Science.gov

Sample records for activation ferritic martensitic

  1. Tritium retention in reduced-activation ferritic/martensitic steels

    SciTech Connect

    Hatano, Y.; Abe, S.; Matsuyama, M.; Alimov, V.K.; Spitsyn, A.V.; Bobyr, N.P.; Cherkez, D.I.; Khripunov, B.I.; Golubeva, A.V.; Ogorodnikova, O.V.; Klimov, N.S.; Chernov, V.M.; Oyaidzu, M.; Yamanishi, T.

    2015-03-15

    Reduced-activation ferritic/martensitic (RAFM) steels are structural material candidates for breeding blankets of future fusion reactors. Therefore, tritium (T) retention in RAFM steels is an important problem in assessing the T inventory of blankets. In this study, specimens of RAFM steels were subjected to irradiation of 20 MeV W ions to 0.54 displacements per atom (dpa), exposure to high flux D plasmas at 400 and 600 K and that to pulsed heat loads. The specimens thus prepared were exposed to DT gas at 473 K. Despite severe modification in the surface morphology, heat loads had negligible effects on T retention. Significant increase in T retention at the surface and/or subsurface was observed after D plasma exposure. However, T trapped at the surface/subsurface layer was easily removed by maintaining the specimens in the air at about 300 K. Displacement damage led to increase in T retention in the bulk due to the trapping effects of defects, and T trapped was stable at 300 K. It was therefore concluded that displacement damages had the largest influence on T retention under the present conditions.

  2. Current status and future R&D for reduced-activation ferritic/martensitic steels

    NASA Astrophysics Data System (ADS)

    Hishinuma, A.; Kohyama, A.; Klueh, R. L.; Gelles, D. S.; Dietz, W.; Ehrlich, K.

    1998-10-01

    International research and development programs on reduced-activation ferritic/martensitic steels, the primary candidate-alloys for a DEMO fusion reactor and beyond, are briefly summarized, along with some information on conventional steels. An International Energy Agency (IEA) collaborative test program to determine the feasibility of reduced-activation ferritic/martensitic steels for fusion is in progress and will be completed within this century. Baseline properties including typical irradiation behavior for Fe-(7-9)%Cr reduced-activation ferritic steels are shown. Most of the data are for a heat of modified F82H steel, purchased for the IEA program. Experimental plans to explore possible problems and solutions for fusion devices using ferromagnetic materials are introduced. The preliminary results show that it should be possible to use a ferromagnetic vacuum vessel in tokamak devices.

  3. Recent Progress of R&D Activities on Reduced Activation Ferritic/Martensitic Steels

    SciTech Connect

    Huang, Q.; Baluc, N.; Dai, Y.; Jitsukawa, S.; Kimura, A.; Konys, J.; Kurtz, Richard J.; Lindau, R.; Muroga, T.; Odette, George R.; Raj, B.; Stoller, Roger E.; Tan, L.; Tanigawa, Hiroyasu; Tavassoli, A,-A.F.; Yamamoto, Takuya; Wan, F.; Wu, Y.

    2013-01-03

    Several types of reduced activation ferritic/martensitic (RAFM) steel have been developed over the past 30 years in China, Europe, India, Japan, Russia and the USA for application in ITER TBM and future fusion DEMO and power reactors. The progress has been particularly important during the past few years with evaluation of mechanical porperties of these steels before and after irradiation and in contact with different cooling media. This paper presents recent RAFM steel results obtained in ITER partner countries in relation with different TBM and DEMO options

  4. Irradiation-induced grain growth in nanocrystalline reduced activation ferrite/martensite steel

    SciTech Connect

    Liu, W. B.; Chen, L. Q.; Zhang, C. Yang, Z. G.; Ji, Y. Z.; Zang, H.; Shen, T. L.

    2014-09-22

    In this work, we investigate the microstructure evolution of surface-nanocrystallized reduced activation ferrite/martensite steels upon high-dose helium ion irradiation (24.3 dpa). We report a significant irradiation-induced grain growth in the irradiated buried layer at a depth of 300–500 nm, rather than at the peak damage region (at a depth of ∼840 nm). This phenomenon can be explained by the thermal spike model: minimization of the grain boundary (GB) curvature resulting from atomic diffusion in the cascade center near GBs.

  5. Diffusive transport parameters of deuterium through China reduced activation ferritic-martensitic steels

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Liu, Lingbo; Xiang, Xin; Rao, Yongchu; Ye, Xiaoqiu; Chen, Chang An

    2016-03-01

    Reduced Activation Ferritic/Martensitic (RAFM) steels have been considered as the most promising candidate structure materials for a fusion reactor. In the recent decades, two new types of RAFM steels, called China Low Activation Martensitic (CLAM) steel and China Low-activation Ferritic (CLF-1) steel, have been developed. The gas evolution permeation technique has been used to investigate diffusive transport parameters of deuterium through CLAM and CLF-1 over the temperature range 623 ∼ 873 K at deuterium pressure of 105 Pa. The resultant transport parameters are: Φ (mol. m-1 s-1 Pa-1/2) = 5.40 × 10-8 exp (-46.8 (kJ. mol-1)/RT), D(m2 s-1) = 3.81 × 10-7 exp(-24.0(kJ. mol-1)/RT) and S (mol. m-3 Pa-1/2) = 1.42 × 10-1 exp(-22.8(kJ. mol-1)/RT) for CLAM; while Φ(mol m-1 s-1 Pa-1/2) = 1.76 × 10-8 exp(-43.9(kJ. mol-1)/RT), D(m2. s-1) = 1.02 × 10-7 exp(-16.9(kJ. mol-1)/RT) and S(mol. m-1 Pa-1/2) = 1.73 × 10-1 exp(-27.0(kJ. mol-1) /RT) for CLF-1. The results show that CLAM is more permeable than CLF-1, thus it is easier for hydrogen isotopes to transport and be removed.

  6. Development of Reduced Activation Ferritic-Martensitic Steels and fabrication technologies for Indian test blanket module

    NASA Astrophysics Data System (ADS)

    Raj, Baldev; Jayakumar, T.

    2011-10-01

    For the development of Reduced Activation Ferritic-Martensitic Steel (RAFMS), for the Indian Test Blanket Module for ITER, a 3-phase programme has been adopted. The first phase consists of melting and detailed characterization of a laboratory scale heat conforming to Eurofer 97 composition, to demonstrate the capability of the Indian industry for producing fusion grade steel. In the second phase which is currently in progress, the chemical composition will be optimized with respect to tungsten and tantalum for better combination of mechanical properties. Characterization of the optimized commercial scale India-specific RAFM steel will be carried out in the third phase. The first phase of the programme has been successfully completed and the tensile, impact and creep properties are comparable with Eurofer 97. Laser and electron beam welding parameters have been optimized and welding consumables were developed for Narrow Gap - Gas Tungsten Arc welding and for laser-hybrid welding.

  7. Effect of mechanical restraint on weldability of reduced activation ferritic/martensitic steel thick plates

    NASA Astrophysics Data System (ADS)

    Serizawa, Hisashi; Nakamura, Shinichiro; Tanaka, Manabu; Kawahito, Yousuke; Tanigawa, Hiroyasu; Katayama, Seiji

    2011-10-01

    As one of the reduced activation ferritic/martensitic steels, the weldability of thick F82H plate was experimentally examined using new heat sources in order to minimize the total heat input energy in comparison with TIG welding. A full penetration of 32 mm thick plate could be produced as a combination of a 12 mm deep first layer generated by a 10 kW fiber laser beam and upper layers deposited by a plasma MIG hybrid welding with Ar + 2%O shielding gas. Also, the effect of mechanical restraint on the weldability under EB welding of thick F82H plate was studied by using FEM to select an appropriate specimen size for the basic test. The appropriate and minimum size for the basic test of weldability under EB welding of 90 mm thick plate might be 200 mm in length and 400 mm in width where the welding length should be about 180 mm.

  8. Development of new generation reduced activation ferritic-martensitic steels for advanced fusion reactors

    NASA Astrophysics Data System (ADS)

    Tan, L.; Snead, L. L.; Katoh, Y.

    2016-09-01

    International development of reduced activation ferritic-martensitic (RAFM) steels has focused on 9 wt percentage Cr, which primarily contain M23C6 (M = Cr-rich) and small amounts of MX (M = Ta/V, X = C/N) precipitates, not adequate to maintain strength and creep resistance above ∼500 °C. To enable applications at higher temperatures for better thermal efficiency of fusion reactors, computational alloy thermodynamics coupled with strength modeling have been employed to explore a new generation RAFM steels. The new alloys are designed to significantly increase the amount of MX nanoprecipitates, which are manufacturable through standard and scalable industrial steelmaking methods. Preliminary experimental results of the developed new alloys demonstrated noticeably increased amount of MX, favoring significantly improved strength, creep resistance, and Charpy impact toughness as compared to current RAFM steels. The strength and creep resistance were comparable or approaching to the lower bound of, but impact toughness was noticeably superior to 9-20Cr oxide dispersion-strengthened ferritic alloys.

  9. Studies on A-TIG welding of Low Activation Ferritic/Martensitic (LAFM) steel

    NASA Astrophysics Data System (ADS)

    Vasantharaja, P.; Vasudevan, M.

    2012-02-01

    Low Activation Ferritic-Martensitic steels (LAFM) are chosen as the candidate material for structural components in fusion reactors. The structural components are generally fabricated by welding processes. Activated Tungsten Inert Gas (A-TIG) welding is an emerging process for welding of thicker components. In the present work, attempt was made to develop A-TIG welding technology for LAFM steel plates of 10 mm thick. Activated flux was developed for LAFM steel by carrying out various bead-on-plate TIG welds without flux and with flux. The optimum flux was identified as one which gave maximum depth of penetration at minimum heat input values. With the optimized flux composition, LAFM steel plate of 10 mm thickness was welded in square butt weld joint configuration using double side welding technique. Optical and Scanning Electron Microscopy was used for characterizing the microstructures. Microhardness measurements were made across the weld cross section for as welded and post weld heat treated samples. Tensile and impact toughness properties were determined. The mechanical properties values obtained in A-TIG weld joint were comparable to that obtained in weld joints of LAFM steel made by Electron beam welding process.

  10. The development of ferritic-martensitic steels with reduced long-term activation

    NASA Astrophysics Data System (ADS)

    Ehrlich, K.; Kelzenberg, S.; Röhrig, H.-D.; Schäfer, L.; Schirra, M.

    1994-09-01

    Ferritic-martensitic 9-12% CrMoVNb steels of MANET type possess a number of advantageous properties for fusion reactor application. Their optimization has led to improved creep and fracture-toughness properties. New 9-10% CrWVTa alloys have been developed by KfK/IMF in collaboration with the SAARSTAHL GmbH which have a reduced long-term activation and show in addition superior fracture toughness properties. The calculation of dose rate and other radiological parameters with the presently available FISPACT/EAF codes, extended by KfK files for sequential reactions has shown that the long-term dose-rate in these alloys is governed by the remaining 'impurity level' of Nb and the alloying elements W and Ta. Sequential reactions — though relevant for single alloying elements like Cr, Mn, V and N — provide only a second order effect in Fe-based alloys. A challenge for the future materials development is the production of alloys with the desired narrow specification of elements and impurities, which necessitates new ways of steelmaking.

  11. Void swelling in high dose ion-irradiated reduced activation ferritic-martensitic steels

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Monterrosa, Anthony M.; Zhang, Feifei; Huang, Hao; Yan, Qingzhi; Jiao, Zhijie; Was, Gary S.; Wang, Lumin

    2015-07-01

    To determine the void swelling resistance of reduced-activation ferritic-martensitic steels CNS I and CNS II at high doses, ion irradiation was performed up to 188 dpa (4.6 × 1017 ion/cm2) at 460 °C using 5 MeV Fe++ ions. Helium was pre-implanted at levels of 10 and 100 appm at room temperature to investigate the role of helium on void swelling. Commercial FM steel T91 was also irradiated in this condition and the swelling results are of included in this paper as a reference. Voids were observed in all conditions. The 9Cr CNS I samples implanted with 10 appm helium exhibited lower swelling than 9Cr T91 irradiated at the same condition. The 12Cr CNS II with 10 and 100 appm helium showed significantly lower swelling than CNS I and T91. The swelling rate for CNS I and CNS II were determined to be 0.02%/dpa and 0.003%/dpa respectively. Increasing the helium content from 10 to 100 appm shortened the incubation region and increased the void density but had no effect on the swelling rates.

  12. Diffusion Bonding Beryllium to Reduced Activation Ferritic Martensitic Steel: Development of Processes and Techniques

    NASA Astrophysics Data System (ADS)

    Hunt, Ryan Matthew

    Only a few materials are suitable to act as armor layers against the thermal and particle loads produced by magnetically confined fusion. These candidates include beryllium, tungsten, and carbon fiber composites. The armor layers must be joined to the plasma facing components with high strength bonds that can withstand the thermal stresses resulting from differential thermal expansion. While specific joints have been developed for use in ITER (an experimental reactor in France), including beryllium to CuCrZr as well as tungsten to stainless steel interfaces, joints specific to commercially relevant fusion reactors are not as well established. Commercial first wall components will likely be constructed front Reduced Activation Ferritic Martensitic (RAFM) steel, which will need to be coating with one of the three candidate materials. Of the candidates, beryllium is particularly difficult to bond, because it reacts during bonding with most elements to form brittle intermetallic compounds. This brittleness is unacceptable, as it can lead to interface crack propagation and delamination of the armor layer. I have attempted to overcome the brittle behavior of beryllium bonds by developing a diffusion bonding process of beryllium to RAFM steel that achieves a higher degree of ductility. This process utilized two bonding aids to achieve a robust bond: a. copper interlayer to add ductility to the joint, and a titanium interlayer to prevent beryllium from forming unwanted Be-Cu intermetallics. In addition, I conducted a series of numerical simulations to predict the effect of these bonding aids on the residual stress in the interface. Lastly, I fabricated and characterized beryllium to ferritic steel diffusion bonds using various bonding parameters and bonding aids. Through the above research, I developed a process to diffusion bond beryllium to ferritic steel with a 150 M Pa tensile strength and 168 M Pa shear strength. This strength was achieved using a Hot Isostatic

  13. Assessment of Tungsten Content on Tertiary Creep Deformation Behavior of Reduced Activation Ferritic-Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Vanaja, J.; Laha, Kinkar

    2015-10-01

    Tertiary creep deformation behavior of reduced activation ferritic-martensitic (RAFM) steels having different tungsten contents has been assessed. Creep tests were carried out at 823 K (550 °C) over a stress range of 180 to 260 MPa on three heats of the RAFM steel (9Cr-W-0.06Ta-0.22V) with tungsten content of 1, 1.4, and 2.0 wt pct. With creep exposure, the steels exhibited minimum in creep rate followed by progressive increase in creep rate until fracture. The minimum creep rate decreased, rupture life increased, and the onset of tertiary stage of creep deformation delayed with the increase in tungsten content. The tertiary creep behavior has been assessed based on the relationship, , considering minimum creep rate () instead of steady-state creep rate. The increase in tungsten content was found to decrease the rate of acceleration of tertiary parameter ` p.' The relationships between (1) tertiary parameter `p' with minimum creep rate and time spent in tertiary creep deformation and (2) the final creep rate with minimum creep rate revealed that the same first-order reaction rate theory prevailed in the minimum creep rate as well as throughout the tertiary creep deformation behavior of the steel. A master tertiary creep curve of the steels has been developed. Scanning electron microscopic investigation revealed enhanced coarsening resistance of carbides in the steel on creep exposure with increase in tungsten content. The decrease in tertiary parameter ` p' with tungsten content with the consequent decrease in minimum creep rate and increase in rupture life has been attributed to the enhanced microstructural stability of the steel.

  14. Effect of V and Ta on the precipitation behavior of 12%Cr reduced activation ferrite/martensite steel

    SciTech Connect

    Xiao, Xiang; Liu, Guoquan; Hu, Benfu; Wang, Jinsan; Ullah, Asad

    2013-08-15

    12%Cr reduced activation ferrite/martensite steels are promising candidate materials for good corrosion and irradiation resistance used for supercritical water-cooled reactor cladding and in-core components. V and Ta are considered to have improved the creep strength of high Cr steels by precipitating as MX phase. In this paper, a series of trial products microalloyed with V and V–Ta are produced, and the microstructure is characterized after quenching at 1050 °C and tempering at 780 °C by using TEM method to investigate the effect of these elements on the precipitation behavior of 12%Cr reduced activation ferrite/martensite steel. The results from both the experimental observations and thermodynamic and kinetic calculations reveal that V and V–Ta can promote the stable MX precipitation instead of M{sub 2}X, thus increasing the volume fraction of M{sub 23}C{sub 6}. Two-phase separation behavior of the (Ta, V)(C, N) carbonitride into a Ta(V)C(N) phase and a V(Ta)N(C) phase in 12Cr3WVTa steel is observed and further discussed. - Highlights: • Microalloyed with V and V-Ta can promote the precipitation of MX instead of M{sub 2}X. • The presence of delta-ferrite in microstructure affects the morphology of MX. • Two-phase separation of MX carbonitride was observed in 12Cr3WVTa steel.

  15. Fractographic examination of reduced activation ferritic/martensitic steel charpy specimens irradiated to 30 dpa at 370{degrees}C

    SciTech Connect

    Gelles, D.S.; Hamilton, M.L.; Schubert, L.E.

    1996-10-01

    Fractographic examinations are reported for a series of reduced activation ferritic/Martensitic steel Charpy impact specimens tested following irradiation to 30 dpa at 370{degrees}C in FFTF. One-third size specimens of six low activation steels developed for potential application as structural materials in fusion reactors were examined. A shift in brittle fracture appearance from cleavage to grain boundary failure was noted with increasing manganese content. The results are interpreted in light of transmutation induced composition changes in a fusion environment.

  16. HEAT INPUT AND POST WELD HEAT TREATMENT EFFECTS ON REDUCED-ACTIVATION FERRITIC/MARTENSITIC STEEL FRICTION STIR WELDS

    SciTech Connect

    Tang, Wei; Chen, Gaoqiang; Chen, Jian; Yu, Xinghua; Frederick, David Alan; Feng, Zhili

    2015-01-01

    Reduced-activation ferritic/martensitic (RAFM) steels are an important class of structural materials for fusion reactor internals developed in recent years because of their improved irradiation resistance. However, they can suffer from welding induced property degradations. In this paper, a solid phase joining technology friction stir welding (FSW) was adopted to join a RAFM steel Eurofer 97 and different FSW parameters/heat input were chosen to produce welds. FSW response parameters, joint microstructures and microhardness were investigated to reveal relationships among welding heat input, weld structure characterization and mechanical properties. In general, FSW heat input results in high hardness inside the stir zone mostly due to a martensitic transformation. It is possible to produce friction stir welds similar to but not with exactly the same base metal hardness when using low power input because of other hardening mechanisms. Further, post weld heat treatment (PWHT) is a very effective way to reduce FSW stir zone hardness values.

  17. TIG and HIP joining of Reduced Activation Ferrite/Martensitic steel for the Korean ITER-TBM

    NASA Astrophysics Data System (ADS)

    Ku, Duck Young; Oh, Seungjin; Ahn, Mu-Young; Yu, In-Keun; Kim, Duck-Hoi; Cho, Seungyon; Choi, Im-Sub; Kwon, Ki-Bum

    2011-10-01

    Korea is developing a Helium Cooled Solid Breeder Test Blanket Module for ITER. The primary candidate structural material is a Reduced Activation Ferritic/Martensitic steel. The complex TBM structure requires developing joining technologies for successful fabrication. The characteristics of Tungsten Inert Gas welding and Hot Isostatic Pressing joining of RAFM steel were investigated. Metallurgical examinations showed that the steel grain size was increased after HIP joining and recovered by post joining heat treatment. Both TIG welding and HIP joining are found to be acceptable for ITER TBM based on mechanical tests and microstructure examination.

  18. Determining the shear fracture properties of HIP joints of reduced-activation ferritic/martensitic steel by a torsion test

    NASA Astrophysics Data System (ADS)

    Nozawa, Takashi; Noh, Sanghoon; Tanigawa, Hiroyasu

    2012-08-01

    Hot isostatic pressing (HIP) is a key technology used to fabricate a first wall with cooling channels for the fusion blanket system utilizing a reduced-activation ferritic/martensitic steel. To qualify the HIPped components, small specimen test techniques are beneficial not only to evaluate the thin-wall cooling channels containing the HIP joint but also to use in neutron irradiation studies. This study aims to develop the torsion test method with special emphasis on providing a reasonable and comprehensive method to determine interfacial shear properties of HIP joints during the torsional fracture process. Torsion test results identified that the torsion process shows yield of the base metal followed by non-elastic deformation due to work hardening of the base metal. By considering this work hardening issue, we propose a reasonable and realistic solution to determine the torsional yield shear stress and the ultimate torsional shear strength of the HIPped interface. Finally, a representative torsion fracture process was identified.

  19. Recent status and improvement of reduced-activation ferritic-martensitic steels for high-temperature service

    DOE PAGES

    Tan, L.; Katoh, Y.; Tavassoli, A. -A. F.; Henry, J.; Rieth, M.; Sakasegawa, H.; Tanigawa, H.; Huang, Q.

    2016-07-26

    Reduced-activation ferritic-martensitic (RAFM) steels, candidate structural materials for fusion reactors, have achieved technological maturity after about three decades of research and development. The recent status of a few developmental aspects of current RAFM steels, such as aging resistance, plate thickness effects, fracture toughness, and fatigue, is updated in this paper, together with ongoing efforts to develop next-generation RAFM steels for superior high-temperature performance. Additionally, to thermomechanical treatments, including nonstandard heat treatment, alloy chemistry refinements and modifications have demonstrated some improvements in high-temperature performance. Castable nanostructured alloys (CNAs) were developed by significantly increasing the amount of nanoscale MX (M = V/Ta/Ti,more » X = C/N) precipitates and reducing coarse M23C6 (M = Cr). Preliminary results showed promising improvement in creep resistance and Charpy impact toughness. We present and compare limited low-dose neutron irradiation results for one of the CNAs and China low activation martensitic with data for F82H and Eurofer97 irradiated up to ~70 displacements per atom at ~300–325 °C.« less

  20. Recent status and improvement of reduced-activation ferritic-martensitic steels for high-temperature service

    NASA Astrophysics Data System (ADS)

    Tan, L.; Katoh, Y.; Tavassoli, A.-A. F.; Henry, J.; Rieth, M.; Sakasegawa, H.; Tanigawa, H.; Huang, Q.

    2016-10-01

    Reduced-activation ferritic-martensitic (RAFM) steels, candidate structural materials for fusion reactors, have achieved technological maturity after about three decades of research and development. The recent status of a few developmental aspects of current RAFM steels, such as aging resistance, plate thickness effects, fracture toughness, and fatigue, is updated in this paper, together with ongoing efforts to develop next-generation RAFM steels for superior high-temperature performance. In addition to thermomechanical treatments, including nonstandard heat treatment, alloy chemistry refinements and modifications have demonstrated some improvements in high-temperature performance. Castable nanostructured alloys (CNAs) were developed by significantly increasing the amount of nanoscale MX (M = V/Ta/Ti, X = C/N) precipitates and reducing coarse M23C6 (M = Cr). Preliminary results showed promising improvement in creep resistance and Charpy impact toughness. Limited low-dose neutron irradiation results for one of the CNAs and China low activation martensitic are presented and compared with data for F82H and Eurofer97 irradiated up to ∼70 displacements per atom at ∼300-325 °C.

  1. Microstructural characterization of weld joints of 9Cr reduced activation ferritic martensitic steel fabricated by different joining methods

    SciTech Connect

    Thomas Paul, V.; Saroja, S.; Albert, S.K.; Jayakumar, T.; Rajendra Kumar, E.

    2014-10-15

    This paper presents a detailed electron microscopy study on the microstructure of various regions of weldment fabricated by three welding methods namely tungsten inert gas welding, electron beam welding and laser beam welding in an indigenously developed 9Cr reduced activation ferritic/martensitic steel. Electron back scatter diffraction studies showed a random micro-texture in all the three welds. Microstructural changes during thermal exposures were studied and corroborated with hardness and optimized conditions for the post weld heat treatment have been identified for this steel. Hollomon–Jaffe parameter has been used to estimate the extent of tempering. The activation energy for the tempering process has been evaluated and found to be corresponding to interstitial diffusion of carbon in ferrite matrix. The type and microchemistry of secondary phases in different regions of the weldment have been identified by analytical transmission electron microscopy. - Highlights: • Comparison of microstructural parameters in TIG, electron beam and laser welds of RAFM steel • EBSD studies to illustrate the absence of preferred orientation and identification of prior austenite grain size using phase identification map • Optimization of PWHT conditions for indigenous RAFM steel • Study of kinetics of tempering and estimation of apparent activation energy of the process.

  2. A preliminary ferritic-martensitic stainless steel constitution diagram

    SciTech Connect

    Balmforth, M.C.; Lippold, J.C.

    1998-01-01

    This paper describes preliminary research to develop a constitution diagram that will more accurately predict the microstructure of ferritic and martensitic stainless steel weld deposits. A button melting technique was used to produce a wide range of compositions using mixtures of conventional ferritic and martensitic stainless steels, including types 403, 409, 410, 430, 439 and 444. These samples were prepared metallographically, and the vol-% ferrite and martensite was determined quantitatively. In addition, the hardness and ferrite number (FN) were measured. Using this data, a preliminary constitution diagram is proposed that provides a more accurate method for predicting the microstructures of arc welds in ferritic and martensitic stainless steels.

  3. Effect of Tungsten on Primary Creep Deformation and Minimum Creep Rate of Reduced Activation Ferritic-Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Vanaja, J.; Laha, Kinkar; Mathew, M. D.

    2014-10-01

    Effect of tungsten on transient creep deformation and minimum creep rate of reduced activation ferritic-martensitic (RAFM) steel has been assessed. Tungsten content in the 9Cr-RAFM steel has been varied between 1 and 2 wt pct, and creep tests were carried out over the stress range of 180 and 260 MPa at 823 K (550 °C). The tempered martensitic steel exhibited primary creep followed by tertiary stage of creep deformation with a minimum in creep deformation rate. The primary creep behavior has been assessed based on the Garofalo relationship, , considering minimum creep rate instead of steady-state creep rate . The relationships between (i) rate of exhaustion of transient creep r' with minimum creep rate, (ii) rate of exhaustion of transient creep r' with time to reach minimum creep rate, and (iii) initial creep rate with minimum creep rate revealed that the first-order reaction-rate theory has prevailed throughout the transient region of the RAFM steel having different tungsten contents. The rate of exhaustion of transient creep r' and minimum creep rate decreased, whereas the transient strain ɛ T increased with increase in tungsten content. A master transient creep curve of the steels has been developed considering the variation of with . The effect of tungsten on the variation of minimum creep rate with applied stress has been rationalized by invoking the back-stress concept.

  4. Dynamic Strain Aging and Oxidation Effects on the Thermomechanical Fatigue Deformation of Reduced Activation Ferritic-Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Nagesha, A.; Kannan, R.; Srinivasan, V. S.; Sandhya, R.; Choudhary, B. K.; Laha, K.

    2016-03-01

    Thermomechanical fatigue (TMF) behavior of a reduced activation ferritic-martensitic steel was investigated under in-phase (IP) and out-of-phase (OP) conditions under different mechanical strain amplitudes and temperature regimes. OP TMF was generally observed to result in the lowest cyclic lives compared to both IP TMF and isothermal low cycle fatigue (IF) at the maximum temperature ( T max). The stress-strain hysteresis loops under TMF were marked by extensive serrations associated with dynamic strain aging (DSA) at the strain amplitudes of ±0.4 and ±0.6 pct. The serrations were noticed during the downward ramp of temperature that resulted in IP and OP TMF exhibiting jerky flow in the compressive and tensile portions, respectively. However, no evidence of serrated flow was seen under IF cycling at any of the temperatures within the TMF cycle. The stress response during IP TMF was marked by a near-saturation regime over 65 to 70 pct of life in contrast to continuous cyclic softening in the case of OP TMF. The marked life reduction observed under OP cycling at the strain amplitudes of ±0.4 and ±0.6 pct was attributed to the deleterious influence associated with oxidation, DSA, and tensile mean stress. The findings assume importance in the context of elevated temperature fatigue design, considering the fact that the IF data at T max are deemed adequately conservative in traditional design approaches.

  5. Low cycle fatigue properties of reduced activation ferritic/martensitic steels after high-dose neutron irradiation

    NASA Astrophysics Data System (ADS)

    Gaganidze, E.; Petersen, C.; Aktaa, J.; Povstyanko, A.; Prokhorov, V.; Diegele, E.; Lässer, R.

    2011-08-01

    This paper focuses on the low cycle fatigue (LCF) behaviour of reduced activation ferritic/martensitic steels irradiated to a displacement damage dose of up to 70 dpa at 330-337 °C in the BOR 60 reactor within the ARBOR 2 irradiation programme. The influence of neutron irradiation on the fatigue behaviour was determined for the as-received EUROFER97, pre-irradiation heat-treated EUROFER97 HT and F82H-mod steels. Strain-controlled push-pull loading was performed using miniaturized cylindrical specimens at a constant temperature of 330 °C with total strain ranges between 0.8% and 1.1%. Comparison of the LCF behaviour of irradiated and reference unirradiated specimens was performed for both the adequate total and inelastic strains. Neutron irradiation-induced hardening may have various effects on the fatigue behaviour of the steels. The reduction of inelastic strain in the irradiated state compared with the reference unirradiated state at common total strain amplitudes may increase fatigue lifetime. The increase in the stress at the adequate inelastic strain, by contrast, may accelerate fatigue damage accumulation. Depending on which of the two effects mentioned dominates, neutron irradiation may either extend or reduce the fatigue lifetime compared with the reference unirradiated state. The results obtained for EUROFER97 and EUROFER97 HT confirm these considerations. Most of the irradiated specimens show fatigue lifetimes comparable to those of the reference unirradiated state at adequate inelastic strains. Some irradiated specimens, however, show lifetime reduction or increase in comparison with the reference state at adequate inelastic strains.

  6. Microstructural Variations Across a Dissimilar 316L Austenitic: 9Cr Reduced Activation Ferritic Martensitic Steel Weld Joint

    NASA Astrophysics Data System (ADS)

    Thomas Paul, V.; Karthikeyan, T.; Dasgupta, Arup; Sudha, C.; Hajra, R. N.; Albert, S. K.; Saroja, S.; Jayakumar, T.

    2016-03-01

    This paper discuss the microstructural variations across a dissimilar weld joint between SS316 and 9Cr-RAFM steel and its modifications on post weld heat treatments (PWHT). Detailed characterization showed a mixed microstructure of austenite and martensite in the weld which is in agreement with the phases predicted using Schaeffler diagram based on composition measurements. The presence of very low volume fraction of δ-ferrite in SS316L has been identified employing state of the art electron back-scattered diffraction technique. PWHT of the ferritic steel did not reduce the hardness in the weld metal. Thermal exposure at 973 K (700 °C) showed a progressive reduction in hardness of weld joint with duration of treatment except in austenitic base metal. However, diffusion annealing at 1073 K (800 °C) for 100 hours resulted in an unexpected increase in hardness of weld metal, which is a manifestation of the dilution effects and enrichment of Ni on the transformation characteristics of the weld zone. Migration of carbon from ferritic steel aided the precipitation of fine carbides in the austenitic base metal on annealing at 973 K (700 °C); but enhanced diffusion at 1073 K (880 °C) resulted in coarsening of carbides and thereby reduction of hardness.

  7. Low activation ferritic alloys

    DOEpatents

    Gelles, David S.; Ghoniem, Nasr M.; Powell, Roger W.

    1986-01-01

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  8. Low activation ferritic alloys

    DOEpatents

    Gelles, D.S.; Ghoniem, N.M.; Powell, R.W.

    1985-02-07

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  9. Proceedings of the IEA Working Group meeting on ferritic/martensitic steels

    SciTech Connect

    Klueh, R.L.

    1996-12-31

    An IEA working group on ferritic/martensitic steels for fusion applications, consisting of researchers from Japan, European Union, USA, and Switzerland, met at the headquarters of the Joint European Torus, Culham, UK. At the meeting, preliminary data generated on the large heats of steels purchased for the IEA program and on other heats of steels were presented and discussed. Second purpose of the meeting was to continue planning and coordinating the collaborative test program in progress on reduced-activation ferritic/martensitic steels. The majority of this report consists of viewographs for the presentations.

  10. Martensitic/ferritic steels as container materials for liquid mercury target of ESS

    SciTech Connect

    Dai, Y.

    1996-06-01

    In the previous report, the suitability of steels as the ESS liquid mercury target container material was discussed on the basis of the existing database on conventional austenitic and martensitic/ferritic steels, especially on their representatives, solution annealed 316 stainless steel (SA 316) and Sandvik HT-9 martensitic steel (HT-9). Compared to solution annealed austenitic stainless steels, martensitic/ferritic steels have superior properties in terms of strength, thermal conductivity, thermal expansion, mercury corrosion resistance, void swelling and irradiation creep resistance. The main limitation for conventional martensitic/ferritic steels (CMFS) is embrittlement after low temperature ({le}380{degrees}C) irradiation. The ductile-brittle transition temperature (DBTT) can increase as much as 250 to 300{degrees}C and the upper-shelf energy (USE), at the same time, reduce more than 50%. This makes the application temperature range of CMFS is likely between 300{degrees}C to 500{degrees}C. For the present target design concept, the temperature at the container will be likely controlled in a temperature range between 180{degrees}C to 330{degrees}C. Hence, CMFS seem to be difficult to apply. However, solution annealed austenitic stainless steels are also difficult to apply as the maximum stress level at the container will be higher than the design stress. The solution to the problem is very likely to use advanced low-activation martensitic/ferritic steels (LAMS) developed by the fusion materials community though the present database on the materials is still very limited.

  11. Summary of the IEA workshop/working group meeting on ferritic/martensitic steels for fusion

    SciTech Connect

    Klueh, R.L.

    1997-04-01

    An International Energy Agency (IEA) Working Group on Ferritic/Martensitic Steels for Fusion Applications, consisting of researchers from Japan, the European Union, the United States, and Switzerland, met at the headquarters of the Joint European Torus (JET), Culham, United Kingdom, 24-25 October 1996. At the meeting preliminary data generated on the large heats of steel purchased for the IEA program and on other heats of steels were presented and discussed. The second purpose of the meeting was to continue planning and coordinating the collaborative test program in progress on reduced-activation ferritic/martensitic steels. The next meeting will be held in conjunction with the International Conference on Fusion Reactor Materials (ICFRM-8) in Sendai, Japan, 23-31 October 1997.

  12. Carbides in a High-Chromium Ferritic/Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Shen, Yin Zhong; Ji, Bo; Zhou, Xiao Ling; Zhu, Jun

    2014-06-01

    The precipitate phases in an 11 pct Cr ferritic/martensitic steel normalized at 1323 K (1050 °C) for 0.5 hour and tempered at 1053 K (780 °C) for 1.5 hours have been investigated. Except for dominant phases, Cr-rich M23C6 carbide and Nb-rich, Ta-Nb-rich, and V-rich MC carbides, needle-like precipitates with a typical size of 70 to 310 and 10 to 30 nm for the length of the long and short axis of the needles, respectively, were also observed on the extraction carbon replica of the steel. The typical metallic element composition of the needle-like precipitates is about 53-82Fe, 14-26Cr, 0.5-18Ta, 1-6W, and 2-5Co in atomic pct. Through energy dispersive X-ray analysis and electron diffraction along with calculations regarding lattice parameter and interplanar spacing, the needle-like precipitates were identified as a Fe-rich M5C2 carbide, which is not known to have been reported previously in high-chromium steels. The M5C2 carbide has a base-centered monoclinic crystal structure with the approximate lattice parameters a/ b/ c = 1.142/0.5186/0.5383 nm and β = 104.68 deg. The formation of the Fe-rich M5C2 carbides in the steel has been discussed. The effect of chromium content in matrix and boron addition on the precipitate phases in ferritic/martensitic steels has also been discussed.

  13. Non-instantaneous growth characteristics of martensitic transformation in high Cr ferritic creep-resistant steel

    NASA Astrophysics Data System (ADS)

    Liu, Chenxi; Shao, Yi; Chen, Jianguo; Liu, Yongchang

    2016-08-01

    Microstructural observation and high-resolution dilatometry were employed to investigate kinetics of martensitic transformation in high Cr ferritic creep-resistant steel upon different quenching/cooling rates. By incorporating the classical athermal nucleation and impingement correction, a non-instantaneous growth model for martensitic transformation has been developed. The developed model describes austenite/martensite interface mobility during martensite growth. The growth rate of martensite is found to be varied from 1 × 10-6 to 3 × 10-6 m/s. The low interface mobility suggests that it is not appropriate to presume the instantaneous growth behavior of martensite. Moreover, based on the proposed model, nucleation rate of martensite under different cooling rates is found to be nearly the same, while the growth rate of martensite is promoted by increasing the cooling rate.

  14. Nanosized MX Precipitates in Ultra-Low-Carbon Ferritic/Martensitic Heat-Resistant Steels

    NASA Astrophysics Data System (ADS)

    Yin, Feng-Shi; Jung, Woo-Sang

    2009-02-01

    Nanosized MX precipitates in ultra-low-carbon ferritic/martensitic heat-resistant 9Cr-W-Mo-VNbTiN steels were characterized by transmission electron microscope (TEM) using carbon film replicas. The steels were prepared by vacuum induction melting followed by hot forging and rolling into plates. The plates were normalized at 1100 °C for 1 hour, cooled in air, and tempered at 700 °C for 1 hour. The results show that bimodal nanosized MX precipitates distribute densely and homogeneously in the matrix within martensitic lath after normalizing-and-tempering heat treatment. The larger nanosized MX precipitates with the size of 30 to 50 nm are rich in Nb, while the smaller ones with the size of about 10 nm contain less Nb but more V. Small addition of Ti causes an increase in the number of the larger nanosized MX precipitates. The total number density of the nanosized MX precipitates in the ultra-low-carbon ferritic/martensitic steels is measured to be over 300/ μm2, much higher than that in conventional ferritic/martensitic steels. Short-term creep test results show that the ultra-low-carbon ferritic/martensitic steels with high dense nanosized MX precipitates have much higher creep rupture strength than conventional ASME-P92 steel. The strength degradation of the ultra-low-carbon ferritic/martensitic heat-resistant steels during creep is also discussed in this article.

  15. Microstructural Evolution and Recrystallization Kinetics of a Cold-Rolled, Ferrite-Martensite Structure During Intercritical Annealing

    NASA Astrophysics Data System (ADS)

    Etesami, S. A.; Enayati, M. H.

    2016-07-01

    The recrystallization behavior of 80 pct, cold-rolled, low-carbon, dual-phase steel during intercritical annealing for different times was studied. The annealed microstructures showed that the recrystallization initially occurred in the deformed martensitic regions. The values of Avrami exponent for recrystallization varied from 3.8 to 4 with an activation energy of 46.9 kJ/mol. This study also introduced a novel method for the production of bimodal grain structures in low-carbon, ferrite-martensite steel.

  16. Kinetics of Ferrite Recrystallization and Austenite Formation During Intercritical Annealing of the Cold-Rolled Ferrite/Martensite Duplex Structures

    NASA Astrophysics Data System (ADS)

    Mazaheri, Y.; Kermanpur, A.; Najafizadeh, A.; Kalashami, A. Ghatei

    2016-03-01

    Ultrafine-grained, dual-phase (UFG DP) steels were produced by a new route using an uncommon cold-rolling and subsequent intercritical annealing of ferrite/martensite duplex starting microstructures. The effects of processing parameters such as rolling reduction, intercritical annealing temperature, and time on the microstructural evaluations have been studied. UFG DP steels with an average grain size of about 1 to 2 μm were achieved by short intercritical annealing of the 80 pct cold-rolled duplex microstructures. The kinetics of ferrite recrystallization and austenite formation were studied based on the Johnson-Mehl-Avrami-Kolmogorov (JMAK) model. The proposed model for describing the isothermal austenite formation kinetics was applied successfully to the nonisothermal conditions. It was found that complete recrystallization of ferrite before the austenite formation led to the formation of a large extent randomly distributed austenite in the ferrite matrix and a chain-networked structure.

  17. Corrosion and stress corrosion cracking of ferritic/martensitic steel in super critical pressurized water

    NASA Astrophysics Data System (ADS)

    Hirose, T.; Shiba, K.; Enoeda, M.; Akiba, M.

    2007-08-01

    A water-cooled solid breeder (WCSB) blanket cooled by high temperature SCPW (super critical pressurized water) is a practical option of DEMO reactor. Therefore, it is necessary to check the compatibility of the steel with SCPW. In this work, reduced activation ferritic/martensitic steel, F82H has been tested through slow strain rate tests (SSRT) in 23.5 MPa SCPW. And weight change behavior was measured up to 1000 h. F82H did not demonstrated stress corrosion cracking and its weight simply increased with surface oxidation. The weight change of F82H was almost same as commercial 9%-Cr steels. According to a cross-sectional analysis and weight change behavior, corrosion rate of F82H in the 823 K SCPW is estimated to be 0.04 mm/yr.

  18. Microstructure and properties of pipeline steel with a ferrite/martensite dual-phase microstructure

    SciTech Connect

    Li Rutao Zuo Xiurong Hu Yueyue Wang Zhenwei Hu, Dingxu

    2011-08-15

    In order to satisfy the transportation of the crude oil and gas in severe environmental conditions, a ferrite/martensite dual-phase pipeline steel has been developed. After a forming process and double submerged arc welding, the microstructure of the base metal, heat affected zone and weld metal was characterized using scanning electron microscopy and transmission electron microscopy. The pipe showed good deformability and an excellent combination of high strength and toughness, which is suitable for a pipeline subjected to the progressive and abrupt ground movement. The base metal having a ferrite/martensite dual-phase microstructure exhibited excellent mechanical properties in terms of uniform elongation of 7.5%, yield ratio of 0.78, strain hardening exponent of 0.145, an impact energy of 286 J at - 10 deg. C and a shear area of 98% at 0 deg. C in the drop weight tear test. The tensile strength and impact energy of the weld metal didn't significantly reduce, because of the intragranularly nucleated acicular ferrites microstructure, leading to high strength and toughness in weld metal. The heat affected zone contained complete quenching zone and incomplete quenching zone, which exhibited excellent low temperature toughness of 239 J at - 10 deg. C. - Research Highlights: {yields}The pipe with ferrite/martensite microstructure shows high deformability. {yields}The base metal of the pipe consists of ferrite and martensite. {yields}Heat affected zone shows excellent low temperature toughness. {yields}Weld metal mainly consists of intragranularly nucleated acicular ferrites. {yields}Weld metal shows excellent low temperature toughness and high strength.

  19. Gas bubbles evolution peculiarities in ferritic-martensitic and austenitic steels and alloys under helium-ion irradiation

    NASA Astrophysics Data System (ADS)

    Chernov, I. I.; Kalashnikov, A. N.; Kalin, B. A.; Binyukova, S. Yu

    2003-12-01

    Transmission electron microscopy has been used to investigate the gas bubble evolution in model alloys of the Fe-C system, ferritic-martensitic steels of 13Cr type, nickel and austenitic steels under 40-keV helium-ion irradiation up to a fluence of 5 × 10 20 m -2 at the temperature of 920 K. It was shown that helium-ion irradiation at high temperature resulted in formation of bubbles with a greater size and a smaller density in Fe and ferritic-martensitic steels than those in nickel and austenitic steels. Large gaseous bubbles in ferritic component are uniformly distributed in grains body in Fe-C alloys as well as in ferritic-martensitic steels. The bubbles with a higher density and a smaller size than those in ferritic component are formed in martensitic grains of steels and Fe-C alloys with a high carbon content ( NC>0.01 wt%), which leads to a small level of swelling of martensite in comparison with that of ferrite. In addition, the bubbles in martensitic grains have a tendency to ordered distribution.

  20. Ferritic-Martensitic steel Test Blanket Modules: Status and future needs for design criteria requirements and fabrication validation

    NASA Astrophysics Data System (ADS)

    Salavy, J.-F.; Aiello, G.; Aubert, P.; Boccaccini, L. V.; Daichendt, M.; De Dinechin, G.; Diegele, E.; Giancarli, L. M.; Lässer, R.; Neuberger, H.; Poitevin, Y.; Stephan, Y.; Rampal, G.; Rigal, E.

    2009-04-01

    The Helium-Cooled Lithium-Lead and the Helium-Cooled Pebble Bed are the two breeding blankets concepts for the DEMO reactor which have been selected by EU to be tested in ITER in the framework of the Test Blanket Module projects. They both use a 9%CrWVTa Reduced Activation Ferritic-Martensitic steel, called EUROFER, as structural material and helium as coolant. This paper gives an overview of the status of the EUROFER qualification program and discusses the future needs for design criteria requirements and fabrication validation.

  1. Elevated-Temperature Ferritic and Martensitic Steels and Their Application to Future Nuclear Reactors

    SciTech Connect

    Klueh, RL

    2005-01-31

    In the 1970s, high-chromium (9-12% Cr) ferritic/martensitic steels became candidates for elevated-temperature applications in the core of fast reactors. Steels developed for conventional power plants, such as Sandvik HT9, a nominally Fe-12Cr-1Mo-0.5W-0.5Ni-0.25V-0.2C steel (composition in wt %), were considered in the United States, Europe, and Japan. Now, a new generation of fission reactors is in the planning stage, and ferritic, bainitic, and martensitic steels are again candidates for in-core and out-of-core applications. Since the 1970s, advances have been made in developing steels with 2-12% Cr for conventional power plants that are significant improvements over steels originally considered. This paper will review the development of the new steels to illustrate the advantages they offer for the new reactor concepts. Elevated-temperature mechanical properties will be emphasized. Effects of alloying additions on long-time thermal exposure with and without stress (creep) will be examined. Information on neutron radiation effects will be discussed as it applies to ferritic and martensitic steels.

  2. Metallography studies and hardness measurements on ferritic/martensitic steels irradiated in STIP

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Long, B.; Dai, Y.

    2008-06-01

    In this work metallography investigations and microhardness measurements have been performed on 15 ferritic/martensitic (FM) steels and 6 weld metals irradiated in the SINQ Target Irradiation Program (STIP). The results demonstrate that all the steels have quite similar martensite lath structures. However, the sizes of the prior austenite grain (PAG) of these steels are quite different and vary from 10 to 86 μm. The microstructure in the fusion zones (FZ) of electron-beam welds (EBWs) of 5 steels (T91, EM10, MANET-II, F82H and Optifer-IX) is similar in respect to the martensite lath structure and PAG size. The FZ of the inert-gas-tungsten weld (TIGW) of the T91 steel shows a duplex structure of large ferrite gains and martensite laths. The microhardness measurements indicate that the normalized and tempered FM steels have rather close hardness values. The unusual high hardness values of the EBW and TIGW of the T91 steel were detected, which suggests that these materials are without proper tempering or post-welding heat treatment.

  3. Load partitioning between ferrite/martensite and dispersed nanoparticles of a 9Cr ferritic/martensitic (F/M) ODS steel at high temperatures

    SciTech Connect

    Zhang, Guangming; Mo, Kun; Miao, Yinbin; Liu, Xiang; Almer, Jonathan; Zhou, Zhangjian; Stubbins, James F.

    2015-06-18

    In this study, a high-energy synchrotron radiation X-ray technique was used to investigate the tensile deformation processes of a 9Cr-ODS ferritic/martensitic (F/M) steel at different temperatures. Two minor phases within the 9Cr-ODS F/M steel matrix were identified as Y2Ti2O7 and TiN by the high-energy X-ray diffraction, and confirmed by the analysis using energy dispersive X-ray spectroscopy (EDS) of scanning transmission electron microscope (STEM). The lattice strains of the matrix and particles were measured through the entire tensile deformation process. During the tensile tests, the lattice strains of the ferrite/martensite and the particles (TiN and Y2Ti2O7) showed a strong temperature dependence, decreasing with increasing temperature. Analysis of the internal stress at three temperatures showed that the load partitioning between the ferrite/martensite and the particles (TiN and Y2Ti2O7) was initiated during sample yielding and reached to a peak during sample necking. At three studied temperatures, the internal stress of minor phases (Y2Ti2O7 and TiN) was about 2 times that of F/M matrix at yielding position, while the internal stress of Y2Ti2O7 and TiN reached about 4.5-6 times and 3-3.5 times that of the F/M matrix at necking position, respectively. It indicates that the strengthening of the matrix is due to minor phases (Y2Ti2O7 and TiN), especially Y2Ti2O7 particles. Although the internal stresses of all phases decreased with increasing temperature from RT to 600 degrees C, the ratio of internal stresses of each phase at necking position stayed in a stable range (internal stresses of Y2Ti2O7 and TiN were about 4.5-6 times and 3-3.5 times of that of F/M matrix, respectively). The difference between internal stress of the F/M matrix and the applied stress at 600 degrees C is slightly lower than those at RI and 300 degrees C, indicating that the nanoparticles still have good strengthening effect at 600 degrees C. (C) 2015 Elsevier B.V. All rights reserved.

  4. Formation and Oxidation Performance of Low-Temperature Pack Aluminide Coatings on Ferritic-Martensitic Steels

    SciTech Connect

    Bates, Brian; Wang, Y. Q.; Zhang, Ying; Pint, Bruce A

    2009-01-01

    A pack cementation process was developed to coat commercial 9% Cr ferritic-martensitic steel T91 at temperatures below its normal tempering temperature to avoid any potential detrimental effect on the mechanical properties of the coated alloy. In order to prevent the formation of Fe{sub 2}Al{sub 5} coatings, the Al activity in the pack cementation process was reduced by substituting the pure Al masteralloy with binary Cr-Al masteralloys containing either 15 or 25 wt.% Al. When the Cr-25Al masteralloy was used, a duplex coating was formed at 700 C, consisting of a thin Fe{sub 2}Al{sub 5} outer layer and an inner layer of FeAl. With the Cr-15Al masteralloy, an FeAl coating of {approx} 12 {micro}m thick was achieved at 700 C. The pack aluminide coatings fabricated at 700 C are being evaluated in air + 10 vol.% H{sub 2}O at 650 C and 700 C to determine their long-term oxidation performance.

  5. Current status and recent research achievements in ferritic/martensitic steels

    NASA Astrophysics Data System (ADS)

    Tavassoli, A.-A. F.; Diegele, E.; Lindau, R.; Luzginova, N.; Tanigawa, H.

    2014-12-01

    When the austenitic stainless steel 316L(N) was selected for ITER, it was well known that it would not be suitable for DEMO and fusion reactors due to its irradiation swelling at high doses. A parallel programme to ITER collaboration already had been put in place, under an IEA fusion materials implementing agreement for the development of a low activation ferritic/martensitic steel, known for their excellent high dose irradiation swelling resistance. After extensive screening tests on different compositions of Fe-Cr alloys, the chromium range was narrowed to 7-9% and the first RAFM was industrially produced in Japan (F82H: Fe-8%Cr-2%W-TaV). All IEA partners tested this steel and contributed to its maturity. In parallel several other RAFM steels were produced in other countries. From those experiences and also for improving neutron efficiency and corrosion resistance, European Union opted for a higher chromium lower tungsten grade, Fe-9%Cr-1%W-TaV steel (Eurofer), and in 1997 ordered the first industrial heats. Other industrial heats have been produced since and characterised in different states, including irradiated up to 80 dpa. China, India, Russia, Korea and US have also produced their grades of RAFM steels, contributing to overall maturity of these steels. This paper reviews the work done on RAFM steels by the fusion materials community over the past 30 years, in particular on the Eurofer steel and its design code qualification for RCC-MRx.

  6. The Z-Phase in 9Cr Ferritic/martensitic Heat Resistant Steel

    NASA Astrophysics Data System (ADS)

    Yin, Fengshi; Chen, Fuxia; Jiang, Xuebo; Xue, Bing; Zhou, Li; Jung, Woosang

    The precipitation behavior of Z-phase was investigated during long-term aging at 650°C in an ultra low carbon 9Cr ferritic/martensitic heat resistant steel. The steel was prepared by vacuum induction melting followed by hot forging and rolling into a plate. The plate was normalized at 1100°C for 1h, cooled in air and tempered at 700°C for 1h. Bimodal nano-sized MX precipitates distribute densely and homogeneously in the matrix within martensitic lath after normalizing-and-tempering heat treatment. After aging at 650°C for 1200h, the Z-phase was found to nucleate on the larger nano-sized MX. The Z-phase and MX have the following orientation relationship: <112>Z-phase//<001>MX and (1bar 10){Z-phase}//(200){MX} .

  7. Fracture toughness of the IEA heat of F82H ferritic/martensitic stainless steel as a function of loading mode

    SciTech Connect

    Li, Huaxin; Gelles, D.S.; Hirth, J.P.

    1997-04-01

    Mode I and mixed-mode I/III fracture toughness tests were performed for the IEA heat of the reduced activation ferritic/martensitic stainless steel F82H at ambient temperature in order to provide comparison with previous measurements on a small heat given a different heat treatment. The results showed that heat to heat variations and heat treatment had negligible consequences on Mode I fracture toughness, but behavior during mixed-mode testing showed unexpected instabilities.

  8. Radiation hardening and deformation behavior of irradiated ferritic-martensitic steels

    SciTech Connect

    Robertson, J.P.; Klueh, R.L.; Rowcliffe, A.F.; Shiba, K.

    1998-03-01

    Tensile data from several 8--12% Cr alloys irradiated in the High Flux Isotope Reactor (HFIR) to doses up to 34 dpa at temperatures ranging from 90 to 600 C are discussed in this paper. One of the critical questions surrounding the use of ferritic-martensitic steels in a fusion environment concerns the loss of uniform elongation after irradiation at low temperatures. Irradiation and testing at temperatures below 200--300 C results in uniform elongations less than 1% and stress-strain curves in which plastic instability immediately follows yielding, implying dislocation channeling and flow localization. Reductions in area and total elongations, however, remain high.

  9. Report on thermal aging effects on tensile properties of ferritic-martensitic steels.

    SciTech Connect

    Li, M.; Soppet, W.K.; Rink, D.L.; Listwan, J.T.; Natesan, K.

    2012-05-10

    This report provides an update on the evaluation of thermal-aging induced degradation of tensile properties of advanced ferritic-martensitic steels. The report is the first deliverable (level 3) in FY11 (M3A11AN04030103), under the Work Package A-11AN040301, 'Advanced Alloy Testing' performed by Argonne National Laboratory, as part of Advanced Structural Materials Program for the Advanced Reactor Concepts. This work package supports the advanced structural materials development by providing tensile data on aged alloys and a mechanistic model, validated by experiments, with a predictive capability on long-term performance. The scope of work is to evaluate the effect of thermal aging on the tensile properties of advanced alloys such as ferritic-martensitic steels, mod.9Cr-1Mo, NF616, and advanced austenitic stainless steel, HT-UPS. The aging experiments have been conducted over a temperature of 550-750 C for various time periods to simulate the microstructural changes in the alloys as a function of time at temperature. In addition, a mechanistic model based on thermodynamics and kinetics has been used to address the changes in microstructure of the alloys as a function of time and temperature, which is developed in the companion work package at ANL. The focus of this project is advanced alloy testing and understanding the effects of long-term thermal aging on the tensile properties. Advanced materials examined in this project include ferritic-martensitic steels mod.9Cr-1Mo and NF616, and austenitic steel, HT-UPS. The report summarizes the tensile testing results of thermally-aged mod.9Cr-1Mo, NF616 H1 and NF616 H2 ferritic-martensitic steels. NF616 H1 and NF616 H2 experienced different thermal-mechanical treatments before thermal aging experiments. NF616 H1 was normalized and tempered, and NF616 H2 was normalized and tempered and cold-rolled. By examining these two heats, we evaluated the effects of thermal-mechanical treatments on material microstructures and

  10. Oxidation of ferritic martensitic alloys T91, HCM12A and HT-9 in supercritical water

    NASA Astrophysics Data System (ADS)

    Ampornrat, Pantip; Was, Gary S.

    2007-09-01

    The oxidation behavior of ferritic-martensitic (F-M) alloys in supercritical water (SCW) was studied in order to evaluate the suitability of these alloys for use in the Gen IV supercritical water reactor (SCWR) concept. A series of exposure tests in SCW were performed with three F-M alloys: T91, HCM12A, and HT-9. The effect of temperature was evaluated over the range of 400-600 °C and the dissolved oxygen concentration was controlled at <10 ppb (deaerated condition), 100 and 300 ppb. The oxidation behavior was determined from weight gain measurements along with oxide structure analysis. The results indicated that the oxidation rate was strongly dependent on temperature and followed an Arrhenius behavior. Activation energies for oxidation were 172, 177, and 189 kJ/mol for HT-9, HCM12A, and T91, respectively. The time dependence of the oxidation rate followed an exponential law with time exponents ˜0.3-0.42. Reduction in oxidation rate was observed at intermediate values (100-300 ppb) of dissolved oxygen concentration. The oxide formed on the alloy surface consisted of an outer layer of porous magnetite (Fe 3O 4) and an inner layer of iron chromium oxide, (Fe, Cr) 3O 4 with spinel structure. A transition region lies beneath the inner oxide in which the metal content increases to bulk values and the oxygen content decreases to nearly zero. Iron chromium oxide, (Fe, Cr)O, with the wustite structure was observed in the transition layer at 600 °C. The relatively good agreement between the activation energies for oxidation and that for grain boundary diffusion of oxygen support an oxidation mechanism based on short circuit oxygen diffusion to the oxide-metal interface.

  11. Investigation of Magnetic Signatures and Microstructures for Heat-Treated Ferritic/Martensitic HT-9 Alloy

    SciTech Connect

    Henager, Charles H.; McCloy, John S.; Ramuhalli, Pradeep; Edwards, Danny J.; Hu, Shenyang Y.; Li, Yulan

    2013-05-01

    There is increased interest in improved methods for in-situ nondestructive interrogation of materials for nuclear reactors in order to ensure reactor safety and quantify material degradation (particularly embrittlement) prior to failure. Therefore, a prototypical ferritic/martensitic alloy, HT-9, of interest to the nuclear materials community was investigated to assess microstructure effects on micromagnetics measurements – Barkhausen noise emission, magnetic hysteresis measurements, and first-order reversal curve analysis – for samples with three different heat-treatments. Microstructural and physical measurements consisted of high-precision density, resonant ultrasound elastic constant determination, Vickers microhardness, grain size, and texture. These were varied in the HT-9 alloy samples and related to various magnetic signatures. In parallel, a meso-scale microstructure model was created for alpha iron and effects of polycrystallinity and demagnetization factor were explored. It was observed that Barkhausen noise emission decreased with increasing hardness and decreasing grain size (lath spacing) while coercivity increased. The results are discussed in terms of the use of magnetic signatures for nondestructive interrogation of radiation damage and other microstructural changes in ferritic/martensitic alloys.

  12. Thermally Activated Martensite: Its Relationship to Non-Thermally Activated (Athermal) Martensite

    SciTech Connect

    Laughlin, D E; Jones, N J; Schwartz, A J; Massalski, T B

    2008-10-21

    The classification of martensitic displacive transformations into athermal, isothermal or anisothermal is discussed. Athermal does not mean 'no temperature dependence' as is often thought, but is best considered to be short for the notion of no thermal activation. Processes with no thermal activation do not depend on time, as there is no need to wait for sufficient statistical fluctuations in some specific order parameter to overcome an activation barrier to initiate the process. Clearly, this kind of process contrasts with those that are thermally activated. In the literature, thermally activated martensites are usually termed isothermal martensites, suggesting a constant temperature. Actually such martensites also typically occur with continuous cooling. The important distinctive feature of these martensites is that they are thermally activated and hence are distinguishable in principle from athermal martensites. A third type of process, anisothermal, has been introduced to account for those transformations which are thought to be thermally activated but which occur on continuous cooling. They may occur so rapidly that they do not appear to have an incubation time, and hence could be mistakenly called an athermal transformation. These designations will be reviewed and discussed in terms of activation energies and kinetic processes of the various martensitic transformations.

  13. The effect of tempering temperature on the features of phase transformations in the ferritic-martensitic steel EK-181

    NASA Astrophysics Data System (ADS)

    Polekhina, N. A.; Litovchenko, I. Yu.; Tyumentsev, A. N.; Astafurova, Е. G.; Chernov, V. M.; Leontyeva-Smirnova, M. V.

    2014-12-01

    Using the methods of dilatometry and differential scanning calorimetry, critical points of phase transformations in the low-activation ferritic-martensitic steel EK-181 (RUSFER-EK-181) are identified. The characteristic temperature intervals of precipitation of carbide phases are revealed. It is shown that particles of the metastable carbide M3C are formed within the temperature range (500-600) °C. Formation of the stable phases М23С6 and V(CN) begins at the temperatures higher than Т = 650 °С. An important feature of microstructure after tempering at Т = 720 °С is high density of nanoparticles (⩽10 nm) of vanadium carbonitride V(CN).

  14. On the (in)adequacy of the Charpy impact test to monitor irradiation effects of ferritic/martensitic steels

    NASA Astrophysics Data System (ADS)

    Chaouadi, R.

    2007-02-01

    Irradiation embrittlement studies rely very often on Charpy impact data, in particular the ductile-to-brittle transition temperature (DBTT). However, while the DBTT-shift is equivalent to the increase of the fracture toughness transition temperature of ferritic steels, it is not the case for ferritic/martensitic steels. The aim of this study is to critically assess experimental data obtained on a 9%Cr-ferritic/martensitic steel, Eurofer-97, to better understand the underlying mechanisms involved during the fracture process. More specifically, a dedicated analysis using the load diagram approach allows to unambiguously reveal the actual effects of irradiation on physically rather than empirically based parameters. A comparison is made between a ferritic and ferritic/martensitic steel to better identify the possible similarities and differences. Tensile, Charpy impact and fracture toughness tests data are examined in a global approach to assess the actual rather than apparent irradiation effects. The adequacy or inadequacy of the Charpy impact test to monitor irradiation effects is extensively discussed.

  15. Neutron irradiation effects on the ductile-brittle transition of ferritic/martensitic steels

    SciTech Connect

    Klueh, R.L.; Alexander, D.J.

    1997-08-01

    Ferritic/martensitic steels such as the conventional 9Cr-1MoVNb (Fe-9Cr-1Mo-0.25V-0.06Nb-0.1C) and 12Cr-1MoVW (Fe-12Cr-1Mo-0.25V-0.5W-0.5Ni-0.2C) steels have been considered potential structural materials for future fusion power plants. The major obstacle to their use is embrittlement caused by neutron irradiation. Observations on this irradiation embrittlement is reviewed. Below 425-450{degrees}C, neutron irradiation hardens the steels. Hardening reduces ductility, but the major effect is an increase in the ductile-brittle transition temperature (DBTT) and a decrease in the upper-shelf energy, as measured by a Charpy impact test. After irradiation, DBTT values can increase to well above room temperature, thus increasing the chances of brittle rather than ductile fracture.

  16. Corrosion of austenitic and ferritic-martensitic steels exposed to supercritical carbon dioxide

    SciTech Connect

    Tan, Lizhen; Anderson, Mark; Taylor, D; Allen, Todd R.

    2011-01-01

    Supercritical carbon dioxide (S-CO{sub 2}) is a potential coolant for advanced nuclear reactors. The corrosion behavior of austenitic steels (alloys 800H and AL-6XN) and ferritic-martensitic (FM) steels (F91 and HCM12A) exposed to S-CO{sub 2} at 650 C and 20.7 MPa is presented in this work. Oxidation was identified as the primary corrosion phenomenon. Alloy 800H had oxidation resistance superior to AL-6XN. The FM steels were less corrosion resistant than the austenitic steels, which developed thick oxide scales that tended to exfoliate. Detailed microstructure characterization suggests the effect of alloying elements such as Al, Mo, Cr, and Ni on the oxidation of the steels.

  17. Creep behavior of pack cementation aluminide coatings on Grade 91 ferritic martensitic alloy

    SciTech Connect

    Bates, Brian; Zhang, Ying; Dryepondt, Sebastien N; Pint, Bruce A

    2014-01-01

    The creep behavior of various pack cementation aluminide coatings on Grade 91 ferritic-martensitic steel was investigated at 650 C in laboratory air. The coatings were fabricated in two temperature regimes, i.e., 650 or 700 C (low temperature) and 1050 C(high temperature), and consisted of a range of Al levels and thicknesses. For comparison, uncoated specimens heat-treated at 1050 C to simulate the high temperature coating cycle also were included in the creep test. All coated specimens showed a reduction in creep resistance, with 16 51% decrease in rupture life compared to the as-received bare substrate alloy. However, the specimens heat-treated at 1050 C exhibited the lowest creep resistance among all tested samples, with a surprisingly short rupture time of < 25 h, much shorter than the specimen coated at 1050 C. Factors responsible for the reduction in creep resistance of both coated and heat-treated specimens were discussed.

  18. Summary Report of Summer Work: High Purity Single Crystal Growth & Microstructure of Ferritic-Martensitic Steels

    SciTech Connect

    Pestovich, Kimberly Shay

    2015-08-18

    Harnessing the power of the nuclear sciences for national security and to benefit others is one of Los Alamos National Laboratory’s missions. MST-8 focuses on manipulating and studying how the structure, processing, properties, and performance of materials interact at the atomic level under nuclear conditions. Within this group, single crystal scintillators contribute to the safety and reliability of weapons, provide global security safeguards, and build on scientific principles that carry over to medical fields for cancer detection. Improved cladding materials made of ferritic-martensitic alloys support the mission of DOE-NE’s Fuel Cycle Research and Development program to close the nuclear fuel cycle, aiming to solve nuclear waste management challenges and thereby increase the performance and safety of current and future reactors.

  19. Resistance spot weldability of 11Cr-ferritic/martensitic steel sheets

    NASA Astrophysics Data System (ADS)

    Uwaba, Tomoyuki; Yano, Yasuhide; Ito, Masahiro

    2012-02-01

    Resistance spot welding of 11Cr-0.4Mo-2W, V, Nb ferritic/martensitic steel sheets with different thicknesses was examined to develop a manufacturing technology for a fast reactor fuel subassembly with an inner duct structure. In the spot welding, welding current, electrode force, welding time and holding time were varied as welding parameters to investigate the appropriate welding conditions. Welding conditions under which spot weld joints did not have either crack or void defects in the nugget could be found when the electrode force was increased to 9.8 kN. It was also found that the electrode cap with a longer tip end length was effective for preventing weld defect formations. Strength of the spot welded joint was characterized from micro hardness and shear tension tests. In addition, the ductile-to-brittle transition temperature of the spot welded joint was measured by Charpy impact tests with specimens that had notches in the welded zone.

  20. Mechanical Performance of Ferritic Martensitic Steels for High Dose Applications in Advanced Nuclear Reactors

    NASA Astrophysics Data System (ADS)

    Anderoglu, Osman; Byun, Thak Sang; Toloczko, Mychailo; Maloy, Stuart A.

    2013-01-01

    Ferritic/martensitic (F/M) steels are considered for core applications and pressure vessels in Generation IV reactors as well as first walls and blankets for fusion reactors. There are significant scientific data on testing and industrial experience in making this class of alloys worldwide. This experience makes F/M steels an attractive candidate. In this article, tensile behavior, fracture toughness and impact property, and creep behavior of the F/M steels under neutron irradiations to high doses with a focus on high Cr content (8 to 12) are reviewed. Tensile properties are very sensitive to irradiation temperature. Increase in yield and tensile strength (hardening) is accompanied with a loss of ductility and starts at very low doses under irradiation. The degradation of mechanical properties is most pronounced at <0.3 T M ( T M is melting temperature) and up to 10 dpa (displacement per atom). Ferritic/martensitic steels exhibit a high fracture toughness after irradiation at all temperatures even below 673 K (400 °C), except when tested at room temperature after irradiations below 673 K (400 °C), which shows a significant reduction in fracture toughness. Creep studies showed that for the range of expected stresses in a reactor environment, the stress exponent is expected to be approximately one and the steady state creep rate in the absence of swelling is usually better than austenitic stainless steels both in terms of the creep rate and the temperature sensitivity of creep. In short, F/M steels show excellent promise for high dose applications in nuclear reactors.

