Sample records for activation foils method

  1. Method for facilitating catalyzed oxidation reactions, device for facilitating catalyzed oxidation reactions

    DOEpatents

    Beuhler, Robert J [East Moriches, NY; White, Michael G [Blue Point, NY; Hrbek, Jan [Rocky Point, NY

    2006-08-15

    A catalytic process for the oxidation of organic. Oxygen is loaded into a metal foil by heating the foil while in contact with an oxygen-containing fluid. After cooling the oxygen-activated foil to room temperature, oxygen diffuses through the foil and oxidizes reactants exposed to the other side of the foil.

  2. A new, simple and precise method for measuring cyclotron proton beam energies using the activity vs. depth profile of zinc-65 in a thick target of stacked copper foils.

    PubMed

    Asad, A H; Chan, S; Cryer, D; Burrage, J W; Siddiqui, S A; Price, R I

    2015-11-01

    The proton beam energy of an isochronous 18MeV cyclotron was determined using a novel version of the stacked copper-foils technique. This simple method used stacked foils of natural copper forming 'thick' targets to produce Zn radioisotopes by the well-documented (p,x) monitor-reactions. Primary beam energy was calculated using the (65)Zn activity vs. depth profile in the target, with the results obtained using (62)Zn and (63)Zn (as comparators) in close agreement. Results from separate measurements using foil thicknesses of 100, 75, 50 or 25µm to form the stacks also concurred closely. Energy was determined by iterative least-squares comparison of the normalized measured activity profile in a target-stack with the equivalent calculated normalized profile, using 'energy' as the regression variable. The technique exploits the uniqueness of the shape of the activity vs. depth profile of the monitor isotope in the target stack for a specified incident energy. The energy using (65)Zn activity profiles and 50-μm foils alone was 18.03±0.02 [SD] MeV (95%CI=17.98-18.08), and 18.06±0.12MeV (95%CI=18.02-18.10; NS) when combining results from all isotopes and foil thicknesses. When the beam energy was re-measured using (65)Zn and 50-μm foils only, following a major upgrade of the ion sources and nonmagnetic beam controls the results were 18.11±0.05MeV (95%CI=18.00-18.23; NS compared with 'before'). Since measurement of only one Zn monitor isotope is required to determine the normalized activity profile this indirect yet precise technique does not require a direct beam-current measurement or a gamma-spectroscopy efficiency calibrated with standard sources, though a characteristic photopeak must be identified. It has some advantages over published methods using the ratio of cross sections of monitor reactions, including the ability to determine energies across a broader range and without need for customized beam degraders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Producing carbon stripper foils containing boron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoner, J. O. Jr.

    2012-12-19

    Parameters being actively tested by the accelerator community for the purpose of extending carbon stripper foil lifetimes in fast ion beams include methods of deposition, parting agents, mounting techniques, support (fork) materials, and inclusion of alloying elements, particularly boron. Specialized production apparatus is required for either sequential deposition or co-deposition of boron in carbon foils. A dual-use vacuum evaporator for arc evaporation of carbon and electron-beam evaporation of boron and other materials has been built for such development. Production of both carbon and boron foils has begun and improvements are in progress.

  4. Mock-up experiment at Birmingham University for BNCT project of Osaka University--Neutron flux measurement with gold foil.

    PubMed

    Tamaki, S; Sakai, M; Yoshihashi, S; Manabe, M; Zushi, N; Murata, I; Hoashi, E; Kato, I; Kuri, S; Oshiro, S; Nagasaki, M; Horiike, H

    2015-12-01

    Mock-up experiment for development of accelerator based neutron source for Osaka University BNCT project was carried out at Birmingham University, UK. In this paper, spatial distribution of neutron flux intensity was evaluated by foil activation method. Validity of the design code system was confirmed by comparing measured gold foil activities with calculations. As a result, it was found that the epi-thermal neutron beam was well collimated by our neutron moderator assembly. Also, the design accuracy was evaluated to have less than 20% error. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Uranium Anodic Dissolution under Slightly Alkaline Conditions Progress Report Full-Scale Demonstration with DU Foil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelis, A.; Brown, M. A.; Wiedmeyer, S.

    2014-02-18

    Argonne National Laboratory (Argonne) is developing an alternative method for digesting irradiated low enriched uranium (LEU) foil targets to produce 99Mo in neutral/alkaline media. This method consists of the electrolytic dissolution of irradiated uranium foil in sodium bicarbonate solution, followed by precipitation of base-insoluble fission and activation products, and uranyl-carbonate species with CaO. The addition of CaO is vital for the effective anion exchange separation of 99MoO 4 2- from the fission products, since most of the interfering anions (e.g., CO 3 2-) are removed from the solution, while molybdate remains in solution. An anion exchange is used to retainmore » and to purify the 99Mo from the filtrate. The electrochemical dissolver has been designed and fabricated in 304 stainless-steel (SS), and tested for the dissolution of a full-size depleted uranium (DU) target, wrapped in Al foil. Future work will include testing with low-burn-up DU foil at Argonne and later with high-burn-up LEU foils at Oak Ridge National Laboratory.« less

  6. SU-E-T-557: Measuring Neutron Activation of Cardiac Devices Irradiated During Proton Therapy Using Indium Foils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avery, S; Christodouleas, J; Delaney, K

    2014-06-01

    Purpose: Measuring Neutron Activation of Cardiac devices Irradiated during Proton Therapy using Indium Foils Methods: The foils had dimensions of 25mm x 25mm x 1mm. After being activated, the foils were placed in a Canberra Industries well chamber utilizing a NaI(Tl) scintillation detector. The resulting gamma spectrum was acquired and analyzed using Genie 2000 spectroscopy software. One activation foil was placed over the upper, left chest of RANDO where a pacemaker would be. The rest of the foils were placed over the midline of the patient at different distances, providing a spatial distribution over the phantom. Using lasers and BBsmore » to align the patient, 200 MU square fields were delivered to various treatment sites: the brain, the pancreas, and the prostate. Each field was shot at least a day apart, giving more than enough time for activity of the foil to decay (t1=2 = 54.12 min). Results: The net counts (minus background) of the three aforementioned peaks were used for our measurements. These counts were adjusted to account for detector efficiency, relative photon yields from decay, and the natural abundance of 115-In. The average neutron flux for the closed multi-leaf collimator irradiation was measured to be 1.62 x 106 - 0.18 x 106 cm2 s-1. An order of magnitude estimate of the flux for neutrons up to 1 keV from Diffenderfer et al. gives 3 x 106 cm2 s-1 which does agree on the order of magnitude. Conclusion: Lower energy neutrons have higher interaction cross-sections and are more likely to damage pacemakers. The thermal/slow neutron component may be enough to estimate the overall risk. The true test of the applicability of activation foils is whether or not measurements are capable of predicting cardiac device malfunction. For that, additional studies are needed to provide clinical evidence one way or the other.« less

  7. Characteristics and application of spherical-type activation detectors in neutron spectrum measurements at a boron neutron capture therapy (BNCT) facility

    NASA Astrophysics Data System (ADS)

    Lin, Heng-Xiao; Chen, Wei-Lin; Liu, Yuan-Hao; Sheu, Rong-Jiun

    2016-03-01

    A set of spherical-type activation detectors was developed aiming to provide better determination of the neutron spectrum at the Tsing Hua Open-pool Reactor (THOR) BNCT facility. An activation foil embedded in a specially designed spherical holder exhibits three advantages: (1) minimizing the effect of neutron angular dependence, (2) creating response functions with broadened coverage of neutron energies by introducing additional moderators or absorbers to the central activation foil, and (3) reducing irradiation time because of improved detection efficiencies to epithermal neutron beam. This paper presents the design concept and the calculated response functions of new detectors. Theoretical and experimental demonstrations of the performance of the detectors are provided through comparisons of the unfolded neutron spectra determined using this method and conventional multiple-foil activation techniques.

  8. Determination of Trace Concentration in TMD Detectors using PGAA

    NASA Astrophysics Data System (ADS)

    Tomandl, I.; Viererbl, L.; Kudějová, P.; Lahodová, Z.; Klupák, V.; Fikrle, M.

    2015-05-01

    Transmutation detectors could be alternative to the traditional activation detector method for neutron fluence dosimetry at power nuclear reactors. This new method require an isotopically highly-sensitive, non-destructive in sense of compactness as well as isotopic content, precise and standardly used analytical method for trace concentration determination. The capability of Prompt Gamma-ray Activation Analysis (PGAA) for determination of trace concentrations of transmuted stable nuclides in the metallic foils of Ni, Au, Cu and Nb, which were irradiated for 21 days in the reactor core at the LVR-15 research reactor in Řež, is reported. The PGAA measurements of these activation foils were performed at the PGAA facility at Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRMII) in Garching.

  9. Improvements in Fabrication of Elastic Scattering Foils Used to Measure Neutron Yield by the Magnetic Recoil Spectrometer

    DOE PAGES

    Reynolds, H. G.; Schoff, M. E.; Farrell, M. P.; ...

    2017-03-23

    The magnetic recoil spectrometer uses a deuterated polyethylene polymer (CD 2) foil to measure neutron yield in inertial confinement fusion experiments. Higher neutron yields in recent experiments have resulted in primary signal saturation in the detector CR-39 foils, necessitating the fabrication of thinner CD 2 foils than established methods could provide. A novel method of fabricating deuterated polymer foils is described. The resulting foils are thinner, smoother, and more uniform in thickness than the foils produced by previous methods. Here, these new foils have successfully been deployed at the National Ignition Facility, enabling higher neutron yield measurements than previous foils,more » with no primary signal saturation.« less

  10. Preliminary validation of computational model for neutron flux prediction of Thai Research Reactor (TRR-1/M1)

    NASA Astrophysics Data System (ADS)

    Sabaibang, S.; Lekchaum, S.; Tipayakul, C.

    2015-05-01

    This study is a part of an on-going work to develop a computational model of Thai Research Reactor (TRR-1/M1) which is capable of accurately predicting the neutron flux level and spectrum. The computational model was created by MCNPX program and the CT (Central Thimble) in-core irradiation facility was selected as the location for validation. The comparison was performed with the typical flux measurement method routinely practiced at TRR-1/M1, that is, the foil activation technique. In this technique, gold foil is irradiated for a certain period of time and the activity of the irradiated target is measured to derive the thermal neutron flux. Additionally, the flux measurement with SPND (self-powered neutron detector) was also performed for comparison. The thermal neutron flux from the MCNPX simulation was found to be 1.79×1013 neutron/cm2s while that from the foil activation measurement was 4.68×1013 neutron/cm2s. On the other hand, the thermal neutron flux from the measurement using SPND was 2.47×1013 neutron/cm2s. An assessment of the differences among the three methods was done. The difference of the MCNPX with the foil activation technique was found to be 67.8% and the difference of the MCNPX with the SPND was found to be 27.8%.

  11. Critical Configuration and Physics Measurements for Beryllium Reflected Assemblies of U(93.15)O₂ Fuel Rods (1.506-cm Pitch and 7-Tube Clusters)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Margaret A.; Bess, John D.; Briggs, J. Blair

    2015-03-01

    Cadmium ratios were measured with enriched uranium metal foils at various locations in the assembly with the fuel tube at the 1.506-cm spacing. They are described in the following subsections. The experiment configuration was the same as the first critical configuration described in HEU-COMP-FAST-004 (Case 1). The experimenter placed 0.75-cm-diameter × 0.010-cm-thick 93.15%-235U-enriched uranium metal foils with and without 0.051-cm-thick cadmium covers at various locations in the core and top reflector. One part of the cadmium cover was cupshape and contained the uranium foil. The other part was a lid that fit over the exposed side of the foil whenmore » it was in the cup shaped section of the cover. As can be seen in the logbook, two runs were required to obtain all the measurements necessary for the cadmium ratio. The bare foil measurements within the top reflector were run first as part of the axial foil activation measurements. The results of this run are used for both the axial activation results and the cadmium ratios. Cadmium covered foils were then placed at the same location through the top reflector in a different run. Three pairs of bare and cadmium covered foils were also placed through the core tank. One pair was placed at the axial center of a fuel tube 11.35 cm from the center of the core. Two pairs of foils were placed on top of fuel tubes 3.02 and 12.06 cm from the center of the core. The activation of the uranium metal foils was measured after removal from the assembly using two lead shielded NaI scintillation detectors as follows. The NaI scintillators were carefully matched and had detection efficiencies for counting delayed-fission-product gamma rays with energies above 250 KeV within 5%. In all foil activation measurements, one foil at a specific location was used as a normalizing foil to remove the effects of the decay of fission products during the counting measurements with the NaI detectors. The normalization foil was placed on one NaI scintillator and the other foil on the other NaI detector and the activities measured simultaneously. The activation of a particular foil was compared to that of the normalization foil by dividing the count rate for each foil by that of the normalization foil. To correct for the differing efficiencies of the two NaI detectors, the normalization foil was counted in Detector 1 simultaneously with the foil at position x in Detector 2, and then the normalization foil was counted simultaneously in Detector 2 with the foil from position x in Counter 1. The activity of the foil from position x was divided by the activity of the normalization foil counted simultaneously. This resulted in obtaining two values of the ratio that were then averaged. This procedure essentially removed the effect of the differing efficiencies of the two NaI detectors. Differing efficiencies of 10% resulted in errors in the ratios measured to less than 1%. The background counting rates obatined with the foils used for the measurements on the NaI detectors before their irradiation measurement were subtracted from all count rates. The results of the cadmium ratio measurements are given in Table 1.3-1 and Figure 1.3-1. “No correction has been made for self shielding in the foils” (Reference 3).« less

  12. SU-F-T-154: An Evaluation and Quantification of Secondary Neutron Radiation Dose Due to Double Scatter and Pencil Beam Scanning Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glick, A; Diffenderfer, E

    2016-06-15

    Proton radiation therapy can deliver high radiation doses to tumors while sparing normal tissue. However, protons yield secondary neutron and gamma radiation that is difficult to detect, small in comparison to the prescribed dose, and not accounted for in most treatment planning systems. The risk for secondary malignancies after proton therapy may be dependent on the quality of this dose. Consequently, there is interest in characterizing the secondary radiation. Previously, we used the dual ionization chamber method to measure the separate absorbed dose from gamma-rays and neutrons secondary to the proton beam1, relying on characterization of ionization chamber response inmore » the unknown neutron spectrum from Monte Carlo simulation. We developed a procedure to use Shieldwerx activation foils, with neutron activation energies ranging from 0.025 eV to 13.5 MeV, to measure the neutron energy spectrum from double scattering (DS) and pencil beam scanning (PBS) protons outside of the treatment volume in a water tank. The activated foils are transferred to a NaI well chamber for gamma-ray spectroscopy and activity measurement. Since PBS treats in layers, the switching time between layers is used to correct for the decay of the activated foils and the relative dose per layer is assumed to be proportional to the neutron fluence per layer. MATLAB code was developed to incorporate the layer delivery and switching time into a calculation of foil activity, which is then used to determine the neutron energy fluence from tabulated foil activation energy thresholds.1. Diffenderfer et. al., Med. Phys., 38(11) 2011.« less

  13. Method for fabricating .sup.99 Mo production targets using low enriched uranium, .sup.99 Mo production targets comprising low enriched uranium

    DOEpatents

    Wiencek, Thomas C.; Matos, James E.; Hofman, Gerard L.

    1997-01-01

    A radioisotope production target and a method for fabricating a radioisotope production target is provided, wherein the target comprises an inner cylinder, a foil of fissionable material circumferentially contacting the outer surface of the inner cylinder, and an outer hollow cylinder adapted to receive the substantially foil-covered inner cylinder and compress tightly against the foil to provide good mechanical contact therewith. The method for fabricating a primary target for the production of fission products comprises preparing a first substrate to receive a foil of fissionable material so as to allow for later removal of the foil from the first substrate, preparing a second substrate to receive the foil so as to allow for later removal of the foil from the second substrate; attaching the first substrate to the second substrate such that the foil is sandwiched between the first substrate and second substrate to prevent foil exposure to ambient atmosphere, and compressing the exposed surfaces of the first and second substrate to assure snug mechanical contact between the foil, the first substrate and the second substrate.

  14. Method for fabricating .sup.99 Mo production targets using low enriched uranium, .sup.99 Mo production targets comprising low enriched uranium

    DOEpatents

    Wiencek, Thomas C [Orland Park, IL; Matos, James E [Oak Park, IL; Hofman, Gerard L [Downers Grove, IL

    2000-12-12

    A radioisotope production target and a method for fabricating a radioisotope production target is provided, wherein the target comprises an inner cylinder, a foil of fissionable material circumferentially contacting the outer surface of the inner cylinder, and an outer hollow cylinder adapted to receive the substantially foil-covered inner cylinder and compress tightly against the foil to provide good mechanical contact therewith. The method for fabricating a primary target for the production of fission products comprises preparing a first substrate to receive a foil of fissionable material so as to allow for later removal of the foil from the first substrate, preparing a second substrate to receive the foil so as to allow for later removal of the foil from the second substrate; attaching the first substrate to the second substrate such that the foil is sandwiched between the first substrate and second substrate to prevent foil exposure to ambient atmosphere, and compressing the exposed surfaces of the first and second substrate to assure snug mechanical contact between the foil, the first substrate and the second substrate.

  15. Neutron Spectrum Measurements from Irradiations at NCERC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackman, Kevin Richard; Mosby, Michelle A.; Bredeweg, Todd Allen

    2015-04-15

    Several irradiations have been conducted on assemblies (COMET/ZEUS and Flattop) at the National Criticality Experiments Research Center (NCERC) located at the Nevada National Security Site (NNSS). Configurations of the assemblies and irradiated materials changed between experiments. Different metallic foils were analyzed using the radioactivation method by gamma-ray spectrometry to understand/characterize the neutron spectra. Results of MCNP calculations are shown. It was concluded that MCNP simulated spectra agree with experimental measurements, with the caveats that some data are limited by statistics at low-energies and some activation foils have low activities.

  16. Method and apparatus for corrugating strips

    DOEpatents

    Day, Jack R.; Curtis, Charles H.

    1983-01-01

    The invention relates to a method and a machine for transversely corrugating a continuous strip of metallic foil. The product foil comprises a succession of alternately disposed corrugations, each defining in cross section, a major segment of a circle. The foil to be corrugated is positioned to extend within a vertical passage in the machine. The walls of the passage are heated to promote the desired deformation of the foil. Foil-deforming rollers are alternately passed obliquely across the passage to respectively engage transverse sections of the foil. The rollers and their respective section of deformed foil comprise a stacked assembly which is moved incrementally through the heated passageway. As the assembly emerges from the passageway, the rollers spill from the corrugated foil and are recovered for re-use.

  17. Carbon Stripper Foils Used in the Los Alamos PSR

    NASA Astrophysics Data System (ADS)

    Borden, M.; Plum, M. A.; Sugai, I.

    1997-05-01

    Carbon stripper foils produced by the modified controlled ACDC arc discharge method (mCADAD) at the Institute for Nuclear Study by Dr. Isao Sugai have been tested and used for high current 800-MeV beam production in the Proton Storage Ring (PSR) since 1993. Two approximately 110 μg/cm2 foils are sandwiched together to produce an equivalent 220 μg/cm^2 foil. The combined foil is supported by 4-5 μm diameter carbon fibers attached to an aluminum frame. These foils have survived as long as five months during PSR normal beam production of near 70 μA on target average current. Typical life-times of other foils vary from seven to fourteen days with lower on-target average current. Beam loss data also indicate that Sugai's foils have slower shrinkage rates than other foils. Equipment has been assembled and used to produce foils by the mCADAD method at Los Alamos. These foils will be tested during 1997 operation.

  18. Validation of MCNP NPP Activation Simulations for Decommissioning Studies by Analysis of NPP Neutron Activation Foil Measurement Campaigns

    NASA Astrophysics Data System (ADS)

    Volmert, Ben; Pantelias, Manuel; Mutnuru, R. K.; Neukaeter, Erwin; Bitterli, Beat

    2016-02-01

    In this paper, an overview of the Swiss Nuclear Power Plant (NPP) activation methodology is presented and the work towards its validation by in-situ NPP foil irradiation campaigns is outlined. Nuclear Research and consultancy Group (NRG) in The Netherlands has been given the task of performing the corresponding neutron metrology. For this purpose, small Aluminium boxes containing a set of circular-shaped neutron activation foils have been prepared. After being irradiated for one complete reactor cycle, the sets have been successfully retrieved, followed by gamma-spectrometric measurements of the individual foils at NRG. Along with the individual activities of the foils, the reaction rates and thermal, intermediate and fast neutron fluence rates at the foil locations have been determined. These determinations include appropriate corrections for gamma self-absorption and neutron self-shielding as well as corresponding measurement uncertainties. The comparison of the NPP Monte Carlo calculations with the results of the foil measurements is done by using an individual generic MCNP model functioning as an interface and allowing the simulation of individual foil activation by predetermined neutron spectra. To summarize, the comparison between calculation and measurement serve as a sound validation of the Swiss NPP activation methodology by demonstrating a satisfying agreement between measurement and calculation. Finally, the validation offers a chance for further improvements of the existing NPP models by ensuing calibration and/or modelling optimizations for key components and structures.

  19. Absolute measurement of (198)Au activity in gold foil using plastic scintillators and a well-type NaI(Tl) detector.

    PubMed

    Kim, Yun Ho; Kim, Jungho; Lee, Jong-Man; Park, Hyeonseo

    2016-03-01

    A beta-gamma coincidence system has been developed for measuring (198)Au activity in gold foils. The system was validated by Monte Carlo simulations and by measuring the activity of a (60)Co point-source. To study effects such as self-shielding of beta particles in gold foils, (198)Au activity measurements and simulations were performed for various scintillators and foil sizes. The measured (198)Au activities were ~1% above the reference activity, which might be due to self-shielding of beta particles. The measured and simulated (198)Au activities agreed, suggesting feasibility of precise activity measurement. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Method for fabricating {sup 99}Mo production targets using low enriched uranium, {sup 99}Mo production targets comprising low enriched uranium

    DOEpatents

    Wiencek, T.C.; Matos, J.E.; Hofman, G.L.

    1997-03-25

    A radioisotope production target and a method for fabricating a radioisotope production target is provided, wherein the target comprises an inner cylinder, a foil of fissionable material circumferentially contacting the outer surface of the inner cylinder, and an outer hollow cylinder adapted to receive the substantially foil-covered inner cylinder and compress tightly against the foil to provide good mechanical contact therewith. The method for fabricating a primary target for the production of fission products comprises preparing a first substrate to receive a foil of fissionable material so as to allow for later removal of the foil from the first substrate, preparing a second substrate to receive the foil so as to allow for later removal of the foil from the second substrate; attaching the first substrate to the second substrate such that the foil is sandwiched between the first substrate and second substrate to prevent foil exposure to ambient atmosphere, and compressing the exposed surfaces of the first and second substrate to assure snug mechanical contact between the foil, the first substrate and the second substrate. 3 figs.

  1. Measurements of Deuteron-Induced Activation Cross Sections for IFMIF Accelerator Structural Materials

    NASA Astrophysics Data System (ADS)

    Nakao, Makoto; Hori, Jun-ichi; Ochiai, Kentaro; Sato, Satoshi; Yamauchi, Michinori; Ishioka, Noriko S.; Nishitani, Takeo

    2005-05-01

    Activation cross sections for deuteron-induced reactions on aluminum, copper, and tungsten were measured by using a stacked-foil method. The stacked foils were irradiated with deuteron beam at the AVF cyclotron in the TIARA facility, JAERI. We obtained the activation cross sections for 27Al(d,2p)27Mg, 27Al(d,x)24Na, natCu(d,x)62,63Zn, 61,64Cu, and natW(d,x)181-184,186Re, 187W in the 22-40 MeV region. These cross sections were compared with other experimental ones and the data in the ACSELAM library calculated by the ALICE-F code.

  2. Method and apparatus for corrugating strips

    DOEpatents

    Day, J.R.; Curtis, C.H.

    1981-10-27

    The invention relates to a method and a machine for transversely corrugating a continuous strip of metallic foil. The product foil comprises a succession of alternately disposed corrugations, each defining in a cross section, a major segment of a circle. The foil to be corrugated is positioned to extend within a vertical passage in the machine. The walls of the passage are heated to promote the desired deformation of the foil. Foil-deforming rollers are alternately passed obliquely across the passage to respectively engage transverse sections of the foil. The rollers and their respective section of deformed foil comprise a stacked assembly which is moved incrementally through the heated passageway. As the assembly emerges from the passageway, the rollers spill from the corrugated foil and are recovered for re-use.

  3. Depth profile of production yields of natPb(p, xn) 206,205,204,203,202,201Bi nuclear reactions

    NASA Astrophysics Data System (ADS)

    Mokhtari Oranj, Leila; Jung, Nam-Suk; Kim, Dong-Hyun; Lee, Arim; Bae, Oryun; Lee, Hee-Seock

    2016-11-01

    Experimental and simulation studies on the depth profiles of production yields of natPb(p, xn) 206,205,204,203,202,201Bi nuclear reactions were carried out. Irradiation experiments were performed at the high-intensity proton linac facility (KOMAC) in Korea. The targets, irradiated by 100-MeV protons, were arranged in a stack consisting of natural Pb, Al, Au foils and Pb plates. The proton beam intensity was determined by activation analysis method using 27Al(p, 3p1n)24Na, 197Au(p, p1n)196Au, and 197Au(p, p3n)194Au monitor reactions and also by Gafchromic film dosimetry method. The yields of produced radio-nuclei in the natPb activation foils and monitor foils were measured by HPGe spectroscopy system. Monte Carlo simulations were performed by FLUKA, PHITS/DCHAIN-SP, and MCNPX/FISPACT codes and the calculated data were compared with the experimental results. A satisfactory agreement was observed between the present experimental data and the simulations.

  4. Method of forming a thin unbacked metal foil

    DOEpatents

    Duchane, David V.; Barthell, Barry L.

    1984-01-01

    In a method of forming a thin (<2 .mu.m) unbacked metal foil having a desired curviplanar shape, a soluble polymeric film, preferably comprising polyvinyl alcohol, is formed on a supporting structure having a shape that defines the desired shape of the foil product. A layer of metal foil is deposited onto one side of the soluble film, preferably by vacuum vapor deposition. The metallized film is then immersed in a suitable solvent to dissolve the film and thereby leave the metal foil as an unbacked metal foil element mounted on the supporting structure. Aluminum foils less than 0.2 .mu.m (2,000 .ANG.) thick and having an areal density of less than 54 .mu.g/cm.sup.2 have been obtained.

  5. Design and construction of pulsed neutron diagnostic system for plasma focus device (SBUPF1).

    PubMed

    Moghadam, Sahar Rajabi; Davani, Fereydoon Abbasi

    2010-07-01

    In this paper, two designs of pulsed neutron counter structure are introduced. To increase the activation counter efficiency, BC-400 plastic scintillator plates along with silver foils are utilized. Rectangular cubic and cylindrical geometries for activation counter cell are modeled using MCNP4C code. Eventually, an optimum length of 14 cm is calculated for the detector cell and optimum numbers of 20 silver foils for rectangular cubic geometry and ten foils for cylindrical geometry have been acquired. Due to the high cost of cutting, polishing of plastics, and etc., the rectangular cubic design is found to be more economical than the other design. In order to examine the functionality and ensure the detector output and corresponding designing, neutron yield of a 2.48 kJ plasma focus device (SBUPF1) in 8 mbar pressure with removal source method for calibration was measured (3.71+/-0.32)x10(7) neutrons per shot.

  6. Development of thick, long-lived carbon stripper foils for PSR of LANL

    NASA Astrophysics Data System (ADS)

    Sugai, I.; Oyaizu, M.; Kawakami, H.; Ohmori, C.; Hattori, T.; Kawasaki, K.; Borden, M. J.; Macek, R. J.

    1995-02-01

    Thick carbon stripper foils (multi-layer thickness ≈ 200 μg/cm 2) have been developed for use with 800 MeV, H + ion beam in the Proton Storage Ring (PSR) at Los Alamos National Laboratory. Foils were prepared by means of the modified controlled ACDC arc discharge method (mCADAD). The lifetime measurements of the foils made by different methods were performed using an 800 MeV proton beam of up to 85 μA in the PSR, and a 3.2 MeV Ne + ion beam of 3 μA at Tokyo Institute of Technology. The foils made by the mCADAD method showed very long lifetimes, as compared to other foils tested, for both 800 MeV p and 3.2 MeV Ne + beam bombardments.

  7. Pu-ZR Alloy high-temperature activation-measurement foil

    DOEpatents

    McCuaig, Franklin D.

    1977-08-02

    A nuclear reactor fuel alloy consists essentially of from slightly greater than 7 to about 4 w/o zirconium, balance plutonium, and is characterized in that the alloy is castable and is rollable to thin foils. A preferred embodiment of about 7 w/o zirconium, balance plutonium, has a melting point substantially above the melting point of plutonium, is rollable to foils as thin as 0.0005 inch thick, and is compatible with cladding material when repeatedly cycled to temperatures above 650.degree. C. Neutron flux densities across a reactor core can be determined with a high-temperature activation-measurement foil which consists of a fuel alloy foil core sandwiched and sealed between two cladding material jackets, the fuel alloy foil core being a 7 w/o zirconium, plutonium foil which is from 0.005 to 0.0005 inch thick.

  8. Novel technique of making thin target foil of high density material via rolling method

    NASA Astrophysics Data System (ADS)

    Gupta, C. K.; Rohilla, Aman; Singh, R. P.; Singh, Gurjot; Chamoli, S. K.

    2018-05-01

    The conventional rolling method fails to yield good quality thin foils of thicknesses less than 2 mg/cm2 for high density materials with Z ≥ 70 (e.g. gold, lead). A special and improved technique has been developed to obtain such low thickness good quality gold foils by rolling method. Using this technique thin gold foils of thickness in the range of 0.850-2.5 mg/cm2 were obtained in the present work. By making use of alcohol during rolling, foils of thickness 1 mg/cm2 can be obtained in shorter time with less effort.

  9. Nanocomposite of polystyrene foil grafted with metallaboranes for antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Benkocká, Monika; Kolářová, Kateřina; Matoušek, Jindřich; Semerádtová, Alena; Šícha, Václav; Kolská, Zdeňka

    2018-05-01

    The surface of polystyrene foil (PS) was chemically modified. Firstly, the surface was pre-treated with Piranha solution. The activated surface was grafted by selected amino-compounds (cysteamine, ethylenediamine or chitosan) and/or subsequently grafted with five members of inorganic metallaboranes. Selected surface properties were studied by using various methods in order to indicate significant changes before and after individual modification steps of polymer foil. Elemental composition of surface was conducted by using X-ray photoelectron spectroscopy, chemistry and polarity by infrared spectroscopy and by electrokinetic analysis, wettability by goniometry, surface morphology by atomic force microscopy. Antimicrobial tests were performed on individual samples in order to confirm antimicrobial impact. Our results show slight antibacterial activity of PS modified with SK5 for Escherichia coli in comparison with the rest of the tested borane. On the other hand molecules of all tested metallaboranes could easier pierce through bacterial cell of Staphylococcus epidermidis due to absence of outer membrane (phospholipid bilayer). Some borane grafted on PS surface embodies the strong activity for Staphylococcus epidermidis and also for Desmodesmus quadricauda growth inhibition.

  10. Development of long-lived thick carbon stripper foils for high energy heavy ion accelerators by a heavy ion beam sputtering method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muto, Hideshi; Ohshiro, Yukimitsu; Kawasaki, Katsunori

    2013-04-19

    In the past decade, we have developed extremely long-lived carbon stripper foils of 1-50 {mu}g/cm{sup 2} thickness prepared by a heavy ion beam sputtering method. These foils were mainly used for low energy heavy ion beams. Recently, high energy negative Hydrogen and heavy ion accelerators have started to use carbon stripper foils of over 100 {mu}g/cm{sup 2} in thickness. However, the heavy ion beam sputtering method was unsuccessful in production of foils thicker than about 50 {mu}g/cm{sup 2} because of the collapse of carbon particle build-up from substrates during the sputtering process. The reproduction probability of the foils was lessmore » than 25%, and most of them had surface defects. However, these defects were successfully eliminated by introducing higher beam energies of sputtering ions and a substrate heater during the sputtering process. In this report we describe a highly reproducible method for making thick carbon stripper foils by a heavy ion beam sputtering with a Krypton ion beam.« less

  11. Double-layer effects on the lifetime of newly developed HBC-foils for RCS of J-PARC

    NASA Astrophysics Data System (ADS)

    Sugai, I.; Takeda, Y.; Oyaizu, M.; Kawakami, H.; Irie, Y.; Takagi, A.; Hattori, H.; Kawasaki, K.

    2010-02-01

    We have developed hybrid type boron-mixed carbon (HBC) foils for the rapid cycling synchrotron (RCS) of Japan-proton accelerator research complex (J-PARC) using the controlled DC arc-discharge method. The method has been found suitable for the production of thick foils up to a maximum of 700 μg/cm 2 due to the strong adhesion to the substrate. The foils thus produced showed rather long lifetime. By the development, high-temperature damage (foil deformation, thickness reduction and pinhole formation) of the foil was significantly mitigated even at a temperature of approximately 1700 K. However, when the foil temperature was higher than about 1800 K, especially pinhole formation in the irradiated area of the foil and its peripheries were always observed. In order to relieve high-temperature damage, we investigated the possibility to lower the temperature rise in single and double layer HBC-foils while keeping the total thickness the same. We also compared the lifetime of the single and the double layer HBC-foils as well as diamond and commercially available foils, using a 3.2 MeV Ne + ion beam from the Van de Graaff accelerator.

  12. Roles of size and kinematics in drag reduction for two tandem flexible foils

    NASA Astrophysics Data System (ADS)

    Chao, Li-Ming; Zhang, Dong; Pan, Guang

    2017-11-01

    The effect of size and kinematics difference between two tandem flexible foils on drag reduction have been numerically studied. Compared with single foil, it is found that the kinematics difference between two foils would not play a significant role in reducing drag, while the size difference between two foils significantly affects the drag reduction in this two foil system. For leading foil, it always enjoys drag reduction and the highest drag reduction can be observed at bigger size difference and gap distance between two foil as 22%. For trailing foil, it suffers drag increase when the gap distance between two foils is smaller, while it enjoys drag decrease when the size difference between two foils is bigger enough. The hydrodynamic interaction between such actively undulated foils also has been uncovered and used to explain the mechanisms of drag reduction.

  13. Method of making porous conductive supports for electrodes. [by electroforming and stacking nickel foils

    NASA Technical Reports Server (NTRS)

    Schaer, G. R. (Inventor)

    1973-01-01

    Porous conductive supports for electrochemical cell electrodes are made by electroforming thin corrugated nickel foil, and by stacking pieces of the corrugated foil alternatively with pieces of thin flat nickel foil. Corrugations in successive corrugated pieces are oriented at different angles. Adjacent pieces of foil are bonded by heating in a hydrogen atmosphere and then cutting the stack in planes perpendicular to the foils.

  14. Measurement of the radon diffusion through a nylon foil for different air humidities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamedov, Fadahat; Štekl, Ivan; Smolek, Karel

    The dependency of the radon penetration through a nylon foil on air humidity was measured. Such information is needed for the tracking part of the SuperNEMO detector, which is planned to be shielded against radon by nylon foil and in which the air humidity is not negligible. The long term measurements of radon penetration through nylon foils for different air humidities were performed with the radon diffusion setup constructed at the IEAP, CTU in Prague. The setup consists of two stainless steel hemispheres with Si detector in each of them. Both hemispheres are separated by the tested foil. While themore » left hemisphere contains high Rn activity, the right part contains only activity caused by the radon penetration through the tested foil. Obtained results of this study with a nylon foil with the thickness of 50 µm are presented.« less

  15. CR-39 track etching and blow-up method

    DOEpatents

    Hankins, Dale E.

    1987-01-01

    This invention is a method of etching tracks in CR-39 foil to obtain uniformly sized tracks. The invention comprises a step of electrochemically etching the foil at a low frequency and a "blow-up" step of electrochemically etching the foil at a high frequency.

  16. Passive Thermal Management of Foil Bearings

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J. (Inventor)

    2015-01-01

    Systems and methods for passive thermal management of foil bearing systems are disclosed herein. The flow of the hydrodynamic film across the surface of bearing compliant foils may be disrupted to provide passive cooling and to improve the performance and reliability of the foil bearing system.

  17. Advanced foil activation techniques for the measurement of within-pin distributions of the 63Cu(n,γ) 64Cu reaction rate in nuclear fuel

    NASA Astrophysics Data System (ADS)

    Macku, K.; Jatuff, F.; Murphy, M. F.; Joneja, O. P.; Bischofberger, R.; Chawla, R.

    2006-06-01

    Different foil activation techniques have been used for measuring spatial distributions of the 63Cu(n,γ) 64Cu reaction within two pins of a SVEA-96 Optima2 boiling water reactor fuel assembly, at the critical facility PROTEUS. This reaction is of interest because its 1/v cross-section gives it a good representation of the 235U fission rate. Initially, radial capture rate profiles were measured with mechanically punched copper foils. More detailed profiles were then determined by using a 0.2 mm copper wire spiral (˜200 μm resolution), as well as 5-, 10-, and 20-ring UV-lithography, electroplating, and molding (UV-LIGA) foils (up to a 100 μm resolution). For azimuthal measurements, apart from manually cut activation foils (into 8 sectors), 8- and 12-sector LIGA foils were used. The highly versatile LIGA foils have the additional advantage of being very easily separated into individual pieces after irradiation without the use of punches or other cutting tools. In order to account for the invasive character of the foil activation techniques, corrections to account for sample perturbations and for self-shielding effects were determined via simplified Monte Carlo (MCNP4C) modeling of the experimental setup. The final results from the various measurements of 63Cu(n,γ) 64Cu within-pin distributions have been compared with MCNP computations employing a detailed model of the full SVEA Optima2 fuel assembly.

  18. Cyclotron production of 48V via natTi(d,x)48V nuclear reaction; a promising radionuclide

    NASA Astrophysics Data System (ADS)

    Usman, A. R.; Khandaker, M. U.; Haba, H.

    2017-06-01

    In this experimental work, we studied the excitation function of natTi(d,x)48V nuclear reactions from 24 MeV down to threshold energy. Natural titanium foils were arranged in the popular stacked-foil method and activated with deuteron beam generated from an AVF cyclotron at RIKEN, Wako, Japan. The emitted γ activities from the activated foils were measured using an offline γ-ray spectrometry. The present results were analyzed, compared with earlier published experimental data and also with the evaluated data of Talys code. Our new measured data agree with some of the earlier reported experimental data while a partial agreement is found with the evaluated theoretical data. In addition to the use of 48V as a beam intensity monitor, recent studies indicate its potentials as calibrating source in PET cameras and also as a (radioactive) label for medical applications. The results are also expected to further enrich the experimental database and also to play an important role in nuclear reactions model codes design.

  19. Normalization of a collimated 14.7 MeV neutron source in a neutron spectrometry system for benchmark experiments

    NASA Astrophysics Data System (ADS)

    Ofek, R.; Tsechanski, A.; Shani, G.

    1988-05-01

    In the present study a method used to normalize a collimated 14.7 MeV neutron beam is introduced. It combined a measurement of the fast neutron scalar flux passing through the collimator, using a copper foil activation, with a neutron transport calculation of the foil activation per unit source neutron, carried out by the discrete-ordinates transport code DOT 4.2. The geometry of the collimated neutron beam is composed of a D-T neutron source positioned 30 cm in front of a 6 cm diameter collimator, through a 120 cm thick paraffin wall. The neutron flux emitted from the D-T source was counted by an NE-213 scintillator, simultaneously with the irradiation of the copper foil. Thus, the determination of the normalization factor of the D-T source is used for an absolute flux calibration of the NE-213 scintillator. The major contributions to the uncertainty in the determination of the normalization factor, and their origins, are discussed.

  20. Method for fabricating uranium foils and uranium alloy foils

    DOEpatents

    Hofman, Gerard L [Downers Grove, IL; Meyer, Mitchell K [Idaho Falls, ID; Knighton, Gaven C [Moore, ID; Clark, Curtis R [Idaho Falls, ID

    2006-09-05

    A method of producing thin foils of uranium or an alloy. The uranium or alloy is cast as a plate or sheet having a thickness less than about 5 mm and thereafter cold rolled in one or more passes at substantially ambient temperatures until the uranium or alloy thereof is in the shape of a foil having a thickness less than about 1.0 mm. The uranium alloy includes one or more of Zr, Nb, Mo, Cr, Fe, Si, Ni, Cu or Al.

  1. Simultaneous laser cutting and welding of metal foil to edge of a plate

    DOEpatents

    Pernicka, John C.; Benson, David K.; Tracy, C. Edwin

    1996-01-01

    A method of welding an ultra-thin foil to the edge of a thicker sheet to form a vacuum insulation panel comprising the steps of providing an ultra-thin foil having a thickness less than 0.002, providing a top plate having an edge and a bottom plate having an edge, clamping the foil to the edge of the plate wherein the clamps act as heat sinks to distribute heat through the foil, providing a laser, moving the laser relative to the foil and the plate edges to form overlapping weld beads to weld the foil to the plate edges while simultaneously cutting the foil along the weld line formed by the overlapping beads.

  2. Ventrolateral prefrontal cortex and the effects of task demand context on facial affect appraisal in schizophrenia.

    PubMed

    Leitman, David I; Wolf, Daniel H; Loughead, James; Valdez, Jeffrey N; Kohler, Christian G; Brensinger, Colleen; Elliott, Mark A; Turetsky, Bruce I; Gur, Raquel E; Gur, Ruben C

    2011-01-01

    Schizophrenia patients display impaired performance and brain activity during facial affect recognition. These impairments may reflect stimulus-driven perceptual decrements and evaluative processing abnormalities. We differentiated these two processes by contrasting responses to identical stimuli presented under different contexts. Seventeen healthy controls and 16 schizophrenia patients performed an fMRI facial affect detection task. Subjects identified an affective target presented amongst foils of differing emotions. We hypothesized that targeting affiliative emotions (happiness, sadness) would create a task demand context distinct from that generated when targeting threat emotions (anger, fear). We compared affiliative foil stimuli within a congruent affiliative context with identical stimuli presented in an incongruent threat context. Threat foils were analysed in the same manner. Controls activated right orbitofrontal cortex (OFC)/ventrolateral prefrontal cortex (VLPFC) more to affiliative foils in threat contexts than to identical stimuli within affiliative contexts. Patients displayed reduced OFC/VLPFC activation to all foils, and no activation modulation by context. This lack of context modulation coincided with a 2-fold decrement in foil detection efficiency. Task demands produce contextual effects during facial affective processing in regions activated during affect evaluation. In schizophrenia, reduced modulation of OFC/VLPFC by context coupled with reduced behavioural efficiency suggests impaired ventral prefrontal control mechanisms that optimize affective appraisal.

  3. Method of using deuterium-cluster foils for an intense pulsed neutron source

    DOEpatents

    Miley, George H.; Yang, Xiaoling

    2013-09-03

    A method is provided for producing neutrons, comprising: providing a converter foil comprising deuterium clusters; focusing a laser on the foil with power and energy sufficient to cause deuteron ions to separate from the foil; and striking a surface of a target with the deuteron ions from the converter foil with energy sufficient to cause neutron production by a reaction selected from the group consisting of D-D fusion, D-T fusion, D-metal nuclear spallation, and p-metal. A further method is provided for assembling a plurality of target assemblies for a target injector to be used in the previously mentioned manner. A further method is provided for producing neutrons, comprising: splitting a laser beam into a first beam and a second beam; striking a first surface of a target with the first beam, and an opposite second surface of the target with the second beam with energy sufficient to cause neutron production.

  4. Selecting foils for identification lineups: matching suspects or descriptions?

    PubMed

    Tunnicliff, J L; Clark, S E

    2000-04-01

    Two experiments directly compare two methods of selecting foils for identification lineups. The suspect-matched method selects foils based on their match to the suspect, whereas the description-matched method selects foils based on their match to the witness's description of the perpetrator. Theoretical analyses and previous results predict an advantage for description-matched lineups both in terms of correctly identifying the perpetrator and minimizing false identification of innocent suspects. The advantage for description-matched lineups should be particularly pronounced if the foils selected in suspect-matched lineups are too similar to the suspect. In Experiment 1, the lineups were created by trained police officers, and in Experiment 2, the lineups were constructed by undergraduate college students. The results of both experiments showed higher suspect-to-foil similarity for suspect-matched lineups than for description-matched lineups. However, neither experiment showed a difference in correct or false identification rates. Both experiments did, however, show that there may be an advantage for suspect-matched lineups in terms of no-pick and rejection responses. From these results, the endorsement of one method over the other seems premature.

  5. Reanalysis of tritium production in a sphere of /sup 6/LiD irradiated by 14-MeV neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fawcett, L.R. Jr.

    1985-08-01

    Tritium production and activation of radiochemical detector foils in a sphere of /sup 6/LiD irradiated by a central source of 14-MeV neutrons has been reanalyzed. The /sup 6/LiD sphere consisted of 10 solid hemispherical nested shells with ampules of /sup 6/LiH, /sup 7/LiH, and activation foils located 2.2, 5, 7.7, 12.6, 20, and 30 cm from the center. The Los Alamos Monte Carlo Neutron Photon Transport Code (MCNP) was used to calculate neutron transport through the /sup 6/LiD, tritium production in the ampules, and foil activation. The MCNP input model was three-dimensional and employed ENDF/B-V cross sections for transport, tritiummore » production, and (where available) foil activation. The reanalyzed experimentally observed-to-calculated values of tritium production were 1.053 +- 2.1% in /sup 6/LiH and 0.999 +- 2.1% in /sup 7/LiH. The recalculated foil activation observed-to-calculated ratios were not generally improved over those reported in the original analysis.« less

  6. Studies of PMMA sintering foils with and without coating by magnetron sputtering Pd

    NASA Astrophysics Data System (ADS)

    Cutroneo, M.; Mackova, A.; Torrisi, L.; Vad, K.; Csik, A.; Ando', L.; Svecova, B.

    2017-09-01

    Polymethylmethacrylate thin foils were prepared by using physical and chemical processes aimed at changing certain properties. The density and the optical properties were changed obtaining clear and opaque foils. DC magnetron sputtering method was used to cover the foils with thin metallic palladium layers. The high optical absorbent foils were obtained producing microstructured PMMA microbeads with and without thin metallic coatings. Rutherford Backscattering Spectroscopy, optical investigation and microscopy were employed to characterize the prepared foils useful in the field study of laser-matter interaction.

  7. Controlled porous pattern of anodic aluminum oxide by foils laminate approach.

    PubMed

    Wang, Gou-Jen; Peng, Chi-Sheng

    2006-04-01

    A novel, much simpler, and low-cost method to fabricate the porous pattern of the anodic aluminum oxide (AAO) based on the aluminum foils laminate approach was carried out. During our experiments, it was found that the pores of the AAO on the upper foil grew bi-directionally from both the top and the bottom surfaces. Experimental results further indicate that the upward porous pattern of the upper foil is determined by the surface structure of the bottom surface of the upper foil. The porous pattern of AAO can be controlled by a pre-made pattern on the bottom surface. Furthermore, no Aluminum (Al) layer removing process is required in this novel laminate method.

  8. Design, Fabrication and Performance of Open Source Generation I and II Compliant Hydrodynamic Gas Foil Bearings

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Radil, Kevin C.; Bruckner, Robert J.; Howard, S. Adam

    2007-01-01

    Foil gas bearings are self-acting hydrodynamic bearings made from sheet metal foils comprised of at least two layers. The innermost top foil layer traps a gas pressure film that supports a load while a layer or layers underneath provide an elastic foundation. Foil bearings are used in many lightly loaded, high-speed turbo-machines such as compressors used for aircraft pressurization, and small micro-turbines. Foil gas bearings provide a means to eliminate the oil system leading to reduced weight and enhanced temperature capability. The general lack of familiarity of the foil bearing design and manufacturing process has hindered their widespread dissemination. This paper reviews the publicly available literature to demonstrate the design, fabrication and performance testing of both first and second generation bump style foil bearings. It is anticipated that this paper may serve as an effective starting point for new development activities employing foil bearing technology.

  9. Simultaneous laser cutting and welding of metal foil to edge of a plate

    DOEpatents

    Pernicka, J.C.; Benson, D.K.; Tracy, C.E.

    1996-03-19

    A method is described for welding an ultra-thin foil to the edge of a thicker sheet to form a vacuum insulation panel comprising the steps of providing an ultra-thin foil having a thickness less than 0.002, providing a top plate having an edge and a bottom plate having an edge, clamping the foil to the edge of the plate wherein the clamps act as heat sinks to distribute heat through the foil, providing a laser, moving the laser relative to the foil and the plate edges to form overlapping weld beads to weld the foil to the plate edges while simultaneously cutting the foil along the weld line formed by the overlapping beads. 7 figs.

  10. Method of fabricating a uranium-bearing foil

    DOEpatents

    Gooch, Jackie G [Seymour, TN; DeMint, Amy L [Kingston, TN

    2012-04-24

    Methods of fabricating a uranium-bearing foil are described. The foil may be substantially pure uranium, or may be a uranium alloy such as a uranium-molybdenum alloy. The method typically includes a series of hot rolling operations on a cast plate material to form a thin sheet. These hot rolling operations are typically performed using a process where each pass reduces the thickness of the plate by a substantially constant percentage. The sheet is typically then annealed and then cooled. The process typically concludes with a series of cold rolling passes where each pass reduces the thickness of the plate by a substantially constant thickness amount to form the foil.

  11. A new method for designing dual foil electron beam forming systems. I. Introduction, concept of the method

    NASA Astrophysics Data System (ADS)

    Adrich, Przemysław

    2016-05-01

    In Part I of this work existing methods and problems in dual foil electron beam forming system design are presented. On this basis, a new method of designing these systems is introduced. The motivation behind this work is to eliminate the shortcomings of the existing design methods and improve overall efficiency of the dual foil design process. The existing methods are based on approximate analytical models applied in an unrealistically simplified geometry. Designing a dual foil system with these methods is a rather labor intensive task as corrections to account for the effects not included in the analytical models have to be calculated separately and accounted for in an iterative procedure. To eliminate these drawbacks, the new design method is based entirely on Monte Carlo modeling in a realistic geometry and using physics models that include all relevant processes. In our approach, an optimal configuration of the dual foil system is found by means of a systematic, automatized scan of the system performance in function of parameters of the foils. The new method, while being computationally intensive, minimizes the involvement of the designer and considerably shortens the overall design time. The results are of high quality as all the relevant physics and geometry details are naturally accounted for. To demonstrate the feasibility of practical implementation of the new method, specialized software tools were developed and applied to solve a real life design problem, as described in Part II of this work.

  12. Method for laser welding ultra-thin metal foils

    DOEpatents

    Pernicka, J.C.; Benson, D.K.; Tracy, C.E.

    1996-03-26

    A method for simultaneously cutting and welding ultra-thin foils having a thickness of less than 0.002 inches wherein two ultra-thin films are stacked and clamped together. A pulsed laser such as of the Neodymium: YAG type is provided and the beam of the laser is directed onto the stacked films to cut a channel through the films. The laser is moved relative to the stacked foils to cut the stacked foils at successive locations and to form a plurality of connected weld beads to form a continuous weld. 5 figs.

  13. Method for laser welding ultra-thin metal foils

    DOEpatents

    Pernicka, John C.; Benson, David K.; Tracy, C. Edwin

    1996-01-01

    A method for simultaneously cutting and welding ultra-thin foils having a thickness of less than 0.002 inches wherein two ultra-thin films are stacked and clamped together. A pulsed laser such as of the Neodymium: YAG type is provided and the beam of the laser is directed onto the stacked films to cut a channel through the films. The laser is moved relative to the stacked foils to cut the stacked foils at successive locations and to form a plurality of connected weld beads to form a continuous weld.

  14. Comparison of carbon and corrugated diamond stripper foils under operational conditions at the Los Alamos PSR

    NASA Astrophysics Data System (ADS)

    Spickermann, T.; Borden, M. J.; Macek, R. J.; Shaw, R. W.; Feigerle, C. S.; Sugai, I.

    2008-06-01

    To accumulate high-intensity proton pulses, the Los Alamos Proton Storage Ring (PSR) uses the charge-exchange injection method. H - ions merge with already circulating protons in a bending magnet, and then are stripped off their two electrons in a carbon stripper foil. The circulating protons continue to interact with the foil. Despite efforts to minimize the number of these foil hits, like "painting" of the vertical phase space, they cannot totally be eliminated. As a result, foil heating and probably also radiation damage limit the lifetime of these foils. In recent years, LANL has collaborated with KEK to improve the carbon foils in use at PSR, and these foils now last typically for about 2 months. Recently, an alternative in the form of corrugated diamond foils has been proposed for use at SNS. These foils have now been tested in PSR production for a year, and have already shown to be at least as enduring as the LANL/KEK carbon foils. Advantages of the diamond foil concept, as well as some noteworthy differences that we observed with respect to the LANL carbon foils, will be discussed here.

  15. Conducting-polymer-driven actively shaped propellers and screws

    NASA Astrophysics Data System (ADS)

    Madden, John D.; Schmid, Bryan; Lafontaine, Serge R.; Madden, Peter G. A.; Hover, Franz S.; McLetchie, Karl; Hunter, Ian W.

    2003-07-01

    Conducting polymer actuators are employed to create actively shaped hydrodynamic foils. The active foils are designed to allow control over camber, much like the ailerons of an airplane wing. Control of camber promises to enable variable thrust in propellers and screws, increased maneuverability, and improved stealth. The design and fabrication of the active foils are presented, the forces are measured and operation is demonstrated both in still air and water. The foils have a "wing" span of 240 mm, and an average chord length (width) of 70 mm. The trailing 30 mm of the foil is composed of a thin polypyrrole actuator that curls chordwise to achieve variable camber. The actuator consists of two 30 μm thick sheets of hexafluorophosphate doped polypyrrole separated from each other by a gel electrolyte. A polymer layer encapsulates the entire structure. Potentials are applied between the polymer layers to induce reversible bending by approximately 35 degrees, and generating forces of 0.15 N. These forces and displacements are expected to enable operation in water at flow rates of > 1 m/s and ~ 30 m/s in air.

  16. Methods of making metallic glass foil laminate composites

    DOEpatents

    Vianco, P.T.; Fisher, R.W.; Hosking, F.M.; Zanner, F.J.

    1996-08-20

    A process for the fabrication of a rapidly solidified foil laminate composite. An amorphous metallic glass foil is flux treated and coated with solder. Before solidification of the solder the foil is collected on a take-up spool which forms the composite into a solid annular configuration. The resulting composite exhibits high strength, resiliency and favorable magnetic and electrical properties associated with amorphous materials. The composite also exhibits bonding strength between the foil layers which significantly exceeds the bulk strength of the solder alone. 6 figs.

  17. Methods of making metallic glass foil laminate composites

    DOEpatents

    Vianco, Paul T.; Fisher, Robert W.; Hosking, Floyd M.; Zanner, Frank J.

    1996-01-01

    A process for the fabrication of a rapidly solidified foil laminate composite. An amorphous metallic glass foil is flux treated and coated with solder. Before solidification of the solder the foil is collected on a take-up spool which forms the composite into a solid annular configuration. The resulting composite exhibits high strength, resiliency and favorable magnetic and electrical properties associated with amorphous materials. The composite also exhibits bonding strength between the foil layers which significantly exceeds the bulk strength of the solder alone.

  18. Theoretical performance of foil journal bearings

    NASA Technical Reports Server (NTRS)

    Carpino, M.; Peng, J.-P.

    1991-01-01

    A modified forward iteration approach for the coupled solution of foil bearings is presented. The method is used to predict the steady state theoretical performance of a journal type gas bearing constructed from an inextensible shell supported by an elastic foundation. Bending effects are treated as negligible. Finite element methods are used to predict both the foil deflections and the pressure distribution in the gas film.

  19. Propagation of nuclear data uncertainties for fusion power measurements

    NASA Astrophysics Data System (ADS)

    Sjöstrand, Henrik; Conroy, Sean; Helgesson, Petter; Hernandez, Solis Augusto; Koning, Arjan; Pomp, Stephan; Rochman, Dimitri

    2017-09-01

    Neutron measurements using neutron activation systems are an essential part of the diagnostic system at large fusion machines such as JET and ITER. Nuclear data is used to infer the neutron yield. Consequently, high-quality nuclear data is essential for the proper determination of the neutron yield and fusion power. However, uncertainties due to nuclear data are not fully taken into account in uncertainty analysis for neutron yield calibrations using activation foils. This paper investigates the neutron yield uncertainty due to nuclear data using the so-called Total Monte Carlo Method. The work is performed using a detailed MCNP model of the JET fusion machine; the uncertainties due to the cross-sections and angular distributions in JET structural materials, as well as the activation cross-sections in the activation foils, are analysed. It is found that a significant contribution to the neutron yield uncertainty can come from uncertainties in the nuclear data.

  20. Method of Suppressing Sublimation in Advanced Thermoelectric Devices

    NASA Technical Reports Server (NTRS)

    Sakamoto, Jeffrey S. (Inventor); Caillat, Thierry (Inventor); Fleurial, Jean-Pierre (Inventor); Snyder, G. Jeffrey (Inventor)

    2009-01-01

    A method of applying a physical barrier to suppress thermal decomposition near a surface of a thermoelectric material including applying a continuous metal foil to a predetermined portion of the surface of the thermoelectric material, physically binding the continuous metal foil to the surface of the thermoelectric material using a binding member, and heating in a predetermined atmosphere the applied and physically bound continuous metal foil and the thermoelectric material to a sufficient temperature in order to promote bonding between the continuous metal foil and the surface of the thermoelectric material. The continuous metal foil forms a physical barrier to enclose a predetermined portion of the surface. Thermal decomposition is suppressed at the surface of the thermoelectric material enclosed by the physical barrier when the thermoelectric element is in operation.

  1. Pu-Zr alloy for high-temperature foil-type fuel

    DOEpatents

    McCuaig, Franklin D.

    1977-01-01

    A nuclear reactor fuel alloy consists essentially of from slightly greater than 7 to about 4 w/o zirconium, balance plutonium, and is characterized in that the alloy is castable and is rollable to thin foils. A preferred embodiment of about 7 w/o zirconium, balance plutonium, has a melting point substantially above the melting point of plutonium, is rollable to foils as thin as 0.0005 inch thick, and is compatible with cladding material when repeatedly cycled to temperatures above 650.degree. C. Neutron reflux densities across a reactor core can be determined with a high-temperature activation-measurement foil which consists of a fuel alloy foil core sandwiched and sealed between two cladding material jackets, the fuel alloy foil core being a 7 w/o zirconium, plutonium foil which is from 0.005 to 0.0005 inch thick.

  2. The measurement of radiation exposure of astronauts by radiochemical techniques

    NASA Technical Reports Server (NTRS)

    Brodzinski, R. L.

    1971-01-01

    Gamma analyses of the neutron-activated fecal samples from the Apollo 12 and 13 missions were completed, and the data are being evaluated. Samples of the exposed Apollo 12 solar wind composition foil and blank foils were obtained for analysis of the Po-2/0 (Pb-210, Rn-222) content. It is expected that the determination of the Po-210 content of these foils will yield the concentration of radon atoms incident on the foil while exposed to the lunar atmosphere, and this indirectly will permit an estimate of the average uranium concentration of the lunar surface. Proposals to measure the cosmic-ray intensity and energy spectra inside and outside of late Apollo and Project Skylab spacecraft by exposing and subsequently analyzing pure metal foils, and to measure the elemental mass balance in Project Skylab astronauts by instrumental neutron activation analysis of the intake and excreta are summarized.

  3. Preparation and comparative testing of advanced diamond-like carbon foils for tandem accelerators and time-of-flight spectrometers

    NASA Astrophysics Data System (ADS)

    Liechtenstein, V. Kh.; Ivkova, T. M.; Olshanski, E. D.; Baranov, A. M.; Repnow, R.; Hellborg, R.; Weller, R. A.; Wirth, H. L.

