LMP1 upregulates 3′Eκ activity and kappa gene expression by activating the Ets-1 transcription factor through the ERKs signaling pathway. Our studies provide evidence for a novel regulatory mechanism of kappa expression, by which virus-encoded proteins activate the kappa 3′ enhancer through

  19. Sox9 is a β-catenin-regulated transcription factor that enhances the colony-forming activity of squamous cell carcinoma cells.

    PubMed

    Li, Xue Mei; Piao, Yong Jun; Sohn, Kyung-Cheol; Ha, Jeong-Min; Im, Myung; Seo, Young-Joon; Whang, Kyu Uang; Lee, Jeung-Hoon; Lee, Young; Kim, Chang Deok

    2016-07-01

    Squamous cell carcinoma (SCC) is a common skin cancer, of which the incidence is relatively high, ranking second among the non‑melanoma skin cancers. It is known that numerous intracellular signal regulators are involved in the pathogenesis of SCC. The Wnt/β-catenin signaling pathway serves an important role in cancer development. However, the downstream effectors of β‑catenin remain to be clearly elucidated yet. The present study investigated the functional importance of Wnt/β‑catenin signaling in cutaneous SCC. β‑catenin expression was reduced using recombinant adenovirus expressing specific microRNA (miR). Knockdown of β‑catenin resulted in a marked reduction of the colony-forming activity of the SCC cells, SCC12. In an attempt to identify the β‑catenin downstream genes, it was found that Sox9 was regulated by β‑catenin in SCC12 cells. Overexpression of a constitutively active form of β‑catenin led to the induction of Sox9, while knockdown of β‑catenin resulted in downregulation of Sox9. When the expression of Sox9 was reduced using specific miR, colony-forming activity of the SCC12 cells was significantly reduced. When Sox9 was overexpressed in cells where β‑catenin was knocked down, it partially restored the colony‑forming potential. Taken together, the present results suggested that Sox9 is a β-catenin downstream transcription factor and is positively involved in SCC development. PMID:27151141

  20. Delta Inulin Adjuvant Enhances Plasmablast Generation, Expression of Activation-Induced Cytidine Deaminase and B-Cell Affinity Maturation in Human Subjects Receiving Seasonal Influenza Vaccine

    PubMed Central

    Li, Lei; Honda-Okubo, Yoshikazu; Li, Connie; Sajkov, Dimitar; Petrovsky, Nikolai

    2015-01-01

    There is a major need for new adjuvants to improve the efficacy of seasonal and pandemic influenza vaccines. Advax is a novel polysaccharide adjuvant based on delta inulin that has been shown to enhance the immunogenicity of influenza vaccine in animal models and human clinical trials. To better understand the mechanism for this enhancement, we sought to assess its effect on the plasmablast response in human subjects. This pilot study utilised cryopreserved 7 day post-vaccination (7dpv) peripheral blood mononuclear cell samples obtained from a subset of 25 adult subjects from the FLU006-12 trial who had been immunized intramuscularly with a standard dose of 2012 trivalent inactivated influenza vaccine (TIV) alone (n=9 subjects) or combined with 5mg (n=8) or 10mg (n=8) of Advax adjuvant. Subjects receiving Advax adjuvant had increased 7dpv plasmablasts, which in turn exhibited a 2-3 fold higher rate of non-silent mutations in the B-cell receptor CDR3 region associated with higher expression of activation-induced cytidine deaminase (AID), the major enzyme controlling BCR affinity maturation. Together, these data suggest that Advax adjuvant enhances influenza immunity in immunized subjects via multiple mechanisms including increased plasmablast generation, AID expression and CDR3 mutagenesis resulting in enhanced BCR affinity maturation and increased production of high avidity antibody. How Advax adjuvant achieves these beneficial effects on plasmablasts remains the subject of ongoing investigation. Trial Registration Australia New Zealand Clinical Trials Register ACTRN12612000709842 https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=362709 PMID:26177480

  1. Enhanced electrocatalytic activity of the Au-electrodeposited Pt nanoparticles-coated conducting oxide for the quantum dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Yoon, Yeung-Pil; Kim, Jae-Hong; Kang, Soon-Hyung; Kim, Hyunsoo; Choi, Chel-Jong; Kim, Kyong-Kook; Ahn, Kwang-Soon

    2014-08-01

    Au was electrodeposited potentiostatically at 0.3 V for 5 min on nanoporous Pt nanoparticle-coated F-doped SnO2 (FTO/Pt) substrates. For comparison, Au-electrodeposited FTO (FTO/Au) and Au-uncoated FTO/Pt were prepared. FTO/Au showed large-sized Au clusters dispersed sparsely over FTO, which resulted in lower electrocatalytic activity than FTO/Pt. In contrast, FTO/Pt exhibited poor stability unlike FTO/Au due to poisoning by the adsorption of sulfur species. The Au-electrodeposited FTO/Pt (FTO/Pt/Au) consisted of small Au clusters deposited over the entire area of Pt due to the effective Au nucleation provided by nanoporous metallic Pt. FTO/Pt/Au exhibited enhanced electrocatalytic activity and excellent stability because the small Au particles well-dispersed over the nanoporous metallic Pt network provided numerous electrochemical reaction sites, and the Pt surface was not exposed to the electrolyte. When FTO/Pt/Au was used as the counter electrode (CE) of a quantum dot-sensitized solar cell, the significantly enhanced electrocatalytic activity of the FTO/Pt/Au CE facilitated the reduction reaction of Sn2- + 2e- (CE) → Sn-12- + S2- at the CE/electrolyte interface, resulting in a significantly hindered recombination reaction, Sn2- + 2e- (TiO2 in the photoanode) → Sn-12- + S2-, and significantly improved overall energy conversion efficiency.

  2. Carthamus tinctorius Enhances the Antitumor Activity of Dendritic Cell Vaccines via Polarization toward Th1 Cytokines and Increase of Cytotoxic T Lymphocytes

    PubMed Central

    Chang, Jia-Ming; Hung, Le-Mei; Chyan, Yau-Jan; Cheng, Chun-Ming; Wu, Rey-Yuh

    2011-01-01

    Carthamus tinctorius (CT), also named safflower, is a traditional Chinese medicine widely used to improve blood circulation. CT also has been studied for its antitumor activity in certain cancers. To investigate the effects of CT on the dendritic cell (DC)-based vaccine in cancer treatment, cytokine secretion of mouse splenic T lymphocytes and the maturation of DCs in response to CT were analyzed. To assess the antitumor activity of CT extract on mouse CD117+ (c-kit)-derived DCs pulsed with JC mammal tumor antigens, the JC tumor was challenged by the CT-treated DC vaccine in vivo. CT stimulated IFN-γ and IL-10 secretion of splenic T lymphocytes and enhanced the maturation of DCs by enhancing immunological molecule expression. When DC vaccine was pulsed with tumor antigens along with CT extract, the levels of TNF-α and IL-1β were dramatically increased with a dose-dependent response and more immunologic and co-stimulatory molecules were expressed on the DC surface. In addition, CT-treated tumor lysate-pulsed DC vaccine reduced the tumor weight in tumor-bearing mice by 15.3% more than tumor lysate-pulsed DC vaccine without CT treatment. CT polarized cytokine secretion toward the Th1 pathway and also increased the population of cytotoxic T lymphocytes ex vivo. In conclusion, CT activates DCs might promote the recognition of antigens and facilitate antigen presentation to Th1 immune responses. PMID:19001481

  3. NSOM/QD-Based Direct Visualization of CD3-Induced and CD28-Enhanced Nanospatial Coclustering of TCR and Coreceptor in Nanodomains in T Cell Activation

    PubMed Central

    Lu, Xiaoxu; Wang, Richard C.; Gong, Guangming; Yan, Lin; Huang, Dan; Chen, Zheng W.

    2009-01-01

    Direct molecular imaging of nano-spatial relationship between T cell receptor (TCR)/CD3 and CD4 or CD8 co-receptor before and after activation of a primary T cell has not been reported. We have recently innovated application of near-field scanning optical microscopy (NSOM) and immune-labeling quantum dots (QD) to image Ag-specific TCR response during in vivo clonal expansion, and now up-graded the NSOM/QD-based nanotechnology through dipole-polarization and dual-color imaging. Using this imaging system scanning cell-membrane molecules at a best-optical lateral resolution, we demonstrated that CD3, CD4 or CD8 molecules were distinctly distributed as single QD-bound molecules or nano-clusters equivalent to 2–4 QD fluorescence-intensity/size on cell-membrane of un-stimulated primary T cells, and ∼6–10% of CD3 were co-clustering with CD4 or CD8 as 70–110 nm nano-clusters without forming nano-domains. The ligation of TCR/CD3 on CD4 or CD8 T cells led to CD3 nanoscale co-clustering or interaction with CD4 or CD8 co-receptors forming 200–500 nm nano-domains or >500 nm micro-domains. Such nano-spatial co-clustering of CD3 and CD4 or CD3 and CD8 appeared to be an intrinsic event of TCR/CD3 ligation, not purely limited to MHC engagement, and be driven by Lck phosphorylation. Importantly, CD28 co-stimulation remarkably enhanced TCR/CD3 nanoscale co-clustering or interaction with CD4 co-receptor within nano- or micro-domains on the membrane. In contrast, CD28 co-stimulation did not enhance CD8 clustering or CD3–CD8 co-clustering in nano-domains although it increased molecular number and density of CD3 clustering in the enlarged nano-domains. These nanoscale findings provide new insights into TCR/CD3 interaction with CD4 or CD8 co-receptor in T-cell activation. PMID:19536289

  4. NSOM/QD-based direct visualization of CD3-induced and CD28-enhanced nanospatial coclustering of TCR and coreceptor in nanodomains in T cell activation.

    PubMed

    Zhong, Liyun; Zeng, Gucheng; Lu, Xiaoxu; Wang, Richard C; Gong, Guangming; Yan, Lin; Huang, Dan; Chen, Zheng W

    2009-01-01

    Direct molecular imaging of nano-spatial relationship between T cell receptor (TCR)/CD3 and CD4 or CD8 co-receptor before and after activation of a primary T cell has not been reported. We have recently innovated application of near-field scanning optical microscopy (NSOM) and immune-labeling quantum dots (QD) to image Ag-specific TCR response during in vivo clonal expansion, and now up-graded the NSOM/QD-based nanotechnology through dipole-polarization and dual-color imaging. Using this imaging system scanning cell-membrane molecules at a best-optical lateral resolution, we demonstrated that CD3, CD4 or CD8 molecules were distinctly distributed as single QD-bound molecules or nano-clusters equivalent to 2-4 QD fluorescence-intensity/size on cell-membrane of un-stimulated primary T cells, and approximately 6-10% of CD3 were co-clustering with CD4 or CD8 as 70-110 nm nano-clusters without forming nano-domains. The ligation of TCR/CD3 on CD4 or CD8 T cells led to CD3 nanoscale co-clustering or interaction with CD4 or CD8 co-receptors forming 200-500 nm nano-domains or >500 nm micro-domains. Such nano-spatial co-clustering of CD3 and CD4 or CD3 and CD8 appeared to be an intrinsic event of TCR/CD3 ligation, not purely limited to MHC engagement, and be driven by Lck phosphorylation. Importantly, CD28 co-stimulation remarkably enhanced TCR/CD3 nanoscale co-clustering or interaction with CD4 co-receptor within nano- or micro-domains on the membrane. In contrast, CD28 co-stimulation did not enhance CD8 clustering or CD3-CD8 co-clustering in nano-domains although it increased molecular number and density of CD3 clustering in the enlarged nano-domains. These nanoscale findings provide new insights into TCR/CD3 interaction with CD4 or CD8 co-receptor in T-cell activation. PMID:19536289