  1. Corrosion of ferritic-martensitic steels and nickel-based alloys in supercritical water

    NASA Astrophysics Data System (ADS)

    Ren, Xiaowei

    The corrosion behavior of ferritic/martensitic (F/M) steels and Ni-based alloys in supercritical water (SCW) has been studied due to their potential applications in future nuclear reactor systems, fossil fuel power plants and waste treatment processes. 9˜12% chromium ferritic/martensitic steels exhibit good radiation resistance and stress corrosion cracking resistance. Ni-based alloys with an austenitic face-centered cubic (FCC) structure are designed to retain good mechanical strength and corrosion/oxidation resistance at elevated temperatures. Corrosion tests were carried out at three temperatures, 360°C, 500°C and 600°C, with two dissolved oxygen contents, 25 ppb and 2 ppm for up to 3000 hours. Alloys modified by grain refinement and reactive element addition were also investigated to determine their ability to improve the corrosion resistance in SCW. A duplex oxide structure was observed in the F/M steels after exposure to 25 ppb oxygen SCW, including an outer oxide layer with columnar magnetite grains and an inner oxide layer constituted of a mixture of spinel and ferrite phases in an equiaxed grain structure. An additional outermost hematite layer formed in the SCW-exposed samples when the oxygen content was increased to 2 ppm. Weight gain in the F/M steels increased with exposure temperatures and times, and followed parabolic growth kinetics in most of the samples. In Ni-based alloys after exposure to SCW, general corrosion and pitting corrosion were observed, and intergranular corrosion was found when exposed at 600°C due to formation of a local healing layer. The general oxide structure on the Ni-based alloys was characterized as NiO/Spinel/(CrxFe 1-x)2O3/(Fe,Ni). No change in oxidation mechanism was observed in crossing the critical point despite the large change in water properties. Corrosion resistance of the F/M steels was significantly improved by plasma-based yttrium surface treatment because of restrained outward diffusion of iron by the

  2. Parametric study of irradiation effects on the ductile damage and flow stress behavior in ferritic-martensitic steels

    NASA Astrophysics Data System (ADS)

    Chakraborty, Pritam; Biner, S. Bulent

    2015-10-01

    Ferritic-martensitic steels are currently being considered as structural materials in fusion and Gen-IV nuclear reactors. These materials are expected to experience high dose radiation, which can increase their ductile to brittle transition temperature and susceptibility to failure during operation. Hence, to estimate the safe operational life of the reactors, precise evaluation of the ductile to brittle transition temperatures of ferritic-martensitic steels is necessary. Owing to the scarcity of irradiated samples, particularly at high dose levels, micro-mechanistic models are being employed to predict the shifts in the ductile to brittle transition temperatures. These models consider the ductile damage evolution, in the form of nucleation, growth and coalescence of voids; and the brittle fracture, in the form of probabilistic cleavage initiation, to estimate the influence of irradiation on the ductile to brittle transition temperature. However, the assessment of irradiation dependent material parameters is challenging and influences the accuracy of these models. In the present study, the effects of irradiation on the overall flow stress and ductile damage behavior of two ferritic-martensitic steels is parametrically investigated. The results indicate that the ductile damage model parameters are mostly insensitive to irradiation levels at higher dose levels though the resulting flow stress behavior varies significantly.

  3. Influence of structural-phase state of ferritic-martensitic steels on the helium porosity development

    NASA Astrophysics Data System (ADS)

    Chernov, I. I.; Staltsov, M. S.; Kalin, B. A.; Bogachev, I. A.; Guseva, L. Yu; Dzhumaev, P. S.; Emelyanova, O. V.; Drozhzhina, M. V.; Manukovsky, K. V.; Nikolaeva, I. D.

    2016-04-01

    Transmission electron microscopy (TEM) has been used to study the effect of the initial structural-phase state (SPhS) of ferritic-martensitic steels EK-181, EP-450 and EP-450- ODS (with 0.5 wt.% nanoparticles of Y2O3) on the of helium porosity formation and gas swelling. Different SPhS of steel EK-181 was produced by water quenching, annealing, normalizing plus tempered, intensive plastic deformation by torsion (HPDT). Irradiation was carried out by He+-40 keV ions at 923 K up to fluence of 5-1020 He+/m2. It is shown that the water quenching causes the formation of uniformly distributed small bubbles (d¯ ∼ 2 nm) of the highest density (ρ∼ 1025 m-3). After normalization followed by tempering as well as after annealing bubbles distribution is highly non-uniform both by volume and in size. Very large faceted bubbles (pre-equilibrium gas-filled voids) are formed in ferrite grains resulting in high level of gas swelling of the irradiated layer with S = 4,9 ± 1,2 and 3.8 ± 0.9% respectively. Nano- and microcrystalline structure created by HPDT completely degenerate at irradiation temperature and ion irradiation formed bubbles of the same parameters as in the annealed steel. Bubbles formed in EP-450-ODS steel are smaller in size and density, which led to a decrease of helium swelling by 4 times (S = 0.8 ± 0.2%) as compared to the swelling of the matrix steel EP-450 (S = 3.1 ± 0.7%).

  4. Influence of delta ferrite and dendritic carbides on the impact and tensile properties of a martensitic chromium steel

    NASA Astrophysics Data System (ADS)

    Schäfer, L.

    1998-10-01

    Martensitic chrome steels with a high content of chromium incline to form delta ferrite frequently accompanied by massive dendritic carbide precipitations. Both phases mostly influence the mechanical properties of this steel in countercurrent manner. The relatively soft delta ferrite causes an increase of ductility and toughness, whilst the brittle dendritic carbides decreases both. Both phases mostly decrease the strength of the steel. One or the other influence will be dominant in dependence of the quantitative relation of the two phases. This is the cause for very different statements in the literature. The dendritic carbides should be avoided using a cooling rate of more than 10 3 K/min after the austenitization, because this phase mostly impairs the mechanical properties of the steel. However, the delta ferrite without dendritic carbides can be tolerated mostly.

  5. A reassessment of the effects of helium on Charpy impact properties of ferritic/martensitic steels

    SciTech Connect

    Gelles, D.S.; Hamilton, M.L.; Hankin, G.L.

    1998-03-01

    To test the effect of helium on Charpy impact properties of ferritic/martensitic steels, two approaches are reviewed: quantification of results of tests performed on specimens irradiated in reactors with very different neutron spectra, and isotopic tailoring experiments. Data analysis can show that if the differences in reactor response are indeed due to helium effects, then irradiation in a fusion machine at 400 C to 100 dpa and 1000 appm He will result in a ductile to brittle transition temperature shift of over 500 C. However, the response as a function of dose and helium level is unlikely to be simply due to helium based on physical reasoning. Shear punch tests and microstructural examinations also support this conclusion based on irradiated samples of a series of alloys made by adding various isotopes of nickel in order to vary the production of helium during irradiation in HFIR. The addition of nickel at any isotopic balance to the Fe-12Cr base alloy significantly increased the shear yield and maximum strengths of the alloys. However, helium itself, up to 75 appm at over 7 dpa appears to have little effect on the mechanical properties of the alloys. This behavior is instead understood to result from complex precipitation response. The database for effects of helium on embrittlement based on nickel additions is therefore probably misleading and experiments should be redesigned to avoid nickel precipitation.

  6. Influence of combined thermomechanical treatment on impurity segregation in ferritic-martensitic and austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Ilyin, A. M.; Neustroev, V. S.; Shamardin, V. K.; Shestakov, V. P.; Tazhibaeva, I. L.; Krivchenkoa, V. A.

    2000-12-01

    In this study 13Cr2MoVNb ferritic-martensitic steel (FMS) and 16Cr15Ni3MoNb austenitic stainless steel (ASS) tensile specimens were subjected to standard heat treatments and divided into two groups. Specimens in group 1 (FMS only) were aged at 400°C in a stress free and in an elastically stressed state with a tensile load (100 MPa) then doped with hydrogen in an electrolytic cell. Specimens in group 2 were subjected to cold work (up to 10%) and exposed to short-time heating at 500° for 0.5 h. All specimens were fractured at room temperature in an Auger spectrometer and Auger analysis of the fracture surfaces was performed in situ after fracturing. A noticeable increase of N and P segregation levels and a widening of the depth distribution on the grain boundary facets were observed in the FMS after aging in the stressed state. Cold-worked FMS and ASS showed a ductile dimple mode of fracture, but relatively high levels of S, P and N were observed on the dimple surfaces. We consider the origin of such effects in terms of the stressed state and plastic-deformation-enhanced segregation.

  7. Using nonlinear ultrasound measurements to track thermal aging in modified 9%Cr ferritic martensitic steel

    NASA Astrophysics Data System (ADS)

    Marino, Daniel; Kim, Jin-Yeon; Jacobs, Laurence J.; Ruiz, Alberto; Joo, Young-Sang

    2015-03-01

    This study investigates early thermal aging in 9%Cr ferritic martensitic (FM) steel, which is caused by the formation of second phases during high temperature exposure. This study employs a recently developed nonlinear ultrasonic technique to explore the sensitivity of the nonlinearity parameter. Experimental results show that the nonlinearity parameter is sensitive to certain changes in material's properties such as thermal embrittlement and hardness changes; therefore, it can be used as an indicator of the thermal damage. The specimens investigated are heat treated for different holding times ranging from 200h to 3000h at 650°C. Nonlinear ultrasonic experiments are conducted for each specimen using a wedge transducer to generate and an air-coupled transducer to detect Raleigh surface waves. The amplitudes of the first and second order harmonics are measured at different propagation distances and these amplitudes are used to obtain the relative nonlinearity parameter for each specimen with a different holding time. The nonlinear ultrasonic results are compared with independent mechanical measurements and metallographic images. This research proposes the nonlinear ultrasonic technique as a nondestructive evaluation tool not only to detect thermal damage in early stages, and also to qualitatively assess the stage of thermal damage.

  8. A closer look at the fracture toughness of ferritic/martensitic steels

    NASA Astrophysics Data System (ADS)

    Lucon, Enrico

    2007-08-01

    SCK·CEN has characterized the mechanical properties of several ferritic/martensitic steels, both unirradiated and irradiated. Fracture toughness has been evaluated using Charpy impact and fracture mechanics tests. Two safety-related features have emerged: (a) the applicability of the master curve approach (ASTM E1921-05) appears questionable; and (b) irradiation embrittlement is systematically larger when quantified in terms of quasi-static fracture toughness than when measured from Charpy tests. Both issues are examined in detail and possible interpretations are proposed; potential improvements given by the application of more advanced fracture toughness analysis methodologies are discussed. In order to clarify whether the Charpy/fracture toughness difference in embrittlement is due to loading rate effects, dynamic toughness tests have been performed in the unirradiated condition and for two irradiation doses (0.3 and 1.6 dpa). The corresponding dynamic T0 shifts have been compared with the shifts of Charpy and master curve quasi-static transition temperatures. Other possible contributions are examined and discussed.

  9. Microstructural analysis of ferritic-martensitic steels irradiated at low temperature in HFIR

    SciTech Connect

    Hashimoto, N.; Robertson, J.P.; Rowcliffe, A.F.; Wakai, E.

    1998-09-01

    Disk specimens of ferritic-martensitic steel, HT9 and F82H, irradiated to damage levels of {approximately}3 dpa at irradiation temperatures of either {approximately}90 C or {approximately}250 C have been investigated by using transmission electron microscopy. Before irradiation, tempered HT9 contained only M{sub 23}C{sub 6} carbide. Irradiation at 90 C and 250 C induced a dislocation loop density of 1 {times} 10{sup 22} m{sup {minus}3} and 8 {times} 10{sup 21} m{sup {minus}3}, respectively. in the HT9 irradiated at 250 C, a radiation-induced phase, tentatively identified as {alpha}{prime}, was observed with a number density of less than 1 {times} 10{sup 20} m{sup {minus}3}. On the other hand, the tempered F82H contained M{sub 23}C{sub 6} and a few MC carbides; irradiation at 250 C to 3 dpa caused minor changes in these precipitates and induced a dislocation loop density of 2 {times} 10{sup 22} m{sup {minus}3}. Difference in the radiation-induced phase and the loop microstructure may be related to differences in the post-yield deformation behavior of the two steels.

  10. Precipitate phases in normalized and tempered ferritic/martensitic steel P92

    NASA Astrophysics Data System (ADS)

    Shen, Yinzhong; Liu, Huan; Shang, Zhongxia; Xu, Zhiqiang

    2015-10-01

    Ferritic/martensitic steel P92 is a promising candidate for cladding and duct applications in Sodium-Cooled Fast Reactor. The precipitate phases of the P92 steel normalized at 1323 K (1050 °C) for 30 min and tempered at 1038 K (765 °C) for 1 h have been investigated using transmission electron microscopes. Four types of phases consisting of M23C6, MX, M2X and sigma-FeCr were identified in the steel. MX phases consist of Nb-rich M(C,N) carbonitride, Nb-rich MC carbide, V-rich M(C,N) carbonitride, V-rich MC carbide, V-rich MN nitride, and complex MC carbides with Nb-rich MC core and V-rich MC wings. M2X phases consist of Cr-rich M2(C,N) carbonitride, Cr-rich M2C carbide and M2N nitride. Sigma-FeCr has a simple tetragonal lattice and a typical chemical formula of Fe0.45Cr0.45W0.1. M23C6 and MX are the dominant phases, while the sigma-FeCr has the lowest content. The formation of sigma-FeCr and M2X phases in the steel is also discussed.

  11. Nano-scale nitride-particle-strengthened high-temperature wrought ferritic and martensitic steels

    SciTech Connect

    Klueh, Ronald L; Hashimoto, Naoyuki; Maziasz, Philip J

    2009-04-21

    A method of making a steel composition includes the steps of: a. providing a steel composition that includes up to 15% Cr, up to 3% Mo, up to 4% W, 0.05-1% V, up to 2% Si, up to 3% Mn, up to 10% Co, up to 3% Cu, up to 5% Ni, up to 0.3% C, 0.02-0.3% N, balance iron, wherein the percentages are by total weight of the composition; b. austenitizing the composition at a temperature in the range of 1000.degree. C. to 1400.degree. C.; c. cooling the composition of steel to a selected hot-working temperature in the range 500.degree. C. to 1000.degree. C.; d. hot-working the composition at the selected hot-working temperature; e. annealing the composition for a time period of up to 10 hours at a temperature in the range of 500.degree. C. to 1000.degree. C.; and f. cooling the composition to ambient temperature to transform the steel composition to martensite, bainite, ferrite, or a combination of those microstructures.

  12. Tensile properties of ferritic/martensitic steels irradiated in STIP-I

    NASA Astrophysics Data System (ADS)

    Dai, Y.; Long, B.; Tong, Z. F.

    2008-06-01

    Specimens of ferritic/martensitic (FM) steels T91, F82H, Optimax-A and the electron beam weld (EBW) of F82H were irradiated in the Swiss spallation neutron source (SINQ) Target-3 in a temperature range of 90-370 °C to displacement doses between 3 and 12 dpa. Tensile tests were performed at room temperature and the irradiation temperatures. The tensile test results demonstrated that the irradiation hardening increased with dose up to about 10 dpa. Meanwhile, the uniform elongation decreased to less than 1%, while the total elongation remained greater than 5%, except for an F82H specimen of 9.8 dpa tested at room temperature, which failed in elastic deformation regime. At higher doses of 11-12 dpa, the ductility of some specimens recovered, which could be due to the annealing effect of a short period of high temperature excursion. The results do not show significant differences in tensile properties for the different FM steels in the present irradiation conditions.

  13. Evolution of the mechanical properties and microstructure of ferritic-martensitic steels irradiated in the BOR-60 reactor

    NASA Astrophysics Data System (ADS)

    Shamardin, V. K.; Golovanov, V. N.; Bulanova, T. M.; Povstyanko, A. V.; Fedoseev, A. E.; Ostrovsky, Z. E.; Goncharenko, Yu. D.

    2002-12-01

    The effect of neutron irradiation on mechanical properties of low-activation ferritic-martensitic (FM) steels 0.1C-9Cr-1W, V, Ta, B and 0.1C-12Cr-2W, V, Ti, B is studied under tension at temperatures of 330-540 °C and doses of 50 dpa. Steel 0.1C-13Cr-Mo, V, Nb, B was chosen for comparison. At irradiation temperatures of 330-340 °C, the radiation hardening of steel with 9%Cr achieves saturation at a dose of 10 dpa. In this case as compared to steels with 12%Cr, the fracture surface is characterized as ductile without cleavage traces. At irradiation temperatures higher than 420 °C, there is no difference in the behavior of the materials under investigation. The data on radiation creep obtained by direct measurement and from the profilometry data satisfy a model ɛ¯/ σ¯=B 0+D Ṡ, when B0 and D have the values typical for steels of FM type.

  14. Mechanical Properties and Microstructure of Dissimilar Friction Stir Welds of 11Cr-Ferritic/Martensitic Steel to 316 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Sato, Yutaka S.; Kokawa, Hiroyuki; Fujii, Hiromichi T.; Yano, Yasuhide; Sekio, Yoshihiro

    2015-12-01

    Dissimilar joints between ferritic and austenitic steels are of interest for selected applications in next generation fast reactors. In this study, dissimilar friction-stir welding of an 11 pct Cr ferritic/martensitic steel to a 316 austenitic stainless steel was attempted and the mechanical properties and microstructure of the resulting welds were examined. Friction-stir welding produces a stir zone without macroscopic weld-defects, but the two dissimilar steels are not intermixed. The two dissimilar steels are interleaved along a sharp zigzagging interface in the stir zone. During small-sized tensile testing of the stir zone, this sharp interface did not act as a fracture site. Furthermore, the microstructure of the stir zone was refined in both the ferritic/martensitic steel and the 316 stainless steel resulting in improved mechanical properties over the adjacent base material regions. This study demonstrates that friction-stir welding can produce welds between dissimilar steels that contain no macroscopic weld-defects and display suitable mechanical properties.

  15. Fracture mechanisms in dual phase steels based on the acicular ferrite + martensite/austenite microstructure

    NASA Astrophysics Data System (ADS)

    Poruks, Peter

    The fracture mechanisms of low carbon microalloyed plate steels based on the acicular ferrite + marten site/austenite microstructure (AF + M/A) are investigated. The final microstructure consists of a dispersed phase of submicron equi-axed martensite particles with a bainitic ferrite matrix. A series of plates with M/A volume fractions of 0.076--0.179 are studied. Brittle fracture is investigated by Instrumented Charpy impact testing of samples at -196°C and subsequent metallography. The M/A particles are identified as the crack nucleation sites and the cleavage fracture stress calculated to be 2400 MPa in a complete AF microstrucuture. This value is significantly larger than in steels that contain significant proportions of conventional bainite. Standard Charpy and Instrumented Charpy impact testing is conducted through a temperature range from -80 to + 22°C to study ductile fracture behaviour. The total absorbed energy is separated into energies of crack nucleation and of crack propagation. It is found that the energy of crack nucleation is weakly dependent on the volume fraction of M/A and completely independent of temperature over the range studied. The crack propagation energy varies significantly with both variables, decreasing with increased volume fraction of M/A and with decreasing temperature. The peak load in the instrumented Charpy data is used to calculate the dynamic fracture toughness, KId, which is found to be 105--120 MPa-m1/2. The void nucleation and void growth stages of ductile fracture are studied by metallographic examination of tensile bars. The sites of void nucleation are identified as inclusions and M/A particles. Voids nucleate at the M/A particles by decohesion of the particle-matrix interface. A constant void nucleation strain of epsilon = 0.90 +/- 0.05 is measured for all of the samples independent of the volume fraction of M/A. A stress-based criterion is used to predict void nucleation and the interface strength is determined to be

  16. Gap Analysis of Material Properties Data for Ferritic/Martensitic HT-9 Steel

    SciTech Connect

    Brown, Neil R.; Serrano De Caro, Magdalena; Rodriguez, Edward A.

    2012-08-28

    The US Department of Energy (DOE), Office of Nuclear Energy (NE), is supporting the development of an ASME Code Case for adoption of 12Cr-1Mo-VW ferritic/martensitic (F/M) steel, commonly known as HT-9, primarily for use in elevated temperature design of liquid-metal fast reactors (LMFR) and components. In 2011, Los Alamos National Laboratory (LANL) nuclear engineering staff began assisting in the development of a small modular reactor (SMR) design concept, previously known as the Hyperion Module, now called the Gen4 Module. LANL staff immediately proposed HT-9 for the reactor vessel and components, as well as fuel clad and ducting, due to its superior thermal qualities. Although the ASME material Code Case, for adoption of HT-9 as an approved elevated temperature material for LMFR service, is the ultimate goal of this project, there are several key deliverables that must first be successfully accomplished. The most important key deliverable is the research, accumulation, and documentation of specific material parameters; physical, mechanical, and environmental, which becomes the basis for an ASME Code Case. Time-independent tensile and ductility data and time-dependent creep and creep-rupture behavior are some of the material properties required for a successful ASME Code case. Although this report provides a cursory review of the available data, a much more comprehensive study of open-source data would be necessary. This report serves three purposes: (a) provides a list of already existing material data information that could ultimately be made available to the ASME Code, (b) determines the HT-9 material properties data missing from available sources that would be required and (c) estimates the necessary material testing required to close the gap. Ultimately, the gap analysis demonstrates that certain material properties testing will be required to fulfill the necessary information package for an ASME Code Case.

  17. Oxidation behavior of ferritic-martensitic and ODS steels in supercritical water

    NASA Astrophysics Data System (ADS)

    Bischoff, Jeremy

    Ferritic-martensitic and ODS alloys are primary candidates for application as cladding and structural material in Generation IV nuclear power plants, especially the supercritical water reactor. One of the main in-service degradation mechanisms for these alloys is uniform corrosion, thus this project focuses on understanding the oxidation behavior of these alloys in the supercritical water (SCW) environment. This understanding is acquired through the analysis of the oxide microstructure using microbeam synchrotron radiation diffraction and fluorescence associated with electron microscopy (both SEM and TEM). The microbeam synchrotron radiation diffraction and fluorescence technique provides unique microstructural data of the oxide. This technique simultaneously probes elemental and phase information step by step with a sub-micron spatial resolution throughout the oxide layers. Thus we were able to locate specific phases, such as Cr2O3, at specific locations in the oxide layer, mainly the interfaces. The electron microscopy complemented this analysis by imaging the oxide layers, to yield detailed information on the oxide morphology. All the alloys studied exhibited the same three-layer structure with an outer layer containing only Fe3O4, an inner layer containing a mixture of Fe3O4 and FeCr2O 4, and a diffusion layer containing a mixture of chromium-rich precipitates (Cr2O3 and FeCr2O4) and metal grains. By analyzing samples with various exposure times, we were able to follow the evolution of the oxide microstructure with exposure time. To obtain the corroded samples, several corrosion experiments were performed: some in supercritical water (at 500°C and 600°C) and one experiment in 500°C steam. The test in steam was undertaken to obtain more data points in the kinetic curves, because we thought the corrosion in steam and supercritical water at the same temperature would result in similar kinetics. This turned out not to be the case and the samples in supercritical

  18. Irradiation performance of 9--12 Cr ferritic/martensitic stainless steels and their potential for in-core application in LWRs

    SciTech Connect

    Jones, R.H.; Gelles, D.S.

    1993-08-01

    Ferritic-martensitic stainless steels exhibit radiation stability and stress corrosion resistance that make them attractive replacement materials for austenitic stainless steels for in-core applications. Recent radiation studies have demonstrated that 9% Cr ferritic/martensitic stainless steel had less than a 30C shift in ductile-to-brittle transition temperature (DBTT) following irradiation at 365C to a dose of 14 dpa. These steels also exhibit very low swelling rates, a result of the microstructural stability of these alloys during radiation. The 9 to 12% Cr alloys to also exhibit excellent corrosion and stress corrosion resistance in out-of-core applications. Demonstration of the applicability of ferritic/martensitic stainless steels for in-core LWR application will require verification of the irradiation assisted stress corrosion cracking behavior, measurement of DBTT following irradiation at 288C, and corrosion rates measurements for in-core water chemistry.

  19. Precipitation behavior and martensite lath coarsening during tempering of T/P92 ferritic heat-resistant steel

    NASA Astrophysics Data System (ADS)

    Xu, Lin-qing; Zhang, Dan-tian; Liu, Yong-chang; Ning, Bao-qun; Qiao, Zhi-xia; Yan, Ze-sheng; Li, Hui-jun

    2014-05-01

    Tempering is an important process for T/P92 ferritic heat-resistant steel from the viewpoint of microstructure control, as it facilitates the formation of final tempered martensite under serving conditions. In this study, we have gained deeper insights on the mechanism underlying the microstructural evolution during tempering treatment, including the precipitation of carbides and the coarsening of martensite laths, as systematically analyzed by optical microscopy, transmission electron microscopy, and high-resolution transmission electron microscopy. The chemical composition of the precipitates was analyzed using energy dispersive X-ray spectroscopy. Results indicate the formation of M3C (cementite) precipitates under normalized conditions. However, they tend to dissolve within a short time of tempering, owing to their low thermal stability. This phenomenon was substantiated by X-ray diffraction analysis. Besides, we could observe the precipitation of fine carbonitrides (MX) along the dislocations. The mechanism of carbon diffusion controlled growth of M23C6 can be expressed by the Zener's equation. The movement of Y-junctions was determined to be the fundamental mechanism underlying the martensite lath coarsening process. Vickers hardness was estimated to determine their mechanical properties. Based on the comprehensive analysis of both the micro-structural evolution and hardness variation, the process of tempering can be separated into three steps.

  20. Microstructural evolution of ferritic-martensitic steels under heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Topbasi, Cem

    Ferritic-martensitic steels are primary candidate materials for fuel cladding and internal applications in the Sodium Fast Reactor, as well as first-wall and blanket materials in future fusion concepts because of their favorable mechanical properties and resistance to radiation damage. Since microstructure evolution under irradiation is amongst the key issues for these materials in these applications, developing a fundamental understanding of the irradiation-induced microstructure in these alloys is crucial in modeling and designing new alloys with improved properties. The goal of this project was to investigate the evolution of microstructure of two commercial ferritic-martensitic steels, NF616 and HCM12A, under heavy ion irradiation at a broad temperature range. An in situ heavy ion irradiation technique was used to create irradiation damage in the alloy; while it was being examined in a transmission electron microscope. Electron-transparent samples of NF616 and HCM12A were irradiated in situ at the Intermediate Voltage Electron Microscope (IVEM) at Argonne National Laboratory with 1 MeV Kr ions to ˜10 dpa at temperatures ranging from 20 to 773 K. The microstructure evolution of NF616 and HCM12A was followed in situ by systematically recording micrographs and diffraction patterns as well as capturing videos during irradiation. In these irradiations, there was a period during which no changes are visible in the microstructure. After a threshold dose (˜0.1 dpa between 20 and 573 K, and ˜2.5 dpa at 673 K) black dots started to become visible under the ion beam. These black dots appeared suddenly (from one frame to the next) and are thought to be small defect clusters (2-5 nm in diameter), possibly small dislocation loops with Burgers vectors of either ½ or . The overall density of these defect clusters increased with dose and saturated around 6 dpa. At saturation, a steady-state is reached in which defects are eliminated and created at the same rates so that the

  1. Microstructural evolution of ferritic-martensitic steels under heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Topbasi, Cem

    Ferritic-martensitic steels are primary candidate materials for fuel cladding and internal applications in the Sodium Fast Reactor, as well as first-wall and blanket materials in future fusion concepts because of their favorable mechanical properties and resistance to radiation damage. Since microstructure evolution under irradiation is amongst the key issues for these materials in these applications, developing a fundamental understanding of the irradiation-induced microstructure in these alloys is crucial in modeling and designing new alloys with improved properties. The goal of this project was to investigate the evolution of microstructure of two commercial ferritic-martensitic steels, NF616 and HCM12A, under heavy ion irradiation at a broad temperature range. An in situ heavy ion irradiation technique was used to create irradiation damage in the alloy; while it was being examined in a transmission electron microscope. Electron-transparent samples of NF616 and HCM12A were irradiated in situ at the Intermediate Voltage Electron Microscope (IVEM) at Argonne National Laboratory with 1 MeV Kr ions to ˜10 dpa at temperatures ranging from 20 to 773 K. The microstructure evolution of NF616 and HCM12A was followed in situ by systematically recording micrographs and diffraction patterns as well as capturing videos during irradiation. In these irradiations, there was a period during which no changes are visible in the microstructure. After a threshold dose (˜0.1 dpa between 20 and 573 K, and ˜2.5 dpa at 673 K) black dots started to become visible under the ion beam. These black dots appeared suddenly (from one frame to the next) and are thought to be small defect clusters (2-5 nm in diameter), possibly small dislocation loops with Burgers vectors of either ½ or . The overall density of these defect clusters increased with dose and saturated around 6 dpa. At saturation, a steady-state is reached in which defects are eliminated and created at the same rates so that the

  2. Production and preliminary characterization of ferritic-martensitic steel T91 cladding tubes for LBE or Pb cooled nuclear systems

    NASA Astrophysics Data System (ADS)

    Van den Bosch, J.; Almazouzi, A.; Mueller, G.; Rusanov, A.

    2011-08-01

    Thin wall tubes with suitable dimensions for possible future use as nuclear fuel cladding based on ferritic-martensitic steel T91 have been produced. Several rolling routes for thin wall tube rolling have been successfully explored to produce T91 tubes of 8.5 mm OD and 0.5 mm wall thickness as well as 6.5 mm OD and 0.5 mm wall thickness. The results show that the cold rolled Т91 steel thin walled tubes remain ductile and the material easily carries fractional strains. Finally the microstructure of the resulting tubes was examined and preliminary burst and tensile tests were performed showing properties comparable to those of T91 plate material.

  3. Effect of Austenization Temperature on the Microstructure and Strength of 9% and 12% Cr Ferritic-Martensitic Steels

    SciTech Connect

    Terry C. Totemeier

    2004-10-01

    The effect of reduced-temperature austenization on the microstructure and strength of two ferritic-martensitic steels was studied. Prototypic 9% and 12% Cr steels, grade 91 (9Cr-1MoVNb) and type 422 stainless (12Cr-1MoVW), respectively, were austenized at 925°C and 1050°C and tempered at 760°C. The reduced austenization temperature was intended to simulate potential inadequate austenization during field construction of large structures and also the thermal cycle experienced in the Type IV region of weld heat affected zones (HAZ). The microstructure, tensile behavior, and creep strength were characterized for both steels treated at each condition. The reduced austenization temperature resulted in general coarsening of carbides in both steels and polygonization of the tempered martensite structure in type 422. For this steel, a marked reduction in microhardness was observed, while there was little change in microhardness for grade 91. Slight reductions in tensile strength were observed for both steels at room temperature and elevated temperatures of 450 and 550°C. The strength reduction was greater for type 422 than for grade 91. At 650°C the tensile strength reduction was minimal for both steels. Marked reductions in creep rupture lives were observed for both steels at 650°C; the reductions were less at 600°C and minimal at 550°C. Overall, the higher Cr content steel was observed to be more sensitive to variations in heat treatment conditions.

  4. Characterization of microstructural and mechanical properties of a reduced activation ferritic oxide dispersion strengthened steel

    NASA Astrophysics Data System (ADS)

    Eiselt, Ch. Ch.; Klimenkov, M.; Lindau, R.; Möslang, A.

    2011-09-01

    For specific blanket and divertor applications in future fusion power reactors a replacement of presently considered Reduced Activation Ferritic Martensitic (RAFM) steels as structural material by suitable oxide dispersion strengthened (ODS) ferritic martensitic steels would allow a substantial increase of the operating temperature from ˜823 K to about 923 K. Temperatures above 973 K in the He cooled modular divertor concept necessitate the use of Reduced Activation Ferritic (RAF)-ODS-steels, which are not limited by a phase transition. The development concentrates on the ferritic ODS-steel Fe-13Cr-1W-0.3Ti-0.3Y 2O 3. The microstructures of a mechanically alloyed powder particle are observed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Ageing experiments for 1000 h and 3000 h at 1123.5 K and 1223.5 K of compacted Fe-13Cr-1W-0.3Ti-0.3Y 2O 3 were executed. The impact especially on the oxide particles in terms of segregation and decomposition effects were monitored by electron energy loss spectroscopy (EELS). Long term vacuum creep experiments have been performed with rolled Fe-13Cr-1W-0.3Ti-0.3Y 2O 3 at 923.5 K and 1023.5 K, which will be compared to reference alloys.

  5. Small punch tensile/fracture test data and 3D specimen surface data on Grade 91 ferritic/martensitic steel from cryogenic to room temperature.

    PubMed

    Bruchhausen, Matthias; Lapetite, Jean-Marc; Ripplinger, Stefan; Austin, Tim

    2016-12-01

    Raw data from small punch tensile/fracture tests at two displacement rates in the temperature range from -196 °C to room temperature on Grade 91 ferritic/martensitic steel are presented. A number of specimens were analyzed after testing by means of X-ray computed tomography (CT). Based on the CT volume data detailed 3D surface maps of the specimens were established. All data are open access and available from Online Data Information Network (ODIN)https://odin.jrc.ec.europa.eu. The data presented in the current work has been analyzed in the research article "On the determination of the ductile to brittle transition temperature from small punch tests on Grade 91 ferritic-martensitic steel" (M. Bruchhausen, S. Holmström, J.-M. Lapetite, S. Ripplinger, 2015) [1].

  6. Small punch tensile/fracture test data and 3D specimen surface data on Grade 91 ferritic/martensitic steel from cryogenic to room temperature.

    PubMed

    Bruchhausen, Matthias; Lapetite, Jean-Marc; Ripplinger, Stefan; Austin, Tim

    2016-12-01

    Raw data from small punch tensile/fracture tests at two displacement rates in the temperature range from -196 °C to room temperature on Grade 91 ferritic/martensitic steel are presented. A number of specimens were analyzed after testing by means of X-ray computed tomography (CT). Based on the CT volume data detailed 3D surface maps of the specimens were established. All data are open access and available from Online Data Information Network (ODIN)https://odin.jrc.ec.europa.eu. The data presented in the current work has been analyzed in the research article "On the determination of the ductile to brittle transition temperature from small punch tests on Grade 91 ferritic-martensitic steel" (M. Bruchhausen, S. Holmström, J.-M. Lapetite, S. Ripplinger, 2015) [1]. PMID:27660812

  7. Mechanical properties of ferrite-perlite and martensitic Fe-Mn-V-Ti-C steel processed by equal-channel angular pressing and high-temeperature annealing

    NASA Astrophysics Data System (ADS)

    Zakharova, G. G.; Astafurova, E. G.; Tukeeva, M. S.; Naidenkin, E. V.; Raab, G. I.; Dobatkin, S. V.

    2011-09-01

    Using the method of equal-channel angular pressing (ECAP), submicrocrystalline structure is formed in lowcarbon Fe-Mn-V-Ti-C steel with the average grain size 260 nm in the ferrite-perlite state and 310 nm in the martensitic state. It is established that the ECAP treatment gives rise to improved mechanical properties (Hμ = 2.9 GPa, σ0 = 990 MPa in the ferrite-perlite and Hμ = 3.7 GPa, σ0 = 1125 MPa in martensitic states), decreased plasticity, and results in plastic flow localization under tensile loading. The high strength properties formed by the ECAP are shown to sustain up to the annealing temperature 500°C.

  8. Effect of Carbon Content on Microstructure and Mechanical Properties of 9 to 12 pct Cr Ferritic/Martensitic Heat-Resistant Steels

    NASA Astrophysics Data System (ADS)

    Yin, Feng-Shi; Tian, Li-Qian; Xue, Bing; Jiang, Xue-Bo; Zhou, Li

    2012-07-01

    Two heats of 9 to 12 pct Cr ferritic/martensitic heat-resistant steels were prepared. One has an ultralow carbon content of 0.01 wt pct, whereas another heat has a normal carbon content of 0.09 wt pct. The effect of carbon content on microstructure and mechanical properties of 9 to 12 pct Cr ferritic/martensitic heat-resistant steels was studied. The results show that the ultralow-carbon steel contains bimodal, nanosized MX precipitates with high density in the matrix but few M23C6 carbide particles in the normalized-and-tempered state. The smaller nanosized MX precipitates have two kinds of typical morphology: One is cubic and another is rectangular. The cubic MX precipitate contains Nb, Ti, and V, whereas the rectangular one only contains Nb and V. The normal carbon steel has abundant M23C6 carbide particles along the grain and lath boundaries and much less density of nanosized MX precipitates after the same heat treatments. After long-term aging at 923 K (650 °C) for 10,000 hours, the stress rupture properties of the ultralow carbon content steel degrades more significantly. The strength degradation mechanism of the 9 to 12 pct Cr ferritic/martensitic heat-resistant steels is discussed in this article.

  9. End Closure Joining of Ferritic-Martensitic and Oxide-Dispersion Strengthened Steel Cladding Tubes by Magnetic Pulse Welding

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Gu; Park, Jin-Ju; Lee, Min-Ku; Rhee, Chang-Kyu; Kim, Tae-Kyu; Spirin, Alexey; Krutikov, Vasiliy; Paranin, Sergey

    2015-07-01

    The magnetic pulse welding (MPW) technique was employed for the end closure joining of fuel pin cladding tubes made of ferritic-martensitic (FM) steel and oxide-dispersion strengthened (ODS) steel. The technique is a solid-state impact joining process based on the electromagnetic force, similar to explosive welding. For a given set of optimal process parameters, e.g., the end-plug geometry, the rigid metallurgical bonding between the tube and end plug was obtained by high-velocity impact collision accompanied with surface jetting. The joint region showed a typical wavy morphology with a narrow grain boundary-like bonding interface. There was no evidence of even local melting, and only the limited grain refinement was observed in the vicinity of the bonding interface without destructing the original reinforcement microstructure of the FM-ODS steel, i.e., a fine grain structure with oxide dispersion. No leaks were detected during helium leakage test, and moreover, the rupture occurred in the cladding tube section without leaving any joint damage during internal pressure burst test. All of the results proved the integrity and durability of the MPWed joints and signified the great potential of this method of end closure joining for advanced fast reactor fuel pin fabrication.

  10. IRRADIATION CREEP AND MECHANICAL PROPERTIES OF TWO FERRITIC-MARTENSITIC STEELS IRRADIATED IN THE BN-350 FAST REACTOR

    SciTech Connect

    Porollo, S. I.; Konobeev, Yu V.; Dvoriashin, A. M.; Budylkin, N. I.; Mironova, E. G.; Leontyeva-Smirnova, M. V.; Loltukhovsky, A. G.; Bochvar, A. A.; Garner, Francis A.

    2002-09-01

    Russian ferritic/martensitic steels EP-450 and EP-823 were irradiated to 20-60 dpa in the BN-350 fast reactor in the form of pressurized creep tubes and small rings used for mechanical property tests. Data derived from these steels serves to enhance our understanding of the general behavior of this class of steels. It appears that these steels exhibit behavior that is very consistent with that of Western steels. Swelling is relatively low at high neutron exposure and confined to temperatures less then 420 degrees C, but may be camouflaged somewhat by precipitation-related densification. The irradiation creep studies confirm that the creep compliance of F/M steels is about one-half that of austenitic steels, and that the loss of strength at test temperatures above 500 degrees C is a problem generic to all F/M steels. This conclusion is supported by post-irradiation measurement of short-term mechanical properties. At temperatures below 500 degrees C both steels retain their high strength (yield stress 0.2=550-600 MPa), but at higher test temperatures a sharp decrease of strength properties occurs. However, the irradiated steels still retain high post-irradiation ductility at test temperatures in the range of 20-700 degrees C.

  11. Fabrication and integrity test preparation of HIP-joined W and ferritic-martensitic steel mockups for fusion reactor development

    NASA Astrophysics Data System (ADS)

    Lee, Dong Won; Shin, Kyu In; Kim, Suk Kwon; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae Sung; Choi, Bo Guen; Moon, Se Youn; Hong, Bong Guen

    2014-10-01

    Tungsten (W) and ferritic-martensitic steel (FMS) as armor and structural materials, respectively, are the major candidates for plasma-facing components (PFCs) such as the blanket first wall (BFW) and the divertor, in a fusion reactor. In the present study, three W/FMS mockups were successfully fabricated using a hot isostatic pressing (HIP, 900 °C, 100 MPa, 1.5 hrs) with a following post-HIP heat treatment (PHHT, tempering, 750 °C, 70 MPa, 2 hrs), and the W/FMS joining method was developed based on the ITER BFW and the test blanket module (TBM) development project from 2004 to the present. Using a 10-MHz-frequency flat-type probe to ultrasonically test of the joint, we found no defects in the fabricated mockups. For confirmation of the joint integrity, a high heat flux test will be performed up to the thermal lifetime of the mockup under the proper test conditions. These conditions were determined through a preliminary analysis with conventional codes such as ANSYS-CFX for thermal-hydraulic conditions considering the test facility, the Korea heat load test facility with an electron beam (KoHLT-EB), and its water coolant system at the Korea Atomic Energy Research Institute (KAERI).

  12. Microstructure and mechanical property of ferritic-martensitic steel cladding under a 650 °C liquid sodium environment

    NASA Astrophysics Data System (ADS)

    Kim, Jun Hwan; Kim, Sung Ho

    2013-11-01

    A study was carried out to investigate the effect of liquid sodium on the microstructural and mechanical property of ferritic-martensitic steel (FMS) used for a Sodium-cooled Fast Reactor (SFR) cladding tube. A quasi-dynamic device characterized by natural circulation was constructed and a compatibility test between FMS and liquid sodium was performed. HT9 (12Cr-1MoWVN) and Gr.92 (9Cr-2WNbVNB) coupons as well as a Gr.92 cladding tube were immersed in the 650 °C liquid sodium up to 3095 h and a microstructural observation, a mechanical property evaluation such as nanoindentation, and a ring tension test were also done in this study. The results showed that both HT9 and Gr.92 exhibited macroscopic weight loss behavior where pitting and decarburization took place. Weight loss as well as the decarburization process decreased as the chromium content increased. A compatibility test over the cladding tube revealed that a decrease of the mechanical property caused by the aging process governed the whole mechanical property of the cladding tube.

  13. Microstructural evolution in a ferritic-martensitic stainless steel and its relation to high-temperature deformation and rupture models

    SciTech Connect

    DiMelfi, R.J.; Gruber, E.E.; Kramer, J.M.

    1991-01-01

    The ferritic-martensitic stainless steel HT-9 exhibits an anomalously high creep strength in comparison to its high-temperature flow strength from tensile tests performed at moderate rates. A constitutive relation describing its high-temperature tensile behavior over a wide range of conditions has been developed. When applied to creep conditions the model predicts deformation rates orders of magnitude higher than observed. To account for the observed creep strength, a fine distribution of precipitates is postulated to evolve over time during creep. The precipitate density is calculated at each temperature and stress to give the observed creep rate. The apparent precipitation kinetics thereby extracted from this analysis is used in a model for the rupture-time kinetics that compares favorably with observation. Properly austenitized and tempered material was aged over times comparable to creep conditions, and in a way consistent with the precipitation kinetics from the model. Microstructural observations support the postulates and results of the model system. 16 refs., 10 figs.

  14. Blister formation on 13Cr2MoNbVB ferritic-martensitic steel exposed to hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Nikitin, A. V.; Tolstolutskaya, G. D.; Ruzhytskyi, V. V.; Voyevodin, V. N.; Kopanets, I. E.; Karpov, S. A.; Vasilenko, R. L.; Garner, F. A.

    2016-09-01

    The influence of pre-irradiation specimen deformation level on surface blister formation and sub-surface cracking of dual-phase 13Cr2MoNbVB ferritic-martensitic steel was studied using glow discharge hydrogen plasma with ion energy of 1 keV to fluences of 2 × 1025 H/m2. Protium was used for most studies, but deuterium was used for measuring the depth dependence of hydrogen diffusion. Formation of blisters was observed in the temperature range 230-340 K. It was found that pre-irradiation deformation caused changes in the threshold fluences of blister formation and also in blister size distribution. Subsurface cracks located on grain boundaries far beyond the implantation zone were formed concurrently with blisters, arising from hydrogen diffusion and trapping at defects. It was observed that cracks as long as 1 mm in length were formed in 95% deformed steel at depths up to 500 μm from surface.

  15. Oxidation behavior of ferritic/martensitic steels in stagnant liquid LBE saturated by oxygen at 600 °C

    NASA Astrophysics Data System (ADS)

    Shi, Quanqiang; Liu, Jian; Luan, He; Yang, Zhenguo; Wang, Wei; Yan, Wei; Shan, Yiyin; Yang, Ke

    2015-02-01

    Ferritic/martensitic (F/M) steels are primary candidates for application as cladding and structural materials in the Generation IV Nuclear Reactor, especially accelerator driven sub-critical system (ADS). The compatibility of F/M steels with liquid lead-bismuth eutectic (LBE) is a critical issue for development of ADS using liquid LBE as the coolant. In this work, the corrosion tests of two F/M steels, including a novel 9-12 Cr modified F/M steel named SIMP steel and a commercial T91 steel, were conducted in the static oxygen-saturated liquid LBE at 600 °C up to 1000 h, the microstructure of the oxide scale formed on these two steels was analyzed, the relationship between the microstructure and the oxidation behavior was studied, and the reason why the SIMP steel showed better oxidation resistance compared to T91 steel was analyzed. The results of this study confirmed that the oxidation behavior of the F/M steels in liquid metals is influenced by their alloying elements and microstructures.

  16. Development of Advanced 9Cr Ferritic-Martensitic Steels and Austenitic Stainless Steels for Sodium-Cooled Fast Reactor

    SciTech Connect

    Sham, Sam; Tan, Lizhen; Yamamoto, Yukinori

    2013-01-01

    Ferritic-martensitic (FM) steel Grade 92, with or without thermomechanical treatment (TMT), and austenitic stainless steels HT-UPS (high-temperature ultrafine precipitate strengthening) and NF709 were selected as potential candidate structural materials in the U.S. Sodium-cooled Fast Reactor (SFR) program. The objective is to develop advanced steels with improved properties as compared with reference materials such as Grade 91 and Type 316H steels that are currently in nuclear design codes. Composition modification and/or processing optimization (e.g., TMT and cold-work) were performed to improve properties such as resistance to thermal aging, creep, creep-fatigue, fracture, and sodium corrosion. Testings to characterize these properties for the advanced steels were conducted by the Idaho National Laboratory, the Argonne National Laboratory and the Oak Ridge National Laboratory under the U.S. SFR program. This paper focuses on the resistance to thermal aging and creep of the advanced steels. The advanced steels exhibited up to two orders of magnitude increase in creep life compared to the reference materials. Preliminary results on the weldment performance of the advanced steels are also presented. The superior performance of the advanced steels would improve reactor design flexibility, safety margins and economics.

  17. Void swelling and microstructure evolution at very high damage level in self-ion irradiated ferritic-martensitic steels

    NASA Astrophysics Data System (ADS)

    Getto, E.; Sun, K.; Monterrosa, A. M.; Jiao, Z.; Hackett, M. J.; Was, G. S.

    2016-11-01

    The void swelling and microstructure evolution of ferritic-martensitic alloys HT9, T91 and T92 were characterized following irradiation with Fe++ ions at 460 °C to damage levels of 75-650 displacements per atom with 10 atom parts per million pre-implanted helium. Steady state swelling rate of 0.033%/ dpa was determined for HT9, the least swelling resistant alloy, and 0.007%/ dpa in T91. In T91, resistance was due to suppression of void nucleation. Swelling resistance was greatest in T92, with a low density (∼1 × 1020 m-3) of small voids that had not grown appreciably, indicating suppression of nucleation and growth. Additional heats of T91 indicated that alloy composition was not the determining factor of swelling resistance. Carbon and chromium-rich M2X precipitates formed at 250 dpa and were correlated with decreased nucleation in T91 and T92, but did not affect void growth in HT9. Dislocation and G-phase microstructure evolution was analyzed up to 650 dpa in HT9.

  18. Dependence of mode I and mixed mode I/III fracture toughness on temperature for a ferritic/martensitic stainless steel

    SciTech Connect

    Li, H.; Jones, R.H.; Gelles, D.S.

    1995-04-01

    The objective is to investigate the dependence of mode I and mixed mode I/III fracture toughness on temperature in the range of {minus}95{degrees}C to 25{degrees}C for a low activation ferritic/martensitic stainless steel (F82-H). Mode I and mixed Mode I/III fracture toughnesses were investigated in the range of {minus}95 to 25{degree}C for a F82-H steel heat-treated in the following way; 1000{degree}C/20 h/air-cooled (AC), 1100{degree}C/7 min/AC, and 700{degree}C/2 h/AC. The results indicate that crack tip plasticity was increased by mixed mode loading, and suggest that at low temperature, mode I fracture toughness is the critical design parameter, but at temperatures above room temperature, expecially concerning fatigure and creep-fatigue crack growth rate, a mixed mode loading may be more harmful than a mode I loading for this steel because a mixed mode loading results in lower fracture toughness and higher crack tip plasticity (or dislocation activity).

  19. Dry sliding wear system response of ferritic and tempered martensitic ductile iron

    NASA Astrophysics Data System (ADS)

    Jha, V. K.; Mozumder, Y. H.; Shama, S.; Behera, R. K.; Pattaniak, A.; P, Sindhoora L.; Mishra, S. C.; Sen, S.

    2015-02-01

    Spheroidal graphite cast iron (SG iron) is the most preferable member of cast iron family due to its strength and toughness along with good tribological properties. SG iron specimens with annealed and martensitic matrix were subjected to dry sliding wear condition and the system response was correlated to matrix microstructure. Respective microstructure was obtained by annealing and quench and tempering heat treatment process for an austenitizing temperature of 1000°C. Specimens were subjected to Ball on plate wear tester under 40N, 50N, 60N load for a sliding distance of 7.54m. Except for quench and tempered specimen at 50N, weight loss was observed in every condition. The wear surface under optical microscope reveals adhesive mechanism for as-cast and annealed specimen whereas delaminated wear track feature was observed for quench and tempered specimen.

  20. Effect of irradiation temperature on void swelling of China Low Activation Martensitic steel (CLAM)

    SciTech Connect

    Zhao Fei; Qiao Jiansheng; Huang Yina; Wan Farong Ohnuki, Soumei

    2008-03-15

    CLAM is one composition of a Reduced Activation Ferritic/Martensitic steel (RAFM), which is being studied in a number of institutes and universities in China. The effect of electron-beam irradiation temperature on irradiation swelling of CLAM was investigated by using a 1250 kV High Voltage Electron Microscope (HVEM). In-situ microstructural observations indicated that voids formed at each experimental temperature - 723 K, 773 K and 823 K. The size and number density of voids increased with increasing irradiation dose at each temperature. The results show that CLAM has good swelling resistance. The maximum void swelling was produced at 723 K; the swelling was about 0.3% when the irradiation damage was 13.8 dpa.

  1. Relationship Between Grain Boundary Structure and Radiation Induced Segregation in a Neutron Irradiated 9 wt. % Cr Model Ferritic/Martensitic Steel

    SciTech Connect

    Field, Kevin G; Miller, Brandon; Chichester, Heather J.M.; Sridharan, K.; Allen, Todd R.

    2014-01-01

    Ferritic/Martensitic (F/M) steels with high Cr content posses the high temperature strength and low swelling rates required for advanced nuclear reactor designs. Radiation induced segregation (RIS) occurs in F/M steels due to solute atoms preferentially coupling to point defect fluxes to defect sinks, such as grain boundaries (GBs). The RIS response of F/M steels and austenitic steels has been shown to be dependent on the local structure of GBs but has only been demonstrated in ion irradiated specimens. A 9 wt. % Cr model alloy steel was irradiated to 3 dpa using neutrons at the Advanced Test Reactor (ATR) to determine the effect of neutron radiation environment on the RIS-GB structure dependence. This investigation found the relationship between GB structure and RIS is also active for F/M steels irradiated using neutrons. The data generated from the neutron irradiation is also compared to RIS data generated using proton irradiations on the same heat of model alloy.

  2. Relationship between lath boundary structure and radiation induced segregation in a neutron irradiated 9 wt.% Cr model ferritic/martensitic steel

    SciTech Connect

    Field, Kevin G.; Miller, Brandon D.; Chichester, Heather J. M.; Sridharan, Kumar; Allen, Todd R.

    2014-02-01

    Ferritic/Martensitic (F/M) steels with high Cr content posses the high temperature strength and low swelling rates required for advanced nuclear reactor designs. Radiation induced segregation (RIS) occurs in F/M steels due to solute atoms preferentially coupling to point defect fluxes which migrate to defect sinks, such as grain boundaries (GBs). The RIS response of F/M steels and austenitic steels has been shown to be dependent on the local structure of GBs where low energy structures have suppressed RIS responses. This relationship between local GB structure and RIS has been demonstrated primarily in ion-irradiated specimens. A 9 wt.% Cr model alloy steel was irradiated to 3 dpa using neutrons at the Advanced Test Reactor (ATR) to determine the effect of a neutron radiation environment on the RIS response at different GB structures. This investigation found the relationship between GB structure and RIS is also active for F/M steels irradiated using neutrons. The data generated from the neutron irradiation is also compared to RIS data generated using proton irradiations on the same heat of model alloy.

  3. Interdiffusion Behavior of Al-Rich Oxidation Resistant Coatings on Ferritic-Martensitic Alloys

    SciTech Connect

    Velraj, S.; Zhang, Ying; Hawkins, W. E.; Pint, Bruce A.

    2012-06-21

    We investigated interdiffusion of thin Al-rich coatings synthesized by chemical vapor deposition (CVD) and pack cementation on 9Cr ferritic–martensitic alloys in the temperature range of 650–700°C. The compositional changes after long-term exposures in laboratory air and air + 10 vol% H2O were examined experimentally. Interdiffusion was modeled by a modified coating oxidation and substrate interdiffusion model (COSIM) program. The modification enabled the program to directly input the concentration profiles of the as-deposited coating determined by electron probe microanalysis (EPMA). Reasonable agreement was achieved between the simulated and experimental Al profiles after exposures. Moreover, the model was also applied to predict coating lifetime at 650–700°C based on a minimum Al content (Cb) required at the coating surface to re-form protective oxide scale. In addition to a Cb value established from the failure of a thin CVD coating at 700°C, values reported for slurry aluminide coatings were also included in lifetime predictions.

  4. Modification in the Microstructure of Mod. 9Cr-1Mo Ferritic Martensitic Steel Exposed to Sodium

    NASA Astrophysics Data System (ADS)

    Prasanthi, T. N.; Sudha, Cheruvathur; Paul, V. Thomas; Bharasi, N. Sivai; Saroja, S.; Vijayalakshmi, M.

    2014-09-01

    Mod. 9Cr-1Mo is used as the structural material in the steam generator circuit of liquid metal-cooled fast breeder reactors. Microstructural modifications on the surface of this steel are investigated after exposing to flowing sodium at a temperature of 798 K (525 °C) for 16000 hours. Sodium exposure results in the carburization of the ferritic steel up to a depth of ~218 µm from the surface. Electron microprobe analysis revealed the existence of two separate zones with appreciable difference in microchemistry within the carburized layer. Differences in the type, morphology, volume fraction, and microchemistry of the carbides present in the two zones are investigated using analytical transmission electron microscopy. Formation of separate zones within the carburized layer is understood as a combined effect of leaching, diffusion of the alloying elements, and thermal aging. Chromium concentration on the surface in the α-phase suggested possible degradation in the corrosion resistance of the steel. Further, concentration-dependent diffusivities for carbon are determined in the base material and carburized zones using Hall's and den Broeder's methods, respectively. These are given as inputs for simulating the concentration profiles for carbon using numerical computation technique based on finite difference method. Predicted thickness of the carburized zone agrees reasonably well with that of experiment.

  5. Mixed-mode I/III fracture toughness of a ferritic/martensitic stainless steel

    SciTech Connect

    Li, Huaxin; Jones, R.H.; Gelles, D.S.; Hirth, J.P.

    1993-10-01

    The critical J-integrals of mode I (J{sub IC}), mixed-mode I/III (J{sub MC}), and mode III (J{sub IIIC}) were examined for a ferritic stainless steel (F-82H) at ambient temperature. A determination of J{sub MC} was made using modified compact-tension specimens. Different ratios of tension/shear stress were achieved by varying the principal axis of the crack plane between 0 and 55 degrees from the load line. Results showed that J{sub MC} and tearing modulus (T{sub M}) values varied with the crack angles and were lower than their mode I and mode III counterparts. Both the minimum J{sub MC} and T{sub M} values occurred at a crack angle between 40 and 50 degrees, where the load ratio of {sigma}{sub i}/{sigma}{sub iii} was 1.2 to 0.84. The J{sub min} was 240 Kj/M{sup 2}, and ratios of J{sub IC}/J{sub min} and J{sub IIIC}/J{sub min} were 2.1 and 1.9, respectively. The morphology of fracture surfaces was consistent with the change of J{sub MC} and T{sub M} values. While the upper shelf-fracture toughness of F-82H depends on loading mode, the J{sub min} remains very high. Other important considerations include the effect of mixed-mode loading on the DBT temperature, and effects of hydrogen and irradiation on J{sub min}.

  6. Effect of heat treatment and irradiation temperature on impact behavior of irradiated reduced-activation ferritic steels

    SciTech Connect

    Klueh, R.L.; Alexander, D.J.

    1998-03-01

    Charpy tests were conducted on eight normalized-and-tempered reduced-activation ferritic steels irradiated in two different normalized conditions. Irradiation was conducted in the Fast Flux Test Facility at 393 C to {approx}14 dpa on steels with 2.25, 5, 9, and 12% Cr (0.1% C) with varying amounts of W, V, and Ta. The different normalization treatments involved changing the cooling rate after austenitization. The faster cooling rate produced 100% bainite in the 2.25 Cr steels, compared to duplex structures of bainite and polygonal ferrite for the slower cooling rate. For both cooling rates, martensite formed in the 5 and 9% Cr steels, and martensite with {approx}25% {delta}-ferrite formed in the 12% Cr steel. Irradiation caused an increase in the ductile-brittle transition temperature (DBTT) and a decrease in the upper-shelf energy. The difference in microstructure in the low-chromium steels due to the different heat treatments had little effect on properties. For the high-chromium martensitic steels, only the 5 Cr steel was affected by heat treatment. When the results at 393 C were compared with previous results at 365 C, all but a 5 Cr and a 9 Cr steel showed the expected decrease in the shift in DBTT with increasing temperature.

  7. Effect of transient thermal cycles in a supercritical water-cooled reactor on the microstructure and properties of ferritic martensitic steels

    NASA Astrophysics Data System (ADS)

    Totemeier, T. C.; Clark, D. E.

    2006-09-01

    Microstructural and mechanical property changes in modified 9Cr-1Mo and HCM12A ferritic-martensitic steels resulting from short-duration thermal transients that occur during loss of feedwater flow events in a supercritical water reactor (SCWR) were studied. Specimen blanks were exposed to reference transients with 810 and 840 °C maximum temperatures using a thermal cycle simulator, and the subsequent microstructure, hardness, and creep-rupture strength were evaluated. Exposure to five consecutive cycles at either temperature resulted in no significant changes - only very slight indications of overtempering. Subsequent study of a wider variety of transient conditions showed that significant ferrite-to-austenite transformation occurred during thermal transients whose maximum temperature exceeded 860 °C, or during transients with holds exceeding 10 s at 840 °C maximum temperature. The subsequent presence of untempered martensite in the microstructure, coupled with severe overtempering, resulted in an order of magnitude decrease in creep-rupture strength at 600 °C. The findings were consistent with measured Ac1 temperatures for the two steels and the dependence of Ac1 on heating rate.

  8. Impurity content of reduced-activation ferritic steels and a vanadium alloy

    SciTech Connect

    Klueh, R.L.; Grossbeck, M.L.; Bloom, E.E.

    1997-04-01

    Inductively coupled plasma mass spectrometry was used to analyze a reduced-activation ferritic/martensitic steel and a vanadium alloy for low-level impurities that would compromise the reduced-activation characteristics of these materials. The ferritic steel was from the 5-ton IEA heat of modified F82H, and the vanadium alloy was from a 500-kg heat of V-4Cr-4Ti. To compare techniques for analysis of low concentrations of impurities, the vanadium alloy was also examined by glow discharge mass spectrometry. Two other reduced-activation steels and two commercial ferritic steels were also analyzed to determine the difference in the level of the detrimental impurities in the IEA heat and steels for which no extra effort was made to restrict some of the tramp impurities. Silver, cobalt, molybdenum, and niobium proved to be the tramp impurities of most importance. The levels observed in these two materials produced with present technology exceeded the limits for low activation for either shallow land burial or recycling. The chemical analyses provide a benchmark for the improvement in production technology required to achieve reduced activation; they also provide a set of concentrations for calculating decay characteristics for reduced-activation materials. The results indicate the progress that has been made and give an indication of what must still be done before the reduced-activation criteria can be achieved.

  9. Effect of Cr content on the nanostructural evolution of irradiated ferritic/martensitic alloys: An object kinetic Monte Carlo model

    NASA Astrophysics Data System (ADS)

    Chiapetto, M.; Malerba, L.; Becquart, C. S.

    2015-10-01

    Self-interstitial cluster diffusivity in Fe-Cr alloys, model materials for high-Cr ferritic/martensitic steels, is known to be reduced in a non-monotonic way as a function of Cr concentration: it first decreases, then increases. This non-monotonic behaviour is caused by a relatively long-ranged attractive interaction between Cr atoms and crowdions and correlates well with the experimentally observed swelling in these alloys under neutron irradiation, also seen to first decrease and then increase with increasing Cr content, under comparable irradiation conditions. Moreover, recent studies reveal that C atoms dispersed in the Fe matrix form under irradiation complexes with vacancies which, in turn, act as trap for one-dimensionally migrating self-interstitial clusters. The mobility of one-dimensional migrating clusters is considered key to determine swelling susceptibility. However, no model has ever been built that quantitatively describes the dependence of swelling on Cr content, allowing for the presence of C in the matrix. In this work we developed physically-based sets of parameters for object kinetic Monte Carlo (OKMC) simulations intended to study the nanostructure evolution under irradiation in Fe-Cr-C alloys. The nanostructural evolution in Fe-C and in four Fe-Cr-C alloys (containing 2.5, 5, 9 and 12 wt.% Cr) neutron irradiated up to ∼0.6 dpa at 563 K was simulated according to the model and reference experiments were reproduced. Our model shows that the SIA cluster reduced mobility has a major influence on the nanostructural evolution: it increases the number of vacancy-SIA recombinations and thus leads to the suppression of voids formation. This provides a clear framework to interpret the non-monotonic dependence of swelling in Fe-Cr alloys versus Cr content. Our model also suggests that the amount of C in the matrix has an equally important role: high amounts of it may counteract the beneficial effect that Cr has in reducing swelling.

  10. Microstructural evolution of P92 ferritic/martensitic steel under Ar{sup +} ion irradiation at elevated temperature

    SciTech Connect

    Jin Shuoxue; Guo Liping; Li Tiecheng; Chen Jihong; Yang Zheng; Luo Fengfeng; Tang Rui; Qiao Yanxin; Liu Feihua

    2012-06-15

    Irradiation damage in P92 ferritic/martensitic steel irradiated by Ar{sup +} ion beams to 7 and 12 dpa at elevated temperatures of 290 Degree-Sign C, 390 Degree-Sign C and 550 Degree-Sign C has been investigated by transmission electron microscopy, scanning electron microscopy and atomic force microscopy. The precipitate periphery (the matrix/carbide interface) was amorphized only at 290 Degree-Sign C, while higher irradiation temperature could prevent the amorphization. The formation of the small re-precipitates occurred at 290 Degree-Sign C after irradiation to 12 dpa. With the increase of irradiation temperature and dose, the phenomenon of re-precipitation became more severe. The voids induced by irradiation were observed after irradiation to 7 dpa at 550 Degree-Sign C, showing that high irradiation temperature ({>=} 550 Degree-Sign C) was a crucial factor which promoted the irradiation swelling. Energy dispersive X-ray analysis revealed that segregation of Cr and W in the voids occurred under irradiation, which may influence mechanical properties of P92 F/M steel. - Graphical Abstract: High density of small voids, about 2.5 nm in diameter, was observed after irradiation to 12 dpa at 550 Degree-Sign C, which was shown in panel a (TEM micrograph). As shown in panel b (SEM image), a large number of nanometer-sized hillocks were formed in the surface irradiated at 550 Degree-Sign C, and the mean size was {approx} 30 nm. The formation of the nanometer-sized hillocks might be due to the voids that appeared as shown in TEM images (panel a). High irradiation temperature ({>=} 550 Degree-Sign C) was a crucial factor for the formation of void swelling. Highlights: Black-Right-Pointing-Pointer Small carbides re-precipitated in P92 matrix irradiated to 12 dpa at 290 Degree-Sign C. Black-Right-Pointing-Pointer High density of voids was observed at 550 Degree-Sign C. Black-Right-Pointing-Pointer Segregation of Cr and W in voids occurred under irradiation.

  11. Low temperature embrittlement behaviour of different ferritic-martensitic alloys for fusion applications

    NASA Astrophysics Data System (ADS)

    Rieth, M.; Dafferner, B.

    1996-10-01

    In the last few years a lot of different low activation CrWVTa steels have been developed world-wide. Without irradiation some of these alloys show clearly a better low temperature embrittlement behaviour than commercial CrNiMoV(Nb) alloys. Within the MANITU project a study was carried out to compare, prior to the irradiation program, the embrittlement behaviour of different alloys in the unirradiated condition performing instrumented Charpy impact bending tests with sub-size specimens. The low activation materials (LAM) considered were different OPTIFER alloys (Forschungszentrum Karlsruhe), F82H (JAERI), 9Cr2WVTa (ORNL), and GA3X (PNL). The modified commercial 10-11% CrNiMoVNb steels were MANET and OPTIMAR. A meaningful comparison between these alloys could be drawn, since the specimens of all materials were manufactured and tested under the same conditions.

  12. Hot deformation behavior and processing map of a 9Cr ferritic/martensitic ODS steel

    NASA Astrophysics Data System (ADS)

    Zhang, Guangming; Zhou, Zhangjian; Sun, Hongying; Zou, Lei; Wang, Man; Li, Shaofu

    2014-12-01

    The hot deformation behavior of 9Cr oxide-dispersion-strengthened (ODS) steel fabricated through the process of mechanical alloying and hot isostatic pressing (HIP) as investigated through hot compression deformation tests on the Gleeble-1500D simulator in the temperature range of 1050-1200 °C and strain rate range of 0.001 s-1-1 s-1. The relationship between the rheological stress and the strain rate was also studied. The activation energy and the stress and material parameters of the hyperbolic-sine equation were resolved according to the data obtained. The processing map was also proposed. The results show that the flow stress decreases as the temperature increases, and that decreasing of the strain rate of the 9Cr ODS steel results in a positive strain rate sensitivity. It is clear that dynamic recrystallization is influenced by both temperature and strain rate. The results of this study may provide a good reference for the selection of hot working parameters for 9Cr ODS steel. The optimum processing domains are at 1200 °C with a strain rate of 1 s-1 and in the range of 1080-1100 °C with a strain rate between 0.018 s-1 and 0.05 s-1.

  13. Boron effect on the microstructure of 9% Cr ferritic-martensitic steels

    NASA Astrophysics Data System (ADS)

    Klimenkov, M.; Materna-Morris, E.; Möslang, A.

    2015-07-01

    The microstructure of reduces-activation 9Cr-WTaV steel alloyed with 83 and 1160 wt. ppm 10B was detailed analysed using transmission electron microscopy. The influence of boron content on the precipitation behaviour of M23C6 and MX (VN and TaC) phases and, hence, on the formation process of steel's grain and lath structure was studied. VN precipitates, which play an important role in the stabilisation of the lath structure, exhibit most sensitive reaction on presence of boron. Their spatial density significantly reduces in the alloy with 83 ppm boron. In the steel with 1160 wt. ppm boron, no formation of VN was detected, whereas TaC particles precipitate at the lath and grain boundaries. These changes in the structure stabilisation mechanism lead to an increasing lath width and a decreasing thermal stability of laths and grains. Analytical investigations of several BN particles reveal their complex multi-phase structure and allow conclusions to be drawn with respect to their precipitation sequence.

  14. High resistance to helium embrittlement in reduced activation martensitic steels

    NASA Astrophysics Data System (ADS)

    Kimura, A.; Kasada, R.; Morishita, K.; Sugano, R.; Hasegawa, A.; Abe, K.; Yamamoto, T.; Matsui, H.; Yoshida, N.; Wirth, B. D.; Rubia, T. D.