    1999-12-01

    The sputter preparation technique for thin diamond-like carbon (DLC) foils, advantageously used for ion-beam stripping and timing in accelerator experiments, has been optimized to improve the quality and the performance of the foils. Irradiation lifetimes of 5 μg/cm 2 DLC foils prepared by this technique have been compared with those for foils of approximately the same thickness, prepared by laser plasma ablation and for ethylene cracked foils when bombarded by 11 MeV Cu - - and Au --ion beams of ˜1 μA beam current at the Heidelberg MP-tandem. Standard carbon arc-evaporated foils were used as references. In these experiments, DLC stripper foils appeared to have a mean lifetime approximately two times longer than ethylene-cracked foils regardless of ion species, and compared favorably with foils prepared by laser ablation method. All these foils lasted at least, 10 times longer than standard carbon foils, when irradiated in the MP terminal. Approximately, the same improvement factor was confirmed with 3 μg/cm 2 DLC stripper foils irradiated with 2.3 MeV Ni-beams at the Pelletron accelerator in Lund. Unlike standard carbon foils, most of the advanced lifetime foils exhibited thinning during long irradiation, under clean vacuum. This suggests that sputtering of the foil by the heavy-ion beam might be a dominant process, responsible for the observed failure of these long-lived strippers. Along with specifically corrugated self-supporting DLC beam strippers, we succeeded in the fabrication of very smooth and ultra thin (˜0.5 μg/cm 2) DLC foils, mounted on grids and used as start foils for the ToF spectrometers applied in ion beam analysis.

  4. Boron stripper foils for particle accelerators

    NASA Astrophysics Data System (ADS)

    Zeisler, Stefan K.; Brigham, Michael; Kaur, Ishneet; Jaggi, Vinder

    2018-05-01

    Micromatter Technologies Inc., now located in Surrey B.C., Canada, is a worldwide supplier of pure and boron containing diamond-like carbon (DLC) stripper foils ranging from 10 nm to 10 μm. These foils are manufactured in-house using pulsed laser deposition. Continuing our research into novel production methods and alternative materials to be used as beam strippers for heavy elements and in particular for tandem particle accelerators, pure boron foils were prepared by laser plasma ablation of a disc shaped boron sputter target. Foil thickness between 10 nm to approximately 0.7 μm were achieved. The new boron foils showed considerably less stress, higher mechanical strength and better flexibility than comparable DLC films.

  5. FOIL ELEMENT FOR NUCLEAR REACTOR

    DOEpatents

    Noland, R.A.; Walker, D.E.; Spinrad, B.I.

    1963-07-16

    A method of making a foil-type fuel element is described. A foil of fuel metal is perforated in; regular design and sheets of cladding metal are placed on both sides. The cladding metal sheets are then spot-welded to each other through the perforations, and the edges sealed. (AEC)

  6. Characterizing proton-activated materials to develop PET-mediated proton range verification markers

    NASA Astrophysics Data System (ADS)

    Cho, Jongmin; Ibbott, Geoffrey S.; Kerr, Matthew D.; Amos, Richard A.; Stingo, Francesco C.; Marom, Edith M.; Truong, Mylene T.; Palacio, Diana M.; Betancourt, Sonia L.; Erasmus, Jeremy J.; DeGroot, Patricia M.; Carter, Brett W.; Gladish, Gregory W.; Sabloff, Bradley S.; Benveniste, Marcelo F.; Godoy, Myrna C.; Patil, Shekhar; Sorensen, James; Mawlawi, Osama R.

    2016-06-01

    Conventional proton beam range verification using positron emission tomography (PET) relies on tissue activation alone and therefore requires particle therapy PET whose installation can represent a large financial burden for many centers. Previously, we showed the feasibility of developing patient implantable markers using high proton cross-section materials (18O, Cu, and 68Zn) for in vivo proton range verification using conventional PET scanners. In this technical note, we characterize those materials to test their usability in more clinically relevant conditions. Two phantoms made of low-density balsa wood (~0.1 g cm-3) and beef (~1.0 g cm-3) were embedded with Cu or 68Zn foils of several volumes (10-50 mm3). The metal foils were positioned at several depths in the dose fall-off region, which had been determined from our previous study. The phantoms were then irradiated with different proton doses (1-5 Gy). After irradiation, the phantoms with the embedded foils were moved to a diagnostic PET scanner and imaged. The acquired data were reconstructed with 20-40 min of scan time using various delay times (30-150 min) to determine the maximum contrast-to-noise ratio. The resultant PET/computed tomography (CT) fusion images of the activated foils were then examined and the foils’ PET signal strength/visibility was scored on a 5 point scale by 13 radiologists experienced in nuclear medicine. For both phantoms, the visibility of activated foils increased in proportion to the foil volume, dose, and PET scan time. A linear model was constructed with visibility scores as the response variable and all other factors (marker material, phantom material, dose, and PET scan time) as covariates. Using the linear model, volumes of foils that provided adequate visibility (score 3) were determined for each dose and PET scan time. The foil volumes that were determined will be used as a guideline in developing practical implantable markers.

  7. A new modal-based approach for modelling the bump foil structure in the simultaneous solution of foil-air bearing rotor dynamic problems

    NASA Astrophysics Data System (ADS)

    Bin Hassan, M. F.; Bonello, P.

    2017-05-01

    Recently-proposed techniques for the simultaneous solution of foil-air bearing (FAB) rotor dynamic problems have been limited to a simple bump foil model in which the individual bumps were modelled as independent spring-damper (ISD) subsystems. The present paper addresses this limitation by introducing a modal model of the bump foil structure into the simultaneous solution scheme. The dynamics of the corrugated bump foil structure are first studied using the finite element (FE) technique. This study is experimentally validated using a purpose-made corrugated foil structure. Based on the findings of this study, it is proposed that the dynamics of the full foil structure, including bump interaction and foil inertia, can be represented by a modal model comprising a limited number of modes. This full foil structure modal model (FFSMM) is then adapted into the rotordynamic FAB problem solution scheme, instead of the ISD model. Preliminary results using the FFSMM under static and unbalance excitation conditions are proven to be reliable by comparison against the corresponding ISD foil model results and by cross-correlating different methods for computing the deflection of the full foil structure. The rotor-bearing model is also validated against experimental and theoretical results in the literature.

  8. Method and apparatus for coating thin foil with a boron coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacy, Jeffrey L.

    An apparatus and a process is disclosed for applying a boron coating to a thin foil. Preferably, the process is a continuous, in-line process for applying a coating to a thin foil comprising wrapping the foil around a rotating and translating mandrel, cleaning the foil with glow discharge in an etching chamber as the mandrel with the foil moves through the chamber, sputtering the foil with boron carbide in a sputtering chamber as the mandrel moves through the sputtering chamber, and unwinding the foil off the mandrel after it has been coated. The apparatus for applying a coating to amore » thin foil comprises an elongated mandrel. Foil preferably passes from a reel to the mandrel by passing through a seal near the initial portion of an etching chamber. The mandrel has a translation drive system for moving the mandrel forward and a rotational drive system for rotating mandrel as it moves forward. The etching chamber utilizes glow discharge on a surface of the foil as the mandrel moves through said etching chamber. A sputtering chamber, downstream of the etching chamber, applies a thin layer comprising boron onto the surface of the foil as said mandrel moves through said sputtering chamber. Preferably, the coated foil passes from the mandrel to a second reel by passing through a seal near the terminal portion of the sputtering chamber.« less

  9. Rotordynamics and Design Methods of an Oil-Free Turbocharger

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.

    1999-01-01

    The feasibility of supporting a turbocharger rotor on air foil bearings is investigated based upon predicted rotordynamic stability, load accommodations, and stress considerations. It is demonstrated that foil bearings offer a plausible replacement for oil-lubricated bearings in diesel truck turbochargers. Also, two different rotor configurations are analyzed and the design is chosen which best optimizes the desired performance characteristics. The method of designing machinery for foil bearing use and the assumptions made are discussed.

  10. A Recovery Process of Active Cathode Paste from Spent Li-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Toma, C. M.; Ghica, G. V.; Buzatu, M.; Petrescu, M. I.; Vasile, E.; Iacob, G.

    2017-06-01

    In this work, the depleted active paste from spent lithium-ion batteries was separated from cathode by means of ultrasonic vibration. First the unit cells were discharged in brine at room temperature, for safety reasons. Then anode, separator, electrolyte and cathode were separated. Spent Li-Ion batteries were introduced into a washing container to separate electrode materials from their support substrate: active paste (lithium cobalt oxide - LiCoO2) from cathode (Al foil) and graphite from anode (Cu foil). The Al foil and Cu foil were also recovered. A cleaning efficiency of 91% was achieved using a solution of 1.5 M acetic acid after a 6 minute time of exposure into an ultrasonic washing container with a frequency and electric power of 50 kHz and 50 W, respectively. The XRD patterns and the morphology of LiCoO2 powder were presented.

  11. Analysis of tritium production in concentric spheres of oralloy and /sup 6/LiD irradiated by 14-MeV neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fawcett, L.R. Jr.; Roberts, R.R. II; Hunter, R.E.

    1988-03-01

    Tritium production and activation of radiochemical detector foils in a sphere of /sup 6/LiD with an oralloy core irradiated by a central source of 14-MeV neutrons have been calculated and compared with experimental measurements. The experimental assembly consisted of an oralloy sphere surrounded by three solid /sup 6/LiD concentric shells with ampules of /sup 6/LiH and /sup 7/LiH and activation foils located in several positions throughout the assembly. The Los Alamos Monte Carlo Neutron Photon Transport Code (MCNP) was used to calculate neutron transport throughout the system, tritium production in the ampules, and foil activation. The overall experimentally observed-to-calculated ratiosmore » of tritium production were 0.996 +- 2.5% in /sup 6/Li ampules and 0.903 +- 5.2% in /sup 7/Li ampules. Observed-to-calculated ratios for foil activation are also presented. 11 refs., 4 figs., 7 tabs.« less

  12. Applying a foil queue micro-electrode in micro-EDM to fabricate a 3D micro-structure

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Guo, Kang; Wu, Xiao-yu; Lei, Jian-guo; Liang, Xiong; Guo, Deng-ji; Ma, Jiang; Cheng, Rong

    2018-05-01

    Applying a 3D micro-electrode in a micro electrical discharge machining (micro-EDM) can fabricate a 3D micro-structure with an up and down reciprocating method. However, this processing method has some shortcomings, such as a low success rate and a complex process for fabrication of 3D micro-electrodes. By focusing on these shortcomings, this paper proposed a novel 3D micro-EDM process based on the foil queue micro-electrode. Firstly, a 3D micro-electrode was discretized into several foil micro-electrodes and these foil micro-electrodes constituted a foil queue micro-electrode. Then, based on the planned process path, foil micro-electrodes were applied in micro-EDM sequentially and the micro-EDM results of each foil micro-electrode were able to superimpose the 3D micro-structure. However, the step effect will occur on the 3D micro-structure surface, which has an adverse effect on the 3D micro-structure. To tackle this problem, this paper proposes to reduce this adverse effect by rounded corner wear at the end of the foil micro-electrode and studies the impact of machining parameters on rounded corner wear and the step effect on the micro-structure surface. Finally, using a wire cutting voltage of 80 V, a current of 0.5 A and a pulse width modulation ratio of 1:4, the foil queue micro-electrode was fabricated by wire electrical discharge machining. Also, using a pulse width of 100 ns, a pulse interval of 200 ns, a voltage of 100 V and workpiece material of 304# stainless steel, the foil queue micro-electrode was applied in micro-EDM for processing of a 3D micro-structure with hemispherical features, which verified the feasibility of this process.

  13. Characterization of the CALIBAN Critical Assembly Neutron Spectra using Several Adjustment Methods Based on Activation Foils Measurement

    NASA Astrophysics Data System (ADS)

    Casoli, Pierre; Grégoire, Gilles; Rousseau, Guillaume; Jacquet, Xavier; Authier, Nicolas

    2016-02-01

    CALIBAN is a metallic critical assembly managed by the Criticality, Neutron Science and Measurement Department located on the French CEA Center of Valduc. The reactor is extensively used for benchmark experiments dedicated to the evaluation of nuclear data, for electronic hardening or to study the effect of the neutrons on various materials. Therefore CALIBAN irradiation characteristics and especially its central cavity neutron spectrum have to be very accurately evaluated. In order to strengthen our knowledge of this spectrum, several adjustment methods based on activation foils measurements are being studied for a few years in the laboratory. Firstly two codes included in the UMG package have been tested and compared: MAXED and GRAVEL. More recently, the CALIBAN cavity spectrum has been studied using CALMAR, a new adjustment tool currently under development at the CEA Center of Cadarache. The article will discuss and compare the results and the quality of spectrum rebuilding obtained with the UMG codes and with the CALMAR software, from a set of activation measurements carried out in the CALIBAN irradiation cavity.

  14. Multi-element microelectropolishing method

    DOEpatents

    Lee, Peter J.

    1994-01-01

    A method is provided for microelectropolishing a transmission electron microscopy nonhomogeneous multi-element compound foil. The foil is electrolyzed at different polishing rates for different elements by rapidly cycling between different current densities. During a first portion of each cycle at a first voltage a first element electrolyzes at a higher current density than a second element such that the material of the first element leaves the anode foil at a faster rate than the second element and creates a solid surface film, and such that the solid surface film is removed at a faster rate than the first element leaves the anode foil. During a second portion of each cycle at a second voltage the second element electrolyzes at a higher current density than the first element, and the material of the second element leaves the anode foil at a faster rate than the first element and creates a solid surface film, and the solid surface film is removed at a slower rate than the second element leaves the foil. The solid surface film is built up during the second portion of the cycle, and removed during the first portion of the cycle.

  15. Neutron measurement at the thermal column of the Malaysian Triga Mark II reactor using gold foil activation method and TLD

    NASA Astrophysics Data System (ADS)

    Shalbi, Safwan; Salleh, Wan Norhayati Wan; Mohamad Idris, Faridah; Aliff Ashraff Rosdi, Muhammad; Syahir Sarkawi, Muhammad; Liyana Jamsari, Nur; Nasir, Nur Aishah Mohd

    2018-01-01

    In order to design facilities for boron neutron capture therapy (BNCT), the neutron measurement must be considered to obtain the optimal design of BNCT facility such as collimator and shielding. The previous feasibility study showed that the thermal column could generate higher thermal neutrons yield for BNCT application at the TRIGA MARK II reactor. Currently, the facility for BNCT are planned to be developed at thermal column. Thus, the main objective was focused on the thermal neutron and epithermal neutron flux measurement at the thermal column. In this measurement, pure gold and cadmium were used as a filter to obtain the thermal and epithermal neutron fluxes from inside and outside of the thermal column door of the 200kW reactor power using a gold foil activation method. The results were compared with neutron fluxes using TLD 600 and TLD 700. The outcome of this work will become the benchmark for the design of BNCT collimator and the shielding

  16. Method of high-density foil fabrication

    DOEpatents

    Blue, Craig A.; Sikka, Vinod K.; Ohriner, Evan K.

    2003-12-16

    A method for preparing flat foils having a high density includes the steps of mixing a powdered material with a binder to form a green sheet. The green sheet is exposed to a high intensity radiative source adapted to emit radiation of wavelengths corresponding to an absorption spectrum of the powdered material. The surface of the green sheet is heated while a lower sub-surface temperature is maintained. An apparatus for preparing a foil from a green sheet using a radiation source is also disclosed.

  17. METHOD OF MEASURING THE INTEGRATED ENERGY OUTPUT OF A NEUTRONIC CHAIN REACTOR

    DOEpatents

    Sturm, W.J.

    1958-12-01

    A method is presented for measuring the integrated energy output of a reactor conslsting of the steps of successively irradiating calibrated thin foils of an element, such as gold, which is rendered radioactive by exposure to neutron flux for periods of time not greater than one-fifth the mean life of the induced radioactlvity and producing an indication of the radioactivity induced in each foil, each foil belng introduced into the reactor immediately upon removal of its predecessor.

  18. Metal foil method for noncontact measurement of lateral vibrations of a nonmetallic cylinder by a solenoid

    NASA Astrophysics Data System (ADS)

    Han, Soon Woo; Bang, Young Bong; Kim, Yoon Young

    2006-10-01

    This investigation shows that if a solenoid encircles a metal foil loop wound around a nonmetallic cylinder vibrating laterally, an electromotive force is induced in the solenoid. The induction is possible only when the foil loop is complete and an antisymmetric magnetic field is applied to the foil. In this work, stationary permanent magnets were used. Because the solenoid is the sensing element, no physical contact between the element and a test specimen is required. The effects of the metal foil thickness and width on the measurement sensitivity were studied and vibration modal testing of an acryl cylinder was performed.

  19. Method and apparatus for tensile testing of metal foil

    NASA Technical Reports Server (NTRS)

    Wade, O. W. (Inventor)

    1976-01-01

    A method for obtaining accurate and reproducible results in the tensile testing of metal foils in tensile testing machines is described. Before the test specimen are placed in the machine, foil side edges are worked until they are parallel and flaw free. The specimen are also aligned between and secured to grip end members. An aligning apparatus employed in the method is comprised of an alignment box with a longitudinal bottom wall and two upright side walls, first and second removable grip end members at each end of the box, and a means for securing the grip end members within the box.

  20. Electrical properties of Al foil/n-4H-SiC Schottky junctions fabricated by surface-activated bonding

    NASA Astrophysics Data System (ADS)

    Morita, Sho; Liang, Jianbo; Matsubara, Moeko; Dhamrin, Marwan; Nishio, Yoshitaka; Shigekawa, Naoteru

    2018-02-01

    We fabricate 17-µm-thick Al foil/n-4H-SiC Schottky junctions by surface-activated bonding. Their current-voltage and capacitance-voltage characteristics are compared with those of Schottky junctions fabricated by evaporating Al layers on n-4H-SiC epilayers. We find that the ideality factor of Al foil/SiC junctions is larger than that of conventional junctions, which is due to the irradiation of the fast atom beam (FAB) of Ar. The ideality factor of Al foil/SiC junctions is improved by annealing at 400 °C. We also find that the Schottky barrier height is increased by FAB irradiation, which is likely to be due to the negative charges formed at SiC surfaces.

  1. [Implants with 32P-foils for LDR-brachytherapy of benign stenosis in urology and gastroenterology].

    PubMed

    Assmann, Walter; Becker, Ricarda; Otto, Henrike; Bader, Markus; Clemente, Lucas; Reinhardt, Sabine; Schäfer, Claus; Schirra, Jörg; Uschold, Stephanie; Welzmüller, Andreas; Sroka, Ronald

    2013-02-01

    For LDR-brachytherapy, a limited number of implant geometries and materials are available. To avoid wound healing related hyper-proliferation (stenosis, keloids) a novel radioactive foil system was developed based on beta emitting (32)P, which can be easily integrated in existing implants such as urethral catheters or bile duct stents. As substrate material for these foils PEEK (polyetherethercetone) was chosen because of its radiation hardness during neutron activation of (32)P. The activity was determined by liquid scintillation counting and gamma spectroscopy, dose distributions were measured with scintillation detectors and radiochromic films. The correlation between activity and dose was checked by Monte-Carlo-simulations (Geant4). Prototypes of the (32)P-implants have shown in wash-out tests the required tightness for sealed radioactive sources. In animal tests on urethra and bile duct, the uncomplicated and save application of (32)P-foils mounted on standard implants has been demonstrated, which is almost unchanged due to the simple radiation protection with plexiglass. This concept of radioactive implants with integrated (32)P-foils could extend essentially the application possibilities of LDR-brachytherapy. Copyright © 2012. Published by Elsevier GmbH.

  2. Classroom Foils

    ERIC Educational Resources Information Center

    Pafford, William N.

    1970-01-01

    Aluminum foil, because of its characteristics, can be used for many elementary science activities: demonstrating Archimedes Principle, how to reduce cohesion, reflection and mirror effect, fuse action, condensation, friction, and as containers and barriers. (BR)

  3. Beam Characterization at the Neutron Radiography Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarah Morgan; Jeffrey King

    The quality of a neutron imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam’s effective length-to-diameter ratio, neutron flux profile, energy spectrum, image quality, and beam divergence, is vital for producing quality radiographic images. This project characterized the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam’s effective length-to-diameter ratio and image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured themore » beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. Improvement of the existing NRAD MCNP beamline model includes validation of the model’s energy spectrum and the development of enhanced image simulation methods. The image simulation methods predict the radiographic image of an object based on the foil reaction rate data obtained by placing a model of the object in front of the image plane in an MCNP beamline model.« less

  4. Benchmark calculation for radioactivity inventory using MAXS library based on JENDL-4.0 and JEFF-3.0/A for decommissioning BWR plants

    NASA Astrophysics Data System (ADS)

    Tanaka, Ken-ichi

    2016-06-01

    We performed benchmark calculation for radioactivity activated in a Primary Containment Vessel (PCV) of a Boiling Water Reactor (BWR) by using MAXS library, which was developed by collapsing with neutron energy spectra in the PCV of the BWR. Radioactivities due to neutron irradiation were measured by using activation foil detector of Gold (Au) and Nickel (Ni) at thirty locations in the PCV. We performed activation calculations of the foils with SCALE5.1/ORIGEN-S code with irradiation conditions of each foil location as the benchmark calculation. We compared calculations and measurements to estimate an effectiveness of MAXS library.

  5. Ozone-Activated Nanoporous Gold: A Stable and Storable Material for Catalytic Oxidation

    DOE PAGES

    Personick, Michelle L.; Zugic, Branko; Biener, Monika M.; ...

    2015-05-28

    We report a new method for facile and reproducible activation of nanoporous gold (npAu) materials of different forms for the catalytic selective partial oxidation of alcohols under ambient pressure, steady flow conditions. This method, based on the surface cleaning of npAu ingots with ozone to remove carbon documented in ultrahigh vacuum conditions, produces active npAu catalysts from ingots, foils, and shells by flowing an ozone/dioxygen mixture over the catalyst at 150 °C, followed by a temperature ramp from 50 to 150 °C in a flowing stream of 10% methanol and 20% oxygen. With this treatment, all three materials (ingots, foils,more » and shells) can be reproducibly activated, despite potential carbonaceous poisons resulting from their synthesis, and are highly active for the selective oxidation of primary alcohols over prolonged periods of time. The npAu materials activated in this manner exhibit catalytic behavior substantially different from those activated under different conditions previously reported. Once activated in this manner, they can be stored and easily reactivated by flow of reactant gases at 150 °C for a few hours. They possess improved selectivity for the coupling of higher alcohols, such as 1-butanol, and are not active for carbon monoxide oxidation. As a result, this ozone-treated npAu is a functionally new catalytic material.« less

  6. Ozone-Activated Nanoporous Gold: A Stable and Storable Material for Catalytic Oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Personick, Michelle L.; Zugic, Branko; Biener, Monika M.

    We report a new method for facile and reproducible activation of nanoporous gold (npAu) materials of different forms for the catalytic selective partial oxidation of alcohols under ambient pressure, steady flow conditions. This method, based on the surface cleaning of npAu ingots with ozone to remove carbon documented in ultrahigh vacuum conditions, produces active npAu catalysts from ingots, foils, and shells by flowing an ozone/dioxygen mixture over the catalyst at 150 °C, followed by a temperature ramp from 50 to 150 °C in a flowing stream of 10% methanol and 20% oxygen. With this treatment, all three materials (ingots, foils,more » and shells) can be reproducibly activated, despite potential carbonaceous poisons resulting from their synthesis, and are highly active for the selective oxidation of primary alcohols over prolonged periods of time. The npAu materials activated in this manner exhibit catalytic behavior substantially different from those activated under different conditions previously reported. Once activated in this manner, they can be stored and easily reactivated by flow of reactant gases at 150 °C for a few hours. They possess improved selectivity for the coupling of higher alcohols, such as 1-butanol, and are not active for carbon monoxide oxidation. As a result, this ozone-treated npAu is a functionally new catalytic material.« less

  7. Preparation and investigation of diamond-like carbon stripper foils by filtered cathodic vacuum arc

    NASA Astrophysics Data System (ADS)

    Fan, Qiwen; Du, Yinghui; Zhang, Rong; Xu, Guoji

    2013-04-01

    Thin diamond-like carbon (DLC) stripper foils ˜5 μg/cm2 in thickness were produced and evaluated as heavy-ion strippers for the Beijing HI-13 Tandem Accelerator. The DLC layers ˜4 μg/cm2 in thickness were produced by the filtered cathodic vacuum arc technology onto glass slides coated with betaine-saccharose as releasing agent, which were previously covered with evaporated carbon layers ˜1 μg/cm2 in thickness by the controlled ac arc-discharge method. Irradiation lifetimes of the DLC stripper foils were tested using the heavy-ion beams at the terminal of the Beijing HI-13 Tandem Accelerator, and compared with those of the standard carbon stripper foils made by the combined dc and ac arc-discharge method. The measurements indicate that the DLC stripper foils outlast the standard combined dc and ac arc-discharge carbon stripper foils by a factor of at least 13 and 4for the 197Au- (˜9 MeV, ˜1 μA) and 63Cu- (˜9 MeV, ˜1 μA) ion beams, respectively. The structure and properties of the DLC foils deposited onto silicon substrates by the filtered cathodic vacuum arc technology were also evaluated and analyzed by scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. The scanning electron microscopy images show that the DLC foils contain hardly droplets through the double 90° filters. The X-ray photoelectron spectrum indicates that sp3 bonds of the DLC foils exceed 70%. The integral intensity ratio of the D peak to the G peak (ID/IG) measured by the Raman spectroscopy is0.78.

  8. Spallation yield of neutrons produced in thick lead target bombarded with 250 MeV protons

    NASA Astrophysics Data System (ADS)

    Chen, L.; Ma, F.; Zhanga, X. Y.; Ju, Y. Q.; Zhang, H. B.; Ge, H. L.; Wang, J. G.; Zhou, B.; Li, Y. Y.; Xu, X. W.; Luo, P.; Yang, L.; Zhang, Y. B.; Li, J. Y.; Xu, J. K.; Liang, T. J.; Wang, S. L.; Yang, Y. W.; Gu, L.

    2015-01-01

    The neutron yield from thick target of Pb irradiated with 250 MeV protons has been studied experimentally. The neutron production was measured with the water-bath gold method. The thermal neutron distributions in the water were determined according to the measured activities of Au foils. Corresponding results calculated with the Monte Carlo code MCNPX were compared with the experimental data. It was found out that the Au foils with cadmium cover significantly changed the spacial distribution of the thermal neutron field. The corrected neutron yield was deduced to be 2.23 ± 0.19 n/proton by considering the influence of the Cd cover on the thermal neutron flux.

  9. Light scattering apparatus and method for determining radiation exposure to plastic detectors

    DOEpatents

    Hermes, Robert E.

    2002-01-01

    An improved system and method of analyzing cumulative radiation exposure registered as pits on track etch foils of radiation dosimeters. The light scattering apparatus and method of the present invention increases the speed of analysis while it also provides the ability to analyze exposure levels beyond that which may be properly measured with conventional techniques. Dosimeters often contain small plastic sheets that register accumulated damage when exposed to a radiation source. When the plastic sheet from the dosimeter is chemically etched, a track etch foil is produced wherein pits or holes are created in the plastic. The number of these pits, or holes, per unit of area (pit density) correspond to the amount of cumulative radiation exposure which is being optically measured by the apparatus. To measure the cumulative radiation exposure of a track etch foil a high intensity collimated beam is passed through foil such that the pits and holes within the track etch foil cause a portion of the impinging light beam to become scattered upon exit. The scattered light is focused with a lens, while the primary collimated light beam (unscattered light) is blocked. The scattered light is focused by the lens onto an optical detector capable of registering the optical power of the scattered light which corresponds to the cumulative radiation to which the track etch foil has been exposed.

  10. THE USE OF A PHOSPHORUS-POLYTHENE MIXTURE FOR FAST NEUTRON MEASUREMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephens, K.G.; Williams, G.H.

    1962-06-01

    A convenient way of measuring relative fast fluxes in a small reactor core using foils of phosphorus-Polythene mixture is described. Determination of the disintegration rate of these foils involves the measurement of the BETA -ray self-absorption of the foils as a function of thickness. Accurate disintegration rate measurements after irradiation for 6 hr using 7/16 in. dia foils enabled fission fluxes of 5 x 10/sup 5/ n/cm/sup 2/ sec or more to be measured absolutely to within plus or minus 6 per cent and fluxes as low as 5 x 10/sup 4/ n/cm/sup 2/ sec to within plus or minusmore » 20 per cent when the counter background was 80 c/ min. By reducing this background and increasing foil size, both of these limits are lowered by about a factor 50. The method compares favorably with methods using the S/sup 32/(n,p P/sup 32/ threshold reaction. (auth)« less

  11. Multi-element microelectropolishing method

    DOEpatents

    Lee, P.J.

    1994-10-11

    A method is provided for microelectropolishing a transmission electron microscopy nonhomogeneous multi-element compound foil. The foil is electrolyzed at different polishing rates for different elements by rapidly cycling between different current densities. During a first portion of each cycle at a first voltage a first element electrolyzes at a higher current density than a second element such that the material of the first element leaves the anode foil at a faster rate than the second element and creates a solid surface film, and such that the solid surface film is removed at a faster rate than the first element leaves the anode foil. During a second portion of each cycle at a second voltage the second element electrolyzes at a higher current density than the first element, and the material of the second element leaves the anode foil at a faster rate than the first element and creates a solid surface film, and the solid surface film is removed at a slower rate than the second element leaves the foil. The solid surface film is built up during the second portion of the cycle, and removed during the first portion of the cycle. 10 figs.

  12. Improvement of Surface Layer Characteristics by Shot Lining

    NASA Astrophysics Data System (ADS)

    Harada, Yasunori

    In the present study, lining of the metal with foils using shot peening was investigated to improve the surface layer characteristics. In the shot peening experiment, the foils set on the metal are pelted with hard particles traveling at a high velocity. The foils are bonded to the metal surface due to plastic deformation induced by the collision of the particles. The foils and the metal are heated to heighten the bondability because of the reduction of flow stress. Lining the metal with the hard powder sandwiched between two aluminum foil sheets was also attempted. In this experiment, a centrifugal shot peening machine wite an electrical heater was employed. The metals are commercially aluminium alloys and magnesium alloys, and the foils are commercially aluminum, titanium and nickel. The effects of shot speed and the heating temperature on the bondability were examined. Wear resistance was also evaluated by grinding. The foils were successfully bonded to the metal surface. It was found that the present method is effective in improving of surface layer characteristics.

  13. Tubular hydrogen permeable metal foil membrane and method of fabrication

    DOEpatents

    Paglieri, Stephen N.; Birdsell, Stephen A.; Barbero, Robert S.; Snow, Ronny C.; Smith, Frank M.

    2006-04-04

    A tubular hydrogen permeable metal membrane and fabrication process comprises obtaining a metal alloy foil having two surfaces, coating the surfaces with a metal or metal alloy catalytic layer to produce a hydrogen permeable metal membrane, sizing the membrane into a sheet with two long edges, wrapping the membrane around an elongated expandable rod with the two long edges aligned and overlapping to facilitate welding of the two together, placing the foil wrapped rod into a surrounding fixture housing with the two aligned and overlapping foil edges accessible through an elongated aperture in the surrounding fixture housing, expanding the elongated expandable rod within the surrounding fixture housing to tighten the foil about the expanded rod, welding the two long overlapping foil edges to one another generating a tubular membrane, and removing the tubular membrane from within the surrounding fixture housing and the expandable rod from with the tubular membrane.

  14. WINDOWS: a program for the analysis of spectral data foil activation measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stallmann, F.W.; Eastham, J.F.; Kam, F.B.K.

    The computer program WINDOWS together with its subroutines is described for the analysis of neutron spectral data foil activation measurements. In particular, the unfolding of the neutron differential spectrum, estimated windows and detector contributions, upper and lower bounds for an integral response, and group fluxes obtained from neutron transport calculations. 116 references. (JFP)

  15. Pulsed electric discharge laser technology. Electron beam window foil material

    NASA Astrophysics Data System (ADS)

    McGeoch, M. W.; Defuria, A. J.; Pike, C. T.

    1984-01-01

    An experimental and theoretical study of titanium alloy foil windows is described. The alloys considered are Ti 15-3-3-3, Ti 3-2.5, and CP Ti(4). The foil thickness ranges from 0.5 mil to 1.0 mil. Tensile strength data is presented for 75 F and 600 F. High-cycle (10 to the 7th power) fatigue data is presented to Ti 15-3-3-3 and Ti 3-2.5 at 75 F and 600 F. Crystal structures are shown for all the alloys. Measurements of the biaxial, or membrane, strength of the alloys is presented. A simulation of laser pulsed overpressure conditions is described, and the foil fatigue under these conditions is documented. The stresses in pressure loaded foil windows were calculated by the finite element method, both for static and dynamic loading. The shape of the foil support rib was optimized to minimize the foil stresses. A correlation was performed between the computed stress cycling under pulsed loading and the measured fatigue strength in uniaxial tension. As a check on the pulse simulation, the actual movement of an electron-beam foil window was measured by interferometry. A speckle interferometer which allows measurement of the movement of unpolished foil surfaces is described.

  16. SSmiles.

    ERIC Educational Resources Information Center

    Sunal, Dennis W., Ed.; Tracy, Dyanne M., Ed.

    1992-01-01

    Presents activities to supplement lessons on length and mass measurement or as part of a unit on atoms or orders of magnitude. Provides a lesson plan using aluminum foil to estimate unit measures, calculate the foil's thickness, and do an atom count. (MDH)

  17. A novel method for the activity measurement of large-area beta reference sources.

    PubMed

    Stanga, D; De Felice, P; Keightley, J; Capogni, M; Ioan, M R

    2016-03-01

    A novel method has been developed for the activity measurement of large-area beta reference sources. It makes use of two emission rate measurements and is based on the weak dependence between the source activity and the activity distribution for a given value of transmission coefficient. The method was checked experimentally by measuring the activity of two ((60)Co and (137)Cs) large-area reference sources constructed from anodized aluminum foils. Measurement results were compared with the activity values measured by gamma spectrometry. For each source, they agree within one standard uncertainty and also agree within the same limits with the certified values of the source activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Foil cooling for rep-rated electron beam pumped KrF lasers

    NASA Astrophysics Data System (ADS)

    Giuliani, J. L.; Hegeler, F.; Sethian, J. D.; Wolford, M. F.; Myers, M. C.; Abdel-Khalik, S.; Sadowski, D.; Schoonover, K.; Novak, V.

    2006-06-01

    In rep-rated electron beam pumped lasers the foil separating the vacuum diode from the laser gas is subject to repeated heating due to partial beam stopping. Three cooling methods are examined for the Electra KrF laser at the Naval Research Laboratory (NRL). Foil temperature measurements for convective cooling by the recirculating laser gas and by spray mist cooling are reported, along with estimates for thermal conductive foil cooling to the hibachi ribs. Issues on the application of each of these approaches to laser drivers in a fusion power plant are noted. Work supported by DOE/NNSA.

  19. In situ calibration of the foil detector for an infrared imaging video bolometer using a carbon evaporation technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukai, K., E-mail: mukai.kiyofumi@LHD.nifs.ac.jp; Peterson, B. J.; SOKENDAI

    The InfraRed imaging Video Bolometer (IRVB) is a useful diagnostic for the multi-dimensional measurement of plasma radiation profiles. For the application of IRVB measurement to the neutron environment in fusion plasma devices such as the Large Helical Device (LHD), in situ calibration of the thermal characteristics of the foil detector is required. Laser irradiation tests of sample foils show that the reproducibility and uniformity of the carbon coating for the foil were improved using a vacuum evaporation method. Also, the principle of the in situ calibration system was justified.

  20. Production of 92Y via the 92Zr(n,p) reaction using the C(d,n) accelerator neutron source

    NASA Astrophysics Data System (ADS)

    Kin, Tadahiro; Sanzen, Yukimasa; Kamida, Masaki; Watanabe, Yukinobu; Itoh, Masatoshi

    2017-09-01

    We have proposed a new method of producing medical radioisotope 92Y as a candidate of alternatives of 111In bioscan prior to 90Y ibritumomab tiuxetan treatment. The 92Y isotope is produced via the 92Zr (n,p) reaction using accelerator neutrons generated by the interaction of deuteron beams with carbon. A feasibility experiment was performed at Cyclotron and Radioisotope Center, Tohoku University. A carbon thick target was irradiated by 20-MeV deuterons to produce accelerator neutrons. The thick target neutron yield (TTNY) was measured by using the multiple foils activation method. The foils were made of Al, Fe, Co, Ni, Zn, Zr, Nb, and Au. The production amount of 92Y and induced impurities were estimated by simulation with the measured TTNY and the JENDL-4.0 nuclear data.

  1. One-Pot Solvothermal in Situ Growth of 1D Single-Crystalline NiSe on Ni Foil as Efficient and Stable Transparent Conductive Oxide Free Counter Electrodes for Dye-Sensitized Solar Cells.

    PubMed

    Bao, Chao; Li, Faxin; Wang, Jiali; Sun, Panpan; Huang, Niu; Sun, Yihua; Fang, Liang; Wang, Lei; Sun, Xiaohua

    2016-12-07

    One-dimensional single-crystal nanostructural nickel selenides were successfully in situ grown on metal nickel foils by two simple one-step solvothermal methods, which formed NiSe/Ni counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). The nickel foil acted as the nickel source in the reaction process, a supporting substrate, and an electron transport "speedway". Electrochemical testing indicated that the top 1D single-crystal NiSe exhibited prominent electrocatalytic activity for I 3 - reduction. Due to the metallic conductivity of Ni substrate and the outstanding electrocatalytic activity of single-crystal NiSe, the DSSC based on a NiSe/Ni CE exhibited higher fill factor (FF) and larger short-circuit current density (J sc ) than the DSSC based on Pt/FTO CE. The corresponding power conversion efficiency (6.75%) outperformed that of the latter (6.18%). Moreover, the NiSe/Ni CEs also showed excellent electrochemical stability in the I - /I 3 - redox electrolyte. These findings indicated that single-crystal NiSe in situ grown on Ni substrate was a potential candidate to replace Pt/TCO as a cheap and highly efficient counter electrode of DSSC.

  2. How Thin Is Foil? Applying Density to Find the Thickness of Aluminum Foil

    ERIC Educational Resources Information Center

    Concannon, James P.

    2011-01-01

    In this activity, I show how high school students apply their knowledge of density to solve an unknown variable, such as thickness. Students leave this activity with a better understanding of density, the knowledge that density is a characteristic property of a given substance, and the ways density can be measured. (Contains 4 figures and 1 table.)

  3. Experimental study on the use of spacer foils in two-step putty and wash impression procedures using silicone impression materials.

    PubMed

    Mann, Karsten; Davids, Andreas; Range, Ursula; Richter, Gert; Boening, Klaus; Reitemeier, Bernd

    2015-04-01

    The 2-step putty and wash impression technique is commonly used in fixed prosthodontics. However, cutting sluiceways to allow the light-body material to drain is time-consuming. A solution might be the use of a spacer foil. The purpose of this study was to evaluate the influence of spacer foil on the margin reproduction and dimensional accuracy of 2-step putty and wash impressions. Two methods of creating space for the wash material in a 2-step putty and wash impression were compared: the traditional cutout technique and a spacer foil. Eleven commercially available combinations of silicone impression materials were included in the study. The impressions and the cast production were carried out under standardized conditions. All casts were measured with a 3-dimensional (3D) coordinate measuring machine. Preparation margin reproduction and the diameters and spacing of the stone cast dies were measured (α=.05). The 2 methods showed significant differences (P<.05) in the reproduction of the preparation margins (complete reproduction cutout, 90% to 98%; foil, 74% to 91%). The use of a foil resulted in greater dimensional accuracy of the cast dies compared to the cutout technique. Cast dies from the cutout technique were significantly smaller than the metallic original cast (cutout median, 4.55 mm to 4.61 mm; foil median, 4.61 to 4.64). Spacing between the dies revealed only a few additional significant differences between the techniques. When spacer foils were used, dies were obtained that better corresponded to the original tooth. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  4. Goal-directed mechanisms that constrain retrieval predict subsequent memory for new "foil" information.

    PubMed

    Vogelsang, David A; Bonnici, Heidi M; Bergström, Zara M; Ranganath, Charan; Simons, Jon S

    2016-08-01

    To remember a previous event, it is often helpful to use goal-directed control processes to constrain what comes to mind during retrieval. Behavioral studies have demonstrated that incidental learning of new "foil" words in a recognition test is superior if the participant is trying to remember studied items that were semantically encoded compared to items that were non-semantically encoded. Here, we applied subsequent memory analysis to fMRI data to understand the neural mechanisms underlying the "foil effect". Participants encoded information during deep semantic and shallow non-semantic tasks and were tested in a subsequent blocked memory task to examine how orienting retrieval towards different types of information influences the incidental encoding of new words presented as foils during the memory test phase. To assess memory for foils, participants performed a further surprise old/new recognition test involving foil words that were encountered during the previous memory test blocks as well as completely new words. Subsequent memory effects, distinguishing successful versus unsuccessful incidental encoding of foils, were observed in regions that included the left inferior frontal gyrus and posterior parietal cortex. The left inferior frontal gyrus exhibited disproportionately larger subsequent memory effects for semantic than non-semantic foils, and significant overlap in activity during semantic, but not non-semantic, initial encoding and foil encoding. The results suggest that orienting retrieval towards different types of foils involves re-implementing the neurocognitive processes that were involved during initial encoding. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Inspection of cup-shaped steel parts from the I.D. side using eddy current

    NASA Astrophysics Data System (ADS)

    Griffiths, Erick W.; Pearson, Lee H.

    2018-04-01

    An eddy current method was developed to inspect cup-shaped steel parts from the I.D. side. During the manufacturing process of these parts, a thin Al tape foil is applied to the I.D. side of the part. One of the critical process parameters is that only one foil layer can be applied. An eddy current inspection system was developed to reject parts with more than one foil layer. The Al tape foil is cut to length to fit the inner diameter, however, after application of the foil there is a gap created between the beginning and end of the foil. It was found that this gap interfered with the eddy current inspection causing a false positive indication. To solve this problem a sensor design and data analysis process were developed to overcome the effects of these gaps. The developed system incorporates simultaneous measurements from multiple eddy current sensors and signal processing to achieve a reliable inspection.

  6. Study of Electric Explosion of Flat Micron-Thick Foils at Current Densities of (5-50)×108 A/cm2

    NASA Astrophysics Data System (ADS)

    Shelkovenko, T. A.; Pikuz, S. A.; Tilikin, I. N.; Mingaleev, A. R.; Atoyan, L.; Hammer, D. A.

    2018-02-01

    Electric explosions of flat Al, Ti, Ni, Cu, and Ta foils with thicknesses of 1-16 μm, widths of 1-8 mm, and lengths of 5-11 mm were studied experimentally on the BIN, XP, and COBRA high-current generators at currents of 40-1000 kA and current densities of (5-50) × 108 A/cm2. The images of the exploded foils were taken at different angles to the foil surface by using point projection radiography with an X-pinch hot spot as the radiation source, the spatial resolution and exposure time being 3 μm and 50 ps, respectively, as well by the laser probing method with a spatial resolution of 20 μm and an exposure time of 180 ps. In the course of foil explosion, rapidly expanding objects resembling the core and corona of an exploded wire were observed. It is shown that the core of the exploded foil has a complicated time-varying structure.

  7. Braze system and method for reducing strain in a braze joint

    DOEpatents

    Cadden, Charles H.; Goods, Steven H.; Prantil, Vincent C.

    2004-05-11

    A system for joining a pair of structural members having widely differing coefficients of thermal expansion is disclosed. A mechanically "thick" foil is made by dispersing a refractory metal powder, such as molybdenum, niobium, tantalum, or tungsten into a quantity of a liquid, high expansion metal such as copper, silver, or gold, casting an ingot of the mixture, and then cutting sections of the ingot about 1 mm thick to provide the foil member. These foil members are shaped, and assembled between surfaces of structural members for joining, together with a layer of a braze alloy on either side of the foil member capable of wetting both the surfaces of the structural members and the foil. The assembled body is then heated to melt the braze alloy and join the assembled structure. The foil member subsequently absorbs the mechanical strain generated by the differential contraction of the cooling members that results from the difference in the coefficients of thermal expansion of the members.

  8. Foil Gas Thrust Bearings for High-Speed Turbomachinery

    NASA Technical Reports Server (NTRS)

    Edmonds, Brian; DellaCorte, Christopher; Dykas, Brian

    2010-01-01

    A methodology has been developed for the design and construction of simple foil thrust bearings intended for parametric performance testing and low marginal costs, supporting continued development of oil-free turbomachinery. A bearing backing plate is first machined and surface-ground to produce flat and parallel faces. Partial-arc slots needed to retain the foil components are then machined into the plate by wire electrical discharge machining. Slot thicknesses achievable by a single wire pass are appropriate to accommodate the practical range of foil thicknesses, leaving a small clearance in this hinged joint to permit limited motion. The backing plate is constructed from a nickel-based superalloy (Inconel 718) to allow heat treatment of the entire assembled bearing, as well as to permit hightemperature operation. However, other dimensionally stable materials, such as precipitation-hardened stainless steel, can also be used for this component depending on application. The top and bump foil blanks are cut from stacks of annealed Inconel X-750 foil by the same EDM process. The bump foil has several azimuthal slits separating it into five individual bump strips. This configuration allows for variable bump spacing, which helps to accommodate the effects of the varying surface velocity, thermal crowning, centrifugal dishing, and misalignment. Rectangular tabs on the foil blanks fit into the backing plate slots. For this application, a rather traditional set of conventionally machined dies is selected, and bump foil blanks are pressed into the dies for forming. This arrangement produces a set of bump foil dies for foil thrust bearings that provide for relatively inexpensive fabrication of various bump configurations, and employing methods and features from the public domain.

  9. Method and apparatus to trigger superconductors in current limiting devices

    DOEpatents

    Yuan, Xing; Hazelton, Drew Willard; Walker, Michael Stephen

    2004-10-26

    A method and apparatus for magnetically triggering a superconductor in a superconducting fault current limiter to transition from a superconducting state to a resistive state. The triggering is achieved by employing current-carrying trigger coil or foil on either or both the inner diameter and outer diameter of a superconductor. The current-carrying coil or foil generates a magnetic field with sufficient strength and the superconductor is disposed within essentially uniform magnetic field region. For superconductor in a tubular-configured form, an additional magnetic field can be generated by placing current-carrying wire or foil inside the tube and along the center axial line.

  10. Fabrication of implantable microelectrode arrays by laser cutting of silicone rubber and platinum foil.

    PubMed

    Schuettler, M; Stiess, S; King, B V; Suaning, G J

    2005-03-01

    A new method for fabrication of microelectrode arrays comprised of traditional implant materials is presented. The main construction principle is the use of spun-on medical grade silicone rubber as insulating substrate material and platinum foil as conductor (tracks, pads and electrodes). The silicone rubber and the platinum foil are patterned by laser cutting using an Nd:YAG laser and a microcontroller-driven, stepper-motor operated x-y table. The method does not require expensive clean room facilities and offers an extremely short design-to-prototype time of below 1 day. First prototypes demonstrate a minimal achievable feature size of about 30 microm.

  11. A Novel and Generalized Lithium-Ion-Battery Configuration utilizing Al Foil as Both Anode and Current Collector for Enhanced Energy Density.

    PubMed

    Ji, Bifa; Zhang, Fan; Sheng, Maohua; Tong, Xuefeng; Tang, Yongbing

    2017-02-01

    A novel battery configuration based on an aluminum foil anode and a conventional cathode is developed. The aluminum foil plays a dual role as both the active anode material and the current collector, which enhances the energy density of the packaged battery, and reduces the production cost. This generalized battery configuration has high potential for application in next-generation lithium-ion batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Update On The Development, Testing, And Manufacture Of High Density LEU-Foil Targets For The Production Of Mo-99

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Creasy, John T

    2015-05-12

    This project has the objective to reduce and/or eliminate the use of HEU in commerce. Steps in the process include developing a target testing methodology that is bounding for all Mo-99 target irradiators, establishing a maximum target LEU-foil mass, developing a LEU-foil target qualification document, developing a bounding target failure analysis methodology (failure in reactor containment), optimizing safety vs. economics (goal is to manufacture a safe, but relatively inexpensive target to offset the inherent economic disadvantage of using LEU in place of HEU), and developing target material specifications and manufacturing QC test criteria. The slide presentation is organized under themore » following topics: Objective, Process Overview, Background, Team Structure, Key Achievements, Experiment and Activity Descriptions, and Conclusions. The High Density Target project has demonstrated: approx. 50 targets irradiated through domestic and international partners; proof of concept for two front end processing methods; fabrication of uranium foils for target manufacture; quality control procedures and steps for manufacture; multiple target assembly techniques; multiple target disassembly devices; welding of targets; thermal, hydraulic, and mechanical modeling; robust target assembly parametric studies; and target qualification analysis for insertion into very high flux environment. The High Density Target project has tested and proven several technologies that will benefit current and future Mo-99 producers.« less

  13. Hierarchically Mesostructured Aluminum Current Collector for Enhancing the Performance of Supercapacitors.

    PubMed

    Huang, Yilun; Li, Yuyao; Gong, Qianming; Zhao, Guanlei; Zheng, Pengjie; Bai, Junfei; Gan, Jianning; Zhao, Ming; Shao, Yang; Wang, Dazhi; Liu, Lei; Zou, Guisheng; Zhuang, Daming; Liang, Ji; Zhu, Hongwei; Nan, Cewen

    2018-05-16

    Aluminum (Al) current collector is one of the most important components of supercapacitors, and its performance has vital effects on the electrochemical performance and cyclic stability of supercapacitors. In the present work, a scalable and low-cost, yet highly efficient, picosecond laser processing method of Al current collectors was developed to improve the overall performance of supercapacitors. The laser treatment resulted in hierarchical micro-nanostructures on the surface of the commercial Al foil and reduced the surface oxygen content of the foil. The electrochemical performance of the Al foil with the micro-nanosurface structures was examined in the symmetrical activated carbon-based coin supercapacitors with an organic electrolyte. The results suggest that the laser-treated Al foil (laser-Al) increased the capacitance density of supercapacitors up to 110.1 F g -1 and promoted the rate capability due to its low contact resistance with the carbonaceous electrode and high electrical conductivity derived from its larger specific surface areas and deoxidized surface. In addition, the capacitor with the laser-Al current collector exhibited high cyclic stability with 91.5% capacitance retention after 10 000 cycles, 21.3% higher than that with pristine-Al current collector due to its stronger bonding with the carbonaceous electrode that prevented any delamination during aging. Our work has provided a new strategy for improving the electrochemical performance of supercapacitors.

  14. Strain-Gauge Measurement of Weight of Fluid in a Tank

    NASA Technical Reports Server (NTRS)

    Figueroa, Jorge; St. Cyr, William; Rahman, Shamim; McVay, Gregory; Van Dyke, David; Mitchell, William; Langford, Lester

    2004-01-01

    A method of determining the amount of fluid in a tank is based on measurement of strains induced in tank supports by the weight of the fluid. Unlike most prior methods, this method is nonintrusive: there is no need to insert instrumentation in the tank and, hence, no need to run wires, cables, or tubes through the tank wall. Also unlike most prior methods, this method is applicable even if the fluid in the tank is at supercritical pressure and temperature, because it does not depend on the presence of a liquid/gas interface (as in liquid-level-measuring methods). The strain gauges used in this method may be of two types: foil and fiber-optic. Four foil gauges (full bridge) are mounted on each of the tank-supporting legs. As the tank is filled or emptied, the deformation in each leg increases or decreases, respectively. Measured deformations of all legs are added to obtain a composite deformation indicative of the change in weight of the tank plus fluid. An initial calibration is performed by recording data at two points (usually, empty and full) for which the mass or weight of fluid is known. It is assumed that the deformations are elastic, so that the line passing through the two points can be used as a calibration curve of mass (or weight) of fluid versus deformation. One or more fiber-optic gauges may be used instead of the foil gauges. The resolution of the fiber-optic and foil gauges is approximately the same, but the fiber-optic gauges are immune to EMI (electromagnetic interference), are linear with respect to temperature over their entire dynamic range (as defined by the behavior of the sample), and measure thermally induced deformations as predictable signals. Conversely, long term testing has demonstrated that the foil gauges exhibit an erratic behavior whenever subjected to direct sun radiation (even if protected with a rubberized cover). Henceforth, for deployment in outdoor conditions, fiber-optic gauges are the only option if one is to rely on the system for an extended period of time when a recalibration procedure may not be acceptable. A set of foil gauges had been tested on the supports of a 500-gallon (1,900-liter) tank. The gauges were found to be capable of measuring the deformations (up to 22 micro-strain) that occurred during filling and emptying of the tank. The fluid masses calculated from the gauge readings were found to be accurate within 4.5 percent. However, the reliability of the foil gauges over a few hours was not acceptable. Therefore, the foil sensor system is acceptable for use only in controlled environments (complete shade, or indoors).

  15. Target foil rupture scenario and provision for handling different models of medical cyclotrons used in India

    PubMed Central

    Shaiju, V. S.; Sharma, S. D.; Kumar, Rajesh; Sarin, B.

    2009-01-01

    Medical cyclotron is a particle accelerator used in producing short lived radiotracers such as 18F, 11C, 15O, 13N etc. These radiotracers are labeled with suitable pharmaceuticals for use to gather information related to metabolic activity of the cell using Positron Emission Tomography (PET) scan. Target foil rupture is considered one of the major emergency situations during medical cyclotron operations because there is a potential of over exposure to the working personnel. Radiation protection survey of a self-shielded medical cyclotron installation was carried out during normal and emergency conditions. It is found that the induced activity in the target foil increases with its successive usages. As a case study, we have evaluated the emergency handling procedures of GE PETtrace-6 medical cyclotron. Recommendations have also been made to reduce personal exposure while handling the target foil rupture condition such as the use of L-Bench near the target area and participation of experienced personnel. PMID:20098564

  16. Joining of materials using laser heating

    DOEpatents

    Cockeram, Brian V.; Hicks, Trevor G.; Schmid, Glenn C.

    2003-07-01

    A method for diffusion bonding ceramic layers such as boron carbide, zirconium carbide, or silicon carbide uses a defocused laser beam to heat and to join ceramics with the use of a thin metal foil insert. The metal foil preferably is rhenium, molybdenum or titanium. The rapid, intense heating of the ceramic/metal/ceramic sandwiches using the defocused laser beam results in diffusive conversion of the refractory metal foil into the ceramic and in turn creates a strong bond therein.

  17. The effect of copper pre-cleaning on graphene synthesis.

    PubMed

    Kim, Soo Min; Hsu, Allen; Lee, Yi-Hsien; Dresselhaus, Mildred; Palacios, Tomás; Kim, Ki Kang; Kong, Jing

    2013-09-13

    Copper foil is the most common substrate to synthesize monolayer graphene by chemical vapor deposition (CVD). The surface morphology and conditions of the copper foil can be very different depending on the various suppliers or different batches. These surface properties of copper strongly affect the growth behavior of graphene, thus rendering the growth conditions irreproducible when different batches of Cu foil are used. Furthermore, the quality of the graphene is severely affected as well. In this work, we report a facile method of copper pre-cleaning to improve the graphene quality and the reproducibility of the growth process. We found that the commercial Ni etchant (based on nitric acid) or nitric acid is the most effective cleaning agent among various acidic or basic solutions. The graphene grown on thus-treated copper surfaces is very clean and mostly monolayer when observed under scanning electron microscopy (SEM) and optical imaging, as compared to the graphene grown on untreated copper foil. Different batches (but with the same catalog number) of copper foil from Alfa Aesar Company were examined to explore the effect of copper pre-cleaning; consistent growth results were obtained when pre-cleaning was used. This method overcomes a commonly encountered problem in graphene growth and could become one of the standard protocols for preparing the copper foil substrate for growing graphene or other 2D materials.

  18. Method for fabrication of ceramic dielectric films on copper foils

    DOEpatents

    Ma, Beihai; Narayanan, Manoj; Dorris, Stephen E.; Balachandran, Uthamalingam

    2015-03-10

    The present invention provides a method for fabricating a ceramic film on a copper foil. The method comprises applying a layer of a sol-gel composition onto a copper foil. The sol-gel composition comprises a precursor of a ceramic material suspended in 2-methoxyethanol. The layer of sol-gel is then dried at a temperature up to about 250.degree. C. The dried layer is then pyrolyzed at a temperature in the range of about 300 to about 450.degree. C. to form a ceramic film from the ceramic precursor. The ceramic film is then crystallized at a temperature in the range of about 600 to about 750.degree. C. The drying, pyrolyzing and crystallizing are performed under a flowing stream of an inert gas. In some embodiments an additional layer of the sol-gel composition is applied onto the ceramic film and the drying, pyrolyzing and crystallizing steps are repeated for the additional layer to build up a thicker ceramic layer on the copper foil. The process can be repeated one or more times if desired.

  19. A peristaltic pump driven 89Zr separation module

    NASA Astrophysics Data System (ADS)

    Siikanen, J.; Peterson, M.; Tran, T. A.; Roos, P.; Ohlsson, T.; Sandell, A.

    2012-12-01

    To facilitate the separation of 89Zr produced in yttrium foils, an automated separation module was designed and assembled. The module separates more than 85% of produced 89Zr - activity in 3 g foils in less than 90 min. About 10 % remains in the dissolving vial. The quality of the separated 89Zr activity was investigated for labeling of the HER2-binding monoclonal antibody fragment, trastuzumab-Fab.

  20. A simple and inclusive method to determine the habit plane in transmission electron microscope based on accurate measurement of foil thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Dong, E-mail: d.qiu@uq.edu.au; Zhang, Mingxing

    2014-08-15

    A simple and inclusive method is proposed for accurate determination of the habit plane between bicrystals in transmission electron microscope. Whilst this method can be regarded as a variant of surface trace analysis, the major innovation lies in the improved accuracy and efficiency of foil thickness measurement, which involves a simple tilt of the thin foil about a permanent tilting axis of the specimen holder, rather than cumbersome tilt about the surface trace of the habit plane. Experimental study has been done to validate this proposed method in determining the habit plane between lamellar α{sub 2} plates and γ matrixmore » in a Ti–Al–Nb alloy. Both high accuracy (± 1°) and high precision (± 1°) have been achieved by using the new method. The source of the experimental errors as well as the applicability of this method is discussed. Some tips to minimise the experimental errors are also suggested. - Highlights: • An improved algorithm is formulated to measure the foil thickness. • Habit plane can be determined with a single tilt holder based on the new algorithm. • Better accuracy and precision within ± 1° are achievable using the proposed method. • The data for multi-facet determination can be collected simultaneously.« less

  1. Development of explosively bonded TZM wire reinforced Columbian sheet composites

    NASA Technical Reports Server (NTRS)

    Otto, H. E.; Carpenter, S. H.

    1972-01-01

    Methods of producing TZM molybdenum wire reinforced C129Y columbium alloy composites by explosive welding were studied. Layers of TZM molybdenum wire were wound on frames with alternate layers of C129Y columbium alloy foil between the wire layers. The frames held both the wire and foils in place for the explosive bonding process. A goal of 33 volume percent molybdenum wire was achieved for some of the composites. Variables included wire diameter, foil thickness, wire separation, standoff distance between foils and types and amounts of explosive. The program was divided into two phases: (1) development of basic welding parameters using 5 x 10-inch composites, and (2) scaleup to 10 x 20-inch composites.

  2. Eddy current probe with foil sensor mounted on flexible probe tip and method of use

    DOEpatents

    Viertl, John R. M.; Lee, Martin K.

    2001-01-01

    A pair of copper coils are embedded in the foil strip. A first coil of the pair generates an electromagnetic field that induces eddy currents on the surface, and the second coil carries a current influenced by the eddy currents on the surface. The currents in the second coil are analyzed to obtain information on the surface eddy currents. An eddy current probe has a metal housing having a tip that is covered by a flexible conductive foil strip. The foil strip is mounted on a deformable nose at the probe tip so that the strip and coils will conform to the surface to which they are applied.

  3. Use of Kelvin probe force microscopy for identification of CVD grown graphene flakes on copper foil

    NASA Astrophysics Data System (ADS)

    Kumar, Rakesh; Mehta, B. R.; Kanjilal, D.

    2017-05-01

    Graphene flakes have been grown by chemical vapour deposition (CVD) method on Cu foils. The obtained graphene flakes have been characterized by optical microscopy, field emission scanning electron microscopy, Kelvin probe force microscopy (KPFM) and Raman spectroscopy. The graphene flakes grown on Cu foil comprise mainly single layer graphene and confirm that the nucleation for graphene growth starts very quickly. Moreover, KPFM has been found to be a valuable technique to differentiate between covered and uncovered portion of Cu foil by graphene flakes deposited for shorter duration. The results show that KPFM can be a very useful technique in understanding the mechanism of graphene growth.