  5. Enhancement of NAD+-dependent SIRT1 deacetylase activity by methylselenocysteine resets the circadian clock in carcinogen-treated mammary epithelial cells

    PubMed Central

    Fang, Mingzhu; Guo, Wei-Ren; Park, Youngil; Kang, Hwan-Goo; Zarbl, Helmut

    2015-01-01

    We previously reported that dietary methylselenocysteine (MSC) inhibits N-methyl-N-nitrosourea (NMU)-induced mammary tumorigenesis by resetting circadian gene expression disrupted by the carcinogen at the early stage of tumorigenesis. To investigate the underlying mechanism, we developed a circadian reporter system comprised of human mammary epithelial cells with a luciferase reporter driven by the promoter of human PERIOD 2 (PER2), a core circadian gene. In this in vitro model, NMU disrupted cellular circadian rhythm in a pattern similar to that observed with SIRT1-specific inhibitors; in contrast, MSC restored the circadian rhythms disrupted by NMU and protected against SIRT1 inhibitors. Moreover, NMU inhibited intracellular NAD+/NADH ratio and reduced NAD+-dependent SIRT1 activity in a dose-dependent manner, while MSC restored NAD+/NADH and SIRT1 activity in the NMU-treated cells, indicating that the NAD+-SIRT1 pathway was targeted by NMU and MSC. In rat mammary tissue, a carcinogenic dose of NMU also disrupted NAD+/NADH oscillations and decreased SIRT1 activity; dietary MSC restored NAD+/NADH oscillations and increased SIRT1 activity in the mammary glands of NMU-treated rats. MSC-induced SIRT1 activity was correlated with decreased acetylation of BMAL1 and increased acetylation of histone 3 lysine 9 at the Per2 promoter E-Box in mammary tissue. Changes in SIRT1 activity were temporally correlated with loss or restoration of rhythmic Per2 mRNA expression in NMU-treated or MSC-rescued rat mammary glands, respectively. Together with our previous findings, these results suggest that enhancement of NAD+-dependent SIRT1 activity contributes to the chemopreventive efficacy of MSC by restoring epigenetic regulation of circadian gene expression at early stages of mammary tumorigenesis. PMID:26544624

  6. IL-2, IL-4, IFN-γ or TNF-α enhances BAFF-stimulated cell viability and survival by activating Erk1/2 and S6K1 pathways in neoplastic B-lymphoid cells.

    PubMed

    Gui, Lin; Zeng, Qingyu; Xu, Zhigang; Zhang, Hai; Qin, Shanshan; Liu, Chunxiao; Xu, Chong; Qian, Zhou; Zhang, Shuangquan; Huang, Shile; Chen, Long

    2016-08-01

    B-cell activating factor of the TNF family (BAFF) has been documented to act as a critical factor in the development of aggressive B lymphocytes and autoimmune diseases. However, the effect of various cytokines on BAFF-elicited neoplastic B-lymphoid cells is not known. In this study, we exhibited that administration of human soluble BAFF (hsBAFF), IL-2, IL-4, IFN-γ, or TNF-α alone increased cell viability and survival in Raji cells concentration-dependently, yet a more robust viability/survival was seen in the cells co-treatment of IL-2, IL-4, IFN-γ, or TNF-α with hsBAFF, respectively. Further research revealed that both Erk1/2 and S6K1 signaling pathways were essential for IL-2, IL-4, IFN-γ, or TNF-α enhancement of the viability/survival in the hsBAFF-stimulated cells, as inhibition of Erk1/2 with U0126 or down-regulation of Erk1/2, or blockage of S6K1 with rapamycin or silencing S6K1, or silencing S6K1/Erk1/2, respectively, reduced the cell viability/survival in the cells treated with/without hsBAFF±IL-2, IL-4, IFN-γ, or TNF-α. These findings indicate that IL-2, IL-4, IFN-γ or TNF-α enhances BAFF-stimulated cell viability/survival by activating Erk1/2 and S6K1 signaling in neoplastic B-lymphoid cells. Our data suggest that modulation of IL-2, IL-4, IFN-γ and/or TNF-α levels, or inhibitors of Erk1/2 or S6K1 may be a new approach to prevent BAFF-induced aggressive B-cell malignancies. PMID:27235588

  7. Enhanced hydrogen production from waste activated sludge by cascade utilization of organic matter in microbial electrolysis cells.

    PubMed

    Lu, Lu; Xing, Defeng; Liu, Bingfeng; Ren, Nanqi

    2012-03-15

    Fermentative hydrogen production from waste activated sludge (WAS) has low H2 yield because WAS contains limited amounts of carbohydrate suitable for use by hydrogen-producing bacteria. Here, augmentation of hydrogen production from WAS by microbial electrolysis cells (MECs) was implemented. H2 yields of 3.89±0.39 mg-H2/g-DS (5.67±0.61 mg-H2/g-VSS) from raw WAS and 6.78±0.94 mg-H2/g-DS (15.08±1.41 mg-H2/g-VSS) from alkaline-pretreated WAS were obtained in the two-chamber MECs (TMECs). This was several times higher than yields obtained previously by fermentation. Single-chamber MECs (SMECs) with low internal resistance showed a H2 production rate that 13 times that of TMECs with similar H2 yield when alkaline-pretreated WAS was used. However, methanogenesis was detected after several batch cycles. A yield balance calculation revealed that carbohydrates were not the only substrates for electrohydrogenesis. Protein and its acidification products, such as volatile fatty acids are also responsible for a portion of H2 generation in MEC. Characterization of WAS in TMECs by three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy with parallel factor analysis indicated that electrohydrogenesis reacted on the extracellular polymeric substances and intracellular substances of WAS. Cascade utilization of organic matter in MECs increased hydrogen production from WAS. MECs showed high hydrogen yield from WAS, fewer H2 sinks, and insensitivity to temperature. Optimizing MEC configurations and operation conditions and improving the pretreatment processes of WAS are necessary before practical application can take place on a large scale. PMID:22197264

  8. Enhanced electrocatalytic activity of electrodeposited F-doped SnO2/Cu2S electrodes for quantum dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Vinh Quy, Vu Hong; Kim, Jae-Hong; Kang, Soon-Hyung; Choi, Cheol-Jong; Rajesh, John Anthuvan; Ahn, Kwang-Soon

    2016-06-01

    Copper sulfide (Cu2S) films were deposited on F-doped SnO2 (FTO) substrates via the electrodeposition (ED) of copper (Cu) nanoparticles followed by sulfurization. The Cu nanoparticles were deposited on FTO substrates for various ED times ranging from 10 to 30 min at a constant -0.4 V. The FTO/Cu films consisted of flower-like nanoparticles comprised of randomly-clustering nanoflakes. The Cu nanoparticles electrodeposited for 10 min (FTO/Cu (10 min)) were dispersed sparsely over the FTO substrate, whereas the FTO/Cu (20 and 30 min) provided increased coverage. Unlike FTO/Cu2S (10 min), the FTO/Cu2S (20 and 30 min) consisted of vertically-standing large Cu2S nanosheets with numerous small nanosheets in between. This was attributed to the sufficient number of Cu seed nanoflakes, which not only facilitate ion transport of the redox couple but also increased the surface area, leading to significantly enhanced electrocatalytic activity. The quantum dot-sensitized solar cell (QD-SSC) with FTO/Cu2S (20 min) exhibited a significantly improved cell efficiency of 4.58%, compared to those with Pt and FTO/Cu2S (10 min). The QD-SSC with the FTO/Cu2S (30 min) showed similar cell efficiency to that with the FTO/Cu2S (20 min), despite the larger surface area because of its amorphous crystallographic structure offsetting the electrocatalytic activity.

  9. Induction of Apoptosis by PQ1, a Gap Junction Enhancer that Upregulates Connexin 43 and Activates the MAPK Signaling Pathway in Mammary Carcinoma Cells

    PubMed Central

    Shishido, Stephanie N.; Nguyen, Thu A.

    2016-01-01

    The mechanism of gap junction enhancer (PQ1) induced cytotoxicity is thought to be attributed to the change in connexin 43 (Cx43) expression; therefore, the effects of Cx43 modulation in cell survival were investigated in mammary carcinoma cells (FMC2u) derived from a malignant neoplasm of a female FVB/N-Tg(MMTV-PyVT)634Mul/J (PyVT) transgenic mouse. PQ1 was determined to have an IC50 of 6.5 µM in FMC2u cells, while inducing an upregulation in Cx43 expression. The effects of Cx43 modulation in FMC2u cell survival was determined through transfection experiments with Cx43 cDNA, which induced an elevated level of protein expression similar to that seen with PQ1 exposure, or siRNA to silence Cx43 protein expression. Overexpression or silencing of Cx43 led to a reduction or an increase in cell viability, respectively. The mitogen-activated protein kinase (MAPK) family has been implicated in the regulation of cell survival and cell death; therefore, the gap junctional intercellular communication (GJIC)-independent function of PQ1 and Cx43 in the Raf/Mitogen-activated protein kinase/ERK kinase/extracellular-signal-regulated kinase (Raf-MEK-ERK) cascade of cellular survival and p38 MAPK-dependent pathway of apoptosis were explored. PQ1 treatment activated p44/42 MAPK, while the overexpression of Cx43 resulted in a reduced expression. This suggests that PQ1 affects the Raf-MEK-ERK cascade independent of Cx43 upregulation. Both overexpression of Cx43 and PQ1 treatment stimulated an increase in the phosphorylated form of p38-MAPK, reduced levels of the anti-apoptotic protein Bcl-2, and increased the cleavage of pro-caspase-3. Silencing of Cx43 protein expression led to a reduction in the phosphorylation of p38-MAPK and an increase in Bcl-2 expression. The mechanism behind PQ1-induced cytotoxicity in FMC2u mammary carcinoma cells is thought to be attributed to the change in Cx43 expression. Furthermore, PQ1-induced apoptosis through the upregulation of Cx43 may depend on p38

  10. A composite demineralized bone matrix--self assembling peptide scaffold for enhancing cell and growth factor activity in bone marrow.

    PubMed

    Hou, Tianyong; Li, Zhiqiang; Luo, Fei; Xie, Zhao; Wu, Xuehui; Xing, Junchao; Dong, Shiwu; Xu, Jianzhong

    2014-07-01

    The need for suitable bone grafts is high; however, there are limitations to all current graft sources, such as limited availability, the invasive harvest procedure, insufficient osteoinductive properties, poor biocompatibility, ethical problems, and degradation properties. The lack of osteoinductive properties is a common problem. As an allogenic bone graft, demineralized bone matrix (DBM) can overcome issues such as limited sources and comorbidities caused by invasive harvest; however, DBM is not sufficiently osteoinductive. Bone marrow has been known to magnify osteoinductive components for bone reconstruction because it contains osteogenic cells and factors. Mesenchymal stem cells (MSCs) derived from bone marrow are the gold standard for cell seeding in tissue-engineered biomaterials for bone repair, and these cells have demonstrated beneficial effects. However, the associated high cost and the complicated procedures limit the use of tissue-engineered bone constructs. To easily enrich more osteogenic cells and factors to DBM by selective cell retention technology, DBM is modified by a nanoscale self-assembling peptide (SAP) to form a composite DBM/SAP scaffold. By decreasing the pore size and increasing the charge interaction, DBM/SAP scaffolds possess a much higher enriching yield for osteogenic cells and factors compared with DBM alone scaffolds. At the same time, SAP can build a cellular microenvironment for cell adhesion, proliferation, and differentiation that promotes bone reconstruction. As a result, a suitable bone graft fabricated by DBM/SAP scaffolds and bone marrow represents a new strategy and product for bone transplantation in the clinic. PMID:24755526

  11. SH3b Cell wall binding domains can enhance anti-staphylococcal activity of endolysin lytic domains.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacteriophage endolysins are peptidoglycan hydrolases and a potential new source of antimicrobials. A large subset of these proteins contain a C-terminal SH3b_5 cell wall binding domain that has been shown [for some] to be essential for accurate cell wall recognition and subsequent staphylolytic ac...