    2002-12-01

    Reduced activation martensitic steels (RAMSs) are the prime candidate structural material for the DEMO reactor and beyond where the material has been considered to suffer severe embrittlement caused by high-dose neutron irradiation and several thousands appm of transmutated helium. However, recent several works show high resistance to helium embrittlement of RAMS. Good performance of RAMS in the presence of rather high concentration of helium is considered to be due to high trapping capacity for helium atoms in the martensitic structure that consists of dislocations, lath boundaries, grain boundaries and carbide/matrix interfaces. To make clear the role of dislocations in trapping helium, thermal helium desorption spectra were measured for iron specimens annealed at different temperatures after cold work. A desorption peak, which increased its height with increasing dislocation density, was observed at around 550 °C, suggesting that dislocations trap helium atoms. A molecular dynamics simulation study for investigating the helium trapping behavior at helium-vacancy complexes suggests that helium is rather strongly bound to the complexes and increases the binding energy of vacancy to the complex, resulting in increasing stability of the complexes at elevated temperatures by reducing thermal emission of vacancies.

  15. Fabrication of 13Cr-2Mo Ferritic/Martensitic Oxide-Dispersion-Strengthened Steel Components by Mechanical Alloying and Spark-Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Bogachev, I.; Grigoryev, E.; Khasanov, O. L.; Olevsky, E.

    2014-06-01

    The outcomes of the mechanical alloying of 13Cr-2Mo ferritic/martensitic steel and yttria (oxide-dispersion-strengthened steel) powders in a ball mill are reported in terms of the powder particle size and morphology evolution. The optimal ball mill rotation speed and the milling time are discussed. The densification kinetics of the mechanically alloyed powder during the process of spark-plasma sintering is analyzed. An optimal set of the compaction processing parameters, including the maximum temperature, the dwell time, and the heating rate, is determined. The specifics of the densification are discussed in terms of the impact of major spark-plasma sintering parameters as well as the possible phase transformations occurring during compaction processing.

  16. Investigation of a Novel NDE Method for Monitoring Thermomechanical Damage and Microstructure Evolution in Ferritic-Martensitic Steels for Generation IV Nuclear Energy Systems

    SciTech Connect

    Nagy, Peter

    2013-09-30

    The main goal of the proposed project is the development of validated nondestructive evaluation (NDE) techniques for in situ monitoring of ferritic-martensitic steels like Grade 91 9Cr-1Mo, which are candidate materials for Generation IV nuclear energy structural components operating at temperatures up to ~650{degree}C and for steam-generator tubing for sodium-cooled fast reactors. Full assessment of thermomechanical damage requires a clear separation between thermally activated microstructural evolution and creep damage caused by simultaneous mechanical stress. Creep damage can be classified as "negligible" creep without significant plastic strain and "ordinary" creep of the primary, secondary, and tertiary kind that is accompanied by significant plastic deformation and/or cavity nucleation and growth. Under negligible creep conditions of interest in this project, minimal or no plastic strain occurs, and the accumulation of creep damage does not significantly reduce the fatigue life of a structural component so that low-temperature design rules, such as the ASME Section III, Subsection NB, can be applied with confidence. The proposed research project will utilize a multifaceted approach in which the feasibility of electrical conductivity and thermo-electric monitoring methods is researched and coupled with detailed post-thermal/creep exposure characterization of microstructural changes and damage processes using state-of-the-art electron microscopy techniques, with the aim of establishing the most effective nondestructive materials evaluation technique for particular degradation modes in high-temperature alloys that are candidates for use in the Next Generation Nuclear Plant (NGNP) as well as providing the necessary mechanism-based underpinnings for relating the two. Only techniques suitable for practical application in situ will be considered. As the project evolves and results accumulate, we will also study the use of this technique for monitoring other GEN IV

  17. Analysis of stress-induced Burgers vector anisotropy in pressurized tube specimens of irradiated ferritic-martensitic steel: JLF-1

    SciTech Connect

    Gelles, D.S.; Shibayama, T.

    1998-09-01

    A procedure for determining the Burgers vector anisotropy in irradiated ferritic steels allowing identification of all a<100> and all a/2<111> dislocations in a region of interest is applied to a pressurized tube specimen of JLF-1 irradiated at 430 C to 14.3 {times} 10{sup 22} n/cm{sup 2} (E > 0.1 MeV) or 61 dpa. Analysis of micrographs indicates large anisotropy in Burgers vector populations develop during irradiation creep.

  18. Development of new generation reduced activation ferritic-martenstic steels for advanced fusion reactors

    DOE PAGES

    Tan, Lizhen; Snead, Lance Lewis; Katoh, Yutai

    2016-05-26

    International development of reduced activation ferritic-martensitic (RAFM) steels has focused on 9 wt percentage Cr, which primarily contain M23C6 (M = Cr-rich) and small amounts of MX (M = Ta/V, X = C/N) precipitates, not adequate to maintain strength and creep resistance above ~500 °C. To enable applications at higher temperatures for better thermal efficiency of fusion reactors, computational alloy thermodynamics coupled with strength modeling have been employed to explore a new generation RAFM steels. The new alloys are designed to significantly increase the amount of MX nanoprecipitates, which are manufacturable through standard and scalable industrial steelmaking methods. Preliminary experimentalmore » results of the developed new alloys demonstrated noticeably increased amount of MX, favoring significantly improved strength, creep resistance, and Charpy impact toughness as compared to current RAFM steels. Furthermore, the strength and creep resistance were comparable or approaching to the lower bound of, but impact toughness was noticeably superior to 9–20Cr oxide dispersion-strengthened ferritic alloys.« less

  19. Response of reduced activation ferritic steels to high-fluence ion-irradiation

    NASA Astrophysics Data System (ADS)

    Tanigawa, H.; Ando, M.; Katoh, Y.; Hirose, T.; Sakasegawa, H.; Jitsukawa, S.; Kohyama, A.; Iwai, T.

    2001-09-01

    Effects of high-fluence irradiation in fusion-relevant helium production condition on defect cluster formation and swelling of reduced activation ferritic/martensitic steels (RAFs), JLF-1 (Fe-9Cr-2W-V-Ta) and F82H (Fe-8Cr-2W-V-Ta), have been investigated. Dual-ion (nickel plus helium ions) irradiation using electrostatic accelerators was adopted to simulate fusion neutron environment. The irradiation has been carried out up to a damage level of 100 displacement per atom (dpa) at around 723 K, at the HIT facility in the University of Tokyo. Thin foils for transmission electron microscopy (TEM) were prepared with a focused ion beam (FIB) microsampling system. The system enabled not only the broad cross-sectional TEM observation, but also the detailed study of irradiated microstructure, since unfavorable effects of ferromagnetism of a ferritic steel specimen were completely suppressed with this system by sampling a small volume in interests from the irradiated material.

  20. Influence of liquid lead and lead-bismuth eutectic on tensile, fatigue and creep properties of ferritic/martensitic and austenitic steels for transmutation systems

    NASA Astrophysics Data System (ADS)

    Gorse, D.; Auger, T.; Vogt, J.-B.; Serre, I.; Weisenburger, A.; Gessi, A.; Agostini, P.; Fazio, C.; Hojna, A.; Di Gabriele, F.; Van Den Bosch, J.; Coen, G.; Almazouzi, A.; Serrano, M.

    2011-08-01

    In this paper, the tensile, fatigue and creep properties of the Ferritic/Martensitic (F/M) steel T91 and of the Austenitic Stainless (AS) Steel 316L in lead-bismuth eutectic (LBE) or lead, obtained in the different organizations participating to the EUROTRANS-DEMETRA project are reviewed. The results show a remarkable consistency, referring to the variety of metallurgical and surface state conditions studied. Liquid Metal Embrittlement (LME) effects are shown, remarkable on heat-treated hardened T91 and also on corroded T91 after long-term exposure to low oxygen containing Liquid Metal (LM), but hardly visible on passive or oxidized smooth T91 specimens. For T91, the ductility trough was estimated, starting just above the melting point of the embrittler ( TM,E = 123.5 °C for LBE, 327 °C for lead) with the ductility recovery found at 425 °C. LME effects are weaker on 316L AS steel. Liquid Metal Assisted Creep (LMAC) effects are reported for the T91/LBE system at 550 °C, and for the T91/lead system at 525 °C. Today, if the study of the LME effects on T91 and 316L in LBE or lead can be considered well documented, in contrast, complementary investigations are necessary in order to quantify the LMAC effects in these systems, and determine rigorously the threshold creep conditions.

  1. IRRADIATION CREEP AND SWELLING OF RUSSIAN FERRITIC-MARTENSITIC STEELS IRRADIATED TO VERY HIGH EXPOSURES IN THE BN-350 FAST REACTOR AT 305-335 DEGREES C

    SciTech Connect

    Konobeev, Yu V.; Dvoraishin, A. M.; Porollo, S. I.; Shulepin, S. V.; Budylkin, N. I.; Mironova, E. G.; Garner, Francis A.; Toloczko, Mychailo B.

    2003-09-03

    Russian ferritic martensitic (F(slash)M) steels EP(dash)450, EP(dash)852 and EP(dash)823 were irradiated in the BN(dash)350 fast reactor in the form of gas-pressurized creep tubes. The first steel is used in Russia for hexagonal wrappers in fast reactors. The other steels were developed for compatibility with Pb(dash)Bi coolants and serve to enhance our understanding of the general behavior of this class of steels. In an earlier paper we published data on irradiation creep of EP(dash)450 and EP(dash) 823 at temperatures between 390 and 520 degrees C, with dpa levels ranging from 20 to 60 dpa. In the current paper new data on the irradiation creep and swelling of EP(dash)450 and EP(dash)852 at temperatures between 305 and 335 degrees C and doses ranging from 61 to 89 dpa are presented. Where comparisons are possible, it appears that these steels exhibit behavior that is very consistent with that of Western steels. Swelling is relatively low at high neutron exposure and confined to temperatures less then 420 degrees C, but may be camouflaged somewhat by precipitation related densification. These irradiation creep studies confirm that the creep compliance of F(slash)M steels is about one half that of austenitic steels.

  2. High heat flux test with HIP-bonded Ferritic Martensitic Steel mock-up for the first wall of the KO HCML TBM

    NASA Astrophysics Data System (ADS)

    Won Lee, Dong; Dug Bae, Young; Kwon Kim, Suk; Yun Shin, Hee; Guen Hong, Bong; Cheol Bang, In

    2011-10-01

    In order for a Korean Helium Cooled Molten Lithium (HCML) Test Blanket Module (TBM) to be tested in the International Thermonuclear Experimental Reactor (ITER), fabrication method for the TBM FW such as Hot Isostatic Pressing (HIP, 1050 °C, 100 MPa, 2 h) has been developed including post HIP heat treatment (PHHT, normalizing at 950 °C for 2 h and tempering at 750 °C for 2 h) with Ferritic Martensitic Steel (FMS). Several mock-ups were fabricated using the developed methods and one of them, three-channel mock-up, was used for performing a High Heat Flux (HHF) test to verify the joint integrity. Test conditions were determined using the commercial code, ANSYS-11, and the test was performed in the Korea Heat Load Test (KoHLT) facility, which was used a radiation heating with a graphite heater. The mock-up survived up to 1000 cycles under 1.0 MW/m 2 heat flux and there is no delamination or failure during the test.

  3. Silicon-containing ferritic/martensitic steel after exposure to oxygen-containing flowing lead-bismuth eutectic at 450 and 550 °C

    NASA Astrophysics Data System (ADS)

    Schroer, Carsten; Koch, Verena; Wedemeyer, Olaf; Skrypnik, Aleksandr; Konys, Jürgen

    2016-02-01

    A ferritic/martensitic (f/m) steel with 9 and 3 mass% of chromium (Cr) and silicon (Si), respectively, was tested on performance in flowing lead-bismuth eutectic (LBE) at 450 and 550 °C, each at concentrations of solved oxygen of both 10-7 and 10-6 mass%. The 9Cr-3Si steel generally exhibits the same basic corrosion modes as other f/m materials with 9 mass% Cr and typically lower Si content, namely Steel T91. The Si-rich steel shows an overall improved performance in comparison to T91 at 450 °C and 10-7 mass% solved oxygen, but especially at 450 °C and 10-6 mass% solved oxygen. The advantage of higher Si-content in 9Cr steel is less clear at 550 °C. Especially high oxygen content in flowing LBE at 550 °C, between >10-6 mass% and oxygen saturation, seems detrimental for the high-Si material in respect of the initiation and progress of a solution-based corrosion.

  4. Compatibility of ferritic-martensitic steel T91 welds with liquid lead-bismuth eutectic: Comparison between TIG and EB welds

    NASA Astrophysics Data System (ADS)

    Van den Bosch, J.; Coen, G.; Van Renterghem, W.; Almazouzi, A.

    2010-01-01

    The 9 wt.% chromium ferritic-martensitic steel T91 is being considered as candidate structural material for a future experimental accelerator driven system (XT-ADS). This material and its welded connections would need to be used in contact with liquid lead-bismuth eutectic (LBE), under high irradiation doses. Both unirradiated tungsten inert gas (TIG) and electron beam (EB) welds of T91 have been examined by means of metallography, scanning electron microscopy (SEM-EDX), transmission electron microscopy (TEM), Vickers hardness measurements and tensile testing in both gas and liquid lead-bismuth environment. The TIG weld was commercially produced and post weld heat treated by a certified welding company while the post weld heat treatment of the experimental EB weld was optimized in terms of the Vickers hardness profile across the welded joint. The mechanical properties of the T91 TIG and EB welds in contact with LBE have been examined using slow strain rate tensile testing (SSRT) in LBE at 350 °C. All welds showed good mechanical behaviour in gas environment but total elongation was strongly reduced due to liquid metal embrittlement (LME) when tested in liquid lead-bismuth eutectic environment. The reduction in total elongation due to LME was larger for the commercially TIG welded joint than for the EB welded joint.

  5. Effects of boron and phosphorus on creep properties of a ferritic/martensitic steel for fast reactor cladding applications

    SciTech Connect

    Not Available

    1994-10-01

    The thermal efficiencies of both conventional and supercritical fossil-fueled power plants can be improved by increasing the operating temperatures and pressures. Increased thermal efficiency would also result in significant fuel cost savings, as well as reduced environmental emissions per megawatt generated. Creep properties of materials currently used as tubes in the hottest areas of the boiler, the superheater and reheater sections, limit the operating temperature. As such, steels with improved creep strength compared to these conventional alloys are needed to increase the operational efficiencies of thermal-electric generating stations. A new class of creep-resistant, 10%Cr martensitic steel has been developed for use as high temperature components, especially in the electric utility, petrochemical & chemical industries. The steel differs from other 9-12%Cr steels in two important ways: It is strengthened by a uniform dispersion of very fine, coarsening-resistant TiC particles rather than chromium-rich, M{sub 23}C{sub 6} precipitates; and the TiC particles are precipitated in austenite prior to the martensitic transformation, not during tempering. By carefully controlling the thermo-mechanical treatment, three TiC sizes were incorporated into the matrix: 4, 12 and 25 nm; grain size and precipitate volume fraction (0.005) were kept constant. Creep tests on these three specimen types were done at 550{degrees}C, 600{degrees}C and 650{degrees}C. Results indicate that reducing the average particle size from 25 to 4 nm (thereby also reducing the average inter-particle spacing) decreases the steady-state creep rate by more than four orders of magnitude. The prototype steel`s composition must now be optimized, and in doing so the effects of boron and phosphorus are investigated.

  6. The evolution of internal stress and dislocation during tensile deformation in a 9Cr ferritic/martensitic (F/M) ODS steel investigated by high-energy X-rays

    SciTech Connect

    Zhang, Guangming; Zhou, Zhangjian; Mo, Kun; Miao, Yinbin; Liu, Xiang; Almer, Jonathan; Stubbins, James F.

    2015-12-01

    An application of high-energy wide angle synchrotron X-ray diffraction to investigate the tensile deformation of 9Cr ferritic/martensitic (F/M) ODS steel is presented. With tensile loading and in-situ Xray exposure, the lattice strain development of matrix was determined. The lattice strain was found to decrease with increasing temperature, and the difference in Young's modulus of six different reflections at different temperatures reveals the temperature dependence of elastic anisotropy. The mean internal stress was calculated and compared with the applied stress, showing that the strengthening factor increased with increasing temperature, indicating that the oxide nanoparticles have a good strengthening impact at high temperature. The dislocation density and character were also measured during tensile deformation. The dislocation density decreased with increasing of temperature due to the greater mobility of dislocation at high temperature. The dislocation character was determined by best-fit methods for different dislocation average contrasts with various levels of uncertainty. The results shows edge type dislocations dominate the plastic strain at room temperature (RT) and 300 C, while the screw type dislocations dominate at 600 C. The dominance of edge character in 9Cr F/M ODS steels at RT and 300 C is likely due to the pinning effect of nanoparticles for higher mobile edge dislocations when compared with screw dislocations, while the stronger screw type of dislocation structure at 600 C may be explained by the activated cross slip of screw segments.

  7. Use of double and triple-ion irradiation to study the influence of high levels of helium and hydrogen on void swelling of 8-12% Cr ferritic-martensitic steels

    NASA Astrophysics Data System (ADS)

    Kupriiyanova, Y. E.; Bryk, V. V.; Borodin, O. V.; Kalchenko, A. S.; Voyevodin, V. N.; Tolstolutskaya, G. D.; Garner, F. A.

    2016-01-01

    In accelerator-driven spallation (ADS) devices, some of the structural materials will be exposed to intense fluxes of very high energy protons and neutrons, producing not only displacement damage, but very high levels of helium and hydrogen. Unlike fission flux-spectra where most helium and hydrogen are generated by transmutation in nickel and only secondarily in iron or chromium, gas production in ADS flux-spectra are rather insensitive to alloy composition, such that Fe-Cr base ferritic alloys also generate very large gas levels. While ferritic alloys are known to swell less than austenitic alloys in fission spectra, there is a concern that high gas levels in fusion and especially ADS facilities may strongly accelerate void swelling in ferritic alloys. In this study of void swelling in response to helium and hydrogen generation, irradiation was conducted on three ferritic-martensitic steels using the Electrostatic Accelerator with External Injector (ESUVI) facility that can easily produce any combination of helium to dpa and/or hydrogen to dpa ratios. Irradiation was conducted under single, dual and triple beam modes using 1.8 MeV Cr+3, 40 keV He+, and 20 keV H+. In the first part of this study we investigated the response of dual-phase EP-450 to variations in He/dpa and H/dpa ratio, focusing first on dual ion studies and then triple ion studies, showing that there is a diminishing influence on swelling with increasing total gas content. In the second part we investigated the relative response of three alloys spanning a range of starting microstructure and composition. In addition to observing various synergisms between He and H, the most important conclusion was that the tempered martensite phase, known to lag behind the ferrite phase in swelling in the absence of gases, loses much of its resistance to void nucleation when irradiated at large gas/dpa levels.

  8. Effect of sodium environment on the low cycle fatigue properties of modified 9Cr-1Mo ferritic martensitic steel

    NASA Astrophysics Data System (ADS)

    Kannan, R.; Sandhya, R.; Ganesan, V.; Valsan, M.; Bhanu Sankara Rao, K.

    2009-02-01

    Modified 9Cr-1Mo ferritic steel is the material of current interest for the steam generator components of liquid metal cooled fast breeder reactors (LMFBRs). The steam generator has been designed to operate for 30-40 years. It is important to accurately determine the life of the components in the actual environment in order to consider the extension of life beyond the design life. With this objective in view, a programme has been initiated at our laboratory to evaluate the effects of flowing sodium on the LCF behaviour of modified 9Cr-1Mo steel. LCF tests conducted in flowing sodium environment at 823 K and 873 K exhibited cyclic softening behaviour both in air and sodium environments. The fatigue lives are significantly improved in sodium environment when compared to the data obtained in air environment under identical testing conditions. The lack of oxidation in sodium environment is considered to be responsible for the delayed crack initiation and consequent increase in fatigue life. Comparison of experimental lifetimes with RCC-MR design code predictions indicated that the design curve based on air tests is too conservative.

  9. Tensile and impact behaviour of BATMAN II steels, Ti-bearing reduced activation martensitic alloys

    NASA Astrophysics Data System (ADS)

    Filacchioni, G.; Casagrande, E.; De Angelis, U.; De Santis, G.; Ferrara, D.; Pilloni, L.

    Two series of Reduced Activation Ferrous alloys (RAF) have been produced and studied by Casaccia's Laboratories. These martensitic alloys are named BATMAN steels. They are among the few presently developed RAF materials to exploit Ti as a carbide forming and grain size stabilizing element instead of Ta. In this work their mechanical properties are illustrated.

  10. Minimum activation martensitic alloys for surface disposal after exposure to neutron flux

    DOEpatents

    Lechtenberg, Thomas

    1985-01-01

    Steel alloys for long-term exposure to neutron flux have a martensitic microstructure and contain chromium, carbon, tungsten, vanadium and preferably titanium. Activation of the steel is held to within acceptable limits for eventual surface disposal by stringently controlling the impurity levels of Ni, Mo, Cu, N, Co, Nb, Al and Mn.

  11. Study of MHD Corrosion and Transport of Corrosion Products of Ferritic/Martensitic Steels in the Flowing PbLi and its Application to Fusion Blanket

    NASA Astrophysics Data System (ADS)

    Saeidi, Sheida

    Two important components of a liquid breeder blanket of a fusion power reactor are the liquid breeder/coolant and the steel structure that the liquid is enclosed in. One candidate combination for such components is Lead-Lithium (PbLi) eutectic alloy and advanced Reduced Activation Ferritic/Martensitic (RAFM) steel. The research performed here is aimed at: (1) better understanding of corrosion processes in the system including RAFM steel and flowing PbLi in the presence of a strong magnetic field and (2) prediction of corrosion losses in conditions of a Dual Coolant Lead Lithium (DCLL) blanket, which is at present the key liquid metal blanket concept in the US. To do this, numerical and analytical tools have been developed and then applied to the analysis of corrosion processes. First, efforts were taken to develop a computational suite called TRANSMAG (Transport phenomena in Magnetohydrodynamic Flows) as an analysis tool for corrosion processes in the PbLi/RAFM system, including transport of corrosion products in MHD laminar and turbulent flows. The computational approach in TRANSMAG is based on simultaneous solution of flow, energy and mass transfer equations with or without a magnetic field, assuming mass transfer controlled corrosion and uniform dissolution of iron in the flowing PbLi. Then, the new computational tool was used to solve an inverse mass transfer problem where the saturation concentration of iron in PbLi was reconstructed from the experimental data resulting in the following correlation: CS = e 13.604--12975/T, where T is the temperature of PbLi in K and CS is in wppm. The new correlation for saturation concentration was then used in the analysis of corrosion processes in laminar flows in a rectangular duct in the presence of a strong transverse magnetic field. As shown in this study, the mass loss increases with the magnetic field such that the corrosion rate in the presence of a magnetic field can be a few times higher compared to purely

  12. Progress in development of China Low Activation Martensitic steel for fusion application

    NASA Astrophysics Data System (ADS)

    Huang, Q.; Li, C.; Li, Y.; Chen, M.; Zhang, M.; Peng, L.; Zhu, Z.; Song, Y.; Gao, S.

    2007-08-01

    A series of R&D activities on the structural material China Low Activation Martensitic steel (CLAM) and related blanket technology are being carried out in Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). A summary of these activities is presented, mainly covering the composition design, property tests, techniques for HIP joining and coating, and activation analysis. In addition, a nuclear material database FUMDS is introduced, which is under development based on the requirement for CLAM data management.

  13. Stability of the strengthening nanoprecipitates in reduced activation ferritic steels under Fe2+ ion irradiation

    NASA Astrophysics Data System (ADS)

    Tan, L.; Katoh, Y.; Snead, L. L.

    2014-02-01

    The stability of MX-type precipitates is critical to retain mechanical properties of both reduced activation ferritic-martensitic (RAFM) and conventional FM steels at elevated temperatures. Radiation resistance of TaC, TaN, and VN nanoprecipitates irradiated up to ∼49 dpa at 500 °C using Fe2+ is investigated in this work. Transmission electron microscopy (TEM) utilized in standard and scanning mode (STEM) reveals the non-stoichiometric nature of the nanoprecipitates. Irradiation did not alter their crystalline nature. The radiation resistance of these precipitates, in an order of reduced resistance, is TaC, VN, and TaN. Particle dissolution, growth, and reprecipitation were the modes of irradiation-induced instability. Irradiation also facilitated formation of Fe2W type Laves phase limited to the VN and TaN bearing alloys. This result suggests that nitrogen level should be controlled to a minimal level in alloys to gain greater radiation resistance of the MX-type precipitates at similar temperatures as well as postpone the formation and subsequent coarsening of Laves phase.

  14. Low-chromium reduced-activation ferritic steels for fusion

    SciTech Connect

    Klueh, R.L.; Alexander, D.J.; Kenik, E.A.

    1996-04-01

    Development of reduced-activation ferritic steels has concentrated on high-chromium (8-10 wt% Cr) steels. However, there are advantages for a low-chromium steel, and initial ORNL studies on reduced-activation steels were on compositions with 2.25 to 12% Cr. Those studies showed an Fe-2.25Cr-2W-0.25V-0.1C (2 1/4Cr-2WV) steel to have the highest strenglth of the steels studied. Although this steel had the best strength, Charpy impact properties were inferior to those of an Fe-9Cr-2W-0.25V-0.07Ta-0.1C (9Cr-2WVTa) and an Fe-2.25Cr-2W-0.1C (2 1/4Cr-2W) steel. Therefore, further development of the low-chromium Cr-W steels was required. These results indicate that it is possible to develop low-chromium reduced-activation ferritic steels that have tensile and impact properties as good or better than those of high-chromium (7-9% Cr) steels. Further improvement of properties should be possible by optimizing the composition.

  15. Effect of boron on post irradiation tensile properties of reduced activation ferritic steel (F-82H) irradiated in HFIR

    SciTech Connect

    Shiba, Kiyoyuki; Suzuki, Masahide; Hishinuma, Akimichi; Pawel, J.E.

    1994-12-31

    Reduced activation ferritic/martensitic steel, F-82H (Fe-8Cr-2W-V-Ta), was irradiated in the High Flux Isotope Reactor (HFIR) to doses between 11 and 34 dpa at 400 and 500 C. Post irradiation tensile tests were performed at the nominal irradiation temperature in vacuum. Some specimens included {sup 10}B or natural boron (nB) to estimate the helium effect on tensile properties. Tensile properties including the 0.2% offset yield stress, the ultimate tensile strength, the uniform elongation and the total elongation were measured. The tensile properties were not dependent on helium content in specimens irradiated to 34 dpa, however {sup 10}B-doped specimens with the highest levels of helium showed slightly higher yield strength and less ductility than boron-free specimens. Strength appears to go through a peak, and ductility through a trough at about 11 dpa. The irradiation to more than 21 dpa reduced the strength and increased the elongation to the unirradiated levels. Ferritic steels are one of the candidate alloys for nuclear fusion reactors because of their good thermophysical properties, their superior swelling resistance, and the low corrosion rate in contact with potential breeder and coolant materials.

  16. Structural and mechanical properties of welded joints of reduced activation martensitic steels

    NASA Astrophysics Data System (ADS)

    Filacchioni, G.; Montanari, R.; Tata, M. E.; Pilloni, L.

    2002-12-01

    Gas tungsten arc welding and electron beam welding methods were used to realise welding pools on plates of reduced activation martensitic steels. Structural and mechanical features of these simulated joints have been investigated in as-welded and post-welding heat-treated conditions. The research allowed to assess how each welding technique affects the original mechanical properties of materials and to find suitable post-welding heat treatments. This paper reports results from experimental activities on BATMAN II and F82H mod. steels carried out in the frame of the European Blanket Project - Structural Materials Program.

  17. Comparative Tensile Flow and Work-Hardening Behavior of 9 Pct Chromium Ferritic-Martensitic Steels in the Framework of the Estrin-Mecking Internal-Variable Approach

    NASA Astrophysics Data System (ADS)

    Choudhary, B. K.; Christopher, J.

    2016-06-01

    The comparative tensile flow and work-hardening behavior of P9 steel in two different product forms, normalized and tempered plate and thick section tube plate forging, and P91 steel were investigated in the framework of the dislocation dynamics based Estrin-Mecking (E-M) one-internal-variable approach. The analysis indicated that the flow behavior of P9 and P91 steels was adequately described by the E-M approach in a wide range of temperatures. It was suggested that dislocation dense martensite lath/cell boundaries and precipitates together act as effective barriers to dislocation motion in P9 and P91 steels. At room and intermediate temperatures, the evolution of the internal-state variable, i.e., the dislocation density with plastic strain, exhibited insignificant variations with respect to temperature. At high temperatures, a rapid evolution of dislocation density with plastic strain toward saturation with increasing temperature was observed. The softer P9 steel tube plate forging exhibited higher work hardening in terms of larger gains in the dislocation density and flow stress contribution from dislocations than the P9 steel plate and P91 steel at temperatures ranging from 300 K to 873 K (27 °C to 600 °C). The evaluation of activation energy suggests that the deformation is controlled by cross-slip of dislocations at room and intermediate temperatures, and climb of dislocations at high temperatures. The relative influence of initial microstructure on flow and work-hardening parameters associated with the E-M approach was discussed in the three temperature regimes displayed by P9 and P91 steels.

  18. Tritium permeation experiments using reduced activation ferritic/martensitic steel tube and erbium oxide coating

    SciTech Connect

    Takumi Chikada; Masashi Shimada; Robert Pawelko; Takayuki Terai; Takeo Muroga

    2013-09-01

    Low concentration tritium permeation experiments have been performed on uncoated F82H and Er2O3-coated tubular samples in the framework of the Japan-US TITAN collaborative program. Tritium permeability of the uncoated sample with 1.2 ppm tritium showed one order of magnitude lower than that with 100% deuterium. The permeability of the sample with 40 ppm tritium was more than twice higher than that of 1.2 ppm, indicating a surface contribution at the lower tritium concentration. The Er2O3-coated sample showed two orders of magnitude lower permeability than the uncoated sample, and lower permeability than that of the coated plate sample with 100% deuterium. It was also indicated that the memory effect of ion chambers in the primary and secondary circuits was caused by absorption of tritiated water vapor that was generated by isotope exchange reactions between tritium and surface water on the coating.

  19. Irradiation effects in ferritic steels

    NASA Astrophysics Data System (ADS)

    Lechtenberg, Thomas

    1985-08-01

    Since 1979 the Alloy Development for Irradiation Performance (ADIP) task funded by the US Department of Energy has been studying the 2-12Cr class of ferritic steels to establish the feasibility of using them in fusion reactor first wall/breeding blanket (FW/B) applications. The advantages of ferritic steels include superior swelling resistance, low thermal stresses compared to austenitic stainless steels, attractive mechanical properties up to 600°C. and service histories exceeding 100 000 h. These steels are commonly used in a range of microstructural conditions which include ferritic, martensitic. tempered martensitic, bainitic etc. Throughout this paper where the term "ferritic" is used it should be taken to mean any of these microstructures. The ADIP task is studying several candidate alloy systems including 12Cr-1MoWV (HT-9), modified 9Cr-1MoVNb, and dual-phased steels such as EM-12 and 2 {1}/{4}Cr-Mo. These materials are ferromagnetic (FM), body centered cubic (bcc), and contain chromium additions between 2 and 12 wt% and molybdenum additions usually below 2%. The perceived issues associated with the application of this class of steel to fusion reactors are the increase in the ductile-brittle transition temperature (DBTT) with neutron damage, the compatibility of these steels with liquid metals and solid breeding materials, and their weldability. The ferromagnetic character of these steels can also be important in reactor design. It is the purpose of this paper to review the current understanding of these bcc steels and the effects of irradiation. The major points of discussion will be irradiation-induced or -enhanced dimensional changes such as swelling and creep, mechanical properties such as tensile strength and various measurements of toughness, and activation by neutron interactions with structural materials.

  20. Fabrication of silver-coated cobalt ferrite nanocomposite and the study of its antibacterial activity

    NASA Astrophysics Data System (ADS)

    Kooti, M.; Saiahi, S.; Motamedi, H.

    2013-05-01

    A new silver coated cobalt ferrite nanocomposite, Ag@CoFe2O4, was prepared by a two-step procedure. In the first step, cobalt ferrite nanoparticles were synthesized by a combustion method using glycine as a fuel. This ferrite was then coated with nanosilver via chemical reduction of Ag+ solution. The as-synthesized Ag@CoFe2O4 was characterized by X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer. The antibacterial activity of this composite was investigated against some Gram-positive and Gram-negative bacteria and compared with those of silver nanoparticles and some standard antibacterial drugs.

  1. Low-temperature mechanical and magnetic properties of the reduced activation martensitic steel

    NASA Astrophysics Data System (ADS)

    Ding, Hui-Li; Zhang, Tao; Gao, Rui; Wang, Xian-Ping; Fang, Qian-Feng; Liu, Chang-Song; Suo, Jin-Ping

    2015-09-01

    Mechanical and magnetic properties as well as their relationship in the reduced activation martensitic (RAM) steel were investigated in the temperature range from -90°C to 20°C. Charpy impact tests show that the ductile-to-brittle transition temperature (DBTT) of the RAM steel is about -60°C. Low-temperature tensile tests show that the yield strength, ultimate tensile strength and total elongation values increase as temperature decreases, indicating that the strength and plasticity below the DBTT are higher than those above the DBTT. The coercive field ( H C) in the scale of logarithm decreases linearly with the increasing temperature and the absolute value of the slope of ln H C versus temperature above the DBTT is obviously larger than that below the DBTT, also confirmed in the T91 steel. The results indicate that the non-destructive magnetic measurement is a promising candidate method for the DBTT detection of ferromagnetic steels.

  2. Irradiation creep of 11Cr-0.5Mo-2W,V,Nb ferritic-martensitic, modified 316, and 15Cr-20Ni austenitic S.S. irradiated in FFTF to 103-206 dpa

    NASA Astrophysics Data System (ADS)

    Uehira, A.; Mizuta, S.; Ukai, S.; Puigh, R. J.

    2000-12-01

    The irradiation creep of 11Cr-0.5Mo-2W-0.2V-0.05Nb ferritic-martensitic (PNC-FMS), modified 316 (PNC316) and 15Cr-20Ni base austenitic S.S. were determined by the gas pressurized capsule irradiation test using MOTA in FFTF. The pressurized capsules and open tubes were irradiated at 678-943 K to a peak dose of 206 dpa. The irradiation creep coefficients were derived from the diametral change differences between the capsules and open tubes, accounting for the stress-induced swelling. The creep compliance B0 and creep-swelling coupling coefficient D for PNC-FMS were found to be 0.43-0.76×10-6 MPa-1 dpa-1 and 0.85-2.5×10-2 MPa-1 for volumetric swelling, respectively. For both PNC316 and 15Cr-20Ni base S.S. the irradiation creep properties were very similar. B0 and D range from 0.55 to -1.5×10-6 MPa-1 dpa-1 and from 1.2 to -2.8×10-3 MPa-1, respectively.

  3. Synergistic effects on dislocation loops in reduced-activation martensitic steel investigated by single and sequential hydrogen/helium ion irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, Weiping; Luo, Fengfeng; Yu, Yanxia; Zheng, Zhongcheng; Shen, Zhenyu; Guo, Liping; Ren, Yaoyao; Suo, Jinping

    2016-10-01

    Single-beam and sequential-beam irradiations were performed to investigate the H/He synergistic effect on dislocation loops in reduced-activation ferritic/martensitic (RAFM) steels. The irradiations were carried out with 10 keV H+, 18 keV He+ and 160 keV Ar+, alone and in combination at 723 K. He+ single-beam irradiation induced much larger dislocation loops than that induced by both H+ and Ar+ single-beam irradiation. H+ post-irradiation after He+ irradiation further increased the size of dislocation loops, whilst He+ post-irradiation or Ar+ post-irradiation following H+ irradiation only slightly increased the size of dislocation loops. The experiment results indicate that pre-implanted H+ can drastically inhibit the growth while post-implanted H+ can significantly enhance the growth of dislocation loops induced by He+ irradiation. The mechanisms behind the complex synergistic phenomena between H and He and the different roles that H and He played in the growth of dislocation loops are discussed.

  4. Interdiffusion behaviors of iron aluminide coatings on China low activation martensitic steel

    NASA Astrophysics Data System (ADS)

    Zhu, X. X.; Yang, H. G.; Yuan, X. M.; Zhao, W. W.; Zhan, Q.

    2014-12-01

    The iron aluminide coating on China Low Activation Martensitic (CLAM) steel was prepared by pack cementation and subsequent heat treatment. A surface Fe2Al5 layer was formed on CLAM substrate by pack cementation process with Fe2Al5 donor powder and NH4Cl activator. Diffusion heat treatment was performed in order to allow the phase transformation from Fe2Al5 to a phase with lower aluminum content. Morphology and composition of the coatings were characterized by optical microscopy (OM), scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS), glow discharge optical emission spectroscopy (GDOES) and X-ray diffraction (XRD). There is a need to study the interdiffusion behaviors in these Al containing systems, as a basis for controlling the formation and subsequent degradation of the coating. In this paper, a predictive model was developed to describe the phase transformation of Fe2Al5 as a function of processing parameters. The Wagner's equation was used to calculate the interdiffusion coefficients based on the analysis of the Al concentration profiles. The results showed that the interdiffusion coefficients in the FeAl and α-Fe(Al) phase strongly depends on Al content and showed a maximum at about 28 at.% Al.

  5. Influence of traps on the deuterium behaviour in the low activation martensitic steels F82H and Batman

    NASA Astrophysics Data System (ADS)

    Serra, E.; Perujo, A.; Benamati, G.

    1997-06-01

    A time dependent permeation method is used to measure the permeability, diffusivity and solubility of deuterium in the low activation martensitic steels F82H and Batman. The measurements cover the temperature range from 373 to 743 K which includes the onset of deuterium trapping effects on diffusivity and solubility. The results are interpreted using a trapping model. The number of trap sites and their average energies for deuterium in F82H and Batman steels are determined.

  6. Martensite Embryology

    NASA Astrophysics Data System (ADS)

    Reid, Andrew C. E.; Olson, Gregory B.

    2000-03-01

    Heterogeneous nucleation of martensite is modeled by examining the strain field of a dislocation array in a nonlinear, nonlocal continuum elastic matrix. The dislocations are modeled by including effects from atomic length scales, which control the dislocation Burger's vector, into a mesoscopic continuum model. The dislocation array models the heterogeneous nucleation source of the Olson/Cohen defect dissociation model, and depending on the potency can give rise to embryos of different character. High potency dislocations give rise to fully developed, classical pre-existing embryos, whereas low-potency dislocations result in the formation of highly nonclassical strain embryos. Heterogeneous nucleation theory is related to nucleation kinetics through the critical driving force for nucleation at a defect of a given potency. Recent stereological and calorimetric kinetic studies in thermoelastic TiNi alloys confirm that these materials exhibit the same form of defect potency distribution and resulting sample-size dependent Martensite start temperature, M_s, as nonthermoelastic FeNi systems. These results together point towards a broad theory of heterogeneous nucleation for both thermoelastic and nonthermoelastic martensites.

  7. High-Q active ring microwave resonators based on ferrite-ferroelectric layered structures

    NASA Astrophysics Data System (ADS)

    Ustinov, Alexey B.; Srinivasan, G.; Kalinikos, Boris A.

    2008-05-01

    An electric and magnetic field tunable (dual-tunable) microwave active ring resonator is designed and characterized. The device structure is implemented with a microwave amplifier and a ferrite-ferroelectric delay line in the feedback loop. At 8GHz, an effective Q factor of 50 000 and tuning by 5MHz with an electric field are achieved. The performance characteristics of the resonator are presented and discussed.

  8. Synthesis of Water Dispersible and Catalytically Active Gold-Decorated Cobalt Ferrite Nanoparticles.

    PubMed

    Silvestri, Alessandro; Mondini, Sara; Marelli, Marcello; Pifferi, Valentina; Falciola, Luigi; Ponti, Alessandro; Ferretti, Anna Maria; Polito, Laura

    2016-07-19

    Hetero-nanoparticles represent an important family of composite nanomaterials that in the past years are attracting ever-growing interest. Here, we report a new strategy for the synthesis of water dispersible cobalt ferrite nanoparticles (CoxFe3-xO4 NPs) decorated with ultrasmall (2-3 nm) gold nanoparticles (Au NPs). The synthetic procedure is based on the use of 2,3-meso-dimercaptosuccinic acid (DMSA), which plays a double role. First, it transfers cobalt ferrite NPs from the organic phase to aqueous media. Second, the DMSA reductive power promotes the in situ nucleation of gold NPs in proximity of the magnetic NP surface. Following this procedure, we achieved a water dispersible nanosystem (CoxFe3-xO4-DMSA-Au NPs) which combines the cobalt ferrite magnetic properties with the catalytic features of ultrasmall Au NPs. We showed that CoxFe3-xO4-DMSA-Au NPs act as an efficient nanocatalyst to reduce 4-nitrophenol to 4-aminophenol and that they can be magnetically recovered and recycled. It is noteworthy that such nanosystem is more catalytically active than Au NPs with equal size. Finally, a complete structural and chemical characterization of the hetero-NPs is provided.

  9. Irradiation response in weldment and HIP joint of reduced activation ferritic/martensitic steel, F82H

    SciTech Connect

    Hirose, Takanori; Sokolov, Mikhail A; Ando, M.; Tanigawa, H.; Shiba, K.; Stoller, Roger E; Odette, G.R.

    2013-11-01

    This work investigates irradiation response in the joints of F82H employed for a fusion breeding blanket. The joints, which were prepared using welding and diffusion welding, were irradiated up to 6 dpa in the High Flux Isotope Reactor at the Oak Ridge National Laboratory. Post-irradiation tests revealed hardening in weldment (WM) and base metal (BM) greater than 300 MPa. However, the heat affected zones (HAZ) exhibit about half that of WM and BM. Therefore, neutron irradiation decreased the strength of the HAZ, leaving it in danger of local deformation in this region. Further the hardening in WM made with an electron beam was larger than that in WM made with tungsten inert gas welding. However the mechanical properties of the diffusion-welded joint were very similar to those of BM even after the irradiation.

  10. MECHANICAL PROPERTIES AND MICROSTRUCTURE IN LOW ACTIVATION MARTENSITIC STEELS F82H AND OPTIMAX AFTER 800 MEV PROTON IRRADIATION

    SciTech Connect

    Y. DAI; ET AL

    1999-10-01

    Low-activation martensitic steels, F82H (mod.) and Optimax-A, have been irradiated with 800-MeV protons up to 5.9 dpa. The tensile properties and microstructure have been studied. The results show that radiation hardening increases continuously with irradiation dose. F82H has lesser irradiation hardening as compared to Optimax-A in the present work and DIN1.4926 from a previous study. The irradiation embrittlement effects are evident in the materials since the uniform elongation is reduced sharply to less than 2%. However, all the irradiated samples ruptured in a ductile-fracture mode. Defect clusters have been observed. The size and the density of defect clusters increase with the irradiation dose. Precipitates are amorphous after irradiation.

  11. Charpy impact test results for low activation ferritic alloys irradiated to 30 dpa

    SciTech Connect

    Schubert, L.E.; Hamilton, M.L.; Gelles, D.S.

    1996-04-01

    Miniature specimens of six low activation ferritic alloys have been impact field tested following irradiation at 370{degrees}C to 30 dpa. Comparison of the results with those of control specimens and specimens irradiated to 10 dpa indicates that degradation in the impact behavior appears to have saturated by {approx}10 dpa in at least four of these alloys. The 7.5Cr-2W alloy referred to as GA3X appears most promising for further consideration as a candidate structural material in fusion reactor applications, although the 9Cr-1V alloy may also warrant further investigation.

  12. A strong magneto-optical activity in rare-earth La{sup 3+} substituted M-type strontium ferrites

    SciTech Connect

    Hu Feng; Liu Xiansong; Zhu Deru; Fernandez-Garcia, Lucia; Suarez, Marta; Luis Menendez, Jose

    2011-06-01

    M-type strontium ferrites with substitution of Sr{sup 2+} by rare-earth La{sup 3+} were prepared by conventional ceramic technology. The structure, magnetic properties, and magneto-optical Kerr activity of Sr{sub 1-x}La{sub x}Fe{sub 12}O{sub 19} (x = 0, 0.05, 0.10, 0.15, 0.20) were investigated by x-ray diffraction (XRD), vibrating sample magnetometer (VSM), and magneto-optical ellipsometry, respectively. X-ray diffraction showed that the samples sintered at 1290 deg. C for 3 h were single M-type hexagonal ferrites. The magnetic properties were remarkably changed due to the valence change of Fe ions induced by the substitution of La ions. Most significantly, an important magneto-optical activity was induced in the La{sup 3+} substituted M-type strontium ferrites around 3 eV.

  13. Large zinc cation occupancy of octahedral sites in mechanically activated zinc ferrite powders

    SciTech Connect

    Oliver, S. A.; Harris, V. G.; Hamdeh, H. H.; Ho, J. C.

    2000-05-08

    The cation site occupancy of a mechanically activated nanocrystalline zinc ferrite powder was determined as (Zn{sub 0.55}{sup 2+}Fe{sub 0.18}{sup 3+}){sub tet}[Zr{sub 0.45}{sup 2+}Fe{sub 1.82}{sup 3+}]{sub oct}O{sub 4} through analysis of extended x-ray absorption fine structure measurements, showing a large redistribution of cations between sites compared to normal zinc ferrite samples. The overpopulation of cations in the octahedral sites was attributed to the ascendance in importance of the ionic radii over the crystal energy and bonding coordination in determining which interstitial sites are occupied in this structurally disordered powder. Slight changes are observed in the local atomic environment about the zinc cations, but not the iron cations, with respect to the spinel structure. The presence of Fe{sup 3+} on both sites is consistent with the measured room temperature magnetic properties. (c) 2000 American Institute of Physics.

  14. Magnetic properties and adsorptive performance of manganese-zinc ferrites/activated carbon nanocomposites

    NASA Astrophysics Data System (ADS)

    Zhang, B. B.; Xu, J. C.; Xin, P. H.; Han, Y. B.; Hong, B.; Jin, H. X.; Jin, D. F.; Peng, X. L.; Li, J.; Gong, J.; Ge, H. L.; Zhu, Z. W.; Wang, X. Q.

    2015-01-01

    Owing to the unique microstructure and high specific surface area, activated carbon (AC) could act as an excellent adsorbent for wastewater treatment and good carrier for functional materials. In this paper, manganese-zinc ferrites (Mn0.5Zn0.5Fe2O4: MZF) were anchored into AC by hydrothermal method, resulting in the excellent magnetic response for AC nanocomposites in wastewater treatment. All results demonstrated the magnetic nanoparticles presented a spinel phase structure and existed in the pores of AC. The saturation magnetization (Ms) of MZF/AC nanocomposites increased with the ferrites content, while the pore volume and specific surface area declined. The Sample-5 possessed the specific surface area of 1129 m2 g-1 (close to 1243 m2 g-1 of AC) and Ms of 3.96 emu g-1. Furthermore, the adsorptive performance for organic dyes was studied and 99% methylene blue was adsorbed in 30 min. The magnetic AC nanocomposites could be separated easily from solution by magnetic separation technique.

  15. Formation of α-alumina scales in the Fe-Al(Cr) diffusion coating on China low activation martensitic steel

    NASA Astrophysics Data System (ADS)

    Zhan, Qin; Zhao, Weiwei; Yang, Hongguang; Hatano, Yuji; Yuan, Xiaoming; Nozaki, Teo; Zhu, Xinxin

    2015-09-01

    To study the formation mechanism of stable α-Al2O3 scales, the oxidation behavior of Fe-Al(Cr) diffusion coating on China low activation martensitic steel has been investigated under the oxygen partial pressure ranging from 1 to 20,000 Pa at 1253 K. A single, continuous Al2O3 scale with the maximum thickness of about 2000 nm was formed on the Fe-Al(Cr) diffusion layer. The phase transformation of alumina scales on the surface of Fe-Al(Cr) layer was studied at different oxidation times ranging from 3 to 180 min. With the increase in oxygen partial pressure, the phase transformation time of α-Al2O3 is decreased. The metastable γ-Al2O3 and transition α-(Al0.948Cr0.052)2O3 phases were formed in the earlier oxidation process and finally transformed to the stable α-Al2O3 phase, which were detected by grazing incidence angle X-ray diffraction and confirmed by transmission electron microscopy. This implies that Cr shows the third element effect and serves as a template for the nucleation of the stable α-Al2O3.

  16. Study on the activated laser welding of ferritic stainless steel with rare earth elements yttrium

    NASA Astrophysics Data System (ADS)

    Wang, Yonghui; Hu, Shengsun; Shen, Junqi

    2015-10-01

    The ferritic stainless steel SUS430 was used in this work. Based on a multi-component activating flux, composed of 50% ZrO2, 12.09 % CaCO3, 10.43 % CaO, and 27.49 % MgO, a series of modified activating fluxes with 0.5%, 1%, 2%, 5%, 10%, 15%, and 20% of rare earth (RE) element yttrium (Y) respectively were produced, and their effects on the weld penetration (WP) and corrosion resistant (CR) property were studied. Results showed that RE element Y hardly had any effects on increasing the WP. In the FeCl3 spot corrosion experiment, the corrosion rates of almost all the samples cut from welded joints turned out to be greater than the parent metal (23.51 g/m2 h). However, there was an exception that the corrosion rate of the sample with 5% Y was only 21.96 g/m2 h, which was even better than parent metal. The further Energy Dispersive Spectrometer (EDS) test showed the existence of elements Zr, Ca, O, and Y in the molten slag near the weld seam while none of them were found in the weld metal, indicating the direct transition of element from activating fluxes to the welding seam did not exist. It was known that certain composition of activating fluxes effectively restrain the loss of Cr element in the process of laser welding, and as a result, the CR of welded joints was improved.

  17. Manifestation of weak ferromagnetism and photocatalytic activity in bismuth ferrite nanoparticles

    SciTech Connect

    Sakar, M.; Balakumar, S.; Saravanan, P.; Jaisankar, S. N.

    2013-02-05

    Bismuth ferrite (BFO) nanoparticles were synthesized by auto-ignition technique with and without adding ignition fuel such as citric acid. The presence of citric acid in the reaction mixture yielded highly-magnetic BFO/{gamma}-Fe{sub 2}O{sub 3} nanocomposite. When this composite was annealed to 650 Degree-Sign C, a single phase BFO was formed with average crystallite size of 50 nm and showed weak ferromagnetic behavior. Conversely, the phase pure BFO prepared without adding citric acid exhibited antiferromagnetism because of its larger crystallite size of around 70 nm. The visible-light driven photocatalytic activity of both the pure BFO and BFO/{gamma}-Fe{sub 2}O{sub 3} nanocomposite were examined by degrading methyl orange dye. The pure BFO showed a moderate photocatalytic activity; while BFO/{gamma}-Fe{sub 2}O{sub 3} nanocomposite showed enhanced activity. This could be probably due to the optimal band gap ratio between BFO and {gamma}-Fe{sub 2}O{sub 3} phases reduced the recombination of electron-hole pairs which aided in the enhancement of photocatalytic activity.

  18. Magnetic properties and adsorptive performance of manganese–zinc ferrites/activated carbon nanocomposites

    SciTech Connect

    Zhang, B.B.; Xu, J.C.; Xin, P.H.; Han, Y.B.; Hong, B.; Jin, H.X.; Jin, D.F.; Peng, X.L.; Li, J.; Gong, J.; Ge, H.L.; Zhu, Z.W.; Wang, X.Q.

    2015-01-15

    Owing to the unique microstructure and high specific surface area, activated carbon (AC) could act as an excellent adsorbent for wastewater treatment and good carrier for functional materials. In this paper, manganese–zinc ferrites (Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4}: MZF) were anchored into AC by hydrothermal method, resulting in the excellent magnetic response for AC nanocomposites in wastewater treatment. All results demonstrated the magnetic nanoparticles presented a spinel phase structure and existed in the pores of AC. The saturation magnetization (Ms) of MZF/AC nanocomposites increased with the ferrites content, while the pore volume and specific surface area declined. The Sample-5 possessed the specific surface area of 1129 m{sup 2} g{sup −1} (close to 1243 m{sup 2} g{sup −1} of AC) and Ms of 3.96 emu g{sup −1}. Furthermore, the adsorptive performance for organic dyes was studied and 99% methylene blue was adsorbed in 30 min. The magnetic AC nanocomposites could be separated easily from solution by magnetic separation technique. - Graphical abstract: The Sample-5 presented both good magnetic response and high BET surface area up to 1129 m{sup 2} g{sup −1} (close to AC of 1243 m{sup 2} g{sup −1}), which could be separated completely for about 60 s. MZF/AC nanocomposites (Sample-3, 4, 5) in our work could be used as the magnetic absorbents, which could be separated easily by an outer magnet after the MB adsorption. - Highlights: • Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} (MZF) as few as possible was implanted into activated carbon (AC) for the higher surface area. • Sample-5 possessed the high specific surface area (1129 m{sup 2} g{sup −1}) and the suitable Ms (3.96 emu g{sup −1}). • Methylene blue was adsorbed almost completely by MZF/AC nanocomposites in 30 min. • MZF/AC nanocomposites were separated easily from solution by magnetic separation technique.

  19. Helium Retention and Desorption Behaviour of Reduced Activation Ferritic/Martenstic Steel

    NASA Astrophysics Data System (ADS)

    Wang, Pinghuai; Nobuta, Yuji; Hino, Tomoaki; Yamauchi, Yuji; Chen, Jiming; Xu, Zengyu; Li, Xiongwei; Liu, Shi

    2009-04-01

    The reduced activation ferritic/martenstic steel CLF-1 prepared by the Southwestern Institute of Physics in China was irradiated by helium ions with an energy of 5 keV at room temperature using an electron cyclotron resonance (ECR) ion irradiation apparatus. After the irradiation, the helium retention and desorption were investigated using a technique of thermal desorption spectroscopy (TDS). The experiment was conducted with both the normal and welded samples. Blisters were observed after the helium ion irradiation, and the surface density of blisters in the welded samples was lower than that in the non-welded samples. Three desorption peaks were observed in both the non-welded and welded samples. These desorption peaks corresponded to those of blister ruptures and the helium release from the inner bubbles and the defects. The amount of helium retained in the welded samples was approximately the same as that in the non-welded samples, which was much less than other reduced activation materials, such as vanadium alloy and SiC/SiC composites.

  20. Characterization and comparative analysis of the tensile properties of five tempered martensitic steels and an oxide dispersion strengthened ferritic alloy irradiated at ≈295 °C to ≈6.5 dpa

    DOE PAGES

    Maloy, Stuart A.; Saleh, Tarik A.; Anderoglu, Osman; Romero, Tobias J.; Odette, G. Robert; Yamamoto, Takuya; Li, S.; Cole, James I.; Fielding, Randall

    2015-08-06

    Tensile test results at 25 and 300 °C on five 9-12Cr tempered martensitic steels and one 14Cr oxide dispersion strengthened alloy, that were side-by side irradiated to 6.5 dpa at 295 °C in the Advanced Test Reactor (ATR), are reported. The engineering stress–strain curves are analyzed to provide true stress–strain constitutive σ(ε) laws for all of these alloys. In the irradiated condition, the σ(ε) fall into categories of: strain softening, nearly perfectly plastic and strain hardening. Increases in yield stress (Δσy) and reductions in uniform strain ductility (eu) are observed, where as the latter can be understood in terms ofmore » the alloy's σ(ε) behavior. Increases in the average σ(ε) in the range of 0–10% strain are smaller than the corresponding Δσy, and vary more from alloy to alloy. The data are analyzed to establish relations between Δσy and coupled changes in the ultimate stresses as well as the effects of both test temperature and the unirradiated yield stress (σyu). The latter shows that higher σyu correlates with lower Δσy. In five out of six cases the effects of irradiation are generally consistent with previous observations on these alloys. However, the particular heat of the 12Cr HT-9 tempered martensitic steel in this study has a much higher eu than observed for earlier heats. The reasons for this improved behavior are not understood and may be microstructural in origin. However, it is noted that the new heat of HT-9, which was procured under modern quality assurance standards, has lower interstitial nitrogen than previous heats. As a result, notably lower interstitial solute contents correlate with improved ductility and homogenous deformation in broadly similar steels.« less

  1. Kinetics of isochronal austenization in modified high Cr ferritic heat-resistant steel

    NASA Astrophysics Data System (ADS)

    Liu, Chenxi; Liu, Yongchang; Zhang, Dantian; Yan, Zesheng

    2011-12-01

    Employment of high Cr ferritic steels as a main structural material is considered as a way to achieve economical competitiveness of main steam pipe and nuclear reactors in power plants. Differential dilatometry and microstructure observation were employed to investigate the isochronal austenitic transformation of the modified high Cr ferritic steel. The kinetics of the isochronal austenitic transformation were described by a phase-transformation model involving site saturation (pre-existing nuclei), diffusion-controlled growth, and incorporating an impingement correction. The experimental results and kinetic analysis indicate that an increase of the heating rate promotes the diffusion-controlled austenitic transformation. The dissolving degree of precipitates during the austenization process affects the activation energy for diffusion and the undissolved precipitates lead to an increase of the onset temperature of the subsequent martensite transformation upon cooling.

  2. Characterization and comparative analysis of the tensile properties of five tempered martensitic steels and an oxide dispersion strengthened ferritic alloy irradiated at ≈295 °C to ≈6.5 dpa

    SciTech Connect

    Maloy, Stuart A.; Saleh, Tarik A.; Anderoglu, Osman; Romero, Tobias J.; Odette, G. Robert; Yamamoto, Takuya; Li, S.; Cole, James I.; Fielding, Randall

    2015-08-06

    Tensile test results at 25 and 300 °C on five 9-12Cr tempered martensitic steels and one 14Cr oxide dispersion strengthened alloy, that were side-by side irradiated to 6.5 dpa at 295 °C in the Advanced Test Reactor (ATR), are reported. The engineering stress–strain curves are analyzed to provide true stress–strain constitutive σ(ε) laws for all of these alloys. In the irradiated condition, the σ(ε) fall into categories of: strain softening, nearly perfectly plastic and strain hardening. Increases in yield stress (Δσy) and reductions in uniform strain ductility (eu) are observed, where as the latter can be understood in terms of the alloy's σ(ε) behavior. Increases in the average σ(ε) in the range of 0–10% strain are smaller than the corresponding Δσy, and vary more from alloy to alloy. The data are analyzed to establish relations between Δσy and coupled changes in the ultimate stresses as well as the effects of both test temperature and the unirradiated yield stress (σyu). The latter shows that higher σyu correlates with lower Δσy. In five out of six cases the effects of irradiation are generally consistent with previous observations on these alloys. However, the particular heat of the 12Cr HT-9 tempered martensitic steel in this study has a much higher eu than observed for earlier heats. The reasons for this improved behavior are not understood and may be microstructural in origin. However, it is noted that the new heat of HT-9, which was procured under modern quality assurance standards, has lower interstitial nitrogen than previous heats. As a result, notably lower interstitial solute contents correlate with improved ductility and homogenous deformation in broadly similar steels.

  3. Harnessing microbial subsurface metal reduction activities to synthesise nanoscale cobalt ferrite with enhanced magnetic properties

    SciTech Connect

    Coker, Victoria S.; Telling, Neil D.; van der Laan, Gerrit; Pattrick, Richard A.D.; Pearce, Carolyn I.; Arenholz, Elke; Tuna, Floriana; Winpenny, Richard E.P.; Lloyd, Jonathan R.

    2009-03-24

    Nanoscale ferrimagnetic particles have a diverse range of uses from directed cancer therapy and drug delivery systems to magnetic recording media and transducers. Such applications require the production of monodisperse nanoparticles with well-controlled size, composition, and magnetic properties. To fabricate these materials purely using synthetic methods is costly in both environmental and economical terms. However, metal-reducing microorganisms offer an untapped resource to produce these materials. Here, the Fe(III)-reducing bacterium Geobacter sulfurreducens is used to synthesize magnetic iron oxide nanoparticles. A combination of electron microscopy, soft X-ray spectroscopy, and magnetometry techniques was employed to show that this method of biosynthesis results in high yields of crystalline nanoparticles with a narrow size distribution and magnetic properties equal to the best chemically synthesized materials. In particular, it is demonstrated here that cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles with low temperature coercivity approaching 8 kOe and an effective anisotropy constant of {approx} 10{sup 6} erg cm{sup -3} can be manufactured through this biotechnological route. The dramatic enhancement in the magnetic properties of the nanoparticles by the introduction of high quantities of Co into the spinel structure represents a significant advance over previous biomineralization studies in this area using magnetotactic bacteria. The successful production of nanoparticulate ferrites achieved in this study at high yields could open up the way for the scaled-up industrial manufacture of nanoparticles using environmentally benign methodologies. Production of ferromagnetic nanoparticles for pioneering cancer therapy, drug delivery, chemical sensors, catalytic activity, photoconductive materials, as well as more traditional uses in data storage embodies a large area of inorganic synthesis research. In particular, the addition of transition metals other than

  4. Reverse-Martensitic Hardening of Austenitic Stainless Steel upon Up-quenching

    NASA Astrophysics Data System (ADS)

    Sato, Kiminori; Guo, Defeng; Li, Xiaohong; Zhang, Xiangyi

    2016-08-01

    Reverse-martensitic transformation utilizing up-quenching was demonstrated for austenitic stainless steel. Up-quenching was done following the stress-induced phase modification to martensite and then enrichment of the body-centered-cubic ferrite. Transmission-electron-microscopy observation and Vickers hardness test revealed that the reverse-martensitic transformation yields quench hardening owing to an introduction of highly-concentrated dislocation. It is furthermore found that Cr precipitation on grain boundaries caused by isothermal aging is largely suppressed in the present approach.

  5. Influence of Martensite Volume Fraction on Impact Properties of Triple Phase (TP) Steels

    NASA Astrophysics Data System (ADS)

    Zare, Ahmad; Ekrami, A.

    2013-03-01

    Ferrite-bainite-martensite triple phase (TP) microstructures with different volume fractions of martensite were obtained by changing heat treatment time during austempering at 300 °C. Room temperature impact properties of TP steels with different martensite volume fractions ( V M) were determined by means of Charpy impact testing. The effects of test temperature on impact properties were also investigated for two selected microstructures containing 0 (the DP steel) and 8.5 vol.% martensite. Test results showed reduction in toughness with increasing V M in TP steels. Fracture toughness values for the DP and TP steels with 8.5 vol.% martensite were obtained from correlation between fracture toughness and the Charpy impact energy. Fractography of Charpy specimens confirmed decrease in TP steels' toughness with increasing V M by considering and comparing radial marks and crack initiation regions at the fracture surfaces of the studied steels.

  6. Charpy impact test results of four low activation ferritic alloys irradiated at 370{degrees}C to 15 DPA

    SciTech Connect

    Schubert, L.E.; Hamilton, M.L.; Gelles, D.S.

    1996-10-01

    Miniature CVN specimens of four low activation ferritic alloys have been impact tested following irradiation at 370{degrees}C to 15 dpa. Comparison of the results with those of control specimens indicates that degradation in the impact behavior occurs in each of these four alloys. The 9Cr-2W alloy referred to as GA3X and the similar alloy F82H with 7.8Cr-2W appear most promising for further consideration as candidate structural materials in fusion energy system applications. These two alloys exhibit a small DBTT shift to higher temperatures but show increased absorbed energy on the upper shelf.

  7. Synthesis, characterization and catalytic activity of furosemide-functionalized ferrite on the sedimentation behavior of starch

    NASA Astrophysics Data System (ADS)

    Palanikumar, S.; Meenarathi, B.; Kannammal, L.; Anbarasan, R.

    2015-01-01

    Furosemide-functionalized nanoferrite was synthesized and characterized by various analytical techniques. The furosemide-functionalized ferrite was used to settle down the starch particles under three different pH. Thus, obtained starch/Fe3O4 nanocomposites were characterized by Fourier transform infrared spectroscopy (FTIR), fluorescence spectroscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The sedimentation velocity of starch in the presence of furosemide-functionalized Fe3O4 was critically compared with the available literature value and the results are discussed in detail. The high sedimentation velocity of starch under the influence of gravitational force and the external magnetic force is studied. The starch-coated ferrites exhibited the lower vibrating sample magnetometer (VSM) value. This novel research work will bring out a new methodology in the field of starch materials.

  8. Metallurgical properties of reduced activation martensitic steel Eurofer'97 in the as-received condition and after thermal ageing

    NASA Astrophysics Data System (ADS)

    Fernández, P.; Lancha, A. M.; Lapeña, J.; Serrano, M.; Hernández-Mayoral, M.

    2002-12-01

    This paper describes the microstructural studies and the mechanical testing (hardness, tensile and charpy tests) performed on the Eurofer'97 steel in the as-received condition and after thermal ageing treatments up to 600 °C. In addition, fracture toughness tests on the as-received condition have been carried out in order to determine the Master Curve. During the thermal ageing treatments studied (500 °C/5000 h and 600 °C/1000 h) the general microstructure of the steel (tempered martensite with M 23C 6 and MX precipitates) remained stable. Only a slight growth of the particles has been observed. In terms of mechanical properties, the Eurofer'97 steel exhibited similar values of tensile properties (tensile and yield strength) and ductile-brittle transition temperature regardless of the material condition studied.

  9. A correlative approach to segmenting phases and ferrite morphologies in transformation-induced plasticity steel using electron back-scattering diffraction and energy dispersive X-ray spectroscopy.

    PubMed

    Gazder, Azdiar A; Al-Harbi, Fayez; Spanke, Hendrik Th; Mitchell, David R G; Pereloma, Elena V

    2014-12-01

    Using a combination of electron back-scattering diffraction and energy dispersive X-ray spectroscopy data, a segmentation procedure was developed to comprehensively distinguish austenite, martensite, polygonal ferrite, ferrite in granular bainite and bainitic ferrite laths in a thermo-mechanically processed low-Si, high-Al transformation-induced plasticity steel. The efficacy of the ferrite morphologies segmentation procedure was verified by transmission electron microscopy. The variation in carbon content between the ferrite in granular bainite and bainitic ferrite laths was explained on the basis of carbon partitioning during their growth.

  10. Must we use ferritic steel in TBM?

    SciTech Connect

    Salavy, Jean-Francois; Boccaccini, Lorenzo V.; Chaudhuri, Paritosh; Cho, Seungyon; Enoeda, Mikio; Giancarli, Luciano; Kurtz, Richard J.; Luo, Tian Y.; Rao, K. Bhanu Sankara; Wong, Clement

    2010-12-13

    Mock-ups of DEMO breeding blankets, called Test Blanket Modules (TBMs), inserted and tested in ITER in dedicated equatorial ports directly facing the plasma, are expected to provide the first experimental answers on the necessary performance of the corresponding DEMO breeding blankets. Several DEMO breeding blanket designs have been studied and assessed in the last 20 years. At present, after considering various coolant and breeder combinations, all the TBM concepts proposed by the seven ITER Parties use Reduced-Activation Ferritic/Martensitic (RAFM) steel as the structural material. In order to perform valuable tests in ITER, the TBMs are expected to use the same structural material as corresponding DEMO blankets. However, due to the fact that this family of steels is ferromagnetic, their presence in the ITER vacuum vessel will create perturbations of the ITER magnetic fields that could reduce the quality of the plasma confinement during H-mode. As a consequence, a legitimate question has been raised on the necessity of using RAFM steel for TBMs structural material in ITER. By giving a short description of the main TBM testing objectives in ITER and assessing the consequences of not using such a material, this paper gives a comprehensive answer to this question. According to the working group author of the study, the use of RAFM steel as structural material for TBM is judged mandatory.

  11. Temperature effect on the corrosion mechanism of austenitic and martensitic steels in lead-bismuth

    NASA Astrophysics Data System (ADS)

    Benamati, G.; Fazio, C.; Piankova, H.; Rusanov, A.

    2002-02-01

    Compatibility tests on the austenitic AISI 316L and the martensitic MANET II steels in stagnant PbBi were performed at 573, 673 and 823 K with exposures up to 5000 h. The change of the corrosion mechanism with increasing temperature has been evaluated. The results showed that at 573 and 673 K a thin oxide layer growth on the surface of both steels. By increasing the temperature to 823 K both types of steels were attacked by the liquid metal and dissolution of the steel alloying elements has been observed. The herein-reported experimental activities were performed in collaboration with the IPPE of Obninsk, where preliminary dynamic tests were performed in the experimental facility CU-2. The Russian ferritic-martensitic steel EP823 has been exposed to flowing PbBi at 623, 723 and 823 K for 700 h. After 700 h of testing, the surface of the EP823 samples showed for the three temperatures a compact oxide layer.