  4. Conceptual Design and Feasibility of Foil Bearings for Rotorcraft Engines: Hot Core Bearings

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.

    2007-01-01

    Recent developments in gas foil bearing technology have led to numerous advanced high-speed rotating system concepts, many of which have become either commercial products or experimental test articles. Examples include oil-free microturbines, motors, generators and turbochargers. The driving forces for integrating gas foil bearings into these high-speed systems are the benefits promised by removing the oil lubrication system. Elimination of the oil system leads to reduced emissions, increased reliability, and decreased maintenance costs. Another benefit is reduced power plant weight. For rotorcraft applications, this would be a major advantage, as every pound removed from the propulsion system results in a payload benefit.. Implementing foil gas bearings throughout a rotorcraft gas turbine engine is an important long-term goal that requires overcoming numerous technological hurdles. Adequate thrust bearing load capacity and potentially large gearbox applied radial loads are among them. However, by replacing the turbine end, or hot section, rolling element bearing with a gas foil bearing many of the above benefits can be realized. To this end, engine manufacturers are beginning to explore the possibilities of hot section gas foil bearings in propulsion engines. This overview presents a logical follow-on activity by analyzing a conceptual rotorcraft engine to determine the feasibility of a foil bearing supported core. Using a combination of rotordynamic analyses and a load capacity model, it is shown to be reasonable to consider a gas foil bearing core section. In addition, system level foil bearing testing capabilities at NASA Glenn Research Center are presented along with analysis work being conducted under NRA Cooperative Agreements.

  5. Evaluation of Defects inside Beryllium Foils using X-ray Computed Tomography and Shearing Interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakurai, Tatsuyuki; Kohmura, Yoshiki; Takeuchi, Akihisa

    2007-01-19

    When beryllium is used in transmission X-ray optical elements for spatially coherent beams, speckles are usually observed in the transmission images. These speckles seem to be caused by defects either inside or on the surface of beryllium foil. We measured highly polished beryllium foil using two methods, X-ray computed tomography and X-ray shearing interferometry. The results indicate that observed speckle pattern is caused by many voids inside beryllium or inner low-density regions.

  6. Effect of oxide particles on the stabilization and final microstructure in aluminium

    PubMed Central

    Bachmaier, Andrea; Pippan, Reinhard

    2011-01-01

    Bulk aluminium samples containing alumina particles have been produced by different severe plastic deformation methods. Aluminium foils with different initial foil thicknesses were cold rolled to different amounts of strain and aluminium powders were consolidated and deformed by high pressure torsion (HPT). During processing, alumina particles from the foil or particle surface are easily incorporated and dispersed in the bulk material. The influence of these alumina particles on the developing microstructures and the mechanical properties has been studied. PMID:21976787

  7. SEM-EDS Analyses of Small Craters in Stardust Aluminum Foils: Implications for the Wild-2 Dust Distribution

    NASA Technical Reports Server (NTRS)

    Borg, J.; Horz, F.; Bridges, J. C.; Burchell, M. J.; Djouadi, Z.; Floss, C.; Graham, G. A.; Green, S. F.; Heck, P. R.; Hoppe, P.; hide

    2007-01-01

    Aluminium foils were used on Stardust to stabilize the aerogel specimens in the modular collector tray. Part of these foils were fully exposed to the flux of cometary grains emanating from Wild 2. Because the exposed part of these foils had to be harvested before extraction of the aerogel, numerous foil strips some 1.7 mm wide and 13 or 33 mm long were generated during Stardusts's Preliminary Examination (PE). These strips are readily accommodated in their entirety in the sample chambers of modern SEMs, thus providing the opportunity to characterize in situ the size distribution and residue composition - employing EDS methods - of statistically more significant numbers of cometary dust particles compared to aerogel, the latter mandating extensive sample preparation. We describe here the analysis of nearly 300 impact craters and their implications for Wild 2 dust.

  8. 1983 international intercomparison of nuclear accident dosimetry systems at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swaja, R.E.; Greene, R.T.; Sims, C.S.

    1985-04-01

    An international intercomparison of nuclear accident dosimetry systems was conducted during September 12-16, 1983, at Oak Ridge National Laboratory (ORNL) using the Health Physics Research Reactor operated in the pulse mode to simulate criticality accidents. This study marked the twentieth in a series of annual accident dosimetry intercomparisons conducted at ORNL. Participants from ten organizations attended this intercomparison and measured neutron and gamma doses at area monitoring stations and on phantoms for three different shield conditions. Results of this study indicate that foil activation techniques are the most popular and accurate method of determining accident-level neutron doses at area monitoringmore » stations. For personnel monitoring, foil activation, blood sodium activation, and thermoluminescent (TL) methods are all capable of providing accurate dose estimates in a variety of radiation fields. All participants in this study used TLD's to determine gamma doses with very good results on the average. Chemical dosemeters were also shown to be capable of yielding accurate estimates of total neutron plus gamma doses in a variety of radiation fields. While 83% of all neutron measurements satisfied regulatory standards relative to reference values, only 39% of all gamma results satisfied corresponding guidelines for gamma measurements. These results indicate that continued improvement in accident dosimetry evaluation and measurement techniques is needed.« less

  9. Facile, substrate-scale growth of mono- and few-layer homogeneous MoS2 films on Mo foils with enhanced catalytic activity as counter electrodes in DSSCs.

    PubMed

    Antonelou, Aspasia; Syrrokostas, George; Sygellou, Lamprini; Leftheriotis, George; Dracopoulos, Vassileios; Yannopoulos, Spyros N

    2016-01-29

    The growth of MoS2 films by sulfurization of Mo foils at atmospheric pressure is reported. The growth procedure provides, in a controlled way, mono- and few-layer thick MoS2 films with substrate-scale uniformity across square-centimeter area on commercial foils without any pre- or post-treatment. The prepared few-layer MoS2 films are investigated as counter electrodes for dye-sensitized solar cells (DSSCs) by assessing their ability to catalyse the reduction of I3(-) to I(-) in triiodide redox shuttles. The dependence of the MoS2 catalytic activity on the number of monolayers is explored down to the bilayer thickness, showing performance similar to that of, and stability against corrosion better than, Pt-based nanostructured film. The DSSC with the MoS2-Mo counter electrode yields a photovoltaic energy conversion efficiency of 8.4%, very close to that of the Pt-FTO-based DSSC, i.e. 8.7%. The current results disclose a facile, cost-effective and green method for the fabrication of mechanically robust and chemically stable, few-layer MoS2 on flexible Mo substrates and further demonstrate that efficient counter electrodes for DSSCs can be prepared at thicknesses down to the 1-2 nm scale.

  10. Performance of Simple Gas Foil Thrust Bearings in Air

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.

    2012-01-01

    Foil bearings are self-acting hydrodynamics devices used to support high speed rotating machinery. The advantages that they offer to process fluid lubricated machines include: high rotational speed capability, no auxiliary lubrication system, non-contacting high speed operation, and improved damping as compared to rigid hydrodynamic bearings. NASA has had a sporadic research program in this technology for almost 6 decades. Advances in the technology and understanding of foil journal bearings have enabled several new commercial products in recent years. These products include oil-free turbochargers for both heavy trucks and automobiles, high speed electric motors, microturbines for distributed power generation, and turbojet engines. However, the foil thrust bearing has not received a complimentary level of research and therefore has become the weak link of oil-free turbomachinery. In an effort to both provide machine designers with basic performance parameters and to elucidate the underlying physics of foil thrust bearings, NASA Glenn Research Center has completed an effort to experimentally measure the performance of simple gas foil thrust bearing in air. The database includes simple bump foil supported thrust bearings with full geometry and manufacturing techniques available to the user. Test conditions consist of air at ambient pressure and temperatures up to 500 C and rotational speeds to 55,000 rpm. A complete set of axial load, frictional torque, and rotational speed is presented for two different compliant sub-structures and inter-pad gaps. Data obtained from commercially available foil thrust bearings both with and without active cooling is presented for comparison. A significant observation made possible by this data set is the speed-load capacity characteristic of foil thrust bearings. Whereas for the foil journal bearing the load capacity increases linearly with rotational speed, the foil thrust bearing operates in the hydrodynamic high speed limit. In this case, the load capacity is constant and in fact often decreases with speed if other factors such as thermal conditions and runner distortions are permitted to dominate the bearing performance.

  11. Fabrication and Metrology of High-Precision Foil Mirror Mounting Elements

    NASA Technical Reports Server (NTRS)

    Schattenburg, Mark L.

    2002-01-01

    During the period of this Cooperative Agreement, MIT (Massachusetts Institute of Technology) developed advanced methods for applying silicon microstructures for the precision assembly of foil x-ray optics in support of the Constellation-X Spectroscopy X-ray Telescope (SXT) development effort at Goddard Space Flight Center (GSFC). MIT developed improved methods for fabricating and characterizing the precision silicon micro-combs. MIT also developed and characterized assembly tools and several types of metrology tools in order to characterize and reduce the errors associated with precision assembly of foil optics. Results of this effort were published and presented to the scientific community and the GSFC SXT team. A bibliography of papers and presentations is offered.

  12. FEEDBACK SCORING SYSTEMS FOR REUSABLE KINDERGARTEN WORKBOOKS.

    ERIC Educational Resources Information Center

    GACH, PENELOPE J.; AND OTHERS

    THE DEVELOPMENT OF ECONOMICAL FEEDBACK SCORING SYSTEMS FOR REUSABLE KINDERGARTEN WORKBOOKS IS DESCRIBED. THREE PROTOTYPE SYSTEMS WERE DEVELOPED--(1) A METAL FOIL ACTIVATING AN ELECTRICAL PROBE, (2) A METAL FOIL REACTING WITH A MAGNETIC PROBE, AND (3) INVISIBLE FLUORESCENT INK REVEALED BY THE APPLICATION OF LONGWAVE ULTRAVIOLET LIGHT. (MS)

  13. Flexible phosphorescent OLEDs on metal foil for military and commercial applications

    NASA Astrophysics Data System (ADS)

    Chwang, Anna; Lu, JengPing; Shih, Chinwen; Tung, Yeh-Jiun; Hewitt, Richard; Hack, Michael; Ho, Jackson; Brown, Julie

    2005-05-01

    We report recent advances in the development of low power consumption, emissive, flexible active matrix displays through integration of top emitting phosphorescent OLED (T-PHOLED) and poly-Si TFT backplane technologies. The displays are fabricated on flexible stainless steel foil. The T-PHOLEDs are based on UDC phosphorescent OLED technology, and the backplane is based on PARC's Excimer Laser Annealed (ELA) poly-Si TFT process. We also present progress in operational lifetime of encapsulated T-PHOLED pixels on planarized metal foil and discuss PHOLED encapsulation strategy.

  14. Formation and properties of hyaluronan/nano Ag and hyaluronan-lecithin/nano Ag films.

    PubMed

    Khachatryan, Gohar; Khachatryan, Karen; Grzyb, Jacek; Fiedorowicz, Maciej

    2016-10-20

    A facile and environmentally friendly method of the preparation of silver nanoparticles embedded in hyaluronan (Hyal/Ag) and hyaluronan-lecithin (Hyal-L/Ag) matrix was developed. Thin, elastic foils were prepared from gels by an in situ synthesis of Ag in an aqueous solution of sodium hyaluronate (Hyal), using aq. d-(+)-xylose solution as a reducing agent. The gels were applied to a clean, smooth, defatted Teflon surface and left for drying in the air. The dry foils were stored in a closed container. UV-vis spectroscopy, transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectra confirmed formation of about 10nm ball-shaped Ag nanoparticles situated within the polysaccharide template. Thermal properties of the composites were characterized involving differential scanning calorimetry (DSC) and thermogravimetric (TGA) analyses, whereas molecular weights of polysaccharide chains of the matrix were estimated with the size exclusion chromatography coupled with multiangle laser light scattering and refractometric detectors (HPSEC-MALLS-RI). An increase in the molecular weight of the hyaluronate after generation of Ag nanoparticles was observed. The foils showed specific properties. The study confirmed that silver nanoparticles can be successfully prepared with environmentally friendly method, using hyaluronan as a stabilizing template. Hyaluronan and hyaluronan-lecithin matrices provide nanocrystals uniform in size and shape. The composites demonstrated a bacteriostatic activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Monolithic exploding foil initiator

    DOEpatents

    Welle, Eric J; Vianco, Paul T; Headley, Paul S; Jarrell, Jason A; Garrity, J. Emmett; Shelton, Keegan P; Marley, Stephen K

    2012-10-23

    A monolithic exploding foil initiator (EFI) or slapper detonator and the method for making the monolithic EFI wherein the exploding bridge and the dielectric from which the flyer will be generated are integrated directly onto the header. In some embodiments, the barrel is directly integrated directly onto the header.

  16. Numerical and experimental studies of hydrodynamics of flapping foils

    NASA Astrophysics Data System (ADS)

    Zhou, Kai; Liu, Jun-kao; Chen, Wei-shan

    2018-04-01

    The flapping foil based on bionics is a sort of simplified models which imitate the motion of wings or fins of fish or birds. In this paper, a universal kinematic model with three degrees of freedom is adopted and the motion parallel to the flow direction is considered. The force coefficients, the torque coefficient, and the flow field characteristics are extracted and analyzed. Then the propulsive efficiency is calculated. The influence of the motion parameters on the hydrodynamic performance of the bionic foil is studied. The results show that the motion parameters play important roles in the hydrodynamic performance of the flapping foil. To validate the reliability of the numerical method used in this paper, an experiment platform is designed and verification experiments are carried out. Through the comparison, it is found that the numerical results compare well with the experimental results, to show that the adopted numerical method is reliable. The results of this paper provide a theoretical reference for the design of underwater vehicles based on the flapping propulsion.

  17. 200 kj copper foil fuses. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClenahan, C.R.; Goforth, J.H.; Degnan, J.H.

    1980-04-01

    A 200-kJ, 50-kV capacitor bank has been discharged into 1-mil-thick copper foils immersed in fine glass beads. These foils ranged in length from 27 to 71 cm and in width from 15 to 40 cm. Voltage spikes of over 250 kV were produced by the resulting fuse behavior of the foil. Moreover, the current turned off at a rate that was over 6 times the initial bank dI/dt. Full widths at half maxima for the voltage and dI/dt spikes were about 0.5 microsec, with some as short as 300 nanosec. Electrical breakdown was prevented in all but one size fuzemore » with maximum applied fields of 7 kV/cm. Fuses that were split into two parallel sections have been tested, and the effects relative to one-piece fuses are much larger than would be expected on the basis of inductance differences alone. A resistivity model for copper foil fuses, which differs from previous work in that it includes a current density dependence, has been devised. Fuse behavior is predicted with reasonable accuracy over a wide range of foil sizes by a quasi-two-dimensional fuse code that incorporates this resistivity model. A variation of Maisonnier's method for predicting optimum fuze size has been derived. This method is valid if the risetime of the bank exceeds 3 microsec, in which case it can be expected to be applicable over a wide range of peak current densities.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vins, M.

    This contribution overviews neutron spectrum measurement, which was done on training reactor VR-1 Sparrow with a new nuclear fuel. Former nuclear fuel IRT-3M was changed for current nuclear fuel IRT-4M with lower enrichment of 235U (enrichment was reduced from former 36% to 20%) in terms of Reduced Enrichment for Research and Test Reactors (RERTR) Program. Neutron spectrum measurement was obtained by irradiation of activation foils at the end of pipe of rabit system and consecutive deconvolution of obtained saturated activities. Deconvolution was performed by computer iterative code SAND-II with 620 groups' structure. All gamma measurements were performed on Canberra HPGe.more » Activation foils were chosen according physical and nuclear parameters from the set of certificated foils. The Resulting differential flux at the end of pipe of rabit system agreed well with typical spectrum of light water reactor. Measurement of neutron spectrum has brought better knowledge about new reactor core C1 and improved methodology of activation measurement. (author)« less

  19. Slumped glass foils as substrate for adjustable x-ray optics

    NASA Astrophysics Data System (ADS)

    Salmaso, Bianca; Basso, Stefano; Civitani, Marta; Ghigo, Mauro; Hołyszko, Joanna; Pelliciari, Carlo; Spiga, Daniele; Vecchi, Gabriele; Pareschi, Giovanni

    2016-09-01

    Thin glass modular mirrors are a viable solution to build future X-ray telescopes with high angular resolution and large collecting area. In our laboratories, we shape thin glass foils by hot slumping and we apply pressure to assist the replication of a cylindrical mould figure; this technology is coupled with an integration process able to damp low frequency errors and produces optics in the Wolter I configuration, typical for the X-ray telescopes. From the point of view of the hot slumping process, the efforts were focused in reducing low-, mid- and high- frequency errors of the formed Eagle glass foils. Some of our slumped glass foils were used for the development of active X-ray optics, where piezoelectric actuators are used to correct the slumped glass foil deviations from the ideal shape. In particular, they were used for the Adjustable X-raY optics for astrOnoMy project (AXYOM) developed in Italy, and the X-ray Surveyor mission, as developed at the Smithsonian Astrophysical Observatory / Center for Astrophysics (SAO/CfA) in USA. In this paper we describe the optimisation of the hot slumping process, comparing the results with the requirements of the considered active optics projects. Finally, since the present configuration of the Pennsylvania State University (PSU) coating equipment is limited to 100 x 100 mm2, the slumped glass foils used for the SAO project were cut from 200 x 200 mm2 to 100 x 100 mm2, and a low-frequency change was observed. A characterisation of the profile change upon cutting is presented.

  20. A review of progress and challenges in flapping foil power generation

    NASA Astrophysics Data System (ADS)

    Young, John; Lai, Joseph C. S.; Platzer, Max F.

    2014-05-01

    Power may be extracted from a flowing fluid in a variety of ways. Turbines using one or more oscillating foils are under increasingly active investigation, as an alternative to rotary wind turbines and river, oceanic and tidal current water turbines, although industrial development is at a very nascent stage. Such flapping foil turbines promise some key potential advantages, including lower foil velocities (and hence lower noise and wildlife impact), and more effective small-scale and shallow water operation. The role of a number of parameters is investigated, including foil kinematics (modes, frequencies, amplitudes and time histories of motion), foil and system geometry (shape, configuration and structural flexibility), and flow physics effects (Reynolds number and turbulence, shear flows and ground effect). Details of the kinematics are shown to have the single largest influence on power output and efficiency (measured as the ratio of power output to that available and accessible in the fluid stream). The highest levels of power and efficiency are associated with very large foil pitch angles (upwards of 70°) and angles of attack (30-40°), such that the flow is massively separated for much of the flapping cycle, in contrast to rotary turbines which rely on attached flow over as much of the rotor disk as possible. This leads to leading edge vortices comparable in size to the foil chord, and the evolution and interaction of these vortices with the foil as it moves play a central role in determining performance. The other parameters also influence the vortex behaviour, but in general to a lesser degree. Numerous gaps in the research literature and outstanding issues are highlighted.

  1. Thermal Sensitive Foils in Physics Experiments

    ERIC Educational Resources Information Center

    Bochnícek, Zdenek; Konecný, Pavel

    2014-01-01

    The paper describes a set of physics demonstration experiments where thermal sensitive foils are used for the detection of the two dimensional distribution of temperature. The method is used for the demonstration of thermal conductivity, temperature change in adiabatic processes, distribution of electromagnetic radiation in a microwave oven and…

  2. Direct Printing of Graphene onto Plastic Substrates.

    NASA Astrophysics Data System (ADS)

    Hines, Daniel; Lock, Evgeniya; Walton, Scott; Baraket, Mira; Laskoski, Matthew; Mulvaney, Shawn; Sheehan, Paul; Lee, Woo; Robinson, Jeremy

    2011-03-01

    Graphene films have been synthesized on metal foils using CVD growth and have the potential to be compatible with roll-to-roll printing. To be usable in electronic devices, these films need to be removed from the metallic substrate. Currently this is accomplished by spin coating a polymer film over the graphene and chemically etching away the metal substrate. We have developed a direct printing method that allows graphene films to be printed off the metal substrate onto a polymer substrate. This printing process does not generate chemical waste, is compatible with roll-to-toll processing and renders the metal foil reusable. Adhesion of the graphene film to the polymer substrate is established by attaching perfluorophenylazides (PFPA) azide linker molecules to a plasma activated polymer surface. The transfer printing was performed by placing the PFPA treated polymer surface in contact with a graphene covered Cu foil and heating under pressure. Graphene films successfully printed onto a polystyrene substrate have been characterized by Raman spectroscopy and electrical measurements revealed the presence of Gr on the polymer surface. Details of the printing process along with characteristics of the graphene film after printing will be presented.

  3. Chemical synthesis of hierarchical NiCo2S4 nanosheets like nanostructure on flexible foil for a high performance supercapacitor.

    PubMed

    Kim, D -Y; Ghodake, G S; Maile, N C; Kadam, A A; Sung Lee, Dae; Fulari, V J; Shinde, S K

    2017-08-29

    In this study, hierarchical interconnected nickel cobalt sulfide (NiCo 2 S 4 ) nanosheets were effectively deposited on a flexible stainless steel foil by the chemical bath deposition method (CBD) for high-performance supercapacitor applications. The resulting NiCo 2 S 4 sample was characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), and electrochemical measurements. XRD and X-ray photoelectron spectroscopy (XPS) results confirmed the formation of the ternary NiCo 2 S 4 sample with a pure cubic phase. FE-SEM and HR-TEM revealed that the entire foil surface was fully covered with the interconnected nanosheets like surface morphology. The NiCo 2 S 4 nanosheets demonstrated impressive electrochemical characteristics with a specific capacitance of 1155 F g -1 at 10 mV s -1 and superior cycling stability (95% capacity after 2000 cycles). These electrochemical characteristics could be attributed to the higher active area and higher conductivity of the sample. The results demonstrated that the interconnected NiCo 2 S 4 nanosheets are promising as electrodes for supercapacitor and energy storage applications.

  4. Hermes III endpoint energy calculation from photonuclear activation of 197Au and 58Ni foils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parzyck, Christopher Thomas

    2014-09-01

    A new process has been developed to characterize the endpoint energy of HERMES III on a shot-to-shot basis using standard dosimetry tools from the Sandia Radiation Measurements Laboratory. Photonuclear activation readings from nickel and gold foils are used in conjunction with calcium fluoride thermoluminescent dosimeters to derive estimated electron endpoint energies for a series of HERMES shots. The results are reasonably consistent with the expected endpoint voltages on those shots.

  5. The influence of perforation of foil reactors on greenhouse gas emission rates during aerobic biostabilization of the undersize fraction of municipal wastes.

    PubMed

    Stegenta, Sylwia; Dębowski, Marcin; Bukowski, Przemysław; Randerson, Peter F; Białowiec, Andrzej

    2018-02-01

    The opinion, that the use of foil reactors for the aerobic biostabilization of municipal wastes is not a valid method, due to vulnerability to perforation, and risk of uncontrolled release of exhaust gasses, was verified. This study aimed to determine the intensity of greenhouse gas (GHG) emissions to the atmosphere from the surface of foil reactors in relation to the extent of foil surface perforation. Three scenarios were tested: intact (airtight) foil reactor, perforated foil reactor, and torn foil reactor. Each experimental variant was triplicated, and the duration of each experiment cycle was 5 weeks. Temperature measurements demonstrated a significant decrease in temperature of the biostabilization in the torn reactor. The highest emissions of CO 2 , CO and SO 2 were observed at the beginning of the process, and mostly in the torn reactor. During the whole experiment, observed emissions of CO, H 2 S, NO, NO 2 , and SO 2 were at a very low level which in extreme cases did not exceed 0.25 mg t -1 .h -1 (emission of gasses mass unit per waste mass unit per unit time). The lowest average emissions of greenhouse gases were determined in the case of the intact reactor, which shows that maintaining the foil reactors in an airtight condition during the process is extremely important. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Au Foil Activation Measurement and Simulation of the Concrete Neutron Shielding Ability for the Proposed New SANRAD Facility

    NASA Astrophysics Data System (ADS)

    Radebe, M. J.; Korochinsky, S.; Strydom, W. J.; De Beer, F. C.

    The purpose of this study was to measure the effective neutron shielding characteristics of the new shielding material designed and manufactured to be used for the construction of the new SANRAD facility at Necsa, South Africa, through Au foil activation as well as MCNP simulations. The shielding capability of the high density shielding material was investigated in the worst case region (the neutron beam axis) of the experimental chamber for two operational modes. The everyday operational mode includes the 15 cm thick poly crystalline Bismuth filter at room temperature (assumed) to filter gamma-rays and some neutron spectrum energies. The second mode, dynamic imaging, will be conducted without the Bi-filter. The objective was achieved through a foil activation measurement at the current SANRAD facility and MCNP calculations. Several Au foilswere imbedded at different thicknesses(two at each position) of shielding material up to 80 cm thick to track the attenuation of the neutron beam over distance within the shielding material. The neutron flux and subsequently the associated dose rates were calculated from the activation levels of the Au foils. The concrete shielding material was found to provide adequate shielding for all energies of neutrons emerging from beam port no-2 of the SAFARI-1 research reactorwithin a thickness of 40 cm of concrete.

  7. Preliminary Analysis for an Optimized Oil-Free Rotorcraft Engine Concept

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; Bruckner, Robert J.; DellaCorte, Christopher; Radil, Kevin C.

    2008-01-01

    Recent developments in gas foil bearing technology have led to numerous advanced high-speed rotating system concepts, many of which have become either commercial products or experimental test articles. Examples include Oil-Free microturbines, motors, generators and turbochargers. The driving forces for integrating gas foil bearings into these high-speed systems are the benefits promised by removing the oil lubrication system. Elimination of the oil system leads to reduced emissions, increased reliability, and decreased maintenance costs. Another benefit is reduced power plant weight. For rotorcraft applications, this would be a major advantage, as every pound removed from the propulsion system results in a payload benefit. Implementing foil gas bearings throughout a rotorcraft gas turbine engine is an important long-term goal that requires overcoming numerous technological hurdles. Adequate thrust bearing load capacity and potentially large gearbox applied radial loads are among them. However, by replacing the turbine end, or hot section, rolling element bearing with a gas foil bearing many of the above benefits can be realized. To this end, engine manufacturers are beginning to explore the possibilities of hot section gas foil bearings in propulsion engines. This paper presents a logical follow-on activity by analyzing a conceptual rotorcraft engine to determine the feasibility of a foil bearing supported core. Using a combination of rotordynamic analyses and a load capacity model, it is shown to be reasonable to consider a gas foil bearing core section.

  8. Calculations of the thermal and fast neutron fluxes in the Syrian miniature neutron source reactor using the MCNP-4C code.

    PubMed

    Khattab, K; Sulieman, I

    2009-04-01

    The MCNP-4C code, based on the probabilistic approach, was used to model the 3D configuration of the core of the Syrian miniature neutron source reactor (MNSR). The continuous energy neutron cross sections from the ENDF/B-VI library were used to calculate the thermal and fast neutron fluxes in the inner and outer irradiation sites of MNSR. The thermal fluxes in the MNSR inner irradiation sites were also measured experimentally by the multiple foil activation method ((197)Au (n, gamma) (198)Au and (59)Co (n, gamma) (60)Co). The foils were irradiated simultaneously in each of the five MNSR inner irradiation sites to measure the thermal neutron flux and the epithermal index in each site. The calculated and measured results agree well.

  9. One-Step Fast-Synthesized Foamlike Amorphous Co(OH)2 Flexible Film on Ti Foil by Plasma-Assisted Electrolytic Deposition as a Binder-Free Anode of a High-Capacity Lithium-Ion Battery.

    PubMed

    Li, Tao; Nie, Xueyuan

    2018-05-23

    This research prepared an amorphous Co(OH) 2 flexible film on Ti foil using plasma-assisted electrolytic deposition within 3.5 min. Amorphous Co(OH) 2 structure was determined by X-ray diffraction and X-ray photoelectron spectroscopy. Its areal capacity testing as the binder and adhesive-free anode of a lithium-ion battery shows that the cycling capacity can reach 2000 μAh/cm 2 and remain at 930 μAh/cm 2 after 50 charge-discharge cycles, which benefits from the emerging Co(OH) 2 active material and amorphous foamlike structure. The research introduced a new method to synthesize amorphous Co(OH) 2 as the anode in a fast-manufactured low-cost lithium-ion battery.

  10. Gold leaf counter electrodes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Shimada, Kazuhiro; Toyoda, Takeshi

    2018-03-01

    In this study, a gold leaf 100 nm thin film is used as the counter electrode in dye-sensitized solar cells. The traditional method of hammering gold foil to obtain a thin gold leaf, which requires only small amounts of gold, was employed. The gold leaf was then attached to the substrate using an adhesive to produce the gold electrode. The proposed approach for fabricating counter electrodes is demonstrated to be facile and cost-effective, as opposed to existing techniques. Compared with electrodes prepared with gold foil and sputtered gold, the gold leaf counter electrode demonstrates higher catalytic activity with a cobalt-complex electrolyte and higher cell efficiency. The origin of the improved performance was investigated by surface morphology examination (scanning electron microscopy), various electrochemical analyses (cyclic voltammetry, linear sweep voltammetry, and electrochemical impedance spectroscopy), and crystalline analysis (X-ray diffractometry).

  11. Progress in Chile in the development of the fission {sup 99}Mo production using modified CINTICHEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schrader, R.; Klein, J.; Medel, J.

    2008-07-15

    Fission {sup 99}Mo will be produced in Chile irradiating low-enriched uranium (LEU) foil in a MTR research reactor. For the purpose of developing the capability to fabricate the target, which is done of uranium foil enclosed in swaged concentric aluminum tubes, dummy targets are being fabricated using 130 {mu}m copper foil instead of the uranium foil, wrapped in a 14{mu}m nickel fission-recoil barrier. Dummy targets using several dimensions of copper foil have been assembled; however, the emphasis is being set in targets fabricated using the dimensions of the LEU foil that KAERI will provide, i.e. 50 mm x 100mm xmore » 0.130 mm. The assembling of target using the last dimensions has not been free of difficulties. Neutronic calculations and preliminary thermal and fluid analyses were performed to estimate the fission products activity and the heat removal capability for a 13 grams LEU-foil annular target, which will be irradiated in the RECH-1 research reactor at the level power of 5 MW during 48 hours. In a fume hood, Cintichem processing of natural uranium shavings with the addition of different carriers were performed, obtaining recovery over 90% of the added Mo carrier. Expertise has been gained in (a) foil dissolution process in a dissolver locally designed, (b) in Mo precipitation process, and (c) preparation of the purification columns with AgC, C and HZrO. Additionally, the irradiated target cutting machine with an innovative design was finally assembled. (author)« less

  12. Efficacy of lead foil for reducing doses in the head and neck: a simulation study using digital intraoral systems

    PubMed Central

    Silva, A I V; Brasil, D M; Vasconcelos, K F; Haiter Neto, F; Boscolo, F N

    2015-01-01

    Objectives: To assess the efficacy of lead foils in reducing the radiation dose received by different anatomical sites of the head and neck during periapical intraoral examinations performed with digital systems. Methods: Images were acquired through four different manners: phosphor plate (PSP; VistaScan® system; Dürr Dental GmbH, Bissingen, Germany) alone, PSP plus lead foil, complementary metal oxide semiconductor (CMOS; DIGORA® Toto, Soredex®, Tuusula, Finland) alone and CMOS plus lead foil. Radiation dose was measured after a full-mouth periapical series (14 radiographs) using the long-cone paralleling technique. Lithium fluoride (LiF 100) thermoluminescent dosemeters were placed in an anthropomorphic phantom at points corresponding to the tongue, thyroid, crystalline lenses, parotid glands and maxillary sinuses. Results: Dosemeter readings demonstrated the efficacy of the addition of lead foil in the intraoral digital X-ray systems provided in reducing organ doses in the selected structures, approximately 32% in the PSP system and 59% in the CMOS system. Conclusions: The use of lead foils associated with digital X-ray sensors is an effective alternative for the protection of different anatomical sites of the head and neck during full-mouth periapical series acquisition. PMID:26084474

  13. D-Cluster Converter Foil for Laser-Accelerated Deuteron Beams: Towards Deuteron-Beam-Driven Fast Ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miley, George H.

    Fast Ignition (FI) uses Petawatt laser generated particle beam pulse to ignite a small volume called a pre-compressed Inertial Confinement Fusion (ICF) target, and is the favored method to achieve the high energy gain per target burn needed for an attractive ICF power plant. Ion beams such as protons, deuterons or heavier carbon ions are especially appealing for FI as they have relative straight trajectory, and easier to focus on the fuel capsule. But current experiments have encountered problems with the 'converter-foil' which is irradiated by the Petawatt laser to produce the ion beams. The problems include depletion of themore » available ions in the convertor foils, and poor energy efficiency (ion beam energy/ input laser energy). We proposed to develop a volumetrically-loaded ultra-high-density deuteron deuterium cluster material as the basis for converter-foil for deuteron beam generation. The deuterons will fuse with the ICF DT while they slow down, providing an extra 'bonus' energy gain in addition to heating the hot spot. Also, due to the volumetric loading, the foil will provide sufficient energetic deuteron beam flux for 'hot spot' ignition, while avoiding the depletion problem encountered by current proton-driven FI foils. After extensive comparative studies, in Phase I, high purity PdO/Pd/PdO foils were selected for the high packing fraction D-Cluster converter foils. An optimized loading process has been developed to increase the cluster packing fraction in this type of foil. As a result, the packing fraction has been increased from 0.1% to 10% - meeting the original Phase I goal and representing a significant progress towards the beam intensities needed for both FI and pulsed neutron applications. Fast Ignition provides a promising approach to achieve high energy gain target performance needed for commercial Inertial Confinement Fusion (ICF). This is now a realistic goal for near term in view of the anticipated ICF target burn at the National Ignition Facility (NIF) in CA within a year. This will usher in the technology development Phase of ICF after years of research aimed at achieving breakeven experiment. Methods to achieve the high energy gain needed for a competitive power plant will then be a key developmental issue, and our D-cluster target for Fast Ignition (FI) is expected to meet that need.« less

  14. Preparation of isotopic molybdenum foils utilizing small quantities of material

    NASA Astrophysics Data System (ADS)

    Lipski, A. R.; Lee, L. L.; Liang, J. F.; Mahon, J. C.

    1993-09-01

    A simple method utilizing a small amount of isotopic material for production of molybdenum foils is discussed. An e-gun is used in the procedure. The Mo powder undergoes reduction-sintering and melting-solidifying steps leading to the creation of a metallic droplet suitable for further cold rolling or vacuum deposition.

  15. Non-destructive Quantitative Phase Analysis and Microstructural Characterization of Zirconium Coated U-10Mo Fuel Foils via Neutron Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cummins, Dustin Ray; Vogel, Sven C.; Hollis, Kendall Jon

    2016-10-18

    This report uses neutron diffraction to investigate the crystal phase composition of uranium-molybdenum alloy foils (U-10Mo) for the CONVERT MP-1 Reactor Conversion Project, and determines the effect on alpha-uranium contamination following the deposition of a Zr metal diffusion layer by various methods: plasma spray deposition of Zr powders at LANL and hot co-rolling with Zr foils at BWXT. In summary, there is minimal decomposition of the gamma phase U-10Mo foil to alpha phase contamination following both plasma spraying and hot co-rolling. The average unit cell volume, i.e. lattice spacing, of the Zr layer can be mathematically extracted from the diffractionmore » data; co-rolled Zr matches well with literature values of bulk Zr, while plasma sprayed Zr shows a slight increase in the lattice spacing, indicative of interstitial oxygen in the lattice. Neutron diffraction is a beneficial alternative to conventional methods of phase composition, i.e. x ray diffraction (XRD) and destructive metallography. XRD has minimal penetration depth in high atomic number materials, particularly uranium, and can only probe the first few microns of the fuel plate; neutrons pass completely through the foil, allowing for bulk analysis of the foil composition and no issues with addition of cladding layers, as in the final, aluminum-clad reactor fuel plates. Destructive metallography requires skilled technicians, cutting of the foil into small sections, hazardous etching conditions, long polishing and microscopy times, etc.; the neutron diffraction system has an automated sample loader and can fit larger foils, so there is minimal analysis preparation; the total spectrum acquisition time is ~ 1 hour per sample. The neutron diffraction results are limited by spectra refinement/calculation times and the availability of the neutron beam source. In the case of LANSCE at Los Alamos, the beam operates ~50% of the year. Following the lessons learned from these preliminary results, optimizations to the process and analysis can be made, and neutron diffraction can become a viable and efficient technique for gamma/alpha phase composition determination for nuclear fuels.« less

  16. Determination of integral cross sections of 3H in Al foils monitors irradiated by protons with energies ranging from 40 to 2600 MeV

    NASA Astrophysics Data System (ADS)

    Titarenko, Yu. E.; Batyaev, V. F.; Chauzova, M. V.; Chauzova, M. V.; Kashirin, I. A.; Malinovskiy, S. V.; Pavlov, K. V.; Rogov, V. I.; Titarenko, A. Yu.; Zhivun, V. M.; Mashnik, S. G.; Stankovskiy, A. Yu.

    2016-05-01

    The results of 3H production in Al foil monitors (˜ 59 mg/cm2 thickness) are presented. These foils have been irradiated in 15×15 mm polyethylene bags of ˜ 14 mg/cm2 thickness together with foils of Cr (˜ 395 mg/cm2 thickness) and 56Fe (˜ 332 mg/cm2 thickness) by protons of different energies in a range of 0.04 - 2.6 GeV. The diameters of all the foils were 10.5 mm. The irradiations were carried out at the ITEP accelerator U-10 under the ISTC Project # 3266 in 2006-2009. 3H has been extracted from Al foils using an A307 Sample Oxidizer. An ultra low level liquid scintillation spectrometer Quantulus1220 was used to measure the 3H β-spectra and the SpectraDec software package was applied for spectra processing, deconvolution and 3H activity determination. The values of the Al (p, x)3H reaction cross sections obtained in these experiments are compared with data measured at other labs and with results of simulations by the MCNP6 radiation transport code using the CEM03.03 event generator.

  17. Determination of integral cross sections of 3 H in Al foils monitors irradiated by protons with energies ranging from 40 to 2600 MeV

    DOE PAGES

    Titarenko, Yu. E.; Batyaev, V. F.; Chauzova, M. V.; ...

    2016-01-01

    Our results of 3H production in Al foil monitors (~ 59 mg/cm 2 thickness) are presented. We irradiated these foils in 15×15 mm polyethylene bags of ~ 14 mg/cm 2 thickness together with foils of Cr (~ 395 mg/cm 2 thickness) and 56Fe (~ 332 mg/cm 2 thickness) by protons of different energies in a range of 0.04 – 2.6 GeV. The diameters of all the foils were 10.5 mm. The irradiations were carried out at the ITEP accelerator U–10 under the ISTC Project # 3266 in 2006–2009. 3H has been extracted from Al foils using an A307 Sample Oxidizer.more » We then used an ultra low level liquid scintillation spectrometer Quantulus1220 to measure the 3H β–spectra and the SpectraDec software package was applied for spectra processing, deconvolution and 3H activity determination. The values of the Al (p, x) 3H reaction cross sections obtained in these experiments are compared with data measured at other labs and with results of simulations by the MCNP6 radiation transport code using the CEM03.03 event generator.« less

  18. Enhanced Carbon Dioxide Electroreduction to Carbon Monoxide over Defect-Rich Plasma-Activated Silver Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mistry, Hemma; Choi, Yong-Wook; Bagger, Alexander

    Efficient, stable catalysts with high selectivity for a single product are essential if electroreduction of CO 2 is to become a viable route to the synthesis of industrial feedstocks and fuels. A plasma oxidation pre-treatment of silver foil enhances the number of low-coordinated catalytically active sites, which dramatically lowers the overpotential and increases the activity of CO 2 electroreduction to CO. At -0.6 V versus RHE more than 90 % Faradaic efficiency towards CO was achieved on a pre-oxidized silver foil. While transmission electron microscopy (TEM) and operando X-ray absorption spectroscopy showed that oxygen species can survive in the bulkmore » of the catalyst during the reaction, quasi in situ X-ray photoelectron spectroscopy showed that the surface is metallic under reaction conditions. Finally, DFT calculations reveal that the defect-rich surface of the plasma-oxidized silver foils in the presence of local electric fields drastically decrease the overpotential of CO 2 electroreduction.« less

  19. Enhanced Carbon Dioxide Electroreduction to Carbon Monoxide over Defect-Rich Plasma-Activated Silver Catalysts

    DOE PAGES

    Mistry, Hemma; Choi, Yong-Wook; Bagger, Alexander; ...

    2017-07-14

    Efficient, stable catalysts with high selectivity for a single product are essential if electroreduction of CO 2 is to become a viable route to the synthesis of industrial feedstocks and fuels. A plasma oxidation pre-treatment of silver foil enhances the number of low-coordinated catalytically active sites, which dramatically lowers the overpotential and increases the activity of CO 2 electroreduction to CO. At -0.6 V versus RHE more than 90 % Faradaic efficiency towards CO was achieved on a pre-oxidized silver foil. While transmission electron microscopy (TEM) and operando X-ray absorption spectroscopy showed that oxygen species can survive in the bulkmore » of the catalyst during the reaction, quasi in situ X-ray photoelectron spectroscopy showed that the surface is metallic under reaction conditions. Finally, DFT calculations reveal that the defect-rich surface of the plasma-oxidized silver foils in the presence of local electric fields drastically decrease the overpotential of CO 2 electroreduction.« less

  20. Alpha Oscillations during Incidental Encoding Predict Subsequent Memory for New "Foil" Information.

    PubMed

    Vogelsang, David A; Gruber, Matthias; Bergström, Zara M; Ranganath, Charan; Simons, Jon S

    2018-05-01

    People can employ adaptive strategies to increase the likelihood that previously encoded information will be successfully retrieved. One such strategy is to constrain retrieval toward relevant information by reimplementing the neurocognitive processes that were engaged during encoding. Using EEG, we examined the temporal dynamics with which constraining retrieval toward semantic versus nonsemantic information affects the processing of new "foil" information encountered during a memory test. Time-frequency analysis of EEG data acquired during an initial study phase revealed that semantic compared with nonsemantic processing was associated with alpha decreases in a left frontal electrode cluster from around 600 msec after stimulus onset. Successful encoding of semantic versus nonsemantic foils during a subsequent memory test was related to decreases in alpha oscillatory activity in the same left frontal electrode cluster, which emerged relatively late in the trial at around 1000-1600 msec after stimulus onset. Across participants, left frontal alpha power elicited by semantic processing during the study phase correlated significantly with left frontal alpha power associated with semantic foil encoding during the memory test. Furthermore, larger left frontal alpha power decreases elicited by semantic foil encoding during the memory test predicted better subsequent semantic foil recognition in an additional surprise foil memory test, although this effect did not reach significance. These findings indicate that constraining retrieval toward semantic information involves reimplementing semantic encoding operations that are mediated by alpha oscillations and that such reimplementation occurs at a late stage of memory retrieval, perhaps reflecting additional monitoring processes.

  1. Numerical simulation of VAWT on the effects of rotation cylinder

    NASA Astrophysics Data System (ADS)

    Xing, Shuda; Cao, Yang; Ren, Fuji

    2017-06-01

    Based on Finite Element Analysis Method, studying on Vertical Axis Wind Turbine (VAWT) which is added rotating cylinder in front of its air foils, especially focusing on the analysis of NACA6 series air foils about variation of lift to drag ratio. Choosing the most suitable blades with rotary cylinder added on leading edge. Analysis indicates that the front rotating cylinders on the VAWT is benefit to lift rise and drag fall. The most suitable air foil whose design lift coefficient is 0.8, the blades relative thickness is 20%, and the optimistic tip speed ratio is about 7.

  2. Thick-foils activation technique for neutron spectrum unfolding with the MINUIT routine-Comparison with GEANT4 simulations

    NASA Astrophysics Data System (ADS)

    Vagena, E.; Theodorou, K.; Stoulos, S.

    2018-04-01

    Neutron activation technique has been applied using a proposed set of twelve thick metal foils (Au, As, Cd, In, Ir, Er, Mn, Ni, Se, Sm, W, Zn) for off-site measurements to obtain the neutron spectrum over a wide energy range (from thermal up to a few MeV) in intense neutron-gamma mixed fields such as around medical Linacs. The unfolding procedure takes into account the activation rates measured using thirteen (n , γ) and two (n , p) reactions without imposing a guess solution-spectrum. The MINUIT minimization routine unfolds a neutron spectrum that is dominated by fast neutrons (70%) peaking at 0.3 MeV, while the thermal peak corresponds to the 15% of the total neutron fluence equal to the epithermal-resonances area. The comparison of the unfolded neutron spectrum against the simulated one with the GEANT4 Monte-Carlo code shows a reasonable agreement within the measurement uncertainties. Therefore, the proposed set of activation thick-foils could be a useful tool in order to determine low flux neutrons spectrum in intense mixed field.

  3. Effect of different packaging materials containing poly-[2-(tert-butylamino) methylstyrene] on the growth of spoilage and pathogenic bacteria on fresh meat.

    PubMed

    Dohlen, S; Braun, C; Brodkorb, F; Fischer, B; Ilg, Y; Kalbfleisch, K; Lorenz, R; Kreyenschmidt, M; Kreyenschmidt, J

    2017-09-18

    The objective of this study was to investigate the effect of novel antimicrobial packaging materials containing poly-[2-(tertbutylamino) methylstyrene] (poly(TBAMS)) on the growth of typical spoilage and pathogenic bacteria present on meat. The antimicrobial activity of materials containing different poly(TBAMS) concentrations was determined by comparing the bacterial counts on reference and sample materials at different temperatures and times and in the presence of meat components. Storage tests with poultry fillets and veal cutlets were conducted with samples vacuum packaged in the reference foil and foil containing 10% poly(TBAMS). After specific time intervals, typical spoilage microorganisms, total viable count (TVC), sensory changes and pH value were analysed. The results of the different poly(TBAMS) containing packaging materials showed an increase of the antimicrobial activity with an increasing amount of poly(TBAMS) in the base polymer. A high antimicrobial activity against inoculum of spoilage and pathogenic organisms typical for meat products was detected of a multilayer foil containing 10% poly(TBAMS) in the inner layer after 24h at 7°C. Gram positive-bacteria were more sensitive to poly(TBAMS) foil than gram-negative bacteria. In storage tests however, over the entire storage, a significant effect of this poly(TBAMS) foil on microbial growth on chicken breast fillets and veal cutlets could not be identified. Poly(TBAMS) packaging materials showed very good antimicrobial properties against a wide range of bacteria. However, for a significant inhibition of microbial growth on fresh meat, a higher amount of poly(TBAMS) was necessary to prolong the shelf life of meat. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Application of Optical Imaging Techniques for Quantification of pH and O2 Dynamicsin Porous Media

    NASA Astrophysics Data System (ADS)

    Li, B.; Seliman, A. F.; Pales, A. R.; Liang, W.; Sams, A.; Darnault, C. J. G.; DeVol, T. A.

    2016-12-01

    Understanding the spatial and temporal distribution of physical and chemical parameters (e.g. pH, O2) is imperative to characterize the behavior of contaminants in a natural environment. The objectives of this research are to calibrate pH and O2 sensor foils, to develop a dual pH/O2 sensor foil, and to apply them into flow and transport experiments, in order to understand the physical and chemical parameters that control contaminant fate and transport in an unsaturated sandy porous medium. In addition, demonstration of a sensor foil that quantifies aqueous uranium concentration will be presented. Optical imaging techniques will be conducted with 2D tanks to investigate the influence of microbial exudates and plant roots on pH and O2 parameters and radionuclides transport. As a non-invasive method, the optical imaging technique utilizes optical chemical sensor films and either a digital camera or a spectrometer to capture the changes with high temporal and spatial resolutions. Sensor foils are made for different parameters by applying dyes to generate favorable fluorescence that is proportional to the parameter of interest. Preliminary results suggested that this method could detect pH ranging from 4.5 to 7.5. The result from uranium foil test with different concentrations in the range of 2 to 8 ppm indicated that a higher concentration of uranium resulted in a greater color intensity.

  5. High-Performance Carbon Dioxide Electrocatalytic Reduction by Easily Fabricated Large-Scale Silver Nanowire Arrays.

    PubMed

    Luan, Chuhao; Shao, Yang; Lu, Qi; Gao, Shenghan; Huang, Kai; Wu, Hui; Yao, Kefu

    2018-05-30

    An efficient and selective catalyst is in urgent need for carbon dioxide electroreduction and silver is one of the promising candidates with affordable costs. Here we fabricated large-scale vertically standing Ag nanowire arrays with high crystallinity and electrical conductivity as carbon dioxide electroreduction catalysts by a simple nanomolding method that was usually considered not feasible for metallic crystalline materials. A great enhancement of current densities and selectivity for CO at moderate potentials was achieved. The current density for CO ( j co ) of Ag nanowire array with 200 nm in diameter was more than 2500 times larger than that of Ag foil at an overpotential of 0.49 V with an efficiency over 90%. The origin of enhanced performances are attributed to greatly increased electrochemically active surface area (ECSA) and higher intrinsic activity compared to those of polycrystalline Ag foil. More low-coordinated sites on the nanowires which can stabilize the CO 2 intermediate better are responsible for the high intrinsic activity. In addition, the impact of surface morphology that induces limited mass transportation on reaction selectivity and efficiency of nanowire arrays with different diameters was also discussed.

  6. WE-AB-BRB-10: Filmless QA of CyberKnife MLC-Collimated and Iris-Collimated Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gersh, J; Spectrum Medical Physics, LLC, Greenville, SC

    Purpose: Current methods of CK field shape QA is based on the use of radiochromic film. Though accurate results can be attained, these methods are prone to error, time consuming, and expensive. The techniques described herein perform similar QA using the FOIL Detector (Field, Output, and Image Localization). A key feature of this in-house QA solution, and central to this study, is an aSi flat-panel detector which provides the user with the means to perform accurate, immediate, and quantitative field analysis. Methods: The FOIL detector is automatically aligned in the CK beam using fiducial markers implanted within the detector case.more » Once the system is aligned, a treatment plan is delivered which irradiates the flat-panel imager using the field being tested. The current study tests each of the clinically-used fields shaped using the Iris variable-aperture collimation system using a plan which takes 6 minutes to deliver. The user is immediately provided with field diameter and beam profile, as well as a comparison to baseline values. Additionally, the detector is used to acquire and analyze leaf positions of the InCise multi-leaf collimation system. Results: Using a 6-minute plan consisting of 11 beams of 25MU-per-beam, the FOIL detector provided the user with a quantitative analysis of all clinically-used field shapes. The FOIL detector was also able to clearly resolve field edge junctions in a picket fence test, including slight over-travel of individual leaves as well as inter-leaf leakage. Conclusion: The FOIL system provided comparable field diameter and profile data when compared to methods using film; providing results much faster and with 5% of the MU used for film. When used with the MLC system, the FOIL detector provided the means for immediate quantification of the performance of the system through analysis of leaf positions in a picket fence test field. Author is the President/Owner of Spectrum Medical Physics, LLC, a company which maintains contracts with Siemens Healthcare and Standard Imaging, Inc.« less

  7. System Being Developed to Measure the Rotordynamic Characteristics of Air Foil Bearings

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; DellaCorte, Christopher; Valco, Mark J.

    2000-01-01

    Because of the many possible advantages of oil-free engine operation, interest in using air lubricated foil-bearing technology in advanced oil-free engine concepts has recently increased. The Oil-Free Turbomachinery Program at the NASA Glenn Research Center at Lewis Field has partially driven this recent push for oil-free technology. The program's goal of developing an innovative, practical, oil-free gas turbine engine for aeropropulsion began with the development of NASA's high-temperature solid-lubricant coating, PS304. This coating virtually eliminates the life-limiting wear that occurs during the startup and shutdown of the bearings. With practically unlimited life, foil air bearings are now very attractive to rotating machinery designers for use in turbomachinery. Unfortunately, the current knowledge base of these types of bearings is limited. In particular, the understanding of how these types of bearings contribute to the rotordynamic stability of turbomachinery is insufficient for designers to design with confidence. Recent work in oil-free turbomachinery has concentrated on advancing the understanding of foil bearings. A high-temperature fiber-optic displacement probe system and measurement method were developed to study the effects of speed, load, temperature, and other environmental issues on the stiffness characteristics of air foil bearings. Since high temperature data are to be collected in future testing, the testing method was intentionally simplified to minimize the need for expensive test hardware. The method measures the displacement induced upon a bearing in response to an applied perturbation load. The early results of these studies, which are shown in the accompanying figure, indicate trends in steady state stiffness that suggest stiffness increases with load and decreases with speed. It can be seen, even from these data, that stiffness is not expected to change by orders of magnitude over the normal operating range of most turbomachinery; a promising sign for their eventual integration into oil-free turbomachines. Planned future testing will generate similar plots for stiffness changes with temperature and geometry, as well as damping data. The data collected by this method represent a critical step toward understanding how to successfully apply foil air bearings to future oil-free turbomachinery systems.

  8. Porus electrode comprising a bonded stack of pieces of corrugated metal foil

    NASA Technical Reports Server (NTRS)

    Mccallum, J. (Inventor)

    1973-01-01

    An electrode suitable for use in an electrochemical cell is described. The electrode is composed of a porous conductive support with a bonded stack of pieces of thin corrugated nickel foil where the corrugations are oriented approximately perpendicular to the sides of the electrode and form an array of passages through the electrode. Active material such as cadmium hydroxide or nickel hydroxide is uniformly distributed within the passages. The support may comprise also a piece of thin flat nickel foil between adjacent pieces of the corrugated foil, forming a barrier between the passages formed on each side of it. Typically the corrugations in the odd corrugated layers are oriented at a small angle from the perpendicular in one direction and the corrugations in the even corrugated layers are oriented at a small angle from the perpendicular in the opposite direction.

  9. Measurements and PHITS Monte Carlo Estimations of Residual Activities Induced by the 181 MeV Proton Beam in the Injection Area at J-PARC RCS Ring

    NASA Astrophysics Data System (ADS)

    Yamakawa, Emi; Yoshimoto, Masahiro; Kinsho, Michikazu

    At the injection area of the RCS ring in the J-PARC, residual gamma dose at the rectangular ceramic ducts, especially immediately downstream of the charge-exchanged foil, has increased with the output beam power. In order to investigate the cause of high residual activities, residual gamma dose and radioactive sources produced at the exterior surface of the ducts have been measured by a GM survey meter and a handy type of Germanium (Ge) semiconductor detector in the case of 181 MeV injected proton beam energy. With these measurements, it is revealed that the radioactive sources produced by nuclear reactions cause the high activities at the injection area. For a better understanding of phenomena in the injection area, various simulations have been done with the PHITS Monte Carlo code. The distribution of radioactive sources and residual gamma dose rate obtained by the calculations are consistent with the measurement results. With this consistency, secondary neutrons and protons derived from nuclear reactions at the charge-exchanged foil are the dominant cause to high residual gamma dose at the ceramic ducts in the injection area. These measurements and calculations are unique approaches to reveal the cause of high residual dose around the foil. This study is essential for the future of high-intensity proton accelerators using a stripping foil.

  10. CHARACTERIZATION OF AN ACTIVELY COOLED METAL FOIL THERMAL RADIATION SHIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feller, J. R.; Salerno, L. J.; Kashani, A.

    2010-04-09

    Zero boil-off (ZBO) or reduced boil-off (RBO) systems that involve active cooling of large cryogenic propellant tanks will most likely be required for future space exploration missions. For liquid oxygen or methane, such systems could be implemented using existing high technology readiness level (TRL) cryocoolers. However, for liquid hydrogen temperatures (approx20 K) no such coolers exist. In order to partially circumvent this technology gap, the concept of broad area cooling (BAC) has been developed, whereby a low mass thermal radiation shield could be maintained at temperatures around 100 K by steady circulation of cold pressurized gas through a network ofmore » narrow tubes. By this method it is possible to dramatically reduce the radiative heat leak to the 20 K tank. A series of experiments, designed to investigate the heat transfer capabilities of BAC systems, have been conducted at NASA Ames Research Center (ARC). Results of the final experiment in this series, investigating heat transfer from a metal foil film to a distributed cooling line, are presented here.« less

  11. Weld leaks rapidly and safely detected

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Test method detects leaks that occur during hydrostatic pressure testing of welded joints in metal tanks. A strip of aluminum foil and a strip of water-soluble paper are placed over the weld. A voltage applied between the tank wall and the foil strip is monitored to detect a decrease in ohmic resistance caused by water leakage into the paper layer.

  12. Organic-inorganic hybrid optical foils with strong visible reflection, excellent near infrared-shielding ability and high transparency

    NASA Astrophysics Data System (ADS)

    Zhou, Yijie; Huang, Aibin; Zhou, Huaijuan; Ji, Shidong; Jin, Ping

    2018-03-01

    Research on functional flexible films has recently been attracting widespread attention especially with regards to foils, which can be designed artificially on the basis of the practical requirements. In this work, a foil with high visible reflection and a strong near infrared shielding efficiency was prepared by a simple wet chemical method. In the process of making this kind of optical foil, emulsion polymerization was first introduced to synthesize polymer opals, which were further compressed between two pieces of polyethylene terephthalate (PET) foil under polymer melting temperature to obtain a photonic crystal film with a strong reflection in the visible region to block blue rays. The following step was to coat a layer of the inorganic nano paint, which was synthesized by dispersing Cs-doped WO3 (CWO) nanoparticles homogenously into organic resin on the surface of the PET to achieve a high near infrared shielding ability. The final composite foil exhibited unique optical properties such as high visible reflectance (23.9%) to block blue rays, and excellent near infrared shielding efficiency (98.0%), meanwhile it still maintained a high transparency meaning that this foil could potentially be applied in energy-saving window films. To sum up, this study provides new insight into devising flexible hybrid films with novel optical properties, which could be further extended to prepare other optical films for potential use in automobile, architectural and other decorative fields.

  13. An application of computer image-processing and filmy replica technique to the copper electroplating method of stress analysis

    NASA Astrophysics Data System (ADS)

    Sugiura, M.; Seika, M.

    1994-02-01

    In this study, a new technique to measure the density of slip-bands automatically is developed, namely, a TV image of the slip-bands observed through a microscope is directly processed by an image-processing system using a personal computer and an accurate value of the density of slip-bands is measured quickly. In the case of measuring the local stresses in machine parts of large size with the copper plating foil, the direct observation of slip-bands through an optical microscope is difficult. In this study, to facilitate a technique close to the direct microscopic observation of slip-bands in the foil attached to a large-sized specimen, the replica method using a platic film of acetyl cellulose is applied to replicate the slip-bands in the attached foil.

  14. Foil Electron Multiplier

    DOEpatents

    Funsten, Herbert O.; Baldonado, Juan R.; Dors, Eric E.; Harper, Ronnie W.; Skoug, Ruth M.

    2006-03-28

    An apparatus for electron multiplication by transmission that is designed with at least one foil having a front side for receiving incident particles and a back side for transmitting secondary electrons that are produced from the incident particles transiting through the foil. The foil thickness enables the incident particles to travel through the foil and continue on to an anode or to a next foil in series with the first foil. The foil, or foils, and anode are contained within a supporting structure that is attached within an evacuated enclosure. An electrical power supply is connected to the foil, or foils, and the anode to provide an electrical field gradient effective to accelerate negatively charged incident particles and the generated secondary electrons through the foil, or foils, to the anode for collection.

  15. Recycling of typical supercapacitor materials.

    PubMed

    Vermisoglou, Eleni C; Giannouri, Maria; Todorova, Nadia; Giannakopoulou, Tatiana; Lekakou, Constantina; Trapalis, Christos

    2016-04-01

    A simple, facile and low-cost method for recycling of supercapacitor materials is proposed. This process aims to recover some fundamental components of a used supercapacitor, namely the electrolyte salt tetraethyl ammonium tetrafluoroborate (TEABF4) dissolved in an aprotic organic solvent such as acetonitrile (ACN), the carbonaceous material (activated charcoal, carbon nanotubes) purified, the current collector (aluminium foil) and the separator (paper) for further utilization. The method includes mechanical shredding of the supercapacitor in order to reduce its size, and separation of aluminium foil and paper from the carbonaceous resources containing TEABF4 by sieving. The extraction of TEABF4 from the carbonaceous material was based on its solubility in water and subsequent separation through filtering and distillation. A cyclic voltammetry curve of the recycled carbonaceous material revealed supercapacitor behaviour allowing a potential reutilization. Furthermore, as BF4(-) stemming from TEABF4 can be slowly hydrolysed in an aqueous environment, thus releasing F(-) anions, which are hazardous, we went on to their gradual trapping with calcium acetate and conversion to non-hazardous CaF2. © The Author(s) 2016.