  12. Mechanisms of Cell Propulsion by Active Stresses.

    PubMed

    Carlsson, A E

    2011-07-01

    The mechanisms by which cytoskeletal flows and cell-substrate interactions interact to generate cell motion are explored using a simplified model of the cytoskeleton as a viscous gel containing active stresses. This model yields explicit general results relating cell speed and traction forces to the distributions of active stress and cell-substrate friction. It is found that 1) the cell velocity is given by a function that quantifies the asymmetry of the active-stress distribution, 2) gradients in cell-substrate friction can induce motion even when the active stresses are symmetrically distributed, 3) the traction-force dipole is enhanced by protrusive stresses near the cell edges or contractile stresses near the center of the cell, and 4) the cell velocity depends biphasically on the cell-substrate adhesion strength if active stress is enhanced by adhesion. Specific experimental tests of the calculated dependences are proposed. PMID:21804763

  13. Mechanisms of Cell Propulsion by Active Stresses

    PubMed Central

    Carlsson, A. E.

    2011-01-01

    The mechanisms by which cytoskeletal flows and cell-substrate interactions interact to generate cell motion are explored using a simplified model of the cytoskeleton as a viscous gel containing active stresses. This model yields explicit general results relating cell speed and traction forces to the distributions of active stress and cell-substrate friction. It is found that 1) the cell velocity is given by a function that quantifies the asymmetry of the active-stress distribution, 2) gradients in cell-substrate friction can induce motion even when the active stresses are symmetrically distributed, 3) the traction-force dipole is enhanced by protrusive stresses near the cell edges or contractile stresses near the center of the cell, and 4) the cell velocity depends biphasically on the cell-substrate adhesion strength if active stress is enhanced by adhesion. Specific experimental tests of the calculated dependences are proposed. PMID:21804763

  14. Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells.

    PubMed

    Selby, Mark J; Engelhardt, John J; Quigley, Michael; Henning, Karla A; Chen, Timothy; Srinivasan, Mohan; Korman, Alan J

    2013-07-01

    Antitumor activity of CTLA-4 antibody blockade is thought to be mediated by interfering with the negative regulation of T-effector cell (Teff) function resulting from CTLA-4 engagement by B7-ligands. In addition, a role for CTLA-4 on regulatory T cells (Treg), wherein CTLA-4 loss or inhibition results in reduced Treg function, may also contribute to antitumor responses by anti-CTLA-4 treatment. We have examined the role of the immunoglobulin constant region on the antitumor activity of anti-CTLA-4 to analyze in greater detail the mechanism of action of anti-CTLA-4 antibodies. Anti-CTLA-4 antibody containing the murine immunoglobulin G (IgG)2a constant region exhibits enhanced antitumor activity in subcutaneous established MC38 and CT26 colon adenocarcinoma tumor models compared with anti-CTLA-4 containing the IgG2b constant region. Interestingly, anti-CTLA-4 antibodies containing mouse IgG1 or a mutated mouse IgG1-D265A, which eliminates binding to all Fcγ receptors (FcγR), do not show antitumor activity in these models. Assessment of Teff and Treg populations at the tumor and in the periphery showed that anti-CTLA-4-IgG2a mediated a rapid and dramatic reduction of Tregs at the tumor site, whereas treatment with each of the isotypes expanded Tregs in the periphery. Expansion of CD8(+) Teffs is observed with both the IgG2a and IgG2b anti-CTLA-4 isotypes, resulting in a superior Teff to Treg ratio for the IgG2a isotype. These data suggest that anti-CTLA-4 promotes antitumor activity by a selective reduction of intratumoral Tregs along with concomitant activation of Teffs. PMID:24777248

  15. Overexpression of the human ZNF300 gene enhances growth and metastasis of cancer cells through activating NF-kB pathway

    PubMed Central

    Wang, Tao; Wang, Xian-guo; Xu, Jun-hua; Wu, Xiang-Peng; Qiu, Hong-ling; Yi, Hong; Li, Wen-Xin

    2012-01-01

    Abstract Zinc finger proteins (ZNF) play important roles in various physiological processes. Here we report that ZNF300, a novel zinc finger protein, identified specifically in humans, promotes tumour development by modulating the NF-κB pathway. Inflammatory factors were found to induce ZNF300 expression in HeLa cell line, and ZNF300 expression further enhanced NF-κB signalling by activating TRAF2 and physically interacting with IKKβ. Furthermore, ZNF300 overexpression increased ERK1/2 phosphorylation and the expression of c-myc, IL-6, and IL-8 but decreased the expression of p21waf-1 and p27Kip1; whose down-regulation led to the opposite effect. Most importantly, ZNF300 overexpression stimulated cancer cell proliferation in vitro and significantly enhanced tumour development and metastasis in mouse xenograft model, while knocking down ZNF300 led to the opposite effects. We have identified a novel function for ZNF300 in tumour development that may uniquely link inflammation and NF-κB to tumourigenesis in humans but not in mice. PMID:21777376

  16. Heregulin/ErbB3 Signaling Enhances CXCR4-Driven Rac1 Activation and Breast Cancer Cell Motility via Hypoxia-Inducible Factor 1α.

    PubMed

    Lopez-Haber, Cynthia; Barrio-Real, Laura; Casado-Medrano, Victoria; Kazanietz, Marcelo G

    2016-08-01

    The growth factor heregulin (HRG), a ligand of ErbB3 and ErbB4 receptors, contributes to breast cancer development and the promotion of metastatic disease, and its expression in breast tumors has been associated with poor clinical outcome and resistance to therapy. In this study, we found that breast cancer cells exposed to sustained HRG treatment show markedly enhanced Rac1 activation and migratory activity in response to the CXCR4 ligand SDF-1/CXCL12, effects mediated by P-Rex1, a Rac-guanine nucleotide exchange factor (GEF) aberrantly expressed in breast cancer. Notably, HRG treatment upregulates surface expression levels of CXCR4, a G protein-coupled receptor (GPCR) implicated in breast cancer metastasis and an indicator of poor prognosis in breast cancer patients. A detailed mechanistic analysis revealed that CXCR4 upregulation and sensitization of the Rac response/motility by HRG are mediated by the transcription factor hypoxia-inducible factor 1α (HIF-1α) via ErbB3 and independently of ErbB4. HRG caused prominent induction in the nuclear expression of HIF-1α, which transcriptionally activates the CXCR4 gene via binding to a responsive element located in positions -1376 to -1372 in the CXCR4 promoter, as revealed by mutagenesis analysis and chromatin immunoprecipitation (ChIP). Our results uncovered a novel function for ErbB3 in enhancing breast cancer cell motility and sensitization of the P-Rex1/Rac1 pathway through HIF-1α-mediated transcriptional induction of CXCR4. PMID:27185877

  17. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Zhang, Yu; Tang, Lan; Henriksen, Svend Hostgaard Bang

    2016-05-17

    The present invention provides isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also provides nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  18. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Zhang, Yu; Duan, Junxin; Tang, Lan; Wu, Wenping

    2015-06-09

    Provided are isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. Also provided are nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  19. Fluoride-containing podophyllum derivatives exhibit antitumor activities through enhancing mitochondrial apoptosis pathway by increasing the expression of caspase-9 in HeLa cells

    PubMed Central

    Zhao, Wei; Yang, Yong; Zhang, Ya-Xuan; Zhou, Chen; Li, Hong-Mei; Tang, Ya-Ling; Liang, Xin-Hua; Chen, Tao; Tang, Ya-Jie

    2015-01-01

    This work aims to provide sampling of halogen-containing aniline podophyllum derivatives and their mode of action with an in-depth comparison among fluorine, chloride and bromide for clarifying the important role and impact of fluorine substitution on enhancing antitumor activity, with an emphasis on the development of drug rational design for antitumor drug. The tumor cytotoxicity of fluoride-containing aniline podophyllum derivatives were in general improved by 10–100 times than those of the chloride and bromide-containing aniline podophyllum derivatives since fluoride could not only strongly solvated in protic solvents but also forms tight ion pairs in most aprotic solvents. When compared with chloride and bromide, the higher electronegativity fluoride substituted derivatives significantly enhanced mitochondrial apoptosis pathway by remarkably increasing the expression of caspase-9 in HeLa cells. The current findings would stimulate an enormous amount of research directed toward exploiting novel leading compounds based on podophyllum derivatives, especially for the fluoride-substituted structures with promising antitumor activity. PMID:26608216

  20. Solar cell activation system

    SciTech Connect

    Apelian, L.

    1983-07-05

    A system for activating solar cells involves the use of phosphorescent paint, the light from which is amplified by a thin magnifying lens and used to activate solar cells. In a typical system, a member painted with phosphorescent paint is mounted adjacent a thin magnifying lens which focuses the light on a predetermined array of sensitive cells such as selenium, cadmium or silicon, mounted on a plastic board. A one-sided mirror is mounted adjacent the cells to reflect the light back onto said cells for purposes of further intensification. The cells may be coupled to rechargeable batteries or used to directly power a small radio or watch.

  1. MiR-26b inhibits melanoma cell proliferation and enhances apoptosis by suppressing TRAF5-mediated MAPK activation.

    PubMed

    Li, Meng; Long, Chaoqin; Yang, Guilan; Luo, Yang; Du, Hua

    2016-03-11

    Alterations in microRNA-26b (miR-26b) expression have been shown to participate in various malignant tumor developments. However, the possible function of miR-26b in human melanoma cells remains unclarified. In this study, quantitative polymerase chain reaction was used to explore the expression profiles of miR-26b in melanoma cells. The effect of miR-26b on cell viability was determined by using MTT assays and colony formation assay. The apoptosis levels were evaluated by using Annexin V/fluorescein isothiocyanate (FITC) apoptosis detection kit and the apoptosis cells were confirmed by Transmission Electron Microscopy (TEM). Luciferase reporter plasmids were constructed to confirm direct targeting. Our study found that the expression of miR-26b was downregulated in human melanoma specimens. Overexpression of miR-26b significantly increased the anti-proliferative effects and apoptosis in A375 and B16F10 melanoma cells. In addition, luciferase gene reporter assays confirmed that TRAF5 was a direct target gene of miR-26b and the anti-tumor effect of miR-26b in melanoma cells was significantly counteracted by treatment with TRAF5 overexpression. Furthermore, the molecular mechanisms underlying the tumor suppressor of miR-26b in malignant melanomas may be due to the dephosphorylation of MAPK pathway caused by the decrease in TRAF5 expression when miR-26b is up-regulated in melanoma cells. These findings indicate that miR-26b might influence TRAF5-MAPK signaling pathways to facilitate the malignant progression of melanoma cells. PMID:26872428