  12. Further Charpy impact test results of low activation ferritic alloys, irradiated at 430{degrees}C to 67 dpa

    SciTech Connect

    Schubert, L.E.; Hamilton, M.L.; Gelles, D.S.

    1997-04-01

    Miniature CVN specimens of four ferritic alloys, GA3X, F82H, GA4X and HT9, have been impact tested following irradiation at 430{degrees}C to 67 dpa. Comparison of the results with those of the previously tested lower dose irradiation condition indicates that the GA3X and F82H alloys, two primary candidate low activation alloys, exhibit virtually identical behavior following irradiation at 430{degrees}C to {approximately}67 dpa and at 370{degrees}C to {approximately}15 dpa. Very little shift is observed in either DBTT or USE relative to the unirradiated condition. The shifts in DBTT and USE observed in both GA4X and HT9 were smaller after irradiation at 430{degrees}C to {approximately}67 dpa than after irradiation at 370{degrees}C to {approximately}15 dpa.

  13. Atomic scale investigation of non-equilibrium segregation of boron in a quenched Mo-free martensitic steel.

    PubMed

    Li, Y J; Ponge, D; Choi, P; Raabe, D

    2015-12-01

    B-added low carbon steels exhibit excellent hardenability. The reason has been frequently attributed to B segregation at prior austenite grain boundaries, which prevents the austenite to ferrite transformation and favors the formation of martensite. The segregation behavior of B at prior austenite grain boundaries is strongly influenced by processing conditions such as austenitization temperatures and cooling rates and by alloying elements such as Mo, Cr, and Nb. Here an local electrode atom probe was employed to investigate the segregation behavior of B and other alloying elements (C, Mn, Si, and Cr) in a Cr-added Mo-free martensitic steel. Similar to our previous results on a Mo-added steel, we found that in both steels B is segregated at prior austenite grain boundaries with similar excess values, whereas B is neither detected in the martensitic matrix nor at martensite-martensite boundaries at the given cooling rate of 30K/s. These results are in agreement with the literature reporting that Cr has the same effect on hardenability of steels as Mo in the case of high cooling rates. The absence of B at martensite-martensite boundaries suggests that B segregates to prior austenite grain boundaries via a non-equilibrium mechanism. Segregation of C at all boundaries such as prior austenite grain boundaries and martensite-martensite boundaries may occur by an equilibrium mechanism.

  14. Correlating size and composition-dependent effects with magnetic, Mössbauer, and pair distribution function measurements in a family of catalytically active ferrite nanoparticles

    DOE PAGES

    Wong, Stanislaus; Papaefthymiou, Georgia C.; Lewis, Crystal S.; Han, Jinkyu; Zhang, Cheng; Li, Qiang; Shi, Chenyang; Abeykoon, A. M.Milinda; Billinge, Simon J.L.; Stach, Eric; et al

    2015-05-06

    The magnetic spinel ferrites, MFe₂O₄ (wherein 'M' = a divalent metal ion such as but not limited to Mn, Co, Zn, and Ni), represent a unique class of magnetic materials in which the rational introduction of different 'M's can yield correspondingly unique and interesting magnetic behaviors. Herein we present a generalized hydrothermal method for the synthesis of single-crystalline ferrite nanoparticles with 'M' = Mg, Fe, Co, Ni, Cu, and Zn, respectively, which can be systematically and efficaciously produced simply by changing the metal precursor. Our protocol can moreover lead to reproducible size control by judicious selection of various surfactants. Asmore » such, we have probed the effects of both (i) size and (ii) chemical composition upon the magnetic properties of these nanomaterials using complementary magnetometry and Mössbauer spectroscopy techniques. The structure of the samples was confirmed by atomic PDF analysis of X-ray and electron powder diffraction data as a function of particle size. These materials retain the bulk spinel structure to the smallest size (i.e., 3 nm). In addition, we have explored the catalytic potential of our ferrites as both (a) magnetically recoverable photocatalysts and (b) biological catalysts, and noted that many of our as-prepared ferrite systems evinced intrinsically higher activities as compared with their iron oxide analogues.« less

  15. Correlating size and composition-dependent effects with magnetic, Mössbauer, and pair distribution function measurements in a family of catalytically active ferrite nanoparticles

    SciTech Connect

    Wong, Stanislaus; Papaefthymiou, Georgia C.; Lewis, Crystal S.; Han, Jinkyu; Zhang, Cheng; Li, Qiang; Shi, Chenyang; Abeykoon, A. M.Milinda; Billinge, Simon J.L.; Stach, Eric; Thomas, Justin; Guerrero, Kevin; Munayco, Pablo; Munayco, Jimmy; Scorzelli, Rosa B.; Burnham, Philip; Viescas, Arthur J; Tiano, Amanda L.

    2015-05-06

    The magnetic spinel ferrites, MFe₂O₄ (wherein 'M' = a divalent metal ion such as but not limited to Mn, Co, Zn, and Ni), represent a unique class of magnetic materials in which the rational introduction of different 'M's can yield correspondingly unique and interesting magnetic behaviors. Herein we present a generalized hydrothermal method for the synthesis of single-crystalline ferrite nanoparticles with 'M' = Mg, Fe, Co, Ni, Cu, and Zn, respectively, which can be systematically and efficaciously produced simply by changing the metal precursor. Our protocol can moreover lead to reproducible size control by judicious selection of various surfactants. As such, we have probed the effects of both (i) size and (ii) chemical composition upon the magnetic properties of these nanomaterials using complementary magnetometry and Mössbauer spectroscopy techniques. The structure of the samples was confirmed by atomic PDF analysis of X-ray and electron powder diffraction data as a function of particle size. These materials retain the bulk spinel structure to the smallest size (i.e., 3 nm). In addition, we have explored the catalytic potential of our ferrites as both (a) magnetically recoverable photocatalysts and (b) biological catalysts, and noted that many of our as-prepared ferrite systems evinced intrinsically higher activities as compared with their iron oxide analogues.

  16. Effects of activating fluxes on the weld penetration and corrosion resistant property of laser welded joint of ferritic stainless steel

    NASA Astrophysics Data System (ADS)

    Wang, Yonghui; Hu, Shengsun; Shen, Junqi

    2015-10-01

    This study was based on the ferritic stainless steel SUS430. Under the parallel welding conditions, the critical penetration power values (CPPV) of 3mm steel plates with different surface-coating activating fluxes were tested. Results showed that, after coating with activating fluxes, such as ZrO2, CaCO3, CaF2 and CaO, the CPPV could reduce 100~250 W, which indicating the increases of the weld penetrations (WP). Nevertheless, the variation range of WP with or without activating fluxes was less than 16.7%. Compared with single-component ones, a multi-component activating flux composed of 50% ZrO2, 12.09% CaCO3, 10.43% CaO, and 27.49% MgO was testified to be much more efficient, the WP of which was about 2.3-fold of that without any activating fluxes. Furthermore, a FeCl3 spot corrosion experiment was carried out with samples cut from weld zone to test the effects of different activating fluxes on the corrosion resistant (CR) property of the laser welded joints. It was found that all kinds of activating fluxes could improve the CR of the welded joints. And, it was interesting to find that the effect of the mixed activating fluxes was inferior to those single-component ones. Among all the activating fluxes, the single-component of CaCO3 seemed to be the best in resisting corrosion. By means of Energy Dispersive Spectrometer (EDS) testing, it was found that the use of activating fluxes could effectively restrain the loss of Cr element of weld zone in the process of laser welding, thus greatly improving the CR of welded joints.

  17. Studies on oxidation and deuterium permeation behavior of a low temperature α-Al2O3-forming Fesbnd Crsbnd Al ferritic steel

    NASA Astrophysics Data System (ADS)

    Xu, Yu-Ping; Zhao, Si-Xiang; Liu, Feng; Li, Xiao-Chun; Zhao, Ming-Zhong; Wang, Jing; Lu, Tao; Hong, Suk-Ho; Zhou, Hai-Shan; Luo, Guang-Nan

    2016-08-01

    To evaluate the capability of Fesbnd Crsbnd Al ferritic steels as tritium permeation barrier in fusion systems, the oxidation behavior together with the permeation behavior of a Fesbnd Crsbnd Al steel was investigated. Gas driven permeation experiments were performed. The permeability of the oxidized Fesbnd Crsbnd Al steel was obtained and a reduced activation ferritic/martensitic steel CLF-1 was used as a comparison. In order to characterize the oxide layer, SEM, XPS, TEM, HRTEM were used. Al2O3 was detected in the oxide film by XPS, and HRTEM showed that Al2O3 in the α phase was found. The formation of α-Al2O3 layer at a relatively low temperature may result from the formation of Cr2O3 nuclei.

  18. Formation of delta ferrite in 9 wt.% Cr steel investigated by in-situ X-ray diffraction using synchrotron radiation

    SciTech Connect

    Mayr, Peter; Palmer, T. A.; Elmer, J. W.; Specht, Eliot D; Allen, S M

    2010-01-01

    In situ X-ray diffraction measurements using high energy synchrotron radiation were performed to monitor in real time the formation of delta ferrite in a martensitic 9 wt.% chromium steel under simulated weld thermal cycles. Volume fractions of martensite, austenite and delta ferrite were measured as a function of temperature at a 10 C s-1 heating rate to 1300 C and subsequent cooling to room temperature. At the peak temperature, the delta ferrite concentration rose to a level of 19%, of which 17% transformed back to austenite on subsequent cooling. The final microstructure after this single thermal cycle consisted of newly formed martensite with 4% of retained austenite and 2% of retained delta ferrite.

  19. Influence of Martensite Mechanical Properties on Failure Mode and Ductility of Dual Phase Steels

    SciTech Connect

    Choi, Kyoo Sil; Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

    2009-04-01

    In this paper, the effects of the mechanical properties of the martensite phase on the failure mode and ductility of dual phase (DP) steels are investigated using a micromechanics-based finite element method. Actual microstructures of DP sheet steels obtained from scanning electron microscopy are used as representative volume element (RVE) in two-dimensional plane-stress finite element calculations. Failure is predicted as plastic strain localization in the RVE during deformation. The mechanical properties of the ferrite and martensite phases in a commercial DP 980 steel are obtained based on the in-situ X-ray diffraction measurements of a uniaxial tensile test. Computations are then conducted on the RVE in order to investigate the influence of the martensite mechanical properties and volume fraction on the macroscopic behavior and failure mode of DP steels. The computations show that, as the strength and volume fraction of the martensite phase increase, the ultimate tensile strength (UTS) of DP steels increases but the UTS strain and failure strain decrease. These results agree well with the general experimental observations on DP steels. Additionally, shear dominant failure modes usually develop for DP steels with lower martensite strengths, whereas split failure modes typically develop for DP steels with higher martensite strengths.

  20. Computer simulation of martensitic transformations

    SciTech Connect

    Xu, Ping

    1993-11-01

    The characteristics of martensitic transformations in solids are largely determined by the elastic strain that develops as martensite particles grow and interact. To study the development of microstructure, a finite-element computer simulation model was constructed to mimic the transformation process. The transformation is athermal and simulated at each incremental step by transforming the cell which maximizes the decrease in the free energy. To determine the free energy change, the elastic energy developed during martensite growth is calculated from the theory of linear elasticity for elastically homogeneous media, and updated as the transformation proceeds.

  1. Control of substrate oxidation in MOD cerawwwmic coating on low-activation ferritic steel with reduced-pressure atmosphere

    NASA Astrophysics Data System (ADS)

    Tanaka, Teruya; Muroga, Takeo

    2014-12-01

    An Er2O3 ceramic coating fabricated using the metal-organic decomposition (MOD) method on a Cr2O3-covered low-activation ferritic steel JLF-1 substrate was examined to improve hydrogen permeation barrier performance of the coating. The Cr2O3 layer was obtained before coating by heat treating the substrate at 700 °C under reduced pressures of <5 × 10-3 Pa and 5 Pa. The Cr2O3 layer was significantly stable even with heat treatment at 700 °C in air. This layer prevented further production of Fe2O3, which has been considered to degrade coating performance. An MOD Er2O3 coating with a smooth surface was successfully obtained on a Cr2O3-covered JLF-1 substrate by dip coating followed by drying and baking. Preprocessing to obtain a Cr2O3 layer would provide flexibility in the coating process for blanket components and ducts. Moreover, the Cr2O3 layer suppressed hydrogen permeation through the JLF-1 substrate. While further optimization of the coating fabrication process is required, it would be possible to suppress hydrogen permeation significantly by multilayers of Cr2O3 and MOD oxide ceramic.

  2. Fatigue Hardening Behavior of 1.5 GPa Grade Transformation-Induced Plasticity-Aided Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Sugimoto, Koh-Ichi; Hojo, Tomohiko

    2016-11-01

    Low cycle fatigue hardening/softening behavior of a 0.2 pct C-1.5 pct Si-1.5 pct Mn-1.0 pct Cr-0.2 pct Mo-0.05 pct Nb transformation-induced plasticity (TRIP)-aided steel consisting of a wide lath martensite structure matrix and a narrow lath martensite-metastable retained austenite mixture was investigated. The steel exhibited notable fatigue hardening in the same way as TRIP-aided bainitic ferrite steel, although conventional martensitic steel such as SCM420 steel with the same tensile strength exhibited fatigue softening. The considerable fatigue hardening of this steel is believed to be associated mainly with the compressive internal stress that results from a difference in flow stress between the matrix and the martensite-austenite-like phase, with a small contribution from the strain-induced transformation and dislocation hardenings.

  3. Improvement of catalytic activity in selective oxidation of styrene with H{sub 2}O{sub 2} over spinel Mg–Cu ferrite hollow spheres in water

    SciTech Connect

    Tong, Jinhui; Cai, Xiaodong; Wang, Haiyan; Zhang, Qianping

    2014-07-01

    Graphical abstract: Uniform spinel Mg–Cu ferrite hollow spheres were prepared using carbon spheres as templates. Solid spinel Mg{sub 0.5}Cu{sub 0.5}Fe{sub 2}O{sub 4} ferrite nanocrystals were also prepared by sol–gel auto-combustion, hydrothermal and coprecipitation methods for comparison. The samples were found to be efficient catalysts for oxidation of styrene using hydrogen peroxide as oxidant. Especially, in the case of Mg{sub 0.5}Cu{sub 0.5}Fe{sub 2}O{sub 4} hollow spheres, obvious improvement on catalytic activity was observed and 21.2% of styrene conversion and 75.2% of selectivity for benzaldehyde were obtained at 80 °C for 6 h reaction in water. The catalyst can be magnetically separated easily for reuse and no obvious loss of activity was observed when reused in six consecutive runs. - Highlights: • Uniform spinel ferrite hollow spheres were prepared by a simple method. • The catalyst has been proved much more efficient for styrene oxidation than the reported analogues. • The catalyst can be easily separated by external magnetic field and has exhibited excellent reusability. • The catalytic system is environmentally friendly. - Abstract: Uniform spinel Mg–Cu ferrite hollow spheres were prepared using carbon spheres as templates. For comparison, solid Mg–Cu ferrite nanocrystals were also prepared by sol–gel auto-combustion, hydrothermal and coprecipitation methods. All the samples were characterized by Fourier transform infrared spectrophotometry (FT-IR), X-ray diffractometry (XRD), transmission electron microscopy (TEM) and N{sub 2} physisorption. The samples were found to be efficient catalysts for oxidation of styrene using hydrogen peroxide as oxidant. Especially, in the case of Mg{sub 0.5}Cu{sub 0.5}Fe{sub 2}O{sub 4} hollow spheres, obvious improvement on catalytic activity was observed, and 21.2% of styrene conversion and 75.2% of selectivity for benzaldehyde were obtained at 80 °C for 6 h reaction in water. The catalyst can be

  4. Thermophysical and mechanical properties of Fe-(8-9)%Cr reduced activation steels

    SciTech Connect

    Zinkle, S.J.; Robertson, J.P.; Klueh, R.L.

    1998-09-01

    The key thermophysical and mechanical properties for 8--9%Cr reduced activation ferritic/martensitic steels are summarized, including temperature-dependent tensile properties in the unirradiated and irradiated conditions, stress-rupture behavior, elastic constants, thermal conductivity, thermal expansion, specific heat, and ductile-to-brittle transition temperature. The estimated lower and upper temperatures limits for structural applications are 250 and 550 C due to radiation hardening/embrittlement and thermal creep considerations, respectively.

  5. Surface-engineered core-shell nano-size ferrites and their antimicrobial activity

    SciTech Connect

    Baraliya, Jagdish D. Joshi, Hiren H.

    2014-04-24

    We report the results of biological study on core-shell structured MFe{sub 2}O{sub 4} (where M = Co, Mn, Ni) nanoparticles and influence of silica- DEG dual coating on their antimicrobial activity. Spherical MFe{sub 2}O{sub 4} nanoparticles were prepared via a Co-precipitation method. The microstructures and morphologies of these nanoparticles were studied by x-ray diffraction and FTIR. The antimicrobial activity study carried out in nutrient agar medium with addition of antimicrobial synthesis compound which is tested for its activity against different types of bacteria.

  6. The morphology and ageing behaviour of δ-ferrite in a modified 9Cr-1Mo steel

    NASA Astrophysics Data System (ADS)

    Kishore, R.; Singh, R. N.; Sinha, T. K.; Kashyap, B. P.

    1992-10-01

    Dual phase (martensite + δ-ferrite) microstructures were developed in a modified 9Cr-1Mo steel, by austenitising at 1523-1623 K, followed by water-quenching. These duplex structures were thermally aged at 973 K for ageing periods varying from 30 min to 21 h. Morphological aspects of δ-ferrite phase and its response to age-hardening were studied by optical, scanning electron and transmission electron microscopy, X-ray diffraction, electron probe microanalysis and microhardness testing. It was observed that austenitizing at 1523 K produced fine, acicular δ-ferrite while the δ-ferrite formed by austenitising at higher temperatures (1573-1623 K) were massive, irregular-shaped and banded. Moreover the presence of 8-ferrite caused an abnormally strong (110) reflection, observed in X-ray diffraction patterns of martensite plus δ-ferrite structures. This behaviour is thought to be due to development of (110) texture in δ-ferrite phase. Thermal ageing at 973 K caused age-hardening of δ-ferrite with a peak hardness attained after 3.6 ks of ageing. Electron microscopic results suggest that the observed hardening was caused by the formation of Fe 2Mo Laves phase.

  7. The influence of martensite shape, concentration, and phase transformation strain on the deformation behavior of stable dual-phase steels

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, A.; Sakaki, T.; Weng, G. J.

    1993-02-01

    A continuum model is developed to examine the influence of martensite shape, volume fraction, phase transformation strain, and thermal mismatch on the initial plastic state of the ferrite matrix following phase transformation and on the subsequent stress-strain behavior of the dual-phase steels upon loading. The theory is developed based on a relaxed constraint in the ductile matrix and an energy criterion to define its effective stress. In addition, it also assumes the martensite islands to possess a spheroidal shape and to be randomly oriented and homogenously dispersed in the ferrite matrix. It is found that for a typical water-quenched process from an intercritical temperature of 760 °C, the critical martensite volume fraction needed to induce plastic deformation in the ferrite matrix is very low, typically below 1 pct, regardless of the martensite shape. Thus, when the two-phase system is subjected to an external load, plastic deformation commences immediately, resulting in the widely observed “continuous yielding” behavior in dual-phase steels. The subsequent deformation of the dual-phase system is shown to be rather sensitive to the martensite shape, with the disc-shaped morphology giving rise to a superior overall response (over the spherical type). The stress-strain relations are also dependent upon the magnitude of the prior phase transformation strain. The strength coefficient h and the work-hardening exponent n of the smooth, parabolic-type stress-strain curves of the dual-phase system also increase with increasing martensite content for each selected inclusion shape. Comparison with an exact solution and with one set of experimental data indicates that the theory is generally within a reasonable range of accuracy.

  8. MICROSTRUCTURAL EXAMINATION OF LOW ACTIVATION FERRITIC STEELS FOLLOWING IRRADIATION IN ORR

    SciTech Connect

    Gelles, David S.

    2002-09-01

    Microstructural examinations are reported for a series of low activation steels containing Mn following irradiation in the Oak Ridge Reactor at 330 and 400 degrees C to approximately 10 dpa. Alloy compositions included 2Cr, 9Cr and 12Cr steels with V to 1.5 percent and W to 1.0 percent. Results include compositional changes in precipitates and microstructural changes as a function of composition and irradiation temperature. It is concluded that temperatures in ORR are on the order of 50 degrees C higher than anticipated.

  9. Shear Punch Properties of Low Activation Ferritic Steels Following Irradiation in ORR

    SciTech Connect

    Ermi, Ruby M.; Hamilton, Margaret L.; Gelles, David S.; Ermi, August M.

    2001-10-01

    Shear punch post-irradiation test results are reported for a series of low activation steels containing Mn following irradiation in the Oak Ridge Reactor at 330 and 400 degrees centigrade to {approx}10 dpa. Alloy compositions included 2Cr, 9Cr and 12Cr steels with V to 1.5% and W to 1.0%. Comparison of results with tensile test results showed good correlations with previously observed trends except where disks were improperly manufactured because they were too thin or because engraving was faulty.

  10. Joining techniques for a reduced activation 12Cr steel for inertial fusion energy

    SciTech Connect

    Hunt, R. M.; El-Dasher, B.; Choi, B. W.; Torres, S. G.

    2014-10-01

    At Lawrence Livermore National Laboratory, we are developing a reduced activation ferritic martensitic steel that is based on the ferritic martensitic steel HT-9. As a part of the development of this steel, we tested a series of welding processes for characterization, including conventional welds (electron beam, tungsten inert gas, and laser) as well as solid-state welds (hot isostatic pressing). We also heat treated the joints at various temperatures between 750 °C and 1050 °C to find a suitable normalization scheme. The modified HT-9 reduced activation ferritic martensitic steel appears highly suitable to welding and diffusion bonding. All welds showed good quality fusion zones with insignificant cracking or porosity. Additionally, a heat treatment schedule of 950 °C for one hour caused minimal grain growth while still converging the hardness of the base metal with that of the fusion and heat-affected zones. Also, modified HT-9 diffusion bonds that were created at temperatures of at least 950 °C for two hours at 103 MPa had interface tensile strengths of greater than 600 MPa. The diffusion bonds showed no evidence of increased hardness nor void formation at the diffusion bonded interface.

  11. Tensile and charpy impact properties of irradiated reduced-activation ferritic steels

    SciTech Connect

    Klueh, R.L.; Alexander, D.J.

    1996-10-01

    Tensile tests were conducted on eight reduced-activation Cr-W steels after irradiation to 15-17 and 26-29 dpa, and Charpy impact tests were conducted on the steels irradiated to 26-29 dpa. Irradiation was in the Fast Flux Test Facility at 365{degrees}C on steels containing 2.25-12% Cr, varying amounts of W, V, and Ta, and 0.1%C. Previously, tensile specimens were irradiated to 6-8 dpa and Charpy specimens to 6-8, 15-17, and 20-24 dpa. Tensile and Charpy specimens were also thermally aged to 20000 h at 365{degrees}C. Thermal aging had little effect on the tensile behavior or the ductile-brittle transition temperature (DBTT), but several steels showed a slight increase in the upper-shelf energy (USE). After {approx}7 dpa, the strength of the steels increased and then remained relatively unchanged through 26-29 dpa (i.e., the strength saturated with fluence). Post-irradiation Charpy impact tests after 26-29 dpa showed that the loss of impact toughness, as measured by an increase in DBTT and a decrease in the USE, remained relatively unchanged from the values after 20-24 dpa, which had been relatively unchanged from the earlier irradiations. As before, the two 9Cr steels were the most irradiation resistant.

  12. The intrinsic antimicrobial activity of citric acid-coated manganese ferrite nanoparticles is enhanced after conjugation with the antifungal peptide Cm-p5

    PubMed Central

    Lopez-Abarrategui, Carlos; Figueroa-Espi, Viviana; Lugo-Alvarez, Maria B; Pereira, Caroline D; Garay, Hilda; Barbosa, João ARG; Falcão, Rosana; Jiménez-Hernández, Linnavel; Estévez-Hernández, Osvaldo; Reguera, Edilso; Franco, Octavio L; Dias, Simoni C; Otero-Gonzalez, Anselmo J

    2016-01-01

    Diseases caused by bacterial and fungal pathogens are among the major health problems in the world. Newer antimicrobial therapies based on novel molecules urgently need to be developed, and this includes the antimicrobial peptides. In spite of the potential of antimicrobial peptides, very few of them were able to be successfully developed into therapeutics. The major problems they present are molecule stability, toxicity in host cells, and production costs. A novel strategy to overcome these obstacles is conjugation to nanomaterial preparations. The antimicrobial activity of different types of nanoparticles has been previously demonstrated. Specifically, magnetic nanoparticles have been widely studied in biomedicine due to their physicochemical properties. The citric acid-modified manganese ferrite nanoparticles used in this study were characterized by high-resolution transmission electron microscopy, which confirmed the formation of nanocrystals of approximately 5 nm diameter. These nanoparticles were able to inhibit Candida albicans growth in vitro. The minimal inhibitory concentration was 250 µg/mL. However, the nanoparticles were not capable of inhibiting Gram-negative bacteria (Escherichia coli) or Gram-positive bacteria (Staphylococcus aureus). Finally, an antifungal peptide (Cm-p5) from the sea animal Cenchritis muricatus (Gastropoda: Littorinidae) was conjugated to the modified manganese ferrite nanoparticles. The antifungal activity of the conjugated nanoparticles was higher than their bulk counterparts, showing a minimal inhibitory concentration of 100 µg/mL. This conjugate proved to be nontoxic to a macrophage cell line at concentrations that showed antimicrobial activity. PMID:27563243

  13. The intrinsic antimicrobial activity of citric acid-coated manganese ferrite nanoparticles is enhanced after conjugation with the antifungal peptide Cm-p5.

    PubMed

    Lopez-Abarrategui, Carlos; Figueroa-Espi, Viviana; Lugo-Alvarez, Maria B; Pereira, Caroline D; Garay, Hilda; Barbosa, João Arg; Falcão, Rosana; Jiménez-Hernández, Linnavel; Estévez-Hernández, Osvaldo; Reguera, Edilso; Franco, Octavio L; Dias, Simoni C; Otero-Gonzalez, Anselmo J

    2016-01-01

    Diseases caused by bacterial and fungal pathogens are among the major health problems in the world. Newer antimicrobial therapies based on novel molecules urgently need to be developed, and this includes the antimicrobial peptides. In spite of the potential of antimicrobial peptides, very few of them were able to be successfully developed into therapeutics. The major problems they present are molecule stability, toxicity in host cells, and production costs. A novel strategy to overcome these obstacles is conjugation to nanomaterial preparations. The antimicrobial activity of different types of nanoparticles has been previously demonstrated. Specifically, magnetic nanoparticles have been widely studied in biomedicine due to their physicochemical properties. The citric acid-modified manganese ferrite nanoparticles used in this study were characterized by high-resolution transmission electron microscopy, which confirmed the formation of nanocrystals of approximately 5 nm diameter. These nanoparticles were able to inhibit Candida albicans growth in vitro. The minimal inhibitory concentration was 250 µg/mL. However, the nanoparticles were not capable of inhibiting Gram-negative bacteria (Escherichia coli) or Gram-positive bacteria (Staphylococcus aureus). Finally, an antifungal peptide (Cm-p5) from the sea animal Cenchritis muricatus (Gastropoda: Littorinidae) was conjugated to the modified manganese ferrite nanoparticles. The antifungal activity of the conjugated nanoparticles was higher than their bulk counterparts, showing a minimal inhibitory concentration of 100 µg/mL. This conjugate proved to be nontoxic to a macrophage cell line at concentrations that showed antimicrobial activity.

  14. The intrinsic antimicrobial activity of citric acid-coated manganese ferrite nanoparticles is enhanced after conjugation with the antifungal peptide Cm-p5.

    PubMed

    Lopez-Abarrategui, Carlos; Figueroa-Espi, Viviana; Lugo-Alvarez, Maria B; Pereira, Caroline D; Garay, Hilda; Barbosa, João Arg; Falcão, Rosana; Jiménez-Hernández, Linnavel; Estévez-Hernández, Osvaldo; Reguera, Edilso; Franco, Octavio L; Dias, Simoni C; Otero-Gonzalez, Anselmo J

    2016-01-01

    Diseases caused by bacterial and fungal pathogens are among the major health problems in the world. Newer antimicrobial therapies based on novel molecules urgently need to be developed, and this includes the antimicrobial peptides. In spite of the potential of antimicrobial peptides, very few of them were able to be successfully developed into therapeutics. The major problems they present are molecule stability, toxicity in host cells, and production costs. A novel strategy to overcome these obstacles is conjugation to nanomaterial preparations. The antimicrobial activity of different types of nanoparticles has been previously demonstrated. Specifically, magnetic nanoparticles have been widely studied in biomedicine due to their physicochemical properties. The citric acid-modified manganese ferrite nanoparticles used in this study were characterized by high-resolution transmission electron microscopy, which confirmed the formation of nanocrystals of approximately 5 nm diameter. These nanoparticles were able to inhibit Candida albicans growth in vitro. The minimal inhibitory concentration was 250 µg/mL. However, the nanoparticles were not capable of inhibiting Gram-negative bacteria (Escherichia coli) or Gram-positive bacteria (Staphylococcus aureus). Finally, an antifungal peptide (Cm-p5) from the sea animal Cenchritis muricatus (Gastropoda: Littorinidae) was conjugated to the modified manganese ferrite nanoparticles. The antifungal activity of the conjugated nanoparticles was higher than their bulk counterparts, showing a minimal inhibitory concentration of 100 µg/mL. This conjugate proved to be nontoxic to a macrophage cell line at concentrations that showed antimicrobial activity. PMID:27563243

  15. Microstructural Refinement of Bainite and Martensite for Enhanced Strength and Toughness in High-Carbon Low-Alloy Steel

    NASA Astrophysics Data System (ADS)

    Chakraborty, J.; Chattopadhyay, P. P.; Bhattacharjee, D.; Manna, I.

    2010-11-01

    This study attempts to determine the scope and extent of microstructural refinement through complete/partial recrystallization of prior cold deformed ferrite during austenitizing (1223 K (950 °C), 15 minutes) and/or austempering (543 K (270 °C), 30 minutes) followed by water quenching to obtain ultrafine bainitic sheaves along with thin martensitic plates in SAE 52100 steel. The volume fraction and sheaf/plate dimension (thickness/length) of bainitic ferrite and martensite were determined by optical and scanning/transmission electron microscopy studies coupled with compositional microanalysis. Marginal improvement in the tensile strength and significant improvement in the impact properties is obtained at an optimum level of prior cold deformation by tension in comparison to that recorded in austempered condition without prior deformation.

  16. Comminuting irradiated ferritic steel

    DOEpatents

    Bauer, Roger E.; Straalsund, Jerry L.; Chin, Bryan A.

    1985-01-01

    Disclosed is a method of comminuting irradiated ferritic steel by placing the steel in a solution of a compound selected from the group consisting of sulfamic acid, bisulfate, and mixtures thereof. The ferritic steel is used as cladding on nuclear fuel rods or other irradiated components.

  17. Influence of PWHT on Toughness of High Chromium and Nickel Containing Martensitic Stainless Steel Weld Metals

    NASA Astrophysics Data System (ADS)

    Divya, M.; Das, Chitta Ranjan; Mahadevan, S.; Albert, S. K.; Pandian, R.; Kar, Sujoy Kumar; Bhaduri, A. K.; Jayakumar, T.

    2015-06-01

    Commonly used 12.5Cr-5Ni consumable specified for welding of martensitic stainless steels is compared with newly designed 14.5Cr-5Ni consumable in terms of their suitability for repair welding of 410 and 414 stainless steels by gas tungsten arc welding process. Changes in microstructure and austenite evolution were investigated using optical, scanning electron microscopy, X-ray diffraction techniques and Thermo-Calc studies. Microstructure of as-welded 12.5Cr-5Ni weld metal revealed only lath martensite, whereas as-welded 14.5Cr-5Ni weld metal revealed delta-ferrite, retained austenite, and lath martensite. Toughness value of as-welded 12.5Cr-5Ni weld metal is found to be significantly higher (216 J) than that of the 14.5Cr-5Ni weld metal (15 J). The welds were subjected to different PWHTs: one at 923 K (650 °C) for 1, 2, 4 hours (single-stage PWHT) and another one at 923 K (650 °C)/4 h followed by 873 K (600 °C)/2 h or 873 K (600 °C)/4 h (two-stage heat treatment). Hardness and impact toughness of the weld metals were measured for these weld metals and correlated with the microstructure. The study demonstrates the importance of avoiding formation of delta-ferrite in the weld metal.

  18. Development of ferritic steels for fusion reactor applications

    SciTech Connect

    Klueh, R.L.; Maziasz, P.J.; Corwin, W.R.

    1988-08-01

    Chromium-molybdenum ferritic (martensitic) steels are leading candidates for the structural components for future fusion reactors. However, irradiation of such steels in a fusion environment will produce long-lived radioactive isotopes that will lead to difficult waste-disposal problems. Such problems could be reduced by replacing the elements in the steels (i.e., Mo, Nb, Ni, N, and Cu) that lead to long-lived radioactive isotopes. We have proposed the development of ferritic steels analogous to conventional Cr-Mo steels, which contain molybdenum and niobium. It is proposed that molybdenum be replaced by tungsten and niobium be replaced by tantalum. Eight experimental steels were produced. Chromium concentrations of 2.25, 5, 9, and 12% were used (all concentrations are in wt %). Steels with these chromium compositions, each containing 2% W and 0.25% V, were produced. To determine the effect of tungsten and vanadium, 2.25 Cr steels were produced with 2% W and no vanadium and with 0.25% V and O and 1% W. A 9Cr steel containing 2% W, 0.25 V, and 0.07% Ta was also studied. For all alloys, carbon was maintained at 0.1%. Tempering studies on the normalized steels indicated that the tempering behavior of the new Cr-W steels was similar to that of the analogous Cr-Mo steels. Microscopy studies indicated that 2% tungsten was required in the 2.25 Cr steels to produce 100% bainite in 15.9-mm-thick plate during normalization. The 5Cr and 9Cr steels were 100% martensite, but the 12 Cr steel contained about 75% martensite with the balance delta-ferrite. 33 refs., 35 figs., 5 tabs.

  19. Sensitization of Laser-beam Welded Martensitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Dahmen, Martin; Rajendran, Kousika Dhasanur; Lindner, Stefan

    Ferritic and martensitic stainless steels are an attractive alternative in vehicle production due to their inherent corrosion resistance. By the opportunity of press hardening, their strength can be increased to up to 2000 MPa, making them competitors for unalloyed ultra-high strength steels. Welding, nevertheless, requires special care, especially when it comes to joining of high strength heat treated materials. With an adopted in-line heat treatment of the welds in as-rolled as well as press hardened condition, materials with sufficient fatigue strength and acceptable structural behavior can be produced. Because of microstructural transformations in the base material such as grain coarsening and forced carbide precipitation, the corrosion resistance of the weld zone may be locally impaired. Typically the material in the heat-affected zone becomes sensitive to intergranular cracking in the form of knife-edge corrosion besides the fusion line. The current study comprises of two text scenarios. By an alternating climate test, general response in a corroding environment is screened. In order to understand the corrosion mechanisms and to localize the sensitive zones, sensitisation tests were undertaken. Furthermore, the applicability of a standard test according to ASTM 763-83 was examined. It was found that the alternative climate test does not reveal any corrosion effects. Testing by the oxalic acid test revealed clearly the effect of welding, weld heat treatment and state of thermal processing. Also application of the standard which originally suited for testing ferritic stainless steels could have been justified.

  20. Mechanical properties of steels with a microstructure of bainite/martensite and austenite islands

    NASA Astrophysics Data System (ADS)

    Syammach, Sami M.

    Advanced high strength steels (AHSS) are continually being developed in order to reduce weight and improve safety for automotive applications. There is need for economic steels with improved strength and ductility combinations. These demands have led to research and development of third generation AHSS. Third generation AHSS include steel grades with a bainitic and tempered martensitic matrix with retained austenite islands. These steels may provide improved mechanical properties compared to first generation AHSS and should be more economical than second generation AHSS. There is a need to investigate these newer types of steels to determine their strength and formability properties. Understanding these bainitic and tempered martensitic steels is important because they likely can be produced using currently available production systems. If viable, these steels could be a positive step in the evolution of AHSS. The present work investigates the effect of the microstructure on the mechanical properties of steels with a microstructure of bainite, martensite, and retained austenite, so called TRIP aided bainitic ferrite (TBF) steels. The first step in this project was creating the desired microstructure. To create a microstructure of bainite, martensite, and austenite an interrupted austempering heat treatment was used. Varying the heat treatment times and temperatures produced microstructures of varying amounts of bainite, martensite, and austenite. Mechanical properties such as strength, ductility, strain hardening, and hole-expansion ratios were then evaluated for each heat treatment. Correlations between mechanical properties and microstructure were then evaluated. It was found that samples after each of the heat treatments exhibited strengths between 1050 MPa and 1350 MPa with total elongations varying from 8 pct to 16 pct. By increasing the bainite and austenite volume fraction the strength of the steel was found to decrease, but the ductility increased. Larger

  1. Effect of Martensite Volume Fraction on Forming Limit Diagrams of Dual-Phase Steel

    NASA Astrophysics Data System (ADS)

    Zaeimi, Mohammad; Basti, Ali; Alitavoli, Majid

    2015-05-01

    Prediction of the onset of failure due to localized necking has an important role on the determination of the formability of sheet metal, especially dual-phase steels, because of their increasing applications in the automotive industry. In the present study, a new application of the M-K model and theoretical forming limit diagram has been proposed. It is shown that this model can be useful in predicting the effect of microstructural aspects on the formability of dual-phase steels. For this purpose, the limiting strains of the dual-phase (ferrite-martensite) steel under different martensite volume fractions have been calculated. Furthermore, the effect of the heating rate on the formability of the DP samples has been predicted. To solve the non-linear system of equations, the modified Newton-Raphson method has been used. The results show that the limiting strains decrease by increasing the amount of martensite volume fractions. Furthermore, by increasing the heating rate, the dependence of the forming limit curves on the martensite volume fraction will be decreased.

  2. The influence of fine ferrite formation on the γ/α interface, fine bainite and retained austenite in a thermomechanically-processed transformation induced plasticity steel

    DOE PAGES

    Timokhina, Ilana B.; Miller, Michael K.; Beladi, Hossein; Hodgson, Peter D.

    2016-03-03

    We subjected a Fe–0.26C–1.96Si–2Mn with 0.31Mo (wt%) steel to a novel thermomechanical processing route to produce fine ferrite with different volume fractions, bainite, and retained austenite. In two types of fine ferrites were found to be: (i) formed along prior austenite grain boundaries, and (ii) formed intragranularly in the interior of austenite grains. An increase in the volume fraction of fine ferrite led to the preferential formation of blocky retained austenite with low stability, and to a decrease in the volume fraction of bainite with stable layers of retained austenite. Moreover, the difference in the morphology of the bainitic ferritemore » and the retained austenite after different isothermal ferrite times was found to be responsible for the deterioration of the mechanical properties. The segregation of Mn, Mo, and C at distances of 2–2.5 nm from the ferrite and retained austenite/martensite interface on the retained austenite/martensite site was observed after 2700 s of isothermal hold. Finally, it was suggested that the segregation occurred during the austenite-to-ferrite transformation, and that this would decrease the interface mobility, which affects the austenite-to-ferrite transformation and ferrite grain size.« less

  3. Creep resistant, precipitation-dispersion-strengthened, martensitic stainless steel and method thereof

    DOEpatents

    Buck, Robert F.

    1994-01-01

    An iron-based, corrosion-resistant, precipitation strengthened, martensitic steel essentially free of delta ferrite for use at high temperatures has a nominal composition of 0.05-0.1 C, 8-12 Cr, 1-5 Co, 0.5-2.0 Ni, 0.41-1.0 Mo, 0.1-0.5 Ti, and the balance iron. This steel is different from other corrosion-resistant martensitic steels because its microstructure consists of a uniform dispersion of fine particles, which are very closely spaced, and which do not coarsen at high temperatures. Thus at high temperatures this steel combines the excellent creep strength of dispersion-strengthened steels, with the ease of fabricability afforded by precipitation hardenable steels.

  4. Creep resistant, precipitation-dispersion-strengthened, martensitic stainless steel and method thereof

    DOEpatents

    Buck, R.F.

    1994-05-10

    An iron-based, corrosion-resistant, precipitation strengthened, martensitic steel essentially free of delta ferrite for use at high temperatures has a nominal composition of 0.05--0.1 C, 8--12 Cr, 1--5 Co, 0.5--2.0 Ni, 0.41--1.0 Mo, 0.1--0.5 Ti, and the balance iron. This steel is different from other corrosion-resistant martensitic steels because its microstructure consists of a uniform dispersion of fine particles, which are very closely spaced, and which do not coarsen at high temperatures. Thus at high temperatures this steel combines the excellent creep strength of dispersion-strengthened steels, with the ease of fabricability afforded by precipitation hardenable steels. 2 figures.

  5. Hybrid Laser-Arc Welding of 10-mm-Thick Cast Martensitic Stainless Steel CA6NM: As-Welded Microstructure and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Mirakhorli, Fatemeh; Cao, Xinjin; Pham, Xuan-Tan; Wanjara, Priti; Fihey, Jean-Luc

    2016-07-01

    Cast CA6NM martensitic stainless steel plates, 10 mm in thickness, were welded using hybrid laser-arc welding. The effect of different welding speeds on the as-welded joint integrity was characterized in terms of the weld bead geometry, defects, microstructure, hardness, ultimate tensile strength, and impact energy. Significant defects such as porosity, root humping, underfill, and excessive penetration were observed at a low welding speed (0.5 m/min). However, the underfill depth and excessive penetration in the joints manufactured at welding speeds above 0.75 m/min met the specifications of ISO 12932. Characterization of the as-welded microstructure revealed untempered martensite and residual delta ferrite dispersed at prior-austenite grain boundaries in the fusion zone. In addition, four different heat-affected zones in the weldments were differentiated through hardness mapping and inference from the Fe-Cr-Ni ternary phase diagram. The tensile fracture occurred in the base metal for all the samples and fractographic analysis showed that the crack path is within the martensite matrix, along primary delta ferrite-martensite interfaces and within the primary delta ferrite. Additionally, Charpy impact testing demonstrated slightly higher fracture energy values and deeper dimples on the fracture surface of the welds manufactured at higher welding speeds due to grain refinement and/or lower porosity.

  6. Properties of ferrites important to their friction and wear behavior

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1983-01-01

    Environmental, chemical and crystallographical effects on the fundamental nature on friction and wear of the ferrites in contact with metals, magnetic tapes and themselves are reviewed. The removal of adsorbed films from the surfaces of ferrites results in very strong interfacial adhesion and high friction in ferrite to metal and ferrite to magnetic tape contacts. The metal ferrite bond at the interface is primarily a chemical bond between the metal atoms and the large oxygen anions in the ferrite surface, and the strength of these bonds is related to the oxygen to metal bond strength in the metal oxide. The more active the metal, the higher is the coefficient of friction. Not only under adhesive conditions, but also under abrasive conditions the friction and wear properties of ferrites are related to the crystallographic orientation. With ferrite to ferrite contact the mating of highest atomic density (most closely packed) direction on matched crystallographic planes, that is, 110 directions on /110/planes, results in the lowest coefficient of friction.

  7. Multiscale Modeling of the Deformation of Advanced Ferritic Steels for Generation IV Nuclear Energy

    SciTech Connect

    Nasr M. Ghoniem; Nick Kioussis

    2009-04-18

    The objective of this project is to use the multi-scale modeling of materials (MMM) approach to develop an improved understanding of the effects of neutron irradiation on the mechanical properties of high-temperature structural materials that are being developed or proposed for Gen IV applications. In particular, the research focuses on advanced ferritic/ martensitic steels to enable operation up to 650-700°C, compared to the current 550°C limit on high-temperature steels.

  8. Effects of Annealing Treatment Prior to Cold Rolling on Delayed Fracture Properties in Ferrite-Austenite Duplex Lightweight Steels

    NASA Astrophysics Data System (ADS)

    Sohn, Seok Su; Song, Hyejin; Kim, Jung Gi; Kwak, Jai-Hyun; Kim, Hyoung Seop; Lee, Sunghak

    2016-02-01

    Tensile properties of recently developed automotive high-strength steels containing about 10 wt pct of Mn and Al are superior to other conventional steels, but the active commercialization has been postponed because they are often subjected to cracking during formation or to the delayed fracture after formation. Here, the delayed fracture behavior of a ferrite-austenite duplex lightweight steel whose microstructure was modified by a batch annealing treatment at 1023 K (750 °C) prior to cold rolling was examined by HCl immersion tests of cup specimens, and was compared with that of an unmodified steel. After the batch annealing, band structures were almost decomposed as strong textures of {100}<011> α-fibers and {111}<112> γ-fibers were considerably dissolved, while ferrite grains were refined. The steel cup specimen having this modified microstructure was not cracked when immersed in an HCl solution for 18 days, whereas the specimen having unmodified microstructure underwent the delayed fracture within 1 day. This time delayed fracture was more critically affected by difference in deformation characteristics such as martensitic transformation and deformation inhomogeneity induced from concentration of residual stress or plastic strain, rather than the difference in initial microstructures. The present work gives a promise for automotive applications requiring excellent mechanical and delayed fracture properties as well as reduced specific weight.

  9. Influence of Temperature on Fatigue-Induced Martensitic Phase Transformation in a Metastable CrMnNi-Steel

    NASA Astrophysics Data System (ADS)

    Biermann, Horst; Glage, Alexander; Droste, Matthias

    2016-01-01

    Metastable austenitic steels can exhibit a fatigue-induced martensitic phase transformation during cyclic loading. It is generally agreed that a certain strain amplitude and a threshold of the cumulated plastic strain must be exceeded to trigger martensitic phase transformation under cyclic loading. With respect to monotonic loading, the martensitic phase transformation takes place up to a critical temperature—the so-called M d temperature. The goal of the present investigation is to determine an M d,c temperature which would be the highest temperature at which a fatigue-induced martensitic phase transformation can take place. For this purpose, fatigue tests controlled by the total strain were performed at different temperatures. The material investigated was a high-alloy metastable austenitic steel X3CrMnNi16.7.7 (16.3Cr-7.2Mn-6.6Ni-0.03C-0.09N-1.0Si) produced using the hot pressing technique. The temperatures were set in the range of 283 K (10 °C) ≤ T ≤ 473 K (200 °C). Depending on the temperature and strain amplitude, the onset of the martensitic phase transformation shifted to different values of the cumulated plastic strain, or was inhibited completely. Moreover, it is known that metastable austenitic CrMnNi steels with higher nickel contents can exhibit the deformation-induced twinning effect. Thus, at higher temperatures and strain amplitudes, a transition from the deformation-induced martensitic transformation to deformation-induced twinning takes place. The fatigue-induced martensitic phase transformation was monitored during cyclic loading using a ferrite sensor. The microstructure after the fatigue tests was examined using the back-scattered electrons, the electron channeling contrast imaging and the electron backscatter diffraction techniques to study the temperature-dependent dislocation structures and phase transformations.

  10. The effect of size, crack depth and strain rate on fracture toughness—temperature curves of a low activation martensitic stainless steel

    NASA Astrophysics Data System (ADS)

    Edsinger, K.; Odette, G. R.; Lucas, G. E.; Sheckherd, J. W.

    1996-10-01

    Fracture toughness K( T) curves for F82H were determined as a function of specimen size, crack size and strain rate. It was found that F82H shows a relatively abrupt transition from lower-shelf, quasi-cleavage fracture to upper-shelf ductile fracture. However, decreasing specimen size, crack size and strain rate resulted in a shift of the K( T) curve to lower temperatures. The differences in the lower shelf/knee regime were reconciled by combining a critical stressed area criteria for quasi-cleavage fracture with stress fields determined by finite element methods for the different specimen geometries. The results demonstrated that the large effective toughness for small specimens or specimens with shallow cracks are a consequence of having to deform the specimens to much higher Js before the stressed-area criteria are met ahead of the crack. Such large toughnesses and low transition temperatures support the contention that thin-walled ferritic structures should remain a viable option for advanced fusion reactors.

  11. Impedance calculation for ferrite inserts

    SciTech Connect

    Breitzmann, S.C.; Lee, S.Y.; Ng, K.Y.; /Fermilab

    2005-01-01

    Passive ferrite inserts were used to compensate the space charge impedance in high intensity space charge dominated accelerators. They study the narrowband longitudinal impedance of these ferrite inserts. they find that the shunt impedance and the quality factor for ferrite inserts are inversely proportional to the imaginary part of the permeability of ferrite materials. They also provide a recipe for attaining a truly passive space charge impedance compensation and avoiding narrowband microwave instabilities.

  12. Electrical transport behavior of nonstoichiometric magnesium-zinc ferrite

    SciTech Connect

    Ghatak, S.; Sinha, M.; Meikap, A.K.; Pradhan, S.K.

    2010-08-15

    This paper presents the direct current conductivity, alternate current conductivity and dielectric properties of nonstoichiometric magnesium-zinc ferrite below room temperature. The frequency exponent (s) of conductivity shows an anomalous temperature dependency. The magnitude of the temperature exponent (n) of dielectric permittivity strongly depends on frequency and its value decreases with increasing frequency. The grain boundary contribution is dominating over the grain contribution in conduction process and the temperature dependence of resistance due to grain and grain boundary contribution exhibits two activation regions. The ferrite shows positive alternating current magnetoconductivity. The solid state processing technique was used for the preparation of nanocrystalline ferrite powder from oxides of magnesium, zinc and iron. The X-ray diffraction methods were used in determining the structure and composition of obtained ferrite, while multimeter, impedance analyzer, liquid nitrogen cryostat and electromagnet were used in the study of conducting and dielectric properties of ferrite.

  13. Alloying design of oxide dispersion strengthened ferritic steel for long life FBRs core materials

    NASA Astrophysics Data System (ADS)

    Ukai, S.; Harada, M.; Okada, H.; Inoue, M.; Nomura, S.; Shikakura, S.; Asabe, K.; Nishida, T.; Fujiwara, M.

    1993-09-01

    Oxide dispersion strengthened (ODS) ferritic steels with excellent swelling resistance and superior high temperature strength are prospective cladding materials for advanced fast breeder reactors. The addition of Ti in 13Cr-3W ODS ferritic steels improved the high temperature strength remarkably by the formation of uniformly distributed ultra-fine oxide particles. ODS ferritic steels have a bamboo-like grain structure and a strong deformation texture. The decrease of creep rupture strength in the bi-axial direction compared to the uni-axial direction is attributed mainly to this unique bamboo grain structure. Nearly equivalent creep rupture strength for both bi-axial and uni-axial direction was successfully attained by introducing the α to γ transformation in ODS martensitic steel.

  14. Ultrahigh Ductility, High-Carbon Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Qin, Shengwei; Liu, Yu; Hao, Qingguo; Zuo, Xunwei; Rong, Yonghua; Chen, Nailu

    2016-10-01

    Based on the proposed design idea of the anti-transformation-induced plasticity effect, both the additions of the Nb element and pretreatment of the normalization process as a novel quenching-partitioning-tempering (Q-P-T) were designed for Fe-0.63C-1.52Mn-1.49Si-0.62Cr-0.036Nb hot-rolled steel. This high-carbon Q-P-T martensitic steel exhibits a tensile strength of 1890 MPa and elongation of 29 pct accompanied by the excellent product of tensile and elongation of 55 GPa pct. The origin of ultrahigh ductility for high-carbon Q-P-T martensitic steel is revealed from two aspects: one is the softening of martensitic matrix due to both the depletion of carbon in the matensitic matrix during the Q-P-T process by partitioning of carbon from supersaturated martensite to retained austenite and the reduction of the dislocation density in a martensitic matrix by dislocation absorption by retained austenite effect during deformation, which significantly enhances the deformation ability of martensitic matrix; another is the high mechanical stability of considerable carbon-enriched retained austenite, which effectively reduces the formation of brittle twin-type martensite. This work verifies the correctness of the design idea of the anti-TRIP effect and makes the third-generation advanced high-strength steels extend to the field of high-carbon steels from low- and medium-carbon steels.

  15. Ultrahigh Ductility, High-Carbon Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Qin, Shengwei; Liu, Yu; Hao, Qingguo; Zuo, Xunwei; Rong, Yonghua; Chen, Nailu

    2016-07-01

    Based on the proposed design idea of the anti-transformation-induced plasticity effect, both the additions of the Nb element and pretreatment of the normalization process as a novel quenching-partitioning-tempering (Q-P-T) were designed for Fe-0.63C-1.52Mn-1.49Si-0.62Cr-0.036Nb hot-rolled steel. This high-carbon Q-P-T martensitic steel exhibits a tensile strength of 1890 MPa and elongation of 29 pct accompanied by the excellent product of tensile and elongation of 55 GPa pct. The origin of ultrahigh ductility for high-carbon Q-P-T martensitic steel is revealed from two aspects: one is the softening of martensitic matrix due to both the depletion of carbon in the matensitic matrix during the Q-P-T process by partitioning of carbon from supersaturated martensite to retained austenite and the reduction of the dislocation density in a martensitic matrix by dislocation absorption by retained austenite effect during deformation, which significantly enhances the deformation ability of martensitic matrix; another is the high mechanical stability of considerable carbon-enriched retained austenite, which effectively reduces the formation of brittle twin-type martensite. This work verifies the correctness of the design idea of the anti-TRIP effect and makes the third-generation advanced high-strength steels extend to the field of high-carbon steels from low- and medium-carbon steels.

  16. Effects of Cold Rolling and Strain-Induced Martensite Formation in a SAF 2205 Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Breda, Marco; Brunelli, Katya; Grazzi, Francesco; Scherillo, Antonella; Calliari, Irene

    2015-02-01

    Duplex stainless steels (DSSs) are biphasic steels having a ferritic-austenitic microstructure that allows them to combine good mechanical and corrosion-resistance properties. However, these steels are sensitive to microstructural modifications, such as ferrite decomposition at high temperatures and the possibility of strain-induced martensite (SIM) formation from cold-worked austenite, which can significantly alter their interesting features. In the present work, the effects of cold rolling on the developed microstructural features in a cold-rolled SAF 2205 DSS and the onset of martensitic transformation are discussed. The material was deformed at room temperature from 3 to 85 pct thickness reduction, and several characterization techniques (scanning and transmission electron microscopy, X-ray diffraction, hardness measurements, and time-of-flight-neutron diffraction) were employed in order to fully describe the microstructural behavior of the steel. Despite the low stacking fault energy of DSS austenite, which contributed to SIM formation, the steel was found to be more stable than other stainless steel grades, such as AISI 304L. Rolling textures were similar to those pertaining to single-phase materials, but the presence of the biphasic (Duplex) microstructure imposed deformation constraints that affected the developed microstructural features, owing to phases interactions. Moreover, even if an intensification of the strain field in austenite was revealed, retarded SIM transformation kinetics and lower martensite amounts with respect to AISI 304L were observed.

  17. Effects of self-accommodation and plastic accommodation in martensitic transformations and morphology of martensites

    NASA Astrophysics Data System (ADS)

    Nanju, Gu; Xiaoyan, Song; Jianxin, Zhang; Fuxing, Yin; Ruixiang, Wang

    1995-08-01

    The effects of self-accommodation and plastic accommodation in martensitic transformations and the displacement vector for lattice deformation are discussed. The authors propose that the formation of an invariant habit plane is connected with the self-accomodation between different martensitic variants and results in the formation of internal twinned martensites; the plastic accommodation, rather than self-accommodation, occurs between parent and new phases when the strength is low or the dislocation density is high for the parent phase and the invariant habit plane is difficult to form, resulting in the formation of dislocation martensites.

  18. On the Processing of Martensitic Steels in Continuous Galvanizing Lines: Part II

    NASA Astrophysics Data System (ADS)

    Song, Taejin; Kwak, Jaihyun; de Cooman, B. C.

    2012-01-01

    The conventional continuous hot-dip galvanizing (GI) and galvannealing (GA) processes can be applied to untransformed austenite to produce Zn and Zn-alloy coated low-carbon ultra-high-strength martensitic steel provided specific alloying additions are made. The most suitable austenite decomposition behavior results from the combined addition of boron, Cr, and Mo, which results in a pronounced transformation bay during isothermal transformation. The occurrence of this transformation bay implies a considerable retardation of the austenite decomposition in the temperature range below the bay, which is close to the stages in the continuous galvanizing line (CGL) thermal cycle related to the GI and GA processes. After the GI and GA processes, a small amount of granular bainite, which consists of bainitic ferrite and discrete islands of martensite/austenite (M/A) constituents embedded in martensite matrix, is present in the microstructure. The ultimate tensile strength (UTS) of the steel after the GI and GA cycle was over 1300 MPa, and the stress-strain curve was continuous without any yielding phenomena.

  19. Previous heat treatment inducing different plasma nitriding behaviors in martensitic stainless steels

    SciTech Connect

    Figueroa, C. A.; Alvarez, F.; Mitchell, D. R. G.; Collins, G. A.; Short, K. T.

    2006-09-15

    In this work we report a study of the induced changes in structure and corrosion behavior of martensitic stainless steels nitrided by plasma immersion ion implantation (PI{sup 3}) at different previous heat treatments. The samples were characterized by x-ray diffraction and glancing angle x-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectroscopy, and potentiodynamic measurements. Depending on the proportion of retained austenite in the unimplanted material, different phase transformations are obtained at lower and intermediate temperatures of nitrogen implantation. At higher temperatures, the great mobility of the chromium yields CrN segregations like spots in random distribution, and the {alpha}{sup '}-martensite is degraded to{alpha}-Fe (ferrite). The nitrided layer thickness follows a fairly linear relationship with the temperature and a parabolic law with the process time. The corrosion resistance depends strongly on chromium segregation from the martensitic matrix, as a result of the formation of CrN during the nitrogen implantation process and the formation of Cr{sub x}C during the heat treatment process. Briefly speaking, the best results are obtained using low tempering temperature and low implantation temperature (below 375 deg. ) due to the increment of the corrosion resistance and nitrogen dissolution in the structure with not too high diffusion depths (about 5-10 {mu}m)

  20. Characterization of Low Temperature Ferrite/Austenite Transformations in the Heat Affected Zone of 2205 Duplex Stainless Steel Arc Welds

    SciTech Connect

    Palmer, T A; Elmer, J W; Babu, S S; Vitek, J M

    2003-08-20

    Spatially Resolved X-Ray Diffraction (SRXRD) has been used to identify a previously unobserved low temperature ferrite ({delta})/austenite({gamma}) phase transformation in the heat affected zone (HAZ) of 2205 Duplex Stainless Steel (DSS) welds. In this ''ferrite dip'' transformation, the ferrite transforms to austenite during heating to peak temperatures on the order of 750 C, and re-transforms to ferrite during cooling, resulting in a ferrite volume fraction equivalent to that in the base metal. Time Resolved X-Ray Diffraction (TRXRD) and laser dilatometry measurements during Gleeble{reg_sign} thermal simulations are performed in order to verify the existence of this low temperature phase transformation. Thermodynamic and kinetic models for phase transformations, including both local-equilibrium and para-equilibrium diffusion controlled growth, show that diffusion of substitutional alloying elements does not provide a reasonable explanation for the experimental observations. On the other hand, the diffusion of interstitial alloying elements may be rapid enough to explain this behavior. Based on both the experimental and modeling results, two mechanisms for the ''ferrite dip'' transformation, including the formation and decomposition of secondary austenite and an athermal martensitic-type transformation of ferrite to austenite, are considered.

  1. Synthesis and structural characterization of magnetic cadmium sulfide-cobalt ferrite nanocomposite, and study of its activity for dyes degradation under ultrasound

    NASA Astrophysics Data System (ADS)

    Farhadi, Saeed; Siadatnasab, Firouzeh

    2016-11-01

    Cadmium sulfide-cobalt ferrite (CdS/CFO) nanocomposite was easily synthesized by one-step hydrothermal decomposition of cadmium diethyldithiocarbamate complex on the CoFe2O4 nanoparticles at 200 °C. Spectroscopic techniques of powder X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), UV-visible spectroscopy, field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), Brunauer-Emmett-Teller (BET), and magnetic measurements were applied for characterizing the structure and morphology of the product. The results of FT-IR, XRD and EDX indicated that the CdS/CFO was highly pure. SEM and TEM results revealed that the CdS/CFO nanocomposite was formed from nearly uniform and sphere-like nanoparticles with the size of approximately 20 nm. The UV-vis absorption spectrum of the CdS/CFO nanocomposite showed the band gap of 2.21 eV, which made it suitable for sono-/photo catalytic purposes. By using the obtained CdS/CFO nanocomposite, an ultrasound-assisted advanced oxidation process (AOP) has been developed for catalytic degradation of methylene blue (MB), Rhodamine B (RhB), and methyl orange (MO)) in the presence of H2O2 as a green oxidant. CdS/CFO nanocomposite exhibited excellent sonocatalytic activity, so that, dyes were completely degraded in less than 10 min. The influences of crucial factors such as the H2O2 amount and catalyst dosage on the degradation efficiency were evaluated. The as-prepared CdS/CFO nanocomposite exhibited higher catalytic activity than pure CdS nanoparticles. Moreover, the magnetic property of CoFe2O4 made the nanocomposite recyclable.

  2. Probing the interaction induced conformation transitions in acid phosphatase with cobalt ferrite nanoparticles: Relation to inhibition and bio-activity of Chlorella vulgaris acid phosphatase.

    PubMed

    Ahmad, Farooq; Zhou, Xing; Yao, Hongzhou; Zhou, Ying; Xu, Chao

    2016-09-01

    The present study explored the interaction and kinetics of cobalt ferrite nanoparticles (NPs) with acid phosphatase (ACP) by utilizing diverse range of spectroscopic techniques. The results corroborate, the CoFe2O4 NPs cause fluorescence quenching in ACP by static quenching mechanism. The negative values of van't Hoff thermodynamic expressions (ΔH=-0.3293Jmol(-1)K(-1) and ΔG=-3.960kJmol(-1)K(-1)) corroborate the spontaneity and exothermic nature of static quenching. The positive value of ΔS (13.2893Jmol(-1)K(-1)) corroborate that major contributors of higher and stronger binding affinity among CoFe2O4 NPs with ACP were electrostatic. In addition, FTIR, UV-CD, UV-vis spectroscopy and three dimensional fluorescence (3D) techniques confirmed that CoFe2O4 NPs binding induces microenvironment perturbations leading to secondary and tertiary conformation changes in ACP to a great extent. Furthermore, synchronous fluorescence spectroscopy (SFS) affirmed the comparatively significant changes in microenvironment around tryptophan (Trp) residue by CoFe2O4 NPs. The effect of CoFe2O4 NPs on the activation kinetics of ACP was further examined in Chlorella vulgaris. Apparent Michaelis constant (Km) values of 0.57 and 26.5mM with activation energy values of 0.538 and 3.428kJmol(-1) were determined without and with 200μM CoFe2O4 NPs. Apparent Vmax value of -7Umml(-1) corroborate that enzyme active sites were completely captured by the NPs leaving no space for the substrate. The results confirmed that CoFe2O4 NPs ceased the activity by unfolding of ACP enzyme. This suggests CoFe2O4 NPs perturbed the enzyme activity by transitions in conformation and hence the metabolic activity of ACP. This study provides the pavement for novel and simple approach of using sensitive biomarkers for sensing NPs in environment. PMID:27209386

  3. Local strain evolution due to athermal γ→ε martensitic transformation in biomedical CoCrMo alloys.

    PubMed

    Yamanaka, Kenta; Mori, Manami; Koizumi, Yuichiro; Chiba, Akihiko

    2014-04-01

    Locally developed strains caused by athermal γ face-centered cubic (fcc)→ε hexagonal close-packed (hcp) martensitic transformation were investigated for the γ matrix of Ni-free Co-29Cr-6Mo (wt%) alloys prepared with or without added nitrogen. Electron-backscatter-diffraction-(EBSD)-based strain analysis revealed that in addition to ε-martensite interiors, the N-free alloy that had a duplex microstructure consisting of the γ matrix and athermal ε-martensite plates showed larger magnitudes of both elastic and plastic strains in the γ phase matrix than the N-doped counterpart that did not have a ε-martensite phase. Transmission electron microscopy (TEM) results indicated that the ε-martensite microplates were aggregates of thin ε-layers, which were formed by three different {111}γ〈112¯〉γ Shockley partial dislocations in accordance with a previously proposed mechanism (Putaux and Chevalier, 1996) that canceled the shear strains of the individual variants. The plastic strains are believed to have originated from the martensitic transformation itself, and the activity of dislocations is believed to be the origin of the transformation. We have revealed that the elastic strains in the γ matrix originate from interactions among the ε-martensite phase, extended dislocations, and/or thin ε-layers. The dislocations highly dissociated into stacking faults, making stress relaxation at intersections difficult and further introducing local strain evolution.

  4. Experimental Crystallization of Iron Martensite in the Almahata Sitta Ureilite

    NASA Astrophysics Data System (ADS)

    Mikouchi, T.; Aoyagi, Y.; Sugiyama, K.; Yokoyama, Y.; Goodrich, C. A.; Zolensky, M. E.

    2014-09-01

    We performed a crystallization experiment of iron martensite in Almahata Sitta ureilite and found that super-rapid cooling (>1 deg/sec) is required to form the observed martensite, suggesting a secondary disruption of ureilite daughter body(ies).

  5. Dielectric investigations of polycrystalline samarium bismuth ferrite ceramic

    SciTech Connect

    Palaimiene, E.; Macutkevic, J.; Banys, J.; Karpinsky, D. V.; Kholkin, A. L.

    2015-01-05

    Results of broadband dielectric investigations of samarium doped bismuth ferrite ceramics are presented in wide temperature range (20–800 K). At temperatures higher than 400 K, the dielectric properties of samarium bismuth ferrite ceramics are governed by Maxwell-Wagner relaxation and electrical conductivity. The DC conductivity increases and activation energy decreases with samarium concentration. In samarium doped bismuth ferrite, the ferroelectric phase transition temperature decreases with samarium concentration and finally no ferroelectric order is observed at x = 0.2. At lower temperatures, the dielectric properties of ferroelectric samarium doped bismuth ferrite are governed by ferroelectric domains dynamics. Ceramics with x = 0.2 exhibit the relaxor-like behaviour.

  6. Time-temperature equivalence in Martensite tempering

    SciTech Connect

    Hackenberg, Robert E.; Thomas, Grant A.; Speer, John G.; Matlock, David K.; Krauss, George

    2008-06-16

    The relationship between time and temperature is of great consequence in many materials-related processes including the tempering of martensite. In 1945, Hollomon and Jaffe quantified the 'degree of tempering' as a function of both tempering time, t, and tempering temperature, T, using the expression, T(log t + c). Here, c is thought to be a material constant and appears to decrease linearly with increasing carbon content. The Hollomon-Jaffe tempering parameter is frequently cited in the literature. This work reviews the original derivation of the tempering parameter concept, and presents the use of the characteristics diffusion distance as an alternative time-temperature relationship during martensite tempering. During the tempering of martensite, interstitial carbon atoms diffuse to form carbides. In addition, austenite decomposes, dislocations and grain boundaries rearrange, associated with iron self diffusion. Since these are all diffusional processes, it is reasonable to expect the degree of tempering to relate to the extent of diffusion.

  7. Martensitic Transformations in B2 Cubic Alloys

    NASA Astrophysics Data System (ADS)

    Lashley, Jason; Thoma, Dan; Darling, Timothy; Migliori, Albert; Cooley, Jason; Hults, Larry; Singleton, John; Drymiotis, Fivos; Smith, Jim

    2003-03-01

    Many modern shape-memory materials are based on the ordered bcc structure, in particular the B2 structure. These structures may be subjected to a shearing motion to which the material has little resistance. Plausibly, this "Zener instability" can provide the means for these structures to undergo a martensitic phase transition, where the actual distances the atoms move are small enough that exact reversibility (shape-memory) is possible. There are many B2 structures but only some of them exhibit martensitic phase transitions. Some are equi-atomic, highly ordered alloys and some are off-stoichiometry that must be quenched to retain a non-equilibrium B2 structure. We have made thermal, transport, mechanical, Fermi surface topology, and elastic measurements on several B2 martensitic alloys and present our findings in terms of the differences between varios B2 alloys and other structures.