  16. Honeycomb-like NiCo2S4 nanosheets prepared by rapid electrodeposition as a counter electrode for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Yin, Jie; Wang, Yuqiao; Meng, Wenfei; Zhou, Tianyue; Li, Baosong; Wei, Tao; Sun, Yueming

    2017-08-01

    Honeycomb-like nickel cobalt sulfide (NiCo2S4) nanosheets were directly deposited on fluorine-doped tin oxide substrate by a rapid voltammetric deposition method. The method was also controllable and feasible for preparing NiCo2S4 on flexible Ti foil without any heating processes. Compared with Pt, CoS and NiS, NiCo2S4 exhibited low charge-transfer resistances and excellent electrocatalytic activity for {{{{I}}}3}- reduction, acting as a counter electrode for a dye-sensitized solar cell. The NiCo2S4-based solar cell showed higher power conversion efficiency (7.44%) than that of Pt-based solar cell (7.09%) under simulated illumination (AM 1.5 G, 100 mW cm-2). The device based on the flexible NiCo2S4/Ti foil achieved a power conversion efficiency of 5.28% under the above illumination conditions. This work can be extended to flexible and wearable technologies due to its facile technique.

  17. Activation cross sections of α-induced reactions on natZn for Ge and Ga production

    NASA Astrophysics Data System (ADS)

    Aikawa, M.; Saito, M.; Ebata, S.; Komori, Y.; Haba, H.

    2018-07-01

    The production cross sections of 68,69Ge and 66,67Ga by α-induced reactions on natZn have been measured using the stacked-foil activation method and off-line γ-ray spectrometry from their threshold energies to 50.7 MeV. The derived cross sections were compared with the previous experimental data and the calculated values in the TENLD-2017 library. Our result shows a slightly larger amplitude than the previous data at the peak, though the peak energy is consistent with them.

  18. A comparison of results obtained from foil chaff clouds at 69 deg northern latitude during winter, summer and autumn

    NASA Technical Reports Server (NTRS)

    Widdel, H. U.; Vonzahn, U.

    1989-01-01

    Results from high resolution foil chaff experiments flown during the campaigns MAP/WINE (December 83 to February 84), MAC/SINE (June to July 1987) and Epsilon (October to November 1987) at Andenes (Northern Norway) are compared to each other and the differences in wind direction and wave activity during the different seasons are worked out.

  19. Vertically aligned carbon nanotube emitter on metal foil for medical X-ray imaging.

    PubMed

    Ryu, Je Hwang; Kim, Wan Sun; Lee, Seung Ho; Eom, Young Ju; Park, Hun Kuk; Park, Kyu Chang

    2013-10-01

    A simple method is proposed for growing vertically aligned carbon nanotubes on metal foil using the triode direct current plasma-enhanced chemical vapor deposition (PECVD). The carbon nanotube (CNT) electron emitter was fabricated using fewer process steps with an acid treated metal substrate. The CNT emitter was used for X-ray generation, and the X-ray image of mouse's joint was obtained with an anode current of 0.5 mA at an anode bias of 60 kV. The simple fabrication of a well-aligned CNT with a protection layer on metal foil, and its X-ray application, were studied.

  20. High fidelity studies of exploding foil initiator bridges, Part 2: Experimental results

    NASA Astrophysics Data System (ADS)

    Neal, William; Bowden, Mike

    2017-01-01

    Simulations of high voltage detonators, such as Exploding Bridgewire (EBW) and Exploding Foil Initiators (EFI), have historically been simple, often empirical, one-dimensional models capable of predicting parameters such as current, voltage, and in the case of EFIs, flyer velocity. Experimental methods have correspondingly generally been limited to the same parameters. With the advent of complex, first principles magnetohydrodynamic codes such as ALEGRA MHD, it is now possible to simulate these components in three dimensions and predict greater range of parameters than before. A significant improvement in experimental capability was therefore required to ensure these simulations could be adequately verified. In this second paper of a three part study, data is presented from a flexible foil EFI header experiment. This study has shown that there is significant bridge expansion before time of peak voltage and that heating within the bridge material is spatially affected by the microstructure of the metal foil.

  1. Laser shock microforming of aluminum foil with fs laser

    NASA Astrophysics Data System (ADS)

    Ye, Yunxia; Feng, Yayun; Xuan, Ting; Hua, Xijun; Hua, Yinqun

    2014-12-01

    Laser shock microforming of Aluminum(Al) foil through fs laser has been researched in this paper. The influences of confining layer, clamping method and impact times on induced dent depths were investigated experimentally. Microstructure of fs laser shock forming Al foil was observed through Transmission electron microscopy (TEM). Under the condition of tightly clamping, the dent depths increase with impact times and finally tend to saturating. Another new confining layer, the main component of which is polypropylene, was applied and the confining effect of it is better because of its higher impedance. TEM results show that dislocation is one of the main deformation mechanisms of fs laser shock forming Al foil. Specially, most of dislocations exist in the form of short and discrete dislocation lines. Parallel straight dislocation slip line also were observed. We analyzed that these unique dislocation arrangements are due to fs laser-induced ultra high strain rate.

  2. Production and isolation of homologs of flerovium and element 115 at the Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry

    DOE PAGES

    Despotopulos, John D.; Kmak, Kelly N.; Gharibyan, Narek; ...

    2015-10-01

    Here, new procedures have been developed to isolate no-carrier-added (NCA) radionuclides of the homologs and pseudo-homologs of flerovium (Hg, Sn) and element 115 (Sb), produced by 12–15 MeV proton irradiation of foil stacks with the tandem Van-de-Graaff accelerator at the Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry (CAMS) facility. The separation of 113Sn from natIn foil was performed with anion-exchange chromatography from hydrochloric and nitric acid matrices. A cation-exchange chromatography method based on hydrochloric and mixed hydrochloric/hydroiodic acids was used to separate 124Sb from natSn foil. A procedure using Eichrom TEVA resin was developed to separate 197Hg frommore » Au foil. These results demonstrate the suitability of using the CAMS facility to produce NCA radioisotopes for studies of transactinide homologs.« less

  3. Wake visualization of a heaving and pitching foil in a soap film

    NASA Astrophysics Data System (ADS)

    Muijres, Florian T.; Lentink, David

    2007-11-01

    Many fish depend primarily on their tail beat for propulsion. Such a tail is commonly modeled as a two-dimensional flapping foil. Here we demonstrate a novel experimental setup of such a foil that heaves and pitches in a soap film. The vortical flow field generated by the foil correlates with thickness variations in the soap film, which appear as interference fringes when the film is illuminated with a monochromatic light source (we used a high-frequency SOX lamp). These interference fringes are subsequently captured with high-speed video (500 Hz) and this allows us to study the unsteady vortical field of a flapping foil. The main advantage of our approach is that the flow fields are time and space resolved and can be obtained time-efficiently. The foil is driven by a flapping mechanism that is optimized for studying both fish swimming and insect flight inside and outside the behavioral envelope. The mechanism generates sinusoidal heave and pitch kinematics, pre-described by the non-dimensional heave amplitude (0-6), the pitch amplitude (0°-90°), the phase difference between pitch and heave (0°-360°), and the dimensionless wavelength of the foil (3-18). We obtained this wide range of wavelengths for a foil 4 mm long by minimizing the soap film speed (0.25 m s-1) and maximizing the flapping frequency range (4-25 Hz). The Reynolds number of the foil is of order 1,000 throughout this range. The resulting setup enables an effective assessment of vortex wake topology as a function of flapping kinematics. The efficiency of the method is further improved by carefully eliminating background noise in the visualization (e.g., reflections of the mechanism). This is done by placing mirrors at an angle behind the translucent film such that the camera views the much more distant and out-of-focus reflections of the black laboratory wall. The resulting high-quality flow visualizations require minimal image processing for flow interpretation. Finally, we demonstrate the effectiveness of our setup by visualizing the vortex dynamics of the flapping foil as a function of pitch amplitude by assessing the symmetry of the vortical wake.

  4. Wake visualization of a heaving and pitching foil in a soap film

    NASA Astrophysics Data System (ADS)

    Muijres, Florian T.; Lentink, David

    Many fish depend primarily on their tail beat for propulsion. Such a tail is commonly modeled as a twodimensional flapping foil. Here we demonstrate a novel experimental setup of such a foil that heaves and pitches in a soap film. The vortical flow field generated by the foil correlates with thickness variations in the soap film, which appear as interference fringes when the film is illuminated with a monochromatic light source (we used a high-frequency SOX lamp). These interference fringes are subsequently captured with high-speed video (500 Hz) and this allows us to study the unsteady vortical field of a flapping foil. The main advantage of our approach is that the flow fields are time and space resolved and can be obtained time-efficiently. The foil is driven by a flapping mechanism that is optimized for studying both fish swimming and insect flight inside and outside the behavioral envelope. The mechanism generates sinusoidal heave and pitch kinematics, pre-described by the non-dimensional heave amplitude (0-6), the pitch amplitude (0° - 90°), the phase difference between pitch and heave (0° - 360°), and the dimensionless wavelength of the foil (3-18). We obtained this wide range of wavelengths for a foil 4 mm long by minimizing the soap film speed (0.25 m s- 1) and maximizing the flapping frequency range (4-25 Hz). The Reynolds number of the foil is of order 1,000 throughout this range. The resulting setup enables an effective assessment of vortex wake topology as a function of flapping kinematics. The efficiency of the method is further improved by carefully eliminating background noise in the visualization (e.g., reflections of the mechanism). This is done by placing mirrors at an angle behind the translucent film such that the camera views the much more distant and out-of-focus reflections of the black laboratory wall. The resulting high-quality flow visualizations require minimal image processing for flow interpretation. Finally, we demonstrate the effectiveness of our setup by visualizing the vortex dynamics of the flapping foil as a function of pitch amplitude by assessing the symmetry of the vortical wake.

  5. A nanometric Rh overlayer on a metal foil surface as a highly efficient three-way catalyst.

    PubMed

    Misumi, Satoshi; Yoshida, Hiroshi; Hinokuma, Satoshi; Sato, Tetsuya; Machida, Masato

    2016-07-08

    Pulsed arc-plasma (AP) deposition of an Rh overlayer on an Fe-Cr-Al stainless steel foil produced a composite material that exhibited high activity for automotive three-way catalysis (TWC). The AP pulses deposited metallic Rh nanoparticles 1-3 nm in size, whose density on the surface increased with the number of pulses. This led to coalescence and grain growth on the foil surface and the eventual formation of a uniform two-dimensional Rh overlayer. Full coverage of the 51 μm-thick flat foil by a 3.2 nm-thick Rh overlayer was achieved after 1,000 pulses. A simulated TWC reaction using a miniature honeycomb fabricated using flat and corrugated foils with the Rh overlayers exhibited successful light-off at a practical gaseous hourly space velocity of 1.2 × 10(5) h(-1). The turnover frequency for the NO-CO reaction over the metallic honeycomb catalyst was ca. 80-fold greater than that achieved with a reference Rh/ZrO2-coated cordierite honeycomb prepared using a conventional wet impregnation and slurry coating procedure. Despite the nonporosity and low surface area of the foil-supported Rh overlayer compared with conventional powder catalysts (Rh/ZrO2), it is a promising alternative design for more efficient automotive catalysts that use less Rh loading.

  6. Underwater radiation detector

    DOEpatents

    Kruse, Lyle W.; McKnight, Richard P.

    1986-01-01

    A detector apparatus for differentiating between gamma and neutron radiation is provided. The detector includes a pair of differentially shielded Geiger-Mueller tubes. The first tube is wrapped in silver foil and the second tube is wrapped in lead foil. Both the silver and lead foils allow the passage of gamma rays at a constant rate in a gamma ray only field. When neutrons are present, however, the silver activates and emits beta radiation that is also detected by the silver wrapped Geiger-Mueller tube while the radiation detected by the lead wrapped Geiger-Mueller tube remains constant. The amount of radiation impinging on the separate Geiger-Mueller tubes is then correlated in order to distinguish between the neutron and gamma radiations.

  7. Studies of Surface Charging of Polymers by Indirect Triboelectrification

    NASA Astrophysics Data System (ADS)

    Mantovani, James; Calle, Carlos; Groop, Ellen; Buehler, Martin

    2001-03-01

    Charge is known to develop on the surface of an insulating polymer by frictional charging through direct physical contact with another material. We will present results of recent triboelectrification studies of polymer surfaces that utilized an indirect method of frictional charging. This method first involves placing a grounded thin metal foil in stationary contact over the polymer surface. The exposed metal foil is then rubbed with the surface of the material that generates the triboelectric charge. Data is presented for five types of polymers: fiberglass/epoxy, polycarbonate (Lexan), polytetraflouroethylene (Teflon), Rulon J, and polymethylmethacrylate (PMMA, Lucite). The amount of charge that develops on an insulator's surface is measured using the MECA Electrometer, which was developed jointly by NASA Kennedy Space Center and the Jet Propulsion Laboratory to study the electrostatic properties of soil on the surface of Mars. Even though the insulator's surface is electrically shielded from the rubbing material by the grounded metal foil, charge measurements obtained by the MECA Electrometer after the metal foil is separated from the insulator's surface reveal that the insulator's surface does accumulate charge by indirect frictional charging. A possible explanation of the observations will be presented based on a simple contact barrier model.

  8. Creep analysis of solid oxide fuel cell with bonded compliant seal design

    NASA Astrophysics Data System (ADS)

    Jiang, Wenchun; Zhang, Yucai; Luo, Yun; Gong, J. M.; Tu, S. T.

    2013-12-01

    Solid oxide fuel cell (SOFC) requires good sealant because it works in harsh conditions (high temperature, thermal cycle, oxidative and reducing gas environments). Bonded compliant seal (BCS) is a new sealing method for planar SOFC. It uses a thin foil metal to bond the window frame and cell, achieving the seal between window frame and cell. At high temperature, a comprehensive evaluation of its creep strength is essential for the adoption of BCS design. In order to characterize the creep behavior, the creep induced by thermal stresses in SOFC with BCS design is simulated by finite element method. The results show that the foil is compressed and large thermal stresses are generated. The initial peak thermal stress is located in the thin foil because the foil acts as a spring stores the thermal stresses by elastic and plastic deformation in itself. Serving at high temperature, initial thermal displacement is partially recovered because of the creep relaxation, which becomes a new discovered advantage for BCS design. It predicts that the failures are likely to happen in the middle of the cell edge and BNi-2 filler metal, because the maximum residual displacement and creep strain are located.

  9. A Multi-Point Measurement Method for Thermal Characterization of Foil Bearings Using Customized Thermocouples

    NASA Astrophysics Data System (ADS)

    Lubieniecki, Michał; Roemer, Jakub; Martowicz, Adam; Wojciechowski, Krzysztof; Uhl, Tadeusz

    2016-03-01

    Gas foil bearings have become widespread covering the applications of micro-turbines, motors, compressors, and turbocharges, prevalently of small size. The specific construction of the bearing, despite all of its advantages, makes it vulnerable to a local difference in heat generation rates that can be extremely detrimental. The developing thermal gradients may lead to thermal runaway or seizure that eventually causes bearing failure, usually abrupt in nature. The authors propose a method for thermal gradient removal with the use of current-controlled thermoelectric modules. To fulfill the task of control law adoption the numerical model of the heat distribution in a bearing has been built. Although sparse readings obtained experimentally with standard thermocouples are enough to determine thermal gradients successfully, validation of the bearing numerical model may be impeded. To improve spatial resolution of the experimental measurements the authors proposed a matrix of customized thermocouples located on the top foil. The foil acts as a shared conductor for each thermocouple that reduces the number of cable connections. The proof of concept of the control and measurement systems has been demonstrated in a still bearing heated by a cartridge heater.

  10. Method to Increase Performance of Foil Bearings Through Passive Thermal Management

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert

    2013-01-01

    This invention is a new approach to designing foil bearings to increase their load capacity and improve their reliability through passive thermal management. In the present case, the bearing is designed in such a way as to prevent the carryover of lubricant from the exit of one sector to the inlet of the ensuing sector of the foil bearing. When such passive thermal management techniques are used, bearing load capacity is improved by multiples, and reliability is enhanced when compared to current foil bearings. This concept has recently been tested and validated, and shows that load capacity performance of foil bearings can be improved by a factor of two at relatively low speeds with potentially greater relative improvements at higher speeds. Such improvements in performance with respect to speed are typical of foil bearings. Additionally, operation of these newly conceived bearings shows much more reliability and repeatable performance. This trait can be exploited in machine design to enhance safety, reliability, and overall performance. Finally, lower frictional torque has been demonstrated when operating at lower (non-load capacity) loads, thus providing another improvement above the current state of the art. The objective of the invention is to incorporate features into a foil bearing that both enhance passive thermal management and temperature control, while at the same time improve the hydrodynamic (load capacity) performance of the foil bearing. Foil bearings are unique antifriction devices that can utilize the working fluid of a machine as a lubricant (typically air for turbines and motors, liquids for pumps), and as a coolant to remove excess energy due to frictional heating. The current state of the art of foil bearings utilizes forced cooling of the bearing and shaft, which represents poor efficiency and poor reliability. This invention embodies features that utilize the bearing geometry in such a manner as to both support load and provide an inherent and passive cooling mechanism. This cooling mechanism functions in such a way as to prevent used (higher temperature) lubricant from being carried over from the exit of one sector into the entry of the next sector of the foil bearing. The disclosed innovation is an improved foil bearing design that reduces or eliminates the need for force cooling of the bearing, while at the same time improving the load capacity of the bearing by at least a factor of two. These improvements are due to the elimination of lubricant carryover from the trailing edge of one sector into the leading edge of the next, and the mixing of used lubricant with the surrounding ambient fluid.

  11. Preliminary Analysis of an Oscillating Surge Wave Energy Converter with Controlled Geometry: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, Nathan; Lawson, Michael; Yu, Yi-Hsiang

    The aim of this paper is to present a novel wave energy converter device concept that is being developed at the National Renewable Energy Laboratory. The proposed concept combines an oscillating surge wave energy converter with active control surfaces. These active control surfaces allow for the device geometry to be altered, which leads to changes in the hydrodynamic properties. The device geometry will be controlled on a sea state time scale and combined with wave-to-wave power-take-off control to maximize power capture, increase capacity factor, and reduce design loads. The paper begins with a traditional linear frequency domain analysis of themore » device performance. Performance sensitivity to foil pitch angle, the number of activated foils, and foil cross section geometry is presented to illustrate the current design decisions; however, it is understood from previous studies that modeling of current oscillating wave energy converter designs requires the consideration of nonlinear hydrodynamics and viscous drag forces. In response, a nonlinear model is presented that highlights the shortcomings of the linear frequency domain analysis and increases the precision in predicted performance.« less

  12. Poly-silicon TFT AM-OLED on thin flexible metal substrates

    NASA Astrophysics Data System (ADS)

    Afentakis, Themis; Hatalis, Miltiadis K.; Voutsas, Apostolos T.; Hartzell, John W.

    2003-05-01

    Thin metal foils present an excellent alternative to polymers for the fabrication of large area, flexible displays. Their main advantage spurs from their ability to withstand higher temperatures during processing; microelectronic fabrication at elevated temperatures offers the ability to utilize a variety of crystallization processes for the active layer of devices and thermally grown gate dielectrics. This can lead to high performance (high mobility, low threshold voltage) low cost and highly reliable thin film transistors. In some cases, the conductive substrate can also be used to provide power to the active devices, thus reducing layout complexity. This paper discusses the first successful attempt to design and fabricate a variety of active matrix organic light emitting diode displays on thin, flexible stainless steel foils. Different pixel architectures, such as two- and four-transistor implementations, and addressing modes, such as voltage- or current-driven schemese are examined. This work clearly demonstrates the advantages associated with the fabrication of OLED displays on thin metal foils, which - through roll-to-roll processing - can potentially result in revolutionizing today's display processing, leading to a new generation of low cost, high performance versatile display systems.

  13. Shock load analysis of rotor for rolling element bearings and gas foil bearings: A comparative study

    NASA Astrophysics Data System (ADS)

    Bhore, Skylab Paulas

    2018-04-01

    In this paper, a comparative study on the shock load analysis of rotor supported by rolling element bearings and gas foil journal bearings is presented. The rotor bearing system is modeled using finite element method. Timoshenko beam element with 4 degree of freedom at each node is used. The shock load is represented by half sine pulse and applied to the base of the rotor bearing system. The stiffness and damping coefficient of the bearings are incorporated in the model. The generalized equation of motion of rotor bearing system is solved by Newmark beta method and responses of rotor at bearing position are predicted. It is observed that the responses are sensitive to the direction of applied excitation and its magnitude and pulse duration. The amplitude of responses of rotor supported on gas foil bearings are significantly less than that of rolling element bearings.

  14. An integration machine for the assembly of the x-ray optic units based on thin slumped glass foils for the IXO mission

    NASA Astrophysics Data System (ADS)

    Civitani, M. M.; Basso, S.; Bavdaz, M.; Citterio, O.; Conconi, P.; Gallieni, D.; Ghigo, M.; Martelli, F.; Pareschi, G.; Parodi, G.; Proserpio, L.; Sironi, G.; Spiga, D.; Tagliaferri, G.; Tintori, M.; Wille, E.; Zambra, A.

    2011-09-01

    The International X-ray Observatory (IXO) is a joint mission concept studied by the ESA, NASA, and JAXA space agencies. The main goal of the mission design is to achieve a large effective area (>2.5m2 at 1 keV) and a good angular resolution (5 arcsec HEW at 1 keV) at the same time. The Brera Astronomical Observatory - INAF, Italy), under the support of ESA, is developing a method for the realization of the X-Ray Optical Units, based on the use of slumped thin glass segments to form densely packed modules in a Wolter type I optical configuration. In order to reach the very challenging integration requirements, it has been developed an innovative assembly approach for aligning and mounting the IXO mirror segments. The method is based on the use of an integration mould for each foil. In particular the glass segment is forced to adhere to the integration mould in order to maintain the optimal figure without deformations until the integration of the foil in the stack is completed. In this way an active correction for major existing figure errors after slumping is also achieved. Moreover reinforcing ribs are used in order to connect the facets to each-other and to realize a robust monolithic stack of plates. In this paper we present the design, the development and the validation status of a special Integration Machine (IMA) that has been specifically developed to allow the integration of the Plate Pairs into prototypal X-Ray Optical Unit stacks.

  15. An Experimental Study on Micro Clinching of Metal Foils with Cutting by Laser Shock Forming.

    PubMed

    Wang, Xiao; Li, Cong; Ma, Youjuan; Shen, Zongbao; Sun, Xianqing; Sha, Chaofei; Gao, Shuai; Li, Liyin; Liu, Huixia

    2016-07-13

    This paper describes a novel technique for joining similar and dissimilar metal foils, namely micro clinching with cutting by laser shock forming. A series of experiments were conducted to study the deformation behavior of single layer material, during which many important process parameters were determined. The process window of the 1060 pure aluminum foils and annealed copper foils produced by micro clinching with cutting was analyzed. Moreover, similar material combination (annealed copper foils) and dissimilar material combination (1060 pure aluminum foils and 304 stainless steel foils) were successfully achieved. The effect of laser energy on the interlock and minimum thickness of upper foils was investigated. In addition, the mechanical strength of different material combinations joined by micro clinching with cutting was measured in single lap shearing tests. According to the achieved results, this novel technique is more suitable for material combinations where the upper foil is thicker than lower foil. With the increase of laser energy, the interlock increased while the minimum thickness of upper foil decreased gradually. The shear strength of 1060 pure aluminum foils and 304 stainless steel foils combination was three times as large as that of 1060 pure aluminum foils and annealed copper foils combination.

  16. Surface treatment using metal foil liner

    NASA Technical Reports Server (NTRS)

    Garvey, Ray

    1989-01-01

    A metal foil liner can be used to seal large area surfaces. Characteristics of the two-layer foil liner are discussed. Micrographs for foil-to-foil, foil-to-composite, visible seams, and hidden seams are examined.

  17. Reactive multilayer synthesis of hard ceramic foils and films

    DOEpatents

    Makowiecki, Daniel M.; Holt, Joseph B.

    1996-01-01

    A method for synthesizing hard ceramic materials such as carbides, borides nd aluminides, particularly in the form of coatings provided on another material so as to improve the wear and abrasion performance of machine tools, for example. The method involves the sputter deposition of alternating layers of reactive metals with layers of carbon, boron, or aluminum and the subsequent reaction of the multilayered structure to produce a dense crystalline ceramic. The material can be coated on a substrate or formed as a foil which can be coild as a tape for later use.

  18. Improved composite targets for small scale 64Cu production comparing Au- and Pt-foils as 64Ni backing

    NASA Astrophysics Data System (ADS)

    Walther, M.; Preusche, S.; Fuechtner, F.; Pietzsch, H. J.; Steinbach, J.

    2012-12-01

    Advantages of a stacked assembly of target support components for 64Cu production via 64Ni(p,n)64Cu reaction were reported recently. The present work shows the applicability of these composite targets for beam currents up to 22 μA. Gold and platinum foils were evaluated as 64Ni backing. The effective specific activity (ESA) and specific activity (SA) were determined by TETA titration at room temperature and at 80 °C and compared with additional copper quantification results via ICP-MS and stripping voltammetric trace analysis (VA).

  19. Flow over a traveling wavy foil with a passively flapping flat plate

    NASA Astrophysics Data System (ADS)

    Liu, Nansheng; Peng, Yan; Liang, Youwen; Lu, Xiyun

    2012-05-01

    Flow over a traveling wavy foil with a passively flapping flat plate has been investigated using a multiblock lattice Boltzmann equation and the immersed boundary method. The foil undergoes prescribed undulations in the lateral direction and the rigid flat plate has passive motion determined by the fluid structure interaction. This simplified model is used to study the effect of the fish caudal fin and its flexibility on the locomotion of swimming animals. The flexibility of the caudal fin is modeled by a torsion spring acting about the pivot at the conjuncture of the wavy foil and the flat plate. The study reveals that the passively oscillating flat plate contributes half of the propulsive force. The flexibility, represented by the nondimensional natural frequency F, plays a very important role in the movement and propulsive force generation of the whole body. When the plate is too flexible, the drag force is observed. As the flat plate becomes more rigid, the propulsive force that is generated when the undulation is confined to last part of the wavy foil becomes larger. The steady movement occurs at F=5. These results are consistent with the observations of some swimming animals in nature.

  20. Status of flexible CIS research at ISET

    NASA Technical Reports Server (NTRS)

    Basol, B. M.; Kapur, V. K.; Minnick, A.; Halani, A.; Leidholm, C. R.

    1994-01-01

    Polycrystalline thin film solar cells fabricated on light-weight, flexible substrates are very attractive for space applications. In this work CulnSe2 (CIS) based thin film devices were processed on metallic foil substrates using the selenization technique. CIS deposition method involved reaction of electron-bean evaporated Cu-In precursor layers with a selenizing atmosphere at around 400 C. Several metallic foils such as Mo, Ti, Al, Ni, and Cu were evaluated as possible substrates for these devices. Solar cells with AM1.5 efficiencies of 9.0-9.34 percent and good mechanical integrity were demonstrated on Mo and Ti foils. Monolithic integration of these devices was also demonstrated up to 4 in x 4 in size.

  1. Investigation of activation cross-sections of deuteron induced reactions on vanadium up to 40 MeV

    NASA Astrophysics Data System (ADS)

    Tárkányi, F.; Ditrói, F.; Takács, S.; Hermanne, A.; Baba, M.; Ignatyuk, A. V.

    2011-08-01

    Experimental excitation functions for deuteron induced reactions up to 40 MeV on natural vanadium were measured with the activation method using a stacked foil irradiation technique. From high resolution gamma spectrometry cross-section data for the production of 51Cr, 48V, 48,47,46Sc and 47Ca were determined. Comparisons with the earlier published data are presented and results for values predicted by different theoretical codes are included. Thick target yields were calculated from a fit to our experimental excitation curves and compared with the earlier experimental data. Depth distribution curves used for thin layer activation (TLA) are also presented.

  2. An Experimental Study on Micro Clinching of Metal Foils with Cutting by Laser Shock Forming

    PubMed Central

    Wang, Xiao; Li, Cong; Ma, Youjuan; Shen, Zongbao; Sun, Xianqing; Sha, Chaofei; Gao, Shuai; Li, Liyin; Liu, Huixia

    2016-01-01

    This paper describes a novel technique for joining similar and dissimilar metal foils, namely micro clinching with cutting by laser shock forming. A series of experiments were conducted to study the deformation behavior of single layer material, during which many important process parameters were determined. The process window of the 1060 pure aluminum foils and annealed copper foils produced by micro clinching with cutting was analyzed. Moreover, similar material combination (annealed copper foils) and dissimilar material combination (1060 pure aluminum foils and 304 stainless steel foils) were successfully achieved. The effect of laser energy on the interlock and minimum thickness of upper foils was investigated. In addition, the mechanical strength of different material combinations joined by micro clinching with cutting was measured in single lap shearing tests. According to the achieved results, this novel technique is more suitable for material combinations where the upper foil is thicker than lower foil. With the increase of laser energy, the interlock increased while the minimum thickness of upper foil decreased gradually. The shear strength of 1060 pure aluminum foils and 304 stainless steel foils combination was three times as large as that of 1060 pure aluminum foils and annealed copper foils combination. PMID:28773692

  3. Mapping the local reaction kinetics by PEEM: CO oxidation on individual (100)-type grains of Pt foil

    PubMed Central

    Vogel, D.; Spiel, C.; Suchorski, Y.; Urich, A.; Schlögl, R.; Rupprechter, G.

    2011-01-01

    The locally-resolved reaction kinetics of CO oxidation on individual (100)-type grains of a polycrystalline Pt foil was monitored in situ using photoemission electron microscopy (PEEM). Reaction-induced surface morphology changes were studied by optical differential interference contrast microscopy and atomic force microscopy (AFM). Regions of high catalytic activity, low activity and bistability in a (p,T)-parameter space were determined, allowing to establish a local kinetic phase diagram for CO oxidation on (100) facets of Pt foil. PEEM observations of the reaction front propagation on Pt(100) domains reveal a high degree of propagation anisotropy both for oxygen and CO fronts on the apparently isotropic Pt(100) surface. The anisotropy vanishes for oxygen fronts at temperatures above 465 K, but is maintained for CO fronts at all temperatures studied, i.e. in the range of 417 to 513 K. A change in the front propagation mechanism is proposed to explain the observed effects. PMID:22140277

  4. Meta-metallic coils and resonators: Methods for high Q-value resonant geometries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mett, R. R.; Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, Wisconsin 53202; Sidabras, J. W.

    A novel method of decreasing ohmic losses and increasing Q-value in metallic resonators at high frequencies is presented. The method overcomes the skin-depth limitation of rf current flow cross section. The method uses layers of conductive foil of thickness less than a skin depth and capacitive gaps between layers. The capacitive gaps can substantially equalize the rf current flowing in each layer, resulting in a total cross-sectional dimension for rf current flow many times larger than a skin depth. Analytic theory and finite-element simulations indicate that, for a variety of structures, the Q-value enhancement over a single thick conductor approachesmore » the ratio of total conductor thickness to skin depth if the total number of layers is greater than one-third the square of the ratio of total conductor thickness to skin depth. The layer number requirement is due to counter-currents in each foil layer caused by the surrounding rf magnetic fields. We call structures that exhibit this type of Q-enhancement “meta-metallic.” In addition, end effects due to rf magnetic fields wrapping around the ends of the foils can substantially reduce the Q-value for some classes of structures. Foil structures with Q-values that are substantially influenced by such end effects are discussed as are five classes of structures that are not. We focus particularly on 400 MHz, which is the resonant frequency of protons at 9.4 T. Simulations at 400 MHz are shown with comparison to measurements on fabricated structures. The methods and geometries described here are general for magnetic resonance and can be used at frequencies much higher than 400 MHz.« less

  5. Meta-metallic coils and resonators: Methods for high Q-value resonant geometries

    PubMed Central

    Mett, R. R.; Hyde, J. S.

    2016-01-01

    A novel method of decreasing ohmic losses and increasing Q-value in metallic resonators at high frequencies is presented. The method overcomes the skin-depth limitation of rf current flow cross section. The method uses layers of conductive foil of thickness less than a skin depth and capacitive gaps between layers. The capacitive gaps can substantially equalize the rf current flowing in each layer, resulting in a total cross-sectional dimension for rf current flow many times larger than a skin depth. Analytic theory and finite-element simulations indicate that, for a variety of structures, the Q-value enhancement over a single thick conductor approaches the ratio of total conductor thickness to skin depth if the total number of layers is greater than one-third the square of the ratio of total conductor thickness to skin depth. The layer number requirement is due to counter-currents in each foil layer caused by the surrounding rf magnetic fields. We call structures that exhibit this type of Q-enhancement “meta-metallic.” In addition, end effects due to rf magnetic fields wrapping around the ends of the foils can substantially reduce the Q-value for some classes of structures. Foil structures with Q-values that are substantially influenced by such end effects are discussed as are five classes of structures that are not. We focus particularly on 400 MHz, which is the resonant frequency of protons at 9.4 T. Simulations at 400 MHz are shown with comparison to measurements on fabricated structures. The methods and geometries described here are general for magnetic resonance and can be used at frequencies much higher than 400 MHz. PMID:27587143

  6. Simulation of thin aluminium-foil in the packaging industry

    NASA Astrophysics Data System (ADS)

    Eskil, Andreasson; Lindström, Tommy; Käck, Britta; Malmberg, Christoffer; Asp, Ann-Magret

    2017-10-01

    This work present an approach of how to account for the anisotropic mechanical material behaviour in the simulation models of the thin aluminium foil layer (≈10 µm) used in the Packaging Industry. Furthermore, the experimental results from uniaxial tensile tests are parameterised into an analytical expression and the slope of the hardening subsequently extended way beyond the experimental data points. This in order to accommodate the locally high stresses present in the experiments at the neck formation. An analytical expression, denominated Ramberg-Osgood, is used to describe the non-linear mechanical behaviour. Moreover it is possible with a direct method to translate the experimental uniaxial tensile test results into useful numerical material model parameters in Abaqus™. In addition to this the extended material behaviour including the plastic flow i.e. hardening, valid after onset of localisation, the described procedure can also capture the microscopic events, i.e. geometrical thinning, ongoing in the deformation of the aluminium foil. This method has earlier successfully been applied by Petri Mäkelä for paperboard material [1]. The engineering sound and parameterised description of the mechanical material behaviour facilitates an efficient categorisation of different aluminium foil alloys and aid the identification of the correct anisotropic (RD/TD/45°) mechanical material behaviour derived from the physical testing.

  7. Activation cross sections of alpha-induced reactions on natIn for 117mSn production

    NASA Astrophysics Data System (ADS)

    Aikawa, M.; Saito, M.; Ukon, N.; Komori, Y.; Haba, H.

    2018-07-01

    The production of 117mSn by charged-particle induced reactions is an interesting topic for medical application. Production cross sections of α-induced reactions on natIn for 117mSn up to 50 MeV were measured using the stacked foil technique and activation method. The integral yield of 117mSn was estimated using the measured cross sections. The results were compared with experimental data investigated earlier and theoretical calculation. Measured cross sections for 113Sn and 116m,117,118mSb isotopes were also presented.

  8. Edge-on dislocation loop in anisotropic hcp zirconium thin foil

    NASA Astrophysics Data System (ADS)

    Wu, Wenwang; Xia, Re; Qian, Guian; Xu, Shucai; Zhang, Jinhuan

    2015-10-01

    Edge-on dislocation loops with 〈 a 〉 -type and 〈 c 〉 -type of Burgers vectors can be formed on prismatic or basel habit planes of hexagonal close-packed (hcp) zirconium alloys during in-situ ion irradiation and neutron irradiation experiments. In this work, an anisotropic image stress method was employed to analyze the free surface effects of dislocation loops within hcp Zr thin foils. Calculation results demonstrate that image stress has a remarkable effect on the distortion fields of dislocation loops within infinite medium, and the image energy becomes remarkable when dislocation loops are situated close to the free surfaces. Moreover, image forces of the 1 / 2 〈 0001 〉 (0001) dislocation loop within (0001) thin foil is much stronger than that of the 1 / 3 〈 11 2 bar 0 〉 (11 2 bar 0) dislocation loop within (11 2 bar 0) thin foil of identical geometrical configurations. Finally, image stress effect on the physical behaviors of loops during in-situ ion irradiation experiments is discussed.

  9. Weldment for austenitic stainless steel and method

    DOEpatents

    Bagnall, Christopher; McBride, Marvin A.

    1985-01-01

    For making defect-free welds for joining two austenitic stainless steel mers, using gas tungsten-arc welding, a thin foil-like iron member is placed between the two steel members to be joined, prior to making the weld, with the foil-like iron member having a higher melting point than the stainless steel members. When the weld is formed, there results a weld nugget comprising melted and then solidified portions of the joined members with small portions of the foil-like iron member projecting into the solidified weld nugget. The portions of the weld nugget proximate the small portions of the foil-like iron member which project into the weld nugget are relatively rich in iron. This causes these iron-rich nugget portions to display substantial delta ferrite during solidification of the weld nugget which eliminates weld defects which could otherwise occur. This is especially useful for joining austenitic steel members which, when just below the solidus temperature, include at most only a very minor proportion of delta ferrite.

  10. Neutron production in the interaction of 12 and 18 MeV electrons with a scattering foil inside a simple LINAC head.

    PubMed

    Soto-Bernal, Tzinnia Gabriela; Baltazar-Raigosa, Antonio; Medina-Castro, Diego; Vega-Carrillo, Hector Rene

    2018-04-18

    The characteristics of photons and neutrons produced during the interaction between a monoenergetic (12 and 18 MeV) electron beam and a tungsten scattering foil enclosed into a 10 cm-thick tungsten shell have been determined using Monte Carlo methods. This model was used aiming to represent a linac head working in electron-mode for cancer treatment. Photon and neutron spectra were determined around the scattering foil and to 50 and 100 cm below the electron source. Induced photons are mainly produced along the direction of the incoming electron beam. On the other hand, neutrons are produced in two sites, mainly in the inner surface of the linac head and in less extent in the scattering foil. The neutron spectra are evaporation neutrons which are emitted isotropically from the site where are produced leaking out from the linac head, reaching locations were the patient is allocated. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. [Microfabricated X-ray Optics Technology Development for the Constellation X-Mission

    NASA Technical Reports Server (NTRS)

    Schattenburg, Mark L.

    2005-01-01

    MIT has previously developed advanced methods for the application of silicon microstructures (so-called microcombs) in the precision assembly of foil x-ray optics in support of the Constellation-X Spectroscopy X-ray Telescope (SXT) technology development at the NASA Goddard Space Flight Center (GSFC). During the first year of the above Cooperative Agreement, MIT has developed a new, mature, potentially high- yield process for the manufacturing of microcombs that can be applied to a range of substrates independent of thickness. MIT also developed techniques to extract microcomb accuracy from an assembly truss metrology test stand and to extend the dynamic range of its Shack-Hartmann foil metrology tool. The placement repeatability of foil optics with microcombs in the assembly truss has been improved by a factor of two to approximately 0.15 micron. This was achieved by electric contact determination in favor of determining contact through force measurements. Development work on a stress-free thin foil holder was also supported by this agreement and successfully continued under a different grant.

  12. Effect of six different cooking techniques in the nutritional composition of two fish species previously selected as optimal for renal patient's diet.

    PubMed

    Castro-González, Isabel; Maafs-Rodríguez, Ana Gabriela; Pérez-Gil Romo, Fernando

    2015-07-01

    Benefits of fish consumption are widely known, but there is little information about nutrient values of raw and cooked fish. The aim was to study the impact that six cooking techniques have on the nutritional composition of two fish species with low content of adverse nutrients in renal diet. Raw and steamed, foiled with aluminum, foiled with banana leaf, gas oven-baked, microwave oven-coked and fried lightly samples were chemically analyzed to determine their protein, phosphorus and lipid content. Crevalle jack: all methods increased lipid and protein content and fatty acids (FA) varied in all cooking methods. Phosphorus decreased in the steamed and microwave oven-cooked samples. Red drum: foiled and fried lightly increased lipid content compared to the raw sample. FA concentration changed in all cooking methods. Protein increased with every technique and phosphorus decreased in the steamed and gas oven-baked samples. Renal patients should preferably consume crevalle jack steamed or microwave oven-cooked and red drum steamed or gas oven-baked.

  13. Monitoring of the Irradiated Neutron Fluence in the Neutron Transmutation Doping Process of Hanaro

    NASA Astrophysics Data System (ADS)

    Kim, Myong-Seop; Park, Sang-Jun

    2009-08-01

    Neutron transmutation doping (NTD) for silicon is a process of the creation of phosphorus impurities in intrinsic or extrinsic silicon by neutron irradiation to obtain silicon semiconductors with extremely uniform dopant distribution. HANARO has two vertical holes for the NTD, and the irradiation for 5 and 6 inch silicon ingots has been going on at one hole. In order to achieve the accurate neutron fluence corresponding to the target resistivity, the real time neutron flux is monitored by self-powered neutron detectors. After irradiation, the total irradiation fluence is confirmed by measuring the absolute activity of activation detectors. In this work, a neutron fluence monitoring method using zirconium foils with the mass of 10 ~ 50 mg was applied to the NTD process of HANARO. We determined the proportional constant of the relationship between the resistivity of the irradiated silicon and the neutron fluence determined by using zirconium foils. The determined constant for the initially n-type silicon was 3.126 × 1019 n·Ω/cm. It was confirmed that the difference between this empirical value and the theoretical one was only 0.5%. Conclusively, the practical methodology to perform the neutron transmutation doping of silicon was established.

  14. Neutron flux characterization of californium-252 Neutron Research Facility at the University of Texas - Pan American by nuclear analytical technique

    NASA Astrophysics Data System (ADS)

    Wahid, Kareem; Sanchez, Patrick; Hannan, Mohammad

    2014-03-01

    In the field of nuclear science, neutron flux is an intrinsic property of nuclear reaction facilities that is the basis for experimental irradiation calculations and analysis. In the Rio Grande Valley (Texas), the UTPA Neutron Research Facility (NRF) is currently the only neutron facility available for experimental research purposes. The facility is comprised of a 20-microgram californium-252 neutron source surrounded by a shielding cascade containing different irradiation cavities. Thermal and fast neutron flux values for the UTPA NRF have yet to be fully investigated and may be of particular interest to biomedical studies in low neutron dose applications. Though a variety of techniques exist for the characterization of neutron flux, neutron activation analysis (NAA) of metal and nonmetal foils is a commonly utilized experimental method because of its detection sensitivity and availability. The aim of our current investigation is to employ foil activation in the determination of neutron flux values for the UTPA NSRF for further research purposes. Neutron spectrum unfolding of the acquired experimental data via specialized software and subsequent comparison for consistency with computational models lends confidence to the results.

  15. Synthesis of Coral-Like Tantalum Oxide Films via Anodization in Mixed Organic-Inorganic Electrolytes

    PubMed Central

    Yu, Hongbin; Zhu, Suiyi; Yang, Xia; Wang, Xinhong; Sun, Hongwei; Huo, Mingxin

    2013-01-01

    We report a simple method to fabricate nano-porous tantalum oxide films via anodization with Ta foils as the anode at room temperature. A mixture of ethylene glycol, phosphoric acid, NH4F and H2O was used as the electrolyte where the nano-porous tantalum oxide could be synthesized by anodizing a tantalum foil for 1 h at 20 V in a two–electrode configuration. The as-prepared porous film exhibited a continuous, uniform and coral-like morphology. The diameters of pores ranged from 30 nm to 50 nm. The pores interlaced each other and the depth was about 150 nm. After calcination, the as-synthesized amorphous tantalum oxide could be crystallized to the orthorhombic crystal system. As observed in photocatalytic experiments, the coral-like tantalum oxide exhibited a higher photocatalytic activity for the degradation of phenol than that with a compact surface morphology, and the elimination rate of phenol increased by 66.7%. PMID:23799106

  16. A new method for designing dual foil electron beam forming systems. II. Feasibility of practical implementation of the method

    NASA Astrophysics Data System (ADS)

    Adrich, Przemysław

    2016-05-01

    In Part I of this work a new method for designing dual foil electron beam forming systems was introduced. In this method, an optimal configuration of the dual foil system is found by means of a systematic, automatized scan of system performance in function of its parameters. At each point of the scan, Monte Carlo method is used to calculate the off-axis dose profile in water taking into account detailed and complete geometry of the system. The new method, while being computationally intensive, minimizes the involvement of the designer. In this Part II paper, feasibility of practical implementation of the new method is demonstrated. For this, a prototype software tools were developed and applied to solve a real life design problem. It is demonstrated that system optimization can be completed within few hours time using rather moderate computing resources. It is also demonstrated that, perhaps for the first time, the designer can gain deep insight into system behavior, such that the construction can be simultaneously optimized in respect to a number of functional characteristics besides the flatness of the off-axis dose profile. In the presented example, the system is optimized in respect to both, flatness of the off-axis dose profile and the beam transmission. A number of practical issues related to application of the new method as well as its possible extensions are discussed.

  17. Numerical study on the power extraction performance of a flapping foil with a flexible tail

    NASA Astrophysics Data System (ADS)

    Wu, J.; Shu, C.; Zhao, N.; Tian, F.-B.

    2015-01-01

    The numerical study on the power extraction performance of a flapping foil with a flexible tail is performed in this work. A NACA0015 airfoil is arranged in a two-dimensional laminar flow and imposed with a synchronous harmonic plunge and pitch rotary motion. A flat plate that is attached to the trailing edge of the foil is utilized to model a tail, and so they are viewed as a whole for the purpose of power extraction. In addition, the tail either is rigid or can deform due to the exerted hydrodynamic forces. To implement numerical simulations, an immersed boundary-lattice Boltzmann method is employed. At a Reynolds number of 1100 and the position of the pitching axis at third chord, the influences of the mass and flexibility of the tail as well as the frequency of motion on the power extraction are systematically examined. It is found that compared to the foil with a rigid tail, the efficiency of power extraction for the foil with a deformable tail can be improved. Based on the numerical analysis, it is indicated that the enhanced plunging component of the power extraction, which is caused by the increased lift force, directly contributes to the efficiency improvement. Since a flexible tail with medium and high masses is not beneficial to the efficiency improvement, a flexible tail with low mass together with high flexibility is recommended in the flapping foil based power extraction system.

  18. Precise method to determine points on isentropic release curve on copper

    NASA Astrophysics Data System (ADS)

    Remiot, C.; Mexmain, J. M.; Bonnet, L.

    1996-05-01

    When a higher shock impedance foil (with several hundreds of μm in thickness) is set on the studied material surface, the release phase occurs by steps, whose duration of each plateau corresponds to a go and return of the shock wave in the foil. Step velocity levels can be easily measured by D.L.I. technique. The intermediate velocity values, connected with the knowledge of the foil Hugoniot, allow us to determine a few points on the isentropic release curve. The experiments have been achieved on a two stage light gas gun with a projectile velocity varying from 1400 to 3000 m/s. The caliber of the launcher is 30 mm. For this study concerning copper, the target is composed of a 2 mm thickness copper transmitter on which the sample is mechanically held. The tungsten (W) thick foil is, under pressure, sticked on the sample with UV stick-cord. The free surface velocity measurement accuracy of the tungsten foil is 0.4% for values between 1500 to 3500 m/s. The first shock in the sample is varying from 40 to 120 GPa and the mass velocity from 800 to 2000 m/s. By impedance matching between the copper sample and the tungsten thick foil, we deduce for each experiment three points on the copper isentropic release curve and the final free surface velocity. The accuracy we obtain is in order of 0.4 GPa for the pressure and 10 m/s for the mass velocity.

  19. Energy extraction from a semi-passive flapping-foil turbine with active heave and passive pitch

    NASA Astrophysics Data System (ADS)

    Boudreau, Matthieu; Dumas, Guy; Gunther, Kevin; CFD Laboratory LMFN Team

    2017-11-01

    Due to the inherent complexity of the mechanisms needed to prescribe the heaving and the pitching motions of optimal flapping-foil turbines, several research groups are now investigating the potential of using unconstrained passive motions. The amplitude, the phase and the frequency of such free motions are thus the result of the interaction of the blade with the flow and its elastic supports, namely springs and dampers. In parallel with our current study on fully-passive flapping-foil turbines, we investigate in this work the possibility of using a semi-passive turbine. Unlike previous semi-passive turbines studied in the literature, we propose a turbine with a passive pitching motion and an active heaving motion constrained to be a sine wave with desired amplitude and frequency. As most of the energy extracted by flapping-foil turbines comes from the heaving motion, it is natural to connect an electric generator to this degree of freedom, thereby allowing one to constrain this motion. It is found that large-amplitude pitching motions leading to a considerable energy extraction can arise under different circumstances and mechanisms, either forced by the heaving motion or driven by an instability of the pitching motion itself. The authors gratefully acknowledge the support from the Natural Sciences and Engineering Research Council of Canada (NSERC), the Tyler Lewis Clean Energy Research Foundation, Calcul Québec and Compute Canada.

  20. Temperature measurements at material interfaces with thin-foil gauges

    NASA Astrophysics Data System (ADS)

    Morley, Mike; Chapman, David; Proud, William

    2009-06-01

    Measurements of shock heating are important in determining Equations of State that incorporate entropic effects. The use of thin-foil nickel gauges to measure shock heating in material was proposed by Rosenberg et al. in the 1980s. This research investigates the use of such commercial thin-foil gauges at interfaces between materials of different thermal and shock properties. The technique requires analysis of the resistance changes of the gauge which is a function of both temperature and stress. The response of manganin gauges to shock loading is well understood, and was used to calibrate for the piezoresistive effect in nickel. Results are presented for a variety of well-characterised materials and the applicability of the proposed method discussed.

  1. Temperature Measurements at Material Interfaces with Thin-Foil Gauges

    NASA Astrophysics Data System (ADS)

    Morley, Mike J.; Chapman, David J.; Proud, William G.

    2009-12-01

    Measurements of shock heating are important in determining Equations of State that incorporate entropic effects. The use of thin-foil nickel gauges to measure shock heating in material was proposed by Rosenberg et al. in the 1980s. This research investigates the use of such commercial thin-foil gauges at interfaces between materials of different thermal and shock properties. The technique requires analysis of the resistance changes of the gauge which is a function of both temperature and stress. The response of manganin gauges to shock loading is well understood, and was used to calibrate for the piezoresistive effect in nickel. Results are presented for a variety of well-characterised materials and the applicability of the proposed method discussed.

  2. Reactive multilayer synthesis of hard ceramic foils and films

    DOEpatents

    Makowiecki, D.M.; Holt, J.B.

    1996-02-13

    A method is disclosed for synthesizing hard ceramic materials such as carbides, borides and aluminides, particularly in the form of coatings provided on another material so as to improve the wear and abrasion performance of machine tools, for example. The method involves the sputter deposition of alternating layers of reactive metals with layers of carbon, boron, or aluminum and the subsequent reaction of the multilayered structure to produce a dense crystalline ceramic. The material can be coated on a substrate or formed as a foil which can be coiled as a tape for later use.

  3. Carbon Dioxide Electroreduction using a Silver-Zinc Alloy [CO 2 Electroreduction on a Ag-Zn Alloy

    DOE PAGES

    Hatsukade, Toru; Kuhl, Kendra P.; Cave, Etosha R.; ...

    2017-02-20

    We report on CO 2 electroreduction activity and selectivity of a polycrystalline AgZn foil in aqueous bicarbonate electrolyte. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) measurements show that the alloy foil was slightly enriched in zinc both at the surface and in the bulk, with a surface alloy composition of 61.3±5.4 at % zinc and with Ag 5Zn 8 as the most prominent bulk phase. AgZn is active for CO 2 reduction; CO is the main product, likely due to the weak CO binding energy of the surface, with methane and methanol emerging as minor products. Compared to puremore » silver and pure zinc foils, enhancements in activity and selectivity for methane and methanol are observed. A five-fold increase is observed in the combined partial current densities for methane and methanol at –1.43 V vs. the reversible hydrogen electrode (RHE), representing a four- to six-fold increase in faradaic efficiency. Here, such enhancements indicate the existence of a synergistic effect between silver and zinc at the surface of the alloy that contributes to the enhanced formation of further reduced products.« less

  4. Stability of rigid rotors supported by air foil bearings: Comparison of two fundamental approaches

    NASA Astrophysics Data System (ADS)

    Larsen, Jon S.; Santos, Ilmar F.; von Osmanski, Sebastian

    2016-10-01

    High speed direct drive motors enable the use of Air Foil Bearings (AFB) in a wide range of applications due to the elimination of gear forces. Unfortunately, AFB supported rotors are lightly damped, and an accurate prediction of their Onset Speed of Instability (OSI) is therefore important. This paper compares two fundamental methods for predicting the OSI. One is based on a nonlinear time domain simulation and another is based on a linearised frequency domain method and a perturbation of the Reynolds equation. Both methods are based on equivalent models and should predict similar results. Significant discrepancies are observed leading to the question, is the classical frequency domain method sufficiently accurate? The discrepancies and possible explanations are discussed in detail.

  5. Effects of stern-foil submerged elevation on the lift and drag of a hydrofoil craft

    NASA Astrophysics Data System (ADS)

    Suastika, K.; Apriansyah

    2018-03-01

    Effects of the stern-foil submerged elevation on the lift and drag of a hydrofoil craft are studied by using computational fluid dynamics (CFD) and by considering three alternative stern-foil submerged elevations. The submerged elevation of the front foil is kept constant in all the alternatives. From among the alternatives, the deepest stern-foil placement results in the highest stern-foil lift with the highest foil’s lift-to-drag ratio. However, considering the lift-to-drag ratio of the whole foil-strut-hull system, the shallowest stern-foil placement results in the highest lift-to-drag ratio. The struts and the foil’s submerged elevation significantly affects the drag of the whole foil-strut-hull system.

  6. Optimized anion exchange column isolation of zirconium-89 ( 89Zr) from yttrium cyclotron target: Method development and implementation on an automated fluidic platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Hara, Matthew J.; Murray, Nathaniel J.; Carter, Jennifer C.

    Zirconium-89 ( 89Zr), produced by the (p, n) reaction from naturally monoisotopic yttrium ( natY), is a promising positron emitting isotope for immunoPET imaging. Its long half-life of 78.4 h is sufficient for evaluating slow physiological processes. A prototype automated fluidic system, coupled to on-line and in-line detectors, has been constructed to facilitate development of new 89Zr purification methodologies. The highly reproducible reagent delivery platform and near-real time monitoring of column effluents allows for efficient method optimization. The separation of Zr from dissolved Y metal targets was evaluated using several anion exchange resins. Each resin was evaluated against its abilitymore » to quantitatively capture Zr from a load solution high in dissolved Y. The most appropriate anion exchange resin for this application was identified, and the separation method was optimized. The method is capable of a high Y decontamination factor (>10 5) and has been shown to remove Fe, an abundant contaminant in Y foils, from the 89Zr elution fraction. Finally, the method was evaluated using cyclotron bombarded Y foil targets; the method was shown to achieve >95% recovery of the 89Zr present in the foils. The anion exchange column method described here is intended to be the first 89Zr isolation stage in a dual-column purification process.« less

  7. Optimized anion exchange column isolation of zirconium-89 ( 89Zr) from yttrium cyclotron target: Method development and implementation on an automated fluidic platform

    DOE PAGES

    O’Hara, Matthew J.; Murray, Nathaniel J.; Carter, Jennifer C.; ...

    2018-02-24

    Zirconium-89 ( 89Zr), produced by the (p, n) reaction from naturally monoisotopic yttrium ( natY), is a promising positron emitting isotope for immunoPET imaging. Its long half-life of 78.4 h is sufficient for evaluating slow physiological processes. A prototype automated fluidic system, coupled to on-line and in-line detectors, has been constructed to facilitate development of new 89Zr purification methodologies. The highly reproducible reagent delivery platform and near-real time monitoring of column effluents allows for efficient method optimization. The separation of Zr from dissolved Y metal targets was evaluated using several anion exchange resins. Each resin was evaluated against its abilitymore » to quantitatively capture Zr from a load solution high in dissolved Y. The most appropriate anion exchange resin for this application was identified, and the separation method was optimized. The method is capable of a high Y decontamination factor (>10 5) and has been shown to remove Fe, an abundant contaminant in Y foils, from the 89Zr elution fraction. Finally, the method was evaluated using cyclotron bombarded Y foil targets; the method was shown to achieve >95% recovery of the 89Zr present in the foils. The anion exchange column method described here is intended to be the first 89Zr isolation stage in a dual-column purification process.« less

  8. Effects of silver and group II fluoride solid lubricant additions to plasma-sprayed chromium carbide coatings for foil gas bearings to 650 C

    NASA Technical Reports Server (NTRS)

    Wagner, R. C.; Sliney, Harold E.

    1986-01-01

    A new self-lubricating coating composition of nickel aluminide-bonded chromium carbide formulated with silver and Group II fluorides was developed in a research program on high temperature solid lubricants. One of the proposed applications for this new coating composition is as a wide temperature spectrum solid lubricant for complaint foil gas bearings. Friction and wear properties were obtained using a foil gas bearing start-stop apparatus at temperatures from 25 to 650 C. The journals were Inconel 748. Some were coated with the plasma sprayed experimental coating, others with unmodified nickel aluminide/chromium carbide as a baseline for comparison. The additional components were provided to assist in achieving low friction over the temperature range of interest. Uncoated, preoxidized Inconel X-750 foil bearings were operated against these surfaces. The foils were subjected to repeated start/stop cycles under a 14-kPa (2-Psi) bearing unit loading. Sliding contact occurred during lift-off and coastdown at surface velocities less than 6 m/s (3000 rPm). Testing continued until 9000 start/stop cycles were accumulated or until a rise in starting torque indicated the journal/bearing had failed. Comparison in coating performance as well as discussions of their properties and methods of application are given.

  9. Effects of silver and group 2 fluorides addition to plasma sprayed chromium carbide high temperature solid lubricant for foil gas bearing to 650 deg C

    NASA Technical Reports Server (NTRS)

    Wagner, R. C.; Sliney, H. E.

    1984-01-01

    A new self-lubricating coating composition of nickel aluminide-bonded chromium carbide formulated with silver and Group II fluorides was developed in a research program on high temperature solid lubricants. One of the proposed applications for this new coating composition is as a wide temperature spectrum solid lubricant for complaint foil gas bearings. Friction and wear properties were obtained using a foil gas bearing start/stop apparatus at temperatures from 25 to 650 C. The journals were Inconel 718. Some were coated with the plasma sprayed experimental coating, others with unmodified nickel aluminide/chromium carbide as a baseline for comparison. The addtitional components were provided to assist in achieving low friction over the temperature range of interest. Uncoated, preoxidized Inconel X-750 foil bearings were operated against these surfaces. The foils were subjected to repeated start/stop cycles under a 14-kPa (2-psi) bearing unit loading. Sliding contact occurred during lift-off and coastdown at surface velocities less than 6 m/s (3000 rpm). Testing continued until 9000 start/stop cycles were accumulated or until a rise in starting torque indicated the journal/bearing had failed. Comparison in coating performance as well as discussions of their properties and methods of application are given.

  10. Shock wave driven microparticles for pharmaceutical applications

    NASA Astrophysics Data System (ADS)

    Menezes, V.; Takayama, K.; Gojani, A.; Hosseini, S. H. R.

    2008-10-01

    Ablation created by a Q-switched Nd:Yttrium Aluminum Garnet (Nd:YAG) laser beam focusing on a thin aluminum foil surface spontaneously generates a shock wave that propagates through the foil and deforms it at a high speed. This high-speed foil deformation can project dry micro- particles deposited on the anterior surface of the foil at high speeds such that the particles have sufficient momentum to penetrate soft targets. We used this method of particle acceleration to develop a drug delivery device to deliver DNA/drug coated microparticles into soft human-body targets for pharmaceutical applications. The device physics has been studied by observing the process of particle acceleration using a high-speed video camera in a shadowgraph system. Though the initial rate of foil deformation is over 5 km/s, the observed particle velocities are in the range of 900-400 m/s over a distance of 1.5-10 mm from the launch pad. The device has been tested by delivering microparticles into liver tissues of experimental rats and artificial soft human-body targets, modeled using gelatin. The penetration depths observed in the experimental targets are quite encouraging to develop a future clinical therapeutic device for treatments such as gene therapy, treatment of cancer and tumor cells, epidermal and mucosal immunizations etc.