  2. Arsenic Trioxide (ATO) cooperates with All Trans Retinoic Acid (ATRA) to enhance MAPK activation and differentiation in Human Myeloblastic Leukemia (HL-60) cells

    PubMed Central

    Nayak, Satyaprakash; Shen, Miaoqing; Varner, Jeffrey D.; Yen, Andrew

    2016-01-01

    Arsenic trioxide (ATO) synergistically promotes retinoic acid (RA)-induced differentiation of HL-60 myeloblastic leukemia cells, a PML-RARα negative cell line. In PML-RARα positive myeloid leukemia cells, ATO is known to cause degradation of PML-RARα with subsequent induced myeloid differentiation. We find now that ATO by itself does not cause differentiation of the PML-RARα negative HL-60 cells, but enhances RA’s capability to cause differentiation. RA-induced differentiation of HL-60 cells is known to be propelled by an induced hyperactive/persistent MAPK signal. ATO augmented RA induced RAF/MEK/ERK axis signaling and expression of CD11b, an integrin receptor that is a myeloid differentiation marker. p47PHOX, a component of the respiratory burst machinery and inducible oxidative metabolism, functional differentiation marker were also enhanced. However, ATO did not enhance RA-induced CD38 expression, an early cell surface differentiation marker. ATO enhanced RA-induced population growth retardation without evidence of apoptosis or an enhanced G1/0 growth arrest. But compared to RA, ATO plus RA showed reduced pAKT, suggesting that an overall biosynthetic/metabolic retardation was seminal to the apparent enhanced growth retardation due to ATO. In sum, our results indicate that ATO can augment action of RA in causing differentiation of myeloid leukemia cells through promoting MAPK signaling and independent of PML-RARα. PMID:20615082

  3. Paradoxical activation of MEK/ERK signaling induced by B-Raf inhibition enhances DR5 expression and DR5 activation-induced apoptosis in Ras-mutant cancer cells

    PubMed Central

    Oh, You-Take; Deng, Jiusheng; Yue, Ping; Sun, Shi-Yong

    2016-01-01

    B-Raf inhibitors have been used for the treatment of some B-Raf–mutated cancers. They effectively inhibit B-Raf/MEK/ERK signaling in cancers harboring mutant B-Raf, but paradoxically activates MEK/ERK in Ras-mutated cancers. Death receptor 5 (DR5), a cell surface pro-apoptotic protein, triggers apoptosis upon ligation with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or aggregation. This study focused on determining the effects of B-Raf inhibition on DR5 expression and DR5 activation-induced apoptosis in Ras-mutant cancer cells. Using chemical and genetic approaches, we have demonstrated that the B-Raf inhibitor PLX4032 induces DR5 upregulation exclusively in Ras-mutant cancer cells; this effect is dependent on Ras/c-Raf/MEK/ERK signaling activation. PLX4032 induces DR5 expression at transcriptional levels, largely due to enhancing CHOP/Elk1-mediated DR5 transcription. Pre-exposure of Ras-mutated cancer cells to PLX4032 sensitizes them to TRAIL-induced apoptosis; this is also a c-Raf/MEK/ERK-dependent event. Collectively, our findings highlight a previously undiscovered effect of B-Raf inhibition on the induction of DR5 expression and the enhancement of DR5 activation-induced apoptosis in Ras-mutant cancer cells and hence may suggest a novel therapeutic strategy against Ras-mutated cancer cells by driving their death due to DR5-dependent apoptosis through B-Raf inhibition. PMID:27222248

  4. Paradoxical activation of MEK/ERK signaling induced by B-Raf inhibition enhances DR5 expression and DR5 activation-induced apoptosis in Ras-mutant cancer cells.

    PubMed

    Oh, You-Take; Deng, Jiusheng; Yue, Ping; Sun, Shi-Yong

    2016-01-01

    B-Raf inhibitors have been used for the treatment of some B-Raf-mutated cancers. They effectively inhibit B-Raf/MEK/ERK signaling in cancers harboring mutant B-Raf, but paradoxically activates MEK/ERK in Ras-mutated cancers. Death receptor 5 (DR5), a cell surface pro-apoptotic protein, triggers apoptosis upon ligation with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or aggregation. This study focused on determining the effects of B-Raf inhibition on DR5 expression and DR5 activation-induced apoptosis in Ras-mutant cancer cells. Using chemical and genetic approaches, we have demonstrated that the B-Raf inhibitor PLX4032 induces DR5 upregulation exclusively in Ras-mutant cancer cells; this effect is dependent on Ras/c-Raf/MEK/ERK signaling activation. PLX4032 induces DR5 expression at transcriptional levels, largely due to enhancing CHOP/Elk1-mediated DR5 transcription. Pre-exposure of Ras-mutated cancer cells to PLX4032 sensitizes them to TRAIL-induced apoptosis; this is also a c-Raf/MEK/ERK-dependent event. Collectively, our findings highlight a previously undiscovered effect of B-Raf inhibition on the induction of DR5 expression and the enhancement of DR5 activation-induced apoptosis in Ras-mutant cancer cells and hence may suggest a novel therapeutic strategy against Ras-mutated cancer cells by driving their death due to DR5-dependent apoptosis through B-Raf inhibition. PMID:27222248

  5. MicroRNA-130a and -130b enhance activation of hepatic stellate cells by suppressing PPARγ expression: A rat fibrosis model study

    SciTech Connect

    Lu, Le; Wang, Jinlong; Lu, Hongwei; Zhang, Guoyu; Liu, Yang; Wang, Jiazhong; Zhang, Yafei; Shang, Hao; Ji, Hong; Chen, Xi; Duan, Yanxia; Li, Yiming

    2015-09-25

    Hepatic stellate cells (HSCs) are the primary sources of extracellular matrix (ECM) in normal and fibrotic liver. Peroxisome proliferator-activated receptor gamma (PPARγ) maintains HSCs in a quiescent state, and its downregulation induces HSC activation. MicroRNAs (miRNAs) can induce PPARγ mRNA degradation, but the mechanism by which miRNAs regulate PPARγ in rat HSCs is unclear. This study aimed to investigate some miRNAs which putatively bind to the 3′-untranslated region (3′-UTR) of PPARγ mRNA, and increase expression of ECM genes in rat HSCs. In carbon tetrachloride injection (CCl{sub 4}) and common bile duct ligation (CBDL) liver fibrosis models, miRNAs miR-130a, miR-130b, miR-301a, miR-27b and miR-340 levels were found to be increased and PPARγ expression decreased. Overexpression of miR-130a and miR-130b enhanced cell proliferation by involving Runx3. MiR-130a and miR-130b decreased PPARγ expression by targeting the 3′-UTR of PPARγ mRNA in rat HSC-T6 cells. Transforming growth factor-β1 (TGF-β1) may mediate miR-130a and miR-130b overexpression, PPARγ downregulation, and ECM genes overexpression in cell culture. These findings suggest that miR-130a and miR-130b are involved in downregulation of PPARγ in liver fibrosis. - Highlights: • MiR-130a and miR-130b are increased and PPARγ is decreased in liver fibrosis models. • MiR-130a and miR-130b decreased PPARγ by targeting the 3′-UTR of PPARγ mRNA. • MiR-130a and miR-130b enhanced HSC cell proliferation by involving Runx3. • TGF-β1 may mediate miR-130a and miR-130b overexpression.

  6. The BnALMT1 and BnALMT2 Genes from Rape Encode Aluminum-Activated Malate Transporters That Enhance the Aluminum Resistance of Plant Cells1

    PubMed Central

    Ligaba, Ayalew; Katsuhara, Maki; Ryan, Peter R.; Shibasaka, Mineo; Matsumoto, Hideaki

    2006-01-01

    The release of organic anions from roots can protect plants from aluminum (Al) toxicity and help them overcome phosphorus (P) deficiency. Our previous findings showed that Al treatment induced malate and citrate efflux from rape (Brassica napus) roots, and that P deficiency did not induce the efflux. Since this response is similar to the malate efflux from wheat (Triticum aestivum) that is controlled by the TaALMT1 gene, we investigated whether homologs of TaALMT1 are present in rape and whether they are involved in the release of organic anions. We isolated two TaALMT1 homologs from rape designated BnALMT1 and BnALMT2 (B. napus Al-activated malate transporter). The expression of these genes was induced in roots, but not shoots, by Al treatment but P deficiency had no effect. Several other cations (lanthanum, ytterbium, and erbium) also increased BnALMT1 and BnALMT2 expression in the roots. The function of the BnALMT1 and BnALMT2 proteins was investigated by heterologous expression in cultured tobacco (Nicotiana tabacum) cells and in Xenopus laevis oocytes. Both transfection systems showed an enhanced capacity for malate efflux but not citrate efflux, when exposed to Al. Smaller malate fluxes were also activated by ytterbium and erbium treatment. Transgenic tobacco cells grew significantly better than control cells following an 18 h treatment with Al, indicating that the expression of BnALMT1 and BnALMT2 increased the resistance of these plant cells to Al stress. This report demonstrates that homologs of the TaALMT1 gene from wheat perform similar functions in other species. PMID:17028155

  7. Enhanced In Vivo Tumor Detection by Active Tumor Cell Targeting Using Multiple Tumor Receptor-Binding Peptides Presented on Genetically Engineered Human Ferritin Nanoparticles.

    PubMed

    Kwon, Koo Chul; Ko, Ho Kyung; Lee, Jiyun; Lee, Eun Jung; Kim, Kwangmeyung; Lee, Jeewon

    2016-08-01

    Human ferritin heavy-chain nanoparticle (hFTH) is genetically engineered to present tumor receptor-binding peptides (affibody and/or RGD-derived cyclic peptides, named 4CRGD here) on its surface. The affibody and 4CRGD specifically and strongly binds to human epidermal growth factor receptor I (EGFR) and human integrin αvβ3, respectively, which are overexpressed on various tumor cells. Through in vitro culture of EGFR-overexpressing adenocarcinoma (MDA-MB-468) and integrin-overexpressing glioblastoma cells (U87MG), it is clarified that specific interactions between receptors on tumor cells and receptor-binding peptides on engineered hFTH is critical in active tumor cell targeting. After labeling with the near-infrared fluorescence dye (Cy5.5) and intravenouse injection into MDA-MB-468 or U87MG tumor-bearing mice, the recombinant hFTHs presenting either peptide or both of affibody and 4CRGD are successfully delivered to and retained in the tumor for a prolonged period of time. In particular, the recombinant hFTH presenting both affibody and 4CRGD notably enhances in vivo detection of U87MG tumors that express heterogeneous receptors, integrin and EGFR, compared to the other recombinant hFTHs presenting either affibody or 4CRGD only. Like affibody and 4CRGD used in this study, other multiple tumor receptor-binding peptides can be also genetically introduced to the hFTH surface for actively targeting of in vivo tumors with heterogenous receptors. PMID:27356892

  8. MicroRNA-130a and -130b enhance activation of hepatic stellate cells by suppressing PPARγ expression: A rat fibrosis model study.