  8. High-throughput design of low-activation, high-strength creep-resistant steels for nuclear-reactor applications

    NASA Astrophysics Data System (ADS)

    Lu, Qi; van der Zwaag, Sybrand; Xu, Wei

    2016-02-01

    Reduced-activation ferritic/martensitic steels are prime candidate materials for structural applications in nuclear power reactors. However, their creep strength is much lower than that of creep-resistant steel developed for conventional fossil-fired power plants as alloying elements with a high neutron activation cannot be used. To improve the creep strength and to maintain a low activation, a high-throughput computational alloy design model coupling thermodynamics, precipitate-coarsening kinetics and an optimization genetic algorithm, is developed. Twelve relevant alloying elements with either low or high activation are considered simultaneously. The activity levels at 0-10 year after the end of irradiation are taken as optimization parameter. The creep-strength values (after exposure for 10 years at 650 °C) are estimated on the basis of the solid-solution strengthening and the precipitation hardening (taking into account precipitate coarsening). Potential alloy compositions leading to a high austenite fraction or a high percentage of undesirable second phase particles are rejected automatically in the optimization cycle. The newly identified alloys have a much higher precipitation hardening and solid-solution strengthening at the same activity level as existing reduced-activation ferritic/martensitic steels.

  9. Integrity assessment of the ferritic / austenitic dissimilar weld joint between intermediate heat exchanger and steam generator in fast reactor

    SciTech Connect

    Jayakumar, T.; Laha, K.; Chandravathi, K. S.; Parameswaran, P.; Goyal, S.; Kumar, J. G.; Mathew, M. D.

    2012-07-01

    Integrity of the modified 9Cr-1Mo / alloy 800 dissimilar joint welded with Inconel 182 electrodes has been assessed under creep condition based on the detailed analysis of microstructure and stress distribution across the joint by finite element analysis. A hardness peak at the ferritic / austenitic weld interface and a hardness trough at the inter-critical heat affected zone (HAZ) in ferritic base metal developed. Un-tempered martensite was found at the ferritic / austenitic weld interface to impart high hardness in it; whereas annealing of martensitic structure of modified 9Cr-1Mo steel by inter-critical heating during welding thermal cycle resulted in hardness tough in the inter-critical HAZ. Creep tests were carried out on the joint and ferritic steel base metal at 823 K over a stress range of 160-320 MPa. The joint possessed lower creep rupture strength than its ferritic steel base metal. Failure of the joint at relatively lower stresses occurred at the ferritic / austenitic weld interface; whereas it occurred at inter-critical region of HAZ at moderate stresses. Cavity nucleation associated with the weld interface particles led to premature failure of the joint. Finite element analysis of stress distribution across the weld joint considering the micro-mechanical strength inhomogeneity across it revealed higher von-Mises and principal stresses at the weld interface. These stresses induced preferential creep cavitation at the weld interface. Role of precipitate in enhancing creep cavitation at the weld interface has been elucidated based on the FE analysis of stress distribution across it. (authors)

  10. Laser Beam Welding of Ultra-high Strength Chromium Steel with Martensitic Microstructure

    NASA Astrophysics Data System (ADS)

    Dahmen, Martin; Janzen, Vitalij; Lindner, Stefan; Wagener, Rainer

    A new class of steels is going to be introduced into sheet manufacturing. Stainless ferritic and martensitic steels open up opportunities for sheet metal fabrication including hot stamping. Strengths of up to 2 GPa at fracture elongations of 15% can be attained through this. Welding of these materials, as a result, became a challenge. Energy-reduced welding methods with in-situ heat treatment are required in order to ensure the delicate and complex heat control. Laser beam welding is the joining technique of choice to supply minimum heat input to the fusion process and to apply efficient heat control. For two application cases, tailored blank production in as-rolled condition and welding during assembly in hot stamped condition, welding processes have been developed. The welding suitability is shown through metallurgical investigations of the welds. Crash tests based on the KS-II concept as well as fatigue tests prove the applicability of the joining method.

  11. Analysis of factors responsible for the accelerated creep rupture of 12% Cr martensitic steel weld joints

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, A. S.; Okhapkin, K. A.; Mikhailov, M. S.; Skutin, V. S.; Zubova, G. E.; Fedotov, B. V.

    2016-06-01

    In the process of the investigation of the heat resistance of a 0.07C-12Cr-Ni-Mo-V-Nb steel of the martensitic-ferritic class, a reduction was revealed in the long-term strength of its welded joints to below the level of the strength of the base metal. To establish the causes for the accelerated failure of the welded joints, an imitation of the thermal cycles was carried out that produce the structure of the heataffected zone using a dilatometer. In the samples with the structure that corresponds to that of the heataffected zone, a local zone of softening was revealed. The investigations of the metal structure using transmission electron microscopy have shown that the reduction in the creep rupture strength was caused by structural changes under the conditions of the thermal cycle of welding upon the staying of the steel in the temperature range between the Ac 1 and Ac 3 points.

  12. Surface chemistry, friction, and wear of Ni-Zn and Mn-Zn ferrites in contact with metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1983-01-01

    X-ray photoelectron and Auger electron spectroscopy analysis were used in sliding friction experiments. These experiments were conducted with hot-pressed polycrystalline Ni-Zn and Mn-Zn ferrites, and single-crystal Mn-Zn ferrite in contact with various transition metals at room temperature in both vacuum and argon. The results indicate that Ni2O3 and Fe3O4 were present on the Ni-Zn ferrite surface in addition to the nominal bulk constituents, while MnO2 and Fe3O4 were present on the Mn-Zn ferrite surface in addition to the nominal bulk constituents. The coefficients of friction for the ferrites in contact with metals were related to the relative chemical activity of these metals. The more active the metal, the higher is the coefficient of friction. The coefficients of friction for the ferrites were correlated with the free energy of formation of the lowest metal oxide. The interfacial bond can be regarded as a chemical bond between the metal atoms and the oxygen anions in the ferrite surfaces. The adsorption of oxygen on clean metal and ferrite does strengthen the metal-ferrite contact and increase the friction. The ferrites exhibit local cracking and fracture with sliding under adhesive conditions. All the metals transferred to the surfaces of the ferrites in sliding. Previously announced in STAR as N83-19901

  13. Surface chemistry, friction and wear of Ni-Zn and Mn-Zn ferrites in contact with metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    X-ray photoelectron and Auger electron spectroscopy analysis were used in sliding friction experiments. These experiments were conducted with hot-pressed polycrystalline Ni-Zn and Mn-Zn ferrites, and single-crystal Mn-Zn ferrite in contact with various transition metals at room temperature in both vacuum and argon. The results indicate that Ni2O3 and Fe3O4 were present on the Ni-Zn ferrite surface in addition to the nominal bulk constituents, while MnO2 and Fe3O4 were present on the Mn-Zn ferrite surface in addition to the nominal bulk constituents. The coefficients of friction for the ferrites in contact with metals were related to the relative chemical activity of these metals. The more active the metal, the higher is the coefficient of friction. The coefficients of friction for the ferrites were correlated with the free energy of formation of the lowest metal oxide. The interfacial bond can be regarded as a chemical bond between the metal atoms and the oxygen anions in the ferrite surfaces. The adsorption of oxygen on clean metal and ferrite does strengthen the metal-ferrite contact and increase the friction. The ferrites exhibit local cracking and fracture with sliding under adhesive conditions. All the metals transferred to he surfaces of the ferrites in sliding.

  14. Microstructure of ausformed lath martensite in 18%Ni maraging steel

    NASA Astrophysics Data System (ADS)

    Morito, S.; Kishida, I.; Maki, T.

    2003-10-01

    The microstructure of ausformed lath martensite in 18%Ni maraging steel was studied by analyzing electron backscatter diffraction pattern obtained by scanning electron microscopy and Kikuchi diffraction pattern obtained by transmission electron microscopy. In non-ausformed lath martensite structure, blocks and packets are clearly observed by optical microscopy. By ausforming of 60% at 773K, packet and block widths of lath martensite decrease whereas the packet is elongated along rolling direction. A packet of ausformedlath martensite contains some laths which belong to a crystallographically different packet. The dislocation density in ausformed lath martensite is higher than that in conventional lath martensite. It is concluded that ausforming refines the effective grain size and increases the dislocation density in lath martensite structure.

  15. Void formation and microstructural development in oxide dispersion strengthened ferritic steels during electron-irradiation

    NASA Astrophysics Data System (ADS)

    Saito, J.; Suda, T.; Yamashita, S.; Ohnuki, S.; Takahashi, H.; Akasaka, N.; Nishida, M.; Ukai, S.

    1998-10-01

    ODS ferritic steels (13Cr-0.5Ti-0.2Y 2O 3) were prepared by the mechanical alloying method followed by the hot extrusion and several heat treatments including recrystallization. ODS steels with different heat treatment and a ferritic/martensitic (F/M) steel for the reference were irradiated to 12 dpa at 670-770 K in HVEM. After recrystallization, the dislocation density decreased with increasing grain size, however, the oxide particles did not show any obvious change in the size and the number density. During the electron-irradiation the microstructure was relatively stable, i.e. oxide particles showed good stability and the dislocation density remained almost constant. A limited void formation was observed in the specimens, and the suppressive effect due to dislocations with high number density was confirmed. From these results, the behavior of microstructure and the limited void formation in ODS steels have been discussed.

  16. High strength ferritic alloy

    DOEpatents

    Hagel, William C.; Smidt, Frederick A.; Korenko, Michael K.

    1977-01-01

    A high-strength ferritic alloy useful for fast reactor duct and cladding applications where an iron base contains from about 9% to about 13% by weight chromium, from about 4% to about 8% by weight molybdenum, from about 0.2% to about 0.8% by weight niobium, from about 0.1% to about 0.3% by weight vanadium, from about 0.2% to about 0.8% by weight silicon, from about 0.2% to about 0.8% by weight manganese, a maximum of about 0.05% by weight nitrogen, a maximum of about 0.02% by weight sulfur, a maximum of about 0.02% by weight phosphorous, and from about 0.04% to about 0.12% by weight carbon.

  17. Optimization and testing results of Zr-bearing ferritic steels

    SciTech Connect

    Tan, Lizhen; Yang, Ying; Tyburska-Puschel, Beata; Sridharan, K.

    2014-09-01

    The mission of the Nuclear Energy Enabling Technologies (NEET) program is to develop crosscutting technologies for nuclear energy applications. Advanced structural materials with superior performance at elevated temperatures are always desired for nuclear reactors, which can improve reactor economics, safety margins, and design flexibility. They benefit not only new reactors, including advanced light water reactors (LWRs) and fast reactors such as sodium-cooled fast reactor (SFR) that is primarily designed for management of high-level wastes, but also life extension of the existing fleet when component exchange is needed. Developing and utilizing the modern materials science tools (experimental, theoretical, and computational tools) is an important path to more efficient alloy development and process optimization. Ferritic-martensitic (FM) steels are important structural materials for nuclear reactors due to their advantages over other applicable materials like austenitic stainless steels, notably their resistance to void swelling, low thermal expansion coefficients, and higher thermal conductivity. However, traditional FM steels exhibit a noticeable yield strength reduction at elevated temperatures above ~500°C, which limits their applications in advanced nuclear reactors which target operating temperatures at 650°C or higher. Although oxide-dispersion-strengthened (ODS) ferritic steels have shown excellent high-temperature performance, their extremely high cost, limited size and fabricability of products, as well as the great difficulty with welding and joining, have limited or precluded their commercial applications. Zirconium has shown many benefits to Fe-base alloys such as grain refinement, improved phase stability, and reduced radiation-induced segregation. The ultimate goal of this project is, with the aid of computational modeling tools, to accelerate the development of a new generation of Zr-bearing ferritic alloys to be fabricated using conventional

  18. Ferritic steels for sodium-cooled fast reactors: Design principles and challenges

    NASA Astrophysics Data System (ADS)

    Raj, Baldev; Vijayalakshmi, M.

    2010-09-01

    An overview of the current status of development of ferritic steels for emerging fast reactor technologies is presented in this paper. The creep-resistant 9-12Cr ferritic/martensitic steels are classically known for steam generator applications. The excellent void swelling resistance of ferritic steels enabled the identification of their potential for core component applications of fast reactors. Since then, an extensive knowledge base has been generated by identifying the empirical correlations between chemistry of the steels, heat treatment, structure, and properties, in addition to their in-reactor behavior. A few concerns have also been identified which pertain to high-temperature irradiation creep, embrittlement, Type IV cracking in creep-loaded weldments, and hard zone formation in dissimilar joints. The origin of these problems and the methodologies to overcome the limitations are highlighted. Finally, the suitability of the ferritic steels is re-evaluated in the emerging scenario of the fast reactor technology, with a target of achieving better breeding ratio and improved thermal efficiency.

  19. Austenite Formation from Martensite in a 13Cr6Ni2Mo Supermartensitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Bojack, A.; Zhao, L.; Morris, P. F.; Sietsma, J.

    2016-05-01

    The influence of austenitization treatment of a 13Cr6Ni2Mo supermartensitic stainless steel (X2CrNiMoV13-5-2) on austenite formation during reheating and on the fraction of austenite retained after tempering treatment is measured and analyzed. The results show the formation of austenite in two stages. This is probably due to inhomogeneous distribution of the austenite-stabilizing elements Ni and Mn, resulting from their slow diffusion from martensite into austenite and carbide and nitride dissolution during the second, higher temperature, stage. A better homogenization of the material causes an increase in the transformation temperatures for the martensite-to-austenite transformation and a lower retained austenite fraction with less variability after tempering. Furthermore, the martensite-to-austenite transformation was found to be incomplete at the target temperature of 1223 K (950 °C), which is influenced by the previous austenitization treatment and the heating rate. The activation energy for martensite-to-austenite transformation was determined by a modified Kissinger equation to be approximately 400 and 500 kJ/mol for the first and the second stages of transformation, respectively. Both values are much higher than the activation energy found during isothermal treatment in a previous study and are believed to be effective activation energies comprising the activation energies of both mechanisms involved, i.e., nucleation and growth.

  20. Zinc ferrite nanoparticles activate IL-1b, NFKB1, CCL21 and NOS2 signaling to induce mitochondrial dependent intrinsic apoptotic pathway in WISH cells

    SciTech Connect

    Saquib, Quaiser; Al-Khedhairy, Abdulaziz A.; Ahmad, Javed; Siddiqui, Maqsood A.; Dwivedi, Sourabh; Khan, Shams T.; Musarrat, Javed

    2013-12-01

    The present study has demonstrated the translocation of zinc ferrite nanoparticles (ZnFe{sub 2}O{sub 4}-NPs) into the cytoplasm of human amnion epithelial (WISH) cells, and the ensuing cytotoxicity and genetic damage. The results suggested that in situ NPs induced oxidative stress, alterations in cellular membrane and DNA strand breaks. The [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) and neutral red uptake (NRU) cytotoxicity assays indicated 64.48 ± 1.6% and 50.73 ± 2.1% reduction in cell viability with 100 μg/ml of ZnFe{sub 2}O{sub 4}-NPs exposure. The treated WISH cells exhibited 1.2-fold higher ROS level with 0.9-fold decline in membrane potential (ΔΨm) and 7.4-fold higher DNA damage after 48 h of ZnFe{sub 2}O{sub 4}-NPs treatment. Real-time PCR (qPCR) analysis of p53, CASP 3 (caspase-3), and bax genes revealed 5.3, 1.6, and 14.9-fold upregulation, and 0.18-fold down regulation of bcl 2 gene vis-à-vis untreated control. RT{sup 2} Profiler™ PCR array data elucidated differential up-regulation of mRNA transcripts of IL-1b, NFKB1, NOS2 and CCL21 genes in the range of 1.5 to 3.7-folds. The flow cytometry based cell cycle analysis suggested the transfer of 15.2 ± 2.1% (p < 0.01) population of ZnFe{sub 2}O{sub 4}-NPs (100 μg/ml) treated cells into apoptotic phase through intrinsic pathway. Over all, the data revealed the potential of ZnFe{sub 2}O{sub 4}-NPs to induce cellular and genetic toxicity in cells of placental origin. Thus, the significant ROS production, reduction in ΔΨm, DNA damage, and activation of genes linked to inflammation, oxidative stress, proliferation, DNA damage and repair could serve as the predictive toxicity and stress markers for ecotoxicological assessment of ZnFe{sub 2}O{sub 4}-NPs induced cellular and genetic damage. - Highlights: • First report on the molecular toxicity of ZnFe{sub 2}O{sub 4}-NPs in cells of placental origin • WISH cells treated with ZnFe{sub 2}O{sub 4}-NPs exhibited cytoplasmic

  1. Influence of Martensite Fraction on the Stabilization of Austenite in Austenitic-Martensitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Huang, Qiuliang; De Cooman, Bruno C.; Biermann, Horst; Mola, Javad

    2016-05-01

    The influence of martensite fraction ( f α') on the stabilization of austenite was studied by quench interruption below M s temperature of an Fe-13Cr-0.31C (mass pct) stainless steel. The interval between the quench interruption temperature and the secondary martensite start temperature, denoted as θ, was used to quantify the extent of austenite stabilization. In experiments with and without a reheating step subsequent to quench interruption, the variation of θ with f α' showed a transition after transformation of almost half of the austenite. This trend was observed regardless of the solution annealing temperature which influenced the martensite start temperature. The transition in θ was ascribed to a change in the type of martensite nucleation sites from austenite grain and twin boundaries at low f α' to the faults near austenite-martensite (A-M) boundaries at high f α'. At low temperatures, the local carbon enrichment of such boundaries was responsible for the enhanced stabilization at high f α'. At high temperatures, relevant to the quenching and partitioning processing, on the other hand, the pronounced stabilization at high f α' was attributed to the uniform partitioning of the carbon stored at A-M boundaries into the austenite. Reduction in the fault density of austenite served as an auxiliary stabilization mechanism at high temperatures.

  2. Langevin Simulation of Microstructure in Martensitic Transformations

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Lookman, T.; Shenoy, S. R.; Saxena, A.; Bishop, A. R.

    1996-03-01

    We present a dynamical model to simulate microstructure in martensitic transformations within the context of shape memory alloys. The Hamiltonian of the system includes a triple-well potential (φ^6 model) in local shear strain, (2) strain gradient terms up to second order in strain and fourth order in gradient, and (3) all symmetry allowed compositional fluctuation induced strain gradient terms. We show the formation of twinned martensite below the transformation temperature and tweed precursors above the transformation temperature, as well as indications of hierarchical structures near the habit plane. These phases result from a competition between short range attraction and long range elastic repulsive forces. The long range interaction is incorporated via Fourier spectral methods as discussed by C. Roland and R.C.Desai [Phys. Rev. B 42, 6658 (1990)].

  3. Effect of Strain-Induced Age Hardening on Yield Strength Improvement in Ferrite-Austenite Duplex Lightweight Steels

    NASA Astrophysics Data System (ADS)

    Song, Hyejin; Lee, Seok Gyu; Sohn, Seok Su; Kwak, Jai-Hyun; Lee, Sunghak

    2016-11-01

    Ferrite-austenite lightweight steels showing TRansformation-induced plasticity were developed by varying the aging temperature with or without prestraining, and their effects on tensile properties were investigated in relation with microstructural evolution of carbide formation. The aged steels contained austenite, pearlite, and martensite in the ferrite matrix, and the austenite volume fraction decreased with the increasing aging temperature because some austenite grains decomposed to pearlites. This austenite decomposition to pearlite was favorable for the improvement of yield strength, but negatively influenced overall tensile properties. The prestraining promoted the austenite decomposition by a diffusion-controlled phase transformation, and changed the morphology of the cementite from a long lamellar shape to a densely agglomerated particle shape. In order to obtain the large increase in yield strength as well as excellent combination of strength and ductility, the strain-induced aging treatment, i.e., prestraining followed by aging, is important like in the prestrained and 673 K (400 °C)-aged steel. This large increase in yield strength, in spite of a reduction of elongation (65 to 43 pct), was basically attributed to an appropriate amount of decomposition of austenite to pearlite ( e.g., 4 vol pct), while having sufficient austenite to martensite transformation ( e.g., 14.5 vol pct martensite).

  4. Acoustic emission and shape memory effect in the martensitic transformation.

    PubMed

    Sreekala, S; Ananthakrishna, G

    2003-04-01

    Acoustic emission signals are known to exhibit a high degree of reproducibility in time and show correlations with the growth and shrinkage of martensite domains when athermal martensites are subjected to repeated thermal cycling in a restricted temperature range. We show that a recently introduced two dimensional model for the martensitic transformation mimics these features. We also show that these features are related to the shape memory effect where near full reversal of morphological features are seen under these thermal cycling conditions.

  5. Transformation temperatures of martensite in beta phase nickel aluminide

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.; Hehemann, R. F.

    1972-01-01

    Resistivity and thermal arrest measurements determined that the compositional dependence of Ms (martensite state) temperatures for NiAl martensite was linear between 60 and 69 atomic percent nickel, with Ms = 124 Ni - 7410 K. Resistivity and surface relief experiments indicated the presence of thermoelastic martensite for selected alloys. Some aspects of the transformation were studied by hot stage microscopy and related to the behavior observed for alloys exhibiting the shape-memory effect.

  6. Processing and application of nanosized ferrite powders

    SciTech Connect

    Drofenik, M.; Rozman, M.

    1995-09-01

    Crystalline MnZn ferrite of nanosize was prepared by the hydrothermal synthesis. The pH value of the starting suspension was found to influence substantially the ferrite composition. The nanosized ferrite powder is very sensitive to oxidation and sinters to nearly theoretical density in nitrogen. The correlation between the eddy-current loss and microstructure is given.

  7. The nature of temper brittleness of high-chromium ferrite

    SciTech Connect

    Sarrak, V.I.; Suvorova, S.O.; Golovin, I.S.; Mishin, V.M.; Kislyuk, I.V.

    1995-03-01

    The reasons for development of {open_quotes}475{degrees}C brittleness{close_quotes} of high-chromium ferritic steels are considered from the standpoint of fracture mechanics. It is shown that the general rise in the curve of temperature-dependent local flow stress has the decisive influence on the position of the ductile-to-brittle transformation temperature and the increase in it as the result of a hold at temperatures of development of brittleness. The established effect is related to the change in the parameters determining dislocation mobility, that is, the activation energy of dislocation movement in high-chromium ferrite and the resistance to microplastic deformation, both caused by processes of separation into layers of high-chromium ferrite and decomposition of the interstitial solid solution.

  8. Electrical and optical properties of gadolinium doped bismuth ferrite nanoparticles

    SciTech Connect

    Mukherjee, A. Banerjee, M. Basu, S.; Pal, M.

    2014-04-24

    Multiferroic bismuth ferrite (BFO) and gadolinium (Gd) doped bismuth ferrite had been synthesized by a sol-gel method. Particle size had been estimated by Transmission electron microscopy (TEM) and found to decrease with Gd doping. We studied the temperature and frequency dependence of impedance and electric modulus and calculated the grain and grain boundary resistance and capacitance of the investigated samples. We observed that electrical activation energy increases for all the doped samples. Optical band gap also increases for the doped samples which can be used in photocatalytic application of BFO.

  9. High power ferrite microwave switch

    NASA Technical Reports Server (NTRS)

    Bardash, I.; Roschak, N. K.

    1975-01-01

    A high power ferrite microwave switch was developed along with associated electronic driver circuits for operation in a spaceborne high power microwave transmitter in geostationary orbit. Three units were built and tested in a space environment to demonstrate conformance to the required performance characteristics. Each unit consisted of an input magic-tee hybrid, two non-reciprocal latching ferrite phase shifters, an out short-slot 3 db quadrature coupler, a dual driver electronic circuit, and input logic interface circuitry. The basic mode of operation of the high power ferrite microwave switch is identical to that of a four-port, differential phase shift, switchable circulator. By appropriately designing the phase shifters and electronic driver circuits to operate in the flux-transfer magnetization mode, power and temperature insensitive operation was achieved. A list of the realized characteristics of the developed units is given.

  10. Articles comprising ferritic stainless steels

    DOEpatents

    Rakowski, James M.

    2016-06-28

    An article of manufacture comprises a ferritic stainless steel that includes a near-surface region depleted of silicon relative to a remainder of the ferritic stainless steel. The article has a reduced tendency to form an electrically resistive silica layer including silicon derived from the steel when the article is subjected to high temperature oxidizing conditions. The ferritic stainless steel is selected from the group comprising AISI Type 430 stainless steel, AISI Type 439 stainless steel, AISI Type 441 stainless steel, AISI Type 444 stainless steel, and E-BRITE.RTM. alloy, also known as UNS 44627 stainless steel. In certain embodiments, the article of manufacture is a fuel cell interconnect for a solid oxide fuel cell.

  11. Intra-variant substructure in Ni–Mn–Ga martensite: Conjugation boundaries

    SciTech Connect

    Muntifering, B.; Pond, R. C.; Kovarik, L.; Browning, N. D.; Müllner, P.

    2014-06-01

    The microstructure of a Ni–Mn–Ga alloy in the martensitic phase was investigated using transmission electron microscopy. Inter-variant twin boundaries were observed separating non-modulated tetragonal martensite variants. In addition, intra-variant boundary structures, referred to here as “conjugation boundaries”, were also observed. We propose that conjugation boundaries originate at the transformation interface between austenite and a nascent martensite variant. In the alloy studied, deformation twinning was observed, consistent with being the mode of lattice-invariant deformation, and this can occur on either of two crystallographically equivalent conjugate View the MathML source{101}(101⁻) twinning systems: conjugation boundaries separate regions within a single variant in which the active modes were distinct. The defect structure of conjugation boundaries and the low-angle of misorientation across them are revealed in detail using high-resolution microscopy. Finally, we anticipate that the mobility of such boundaries is lower than that of inter-variant boundaries, and is therefore likely to significantly affect the kinetics of deformation in the martensitic phase.

  12. Heavy hydrogen isotopes penetration through austenitic and martensitic steels

    NASA Astrophysics Data System (ADS)

    Dolinski, Yu.; Lyasota, I.; Shestakov, A.; Repritsev, Yu.; Zouev, Yu.

    2000-12-01

    Experimental results are presented of deuterium and tritium permeability through samples of nickel, austenitic steel (16Cr-15Ni-3Mo-Ti), and martensitic steel DIN 1.4914 (MANET) exposed to a gaseous phase. Experiments were carried out at the RFNC-VNHTF installation, which has the capability of measuring the permeability of hydrogen isotopes by mass spectrometry over a temperature range of 293-1000 K, hydrogen isotope pressure ranges of 50-1000 Pa. Sample disks (30 and 40 mm diam.) can be assembled in the test chamber by electron-beam welding or mounted (30-mm diam. disks) on gaskets. Diffusion and permeability dependencies on temperature and pressure are determined and corresponding activation energies are presented.

  13. RF cavities with transversely biased ferrite tuning

    SciTech Connect

    Smythe, W.R.; Brophy, T.G.; Carlini, R.D.; Friedrichs, C.C.; Grisham, D.L.; Spalek, G.; Wilkerson, L.C.

    1985-10-01

    Earley et al. suggested that ferrite tuned rf cavities have lower ferrite power dissipation if the ferrite bias field is perpendicular rather than parallel to the rf magnetic field. A 50-84 MHz cavity has been constructed in which ferrite can be biased either way. Low power measurements of six microwave ferrites show that the magnetic Q's of these ferrites under perpendicular bias are much higher than under parallel bias, and that the high Q region extends over a much wider range of rf permeability. TDK Y-5 ferrite was found to have a magnetic Q of 10,800, 4,800, 1,200 and 129 at rf permeabilities of 1.2, 2.4, 3.7 and 4.5, respectively. Measurements of perpendicularly biased ferrite at various power levels were made in a coaxial line cavity. The Q of Y-5 ferrite was found to decrease by less than a factor of 2 as the power density in the ferrite was increased to 1.3 W/cmT. A cavity design for a 6 GeV, high current, rapid cycling synchrotron using transversely biased ferrite tuning is described.

  14. Monte Carlo simulations of strain pseudospins: Athermal martensites, incubation times, and entropy barriers

    NASA Astrophysics Data System (ADS)

    Shankaraiah, N.; Murthy, K. P. N.; Lookman, T.; Shenoy, S. R.

    2011-08-01

    We study martensitic transition kinetics through temperature-quench Monte Carlo simulations for a square/rectangle ferroelastic transition, described by a Hamiltonian of three-state pseudospins S, without extrinsic disorder. Here S=0 for high-temperature austenite, and S=±1 for the two martensite variants. The temperature-dependent pseudospin Hamiltonian comes from the total scaled free energy functional, evaluated at the three minima of Landau polynomials in order-parameter strains. It includes power-law anisotropic interactions from the St. Venant compatibility constraint, which orient the elastic domain walls in a symmetry-breaking diagonal direction. We find that temperature-time-transformation (TTT) plots for domain-wall phase evolution have phase crossover temperatures, which are understood through an effective-droplet energy parametrization. For temperature cycling through the phases, there are hysteretic peaks in physical quantities. For temperature quenches, a “vapor” of martensitic droplets converts at a time tm(T) to a vibrating “liquid” of bidiagonal domain walls, which then orient at a time tC(T) to a static “crystal” of single-diagonal martensitic twins, which can have bound residual austenite. Focusing on the conversion time tm, we find a material-parameter phase diagram, which has regions of nonactivated “athermal” and activated “isothermal” martensites. In an athermal, nonactivated regime, there are explosive austenite-martensite conversions at temperatures below a residual-austenite spinodal in the TTT diagram, while above it, there are conversion tails, as in experiment. We find tm(T) has a quasi-universal Vogel-Fulcher divergence at transition, with a log-normal conversion-rate distribution. The incubation times tm,tC are attributed to entropy barriers, with signatures of flat energies, during pathway searches for finite-scale transition textures, which are explicitly identified through textural and internal-stress snapshots

  15. Cobalt ferrite nanoparticles under high pressure

    SciTech Connect

    Saccone, F. D.; Ferrari, S.; Grinblat, F.; Bilovol, V.; Errandonea, D.

    2015-08-21

    We report by the first time a high pressure X-ray diffraction and Raman spectroscopy study of cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles carried out at room temperature up to 17 GPa. In contrast with previous studies of nanoparticles, which proposed the transition pressure to be reduced from 20–27 GPa to 7.5–12.5 GPa (depending on particle size), we found that cobalt ferrite nanoparticles remain in the spinel structure up to the highest pressure covered by our experiments. In addition, we report the pressure dependence of the unit-cell parameter and Raman modes of the studied sample. We found that under quasi-hydrostatic conditions, the bulk modulus of the nanoparticles (B{sub 0} = 204 GPa) is considerably larger than the value previously reported for bulk CoFe{sub 2}O{sub 4} (B{sub 0} = 172 GPa). In addition, when the pressure medium becomes non-hydrostatic and deviatoric stresses affect the experiments, there is a noticeable decrease of the compressibility of the studied sample (B{sub 0} = 284 GPa). After decompression, the cobalt ferrite lattice parameter does not revert to its initial value, evidencing a unit cell contraction after pressure was removed. Finally, Raman spectroscopy provides information on the pressure dependence of all Raman-active modes and evidences that cation inversion is enhanced by pressure under non-hydrostatic conditions, being this effect not fully reversible.

  16. Stress Induce Martensitic Transformations in Hydrogen Embrittlement of Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Rozenak, Paul

    2013-04-01

    In austenitic type stainless steels, hydrogen concentration gradients formed during electrochemical charging and followed by hydrogen loss during aging, at room temperature, surface stresses, and martensitic phases α'-BCC and ɛ-HCP developed. The basic relationship between the X-ray diffraction peak broadening and the hydrogen gradients, formed during charging and aging at room temperature in such austenitic stainless steels, were analyzed. The results demonstrate that the impact of stresses must be considered in the discussion of phase transformations due to hydrogenation. Austenitic stainless steels based on iron-nickel-chromium, have relatively low stacking fault energy γSFE and undergo: quenching to low temperatures, plastic deformation, sensitization heat treatments, high pressure (≥3-5 × 109 Pa) by hydrogen or other gases, electrochemical charging (when the sample is cathode) and when is irradiation by various ions the samples in vacuum. All the above mentioned induce formation of ɛ and α' in the face-centered cubic (FCC) austenite γ matrix. The highest stresses cause formation of mainly α' phase and ɛ-martensite, and both are involved in plastic deformation processes and promoting crack propagation at the surface. In 310 steel, the crack propagation is based on deformation processes following ɛ-martensitic formation only. Formations of ɛ- and α'-martensites were noted along the fracture surfaces and ahead of the crack tip. The cracks propagated through the ɛ-martensitic plates, which formed along the active slip planes, while α' phase was always found in the high-stress region on the ends of the ligaments from both sides of the crack surfaces undergoing propagation.

  17. Stress Induce Martensitic Transformations in Hydrogen Embrittlement of Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Rozenak, Paul

    2014-01-01

    In austenitic type stainless steels, hydrogen concentration gradients formed during electrochemical charging and followed by hydrogen loss during aging, at room temperature, surface stresses, and martensitic phases α'-BCC and ɛ-HCP developed. The basic relationship between the X-ray diffraction peak broadening and the hydrogen gradients, formed during charging and aging at room temperature in such austenitic stainless steels, were analyzed. The results demonstrate that the impact of stresses must be considered in the discussion of phase transformations due to hydrogenation. Austenitic stainless steels based on iron-nickel-chromium, have relatively low stacking fault energy γSFE and undergo: quenching to low temperatures, plastic deformation, sensitization heat treatments, high pressure (≥3-5 × 109 Pa) by hydrogen or other gases, electrochemical charging (when the sample is cathode) and when is irradiation by various ions the samples in vacuum. All the above mentioned induce formation of ɛ and α' in the face-centered cubic (FCC) austenite γ matrix. The highest stresses cause formation of mainly α' phase and ɛ-martensite, and both are involved in plastic deformation processes and promoting crack propagation at the surface. In 310 steel, the crack propagation is based on deformation processes following ɛ-martensitic formation only. Formations of ɛ- and α'-martensites were noted along the fracture surfaces and ahead of the crack tip. The cracks propagated through the ɛ-martensitic plates, which formed along the active slip planes, while α' phase was always found in the high-stress region on the ends of the ligaments from both sides of the crack surfaces undergoing propagation.

  18. Microstructural analysis of martensite constituents in quenching and partitioning steels

    SciTech Connect

    Santofimia, M.J.; Petrov, R.H.; Zhao, L.; Sietsma, J.

    2014-06-01

    A methodology to distinguish martensite formed in the first quench (M1) from martensite formed in the second quench (M2) of the Quenching and Partitioning process is presented, enabling the study of the structural characteristics of both microstructural constituents. Investigations show that M1 displays larger block size and less lattice imperfections than M2, differences that can be related to their respective carbon contents. - Highlights: • An approach to distinguish “old” from “new” martensite in Q and P steels is presented • Methodology allows separate characterization of microstructure and crystallography “Old” martensite has larger block size and more perfect lattice than the “new” one • The differences between the old and new martensite depend on their carbon contents.

  19. A Nanoindentation Study on Grain-Boundary Contributions to Strengthening and Aging Degradation Mechanisms in Advanced 12Cr Ferritic Steel

    SciTech Connect

    Jang, Jae-il; Shim, Sang Hoon; Komazaki, Shin-ichi; Honda, Tetsuya

    2007-01-01

    Nanoindentation experiments and microstructural analysis were performed on advanced 12% Cr ferritic steel having extremely fine and complex martensitic microstructures, to answer unsolved questions on the contributions of grain boundaries to strengthening and aging degradation mechanisms in both as-tempered and thermally aged steels. Interesting features of the experimental results led us to suggest that among several high angle boundaries, block boundary is most effective in enhancing the macroscopic strength in as-tempered virgin sample, and that a decrease in matrix strength rather than reduction in grain-boundary strengthening effect is primarily responsible for the macroscopic softening behavior observed during thermal exposure.

  20. Low activation steels welding with PWHT and coating for ITER test blanket modules and DEMO

    NASA Astrophysics Data System (ADS)

    Aubert, P.; Tavassoli, F.; Rieth, M.; Diegele, E.; Poitevin, Y.

    2011-02-01

    EUROFER weldability is investigated in support of the European material properties database and TBM manufacturing. Electron Beam, Hybrid, laser and narrow gap TIG processes have been carried out on the EUROFER-97 steel (thickness up to 40 mm), a reduced activation ferritic-martensitic steel developed in Europe. These welding processes produce similar welding results with high joint coefficients and are well adapted for minimizing residual distortions. The fusion zones are typically composed of martensite laths, with small grain sizes. In the heat-affected zones, martensite grains contain carbide precipitates. High hardness values are measured in all these zones that if not tempered would degrade toughness and creep resistance. PWHT developments have driven to a one-step PWHT (750 °C/3 h), successfully applied to joints restoring good material performances. It will produce less distortion levels than a full austenitization PWHT process, not really applicable to a complex welded structure such as the TBM. Different tungsten coatings have been successfully processed on EUROFER material. It has shown no really effect on the EUROFER base material microstructure.

  1. Fusion materials development program in the broader approach activities

    NASA Astrophysics Data System (ADS)

    Nishitani, T.; Tanigawa, H.; Jitsukawa, S.; Nozawa, T.; Hayashi, K.; Yamanishi, T.; Tsuchiya, K.; Möslang, A.; Baluc, N.; Pizzuto, A.; Hodgson, E. R.; Laesser, R.; Gasparotto, M.; Kohyama, A.; Kasada, R.; Shikama, T.; Takatsu, H.; Araki, M.

    2009-04-01

    Breeding blankets are the most important components in DEMO. The DEMO blanket has to withstand high neutron flux typically 15-30 dpa/year under continuous operation. Therefore integrated and effective development of blanket structural materials and breeding/multiplying materials is essential in the blanket development for DEMO. In parallel to the ITER program, broader approach (BA) activities are initiated by EU and Japan. Based on the common interest of each party towards DEMO, R&D on reduced activation ferritic martensitic (RAFM) steels as a DEMO blanket structural material, SiC f/SiC composites which have potential for use in DEMO blankets, advanced tritium breeders and neutron multiplier for DEMO blankets, and tritium technologies including tritium behavior studies in advanced materials for DEMO blanket applications will be carried out as a part of the BA activities.

  2. Irradiation creep of various ferritic alloys irradiated {approximately}400 C in the PFR and FFTF reactors

    SciTech Connect

    Toloczko, M.B.; Garner, F.A.; Eiholzer, C.R.

    1998-03-01

    Three ferritic alloys were irradiated in two fast reactors to doses of 50 dpa or more at temperatures near 400 C. One martensitic alloy, HT9, was irradiated in both the FFTF and PFR reactors. PFR is the Prototype Fast Reactor in Dourneay, Scotland, and FFTF is the Fast Flux Test Facility in Richland, WA. D57 is a developmental alloy that was irradiated in PFR only, and MA957 is a Y{sub 2}O{sub 3} dispersion-hardened ferritic alloy that was irradiated only in FFTF. These alloys exhibited little or no void swelling at {approximately}400 C. Depending on the alloy starting condition, these steels develop a variety of non-creep strains early in the irradiation that are associated with phase changes. Each of these alloys creeps at a rate that is significantly lower than that of austenitic steels irradiated in the same experiments. The creep compliance for ferritic alloys in general appears to be {approximately}0.5 {times} 10{sup {minus}6} MPa{sup {minus}1} dpa{sup {minus}1}, independent of both composition and starting state. The addition of Y{sub 2}O{sub 3} as a dispersoid does not appear to change the creep behavior.

  3. The effect of microstructure on stress-induced martensitic transformation under cyclic loading in the SMA Nickel-Titanium

    NASA Astrophysics Data System (ADS)

    Kimiecik, Michael; Jones, J. Wayne; Daly, Samantha

    2016-04-01

    A combined experimental and analytical study to determine the configurations of transforming martensite during ambient temperature cyclic deformation of superelastic Nickel-Titanium has been conducted. Full-field, sub-grain-size microscale strain measurements were made in situ during cycling using distortion-corrected Digital Image Correlation combined with Scanning Electron Microscopy (SEM-DIC). Using grain orientation maps from Electron Backscatter Diffraction analysis, possible configurations of martensite formed during cyclic deformation were identified by matching the calculated and measured strain fields. This analysis showed that the inclusion of Correspondence Variants (CVs) in addition to Habit Plane Variants (HPVs) of transformed martensite was necessary to provide a robust fit between calculated and measured strain fields. The approach also provided evidence that there was a more rapid accumulation of residual strain in CV regions and that a correlation existed between residual strain accumulation and the loss of actively transforming martensite in later cycles. It was also found that regions of CVs could coexist with untransformed austenite and Habit Plane Variants (HPVs) in individual grains throughout the microstructure, and that these regions of CVs formed before the end of the macroscopic stress plateau. The CV structure that forms during the initial superelastic deformation of Nickel-Titanium plays a critical role in shaping and stabilizing subsequent martensite recovery during cyclic loading.

  4. Comparative cytotoxic response of nickel ferrite nanoparticles in human liver HepG2 and breast MFC-7 cancer cells.

    PubMed

    Ahamed, Maqusood; Akhtar, Mohd Javed; Alhadlaq, Hisham A; Khan, M A Majeed; Alrokayan, Salman A

    2015-09-01

    Nickel ferrite nanoparticles (NPs) have received much attention for their potential applications in biomedical fields such as magnetic resonance imaging, drug delivery and cancer hyperthermia. However, little is known about the toxicity of nickel ferrite NPs at the cellular and molecular levels. In this study, we investigated the cytotoxic responses of nickel ferrite NPs in two different types of human cells (i.e., liver HepG2 and breast MCF-7). Nickel ferrite NPs induced dose-dependent cytotoxicity in both types of cells, which was demonstrated by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazoliumbromide (MTT), neutral red uptake (NRU) and lactate dehydrogenase (LDH) assays. Nickel ferrite NPs were also found to induce oxidative stress, which was evident by the depletion of glutathione and the induction of reactive oxygen species (ROS) and lipid peroxidation. The mitochondrial membrane potential due to nickel ferrite NP exposure was also observed. The mRNA levels for the tumor suppressor gene p53 and the apoptotic genes bax, CASP3 and CASP9 were up-regulated, while the anti-apoptotic gene bcl-2 was down-regulated following nickel ferrite NP exposure. Furthermore, the activities of apoptotic enzymes (caspase-3 and caspase-9) were also higher in both types of cells treated with nickel ferrite NPs. Cytotoxicity induced by nickel ferrite was efficiently prevented by N-acetyl cysteine (ROS scavenger) treatment, which suggested that oxidative stress might be one of the possible mechanisms of nickel ferrite NP toxicity. We also observed that MCF-7 cells were slightly more susceptible to nickel ferrite NP exposure than HepG2 cells. This study warrants further investigation to explore the potential mechanisms of different cytotoxic responses of nickel ferrite NPs in different cell lines.

  5. The zinc ferrite obtained by oxidative precipitation method as a catalyst in n-butanol conversion

    SciTech Connect

    Klimkiewicz, Roman Wolska, Jolanta; Przepiera, Aleksander; Przepiera, Krystyna; Jablonski, Maciej; Lenart, Stanislaw

    2009-01-08

    This paper presents the results of catalytic properties of n-butanol conversion of the zinc ferrite obtained by oxidative precipitation method. The zinc ferrite showed good dehydrogenating activity but also catalyzed consecutive bimolecular condensation of emerged aldehyde particles into symmetrical ketone. The zinc-iron oxide of spinel structure was prepared from ferrous sulfate, which forms as a waste during the titanium dioxide production. The X-ray diffraction methods (XRD, XRF) were used in determining the structure and composition of obtained zinc ferrite, while thermogravimetry (TG-DTG), and differential thermal analysis (DTA) were used in the study of thermal transformations of zinc spinel in air.

  6. Isothermal martensitic transformation in a 12Cr-9Ni-4Mo-2Cu stainless steel in applied magnetic fields

    NASA Astrophysics Data System (ADS)

    San Martín, D.; Aarts, K. W. P.; Rivera-Díaz-del-Castillo, P. E. J.; van Dijk, N. H.; Brück, E.; van der Zwaag, S.

    This work concerns an in situ study of the isothermal formation of martensite in a stainless steel under the influence of magnetic fields up to 9 T at three different temperatures (213, 233 and 253 K). It is shown that the presence of a constant applied magnetic field promotes the formation of martensite significantly. The activation energy for the nucleation of martensite has been derived using a semi-empirical kinetic model. The experimental results have been analyzed using the Ghosh and Olson model. While this model describes the time and field dependences of the experimental data well, the thermal frictional energy and the defect size values are much lower than those expected from earlier work.

  7. Twinning and martensite in a 304 austenitic stainless steel

    SciTech Connect

    Shen, Yongfeng; Li, Xi; Sun, Xin; Wang, Y. D.; Zuo, Liang

    2012-08-30

    The microstructure characteristics and deformation behavior of 304L stainless steel during tensile deformation at two different strain rates have been investigated by means of interrupted tensile tests, electron-backscatter-diffraction (EBSD) and transmission electron microscopy (TEM) techniques. The volume fractions of transformed martensite and deformation twins at different stages of the deformation process were measured using X-ray diffraction method and TEM observations. It is found that the volume fraction of martensite monotonically increases with increasing strain but decreases with increasing strain rate. On the other hand, the volume fraction of twins increases with increasing strain for strain level less than 57%. Beyond that, the volume fraction of twins decreases with increasing strain. Careful TEM observations show that stacking faults (SFs) and twins preferentially occur before the nucleation of martensite. Meanwhile, both {var_epsilon}-martensite and {alpha}{prime}-martensite are observed in the deformation microstructures, indicating the co-existence of stress induced- transformation and strain-induced-transformation. We also discussed the effects of twinning and martensite transformation on work-hardening as well as the relationship between stacking faults, twinning and martensite transformation.

  8. Development of a monolithic ferrite memory array

    NASA Technical Reports Server (NTRS)

    Heckler, C. H., Jr.; Bhiwandker, N. C.

    1972-01-01

    The results of the development and testing of ferrite monolithic memory arrays are presented. This development required the synthesis of ferrite materials having special magnetic and physical characteristics and the development of special processes; (1) for making flexible sheets (laminae) of the ferrite composition, (2) for embedding conductors in ferrite, and (3) bonding ferrite laminae together to form a monolithic structure. Major problems encountered in each of these areas and their solutions are discussed. Twenty-two full-size arrays were fabricated and fired during the development of these processes. The majority of these arrays were tested for their memory characteristics as well as for their physical characteristics and the results are presented. The arrays produced during this program meet the essential goals and demonstrate the feasibility of fabricating monolithic ferrite memory arrays by the processes developed.

  9. High-Q ferrite-tuned cavity

    SciTech Connect

    Earley, L.M.; Thiessen, H.A.; Carlini, R.D.; Potter, J.M.

    1983-08-01

    Rapid-cycling proton synchrotrons, such as the proposed LAMPF II accelerator, require approximately 10 MV per turn rf with 17% tuning range near 50 MHz. The traditional approach to ferrite-tuned cavities uses a ferrite which is longitudinally biased (rf magnetic field parallel to bias field). This method leads to unacceptably high losses in the ferrite. At Los Alamos, we are developing a cavity with transverse bias (rf magnetic field perpendicular to the bias field) that makes use of the tensor permeability of the ferrite. Initial tests of a small (10-cm-diam) quarter-wave singly re-entrant cavity tuned by several different ferrites indicate that the losses in the ferrite can be made negligible compared with the losses due to the surface resistivity of the copper cavity.

  10. Creep resistant high temperature martensitic steel

    SciTech Connect

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2015-11-13

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6 carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  11. Versatility of electrospinning in the fabrication of fibrous mat and mesh nanostructures of bismuth ferrite (BiFeO3) and their magnetic and photocatalytic activities.

    PubMed

    Bharathkumar, S; Sakar, M; K, Rohith Vinod; Balakumar, S

    2015-07-21

    This study demonstrates the fabrication of electrospun bismuth ferrite (BiFeO3/BFO) fiber mat and fibrous mesh nanostructures consisting of aligned and random fibers respectively. The formation of these one dimensional (1D) nanostructures was mediated by the drum and plate collectors in the electrospinning process that yielded aligned and random nanofibers of BFO respectively. The single phase and rhombohedral crystal structure of the fabricated 1D BFO nanostructures are confirmed through X-ray diffraction (XRD) studies. X-ray photoelectron spectroscopy (XPS) studies indicated that the fabricated fibers are stoichiometric BFO with native oxidation states +3. The surface texture and morphology are analyzed using the field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM) techniques. The average size of fibers in mat and mesh nanostructures is found to be 200 nm and 150 nm respectively. The band gap energy of BFO mat and mesh deduced from their UV diffuse reflectance spectra (UV-DRS) was found to be 2.44 eV and 2.39 eV, respectively, which evidenced the improved visible light receptivity of BFO mesh compared to that of the mat. Magnetization studies using a super conducting quantum interference device (SQUID) magnetometer revealed the weak ferromagnetic properties of BFO mesh and mat nanostructures that could emerge due to the dimension induced suppression of cycloidal spin structures. The photocatalytic degradation properties of the fibrous mesh are found to be enhanced compared to that of the mat. This could be attributed to the reduced band gap energy and an improved semiconductor band-bending phenomenon in the mesh that favoured the transportation of excited charge carriers to the photocatalyst-dye interfaces and the production of more number of reactive species that lead to the effective degradation of the dye molecules.

  12. Magnetoabsorption and magnetic hysteresis in Ni ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Hernández-Gómez, P.; Muñoz, J. M.; Valente, M. A.; Torres, C.; de Francisco, C.

    2013-01-01

    Nickel ferrite nanoparticles were prepared by a modified sol-gel technique employing coconut oil, and then annealed at different temperatures in 400-1200 °C range. This route of preparation has revealed to be one efficient and cheap technique to obtain high quality nickel ferrite nanosized powder. Sample particles sizes obtained with XRD data and Scherrer's formula lie in 13 nm to 138 nm, with increased size with annealing temperature. Hysteresis loops have been obtained at room temperature with an inductive method. Magnetic field induced microwave absorption in nanoscale ferrites is a recent an active area of research, in order to characterize and explore potential novel applications. In the present work microwave magnetoabsorption data of the annealed nickel ferrite nanoparticles are presented. These data have been obtained with a system based on a network analyzer that operates in the frequency range 0 - 8.5 GHz. At fields up to 400 mT we can observe a peak according to ferromagnetic resonance theory. Sample annealed at higher temperature exhibits different absorption, coercivity and saturation magnetization figures, revealing its multidomain character.

  13. Friction and wear of single-crystal manganese-zinc ferrite

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with single-crystal manganese-zinc ferrite in contact with itself and with transition metals. Results indicate mating highest atomic density directions (110 line type) on matched crystallographic planes exhibit the lowest coefficient of friction indicating that direction is important in the friction behavior of ferrite. Matched parallel high atomic density planes and crystallographic directions at the interface exhibit low coefficients of friction. The coefficients of friction for ferrite in contact with various metals are related to the relative chemical activity of these metals. The more active the metal, the higher the coefficient of friction. Cracking and the formation of hexagon- and rectangular-shaped platelet wear debris due to cleavages are observed on the ferrite surfaces as a result of sliding.

  14. Friction and wear of single-crystal manganese-zinc ferrite

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with single crystal manganese-zinc ferrite in contact with itself and with transition metals. Results indicate mating highest atomic density directions (110) on matched crystallographic planes exhibit the lowest coefficient of friction, indicating that direction is important in the friction behavior of ferrite. Matched parallel high atomic density planes and crystallographic directions at the interface exhibit low coefficients of friction. The coefficients of friction for ferrite in contact with various metals are related to the relative chemical activity of these metals. The more active the metal, the higher the coefficient of friction. Cracking and the formation of hexagon- and rectangular-shaped platelet wear debris due to cleavages of (110) planes are observed on the ferrite surfaces as a result of sliding.

  15. Multifunctionality of nanocrystalline lanthanum ferrite

    NASA Astrophysics Data System (ADS)

    Rai, Atma; Thakur, Awalendra K.

    2016-05-01

    Nanocrystalline lanthanum ferrite has been synthesized by adopting modified Pechini route. No evidence of impurity or secondary phase has been detected up to the detection of error limit of X-ray diffractometer (XRD). Rietveld refinement of X-ray diffraction pattern reveals orthorhombic crystal system with space group Pnma (62).Crystallite size and lattice strain was found to be ˜42.8nm and 0.306% respectively. Optical band gap was found to be 2.109 eV, by UV-Visible diffused reflectance spectrum (DRS). Brunauer-Emmet-Teller (BET) surface area was found to be ˜3.45 m2/g. Magnetization-hysteresis (M-H) loop was recorded at room temperature (300K) reveals weak ferromagnetism in Nanocrystalline lanthanum ferrite. The weak ferromagnetism in lanthanum ferrite is due to the uncompensated antiferromagnetic spin ordering. Ferroelectric loop hysteresis observed at room temperature at 100Hz depicts the presence of ferroelectric ordering in LaFeO3.Simultanious presence of magnetic and ferroelectric ordering at room temperature makes it suitable candidate of Multiferroic family.

  16. Laser-based welding of 17-4 PH martensitic stainless steel in a tubular butt joint configuration with a built-in backing bar

    NASA Astrophysics Data System (ADS)

    Ma, Junjie; Atabaki, Mehdi Mazar; Liu, Wei; Pillai, Raju; Kumar, Biju; Vasudevan, Unnikrishnan; Kovacevic, Radovan

    2016-08-01

    Laser-based welding of thick 17-4 precipitation hardening (PH) martensitic stainless steel (SS) plates in a tubular butt joint configuration with a built-in backing bar is very challenging because the porosity and cracks are easily generated in the welds. The backing bar blocked the keyhole opening at the bottom surface through which the entrapped gas could escape, and the keyhole was unstable and collapsed overtime in a deep partially penetrated welding conditions resulting in the formation of pores easily. Moreover, the fast cooling rate prompted the ferrite transform to austenite which induced cracking. Two-pass welding procedure was developed to join 17-4 PH martensitic SS. The laser welding assisted by a filler wire, as the first pass, was used to weld the groove shoulder. The added filler wire could absorb a part of the laser beam energy; resulting in the decreased weld depth-to-width ratio and relieved intensive restraint at the weld root. A hybrid laser-arc welding or a gas metal arc welding (GMAW) was used to fill the groove as the second pass. Nitrogen was introduced to stabilize the keyhole and mitigate the porosity. Preheating was used to decrease the cooling rate and mitigate the cracking during laser-based welding of 17-4 PH martensitic SS plates.

  17. Surface modification to improve fireside corrosion resistance of Fe-Cr ferritic steels

    DOEpatents

    Park, Jong-Hee; Natesan, Krishnamurti; Rink, David L.

    2010-03-16

    An article of manufacture and a method for providing an Fe--Cr ferritic steel article of manufacture having a surface layer modification for corrosion resistance. Fe--Cr ferritic steels can be modified to enhance their corrosion resistance to liquid coal ash and other chemical environments, which have chlorides or sulfates containing active species. The steel is modified to form an aluminide/silicide passivating layer to reduce such corrosion.

  18. Chromium and copper substituted lanthanum nano-ferrites: Their synthesis, characterization and application studies

    NASA Astrophysics Data System (ADS)

    Jauhar, Sheenu; Singhal, Sonal

    2014-10-01

    Nano-crystalline lanthanum ferrites substituted by chromium and copper having formula LaMxFe1-xO3 (M = Cr, Cu; 0.0 ⩽ x ⩽ 0.5) were synthesized using sol-gel auto-combustion method. The formation of ferrite particles was confirmed using Fourier Transform Infra-Red (FT-IR) spectra and powder X-ray Diffraction (XRD) techniques. The entire ferrite compositions were found to be pure phased with same symmetry as LaFeO3. The average crystallite size was calculated to be ∼60 nm. The ferrite compositions were observed to behave as semi-conductors, as their resistivity decreased with increasing temperature. These ferrite compositions were employed as catalysts in the decomposition of hydrogen peroxide solution (0.17 M). Pure LaFeO3 was found to have a very low catalytic activity towards the decomposition of hydrogen peroxide solution, while presence of copper in the lanthanum ferrite lattice was found to significantly enhance its catalytic activity. The rate constant in case of reactions catalysed by LaCu0.5Fe0.5O3 was nearly 25 times larger than that obtained from reactions catalysed by pure LaFeO3. However, chromium substitution was not found to influence the catalytic activity of lanthanum ferrites as chromium substituted lanthanum ferrites exhibited very low catalytic activity. This was explained on the basis of relative stability of oxidation states of the substituent ions and the presence of defects in the crystal lattice.

  19. Stress-Corrosion Cracking in Martensitic PH Stainless Steels

    NASA Technical Reports Server (NTRS)

    Humphries, T.; Nelson, E.

    1984-01-01

    Precipitation-hardening alloys evaluated in marine environment tests. Report describes marine-environment stress-corrosion cracking (SCC) tests of three martensitic precipitation hardening (PH) stainless-steel alloys.

  20. Transformation temperatures of martensite in beta-phase nickel aluminide.

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.; Hehemann, R. F.

    1973-01-01

    Resistivity and thermal arrest measurements determined that the compositional dependence of M sub s temperatures for NiAl martensite was linear between 60 and 69 at. % Ni, with M sub s = (124 Ni - 7410)K. Resistivity and surface relief experiments for selected alloys indicated the presence of thermoelastic martensite. Some aspects of the transformation were studied by hot-stage microscopy and related to the behavior observed for alloys exhibiting the shape-memory effect.

  1. PERFORMANCE IMPROVEMENT OF CREEP-RESISTANT FERRITIC STEEL WELDMENTS THROUGH THERMO-MECHANICAL TREATMENT AND ALLOY DESIGN

    SciTech Connect

    Yamamoto, Yukinori; Babu, Prof. Sudarsanam Suresh; Shassere, Benjamin; Yu, Xinghua

    2016-01-01

    Two different approaches have been proposed for improvement of cross-weld creep properties of the high temperature ferrous structural materials for fossil-fired energy applications. The traditional creep strength-enhanced ferritic (CSEF) steel weldments suffer from Type IV failures which occur at the fine-grained heat affected zone (FGHAZ). In order to minimize the premature failure at FGHAZ in the existing CSEF steels, such as modified 9Cr-1Mo ferritic-martensitic steels (Grade 91), a thermo-mechanical treatment consisting of aus-forging/rolling and subsequent aus-aging is proposed which promotes the formation of stable MX carbonitrides prior to martensitic transformation. Such MX remains undissolved during welding process, even in FGHAZ, which successfully improves the cross-weld creep properties. Another approach is to develop a new fully ferrtic, creep-resistant FeCrAl alloy which is essentially free from Type IV failure issues. Fe-30Cr-3Al base alloys with minor alloying additions were developed which achieved a combination of good oxidation/corrosion resistance and improved tensile and creep performance comparable or superior to Grade 92 steel.

  2. Effects of strain-induced martensite and its reversion on the magnetic properties of AISI 201 austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Souza Filho, I. R.; Sandim, M. J. R.; Cohen, R.; Nagamine, L. C. C. M.; Hoffmann, J.; Bolmaro, R. E.; Sandim, H. R. Z.

    2016-12-01

    Strain-induced martensite (SIM) and its reversion in a cold-rolled AISI 201 austenitic stainless steel was studied by means of magnetic properties, light optical (LOM) and scanning electron (SEM) microscopy, electron backscatter diffraction (EBSD), texture measurements, and Vickers microhardness testing. According to Thermo-calc© predictions, the BCC phase (residual δ-ferrite and SIM) is expected to be stable until 600 °C. The current material was cold rolled up to 60% thickness reduction and submitted to both isothermal and stepwise annealing up to 800 °C. Magnetic measurements were taken during annealing (in situ) of the samples and also for their post mortem conditions. The Curie temperatures (Tc) of residual δ-ferrite and SIM have similar values between 550 and 600 °C. Besides Tc, the focused magnetic parameters were saturation magnetization (Ms), remanent magnetization (MR), and coercive field (Hc). SIM reversion was found to occur in the range of 600-700 °C in good agreement with Thermo-calc© predictions. The microstructures of the material, annealed at 600 and 700 °C for 1 h, were investigated via EBSD. Microtexture measurements for these samples revealed that the texture components were mainly those found for the 60% cold rolled material. This is an evidence that the SIM reversion occurred by an athermal mechanism.

  3. Bulk and thin film microstructures in untwinned martensites

    NASA Astrophysics Data System (ADS)

    Hane, Kevin F.

    1999-09-01

    The microstructure in alloys for which the martensite phase is either the 9R or 18R long-period stacking order structure is investigated. A choice of a new unit cell to describe the lattice of the product phase is made, and it is found to give an exact austenite-martensite interface. A comparison with experimental observations for several different material systems supports this choice of unit cell, and the predictions of the shape strain and habit plane normal vectors are the same as those given by a phenomenological calculation. The approach followed here de-emphasizes the role of the internal defects within the unit cell of the martensite lattice in providing the mechanism by which compatibility between the phases is achieved. It is this reason that the name untwinned martensites is proposed to replace the older name faulted martensites. In addition, microstructures in thin film specimens of the alloys exhibiting the untwinned martensite are studied. In particular, a tent microstructure is constructed in a specially oriented film, and such microstructures have potential applications in micro-devices to act as either a pump or an actuator.

  4. Crystallographic variant selection of martensite at high stress/strain

    NASA Astrophysics Data System (ADS)

    Das, Arpan

    2015-07-01

    The phenomenological theory of martensitic transformation is well understood that the displacive phase transformations are mainly influenced by the externally applied stress. Martensitic transformation occurs with 24 possible Kurdjomov-Sachs (K-S) variants, where each variant shows a distinct lattice orientation. The elegant transformation texture model of Kundu and Bhadeshia for crystallographic variant selection of martensite in metastable austenite at various stress/strain levels has been assessed in this present research. The corresponding interaction energies have also been evaluated. Encouraging correlation between model prediction and experimental data generation for martensite pole figures at many deformed austenite grains has been observed at different stress/strain levels. It has been investigated that the mechanical driving force alone is able to explain the observed martensite microtextures at all stress/strain levels under uniaxial tensile deformation of metastable austenite under low temperature at a slow strain rate. The present investigation also proves that the Patel and Cohen's classical theory can be utilized to predict the crystallographic variant selection, if it is correctly used along with the phenomenological theory of martensite crystallography.

  5. X-ray photoelectron spectroscopy and friction studies of nickel-zinc and manganese-zinc ferrites in contact with metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1983-01-01

    X-ray photoelectron spectroscopy analysis and sliding friction experiments were conducted with hot-pressed, polycrystalline Ni-Zn and Mn-Zn ferrites in sliding contact with various transition metals at room temperature in a vacuum of 30 nPa. The results indicate that the coefficients of friction for Ni-Zn and Mn-Zn ferrites in contact with metals are related to the relative chemical activity in these metals: the more active the metal, the higher is the coefficient of friction. The coefficients of friction for the ferrites correlate with the free energy of formation of the lowest metal oxide. The interfacial bond can be regarded as a chemical bond between the metal atoms and the oxygen anions in the ferrite surfaces. The adsorption of oxygen on clean metal and ferrite surfaces increases the coefficients of friction for the Ni-Zn and Mn-Zn ferrite-metal interfaces.

  6. High-strength economically alloyed corrosion-resistant steels with the structure of nitrogen martensite

    NASA Astrophysics Data System (ADS)

    Bannykh, O.; Blinov, V.; Lukin, E.

    2016-04-01

    The use of nitrogen as the main alloying element allowing one both to increase the corrosion resistance and mechanical properties of steels and to improve their processability is a new trend in physical metallurgy of high-strength corrosion resistant steels. The principles of alloying, which are developed for high-nitrogen steel in IMET RAS, ensure the formation of the structure, which contains predetermined amounts of martensite (70-80%) and austenite (20-30%) and is free from δ-ferrite, σ-phase, and Cr23C6 carbide. These principles were used as the base for the creation of new high-strength corrosion-resistant weldable and deformable 0Kh16AN5B, 06Kh16AN4FD, 08Kh14AN4MDB, 09Kh16AN3MF, 27Kh15AN3MD2, 40Kh13AN3M2, and 19Kh14AMB steels, which are operative at temperatures ranging from - 70 to 400°C. The developed nitrogen-containing steels compared with similar carbon steels are characterized by a higher resistance to pitting and crevice corrosion and are resistant to stress corrosion cracking. The new steels successfully passed trial tests as heavy duty articles.

  7. Mechanical Properties of Laser Beam Welded Ultra-high Strength Chromium Steel with Martensitic Microstructure

    NASA Astrophysics Data System (ADS)

    Dahmen, Martin; Janzen, Vitalij; Lindner, Stefan; Wagener, Rainer

    A new class of steels is going to be introduced into sheet manufacturing. Stainless ferritic and martensitic steels open up opportunities for sheet metal fabrication including hot stamping. A strength of up to 2 GPa at a fracture strain of 15% can be attained. Welding of these materials became apparently a challenge. Energy-reduced welding methods with in-situ heat treatment are required in order to ensure the delicate and complex heat control. Laser beam welding is the joining technique of choice to supply minimum heat input to the fusion process and to apply an efficient heat control. For two application cases, production of tailored blanks in as-rolled condition and welding in assembly in hot stamped conditions, welding processes have been developed. The welding suitability is shown in metallurgical investigations of the welds. Crash tests based on the KSII concept as well as fatigue tests prove the applicability of the joining method. For the case of assembly also joining with deep drawing and manganese boron steel was taken into consideration. The strength of the joint is determined by the weaker partner but can benefit from its ductility.

  8. Compatibility of martensitic/austenitic steel welds with liquid lead bismuth eutectic environment

    NASA Astrophysics Data System (ADS)

    Van den Bosch, J.; Almazouzi, A.

    2009-04-01

    The high-chromium ferritic/martensitic steel T91 and the austenitic stainless steel 316L are to be used in contact with liquid lead-bismuth eutectic (LBE), under high irradiation doses. Both tungsten inert gas (TIG) and electron beam (EB) T91/316L welds have been examined by means of metallography, scanning electron microscopy (SEM-EDX), Vickers hardness measurements and tensile testing both in inert gas and in LBE. Although the T91/316L TIG weld has very good mechanical properties when tested in air, its properties decline sharply when tested in LBE. This degradation in mechanical properties is attributed to the liquid metal embrittlement of the 309 buttering used in TIG welding of T91/316L welds. In contrast to mixed T91/316L TIG welding, the mixed T91/316L EB weld was performed without buttering. The mechanical behaviour of the T91/316L EB weld was very good in air after post weld heat treatment but deteriorated when tested in LBE.

  9. Beam induced heating of ferrite magnets

    SciTech Connect

    van Asselt, W.K.; Lee, Y.Y.

    1991-01-01

    Alerted by impedance measurements of ferrite kicker magnets and by apparent beam induced pressure increase in the neighborhood of window frame kicker magnets, bench measurements of magnet heating have been done. They confirmed the necessity of interrupting the ferrite yoke. Another method, which can be applied for existing magnets, will be described. 1 ref., 4 figs.

  10. Exchange coupled ferrite nanocomposites through chemical synthesis.

    PubMed

    Dai, Qilin; Patel, Ketan; Ren, Shenqiang

    2016-08-16

    Exchange coupling between magnetically hard and soft phases has the potential to yield a large gain in the energy product. In this work, we present a scalable chemical synthetic route to produce magnetic iron oxide based nanocomposites, consisting of cobalt ferrite (CoFe2O4) and strontium ferrite (SrFe12O19) components. PMID:27476744

  11. Surface modification of ferritic steels using MEVVA and duoplasmatron ion sources.

    PubMed

    Kulevoy, Timur V; Chalyhk, Boris B; Fedin, Petr A; Sitnikov, Alexey L; Kozlov, Alexander V; Kuibeda, Rostislav P; Andrianov, Stanislav L; Orlov, Nikolay N; Kravchuk, Konstantin S; Rogozhkin, Sergey V; Useinov, Alexey S; Oks, Efim M; Bogachev, Alexey A; Nikitin, Alexander A; Iskandarov, Nasib A; Golubev, Alexander A

    2016-02-01

    Metal Vapor Vacuum Arc (MEVVA) ion source (IS) is a unique tool for production of high intensity metal ion beam that can be used for material surface modification. From the other hand, the duoplasmatron ion source provides the high intensity gas ion beams. The MEVVA and duoplasmatron IS developed in Institute for Theoretical and Experimental Physics were used for the reactor steel surface modification experiments. Response of ferritic-martensitic steel specimens on titanium and nitrogen ions implantation and consequent vacuum annealing was investigated. Increase in microhardness of near surface region of irradiated specimens was observed. Local chemical analysis shows atom mixing and redistribution in the implanted layer followed with formation of ultrafine precipitates after annealing.