  11. Energy exchange between a laser beam and charged particles using inverse transition radiation and method for its use

    DOEpatents

    Kimura, Wayne D.; Romea, Richard D.; Steinhauer, Loren C.

    1998-01-01

    A method and apparatus for exchanging energy between relativistic charged particles and laser radiation using inverse diffraction radiation or inverse transition radiation. The beam of laser light is directed onto a particle beam by means of two optical elements which have apertures or foils through which the particle beam passes. The two apertures or foils are spaced by a predetermined distance of separation and the angle of interaction between the laser beam and the particle beam is set at a specific angle. The separation and angle are a function of the wavelength of the laser light and the relativistic energy of the particle beam. In a diffraction embodiment, the interaction between the laser and particle beams is determined by the diffraction effect due to the apertures in the optical elements. In a transition embodiment, the interaction between the laser and particle beams is determined by the transition effect due to pieces of foil placed in the particle beam path.

  12. Characterization of the Caliban and Prospero Critical Assemblies Neutron Spectra for Integral Measurements Experiments

    NASA Astrophysics Data System (ADS)

    Casoli, P.; Authier, N.; Jacquet, X.; Cartier, J.

    2014-04-01

    Caliban and Prospero are two highly enriched uranium metallic core reactors operated on the CEA Center of Valduc. These critical assemblies are suitable for integral experiments, such as fission yields measurements or perturbation measurements, which have been carried out recently on the Caliban reactor. Different unfolding methods, based on activation foils and fission chambers measurements, are used to characterize the reactor spectra and especially the Caliban spectrum, which is very close to a pure fission spectrum.

  13. Foil changing apparatus

    DOEpatents

    Crist, Charles E.; Ives, Harry C.; Leifeste, Gordon T.; Miller, Robert B.

    1988-01-01

    A self-contained hermetically sealed foil changer for advancing a portion of foil web into a position normal to the path of a high energy particle beam. The path of the beam is defined generally by an aperture plate and cooperating axially movable barrel such that the barrel can be advanced toward the plate thereby positioning a portion of the foil across the beam path and sealing the foil between the barrel and the plate to form a membrane across said beam path. A spooling apparatus contained in the foil changer permits selectively advancing a fresh supply of foil across the beam path without breaking the foil changer seal.

  14. Multi-dimensional effects in radiation pressure acceleration of ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, V. K., E-mail: tripathivipin@yahoo.co.in

    A laser carries momentum. On reflection from an ultra-thin overdense plasma foil, it deposits recoil momentum on the foil, i.e. exerts radiation pressure on the foil electrons and pushes them to the rear. The space charge field thus created takes the ions along, accelerating the electron-ion double layer as a single unit. When the foil has surface ripple, of wavelength comparable to laser wavelength, the radiation pressure acts non-uniformly on the foil and the perturbation grows as Reyleigh-Taylor (RT) instability as the foil moves. The finite spot size of the laser causes foil to bend. These effects limit the quasi-monomore » energy acceleration of ions. Multi-ion foils, e.g., diamond like carbon foil embedded with protons offer the possibility of suppressing RT instability.« less

  15. My Spring with Graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Leary, Timothy Sean

    2015-06-08

    Graphene is a two-dimensional structure, one atom thick, with many uses in the world of technology. It has many useful electrical properties, is a very strong and durable material, and can be used to protect different types of substances. The world would be able to use these properties to further the strength of cars, protect metals from oxidation, increase computer speeds, use to improve superconductors, and whatever future uses that scientist invent or discover. We sought to optimize the growth and transfer of graphene. We grew graphene on copper foils by heating the foil in a furnace, and having variousmore » gases flow through a tube, where the copper foil was placed. We varied some of the concentrations of gases, along with having different times for heating the copper foil, different times for graphene growth, or a combination of the two. The focus of our experiment was to specifically grow monolayer single crystal graphene, which means that we do not want multiplayers of graphene, and do not want multiple crystals growing to form a bigger crystal. Our goal was to grow large single crystals from the growth experiment. We used a few different types of transfer methods that ranged from: using heat and pressure to press the graphene on different materials, using a polymer to cover the graphene with a method to destroy the copper, but leave the graphene and polymer intact, and using a type of heat tape with a combination of varying pressures to transfer the graphene, and then destroy the copper foil. To discover if we grew graphene we used different techniques involving lasers and microscopes to take different types of measurements. Discovering the best way of growing and transferring graphene will help with managing the cost of the future uses of graphene.« less

  16. X-ray mirror prototype based on cold shaping of thin glass foils

    NASA Astrophysics Data System (ADS)

    Basso, Stefano; Civitani, Marta; Ghigo, Mauro; Hołyszko, Joanna; Pareschi, Giovanni; Salmaso, Bianca; Vecchi, Gabriele; Burwitz, Vadim; Pelliciari, Carlo; Hartner, Gisela D.; Breunig, Elias

    2017-08-01

    The Slumping Glass Optics technology for the fabrication of astronomical X-ray mirrors has been developed in recent years in USA and Europe. The process has been used for making the mirrors of the Nustar, mission. The process starts with very thin glass foils hot formed to copy the profile of replication moulds. At INAF - Osservatorio Astronomico di Brera a process based on cold shaping is being developed, based on an integration method involving the use of interconnecting ribs for making stacks. Each glass foil in the stack is shaped onto a very precise integration mould and the correct shape is frozen by means of glued ribs that act as spacers between one layer and the next one (the first layers being attached to a thick substrate). Therefore, the increasing availability of flexible glass foils with a thickness of a few tens of microns (driven by electronic market for ultra-thin displays) opens new possibilities for the fabrication of X-ray mirrors. This solution appears interesting especially for the fabrication of mirrors for hard X-rays (with energy > 10 keV) based on multilayer coatings, taking advantage from the intrinsic low roughness of the glass foils that should grant a low scattering level. The stress frozen on the glass due to the cold shaping is not negligible, but it is kept into account in the errors of the X-ray optics design. As an exercise, we have considered the requirements and specs of the FORCE hard Xray mission concept (being studied by JAXA) and we have designed the mirror modules assuming the cold slumping as a fabrication method. In the meantime, a prototype (representative of the FORCE mirror modules) is being design and integrated in order to demonstrate the feasibility and the capacity to reach good angular resolution.

  17. 50th Annual Fuze Conference.Session 3 and 4

    DTIC Science & Technology

    2006-05-11

    Exploding Foil Initiator Research • Research on Explosives • Conclusion Wim Prinse Research Scientist3 TNO has organised...Research Scientist6 Exploding Foil Initiator Research • Electrical circuit • Exploding foil • Velocity of the flyer • Driver Explosive • Secondary...90% efficiency of energy deposited in the exploding foil (50 % other circuits) Wim Prinse Research Scientist8 Exploding foil • Dimension of the foil

  18. FAST OPENING SWITCH

    DOEpatents

    Bender, M.; Bennett, F.K.; Kuckes, A.F.

    1963-09-17

    A fast-acting electric switch is described for rapidly opening a circuit carrying large amounts of electrical power. A thin, conducting foil bridges a gap in this circuit and means are provided for producing a magnetic field and eddy currents in the foil, whereby the foil is rapidly broken to open the circuit across the gap. Advantageously the foil has a hole forming two narrow portions in the foil and the means producing the magnetic field and eddy currents comprises an annular coil having its annulus coaxial with the hole in the foil and turns adjacent the narrow portions of the foil. An electrical current flows through the coil to produce the magnetic field and eddy currents in the foil. (AEC)

  19. Single-jet gas cooling of in-beam foils or specimens: Prediction of the convective heat-transfer coefficient

    NASA Astrophysics Data System (ADS)

    Steyn, Gideon; Vermeulen, Christiaan

    2018-05-01

    An experiment was designed to study the effect of the jet direction on convective heat-transfer coefficients in single-jet gas cooling of a small heated surface, such as typically induced by an accelerated ion beam on a thin foil or specimen. The hot spot was provided using a small electrically heated plate. Heat-transfer calculations were performed using simple empirical methods based on dimensional analysis as well as by means of an advanced computational fluid dynamics (CFD) code. The results provide an explanation for the observed turbulent cooling of a double-foil, Havar beam window with fast-flowing helium, located on a target station for radionuclide production with a 66 MeV proton beam at a cyclotron facility.

  20. Novel target design for enhanced laser driven proton acceleration

    NASA Astrophysics Data System (ADS)

    Dalui, Malay; Kundu, M.; Tata, Sheroy; Lad, Amit D.; Jha, J.; Ray, Krishanu; Krishnamurthy, M.

    2017-09-01

    We demonstrate a simple method of preparing structured target for enhanced laser-driven proton acceleration under target-normal-sheath-acceleration scheme. A few layers of genetically modified, clinically grown micron sized E. Coli bacteria cell coated on a thin metal foil has resulted in an increase in the maximum proton energy by about 1.5 times and the total proton yield is enhanced by approximately 25 times compared to an unstructured reference foil at a laser intensity of 1019 W/cm2. Particle-in-cell simulations on the system shows that the structures on the target-foil facilitates anharmonic resonance, contributing to enhanced hot electron production which leads to stronger accelerating field. The effect is observed to grow as the number of structures is increased in the focal area of the laser pulse.

  1. Nuclear instrumentation in VENUS-F

    NASA Astrophysics Data System (ADS)

    Wagemans, J.; Borms, L.; Kochetkov, A.; Krása, A.; Van Grieken, C.; Vittiglio, G.

    2018-01-01

    VENUS-F is a fast zero power reactor with 30 wt% U fuel and Pb/Bi as a coolant simulator. Depending on the experimental configuration, various neutron spectra (fast, epithermal, and thermal islands) are present. This paper gives a review of the nuclear instrumentation that is applied for reactor control and in a large variety of physics experiments. Activation foils and fission chambers are used to measure spatial neutron flux profiles, spectrum indices, reactivity effects (with positive period and compensation method or the MSM method) and kinetic parameters (with the Rossi-alpha method). Fission chamber calibrations are performed in the standard irradiation fields of the BR1 reactor (prompt fission neutron spectrum and Maxwellian thermal neutron spectrum).

  2. Real-time simulator for designing electron dual scattering foil systems.

    PubMed

    Carver, Robert L; Hogstrom, Kenneth R; Price, Michael J; LeBlanc, Justin D; Pitcher, Garrett M

    2014-11-08

    The purpose of this work was to develop a user friendly, accurate, real-time com- puter simulator to facilitate the design of dual foil scattering systems for electron beams on radiotherapy accelerators. The simulator allows for a relatively quick, initial design that can be refined and verified with subsequent Monte Carlo (MC) calculations and measurements. The simulator also is a powerful educational tool. The simulator consists of an analytical algorithm for calculating electron fluence and X-ray dose and a graphical user interface (GUI) C++ program. The algorithm predicts electron fluence using Fermi-Eyges multiple Coulomb scattering theory with the reduced Gaussian formalism for scattering powers. The simulator also estimates central-axis and off-axis X-ray dose arising from the dual foil system. Once the geometry of the accelerator is specified, the simulator allows the user to continuously vary primary scattering foil material and thickness, secondary scat- tering foil material and Gaussian shape (thickness and sigma), and beam energy. The off-axis electron relative fluence or total dose profile and central-axis X-ray dose contamination are computed and displayed in real time. The simulator was validated by comparison of off-axis electron relative fluence and X-ray percent dose profiles with those calculated using EGSnrc MC. Over the energy range 7-20 MeV, using present foils on an Elekta radiotherapy accelerator, the simulator was able to reproduce MC profiles to within 2% out to 20 cm from the central axis. The central-axis X-ray percent dose predictions matched measured data to within 0.5%. The calculation time was approximately 100 ms using a single Intel 2.93 GHz processor, which allows for real-time variation of foil geometrical parameters using slider bars. This work demonstrates how the user-friendly GUI and real-time nature of the simulator make it an effective educational tool for gaining a better understanding of the effects that various system parameters have on a relative dose profile. This work also demonstrates a method for using the simulator as a design tool for creating custom dual scattering foil systems in the clinical range of beam energies (6-20 MeV). 

  3. Investigation of the 68Zn(p, 2p) 67Cu nuclear reaction: New measurements up to 40 MeV and compilation up to 100 MeV

    NASA Astrophysics Data System (ADS)

    Szelecsényi, F.; Steyn, G. F.; Dolley, S. G.; Kovács, Z.; Vermeulen, C.; van der Walt, T. N.

    2009-06-01

    The excitation function was measured for the 68Zn(p, 2p) 67Cu nuclear reaction from its threshold energy up to 40 MeV. Nine pieces of highly enriched 68Zn (>98%) metal foils were irradiated to obtain reliable cross-sections using the usual stacked-foil technique. All foils were subjected to high efficiency radiochemical separation before the activity measurements. A critical compilation of the available experimental cross-section results was also performed. Thick target yields of 67Cu and the longer-lived copper radio-contaminants ( 61Cu and 64Cu) were calculated using the reliable literature results up to 100 MeV. Additionally, EOB (End Of Bombardment) contamination levels as a function of bombarding energy and irradiation time were deduced.

  4. [Fatty acid variation in yellowfin tuna, spotted weakfish and Florida pompano when submitted to six cooking techniques].

    PubMed

    Castro-González, María Isabel; Maafs-Rodríguez, Ana Gabriela; Romo Pérez-Gil, Fernando

    2013-03-01

    The aim of the present study was to analyze the effect of six cooking techniques (steamed, foiled, foiled with banana leaf, baked, microwave-cooked and light frying) in the fatty acid content of Thunnus albacore (yellowfin tuna), Cynoscionnebulosus (spotted weakfish) and Trachinotuscarolinus (Florida pompano). After cooking the fish fillets, fatty acid analyses were performed using gas chromatography. Total lipids increased in all cooking techniques in tunaand spotted weakfish. Saturated fatty acids of tuna and spotted weakfish increased in three cooking techniques, while in Florida pompano only gas oven raised their content. Lightly frying generated the highest content of n-3 in tuna and spotted weakfish, and the lowest in Florida pompano, specie that presented less variation. In tuna fish, the most recommended cooking techniques are foiled with aluminum and microwave oven; for spotted weakfish, foiled with banana leaf; while Florida pompano can be prepared using all cooking methods except gas oven. This information is useful to enrich data from chemical composition tables, in which concentrations are usually presented in raw food.

  5. Nanosecond laser-induced ablation and laser-induced shockwave structuring of polymer foils down to sub-μm patterns

    NASA Astrophysics Data System (ADS)

    Lorenz, P.; Bayer, L.; Ehrhardt, M.; Zimmer, K.; Engisch, L.

    2015-03-01

    Micro- and nanostructures exhibit a growing commercial interest where a fast, cost-effective, and large-area production is attainable. Laser methods have a great potential for the easy fabrication of surface structures into flexible polymer foils like polyimide (PI). In this study two different concepts for the structuring of polymer foils using a KrF excimer laser were tested and compared: the laser-induced ablation and the laser-induced shock wave structuring. The direct front side laser irradiation of these polymers allows the fabrication of different surface structures. For example: The low laser fluence treatment of PI results in nano-sized cone structures where the cone density can be controlled by the laser parameters. This allows inter alia the laser fabrication of microscopic QR code and high-resolution grey-tone images. Furthermore, the laser treatment of the front side of the polymer foil allows the rear side structuring due to a laserinduced shock wave. The resultant surface structures were analysed by optical and scanning electron microscopy (SEM) as well as white light interferometry (WLI).

  6. 75 FR 1596 - Grant of Authority for Subzone Status, Reynolds Packaging LLC (Aluminum Foil Liner Stock...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-12

    ... Status, Reynolds Packaging LLC (Aluminum Foil Liner Stock), Louisville, Kentucky Pursuant to its...-purpose subzone at the aluminum foil liner stock manufacturing and distribution facilities of Reynolds... manufacturing and distribution of aluminum foil liner stock and aluminum foil at the facilities of Reynolds...

  7. 50th Annual Fuze Conference Sessions 3 and 4 Held in Norfolk, Virginia on May 9-11, 2006

    DTIC Science & Technology

    2006-05-11

    Exploding Foil Initiator Research • Research on Explosives • Conclusion Wim Prinse Research Scientist3 TNO has organised...Research Scientist6 Exploding Foil Initiator Research • Electrical circuit • Exploding foil • Velocity of the flyer • Driver Explosive • Secondary...90% efficiency of energy deposited in the exploding foil (50 % other circuits) Wim Prinse Research Scientist8 Exploding foil • Dimension of the foil

  8. Birefringence and dichroism of poly(vinyl-alcohol) foils containing phthalazinium ylids

    NASA Astrophysics Data System (ADS)

    Rogojanu, Alina; Dascalu, Carmen Felicia; Zelinschi, Beatrice Carmen; Caprosu, Maria; Dorohoi, Dana Ortansa

    2011-10-01

    Pure and colored with phthalazinium ylids poly(vinyl-alcohol) (PVA) foils were stretched under gentile heating. The birefringence of the thin foils was determined with a Babinet compensator standardized for yellow radiation of a Sodium lamp. The determined birefringence of the colored PVA foils is higher than that of the pure PVA foils. This fact indicates that the phthalazinium ylids facilitate the increase in the anisotropy of the stretched foils. The visible absorption electronic band of phthalazinium ylids was used to estimate the dichroic ratio and the degree of order of the ylid molecules in the stretched PVA foils. An increase in dichroism and birefringence with the degree of stretching has been evidenced for uncolored and colored PVA foils.

  9. Stiffness and Damping Coefficient Estimation of Compliant Surface Gas Bearings for Oil-Free Turbomachinery

    NASA Technical Reports Server (NTRS)

    Della-Corte, Christopher

    2012-01-01

    Foil gas bearings are a key technology in many commercial and emerging oilfree turbomachinery systems. These bearings are nonlinear and have been difficult to analytically model in terms of performance characteristics such as load capacity, power loss, stiffness, and damping. Previous investigations led to an empirically derived method to estimate load capacity. This method has been a valuable tool in system development. The current work extends this tool concept to include rules for stiffness and damping coefficient estimation. It is expected that these rules will further accelerate the development and deployment of advanced oil-free machines operating on foil gas bearings.

  10. Microfabricated X-Ray Optics Technology Development for the Constellation-X Mission

    NASA Technical Reports Server (NTRS)

    Schattenburg, Mark L.

    2003-01-01

    During the period of this Cooperative Agreement, MIT developed advanced methods for applying silicon micro-stuctures for the precision assembly of foil x-ray optics in support of the Constellution-X Spectroscopy X-ray Telescope (SXT) development effort at Goddard Space Flight Center (GSFC). MIT developed improved methods for fabricating and characterizing the precision silicon micro-combs. MIT also developed and characterized assembly tools and several types of metrology tools in order to characterize and reduce the errors associated with precision assembly of foil optics. Results of this effort were published and presented to the scientific community and the GSFC SXT team.

  11. A novel application of Fiber Bragg Grating (FBG) sensors in MPGD

    NASA Astrophysics Data System (ADS)

    Abbaneo, D.; Abbas, M.; Abbrescia, M.; Abi Akl, M.; Aboamer, O.; Acosta, D.; Ahmad, A.; Ahmed, W.; Aleksandrov, A.; Altieri, P.; Asawatangtrakuldee, C.; Aspell, P.; Assran, Y.; Awan, I.; Bally, S.; Ban, Y.; Banerjee, S.; Barashko, V.; Barria, P.; Bencze, G.; Beni, N.; Benussi, L.; Bhopatkar, V.; Bianco, S.; Bos, J.; Bouhali, O.; Braghieri, A.; Braibant, S.; Buontempo, S.; Calabria, C.; Caponero, M.; Caputo, C.; Cassese, F.; Castaneda, A.; Cauwenbergh, S.; Cavallo, F. R.; Celik, A.; Choi, M.; Choi, S.; Christiansen, J.; Cimmino, A.; Colafranceschi, S.; Colaleo, A.; Conde Garcia, A.; Czellar, S.; Dabrowski, M. M.; De Lentdecker, G.; De Oliveira, R.; de Robertis, G.; Dildick, S.; Dorney, B.; Endroczi, G.; Errico, F.; Fenyvesi, A.; Ferrini, M.; Ferry, S.; Furic, I.; Giacomelli, P.; Gilmore, J.; Golovtsov, V.; Guiducci, L.; Guilloux, F.; Gutierrez, A.; Hadjiiska, R. M.; Hauser, J.; Hoepfner, K.; Hohlmann, M.; Hoorani, H.; Iaydjiev, P.; Jeng, Y. G.; Kamon, T.; Karchin, P.; Korytov, A.; Krutelyov, S.; Kumar, A.; Kim, H.; Lalli, A.; Lee, J.; Lenzi, T.; Litov, L.; Loddo, F.; Madorsky, A.; Maerschalk, T.; Maggi, M.; Magnani, A.; Mal, P. K.; Mandal, K.; Marchioro, A.; Marinov, A.; Majumdar, N.; Merlin, J. A.; Mitselmakher, G.; Mohanty, A. K.; Mohapatra, A.; Molnar, J.; Muhammad, S.; Mukhopadhyay, S.; Naimuddin, M.; Nuzzo, S.; Oliveri, E.; Pant, L. M.; Paolucci, P.; Park, I.; Passamonti, L.; Passeggio, G.; Pavlov, B.; Philipps, B.; Piccolo, D.; Pierluigi, D.; Postema, H.; Primavera, F.; Puig Baranac, A.; Radi, A.; Radogna, R.; Raffone, G.; Ranieri, A.; Rashevski, G.; Riccardi, C.; Rodozov, M.; Rodrigues, A.; Ropelewski, L.; RoyChowdhury, S.; Russo, A.; Ryu, G.; Ryu, M. S.; Safonov, A.; Salva, S.; Saviano, G.; Sharma, A.; Sharma, A.; Sharma, R.; Shah, A. H.; Shopova, M.; Sturdy, J.; Sultanov, G.; Swain, S. K.; Szillasi, Z.; Talvitie, J.; Tatarinov, A.; Tuuva, T.; Tytgat, M.; Valente, M.; Vai, I.; Van Stenis, M.; Venditti, R.; Verhagen, E.; Verwilligen, P.; Vitulo, P.; Volkov, S.; Vorobyev, A.; Wang, D.; Wang, M.; Yang, U.; Yang, Y.; Yonamine, R.; Zaganidis, N.; Zenoni, F.; Zhang, A.

    2018-02-01

    We present a novel application of Fiber Bragg Grating (FBG) sensors in the construction and characterisation of Micro Pattern Gaseous Detector (MPGD), with particular attention to the realisation of the largest triple (Gas electron Multiplier) GEM chambers so far operated, the GE1/1 chambers of the CMS experiment at LHC. The GE1/1 CMS project consists of 144 GEM chambers of about 0.5 m2 active area each, employing three GEM foils per chamber, to be installed in the forward region of the CMS endcap during the long shutdown of LHC in 2108-2019. The large active area of each GE1/1 chamber consists of GEM foils that are mechanically stretched in order to secure their flatness and the consequent uniform performance of the GE1/1 chamber across its whole active surface. So far FBGs have been used in high energy physics mainly as high precision positioning and re-positioning sensors and as low cost, easy to mount, low space consuming temperature sensors. FBGs are also commonly used for very precise strain measurements in material studies. In this work we present a novel use of FBGs as flatness and mechanical tensioning sensors applied to the wide GEM foils of the GE1/1 chambers. A network of FBG sensors have been used to determine the optimal mechanical tension applied and to characterise the mechanical tension that should be applied to the foils. We discuss the results of the test done on a full-sized GE1/1 final prototype, the studies done to fully characterise the GEM material, how this information was used to define a standard assembly procedure and possible future developments.

  12. A simple method for the measurement of reflective foil emissivity

    NASA Astrophysics Data System (ADS)

    Ballico, M. J.; van der Ham, E. W. M.

    2013-09-01

    Reflective metal foil is widely used to reduce radiative heat transfer within the roof space of buildings. Such foils are typically mass-produced by vapor-deposition of a thin metallic coating onto a variety of substrates, ranging from plastic-coated reinforced paper to "bubble-wrap". Although the emissivity of such surfaces is almost negligible in the thermal infrared, typically less than 0.03, an insufficiently thick metal coating, or organic contamination of the surface, can significantly increase this value. To ensure that the quality of the installed insulation is satisfactory, Australian building code AS/NZS 4201.5:1994 requires a practical agreed method for measurement of the emissivity, and the standard ASTM-E408 is implied. Unfortunately this standard is not a "primary method" and requires the use of specified expensive apparatus and calibrated reference materials. At NMIA we have developed a simple primary technique, based on an apparatus to thermally modulate the sample and record the apparent modulation in infra-red radiance with commercially available radiation thermometers. The method achieves an absolute accuracy in the emissivity of approximately 0.004 (k=2). This paper theoretically analyses the equivalence between the thermal emissivity measured in this manner, the effective thermal emissivity in application, and the apparent emissivity measured in accordance with ASTM-E408.

  13. A simple method for the measurement of reflective foil emissivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballico, M. J.; Ham, E. W. M. van der

    Reflective metal foil is widely used to reduce radiative heat transfer within the roof space of buildings. Such foils are typically mass-produced by vapor-deposition of a thin metallic coating onto a variety of substrates, ranging from plastic-coated reinforced paper to 'bubble-wrap'. Although the emissivity of such surfaces is almost negligible in the thermal infrared, typically less than 0.03, an insufficiently thick metal coating, or organic contamination of the surface, can significantly increase this value. To ensure that the quality of the installed insulation is satisfactory, Australian building code AS/NZS 4201.5:1994 requires a practical agreed method for measurement of the emissivity,more » and the standard ASTM-E408 is implied. Unfortunately this standard is not a 'primary method' and requires the use of specified expensive apparatus and calibrated reference materials. At NMIA we have developed a simple primary technique, based on an apparatus to thermally modulate the sample and record the apparent modulation in infra-red radiance with commercially available radiation thermometers. The method achieves an absolute accuracy in the emissivity of approximately 0.004 (k=2). This paper theoretically analyses the equivalence between the thermal emissivity measured in this manner, the effective thermal emissivity in application, and the apparent emissivity measured in accordance with ASTM-E408.« less

  14. Evidence of Superstoichiometric H/d Lenr Active Sites and High-Temperature Superconductivity in a Hydrogen-Cycled Pd/PdO

    NASA Astrophysics Data System (ADS)

    Lipson, A. G.; Castano, C. H.; Miley, G. H.; Lyakhov, B. F.; Tsivadze, A. Yu.; Mitin, A. V.

    Electron transport and magnetic properties have been studied in a 12.5 μm thick Pd foil with a thermally grown oxide and a low-residual concentration of hydrogen. This foil was deformed by cycling across the Pd hydride miscibility gap and the residual hydrogen was trapped at dislocation cores. Anomalies of both resistance and magnetic susceptibility have been observed below 70 K, indicating the appearance of excess conductivity and a diamagnetic response that we interpret in terms of filamentary superconductivity. These anomalies are attributed to a condensed hydrogen-rich phase at dislocation cores. The role of deuterium rich dislocation cores as LENR active sites is discussed.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, M.T.; Butler, H.M.; Gupton, E.D.

    The UCC-ND Employee Identification Badge contains an indium foil disc that is intended for use as a dosimetry screening device in the event of a criticality accident. While it is recognized that indium is not a precise mixed neutron-gamma dosimeter, its activation by neutrons provides adequate means for separating potentially exposed persons into three groups. These groups are: (1) personnel exposed below annual dose limits, (2) personnel exposed above annual dose limits but below 25 rem, and (3) personnel exposed above 25 rem. This screening procedure is designed to facilitate dosimeter processing in order to meet regulatory reporting requirements. Amore » quick method of interpreting induced activity measurements is presented and discussed.« less

  16. The SuperNemo ββ0ν enriched 82Se source foils and their radiopurity measurement with the BiPo-3 detector

    NASA Astrophysics Data System (ADS)

    Loaiza, P.; SuperNemo Collaboration

    2017-09-01

    The SuperNemo collaboration is currently building the SuperNemo demonstrator at the Modane Underground Laboratory, as the proof of concept for the full SuperNemo program. The enriched ββ0ν source consisting of thin foils containing 7 kg of 82Se is enclosed by the gas tracker and the plastic scintillator calorimeter. The full reconstruction of the ββ0ν event topology ensures an excellent background rejection and points at a true zero-background search. One of the most critical sources of background is a contamination in the source foils. The required radiopurity is 208Tl < 2 µBq/kg and 214Bi < 10 µBq/kg to achieve the sensitivity T1/2(ββ0ν) > 1026 years. The collaboration has developed a dedicated detector to measure the ultra high natural radiopurities requested, the BiPo-3 detector, installed in the Canfranc Underground Laboratory. The experimental design and performances of BiPo-3 are presented. Dedicated background measurements have been performed. After an exposure of about 2 years.m2 the surface activities of the scintillators of A(208Tl) = 1.0 ± 0.2 µBq/m2 and A(214Bi) = 1.0 ± 0.3 µBq/m2 are measured. Results of the 208Tl and 214Bi activity measurements of the first enriched 82Se foils of SuperNemo are also presented.

  17. Flapping foil power generator performance enhanced with a spring-connected tail

    NASA Astrophysics Data System (ADS)

    Liu, Zhengliang; Tian, Fang-Bao; Young, John; Lai, Joseph C. S.

    2017-12-01

    The flexibility effects on the performance of a flapping foil power generator are numerically studied by using the immersed boundary-lattice Boltzmann method at a Reynolds number of 1100. The flapping foil system consists of a rigid NACA0015 foil undergoing harmonic pitch and plunge motions and a passively actuated flat plate pinned to the trailing edge of the rigid foil. The flexibility is modeled by a torsional spring model at the conjuncture of the rigid foil and the tail. Here, a parametric study on mass density and natural frequency is conducted under the optimum kinematic condition of the rigid system identified from the literature and numerical simulations made for reduced frequency f* = 0.04-0.24 and pitch amplitude θ0 = 40°-90°. Four typical cases are discussed in detail by considering time histories of hydrodynamic loads and tail deformations under the optimal and non-optimal kinematic conditions. Results show that under the rigid-system optimal kinematic condition, a tail with appropriate mass density (μ = 0.60) and resonant frequency ( fr*=1.18 ) can improve the maximum efficiency by 7.24% accompanied by an increase of 6.63% in power compared to those of a rigid foil with a rigid tail. This is because the deflection of the tail reduces the low pressure region on the pressure surface (i.e., the lower surface during the upstroke or the upper surface during the downstroke) caused by the leading edge vortex after the stroke reversal, resulting in a higher efficiency. At high flapping frequencies, a spring-connected tail ( fr*=0.13 ) eliminates the large spike in the moment observed in high stiffness cases, reducing the power required for the pitch motion, resulting in 117% improvement in efficiency over that with a rigid tail at a reduced frequency of 0.24.

  18. Foil Artists

    ERIC Educational Resources Information Center

    Szekely, George

    2010-01-01

    Foil can be shaped into almost anything--it is the all-purpose material for children's art. Foil is a unique drawing surface. It reflects, distorts and plays with light and imagery as young artists draw over it. Foil permits quick impressions of a model or object to be sketched. Foil allows artists to track their drawing moves, seeing the action…

  19. Neutron production during the interaction of monoenergetic electrons with a Tungsten foil in the radiotherapeutic energy range

    NASA Astrophysics Data System (ADS)

    Soto-Bernal, Tzinnia Gabriela; Baltazar-Raigosa, Antonio; Medina-Castro, Diego; Vega-Carrillo, Hector Rene

    2017-10-01

    The electron, photon, and neutron spectra produced during the interaction between monoenergetic electron beams (8, 10, 12, 15, and 18 MeV) and a 0.05 cm-thick tungsten scattering foil were estimated using Monte Carlo method. Incoming electrons is a pencil beam that after collide with the foil acquires a broader distribution peaked in the same direction of the incoming electrons. Electron spectra show the influence of the binding energy of electrons in the tungsten shells and the increase of the electron fluence. In the interaction between the electrons in the beam and the tungsten atoms in the foil, bremsstrahlung and characteristic photons are produced. These photons are also peaked in the same direction of the incoming beam, and the electron fluence increases as the energy of the electron beam raises. The electron and photon spectra have particles whose energy is larger than the binding energy of neutron in the nucleus. Thus neutron production was noticed for 10, 12, 15, and 18 MeV electron beam. The neutron fluence becomes larger as the energy of the electron beam increases, the neutron spectra are mainly evaporation neutrons for 10 and 12 MeV, and for 15 and 18 MeV knock-on neutrons are also produced. Neutrons are produced in the foil volume having a quasi-isotropic distribution.

  20. Optimized anion exchange column isolation of zirconium-89 (89Zr) from yttrium cyclotron target: Method development and implementation on an automated fluidic platform.

    PubMed

    O'Hara, Matthew J; Murray, Nathaniel J; Carter, Jennifer C; Morrison, Samuel S

    2018-04-13

    Zirconium-89 ( 89 Zr), produced by the (p, n) reaction from naturally monoisotopic yttrium ( nat Y), is a promising positron emitting isotope for immunoPET imaging. Its long half-life of 78.4 h is sufficient for evaluating slow physiological processes. A prototype automated fluidic system, coupled to on-line and in-line detectors, has been constructed to facilitate development of new 89 Zr purification methodologies. The highly reproducible reagent delivery platform and near-real time monitoring of column effluents allows for efficient method optimization. The separation of Zr from dissolved Y metal targets was evaluated using several anion exchange resins. Each resin was evaluated against its ability to quantitatively capture Zr from a load solution high in dissolved Y. The most appropriate anion exchange resin for this application was identified, and the separation method was optimized. The method is capable of a high Y decontamination factor (>10 5 ) and has been shown to remove Fe, an abundant contaminant in Y foils, from the 89 Zr elution fraction. Finally, the method was evaluated using cyclotron bombarded Y foil targets; the method was shown to achieve >95% recovery of the 89 Zr present in the foils. The anion exchange column method described here is intended to be the first 89 Zr isolation stage in a dual-column purification process. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Angularly resolved characterization of ion beams from laser-ultrathin foil interactions

    NASA Astrophysics Data System (ADS)

    Scullion, C.; Doria, D.; Romagnani, L.; Ahmed, H.; Alejo, A.; Ettlinger, O. C.; Gray, R. J.; Green, J.; Hicks, G. S.; Jung, D.; Naughton, K.; Padda, H.; Poder, K.; Scott, G. G.; Symes, D. R.; Kar, S.; McKenna, P.; Najmudin, Z.; Neely, D.; Zepf, M.; Borghesi, M.

    2016-09-01

    Methods and techniques used to capture and analyze beam profiles produced from the interaction of intense, ultrashort laser pulses and ultrathin foil targets using stacks of Radiochromic Film (RCF) and Columbia Resin #39 (CR-39) are presented. The identification of structure in the beam is particularly important in this regime, as it may be indicative of the dominance of specific acceleration mechanisms. Additionally, RCF can be used to deconvolve proton spectra with coarse energy resolution while mantaining angular information across the whole beam.

  2. An experimental and theoretical study of structural damping in compliant foil bearings

    NASA Technical Reports Server (NTRS)

    Ku, C.-P. Roger

    1994-01-01

    This paper describes an experimental investigation into the dynamic characteristics of corrugated foil (bump foil) strips used in compliant surface foil bearings. This study provided and opportunity to quantify the structural damping of bump foil strips. The experimental data were compared to results obtained by a theoretical model developed earlier. The effects of bearing design parameters, such as static loads, dynamic displacement amplitudes, bump configurations, pivot locations, surface coatings, and lubricant were also evaluated. An understanding of the dynamic characteristics of bump foil strips resulting from this work offers designers a means for enhancing the design of high-performance compliant foil bearings.

  3. Increased experience amplifies the activation of task-irrelevant category representations.

    PubMed

    Wu, Rachel; Pruitt, Zoe; Zinszer, Benjamin D; Cheung, Olivia S

    2017-02-01

    Prior research has demonstrated the benefits (i.e., task-relevant attentional selection) and costs (i.e., task-irrelevant attentional capture) of prior knowledge on search for an individual target or multiple targets from a category. This study investigated whether the level of experience with particular categories predicts the degree of task-relevant and task-irrelevant activation of item and category representations. Adults with varying levels of dieting experience (measured via 3 subscales of Disinhibition, Restraint, Hunger; Stunkard & Messick, Journal of Psychosomatic Research, 29(1), 71-83, 1985) searched for targets defined as either a specific food item (e.g., carrots), or a category (i.e., any healthy or unhealthy food item). Apart from the target-present trials, in the target-absent "foil" trials, when searching for a specific item (e.g., carrots), irrelevant items from the target's category (e.g., squash) were presented. The ERP (N2pc) results revealed that the activation of task-relevant representations (measured via Exemplar and Category N2pc amplitudes) did not differ based on the degree of experience. Critically, however, increased dieting experience, as revealed by lower Disinhibition scores, predicted activation of task-irrelevant representations (i.e., attentional capture of foils from the target item category). Our results suggest that increased experience with particular categories encourages the rapid activation of category representations even when category information is task irrelevant, and that the N2pc in foil trials could potentially serve as an indication of experience level in future studies on categorization.

  4. Performance assessment of imaging plates for the JHR transfer Neutron Imaging System

    NASA Astrophysics Data System (ADS)

    Simon, E.; Guimbal, P. AB(; )

    2018-01-01

    The underwater Neutron Imaging System to be installed in the Jules Horowitz Reactor (JHR-NIS) is based on a transfer method using a neutron activated beta-emitter like Dysprosium. The information stored in the converter is to be offline transferred on a specific imaging system, still to be defined. Solutions are currently under investigation for the JHR-NIS in order to anticipate the disappearance of radiographic films commonly used in these applications. We report here the performance assessment of Computed Radiography imagers (Imaging Plates) performed at LLB/Orphée (CEA Saclay). Several imaging plate types are studied, in one hand in the configuration involving an intimate contact with an activated dysprosium foil converter: Fuji BAS-TR, Fuji UR-1 and Carestream Flex XL Blue imaging plates, and in the other hand by using a prototypal imaging plate doped with dysprosium and thus not needing any contact with a separate converter foil. The results for these imaging plates are compared with those obtained with gadolinium doped imaging plate used in direct neutron imaging (Fuji BAS-ND). The detection performances of the different imagers are compared regarding resolution and noise. The many advantages of using imaging plates over radiographic films (high sensitivity, linear response, high dynamic range) could palliate its lower intrinsic resolution.

  5. Chromic acid anodizing of aluminum foil

    NASA Technical Reports Server (NTRS)

    Dursch, H.

    1988-01-01

    The success of the Space Station graphite/epoxy truss structure depends on its ability to endure long-term exposure to the LEO environment, primarily the effects of atomic oxygen and the temperture cycling resulting from the 94 minute orbit. This report describes the development and evaluation of chromic acid anodized (CAA) aluminum foil as protective coatings for these composite tubes. Included are: development of solar absorptance and thermal emittance properties required of Al foil and development of CAA parameters to achieve these optical properties; developing techniques to CAA 25 ft lengths of Al foil; developing bonding processes for wrapping the Al foil to graphite/epoxy tubes; and atomic oxygen testing of the CAA Al foil. Two specifications were developed and are included in the report: Chromic Acid Anodizing of Aluminum Foil Process Specification and Bonding of Anodized Aluminum Foil to Graphite/Epoxy Tubes. Results show that CAA Al foil provides and excellent protective and thermal control coating for the Space Station truss structure.

  6. The BiPo-3 detector for the measurement of ultra low natural radioactivities of thin materials

    NASA Astrophysics Data System (ADS)

    Barabash, A. S.; Basharina-Freshville, A.; Birdsall, E.; Blondel, S.; Blot, S.; Bongrand, M.; Boursette, D.; Brudanin, V.; Busto, J.; Caffrey, A. J.; Calvez, S.; Cascella, M.; Cebrián, S.; Cerna, C.; Cesar, J. P.; Chauveau, E.; Chopra, A.; Dafní, T.; De Capua, S.; Duchesneau, D.; Durand, D.; Egorov, V.; Eurin, G.; Evans, J. J.; Fajt, L.; Filosofov, D.; Flack, R.; Garrido, X.; Gómez, H.; Guillon, B.; Guzowski, P.; Holý, K.; Hodák, R.; Huber, A.; Hugon, C.; Iguaz, F. J.; Irastorza, I. G.; Jeremie, A.; Jullian, S.; Kauer, M.; Klimenko, A.; Kochetov, O.; Konovalov, S. I.; Kovalenko, V.; Lang, K.; Lemière, Y.; Le Noblet, T.; Liptak, Z.; Liu, X. R.; Loaiza, P.; Lutter, G.; Luzón, G.; Macko, M.; Mamedov, F.; Marquet, C.; Mauger, F.; Morgan, B.; Mott, J.; Nemchenok, I.; Nomachi, M.; Nova, F.; Ohsumi, H.; Oliviéro, G.; Ortiz de Solórzano, A.; Pahlka, R. B.; Pater, J.; Perrot, F.; Piquemal, F.; Povinec, P.; Přidal, P.; Ramachers, Y. A.; Remoto, A.; Richards, B.; Riddle, C. L.; Rukhadze, E.; Saakyan, R.; Salazar, R.; Sarazin, X.; Shitov, Yu.; Simard, L.; Šimkovic, F.; Smetana, A.; Smolek, K.; Smolnikov, A.; Söldner-Rembold, S.; Soulé, B.; Štekl, I.; Thomas, J.; Timkin, V.; Torre, S.; Tretyak, Vl. I.; Tretyak, V. I.; Umatov, V. I.; Vilela, C.; Vorobel, V.; Waters, D.; Žukauskas, A.

    2017-06-01

    The BiPo-3 detector, running at the Canfranc Underground Laboratory (Laboratorio Subterr&aposaneo de Canfranc, LSC, Spain) since 2013, is a low-radioactivity detector dedicated to measuring ultra low natural radionuclide contaminations of 208Tl (232Th chain) and 214Bi (238U chain) in thin materials. The total sensitive surface area of the detector is 3.6 m2. The detector has been developed to measure the radiopurity of the selenium double β-decay source foils of the SuperNEMO experiment. In this paper the design and performance of the detector, and results of the background measurements in 208Tl and 214Bi, are presented, and the validation of the BiPo-3 measurement with a calibrated aluminium foil is discussed. Results of the 208Tl and 214Bi activity measurements of the first enriched 82Se foils of the double β-decay SuperNEMO experiment are reported. The sensitivity of the BiPo-3 detector for the measurement of the SuperNEMO 82Se foils is Script A(208Tl) <2 μBq/kg (90% C.L.) and Script A(214Bi) <140 μBq/kg (90% C.L.) after 6 months of measurement.

  7. The Effect of Journal Roughness and Foil Coatings on the Performance of Heavily Loaded Foil Air Bearings

    NASA Technical Reports Server (NTRS)

    Radil, Kevin C.; DellaCorte, Christopher

    2001-01-01

    Foil air bearing load capacity tests were conducted to investigate if a solid lubricant coating applied to the surface of the bearing's top foil can function as a break-in coating. Two foil coating materials, a conventional soft polymer film (polyimide) and a hard ceramic (alumina), were independently evaluated against as-ground and worn (run-in) journals coated with NASA PS304, a high-temperature solid lubricant composite coating. The foil coatings were evaluated at journal rotational speeds of 30,000 rpm and at 25 C. Tests were also performed on a foil bearing with a bare (uncoated) nickel-based superalloy top foil to establish a baseline for comparison. The test results indicate that the presence of a top foil solid lubricant coating is effective at increasing the load capacity performance of the foil bearing. Compared to the uncoated baseline, the addition of the soft polymer coating on the top foil increased the bearing load coefficient by 120% when operating against an as-ground journal surface and 85 percent against a run-in journal surface. The alumina coating increased the load coefficient by 40% against the as-ground journal but did not have any affect when the bearing was operated with the run-in journal. The results suggest that the addition of solid lubricant films provide added lubrication when the air film is marginal indicating that as the load capacity is approached foil air bearings transition from hydrodynamic to mixed and boundary lubrication.

  8. Surface-assisted DNA self-assembly: An enzyme-free strategy towards formation of branched DNA lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhanjadeo, Madhabi M.; Academy of Scientific and Innovative Research; Nayak, Ashok K.

    DNA based self-assembled nanostructures and DNA origami has proven useful for organizing nanomaterials with firm precision. However, for advanced applications like nanoelectronics and photonics, large-scale organization of self-assembled branched DNA (bDNA) into periodic lattices is desired. In this communication for the first time we report a facile method of self-assembly of Y-shaped bDNA nanostructures on the cationic surface of Aluminum (Al) foil to prepare periodic two dimensional (2D) bDNA lattice. Particularly those Y-shaped bDNA structures having smaller overhangs and unable to self-assemble in solution, they are easily assembled on the surface of Al foil in the absence of ligase. Fieldmore » emission scanning electron microscopy (FESEM) analysis shows homogenous distribution of two-dimensional bDNA lattices across the Al foil. When the assembled bDNA structures were recovered from the Al foil and electrophoresed in nPAGE only higher order polymeric bDNA structures were observed without a trace of monomeric structures which confirms the stability and high yield of the bDNA lattices. Therefore, this enzyme-free economic and efficient strategy for developing bDNA lattices can be utilized in assembling various nanomaterials for functional molecular components towards development of DNA based self-assembled nanodevices. - Highlights: • Al foil surface-assisted self-assembly of monomeric structures into larger branched DNA lattice. • FESEM study confirms the uniform distribution of two-dimensional bDNA lattice structures across the surface of Al foil. • Enzyme-free and economic strategy to prepare higher order structures from simpler DNA nanostructures have been confirmed by recovery assay. • Use of well proven sequences for the preparation of pure Y-shaped monomeric DNA nanostructure with high yield.« less

  9. Gas electron multiplier (GEM) foil test, repair and effective gain calculation

    NASA Astrophysics Data System (ADS)

    Tahir, Muhammad; Zubair, Muhammad; Khan, Tufail A.; Khan, Ashfaq; Malook, Asad

    2018-06-01

    The focus of my research is based on the gas electron multiplier (GEM) foil test, repairing and effective gain calculation of GEM detector. During my research work define procedure of GEM foil testing short-circuit, detection short-circuits in the foil. Study different ways to remove the short circuits in the foils. Set and define the GEM foil testing procedures in the open air, and with nitrogen gas. Measure the leakage current of the foil and applying different voltages with specified step size. Define the Quality Control (QC) tests and different components of GEM detectors before assembly. Calculate the effective gain of GEM detectors using 109Cd and 55Fe radioactive source.

  10. Precise 238U(n,2n)237U reaction cross-section measurements using the activation facility at TUNL

    NASA Astrophysics Data System (ADS)

    Krishichayan, Fnu; Bhike, M.; Tornow, W.

    2014-09-01

    Accurate neutron-induced 238U(n,2n)237U reaction data are required for many practical applications, especially in the field of nuclear energy, including advanced heavy water reactors, where 238U is used as the breeding material to regenerate the fissile material 239Pu. Precise (n,2n) cross-section measurements of 238U are underway at TUNL with mono-energetic neutrons in the 8.0 to 14.0 MeV energy range in steps of 0.25 MeV using the activation technique. After activation of the 0.5 inch diameter and 442 mg 238U foil, the activity of the 208 keV characteristic γ-line is tracked for 6 weeks with a high efficient HPGe clover detector to determine the initial activity needed for the cross-section determination. Results of the cross-section measurements, determined relative to 27Al and 197Au neutron activation monitor foils, and the comparison with theoretical models will be presented during the meeting.

  11. 21 CFR 189.301 - Tin-coated lead foil capsules for wine bottles.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Tin-coated lead foil capsules for wine bottles... Substances Prohibited From Indirect Addition to Human Food Through Food-Contact Surfaces § 189.301 Tin-coated lead foil capsules for wine bottles. (a) Tin-coated lead foil is composed of a lead foil coated on one...

  12. 21 CFR 189.301 - Tin-coated lead foil capsules for wine bottles.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Tin-coated lead foil capsules for wine bottles. 189... Substances Prohibited From Indirect Addition to Human Food Through Food-Contact Surfaces § 189.301 Tin-coated lead foil capsules for wine bottles. (a) Tin-coated lead foil is composed of a lead foil coated on one...

  13. 21 CFR 189.301 - Tin-coated lead foil capsules for wine bottles.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Tin-coated lead foil capsules for wine bottles... Substances Prohibited From Indirect Addition to Human Food Through Food-Contact Surfaces § 189.301 Tin-coated lead foil capsules for wine bottles. (a) Tin-coated lead foil is composed of a lead foil coated on one...

  14. 21 CFR 189.301 - Tin-coated lead foil capsules for wine bottles.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Tin-coated lead foil capsules for wine bottles... Substances Prohibited From Indirect Addition to Human Food Through Food-Contact Surfaces § 189.301 Tin-coated lead foil capsules for wine bottles. (a) Tin-coated lead foil is composed of a lead foil coated on one...

  15. Dynamic interference of two anti-phase flapping foils in side-by-side arrangement in an incompressible flow

    NASA Astrophysics Data System (ADS)

    Bao, Y.; Zhou, D.; Tao, J. J.; Peng, Z.; Zhu, H. B.; Sun, Z. L.; Tong, H. L.

    2017-03-01

    A two-dimensional computational hydrodynamic model is developed to investigate the propulsive performance of a flapping foil system in viscous incompressible flows, which consists of two anti-phase flapping foils in side-by-side arrangement. In the simulations, the gap between the two foils is varied from 1.0 to 4.0 times of the diameter of the semi-circular leading edge; the amplitude-based Strouhal number is changed from 0.06 to 0.55. The simulations therefore cover the flow regimes from negligible to strong interference in the wake flow. The generations of drag and thrust are investigated as well. The numerical results reveal that the counter-phase flapping motion significantly changes the hydrodynamic force generation and associated propulsive wake. Furthermore, the wake interference becomes important for the case with a smaller foil-foil gap and induces the inverted Bénard von Kármán vortex streets. The results show that the hydrodynamic performance of two anti-phase flapping foils can be significantly different from an isolated pitching foil. Findings of this study are expected to provide new insight for developing hydrodynamic propulsive systems by improving the performance based on the foil-foil interaction.

  16. Gas Foil Bearing Technology Advancements for Closed Brayton Cycle Turbines

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; Bruckner, Robert J.; DellaCorte, Christopher; Radil, Kevin C.

    2007-01-01

    Closed Brayton Cycle (CBC) turbine systems are under consideration for future space electric power generation. CBC turbines convert thermal energy from a nuclear reactor, or other heat source, to electrical power using a closed-loop cycle. The operating fluid in the closed-loop is commonly a high pressure inert gas mixture that cannot tolerate contamination. One source of potential contamination in a system such as this is the lubricant used in the turbomachine bearings. Gas Foil Bearings (GFB) represent a bearing technology that eliminates the possibility of contamination by using the working fluid as the lubricant. Thus, foil bearings are well suited to application in space power CBC turbine systems. NASA Glenn Research Center is actively researching GFB technology for use in these CBC power turbines. A power loss model has been developed, and the effects of a very high ambient pressure, start-up torque, and misalignment, have been observed and are reported here.

  17. Effects of the foil flatness on the stress-strain characteristics of U10Mo alloy based monolithic mini-plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hakan Ozaltun; Pavel Medvedev

    The effects of the foil flatness on stress-strain behavior of monolithic fuel mini-plates during fabrication and irradiation were studied. Monolithic plate-type fuels are a new fuel form being developed for research and test reactors to achieve higher uranium densities. This concept facilitates the use of low-enriched uranium fuel in the reactor. These fuel elements are comprised of a high density, low enrichment, U–Mo alloy based fuel foil encapsulated in a cladding material made of Aluminum. To evaluate the effects of the foil flatness on the stress-strain behavior of the plates during fabrication, irradiation and shutdown stages, a representative plate frommore » RERTR-12 experiments (Plate L1P756) was considered. Both fabrication and irradiation processes of the plate were simulated by using actual irradiation parameters. The simulations were repeated for various foil curvatures to observe the effects of the foil flatness on the peak stress and strain magnitudes of the fuel elements. Results of fabrication simulations revealed that the flatness of the foil does not have a considerable impact on the post fabrication stress-strain fields. Furthermore, the irradiation simulations indicated that any post-fabrication stresses in the foil would be relieved relatively fast in the reactor. While, the perfectly flat foil provided the slightly better mechanical performance, overall difference between the flat-foil case and curved-foil case was not significant. Even though the peak stresses are less affected, the foil curvature has several implications on the strain magnitudes in the cladding. It was observed that with an increasing foil curvature, there is a slight increase in the cladding strains.« less

  18. Hydrodynamics of an Under-actuated Plesiosaur-inspired robot

    NASA Astrophysics Data System (ADS)

    Weymouth, Gabriel; Devereux, Kate; Copsey, Nick; Muscutt, Luke; Downes, Jon; Ganapathisubramani, Bharath

    2017-11-01

    Underwater vehicles are increasingly important tools for use in science and engineering, but maneuverability and mission life seem to be mutually exclusive goals. Inspired by the unique swimming method of the plesiosaur, which used four flippers of essentially equal size and musculature, we analyzed designed and built an underwater vehicle with the potential for both gliding and active maneuvering modes. Using 2D simulations and strip theory approximation to account for the changing arc length along the flipper span, we studied the wake and forces on the foils and determined the optimum flipper geometry, spacing and kinematics. To reduce mechanical and control complexity and cost, we next studied the impact of under-actuated kinematics. Even after optimizing pivot location and range of motion, leaving the foils free to pitch was found to reduce efficiency by approximately 50%. Based on these specifications, the vehicle was built and tested over a range of free swimming and maneuvering cases using motion tracking equipment. The excellent maneuverability of the under-actuated vehicle validates the concept, and the new platform should enable further detailed experimental measurements in the future.

  19. Collodion-reinforcement and plasma-cleaning of target foils

    NASA Astrophysics Data System (ADS)

    Stoner, John O.

    2002-03-01

    The preparation of evaporated target foils can often be facilitated by use of collodion coatings either on the substrate sides or on the exterior surfaces of the foils. Later, such coatings must usually be removed. Cleaning of a foil is necessary if thin layers of adhesives have crept onto the foil. Removal and/or cleaning can often be done satisfactorily with an oxygen plasma. Apparatus and procedures used for this are described. Foils that were cleaned successfully, and some that were incompatible with the cleaning process are listed.

  20. Measurements of laser generated soft X-ray emission from irradiated gold foils

    DOE PAGES

    Davis, J. S.; Frank, Y.; Raicher, E.; ...

    2016-08-22

    We measured soft x-ray emission from laser irradiated gold foils at the Omega-60 laser system using the Dante photodiode array. The foils were heated with 2 kJ, 6ns laser pulses and foil thicknesses were varied between 0.5, 1.0, and 2.0 μm. Initial Dante analysis indicates peak emission temperatures of roughly 100 eV and 80 eV for the 0.5 μm and 1.0 μm thick foils, respectively, with little measurable emission from the 2.0 μm foils.

  1. Measurements of laser generated soft X-ray emission from irradiated gold foils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, J. S.; Keiter, P. A.; Klein, S. R.

    Soft x-ray emission from laser irradiated gold foils was measured at the Omega-60 laser system using the Dante photodiode array. The foils were heated with 2 kJ, 6 ns laser pulses and foil thicknesses were varied between 0.5, 1.0, and 2.0 μm. Initial Dante analysis indicates peak emission temperatures of roughly 100 eV and 80 eV for the 0.5 μm and 1.0 μm thick foils, respectively, with little measurable emission from the 2.0 μm foils.

  2. Measurements of laser generated soft X-ray emission from irradiated gold foils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, J. S.; Frank, Y.; Raicher, E.

    We measured soft x-ray emission from laser irradiated gold foils at the Omega-60 laser system using the Dante photodiode array. The foils were heated with 2 kJ, 6ns laser pulses and foil thicknesses were varied between 0.5, 1.0, and 2.0 μm. Initial Dante analysis indicates peak emission temperatures of roughly 100 eV and 80 eV for the 0.5 μm and 1.0 μm thick foils, respectively, with little measurable emission from the 2.0 μm foils.

  3. Study of activation cross sections of deuteron induced reactions on barium. Production of 131Cs, 133Ba

    NASA Astrophysics Data System (ADS)

    Tárkányi, F.; Hermanne, A.; Ditrói, F.; Takács, S.; Szücs, Z.; Brezovcsik, K.

    2018-01-01

    In the frame of a systematic study of deuteron induced activation processes on middle mass elements, excitation functions of the natBa(d,x) 135,133,132La, 135m,133m,133mg,131mgBa, 136mg,134mg,132,129Cs reactions were measured up to 50 MeV for the first time. Cross sections were measured with the activation method using a stacked foil irradiation technique followed by HPGe γ-ray spectrometry. A comparison with the results of the nuclear model TALYS code (reported in the TENDL-2015 library) was done. The potential use of the deuteron induced reactions on Ba for applications (131Cs and 131Ba production) is discussed.

  4. Activation cross-sections of proton induced reactions on vanadium in the 37-65 MeV energy range

    NASA Astrophysics Data System (ADS)

    Ditrói, F.; Tárkányi, F.; Takács, S.; Hermanne, A.

    2016-08-01

    Experimental excitation functions for proton induced reactions on natural vanadium in the 37-65 MeV energy range were measured with the activation method using a stacked foil irradiation technique. By using high resolution gamma spectrometry cross-section data for the production of 51,48Cr, 48V, 48,47,46,44m,44g,43Sc and 43,42K were determined. Comparisons with the earlier published data are presented and results predicted by different theoretical codes (EMPIRE and TALYS) are included. Thick target yields were calculated from a fit to our experimental excitation curves and compared with the earlier experimental yield data. Depth distribution curves to be used for thin layer activation (TLA) are also presented.

  5. Study of deuteron induced reactions on natural iron and copper and their use for monitoring beam parameters and for thin layer activation technique

    NASA Astrophysics Data System (ADS)

    Takács, S.; Tárkányi, F.; Sonck, M.; Hermanne, A.; Sudár, S.

    1997-02-01

    Excitation functions of deuteron induced nuclear reactions on natural iron and copper have been studied in the frame of a systematic investigation of charged particle induced nuclear reactions on metals for different applications. The excitation functions were measured up to 20 MeV deuteron energy by using stacked foil technique and activation method. The measured and the evaluated literature data showed that some reaction can be recommended for monitoring deuteron beams, and the excitation functions can be used to determine calibration curves for Thin Layer Activation Technique (TLA). Cross sections calculated by statistical model theory, STAPRE, taking into account preequilibrium effect are in reasonable agreement with the experimental results.

  6. Method of accurate thickness measurement of boron carbide coating on copper foil

    DOEpatents

    Lacy, Jeffrey L.; Regmi, Murari

    2017-11-07

    A method is disclosed of measuring the thickness of a thin coating on a substrate comprising dissolving the coating and substrate in a reagent and using the post-dissolution concentration of the coating in the reagent to calculate an effective thickness of the coating. The preferred method includes measuring non-conducting films on flexible and rough substrates, but other kinds of thin films can be measure by matching a reliable film-substrate dissolution technique. One preferred method includes determining the thickness of Boron Carbide films deposited on copper foil. The preferred method uses a standard technique known as inductively coupled plasma optical emission spectroscopy (ICPOES) to measure boron concentration in a liquid sample prepared by dissolving boron carbide films and the Copper substrates, preferably using a chemical etch known as ceric ammonium nitrate (CAN). Measured boron concentration values can then be calculated.

  7. Neutron sensitivity of 6Li-based suspended foil microstrip neutron detectors using Schott Borofloat® 33 microstrip electrodes

    NASA Astrophysics Data System (ADS)

    Edwards, Nathaniel S.; Montag, Benjamin W.; Henson, Luke C.; Bellinger, Steven L.; Nichols, Daniel M.; Reichenberger, Michael A.; Fronk, Ryan G.; McGregor, Douglas S.

    2018-06-01

    6Li foils, each 75-μm thick, were positioned between a Schott Borofloat® 33 microstrip electrode and a planar drift electrode to construct suspended foil microstrip neutron detectors. MCNP6 simulations of two detector configurations, one containing a single 6Li foil and the other containing five 6Li foils, indicated expected maximum intrinsic thermal-neutron detection efficiencies of 18.36% and 54.08%, respectively. For comparison, the intrinsic thermal-neutron detection efficiency as a function of thermal-neutron beam position along the foil span was experimentally measured for both detector configurations. A non-uniform intrinsic thermal-neutron detection efficiency distribution was observed along the span of the 6Li foil(s) between the microstrip and drift electrodes. Maximum intrinsic thermal-neutron detection efficiencies of 12.58 ± 0.15% and 29.75 ± 0.26% for the single and five 6Li foils were measured, respectively. Gamma-ray rejection ratios of 6.46 × 10-5 ± 4.32 × 10-7 and 7.96 × 10-5 ± 4.65 × 10-7 were also measured, respectively, for a 137Cs exposure rate of 50 mR h-1. All measurements were conducted with the 6Li foil(s) contained within a sealed aluminum enclosure pressurized with 10 psig of P-10 gas.