    PubMed

    Lu, Le; Wang, Jinlong; Lu, Hongwei; Zhang, Guoyu; Liu, Yang; Wang, Jiazhong; Zhang, Yafei; Shang, Hao; Ji, Hong; Chen, Xi; Duan, Yanxia; Li, Yiming

    2015-09-25

    Hepatic stellate cells (HSCs) are the primary sources of extracellular matrix (ECM) in normal and fibrotic liver. Peroxisome proliferator-activated receptor gamma (PPARγ) maintains HSCs in a quiescent state, and its downregulation induces HSC activation. MicroRNAs (miRNAs) can induce PPARγ mRNA degradation, but the mechanism by which miRNAs regulate PPARγ in rat HSCs is unclear. This study aimed to investigate some miRNAs which putatively bind to the 3'-untranslated region (3'-UTR) of PPARγ mRNA, and increase expression of ECM genes in rat HSCs. In carbon tetrachloride injection (CCl4) and common bile duct ligation (CBDL) liver fibrosis models, miRNAs miR-130a, miR-130b, miR-301a, miR-27b and miR-340 levels were found to be increased and PPARγ expression decreased. Overexpression of miR-130a and miR-130b enhanced cell proliferation by involving Runx3. MiR-130a and miR-130b decreased PPARγ expression by targeting the 3'-UTR of PPARγ mRNA in rat HSC-T6 cells. Transforming growth factor-β1 (TGF-β1) may mediate miR-130a and miR-130b overexpression, PPARγ downregulation, and ECM genes overexpression in cell culture. These findings suggest that miR-130a and miR-130b are involved in downregulation of PPARγ in liver fibrosis. PMID:26255201

  9. Substance P Activates the Wnt Signal Transduction Pathway and Enhances the Differentiation of Mouse Preosteoblastic MC3T3-E1 Cells

    PubMed Central

    Mei, Gang; Zou, Zhenlv; Fu, Su; Xia, Liheng; Zhou, Jian; Zhang, Yongtao; Tuo, Yonghua; Wang, Zhao; Jin, Dan

    2014-01-01

    Recent experiments have explored the impact of Wnt/β-catenin signaling and Substance P (SP) on the regulation of osteogenesis. However, the molecular regulatory mechanisms of SP on the formation of osteoblasts is still unknown. In this study, we investigated the impact of SP on the differentiation of MC3T3-E1 cells. The osteogenic effect of SP was observed at different SP concentrations (ranging from 10−10 to 10−8 M). To unravel the underlying mechanism, the MC3T3-E1 cells were treated with SP after the pretreatment by neurokinin-1 (NK1) antagonists and Dickkopf-1 (DKK1) and gene expression levels of Wnt/β-catenin signaling pathway components, as well as osteoblast differentiation markers (collagen type I, alkaline phosphatase, osteocalcin, and Runx2), were measured using quantitative polymerase chain reaction (PCR). Furthermore, protein levels of Wnt/β-catenin signaling pathway were detected using Western blotting and the effects of SP, NK1 antagonist, and DKK1 on β-catenin activation were investigated by immunofluorescence staining. Our data indicated that SP (10−9 to 10−8 M) significantly up-regulated the expressions of osteoblastic genes. SP (10−8 M) also elevated the mRNA level of c-myc, cyclin D1, and lymphocyte enhancer factor-1 (Lef1), as well as c-myc and β-catenin protein levels, but decreased the expression of Tcf7 mRNA. Moreover, SP (10−8 M) promoted the transfer of β-catenin into nucleus. The effects of SP treatment were inhibited by the NK1 antagonist and DKK1. These findings suggest that SP may enhance differentiation of MC3T3-E1 cells via regulation of the Wnt/β-catenin signaling pathway. PMID:24733069

  10. Radiation Enhances Regulatory T Cell Representation

    SciTech Connect

    Kachikwu, Evelyn L.; Iwamoto, Keisuke S.; Liao, Yu-Pei; DeMarco, John J.; Agazaryan, Nzhde; Economou, James S.; McBride, William H.; Schaue, Doerthe

    2011-11-15

    Purpose: Immunotherapy could be a useful adjunct to standard cytotoxic therapies such as radiation in patients with micrometastatic disease, although successful integration of immunotherapy into treatment protocols will require further understanding of how standard therapies affect the generation of antitumor immune responses. This study was undertaken to evaluate the impact of radiation therapy (RT) on immunosuppressive T regulatory (Treg) cells. Methods and Materials: Treg cells were identified as a CD4{sup +}CD25{sup hi}Foxp3{sup +} lymphocyte subset, and their fate was followed in a murine TRAMP C1 model of prostate cancer in mice with and without RT. Results: CD4{sup +}CD25{sup hi}Foxp3{sup +} Treg cells increased in immune organs after local leg or whole-body radiation. A large part, but not all, of this increase after leg-only irradiation could be ascribed to radiation scatter and Treg cells being intrinsically more radiation resistant than other lymphocyte subpopulations, resulting in their selection. Their functional activity on a per-cell basis was not affected by radiation exposure. Similar findings were made with mice receiving local RT to murine prostate tumors growing in the leg. The importance of the Treg cell population in the response to RT was shown by systemic elimination of Treg cells, which greatly enhanced radiation-induced tumor regression. Conclusions: We conclude that Treg cells are more resistant to radiation than other lymphocytes, resulting in their preferential increase. Treg cells may form an important homeostatic mechanism for tissues injured by radiation, and in a tumor context, they may assist in immune evasion during therapy. Targeting this population may allow enhancement of radiotherapeutic benefit through immune modulation.

  11. Dietary Supplementation with White Button Mushroom Enhances Natural Killer Cell Activity in C57BL/6 Mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mushrooms have been shown to possess anti-tumor, anti-viral, and anti-bacterial properties. These effects of mushrooms are suggested to be due to their ability to modulate immune cell functions. However, majority of these studies evaluated the effect of administering extracts of exotic mushrooms thr...

  12. Hepatocyte growth factor (HGF) enhances cardiac commitment of differentiating embryonic stem cells by activating PI3 kinase

    SciTech Connect

    Roggia, Cristiana; Ukena, Christian; Boehm, Michael; Kilter, Heiko . E-mail: kilter@med-in.uni-saarland.de

    2007-03-10

    Hepatocyte growth factor (HGF) is a pleiotropic cytokine promoting proliferation, migration and survival in several cell types. HGF and its cognate receptor c-Met are expressed in cardiac cells during early cardiogenesis, but data concerning its role in cardiac differentiation of embryonic stem cells (ESCs) and the underlying molecular mechanisms involved are limited. In the present study we show that HGF significantly increases the number of beating embryoid bodies of differentiating ESCs without affecting beating frequency. Furthermore, HGF up-regulates the expression of the cardiac-specific transcription factors Nkx 2.5 and GATA-4 and of markers of differentiated cardiomyocytes, i.e. {alpha}-MHC, {beta}-MHC, ANF, MLC2v and Troponin T. The HGF-induced increase in Nkx 2.5 expression was inhibited by co-treatment with the PI3 kinase inhibitors Wortmannin and LY294002, but not by its inactive homolog LY303511, suggesting an involvement of the PI3 kinase/Akt pathway in this effect. We conclude that HGF is an important growth factor involved in cardiac differentiation and/or proliferation of ESCs and may therefore be critical for the in vitro generation of pre- or fully differentiated cardiomyocytes as required for clinical use of embryonic stem cells in cardiac diseases.

  13. Urokinase-type Plasminogen Activator Receptor (uPAR)-mediated Regulation of WNT/β-Catenin Signaling Is Enhanced in Irradiated Medulloblastoma Cells*

    PubMed Central

    Asuthkar, Swapna; Gondi, Christopher S.; Nalla, Arun Kumar; Velpula, Kiran Kumar; Gorantla, Bharathi; Rao, Jasti S.

    2012-01-01

    Urokinase plasminogen activator receptor (uPAR) is known to promote invasion, migration, and metastasis in cancer cells. In this report, we showed that ionizing radiation (IR)-induced uPAR has a role in WNT-β-catenin signaling and mediates induction of cancer stem cell (CSC)-like properties in medulloblastoma cell lines UW228 and D283. We observed that IR induced the expression of uPAR and CSC markers, such as Musashi-1 and CD44, and activated WNT-7a-β-catenin signaling molecules. Overexpression of uPAR alone or with IR treatment led to increased WNT-7a-β-catenin-TCF/LEF-mediated transactivation, thereby promoting cancer stemness. In contrast, treatment with shRNA specific for uPAR (pU) suppressed WNT-7a-β-catenin-TCF/LEF-mediated transactivation both in vitro and in vivo. Quercetin, a potent WNT/β-catenin inhibitor, suppressed uPAR and uPAR-mediated WNT/β-catenin activation, and furthermore, addition of recombinant human WNT-7a protein induced uPAR, indicating the existence of a mutual regulatory relationship between uPAR and WNT/β-catenin signaling. We showed that uPAR was physically associated with the WNT effector molecule β-catenin on the membrane, cytoplasm, and nucleus of IR-treated cells and CSC. Most interestingly, we demonstrated for the first time that localization of uPAR in the nucleus was associated with transcription factors (TF) and their specific response elements. We observed from uPAR-ChIP, TF protein, and protein/DNA array analyses that uPAR associates with activating enhancer-binding protein 2α (AP2a) and mediates β-catenin gene transcription. Moreover, association of uPAR with the β-catenin·TCF/LEF complex and various other TF involved during embryonic development and cancer indicates that uPAR is a potent activator of stemness, and targeting of uPAR in combination with radiation has significant therapeutic implications. PMID:22511755

  14. Urokinase-type plasminogen activator receptor (uPAR)-mediated regulation of WNT/β-catenin signaling is enhanced in irradiated medulloblastoma cells.

    PubMed

    Asuthkar, Swapna; Gondi, Christopher S; Nalla, Arun Kumar; Velpula, Kiran Kumar; Gorantla, Bharathi; Rao, Jasti S

    2012-06-01

    Urokinase plasminogen activator receptor (uPAR) is known to promote invasion, migration, and metastasis in cancer cells. In this report, we showed that ionizing radiation (IR)-induced uPAR has a role in WNT-β-catenin signaling and mediates induction of cancer stem cell (CSC)-like properties in medulloblastoma cell lines UW228 and D283. We observed that IR induced the expression of uPAR and CSC markers, such as Musashi-1 and CD44, and activated WNT-7a-β-catenin signaling molecules. Overexpression of uPAR alone or with IR treatment led to increased WNT-7a-β-catenin-TCF/LEF-mediated transactivation, thereby promoting cancer stemness. In contrast, treatment with shRNA specific for uPAR (pU) suppressed WNT-7a-β-catenin-TCF/LEF-mediated transactivation both in vitro and in vivo. Quercetin, a potent WNT/β-catenin inhibitor, suppressed uPAR and uPAR-mediated WNT/β-catenin activation, and furthermore, addition of recombinant human WNT-7a protein induced uPAR, indicating the existence of a mutual regulatory relationship between uPAR and WNT/β-catenin signaling. We showed that uPAR was physically associated with the WNT effector molecule β-catenin on the membrane, cytoplasm, and nucleus of IR-treated cells and CSC. Most interestingly, we demonstrated for the first time that localization of uPAR in the nucleus was associated with transcription factors (TF) and their specific response elements. We observed from uPAR-ChIP, TF protein, and protein/DNA array analyses that uPAR associates with activating enhancer-binding protein 2α (AP2a) and mediates β-catenin gene transcription. Moreover, association of uPAR with the β-catenin·TCF/LEF complex and various other TF involved during embryonic development and cancer indicates that uPAR is a potent activator of stemness, and targeting of uPAR in combination with radiation has significant therapeutic implications. PMID:22511755

  15. Enhancing Beta-Catenin Activity via GSK3beta Inhibition Protects PC12 Cells against Rotenone Toxicity through Nurr1 Induction

    PubMed Central

    Wei, Lei; Mo, Mingshu; Feng, Junmin; Sun, Congcong; Xiao, Yousheng; Luo, Qin; Li, Shaomin; Yang, Xinling; Xu, Pingyi