  12. Oxide dispersion strengthened ferritic steels: a basic research joint program in France

    NASA Astrophysics Data System (ADS)

    Boutard, J.-L.; Badjeck, V.; Barguet, L.; Barouh, C.; Bhattacharya, A.; Colignon, Y.; Hatzoglou, C.; Loyer-Prost, M.; Rouffié, A. L.; Sallez, N.; Salmon-Legagneur, H.; Schuler, T.

    2014-12-01

    AREVA, CEA, CNRS, EDF and Mécachrome are funding a joint program of basic research on Oxide Dispersion Strengthened Steels (ODISSEE), in support to the development of oxide dispersion strengthened 9-14% Cr ferritic-martensitic steels for the fuel element cladding of future Sodium-cooled fast neutron reactors. The selected objectives and the results obtained so far will be presented concerning (i) physical-chemical characterisation of the nano-clusters as a function of ball-milling process, metallurgical conditions and irradiation, (ii) meso-scale understanding of failure mechanisms under dynamic loading and creep, and, (iii) kinetic modelling of nano-clusters nucleation and α/α‧ unmixing.

  13. Ferritic steel for use in nuclear energy — A report of the snowbird conference

    NASA Astrophysics Data System (ADS)

    Davis, J. W.

    1984-05-01

    This international conference on ferritic or martensitic steels consisted of a planary session with all invited papers and several parallel sessions of contributed papers. The conference was sponsored by the Metallurgical Society of the American Institute of Mining, Metallurgical, and Petroleum Engineers (AIME) as well as several industrial organizations. The technical program chairmen were J. W. Davis of MDAC and D. J. Michel of the U.S. Naval Research Laboratory. The Program committee was composed of representatives from the Federal Republic of Germany, France, Japan, the UK, and the USA. The conference proceedings will be published as a hard bound book by the AIME. Consequently, the present paper is intended to highlight the results of the conference prior to the publication of the proceedings.

  14. Study of electroless Ni-W-P alloy coating on martensitic stainless steel

    NASA Astrophysics Data System (ADS)

    Nikitasari, Arini; Mabruri, Efendi

    2016-04-01

    Electroless nickel phospor (Ni-P) is widely used in many industries due to their corrosion and wear resistance, coating uniformity, and ability to coat non-conductive surfaces. The unique properties of tungsten such as high hardness, higher melting point, lower coefficient of linear thermal expansion, and high tensile strength have created a lot of interest in developing ternary Ni-W-P alloys. This article presents the study of electroless Ni-W-P alloys coating using acid or alkaline bath on martensitic stainless steel. Nickel sulfate and sodium tungstate were used as nickel and tungsten sources, respectively, and sodium hypophosphite was used as a reducing agent. Acid or alkaline bath refer to bath pH condition was adjusted by adding sulfuric acid. Martensitic stainless steel was immersed in Ni-W-P bath for 15, 30, and 60 minutes. The substrate of martensitic stainless steel was subjected to pre-treatment (polishing and cleaning) and activation prior to electroless plating. The plating characteristics were investigated for concentration ratio of nickel and hypophosphite (1:3), sodium tungstate concentration 0,1 M, immersion time (15 min, 30 min, 60 min), and bath condition (acid, alkaline). The electroless Ni-W-P plating was heat treated at 400°C for 1 hour. Deposits were characterized using scanning electron microscope (SEM) and corrosion measurement system (CMS).

  15. Flash fixation of heavy metals from two industrial wastes into ferrite by microwave hydrothermal co-treatment.

    PubMed

    Chen, Dan; Mei, Chun-Yan; Yao, Li-Hua; Jin, Hong-Ming; Qian, Guang-Ren; Xu, Zhi-Ping

    2011-09-15

    Flash fixation of heavy metals from electroplating wastewater (EPW) and pickling waste liquor (PWL) into ferrite lattice can be investigated by microwave hydrothermal process. The toxicity of wastewater may be reduced by the redox reaction between Cr(VI) in electroplating wastewater and Fe(II) in pickling waste liquor. Box-Behnken design (BBD) experiment gives optimal process condition of ferrite formation as follows: wastewater volume ratio (V(PWL):V(EPW) = 0.20), pH value 11 and retention time 15 min, on which formed ferrite has a soft magnetic property with high saturation magnetization (M(s)) 47.4 emu/g. The rapid ferrite process has lower activation energy 7.01 kJ/mol according to grain growth kinetics. Concerning the environmental and economy, we introduced a new and interesting method for water remediation simultaneously synthesizing ferrite by using microwave mediated hydrothermal processes. PMID:21840124

  16. Decomposition Kinetics of Ferrite in Isothermally Aged SAF 2507-Type Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Berecz, Tibor; Fazakas, Éva; Mészáros, István; Sajó, István

    2015-12-01

    Decomposition of the ferritic phase is studied in isothermally aged SAF 2507 superduplex stainless steel (SDSS) by means of different examination methods. The ferritic phase ( δ) undergoes an eutectoid transformation into secondary austenite ( γ 2) and σ-phase between 650 and 1000 °C. Samples were treated at 900 °C because the incubation time of this transformation is the shortest at this temperature. In order to follow the microstructural changes, x-ray diffraction analysis (XRD), automated electron backscatter diffraction (EBSD), applied magnetic investigation [vibrating sample magnetometer (VSM)], micro-hardness tests, and differential thermal analysis (DTA) were used. The results of XRD and EBSD methods for phase quantification showed nearly the same amounts for all three phases. The results of applied magnetic investigation for the fraction of ferritic phase were also in good agreement with the corresponding results of XRD and EBSD methods. Decomposition of ferrite is similarly well-traceable on EBSD phase maps where the coherent ferritic areas gradually broke into pieces with increasing time of heat treatment. According to the EBSD measurements the σ-phase grains appeared and started to grow after 2 min aging time in the ferritic-austenitic matrix, usually on the boundaries of ferritic and austenitic grains. After 15 min treating time, the microstructure consisted of mainly σ- and austenitic (primary and secondary) phases with negligible amount of ferrite. Chemical composition of the σ-phase was measured by energy-dispersive x-ray spectroscopy (EDS) at different aging times. Activation energies of σ-phase precipitation and α'-phase formation were determined by the Kissinger plot, through DTA measurements; they are 243 and 261 kJ/mol, respectively. Using the results of phase quantifications, the Johnson-Mehl-Avrami equation was fitted.

  17. Effect of tetra ionic substitution on the dielectric properties of Cu-ferrite

    NASA Astrophysics Data System (ADS)

    Mazen, S. A.; Zaki, H. M.

    2003-09-01

    X-ray diffraction (XRD), of the two systems of mixed ferrites Cu1+xTixFe2-2xO4 (where x = 0.0, 0.1, 0.2, 0.3, and 0.4); indicates that the samples of x = 0 (CuFe2O4) and x = 0.1 of the Cu-Ti system were formed in tetragonal structure and all other samples of the two system were formed in the cubic system.The ac conductivity , dielectric constant , dielectric loss and the loss tangent tan δ were determined against frequency at room temperature for Cu-Ge and Cu-Ti ferrites. The measurements of and tan δ were performed over a wide range of frequency and temperature.The Maxwell-Wagner model was applied to analyze the dielectric properties of the investigated systems, according to which the dielectric parameters such as the relaxation time . A value of 1 = 5 × 10-7 s was found for Cu-Ge ferrite and 2 = 1.85 × 10-6 s for Cu-Ti ferrites. The hopping rate (g) was found to be 2 × 106 s-1 and 5.4 × 105 s-1 for the two systems Cu-Ge and Cu-Ti ferrites, respectively.The conduction of the two-ferrite systems was discussed on the basis of the hopping mechanism. The activation energy for conduction was calculated and found in the range of 0.27-0.39 eV for Cu-Ge ferrite and 0.21-0.30 eV for Cu-Ti ferrite. (

  18. Role of B19' martensite deformation in stabilizing two-way shape memory behavior in NiTi

    DOE PAGES

    Benafan, O.; Padula, S. A.; Noebe, R. D.; Sisneros, T. A.; Vaidyanathan, R.

    2012-11-01

    Deformation of a B19' martensitic, polycrystallineNi49.9Ti50.1 (at. %) shape memoryalloy and its influence on the magnitude and stability of the ensuing two-way shape memory effect (TWSME) was investigated by combined ex situ mechanical experimentation and in situneutron diffraction measurements at stress and temperature. The microstructural changes (texture, lattice strains, and phase fractions) during room-temperature deformation and subsequent thermal cycling were captured and compared to the bulk macroscopic response of the alloy. With increasing uniaxial strain, it was observed that B19' martensite deformed by reorientation and detwinning with preferred selection of the (1¯50)M and (010)M variants, (201¯)B19' deformation twinning, and dislocationmore » activity. These mechanisms were indicated by changes in bulk texture from the neutron diffraction measurements. Partial reversibility of the reoriented variants and deformation twins was also captured upon load removal and thermal cycling, which after isothermal deformation to strains between 6% and 22% resulted in a strong TWSME. Consequently, TWSME functional parameters including TWSME strain, strain reduction, and transformation temperatures were characterized and it was found that prior martensite deformation to 14% strain provided the optimum condition for the TWSME, resulting in a stable two-way shape memory strain of 2.2%. Thus, isothermal deformation of martensite was found to be a quick and efficient method for creating a strong and stable TWSME in Ni₄₉.₉Ti₅₀.₁.« less

  19. Development of oxide dispersion strengthened ferritic steels for fusion

    SciTech Connect

    Mukhopadhyay, D.K.; Froes, F.H.; Gelles, D.S.

    1998-03-01

    An oxide dispersion strengthened (ODS) ferritic steel with high temperature strength has been developed in line with low activation criteria for application in fusion power systems. The composition Fe-13.5Cr-2W-0.5Ti-0.25Y{sub 2}O{sup 3} was chosen to provide a minimum chromium content to insure fully delta-ferrite stability. High temperature strength has been demonstrated by measuring creep response of the ODS alloy in uniaxial tension at 650 and 900 C in an inert atmosphere chamber. Results of tests at 900 C demonstrate that this alloy has creep properties similar to other alloys of similar design and can be considered for use in high temperature fusion power system designs. The alloy selection process, materials production, microstructural evaluation and creep testing are described.

  20. Martensitic transformation, shape memory effects, and other curious mechanical effects

    SciTech Connect

    Vandermeer, R.A.

    1982-01-08

    The objective of this paper is to review tutorially the subject of martensitic transformations in uranium alloys emphasizing their role in the shape memory effect (SME). We examine first what a martensitic transformation is, illustrating some of its characteristics with specific examples. As well as being athermal in nature, as expected, data are presented indicating that martensitic transformations in some uranium alloys also have a strong isothermal component. In addition, a few alloys are known to exhibit thermoelastic martensitic reactions. The SME, which is associated with these, is defined and demonstrated graphically with data from a uranium-6 wt % niobium alloy. Some of the important variables influencing SME behavior are described. Specifically, these are reheat temperature, amount of deformation, crystal structure, and composition. A mechanism for SME is postulated and the association with martensitic transformation is detailed. A self-induced shape instability in the uranium-7.5 wt % niobium-2.5 wt % zirconium alloy with a rationalization of the behavior in terms of texture and lattice parameter change during aging is reviewed and discussed. 24 figures.

  1. Crystallographic variant selection of martensite during fatigue deformation

    NASA Astrophysics Data System (ADS)

    Das, Arpan

    2015-03-01

    Metastable austenitic stainless steels are prone to form deformation-induced martensite under the influence of externally applied stress. Crystallographic variant selection during martensitic transformation of metastable austenite has been investigated thoroughly with respect to the interaction between the applied uniaxial cyclic stress and the resulting accumulated plastic strain during cyclic plastic deformation. The orientation of all the Kurdjomov-Sachs (K-S) variants has been evaluated extensively and compared with the measured orientation of martensite with their corresponding interaction energies by applying the elegant transformation texture model recently developed by Kundu and Bhadeshia. Encouraging correlation between model prediction and experimental data generation for martensite pole figures at many deformed austenite grains has been observed. It has been found that both the applied uniaxial cyclic stress and the accumulated plastic strain are having strong influence on crystallographic variant selection during cyclic plastic deformation. Patel and Cohen's classical theory can be utilized to predict the crystallographic variant selection, if it is correctly used along with the phenomenological theory of martensite crystallography.

  2. Structural analysis of emerging ferrite: Doped nickel zinc ferrite

    SciTech Connect

    Kumar, Rajinder; Kumar, Hitanshu; Singh, Ragini Raj; Barman, P. B.

    2015-08-28

    Ni{sub 0.6-x}Zn{sub 0.4}Co{sub x}Fe{sub 2}O{sub 4} (x = 0, 0.033, 0.264) nanoparticles were synthesized by sol-gel method and annealed at 900°C. Structural properties of all prepared samples were examined with X-ray diffraction (XRD). The partial formation of hematite (α-Fe{sub 2}O{sub 3}) secondary phase with spinel phase cubic structure of undoped and cobalt doped nickel zinc ferrite was found by XRD peaks. The variation in crystallite size and other structural parameters with cobalt doping has been calculated for most prominent peak (113) of XRD and has been explained on the basis of cations ionic radii difference.

  3. Influence parameters of martensitic transformation during low cycle fatigue for steel AISI 321

    NASA Astrophysics Data System (ADS)

    Grosse, M.; Kalkhof, D.; Keller, L.; Schell, N.

    2004-07-01

    The volume fraction of martensite continuously increases with the fatigue cycle number. Consequently, the martensite amount can be used for indication of the low cycle fatigue state. Following an exponential decay function, the martensite volume fraction decreases with increasing temperature. No influence of the load frequency was found. The initial material state plays an important role for the martensite formation rate. The amount of martensite formed is much higher after cold-rolling than after solution annealing as final manufacturing process. The martensite shows a fibre texture in the annealed material. The (1 1 0) planes are preferentially oriented parallel and perpendicular to the loading direction. In the cold-rolled material no significant preferred orientation of this phase was found. The martensite is concentrated in the centre of the specimens. The shape of the distribution seems to be independent on the martensite amount.

  4. Irradiation creep of various ferritic alloys irradiated at {approximately}400{degrees}C in the PFR and FFTF reactors

    SciTech Connect

    Toloczko, M.B.; Garner, F.A.; Eiholzer, C.R.

    1997-04-01

    Three ferritic alloys were irradiated in two fast reactors to doses of 50 dpa or more at temperatures near 400{degrees}C. One martensitic alloy, HT9, was irradiated in both the FFTF and PFR reactors. PFR is the Prototype Fast Reactor in Dourneay, Scotland, and FFTF is the Fast Flux Test Facility in Richland, WA. D57 is a developmental alloy that was irradiated in PFR only, and MA957 is a Y{sub 2}O{sub 3} dispersion-hardened ferritic alloy that was irradiated only in FFTF. These alloys exhibited little or no void swelling at {approximately}400{degrees}C. Depending on the alloy starting condition, these steels develop a variety of non-creep strains early in the irradiation that are associated with phase changes. Each of these alloys creeps at a rate that is significantly lower than that of austenitic steels irradiated in the same experiments. The creep compliance for ferritic alloys in general appears to be {approximately}0.5 x 10{sup {minus}6} MPa{sup {minus}1} dpa{sup {minus}1}, independent of both composition and starting state. The addition of Y{sub 2}O{sub 3} as a dispersoid does not appear to change the creep behavior.

  5. Effects of Annealing Temperature on Microstructure and Tensile Properties in Ferritic Lightweight Steels

    NASA Astrophysics Data System (ADS)

    Han, Seung Youb; Shin, Sang Yong; Lee, Hyuk-Joong; Lee, Byeong-Joo; Lee, Sunghak; Kim, Nack J.; Kwak, Jai-Hyun

    2012-03-01

    An investigation was conducted into the effects of annealing temperature on microstructure and tensile properties of ferritic lightweight steels. Two steels were fabricated by varying the C content, and were annealed at 573 K to 1173 K (300 °C to 900 °C) for 1 hour. According to the microstructural analysis results, κ-carbides were formed at about 973 K (700 °C), which was confirmed by equilibrium phase diagrams calculated from a THERMO-CALC program. In the steel containing low carbon content, needle-shaped κ-carbides were homogeneously dispersed in the ferrite matrix, whereas bulky band-shaped martensites were distributed in the steel containing high carbon content. In the 973 K (700 °C)-annealed specimen of the steel containing high carbon content, deformation bands were formed throughout the specimen, while fine carbides were sufficiently deformed inside the deformation bands, thereby resulting in the greatest level of strength and ductility. These results indicated that the appropriate annealing treatment of steel containing high carbon content was useful for the improvement of both strength and ductility over steel containing low carbon content.

  6. Development of nano-structured duplex and ferritic stainless steels by pulverisette planetary milling followed by pressureless sintering

    SciTech Connect

    R, Shashanka Chaira, D.

    2015-01-15

    Nano-structured duplex and ferritic stainless steel powders are prepared by planetary milling of elemental Fe, Cr and Ni powder for 40 h and then consolidated by conventional pressureless sintering. The progress of milling and the continuous refinement of stainless steel powders have been confirmed by means of X-ray diffraction and scanning electron microscopy. Activation energy for the formation of duplex and ferritic stainless steels is calculated by Kissinger method using differential scanning calorimetry and is found to be 159.24 and 90.17 KJ/mol respectively. Both duplex and ferritic stainless steel powders are consolidated at 1000, 1200 and 1400 °C in argon atmosphere to study microstructure, density and hardness. Maximum sintered density of 90% and Vickers microhardness of 550 HV are achieved for duplex stainless steel sintered at 1400 °C for 1 h. Similarly, 92% sintered density and 263 HV microhardness are achieved for ferritic stainless steel sintered at 1400 °C. - Highlights: • Synthesized duplex and ferritic stainless steels by pulverisette planetary milling • Calculated activation energy for the formation of duplex and ferritic stainless steels • Studied the effect of sintering temperature on density, hardness and microstructure • Duplex stainless steel exhibits 90% sintered density and microhardness of 550 HV. • Ferritic stainless steel shows 92% sintered density and 263 HV microhardness.

  7. Characterization of Solid State Phase Transformation in Continuously Heated and Cooled Ferritic Weld Metal

    SciTech Connect

    Narayana, B; Mills, Michael J.; Specht, Eliot D; Santella, Michael L; Babu, Sudarsanam Suresh

    2010-12-01

    Arc welding processes involve cooling rates that vary over a wide range (1-100 K/s). The final microstructire is thus a product of the heating and cooling cycles experienced by the weld in addition to the weld composition. It has been shown that the first phase to form under weld cooling conditions may not be that predicted by equilibrium calculations. The partitioning of different interstitial/substitutional alloying elements at high temperatures can dramatically affect the subsequent phase transformations. In order to understand the effect of alloying on phase transformation temperatures and final microstructures time-resolved X-ray diffraction technique has been successfully used for characterization. The work by Jacot and Rappaz on pearlitic steels provided insight into austenitization of hypoeutectic steels using a finite volume model. However there is very little work done on the effect of heating and cooling rates on the phase transformation paths in bainitic/martensitic steels and weld metals. Previous work on a weld with higher aluminum content, deposited with a FCAW-S process indicated that even at aluminum levels where the primary phase to solidify from liquid should be delta ferrite, non-equilibrium austenite was observed. The presence of inhomogeneity in composition of the parent microstructure has been attributed to differences in transformation modes, temperatures and microstructures in dual-phase, TRIP steels and ferritic welds. The objectives of the work included the identification of the stability regions of different phases during heating and cooling, differences in the effect of weld heating and cooling rates on the phase transformation temperatures, and the variation in phase fractions of austenite and ferrite in the two phase regions as a function of temperature. The base composition used for the present work is a Fe-1%Al-2%Mn-1%Ni-0.04%C weld metal. A pseudo-binary phase diagram shows the expected solidification path under equilibrium

  8. Martensitic transformations in high-strength steels at aging

    NASA Astrophysics Data System (ADS)

    Berezovskaya, V. V.; Bannykh, O. A.

    2011-04-01

    The effect of heat treatment and elastic stresses on the texture of maraging NiTi-steels is studied. The interruption of the decomposition of martensite at the early stages is shown to be accompanied by the γ → α transformation, which proceeds upon cooling from the aging temperature and under elastic (σ < σ0.2) tensile stresses. The martensite has a crystallographic texture, which is caused by the evolution of hot-deformation texture as a result of quenching and decomposition of a supersaturated α solid solution.

  9. Influence of magnetic fields on structural martensitic transitions

    SciTech Connect

    Lashley, J C; Cooley, J C; Smith, J L; Fisher, R A; Modic, K A; Yang, X- D; Riseborough, P S; Opeil, C P; Finlayson, T R; Goddard, P A; Silhanek, A V

    2009-01-01

    We show evidence that a structural martensitic transition is related to significant changes in the electronic structure, as revealed in thermodynamic measurements made in high-magnetic fields. The magnetic field dependence is considered unusual as many influential investigations of martensitic transitions have emphasized that the structural transitions are primarily lattice dynamical and are driven by the entropy due to the phonons. We provide a theoretical framework which can be used to describe the effect of magnetic field on the lattice dynamics in which the field dependence originates from the dielectric constant.

  10. Antimicrobial Lemongrass Essential Oil-Copper Ferrite Cellulose Acetate Nanocapsules.

    PubMed

    Liakos, Ioannis L; Abdellatif, Mohamed H; Innocenti, Claudia; Scarpellini, Alice; Carzino, Riccardo; Brunetti, Virgilio; Marras, Sergio; Brescia, Rosaria; Drago, Filippo; Pompa, Pier Paolo

    2016-01-01

    Cellulose acetate (CA) nanoparticles were combined with two antimicrobial agents, namely lemongrass (LG) essential oil and Cu-ferrite nanoparticles. The preparation method of CA nanocapsules (NCs), with the two antimicrobial agents, was based on the nanoprecipitation method using the solvent/anti-solvent technique. Several physical and chemical analyses were performed to characterize the resulting NCs and to study their formation mechanism. The size of the combined antimicrobial NCs was found to be ca. 220 nm. The presence of Cu-ferrites enhanced the attachment of LG essential oil into the CA matrix. The magnetic properties of the combined construct were weak, due to the shielding of Cu-ferrites from the polymeric matrix, making them available for drug delivery applications where spontaneous magnetization effects should be avoided. The antimicrobial properties of the NCs were significantly enhanced with respect to CA/LG only. This work opens novel routes for the development of organic/inorganic nanoparticles with exceptional antimicrobial activities. PMID:27104514

  11. Ferrite HOM Absorber for the RHIC ERL

    SciTech Connect

    Hahn,H.; Choi, E.M.; Hammons, L.

    2008-10-01

    A superconducting Energy Recovery Linac is under construction at Brookhaven National Laboratory to serve as test bed for RHIC upgrades. The damping of higher-order modes in the superconducting five-cell cavity for the Energy-Recovery linac at RHIC is performed exclusively by two ferrite absorbers. The ferrite properties have been measured in ferrite-loaded pill box cavities resulting in the permeability values given by a first-order Debye model for the tiled absorber structure and an equivalent permeability value for computer simulations with solid ring dampers. Measured and simulated results for the higher-order modes in the prototype copper cavity are discussed. First room-temperature measurements of the finished niobium cavity are presented which confirm the effective damping of higher-order modes in the ERL. by the ferrite absorbers.

  12. Ferrite insertion at Recycler Flying Wire System

    SciTech Connect

    K.Y. Ng

    2004-02-27

    Ferrite rods are installed inside the flying-wire cavity of the Recycler Ring and at entrance and exit beam pipes in order to absorb high-frequency electromagnetic waves excited by the beam. However, these rods may also deteriorate the vacuum pressure of the ring. An investigation is made to analyze the necessity of the ferrite rods at the entrance and exit beam pipes.

  13. Investigation on the Behavior of Austenite and Ferrite Phases at Stagnation Region in the Turning of Duplex Stainless Steel Alloys

    NASA Astrophysics Data System (ADS)

    Nomani, J.; Pramanik, A.; Hilditch, T.; Littlefair, G.

    2016-06-01

    This paper investigates the deformation mechanisms and plastic behavior of austenite and ferrite phases in duplex stainless steel alloys 2205 and 2507 under chip formation from a machine turning operation. SEM images and EBSD phase mapping of frozen chip root samples detected a build-up of ferrite bands in the stagnation region, and between 65 and 85 pct, more ferrite was identified in the stagnation region compared to austenite. SEM images detected micro-cracks developing in the ferrite phase, indicating ferritic build-up in the stagnation region as a potential triggering mechanism to the formation of built-up edge, as transgranular micro-cracks found in the stagnation region are similar to micro-cracks initiating built-up edge formation. Higher plasticity of austenite due to softening under high strain is seen responsible for the ferrite build-up. Flow lines indicate that austenite is plastically deforming at a greater rate into the chip, while ferrite shows to partition most of the strain during deformation. The loss of annealing twins and activation of multiple slip planes triggered at high strain may explain the highly plastic behavior shown by austenite.

  14. Feedback controlled hybrid fast ferrite tuners

    SciTech Connect

    Remsen, D.B.; Phelps, D.A.; deGrassie, J.S.; Cary, W.P.; Pinsker, R.I.; Moeller, C.P.; Arnold, W.; Martin, S.; Pivit, E.

    1993-09-01

    A low power ANT-Bosch fast ferrite tuner (FFT) was successfully tested into (1) the lumped circuit equivalent of an antenna strap with dynamic plasma loading, and (2) a plasma loaded antenna strap in DIII-D. When the FFT accessible mismatch range was phase-shifted to encompass the plasma-induced variation in reflection coefficient, the 50 {Omega} source was matched (to within the desired 1.4 : 1 voltage standing wave ratio). The time required to achieve this match (i.e., the response time) was typically a few hundred milliseconds, mostly due to a relatively slow network analyzer-computer system. The response time for the active components of the FFT was 10 to 20 msec, or much faster than the present state-of-the-art for dynamic stub tuners. Future FFT tests are planned, that will utilize the DIII-D computer (capable of submillisecond feedback control), as well as several upgrades to the active control circuit, to produce a FFT feedback control system with a response time approaching 1 msec.

  15. Development and application of ferrite materials for low temperature co-fired ceramic technology

    NASA Astrophysics Data System (ADS)

    Zhang, Huai-Wu; Li, Jie; Su, Hua; Zhou, Ting-Chuan; Long, Yang; Zheng, Zong-Liang

    2013-11-01

    Development and application of ferrite materials for low temperature co-fired ceramic (LTCC) technology are discussed, specifically addressing several typical ferrite materials such as M-type barium ferrite, NiCuZn ferrite, YIG ferrite, and lithium ferrite. In order to permit co-firing with a silver internal electrode in LTCC process, the sintering temperature of ferrite materials should be less than 950 °C. These ferrite materials are research focuses and are applied in many ways in electronics.

  16. Microstructure characterization of the non-modulated martensite in Ni-Mn-Ga alloy

    SciTech Connect

    Han, M. Bennett, J.C.; Gharghouri, M.A.; Chen, J.; Hyatt, C.V.; Mailman, N.

    2008-06-15

    The microstructure of the non-modulated martensite in a Ni-Mn-Ga alloy has been characterized in detail by conventional transmission electron microscopy. Bright field images show that the martensite exhibits an internal substructure consisting of a high density of narrow twins. Using electron diffraction, it is found that the martensite has a tetragonal crystal structure. The lattice correspondence between the parent phase and the non-modulated martensite is investigated. Furthermore, the four twinning elements describing the microtwinning have been graphically and quantitatively determined. The results indicate that the microtwinning within the non-modulated martensite belongs to the compound type.

  17. Martensitic transformation in Cu-doped NiMnGa magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Li, Pan-Pan; Wang, Jing-Min; Jiang, Cheng-Bao

    2011-02-01

    This paper studies the martensitic transformation in the Cu-doped NiMnGa alloys. The orthorhombic martensite transforms to L21 cubic austenite by Cu substituting for Ni in the Ni50-xCuxMn31Ga19 (x=2-10) alloys, the martensitic transformation temperature decreases significantly with the rate of 40 K per Cu atom addition. The variation of the Fermi sphere radius (kF) is applied to evaluate the change of the martensitic transformation temperature. The increase of kF leads to the increase of the martensitic transformation temperature.

  18. Aspects of thermal martensite in a FeNiMnCo alloy.

    PubMed

    Güler, M; Güler, E; Kahveci, N

    2010-07-01

    Thermal martensite characteristics in Fe-29%Ni-2%Mn-2%Co alloy were investigated with scanning electron microscopy (SEM) and Mössbauer spectroscopy characterization techniques. SEM observations obviously revealed the lath martensite morphology in the prior austenite phase of examined alloy. As well, the martensitic transformation kinetics was found to be as athermal type. On the other hand, Mössbauer spectroscopy offered the paramagnetic austenite phase and ferromagnetic martensite phase with their volume fractions. Also, the internal magnetic field of the martensite was measured as 32.9T from the Mössbauer spectrometer.

  19. Synthesis, electrical and dielectric characterization of cerium doped nano copper ferrites

    SciTech Connect

    Malana, Muhammad Aslam Qureshi, Raheela Beenish; Ashiq, Muhammad Naeem; Zafar, Zafar Iqbal

    2013-11-15

    Graphical abstract: Lattice constant (a) and activation energy (Ea) as a function of Ce (cerium) content. - Highlights: • The simple and economic method has been adopted for the synthesis of nanoferrites. • The electrical resistivity increases with cerium concentration. • DC electrical resistivity of these materials favours their use in microwave devices. • Dielectric measurements show semiconductor nature of the synthesized ferrites. - Abstract: The nanosized CuFe{sub 2−x}Ce{sub x}O{sub 4} (x = 0.0, 0.2, 0.4, 0.6, 0.8) ferrites doped with cerium are synthesized by chemical co-precipitation method. The synthesized materials are characterized by XRD, FTIR, TGA and SEM. XRD analysis of cerium substituted copper ferrites confirms the cubic spinel structure. The average crystallite size calculated by using Scherrer's formula ranges from 37 to 53 nm. The values of cell constant and cell volume vary with the dopant concentration. These variations can be explained in terms of their ionic radii. The DC electrical resistivity, measured by two point probe method, increases with increase in dopant concentration while it decreases with rise in temperature exhibiting semiconductor behaviour. Energy of activation of these ferrites is calculated by using Arrhenius type resistivity plots. Dielectric measurements of the synthesized compounds show exponential decrease in dielectric constant and dielectric loss factor with increase in frequency. This indicates the normal dielectric behaviour of ferrites.

  20. Characteristics of the rough-cut surface of quenched and tempered martensitic stainless steel using wire electrical discharge machining

    NASA Astrophysics Data System (ADS)

    Huang, C. A.; Tu, G. C.; Yao, H. T.; Kuo, H. H.

    2004-04-01

    This article studies the surface characteristics of quench- and temper-treated AISI 440A martensitic stainless steels, which were rough cut using wire electrical discharge machining (WEDM). The microstructure of the recast layer on the cut surface was investigated using scanning and transmission electron microscopes, and the phase compositions were analyzed with an energy-dispersive X-ray (EDX) spectrometer. Experimental results showed that the thickness of the recast layer varied with the heat-treatment condition of the workpiece, the largest thickness was obtained with a quenched specimen, and the thickness decreased with increasing tempering temperature. Intergranular surface cracks were observed only from the as-quenched specimen, whereas surface cracks were not found in the rough-cut specimens after tempering above 200 °C. It is reckoned that reliefing of the thermal residual stress in the quenched workpiece induced the surface intergranular cracks. Microstructures of the recast layer on the rough-cut surfaces of the 600 °C tempered specimen were examined using cross-sectional transmission electron microscopy (TEM) specimens. An amorphous layer exists at some parts of the outermost cut surface. A high density of wire electrode droplets of spherical shape, approximately 10 to 60 nm in size, was found throughout the porous recast layer. Besides, many high-chromium containing sigma spheres with sizes of approximately 120 to 200 nm were precipitated at the bottom part of the recast layer, and its formation mechanism was proposed. Adjacent to the recast layer was a heat-affected zone (HAZ) with a thickness of about 4 µm, in which temper-induced carbides were fully dissolved. The HAZ comprised basically two distinct regions: the first region adjacent to the recast layer was composed of a lath martensite structure, while the other region was an annealed ferrite structure.

  1. Analyses of Transformation Kinetics of Carbide-Free Bainite Above and Below the Athermal Martensite-Start Temperature

    NASA Astrophysics Data System (ADS)

    Yakubtsov, I. A.; Purdy, G. R.

    2012-02-01

    The isothermal transformation kinetics of austenite decomposition in Fe-0.4C-2.78Mn-1.81Si was analyzed by an electrical resistivity technique in the temperature interval 723 K to 418 K (450 °C to 145 °C). The analysis of transformation kinetics of the bainite transformation was performed using the Johnson-Mehl-Avrami-Kolgomorov (JMAK) and Austin-Rickett (AR) approaches. The kinetic parameters, the reaction constant n, rate constant k = k( T), and apparent activation energy Q were evaluated for isothermal transformations below and above the martensite-start temperature M S = 548 K (275 °C), which was determined experimentally. The formation of strain-induced martensite, which starts to accompany the bainite transformation at just above M S , increases the rate of transformation and decreases the apparent activation energy of austenite decomposition.

  2. Understanding of martensitic (TiCu)-based bulk metallic glasses through deformation behavior of a binary Ti{sub 50}Cu{sub 50} martensitic alloy

    SciTech Connect

    Kim, K. B.; Song, K. A.; Zhang, X. F.; Yi, S.

    2008-06-16

    A binary Ti{sub 50}Cu{sub 50} martensitic alloy having similar atomic clusters to (TiCu)-based martensitic bulk metallic glasses presents a large plastic strain of 18.04% with high fracture strength of 1705 MPa. Detailed microstructural investigations point out that martensite embedded in {gamma}-TiCu matrix is effective to dissipate localization of the shear stress thus leading to rotational propagation, interaction, and multiplication of the shear bands. Furthermore, the propagation of microcracks formed by local stress transition during deformation is hindered by the martensite.

  3. Identification of epsilon martensite in a Fe-based shape memory alloy by means of EBSD.

    PubMed

    Verbeken, K; Van Caenegem, N; Raabe, D

    2009-01-01

    Ferrous shape memory alloys (SMAs) are often thought to become a new, important group of SMAs. The shape memory effect in these alloys is based on the reversible, stress-induced martensitic transformation of austenite to epsilon martensite. The identification and quantification of epsilon martensite is crucial when evaluating the shape memory behaviour of this material. Previous work displayed that promising results were obtained when studying the evolution of the amount of epsilon martensite after different processing steps with Electron BackScatter Diffraction (EBSD). The present work will discuss in detail, on the one hand, the challenges and opportunities arising during the identification of epsilon martensite by means of EBSD and, on the other hand, the possible interpretations that might be given to these findings. It will be illustrated that although the specific nature of the austenite to epsilon martensite transformation can still cause some points of discussion, EBSD has a high potential for identifying epsilon martensite.

  4. On the Mechanical Stability of Austenite Matrix After Martensite Formation in a Medium Mn Steel

    NASA Astrophysics Data System (ADS)

    He, B. B.; Huang, M. X.

    2016-07-01

    The present work employs the nanoindentation technique to investigate the effect of prior martensite formation on the mechanical stability of a retained austenite matrix. It is found that the small austenite grains that were surrounded by martensite laths have higher mechanical stability than the large austenite grains that were free of martensite laths. The higher mechanical stability of small austenite grains is due to its higher amount of defects resulting from the prior martensite formation. These defects act as barriers for the later martensite formation and therefore contribute to the higher mechanical stability of small austenite grains. As a result, the present work suggests that the formation of martensite tends to stabilize the surrounding austenite matrix. Therefore, it may explain the lower transformed amount of martensite after quenching as compared to the theoretical calculation using the Koistinen and Marburger (K-M) equation.

  5. Direct Observations of Austenite, Bainite and Martensite Formation During Arc Welding of 1045 Steel using Time Resolved X-Ray Diffraction

    SciTech Connect

    Elmer, J; Palmer, T; Babu, S; Zhang, W; DebRoy, T

    2004-02-17

    In-situ Time Resolved X-Ray Diffraction (TRXRD) experiments were performed during stationary gas tungsten arc (GTA) welding of AISI 1045 C-Mn steel. These synchrotron-based experiments tracked, in real time, phase transformations in the heat-affected zone of the weld under rapid heating and cooling conditions. The diffraction patterns were recorded at 100 ms intervals, and were later analyzed using diffraction peak profile analysis to determine the relative fraction of ferrite ({alpha}) and austenite ({gamma}) phases in each diffraction pattern. Lattice parameters and diffraction peak widths were also measured throughout the heating and cooling cycle of the weld, providing additional information about the phases that were formed. The experimental results were coupled with a thermofluid weld model to calculate the weld temperatures, allowing time-temperature transformation kinetics of the {alpha} {yields} {gamma} phase transformation to be evaluated. During heating, complete austenitization was observed in the heat affected zone of the weld and the kinetics of the {alpha} {yields} {gamma} phase transformation were modeled using a Johnson-Mehl-Avrami (JMA) approach. The results from the 1045 steel weld were compared to those of a 1005 low carbon steel from a previous study. Differences in austenitization rates of the two steels were attributed to differences in the base metal microstructures, particularly the relative amounts of pearlite and the extent of the allotriomorphic ferrite phase. During weld cooling, the austenite transformed to a mixture of bainite and martensite. In situ diffraction was able to distinguish between these two non-equilibrium phases based on differences in their lattice parameters and their transformation rates, resulting in the first real time x-ray diffraction observations of bainite and martensite formation made during welding.

  6. Improving high temperature creep resistance of reduced activation steels by addition of nitrogen and intermediate heat treatment

    NASA Astrophysics Data System (ADS)

    Liu, W. B.; Zhang, C.; Xia, Z. X.; Yang, Z. G.

    2014-12-01

    In the present study, we report an enhanced high-temperature creep resistance in reduced activation ferrite/martensite (RAFM) steels, by introducing nitrogen (0.035 wt%, M3 steel) and employing a novel intermediate heat treatment I-Q-T (intermediate treatment, quenching and tempering). In comparison with all the control groups, the uniaxial tests of the I-Q-T treated M3 steel showed significant increase in rupture time and decrease in elongation. The microstructures of the samples were further characterized to elucidate the origin of the enhanced creep resistance. It is found that, by introducing nitrogen, the primary TaC particles were refined; by employing the I-Q-T heat treatment, the dispersed fine secondary MX precipitates, as well as the lath subgrains containing high-density dislocations, were increased: all are responsible for the improved creep resistance.

  7. Post-weld Tempered Microstructure and Mechanical Properties of Hybrid Laser-Arc Welded Cast Martensitic Stainless Steel CA6NM

    NASA Astrophysics Data System (ADS)

    Mirakhorli, Fatemeh; Cao, Xinjin; Pham, Xuan-Tan; Wanjara, Priti; Fihey, Jean-Luc

    2016-01-01

    Manufacturing of hydroelectric turbine components involves the assembly of thick-walled stainless steels using conventional multi-pass arc welding processes. By contrast, hybrid laser-arc welding may be an attractive process for assembly of such materials to realize deeper penetration depths, higher production rates, narrower fusion, and heat-affected zones, and lower distortion. In the present work, single-pass hybrid laser-arc welding of 10-mm thick CA6NM, a low carbon martensitic stainless steel, was carried out in the butt joint configuration using a continuous wave fiber laser at its maximum power of 5.2 kW over welding speeds ranging from 0.75 to 1.2 m/minute. The microstructures across the weldment were characterized after post-weld tempering at 873 K (600 °C) for 1 hour. From microscopic examinations, the fusion zone was observed to mainly consist of tempered lath martensite and some residual delta-ferrite. The mechanical properties were evaluated in the post-weld tempered condition and correlated to the microstructures and defects. The ultimate tensile strength and Charpy impact energy values of the fully penetrated welds in the tempered condition were acceptable according to ASTM, ASME, and industrial specifications, which bodes well for the introduction of hybrid laser-arc welding technology for the manufacturing of next generation hydroelectric turbine components.

  8. Application of martensitic, modified martensitic and duplex stainless steel bar stock for completion equipment

    SciTech Connect

    Bhavsar, R.B.; Montani, R.

    1998-12-31

    Martensitic and duplex stainless steel tubing are commonly used for oil and gas applications containing CO{sub 2}. Completion equipment manufacturing requires use of solid round bar or heavy wall hollows. Material properties for this stock are not identical in all cases. Material properties as well as corrosion characteristics are discussed for 13Cr, 13Cr-5Ni-2Mo and 25Cr alloys. Corrosion testing of modified or Enhanced 13Cr solid bar stock, UNS S41425 and other compositions in H{sub 2}S-Cl{sup {minus}} and pH is reported in coupled and uncoupled condition. Corrosion testing of various super duplex bar stock at various H{sub 2}S-chlorides and temperature in CO{sub 2} environment is reported. Impact value requirements, welding issues and special consideration required for these alloys for completion equipment is discussed. Modified 13Cr and Super Duplex Oil Country Tubular Goods (OCTG) are readily available, however, availability of completion equipment raw material compatible with these OCTG is limited.

  9. Precipitation behavior of laves phase and its effect on toughness of 9Cr-2Mo Ferritic-martensitic steel

    NASA Astrophysics Data System (ADS)

    Hosoi, Y.; Wade, N.; Kunimitsu, S.; Urita, T.

    1986-11-01

    This study clarified the ralationship between the toughness of a 9Cr-2Mo dual phase steel and precipitates formed during aging, with special attention to the Laves phase (Fe 2Mo). The ductile-brittle transition temperature (DBTT) is increased and the upper shelf energy decreased when the Laves phase begins to precipitate during aging. Electron microscopy and X-ray diffraction indicate that elimination of Si in the steel reduces the precipitation of the Laves phase and results in maintaining good toughness. It is also noted that the toughness of the steel is controlled by the total amount of precipitates (Laves + carbides) in the aging at 873 K for more than 3.6 × 10 3 ks. A time-temperature-precipitation diagram for the Laves phase is established and it clearly shows that the precipitation of the Laves phase is markedly retarded by the decrease of Si content. In Si-free steel, no Laves phase is observed in the temperature and time range investigated.

  10. R&D of ferritic-martensitic steel EP450 ODS for fuel pin claddings of prospective fast reactors

    NASA Astrophysics Data System (ADS)

    Nikitina, A. A.; Ageev, V. S.; Chukanov, A. P.; Tsvelev, V. V.; Porezanov, N. P.; Kruglov, O. A.

    2012-09-01

    Present paper performs research results of structure and mechanical properties of the ODS steel on the base of steel EP450 (Fe-13Cr-2Mo-Nb-V-B-0,12C) on all stages of producing: from powders to thin-walled tubes. Also, the results of research on method of sealing thin-walled tubes from steel EP450 ODS by pressurized resistance welding are shown.

  11. Rapid phase synthesis of nanocrystalline cobalt ferrite

    SciTech Connect

    Shanmugavel, T.; Raj, S. Gokul; Rajarajan, G.; Kumar, G. Ramesh

    2014-04-24

    Synthesis of single phase nanocrystalline Cobalt Ferrite (CoFe{sub 2}O{sub 4}) was achieved by single step autocombustion technique with the use of citric acid as a chelating agent in mono proportion with metal. Specimens prepared with this method showed significantly higher initial permeability's than with the conventional process. Single phase nanocrystalline cobalt ferrites were formed at very low temperature. Surface morphology identification were carried out by transmission electron microscopy (TEM) analysis. The average grain size and density at low temperature increased gradually with increasing the temperature. The single phase formation is confirmed through powder X-ray diffraction analysis. Magnetization measurements were obtained at room temperature by using a vibrating sample magnetometer (VSM), which showed that the calcined samples exhibited typical magnetic behaviors. Temperature dependent magnetization results showed improved behavior for the nanocrystalline form of cobalt ferrite when compared to the bulk nature of materials synthesized by other methods.

  12. The variation of cationic microstructure in Mn-doped spinel ferrite during calcination and its effect on formaldehyde catalytic oxidation.

    PubMed

    Liang, Xiaoliang; Liu, Peng; He, Hongping; Wei, Gaoling; Chen, Tianhu; Tan, Wei; Tan, Fuding; Zhu, Jianxi; Zhu, Runliang

    2016-04-01

    In this study, a series of Mn substituted spinel ferrites calcinated at different temperatures were used as catalysts for the oxidation of formaldehyde (HCHO). X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and H2 temperature-programmed reduction were conducted to characterize the structure and physico-chemical properties of catalysts, which were affected by calcination in the range of 200-600°C. Results show that all the ferrites were with spinel structure, and those calcinated in the range of 300-600°C were in the phase of maghemite. The calcination changed the valence and distribution of Mn and Fe on the ferrite surface, and accordingly the reducibility of ferrites. The HCHO catalytic oxidation test showed that with the increase of calcination temperature, the activity was initially improved until 400°C, but then decreased. The variation of HCHO conversion performance was well positively correlated to the variation of reduction temperature of surface Mn(4+) species. The remarkable effect of calcination on the catalytic activity of Mn-doped spinel ferrites for HCHO oxidation was discussed in view of reaction mechanism and variations in cationic microstructure of Mn-doped ferrites.

  13. Metallization of ferrite ceramic couplings. Final report

    SciTech Connect

    Burden, J

    1992-06-01

    Tests were conducted to determine the optimum sputtering conditions for which the strongest metallization adherence could be achieved for the ferrite safing wheel assemblies. The conditions were varied through four separate test runs with a fifth verification run conducted using parameters selected from the first four runs. The parameters tested were the effects of etching, precleaning, chamber pressures, plating materials, plating thickness, soldering pressures, and cooling rates. The results increased the strength of the metallization to two pounds, well in excess of the required one pound minimum. It was also determined that the gold should be sputtered on and not thermally deposited, which caused cracking in the ferrite material.

  14. Cation distributions on rapidly solidified cobalt ferrite

    NASA Technical Reports Server (NTRS)

    De Guire, Mark R.; Kalonji, Gretchen; O'Handley, Robert C.

    1990-01-01

    The cation distributions in two rapidly solidified cobalt ferrites have been determined using Moessbauer spectroscopy at 4.2 K in an 8-T magnetic field. The samples were obtained by gas atomization of a Co0-Fe2O3-P2O5 melt. The degree of cation disorder in both cases was greater than is obtainable by cooling unmelted cobalt ferrite. The more rapidly cooled sample exhibited a smaller departure from the equilibrium cation distribution than did the more slowly cooled sample. This result is explained on the basis of two competing effects of rapid solidification: high cooling rate of the solid, and large undercooling.

  15. Tensile properties of the modified 13Cr martensitic stainless steels

    NASA Astrophysics Data System (ADS)

    Mabruri, Efendi; Anwar, Moch. Syaiful; Prifiharni, Siska; Romijarso, Toni B.; Adjiantoro, Bintang

    2016-04-01

    This paper reports the influence of Mo and Ni on the tensile properties of the modified 13Cr martensitic stainless steels in tempered condition. Four steels with different content of Mo and Ni were prepared by induction melting followed by hot forging, quenching and tempering. The experimental results showed that the addition of about 1% and 3% Mo has a beneficial effect to increase both the tensile strength and the elongation of the steels. On the contrary, the addition of about 3% Ni into the martensitic stainless steel results in decreasing of both the tensile strength and the elongation. Among the alloys investigated the 13Cr3Mo type steel exhibited largest tensile strength of 1348 MPa and largest elongation of 12%. The observation on the tensile fractured surfaces by using scanning electron microscope supported these findings.

  16. Intervention of martensite variants on the spatial aspect of microvoids

    NASA Astrophysics Data System (ADS)

    Das, Arpan

    2016-06-01

    The spatial aspect of microvoids’ distribution at different strained austenite grains has been investigated through strain rate variation during tensile deformation of metastable austenitic stainless steel at ambient temperature. Ductile fracture micromechanisms of metastable austenite have been investigated through direct measurements of void density, its fraction and their distribution at various levels of stresses/strains for all strain rates. The nature of the distribution of microvoids’ fraction closely corresponds to the local stress-state and strain-state variation and hence is strongly attributed to the crystallographic variant selection of martensite and their spatial nature of distribution. The direct intervention of martensite variants has been looked into for influencing void nucleation, growth and coalescence under tensile deformation of austenitic stainless steel.

  17. An Investigation Into 6-Fold Symmetry in Martensitic Steels

    NASA Astrophysics Data System (ADS)

    Kinney, Christopher; Pytlewski, Ken; Qi, Liang; Khachaturyan, Armen G.; Morris, J. W.

    2016-11-01

    Austenite grains that have undergone a martensitic transformation are typically composed of 24 variants that can be categorized by their Bain axis of transformation. There are 3 <001> axes for Bain transformations, therefore the (001) pole figure of a prior austenite grain displays 3-fold symmetry. However, we observed superficially similar prior austenite grains containing 6-fold symmetry in the (001) pole figure. This paper introduces evidence of this 6-fold symmetry and explores the crystallographic origins.

  18. New martensitic steels for fossil power plant: Creep resistance

    NASA Astrophysics Data System (ADS)

    Kaybyshev, R. O.; Skorobogatykh, V. N.; Shchenkova, I. A.

    2010-02-01

    In this paper, we consider the origin of high-temperature strength of heat-resistant steels belonging to martensitic class developed on the basis of the Fe—9%Cr alloy for the boiler pipes and steam pipelines of power plants at steam temperatures of up to 620°C and pressures to 300 atm. In addition, we give a brief information on the physical processes that determine the creep strength and consider the alloying philosophy of traditional heat-resistant steels. The effect of the chemical and phase composition of heat-resistant steels and their structure on creep strength is analyzed in detail. It is shown that the combination of the solid-solution alloying by elements such as W and Mo, as well as the introduction of carbides of the MX type into the matrix with the formation of a dislocation structure of tempered martensite, ensures a significant increase in creep resistance. The steels of the martensitic class withstand creep until an extensive polygonization starts in the dislocation structure of the tempered martensite(“troostomartensite”), which is suppressed by V(C,N) and Nb(C,N) dispersoids. Correspondingly, the service life of these steels is determined by the time during which the dispersed nanocarbonitrides withstand coalescence, while tungsten and molybdenum remain in the solid solution. The precipitation of the Laves phases Fe2(W,Mo) and the coalescence of carbides lead to the development of migration of low-angle boundaries, and the steel loses its ability to resist creep.

  19. Martensite transformation of epitaxial Ni-Ti films

    SciTech Connect

    Buschbeck, J.; Kozhanov, A.; Kawasaki, J. K.; James, R. D.; Palmstroem, C. J.

    2011-05-09

    The structure and phase transformations of thin Ni-Ti shape memory alloy films grown by molecular beam epitaxy are investigated for compositions from 43 to 56 at. % Ti. Despite the substrate constraint, temperature dependent x-ray diffraction and resistivity measurements reveal reversible, martensitic phase transformations. The results suggest that these occur by an in-plane shear which does not disturb the lattice coherence at interfaces.

  20. Nucleation and growth of the Alpha-Prime Phase martensitic phase in Pu-Ga Alloys

    SciTech Connect

    Blobaum, K M; Krenn, C R; Wall, M A; Massalski, T B; Schwartz, A J

    2005-02-09

    In a Pu-2.0 at% Ga alloy, it is observed experimentally that the amount of the martensitic alpha-prime product formed upon cooling the metastable delta phase below the martensite burst temperature (M{sub b}) is a function of the holding temperature and holding time of a prior conditioning (''annealing'') treatment. Before subjecting a sample to a cooling and heating cycle to form and revert the alpha-prime phase, it was first homogenized for 8 hours at 375 C to remove any microstructural memory of prior transformations. Subsequently, conditioning was carried out in a differential scanning calorimeter apparatus at temperatures in the range between -50 C and 370 C for periods of up to 70 hours to determine the holding time and temperature that produced the largest volume fraction of alpha-prime upon subsequent cooling. Using transformation peak areas (i.e., the heats of transformation) as a measure of the amount of alpha-prime formed, the largest amount of alpha-prime was obtained following holding at 25 C for at prime least 6 hours. Additional time at 25 C, up to 70 hours, did not increase the amount of subsequent alpha-prime formation. At 25 C, the Pu-2.0 at% Ga alloy is below the eutectoid transformation temperature in the phase diagram and the expected equilibrium phases are {alpha} and Pu{sub 3}Ga, although a complete eutectoid decomposition of delta to these phases is expected to be extremely slow. It is proposed here that the influence of the conditioning treatment can be attributed to the activation of alpha-phase embryos in the matrix as a beginning step toward the eutectoid decomposition, and we discuss the effects of spontaneous self-irradiation accompanying the Pu radioactive decay on the activation process. Subsequently, upon cooling, certain embryos appear to be active as sites for the burst growth of martensitic alpha-prime particles, and their amount, distribution, and potency appear to contribute to the total amount of martensitic product formed. A

  1. Boundaries for martensitic transition of 7Li under pressure

    DOE PAGES

    Schaeffer, Anne Marie; Cai, Weizhao; Olejnik, Ella; Molaison, Jamie J.; Sinogeikin, Stanislav; dos Santos, Antonio M.; Deemyad, Shanti

    2015-08-14

    We report that physical properties of lithium under extreme pressures continuously reveal unexpected features. These include a sequence of structural transitions to lower symmetry phases, metal-insulator-metal transition, superconductivity with one of the highest elemental transition temperatures, and a maximum followed by a minimum in its melting line. The instability of the bcc structure of lithium is well established by the presence of a temperature-driven martensitic phase transition. The boundaries of this phase, however, have not been previously explored above 3 GPa. All higher pressure phase boundaries are either extrapolations or inferred based on indirect evidence. Here we explore the pressuremore » dependence of the martensitic transition of lithium up to 7 GPa using a combination of neutron and X-ray scattering. We find a rather unexpected deviation from the extrapolated boundaries of the hR3 phase of lithium. Furthermore, there is evidence that, above ~3 GPa, once in fcc phase, lithium does not undergo a martensitic transition.« less

  2. Boundaries for martensitic transition of 7Li under pressure

    PubMed Central

    Schaeffer, Anne Marie; Cai, Weizhao; Olejnik, Ella; Molaison, Jamie J.; Sinogeikin, Stanislav; dos Santos, Antonio M.; Deemyad, Shanti

    2015-01-01

    Physical properties of lithium under extreme pressures continuously reveal unexpected features. These include a sequence of structural transitions to lower symmetry phases, metal-insulator-metal transition, superconductivity with one of the highest elemental transition temperatures, and a maximum followed by a minimum in its melting line. The instability of the bcc structure of lithium is well established by the presence of a temperature-driven martensitic phase transition. The boundaries of this phase, however, have not been previously explored above 3 GPa. All higher pressure phase boundaries are either extrapolations or inferred based on indirect evidence. Here we explore the pressure dependence of the martensitic transition of lithium up to 7 GPa using a combination of neutron and X-ray scattering. We find a rather unexpected deviation from the extrapolated boundaries of the hR3 phase of lithium. Furthermore, there is evidence that, above ∼3 GPa, once in fcc phase, lithium does not undergo a martensitic transition. PMID:26271453

  3. Rapid solidification effects in martensitic Cu-Zn-AI Alloys

    NASA Astrophysics Data System (ADS)

    Perkins, Jeff

    1982-08-01

    The effects of rapid solidification on martensitic transformations were studied in Cu-Zn-AI samples prepared by the method of melt-spinning, with an estimated cooling rate of about 106 K per second near the freezing point. A diffusionless solidification reaction L → β occurs, and a very fine-grained β structure is obtained, with highly structured grain boundaries. The average β grain diameter (˜5 µm) is about two orders of magnitude smaller than that obtained by conventional solid state solution and quench treatment. The β:β grain boundaries contain extraordinary features such as large steps, and the matrix dislocation density is abnormally high. The Ms temperature is depressed significantly in as-melt-spun ribbon material, but as the martensitic transformation is cycled, it shifts upward in temperature and obtains a more narrow hysteresis loop. The martensite has the usual 9R structure (ABCBCACAB stacking) found in bulk alloys, and while the morphology is similar to that in bulk alloys, it is finer in scale. It is suggested that the β → 9R transformation is affected through the combined influence of rapid solidification on parent β grain size, disorder, β:β grain boundary structure, internal stresses, and dislocation substructure. Shape memory behavior is qualitatively similar in the rapidly solidified alloys.

  4. Texture evolution during nitinol martensite detwinning and phase transformation

    SciTech Connect

    Cai, S.; Schaffer, J. E.; Ren, Y.

    2013-12-09

    Nitinol has been widely used to make medical devices for years due to its unique shape memory and superelastic properties. However, the texture of the nitinol wires has been largely ignored due to inherent complexity. In this study, in situ synchrotron X-ray diffraction has been carried out during uniaxial tensile testing to investigate the texture evolution of the nitinol wires during martensite detwinning, variant reorientation, and phase transformation. It was found that the thermal martensitic nitinol wire comprised primarily an axial (1{sup ¯}20), (120), and (102)-fiber texture. Detwinning initially converted the (120) and (102) fibers to the (1{sup ¯}20) fiber and progressed to a (1{sup ¯}30)-fiber texture by rigid body rotation. At strains above 10%, the (1{sup ¯}30)-fiber was shifted to the (110) fiber by (21{sup ¯}0) deformation twinning. The austenitic wire exhibited an axial (334)-fiber, which transformed to the near-(1{sup ¯}30) martensite texture after the stress-induced phase transformation.

  5. Atomic engineering of mixed ferrite and core-shell nanoparticles.

    PubMed

    Morrison, Shannon A; Cahill, Christopher L; Carpenter, Everett E; Calvin, Scott; Harris, Vincent G

    2005-09-01

    Nanoparticulate ferrites such as manganese zinc ferrite and nickel zinc ferrite hold great promise for advanced applications in power electronics. The use of these materials in current applications requires fine control over the nanoparticle size as well as size distribution to maximize their packing density. While there are several techniques for the synthesis of ferrite nanoparticles, reverse micelle techniques provide the greatest flexibility and control over size, crystallinity, and magnetic properties. Recipes for the synthesis of manganese zinc ferrite, nickel zinc ferrite, and an enhanced ferrite are presented along with analysis of the crystalline and magnetic properties. Comparisons are made on the quality of nanoparticles produced using different surfactant systems. The importance of various reaction conditions is explored with a discussion on the corresponding effects on the magnetic properties, particle morphology, stoichiometry, crystallinity, and phase purity.

  6. Thermodynamic studies on lithium ferrites

    SciTech Connect

    Rakshit, S.K.; Parida, S.C.; Naik, Y.P.; Chaudhary, Ziley Singh; Venugopal, V.

    2011-05-15

    Thermodynamic studies on ternary oxides of Li-Fe-O systems were carried out using differential scanning calorimetry, Knudsen effusion mass spectrometry, and solid-state electrochemical technique based on fluoride electrolyte. Heat capacities of LiFe{sub 5}O{sub 8}(s) and LiFeO{sub 2}(s) were determined in the temperature range 127-861 K using differential scanning calorimetry. Gibbs energies of formation of LiFe{sub 5}O{sub 8}(s) and LiFeO{sub 2}(s) were determined using Knudsen effusion mass spectrometry and solid-state galvanic cell technique. The combined least squares fits can be represented as {Delta}{sub f}G{sub m}{sup o}(LiFe{sub 5}O{sub 8},s,T)/kJ mol{sup -1} ({+-}6)=-2341+0.6764(T/K) (588{<=}T/K{<=}971) {Delta}{sub f}G{sub m}{sup o}(LiFeO{sub 2},s,T)/kJ mol{sup -1} ({+-}3)=-708+0.1656(T/K) (569{<=}T/K{<=}1021) The temperature independent term of the above equations represents {Delta}{sub f}H{sup o}{sub m}(T{sub av}) and temperature dependent term represents negative change in entropy of the respective compounds. Thermodynamic analysis shows that LiFe{sub 5}O{sub 8}(s) is more stable compared to LiFeO{sub 2}(s). -- Graphical abstract: Comparison of {Delta}{sub f}G{sub m}{sup o}(T) of lithium ferrites determined using different techniques. Display Omitted Highlights: {yields} Thermodynamic studies on Li-Fe-O system using DSC, KEQMS and galvanic cell. {yields} Heat capacities of LiFe{sub 5}O{sub 8}(s) and LiFeO{sub 2}(s) were determined using DSC 127-861 K. {yields} {Delta}{sub f}G{sup o}{sub m} of these compounds were determined and compared. {yields} Thermodynamic tables for LiFe{sub 5}O{sub 8}(s) and LiFeO{sub 2}(s) were constructed.

  7. Tantalum modified ferritic iron base alloys

    NASA Technical Reports Server (NTRS)

    Oldrieve, R. E.; Blankenship, C. P. (Inventor)

    1977-01-01

    Strong ferritic alloys of the Fe-CR-Al type containing 0.4% to 2% tantalum were developed. These alloys have improved fabricability without sacrificing high temperature strength and oxidation resistance in the 800 C (1475 F) to 1040 C (1900 F) range.

  8. Twinning and martensitic transformations in nickel-enriched 304 austenitic steel during tensile and indentation deformations

    SciTech Connect

    Gussev, Maxim N; Busby, Jeremy T; Byun, Thak Sang; Parish, Chad M

    2013-01-01

    Twinning and martensitic transformation have been investigated in nickel-enriched AISI 304 stainless steel subjected to tensile and indentation deformation. Using electron backscatter diffraction (EBSD), the morphology of alpha- and epsilon-martensite and the effect of grain orientation to load axis on phase and structure transformations were analyzed in detail. It was found that the twinning occurred less frequently under indentation than under tension; also, twinning was not observed in [001] and [101] grains. In tensile tests, the martensite particles preferably formed at the deformation twins, intersections between twins, or at twin-grain boundary intersections. Conversely, martensite formation in the indentation tests was not closely associated with twinning; instead, the majority of martensite was concentrated in the dense colonies near grain boundaries. Martensitic transformation seemed to be obstructed in the [001] grains in both tensile and indentation test cases. Under a tensile stress of 800 MPa, both alpha- and epsilon-martensite were found in the microstructure, but at 1100 MPa only -martensite presented in the specimen. Under indentation, alpha- and epsilon-martensite were observed in the material regardless of stress level.

  9. Process development for 9Cr nanostructured ferritic alloy (NFA) with high fracture toughness

    NASA Astrophysics Data System (ADS)

    Byun, Thak Sang; Yoon, Ji Hyun; Hoelzer, David T.; Lee, Yong Bok; Kang, Suk Hoon; Maloy, Stuart A.

    2014-06-01

    This article is to summarize the process development and key characterization results for the newly-developed Fe-9Cr based nanostructured ferritic alloys (NFAs) with high fracture toughness. One of the major drawbacks from pursuing ultra-high strength in the past development of NFAs is poor fracture toughness at high temperatures although a high fracture toughness is essential to prevent cracking during manufacturing and to mitigate or delay irradiation-induced embrittlement in irradiation environments. A study on fracture mechanism using the NFA 14YWT found that the low-energy grain boundary decohesion in fracture process at a high temperature (>200 °C) resulted in low fracture toughness. Lately, efforts have been devoted to explore an integrated process to enhance grain bonding. Two base materials were produced through mechanical milling and hot extrusion and designated as 9YWTV-PM1 and 9YWTV-PM2. Isothermal annealing (IA) and controlled rolling (CR) treatments in two phase region were used to enhance diffusion across the interfaces and boundaries. The PM2 alloy after CR treatments showed high fracture toughness (KJQ) at represented temperatures: 240-280 MPa √m at room temperature and 160-220 MPa √m at 500 °C, which indicates that the goal of 100 MPa √m over possible nuclear application temperature range has been well achieved. Furthermore, it is also confirmed by comparison that the CR treatments on 9YWTV-PM2 result in high fracture toughness similar to or higher than those of the conventional ferritic-martensitic steels such as HT9 and NF616.

  10. Magnetic Cobalt Ferrite Nanocrystals For an Energy Storage Concentration Cell.

    PubMed

    Dai, Qilin; Patel, Ketan; Donatelli, Greg; Ren, Shenqiang

    2016-08-22

    Energy-storage concentration cells are based on the concentration gradient of redox-active reactants; the increased entropy is transformed into electric energy as the concentration gradient reaches equilibrium between two half cells. A recyclable and flow-controlled magnetic electrolyte concentration cell is now presented. The hybrid inorganic-organic nanocrystal-based electrolyte, consisting of molecular redox-active ligands adsorbed on the surface of magnetic nanocrystals, leads to a magnetic-field-driven concentration gradient of redox molecules. The energy storage performance of concentration cells is dictated by magnetic characteristics of cobalt ferrite nanocrystal carriers. The enhanced conductivity and kinetics of redox-active electrolytes could further induce a sharp concentration gradient to improve the energy density and voltage switching of magnetic electrolyte concentration cells. PMID:27440206

  11. The conduction mechanism of Cu-Ge ferrite

    NASA Astrophysics Data System (ADS)

    Mazen, S. A.; El Taher, A. M.

    2010-09-01

    The electric conductivity, σ (DC and AC), drift mobility and dielectric properties of germanium-substituted copper ferrite, with the chemical formula CuGeFeO (where x=0.0, 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3), have been studied. Plots of lnσT versus 104/T (K) are linear and showed two sloping regions for all values of x except for the values 0.0 and 0.05, which showed one slope only. The two activation energies around a kink point called Tk were calculated. The electrical conduction in these ferrites is explained on the basis of the hopping mechanism. The values of the charge carrier mobility have been calculated from the experimental values of electrical conductivity which increased exponentially with increasing temperature. Dielectric properties such as dielectric loss tangent tanδ were measured at elevated temperature in the frequency range from 10 2 to 10 6 Hz. The variation of these parameters with temperature is explained qualitatively. An attempt is made to explain the possible mechanism.

  12. Design of ferrite-tuned accelerator cavities using perpendicular-biased high-Q ferrites

    SciTech Connect

    Kaspar, K.

    1984-11-01

    Microwave ferrites with dc bias fields perpendicular to the rf fields exhibit magnetic and dielectric quality factors 1 order of magnitude above that of ferrites used in ferrite-tuned synchrotron accelerating cavities built in the past. For the LAMPF II project, these ferrites appear to allow the design of synchrotron cavities with high gap voltages and high efficiency. A simple coaxial quarter-wave-resonator geometry, first considered only as a model for preliminary studies, turned out to be a good basis for the solution of most technical problems such as generation of the bias field, cooling of the ferrites, and installation of a generous high-voltage gap design. Two quarter-wave resonators combined to form one accelerating unit of about 2.5-m length and 0.6-m diameter should be capable of delivering 120 kV of accelerating voltage in the tuning range 50-60 MHz, up to 200 kV in the range 59-60 MHz. The main advantage of the given resonator design is its full rotational symmetry, which allows calculation and optimization of all electrical properties with maximum reliability.

  13. High temperature measurements of martensitic transformations using digital holography.

    PubMed

    Thiesing, Benjamin P; Mann, Christopher J; Dryepondt, Sebastien

    2013-07-01

    During thermal cycling of nickel-aluminum-platinum (NiAlPt) and single crystal iron-chromium-nickel (FeCrNi) alloys, the structural changes associated with the martensite to austenite phase transformation were measured using dual-wavelength digital holography. Real-time in situ measurements reveal the formation of striations within the NiAlPt alloy at 70°C and the FeCrNi alloy at 520°C. The results demonstrate that digital holography is an effective technique for acquiring noncontact, high precision information of the surface evolution of alloys at high temperatures.

  14. Physical metallurgy of BATMAN II Ti-bearing martensitic steels

    NASA Astrophysics Data System (ADS)

    Pilloni, L.; Attura, F.; Calza-Bini, A.; De Santis, G.; Filacchioni, G.; Carosi, A.; Amato, S.