  8. Dual isotope notch observer for isotope identification, assay and imaging with mono-energetic gamma-ray sources

    DOEpatents

    Barty, Christopher P.J.

    2013-02-05

    A dual isotope notch observer for isotope identification, assay and imaging with mono-energetic gamma-ray sources includes a detector arrangement consists of three detectors downstream from the object under observation. The latter detector, which operates as a beam monitor, is an integrating detector that monitors the total beam power arriving at its surface. The first detector and the middle detector each include an integrating detector surrounding a foil. The foils of these two detectors are made of the same atomic material, but each foil is a different isotope, e.g., the first foil may comprise U235 and second foil may comprise U238. The integrating detectors surrounding these pieces of foil measure the total power scattered from the foil and can be similar in composition to the final beam monitor. Non-resonant photons will, after calibration, scatter equally from both foils.

  9. Radiation pressure acceleration of corrugated thin foils by Gaussian and super-Gaussian beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adusumilli, K.; Goyal, D.; Tripathi, V. K.

    Rayleigh-Taylor instability of radiation pressure accelerated ultrathin foils by laser having Gaussian and super-Gaussian intensity distribution is investigated using a single fluid code. The foil is allowed to have ring shaped surface ripples. The radiation pressure force on such a foil is non-uniform with finite transverse component F{sub r}; F{sub r} varies periodically with r. Subsequently, the ripple grows as the foil moves ahead along z. With a Gaussian beam, the foil acquires an overall curvature due to non-uniformity in radiation pressure and gets thinner. In the process, the ripple perturbation is considerably washed off. With super-Gaussian beam, the ripplemore » is found to be more strongly washed out. In order to avoid transmission of the laser through the thinning foil, a criterion on the foil thickness is obtained.« less

  10. Stiffness and Damping Coefficient Estimation of Compliant Surface Gas Bearings for Oil-Free Turbomachinery

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher

    2010-01-01

    Foil gas bearings are a key technology in many commercial and emerging Oil-Free turbomachinery systems. These bearings are non-linear and have been difficult to analytically model in terms of performance characteristics such as load capacity, power loss, stiffness and damping. Previous investigations led to an empirically derived method, a rule-of-thumb, to estimate load capacity. This method has been a valuable tool in system development. The current paper extends this tool concept to include rules for stiffness and damping coefficient estimation. It is expected that these rules will further accelerate the development and deployment of advanced Oil-Free machines operating on foil gas bearings

  11. 21 CFR 189.301 - Tin-coated lead foil capsules for wine bottles.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Tin-coated lead foil capsules for wine bottles... Addition to Human Food Through Food-Contact Surfaces § 189.301 Tin-coated lead foil capsules for wine bottles. (a) Tin-coated lead foil is composed of a lead foil coated on one or both sides with a thin layer...

  12. Characterization of Graphene Stripper Foils in 11-MeV Cyclotrons

    NASA Astrophysics Data System (ADS)

    Korenev, Sergey; Dishman, Rick; Yebra, Alberto; Meshcheryakov, Nikolay; Smirnov, Ilya; Pavlovsky, Igor; Fink, Richard

    An experimental study of the use of graphene as an extractor (stripper) foil in the 11-MeV Siemens Eclipse Cyclotron is discussed in this paper. The main advantage of graphene is its high thermal conductivity compared to that of amorphous carbon films. Graphene also has significant mechanical strength. The lifetime of the graphene foils under proton bombardment exceeded 16,000 μAh. Graphene-based stripper foils demonstrated a significant increase in the transmission factor (defined as the ratio of the beam current on the target to the beam current on the stripper foil), which was approximately 90%. Fabrication of the graphene-based foils is discussed. The pros and cons of using the graphene material as a stripper foil in cyclotrons are analyzed.

  13. Micrometeorite penetration effects in gold foil

    NASA Technical Reports Server (NTRS)

    Hallgren, D. S.; Radigan, W.; Hemenway, C. L.

    1976-01-01

    Penetration structures revealed by a Skylab experiment dealing with exposure of single and double layers of 500-800 A thick gold foil to micrometeorites are examined. Examination of all double-layered gold foils revealed that particles producing holes of any type greater than 5 microns in diameter in the first foil break up into many fragments which in turn produce many more holes in the second foil. Evidence of an original particle is not found on any stainless steel plate below the foils, except in one instance. A precise relationship between the size of the event and the mass of the particle producing it could not be determined due to the extreme morphological variety in penetration effects. Fluxes from gold foil and crater experiments are briefly discussed.

  14. Concept Feasibility Report for Electroplating Zirconium onto Uranium Foil - Year 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coffey, Greg W.; Meinhardt, Kerry D.; Joshi, Vineet V.

    2015-03-01

    The Fuel Fabrication Capability within the U.S. High Performance Research Reactor Conversion Program is funded through the National Nuclear Security Administration (NNSA) NA-26 (Office of Material Management and Minimization). An investigation was commissioned to determine the feasibility of using electroplating techniques to apply a coating of zirconium onto depleted uranium/molybdenum alloy (U-10Mo). Electroplating would provide an alternative method to the existing process of hot roll-bonding zirconium foil onto the U-10Mo fuel foil during the fabrication of fuel elements for high-performance research reactors. The objective of this research was to develop a reproducible and scalable plating process that will produce amore » uniform, 25 μm thick zirconium metal coating on U-10Mo foil. In previous work, Pacific Northwest National Laboratory (PNNL) established a molten salt electroplating apparatus and protocol to plate zirconium metal onto molybdenum foil (Coffey 2015). During this second year of the research, PNNL furthered this work by moving to the U-10Mo alloy system (90 percent uranium:10 percent molybdenum). The original plating apparatus was disassembled and re-assembled in a laboratory capable of handling low-level radioactive materials. Initially, the work followed the previous year’s approach, and the salt bath composition was targeted at the eutectic composition (LiF:NaF:ZrF4 = 26:37:37 mol%). Early results indicated that the formation of uranium fluoride compounds would be problematic. Other salt bath compositions were investigated in order to eliminate the uranium fluoride production (LiF:NaF = 61:39 mol% and LiF:NaF:KF = 46.5:11.5:42 mol% ). Zirconium metal was used as the crucible for the molten salt. Three plating methods were used—isopotential, galvano static, and pulsed plating. The molten salt method for zirconium metal application provided high-quality plating on molybdenum in PNNL’s previous work. A key advantage of this approach is that plating can be performed under conditions that would greatly reduce the quantity of intermetallics that form at the interface between the zirconium and U-10Mo; unlike roll bonding, the molten salt plating approach would allow for complete coverage of the U-10Mo foil with zirconium. When utilizing the experimental parameters developed for zirconium plating onto molybdenum, a uranium fluoride reaction product was formed at the Zr/U-10Mo interface. By controlling the initial plating potential, the uranium fluoride could be prevented; however, the targeted zirconium thickness (25 ±12.5 μm) could not be achieved while maintaining 100% coverage.« less

  15. Thrust augmentation in tandem flapping foils by foil-wake interaction

    NASA Astrophysics Data System (ADS)

    Anderson, Erik; Lauder, George

    2006-11-01

    Propulsion by pitching and heaving airfoils and hydrofoils has been a focus of much research in the field of biologically inspired propulsion. Organisms that use this sort of propulsion are self-propelled, so it is difficult to use standard experimental metrics such as thrust and drag to characterize performance. We have constructed a flapping foil robot mounted in a flume on air-bearings that allows for the determination of self-propelled speed as a metric of performance. We have used a pair of these robots to examine the impact of an upstream flapping foil on a downstream flapping foil as might apply to tandem fins of a swimming organism or in-line swimming of schooling organisms. Self-propelled speed and a force transducer confirmed significant thrust augmentation for particular foil-to-foil spacings, phase differences, and flapping frequencies. Flow visualization shows the mechanism to be related to the effective angle of attack of the downstream foil due to the structure of the wake of the upstream foil. This confirms recent computational work and the hypotheses by early investigators of fish fluid dynamics.

  16. Visual and semantic processing of living things and artifacts: an FMRI study.

    PubMed

    Zannino, Gian Daniele; Buccione, Ivana; Perri, Roberta; Macaluso, Emiliano; Lo Gerfo, Emanuele; Caltagirone, Carlo; Carlesimo, Giovanni A

    2010-03-01

    We carried out an fMRI study with a twofold purpose: to investigate the relationship between networks dedicated to semantic and visual processing and to address the issue of whether semantic memory is subserved by a unique network or by different subsystems, according to semantic category or feature type. To achieve our goals, we administered a word-picture matching task, with within-category foils, to 15 healthy subjects during scanning. Semantic distance between the target and the foil and semantic domain of the target-foil pairs were varied orthogonally. Our results suggest that an amodal, undifferentiated network for the semantic processing of living things and artifacts is located in the anterolateral aspects of the temporal lobes; in fact, activity in this substrate was driven by semantic distance, not by semantic category. By contrast, activity in ventral occipito-temporal cortex was driven by category, not by semantic distance. We interpret the latter finding as the effect exerted by systematic differences between living things and artifacts at the level of their structural representations and possibly of their lower-level visual features. Finally, we attempt to reconcile contrasting data in the neuropsychological and functional imaging literature on semantic substrate and category specificity.

  17. A New Electrochemical Approach for the Synthesis of Copper-Graphene Nanocomposite Foils with High Hardness

    PubMed Central

    Pavithra, Chokkakula L. P.; Sarada, Bulusu V.; Rajulapati, Koteswararao V.; Rao, Tata N.; Sundararajan, G.

    2014-01-01

    Graphene has proved its significant role as a reinforcement material in improving the strength of polymers as well as metal matrix composites due to its excellent mechanical properties. In addition, graphene is also shown to block dislocation motion in a nanolayered metal-graphene composites resulting in ultra high strength. In the present paper, we demonstrate the synthesis of very hard Cu-Graphene composite foils by a simple, scalable and economical pulse reverse electrodeposition method with a well designed pulse profile. Optimization of pulse parameters and current density resulted in composite foils with well dispersed graphene, exhibiting a high hardness of ~2.5 GPa and an increased elastic modulus of ~137 GPa while exhibiting an electrical conductivity comparable to that of pure Cu. The pulse parameters are designed in such a way to have finer grain size of Cu matrix as well as uniform dispersion of graphene throughout the matrix, contributing to high hardness and modulus. Annealing of these nanocomposite foils at 300°C, neither causes grain growth of the Cu matrix nor deteriorates the mechanical properties, indicating the role of graphene as an excellent reinforcement material as well as a grain growth inhibitor. PMID:24514043

  18. Microstructure Evolution and Composition Control During the Processing of Thin-Gage Metallic Foil

    NASA Astrophysics Data System (ADS)

    Semiatin, S. L.; Gross, M. E.; Matson, D. W.; Bennett, W. D.; Bonham, C. C.; Ustinov, A. I.; Ballard, D. L.

    2012-12-01

    The manufacture of thin-gage superalloy and gamma-titanium-aluminide foil products via near-conventional thermomechanical processing and two different vapor-deposition methods was investigated. Thermomechanical processing was based on hot-pack rolling of plate and sheet. Foils of the superalloy LSHR and the near-gamma titanium aluminide Ti-45.5Al-2Cr-2Nb made by this approach exhibited excellent gage control and fine two-phase microstructures. The vapor-phase techniques used magnetron sputtering (MS) of a target of the desired product composition or electron-beam physical vapor deposition (EBPVD) of separate targets of the specific alloying elements. Thin deposits of LSHR and Ti-48Al-2Cr-2Nb made by MS showed uniform thickness/composition and an ultrafine microstructure. However, systematic deviations from the specific target composition were found. During subsequent heat treatment, the microstructure of the MS samples showed various degrees of grain growth and coarsening. Foils of Ti-43Al and Ti-51Al-1V fabricated by EBPVD were fully dense. The microstructures developed during EBPVD were interpreted in terms of measured phase equilibria and the dependence of evaporant flux on temperature.

  19. Extended foil capacitor with radially spoked electrodes

    DOEpatents

    Foster, James C.

    1990-01-01

    An extended foil capacitor has a conductive disk electrically connected in oncrushing contact to the extended foil. A conductive paste is placed through spaces between radial spokes on the disk to electrically and mechanically connect the extended foil to the disk.

  20. Explosive-driven, high speed, arcless switch

    DOEpatents

    Skogmo, P.J.; Tucker, T.J.

    1986-05-02

    An explosive-actuated, fast-acting arcless switch contains a highly conductive foil to carry high currents positioned adjacent a dielectric surface within a casing. At one side of the foil opposite the dielectric surface is an explosive which, when detonated, drives the conductive foil against the dielectric surface. A pattern of grooves in the dielectric surface ruptures the foil to establish a rupture path having a pattern corresponding to the pattern of the grooves. The impedance of the ruptured foil is greater than that of the original foil to divert high current to a load. Planar and cylindrical embodiments of the switch are disclosed.

  1. Explosive-driven, high speed, arcless switch

    DOEpatents

    Skogmo, Phillip J.; Tucker, Tillman J.

    1987-01-01

    An explosive-actuated, fast-acting arcless switch contains a highly conductive foil to carry high currents positioned adjacent a dielectric surface within a casing. At one side of the foil opposite the dielectric surface is an explosive which, when detonated, drives the conductive foil against the dielectric surface. A pattern of grooves in the dielectric surface ruptures the foil to establish a rupture path having a pattern corresponding to the pattern of the grooves. The impedance of the ruptured foil is greater than that of the original foil to divert high current to a load. Planar and cylindrical embodiments of the switch are disclosed.

  2. Nanoporous Al sandwich foils using size effect of Al layer thickness during Cu/Al/Cu laminate rolling

    NASA Astrophysics Data System (ADS)

    Yu, Hailiang; Lu, Cheng; Tieu, A. Kiet; Li, Huijun; Godbole, Ajit; Kong, Charlie

    2018-06-01

    The roll bonding technique is one of the most widely used methods to produce metal laminate sheets. Such sheets offer interesting research opportunities for both scientists and engineers. In this paper, we report on an experimental investigation of the 'thickness effect' during laminate rolling for the first time. Using a four-high multifunction rolling mill, Cu/Al/Cu laminate sheets were fabricated with a range of thicknesses (16, 40, 70 and 130 μm) of the Al layer. The thickness of the Cu sheets was a constant 300 μm. After rolling, TEM images show good bonding quality between the Cu and Al layers. However, there are many nanoscale pores in the Al layer. The fraction of nanoscale pores in the Al layer increases with a reduction in the Al layer thickness. The finite element method was used to simulate the Cu/Al/Cu rolling process. The simulation results reveal the effect of the Al layer thickness on the deformation characteristics of the Cu/Al/Cu laminate. Finally, we propose that the size effect of the Al layer thickness during Cu/Al/Cu laminate rolling may offer a method to fabricate 'nanoporous' Al sandwich laminate foils. Such foils can be used in electromagnetic shielding of electrical devices and noisy shielding of building.

  3. 2 x 2 Polyethylene Reflected and Moderated Highly Enriched Uranium System with Rhenium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Nichole Ellis; Jesson Hutchinson; John D. Bess

    2010-09-01

    The 2 × 2 array HEU-Re experiment was performed on the Planet universal critical assembly machine on November 4th, 2003 at the Los Alamos Critical Experiments Facility (LACEF) at Los Alamos National Laboratory (LANL). For this experiment, there were 10 ½ units, each full unit containing four HEU foils and two rhenium foils. The top unit contained only two HEU foils and two rhenium foils. A total of 42 HEU foils were used for this experiment. Rhenium is a desirable cladding material for space nuclear power applications. This experiment consisted of HEU foils interleaved with rhenium foils and is moderatedmore » and reflected by polyethylene plates. A unit consisted of a polyethylene plate, which has a recess for rhenium foils, and four HEU foils in a single layer in the top recess of each polyethylene plate. The Planet universal criticality assembly machine has been previously used in experiments containing HEU foils interspersed with SiO2 (HEU-MET-THERM-001), Al (HEU-MET-THERM-008), MgO (HEU-MET-THERM-009), Gd foils (HEU-MET-THERM-010), 2 × 2 × 26 Al (HEU-MET-THERM-012), Fe (HEU-MET-THERM-013 and HEU-MET-THERM-015), 2 × 2 × 23 SiO2 (HEU-MET-THERM-014), 2 × 2 × 11 hastalloy plates (HEU-MET-THERM-016), and concrete (HEU-MET-THERM-018). The 2 × 2 array of HEU-Re is considered acceptable for use as a benchmark critical experiment.« less

  4. Study of activation cross-sections of deuteron induced reactions on rhodium up to 40 MeV

    NASA Astrophysics Data System (ADS)

    Ditrói, F.; Tárkányi, F.; Takács, S.; Hermanne, A.; Yamazaki, H.; Baba, M.; Mohammadi, A.; Ignatyuk, A. V.

    2011-09-01

    In the frame of a systematic study of the activation cross-sections of deuteron induced nuclear reactions, excitation functions of the 103Rh(d,x) 100,101,103Pd, 100g,101m,101g,102m,102gRh and 103gRu reactions were determined up to 40 MeV. Cross-sections were measured with the activation method using a stacked foil irradiation technique. Excitation functions of the contributing reactions were calculated using the ALICE-IPPE, EMPIRE-II and TALYS codes. From the measured cross-section data integral production yields were calculated and compared with experimental integral yield data reported in the literature. From the measured cross-sections and previous data, activation curves were deduced to support thin layer activation (TLA) on rhodium and Rh containing alloys.

  5. Optimized anion exchange column isolation of zirconium-89 ( 89 Zr) from yttrium cyclotron target: Method development and implementation on an automated fluidic platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Hara, Matthew J.; Murray, Nathaniel J.; Carter, Jennifer C.

    Zirconium-89 (89Zr), produced by the (p,n) reaction from naturally monoisotopic yttrium (natY), is a promising positron emitting isotope for immunoPET imaging. Its long half-life of 78.4 h is sufficient for evaluating slow physiological processes. A prototype automated fluidic system, coupled to on-line and in-line detectors, has been constructed to facilitate development of new 89Zr purification methodologies. The highly reproducible reagent delivery platform and near-real time monitoring of column effluents allows for efficient method optimization. The separation of Zr from dissolved Y metal targets was evaluated using several anion exchange resins. Each resin was evaluated against its ability to quantitatively capturemore » Zr from a load solution that is high in dissolved Y. The most appropriate anion exchange resin for this application was identified, and the separation method was optimized. The method is capable of a high Y decontamination factor (>105) and has been shown to separate Fe, an abundant contaminant in Y foils, from the 89Zr elution fraction. Finally, the performance of the method was evaluated using cyclotron bombarded Y foil targets. The separation method was shown to achieve >95% recovery of the 89Zr present in the foils. The 89Zr eluent, however, was in a chemical matrix not immediately conducive to labeling onto proteins. The main intent of this study was to develop a tandem column 89Zr purification process, wherein the anion exchange column method described here is the first separation in a dual-column purification process.« less

  6. ERPs While Judging Meaningfulness of Sentences with and without Homonym or Morpheme Spelling Foils: Comparing 4th to 9th Graders with and without Spelling Disabilities

    PubMed Central

    Richards, Todd; Pettet, Mark; Askren, Katie; Grabowski, Tom; Yagle, Kevin; Wallis, Peter; Northey, Mary; Abbott, Robert; Berninger, Virginia

    2016-01-01

    Thirteen students with and twelve students without spelling disabilities judged whether sentences (1/3 all correct spellings, 1/3 with homonym foil, 1/3 with morpheme foil) were meaningful while event-related potentials (ERPs) were measured with EGI Geodesic EEG System 300 (128-channel hydro-cell nets). For N400, Rapid Automatic Switching (RAS) correlated with comprehending sentences with homonym foils in control group but with morpheme foils in SLD group. For P600, dictated spelling correlated with comprehending sentences with morpheme foils in the control group but solving anagrams with homonym foils in the SLD group. Educational significance and neuropsychological significance of these contrasting results are discussed. PMID:28657362

  7. Composite metal foil and ceramic fabric materials

    DOEpatents

    Webb, B.J.; Antoniak, Z.I.; Prater, J.T.; DeSteese, J.G.

    1992-03-24

    The invention comprises new materials useful in a wide variety of terrestrial and space applications. In one aspect, the invention comprises a flexible cloth-like material comprising a layer of flexible woven ceramic fabric bonded with a layer of metallic foil. In another aspect, the invention includes a flexible fluid impermeable barrier comprising a flexible woven ceramic fabric layer having metal wire woven therein. A metallic foil layer is incontinuously welded to the woven metal wire. In yet another aspect, the invention includes a material comprising a layer of flexible woven ceramic fabric bonded with a layer of an organic polymer. In still another aspect, the invention includes a rigid fabric structure comprising a flexible woven ceramic fabric and a resinous support material which has been hardened as the direct result of exposure to ultraviolet light. Inventive methods for producing such material are also disclosed. 11 figs.

  8. Highly efficient growth of vertically aligned carbon nanotubes on Fe-Ni based metal alloy foils for supercapacitors

    NASA Astrophysics Data System (ADS)

    Amalina Raja Seman, Raja Noor; Asyadi Azam, Mohd; Ambri Mohamed, Mohd

    2016-12-01

    Supercapacitors are highly promising energy devices with superior charge storage performance and a long lifecycle. Construction of the supercapacitor cell, especially electrode fabrication, is critical to ensure good performance in applications. This work demonstrates direct growth of vertically aligned carbon nanotubes (CNTs) on Fe-Ni based metal alloy foils, namely SUS 310S, Inconel 600 and YEF 50, and their use in symmetric vertically aligned CNT supercapacitor electrodes. Alumina and cobalt thin film catalysts were deposited onto the foils, and then CNT growth was performed using alcohol catalytic chemical vapour deposition. By this method, vertically aligned CNTs were successfully grown and used directly as a binder-free supercapacitor electrode to deliver excellent electrochemical performance. The device showed relatively good specific capacitance, a superior rate capability and excellent cycle stability, maintaining about 96% capacitance up to 1000 cycles.

  9. Achieving Stable Radiation Pressure Acceleration of Heavy Ions via Successive Electron Replenishment from Ionization of a High-Z Material Coating

    NASA Astrophysics Data System (ADS)

    Shen, X. F.; Qiao, B.; Zhang, H.; Kar, S.; Zhou, C. T.; Chang, H. X.; Borghesi, M.; He, X. T.

    2017-05-01

    A method to achieve stable radiation pressure acceleration (RPA) of heavy ions from laser-irradiated ultrathin foils is proposed, where a high-Z material coating in front is used. The coated high-Z material, acting as a moving electron repository, continuously replenishes the accelerating heavy ion foil with comoving electrons in the light-sail acceleration stage due to its successive ionization under laser fields with Gaussian temporal profile. As a result, the detrimental effects such as foil deformation and electron loss induced by the Rayleigh-Taylor-like and other instabilities in RPA are significantly offset and suppressed so that stable acceleration of heavy ions are maintained. Particle-in-cell simulations show that a monoenergetic Al13 + beam with peak energy 3.8 GeV and particle number 1 010 (charge >20 nC ) can be obtained at intensity 1 022 W /cm2 .

  10. Viscous investigation of a flapping foil propulsor

    NASA Astrophysics Data System (ADS)

    Posri, Attapol; Phoemsapthawee, Surasak; Thaweewat, Nonthipat

    2018-01-01

    Inspired by how fishes propel themselves, a flapping-foil device is invented as an alternative propulsion system for ships and boats. The performance of such propulsor has been formerly investigated using a potential flow code. The simulation results have shown that the device has high propulsive efficiency over a wide range of operation. However, the potential flow gives good results only when flow separation is not present. In case of high flapping frequency, the flow separation can occur over a short instant due to fluid viscosity and high angle of attack. This may cause a reduction of propulsive efficiency. A commercial CFD code based on Lattice Boltzmann Method, XFlow, is then employed in order to investigate the viscous effect over the propulsive performance of the flapping foil. The viscous results agree well with the potential flow results, confirming the high efficiency of the propulsor. As expected, viscous results show lower efficiency in high flapping frequency zone.

  11. Effects of the shape of the foil corners on the irradiation performance of U10Mo alloy based monolithic mini-plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozaltun, Hakan; Medvedev, Pavel G

    2015-06-01

    Monolithic plate-type fuel is a fuel form being developed for high performance research and test reactors to minimize the use of enriched material. These fuel elements are comprised of a high density, low enrichment, U-Mo alloy based fuel foil, sandwiched between Zirconium liners and encapsulated in Aluminum cladding. The use of a high density fuel in a foil form presents a number of fabrication and operational concerns, such as: foil centering, flatness of the foil, fuel thickness variation, geometrical tilting, foil corner shape etc. To benchmark this new design, effects of various geometrical and operational variables on irradiation performance havemore » been evaluated. As a part of these series of sensitivity studies, the shape of the foil corners were studied. To understand the effects of the corner shapes of the foil on thermo-mechanical performance of the plates, a behavioral model was developed for a selected plate from RERTR-12 experiments (Plate L1P785). Both fabrication and irradiation processes were simulated. Once the thermo-mechanical behavior the plate is understood for the nominal case, the simulations were repeated for two additional corner shapes to observe the changes in temperature, displacement and stress-strain fields. The results from the fabrication simulations indicated that the foil corners do not alter the post-fabrication stress-strain magnitudes. Furthermore, the irradiation simulations revealed that post-fabrication stresses of the foil would be relieved very quickly in operation. While, foils with chamfered and filleted corners yielded stresses with comparable magnitudes, they are slightly lower in magnitudes, and provided a more favorable mechanical response compared with the foil with sharp corners.« less

  12. A simple thick target for production of 89Zr using an 11MeV cyclotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Link, Jeanne M.; Krohn, Kenneth A.; O'Hara, Matthew J.

    2017-04-01

    The growing interest but limited availability of 89Zr for PET led us to test targets for the 89(p,n) reaction. The goal was an easily constructed target for an 11 MeV Siements cyclotron. Yttrium foils were tested at different thicknesses, angles and currents. A 90 degree foil tolerated 41 microAmp without damage and produced ~800 MBq/hr, >20 mCi, an amount adequate for radiochemistry research and human doses in a widely available accelerator. This method should translate to higher energy cyclotrons.

  13. Structural Assessment of Tungsten-Epoxy Bonding in Spacecraft Composite Enclosures with Enhanced Radiation Protection

    NASA Astrophysics Data System (ADS)

    Kanerva, M.; Koerselman, J. R.; Revitzer, H.; Johansson, L.-S.; Sarlin, E.; Rautiainen, A.; Brander, T.; Saarela, O.

    2014-06-01

    Spacecraft include sensitive electronics that must be protected against radiation from the space environment. Hybrid laminates consisting of tungsten layers and carbon- fibre-reinforced epoxy composite are a potential solution for lightweight, efficient, and protective enclosure material. Here, we analysed six different surface treatments for tungsten foils in terms of the resulting surface tension components, composition, and bonding strength with epoxy. A hydrofluoric-nitric-sulfuric-acid method and a diamond-like carbon-based DIARC® coating were found the most potential surface treatments for tungsten foils in this study.

  14. Practicable methods for histological section thickness measurement in quantitative stereological analyses.

    PubMed

    Matenaers, Cyrill; Popper, Bastian; Rieger, Alexandra; Wanke, Rüdiger; Blutke, Andreas

    2018-01-01

    The accuracy of quantitative stereological analysis tools such as the (physical) disector method substantially depends on the precise determination of the thickness of the analyzed histological sections. One conventional method for measurement of histological section thickness is to re-embed the section of interest vertically to its original section plane. The section thickness is then measured in a subsequently prepared histological section of this orthogonally re-embedded sample. However, the orthogonal re-embedding (ORE) technique is quite work- and time-intensive and may produce inaccurate section thickness measurement values due to unintentional slightly oblique (non-orthogonal) positioning of the re-embedded sample-section. Here, an improved ORE method is presented, allowing for determination of the factual section plane angle of the re-embedded section, and correction of measured section thickness values for oblique (non-orthogonal) sectioning. For this, the analyzed section is mounted flat on a foil of known thickness (calibration foil) and both the section and the calibration foil are then vertically (re-)embedded. The section angle of the re-embedded section is then calculated from the deviation of the measured section thickness of the calibration foil and its factual thickness, using basic geometry. To find a practicable, fast, and accurate alternative to ORE, the suitability of spectral reflectance (SR) measurement for determination of plastic section thicknesses was evaluated. Using a commercially available optical reflectometer (F20, Filmetrics®, USA), the thicknesses of 0.5 μm thick semi-thin Epon (glycid ether)-sections and of 1-3 μm thick plastic sections (glycolmethacrylate/ methylmethacrylate, GMA/MMA), as regularly used in physical disector analyses, could precisely be measured within few seconds. Compared to the measured section thicknesses determined by ORE, SR measures displayed less than 1% deviation. Our results prove the applicability of SR to efficiently provide accurate section thickness measurements as a prerequisite for reliable estimates of dependent quantitative stereological parameters.

  15. Practicable methods for histological section thickness measurement in quantitative stereological analyses

    PubMed Central

    Matenaers, Cyrill; Popper, Bastian; Rieger, Alexandra; Wanke, Rüdiger

    2018-01-01

    The accuracy of quantitative stereological analysis tools such as the (physical) disector method substantially depends on the precise determination of the thickness of the analyzed histological sections. One conventional method for measurement of histological section thickness is to re-embed the section of interest vertically to its original section plane. The section thickness is then measured in a subsequently prepared histological section of this orthogonally re-embedded sample. However, the orthogonal re-embedding (ORE) technique is quite work- and time-intensive and may produce inaccurate section thickness measurement values due to unintentional slightly oblique (non-orthogonal) positioning of the re-embedded sample-section. Here, an improved ORE method is presented, allowing for determination of the factual section plane angle of the re-embedded section, and correction of measured section thickness values for oblique (non-orthogonal) sectioning. For this, the analyzed section is mounted flat on a foil of known thickness (calibration foil) and both the section and the calibration foil are then vertically (re-)embedded. The section angle of the re-embedded section is then calculated from the deviation of the measured section thickness of the calibration foil and its factual thickness, using basic geometry. To find a practicable, fast, and accurate alternative to ORE, the suitability of spectral reflectance (SR) measurement for determination of plastic section thicknesses was evaluated. Using a commercially available optical reflectometer (F20, Filmetrics®, USA), the thicknesses of 0.5 μm thick semi-thin Epon (glycid ether)-sections and of 1–3 μm thick plastic sections (glycolmethacrylate/ methylmethacrylate, GMA/MMA), as regularly used in physical disector analyses, could precisely be measured within few seconds. Compared to the measured section thicknesses determined by ORE, SR measures displayed less than 1% deviation. Our results prove the applicability of SR to efficiently provide accurate section thickness measurements as a prerequisite for reliable estimates of dependent quantitative stereological parameters. PMID:29444158

  16. Quantitative measurement for the microstructural parameters of nano-precipitates in Al-Mg-Si-Cu alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Kai

    Size, number density and volume fraction of nano-precipitates are important microstructural parameters controlling the strengthening of materials. In this work a widely accessible, convenient, moderately time efficient method with acceptable accuracy and precision has been provided for measurement of volume fraction of nano-precipitates in crystalline materials. The method is based on the traditional but highly accurate technique of measuring foil thickness via convergent beam electron diffraction. A new equation is proposed and verified with the aid of 3-dimensional atom probe (3DAP) analysis, to compensate for the additional error resulted from the hardly distinguishable contrast of too short incomplete precipitates cutmore » by the foil surface. The method can be performed on a regular foil specimen with a modern LaB{sub 6} or field-emission-gun transmission electron microscope. Precisions around ± 16% have been obtained for precipitate volume fractions of needle-like β″/C and Q precipitates in an aged Al-Mg-Si-Cu alloy. The measured number density is close to that directly obtained using 3DAP analysis by a misfit of 4.5%, and the estimated precision for number density measurement is about ± 11%. The limitations of the method are also discussed. - Highlights: •A facile method for measuring volume fraction of nano-precipitates based on CBED •An equation to compensate for small invisible precipitates, with 3DAP verification •Precisions around ± 16% for volume fraction and ± 11% for number density.« less

  17. Measurement of D-7Li Neutron Production in Neutron Generators Using the Threshold Activation Foil Technique

    NASA Astrophysics Data System (ADS)

    Coventry, M. D.; Krites, A. M.

    Measurements to determine the absolute D-D and D-7Li neutron production rates with a neutron generator running at 100-200 kV acceleration potential were performed using the threshold activation foil technique. This technique provides a clear measure of fast neutron flux and with a suitable model, the neutron output. This approach requires little specialized equipment and is used to calibrate real-time neutron detectors and to verify neutron output. We discuss the activation foil measurement technique and describe its use in determining the relative contributions of D-D and D-7Li reactions to the total neutron yield and real-time detector response and compare to model predictions. The D-7Li reaction produces neutrons with a continuum of energies and a sharp peak around 13.5 MeV for measurement techniques outside of what D-D generators can perform. The ability to perform measurements with D-D neutrons alone, then add D-7Li neutrons for inelastic gamma production presents additional measurement modalities with the same neutron source without the use of tritium. Typically, D-T generators are employed for inelastic scattering applications but have a high regulatory burden from a radiological aspect (tritium inventory, liability concerns) and are export-controlled. D-D and D-7Li generators avoid these issues completely.

  18. Characterization of Beryllium Windows for Coherent X-ray Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goto, Shunji; Yabashi, Makina; Tamasaku, Kenji

    2007-01-19

    Beryllium foils fabricated by several processes were characterized using spatially coherent x rays at 1-km beamline of SPring-8. By thickness dependence of bright x-ray spot density due to Fresnel diffraction from several-micron deficiencies, we found that speckles (bright x-ray spots) were due to voids with densities 103-104 mm-3 in powder foils and ingot foils. Compared with powder and ingot foils, a polished physical-vapor-deposited (PVD) beryllium foil gave highly uniform beams with no speckles. The PVD process eliminates the internal voids in principle and the PVD foil is the best for coherent x-ray applications.

  19. Development, characterization and qualification of first GEM foils produced in India

    NASA Astrophysics Data System (ADS)

    Shah, Aashaq; Ahmed, Asar; Gola, Mohit; Sharma, Ram Krishna; Malhotra, Shivali; Kumar, Ashok; Naimuddin, Md.; Menon, Pradeep; Srinivasan, K.

    2018-06-01

    The increasing demand for Gas Electron Multiplier (GEM) foils has been driven by their application in many current and proposed high-energy physics experiments. Micropack, a Bengaluru-based company, has established and commercialized GEM foils for the first time in India. Micropack used the double-mask etching technique to successfully produce 10 cm × 10 cm GEM foil. In this paper, we report on the development as well as the geometrical and electrical properties of these foils, including the size uniformity of the holes and leakage current measurements. Our characterization studies show that the foils are of good quality and satisfy all the necessary quality control criteria.

  20. Explosive-driven, high speed, arcless switch

    DOEpatents

    Skogmo, P.J.; Tucker, T.J.

    1987-07-14

    An explosive-actuated, fast-acting arcless switch contains a highly conductive foil to carry high currents positioned adjacent a dielectric surface within a casing. At one side of the foil opposite the dielectric surface is an explosive which, when detonated, drives the conductive foil against the dielectric surface. A pattern of grooves in the dielectric surface ruptures the foil to establish a rupture path having a pattern corresponding to the pattern of the grooves. The impedance of the ruptured foil is greater than that of the original foil to divert high current to a load. Planar and cylindrical embodiments of the switch are disclosed. 7 figs.

  1. Laser-driven flyer plate

    DOEpatents

    Paisley, Dennis L.

    1991-01-01

    Apparatus for producing high velocity flyer plates involving placing a layer of dielectric material between a first metal foil and a second metal foil. With laser irradiation through an optical substrate, the first metal foil forms a plasma in the area of the irradiation, between the substrate and the solid portion of the first metal foil. When the pressure between the substrate and the foil reaches the stress limit of the dielectric, the dielectric will break away and launch the flyer plate out of the second metal foil. The mass of the flyer plate is controlled, as no portion of the flyer plate is transformed into a plasma.

  2. Quasi-static analysis of foil journal bearings for a Brayton cycle turboalternator

    NASA Technical Reports Server (NTRS)

    Eshel, A.

    1974-01-01

    A quasi-static analysis is presented for foil journal bearings designed for a NASA Brayton Cycle Turboalternator. Included in the analysis are effects of 'slack' (due to flexural rigidity of the foil), of frictionally restrained extension of the foil-length in contact with cylindrical guides, of fluid inertia and compressibility, and of thermal expansion of rotor, foil and supporting structure. Comparisons are made with results of early experiments performed by Licht (1968, 1969) and recent data of Licht and Branger (1973). Variatons of film thickness, foil tension and bearing stiffness are presented graphically as functions of pertinent parameters for the case of operation in zero-gravity environment.

  3. Characterization of laser-cut copper foil X-pinches

    NASA Astrophysics Data System (ADS)

    Collins, G. W.; Valenzuela, J. C.; Hansen, S. B.; Wei, M. S.; Reed, C. T.; Forsman, A. C.; Beg, F. N.

    2016-10-01

    Quantitative data analyses of laser-cut Cu foil X-pinch experiments on the 150 ns quarter-period, ˜250 kA GenASIS driver are presented. Three different foil designs are tested to determine the effects of initial structure on pinch outcome. Foil X-pinch data are also presented alongside the results from wire X-pinches with comparable mass. The X-ray flux and temporal profile of the emission from foil X-pinches differed significantly from that of wire X-pinches, with all emission from the foil X-pinches confined to a ˜3 ns period as opposed to the delayed, long-lasting electron beam emission common in wire X-pinches. Spectroscopic data show K-shell as well as significant L-shell emission from both foil and wire X-pinches. Fits to synthetic spectra using the SCRAM code suggest that pinching foil X's produced a ˜1 keV, ne ≥ 1023 cm-3 plasma. The spectral data combined with the improved reliability of the source timing, flux, and location indicate that foil X-pinches generate a reproducible, K-shell point-projection radiography source that can be easily modified and tailored to suit backlighting needs across a variety of applications.

  4. Effects of the foil flatness on irradiation performance of U10Mo monolithic mini-plates

    DOE PAGES

    Ozaltun, Hakan; Medvedev, Pavel G.; Rabin, Barry H.

    2015-09-03

    Monolithic plate-type fuels comprise of a high density, low enrichment, U10Mo fuel foil encapsulated in a cladding material. This concept generates several fabrication challenges such as flatness, centering or thickness variation. There are concerns, if these parameters have implications on overall performance. To investigate these inquiries, the effects of the foil flatness were studied. For this, a representative plate was simulated for an ideal case. The simulations were repeated for additional cases with various foil curvatures to evaluate the effects on the irradiation performance. The results revealed that the stresses and strains induced by fabrication process are not affected bymore » the flatness of the foil. Furthermore, fabrication stresses in the foil are relieved relatively fast in the reactor. The effects of the foil flatness on peak irradiation stressstrains are minimal. There is a slight increase in temperature for the case with maximum curvature. The major impact is on the displacement characteristics. Furthermore, while the case with a flat foil produces a symmetrical swelling, if the foil is curved, more swelling occurs on the thin-cladding side and the plate bows during irradiation.« less

  5. Effect of Circuit Inductance on Ceramics Joining by Titanium Foil Explosion

    NASA Astrophysics Data System (ADS)

    Takada, Yoshihiro; Takaki, Koichi; Itagaki, Minoru; Mukaigawa, Seiji; Fujiwara, Tamiya; Ohshima, Shuzo; Takahashi, Ikuo; Kuwashima, Takayuki

    This article describes the influences of circuit inductance on alumina (Al2O3) tile joining using explosive titanium foil. Several kAs pulse current was supplied from 8.28 µF storage capacitor to the 50 µm thickness titanium foil which was sandwiched between the Al2O3 tiles with pressure of 8.3 MPa. The temperature of the foil was rapidly increased owing to ohmic heating with the large current, and then the foil was liquefied and vaporized. The Al2O3 tiles were successfully bonded when the input energy to the titanium foil was higher than the energy required for the foil vaporization. The bonding strength increases with increasing the energy input to the foil. However, the foil explosion cracked the tiles when the input energy exceeds a critical value. Increasing the circuit inductance from 1.13 µH to 64.8 µH, the critical energy of tile cracking increase from 160 J to 507 J, respectively. the maximum bonding strength of 330 kg was obtained when the circuit inductance was 21.8 µH. An investigation of the interfacial structure of the joints using electron probe micro-analysis revealed that distinct reaction areas existed in the interlayer.

  6. High-performance lithium-ion batteries with 1.5 μm thin copper nanowire foil as a current collector

    NASA Astrophysics Data System (ADS)

    Chu, Hsun-Chen; Tuan, Hsing-Yu

    2017-04-01

    Cu Foil, a thin sheet of Cu, is the common anode current collector in commercial lithium ion batteries (LIBs) which accounts for ∼ 10 wt% of the total cell weight. However, thickness reduction of LIB-based Cu foils below 6 μm has been limited by the incapability of conventional rolling annealing or electrodeposition process. We here report a new type of Cu foil, so called Cu nanowire foil (CuNW foil), for use as an LIB anode current collector. We fabricate Cu NW foils by rolling press Cu nanowire fabric to reduce the thickness down to ∼1.5 μm with an areal weight down to ∼1.2 mg cm-2 and a density approximately 96% to that of bulk Cu. The rough surface and porous structure of CuNW foil enable better wetting and adhering properties of graphite slurry on foil. In full cell examination, a cell of a areal capacity of 3 mAh cm-2 exhibits 83.6% capacity retention for 600 cycles at 0.6 C that meets the standard specification of most commercial LIBs. As a proof-of-concept of demonstration, we fabricate a 700 mA pouch-type battery implemented with graphite-Cu NWs foil anodes to serve as energy supply to operate electronic devices.

  7. Characteristics of a plasma flow field produced by a metal array bridge foil explosion

    NASA Astrophysics Data System (ADS)

    Junying, WU; Long, WANG; Yase, LI; Lijun, YANG; Manzoor, SULTAN; Lang, CHEN

    2018-07-01

    To improve the energy utilization efficiency of metal bridge foil explosion, and increase the function range of plasmas, array bridge foil explosion experiments with different structures were performed. A Schlieren photographic measurement system with a double-pulse laser source was used to observe the flow field of a bridge foil explosion. The evolution laws of plasmas and shock waves generated by array bridge foil explosions of different structures were analyzed and compared. A multi-phase flow calculation model was established to simulate the electrical exploding process of a metal bridge foil. The plasma equation of state was determined by considering the effect of the changing number of particles and Coulomb interaction on the pressure and internal energy. The ionization degree of the plasma was calculated via the Saha–Eggert equation assuming conditions of local thermal equilibrium. The exploding process of array bridge foils was simulated, and the superposition processes of plasma beams were analyzed. The variation and distribution laws of the density, temperature, pressure, and other important parameters were obtained. The results show that the array bridge foil has a larger plasma jet diameter than the single bridge foil for an equal total area of the bridge foil. We also found that the temperature, pressure, and density of the plasma jet’s center region sharply increase because of the superposition of plasma beams.

  8. SU-E-T-121: Analyzing the Broadening Effect On the Bragg Peak Due to Heterogeneous Geometries and Implementing User-Routines in the Monte-Carlo Code FLUKA in Order to Reduce Computation Time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumann, K; Weber, U; Simeonov, Y

    2015-06-15

    Purpose: Aim of this study was to analyze the modulating, broadening effect on the Bragg Peak due to heterogeneous geometries like multi-wire chambers in the beam path of a particle therapy beam line. The effect was described by a mathematical model which was implemented in the Monte-Carlo code FLUKA via user-routines, in order to reduce the computation time for the simulations. Methods: The depth dose curve of 80 MeV/u C12-ions in a water phantom was calculated using the Monte-Carlo code FLUKA (reference curve). The modulating effect on this dose distribution behind eleven mesh-like foils (periodicity ∼80 microns) occurring in amore » typical set of multi-wire and dose chambers was mathematically described by optimizing a normal distribution so that the reverence curve convoluted with this distribution equals the modulated dose curve. This distribution describes a displacement in water and was transferred in a probability distribution of the thickness of the eleven foils using the water equivalent thickness of the foil’s material. From this distribution the distribution of the thickness of one foil was determined inversely. In FLUKA the heterogeneous foils were replaced by homogeneous foils and a user-routine was programmed that varies the thickness of the homogeneous foils for each simulated particle using this distribution. Results: Using the mathematical model and user-routine in FLUKA the broadening effect could be reproduced exactly when replacing the heterogeneous foils by homogeneous ones. The computation time was reduced by 90 percent. Conclusion: In this study the broadening effect on the Bragg Peak due to heterogeneous structures was analyzed, described by a mathematical model and implemented in FLUKA via user-routines. Applying these routines the computing time was reduced by 90 percent. The developed tool can be used for any heterogeneous structure in the dimensions of microns to millimeters, in principle even for organic materials like lung tissue.« less

  9. Prediction and characterization of heat-affected zone formation due to neighboring nickel-aluminum multilayer foil reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, David P.; Hirschfeld, Deidre A.; Hooper, Ryan J.

    2015-09-01

    Reactive multilayer foils have the potential to be used as local high intensity heat sources for a variety of applications. Much of the past research effort concerning these materials have focused on understanding the structure-property relationships of the foils that govern the energy released during a reaction. To enhance the ability of researchers to more rapidly develop technologies based on reactive multilayer foils, a deeper and more predictive understanding of the relationship between the heat released from the foil and microstructural evolution in the neighboring materials is needed. This work describes the development of a numerical model for the purposemore » of evaluating new foil-substrate combinations for screening and optimization. The model is experimentally validated using a commercially available Ni-Al multilayer foils and different alloys.« less

  10. Shock Wave Based Biolistic Device for DNA and Drug Delivery

    NASA Astrophysics Data System (ADS)

    Nakada, Mutsumi; Menezes, Viren; Kanno, Akira; Hosseini, S. Hamid R.; Takayama, Kazuyoshi

    2008-03-01

    A shock wave assisted biolistic (biological ballistic) device has been developed to deliver DNA/drug-coated micro-projectiles into soft living targets. The device consists of an Nd:YAG laser, an optical setup to focus the laser beam and, a thin aluminum (Al) foil (typically 100 µm thick) which is a launch pad for the micro-projectiles. The DNA/drug-coated micro-particles to be delivered are deposited on the anterior surface of the foil and the posterior surface of the foil is ablated using the laser beam with an energy density of about 32×109 W/cm2. The ablation launches a shock wave through the foil that imparts an impulse to the foil surface, due to which the deposited particles accelerate and acquire sufficient momentum to penetrate soft targets. The device has been tested for particle delivery by delivering 1 µm size tungsten particles into liver tissues of experimental rats and in vitro test models made of gelatin. The penetration depths of about 90 and 800 µm have been observed in the liver and gelatin targets, respectively. The device has been tested for in vivo DNA [encoding β-glucuronidase (GUS) gene] transfer by delivering plasmid DNA-coated, 1-µm size gold (Au) particles into onion scale, tobacco leaf and soybean seed cells. The GUS activity was detected in the onion, tobacco and soybean cells after the DNA delivery. The present device is totally non-intrusive in nature and has a potential to get miniaturized to suit the existing medical procedures for DNA and/or drug delivery.

  11. Polymer gel dosimetry for measuring the dose near thin high-Z materials irradiated with high energy photon beams.

    PubMed

    Warmington, Leighton L; Gopishankar, N; Broadhurst, John H; Watanabe, Yoichi

    2016-12-01

    To investigate the feasibility of three-dimensional (3D) dose measurements near thin high-Z materials placed in a water-like medium by using a polymer gel dosimeter (PGD) when the medium was irradiated with high energy photon beams. PGD is potentially a useful tool for this application because it can record the dose around a small object made of a high-Z material in a continuous 3D medium. In this study, the authors manufactured a methacrylic acid-based normoxic PGD, nMAG. Two 0.5 mm thick lead foils (1 × 1 cm) were placed in foil supports with 0.7 cm separation in a 1000 ml polystyrene container filled with nMAG. The authors used two foil configurations, i.e., orthogonal and parallel. In the orthogonal configuration, two foils were placed in the direction orthogonal to the beam axis. The parallel configuration had two foils arranged in parallel to the beam axis. The phantom was irradiated with an 18 MV photon beam of 5 × 5 cm field size. It was imaged with a three-Tesla (3 T) magnetic resonance imaging (MRI) scanned using the Car-Purcell-Meiboom-Gill pulse sequence. The spin-spin relaxation time (R2) to-dose calibration data were obtained by using small vials filled with nMAG and exposing to known doses. The DOSXYZnrc Monte Carlo (MC) code was used to get the expected dose distributions. More than 35 × 10 6 of histories were simulated so that the average error was less than 1%. An in-house matlab-based software was used to obtain the dose distributions from the measured R2 data as well as to compare the measurements and the MC predictions. The dose change due to the presence of the foils was studied by comparing the dose distributions with and without foils (or the reference). For the orthogonal configuration, the measured dose along the beam axis showed an increase in the upstream side of the first foil, between the foils, and on the downstream side of the second foil. The range of increased dose area was 1.1 cm in the upstream of the first foil. However, in the downstream of the second foil, it was 0.2 cm, beyond which the dose fell below the reference dose by 10%. The dose profile between the foils showed a well-like shape with the minimum dose still larger than the reference dose by 1.8%. The minimum dose point was closer to the first foil than to the second foil. For the parallel configuration, the dose between foils was the largest at the center. The increased dose area opposite to the gap between foils extended outward to 1 cm. The spatial dose distributions of PGD and MC showed the same geometrical patterns except for the points inside the foils for both orthogonal and parallel foil arrangements. The authors demonstrated that the nMAG PGD with MRI could be used to measure the 3D dosimetric structures at the mm-scale in the vicinity of the foil. The current study provided more accurate 3D spatial dose distribution than the previous studies. Furthermore, the measurements were validated by the MC simulation.

  12. Multivariate fMRI and Eye Tracking Reveal Differential Effects of Visual Interference on Recognition Memory Judgments for Objects and Scenes.

    PubMed

    O'Neil, Edward B; Watson, Hilary C; Dhillon, Sonya; Lobaugh, Nancy J; Lee, Andy C H

    2015-09-01

    Recent work has demonstrated that the perirhinal cortex (PRC) supports conjunctive object representations that aid object recognition memory following visual object interference. It is unclear, however, how these representations interact with other brain regions implicated in mnemonic retrieval and how congruent and incongruent interference influences the processing of targets and foils during object recognition. To address this, multivariate partial least squares was applied to fMRI data acquired during an interference match-to-sample task, in which participants made object or scene recognition judgments after object or scene interference. This revealed a pattern of activity sensitive to object recognition following congruent (i.e., object) interference that included PRC, prefrontal, and parietal regions. Moreover, functional connectivity analysis revealed a common pattern of PRC connectivity across interference and recognition conditions. Examination of eye movements during the same task in a separate study revealed that participants gazed more at targets than foils during correct object recognition decisions, regardless of interference congruency. By contrast, participants viewed foils more than targets for incorrect object memory judgments, but only after congruent interference. Our findings suggest that congruent interference makes object foils appear familiar and that a network of regions, including PRC, is recruited to overcome the effects of interference.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaeffel, J.A.; Mullinix, B.R.; Ranson, W.F.

    An experimental technique to simulate and evaluate the effects of high concentrations of x-rays resulting from a nuclear detonation on missile structures is presented. Data from 34 tests are included to demonstrate the technique. The effects of variations in the foil thickness, capacitor voltage, and plate thickness on the total impulse and maximum strain in the structure were determined. The experimental technique utilizes a high energy capacitor discharge unit to explode an aluminum foil on the surface of the structure. The structural response is evaluated by optical methods using the grid slope deflection method. The fringe patterns were recorded usingmore » a high-speed framing camera. The data were digitized using an optical comparator with an x-y table. The analysis was performed on a CDC 6600 computer.« less

  14. Oxygen diffusion barrier coating

    NASA Technical Reports Server (NTRS)

    Unnam, Jalaiah (Inventor); Clark, Ronald K. (Inventor)

    1987-01-01

    A method for coating a titanium panel or foil with aluminum and amorphous silicon to provide an oxygen barrier abrogating oxidation of the substrate metal is developed. The process is accomplished with known inexpensive procedures common in materials research laboratories, i.e., electron beam deposition and sputtering. The procedures are conductive to treating foil gage titanium and result in submicron layers which virtually add no weight to the titanium. There are no costly heating steps. The coatings blend with the substrate titanium until separate mechanical properties are subsumed by those of the substrate without cracking or spallation. This method appreciably increases the ability of titanium to mechanically perform in high thermal environments such as those witnessed on structures of space vehicles during re-entry

  15. Does the liquid method of electret forming influence the adhesion of blood platelets?

    PubMed

    Lowkis, B; Szymanowicz, M

    1995-01-01

    This work presents the results of the effect of the electric charge on the adhesion of blood platelets. All experiments were carried out on polyethylene foil. The liquid method was used to form electrets. The evaluation of the electret effect influence on the adhesion of blood platelets was made on the basis of the observation of the electret surface after the contact with fresh citrate human blood group O Rh+ in an electron scanning microscope. Experimental results confirmed the essential influence of the electric charge on the process of adhesion of blood platelets. It was noticed that the preliminary aging of electrets decreases the density of the surface charge and improves the athrombogenic characteristics of polyethylene foil.

  16. Liquid electrolyte-free cylindrical Al polymer capacitor review: Materials and characteristics

    NASA Astrophysics Data System (ADS)

    Yoo, Jeeyoung; Kim, Jaegun; Kim, Youn Sang

    2015-06-01

    The manufacturing methods for liquid electrolyte-free Al polymer capacitors are introduced by using new materials like novel oxidants, separators and negative current collectors. The Al polymer capacitor is constructed by an Al foil as an anode, Al2O3 as a dielectric, and poly(3, 4-ethylenedioxythiophene) (PEDOT) as a cathode. There are also various synthetic methods of 3, 4-ethylenedioxythiophene (EDOT) and the chemical polymerization of PEDOT from EDOT using iron benzenesulfonate as a new oxidant and dopant. Furthermore, various cathodic current collectors such as conventional Al foils, carbon and titanium dioxide deposited on Al foils or substrates, as well as various separators with manila-esparto paper and synthetic fibers (series of acryl, PET, etc.) are studied. The Al polymer capacitors with the newly introduced oxidant (iron benzenesulfonate), separator (aramid based synthetic fibers) and current collector (TiO2) exhibit considerably enhanced capacitance values and the extremely low resistance (7 mΩ), so there is low power consumption and high reliability. Additionally, the newly developed Al polymer capacitor is guaranteed for 5,000 h at 125 °C, which means there is a long life time operation over ∼ 5 × 106 h at 65 °C.

  17. NMR of samples containing metal foils.

    PubMed

    Xiong, J; Lock, H; Tao, T; Keeler, C; Maciel, G E

    1999-07-01

    By using spool configurations of a sample containing aluminum foil, in which the axis of the spool is collinear with the RF coil axis, one can obtain high-quality 13C NMR spectra of static samples of organic material attached to the aluminum foil. By combining such a spool configuration (or, alternatively, analogous samples containing equivalent amounts of fine aluminum powder) with the magic-angle hopping (MAH) technique, one can achieve a high degree of isotropic averaging of the 13C spectrum. This opens to NMR techniques the study of a variety of samples containing macroscopic pieces of metal foils, e.g., thin films deposited on metal foils and electrochemical systems with species adsorbed on metal-foil electrodes.

  18. Development of aerodynamic foil journal bearings for a high speed cryogenic turboexpander

    NASA Astrophysics Data System (ADS)

    Xiong, L.-Y.; Wu, G.; Hou, Y.; Liu, L.-Q.; Ling, M.-F.; Chen, C.-Z.

    The research presented in this paper is aimed at the development of aerodynamic foil journal bearings applying to a small high speed cryogenic turboexpander. A small high speed cryogenic turboexpander is designed. Attention has been paid to the study of the effect of foil stiffness on the vibration performance of bearings. From rotation tests, it is clear that, with the proper choice of foil stiffness, the foil bearing presented here can possess sufficiently high stability. The maximum rotational speed obtained is greater than 230 000 rpm. Therefore, owing to its simplicity and high performance, this type of foil journal bearing can hopefully be applied to a small high speed cryogenic turboexpander.

  19. Comparison of two surface temperature measurement using thermocouples and infrared camera

    NASA Astrophysics Data System (ADS)

    Michalski, Dariusz; Strąk, Kinga; Piasecka, Magdalena

    This paper compares two methods applied to measure surface temperatures at an experimental setup designed to analyse flow boiling heat transfer. The temperature measurements were performed in two parallel rectangular minichannels, both 1.7 mm deep, 16 mm wide and 180 mm long. The heating element for the fluid flowing in each minichannel was a thin foil made of Haynes-230. The two measurement methods employed to determine the surface temperature of the foil were: the contact method, which involved mounting thermocouples at several points in one minichannel, and the contactless method to study the other minichannel, where the results were provided with an infrared camera. Calculations were necessary to compare the temperature results. Two sets of measurement data obtained for different values of the heat flux were analysed using the basic statistical methods, the method error and the method accuracy. The experimental error and the method accuracy were taken into account. The comparative analysis showed that although the values and distributions of the surface temperatures obtained with the two methods were similar but both methods had certain limitations.

  20. Electrochemical Corrosion Properties of Commercial Ultra-Thin Copper Foils

    NASA Astrophysics Data System (ADS)

    Yen, Ming-Hsuan; Liu, Jen-Hsiang; Song, Jenn-Ming; Lin, Shih-Ching

    2017-08-01

    Ultra-thin electrodeposited Cu foils have been developed for substrate thinning for mobile devices. Considering the corrosion by residual etchants from the lithography process for high-density circuit wiring, this study investigates the microstructural features of ultra-thin electrodeposited Cu foils with a thickness of 3 μm and their electrochemical corrosion performance in CuCl2-based etching solution. X-ray diffraction and electron backscatter diffraction analyses verify that ultra-thin Cu foils exhibit a random texture and equi-axed grains. Polarization curves show that ultra-thin foils exhibit a higher corrosion potential and a lower corrosion current density compared with conventional (220)-oriented foils with fan-like distributed fine-elongated columnar grains. Chronoamperometric results also suggest that ultra-thin foils possess superior corrosion resistance. The passive layer, mainly composed of CuCl and Cu2O, forms and dissolves in sequence during polarization.

  1. Copper foils with gradient structure in thickness direction and different roughnesses on two surfaces fabricated by double rolling

    NASA Astrophysics Data System (ADS)

    Wang, Xi-yong; Liu, Xue-feng; Zou, Wen-jiang; Xie, Jian-xin

    2013-12-01

    Copper foils with gradient structure in thickness direction and different roughnesses on two surfaces were fabricated by double rolling. The two surface morphologies of double-rolled copper foils are quite different, and the surface roughness values are 61 and 1095 nm, respectively. The roughness value of matt surface can meet the requirement for bonding the resin matrix with copper foils used for flexible printed circuit boards, thus may omit traditional roughening treatment; the microstructure of double-rolled copper foils demonstrates an obviously asymmetric gradient feature. From bright surface to matt surface in thickness direction, the average grain size first increases from 2.3 to 7.4 μm and then decreases to 3.6 μm; compared with conventional rolled copper foils, the double-rolled copper foils exhibit a remarkably increased bending fatigue life, and the increased range is about 16.2%.

  2. Microfabricated Segmented-Involute-Foil Regenerator for Stirling Engines

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir; Danila, Daniel; Simon, Terrence; Mantell, Susan; Sun, Liyong; Gedeon, David; Qiu, Songgang; Wood, Gary; Kelly, Kevin; McLean, Jeffrey

    2010-01-01

    An involute-foil regenerator was designed, microfabricated, and tested in an oscillating-flow test rig. The concept consists of stacked involute-foil nickel disks (see figure) microfabricated via a lithographic process. Test results yielded a performance of about twice that of the 90-percent random-fiber currently used in small Stirling converters. The segmented nature of the involute- foil in both the axial and radial directions increases the strength of the structure relative to wrapped foils. In addition, relative to random-fiber regenerators, the involute-foil has a reduced pressure drop, and is expected to be less susceptible to the release of metal fragments into the working space, thus increasing reliability. The prototype nickel involute-foil regenerator was adequate for testing in an engine with a 650 C hot-end temperature. This is lower than that required by larger engines, and high-temperature alloys are not suited for the lithographic microfabrication approach.