    2016-01-01

    Parkinson’s disease (PD) is characterized by progressive degeneration of dopaminergic (DA) neurons in the substantial nigra pars compacta. Increasing evidence showed that Wnt/β-catenin pathway and the orphan nuclear receptor Nurr1 play crucial roles in the survival and functional maintenance of DA neurons in the midbrain and GSK-3β antagonists LiCl and SB216763 were used to activate Wnt/β-catenin pathway experimentally. However, the detail mechanism underlying the neuroprotection against apoptosis on DA neuron is still unclear and the interaction between Wnt/β-catenin and Nurr1 remains undisclosed. In this study, using cell biological assay we investigated the function of Wnt/β-catenin and its crosstalk with Nurr1 on the course of PC12 cell degeneration in vitro. Our data showed that PC12 cell viability was inhibited by rotenone, but attenuated by GSK-3β antagonists LiCl or SB216763. The activity of Wnt/β-catenin pathway was deregulated on exposure of rotenone in a concentration-dependent manner. After the interference of β-catenin with siRNA, LiCl or SB216763 failed to protect PC12 cells from apoptosis by the rotenone toxicity. Our data confirmed that Wnt/β-catenin signaling activated by LiCl or SB216763 enhanced Nurr1 expression to 2.75 ± 0.55 and 4.06 ± 0.41 folds respectively compared with control detected by real-time PCR and the interaction of β-catenin with Nurr1 was identified by co-immunoprecipitate analysis. In conclusion, the data suggested that Wnt/β-catenin and Nurr1 are crucial factors in the survival of DA neurons, and the activation of Wnt/β-catenin pathway exerts protective effects on DA neurons partly by mean of a co-active pattern with Nurr1. This finding may shed a light on the potential treatment of Parkinson disease. PMID:27045591

  16. Enhanced activation of an amino-terminally truncated isoform of the voltage-gated proton channel HVCN1 enriched in malignant B cells

    PubMed Central

    Hondares, Elayne; Brown, Mark Adrian; Musset, Boris; Morgan, Deri; Cherny, Vladimir V.; Taubert, Christina; Bhamrah, Mandeep K.; Coe, David; Marelli-Berg, Federica; Gribben, John G.; Dyer, Martin J. S.; DeCoursey, Thomas E.; Capasso, Melania

    2014-01-01

    HVCN1 (Hydrogen voltage-gated channel 1) is the only mammalian voltage-gated proton channel. In human B lymphocytes, HVCN1 associates with the B-cell receptor (BCR) and is required for optimal BCR signaling and redox control. HVCN1 is expressed in malignant B cells that rely on BCR signaling, such as chronic lymphocytic leukemia (CLL) cells. However, little is known about its regulation in these cells. We found that HVCN1 was expressed in B cells as two protein isoforms. The shorter isoform (HVCN1S) was enriched in B cells from a cohort of 76 CLL patients. When overexpressed in a B-cell lymphoma line, HVCN1S responded more profoundly to protein kinase C-dependent phosphorylation. This more potent enhanced gating response was mediated by increased phosphorylation of the same residue responsible for enhanced gating in HVCN1L, Thr29. Furthermore, the association of HVCN1S with the BCR was weaker, which resulted in its diminished internalization upon BCR stimulation. Finally, HVCN1S conferred a proliferative and migratory advantage as well as enhanced BCR-dependent signaling. Overall, our data show for the first time, to our knowledge, the existence of a shorter isoform of HVCN1 with enhanced gating that is specifically enriched in malignant B cells. The properties of HVCN1S suggest that it may contribute to the pathogenesis of BCR-dependent B-cell malignancies. PMID:25425665

  17. Enhancement of bone marrow allografts from nude mice into mismatched recipients by T cells void of graft-versus-host activity

    SciTech Connect

    Lapidot, T.; Lubin, I.; Terenzi, A.; Faktorowich, Y.; Erlich, P.; Reisner, Y. )

    1990-06-01

    Transplantation of 8 x 10(6) C57BL/6-Nu+/Nu+ (nude) bone marrow cells into C3H/HeJ recipients after conditioning with 8 Gy of total body irradiation has resulted in a markedly higher rate of graft rejection or graft failure compared to that found in recipients of normal C57BL/6 or C57BL/6-Bg+/Bg+ (beige) T-cell-depleted bone marrow. Mixing experiments using different numbers of nude bone marrow cells with or without mature thymocytes (unagglutinated by peanut agglutinin) revealed that engraftment of allogeneic T-cell-depleted bone marrow is T-cell dependent. To ensure engraftment, a large inoculum of nude bone marrow must be supplemented with a trace number of donor T cells, whereas a small bone marrow dose from nude donors requires a much larger number of T cells for engraftment. Marked enhancement of donor type chimerism was also found when F1 thymocytes were added to nude bone marrow cells, indicating that the enhancement of bone marrow engraftment by T cells is not only mediated by alloreactivity against residual host cells but may rather be generated by growth factors, the release of which may require specific interactions between T cells and stem cells or between T cells and bone marrow stroma cells.

  18. Heat Shock Enhances the Expression of the Human T Cell Leukemia Virus Type-I (HTLV-I) Trans-Activator (Tax) Antigen in Human HTLV-I Infected Primary and Cultured T Cells.

    PubMed

    Kunihiro, Marie; Fujii, Hideki; Miyagi, Takuya; Takahashi, Yoshiaki; Tanaka, Reiko; Fukushima, Takuya; Ansari, Aftab A; Tanaka, Yuetsu

    2016-01-01

    The environmental factors that lead to the reactivation of human T cell leukemia virus type-1 (HTLV-I) in latently infected T cells in vivo remain unknown. It has been previously shown that heat shock (HS) is a potent inducer of HTLV-I viral protein expression in long-term cultured cell lines. However, the precise HTLV-I protein(s) and mechanisms by which HS induces its effect remain ill-defined. We initiated these studies by first monitoring the levels of the trans-activator (Tax) protein induced by exposure of the HTLV-I infected cell line to HS. HS treatment at 43 °C for 30 min for 24 h led to marked increases in the level of Tax antigen expression in all HTLV-I-infected T cell lines tested including a number of HTLV-I-naturally infected T cell lines. HS also increased the expression of functional HTLV-I envelope gp46 antigen, as shown by increased syncytium formation activity. Interestingly, the enhancing effect of HS was partially inhibited by the addition of the heat shock protein 70 (HSP70)-inhibitor pifithlin-μ (PFT). In contrast, the HSP 70-inducer zerumbone (ZER) enhanced Tax expression in the absence of HS. These data suggest that HSP 70 is at least partially involved in HS-mediated stimulation of Tax expression. As expected, HS resulted in enhanced expression of the Tax-inducible host antigens, such as CD83 and OX40. Finally, we confirmed that HS enhanced the levels of Tax and gp46 antigen expression in primary human CD4⁺ T cells isolated from HTLV-I-infected humanized NOD/SCID/γc null (NOG) mice and HTLV-I carriers. In summary, the data presented herein indicate that HS is one of the environmental factors involved in the reactivation of HTLV-I in vivo via enhanced Tax expression, which may favor HTLV-I expansion in vivo. PMID:27409630

  19. Heat Shock Enhances the Expression of the Human T Cell Leukemia Virus Type-I (HTLV-I) Trans-Activator (Tax) Antigen in Human HTLV-I Infected Primary and Cultured T Cells

    PubMed Central

    Kunihiro, Marie; Fujii, Hideki; Miyagi, Takuya; Takahashi, Yoshiaki; Tanaka, Reiko; Fukushima, Takuya; Ansari, Aftab A.; Tanaka, Yuetsu

    2016-01-01

    The environmental factors that lead to the reactivation of human T cell leukemia virus type-1 (HTLV-I) in latently infected T cells in vivo remain unknown. It has been previously shown that heat shock (HS) is a potent inducer of HTLV-I viral protein expression in long-term cultured cell lines. However, the precise HTLV-I protein(s) and mechanisms by which HS induces its effect remain ill-defined. We initiated these studies by first monitoring the levels of the trans-activator (Tax) protein induced by exposure of the HTLV-I infected cell line to HS. HS treatment at 43 °C for 30 min for 24 h led to marked increases in the level of Tax antigen expression in all HTLV-I-infected T cell lines tested including a number of HTLV-I-naturally infected T cell lines. HS also increased the expression of functional HTLV-I envelope gp46 antigen, as shown by increased syncytium formation activity. Interestingly, the enhancing effect of HS was partially inhibited by the addition of the heat shock protein 70 (HSP70)-inhibitor pifithlin-μ (PFT). In contrast, the HSP 70-inducer zerumbone (ZER) enhanced Tax expression in the absence of HS. These data suggest that HSP 70 is at least partially involved in HS-mediated stimulation of Tax expression. As expected, HS resulted in enhanced expression of the Tax-inducible host antigens, such as CD83 and OX40. Finally, we confirmed that HS enhanced the levels of Tax and gp46 antigen expression in primary human CD4+ T cells isolated from HTLV-I-infected humanized NOD/SCID/γc null (NOG) mice and HTLV-I carriers. In summary, the data presented herein indicate that HS is one of the environmental factors involved in the reactivation of HTLV-I in vivo via enhanced Tax expression, which may favor HTLV-I expansion in vivo. PMID:27409630

  20. Enhanced electrocatalytic activity of the Au-electrodeposited Pt nanoparticles-coated conducting oxide for the quantum dot-sensitized solar cells

    SciTech Connect

    Yoon, Yeung-Pil; Kim, Jae-Hong; Ahn, Kwang-Soon; Kang, Soon-Hyung; Kim, Hyunsoo; Choi, Chel-Jong; Kim, Kyong-Kook

    2014-08-25

    Au was electrodeposited potentiostatically at 0.3 V for 5 min on nanoporous Pt nanoparticle-coated F-doped SnO{sub 2} (FTO/Pt) substrates. For comparison, Au-electrodeposited FTO (FTO/Au) and Au-uncoated FTO/Pt were prepared. FTO/Au showed large-sized Au clusters dispersed sparsely over FTO, which resulted in lower electrocatalytic activity than FTO/Pt. In contrast, FTO/Pt exhibited poor stability unlike FTO/Au due to poisoning by the adsorption of sulfur species. The Au-electrodeposited FTO/Pt (FTO/Pt/Au) consisted of small Au clusters deposited over the entire area of Pt due to the effective Au nucleation provided by nanoporous metallic Pt. FTO/Pt/Au exhibited enhanced electrocatalytic activity and excellent stability because the small Au particles well-dispersed over the nanoporous metallic Pt network provided numerous electrochemical reaction sites, and the Pt surface was not exposed to the electrolyte. When FTO/Pt/Au was used as the counter electrode (CE) of a quantum dot-sensitized solar cell, the significantly enhanced electrocatalytic activity of the FTO/Pt/Au CE facilitated the reduction reaction of S{sub n}{sup 2− }+ 2e{sup −} (CE) → S{sub n−1}{sup 2−} + S{sup 2−} at the CE/electrolyte interface, resulting in a significantly hindered recombination reaction, S{sub n}{sup 2− }+ 2e{sup −} (TiO{sub 2} in the photoanode) → S{sub n-1}{sup 2−} + S{sup 2−}, and significantly improved overall energy conversion efficiency.

  1. Near-IR activity of hybrid solar cells: Enhancement of efficiency by dissociating excitons generated in PbS nanoparticles

    NASA Astrophysics Data System (ADS)

    Guchhait, Asim; Rath, Arup K.; Pal, Amlan J.