    1998-10-01

    Seven laboratory experimental casts of 7-9% Cr Ti-bearing martensitic steels were obtained via VIM process. Plates of 25 mm thickness were produced by hot rolling. On each cast CCT diagrams and critical temperatures were determined. Several austenitizing treatments were performed to study the grain size evolution. The effect of microstructure on impact properties were finally investigated. This paper discusses the role of chemical composition on microstructural and physical properties and shows the beneficial effect either of low-temperature austenitizing or double-austenitizing steps on impact properties.

  15. High Temperature Measurements Of Martensitic transformations Using Digital Holography

    SciTech Connect

    Thiesing, Benjamin; Mann, Christopher J; Dryepondt, Sebastien N

    2013-01-01

    During thermal cycling of nickel-aluminum-platinum (NiAlPt) and single crystal Fe-15Cr-15Ni alloys, the structural changes associated with the martensite to austenite phase transformation were measured using dual-wavelength digital holography. Real-time in-situ measurements reveal the formation of striations within the NiPtAl alloy at 70 C and the FeCrNi alloy at 520 C. The results demonstrate that digital holography is an effective technique for acquiring non-contact, high precision information of the surface evolution of alloys at high temperatures.

  16. High temperature measurements of martensitic transformations using digital holography.

    PubMed

    Thiesing, Benjamin P; Mann, Christopher J; Dryepondt, Sebastien

    2013-07-01

    During thermal cycling of nickel-aluminum-platinum (NiAlPt) and single crystal iron-chromium-nickel (FeCrNi) alloys, the structural changes associated with the martensite to austenite phase transformation were measured using dual-wavelength digital holography. Real-time in situ measurements reveal the formation of striations within the NiAlPt alloy at 70°C and the FeCrNi alloy at 520°C. The results demonstrate that digital holography is an effective technique for acquiring noncontact, high precision information of the surface evolution of alloys at high temperatures. PMID:23842235

  17. Ferritization treatment of copper in soil by electrokinetic remediation.

    PubMed

    Kimura, Tomoyuki; Takase, Ken-Ichi; Terui, Norifumi; Tanaka, Shunitz

    2007-05-17

    The usefulness of the combined use of the electrokinetic (EK) remediation and a ferrite treatment zone (FTZ) was demonstrated for a treatment of the contaminated soil with heavy metal ions. Copper ions in contaminated soil were transferred into the FTZ by the EK technology and were ferritized in this system. The distribution of copper in a migration chamber after EK treatment with FTZ for 48h showed the large difference in the total and eluted concentration of copper. This indicated that copper ions transferred by EK into the FTZ were ferritized there with ferrite reagent in soil alkalified by EK process. The copper-ferrite compound, which was not dissolved with diluted acid, was retained in the FTZ and accumulated there. The ratio of the ferritized amount of copper against total copper was 92% in the EK process with FTZ after 48 h. PMID:17374444

  18. Fracture toughness master-curve analysis of the tempered martensitic steel Eurofer97

    NASA Astrophysics Data System (ADS)

    Mueller, Pablo; Spätig, P.; Bonadé, R.; Odette, G. R.; Gragg, D.

    2009-04-01

    We report fracture toughness data for the reduced activation tempered martensitic steel Eurofer97 in the lower to middle transition region. The fracture toughness was measured from tests carried out on 0.35 T and 0.87 T pre-cracked compact tension specimens. The data were first analyzed using the ASTM E1921 standard. The toughness-temperature behavior and scatter were shown to deviate from the ASTM E1921 standard predictions near the lower shelf. Using the method of maximum likelihood, the athermal component of the master-curve was calculated to better fit the data from the lower to the middle transition region. We showed that these master-curve adjustments are necessary to make the To values obtained near the lower shelf with 0.35 TC( T) specimens consistent with those obtained in the middle transition region with 0.87 TC( T) specimens.

  19. The Formation of Crystal Defects in a Fe-Mn-Si Alloy Under Cyclic Martensitic Transformations.

    PubMed

    Bondar, Vladimir I; Danilchenko, Vitaliy E; Iakovlev, Viktor E

    2016-12-01

    Formation of crystalline defects due to cyclic martensitic transformations (CMT) in the iron-manganese Fe-18 wt.% Mn-2 wt.% Si alloy was investigated using X-ray diffractometry. Conditions for accumulation of fragment sub-boundaries with low-angle misorientations and chaotic stacking faults in crystal lattice of austenite and ε-martensite were analyzed.

  20. The consequences of helium production on microstructural development in isotopically tailored ferritic alloys

    SciTech Connect

    Gelles, D.S.

    1996-10-01

    A series of alloys have been made adding various isotopes of nickel in order to vary the production of helium during irradiation by a two step nuclear reaction in a mixed spectrum reactor. The alloys use a base composition of Fe-12Cr with an addition of 1.5% nickel, either in the form of {sup 60}Ni which produces no helium, {sup 59}Ni which produces helium at a rate of about 10 appm He/dpa, or natural nickel ({sup Nat}Ni) which provides an intermediate level of helium due to delayed development of {sup 59}Ni. Specimens were irradiated in the HFIR at Oak Ridge, TN to {approx}7 dpa at 300 and 400{degrees}C. Microstructural examinations indicated that nickel additions promote precipitation in all alloys, but the effect appears to be much stronger at 400{degrees}C than at 300{degrees}C. There is sufficient dose by 7 dpa (and with 2 appm He) to initiate void swelling in ferritic/martensitic alloys. Little difference was found between response from {sup 59}Ni and {sup Nat}Ni. Also, helium bubble development for high helium generation conditions appeared to be very different at 300 and 400{degrees}C. At 300{degrees}C, it appeared that high densities of bubbles formed whereas at 400{degrees}C, bubbles could not be identified, possibly because of the complexity of the microstructure, but more likely because helium accumulated at precipitate interfaces.

  1. Cold worked ferritic alloys and components

    DOEpatents

    Korenko, Michael K.

    1984-01-01

    This invention relates to liquid metal fast breeder reactor and steam generator precipitation hardening fully ferritic alloy components which have a microstructure substantially free of the primary precipitation hardening phase while having cells or arrays of dislocations of varying population densities. It also relates to the process by which these components are produced, which entails solution treating the alloy followed by a final cold working step. In this condition, the first significant precipitation hardening of the component occurs during high temperature use.

  2. Substituted barium ferrites; sources of anisotropy

    NASA Astrophysics Data System (ADS)

    Morrish, A. H.; Zhou, X. Z.; Yang, Zheng; Zeng, Hua-Xian

    1994-12-01

    The substituted barium ferrites BaFe12-2 xCo x Sn x O19 (0 ≤ x ≤ 1.4) and BaFe1-2xCo x O19 (0 ≤ x ≤ 0.9) have been studied. The site occupancies, as determined from Mössbauer spectra, have been used to interpret the changes in the magnetization and in the crystalline anisotropy.

  3. Non linear effects in ferrite tuned cavities

    SciTech Connect

    Goren, Y.; Mahale, N.; Walling, L.; Enegren, T.; Hulsey, G. ); Yakoviev, V.; Petrov, V. )

    1993-05-01

    The phenomenon of dependence of the resonance shape and frequency on the RF power level in perpendicular biased ferrite-tuned cavities has been observed by G. Hulsey and C. Friedrichs in the SSC test cavity experiment. This paper presents a theoretical as well as numerical analysis of this phenomenon and compares the results with experimental data. The effect of this nonlinearity on the SSC low energy booster prototype cavity is discussed.

  4. A Thermodynamic-Based Model to Predict the Fraction of Martensite in Steels

    NASA Astrophysics Data System (ADS)

    Huyan, Fei; Hedström, Peter; Höglund, Lars; Borgenstam, Annika

    2016-09-01

    A thermodynamic-based model to predict the fraction of martensite in steels with undercooling has been developed. The model utilizes the thermodynamic driving force to describe the transformation curve and it is able to predict the fraction of athermal martensite at quenching to different temperatures for low alloy steels. The only model parameter is a linear function of the martensite start temperature ( M s), and the model predicts that a steel with a higher M s has a lower difference between the martensite start and finish temperatures. When the present model is combined with a previously developed thermodynamic-based model for M s, the model predictions of the full martensite transformation curve with undercooling are in close agreement with literature data.

  5. Morphology transition of deformation-induced lenticular martensite in Fe-Ni-C alloys

    SciTech Connect

    Zhang, X.M.; Li, D.F.; Xing, Z.S. . Inst. of Metal Research); Gautier, E.; Zhang, J.S.; Simon, A. . Lab. de Science et Genie des Materiaux Metalliques)

    1993-06-01

    The morphology and habit planes of deformation-induced lenticular martensite were investigated by optical and transmission electron microscopy in Fe-30Ni and Fe-30Ni-0.11C alloys. Transitions in morphology were observed with progressive deformation levels going from lenticular to butterfly martensite for the Fe-30Ni-0.11C alloy. The habit planes changed from (225)[sub f] or (259)[sub f] for the thermal lenticular martensite to (111)[sub f] for the strain-induced martensite. The morphology and crystallography of the small butterfly martensites was also investigated. A change in the orientation relationships from K-S to N-W relations was also observed. These changes were attributed to the contribution of mobile dislocations which modified the shear mode form twinning to slip, and to a plastic accommodation of transformation strains.

  6. Tunable Dielectric Properties of Ferrite-Dielectric Based Metamaterial

    PubMed Central

    Bi, K.; Huang, K.; Zeng, L. Y.; Zhou, M. H.; Wang, Q. M.; Wang, Y. G.; Lei, M.

    2015-01-01

    A ferrite-dielectric metamaterial composed of dielectric and ferrite cuboids has been investigated by experiments and simulations. By interacting with the electromagnetic wave, the Mie resonance can take place in the dielectric cuboids and the ferromagnetic precession will appear in the ferrite cuboids. The magnetic field distributions show the electric Mie resonance of the dielectric cuboids can be influenced by the ferromagnetic precession of ferrite cuboids when a certain magnetic field is applied. The effective permittivity of the metamaterial can be tuned by modifying the applied magnetic field. A good agreement between experimental and simulated results is demonstrated, which confirms that these metamaterials can be used for tunable microwave devices. PMID:25993433

  7. Nanosized copper ferrite materials: Mechanochemical synthesis and characterization

    SciTech Connect

    Manova, Elina; Tsoncheva, Tanya; Paneva, Daniela; Popova, Margarita; Velinov, Nikolay; Kunev, Boris; Tenchev, Krassimir; Mitov, Ivan

    2011-05-15

    Nanodimensional powders of cubic copper ferrite are synthesized by two-steps procedure of co-precipitation of copper and iron hydroxide carbonates, followed by mechanochemical treatment. X-ray powder diffraction, Moessbauer spectroscopy and temperature-programmed reduction are used for the characterization of the obtained materials. Their catalytic behavior is tested in methanol decomposition to hydrogen and CO and total oxidation of toluene. Formation of nanosized ferrite material is registered even after one hour of milling time. It is established that the prolonging of treatment procedure decreases the dispersion of the obtained product with the appearance of Fe{sub 2}O{sub 3}. It is demonstrated that the catalytic behavior of the samples depends not only on their initial phase composition, but on the concomitant ferrite phase transformations by the influence of the reaction medium. -- Graphical abstract: It is demonstrated that the catalytic behavior of the obtained copper ferrites depends not only on their initial phase composition, but on the concomitant phase transformations by the influence of the reaction medium. Display Omitted Highlights: {yields} Two-step co-precipitation-ball-milling procedure for copper ferrites preparation. {yields} The phase composition of ferrites depends on the milling duration. {yields} Ferrites transforms under the reaction medium, which affects their catalytic behavior. {yields} Ferrites decompose to magnetite and carbides during methanol decomposition. {yields} Agglomeration and further crystallization of ferrite occur during toluene oxidation.

  8. Ferrite microwave electronics Citations from the NTIS data base

    NASA Astrophysics Data System (ADS)

    Reed, W. E.

    1980-07-01

    Research reports on single crystals, thin films, dielectrics, semiconductor devices, integrated circuits, phase shifters, and waveguide components are cited. Studies on the microwave properties of ferrites are included.

  9. Massive strontium ferrite ingestion without acute toxicity.

    PubMed

    Kirrane, Barbara M; Nelson, Lewis S; Hoffman, Robert S

    2006-11-01

    Ingestion of strontium ferrite is previously unreported. We document absorption of strontium without acute toxicity. A 22 year-old schizophrenic man was brought to hospital after he was witnessed to pulverize and ingest flexible adhesive magnets, which later were identified as strontium ferrite. Other than auditory hallucinations his vital signs, physical examination, ECG and routine laboratories were unremarkable. Abdominal radiographs revealed diffuse radiopaque material. He was treated with whole bowel irrigation with polyethylene glycol electrolyte lavage solution (PEG-ELS) until radiographically cleared. His initial blood and urine strontium levels were 2900 microg/l and 15,000 microg/l, respectively (reference range for urine: <240 microg/l, occupational threshold 800 microg/l). A repeat urine level one week later was 370 microg/l. His hospital course was complicated by bacteraemia secondary to a thrombophlebitis at the site of the intravenous catheter, and the patient was treated with intravenous and oral antibiotics. He remained otherwise asymptomatic and was discharged to a psychiatric unit approximately 3 weeks later. Although clearly absorbed, strontium ferrite does not appear to produce acute toxicity. Delayed, and or chronic toxicity cannot be excluded based on this report.

  10. Preferential spin canting in nanosize zinc ferrite

    NASA Astrophysics Data System (ADS)

    Pandey, Brajesh; Litterst, F. J.; Baggio-Saitovitch, E. M.

    2015-07-01

    Zinc ferrite nanoparticles powder with average size of 10.0±0.5 nm was synthesized by the citrate precursor route. We studied the structural and magnetic properties using X-ray diffraction, vibrating sample magnetometry and Mössbauer spectroscopy. X-ray diffraction patterns show that the synthesized zinc ferrite possesses good spinel structure. Both Mössbauer and magnetization data indicate superparamagnetic ferrimagnetic particles at room temperature. The magnetic behavior is determined by a considerable degree of cation inversion with FeIII in tetrahedral A-sites. Mössbauer spectroscopy at low temperature and in high applied magnetic field reveals that A-site spins are aligned antiparallel to the applied field with some possible angular scatter whereas practically all octahedral B-site spins are canted contrasting some earlier reported partial B-site spin canting in nanosize zinc ferrite. Deviations from the antiferromagnetic arrangement of B-site spins are supposed to be caused by magnetic frustration effects.

  11. Ferritic steel melt and FLiBe/steel experiment : melting ferritic steel.

    SciTech Connect

    Troncosa, Kenneth P.; Smith, Brandon M.; Tanaka, Tina Joan

    2004-11-01

    In preparation for developing a Z-pinch IFE power plant, the interaction of ferritic steel with the coolant, FLiBe, must be explored. Sandia National Laboratories Fusion Technology Department was asked to drop molten ferritic steel and FLiBe in a vacuum system and determine the gas byproducts and ability to recycle the steel. We tried various methods of resistive heating of ferritic steel using available power supplies and easily obtained heaters. Although we could melt the steel, we could not cause a drop to fall. This report describes the various experiments that were performed and includes some suggestions and materials needed to be successful. Although the steel was easily melted, it was not possible to drip the molten steel into a FLiBe pool Levitation melting of the drop is likely to be more successful.

  12. Overview of Indian activities on fusion reactor materials

    NASA Astrophysics Data System (ADS)

    Banerjee, Srikumar

    2014-12-01

    This paper on overview of Indian activities on fusion reactor materials describes in brief the efforts India has made to develop materials for the first wall of a tokamak, its blanket and superconducting magnet coils. Through a systematic and scientific approach, India has developed and commercially produced reduced activation ferritic/martensitic (RAFM) steel that is comparable to Eurofer 97. Powder of low activation ferritic/martensitic oxide dispersion strengthened steel with characteristics desired for its application in the first wall of a tokamak has been produced on the laboratory scale. V-4Cr-4Ti alloy was also prepared in the laboratory, and kinetics of hydrogen absorption in this was investigated. Cu-1 wt%Cr-0.1 wt%Zr - an alloy meant for use as heat transfer elements for hypervapotrons and heat sink for the first wall - was developed and characterized in detail for its aging behavior. The role of addition of a small quantity of Zr in its improved fatigue performance was delineated, and its diffusion bonding with both W and stainless steel was achieved using Ni as an interlayer. The alloy was produced in large quantities and used for manufacturing both the heat transfer elements and components for the International Thermonuclear Experimental Reactor (ITER). India has proposed to install and test a lead-lithium cooled ceramic breeder test blanket module (LLCB-TBM) at ITER. To meet this objective, efforts have been made to produce and characterize Li2TiO3 pebbles, and also improve the thermal conductivity of packed beds of these pebbles. Liquid metal loops have been set up and corrosion behavior of RAFM steel in flowing Pb-Li eutectic has been studied in the presence as well as absence of magnetic fields. To prevent permeation of tritium and reduce the magneto-hydro-dynamic drag, processes have been developed for coating alumina on RAFM steel. Apart from these activities, different approaches being attempted to make the U-shaped first wall of the TBM box

  13. Process for making a martensitic steel alloy fuel cladding product

    DOEpatents

    Johnson, Gerald D.; Lobsinger, Ralph J.; Hamilton, Margaret L.; Gelles, David S.

    1990-01-01

    This is a very narrowly defined martensitic steel alloy fuel cladding material for liquid metal cooled reactors, and a process for making such a martensitic steel alloy material. The alloy contains about 10.6 wt. % chromium, about 1.5 wt. % molybdenum, about 0.85 wt. % manganese, about 0.2 wt. % niobium, about 0.37 wt. % silicon, about 0.2 wt. % carbon, about 0.2 wt. % vanadium, 0.05 maximum wt. % nickel, about 0.015 wt. % nitrogen, about 0.015 wt. % sulfur, about 0.05 wt. % copper, about 0.007 wt. % boron, about 0.007 wt. % phosphorous, and with the remainder being essentially iron. The process utilizes preparing such an alloy and homogenizing said alloy at about 1000.degree. C. for 16 hours; annealing said homogenized alloy at 1150.degree. C. for 15 minutes; and tempering said annealed alloy at 700.degree. C. for 2 hours. The material exhibits good high temperature strength (especially long stress rupture life) at elevated temperature (500.degree.-760.degree. C.).

  14. Composition, microstructures, and magnetic properties of Bi-modified NiCuZn-ferrite for low temperature Co-fired ceramic application

    NASA Astrophysics Data System (ADS)

    Zhang, Suna; Jia, Lijun; Zhang, Huaiwu; Li, Jie; Zhou, Tingchuan; Liu, Baoyuan

    2014-05-01

    The effects of Ni2+ and Bi3+ substitution on the microstructural development and magnetic properties of low-temperature-fired NiCuZn ferrites with nominal compositions of NixCu0.21 Zn0.79-xBiyFe2-yO4 (x = 0.1-0.5, y = 0-0.05) were investigated in order to develop low-temperature-cofired ferrite technology and to produce high-frequency devices with a multilayer process. For the Bi-modified NiCuZn ferrites, increasing x decreased the average grain size due to lattice contraction; meanwhile, the saturation flux density first increased and then decreased. We attributed this behavior to the change of superexchange between A-B sites and B-B sites in the spinel structure. We found that Bi3+ ions could enter into the ferrite lattice, which enhanced the grain growth and densification during sintering due to the activation of the lattice. A study of the solid-state reaction kinetics of Bi-modified NiCuZn ferrites revealed that Bi3+ modification decreased the early activation temperature and the ferrite formation temperature; thus, Bi3+ modification could reduce the activation energy of the solid-state reaction. The Bi-substituted samples with x = 0.35 and y = 0.02 had compact, uniform microstructures, and high sintering densities, leading to relatively high values of permeability and Q-factor.

  15. A phase-field model for incoherent martensitic transformations including plastic accommodation processes in the austenite

    NASA Astrophysics Data System (ADS)

    Kundin, J.; Raabe, D.; Emmerich, H.

    2011-10-01

    If alloys undergo an incoherent martensitic transformation, then plastic accommodation and relaxation accompany the transformation. To capture these mechanisms we develop an improved 3D microelastic-plastic phase-field model. It is based on the classical concepts of phase-field modeling of microelastic problems (Chen, L.Q., Wang Y., Khachaturyan, A.G., 1992. Philos. Mag. Lett. 65, 15-23). In addition to these it takes into account the incoherent formation of accommodation dislocations in the austenitic matrix, as well as their inheritance into the martensitic plates based on the crystallography of the martensitic transformation. We apply this new phase-field approach to the butterfly-type martensitic transformation in a Fe-30 wt%Ni alloy in direct comparison to recent experimental data (Sato, H., Zaefferer, S., 2009. Acta Mater. 57, 1931-1937). It is shown that the therein proposed mechanisms of plastic accommodation during the transformation can indeed explain the experimentally observed morphology of the martensitic plates as well as the orientation between martensitic plates and the austenitic matrix. The developed phase-field model constitutes a general simulations approach for different kinds of phase transformation phenomena that inherently include dislocation based accommodation processes. The approach does not only predict the final equilibrium topology, misfit, size, crystallography, and aspect ratio of martensite-austenite ensembles resulting from a transformation, but it also resolves the associated dislocation dynamics and the distribution, and the size of the crystals itself.

  16. Modeling non-saturated ferrite-based devices: Application to twin toroid ferrite phase shifters

    NASA Astrophysics Data System (ADS)

    Le Gouellec, A.; Vérissimo, G.; Laur, V.; Queffelec, P.; Albert, I.; Girard, T.

    2016-08-01

    This article describes a new set of tools developed to improve the conception and modeling of non-saturated ferrite-based devices such as twin toroid phase shifters. These new simulation tools benefit from a generalized permeability tensor model able to describe the permeability tensor of a ferrite sample whatever its magnetization state. This model is coupled to a homemade 3D multi-scale magnetostatic analysis program, which describes the evolution of the magnetization through the definition of a hysteresis loop in every mesh cell. These computed spectra are then integrated into 3D electromagnetic simulation software that retains the spatial variations of the ferrite properties by using freshly developed macro programming functions. This new approach allows the designers to accurately model complex ferrite devices such as twin toroid phase shifters. In particular, we demonstrated a good agreement between simulated and measured phase shifts as a function of applied current values with a predicted maximum phase shift of 0.96 times the measured value.

  17. Intragranular ferrite nucleation in medium-carbon vanadium steels

    SciTech Connect

    Ishikawa, Fusao; Takahashi, Toshihiko ); Ochi, Tatsurou . Muroran R D Lab.)

    1994-05-01

    In this study, the mechanism of intragranular ferrite nucleation is investigated. It is found that intragranular ferrite idiomorphs'' nucleate at vanadium nitrides which precipitate at manganese sulfide particles during cooling in the austenite region. It is observed that intragranular ferrite has the Baker-Nutting orientation relationship with vanadium nitride which precipitated at manganese sulfide. According to classical nucleation theory, the proeutectoid ferrite nucleation rate depends on the following factors: (1) the driving free energy for ferrite nucleation, (2) the diffusivity of carbon atoms in austenite, and (3) the increase in the interfacial energy associated with ferrite nucleation. In the Baker-Nutting orientation relationship, the lattice mismatch across the habit planes is likely to be very small. Depleted zones of solute atoms such as vanadium are assumed to be formed in the austenite matrix around precipitates. The effect of the depleted zones on factors (1) and (2) is estimated thermodynamically and it is proved that those effects are negligibly small. Thus, the authors conclude that the most important factor in nucleation kinetics of intragranular ferrite is the formation of precipitates which can develop coherent, low energy interfaces with ferrite.

  18. Adsorption of oxygen and 1-butene on magnesium ferrite

    SciTech Connect

    Samuilova, O.K.; Kozlova, M.M.; Yagodovskii, V.D.

    1986-08-01

    The kinetics of the adsorption of oxygen and 1-butene on magnesium ferrite was studied. Conductometry and thermal desorption methods were used to investigate the adsorption of oxygen on magnesium ferrite. Two forms of adsorbed oxygen were found. The formation of these forms affects the kinetics of the adsorption of 1-butene.

  19. Direct evidence for stress-induced transformation between coexisting multiple martensites in a Ni-Mn-Ga multifunctional alloy

    SciTech Connect

    Huang, L.; Cong, D. Y.; Wang, Z. L.; Nie, Z. H.; Dong, Y. H.; Zhang, Y.; Ren, Yang; Wang, Y. D.

    2015-07-08

    The structural response of coexisting multiple martensites to stress field in a Ni-Mn-Ga multifunctional alloy was investigated by the in situ high-energy x-ray diffraction technique. Stress-induced transformation between coexisting multiple martensites was observed at 110 K, at which five-layered modulated (5M), seven-layered modulated (7M) and non-modulated (NM) martensites coexist. We found that a tiny stress of as low as 0.5 MPa could trigger the transformation from 5M and 7M martensites to NM martensite and this transformation is partly reversible. Besides the transformation between coexisting multiple martensites, rearrangement of martensite variants also occurs during loading, at least at high stress levels. The present study is instructive for designing advanced multifunctional alloys with easy actuation.

  20. Direct evidence for stress-induced transformation between coexisting multiple martensites in a Ni-Mn-Ga multifunctional alloy

    SciTech Connect

    Huang, L.; Cong, D. Y.; Wang, Z. L.; Nie, Z. H.; Dong, Y. H.; Zhang, Y.; Ren, Yang; Wang, Y. D.

    2015-06-03

    The structural response of coexisting multiple martensites to stress field in a Ni-Mn-Ga multifunctional alloy was investigated by the in situ high-energy x-ray diffraction technique. Stress-induced transformation between coexisting multiple martensites was observed at 110 K, at which five-layered modulated (5M), seven-layered modulated (7M) and non-modulated (NM) martensites coexist. We found that a tiny stress of as low as 0.5 MPa could trigger the transformation from 5M and 7M martensites to NM martensite and this transformation is partly reversible. Besides the transformation between coexisting multiple martensites, rearrangement of martensite variants also occurs during loading, at least at high stress levels. The present study is instructive for designing advanced multifunctional alloys with easy actuation.

  1. Large-strain cyclic response and martensitic transformation of austenitic stainless steel at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Hamasaki, H.; Nakano, T.; Ishimaru, E.; Yoshida, F.

    2016-08-01

    Cyclic tension-compression tests were carried out for austenitic stainless steel (SUS304) at elevated temperatures. The significant Bauschinger effect was found in the obtained stress-strain curve. In addition, stagnation of deformation induced martensitic transformation was observed just after stress reversal until the equivalent stress reached the maximum value in the course of experiment. The constitutive model for SUS304 at room temperature was developed, in which homogenized stress of SUS304 was expressed by the weighed summation of stresses of austenite and martensite phases. The calculated stress-strain curves and predicted martensite volume fraction were well correlated with those experimental results.

  2. Structure and mechanical properties of hot-deformed low-carbon martensitic steel

    NASA Astrophysics Data System (ADS)

    Romanov, I. D.; Shatsov, A. A.; Zakirova, M. G.; Berezin, S. K.

    2016-03-01

    The structural changes in low-carbon martensitic 15Kh2G2NMFBA steel induced by its hot forging in the temperature range 1150-850°C have been studied. The calculated cracking resistance parameter I c is in agreement with its experimental value. A relation is found between the lath sizes in the martensite structure and the change in the impact toughness characteristics. A combined regime of hot deformation and hot treatment of the low-carbon martensitic steel is proposed to form submicrometer-sized structural elements and high strength and impact toughness characteristics.

  3. Cyclic wear behavior (fretting) of a tempered martensite steel

    NASA Astrophysics Data System (ADS)

    Gaul, D. J.; Duquette, D. J.

    1980-09-01

    Cyclic wear experiments were conducted on a 4130 steel with a tempered martensitic structure in laboratory air and in flowing argon. Temperatures of the sliding interfaces were measured and were of the order of + 10 K above the ambient. The interface temperatures were observed to be cyclic and correlated with maxima in sliding velocities between the surfaces. Microhardness measurements and optical and electron metallographic observations of fretted surfaces indicated selective surface hardening and the formation of large numbers of thin metallic flakes. The thickness of the flakes corresponded to the thickness of the hardened layer and were formed from subsurface crack initiation processes. The results of this investigation do not support many previously proposed models for fretting damage. Rather a micromechanical cracking model is proposed which appears to explain observed results in terms of a delamination model.

  4. Soft ferrite cores characterization for integrated micro-inductors

    NASA Astrophysics Data System (ADS)

    Nguyen, Yen Mai; Bourrier, David; Charlot, Samuel; Valdez-Nava, Zarel; Bley, Vincent; Combettes, Céline; Lopez, Thomas; Laur, Jean-Pierre; Brunet, Magali

    2014-10-01

    Low-profile soft ferrite films constitute a competitive solution for the integration of micro-inductors on silicon in low-power medium frequency dc-dc conversion applications. The high resistivity of soft ferrites is indeed a major advantage for operating frequencies in the range of 5‒10 MHz. We have studied several soft ferrites, including commercial ferrite films and ferrites made in-house. Test inductors were fabricated at a wafer level using micro-machining and assembling techniques. The proposed process is based on a sintered ferrite core placed between thick electroplated copper windings. The low-profile ferrite cores of 1.2  ×  2.6  ×  0.1 mm3 were produced by two methods using green tape-cast films or ferrite powders. This article presents the magnetic characterization of the fabricated ferrite cores, cut and printed in a rectangular shape and sintered at different temperatures. Comparisons are made in order to find the best material for the core that can offer micro-inductors a high inductance in the range of 200-1000 nH at 6 MHz, and that generate the smallest losses. Thanks to a test inductor, it is demonstrated that with a commercial ferrite core, an inductance density of 215 nH mm-2 up to 6 MHz could be reached. Extracted losses at 6 MHz, under 10 mT are in the range of 0.7 to 2.5 W cm-3.

  5. Corrosion behavior of magnetic ferrite coating prepared by plasma spraying

    SciTech Connect

    Liu, Yi; Wei, Shicheng Tong, Hui; Tian, Haoliang; Liu, Ming; Xu, Binshi

    2014-12-15

    Graphical abstract: The saturation magnetization (M{sub s}) of the ferrite coating is 34.417 emu/g while the M{sub s} value of the ferrite powder is 71.916 emu/g. It can be seen that plasma spray process causes deterioration of the room temperature soft magnetic properties. - Highlights: • Spinel ferrite coatings have been prepared by plasma spraying. • The coating consists of nanocrystalline grains. • The saturation magnetization of the ferrite coating is 34.417 emu/g. • Corrosion behavior of the ferrite coating was examined in NaCl solution. - Abstract: In this study, spray dried spinel ferrite powders were deposited on the surface of mild steel substrate through plasma spraying. The structure and morphological studies on the ferrite coatings were carried out using X-ray diffraction, scanning electron microscope and Raman spectroscopy. It was showed that spray dried process was an effective method to prepare thermal spraying powders. The coating showed spinel structure with a second phase of LaFeO{sub 3}. The magnetic property of the ferrite samples were measured by vibrating sample magnetometer. The saturation magnetization (M{sub s}) of the ferrite coating was 34.417 emu/g. The corrosion behavior of coating samples was examined by electrochemical impedance spectroscopy. EIS diagrams showed three corrosion processes as the coating immersed in 3.5 wt.% NaCl solution. The results suggested that plasma spraying was a promising technology for the production of magnetic ferrite coatings.

  6. Microstructural origin of the skeletal ferrite morphology of austenitic stainless steel welds

    SciTech Connect

    Brooks, J A; Williams, J C; Thompson, A W

    1982-04-01

    Scanning transmission electron microscopy was conducted on welds exhibiting a variety of skeletal, or vermicular ferrite morphologies in addition to one lathy ferrite morphology. These ferrite morphologies result from primary ferrite solidification followed by a solid state transformation upon cooling. During cooling, a large fraction of the ferrite transforms to austenite leaving a variety of ferrite morphologies. Comparison of composition profiles and alloy partitioning showed both the skeletal and lathy ferrite structures result from a diffusion controlled solid state transformation. However, the overall measured composition profiles of the weld structure are a result of partitioning during both solidification and the subsequent solid state transformation.

  7. Cast Stainless Steel Ferrite and Grain Structure

    SciTech Connect

    Ruud, Clayton O.; Ramuhalli, Pradeep; Meyer, Ryan M.; Mathews, Royce; Diaz, Aaron A.; Anderson, Michael T.

    2012-09-01

    In-service inspection requirements dictate that piping welds in the primary pressure boundary of light-water reactors be subject to a volumetric examination based on the rules contained within the American Society of Mechanical Engineers Boiler and Pressure Vessel Code, Section XI. The purpose of the inspection is the reliable detection and accurate sizing of service-induced degradation and/or material flaws introduced during fabrication. The volumetric inspection is usually carried out using ultrasonic testing (UT) methods. However, the varied metallurgical macrostructures and microstructures of cast austenitic stainless steel piping and fittings, including statically cast stainless steel and centrifugally cast stainless steel (CCSS), introduce significant variations in the propagation and attenuation of ultrasonic energy. These variations complicate interpretation of the UT responses and may compromise the reliability of UT inspection. A review of the literature indicated that a correlation may exist between the microstructure and the delta ferrite content of the casting alloy. This paper discusses the results of a recent study where the goal was to determine if a correlation existed between measured and/or calculated ferrite content and grain structure in CCSS pipe.

  8. Phase transformation of strontium hexagonal ferrite

    NASA Astrophysics Data System (ADS)

    Bilovol, V.; Martínez-García, R.

    2015-11-01

    The phase transformation of strontium hexagonal ferrite (SrFe12O19) to magnetite (Fe3O4) as main phase and strontium carbonate (SrCO3) as secondary phase is reported here. SrFe12O19 powder was obtained by a heat treatment at 250 °C under controlled oxygen flow. It was observed that the phase transformation occurred when the SrFe12O19 ferrite was heated up to 625 °C in confinement conditions. This transformation took place by a combination of three factors: the presence of stresses in the crystal lattice of SrFe12O19 due to a low synthesis temperature, the reduction of Fe3+ to Fe2+ during the heating up to 625 °C, and the similarity of the coordination spheres of the iron atoms present in the S-block of SrFe12O19 and Fe3O4. X-ray diffraction analysis confirmed the existence of strain and crystal deformation in SrFe12O19 and the absence of them in the material after the phase transformation. Dispersive X-ray absorption spectroscopy and Fe57 Mössbauer spectroscopy provided evidences of the reduction of Fe3+ to Fe2+ in the SrFe12O19 crystal.

  9. R-curve behavior in ferrite ceramics

    SciTech Connect

    Beauchamp, E.K.; Monroe, S.L.

    1990-01-01

    The unusual dependence of the fracture mode of ferrite ceramics on the stress intensity factor in the subcritical crack growth regime was used to create flaws with different concentrations of crack-interface bridges. Flaws with numerous bridges were produced by indenting under dry silicone oil, while flaws with essentially no bridges were produced by indenting under water. Plots of log failure stress as a function of log indenter load for the two types of flaws reflect the differences in bridging. Those with extensive bridging showed pronounced R-curve behavior. The curve for those initially devoid of bridges showed no plateau but did show deviations from a {minus}1/3 slope that correspond to those predicted by Bennison and Lawn for this type of flaw. The ferrite studies was 62.4 Fe{sub 2}O{sub 3} 26.6 MnO, 11.2nO, and .04 V{sub 2}O{sub 5}. 10 figs.

  10. Temperature-dependent magnetostriction as the key factor for martensite reorientation in magnetic field

    NASA Astrophysics Data System (ADS)

    L’vov, Victor A.; Kosogor, Anna

    2016-09-01

    The magnetic field application leads to spatially inhomogeneous magnetostriction of twinned ferromagnetic martensite. When the increasing field and magnetostrictive strain reach certain threshold values, the motion of twin boundaries and magnetically induced reorientation (MIR) of twinned martensite start. The MIR leads to giant magnetically induced deformation of twinned martensite. In the present article, the threshold field (TF) and temperature range of observability of MIR were calculated for the Ni–Mn–Ga martensite assuming that the threshold strain (TS) is temperature-independent. The calculations show that if the TS is of the order of 10‑4, the TF strongly depends on temperature and MIR can be observed only above the limiting temperature (~220 K). If the TS is of the order of 10‑6, the TF weakly depends on temperature and MIR can be observed at extremely low temperatures. The obtained theoretical results are in agreement with available experimental data.

  11. Stabilization of Fe-C Martensitic Phase by Low-Temperature Ageing

    SciTech Connect

    Dabrowski, L.; Winek, T.; Neov, S.

    2007-04-23

    Martensite containing 0.87 wt.% carbon was aged at liquid nitrogen temperature during 30 days. X-ray diffraction measurements showed that ageing does not lead to the phase transition {alpha} {yields} {kappa} up to 800 K.

  12. A Shear Strain Route Dependency of Martensite Formation in 316L Stainless Steel.

    PubMed

    Kang, Suk Hoon; Kim, Tae Kyu; Jang, Jinsung; Oh, Kyu Hwan

    2015-06-01

    In this study, the effect of simple shearing on microstructure evolution and mechanical properties of 316L austenitic stainless steel were investigated. Two different shear strain routes were obtained by twisting cylindrical specimens in the forward and backward directions. The strain-induced martensite phase was effectively obtained by alteration of the routes. Formation of the martensite phase clearly resulted in significant hardening of the steel. Grain-size reduction and strain-induced martensitic transformation within the deformed structures of the strained specimens were characterized by scanning electron microscopy - electron back-scattered diffraction, X-ray diffraction, and the TEM-ASTAR (transmission electron microscopy - analytical scanning transmission atomic resolution, automatic crystal orientation/phase mapping for TEM) system. Significant numbers of twin networks were formed by alteration of the shear strain routes, and the martensite phases were nucleated at the twin interfaces.

  13. Molecular dynamics simulation of the martensitic phase transformation in NiAl alloys.

    PubMed

    Pun, G P Purja; Mishin, Y

    2010-10-01

    Using molecular dynamics simulations with an embedded-atom interatomic potential, we study the effect of chemical composition and uniaxial mechanical stresses on the martensitic phase transformation in Ni-rich NiAl alloys. The martensitic phase has a tetragonal crystal structure and can contain multiple twins arranged in domains and plates. The transformation is reversible and is characterized by a significant temperature hysteresis. The magnitude of the hysteresis depends on the chemical composition and stress. We show that applied compressive and tensile stresses reduce and can even eliminate the hysteresis. Crystalline defects such as free surfaces, dislocations and anti-phase boundaries reduce the martensitic transformation temperature and affect the microstructure of the martensite. Their effect can be explained by heterogeneous nucleation of the new phase in defected regions.

  14. Temperature-dependent magnetostriction as the key factor for martensite reorientation in magnetic field

    NASA Astrophysics Data System (ADS)

    L'vov, Victor A.; Kosogor, Anna

    2016-09-01

    The magnetic field application leads to spatially inhomogeneous magnetostriction of twinned ferromagnetic martensite. When the increasing field and magnetostrictive strain reach certain threshold values, the motion of twin boundaries and magnetically induced reorientation (MIR) of twinned martensite start. The MIR leads to giant magnetically induced deformation of twinned martensite. In the present article, the threshold field (TF) and temperature range of observability of MIR were calculated for the Ni-Mn-Ga martensite assuming that the threshold strain (TS) is temperature-independent. The calculations show that if the TS is of the order of 10-4, the TF strongly depends on temperature and MIR can be observed only above the limiting temperature (~220 K). If the TS is of the order of 10-6, the TF weakly depends on temperature and MIR can be observed at extremely low temperatures. The obtained theoretical results are in agreement with available experimental data.

  15. Effect of Quenching Process on the Microstructure and Hardness of High-Carbon Martensitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Zhu, Qin-tian; Li, Jing; Shi, Cheng-bin; Yu, Wen-tao

    2015-11-01

    The microstructure and hardness of high-carbon martensitic stainless steel (HMSS) were investigated using thermal expansion analyzer, Thermo-calc, scanning electron microscope, x-ray diffraction, and Ultra-high temperature confocal microscope. The results indicate that the experimental steel should be austenitized in the temperature range of 1025-1075 °C, which can give a maximum hardness of 62 HRc with the microstructure consisting of martensite, retained austenite, and some undissolved carbides. With increasing austenitizing temperature, the amount of retained austenite increases, while the volume fraction of carbides increases first and then decreases. The starting temperature and finish temperature of martensite formation decrease with increasing cooling rates. Air-quenched samples can obtain less retained austenite, more compact microstructure, and higher hardness, compared with that of oil-quenched samples. For HMSS, the martensitic transformation takes place at some isolated areas with a slow nucleation rate.

  16. Strain-induced martensitic transformation in type 321 austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Ridlova, M.; Hyspecka, L.; Wenger, F.; Ponthiaux, P.; Galland, J.; Kubecka, P.

    2003-10-01

    Strain-induced martensitic transformation in AISI 321 austenitic stainless steel was studied by means of compression, tension and friction tests at room temperature. Compression and tensile tests were done in air and friction tests were realised by using a pin-on-disk apparatus in deionised water. The strain-induced volume fraction of α'-martensite determined by X-ray diffraction analysis was correlated with different imposed pressures and tensile strams. It seems evident that strain induced α'- martensite increases as a function of the normal force and the number of rotations after friction tests; however, the role of sliding rate was negligible. The results were completed by values of friction coefficients. The strain-induced martensite formation is subject to hardening mechanism, which may contribute to cumulative damage of pin-on-disk friction specimens.

  17. Microstructures and magnetic properties of Bi-substituted NiCuZn ferrite

    NASA Astrophysics Data System (ADS)

    Jia, Lijun; Zhang, Huaiwu; Wu, Xiaohu; Li, Tao; Su, Hua; Liu, Baoyuan

    2012-04-01

    The effects of Bi3+ substitution on the microstructures and properties of low-temperature fired NiCuZn ferrites have been investigated. It is found that Bi3+ ions can enter into the ferrite lattice and consequently enhance the grain growth and densification in the sintering process due to the activation of the lattice, which in turn lead to an increase of quality factor and static permeability. Bi3+ substitution for Fe3+ is beneficial to forming the spinal phase and lowers the sintering temperature to about 900 °C. Pcv (power loss) was analyzed by dividing Pcv into Ph (hysteresis loss) and Pe+Pr (eddy current loss and residual loss) from the frequency dependence of the power loss. Due to the compact and uniform microstructures, and high sintering density, relatively low losses were obtained in the Bi-substituted samples.

  18. Electrical properties of lithium ferrite with addition of ZrO2

    NASA Astrophysics Data System (ADS)

    Lamonova, S. A.; Surzhikov, A. P.; Lysenko, E. N.

    2016-02-01

    The study of electrical properties of composite ceramics based on lithium ferrite LiFe5O8 with the addition of ZrO2 (1 and 2 wt%) was carried out. The samples were prepared by standard ceramic technology. Synthesis of lithium ferrite was conducted at 800°C for 120 minutes. The zirconium dioxide was added to synthesized powder by mixing in planetary ball mill, and then the composite powders were sintered at temperatures of 1100°C and 1050°C. The electrical conductivity of the samples was studied using two-probe spreading resistance method. It was found that addition of ZrO2 and an increase of its up to 2 wt% leads to increase in the activation energy and electrical resistivity.

  19. Kinetics of Reductive Acid Leaching of Cadmium-Bearing Zinc Ferrite Mixture Using Hydrazine Sulfate

    NASA Astrophysics Data System (ADS)

    Zhang, Chun; Zhang, Jianqiang; Min, Xiaobo; Wang, Mi; Zhou, Bosheng; Shen, Chen

    2015-09-01

    The reductive acid leaching kinetics of synthetic cadmium-bearing zinc ferrite was investigated, and the influence of reaction temperature, sulfuric acid and hydrazine sulfate were studied. The results illustrated that an increase in the reaction temperature, initial sulfuric acid and hydrazine sulfate significantly enhanced the extraction efficiencies of cadmium, zinc and iron. The leaching kinetics were controlled by a surface chemical reaction based on a shrinking core model. The empirical equation applied was found to fit well with the kinetics analysis; the leaching processes of cadmium, zinc and iron were similar and the activation energies were 79.9 kJ/mol, 77.9 kJ/mol and 79.7 kJ/mol, respectively. The apparent orders of cadmium-bearing zinc ferrite dissolution with respect to sulfuric acid concentration were 0.83, 0.83 and 0.84 for Cd, Zn and Fe, respectively.

  20. Carbon diffusion in supersaturated ferrite: a comparison of mean-field and atomistic predictions

    NASA Astrophysics Data System (ADS)

    Lawrence, B.; Sinclair, C. W.; Perez, M.

    2014-09-01

    Hillert's mean-field elastic prediction of the diffusivity of carbon in ferrite is regularly used to explain the experimental observation of slow diffusion of carbon in supersaturated ferrite. With increasing carbon supersaturation, the appropriateness of assuming that many-body carbon interactions can be ignored needs to be re-examined. In this work, we have sought to evaluate the limits of such mean-field predictions for activation barrier prediction by comparing such models with molecular dynamics simulations. The results of this analysis show that even at extremely high levels of supersaturation (up to 8 at% C), mean-field elasticity models can be used with confidence when the effects of carbon concentration on the energy of carbon at octahedral and tetrahedral sites are considered. The reasons for this finding and its consequences are discussed.

  1. Enhancing Hydrogen Embrittlement Resistance of Lath Martensite by Introducing Nano-Films of Interlath Austenite

    NASA Astrophysics Data System (ADS)

    Wang, Meimei; Tasan, C. Cem; Koyama, Motomichi; Ponge, Dirk; Raabe, Dierk

    2015-09-01

    Partial reversion of interlath austenite nano-films is investigated as a potential remedy for hydrogen embrittlement susceptibility of martensitic steels. We conducted uniaxial tensile tests on hydrogen-free and pre-charged medium-Mn transformation-induced plasticity-maraging steels with different austenite film thicknesses. Mechanisms of crack propagation and microstructure interaction are quantitatively analyzed using electron channelling contrast imaging and electron backscatter diffraction, revealing a promising strategy to utilize austenite reversion for hydrogen-resistant martensitic steel design.

  2. HYDROGEN EFFECTS ON STRAIN-INDUCED MARTENSITE FORMATION IN TYPE 304L STAINLESS STEEL

    SciTech Connect

    Morgan, M; Ps Lam, P

    2008-12-11

    Unstable austenitic stainless steels undergo a strain-induced martensite transformation. The effect of hydrogen on this transformation is not well understood. Some researchers believe that hydrogen makes the transformation to martensite more difficult because hydrogen is an austenite stabilizer. Others believe that hydrogen has little or no effect at all on the transformation and claim that the transformation is simply a function of strain and temperature. Still other researchers believe that hydrogen should increase the ability of the metal to transform due to hydrogen-enhanced dislocation mobility and slip planarity. While the role of hydrogen on the martensite transformation is still debated, it has been experimentally verified that this transformation does occur in hydrogen-charged materials. What is the effect of strain-induced martensite on hydrogen embrittlement? Martensite near crack-tips or other highly strained regions could provide much higher hydrogen diffusivity and allow for quicker hydrogen concentration. Martensite may be more intrinsically brittle than austenite and has been shown to be severely embrittled by hydrogen. However, it does not appear to be a necessary condition for embrittlement since Type 21-6-9 stainless steel is more stable than Type 304L stainless steel but susceptible to hydrogen embrittlement. In this study, the effect of hydrogen on strain-induced martensite formation in Type 304L stainless steel was investigated by monitoring the formation of martensite during tensile tests of as-received and hydrogen-charged samples and metallographically examining specimens from interrupted tensile tests after increasing levels of strain. The effect of hydrogen on the fracture mechanisms was also studied by examining the fracture features of as-received and hydrogen-charged specimens and relating them to the stress-strain behavior.

  3. Martensite Transformation and Magnetic Properties of Ni-Fe-Ga Heusler Alloys

    NASA Astrophysics Data System (ADS)

    Nath, Hrusikesh; Phanikumar, Gandham

    2015-11-01

    Compositional instability and phase formation in Ni-Fe-Ga Heusler alloys are investigated. The alloys are synthesized into two-phase microstructure. Their structures are identified as fcc and L 21, respectively. The γ-phase formation could be suppressed with higher Ga-content in the alloy as Ga stabilizes austenite phase, but Ga lowers the martensite transformation temperature. The increase of Fe content improves the magnetization value and the increase of Ni from 52 to 55 at. pct raises the martensite transformation temperature from 216 K to 357 K (-57 °C to 84 °C). Magnetic properties and martensitic transformation behavior in Ni-Fe-Ga Heusler alloys follow opposite trends, while Ni replaces either Fe or Ga, whereas they follow similar trends, while Fe replaces Ga. Modulated martensite structure has low twinning stress and high magneto crystalline anisotropic properties. Thus, the observation of 10- and 14 M-modulated martensite structures in the studied Ni-Fe-Ga Heusler alloys is beneficial for shape memory applications. The interdependency of alloy composition, phase formation, magnetic properties, and martensite transformation are discussed.

  4. Size effects in martensitic microstructures: Finite-strain phase field model versus sharp-interface approach

    NASA Astrophysics Data System (ADS)

    Tůma, K.; Stupkiewicz, S.; Petryk, H.

    2016-10-01

    A finite-strain phase field model for martensitic phase transformation and twinning in shape memory alloys is developed and confronted with the corresponding sharp-interface approach extended to interfacial energy effects. The model is set in the energy framework so that the kinetic equations and conditions of mechanical equilibrium are fully defined by specifying the free energy and dissipation potentials. The free energy density involves the bulk and interfacial energy contributions, the latter describing the energy of diffuse interfaces in a manner typical for phase-field approaches. To ensure volume preservation during martensite reorientation at finite deformation within a diffuse interface, it is proposed to apply linear mixing of the logarithmic transformation strains. The physically different nature of phase interfaces and twin boundaries in the martensitic phase is reflected by introducing two order-parameters in a hierarchical manner, one as the reference volume fraction of austenite, and thus of the whole martensite, and the second as the volume fraction of one variant of martensite in the martensitic phase only. The microstructure evolution problem is given a variational formulation in terms of incremental fields of displacement and order parameters, with unilateral constraints on volume fractions explicitly enforced by applying the augmented Lagrangian method. As an application, size-dependent microstructures with diffuse interfaces are calculated for the cubic-to-orthorhombic transformation in a CuAlNi shape memory alloy and compared with the sharp-interface microstructures with interfacial energy effects.

  5. Nanoscale Twinning and Martensitic Transformation in Shock-Deformed BCC Metals

    SciTech Connect

    Hsiung, L L

    2005-03-22

    Shock-induced twinning and martensitic transformation in BCC-based polycrystalline metals (Ta and U-6wt%Nb) have been observed and studied using transmission electron microscopy (TEM). The length-scale of domain thickness for both twin lamella and martensite phase is found to be smaller than 100 nm. While deformation twinning of {l_brace}112{r_brace}<111>-type is found in Ta when shock-deformed at 15 GPa, both twinning and martensitic transformation are found in Ta when shock-deformed at 45 GPa. Similar phenomena of nanoscale twinning and martensitic transformation are also found in U6Nb shock-deformed at 30 GPa. Since both deformation twinning and martensitic transformation occurred along the {l_brace}211{r_brace}{sub b} planes associated with high resolved shear stresses, it is suggested that both can be regarded as alternative paths for shear transformations to occur in shock-deformed BCC metals. Heterogeneous nucleation mechanisms for shock-induced twinning and martensitic transformation are proposed and discussed.

  6. Fast ferrite tuner for the BNL synchrotron light source

    SciTech Connect

    Pivit, E. ); Hanna, S.M.; Keane, J. )

    1991-01-01

    A new type of ferrite tuner has been tested at the BNL. The ferrite tuner uses garnet slabs partially filling a stripline. One of the important features of the tuner is that the ferrite is perpendicularly biased for operation above FMR, thus reducing the magnetic losses. A unique design was adopted to achieve the efficient cooling. The principle of operation of the tuner as well as our preliminary results on tuning a 52 MHz cavity are reported. Optimized conditions under which we demonstrated linear tunability of 80 KHz are described. The tuner's losses and its effect on higher-order modes in the cavity are discussed. 2 refs., 8 figs.

  7. Effect of aging temperature on the microstructures and mechanical properties of ZG12Cr9Mo1Co1NiVNbNB ferritic heat-resistant steel

    NASA Astrophysics Data System (ADS)

    Yang, Xue; Sun, Lan; Xiong, Ji; Zhou, Ping; Fan, Hong-yuan; Liu, Jian-yong

    2016-02-01

    The effect of aging on the mechanical properties and microstructures of a new ZG12Cr9Mo1Co1NiVNbNB ferritic heat resistant steel was investigated in this work to satisfy the high steam parameters of the ultra-supercritical power plant. The results show that the main precipitates during aging are Fe(Cr, Mo)23C6, V(Nb)C, and (Fe2Mo) Laves in the steel. The amounts of the precipitated phases increase during aging, and correspondingly, the morphologies of phases are similar to be round. Fe(Cr, Mo)23C6 appears along boundaries and grows with increasing temperature. In addition, it is revealed that the martensitic laths are coarsened and eventually happen to be polygonization. The hardness and strength decrease gradually, whereas the plasticity of the steel increases. What's more, the hardness of this steel after creep is similar to that of other 9%-12%Cr ferritic steels. Thus, ZG12Cr9Mo1Co1NiVNbNB can be used in the project.

  8. Crystallographic texture and the preferential orientation of a martensite in the polycrystalline Ni2.08Mn0.96Ga0.96 alloy

    NASA Astrophysics Data System (ADS)

    Musabirov, I. I.; Mulyukov, R. R.; Koledov, V. V.

    2015-04-01

    A study of the relationship of the crystallographic texture, the preferential orientation of martensite twins and the geometry changes during the martensite transformation of polycrystalline NiMnGa alloy is shown. Two states of alloy are investigated: as-cast state and the state after annealing at 923 K for 5 hours. It is shown that in the initial state the austenite phase has crystallographic axial texture <001>, while martensite has the two-component texture of the <001> and <110>. The preferential orientation of the martensitic twins in the martensitic structure is found. The crystallographic texture of the alloy after annealing is not changed, however, no preferential orientation of the martensitic twins is observed. In the martensitic phase structure martensitic twins are oriented randomly. Anisotropy of the thermal expansion during the martensitic transformation is shown, while in the annealed state such effect is not found.

  9. Magnetooptical and crystalline properties of sputtered garnet ferrite film on spinel ferrite buffer layer

    NASA Astrophysics Data System (ADS)

    Furuya, Akinori; Sasaki, Ai-ichiro; Morimura, Hiroki; Kagami, Osamu; Tanabe, Takaya

    2016-09-01

    The purpose of this study is to provide garnet films for volumetric magnetic holography. Volumetric magnetic holography usually employs an easily obtainable short-wavelength laser (visible light, not infrared light) with a large diffraction intensity. Bi-substituted garnet ferrite with a large Faraday rotation is promising for volumetric magnetic holography applications in the visible light region. However, a garnet film without a deteriorated layer must be obtained because a deteriorated layer (minute polycrystalline grains containing an amorphous phase) is formed during the initial deposition on a glass substrate. In particular, the required magnetooptical properties have not been obtained in a thin garnet film (100 nm or less) after annealing (1 h, 700 °C, oxygen atmosphere). Therefore, there is a need for excellent garnet films with the required magnetooptical (MO) properties even if the films are thin. By using a spinel ferrite buffer layer for garnet film deposition, we could obtain a thin garnet film with excellent MO properties. We determined the effect of the initial buffer layer on the crystallinity of the deposited garnet films by observing the film cross section. In addition, we undertook a qualitative estimation of the influence of the crystallinity and optical properties of the garnet film on a glass substrate with a spinel ferrite buffer layer.

  10. The influence of ageing on martensite ordering and stabilization in shape memory Cu-Al-Ni alloys

    SciTech Connect

    Aydogdu, A.; Aydogdu, Y.; Adiguzel, O.

    1997-05-01

    The martensitic transformation and the associated mechanical shape reversibility in copper-based shape memory alloys is strongly influenced by quenching and ageing treatments. Ageing of martensite in as-quenched Cu-Al-Ni alloys can result in loss of memory behavior. Structural studies have been carried out to measure the changes in the degree of order that develop during martensitic ageing of two Cu-Al-Ni alloys. Stabilization is directly related to disordering in martensitic state and the spacing differences ({Delta}d) between selected pairs of diffraction planes reflect the degree of ordering in martensite. The changes in degree of order are shown to be similar in as-quenched and post-quenched {beta}-phase annealed alloys, thereby leading to the conclusion that loss of memory in as-quenched alloys is not solely attributable to any extra changes in degree of order brought about by excess vacancies during martensitic ageing.

  11. Actively convected liquid metal divertor

    NASA Astrophysics Data System (ADS)

    Shimada, Michiya; Hirooka, Yoshi

    2014-12-01

    The use of actively convected liquid metals with j × B force is proposed to facilitate heat handling by the divertor, a challenging issue associated with magnetic fusion experiments such as ITER. This issue will be aggravated even more for DEMO and power reactors because the divertor heat load will be significantly higher and yet the use of copper would not be allowed as the heat sink material. Instead, reduced activation ferritic/martensitic steel alloys with heat conductivities substantially lower than that of copper, will be used as the structural materials. The present proposal is to fill the lower part of the vacuum vessel with liquid metals with relatively low melting points and low chemical activities including Ga and Sn. The divertor modules, equipped with electrodes and cooling tubes, are immersed in the liquid metal. The electrode, placed in the middle of the liquid metal, can be biased positively or negatively with respect to the module. The j × B force due to the current between the electrode and the module provides a rotating motion for the liquid metal around the electrodes. The rise in liquid temperature at the separatrix hit point can be maintained at acceptable levels from the operation point of view. As the rotation speed increases, the current in the liquid metal is expected to decrease due to the v × B electromotive force. This rotating motion in the poloidal plane will reduce the divertor heat load significantly. Another important benefit of the convected liquid metal divertor is the fast recovery from unmitigated disruptions. Also, the liquid metal divertor concept eliminates the erosion problem.

  12. Characterization of Irradiated Nanostructured Ferritic Steels

    SciTech Connect

    Bentley, James; Hoelzer, David T; Tanigawa, H.; Yamamoto, T.; Odette, George R.

    2007-01-01

    The past decade has seen the development of a new class of mechanically alloyed (MA) ferritic steels with outstanding mechanical properties that come, at least in part, from the presence of high concentrations (>10{sup 23} m{sup -3}) of Ti-, Y-, and O-enriched nanoclusters (NC). From the outset, there has been much interest in their potential use for applications to fission and proposed fusion reactors, not only because of their attractive high-temperature strength, but also because the presence of NC may result in a highly radiation-resistant material by efficiently trapping point defects to enhance recombination. Of special interest for fusion applications is the potential of NC to trap transmutation-produced He in high concentrations of small cavities, rather than in fewer but larger cavities that lead to greater radiation-induced swelling and other degraded properties.

  13. High strength ferritic alloy-D53

    DOEpatents

    Hagel, William C.; Smidt, Frederick A.; Korenko, Michael K.

    1977-01-01

    A high strength ferritic alloy is described having from about 0.2% to about 0.8% by weight nickel, from about 2.5% to about 3.6% by weight chromium, from about 2.5% to about 3.5% by weight molybdenum, from about 0.1% to about 0.5% by weight vanadium, from about 0.1% to about 0.5% by weight silicon, from about 0.1% to about 0.6% by weight manganese, from about 0.12% to about 0.20% by weight carbon, from about 0.02% to about 0.1% by weight boron, a maximum of about 0.05% by weight nitrogen, a maximum of about 0.02% by weight phosphorous, a maximum of about 0.02% by weight sulfur, and the balance iron.

  14. Transport in Manganese-Zinc Ferrites

    NASA Astrophysics Data System (ADS)

    Singh, David J.; Gupta, M.; Gupta, R.

    2002-03-01

    Density functional studies of the electronic and magnetic structure of the spinel ferrites ZnFe_2O4 and MnFe_2O4 are reported. Correct magnetic orderings are obtained. ZnFe_2O4 is predicted to be a small gap insulator in agreement with experiment. MnFe_2O4 is found to be a low carrier density half-metal in the fully ordered state. However, strong effects on the band structure near the band edges are found upon partial interchange of Fe and Mn atoms. These are above the criterion for disorder induced localization. This indicates that the insulating character may well be due to Anderson localization associated with the intersite Mn-Fe disorder in contrast to the usual picture of a Mott insulating ground state. This possibility is discussed in relation to experimental data.

  15. Ethanol sensor based on nanocrystallite cadmium ferrite

    SciTech Connect

    Gadkari, Ashok B.; Shinde, Tukaram J.; Vasambekar, Pramod N.

    2015-06-24

    The cadmium ferrite was synthesized by oxalate co-precipitation method. The crystal structure and surface morphology were examined by X-ray diffraction and SEM techniques, respectively. The nanocrystallite CdFe{sub 2}O{sub 4} sensor was tested for LPG, Cl{sub 2} and C{sub 2}H{sub 5}OH. The sensitivity was measured at various operating temperatures in the range of 100-400°C. The sensor shows highest sensitivity and selectivity to C{sub 2}H{sub 5}OH at 350°C. The response and recovery time was measured at operating temperature of 350°C. The sensor exhibits a lower response and recovery time for LPG and Cl{sub 2} as compared to ethanol.

  16. Magneto acoustical emission in nanocrystalline Mn–Zn ferrites

    SciTech Connect

    Praveena, K.; Murthty, S.R.

    2013-11-15

    Graphical abstract: Mn{sub 0.4}Zn{sub 0.6}Fe{sub 2}O{sub 4} powders were prepared by microwave hydrothermal method. The powders were characterized by X-ray diffraction, transmission electron microscope. The powders were sintered at different temperatures 400, 500, 600, 700, 800 and 900 °C/30 min using microwave sintering method. The grain size was estimated by scanning electron microscope. The room temperature dielectric and magnetic properties were studied in the frequency range (100 kHz–1.8 GHz). The magnetization properties were measured upto 1.5 T. The acoustic emission has been measured along the hysteresis loops from 80 K to Curie temperature. It is found that the magneto-acoustic emission (MAE) activity along hysteresis loop is proportional to the hysteresis losses during the same loop. This law has been verified on series of polycrystalline ferrites and found that the law is valid whatever the composition, the grain size and temperature. It is also found that the domain wall creation/or annihilation processes are the origin of the MAE. - Highlights: • The AE been measured along the hysteresis loops from 80 K to Curie temperature. • The MAE activity along hysteresis loop is proportional to P{sub h} during the same loop. • It is found that the domain wall creation/or annihilation processes are the origin of the MAE. - Abstract: Mn{sub 0.4}Zn{sub 0.6}Fe{sub 2}O{sub 4} powders were prepared by microwave hydrothermal method. The powders were characterized by X-ray diffraction, transmission electron microscope. The powders were sintered at different temperatures 400, 500, 600, 700, 800 and 900 °C/30 min using microwave sintering method. The grain size was estimated by scanning electron microscope. The room temperature dielectric and magnetic properties were studied in the frequency range (100 kHz–1.8 GHz). The magnetization properties were measured upto 1.5 T. The acoustic emission has been measured along the hysteresis loops from 80 K to Curie

  17. Nanocrystalline magnesium ferrite prepared for photocatalytic applications by using the polymerized complex method

    NASA Astrophysics Data System (ADS)

    Dom, Rekha; Borse, Pramod H.; Hong, Kyong-Soo; Choi, Seyong; Lee, Byeong Seob; Ha, Myoung Gyu; Kim, Jong Pil; Jeong, Euh Duck; Kim, Hyun Gyu

    2015-11-01

    Magnesium ferrite (MgFe2O4) exhibiting a spinel phase was synthesized by using the polymerized complex and the solid-state reaction methods, and its physico-chemical properties were studied to explore the water-splitting under visible light photons. The study revealed the potential for using MgFe2O4 particles for photo-catalytic application. The structural study provided information on ferrite nano-crystallites fabricated by using the polymer complex method. The morphological studies demonstrated that, in contrast to the solid-state reaction method, a homogenous, monodispersed ferrite photocatalyst could be formed by using the polymerized complex method. The optical study revealed a larger visible-light absorption capability for the nanosized MgFe2O4 photocatalysts prepared by using the polymer complex methods, and indicated a red-shift of the bandgap by 0.06 eV as compared to the bandgap of the bulk. These nanocrystallites were highly photoactive with respect to the photodegradation and photocatalytic hydrogen evolution applications. The electrochemical analysis showed that they exhibited favorable bandedge positions suitable for photocatalytic H2 evolution. Thus, nanocrystalline MgFe2O4 is an active visible-light photocatalyst, that might be useful for the decomposition of water.

  18. Ferrite core coupled slapper detonator apparatus and method

    SciTech Connect

    Boberg, R.E.; Lee, R.S.; Weingart, R.C.

    1989-08-01

    Method and apparatus are provided for coupling a temporally short electric power pulse from a thick flat-conductor power cable into a thin flat-conductor slapper detonator circuit. A first planar and generally circular loop is formed from an end portion of the power cable. A second planar and generally circular loop, of similar diameter, is formed from all or part of the slapper detonator circuit. The two loops are placed together, within a ferrite housing that provides a ferrite path that magnetically couples the two loops. Slapper detonator parts may be incorporated within the ferrite housing. The ferrite housing may be made vacuum and water-tight, with the addition of a hermetic ceramic seal, and provided with an enclosure for protecting the power cable and parts related thereto. 10 figs.

  19. Ferrite core coupled slapper detonator apparatus and method

    DOEpatents

    Boberg, Ralph E.; Lee, Ronald S.; Weingart, Richard C.

    1989-01-01

    Method and apparatus are provided for coupling a temporally short electric power pulse from a thick flat-conductor power cable into a thin flat-conductor slapper detonator circuit. A first planar and generally circular loop is formed from an end portion of the power cable. A second planar and generally circular loop, of similar diameter, is formed from all or part of the slapper detonator circuit. The two loops are placed together, within a ferrite housing that provides a ferrite path that magnetically couples the two loops. Slapper detonator parts may be incorporated within the ferrite housing. The ferrite housing may be made vacuum and water-tight, with the addition of a hermetic ceramic seal, and provided with an enclosure for protecting the power cable and parts related thereto.

  20. Sustainable synthesis of monodispersed spinel nano-ferrites

    EPA Science Inventory

    A sustainable approach for the synthesis of various monodispersed spinel ferrite nanoparticles has been developed that occurs at water-toluene interface under both conventional and microwave hydrothermal conditions. This general synthesis procedure utilizes readily available and ...

  1. Controlled ferrite content improves weldability of corrosion-resistant steel

    NASA Technical Reports Server (NTRS)

    Malin, C. O.

    1967-01-01

    Corrosion-resistant steel that adds restrictions on chemical composition to ensure sufficient ferrite content decreases the tendency of CRES to develop cracks during welding. The equations restricting composition are based on the Schaeffler constitution diagram.

  2. Growth and Properties of Magnetic Spinel Ferrite Thin Films and Heterostructures

    NASA Astrophysics Data System (ADS)

    Gupta, Arunava

    2013-03-01

    There is considerable interest in the growth of single crystal spinel ferrites films because of their numerous technological applications in areas such as microwave integrated devices, magnetoelectric coupling heterostructures, and potentially as an active barrier material in an emerging class of spintronic devices called spin filters. Unlike perovskites, the study of spinel ferrite films is quite limited in part due to the complex crystal structure with a large unit cell consisting of many interstitial sites and that the transition metal cations can adopt various oxidation states. We have grown high-quality, atomically smooth epitaxial ferrite (NiFe2O4, CoFe2O4 and LiFe5O8) films using chemical vapor deposition and pulsed laser deposition techniques and carried out detailed studies of their structural, magnetic and optical properties. Of particular interest are systematic studies on the formation of antiphase boundaries in epitaxial NiFe2O4 films grown on different substrates and the accurate determination of the band gap of this material using optical spectroscopy and first principles calculations. Additionally, we have grown ferrite films on piezoelectric substrates and observed large shifts in the ferromagnetic resonance profile due to magnetoelectric coupling resulting from electrostatic field-induced changes in the magnetic anisotropy field. Work done in collaboration with N. Z. Bao, W. H. Butler, R. Datta, B. S. Holinsworth, M. Iliev, S. Kanuri, S. V. Karthik, G. Kim, T. M. Klein, N. Li, M. Liu, P. R. LeClair, J. X. Ma, D. Mazumdar, T. Mewes, D. V. B. Murthy, J. L. Musfeldt, K. R. O'Neal, N. Pachauri, V. M. Petrov, H. Sato, S. Schäfer, L. Shen, H. Sims, G. Srinivasan, N. X. Sun, Q. -C. Sun, and Z. Zhou. The work was supported by ONR (Grant Number N00014-12-1-0102)

  3. Thermal Desorption Analysis of Hydrogen in High Strength Martensitic Steels

    NASA Astrophysics Data System (ADS)

    Enomoto, M.; Hirakami, D.; Tarui, T.