  3. Experimental study of the spatial distributions of relativistic electron beams reflected and refracted by a thin foil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serov, A. V., E-mail: serov@x4u.lebedev.ru; Mamonov, I. A.

    2016-08-15

    Photographs of cross sections of an electron beam scattered from thin foils have been obtained on a dosimetric film. The procession of images makes it possible to obtain the spatial distribution of particles both reflected from a foil and passed through it. The spatial distribution of electrons incident on aluminum, copper, and lead foils, as well as on bimetallic foils composed of aluminum and lead layers and of aluminum and copper layers, has been measured. The effect of the material and thickness of the foil, as well as of the angle between the initial beam trajectory and the target plane,more » on the spatial distribution of electrons has been studied. The effect of the sequence of the metal layers in bimetallic foils on the distribution of beams has been analyzed. A 7.4-MeV microtron has been used as a source of electrons.« less

  4. Development of Gating Foils To Inhibit Ion Feedback Using FPC Production Techniques

    NASA Astrophysics Data System (ADS)

    Arai, D.; Ikematsu, K.; Sugiyama, A.; Iwamura, M.; Koto, A.; Katsuki, K.; Fujii, K.; Matsuda, T.

    2018-02-01

    Positive ion feedback from a gas amplification device to the drift region of the Time Projection Chamber for the ILC can deteriorate the position resolution. In order to inhibit the feedback ions, MPGD-based gating foils having good electron transmission have been developed to be used instead of the conventional wire gate. The gating foil needs to control the electric field locally in opening or closing the gate. The gating foil with a GEM (gas electron multiplier)-like structure has larger holes and smaller thickness than standard GEMs for gas amplification. It is known that the foil transmits over 80 % of electrons and blocks ions almost completely. We have developed the gating foils using flexible printed circuit (FPC) production techniques including an improved single-mask process. In this paper, we report on the production technique of 335 μm pitch, 12.5 μm thick gating foil with 80 % transmittance of electrons in ILC conditions.

  5. Activation cross-section measurement of proton induced reactions on cerium

    NASA Astrophysics Data System (ADS)

    Tárkányi, F.; Hermanne, A.; Ditrói, F.; Takács, S.; Spahn, I.; Spellerberg, S.

    2017-12-01

    In the framework of a systematic study of proton induced nuclear reactions on lanthanides we have measured the excitation functions on natural cerium for the production of 142,139,138m,137Pr, 141,139,137m,137g,135Ce and 133La up to 65 MeV proton energy using the activation method with stacked-foil irradiation technique and high-resolution γ-ray spectrometry. The cross-sections of the investigated reactions were compared with the data retrieved from the TENDL-2014 and TENDL-2015 libraries, based on the latest version of the TALYS code system. No earlier experimental data were found in the literature. The measured cross-section data are important for further improvement of nuclear reaction models and for practical applications in nuclear medicine, other labeling and activation studies.

  6. Producing Foils From Direct Cast Titanium Alloy Strip

    NASA Technical Reports Server (NTRS)

    Stuart, T. A.; Gaspar, T. A.; Sukonnik, I. M.; Semiatan, S. L.; Batawi, E.; Peters, J. A.; Fraser, H. L.

    1996-01-01

    This research was undertaken to demonstrate the feasibility of producing high-quality, thin-gage, titanium foil from direct cast titanium strip. Melt Overflow Rapid Solidification Technology (MORST) was used to cast several different titanium alloys into 500 microns thick strip, 10 cm wide and up to 3 m long. The strip was then either ground, hot pack rolled or cold rolled, as appropriate, into foil. Gamma titanium aluminide (TiAl) was cast and ground to approximately 100 microns thick foil and alpha-2 titanium aluminide (Ti3AI) was cast and hot pack rolled to approximately 70 microns thick foil. CP Ti, Ti6Al2Sn4Zr2Mo, and Ti22AI23Nb (Orthorhombic), were successfully cast and cold-rolled into good quality foil (less than 125 microns thick). The foils were generally fully dense with smooth surfaces, had fine, uniform microstructures, and demonstrated mechanical properties equivalent to conventionally produced titanium. By eliminating many manufacturing steps, this technology has the potential to produce thin gage, titanium foil with good engineering properties at significantly reduced cost relative to conventional ingot metallurgy processing.

  7. Foil Face Seal Testing

    NASA Technical Reports Server (NTRS)

    Munson, John

    2009-01-01

    In the seal literature you can find many attempts by various researchers to adapt film riding seals to the gas turbine engine. None have been successful, potential distortion of the sealing faces is the primary reason. There is a film riding device that does accommodate distortion and is in service in aircraft applications, namely the foil bearing. More specifically a foil thrust bearing. These are not intended to be seals, and they do not accommodate large axial movement between shaft & static structure. By combining the 2 a unique type of face seal has been created. It functions like a normal face seal. The foil thrust bearing replaces the normal primary sealing surface. The compliance of the foil bearing allows the foils to track distortion of the mating seal ring. The foil seal has several perceived advantages over existing hydrodynamic designs, enumerated in the chart. Materials and design methodology needed for this application already exist. Also the load capacity requirements for the foil bearing are low since it only needs to support itself and overcome friction forces at the antirotation keys.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, Danny J.; Ermi, Ruby M.; Schemer-Kohrn, Alan L.

    Twelve AFIP in-process foil samples, fabricated by either Y-12 or LANL, were shipped from LANL to PNNL for potential characterization using optical and scanning electron microscopy techniques. Of these twelve, nine different conditions were examined to one degree or another using both techniques. For this report a complete description of the results are provided for one archive foil from each source of material, and one unirradiated piece of a foil of each source that was irradiated in the Advanced Test Reactor. Additional data from two other LANL conditions are summarized in very brief form in an appendix. The characterization revealedmore » that all four characterized conditions contained a cold worked microstructure to different degrees. The Y-12 foils exhibited a higher degree of cold working compared to the LANL foils, as evidenced by the highly elongated and obscure U-Mo grain structure present in each foil. The longitudinal orientations for both of the Y-12 foils possesses a highly laminar appearance with such a distorted grain structure that it was very difficult to even offer a range of grain sizes. The U-Mo grain structure of the LANL foils, by comparison, consisted of a more easily discernible grain structure with a mix of equiaxed and elongated grains. Both materials have an inhomogenous grain structure in that all of the characterized foils possess abnormally coarse grains.« less

  9. Heat Transfer Measurements with Surface Mounted Foil-Sensors in an Active Mode: A Comprehensive Review and a New Design

    PubMed Central

    Mocikat, Horst; Herwig, Heinz

    2009-01-01

    A comprehensive review of film-sensors shows that they are primarily operated in a passive mode, i.e. without being actively heated to an extent, whereby they create a heat transfer situation on their own. Only when these sensors are used for wall shear stress measurements, the detection of laminar/turbulent transition, or the measurement of certain flow velocities, they are operated in an active mode, i.e. heated by an electrical current (after an appropriate calibration). In our study we demonstrate how these R(T)-based sensors (temperature dependence of the electrical resistance R) can also be applied in an active mode for heat transfer measurements. These measurements can be made on cold, unheated bodies, provided certain requirements with respect to the flow field are fulfilled. Our new sensors are laminated nickel- and polyimide-foils manufactured with a special technology, which is also described in detail. PMID:22574060

  10. Proactive interference and cuing effects in short-term cued recall: does foil context matter?

    PubMed

    Goh, Winston D; Tan, Huiqin

    2006-07-01

    Tehan and Humphreys's (1995, 1996) short-term cued recall paradigm showed that recall in short-term memory is cue driven. In critical trials, the participants studied two blocks of four words each and were required to forget the first block while remembering the second block. A foil in the first block (e.g., orange) was related to a target (e.g., carrot) in the second block. Proactive interference (PI) was evident when a retrieval cue was used that subsumed the foil and the target (e.g., type of juice), but not when a cue was used that subsumed only the target (e.g., type of vegetable). Four experiments were performed to examine the extent to which contextual organization in the foil block would enhance or diminish the foil's efficacy in creating PI. A novel condition was included in which the words in the foil block were studied in a phonologically related context but the target was cued semantically, and vice versa with a semantic context and phonological cue. There were no differences in recall accuracy between conditions with and without contextual organization, but reliable increases in foil intrusions were observed when contextual organization was present. Contextual organization enhanced the foil, rather than diminished it, but the strengthened foil generated PI only when the cue subsumed the foil and the target and had no effect when the cue subsumed only the target. The results are consistent with a cue-driven retrieval interpretation of short-term recall.

  11. High strain rate metalworking with vaporizing foil actuator: Control of flyer velocity by varying input energy and foil thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vivek, A., E-mail: vivek.4@osu.edu; Hansen, S. R.; Daehn, Glenn S.

    2014-07-15

    Electrically driven rapid vaporization of thin metallic foils can generate a high pressure which can be used to launch flyers at high velocities. Recently, vaporizing foil actuators have been applied toward a variety of impulse-based metal working operations. In order to exercise control over this useful tool, it is imperative that an understanding of the effect of characteristics of the foil actuator on its ability for mechanical impulse generation is developed. Here, foil actuators made out of 0.0508 mm, 0.0762 mm, and 0.127 mm thick AA1145 were used for launching AA2024-T3 sheets of thickness 0.508 mm toward a photonic Dopplermore » velocimeter probe. Launch velocities ranging between 300 m/s and 1100 m/s were observed. In situ measurement of velocity, current, and voltage assisted in understanding the effect of burst current density and deposited electrical energy on average pressure and velocity with foil actuators of various thicknesses. For the pulse generator, geometry, and flyer used here, the 0.0762 mm thick foil was found to be optimal for launching flyers to high velocities over short distances. Experimenting with annealed foil actuators resulted in no change in the temporal evolution of flyer velocity as compared to foil actuators of full hard temper. A physics-based analytical model was developed and found to have reasonable agreement with experiment.« less

  12. TERS v2.0: An improved version of TERS

    NASA Astrophysics Data System (ADS)

    Nath, S.

    2009-11-01

    We present a new version of the semimicroscopic Monte Carlo code "TERS". The procedure for calculating multiple small angle Coulomb scattering of the residues in the target has been modified. Target-backing and residue charge-reset foils, which are often used in heavy ion-induced complete fusion reactions, are included in the code. New version program summaryProgram title: TERS v2.0 Catalogue identifier: AEBD_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBD_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 7309 No. of bytes in distributed program, including test data, etc.: 1 219 555 Distribution format: tar.gz Programming language: C Computer: The code has been developed and tested on a PC with Intel Pentium IV processor. Operating system: Linux RAM: About 8 Mbytes Classification: 17.7 External routines: pgplot graphics subroutine library [1] should be installed in the system for generating residue trajectory plots. (The library is included in the CPC distribution file.) Catalogue identifier of previous version: AEBD_v1_0 Journal reference of previous version: Comput. Phys. Comm. 179 (2008) 492 Does the new version supersede the previous version?: Yes Nature of problem: Recoil separators are employed to select and identify nuclei of interest, produced in a nuclear reaction, rejecting unreacted beam and other undesired reaction products. It is important to know what fraction of the selected nuclei, leaving the target, reach the detection system. This information is crucial for determining absolute cross section of the studied reaction. Solution method: Interaction of projectiles with target nuclei is treated event by event, semimicro-scopically. Position and angle (with respect to beam direction), energy and charge state of the reaction products are calculated by Monte Carlo method. Trajectory of each nuclei inside the separator is then calculated by ion optical transfer matrix method. Ratio of the number of trajectories completing their journey up to the detection system to the total number of trajectories is a direct measure of absolute transmission efficiency of the separator. Reasons for new version: The method for calculating mean squared scattering angle (< ϑ > 2), used earlier [2], was found to be inadequate particularly for low energy heavy residues. Energy loss of beam in the target-backing foil and energy loss of residues in the charge-reset foil (wherever used) needed to be taken into account for better matching of simulated residue parameters with measurements. Summary of revisions: A new method [3] for calculating multiple small angle Coulomb scattering of residues in the target has been adopted. The change is incorporated in function Weibull() in the program ters_pti2.c. Isotopically enriched targets are made on a thin backing foil (usually made of carbon) quite often. Energy loss of beam in the backing foil (assuming beam is made to pass through the backing foil first, which is the usual practice) need to be taken into account. This calls for minor changes in the input file ters_pti2.inp. Following is the modified list of input parameters in this file with explanation. Atomic no. and mass no. of projectile and target. Projectile energy [MeV] in laboratory. Dia. [mm] of (circular) beam spot and target thickness [mg/cm2]. Atomic no. and mass no. of the backing material and thickness [mg/cm2] of the backing foil. Q value [MeV] for CN formation and inverse level density parameter. Numbers of evaporated alphas, protons and neutrons. Alpha separation energies [MeV], to be left blank if no alpha evaporation. Proton separation energies [MeV], to be left blank if no proton evaporation. Neutron separation energies [MeV], to be left blank if no neutron evaporation. Number of events i.e. residues to be considered by the program (maximum 5 ×105). The parameters in input line number 4 are new in this version. If the target is backed by a carbon foil of thickness 125 μg/cm2, the input line would look like "6 12 0.125". If the target is self-supporting, i.e. there is no backing, value of the last parameter (thickness) should be zero. However, the first two parameters must not be left blank or have 0 values. The input line would look like "6 12 0.0" in this case. A new function ThinFoil() has been introduced in the program ters_tra2.c. A thin foil can be inserted anywhere along the path of the residues by calling this function using the following syntax: Status = ThinFoil(argument list); if (Status == 0) continue; The function is particularly useful to place a residue charge-reset foil (usually made of carbon) after the target and is described in Table 1.Name of the functionJob of the functionList of argumentsDescription of argumentsThinFoil()To calculate ion energy loss in a thin foilint arg1, int arg2, int arg3arg1 = atomic number of the foil material, arg2 = mass number of the foil material, arg3 = thickness of the foil [mg/cm2] There is a minor change in the input file ters_tra2.inp. Following is the modified list of input parameters in this file with explanation. Residue atomic number and mass number. Energy [MeV], mass no. and charge state of the reference particle. Number of events i.e. trajectories to be calculated. Program/input files which have been modified in this version are suffixed by "2" in their names (before the extension), e.g., ters_pti.c has been renamed ters_pti2.c. The complete list of files included in the distributed code can be viewed in the readme file. Restrictions: The present version of the code is applicable to complete fusion reactions only. Calculation of transmission efficiency has been illustrated with a specific recoil separator, viz. the Heavy Ion Reaction Analyzer (HIRA) [4,5], at IUAC. One has to make necessary changes in the code, while performing calculations for other recoil separators. Also, atomic number of the residual nucleus should not exceed 92, as the method used for calculating stopping power of ions [6] is valid for Z ⩽ 92. The code can perform energy loss calculation only in elemental targets and foils (i.e. compounds or alloys are not supported). Further, number of events (NEVENT) in ters_tra2.inp should not exceed the same in ters_pti2.inp. Running time: From few seconds to several minutes depending on the reaction, number of events and separator layout. References: [1] http://www.astro.caltech.edu/~tjp/pgplot/. [2] G.R. Lynch, O.I. Dahl, Nucl. Instr. Methods B 58 (1991) 6. [3] L. Meyer, Phys. Status Solidi 44 (1971) 253. [4] A.K. Sinha, N. Madhavan, J.J. Das, P. Sugathan, D.O. Kataria, A.P. Patro, G.K. Mehta, Nucl. Instr. Methods A 339 (1994) 543. [5] S. Nath, Nucl. Instr. Methods A 576 (2007) 403. [6] J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids, vol. I, Pergamon Press, Oxford, 1984.

  13. Reduction of angular divergence of laser-driven ion beams during their acceleration and transport

    NASA Astrophysics Data System (ADS)

    Zakova, M.; Pšikal, Jan; Margarone, Daniele; Maggiore, Mario; Korn, G.

    2015-05-01

    Laser plasma physics is a field of big interest because of its implications in basic science, fast ignition, medicine (i.e. hadrontherapy), astrophysics, material science, particle acceleration etc. 100-MeV class protons accelerated from the interaction of a short laser pulse with a thin target have been demonstrated. With continuing development of laser technology, greater and greater energies are expected, therefore projects focusing on various applications are being formed, e.g. ELIMAIA (ELI Multidisciplinary Applications of laser-Ion Acceleration). One of the main characteristic and crucial disadvantage of ion beams accelerated by ultra-short intense laser pulses is their large divergence, not suitable for the most of applications. In this paper two ways how to decrease beam divergence are proposed. Firstly, impact of different design of targets on beam divergence is studied by using 2D Particlein-cell simulations (PIC). Namely, various types of targets include at foils, curved foil and foils with diverse microstructures. Obtained results show that well-designed microstructures, i.e. a hole in the center of the target, can produce proton beam with the lowest divergence. Moreover, the particle beam accelerated from a curved foil has lower divergence compared to the beam from a flat foil. Secondly, another proposed method for the divergence reduction is using of a magnetic solenoid. The trajectories of the laser accelerated particles passing through the solenoid are modeled in a simple Matlab program. Results from PIC simulations are used as input in the program. The divergence is controlled by optimizing the magnetic field inside the solenoid and installing an aperture in front of the device.

  14. Survival of refractory presolar grain analogs during Stardust-like impact into Al foils: Implications for Wild 2 presolar grain abundances and study of the cometary fine fraction

    NASA Astrophysics Data System (ADS)

    Croat, T. K.; Floss, C.; Haas, B. A.; Burchell, M. J.; Kearsley, A. T.

    2015-08-01

    We present results of FIB-TEM studies of 12 Stardust analog Al foil craters which were created by firing refractory Si and Ti carbide and nitride grains into Al foils at 6.05 km s-1 with a light-gas gun to simulate capture of cometary grains by the Stardust mission. These foils were prepared primarily to understand the low presolar grain abundances (both SiC and silicates) measured by SIMS in Stardust Al foil samples. Our results demonstrate the intact survival of submicron SiC, TiC, TiN, and less-refractory Si3N4 grains. In small (<2 μm) craters that are formed by single grain impacts, the entire impacting crystalline grain is often preserved intact with minimal modification. While they also survive in crystalline form, grains at the bottom of larger craters (>5 μm) are typically fragmented and are somewhat flattened in the direction of impact due to partial melting and/or plastic deformation. The low presolar grain abundance estimates derived from SIMS measurements of large craters (mostly >50 μm) likely result from greater modification of these impactors (i.e., melting and isotopic dilution), due to higher peak temperatures/pressures in these crater impacts. The better survivability of grains in smaller craters suggests that more accurate presolar grain estimates may be achievable through measurement of such craters. It also suggests small craters can provide a complementary method of study of the Wild 2 fine fraction, especially for refractory CAI-like minerals.

  15. Automated Composites Processing Technology: Film Module

    NASA Technical Reports Server (NTRS)

    Hulcher, A. Bruce

    2004-01-01

    NASA's Marshall Space Flight Center (MSFC) has developed a technology that combines a film/adhesive laydown module with fiber placement technology to enable the processing of composite prepreg tow/tape and films, foils or adhesives on the same placement machine. The development of this technology grew out of NASA's need for lightweight, permeation-resistant cryogenic propellant tanks. Autoclave processing of high performance composites results in thermally-induced stresses due to differences in the coefficients of thermal expansion of the fiber and matrix resin components. These stresses, together with the reduction in temperature due to cryogen storage, tend to initiate microcracking within the composite tank wall. One way in which to mitigate this problem is to introduce a thin, crack-resistant polymer film or foil into the tank wall. Investigation into methods to automate the processing of thin film or foil materials into composites led to the development of this technology. The concept employs an automated film supply and feed module that may be designed to fit existing fiber placement machines, or may be designed as integral equipment to new machines. This patent-pending technology can be designed such that both film and foil materials may be processed simultaneously, leading to a decrease in part build cycle time. The module may be designed having a compaction device independent of the host machine, or may utilize the host machine's compactor. The film module functions are controlled by a dedicated system independent of the fiber placement machine controls. The film, foil, or adhesive is processed via pre-existing placement machine run programs, further reducing operational expense.

  16. The stopping power and energy straggling of the energetic C and O ions in polyimide

    NASA Astrophysics Data System (ADS)

    Mikšová, R.; Macková, A.; Slepička, P.

    2016-03-01

    The stopping power and energy straggling of 12Cn+ and 16On+ heavy ions in the energy range 5.3-8.0 MeV in 8 μm thick polyimide (PI) foil were measured by means of an indirect transmission method using a half-covered a PIPS detector. Ions scattered from thin gold layer, under the scattering angle 150° were detected and the spectrum of ions penetrating the PI foil and without foil was recorded. The values of the experimentally determined stopping powers were compared to the calculated data by SRIM-2013 and MSTAR codes. Measured data were in good agreement with data calculated by SRIM-2013, especially for C ions was observed better agreement than for O ions. The energy straggling was determined and compared to those calculated by using Bohr's, Bethe-Livingston and Yang models. The measured energy straggling values in the PI foil was corrected for foil roughness and thickness inhomogeneity determined from AFM. Bethe-Livingston predicting formula has been modified to make it appropriate for thicker targets. The energy straggling determined in our experiment was obtained higher than Bohr's predicted value; the predictions by Yang are in good agreement with our experiment. Bethe-Livingston formulation of the energy straggling shows better agreement with the experimental data after the modified formula implementation which assumes that the thick target was consisted to be composed of n-number of thin layers. Influence of the charge-exchange phenomena to the energy straggling of C and O ions in PI was discussed.

  17. Aerodynamics Investigation of Faceted Airfoils at Low Reynolds Number

    NASA Astrophysics Data System (ADS)

    Napolillo, Zachary G.

    The desire and demand to fly farther and faster has progressively integrated the concept of optimization with airfoil design, resulting in increasingly complex numerical tools pursuing efficiency often at diminishing returns; while the costs and difficulty associated with fabrication increases with design complexity. Such efficiencies may often be necessary due to the power density limitations of certain aircraft such as small unmanned aerial vehicles (UAVs) and micro air vehicles (MAVs). This research, however, focuses on reducing the complexity of airfoils for applications where aerodynamic performance is less important than the efficiency of manufacturing; in this case a Hybrid Projectile. By employing faceted sections to approximate traditional contoured wing sections it may be possible to expedite manufacturing and reduce costs. We applied this method to the development of a low Reynolds number, disposable Hybrid Projectile requiring a 4.5:1 glide ratio, resulting in a series of airfoils which are geometric approximations to highly contoured cross-sections called ShopFoils. This series of airfoils both numerically and experimentally perform within a 10% margin of the SD6060 airfoil at low Re. Additionally, flow visualization has been conducted to qualitatively determine what mechanisms, if any, are responsible for the similarity in performance between the faceted ShopFoil sections and the SD6060. The data obtained by these experiments did not conclusively reveal how the faceted surfaces may influence low Re flow but did indicate that the ShopFoil s did not maintain flow attachment at higher angles of attack than the SD6060. Two reasons are provided for the unexpected performance of the ShopFoil: one is related to downwash effects, which are suspected of placing the outer portion of the span at an effective angle of attack where the ShopFoils outperform the SD6060; the other is the influence of the tip vortex on separation near the wing tips, which possibly provides a 'comparative advantage' to the ShopFoil because it has more to gain from a reduction in its pressure drag component.

  18. Production cross sections of deuteron-induced reactions on natural palladium for Ag isotopes

    NASA Astrophysics Data System (ADS)

    Ukon, Naoyuki; Aikawa, Masayuki; Komori, Yukiko; Haba, Hiromitsu

    2018-07-01

    Activation cross sections for deuteron-induced reactions on natural palladium were measured up to 24 MeV using the stacked-foil method and the high resolution gamma-ray spectroscopy. The production cross sections of 103Ag, the parent of a medical radioactive isotope 103Pd, were obtained. We found that our result is in good agreement with the previous data up to 20.3 MeV, and obtained new data at higher energies. In addition, the production cross sections of 104g+mAg, 105Ag, 106mAg, 110mAg and 111Ag were presented.

  19. Actinide Foil Production for MPACT Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beller, Denis

    Sensitive fast-neutron detectors are required for use in lead slowing down spectrometry (LSDS), an active interrogation technique for used nuclear fuel assay for Materials Protection, Accounting, and Controls Technologies (MPACT). During the past several years UNLV sponsored a research project at RPI to investigate LSDS; began development of fission chamber detectors for use in LSDS experiments in collaboration with INL, LANL, and Oregon State U.; and participated in a LSDS experiment at LANL. In the LSDS technique, research has demonstrated that these fission chamber detectors must be sensitive to fission energy neutrons but insensitive to thermal-energy neutrons. Because most systemsmore » are highly sensitive to large thermal neutron populations due to the well-known large thermal cross section of 235U, even a miniscule amount of this isotope in a fission chamber will overwhelm the small population of higher-energy neutrons. Thus, fast-fission chamber detectors must be fabricated with highly depleted uranium (DU) or ultra-pure thorium (Th), which is about half as efficient as DU. Previous research conducted at RPI demonstrated that the required purity of DU for assay of used nuclear fuel using LSDS is less than 4 ppm 235U, material that until recently was not available in the U.S. In 2009 the PI purchased 3 grams of ultra-depleted uranium (uDU, 99.99998% 238U with just 0.2 ± 0.1 ppm 235U) from VNIIEF in Sarov, Russia. We received the material in the form of U3O8 powder in August of 2009, and verified its purity and depletion in a FY10 MPACT collaboration project. In addition, chemical processing for use in FC R&D was initiated, fission chamber detectors and a scanning alpha-particle spectrometer were developed, and foils were used in a preliminary LSDS experiment at a LANL/LANSCE in Sept. of 2010. The as-received U3O8 powder must be chemically processed to convert it to another chemical form while maintaining its purity, which then must be used to electro-deposit U or UO2 in extremely thin layers (1 to 2 mg/cm2) on various media such as films, foils, or discs. After many months of investigation and trials in FY10 and 11, UNLV researchers developed a new method to produce pure UO2 deposits on foils using a unique approach, which has never been demonstrated, that involves dissolution of U3O8 directly into room temperature ionic liquid (RTIL) followed by electrodeposition from the RTIL-uDU solution (Th deposition from RTIL had been previously demonstrated). The high-purity dissolution of the U3O8 permits the use of RTIL solutions for deposition of U on metal foils in layers without introducing contamination. In FY10 and early FY11 a natural U surrogate for the uDU was used to investigate this and other techniques. In this research project UNLV will deposit directly from RTIL to produce uDU and Th foils devoid of possible contaminants. After these layers have been deposited, they will be examined for purity and uniformity. UNLV will complete the development and demonstration of the RTIL technology/ methodology to prepare uDU and Th samples for use in constructing fast-neutron detectors. Although this material was purchased for use in research using fast-fission chamber detectors for active inspection techniques for MPACT, it could also contribute to R&D for other applications, such as cross section measurements or neutron spectroscopy for national security« less

  20. In-line beam current monitor

    DOEpatents

    Ekdahl, Jr., Carl A.; Frost, Charles A.

    1986-01-01

    An intense relativistic electron beam current monitor for a gas neutralized beam transport line includes a first foil for conducting plasma current to the wall where it is measured as it traverses an inductive loop formed by a cavity in the wall. An insulator foil separates the first foil from a second conducting foil which returns the current to the plasma environment.

  1. In-line beam current monitor

    DOEpatents

    Ekdahl, C.A. Jr.; Frost, C.A.

    1984-11-13

    An intense relativistic electron beam current monitor for a gas neutralized beam transport line includes a first foil for conducting plasma current to the wall where it is measured as it traverses an inductive loop formed by a cavity in the wall. An insulator foil separates the first foil from a second conducting foil which returns the current to the plasma environment.

  2. Technical Development Path for Gas Foil Bearings

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher

    2016-01-01

    Foil gas bearings are in widespread commercial use in air cycle machines, turbocompressors and microturbine generators and are emerging in more challenging applications such as turbochargers, auxiliary power units and propulsion gas turbines. Though not well known, foil bearing technology is well over fifty years old. Recent technological developments indicate that their full potential has yet to be realized. This paper investigates the key technological developments that have characterized foil bearing advances. It is expected that a better understanding of foil gas bearing development path will aid in future development and progress towards more advanced applications.

  3. Surface-assisted DNA self-assembly: An enzyme-free strategy towards formation of branched DNA lattice.

    PubMed

    Bhanjadeo, Madhabi M; Nayak, Ashok K; Subudhi, Umakanta

    2017-04-01

    DNA based self-assembled nanostructures and DNA origami has proven useful for organizing nanomaterials with firm precision. However, for advanced applications like nanoelectronics and photonics, large-scale organization of self-assembled branched DNA (bDNA) into periodic lattices is desired. In this communication for the first time we report a facile method of self-assembly of Y-shaped bDNA nanostructures on the cationic surface of Aluminum (Al) foil to prepare periodic two dimensional (2D) bDNA lattice. Particularly those Y-shaped bDNA structures having smaller overhangs and unable to self-assemble in solution, they are easily assembled on the surface of Al foil in the absence of ligase. Field emission scanning electron microscopy (FESEM) analysis shows homogenous distribution of two-dimensional bDNA lattices across the Al foil. When the assembled bDNA structures were recovered from the Al foil and electrophoresed in nPAGE only higher order polymeric bDNA structures were observed without a trace of monomeric structures which confirms the stability and high yield of the bDNA lattices. Therefore, this enzyme-free economic and efficient strategy for developing bDNA lattices can be utilized in assembling various nanomaterials for functional molecular components towards development of DNA based self-assembled nanodevices. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Single crystalline electronic structure and growth mechanism of aligned square graphene sheets

    NASA Astrophysics Data System (ADS)

    Yang, H. F.; Chen, C.; Wang, H.; Liu, Z. K.; Zhang, T.; Peng, H.; Schröter, N. B. M.; Ekahana, S. A.; Jiang, J.; Yang, L. X.; Kandyba, V.; Barinov, A.; Chen, C. Y.; Avila, J.; Asensio, M. C.; Peng, H. L.; Liu, Z. F.; Chen, Y. L.

    2018-03-01

    Recently, commercially available copper foil has become an efficient and inexpensive catalytic substrate for scalable growth of large-area graphene films for fundamental research and applications. Interestingly, despite its hexagonal honeycomb lattice, graphene can be grown into large aligned square-shaped sheets on copper foils. Here, by applying angle-resolved photoemission spectroscopy with submicron spatial resolution (micro-ARPES) to study the three-dimensional electronic structures of square graphene sheets grown on copper foils, we verified the high quality of individual square graphene sheets as well as their merged regions (with aligned orientation). Furthermore, by simultaneously measuring the graphene sheets and their substrate copper foil, we not only established the (001) copper surface structure but also discovered that the square graphene sheets' sides align with the ⟨110⟩ copper direction, suggesting an important role of copper substrate in the growth of square graphene sheets—which will help the development of effective methods to synthesize high-quality large-size regularly shaped graphene sheets for future applications. This work also demonstrates the effectiveness of micro-ARPES in exploring low-dimensional materials down to atomic thickness and sub-micron lateral size (e.g., besides graphene, it can also be applied to transition metal dichalcogenides and various van der Waals heterostructures)

  5. Slumping monitoring of glass and silicone foils for x-ray space telescopes

    NASA Astrophysics Data System (ADS)

    Mika, M.; Pina, L.; Landova, M.; Sveda, L.; Havlikova, R.; Semencova, V.; Hudec, R.; Inneman, A.

    2011-09-01

    We developed a non-contact method for in-situ monitoring of the thermal slumping of glass and silicone foils to optimize this technology for the production of high quality mirrors for large aperture x-ray space telescopes. The telescope's crucial part is a high throughput, heavily nested mirror array with the angular resolution better than 5 arcsec. Its construction requires precise and light-weight segmented optics with surface micro-roughness on the order of 0.1 nm. Promising materials are glass or silicon foils shaped by thermal forming. The desired parameters can be achieved only through optimizing the slumping process. We monitored the slumping by taking the snapshots of the shapes every five minutes at constant temperature and the final shapes we measured with the Taylor Hobson profilometer. The shapes were parabolic and the deviations from a circle had the peak-to-valley values of 20-30 μm. The observed hot plastic deformation of the foils was controlled by viscous flow. We calculated and plotted the relations between the middle part deflection, viscosity, and heat-treatment time. These relations have been utilized for the development of a numerical model enabling computer simulation. By the simulation, we verify the material's properties and generate new data for the thorough optimization of the slumping process.

  6. Three diverse target preparations: 14C (12 mg/cm 2), 71Ga 24Mg (12 mg/cm 271Ga, 3 mg/cm 224Mg), and 66,67Zn (1.8-14.9 mg/cm 2)

    NASA Astrophysics Data System (ADS)

    Lozowski, W. R.

    1989-10-01

    A natural-carbon analog of fluffy, intractable 14C powder was produced. With it, a method was developed to produce a pressed disk of 14C of 12.7-mg/cm 2 thickness and 1.27-cm diameter, bound with 2.1 wt.% of adhesive. Aluminized Mylar cover foils and a fritted-disc filter were used to contain the target for ( overlinep, p') experiments. Reduction of 71Ga 2O 3 to the metal was accomplished with an efficiency of 94.3% in a small electroplating cell. Magnesium was chosen as the companion element because 50 at.% could be tolerated in the (p, n) experiment, and GaMg has a melting point of 646 K. A 1.27-cm diameter target, supported at the edge by a Mg foil, was produced in several simple steps. Directly rollable 66,67Zn foils were obtained from an electroplating cell with a Pt screen anode and a highly polished tungsten-carbide cathode. Plating times of 3 h provided metal-recovery efficiencies ranging from 94.2 to 96.5%. The as-deposited foils had many holes but were hole-free and shiny after reduction of 25% by pack rolling.

  7. A simple thick target for production of 89Zr using an 11 MeV cyclotron

    PubMed Central

    Link, Jeanne M.; Krohn, Kenneth A.; O’Hara, Matthew J.

    2017-01-01

    The growing interest but limited availability of 89Zr for PET led us to test targets for the 89Y(p,n) reaction. The goal was an easily constructed target for an 11 MeV Siemens cyclotron. Yttrium foils were tested at different thicknesses, angles and currents. A 90° foil tolerated 41 μA without damage and produced ~800 MBq/h, > 20 mCi, an amount adequate for radiochemistry research and human doses in a widely available accelerator. This method should translate to higher energy cyclotrons. PMID:28187357

  8. FABRICATION OF NEUTRON SOURCES

    DOEpatents

    Birden, J.H.

    1959-04-21

    A method is presented for preparing a neutron source from polonium-210 and substances, such as beryllium and boron, characterized by emission of neutrons upon exposure to alpha particles from the polonium. According to the invention, a source is prepared by placing powdered beryllium and a platinum foil electroplated with polonium-2;.0 in a beryllium container. The container is sealed and then heated by induction to a temperature of 450 to 1100 deg C to volatilize the polonium off the foil into the powder. The heating step is terminated upon detection of a maximum in the neutron flux level.

  9. Lead foil wrapping of the plastic scintillators for the gamma ray detection: optical reflector or spectrum intensifier?

    NASA Astrophysics Data System (ADS)

    Taheri, A.; Askari, M.; Taghan Sasanpour, M.

    2017-08-01

    This paper studies the effect of lead wrapping on the response of the plastic scintillators as gamma detectors. Experimental tests and Geant4 simulations showed that lead wrapping cannot increase the gamma absorption efficiency of the detector but, as a reflector, it can improve the optical properties of the detector. The reflectivity of the lead foil as an optical reflector was determined equal to 66% using an experimental-simulation combined method. Based on the obtained results, the optical collection efficiency of the detector was also increased about 4% after employing the lead reflector.

  10. General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors.

    PubMed

    Zhang, Genqiang; Lou, Xiong Wen David

    2013-02-20

    Mesoporous NiCo(2) O(4) nanosheets can be directly grown on various conductive substrates, such as Ni foam, Ti foil, stainless-steel foil and flexible graphite paper, through a general template-free solution method combined with a simple post annealing treatment. As a highly integrated binder- and conductive-agent-free electrode for supercapacitors, the mesoporous NiCo(2) O(4) nanosheets supported on Ni foam deliver ultrahigh capacitance and excellent high-rate cycling stability. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Inactivation of possible microorganism food contaminants on packaging foils using nonthermal plasma and hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Scholtz, V.; Khun, J.; Soušková, H.; Čeřovský, M.

    2015-07-01

    The inactivation effect of nonthermal plasma generated in electric discharge burning in air atmosphere with water or hydrogen peroxide aerosol for the application to the microbial decontamination of packaging foils is studied. The microbial inactivation is studied on two bacterial, two yeasts, and two filamentous micromycete species. The inactivation of all contaminating microorganisms becomes on the area of full 8.5 cm in diameter circular sample after short times of several tens of seconds. Described apparatus may present a possible alternative method of microbial decontamination of food packaging material or other thermolabile materials.

  12. Inactivation of possible microorganism food contaminants on packaging foils using nonthermal plasma and hydrogen peroxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholtz, V., E-mail: Vladimir.Scholtz@vscht.cz; Khun, J.; Soušková, H.

    The inactivation effect of nonthermal plasma generated in electric discharge burning in air atmosphere with water or hydrogen peroxide aerosol for the application to the microbial decontamination of packaging foils is studied. The microbial inactivation is studied on two bacterial, two yeasts, and two filamentous micromycete species. The inactivation of all contaminating microorganisms becomes on the area of full 8.5 cm in diameter circular sample after short times of several tens of seconds. Described apparatus may present a possible alternative method of microbial decontamination of food packaging material or other thermolabile materials.

  13. Workplace testing of the new single sphere neutron spectrometer based on Dysprosium activation foils (Dy-SSS)

    NASA Astrophysics Data System (ADS)

    Bedogni, R.; Gómez-Ros, J. M.; Esposito, A.; Gentile, A.; Chiti, M.; Palacios-Pérez, L.; Angelone, M.; Tana, L.

    2012-08-01

    A photon insensitive passive neutron spectrometer consisting of a single moderating polyethylene sphere with Dysprosium activation foils arranged along three perpendicular axes was designed by CIEMAT and INFN. The device is called Dy-SSS (Dy foil-based Single Sphere Spectrometer). It shows nearly isotropic response in terms of neutron fluence up to 20 MeV. The first prototype, previously calibrated with 14 MeV neutrons, has been recently tested in workplaces having different energy and directional distributions. These are a 2.5 MeV nearly mono-chromatic and mono-directional beam available at the ENEA Frascati Neutron Generator (FNG) and the photo-neutron field produced in a 15 MV Varian CLINAC DHX medical accelerator, located in the Ospedale S. Chiara (Pisa). Both neutron spectra are known through measurements with a Bonner Sphere Spectrometer. In both cases the experimental response of the Dy-SSS agrees with the reference data. Moreover, it is demonstrated that the spectrometric capability of the new device are independent from the directional distribution of the neutron field. This opens the way to a new generation of moderation-based neutron instruments, presenting all advantages of the Bonner sphere spectrometer without the disadvantage of the repeated exposures. This concept is being developed within the NESCOFI@BTF project of INFN (Commissione Scientifica Nazionale 5).

  14. Numerical investigations on aerodynamic forces of deformable foils in hovering motions

    NASA Astrophysics Data System (ADS)

    Su, Xiaohui; Yin, Zhen; Cao, Yuanwei; Zhao, Yong

    2017-04-01

    In this paper, the aerodynamic forces of deformable foils for hovering flight are numerically investigated by a two-dimensional finite-volume arbitrary Lagrangian Eulerian Navier-Stokes solver. The effects of deformation on the lift force generation mechanisms of deformable wings in hovering flight are studied by comparison and analysis of deformable and rigid wing results. The prescribed deformation of the wings changes their morphing during hovering motion in both camber and angle of incidence. The effects of deflection amplitude, deflection phase, and rotation location on the aerodynamic performances of the foils, as well as the associated flow structures, are investigated in details, respectively. Results obtained show that foil morphing changes both Leading Edge Vortex (LEV) and Trailing Edge Vortex (TEV) generation and development processes. Consequently, the lift force generation mechanisms of deformable wings differ from those of rigid foil models. For the full deformation foil model studied, the effect of foil deformation enhances its lift force during both wake capture and delayed stall. There is an optimized camber amplitude, which was found to be 0.1*chord among those cases simulated. Partial deformation in the foil does not enhance its lift force due to unfavorable foil camber. TEV is significantly changed by the local angle of attack due to the foil deformation. On the other hand, Trailing Edge Flap (TEF) deflection in the hinge connected two-rigid-plate model directly affects the strength of both the LEV and TEV, thus influencing the entire vortex shedding process. It was found that lift enhancement can reach up to 33.5% just by the TEF deflection alone.

  15. Porous carbon-coated graphite electrodes for energy production from salinity gradient using reverse electrodialysis

    NASA Astrophysics Data System (ADS)

    Lee, Su-Yoon; Jeong, Ye-Jin; Chae, So-Ryong; Yeon, Kyeong-Ho; Lee, Yunkyu; Kim, Chan-Soo; Jeong, Nam-Jo; Park, Jin-Soo

    2016-04-01

    Performance of graphite foil electrodes coated by porous carbon black (i.e., Vulcan) was investigated in comparison with metal electrodes for reverse electrodialysis (RED) application. The electrode slurry that was used for fabrication of the porous carbon-coated graphite foil is composed of 7.2 wt% of carbon black (Vulcan X-72), 0.8 wt% of a polymer binder (polyvinylidene fluoride, PVdF), and 92.0 wt% of a mixing solvent (dimethylacetamide, DMAc). Cyclic voltammograms of both the porous carbon (i.e., Vulcan)-coated graphite foil electrode and the graphite foil electrode without Vulcan showed good reversibility in the hexacyanoferrate(III) (i.e., Fe(CN)63-) and hexacyanoferrate(II) (i.e., Fe(CN)64-) redox couple and 1 M Na2SO4 at room temperature. However, anodic and cathodic current of the Vulcan-coated graphite foil electrode was much higher than those of the graphite foil electrode. Using a bench-scale RED stack, the current-voltage polarization curve of the Vulcan-coated graphite electrode was compared to that of metal electrodes such as iridium (Ir) and platinum (Pt). From the results, it was confirmed that resistance of four different electrodes increased with the following order: the Vulcan-coated graphite foil

  16. Patterning of Thick Parylene Films by Oxygen Plasma for Application as Exploding Foil Initiator Flyer Material

    DTIC Science & Technology

    2009-09-01

    exploding foil initiator ( EFI ) type fuzes are being explored to...Acronyms Au gold Cr chromium Cu copper EFI exploding foil initiator BOE buffered oxide etch MEMS microelectromechanical systems RIE reactive ion...Patterning of Thick Parylene Films by Oxygen Plasma for Application as Exploding Foil Initiator Flyer Material by Eugene Zakar and Michael

  17. Influence of micromachined targets on laser accelerated proton beam profiles

    NASA Astrophysics Data System (ADS)

    Dalui, Malay; Permogorov, Alexander; Pahl, Hannes; Persson, Anders; Wahlström, Claes-Göran

    2018-03-01

    High intensity laser-driven proton acceleration from micromachined targets is studied experimentally in the target-normal-sheath-acceleration regime. Conical pits are created on the front surface of flat aluminium foils of initial thickness 12.5 and 3 μm using series of low energy pulses (0.5-2.5 μJ). Proton acceleration from such micromachined targets is compared with flat foils of equivalent thickness at a laser intensity of 7 × 1019 W cm-2. The maximum proton energy obtained from targets machined from 12.5 μm thick foils is found to be slightly lower than that of flat foils of equivalent remaining thickness, and the angular divergence of the proton beam is observed to increase as the depth of the pit approaches the foil thickness. Targets machined from 3 μm thick foils, on the other hand, show evidence of increasing the maximum proton energy when the depths of the structures are small. Furthermore, shallow pits on 3 μm thick foils are found to be efficient in reducing the proton beam divergence by a factor of up to three compared to that obtained from flat foils, while maintaining the maximum proton energy.

  18. Approximating the near-edge mass absorption coefficients for Ni using an ultra-thin bimetal foil

    DOE PAGES

    Alkire, Randall W.

    2016-11-01

    In an effort to improve the characteristics of a fluorescing metal-foil-based beam position monitor, a new bimetal ultra-thin (0.98/0.67 µm) Ti–Ni foil was introduced to replace an existing single-element ultra-thin 0.5 µm thick Cr foil. During characterization it was determined that absorption measurements on the bimetal foil could be used to fit the Ni mass absorption coefficients accurately in the vicinity of the NiKedge. Comparison with experimental results from the literature demonstrated that the fitting procedure produced coefficients with uncertainties of the order of ±1%. Once determined, these fit coefficients allowed the thickness of an independently mounted 8 µm thickmore » Ni foil to be computed from absorption measurements instead of relying on a tool-based measurement of the foil thickness. Using the 8 µm thick foil, a continuous map of Ni mass absorption coefficients was produced at 1 eV resolution throughout the near-edge region. Lastly, this high-resolution map marks a significant improvement over the existing NIST XCOM or FFAST database mass absorption coefficients, which have estimated errors of 10–20% for the near-edge region.« less

  19. Material science as basis for nuclear medicine: Holmium irradiation for radioisotopes production

    NASA Astrophysics Data System (ADS)

    Usman, Ahmed Rufai; Khandaker, Mayeen Uddin; Haba, Hiromitsu; Otuka, Naohiko

    2018-05-01

    Material Science, being an interdisciplinary field, plays important roles in nuclear science. These applications are seen in weaponry, armoured vehicles, accelerator structure and development, semiconductor detectors, nuclear medicine and many more. Present study presents the applications of some metals in nuclear medicine (radioisotope production). The charged-particle-induced nuclear reactions by using cyclotrons or accelerators have become a very vital feature of the modern nuclear medicine. Realising the importance of excitation functions for the efficient production of medical radionuclides, some very high purity holmium metals are generally prepared or purchased for bombardment in nuclear accelerators. In the present work, various methods to obtain pure holmium for radioisotope production have been discussed while also presenting details of our present studies. From the experimental work of the present studies, some very high purity holmium foils have been used in the work for a comprehensive study of residual radionuclides production cross-sections. The study was performed using a stacked-foil activation technique combined with γ-ray spectrometry. The stack was bombarded with 50.4 MeV alpha particle beam from AVF cyclotron of RI Beam Factory, Nishina Centre for Accelerator-Based Science, RIKEN, Japan. The work produced thulium radionuclides useful in nuclear medicine.

  20. Epitaxial lift-off of electrodeposited single-crystal gold foils for flexible electronics

    NASA Astrophysics Data System (ADS)

    Mahenderkar, Naveen K.; Chen, Qingzhi; Liu, Ying-Chau; Duchild, Alexander R.; Hofheins, Seth; Chason, Eric; Switzer, Jay A.

    2017-03-01

    We introduce a simple and inexpensive procedure for epitaxial lift-off of wafer-size flexible and transparent foils of single-crystal gold using silicon as a template. Lateral electrochemical undergrowth of a sacrificial SiOx layer was achieved by photoelectrochemically oxidizing silicon under light irradiation. A 28-nanometer-thick gold foil with a sheet resistance of 7 ohms per square showed only a 4% increase in resistance after 4000 bending cycles. A flexible organic light-emitting diode based on tris(bipyridyl)ruthenium(II) that was spin-coated on a foil exploited the transmittance and flexibility of the gold foil. Cuprous oxide as an inorganic semiconductor that was epitaxially electrodeposited onto the gold foils exhibited a diode quality factor n of 1.6 (where n = 1.0 for an ideal diode), compared with a value of 3.1 for a polycrystalline deposit. Zinc oxide nanowires electrodeposited epitaxially on a gold foil also showed flexibility, with the nanowires intact up to 500 bending cycles.

  1. A suspended boron foil multi-wire proportional counter neutron detector

    NASA Astrophysics Data System (ADS)

    Nelson, Kyle A.; Edwards, Nathaniel S.; Hinson, Niklas J.; Wayant, Clayton D.; McGregor, Douglas S.

    2014-12-01

    Three natural boron foils, approximately 1.0 cm in diameter and 1.0 μm thick, were obtained from The Lebow Company and suspended in a multi-wire proportional counter. Suspending the B foils allowed the alpha particle and Li ion reaction products to escape simultaneously, one on each side of the foil, and be measured concurrently in the gas volume. The thermal neutron response pulse-height spectrum was obtained and two obvious peaks appear from the 94% and 6% branches of the 10B(n,α)7Li neutron reaction. Scanning electron microscope images were collected to obtain the exact B foil thicknesses and MCNP6 simulations were completed for those same B thicknesses. Pulse-height spectra obtained from the simulations were compared to experimental data and matched well. The theoretical intrinsic thermal-neutron detection efficiency for enriched 10B foils was calculated and is presented. Additionally, the intrinsic thermal neutron detection efficiency of the three natural B foils was calculated to be 3.2±0.2%.

  2. Angular distributions of reflected and refracted relativistic electron beams crossing a thin planar target at a small angle to its surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serov, A. V., E-mail: serov@x4u.lebedev.ru; Mamonov, I. A.; Kol’tsov, A. V., E-mail: koltsov@x4u.lebedev.ru

    2015-10-15

    The scattering of electrons by aluminum, copper, and lead foils, as well as by bimetallic aluminum-lead and aluminum-copper foils, has been studied experimentally. A microtron with an energy of particles of 7.4 MeV has been used as a source of electrons. The beam of particles incident on a target at small angles is split into particles reflected from the foil, which constitute a reflected beam, and particles crossing the foil, which constitute a refracted beam. The effect of the material and thickness of the foil, as well as the angle between the initial trajectory of the beam and the planemore » of the target, on the direction of motion and the angular divergence of the beam crossing the foil and the beam reflected from the foil has been analyzed. Furthermore, the effect of the sequence of metal layers in bimetallic films on the angles of refraction and reflection of the beam has been examined.« less

  3. Collisions of plastic and foam laser-driven foils studied by orthogonal x-ray imaging.

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Metzler, N.; Karasik, M.; Serlin, V.; Obenschain, S. P.; Schmitt, A. J.; Velikovich, A. L.; Zalesak, S. T.; Gardner, J. H.; Weaver, J.; Oh, J.; Harding, E. C.

    2007-11-01

    We report an experimental study of hydrodynamic Rayleigh-Taylor and Richtmyer-Meshkov-type instabilities developing at the material interface produced in double-foil collisions. Our double-foil targets consist of a plastic foil irradiated by the 4 ns Nike KrF laser pulse at ˜50 TW/cm^2 and accelerated toward a stationary plastic or foam foil. Either the rear side of the front foil or the front side of the rear foil is rippled. Orthogonal imaging, i. e., a simultaneous side-on and face-on x-ray radiography of the targets has been used in these experiments to observe the process of collision and the evolution of the areal mass amplitude modulation. Its observed evolution is similar to the case of the classical RM instability in finite thickness targets first studied by Y. Aglitsky et al., Phys. Plasmas 13, 80703 (2006). Our data are favorably compared with 1D and 2D simulation results.

  4. First experience with carbon stripping foils for the 160 MeV H- injection into the CERN PSB

    NASA Astrophysics Data System (ADS)

    Weterings, Wim; Bracco, Chiara; Jorat, Louise; Noulibos, Remy; van Trappen, Pieter

    2018-05-01

    160 MeV H- beam will be delivered from the new CERN linear accelerator (Linac4) to the Proton Synchrotron Booster (PSB), using a H- charge-exchange injection system. A 200 µg/cm2 carbon stripping foil will convert H- into protons by stripping off the electrons. The H- charge-exchange injection principle will be used for the first time in the CERN accelerator complex and involves many challenges. In order to gain experience with the foil changing mechanism and the very fragile foils, in 2016, prior to the installation in the PSB, a stripping foil test stand has been installed in the Linac4 transfer line. In addition, parts of the future PSB injection equipment are also temporarily installed in the Linac4 transfer line for tests with a 160 MeV H- commissioning proton beam. This paper describes the foil changing mechanism and control system, summarizes the practical experience of gluing and handling these foils and reports on the first results with beam.

  5. Carbon-Coated Current Collectors for High-Power Lithium-Ion Secondary Batteries

    DTIC Science & Technology

    2011-09-20

    foils have been used as the current collectors for LiFePO4 and Li4Ti5O12. It was found that the C-coating has remarkably enhance the power performance...chemical vapor deposition (T-CVD) to produce surface C-coating, and the resulting foils were used as current collectors for LiFePO4 and Li4Ti5O12. The C...2 mm x 2 mm. Two types of active electrode materials have been used for test, and they are LiFePO4 (LFPO) and Li4Ti5O12 (LTO) as cathode and anode

  6. Analysis, inspection, and repair methods for pin connections on Illinois bridges

    DOT National Transportation Integrated Search

    1992-04-01

    This report documents methods used in Illinois for analysis, inspection, and repair of pin connections in bridges. Weldable foil strain gages were used to detect the effects of unknown levels of fixity in pins on cantilever truss bridges. Other metho...

  7. Health physics challenges involved with opening a "seventeen-inch" concrete waste vault.

    PubMed

    Sullivan, Patrick T; Pizzulli, Michelle

    2005-05-01

    This paper describes the various activities involved with opening a sealed legacy "Seventeen-inch" concrete vault and the health physics challenges and solutions employed. As part of a legacy waste stream that was removed from the former Hazardous Waste Management Facility at Brookhaven National Laboratory, the "Seventeen-inch" concrete vault labeled 1-95 was moved to the new Waste Management Facility for ultimate disposal. Because the vault contained 239Pu foils with a total activity in excess of the transuranic waste limits, the foils needed to be removed and repackaged for disposal. Conventional diamond wire saws could not be used because of facility constraints, so this project relied mainly on manual techniques. The planning and engineering controls put in place enabled personnel to open the vault and remove the waste while keeping dose as low as reasonably achievable.

  8. Method for fabrication of ceramic dielectric films on copper foils

    DOEpatents

    Ma, Beihai; Narayanan, Manoj; Dorris, Stephen E.; Balachandran, Uthamalingam

    2017-06-14

    The present invention provides copper substrate coated with a lead-lanthanum-zirconium-titanium (PLZT) ceramic film, which is prepared by a method comprising applying a layer of a sol-gel composition onto a copper foil. The sol-gel composition comprises a precursor of a ceramic material suspended in 2-methoxyethanol. The layer of sol-gel is then dried at a temperature up to about 250.degree. C. The dried layer is then pyrolyzed at a temperature in the range of about 300 to about 450.degree. C. to form a ceramic film from the ceramic precursor. The ceramic film is then crystallized at a temperature in the range of about 600 to about 750.degree. C. The drying, pyrolyzing and crystallizing are performed under a flowing stream of an inert gas.

  9. Apparatus and process for ultrasonic seam welding stainless steel foils

    DOEpatents

    Leigh, Richard W.

    1992-01-01

    An ultrasonic seam welding apparatus having a head which is rotated to form contact, preferably rolling contact, between a metallurgically inert coated surface of the head and an outside foil of a plurality of layered foils or work materials. The head is vibrated at an ultrasonic frequency, preferably along a longitudinal axis of the head. The head is constructed to transmit vibration through a contacting surface of the head into each of the layered foils. The contacting surface of the head is preferably coated with aluminum oxide to prevent the head from becoming welded to layered stainless steel foils.

  10. Combined synchrotron X-ray tomography and X-ray powder diffraction using a fluorescing metal foil.

    PubMed

    Kappen, P; Arhatari, B D; Luu, M B; Balaur, E; Caradoc-Davies, T

    2013-06-01

    This study realizes the concept of simultaneous micro-X-ray computed tomography and X-ray powder diffraction using a synchrotron beamline. A thin zinc metal foil was placed in the primary, monochromatic synchrotron beam to generate a divergent wave to propagate through the samples of interest onto a CCD detector for tomographic imaging, thus removing the need for large beam illumination and high spatial resolution detection. Both low density materials (kapton tubing and a piece of plant) and higher density materials (Egyptian faience) were investigated, and elemental contrast was explored for the example of Cu and Ni meshes. The viability of parallel powder diffraction using the direct beam transmitted through the foil was demonstrated. The outcomes of this study enable further development of the technique towards in situ tomography∕diffraction studies combining micrometer and crystallographic length scales, and towards elemental contrast imaging and reconstruction methods using well defined fluorescence outputs from combinations of known fluorescence targets (elements).

  11. The stopping powers and energy straggling of heavy ions in polymer foils

    NASA Astrophysics Data System (ADS)

    Mikšová, R.; Macková, A.; Malinský, P.; Hnatowicz, V.; Slepička, P.

    2014-07-01

    The stopping power and energy straggling of 7Li, 12C and 16O ions in thin poly(etheretherketone) (PEEK), polyethylene terephthalate (PET) and polycarbonate (PC) foils were measured in the incident beam energy range of 9.4-11.8 MeV using an indirect transmission method. Ions scattered from a thin gold target at an angle of 150° were registered by a partially depleted PIPS detector, partly shielded with a polymer foil placed in front of the detector. Therefore, the signals from both direct and slowed down ions were visible in the same energy spectrum, which was evaluated by the ITAP code, developed at our laboratory. The ITAP code was employed to perform a Gaussian-fitting procedure to provide a complete analysis of each measured spectrum. The measured stopping powers were compared with the predictions obtained from the SRIM-2008 and MSTAR codes and with previous experimental data. The energy straggling data were compared with those calculated by using Bohr's, Lindhard-Scharff and Bethe-Livingston theories.

  12. Achieving Stable Radiation Pressure Acceleration of Heavy Ions via Successive Electron Replenishment from Ionization of a High-Z Material Coating.

    PubMed

    Shen, X F; Qiao, B; Zhang, H; Kar, S; Zhou, C T; Chang, H X; Borghesi, M; He, X T

    2017-05-19

    A method to achieve stable radiation pressure acceleration (RPA) of heavy ions from laser-irradiated ultrathin foils is proposed, where a high-Z material coating in front is used. The coated high-Z material, acting as a moving electron repository, continuously replenishes the accelerating heavy ion foil with comoving electrons in the light-sail acceleration stage due to its successive ionization under laser fields with Gaussian temporal profile. As a result, the detrimental effects such as foil deformation and electron loss induced by the Rayleigh-Taylor-like and other instabilities in RPA are significantly offset and suppressed so that stable acceleration of heavy ions are maintained. Particle-in-cell simulations show that a monoenergetic Al^{13+} beam with peak energy 3.8 GeV and particle number 10^{10} (charge >20  nC) can be obtained at intensity 10^{22}  W/cm^{2}.

  13. Non-invasive technique to measure biogeochemical parameters (pH and O2) in a microenvironment: Design and applications

    NASA Astrophysics Data System (ADS)

    Li, Biting; Seliman, Ayman; Pales, Ashley; Liang, Weizhen; Sams, Allison; Darnault, Christophe; Devol, Timothy

    2017-04-01

    The primary objectives of this research are to do the pH and O2 sensor foils calibration and then to test them in applications. Potentially, this project can be utilized to monitor the fate and transport of radionuclides in porous media. The information for physical and chemical parameters (e.g. pH and O2) is crucial to know when determining contaminants' behavior and transport in the environment. As a non-invasive method, optical imaging technique using a DSLR camera could capture data on the foil when it fluoresces, and gives a high temporal and spatial resolution during the experimental period. The calibration procedures were done in cuvettes in a row. The preliminary experiments could measure pH value in the range from 4.5 to 7.5, and O2 concentration from 0 mg/L to 20.74 mg/L. Applications of sensor foils have involved nano zero valent and acid rain experiments in order to obtain a gradient of parameter changes.

  14. New consistency tests for high-accuracy measurements of X-ray mass attenuation coefficients by the X-ray extended-range technique.

    PubMed

    Chantler, C T; Islam, M T; Rae, N A; Tran, C Q; Glover, J L; Barnea, Z

    2012-03-01

    An extension of the X-ray extended-range technique is described for measuring X-ray mass attenuation coefficients by introducing absolute measurement of a number of foils - the multiple independent foil technique. Illustrating the technique with the results of measurements for gold in the 38-50 keV energy range, it is shown that its use enables selection of the most uniform and well defined of available foils, leading to more accurate measurements; it allows one to test the consistency of independently measured absolute values of the mass attenuation coefficient with those obtained by the thickness transfer method; and it tests the linearity of the response of the counter and counting chain throughout the range of X-ray intensities encountered in a given experiment. In light of the results for gold, the strategy to be ideally employed in measuring absolute X-ray mass attenuation coefficients, X-ray absorption fine structure and related quantities is discussed.