    2010-02-01

    Photovoltaic devices based on PbS nanoparticles remained inactive in the near-IR region due to a not-so-favorable energy band-diagram that does not allow dissociation of excitons generated in PbS. In this work, with the introduction of TiO2 nanostructures in the PbS-based hybrid system, we show an enhancement of photovoltaic performance in both visible and near-IR regions. The addition of TiO2 increases the power conversion efficiency from 0.006% to 0.12%. With the aid of energy band-diagram, we show that excitons generated in PbS even in the near-IR range can now become dissociated to yield photocurrent in the external circuit.

  2. Enhanced Oxygen and Hydroxide Transport in a Cathode Interface by Efficient Antibacterial Property of a Silver Nanoparticle-Modified, Activated Carbon Cathode in Microbial Fuel Cells.

    PubMed

    Li, Da; Qu, Youpeng; Liu, Jia; Liu, Guohong; Zhang, Jie; Feng, Yujie

    2016-08-17

    A biofilm growing on an air cathode is responsible for the decreased performance of microbial fuel cells (MFCs). For the undesired biofilm to be minimized, silver nanoparticles were synthesized on activated carbon as the cathodic catalyst (Ag/AC) in MFCs. Ag/AC enhanced maximum power density by 14.6% compared to that of a bare activated carbon cathode (AC) due to the additional silver catalysis. After operating MFCs over five months, protein content on the Ag/AC cathode was only 38.3% of that on the AC cathode, which resulted in a higher oxygen concentration diffusing through the Ag/AC cathode. In addition, a lower pH increment (0.2 units) was obtained near the Ag/AC catalyst surface after biofouling compared to 0.8 units of the AC cathode, indicating that less biofilm on the Ag/AC cathode had a minor resistance on hydroxide transported from the catalyst layer interfaces to the bulk solution. Therefore, less decrements of the Ag/AC activity and MFC performance were obtained. This result indicated that accelerated transport of oxygen and hydroxide, benefitting from the antibacterial property of the cathode, could efficiently maintain higher cathode stability during long-term operation. PMID:27441786

  3. Adenovirus-mediated FIR demonstrated TP53-independent cell-killing effect and enhanced antitumor activity of carbon-ion beams.

    PubMed

    Kano, M; Matsushita, K; Rahmutulla, B; Yamada, S; Shimada, H; Kubo, S; Hiwasa, T; Matsubara, H; Nomura, F

    2016-01-01

    Combination therapy of carbon-ion beam with the far upstream element-binding protein (FBP)-interacting repressor, FIR, which interferes with DNA damage repair proteins, was proposed as an approach for esophageal cancer treatment with low side effects regardless of TP53 status. In vivo therapeutic antitumor efficacy of replication-defective adenovirus (E1 and E3 deleted adenovirus serotype 5) encoding human FIR cDNA (Ad-FIR) was demonstrated in the tumor xenograft model of human esophageal squamous cancer cells, TE-2. Bleomycin (BLM) is an anticancer agent that introduces DNA breaks. The authors reported that Ad-FIR involved in the BLM-induced DNA damage repair response and thus applicable for other DNA damaging agents. To examine the effect of Ad-FIR on DNA damage repair, BLM, X-ray and carbon-ion irradiation were used as DNA damaging agents. The biological effects of high linear energy transfer (LET) radiotherapy used with carbon-ion irradiation are more expansive than low-LET conventional radiotherapy, such as X-rays or γ rays. High LET radiotherapy is suitable for the local control of tumors because of its high relative biological effectiveness. Ad-FIR enhanced BLM-induced DNA damage indicated by γH2AX in vitro. BLM treatment increased endogenous nuclear FIR expression in TE-2 cells, and P27Kip1 expression was suppressed by TP53 siRNA and BLM treatment. Further, Ad-FIRΔexon2, a dominant-negative form of FIR that lacks exon2 transcriptional repression domain, decreased Ku86 expression. The combination of Ad-FIR and BLM in TP53 siRNA increased DNA damage. Additionally, Ad-FIR showed synergistic cell toxicity with X-ray in vitro and significantly increased the antitumor efficacy of carbon-ion irradiation in the xenograft mouse model of TE-2 cells (P=0.03, Mann-Whitney's U-test) and was synergistic with the sensitization enhancement ratio (SER) value of 1.15. Therefore, Ad-FIR increased the cell-killing activity of the carbon-ion beam that avoids late

  4. Heligmosomoides polygyrus bakeri infection activates colonic FoxP3+ T cells enhancing their capacity to prevent colitis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Helminthic infections protect mice from colitis in murine models of inflammatory bowel disease and also may protect people. Helminths like Heligmosomoides bakeri (Hpb) can induce Tregs. Experiments explored if Hpb infection could protect mice from colitis through activation of colonic Treg and exam...

  5. HMGB1 binding to receptor for advanced glycation end products enhances inflammatory responses of human bronchial epithelial cells by activating p38 MAPK and ERK1/2.

    PubMed

    Liang, Yue; Hou, Changchun; Kong, Jinliang; Wen, Hanchun; Zheng, Xiaowen; Wu, Lihong; Huang, Hong; Chen, Yiqiang

    2015-07-01

    The proinflammatory factor high mobility group box protein 1 (HMGB1) has been implicated as an important mediator of many chronic inflammatory diseases, including asthma. Human bronchial epithelial cells (HBECs) play a central role in the pathogenesis of asthma. However, the effects of HMGB1 on HBECs and the underlying mechanisms remain unknown. Here, we investigated receptor expression and proinflammatory cytokine production by primary cultures of HBECs stimulated by HMGB1. We then examined the effects of specific receptor blockade and inhibition of p38 MAPK, ERK1/2, or PI3-K on HMGB1-induced expression of proinflammatory cytokines. HMGB1 increased the expression and secretion of TNF-α, TSLP, MMP-9, and VEGF in a dose- and time-dependent manner. HMGB1 also induced elevated expression of RAGE protein. Secretion of TNF-α, VEGF, MMP-9, and TSLP was significantly decreased by RAGE blockade and p38 MAPK pathway inhibition, while a less pronounced effect was mediated by ERK1/2 inhibition. These observations suggest that HMGB1 binds RAGE and promotes activities of p38 MAPK and ERK1/2 pathways in HBECs. This then enhances the expression of TNF-α, VEGF, MMP-9, and TSLP, which are the important inflammatory factors in asthma. These results demonstrate that HMGB1 enhances the inflammatory responses of HBECs, which are involved in the modulation of inflammatory processes in asthma. PMID:25862459

  6. Leptin Enhances Cholangiocarcinoma Cell Growth

    PubMed Central

    Fava, Giammarco; Alpini, Gianfranco; Rychlicki, Chiara; Saccomanno, Stefania; DeMorrow, Sharon; Trozzi, Luciano; Candelaresi, Cinzia; Venter, Julie; Di Sario, Antonio; Marzioni, Marco; Bearzi, Italo; Glaser, Shannon; Alvaro, Domenico; Marucci, Luca; Francis, Heather; Svegliati-Baroni, Gianluca; Benedetti, Antonio

    2008-01-01

    Cholangiocarcinoma is a strongly aggressive malignancy with a very poor prognosis. Effective therapeutic strategies are lacking because molecular mechanisms regulating cholangiocarcinoma cell growth are unknown. Furthermore, experimental in vivo animal models useful to study the pathophysiologic mechanisms of malignant cholangiocytes are lacking. Leptin, the hormone regulating caloric homeostasis, which is increased in obese patients, stimulates the growth of several cancers, such as hepatocellular carcinoma. The aim of this study was to define if leptin stimulates cholangiocarcinoma growth. We determined the expression of leptin receptors in normal and malignant human cholangiocytes. Effects on intrahepatic cholangiocarcinoma (HuH-28) cell proliferation, migration, and apoptosis of the in vitro exposure to leptin, together with the intracellular pathways, were then studied. Moreover, cholangiocarcinoma was experimentally induced in obese fa/fa Zucker rats, a genetically established animal species with faulty leptin receptors, and in their littermates by chronic feeding with thioacetamide, a potent carcinogen. After 24 weeks, the effect of leptin on cholangiocarcinoma development and growth was assessed. Normal and malignant human cholangiocytes express leptin receptors. Leptin increased the proliferation and the metastatic potential of cholangiocarcinoma cells in vitro through a signal transducers and activators of transcription 3–dependent activation of extracellular signal-regulated kinase 1/2. Leptin increased the growth and migration, and was antiapoptotic for cholangiocarcinoma cells. Moreover, the loss of leptin function reduced the development and the growth of cholangiocarcinoma. The experimental carcinogenesis model induced by thioacetamide administration is a valid and reproducible method to study cholangiocarcinoma pathobiology. Modulation of the leptin-mediated signal could be considered a valid tool for the prevention and treatment of

  7. An Inactivated Antibiotic-Exposed Whole-Cell Vaccine Enhances Bactericidal Activities Against Multidrug-Resistant Acinetobacter baumannii

    PubMed Central

    Shu, Meng-Hooi; MatRahim, NorAziyah; NorAmdan, NurAsyura; Pang, Sui-Ping; Hashim, Sharina H.; Phoon, Wai-Hong; AbuBakar, Sazaly

    2016-01-01

    Vaccination may be an alternative treatment for infection with multidrug-resistance (MDR) Acinetobacter baumannii. The study reported here evaluated the bactericidal antibody responses following immunization of mice using an inactivated whole-cell vaccine derived from antibiotic-exposed MDR A. baumannii (I-M28-47-114). Mice inoculated with I-M28-47 (non-antibiotic-exposed control) and I-M28-47-114 showed a high IgG antibody response by day 5 post-inoculation. Sera from mice inoculated with I-M28-47-114 collected on day 30 resulted in 80.7 ± 12.0% complement-mediated bacteriolysis in vitro of the test MDR A. baumannii treated with imipenem, which was a higher level of bacteriolysis over sera from mice inoculated with I-M28-47. Macrophage-like U937 cells eliminated 49.3 ± 11.6% of the test MDR A. baumannii treated with imipenem when opsonized with sera from mice inoculated with I-M28-47-114, which was a higher level of elimination than observed for test MDR A. baumannii opsonized with sera from mice inoculated with I-M28-47. These results suggest that vaccination with I-M28-47-114 stimulated antibody responses capable of mounting high bactericidal killing of MDR A. baumannii. Therefore, the inactivated antibiotic-exposed whole-cell vaccine (I-M28-47-114) has potential for development as a candidate vaccine for broad clearance and protection against MDR A. baumannii infections. PMID:26923424

  8. An Inactivated Antibiotic-Exposed Whole-Cell Vaccine Enhances Bactericidal Activities Against Multidrug-Resistant Acinetobacter baumannii.