    2012-02-01

    Thermal desorption analyses (TDA) were conducted in high strength martensitic steels containing carbon from 0.33 to 1.0 mass pct, which were charged with hydrogen at 1223 K (950 °C) under hydrogen of one atmospheric pressure and quenched to room temperature. In 0.33C steel, which had the highest M s temperature, only one desorption peak was observed around 373 K (100 °C), whereas two peaks, one at a similar temperature and the other around and above 573 K (300 °C), were observed in the other steels, the height of the second peak increasing with carbon content. In 0.82C steel, both peaks disappeared during exposure at room temperature in 1 week, whereas the peak heights decreased gradually over 2 weeks in specimens electrolytically charged with hydrogen and aged for varying times at room temperature. From computer simulation, by means of the McNabb-Foster theory coupled with theories of carbon segregation, these peaks are likely to be due to trapping of hydrogen in the strain fields and cores of dislocations, and presumably to a lesser extent in prior austenite grain boundaries. The results also indicate that carbon atoms prevent and even expel hydrogen from trapping sites during quenching and aging in these steels.

  4. Stress corrosion cracking evaluation of martensitic precipitation hardening stainless steels

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1980-01-01

    The resistance of the martensitic precipitation hardening stainless steels PH13-8Mo, 15-5PH, and 17-4PH to stress corrosion cracking was investigated. Round tensile and c-ring type specimens taken from several heats of the three alloys were stressed up to 100 percent of their yield strengths and exposed to alternate immersion in salt water, to salt spray, and to a seacoast environment. The results indicate that 15-5PH is highly resistant to stress corrosion cracking in conditions H1000 and H1050 and is moderately resistant in condition H900. The stress corrosion cracking resistance of PH13-8Mo and 17-4PH stainless steels in conditions H1000 and H1050 was sensitive to mill heats and ranged from low to high among the several heats included in the tests. Based on a comparison with data from seacoast environmental tests, it is apparent that alternate immersion in 3.5 percent salt water is not a suitable medium for accelerated stress corrosion testing of these pH stainless steels.

  5. Modeling the Flow Curve of AISI 410 Martensitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Momeni, A.; Dehghani, K.; Heidari, M.; Vaseghi, M.

    2012-11-01

    In the present study, hot deformation behavior of AISI 410 martensitic stainless steel was investigated and modeled after conducting compression tests at the temperature range of 900-1150 °C and strain rate range of 0.001-1 s-1. At the studied temperature and strain rates, the flow curves were typical of dynamic recrystallization (DRX) showing a hardening peak followed by a softening one, and a steady state. The flow curves up to the peaks were modeled using the Estrin and Mecking equation. The softening due to DRX was also considered to increase the consistency of the developed model. The experimental equation proposed by Cingara and McQueen was also used to model the work hardening region. The results showed that the phenomenological model based on the Estrin and Mecking equation resulted in a better model for the work hardening region. Based on the Avrami equation, a model was developed to estimate the flow softening due to DRX between the peak and the starting point of steady state. The average value of the Avrami exponent was determined as 2.2, and it decreased with the increasing Zener-Hollomon parameter.

  6. Cold Spray Repair of Martensitic Stainless Steel Components

    NASA Astrophysics Data System (ADS)

    Faccoli, M.; Cornacchia, G.; Maestrini, D.; Marconi, G. P.; Roberti, R.

    2014-12-01

    The possibility of using cold spray as repair technique of martensitic stainless steel components was evaluated through laboratory investigations. An austenitic stainless steel feedstock powder was chosen, instead of soft metals powders like nickel, copper, or aluminum, used for repairing components made in light alloy or cast iron. The present study directly compares the microstructure, the residual stresses, and the micro-hardness of repairs obtained by cold spray and by TIG welding, that is commonly used as repair technique in large steel components. XRD and optical metallographic analysis of the repairs showed that cold spray offers some advantages, inducing compressive residual stresses in the repair and avoiding alterations of the interface between repair and base material. For these reasons, a heat treatment after the cold spray repair is not required to restore the base material properties, whereas a post-weld heat treatment is needed after the welding repair. Cold spray repair also exhibits a higher micro-hardness than the welding repair. In addition, the cavitation erosion resistance of a cold spray coating was investigated through ultrasonic cavitation tests, and the samples worn surfaces were observed by scanning electron microscopy.

  7. DARHT-II Injector Transients and the Ferrite Damper

    SciTech Connect

    Waldron, Will; Reginato, Lou; Chow, Ken; Houck, Tim; Henestroza, Enrique; Yu, Simon; Kang, Michael; Briggs, Richard

    2006-08-04

    This report summarizes the transient response of the DARHT-II Injector and the design of the ferrite damper. Initial commissioning of the injector revealed a rise time excited 7.8 MHz oscillation on the diode voltage and stalk current leading to a 7.8 MHz modulation of the beam current, position, and energy. Commissioning also revealed that the use of the crowbar to decrease the voltage fall time excited a spectrum of radio frequency modes which caused concern that there might be significant transient RF electric field stresses imposed on the high voltage column insulators. Based on the experience of damping the induction cell RF modes with ferrite, the concept of a ferrite damper was developed to address the crowbar-excited oscillations as well as the rise-time-excited 7.8 MHz oscillations. After the Project decided to discontinue the use of the crowbar, further development of the concept focused exclusively on damping the oscillations excited by the rise time. The design was completed and the ferrite damper was installed in the DARHT-II Injector in February 2006. The organization of this report is as follows. The suite of injector diagnostics are described in Section 2. The data and modeling of the injector transients excited on the rise-time and also by the crowbar are discussed in Section 3; the objective is a concise summary of the present state of understanding. The design of the ferrite damper, and the small scale circuit simulations used to evaluate the ferrite material options and select the key design parameters like the cross sectional area and the optimum gap width, are presented in Section 4. The details of the mechanical design and the installation of the ferrite damper are covered in Section 5. A brief summary of the performance of the ferrite damper following its installation in the injector is presented in Section 6.

  8. Epitaxial single crystalline ferrite films for high frequency applications

    SciTech Connect

    Suzuki, Y.; Dover, R.B. van; Korenivski, V.; Werder, D.; Chen, C.H.; Felder, R.J.; Phillips, J.M.

    1996-11-01

    The successful growth of single crystal ferrites in thin film form is an important step towards their future incorporation into integrated circuits operating at microwave frequencies. The authors have successfully grown high quality single crystalline spinel ferrite thin films of (Mn,Zn)Fe{sub 2}O{sub 4} and CoFe{sub 2}O{sub 4} on (100) and (110) SrTiO{sub 3} and MgAl{sub 2}O{sub 4} at low temperature. These ferrite films are buffered with spinel structure layers that are paramagnetic at room temperature. In contrast to ferrite films grown directly on the substrates, ferrite films grown on buffered substrates exhibit excellent crystallinity and bulk saturation magnetization values, thus indicating the importance of lattice match and structural similarity between the film and the immediately underlying layer. X-ray, RBS, AFM and TEM analysis provide a consistent picture of the structural properties of these ferrite films. The authors then use this technique to grow exchange-coupled bilayers of single crystalline CoFe{sub 2}O{sub 4} and (Mn,Zn)Fe{sub 2}O{sub 4}. In these bilayers, they observe strong exchange coupling across the interface that is similar in strength to the exchange coupling in the individual layers.

  9. Exchange-spring mechanism of soft and hard ferrite nanocomposites

    SciTech Connect

    Manjura Hoque, S.; Srivastava, C.; Kumar, V.; Venkatesh, N.; Das, H.N.; Saha, D.K.; Chattopadhyay, K.

    2013-08-01

    Graphical abstract: - Highlights: • Exchange-spring behaviour of soft and hard ferrites was studied. • XRD patterns indicated soft and hard ferrites as fcc and hcp structure. • Hysteresis loops indicate wide difference in coercivity of soft and hard phases. • Nanocomposites produced convex hysteresis loop characteristic of single-phase. - Abstract: The paper reports exchange-spring soft and hard ferrite nanocomposites synthesized by chemical co-precipitation with or without the application of ultrasonic vibration. The composites contained BaFe{sub 12}O{sub 19} as the hard phase and CoFe{sub 2}O{sub 4}/MgFe{sub 2}O{sub 4} as the soft phase. X-ray diffraction patterns of the samples in the optimum calcined condition indicated the presence of soft ferrites as face-centred cubic (fcc) and hard ferrites as hexagonal close packed (hcp) structure respectively. Temperature dependence of magnetization in the range of 20–700 °C demonstrated distinct presence of soft and hard ferrites as magnetic phases which are characterized by wide difference in magnetic anisotropy and coercivity. Exchange-spring mechanism led these nanocomposite systems to exchange-coupled, which ultimately produced convex hysteresis loops characteristic of a single-phase permanent magnet. Fairly high value of coercivity and maximum energy product were observed for the samples in the optimum calcined conditions with a maximum applied field of 1600 kA/m (2 T)

  10. Direct dyes removal using modified magnetic ferrite nanoparticle

    PubMed Central

    2014-01-01

    The magnetic adsorbent nanoparticle was modified using cationic surface active agent. Zinc ferrite nanoparticle and cetyl trimethylammonium bromide were used as an adsorbent and a surface active agent, respectively. Dye removal ability of the surface modified nanoparticle as an adsorbent was investigated. Direct Green 6 (DG6), Direct Red 31 (DR31) and Direct Red 23 (DR23) were used. The characteristics of the adsorbent were studied using Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effect of adsorbent dosage, initial dye concentration and salt was evaluated. In ternary system, dye removal of the adsorbent at 90, 120, 150 and 200 mg/L dye concentration was 63, 45, 30 and 23% for DR23, 97, 90, 78 and 45% for DR31 and 51, 48, 42 and 37% for DG6, respectively. It was found that dye adsorption onto the adsorbent followed Langmuir isotherm. The adsorption kinetic of dyes was found to conform to pseudo-second order kinetics. PMID:24991427

  11. Calorimetric and acoustic emission study of martensitic transformation in single-crystalline Ni2MnGa alloys

    NASA Astrophysics Data System (ADS)

    Tóth, László Z.; Szabó, Sándor; Daróczi, Lajos; Beke, Dezső L.

    2014-12-01

    The jerky character of austenite-martensite phase transformation in Ni2MnGa single crystals (with 10M martensite structure) has been investigated by thermal cycling using a differential scanning calorimeter (DSC) and by detection of acoustic emissions (AEs) at low cooling and heating rates (0.1 K/min and below). It is illustrated that, besides the low cooling and heating rate, mass and surface roughness are also important parameters in optimizing the best signal/noise ratio in order to obtain individual peaks suitable for statistical analysis. Three types of samples, differing in the twin structure and twin boundary behavior, were investigated with and without surface roughening made by electro-erosion. The statistical analysis, carried out for both (thermal and acoustic) types of signals, provided power-law behavior. In calorimetric measurements the energy exponents, obtained in cooling, were the same within the experimental errors (ɛ =1.7 ±0.2 ) for the three samples investigated. In acoustic emission experiments the energy and amplitude, α , exponents were determined both for cooling and heating. The exponents for cooling and heating runs are slightly different. They are larger for heating for both α and ɛ , in accordance with the asymmetric acoustic activity: we observed higher acoustic activity (higher number of hits) during cooling. The effect of the surface roughness is negligible in the exponents (but higher acoustic activity corresponds to higher roughness) and the following values were obtained: ɛ =1.5 ±0.1 and α =2.1 ±0.1 for cooling as well as ɛ =1.8 ±0.1 and α =2.6 ±0.1 for heating. Our results are in accordance with the results of Gallardo et al. [Phys. Rev. B 81, 174102 (2010), 10.1103/PhysRevB.81.174102] obtained in Cu based alloys: the exponents of the energy distributions, for both DSC and AE signals, were the same within the experimental errors. Furthermore, our exponents obtained from the AE measurements are close to the values

  12. Modeling the Flow Curve Characteristics of 410 Martensitic Stainless Steel Under Hot Working Condition

    NASA Astrophysics Data System (ADS)

    Momeni, Amir; Dehghani, Kamran; Ebrahimi, Golam Reza; Keshmiri, Hamid

    2010-11-01

    The hot deformation behavior of AISI 410 martensitic stainless steel was investigated by conducting hot compression tests between 1173 K (900 °C) and 1423 K (1150 °C) and between strain rates of 0.001 s-1 to 1 s-1. The hyperbolic sine function described the relation well between flow stress at a given strain and the Zener-Hollomon parameter ( Z). The variation of flow stress with deformation temperature gave the average value of apparent activation energy as 448 kJ/mol. The strain and stress corresponding to two important points associated with flow curve ( i.e., peak strain and the onset of steady-state flow) were related to the Z parameter using power-law equations. A model also was proposed based on the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation to estimate the fractional softening of dynamic recrystallization at any given strain. This model can be used readily for the prediction of flow stress. The values of n and k, material constants in the JMAK equation, were determined for the studied material. The strains regarding the peak and the onset of steady-state flow were formulated in term of applied strain rate and the constants of the JMAK equation. A good agreement was found between the predicted strains and those obtained by the experimental work.

  13. Observing the plasma response to applied non-axisymmetric fields in the presence of an adjustable ferritic wall

    NASA Astrophysics Data System (ADS)

    Levesque, Jeffrey

    2014-10-01

    We report high-resolution detection of the time-evolving, three-dimensional (3D) plasma response to applied non-axisymmetric magnetic fields in a tokamak with an adjustable ferromagnetic wall and with a variably-shaped equilibrium. Ferritic tiles (5mm thick, saturated μ /μ0 ~ 8) have been added to the plasma-facing side of half of the in-vessel movable wall segments in the High Beta Tokamak - Extended Pulse (HBT-EP) device in order to explore Ferromagnetic Resistive Wall Mode (FRWM) stability. Low-activation ferritic steels are a candidate for structural components of a fusion reactor, and these controlled experiments examine MHD stability of plasmas with nearby ferromagnetic material. Plasma-wall separation for alternating ferritic and non-ferritic wall segments can be adjusted between discharges without opening the vacuum vessel. Amplification of applied resonant fields is observed to increase when the ferromagnetic wall is close to plasma surface instead of the standard stainless steel wall. Experiments with rapidly rotating external kink modes show wall stabilization despite the presence of the close ferritic wall (b / a ~ 1 . 07), extending previous observations in JFT-2M. Plasmas are observed to have reduced wall stabilization when a biased electrode is used to slow the mode rotation. Resonant fields are also applied while the plasma evolves from circular limited cross-sections to shaped, single-null cross-sections in order to study the effects of shaping on multimode interactions. Multimode activity in diverted and limited plasmas is compared with DCON predictions. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  14. Cr segregation at the FeCr surface and the origin of corrosion resistance in ferritic steels

    SciTech Connect

    De Caro, M S; Morse, B; Egiebor, N; Farmer, J; Caro, A

    2008-11-22

    Structural materials in Gen-IV nuclear reactors will face severe conditions of high operating temperatures, high neutron flux exposure, and corrosive environment. Radiation effects and corrosion and chemical compatibility issues are factors that will limit the materials lifetime. Low-chromium (9-12 Cr wt.%) ferritic martensitic (F/M) steels are being considered as possible candidates because they offer good swelling resistance and good mechanical properties under extreme conditions of radiation dose and irradiation temperature. The surface chemistry of FeCr alloys, responsible for the corrosion properties, is complex. It exists today a controversy between equilibrium thermodynamic calculations, which suggest Cr depletion at the surface driven by the higher surface energy of Cr, and experimental data which suggest the oxidation process occurs in two stages, first forming a Fe-rich oxide, followed by a duplex oxide layer, and ending with a Cr-rich oxide. Moreover, it has been shown experimentally that corrosion resistance of F/M steels depends significantly on Cr content, increasing with increasing Cr content and with a threshold around 10% Cr, below which, the alloy behaves as pure Fe. In an attempt to rationalize these two contradicting observations and to understand the physical mechanism behind corrosion resistance in these materials we perform atomistic simulations using our FeCr empirical potential and analyze Cr equilibrium distributions at different compositions and temperatures in single and polycrystalline samples. We analyze the controversy in terms of thermodynamic and kinetic considerations.

  15. Modeling the coupling between martensitic phase transformation and plasticity in shape memory alloys

    NASA Astrophysics Data System (ADS)

    Manchiraju, Sivom

    The thermo-mechanical response of NiTi shape memory alloys (SMAs) is predominantly dictated by two inelastic deformation processes---martensitic phase transformation and plastic deformation. This thesis presents a new microstructural finite element (MFE) model that couples these processes and anisotropic elasticity. The coupling occurs via the stress redistribution induced by each mechanism. The approach includes three key improvements to the literature. First, transformation and plasticity are modeled at a crystallographic level and can occur simultaneously. Second, a rigorous large-strain finite element formulation is used, thereby capturing texture development (crystal rotation). Third, the formulation adopts recent first principle calculations of monoclinic martensite stiffness. The model is calibrated to experimental data for polycrystalline NiTi (49.9 at% Ni). Inputs include anisotropic elastic properties, texture, and DSC data as well as a subset of pseudoelastic and load-biased thermal cycling data. This calibration process provides updated material values---namely, larger self-hardening between similar martensite plates. It is then assessed against additional pseudoelastic and load-biased thermal cycling experimental data and neutron diffraction measurements of martensite texture evolution. Several experimental trends are captured---in particular, the transformation strain during thermal cycling monotonically increases with increasing bias stress, reaching a peak and then decreasing due to intervention of plasticity---a trend which existing MFE models are unable to capture. Plasticity is also shown to enhance stress-induced martensite formation during loading and generate retained martensite upon unloading. The simulations even enable a quantitative connection between deformation processing and two-way shape memory effect. Some experimental trends are not captured---in particular, the ratcheting of macrostrain with repeated thermal cycling. This may

  16. Persistent conductive footprints of 109° domain walls in bismuth ferrite films

    SciTech Connect

    Stolichnov, I.; Iwanowska, M.; Colla, E.; Setter, N.; Ziegler, B.; Gaponenko, I.; Paruch, P.; Huijben, M.; Rijnders, G.

    2014-03-31

    Using conductive and piezoforce microscopy, we reveal a complex picture of electronic transport at weakly conductive 109° domain walls in bismuth ferrite films. Even once initial ferroelectric stripe domains are changed/erased, persistent conductive paths signal the original domain wall position. The conduction at such domain wall “footprints” is activated by domain movement and decays rapidly with time, but can be re-activated by opposite polarity voltage. The observed phenomena represent true leakage conduction rather than merely displacement currents. We propose a scenario of hopping transport in combination with thermionic injection over interfacial barriers controlled by the ferroelectric polarization.

  17. Effect of Austenitizing Heat Treatment on the Microstructure and Hardness of Martensitic Stainless Steel AISI 420

    NASA Astrophysics Data System (ADS)

    Barlow, L. D.; Du Toit, M.

    2012-07-01

    The effect of austenitizing on the microstructure and hardness of two martensitic stainless steels was examined with the aim of supplying heat-treatment guidelines to the user that will ensure a martensitic structure with minimal retained austenite, evenly dispersed carbides and a hardness of between 610 and 740 HV (Vickers hardness) after quenching and tempering. The steels examined during the course of this examination conform in composition to medium-carbon AISI 420 martensitic stainless steel, except for the addition of 0.13% vanadium and 0.62% molybdenum to one of the alloys. Steel samples were austenitized at temperatures between 1000 and 1200 °C, followed by oil quenching. The as-quenched microstructures were found to range from almost fully martensitic structures to martensite with up to 35% retained austenite after quenching, with varying amounts of carbides. Optical and scanning electron microscopy was used to characterize the microstructures, and X-ray diffraction was employed to identify the carbide present in the as-quenched structures and to quantify the retained austenite contents. Hardness tests were performed to determine the effect of heat treatment on mechanical properties. As-quenched hardness values ranged from 700 to 270 HV, depending on the amount of retained austenite. Thermodynamic predictions (using the CALPHAD™ model) were employed to explain these microstructures based on the solubility of the carbide particles at various austenitizing temperatures.

  18. Hydrogen permeation and diffusion in a 0. 2C-13Cr martensitic stainless steel

    SciTech Connect

    Xu, J.; Sun, X.K. . State Key Lab. of RSA); Yuan, X.Z.; Wei, B.M. . Dept. of Applied Chemistry)

    1993-10-01

    The phenomenon of hydrogen embrittlement for engineering alloys, especially for alloy steels, has long attracted the attention of material researchers. Presently, it is thought that the occurrence of the phenomenon correlates with the processes of hydrogen entry and transport in metals. Therefore, a great effort has been made to understand the hydrogen permeation and diffusion in metals and alloys. Even so, the knowledge of the hydrogen permeation and diffusion in steels with a martensitic structure is still limited. In most of the investigations performed on martensite, the electrochemical permeation technique was employed for measurement; hence, only limited data near ambient temperature have been determined. A few results obtained at higher temperature are very scattered also. For instance, the hydrogen diffusivity of AISI 4130 steel in the quenched and tempered (martensite) condition is 2 orders of magnitude higher than of cryoformed 301 stainless steel (containing 90% of [alpha][prime] martensite). In the present work, the hydrogen permeability and diffusivity of a 0.2C-13Cr martensitic stainless steel (2Cr13), roughly corresponding to AISI 420, was determined by means of the gaseous permeation technique. Measurements were made above ambient temperature.

  19. Crystallographic features of the structure of a martensite packet of the NiMn intermetallic compound

    NASA Astrophysics Data System (ADS)

    Khlebnikova, Yu. V.; Egorova, L. Yu.; Rodionov, D. P.; Belosludtseva, E. S.; Kazantsev, V. A.

    2016-06-01

    Optical microscopy, scanning electron microscopy, and X-ray diffraction are used to show that a pseudosingle crystal forms upon cooling of an alloy Ni49Mn51 single crystal below the temperature of the β→θ (bcc → fct) transformation. At room temperature, this pseudosingle crystal has the structure of tetragonal L10 martensite with parameters a = 0.3732 nm and c = 0.3537 nm and a tetragonality c/ a = 0.94775. The temperatures of the forward and reverse B2 → L10 transformations are determined. The crystallographic features of martensite packet formation are analyzed. As shown by EBSD, neighboring martensite packets always have three kinds of tetragonal martensite plates, which are in a twin position and have different tetragonality axis directions. Repeated heating and quenching of the pseudosingle crystal result in recrystallization with the formation of coarse grains. The packet structure of the tetragonal martensite is retained in this case, and the sizes of the packets formed within a grain decrease by a factor of 2-3 as compared to the initial pseudosingle crystal.

  20. Ferromagnetic interactions and martensitic transformation in Fe doped Ni-Mn-In shape memory alloys

    SciTech Connect

    Lobo, D. N.; Priolkar, K. R.; Emura, S.; Nigam, A. K.

    2014-11-14

    The structure, magnetic, and martensitic properties of Fe doped Ni-Mn-In magnetic shape memory alloys have been studied by differential scanning calorimetry, magnetization, resistivity, X-ray diffraction (XRD), and EXAFS. While Ni{sub 2}MnIn{sub 1−x}Fe{sub x} (0 ≤ x ≤ 0.6) alloys are ferromagnetic and non martensitic, the martensitic transformation temperature in Ni{sub 2}Mn{sub 1.5}In{sub 1−y}Fe{sub y} and Ni{sub 2}Mn{sub 1.6}In{sub 1−y}Fe{sub y} increases for lower Fe concentrations (y ≤ 0.05) before decreasing sharply for higher Fe concentrations. XRD analysis reveals presence of cubic and tetragonal structural phases in Ni{sub 2}MnIn{sub 1−x}Fe{sub x} at room temperature with tetragonal phase content increasing with Fe doping. Even though the local structure around Mn and Ni in these Fe doped alloys is similar to martensitic Mn rich Ni-Mn-In alloys, presence of ferromagnetic interactions and structural disorder induced by Fe affect Mn-Ni-Mn antiferromagnetic interactions resulting in suppression of martensitic transformation in these Fe doped alloys.

  1. Evidence of martensitic phase transitions in magnetic Ni-Mn-In thin films

    SciTech Connect

    Sokolov, A.; Zhang, Le; Dubenko, I.; Samanta, T.; Ali, N.; Stadler, S.

    2013-02-18

    Ni{sub 50}Mn{sub 35}In{sub 15} Heusler alloy thin films (with thicknesses of about 10 nm) have been grown on single crystal MgO and SrTiO{sub 3} (STO) (100) substrates using a laser-assisted molecular beam epitaxy method. Films of mixed austenitic and martensitic phases and of pure martensitic phase have been detected for those grown on MgO and STO substrates, respectively. Thermomagnetic curves were measured using a SQUID magnetometer and are consistent with those of off-stoichiometric In-based bulk Heusler alloys, including a martensitic transition at T = 315 K for films grown on MgO. The differences in the properties of the films grown on MgO and STO are discussed.

  2. A New XRD Method to Quantify Plate and Lath Martensites of Hardened Medium-Carbon Steel

    NASA Astrophysics Data System (ADS)

    Luo, Quanshun

    2016-06-01

    This paper introduces a new technique to separately measure the volume fraction and tetragonal ratio of co-existing lath and plate martensites in ultrahigh strength steel, and to calculate their different carbon contents. First, the two martensites are assumed to have body-centered tetragonal lattice structures of different tetragonal ratios. X-ray diffraction is then applied to obtain the overlapping {200} diffraction peak, which is subsequently separated as four sub-peaks using a self-made multiple Gaussian peak-fitting method to allow the measurement of the individual lattice parameters c and a. Finally, a modified equation is applied to calculate the carbon contents from the obtained tetragonal ratios. The new technique is then applied to investigate the effect of subsequent tempering on the decarbonization of the as-quenched martensites.

  3. Spontaneous strain glass to martensite transition in ferromagnetic Ni-Co-Mn-Ga strain glass

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Huang, Chonghui; Wu, Haijun; Gao, Jinghui; Yang, Sen; Wang, Dong; Ding, Xiangdong; Song, Xiaoping; Ren, Xiaobing

    2013-04-01

    We report that a spontaneous strain glass to martensite (STG-M) transition occurs in a Ni45Co10Mn20Ga25 ferromagnetic strain glass. The signatures of the spontaneous STG-M transition of Ni45Co10Mn20Ga25 ferromagnetic strain glass are stronger than those of Ti50Ni44.5Fe5.5 strain glass reported previously. Such a difference is attributed to that the martensitic terminal of the former has larger elastic anisotropy than that of the later. The spontaneous STG-M transition in this ferromagnetic strain glass is due to that the delicate competition between the kinetic limitation and the martensitic thermodynamic driving force changes with temperature.

  4. Characterization of preferential orientation of martensitic variants in a single crystal of NiMnGa

    NASA Astrophysics Data System (ADS)

    Liu, Guodong; Chen, Jinglan; Cui, Yuting; Liu, Zhuhong; Zhang, Ming; Wu, Guangheng; Brück, E.; de Boer, F. R.; Meng, Fanbin; Li, Yangxian; Qu, Jingping

    2004-06-01

    We report the detailed observation of martensitic variants in NiMnGa single crystals. The variants that are twinned with each other in different ways can be clearly identified in our single crystals by optical observation. We also investigated the preferential orientation of the martensitic variants in NiMnGa single crystals. We observed the motion of the variant boundary in response to application of a magnetic field. This observation can be used to explain phenomenologically the magnetic-field-induced strain. In the single crystal with composition Ni 52Mn 24Ga 24, martensite with seven modulated layers (7M) shows preferentially oriented variants. A completely recoverable two-way shape-memory behavior was also observed by measuring the free sample in three different directions during a complete temperature cycle. It was found that the largest strains in the [001] and [010] directions occur in different temperature ranges.

  5. Temperature dependence of magnetic susceptibility in the vicinity of martensitic transformation in ferromagnetic shape memory alloys.

    PubMed

    Zablotskii, V; Pérez-Landazábal, J I; Recarte, V; Gómez-Polo, C

    2010-08-11

    Temperature dependences of low-field quasistatic magnetic susceptibility in the vicinity of martensitic transitions in an NiFeGa alloy are studied both by experiment and analytically. Pronounced reversible jumps of the magnetic susceptibility were observed near the martensitic transition temperature. A general description of the temperature dependences of the susceptibility in ferromagnetic austenite and martensite phases and the susceptibility jump at the transition is suggested. As a result, the main factors governing the temperature dependences of the magnetic susceptibility in the magnetic shape memory alloys are revealed. The magnetic susceptibility jump value is found to be related to changes of: (i) magnetic anisotropy; (ii) magnetic domain wall geometrical constraints (those determined by the alignment and size of twin variants) and (iii) mean magnetic domain spacing.

  6. Temperature Coefficients of the Elastic Moduli and Dissipation in B2 Martensites

    NASA Astrophysics Data System (ADS)

    Darling, Timothy; Migliori, Albert; Thoma, Dan; Hugo, Richard; Freibert, Franz; Louca, Despina

    2000-03-01

    We have measured the temperature dependence of the elastic moduli and the internal friction of the B2 structure martensites NiTi, Ni_0.62Al_0.38, and AuZn using Resonant Ultrasound Spectroscopy (RUS). In the high temperature austenite phase the moduli show an anomalous positive temperature coefficient, and below the martensite transition the materials display a high dissipation which seems glass-like. We believe that the fundamental shear instability of the body-centered phase and subtle disorder in the martensite phase are responsible for these behaviors. We have also carried out neutron PDF, transport and TEM measurements to detect the subtle structural effects which are producing the anomalies in the ultrasound data.

  7. Iterative Determination of the Orientation Relationship Between Austenite and Martensite from a Large Amount of Grain Pair Misorientations

    NASA Astrophysics Data System (ADS)

    Nyyssönen, Tuomo; Isakov, Matti; Peura, Pasi; Kuokkala, Veli-Tapani

    2016-06-01

    An automatic, iterative method to determine the orientation relationship between parent austenite and martensite is described. The algorithm generates the orientation relationship from grain boundary misorientations through an iterative procedure based on correct symmetry operator assignment. The automatic method is demonstrated to work on both martensitic and bainitic steels and to provide comparable results to a manual grain selection method.

  8. Synthesis of Novel Ferrite Based Recyclable Catalyst Used to Clean Dye and Emerging Contaminates from Water

    EPA Science Inventory

    Herein, we describe synthesis of novel palladium, copper, cobalt and vanadium ferrites. The ferrites were synthesized by combustion method using polyvinyl alcohol. The particles phases were confirmed using X-ray diffraction and sizes were determined using particle size analyzer. ...

  9. Performance of ferrite fillers on electrical behavior of polymer nanocomposite electrolyte

    NASA Astrophysics Data System (ADS)

    Pandey, Kamlesh; Mauli Dwivedi, Mrigank; Singh, Markandey; Agrawal, S. L.

    2011-04-01

    Dispersal of nanofillers in polymer electrolytes have shown to improve the ionic properties of Polyethylene oxide (PEO)-based polymer electrolytes in recent times. The effects of different nanoferrite fillers (i.e., Al-Zn ferrite, Mg-Zn ferrite, and Zn ferrite) on the electrical transport properties have been studied here on the composite polymer electrolyte system. The interaction of salt/filler with electrolyte has been investigated by XRD studies. SEM image and infrared spectral studies give an indication of nanocomposite formation. In conductivity studies, all electrolyte systems are seen to follow universal power law. Composition dependence (with ferrite filler) gives the maximum conductivity in [93PEO-7NH4SCN]: X ferrite (where X = 2% in Al-Zn ferrite, 1% Mg-Zn ferrite, and 1% Zn ferrite) system.

  10. A biosensor system using nickel ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Singh, Prachi; Rathore, Deepshikha

    2016-05-01

    NiFe2O4 ferrite nanoparticles were synthesized by chemical co-precipitation method and the structural characteristics were investigated using X-ray diffraction technique, where single cubic phase formation of nanoparticles was confirmed. The average particle size of NiFe2O4 was found to be 4.9 nm. Nanoscale magnetic materials are an important source of labels for biosensing due to their strong magnetic properties which are not found in biological systems. This property of the material was exploited and the fabrication of the NiFe2O4 nanoparticle based biosensor was done in the form of a capacitor system, with NiFe2O4 as the dielectric material. The biosensor system was tested towards different biological materials with the help of electrochemical workstation and the same was analysed through Cole-Cole plot of NiFe2O4. The performance of the sensor was determined based on its sensitivity, response time and recovery time.

  11. Development of advanced barium ferrite tape media

    NASA Astrophysics Data System (ADS)

    Shimizu, Osamu; Oyanagi, Masahito; Morooka, Atsushi; Mori, Masahiko; Kurihashi, Yuich; Tada, Toshio; Suzuki, Hiroyuki; Harasawa, Takeshi

    2016-02-01

    We developed an advanced particulate magnetic tape using fine barium ferrite (BaFe) particles for magnetic-tape storage systems. The new tape showed a signal-to-noise ratio (SNR) that was 3.5 dB higher than that of the commercially available BaFe tape used for the Linear Tape Open generation 6 tape-storage system, at a linear density of 300 kfci measured with a giant magnetoresistive head with a reader width of 0.45 μm. Such significant increase in SNR was achieved by reducing the magnetic particle volume from 1950 to 1350 nm3, while maintaining a sufficiently high thermal stability, improving the perpendicular squareness ratio from 0.66 to 0.83, and improving the surface roughness from 2.5 to 2.0 nm when measured by atomic force microscopy and from 2.4 to 0.9 nm when measured by optical interferometry. This paper describes the characteristics of the new BaFe particles and media, which are expected to be employed for future high-capacity linear-tape systems.

  12. Tuning the magnetism of ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Viñas, S. Liébana; Simeonidis, K.; Li, Z.-A.; Ma, Z.; Myrovali, E.; Makridis, A.; Sakellari, D.; Angelakeris, M.; Wiedwald, U.; Spasova, M.; Farle, M.

    2016-10-01

    The importance of magnetic interactions within an individual nanoparticle or between adjacent ones is crucial not only for the macroscopic collective magnetic behavior but for the AC magnetic heating efficiency as well. On this concept, single-(MFe2O4 where M=Fe, Co, Mn) and core-shell ferrite nanoparticles consisting of a magnetically softer (MnFe2O4) or magnetically harder (CoFe2O4) core and a magnetite (Fe3O4) shell with an overall size in the 10 nm range were synthesized and studied for their magnetic particle hyperthermia efficiency. Magnetic measurements indicate that the coating of the hard magnetic phase (CoFe2O4) by Fe3O4 provides a significant enhancement of hysteresis losses over the corresponding single-phase counterpart response, and thus results in a multiplication of the magnetic hyperthermia efficiency opening a novel pathway for high-performance, magnetic hyperthermia agents. At the same time, the existence of a biocompatible Fe3O4 outer shell, toxicologically renders these systems similar to iron-oxide ones with significantly milder side-effects.

  13. Energy of domain walls in ferrite films

    NASA Astrophysics Data System (ADS)

    Gomez, M. E.; Prieto, P.; Mendoza, A.; Guzman, O.

    2007-03-01

    MnZn Ferrite films were deposited by RF sputtering on (001) single crystal MgO substrates. AFM images show an increment in grain size with the film thickness. Grains with diameter between φ ˜ 70 and 700 nm have been observed. The coercive field Hc as a function of the grain size reaches a maximum value of about 80 Oe for φc˜ 300 nm. The existence of a multidomain structure associated with a critical grain size was identified by Magneto-optical Kerr effect technique (MOKE). The transition of the one-domain regime to the two-domain regime was observed at a critical grain size of Dc˜ 530 nm. This value agree with values predicted previously. The Jiles-Atherton model (JAM) was used to discuss the experimental hysteresis loops. The k pinning parameter obtained from JAM shows a maximum value of k/μo = 67 Am^2 for grains with Lc˜ 529 nm. The total energy per unit area E was correlated with k and D. We found a simple phenomenological relationship given by E α kD; where D is the magnetic domain width.

  14. Chemical looping coal gasification with calcium ferrite and barium ferrite via solid--solid reactions

    SciTech Connect

    Siriwardane, Ranjani; Tian, Hanjing; Richards, George

    2016-01-01

    Coal gasification to produce synthesis gas by chemical looping was investigated with two oxygen carriers, barium ferrite (BaFe2O4) and calcium ferrite (CaFe2O4). Thermo-gravimetric analysis (TGA) and fixed-bed flow reactor data indicated that a solid–solid interaction occurred between oxygen carriers and coal to produce synthesis gas. Both thermodynamic analysis and experimental data indicated that BaFe2O4 and CaFe2O4 have high reactivity with coal but have a low reactivity with synthesis gas, which makes them very attractive for the coal gasification process. Adding steam increased the production of hydrogen (H2) and carbon monoxide (CO), but carbon dioxide (CO2) remained low because these oxygen carriers have minimal reactivity with H2 and CO. Therefore, the combined steam–oxygen carrier produced the highest quantity of synthesis gas. It appeared that neither the water–gas shift reaction nor the water splitting reaction promoted additional H2 formation with the oxygen carriers when steam was present. Wyodak coal, which is a sub-bituminous coal, had the best gasification yield with oxygen carrier–steam while Illinois #6 coal had the lowest. The rate of gasification and selectivity for synthesis gas production was significantly higher when these oxygen carriers were present during steam gasification of coal. The rates and synthesis gas yields during the temperature ramps of coal–steam with oxygen carriers were better than with gaseous oxygen.

  15. Coupled Model for Carbon Partitioning from Martensite into Austenite During the Quenching Process in Fe-C Steels

    NASA Astrophysics Data System (ADS)

    Liu, Peixing; Zhu, Bin; Wang, Yilin; Zhang, Yisheng

    2016-08-01

    In this paper, a coupled model for carbon partitioning from martensite into austenite during the quenching process in Fe-C steels is constructed where the carbon is permitted to partition while the martensite is continuously forming. A diffusion model of carbon at the `martensite/austenite interface' is created where the interface does not move during the carbon partitioning process, and the driving force for carbon partitioning originates from the chemical potential difference. The results show that the martensitic transformation and carbon partitioning affect each other, and that the cooling rate between the martensite start temperature ( M s) and room temperature has a major effect on the volume fraction of the final retained austenite. The simulation results are shown to be in good agreement with experiments.

  16. Large anisotropy of spin polarization in Heusler alloy Ni2MnGa induced by martensitic transformation

    NASA Astrophysics Data System (ADS)

    Zhu, Z. Y.; Zhang, H. W.; Xu, S. F.; Chen, J. L.; Cao, Z. X.; Wu, G. H.

    2008-05-01

    Spin polarization both in the cubic austenitic and tetragonal martensitic phases of the Ni2MnGa alloy has been investigated using first-principles calculations combined with classical Bloch-Boltzmann transport theory. It is shown that the degree of spin polarization, while decreasing from 42% in the ⟨001⟩ directions of the austenitic phase to 30% in the [100] direction of the martensitic phase, rises to 75% in the [001] direction of the martensitic phase, resulting from a preferential reconstruction of the spin-down Fermi surfaces upon martensitic transformation. With this finding, various recent intriguing electrical measurements upon Ni2MnGa across the martensitic transformation can find an explanation. This also opens a way of searching for giant magnetoresistance materials.

  17. Micromagnetic and Mössbauer spectroscopic investigation of strain-induced martensite in austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Mészáros, L.; Kéldor, M.; Hidasi, B.; Vértes, A.; Czakó-Nagy, I.

    1996-08-01

    Strain-induced martensite in 18/8 austenitic stainless steel was studied. Magnetic measurements and Mössbauer spectroscopic investigations were performed to characterize the amount of α’-martensite due to room-temperature plastic tensile loading. The effects of cold work and annealing heat treatment were explored using magnetic Barkhausen noise, saturation polarization, coercive force, hardness, and conversion electron Mössbauer spectra measurements. The results of the magnetic measurements were compared to results obtained by Mössbauer spectroscopy. The suggested Barkhausen noise measurement technique proved to be a useful quantitative and nondestructive method for determining the ferromagnetic phase ratio of the studied alloy.

  18. Investigating the martensite-austenite transformation on mechanically alloyed FeNi solid solutions

    NASA Astrophysics Data System (ADS)

    Martínez-Bianco, D.; Gorria, P.; Blanco, J. A.; Smith, R. I.

    2011-10-01

    The martensite-austenite transformation on Fe70Ni30 and Fe75Ni25 nanostructured solid solutions has been investigated by neutron thermo-diffraction experiments carried out between 300 and 1000 K. We observe that the difference between the temperatures at which the martensitic transformation starts (Ai) and finishes (Af) exceeds 250 K, being five times larger than that of the as-cast coarse-grained conventional alloys. The main reason for this striking phenomenon is the drastic microstructural changes produced during the severe mechanical milling process, giving rise to a large reduction of the crystalline mean size (below 20 nm) and the generation of a considerable microstain (reaching 1%).

  19. Liquid-metal-induced fracture mode of martensitic T91 steels

    SciTech Connect

    Martin, M.L.; Auger, T.; Johnson, Duane, Robertson, I.M.

    2012-04-04

    The liquid–metal-induced fracture mode of T91 martensitic steel was investigated by using transmission electron microscopy techniques to characterize the microstructure and crack network in specimens obtained from focused-ion beam machining at and immediately below the fracture surface. Contrary to previous claims of quasi-cleavage fracture, the dominant fracture mode is intergranular cracking at martensite laths and prior austenite grain boundaries. These fracture mode results clarify an outstanding issue in liquid–metal embrittlement of steels that generally occur in a heavily-deformed microstructure. Several cracks were arrested at intergranular carbides, suggesting a metallurgical strategy for impeding liquid–metal-induced crack propagation.

  20. Finite Element Calculation of Local Variation in the Driving Force for Austenite to Martensite Transformation

    NASA Astrophysics Data System (ADS)

    Datta, K.; Post, J.; Dinsdale, A.; Geijselaers, H. J. M.; Huétink, J.

    2007-04-01

    The mechanics and thermodynamics of strain induced martensitic transformation are coupled for a metastable alloy steel and implemented in FE models of forming processes. The basic formulations are based on a fifty year old treaty by Patel and Cohen. The variation in Gibbs energy due to local variation in strain, strain rate, temperature and state of stress of a forming part is calculated by FE codes. The local variation in Gibbs energy gives a probabilistic image of the potential sites for strain induced martensitic transformations.

  1. Influence of Dilute Hf Additions on Precipitation and Martensitic Transformation in Ni-Ti-Pd Alloys

    NASA Astrophysics Data System (ADS)

    Coppa, Anne C.; Kapoor, Monica; Hornbuckle, B. Chad; Weaver, Mark L.; Noebe, Ronald D.; Thompson, Gregory B.

    2015-08-01

    The effect of Hf (0-1 at.%) additions in a Ni-Ti-Pd alloy on P-phase precipitation and martensitic transformations was studied. The addition of hafnium resulted in the refinement of precipitates with an increase in number density. The overlapping strain fields created due to the decrease in inter-precipitate spacing are suspected to reduce the matrix volume to be less than the critical free volume size needed for the martensitic transformation over the temperature range studied (183-573 K). Hafnium was also found to delay the aging time to achieve peak hardness, suggesting a reduction in growth and coarsening kinetics.

  2. Strong and moldable cellulose magnets with high ferrite nanoparticle content.

    PubMed

    Galland, Sylvain; Andersson, Richard L; Ström, Valter; Olsson, Richard T; Berglund, Lars A

    2014-11-26

    A major limitation in the development of highly functional hybrid nanocomposites is brittleness and low tensile strength at high inorganic nanoparticle content. Herein, cellulose nanofibers were extracted from wood and individually decorated with cobalt-ferrite nanoparticles and then for the first time molded at low temperature (<120 °C) into magnetic nanocomposites with up to 93 wt % inorganic content. The material structure was characterized by TEM and FE-SEM and mechanically tested as compression molded samples. The obtained porous magnetic sheets were further impregnated with a thermosetting epoxy resin, which improved the load-bearing functions of ferrite and cellulose material. A nanocomposite with 70 wt % ferrite, 20 wt % cellulose nanofibers, and 10 wt % epoxy showed a modulus of 12.6 GPa, a tensile strength of 97 MPa, and a strain at failure of ca. 4%. Magnetic characterization was performed in a vibrating sample magnetometer, which showed that the coercivity was unaffected and that the saturation magnetization was in proportion with the ferrite content. The used ferrite, CoFe2O4, is a magnetically hard material, demonstrated by that the composite material behaved as a traditional permanent magnet. The presented processing route is easily adaptable to prepare millimeter-thick and moldable magnetic objects. This suggests that the processing method has the potential to be scaled-up for industrial use for the preparation of a new subcategory of magnetic, low-cost, and moldable objects based on cellulose nanofibers. PMID:25331121

  3. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates.

    PubMed

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N; Huang, Shenyan; Teng, Zhenke; Liu, Chain T; Asta, Mark D; Gao, Yanfei; Dunand, David C; Ghosh, Gautam; Chen, Mingwei; Fine, Morris E; Liaw, Peter K

    2015-01-01

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. The present research will broaden the applications of ferritic alloys to higher temperatures. PMID:26548303

  4. Reducing ferrite tuner power loss by bias field rotation

    SciTech Connect

    Smythe, W.R.

    1983-08-01

    It has been suggested that ferrite tuners for rf cavities with the magnetic bias field perpendicular to the rf magnetic field would have greatly reduced rf losses. Recent measurements at Los Alamos National Laboratory appear to confirm this effect. A simple model proposed here allows the calculation of tuning characteristics for a variety of bias schemes. The model shows that the perpendicular bias scheme mentioned above requires very much larger bias levels than does the parallel bias scheme in order to achieve the same tuning range with a particular ferrite tuner. However, further investigation with the model has led to the discovery that the use of perpendicular bias at low frequency and parallel bias at high frequency requires only a modest increase in the bias field. In effect, the ferrite is kept highly magnetized, reducing ferrite losses, and is tuned primarily by rotating the bias field direction with respect to the rf field direction. The resulting reduction in dissipation can significantly reduce the amount of ferrite required per cavity.

  5. Strong and moldable cellulose magnets with high ferrite nanoparticle content.

    PubMed

    Galland, Sylvain; Andersson, Richard L; Ström, Valter; Olsson, Richard T; Berglund, Lars A

    2014-11-26

    A major limitation in the development of highly functional hybrid nanocomposites is brittleness and low tensile strength at high inorganic nanoparticle content. Herein, cellulose nanofibers were extracted from wood and individually decorated with cobalt-ferrite nanoparticles and then for the first time molded at low temperature (<120 °C) into magnetic nanocomposites with up to 93 wt % inorganic content. The material structure was characterized by TEM and FE-SEM and mechanically tested as compression molded samples. The obtained porous magnetic sheets were further impregnated with a thermosetting epoxy resin, which improved the load-bearing functions of ferrite and cellulose material. A nanocomposite with 70 wt % ferrite, 20 wt % cellulose nanofibers, and 10 wt % epoxy showed a modulus of 12.6 GPa, a tensile strength of 97 MPa, and a strain at failure of ca. 4%. Magnetic characterization was performed in a vibrating sample magnetometer, which showed that the coercivity was unaffected and that the saturation magnetization was in proportion with the ferrite content. The used ferrite, CoFe2O4, is a magnetically hard material, demonstrated by that the composite material behaved as a traditional permanent magnet. The presented processing route is easily adaptable to prepare millimeter-thick and moldable magnetic objects. This suggests that the processing method has the potential to be scaled-up for industrial use for the preparation of a new subcategory of magnetic, low-cost, and moldable objects based on cellulose nanofibers.

  6. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

    PubMed Central

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H.; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N.; Huang, Shenyan; Teng, Zhenke; Liu, Chain T.; Asta, Mark D.; Gao, Yanfei; Dunand, David C.; Ghosh, Gautam; Chen, Mingwei; Fine, Morris E.; Liaw, Peter K.

    2015-01-01

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. The present research will broaden the applications of ferritic alloys to higher temperatures. PMID:26548303

  7. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

    DOE PAGES

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H.; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N.; Huang, Shenyan; et al

    2015-11-09

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones.more » These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. Finally, the present research will broaden the applications of ferritic alloys to higher temperatures.« less

  8. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

    SciTech Connect

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H.; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N.; Huang, Shenyan; Teng, Zhenke; Liu, Chain T.; Asta, Mark D.; Gao, Yanfei; Dunand, David C.; Ghosh, Gautam; Chen, Mingwei; Fine, Morris E.; Liaw, Peter K.

    2015-11-09

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. Finally, the present research will broaden the applications of ferritic alloys to higher temperatures.

  9. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

    NASA Astrophysics Data System (ADS)

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H.; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N.; Huang, Shenyan; Teng, Zhenke; Liu, Chain T.; Asta, Mark D.; Gao, Yanfei; Dunand, David C.; Ghosh, Gautam; Chen, Mingwei; Fine, Morris E.; Liaw, Peter K.

    2015-11-01

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. The present research will broaden the applications of ferritic alloys to higher temperatures.

  10. 40 CFR 721.10223 - Styrenyl surface treated manganese ferrite with acrylic ester polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ferrite with acrylic ester polymer (generic). 721.10223 Section 721.10223 Protection of Environment... manganese ferrite with acrylic ester polymer (generic). (a) Chemical substance and significant new uses... manganese ferrite with acrylic ester polymer (PMN P-09-582) is subject to reporting under this section...

  11. 40 CFR 721.10223 - Styrenyl surface treated manganese ferrite with acrylic ester polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ferrite with acrylic ester polymer (generic). 721.10223 Section 721.10223 Protection of Environment... manganese ferrite with acrylic ester polymer (generic). (a) Chemical substance and significant new uses... manganese ferrite with acrylic ester polymer (PMN P-09-582) is subject to reporting under this section...

  12. 40 CFR 721.10223 - Styrenyl surface treated manganese ferrite with acrylic ester polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ferrite with acrylic ester polymer (generic). 721.10223 Section 721.10223 Protection of Environment... manganese ferrite with acrylic ester polymer (generic). (a) Chemical substance and significant new uses... manganese ferrite with acrylic ester polymer (PMN P-09-582) is subject to reporting under this section...

  13. 77 FR 60478 - Control of Ferrite Content in Stainless Steel Weld Metal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... COMMISSION Control of Ferrite Content in Stainless Steel Weld Metal AGENCY: Nuclear Regulatory Commission... Ferrite Content in Stainless Steel Weld Metal.'' This guide describes a method that the NRC staff considers acceptable for controlling ferrite content in stainless steel weld metal. Revision 4 updates...

  14. 40 CFR 721.10223 - Styrenyl surface treated manganese ferrite with acrylic ester polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ferrite with acrylic ester polymer (generic). 721.10223 Section 721.10223 Protection of Environment... manganese ferrite with acrylic ester polymer (generic). (a) Chemical substance and significant new uses... manganese ferrite with acrylic ester polymer (PMN P-09-582) is subject to reporting under this section...

  15. Recent progress in blanket materials development in the Broader Approach activities

    NASA Astrophysics Data System (ADS)

    Nishitani, T.; Tanigawa, H.; Nozawa, T.; Jitsukawa, S.; Nakamichi, M.; Hoshino, T.; Yamanishi, T.; Baluc, N.; Möslang, A.; Lindou, R.; Tosti, S.; Hodgson, E. R.; Clement Lorenzo, S.; Kohyama, A.; Kimura, A.; Shikama, T.; Hayashi, K.; Araki, M.

    2011-10-01

    As a part of the Broader Approach activities, R&D on blanket related materials, reduced-activation ferritic martensitic (RAFM) steels as a structural material, SiC f/SiC composites for flow channel insert in the liquid blanket and/or use as advanced structural material, advanced tritium breeders and neutron multiplier, has been initiated directed at DEMO. As part of the RAFM steel mass production development, a 5 ton heat of RAFM steel (F82H) was procured by Electro Slag Re-melting as the secondary melting method, which was effective in controlling unwanted impurities. An 11 ton heat of EUROFER was also produced. For the SiC f/SiC composite development, NITE- and CVI-SiC f/SiC composites were prepared as reference materials and preliminary mechanical and physical properties were measured. Also compatibility tests between SiC and Pb-17Li have been prepared, related to the He-cooled Li-Pb blanket concept. For the beryllide neutron multiplayer Be-Ti alloy development, large size rods of about 30 mm diameter were fabricated successfully in EU.

  16. Sol-gel coating of lithium zinc ferrite powders

    SciTech Connect

    Brooks, K.G.; Amarakoon, V.R.W. )

    1991-04-01

    This paper reports on lithium zinc ferrite powders of composition Li{sub 0 {minus} 3} Zn{sup 0 {minus}4}Mn{sub 0.05}Fe{sub 2.25}O{sub 4} were prepared by solid-state synthesis. Liquid-phase borosilicate sintering additives were applied to the ferrite particle surfaces at room temperature via a sol-gel coating technique. Calcined and comminuted ferrite powder was dispersed in methanol with predetermined quantities of tetraethyl orthosilicate and triethyl borate. Hydrofluoric acid was used to catalyze the sol-gel reactions. Amorphous coatings of 10 to 20 nm thickness were observed on particle surfaces by TEM. Chemical bonding in the coatings was studied using diffuse reflectance FTIR spectroscopy.

  17. Impedimetric detection of alcohol vapours using nanostructured zinc ferrite.

    PubMed

    Kannan, Padmanathan Karthick; Saraswathi, Ramiah

    2014-11-01

    A comparative study on the sensing characteristics of nanostructured zinc ferrite to three primary alcohols viz. methanol, ethanol and propanol has been carried out. The zinc ferrite has been prepared by a combustion method and characterized by XRD, FTIR, AFM and SEM. Impedance studies in the alcohol concentration range varying from 100 to 1000 ppm show definite variations in response to both the nature of the alcohol and its concentration. The nanostructured zinc ferrite shows the highest sensor response to methanol and least to propanol. Equivalent circuit modelling and calibration have been made for all the three alcohol sensors. The material shows a better selectivity to the alcohols compared to formaldehyde, ammonia and acetone vapours.

  18. Magnetic properties of manganese ferrite films grown at atomic scale

    SciTech Connect

    Zuo Xu; Yang, Aria; Yoon, Soack-Dae; Christodoulides, Joe A.; Harris, Vincent G.; Vittoria, Carmine

    2005-05-15

    Manganese ferrite is a partial inverse spinel which, when prepared by conventional growth techniques, has {approx}20% of the Mn{sup 2+} ions on the octahedral sublattice. Here we describe a layer-by-layer growth scheme at atomic scale by which the percentage of Mn{sup 2+} ions on the octahedral sublattice can be artificially controlled. Manganese ferrite films grown by this technique exhibits different degrees of cation inversion when grown on {l_brace}100{r_brace} and {l_brace}111{r_brace} MgO substrates. It was observed that saturation magnetization varied in a wide range of values depending on chemical composition and oxygen pressure. Although bulk manganese ferrite was low anisotropy magnetic material, uniaxial anisotropy was observed at room temperature in the films deposited on {l_brace}100{r_brace} MgO substrates, and its magnitude and direction sensitively depended on chemical composition and oxygen pressure during deposition.

  19. Magnetic Properties of Manganese Ferrite Films Grown at Atomic Scale

    SciTech Connect

    Zuo,X.; Yang, A.; Yoon, S.; Christodoulides, I.; Harris, V.; Vittoria, C.

    2005-01-01

    Manganese ferrite is a partial inverse spinel which, when prepared by conventional growth techniques, has {approx}20% of the Mn{sup 2+} ions on the octahedral sublattice. Here we describe a layer-by-layer growth scheme at atomic scale by which the percentage of Mn{sup 2+} ions on the octahedral sublattice can be artificially controlled. Manganese ferrite films grown by this technique exhibits different degrees of cation inversion when grown on {l_brace}100{r_brace} and {l_brace}111{r_brace} MgO substrates. It was observed that saturation magnetization varied in a wide range of values depending on chemical composition and oxygen pressure. Although bulk manganese ferrite was low anisotropy magnetic material, uniaxial anisotropy was observed at room temperature in the films deposited on {l_brace}100{r_brace} MgO substrates, and its magnitude and direction sensitively depended on chemical composition and oxygen pressure during deposition.

  20. Nanosized copper ferrite materials: Mechanochemical synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Manova, Elina; Tsoncheva, Tanya; Paneva, Daniela; Popova, Margarita; Velinov, Nikolay; Kunev, Boris; Tenchev, Krassimir; Mitov, Ivan

    2011-05-01

    Nanodimensional powders of cubic copper ferrite are synthesized by two-steps procedure of co-precipitation of copper and iron hydroxide carbonates, followed by mechanochemical treatment. X-ray powder diffraction, Mössbauer spectroscopy and temperature-programmed reduction are used for the characterization of the obtained materials. Their catalytic behavior is tested in methanol decomposition to hydrogen and CO and total oxidation of toluene. Formation of nanosized ferrite material is registered even after one hour of milling time. It is established that the prolonging of treatment procedure decreases the dispersion of the obtained product with the appearance of Fe 2O 3. It is demonstrated that the catalytic behavior of the samples depends not only on their initial phase composition, but on the concomitant ferrite phase transformations by the influence of the reaction medium.

  1. Comparison of conventional and microwave sintering on Y-ferrite

    NASA Astrophysics Data System (ADS)

    Obulesu, K. Rama; James Raju, K. C.

    2013-06-01

    In this paper we are comparing the results of the conventional and microwave sintered samples of Zn2-Y(Ba2Zn2Fe12O22) ferrite. Y ferrite sample was synthesized using the commercial solid-state reaction method. In CS process, the sample was sintered in muffle furnace at 1200°C for 6 h. In MS process, the sample was sintered at 1120 °C for 30 min in air at the rate of 10°C per min. X-ray powder diffraction revealed that a single phase rhombohedral structure with space group R3m (166) for both samples. The average grain size of CS sample is 1.5-2μm which is greater than MS sample. Magnetic properties also changed with the microwave sintering. These results demonstrate that the strong microwave method is an alternative way to synthesize high performance Y ferrite.

  2. CaO segregation in MnZn-ferrite

    SciTech Connect

    Lin, I.N.; Mishra, R.K.; Thomas, G.

    1982-06-01

    The reaction between CaO and MnZn ferrite is investigated by in-situ heating in a scanning electron microscope. The existence of an intermediate phase and a eutectic liquid at about 1300/sup 0/C is observed. The CaO segregation behavior of low loss MnZn ferrite is studies by in-situ heating in transmission electron microscope and Auger electron spectroscopy. The Ca is observed to stay at the grain boundaries in the form of amorphous intermediate phase at low temperatures and in a liquid phase at the sintering temperature. 5 figures.

  3. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect

    Jha, M.C.; Baltich, L.K.

    1987-02-23

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  4. Magnetodielectric effect of Mn-Zn ferrite at resonant frequency

    NASA Astrophysics Data System (ADS)

    Pengfei, Pan; Ning, Zhang

    2016-10-01

    The dielectric properties and the magnetodielectric effect in Mn-Zn ferrite at resonant frequency have been studied in this paper. Dimensional-resonance-induced abnormal dielectric spectrum was observed at f≈1 MHz. The relatively large magnetodielectric ratio of 4500% in a magnetic field of 3.5 kOe was achieved from the Mn-Zn ferrite sample with the initial permeability of 15 K at resonant frequency at room temperature. Theoretical analysis suggests that the large MD effect at resonant frequency is attributed to the enhanced magnetostriction effect.

  5. Control of magnetization reversal in oriented strontium ferrite thin films

    SciTech Connect

    Roy, Debangsu Anil Kumar, P. S.

    2014-02-21

    Oriented Strontium Ferrite films with the c axis orientation were deposited with varying oxygen partial pressure on Al{sub 2}O{sub 3}(0001) substrate using Pulsed Laser Deposition technique. The angle dependent magnetic hysteresis, remanent coercivity, and temperature dependent coercivity had been employed to understand the magnetization reversal of these films. It was found that the Strontium Ferrite thin film grown at lower (higher) oxygen partial pressure shows Stoner-Wohlfarth type (Kondorsky like) reversal. The relative importance of pinning and nucleation processes during magnetization reversal is used to explain the type of the magnetization reversal with different oxygen partial pressure during growth.

  6. Nanoindentation studies of nickel zinc ferrite embedded mesoporous silica template

    NASA Astrophysics Data System (ADS)

    Banerjee, S.; Hajra, P.; Mada, M. R.; Bandopadhyay, S.; Chakravorty, D.

    2013-02-01

    Nickel zinc ferrite (NZF) embedded mesoporous silica KIT-6 nanocomposite (NZFMS) was synthesized via impregnation method. The microstructure of the samples was characterized by transmission electron microscopy (TEM). Nanoindentation (NI) studies were carried out on both mesoporous silica (MS) and the nanocomposite NZFMS. It was found that the young's modulus (E) and hardness (H) of the NZFMS were higher than that of the MS. From creep measurement it was observed that the creep-strain rate was greater for NZFMS compared to MS. This arose due to diffusion of Fe3+ ions from nickel zinc ferrite to the silica glass. The results indicate that the NZFMS material shows superplastic behaviour at room temperature.

  7. Gas atomization of cobalt ferrite-phosphate melts

    NASA Technical Reports Server (NTRS)

    De Guire, Mark R.; O'Handley, R. C.; Kalonji, G.

    1989-01-01

    XRD, Moessbauer spectroscopy, and EDXS have been used to characterize a rapidly-solidified (Co,Fe)3O4 spinel generated in a cobalt-iron-phosphate glass matrix by gas atomization of melts. Of the two compositions tested, that containing 20 mol pct P2O5 exhibited randomly-oriented ferrite crystallization whose growth appears to have been diffusion-controlled. Unlike the ferrite, in which the iron has both tetrahedral and octahedral coordination, the iron in the glassy matrix was primarily of distorted-octahedral coordination. Calculations indicate that the cooling rates obtained with oxide melts vary strongly with droplet size, but less strongly with melt temperature.

  8. Study of some Mg-based ferrites as humidity sensors

    NASA Astrophysics Data System (ADS)

    Rezlescu, N.; Rezlescu, E.; Doroftei, C.; Popa, P. D.

    2005-01-01

    The micostructure and humidity sensitivity of MgFe2O4 + CaO, Mg0.5Cu0.5Fe1.8Ga0.2O4, Mg0.5Zn0.5Fe2O4 + KCl and MgMn0.2Fe1.8O4 ferrites were investigated. We have found that the humidity sensitivity largely depends on composition, crystallite size, surface area and porosity. The best results concerning humidity sensitivity were obtained for MgMn0.2Fe1.8O4 ferrite.

  9. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect

    Jha, M.C.; Berggren, M.H.

    1989-05-02

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  10. Modeling ferrite electromagnetic response in the time domain

    SciTech Connect

    Johnson, J.; DeFord, J.F.; Craig, G.D.

    1989-04-06

    The behavior of ferrite loads commonly found in induction accelertors has important consequences for the performance of these accelerators. Previous work by the authors on modeling the electromagnetic fields in induction cavities has focussed upon use of a simple, phenomenological model for the process of magnetization reversal in these ferrite loads. In this paper we consider a model for magnetization reversal which is more deeply rooted in theory, and present a simulation of the reversal process based upon this model for an idealized set of boundary conditions. 7 refs., 3 figs.

  11. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect

    Jha, M.C.; Baltich, L.K.; Berggren, M.H.

    1987-05-18

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  12. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect

    Silaban, A.; Harrison, D.P. . Dept. of Chemical Engineering)

    1989-05-02

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such as size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  13. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect

    Jha, M.C.; Berggren, M.H.

    1988-11-14

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  14. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect

    Jha, M.C.; Baltich, L.K.; Berggren, M.H.

    1987-08-28

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  15. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect

    Jha, M.C.; Berggren, M.H.

    1988-08-19

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  16. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect

    Jha, M.C.; Berggren, M.H.

    1989-03-06

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  17. Connection between micro and macro hardness pearlitic-ferritic steel

    NASA Astrophysics Data System (ADS)

    Duka, Edlira; Oettel, Heinrich; Dilo, Teuta

    2012-09-01

    Many physical and mechanical properties of materials are closely related to their microstructure, technologies to control the microstructure of materials have been well developed to obtain suitable properties. We measured the volume fraction of perlite and ferrite, micro Vickers hardness in pearlite and ferrite and macro hardness using different sample with different carbon content. The volume fraction of pearlite increases by increasing carbon content. By increasing carbon content, micro and macro hardness increase. We can conclude that for those conditional the mixing rule can't be use.

  18. Factors influencing the elastic moduli, reversible strains and hysteresis loops in martensitic Ti-Nb alloys.

    PubMed

    Bönisch, Matthias; Calin, Mariana; van Humbeeck, Jan; Skrotzki, Werner; Eckert, Jürgen

    2015-03-01

    While the current research focus in the search for biocompatible low-modulus alloys is set on β-type Ti-based materials, the potential of fully martensitic Ti-based alloys remains largely unexplored. In this work, the influence of composition and pre-straining on the elastic properties of martensitic binary Ti-Nb alloys was studied. Additionally, the phase formation was compared in the as-cast versus the quenched state. The elastic moduli and hardness of the studied martensitic alloys are at a minimum of 16wt.% Nb and peak between 23.5 and 28.5wt.% Nb. The uniaxial deformation behavior of the alloys used is characterized by the absence of distinct yield points. Monotonic and cyclic (hysteretic) loading-unloading experiments were used to study the influence of Nb-content and pre-straining on the elastic moduli. Such experiments were also utilized to assess the recoverable elastic and anelastic deformations as well as hysteretic energy losses. Particular attention has been paid to the separation of non-linear elastic from anelastic strains, which govern the stress and strain limits to which a material can be loaded without deforming it plastically. It is shown that slight pre-straining of martensitic Ti-Nb alloys can lead to considerable reductions in their elastic moduli as well as increases in their total reversible strains.

  19. Determining Experimental Parameters for Thermal-Mechanical Forming Simulation considering Martensite Formation in Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Schmid, Philipp; Liewald, Mathias

    2011-08-01

    The forming behavior of metastable austenitic stainless steel is mainly dominated by the temperature-dependent TRIP effect (transformation induced plasticity). Of course, the high dependency of material properties on the temperature level during forming means the temperature must be considered during the FE analysis. The strain-induced formation of α'-martensite from austenite can be represented by using finite element programs utilizing suitable models such as the Haensel-model. This paper discusses the determination of parameters for a completely thermal-mechanical forming simulation in LS-DYNA based on the material model of Haensel. The measurement of the martensite evolution in non-isothermal tensile tests was performed with metastable austenitic stainless steel EN 1.4301 at different rolling directions between 0° and 90 °. This allows an estimation of the influence of the rolling direction to the martensite formation. Of specific importance is the accuracy of the martensite content measured by magnetic induction methods (Feritscope). The observation of different factors, such as stress dependence of the magnetisation, blank thickness and numerous calibration curves discloses a substantial important influence on the parameter determination for the material models. The parameters obtained for use of Haensel model and temperature-dependent friction coefficients are used to simulate forming process of a real component and to validate its implementation in the commercial code LS-DYNA.

  20. Dissecting the Mechanism of Martensitic Transformation via Atomic-Scale Observations

    NASA Astrophysics Data System (ADS)

    Yang, Xu-Sheng; Sun, Sheng; Wu, Xiao-Lei; Ma, Evan; Zhang, Tong-Yi

    2014-08-01

    Martensitic transformation plays a pivotal role in the microstructural evolution and plasticity of many engineering materials. However, so far the underlying atomic processes that accomplish the displacive transformation have been obscured by the difficulty in directly observing key microstructural signatures on atomic scale. To resolve this long-standing problem, here we examine an AISI 304 austenitic stainless steel that has a strain/microstructure-gradient induced by surface mechanical attrition, which allowed us to capture in one sample all the key interphase regions generated during the γ(fcc) --> ɛ(hcp) --> α'(bcc) transition, a prototypical case of deformation induced martensitic transformation (DIMT). High-resolution transmission electron microscopy (HRTEM) observations confirm the crucial role of partial dislocations, and reveal tell-tale features including the lattice rotation of the α' martensite inclusion, the transition lattices at the ɛ/α' interfaces that cater the shears, and the excess reverse shear-shuffling induced γ necks in the ɛ martensite plates. These direct observations verify for the first time the 50-year-old Bogers-Burgers-Olson-Cohen (BBOC) model, and enrich our understanding of DIMT mechanisms. Our findings have implications for improved microstructural control in metals and alloys.