    PubMed

    Shu, Meng-Hooi; MatRahim, NorAziyah; NorAmdan, NurAsyura; Pang, Sui-Ping; Hashim, Sharina H; Phoon, Wai-Hong; AbuBakar, Sazaly

    2016-01-01

    Vaccination may be an alternative treatment for infection with multidrug-resistance (MDR) Acinetobacter baumannii. The study reported here evaluated the bactericidal antibody responses following immunization of mice using an inactivated whole-cell vaccine derived from antibiotic-exposed MDR A. baumannii (I-M28-47-114). Mice inoculated with I-M28-47 (non-antibiotic-exposed control) and I-M28-47-114 showed a high IgG antibody response by day 5 post-inoculation. Sera from mice inoculated with I-M28-47-114 collected on day 30 resulted in 80.7 ± 12.0% complement-mediated bacteriolysis in vitro of the test MDR A. baumannii treated with imipenem, which was a higher level of bacteriolysis over sera from mice inoculated with I-M28-47. Macrophage-like U937 cells eliminated 49.3 ± 11.6% of the test MDR A. baumannii treated with imipenem when opsonized with sera from mice inoculated with I-M28-47-114, which was a higher level of elimination than observed for test MDR A. baumannii opsonized with sera from mice inoculated with I-M28-47. These results suggest that vaccination with I-M28-47-114 stimulated antibody responses capable of mounting high bactericidal killing of MDR A. baumannii. Therefore, the inactivated antibiotic-exposed whole-cell vaccine (I-M28-47-114) has potential for development as a candidate vaccine for broad clearance and protection against MDR A. baumannii infections. PMID:26923424

  9. Enhanced Proliferation of Porcine Bone Marrow Mesenchymal Stem Cells Induced by Extracellular Calcium is Associated with the Activation of the Calcium-Sensing Receptor and ERK Signaling Pathway

    PubMed Central

    Ye, Jingjing; Ai, Wei; Zhang, Fenglin; Zhu, Xiaotong; Shu, Gang; Wang, Lina; Gao, Ping; Xi, Qianyun; Zhang, YongLiang; Jiang, Qingyan; Wang, Songbo

    2016-01-01

    Porcine bone marrow mesenchymal stem cells (pBMSCs) have the potential for application in regenerative medicine. This study aims to investigate the effects of extracellular calcium ([Ca2+]o) on pBMSCs proliferation and to explore the possible underlying mechanisms. The results demonstrated that 4 mM [Ca2+]o significantly promoted pBMSCs proliferation by reducing the G0/G1 phase cell percentage and by increasing the S phase cell proportion and the proliferation index of pBMSCs. Accordingly, [Ca2+]o stimulated the expression levels of proliferative genes such as cyclin A2, cyclin D1/3, cyclin E2, and PCNA and inhibited the expression of p21. In addition, [Ca2+]o resulted in a significant elevation of intracellular calcium and an increased ratio of p-ERK/ERK. However, inhibition of calcium-sensing receptor (CaSR) by its antagonist NPS2143 abolished the aforementioned effects of [Ca2+]o. Moreover, [Ca2+]o-induced promotion of pBMSCs proliferation, the changes of proliferative genes expression levels, and the activation of ERK1/2 signaling pathway were effectively blocked by U0126, a selective ERK kinase inhibitor. In conclusion, our findings provided evidence that the enhanced pBMSCs proliferation in response to [Ca2+]o was associated with the activation of CaSR and ERK1/2 signaling pathway, which may be useful for the application of pBMSCs in future clinical studies aimed at tissue regeneration and repair. PMID:27123007

  10. Enhanced electrocatalytic activity of electrodeposited F-doped SnO2/Cu2S electrodes for quantum dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Vinh Quy, Vu Hong; Kim, Jae-Hong; Kang, Soon-Hyung; Choi, Cheol-Jong; Rajesh, John Anthuvan; Ahn, Kwang-Soon

    2016-06-01

    Copper sulfide (Cu2S) films were deposited on F-doped SnO2 (FTO) substrates via the electrodeposition (ED) of copper (Cu) nanoparticles followed by sulfurization. The Cu nanoparticles were deposited on FTO substrates for various ED times ranging from 10 to 30 min at a constant -0.4 V. The FTO/Cu films consisted of flower-like nanoparticles comprised of randomly-clustering nanoflakes. The Cu nanoparticles electrodeposited for 10 min (FTO/Cu (10 min)) were dispersed sparsely over the FTO substrate, whereas the FTO/Cu (20 and 30 min) provided increased coverage. Unlike FTO/Cu2S (10 min), the FTO/Cu2S (20 and 30 min) consisted of vertically-standing large Cu2S nanosheets with numerous small nanosheets in between. This was attributed to the sufficient number of Cu seed nanoflakes, which not only facilitate ion transport of the redox couple but also increased the surface area, leading to significantly enhanced electrocatalytic activity. The quantum dot-sensitized solar cell (QD-SSC) with FTO/Cu2S (20 min) exhibited a significantly improved cell efficiency of 4.58%, compared to those with Pt and FTO/Cu2S (10 min). The QD-SSC with the FTO/Cu2S (30 min) showed similar cell efficiency to that with the FTO/Cu2S (20 min), despite the larger surface area because of its amorphous crystallographic structure offsetting the electrocatalytic activity.

  11. Serine deprivation enhances antineoplastic activity of biguanides.

    PubMed

    Gravel, Simon-Pierre; Hulea, Laura; Toban, Nader; Birman, Elena; Blouin, Marie-José; Zakikhani, Mahvash; Zhao, Yunhua; Topisirovic, Ivan; St-Pierre, Julie; Pollak, Michael

    2014-12-15

    Metformin, a biguanide widely used in the treatment of type II diabetes, clearly exhibits antineoplastic activity in experimental models and has been reported to reduce cancer incidence in diabetics. There are ongoing clinical trials to evaluate its antitumor properties, which may relate to its fundamental activity as an inhibitor of oxidative phosphorylation. Here, we show that serine withdrawal increases the antineoplastic effects of phenformin (a potent biguanide structurally related to metformin). Serine synthesis was not inhibited by biguanides. Instead, metabolic studies indicated a requirement for serine to allow cells to compensate for biguanide-induced decrease in oxidative phosphorylation by upregulating glycolysis. Furthermore, serine deprivation modified the impact of metformin on the relative abundance of metabolites within the citric acid cycle. In mice, a serine-deficient diet reduced serine levels in tumors and significantly enhanced the tumor growth-inhibitory actions of biguanide treatment. Our results define a dietary manipulation that can enhance the efficacy of biguanides as antineoplastic agents that target cancer cell energy metabolism. PMID:25377470

  12. Activation of dendritic cells and induction of T cell responses by HPV 16 L1/E7 chimeric virus-like particles are enhanced by CpG ODN or sorbitol.

    PubMed

    Freyschmidt, Eva-Jasmin; Alonso, Angel; Hartmann, Gunther; Gissmann, Lutz

    2004-08-01

    Chimeric human papillomavirus-like particles, consisting of human papillomavirus (HPV) 16 L1-E7 fusion proteins [HPV 16 L1/E7 chimeric virus-like particles (CVLP)], are a vaccine candidate for treatment and prevention of cervical cancer. Although in preclinical studies CVLPs were shown to induce neutralizing antibodies and L1- and E7-specific T cell responses, the results of a recent clinical trial emphasized the need of improved immunogenicity of CVLPs. Here we studied the interaction of HPV 16 L1/E7 CVLPs with mouse bone marrow-derived dendritic cells (BMDCs) activated with different immune adjuvants. We found that lipopolysaccharides (LPS), unmethylated CpG motifs (CpG ODN) and sorbitol enhanced CVLP-induced stimulation of C57BL/6 mouse BMDCs as revealed by increased levels of CD40, CD80, MHC II and CD54 at the cell surface. CpG ODN and sorbitol also enhanced the presentation of Db-restricted cytotoxic T lymphocyte epitopes to HPV 16 L1- or E7-specific T lymphocytes after loading of CVLPs onto BMDCs. Treatment of BMDCs with CpG ODN in combination with CVLPs improved in vitro priming of naive T lymphocytes by CVLP-loaded BMDCs. In vivo, CVLP-loaded BMDCs were more immunogenic as compared with injection of CVLPs alone. CpG ODN and sorbitol further enhanced priming of antigen-specific T cell responses. Our data demonstrate that CpG ODN- or sorbitol-activated BMDCs substantially increase the immunogenicity of CVLPs. Implementing our results in clinical trial protocols may lead to improved activity of therapeutic HPV vaccines for the treatment of HPV-induced cancer. PMID:15456078

  13. [Enhancement of the phagocytic activity of cells of the mononuclear phagocytosing system by the peroral administration of lactobacilli].

    PubMed

    Zaĭtseva, L G; Gorskaia, E M; Lentsner, A A; Shustrova, N M

    1986-09-01

    The phagocytic function of the peritoneal exudate cells after oral and intraperitoneal administration of Lactobacillus casei subsp. casei, L. plantarum and L. fermentum was studied on mice C57Bl and inbred rats CDF/F344/Crl. The phagocytic function was estimated by the capacity for absorbing and excreting 14C-labeled typhoid vaccine. Intraperitoneal administration of a mixture of various Lactobacillus strains resulted in two-fold increase of the bacteria absorption and digestion when the Lactobacillus strains were administered 4 days before administration of the test antigen. On their simultaneous administration the phagocytic function of the peritoneal exudate cells lowered. Oral administration of the Lactobacillus strains for 6 and 18 days resulted, respectively, in 1.5- and 3-fold increase of absorption and digestion of the labeled typhoid vaccine. This route of Lactobacillus administration provided more rapid increase of the level of the antibodies to the typhoid antigen. Possible immunomodulating action of Lactobacillus administered orally is discussed. PMID:3777898

  14. A fiber-modified adenovirus co-expressing HSV-TK and Coli.NTR enhances antitumor activities in breast cancer cells

    PubMed Central

    Zhan, Yang; Yu, Bin; Wang, Zhen; Zhang, Yu; Zhang, Hai-Hong; Wu, Hao; Feng, Xiao; Geng, Ran-Shen; Kong, Wei; Yu, Xiang-Hui

    2014-01-01

    Breast cancers especially in late and metastatic stages remain refractory to treatment despite advances in surgical techniques and chemotherapy. Suicide gene therapy based on adenoviral technology will be promising strategies for such advanced diseases. We previously showed that co-expression of herpes simplex virus thymidine kinase (HSV-TK) and Escherichia coli nitroreductase (Coli.NTR) by an hTERT-driven adenovirus vector resulted in additive anti-tumor effects in breast cancer cells in vitro and in vivo. As many tumor tissue and cancer cells express low level of coxsackie-adenovirus receptor (CAR), which is the functional receptor for the fiber protein of human adenovirus serotype 5 (Ad5), novel Ad5 vectors containing genetically modifi ed fiber are attractive vehicles for achieving targeted gene transfer and improving suicide gene expression in these cancer cells. In the present study, we first built a simplified Ad5 vector platform for fiber modification and quick detection for gene transfer. Then a fiber-modified adenovirus vector containing an RGD motif in the HI loop of the fiber knob was constructed. After recombined with HSV-TK and Coli.NTR gene, this fiber-modified Ad5 vector (Ad-RGD-hT-TK/NTR) was compared with that of our previously constructed Ad5 vector (Ad-hT-TK/NTR) for its therapeutic effects in human breast cancer cell lines. The anti-tumor activity of Ad-RGD-hT-TK/NTR was significantly enhanced compared with Ad-hT-TK/NTR both in vitro and in vivo. This new vector platform provided a robust and simplified approach for capsid modification, and the fiber-modified Ad5 with double suicide genes under the control of hTERT promoter would be a useful gene therapy strategy for breast cancer. PMID:25031704

  15. Dimethyl fumarate attenuates 6-OHDA-induced neurotoxicity in SH-SY5Y cells and in animal model of Parkinson's disease by enhancing Nrf2 activity.

    PubMed

    Jing, X; Shi, H; Zhang, C; Ren, M; Han, M; Wei, X; Zhang, X; Lou, H

    2015-02-12

    Oxidative stress is central to the pathology of several neurodegenerative diseases, including Parkinson's disease (PD), and therapeutics designed to enhance antioxidant potential coul