  15. Slip and Slide Method of Factoring Trinomials with Integer Coefficients over the Integers

    ERIC Educational Resources Information Center

    Donnell, William A.

    2012-01-01

    In intermediate and college algebra courses there are a number of methods for factoring quadratic trinomials with integer coefficients over the integers. Some of these methods have been given names, such as trial and error, reversing FOIL, AC method, middle term splitting method and slip and slide method. The purpose of this article is to discuss…

  16. In-Flight and Post-Flight Impact Data Analysis from DEBIE2 (Debris In-Orbit Evaluator) on Board of ISS

    NASA Astrophysics Data System (ADS)

    Menicucci, Alessandra; Drolshagen, Gerhard; Kuitunen, Juha; Butenko, Yuriy; Mooney, Cathal

    2013-08-01

    DEBIE2 (Debris-in-orbit-evaluator) was launched in February 2008 as part of the European Technology Exposure Facility (EuTEF) and installed on the exterior of Columbus on ISS. DEBIE2 is an active detector, composed by 3 sensor units able to monitor the sub-micron micro-meteoroid and debris population in space. Each DEBIE sensor consists of a thin aluminium foil coupled with 2 wire grids sensitive to the plasma generated by particles impacting on the foil where also 2 piezoelectric sensors are glued. If the particle penetrates the foil, this can be detected by a third electron plasma detector located just behind the foil. The combination of these information allows to estimate the micro-particles and debris fluxes. EuTEF and DEBIE2 were retrieved after 18 months in flight and returned to Earth with the Space Shuttle Mission STS-128. In this paper, the results of the analysis of in-flight impact data are presented as well as the comparison with the models. The DEBIE2 sensor pointing the Zenith direction, was found to have one wire of the upper grid cut in two pieces by an impact. The postflight analysis focused on this sensor and included optical and SEM/EDX scanning. The results from this inspection will be also presented in this paper.

  17. Calibration of a thin metal foil for infrared imaging video bolometer to estimate the spatial variation of thermal diffusivity using a photo-thermal technique.

    PubMed

    Pandya, Shwetang N; Peterson, Byron J; Sano, Ryuichi; Mukai, Kiyofumi; Drapiko, Evgeny A; Alekseyev, Andrey G; Akiyama, Tsuyoshi; Itomi, Muneji; Watanabe, Takashi

    2014-05-01

    A thin metal foil is used as a broad band radiation absorber for the InfraRed imaging Video Bolometer (IRVB), which is a vital diagnostic for studying three-dimensional radiation structures from high temperature plasmas in the Large Helical Device. The two-dimensional (2D) heat diffusion equation of the foil needs to be solved numerically to estimate the radiation falling on the foil through a pinhole geometry. The thermal, physical, and optical properties of the metal foil are among the inputs to the code besides the spatiotemporal variation of temperature, for reliable estimation of the exhaust power from the plasma illuminating the foil. The foil being very thin and of considerable size, non-uniformities in these properties need to be determined by suitable calibration procedures. The graphite spray used for increasing the surface emissivity also contributes to a change in the thermal properties. This paper discusses the application of the thermographic technique for determining the spatial variation of the effective in-plane thermal diffusivity of the thin metal foil and graphite composite. The paper also discusses the advantages of this technique in the light of limitations and drawbacks presented by other calibration techniques being practiced currently. The technique is initially applied to a material of known thickness and thermal properties for validation and finally to thin foils of gold and platinum both with two different thicknesses. It is observed that the effect of the graphite layer on the estimation of the thermal diffusivity becomes more pronounced for thinner foils and the measured values are approximately 2.5-3 times lower than the literature values. It is also observed that the percentage reduction in thermal diffusivity due to the coating is lower for high thermal diffusivity materials such as gold. This fact may also explain, albeit partially, the higher sensitivity of the platinum foil as compared to gold.

  18. Calibration of a thin metal foil for infrared imaging video bolometer to estimate the spatial variation of thermal diffusivity using a photo-thermal technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandya, Shwetang N., E-mail: pandya.shwetang@LHD.nifs.ac.jp; Sano, Ryuichi; Peterson, Byron J.

    A thin metal foil is used as a broad band radiation absorber for the InfraRed imaging Video Bolometer (IRVB), which is a vital diagnostic for studying three-dimensional radiation structures from high temperature plasmas in the Large Helical Device. The two-dimensional (2D) heat diffusion equation of the foil needs to be solved numerically to estimate the radiation falling on the foil through a pinhole geometry. The thermal, physical, and optical properties of the metal foil are among the inputs to the code besides the spatiotemporal variation of temperature, for reliable estimation of the exhaust power from the plasma illuminating the foil.more » The foil being very thin and of considerable size, non-uniformities in these properties need to be determined by suitable calibration procedures. The graphite spray used for increasing the surface emissivity also contributes to a change in the thermal properties. This paper discusses the application of the thermographic technique for determining the spatial variation of the effective in-plane thermal diffusivity of the thin metal foil and graphite composite. The paper also discusses the advantages of this technique in the light of limitations and drawbacks presented by other calibration techniques being practiced currently. The technique is initially applied to a material of known thickness and thermal properties for validation and finally to thin foils of gold and platinum both with two different thicknesses. It is observed that the effect of the graphite layer on the estimation of the thermal diffusivity becomes more pronounced for thinner foils and the measured values are approximately 2.5–3 times lower than the literature values. It is also observed that the percentage reduction in thermal diffusivity due to the coating is lower for high thermal diffusivity materials such as gold. This fact may also explain, albeit partially, the higher sensitivity of the platinum foil as compared to gold.« less

  19. Dual-Chamber/Dual-Anode Proportional Counter Incorporating an Intervening Thin-Foil Solid Neutron Converter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boatner, Lynn A; Neal, John S; Blackston, Matthew A

    2012-01-01

    A dual-chamber/dual-anode gas proportional counter utilizing thin solid 6LiF or 10B neutron converters coated on a 2-micon-thick Mylar film that is positioned between the two counter chambers and anodes has been designed, fabricated, and tested using a variety of fill gases including naturally abundant helium. In this device, neutron conversion products emitted from both sides of the coated converter foil are detected rather than having half of the products absorbed in the wall of a conventional tube type counter where the solid neutron converter is deposited on the tube wall. Geant4-based radiation transport calculations were used to determine the optimummore » neutron converter coating thickness for both isotopes. Solution methods for applying these optimized-thickness coatings on a Mylar film were developed that were carried out at room temperature without any specialized equipment and that can be adapted to standard coating methods such as silk screen or ink jet printing. The performance characteristics of the dual-chamber/dual-anode neutron detector were determined for both types of isotopically enriched converters. The experimental performance of the 6LiF converter-based detector was described well by modeling results from Geant4. Additional modeling studies of multiple-foil/multiple-chamber/anode configurations addressed the basic issue of the relatively longer absorption range of neutrons versus the shorter range of the conversion products for 6LiF and 10B. Combined with the experimental results, these simulations indicate that a high-performance neutron detector can be realized in a single device through the application of these multiple-foil/solid converter, multiple-chamber detector concepts.« less

  20. PNNL Measurement Results for the 2016 Criticality Accident Dosimetry Exercise at the Nevada National Security Stite (IER-148)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rathbone, Bruce A.; Morley, Shannon M.; Stephens, John A.

    The Pacific Northwest National Laboratory (PNNL) participated in a criticality accident dosimetry intercomparison exercise held at the Nevada National Security Site (NNSS) May 24-27, 2016. The exercise was administered by Lawrence Livermore National Laboratory (LLNL) and consisted of three exposures performed using the Godiva-IV critical assembly housed in the Device Assembly Facility (DAF) located on the NNSS site. The exercise allowed participants to test the ability of their nuclear accident dosimeters to meet the performance criteria in ANSI/HPS N13.3-2013, Dosimetry for Criticality Accidents and to obtain new measurement data for use in revising dose calculation methods and quick sort screeningmore » methods where appropriate. PNNL participated with new prototype Personal Nuclear Accident Dosimeter (PNAD) and Fixed Nuclear Accident Dosimeter (FNAD) designs as well as the existing historical PNAD design. The new prototype designs incorporate optically stimulated luminescence (OSL) dosimeters in place of thermoluminescence dosimeters (TLDs), among other design changes, while retaining the same set of activation foils historically used. The default dose calculation methodology established decades ago for use with activation foils in PNNL PNADs and FNADs was used to calculate neutron dose results for both the existing and prototype dosimeters tested in the exercise. The results indicate that the effective cross sections and/or dose conversion factors used historically need to be updated to accurately measure the operational quantities recommended for nuclear accident dosimetry in ANSI/HPS N13.3-2013 and to ensure PNAD and FNAD performance meets the ANSI/HPS N13.3-2013 performance criteria. The operational quantities recommended for nuclear accident dosimetry are personal absorbed dose, Dp(10), and ambient absorbed dose, D*(10).« less

  1. Cross sections of proton-induced nuclear reactions on bismuth and lead up to 100 MeV

    NASA Astrophysics Data System (ADS)

    Mokhtari Oranj, L.; Jung, N. S.; Bakhtiari, M.; Lee, A.; Lee, H. S.

    2017-04-01

    Production cross sections of 209Bi(p , x n )207,206,205,204,203Po, 209Bi(p , pxn) 207,206,205,204,203,202Bi, and natPb(p , x n ) 206,205,204,203,202,201Bi reactions were measured to fill the gap in the excitation functions up to 100 MeV as well as to figure out the effects of different nuclear properties on proton-induced reactions including heavy nuclei. The targets were arranged in two different stacks consisting of Bi, Pb, Al, Au foils and Pb plates. The proton beam intensity was determined by the activation analysis method using 27Al(p ,3 p n )24Na, 197Au(p ,p n )196Au, and 197Au(p , p 3 n )194Au monitor reactions in parallel as well as the Gafchromic film dosimetry method. The activities of produced radionuclei in the foils were measured by the HPGe spectroscopy system. Over 40 new cross sections were measured in the investigated energy range. A satisfactory agreement was observed between the present experimental data and the previously published data. Excitation functions of mentioned reactions were calculated by using the theoretical model based on the latest version of the TALYS code and compared to the new data as well as with other data in the literature. Additionally, the effects of various combinations of the nuclear input parameters of different level density models, optical model potentials, and γ-ray strength functions were considered. It was concluded that if certain level density models are used, the calculated cross sections could be comparable to the measured data. Furthermore, the effects of optical model potential and γ-ray strength functions were considerably lower than that of nuclear level densities.

  2. Performance variation due to stiffness in a tuna-inspired flexible foil model.

    PubMed

    Rosic, Mariel-Luisa N; Thornycroft, Patrick J M; Feilich, Kara L; Lucas, Kelsey N; Lauder, George V

    2017-01-17

    Tuna are fast, economical swimmers in part due to their stiff, high aspect ratio caudal fins and streamlined bodies. Previous studies using passive caudal fin models have suggested that while high aspect ratio tail shapes such as a tuna's generally perform well, tail performance cannot be determined from shape alone. In this study, we analyzed the swimming performance of tuna-tail-shaped hydrofoils of a wide range of stiffnesses, heave amplitudes, and frequencies to determine how stiffness and kinematics affect multiple swimming performance parameters for a single foil shape. We then compared the foil models' kinematics with published data from a live swimming tuna to determine how well the hydrofoil models could mimic fish kinematics. Foil kinematics over a wide range of motion programs generally showed a minimum lateral displacement at the narrowest part of the foil, and, immediately anterior to that, a local area of large lateral body displacement. These two kinematic patterns may enhance thrust in foils of intermediate stiffness. Stiffness and kinematics exhibited subtle interacting effects on hydrodynamic efficiency, with no one stiffness maximizing both thrust and efficiency. Foils of intermediate stiffnesses typically had the greatest coefficients of thrust at the highest heave amplitudes and frequencies. The comparison of foil kinematics with tuna kinematics showed that tuna motion is better approximated by a zero angle of attack foil motion program than by programs that do not incorporate pitch. These results indicate that open questions in biomechanics may be well served by foil models, given appropriate choice of model characteristics and control programs. Accurate replication of biological movements will require refinement of motion control programs and physical models, including the creation of models of variable stiffness.

  3. Simulation of turn-by-turn passage of protons through the H-minus stripping foil in booster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, C.

    Equations for transverse emittance growth due to multiple passes of circulating proton beam through the H-minus stripping foil in Booster were developed in [1]. These were based on simple principles of statistics and simple assumptions about the initial distribution of particles incident on the foil. It was assumed there that the foil dimensions and position of the incoming beam are such that all particles hit the foil on every turn around the machine. In the present note we assume only that all incoming H-minus ions from Linac hit the foil and are stripped of their electrons. The resulting protons circulatemore » indefinitely around the machine. Setups in which the foil width is reduced so that not all protons hit the foil on every turn are studied here by simulation. The aim is to determine the effectiveness of such setups in reducing the emittance growth of circulating proton beam during the injection of H-minus beam. The simulations also serve as a check of the equations developed in [1], and vice versa. The particulars of the simulation setup are given in Sections 1 through 11. Figures 1 through 12 show simulation results for the case in which all particles hit the foil on every turn. The results are in good agreement with those obtained from the equations of reference [1]. Figures 13 through 19 show simulation results for various setups in which the foil width is reduced. These results are summarized in Section 12. In all gures the horizontal axis gives the turn number. The unit of the vertical axis is micrometers ( m) in all plots of emittance.« less

  4. Thermal neutron capture and resonance integral cross sections of 45Sc

    NASA Astrophysics Data System (ADS)

    Van Do, Nguyen; Duc Khue, Pham; Tien Thanh, Kim; Thi Hien, Nguyen; Kim, Guinyun; Kim, Kwangsoo; Shin, Sung-Gyun; Cho, Moo-Hyun; Lee, Manwoo

    2015-11-01

    The thermal neutron cross section (σ0) and resonance integral (I0) of the 45Sc(n,γ)46Sc reaction have been measured relative to that of the 197Au(n,γ)198Au reaction by means of the activation method. High-purity natural scandium and gold foils without and with a cadmium cover of 0.5 mm thickness were irradiated with moderated pulsed neutrons produced from the Pohang Neutron Facility (PNF). The induced activities in the activated foils were measured with a high purity germanium (HPGe) detector. In order to improve the accuracy of the experimental results the counting losses caused by the thermal (Gth) and resonance (Gepi) neutron self-shielding, the γ-ray attenuation (Fg) and the true γ-ray coincidence summing effects were made. In addition, the effect of non-ideal epithermal spectrum was also taken into account by determining the neutron spectrum shape factor (α). The thermal neutron cross-section and resonance integral of the 45Sc(n,γ)46Sc reaction have been determined relative to the reference values of the 197Au(n,γ)198Au reaction, with σo,Au = 98.65 ± 0.09 barn and Io,Au = 1550 ± 28 barn. The present thermal neutron cross section has been determined to be σo,Sc = 27.5 ± 0.8 barn. According to the definition of cadmium cut-off energy at 0.55 eV, the present resonance integral cross section has been determined to be Io,Sc = 12.4 ± 0.7 barn. The present results are compared with literature values and discussed.

  5. Lead foil in dental X-ray film: Backscattering rejection or image intensifier?

    NASA Astrophysics Data System (ADS)

    Hönnicke, M. G.; Delben, G. J.; Godoi, W. C.; Swinka-Filho, V.

    2014-11-01

    Dental X-ray films are still largely used due to sterilization issues, simplicity and, mainly, economic reasons. These films almost always are double coated (double emulsion) and have a lead foil in contact with the film for X-ray backscattering rejection. Herein we explore the use of the lead foil as an image intensifier. In these studies, spatial resolution was investigated when images were acquired on the dental X-ray films with and without the lead foil. Also, the lead foil was subjected to atomic analysis (fluorescent measurements) and structure analysis (X-ray diffraction). We determined that the use of the lead foil reduces the exposure time, however, does not affect the spatial resolution on the acquired images. This suggests that the fluorescent radiation spread is smaller than the grain sizes of the dental X-ray films.

  6. Influence of UV and Gamma radiations on the induced birefringence of stretched poly(vinyl) alcohol foils

    NASA Astrophysics Data System (ADS)

    Nechifor, Cristina-Delia; Zelinschi, Carmen Beatrice; Dorohoi, Dana-Ortansa

    2014-03-01

    The aim of our paper is to evidence the influence of Gamma and UV radiations on the induced birefringence of poly(vinyl alcohol) stretched foils. Thin foils of PVA were prepared and dried without modifying their surfaces. The polymeric foils were irradiated from 15 min to 6 h using UV and Gamma radiations. The induced by stretching under heating birefringence of PVA films was measured at λ = 589.3 nm with a Babinet Compensator. Physico-chemical processes (photo stabilization, photo degradation, oxidation) induced by irradiation of polymer matrix influence both the stretching degree and the anisotropy of etired foils. An increase of birefringence versus the stretching ratio of the PVA foils was evidenced for all studied samples. The dependence of the birefringence on the exposure time, stretching ratio and nature of radiation was also confirmed.

  7. Modification of Bushing Test Rig and Research of Variable Inlet Guide Vane Bushings For Further Development of PM304 Bushings

    NASA Technical Reports Server (NTRS)

    Yanke, Anne

    2004-01-01

    PS304 is a high temperature solid lubricant coating comprised of a nickel-chrome binder, chrome oxide hardener, barium-calcium fluoride high temperature lubricant, and silver as the low temperature lubricant. This coating is used to lubricate Oil-Free Foil Air Bearings as they experience friction and wear during start up and shut down. The coating deposition process begins with undercutting the shaft. This area is then sandblasted to provide a rough surface for the coating to adhere to. The coating powder is then sent through the plasma spray gun and a reasonably thick layer is applied to the undercut area of the shaft. The coating is then ground down even with the surface of the shaft and gets a nice polished finish. The foil air bearings use the solid lubricant, as mentioned above, during start up and shut down. During normal operating conditions, generally above 2000RPM, the bearings utilize air as their lubricant. Foil air bearings are comprised of a thin top foil and a corrugated bump foil. They have an interference fit with the shaft before operation. As the air gets "trapped" between the top foil and the shaft, it presses the top foil against the bump foil, in turn compressing the bumps. As the bumps compress, it allows for the air to separate the top foil from the shaft, therefore, utilizing the trapped air as its lubricant.

  8. Normalized Temperature Contrast Processing in Infrared Flash Thermography

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2016-01-01

    The paper presents further development in normalized contrast processing used in flash infrared thermography method. Method of computing normalized image or pixel intensity contrast, and normalized temperature contrast are provided. Methods of converting image contrast to temperature contrast and vice versa are provided. Normalized contrast processing in flash thermography is useful in quantitative analysis of flash thermography data including flaw characterization and comparison of experimental results with simulation. Computation of normalized temperature contrast involves use of flash thermography data acquisition set-up with high reflectivity foil and high emissivity tape such that the foil, tape and test object are imaged simultaneously. Methods of assessing other quantitative parameters such as emissivity of object, afterglow heat flux, reflection temperature change and surface temperature during flash thermography are also provided. Temperature imaging and normalized temperature contrast processing provide certain advantages over normalized image contrast processing by reducing effect of reflected energy in images and measurements, therefore providing better quantitative data. Examples of incorporating afterglow heat-flux and reflection temperature evolution in flash thermography simulation are also discussed.

  9. Damage suppression system using embedded SMA (shape memory alloy) foils in CFRP laminate structures

    NASA Astrophysics Data System (ADS)

    Ogisu, Toshimichi; Shimanuki, Masakazu; Kiyoshima, Satoshi; Takaki, Junji; Takeda, Nobuo

    2003-08-01

    This paper presents an overview of the demonstrator program with respect to the damage growth suppression effects using embedded SMA foils in CFRP laminates. The damage growth suppression effects were demonstrated for the technical verification in order to apply to aircraft structure. In our previous studies, the authors already confirmed the damage growth suppression effects of CFRP laminates with embedded pre-strained SMA foils through both coupon and structural element tests. It was founded that these effects were obtained by the suppression of the strain energy release rate based on the suppression of the crack opening displacement due to the recovery stress of SMA foils through the detail observation of the damage behavior. In this study, these results were verified using the demonstrator test article, which was 1/3-scaled model of commercial airliner fuselage structure. For the demonstration of damage growth suppression effects, the evaluation area was located in the lower panel, which was dominated in tension load during demonstration. The evaluation area is the integrated stiffened panel including both "smart area" (CFRP laminate with embedded pre-strained SMA foils) and "conventional area" (standard CFRP laminate) for the direct comparison. The demonstration was conducted at 80 degree Celsius in smart area and room temperature (RT) in conventional area during quasi-static load-unload test method. As the test results, the demonstrator test article presented that the damage onset strain in the smart area was improved by 30% for compared with the conventional area. Therefore, the successful technical verification of the damage onset/growth suppression effect using the demonstrator presented the feasibility of the application of smart material and structural system to aircraft structures.

  10. Accuracy of a separating foil impression using a novel polyolefin foil compared to a custom tray and a stock tray technique

    PubMed Central

    Pastoret, Marie-Hélène; Bühler, Julia; Weiger, Roland

    2017-01-01

    PURPOSE To compare the dimensional accuracy of three impression techniques- a separating foil impression, a custom tray impression, and a stock tray impression. MATERIALS AND METHODS A machined mandibular complete-arch metal model with special modifications served as a master cast. Three different impression techniques (n = 6 in each group) were performed with addition-cured silicon materials: i) putty-wash technique with a prefabricated metal tray (MET) using putty and regular body, ii) single-phase impression with custom tray (CUS) using regular body material, and iii) two-stage technique with stock metal tray (SEP) using putty with a separating foil and regular body material. All impressions were poured with epoxy resin. Six different distances (four intra-abutment and two inter-abutment distances) were gauged on the metal master model and on the casts with a microscope in combination with calibrated measuring software. The differences of the evaluated distances between the reference and the three test groups were calculated and expressed as mean (± SD). Additionally, the 95% confidence intervals were calculated and significant differences between the experimental groups were assumed when confidence intervals did not overlap. RESULTS Dimensional changes compared to reference values varied between -74.01 and 32.57 µm (MET), -78.86 and 30.84 (CUS), and between -92.20 and 30.98 (SEP). For the intra-abutment distances, no significant differences among the experimental groups were detected. CUS showed a significantly higher dimensional accuracy for the inter-abutment distances with -0.02 and -0.08 percentage deviation compared to MET and SEP. CONCLUSION The separation foil technique is a simple alternative to the custom tray technique for single tooth restorations, while limitations may exist for extended restorations with multiple abutment teeth. PMID:28874996

  11. Effect of Immobilized Antithrombin III on the Thromboresistance of Polycarbonate Urethane.

    PubMed

    Lukas, Karin; Stadtherr, Karin; Gessner, Andre; Wehner, Daniel; Schmid, Thomas; Wendel, Hans Peter; Schmid, Christof; Lehle, Karla

    2017-03-24

    The surface of foils and vascular grafts made from a thermoplastic polycarbonate urethanes (PCU) (Chronoflex AR) were chemically modified using gas plasma treatment, binding of hydrogels-(1) polyethylene glycol bisdiamine and carboxymethyl dextran (PEG-DEX) and (2) polyethyleneimine (PEI)-and immobilization of human antithrombin III (AT). Their biological impact was tested in vitro under static and dynamic conditions. Static test methods showed a significantly reduced adhesion of endothelial cells, platelets, and bacteria, compared to untreated PCU. Modified PCU grafts were circulated in a Chandler-Loop model for 90 min at 37 °C with human blood. Before and after circulation, parameters of the hemostatic system (coagulation, platelets, complement, and leukocyte activation) were analyzed. PEI-AT significantly inhibited the activation of both coagulation and platelets and prevented the activation of leukocytes and complement. In conclusion, both modifications significantly reduce coagulation activation, but only PEI-AT creates anti-bacterial and anti-thrombogenic functionality.

  12. Developing NanoFoil-Heated Thin-Film Thermal Battery

    DTIC Science & Technology

    2013-09-01

    buffer discs (in gray) sandwiching the NanoFoil disc (in yellow). Two Microtherm discs (in dark gray) bracketed the sandwich to prevent excessive heat...of the fuse strip with a Microtherm disc. Cathode Electrolyte Anode Microtherm Heat paper NanoFoil Buffer Agilent 34970A 606.5 Nichrome wire Maccor...gray) sandwiching the NanoFoil disc (in yellow). Two Microtherm discs (in dark gray) bracketed the sandwich to prevent excessive heat loss

  13. A deformation mechanism of hard metal surrounded by soft metal during roll forming

    PubMed Central

    YU, Hailiang; TIEU, A. Kiet; LU, Cheng; LIU, Xiong; GODBOLE, Ajit; LI, Huijun; KONG, Charlie; QIN, Qinghua

    2014-01-01

    It is interesting to imagine what would happen when a mixture of soft-boiled eggs and stones is deformed together. A foil made of pure Ti is stronger than that made of Cu. When a composite Cu/Ti foil deforms, the harder Ti will penetrate into the softer Cu in the convex shapes according to previously reported results. In this paper, we describe the fabrication of multilayer Cu/Ti foils by the roll bonding technique and report our observations. The experimental results lead us to propose a new deformation mechanism for a hard metal surrounded by a soft metal during rolling of a laminated foil, particularly when the thickness of hard metal foil (Ti, 25 μm) is much less than that of the soft metal foil (Cu, 300 μm). Transmission Electron Microscope (TEM) imaging results show that the hard metal penetrates into the soft metal in the form of concave protrusions. Finite element simulations of the rolling process of a Cu/Ti/Cu composite foil are described. Finally, we focus on an analysis of the deformation mechanism of Ti foils and its effects on grain refinement, and propose a grain refinement mechanism from the inside to the outside of the laminates during rolling. PMID:24853192

  14. Effect of applied voltage on surface properties of anodised titanium in mixture of β-glycerophosphate (β-GP) and calcium acetate (CA)

    NASA Astrophysics Data System (ADS)

    Chuan, Lee Te; Rathi, Muhammad Fareez Mohamad; Abidin, Muhamad Yusuf Zainal; Abdullah, Hasan Zuhudi; Idris, Maizlinda Izwana

    2015-07-01

    Anodic oxidation is a surface modification method which combines electric field driven metal and oxygen ion diffusion for formation of oxide layer on the anode surface. This method has been widely used to modify the surface morphology of biomaterial especially titanium. This study aimed to investigate the effect of applied voltage on titanium. Specifically, the titanium foil was anodised in mixture of β-glycerophosphate disodium salt pentahydrate (β-GP) and calcium acetate monohydrate (CA) with different applied voltage (50-350 V), electrolyte concentration (0.04 M β-GP + 0.4 M CA), anodising time (10minutes) and current density (50 and 70 mA.cm-2) at room temperature. Surface oxide properties of anodised titanium were characterised by digital single-lens reflex camera (DSLR camera), field emission scanning electron microscope (FESEM) and atomic force microscopy (AFM). At lower applied voltage (≤150 V), surface of titanium foils were relatively smooth. With increasing applied voltage (≥250 V), the oxide layer became more porous and donut-shaped pores were formed on the surface of titanium foils. The AFM results indicated that the surface roughness of anodised titanium increases with increasing of applied voltage. The porous and rough surface is able to promote the osseointegration and reduce the suffering time of patient.

  15. F-doped VO2 nanoparticles for thermochromic energy-saving foils with modified color and enhanced solar-heat shielding ability.

    PubMed

    Dai, Lei; Chen, Shi; Liu, Jianjun; Gao, Yanfeng; Zhou, Jiadong; Chen, Zhang; Cao, Chuanxiang; Luo, Hongjie; Kanehira, Minoru

    2013-07-28

    F-doped VO2 (M1) nanoparticles were prepared via one-pot hydrothermal synthesis. The F-doping can minimise the size of the VO2 (M1) nanoparticles, induce a homogeneous size distribution and effectively decrease the phase transition temperature to 35 °C at 2.93% F in VO2. VO2 smart glass foils obtained by casting these nanoparticles exhibit excellent thermochromism in the near-infrared region, which suggests that these foils can be used for energy-efficient glass. Compared to a pure VO2 foil, the 2.93% F-doped VO2 foil exhibits an increased solar-heat shielding ability (35.1%) and a modified comfortable colour, while still retaining an excellent solar modulation ability (10.7%) and an appropriate visible transmittance (48.7%). The F-doped VO2 foils are the first to simultaneously meet the requirements of a reduced phase transition temperature, diluted colour and excellent thermochromic properties, and these properties make the further improved F-doped VO2 foils suitable for commercial applications in energy efficient glass.

  16. Coherent synchrotron emission in transmission with double foil target

    NASA Astrophysics Data System (ADS)

    Xu, X. R.; Qiao, B.; Chang, H. X.; Zhang, Y. X.; Zhang, H.; Zhong, C. L.; Zhou, C. T.; Zhu, S. P.; He, X. T.

    2018-04-01

    Generation of intense single attosecond pulses from coherent synchrotron emission (CSE), in the transmitted direction of the laser-irradiated double foil targets, has been investigated theoretically and numerically. Unlike conventional CSE in the single foil target case, here the dense electron nanobunch is formed in the vacuum gap between two foils, which is composed of the electrons blown out from the first ultrathin foil. Owing to the existence of the vacuum gap, the electron nanobunch can be accelerated to more energy. In addition, more laser energy can penetrate through the nanobunch and get reflected from the second foil. These reflected lasers and electron nanobunches interact with each other and results in enhanced CSE and consequently, the generation of intense attosecond pulses. Particle-in-cell simulations show that a single attosecond pulse with duration of 18 {as}, photon energy > 0.16 {keV} and peak intensity of 1.7× {10}20 {{W}}/{cm}}2 can be obtained from the double-foil targets irradiated by a laser at intensity of 7.7× {10}21 {{W}}/{cm}}2.

  17. Nonlinear dynamic analysis of rigid rotor supported by gas foil bearings: Effects of gas film and foil structure on subsynchronous vibrations

    NASA Astrophysics Data System (ADS)

    Guo, Zhiyang; Feng, Kai; Liu, Tianyu; Lyu, Peng; Zhang, Tao

    2018-07-01

    Highly nonlinear subsynchronous vibrations are the main causing factors of failure in gas foil bearing (GFB)-rotor systems. Thus, investigating the vibration generation mechanisms and the relationship between subsynchronous vibrations and GFBs is necessary to ensure the healthy operation of rotor systems. In this study, an integrated nonlinear dynamic model with the consideration of shaft motion, unsteady gas film, and deformations of foil structure is established to investigate the effect of gas film and foil structure on system subsynchronous response. One test rig of GFB-rotor system is developed for model comparison. High agreement is shown between the prediction and test data, especially in the frequency domain. The nonlinear dynamic response is analyzed using waterfall plots, operation deflection shapes, journal orbits, Poincaré maps, and fast Fourier transforms. The parameter studies reveal that subsynchronous vibrations are highly related to gas film and foil structure. Subsynchronous vibrations can be adjusted by parameters such as bump stiffness, nominal clearance, and static loads. Therefore, gas foil bearing parameters should be carefully adjusted by system manufacturers to achieve the best rotordynamic performance.

  18. Hypervelocity impact microfoil perforations in the LEO space environment (LDEF, MAP AO-023 experiment)

    NASA Technical Reports Server (NTRS)

    Mcdonnell, J. A. M.; Stevenson, T. J.

    1992-01-01

    The Microabrasion Foil Experiment comprises arrays of frames, each supporting two layers of closely spaced metallic foils and a back-stop plate. The arrays, deploying aluminum and brass foil ranging from 1.5 to some 30 microns were exposed for 5.78 years on NASA's LDEF at a mean altitude of 458 km. They were deployed on the North, South, East, West, and Space pointing faces; results presented comprise the perforation rates for each location as a function of foil thickness. Initial results refer primarily to aluminum of 5 microns thickness or greater. This penetration distribution, comprising 2,342 perforations in total, shows significantly differing characteristics for each detector face. The anisotropy confirms, incorporating the dynamics of particulate orbital mechanics, the dominance of incorporating extraterrestrial particulates penetrating thicknesses greater than 20 microns in Al foil, yielding fluxes compatible with hyperbolic geocentric velocities. For thinner foils, a disproportionate increase in flux of particles on the East, North, and South faces shows the presence of orbital particulates which exceed the extraterrestrial component perforation rate at 5 micron foil thickness by a factor of approx. 4.

  19. The effect of chordwise flexibility on flapping foil propulsion in quiescent fluid

    NASA Astrophysics Data System (ADS)

    Shinde, Sachin; Arakeri, Jaywant

    2010-11-01

    Motivated to understand the role of wing flexibility of flying creatures during hovering, we experimentally study the effect of chordwise flexibility on the flow generated in quiescent fluid by a sinusoidally pitching rigid symmetrical foil with a flexible flap attached at the trailing edge. This foil produces a narrow, coherent jet containing reverse Karman vortex street, and a corresponding thrust. The thrust and flow is similar to that produced by a hovering bird or insect, however the mechanism seems to be different from known hovering mechanisms. Novelty of the present hovering mechanism is that the thrust generation is due to the coordinated pushing action of rigid foil and flexible flap. We identify the flow and vortex generation mechanism. This foil produces jet flows over a range of flapping frequencies and amplitudes. In contrast, the foil without flap i.e. with rigid trailing edge produces a weak, divergent jet that meanders randomly. Appending a flexible flap to the foil suppresses jet-meandering and strengthens the jet. Flexibility of flap is crucial in determining the flow structure. This study is useful in designing MAVs and thrusters.

  20. Stripper foil failure modes and cures at the Oak Rdige Spallation Neutron Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plum, M.A.; Raparia, D.; Cousineau, S.M.

    2011-03-28

    The Oak Ridge Spallation Neutron Source comprises a 1 GeV, 1.5 MW linear accelerator followed by an accumulator ring and a liquid mercury target. To manage the beam loss caused by the H{sup 0} excited states created during the H{sup -} charge-exchange injection into the accumulator ring, the stripper foil is located inside one of the chicane dipoles. This has some interesting consequences that were not fully appreciated until the beam power reached about 840 kW. One consequence was sudden failure of the stripper foil system due to convoy electrons stripped from the incoming H{sup -} beam, which circled aroundmore » to strike the foil bracket and cause bracket failure. Another consequence is that convoy electrons can reflect back up from the electron catcher and strike the foil and bracket. An additional contributor to foil system failure is vacuum breakdown due to the charge developed on the foil by secondary electron emission. In this paper we detail these and other interesting failure mechanisms and describe the improvements we have made to mitigate them.« less

  1. A Microfabricated Involute-Foil Regenerator for Stirling Engines

    NASA Technical Reports Server (NTRS)

    Tew, Roy; Ibrahim, Mounir; Danila, Daniel; Simon, Terrence; Mantell, Susan; Sun, Liyong; Gedeon, David; Kelly, Kevin; McLean, Jeffrey; Qiu, Songgang

    2007-01-01

    A segmented involute-foil regenerator has been designed, microfabricated and tested in an oscillating-flow rig with excellent results. During the Phase I effort, several approximations of parallel-plate regenerator geometry were chosen as potential candidates for a new microfabrication concept. Potential manufacturers and processes were surveyed. The selected concept consisted of stacked segmented-involute-foil disks (or annular portions of disks), originally to be microfabricated from stainless-steel via the LiGA (lithography, electroplating, and molding) process and EDM. During Phase II, re-planning of the effort led to test plans based on nickel disks, microfabricated via the LiGA process, only. A stack of nickel segmented-involute-foil disks was tested in an oscillating-flow test rig. These test results yielded a performance figure of merit (roughly the ratio of heat transfer to pressure drop) of about twice that of the 90 percent random fiber currently used in small approx.100 W Stirling space-power convertors-in the Reynolds Number range of interest (50 to 100). A Phase III effort is now underway to fabricate and test a segmented-involute-foil regenerator in a Stirling convertor. Though funding limitations prevent optimization of the Stirling engine geometry for use with this regenerator, the Sage computer code will be used to help evaluate the engine test results. Previous Sage Stirling model projections have indicated that a segmented-involute-foil regenerator is capable of improving the performance of an optimized involute-foil engine by 6 to 9 percent; it is also anticipated that such involute-foil geometries will be more reliable and easier to manufacture with tight-tolerance characteristics, than random-fiber or wire-screen regenerators. Beyond the near-term Phase III regenerator fabrication and engine testing, other goals are (1) fabrication from a material suitable for high temperature Stirling operation (up to 850 C for current engines; up to 1200 C for a potential engine-cooler for a Venus mission), and (2) reduction of the cost of the fabrication process to make it more suitable for terrestrial applications of segmented involute foils. Past attempts have been made to use wrapped foils to approximate the large theoretical figures of merit projected for parallel plates. Such metal wrapped foils have never proved very successful, apparently due to the difficulties of fabricating wrapped-foils with uniform gaps and maintaining the gaps under the stress of time-varying temperature gradients during start-up and shut-down, and relatively-steady temperature gradients during normal operation. In contrast, stacks of involute-foil disks, with each disk consisting of multiple involute-foil segments held between concentric circular ribs, have relatively robust structures. The oscillating-flow rig tests of the segmented-involute-foil regenerator have demonstrated a shift in regenerator performance strongly in the direction of the theoretical performance of ideal parallel-plate regenerators.

  2. A Microfabricated Involute-Foil Regenerator for Stirling Engines

    NASA Technical Reports Server (NTRS)

    Tew, Roy; Ibrahim, Mounir; Danila, Daniel; Simon, Terry; Mantell, Susan; Sun, Liyong; Gedeon, David; Kelly, Kevin; McLean, Jeffrey; Wood, Gary; hide

    2007-01-01

    A segmented involute-foil regenerator has been designed, microfabricated and tested in an oscillating-flow rig with excellent results. During the Phase I effort, several approximations of parallel-plate regenerator geometry were chosen as potential candidates for a new microfabrication concept. Potential manufacturers and processes were surveyed. The selected concept consisted of stacked segmented-involute-foil disks (or annular portions of disks), originally to be microfabricated from stainless-steel via the LiGA (lithography, electroplating, and molding) process and EDM (electric discharge machining). During Phase II, re-planning of the effort led to test plans based on nickel disks, microfabricated via the LiGA process, only. A stack of nickel segmented-involute-foil disks was tested in an oscillating-flow test rig. These test results yielded a performance figure of merit (roughly the ratio of heat transfer to pressure drop) of about twice that of the 90% random fiber currently used in small 100 W Stirling space-power convertors in the Reynolds Number range of interest (50-100). A Phase III effort is now underway to fabricate and test a segmented-involute-foil regenerator in a Stirling convertor. Though funding limitations prevent optimization of the Stirling engine geometry for use with this regenerator, the Sage computer code will be used to help evaluate the engine test results. Previous Sage Stirling model projections have indicated that a segmented-involute-foil regenerator is capable of improving the performance of an optimized involute-foil engine by 6-9%; it is also anticipated that such involute-foil geometries will be more reliable and easier to manufacture with tight-tolerance characteristics, than random-fiber or wire-screen regenerators. Beyond the near-term Phase III regenerator fabrication and engine testing, other goals are (1) fabrication from a material suitable for high temperature Stirling operation (up to 850 C for current engines; up to 1200 C for a potential engine-cooler for a Venus mission), and (2) reduction of the cost of the fabrication process to make it more suitable for terrestrial applications of segmented involute foils. Past attempts have been made to use wrapped foils to approximate the large theoretical figures of merit projected for parallel plates. Such metal wrapped foils have never proved very successful, apparently due to the difficulties of fabricating wrapped-foils with uniform gaps and maintaining the gaps under the stress of time-varying temperature gradients during start-up and shut-down, and relatively-steady temperature gradients during normal operation. In contrast, stacks of involute-foil disks, with each disk consisting of multiple involute-foil segments held between concentric circular ribs, have relatively robust structures. The oscillating-flow rig tests of the segmented-involute-foil regenerator have demonstrated a shift in regenerator performance strongly in the direction of the theoretical performance of ideal parallel-plate regenerators.

  3. Stepwise shockwave velocity determinator

    NASA Technical Reports Server (NTRS)

    Roth, Timothy E.; Beeson, Harold

    1992-01-01

    To provide an uncomplicated and inexpensive method for measuring the far-field velocity of a surface shockwave produced by an explosion, a stepwise shockwave velocity determinator (SSVD) was developed. The velocity determinator is constructed of readily available materials and works on the principle of breaking discrete sensors composed of aluminum foil contacts. The discrete sensors have an average breaking threshold of approximately 7 kPa. An incremental output step of 250 mV is created with each foil contact breakage and is logged by analog-to-digital instrumentation. Velocity data obtained from the SSVD is within approximately 11 percent of the calculated surface shockwave velocity of a muzzle blast from a 30.06 rifle.

  4. Strategy to Minimize Energetics Contamination at Military Testing/Training Ranges

    DTIC Science & Technology

    2005-09-01

    exploding foil exploding foil initiator ) initiator will minimize the energetic material...i.e., exploding foil initiator P 𔃾 𔃾 𔃾 𔃾 4. Use an electronic S&A; i.e., high voltage driven semi-conductor bridge elements P ’ 𔃾 𔃾 𔃾 5. Use...alternatives Opportunity 1. Eliminate energetics 3. Use an electronic S&A; i.e., exploding foil initiator 1 3 3 -3 2 -6 -2 1 -2 -5 4. Use an

  5. Study of irradiated Hadfield steel using transmission Mössbauer spectroscopy with high velocity resolution and conversion electron Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Semionkin, V. A.; Neshev, F. G.; Tsurin, V. A.; Milder, O. B.; Oshtrakh, M. I.

    2010-03-01

    Proton irradiated Hadfield steel foil was studied using transmission Mössbauer spectroscopy with high velocity resolution and conversion electron Mössbauer spectroscopy. It was shown that proton irradiation leads to structural changes in the foil as well as to surface oxidation with ferric hydrous oxide formation (ferrihydrite). Moreover, oxidation on the foil underside was higher than on the foil right side.

  6. Bending fatigue of electron-beam-welded foils. Application to a hydrodynamic air bearing in the Chrysler/DOE upgraded automotive gas tubine engine

    NASA Technical Reports Server (NTRS)

    Saltsman, J. F.; Halford, G. R.

    1984-01-01

    A hydrodynamic air bearing with a compliment surface is used in the gas generator of an upgraded automotive gas turbine engine. In the prototype design, the compliant surface is a thin foil spot welded at one end to the bearing cartridge. During operation, the foil failed along the line of spot welds which acted as a series of stress concentrators. Because of its higher degree of geometric uniformity, electron beam welding of the foil was selected as an alternative to spot welding. Room temperature bending fatigue tests were conducted to determine the fatigue resistance of the electron beam welded foils. Equations were determined relating cycles to crack initiation and cycles to failure to nominal total strain range. A scaling procedure is presented for estimating the reduction in cyclic life when the foil is at its normal operating temperature of 260 C (500 F).

  7. Design, fabrication, and performance of foil journal bearing for the brayton rotating unit

    NASA Technical Reports Server (NTRS)

    Licht, L.; Branger, M.

    1973-01-01

    Foil bearings were designed and manufactured to replace pivoted-shoe journal bearings in an existing Brayton Cycle turbo-alternator-compressor. The design of this unconventional rotor support was accomplished within the constraints and space limitations imposed by the present machine, and the substitution of foil bearings was effected without changes or modification other machine components. A housing and a test rig were constructed to incorporate the new foil-bearing support into a unified assemble with an air-driven rotor and the gimbal-mounted thrust bearing, seals, and shrouds of an actual Brayton Rotating Unit. The foil bearing required no external pressure source, and stable self-acting rotation was achieved at all speeds up to 43,200 rpm. Excellent wipe-wear characteristics of the foil bearing permitted well over 1000 start-stop cycles with no deterioriation of performance in the entire speed range.

  8. A Preliminary Foil Gas Bearing Performance Map

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Radil, Kevin C.; Bruckner, Robert J.; Howard, S. Adam

    2006-01-01

    Recent breakthrough improvements in foil gas bearing load capacity, high temperature tribological coatings and computer based modeling have enabled the development of increasingly larger and more advanced Oil-Free Turbomachinery systems. Successful integration of foil gas bearings into turbomachinery requires a step wise approach that includes conceptual design and feasibility studies, bearing testing, and rotor testing prior to full scale system level demonstrations. Unfortunately, the current level of understanding of foil gas bearings and especially their tribological behavior is often insufficient to avoid developmental problems thereby hampering commercialization of new applications. In this paper, a new approach loosely based upon accepted hydrodynamic theory, is developed which results in a "Foil Gas Bearing Performance Map" to guide the integration process. This performance map, which resembles a Stribeck curve for bearing friction, is useful in describing bearing operating regimes, performance safety margins, the effects of load on performance and limiting factors for foil gas bearings.

  9. Experimental evidence of beam-foil plasma creation during ion-solid interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Prashant, E-mail: prashant@iuac.res.in; Nandi, Tapan

    2016-08-15

    Charge state evolution of the energetic projectile ions during the passage through thin carbon foils has been revisited using the X-ray spectroscopy technique. Contributions from the bulk and the solid surface in the charge changing processes have been segregated by measuring the charge state distribution of the projectile ions in the bulk of the target during the ion–solid interaction. Interestingly, the charge state distribution measured in the bulk exhibits Lorentzian profile in contrast to the well-known Gaussian structure observed using the electromagnetic methods and the theoretical predictions. The occurrence of such behavior is a direct consequence of the imbalance betweenmore » charge changing processes, which has been seen in various cases of the laboratory plasma. It suggests that the ion-solid collisions constitute high-density, localized plasma in the bulk of the solid target, called the beam-foil plasma. This condensed beam-foil plasma is similar to the high-density solar and stellar plasma which may have practical implementations in various fields, in particular, plasma physics and nuclear astrophysics. The present work suggests further modification in the theoretical charge state distribution calculations by incorporating the plasma coupling effects during the ion–solid interactions. Moreover, the multi-electron capture from the target exit surface has been confirmed through comparison between experimentally measured and theoretically predicted values of the mean charge state of the projectile ions.« less

  10. Progress in incompressible Navier-Stokes computations for propulsion flows and its dual-use applications

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin

    1995-01-01

    Development of an incompressible Navier-Stokes solution procedure was performed for the analysis of a liquid rocket engine pump components and for the mechanical heart assist devices. The solution procedure for the propulsion systems is applicable to incompressible Navier-Stokes flows in a steadily rotating frame of reference for any general complex configurations. The computer codes were tested on different complex configurations such as liquid rocket engine inducer and impellers. As a spin-off technology from the turbopump component simulations, the flow analysis for an axial heart pump was conducted. The baseline Left Ventricular Assist Device (LVAD) design was improved by adding an inducer geometry by adapting from the liquid rocket engine pump. The time-accurate mode of the incompressible Navier-Stokes code was validated with flapping foil experiment by using different domain decomposition methods. In the flapping foil experiment, two upstream NACA 0025 foils perform high-frequency synchronized motion and generate unsteady flow conditions for a downstream larger stationary foil. Fairly good agreement was obtained between unsteady experimental data and numerical results from two different moving boundary procedures. Incompressible Navier-Stokes code (INS3D) has been extended for heat transfer applications. The temperature equation was written for both forced and natural convection phenomena. Flow in a square duct case was used for the validation of the code in both natural and forced convection.

  11. Shock compression response of highly reactive Ni + Al multilayered thin foils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Sean C.; Thadhani, Naresh N., E-mail: naresh.thadhani@mse.gatech.edu

    2016-03-07

    The shock-compression response of Ni + Al multilayered thin foils is investigated using laser-accelerated thin-foil plate-impact experiments over the pressure range of 2 to 11 GPa. The foils contain alternating Ni and Al layers (parallel but not flat) of nominally 50 nm bilayer spacing. The goal is to determine the equation of state and shock-induced reactivity of these highly reactive fully dense thin-foil materials. The laser-accelerated thin-foil impact set-up involved combined use of photon-doppler-velocimetry to monitor the acceleration and impact velocity of an aluminum flyer, and VISAR interferometry was used to monitor the back free-surface velocity of the impacted Ni + Al multilayered target. The shock-compressionmore » response of the Ni + Al target foils was determined using experimentally measured parameters and impedance matching approach, with error bars identified considering systematic and experimental errors. Meso-scale CTH shock simulations were performed using real imported microstructures of the cross-sections of the multilayered Ni + Al foils to compute the Hugoniot response (assuming no reaction) for correlation with their experimentally determined equation of state. It was observed that at particle velocities below ∼150 m/s, the experimentally determined equation of state trend matches the CTH-predicted inert response and is consistent with the observed unreacted state of the recovered Ni + Al target foils from this velocity regime. At higher particle velocities, the experimentally determined equation of state deviates from the CTH-predicted inert response. A complete and self-sustained reaction is also seen in targets recovered from experiments performed at these higher particle velocities. The deviation in the measured equation of state, to higher shock speeds and expanded volumes, combined with the observation of complete reaction in the recovered multilayered foils, confirmed via microstructure characterization, is indicative of the occurrence of shock-induced chemical reaction occurring in the time-scale of the high-pressure state. TEM characterization of recovered shock-compressed (unreacted) Ni + Al multilayered foils exhibits distinct features of constituent mixing revealing jetted layers and inter-mixed regions. These features were primarily observed in the proximity of the undulations present in the alternating layers of the Ni + Al starting foils, suggesting the important role of such instabilities in promoting shock-induced intermetallic-forming reactions in the fully dense highly exothermic multilayered thin foils.« less

  12. 78 FR 28577 - Notification of Proposed Production Activity, LLFlex, LLC, Subzone 29J (Foil Backed Paperboard...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-15

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [B-45-2013] Notification of Proposed Production...), operator of Subzone 29J, submitted a notification of proposed production activity to the FTZ Board for its.... Production under FTZ procedures could exempt LLFlex from customs duty payments on the foreign status...

  13. 78 FR 45181 - Foreign-Trade Zone 230-Piedmont Triad Area, North Carolina, Authorization of Production Activity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-26

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [B-31-2013] Foreign-Trade Zone 230--Piedmont Triad Area, North Carolina, Authorization of Production Activity, Oracle Flexible Packaging, Inc., (Foil... (FTZ) Board on behalf of Oracle Flexible Packaging, Inc., within Site 28, in Winston-Salem, North...

  14. Optical Property Enhancement and Durability Evaluation of Heat Receiver Aperture Shield Materials

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Jaworske, Donald A.; Smith, Daniela C.

    1998-01-01

    Under the Solar Dynamic Flight Demonstration (SDFD) program, NASA Lewis Research Center worked with AlliedSignal Aerospace, the heat receiver contractor, on the development, characterization and durability testing of refractory metals to obtain appropriate optical and thermal properties for the SDFD heat receiver aperture shield. Molybdenum and tungsten foils were grit-blasted using silicon carbide or alumina grit under various grit-blasting conditions for optical property enhancement. Black rhenium coated tungsten foil was also evaluated. Tungsten, black rhenium-coated tungsten, and grit-blasted tungsten screens of various mesh sizes were placed over the pristine and grit-blasted foils for optical property characterization. Grit-blasting was found to be effective in decreasing the specular reflectance and the absorptance/emittance ratio of the refractory foils. The placement of a screen further enhanced these optical properties, with a grit-blasted screen over a grit-blasted foil producing the best results. Based on the optical property enhancement results, samples were tested for atomic oxygen and vacuum heat treatment durability. Grit-blasted (Al2O3 grit) 2 mil tungsten foil was chosen for the exterior layer of the SDFD heat receiver aperture shield. A 0.007 in. wire diameter, 20 x 20 mesh tungsten screen was chosen to cover the tungsten foil. Based on these test results, a heat receiver aperture shield test unit has been built with the screen covered grit-blast tungsten foil exterior layers. The aperture shield was tested and verified the thermal and structural durability of the outer foil layers during an off-pointing period.

  15. Tin Can Radiation Detector.

    ERIC Educational Resources Information Center

    Crull, John L.

    1986-01-01

    Provides instructions for making tin can radiation detectors from empty aluminum cans, aluminum foil, clear plastic, copper wire, silica gel, and fine, unwaxed dental floss put together with tape or glue. Also provides suggestions for activities using the detectors. (JN)

  16. Recalibration of indium foil for personnel screening in criticality accidents.

    PubMed

    Takada, C; Tsujimura, N; Mikami, S

    2011-03-01

    At the Nuclear Fuel Cycle Engineering Laboratories of the Japan Atomic Energy Agency (JAEA), small pieces of indium foil incorporated into personal dosemeters have been used for personnel screening in criticality accidents. Irradiation tests of the badges were performed using the SILENE reactor to verify the calibration of the indium activation that had been made in the 1980s and to recalibrate them for simulated criticalities that would be the most likely to occur in the solution process line. In addition, Monte Carlo calculations of the indium activation using the badge model were also made to complement the spectral dependence. The results lead to a screening level of 15 kcpm being determined that corresponds to a total dose of 0.25 Gy, which is also applicable in posterior-anterior exposure. The recalibration based on the latest study will provide a sounder basis for the screening procedure in the event of a criticality accident.

  17. Laser Shockwave Technique For Characterization Of Nuclear Fuel Plate Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James A. Smith; Barry H. Rabin; Mathieu Perton

    2012-07-01

    The US National Nuclear Security Agency is tasked with minimizing the worldwide use of high-enriched uranium. One aspect of that effort is the conversion of research reactors to monolithic fuel plates of low-enriched uranium. The manufacturing process includes hot isostatic press bonding of an aluminum cladding to the fuel foil. The Laser Shockwave Technique (LST) is here evaluated for characterizing the interface strength of fuel plates using depleted Uranium/Mo foils. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves and is therefore well adapted to the quality assurance of this process.more » Preliminary results show a clear signature of well-bonded and debonded interfaces and the method is able to classify/rank the bond strength of fuel plates prepared under different HIP conditions.« less

  18. Laser shockwave technique for characterization of nuclear fuel plate interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perton, M.; Levesque, D.; Monchalin, J.-P.

    2013-01-25

    The US National Nuclear Security Agency is tasked with minimizing the worldwide use of high-enriched uranium. One aspect of that effort is the conversion of research reactors to monolithic fuel plates of low-enriched uranium. The manufacturing process includes hot isostatic press bonding of an aluminum cladding to the fuel foil. The Laser Shockwave Technique (LST) is here evaluated for characterizing the interface strength of fuel plates using depleted Uranium/Mo foils. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves and is therefore well adapted to the quality assurance of this process.more » Preliminary results show a clear signature of well-bonded and debonded interfaces and the method is able to classify/rank the bond strength of fuel plates prepared under different HIP conditions.« less

  19. SMA Foils for MEMS: From Material Properties to the Engineering of Microdevices

    NASA Astrophysics Data System (ADS)

    Kohl, Manfred; Ossmer, Hinnerk; Gueltig, Marcel; Megnin, Christof

    2018-03-01

    In the early nineties, microelectromechanical systems (MEMS) technology has been still in its infancy. As silicon (Si) is not a transducer material, it was clear at the very beginning that mechanically active materials had to be introduced to MEMS in order to enable functional microdevices with actuation capability beyond electrostatics. At that time, shape memory alloys (SMAs) have been available in bulk form, mainly as SMA wires and SMA plates. On the macro scale, these materials show highest work densities compared to other actuation principles in the order of 107 J/m3, which stimulated research on the integration of SMA to MEMS. Subsequently, two approaches for producing planar materials have been initiated (1) magnetron sputtering of SMA thin films and (2) the integration of rolled SMA foils, which both turned out to be very successful creating a paradigm change in microactuation technology. The following review covers important milestones of the research and development of SMA foil-based microactuators including materials characterization, design engineering, technology, and demonstrator development as well as first commercial products.

  20. Ink-jet printed fluorescent materials as light sources for planar optical waveguides on polymer foils

    NASA Astrophysics Data System (ADS)

    Bollgruen, Patrick; Gleissner, Uwe; Wolfer, Tim; Megnin, Christof; Mager, Dario; Overmeyer, Ludger; Korvink, Jan G.; Hanemann, Thomas

    2016-10-01

    Polymer-based optical sensor networks on foils (planar optronic systems) are a promising research field, but it can be challenging to supply them with light. We present a solvent-free, ink-jet printable material system with optically active substances to create planar light sources for these networks. The ink is based on a UV-curable monomer, the fluorescent agents are EuDBMPhen or 9,10-diphenylantracene, which fluoresce at 612 or 430 nm, respectively. We demonstrate the application as light source by printing a small area of fluorescent material on an optical waveguide fabricated by flexographic printing on PMMA foil, resulting in a simple polymer-optical device fabricated entirely by additive deposition techniques. When excited by a 405-nm laser of 10 mW, the emitted light couples into the waveguide and appears at the end of the waveguide. In comparison to conventional light sources, the intensity is weak but could be detected with a photodiode power sensor. In return, the concept has the advantage of being completely independent of any electrical elements or external cable connections.

  1. SMA Foils for MEMS: From Material Properties to the Engineering of Microdevices

    NASA Astrophysics Data System (ADS)

    Kohl, Manfred; Ossmer, Hinnerk; Gueltig, Marcel; Megnin, Christof

    2017-12-01

    In the early nineties, microelectromechanical systems (MEMS) technology has been still in its infancy. As silicon (Si) is not a transducer material, it was clear at the very beginning that mechanically active materials had to be introduced to MEMS in order to enable functional microdevices with actuation capability beyond electrostatics. At that time, shape memory alloys (SMAs) have been available in bulk form, mainly as SMA wires and SMA plates. On the macro scale, these materials show highest work densities compared to other actuation principles in the order of 107 J/m3, which stimulated research on the integration of SMA to MEMS. Subsequently, two approaches for producing planar materials have been initiated (1) magnetron sputtering of SMA thin films and (2) the integration of rolled SMA foils, which both turned out to be very successful creating a paradigm change in microactuation technology. The following review covers important milestones of the research and development of SMA foil-based microactuators including materials characterization, design engineering, technology, and demonstrator development as well as first commercial products.

  2. Magnetic Fano resonances by design in symmetry broken THz meta-foils

    PubMed Central

    Wu, Jianfeng; Moser, Herbert O.; Li, Rujiang; Yang, Yihao; Jing, Liqiao; Chen, Hongsheng; Breese, Mark B. H.

    2017-01-01

    Magnetic Fano resonances in there-dimensional symmetry broken meta-foils at THz frequencies are theoretically and experimentally studied. Sharp Fano resonances occur due to the interference between different resonances and can be designed by choosing geometric parameters of the meta-foil. At the Fano resonances, the meta-foil supports antisymmetric modes, whereas, at the main resonance, only a symmetric mode exists. The meta-foil is left-handed at the Fano resonances and shows sharp peaks of the real part of the refractive index in transmission with small effective losses opening a way to very sensitive high-speed sensing of dielectric changes in the surrounding media and of mechanical configuration. PMID:28150797

  3. SNS STRIPPER FOIL FAILURE MODES AND THEIR CURES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galambos, John D; Luck, Chris; Plum, Michael A

    2010-01-01

    The diamond stripper foils in use at the Spallation Neutron Source worked successfully with no failures until May 3, 2009, when we started experiencing a rash of foil system failures after increasing the beam power to ~840 kW. The main contributors to the failures are thought to be 1) convoy electrons, stripped from the incoming H beam, that strike the foil bracket and may also reflect back from the electron catcher, and 2) vacuum breakdown from the charge developed on the foil by secondary electron emission. In this paper we will detail these and other failure mechanisms, and describe themore » improvements we have made to mitigate them.« less

  4. Effect of Water Activity and Packaging Material on the Quality of Dehydrated Taro (Colocasia esculenta (L.) Schott) Slices during Accelerated Storage

    PubMed Central

    Jefferies, L. K.

    2016-01-01

    The quality of dehydrated taro slices in accelerated storage (45°C and 75% RH) was determined as a function of initial water activity (a w) and package type. Color, rehydration capacity, thiamin content, and α-tocopherol content were monitored during 34 weeks of storage in polyethylene and foil laminate packaging at initial storage a w of 0.35 to 0.71. Initial a w at or below 0.54 resulted in less browning and higher rehydration capacity, but not in significantly higher α-tocopherol retention. Foil laminate pouches resulted in a higher rehydration capacity and increased thiamin retention compared to polyethylene bags. Type of packaging had no effect on the color of the samples. Product stability was highest when stored in foil laminate pouches at 0.4a w. Sensory panels were held to determine the acceptability of rehydrated taro slices using samples representative of the taro used in the analytical tests. A hedonic test on rehydrated taro's acceptability was conducted in Fiji, with panelists rating the product an average of 7.2 ± 1.5 on a discrete 9-point scale. Using a modified Weibull analysis (with 50% probability of product failure), it was determined that the shelf life of dehydrated taro stored at 45°C was 38.3 weeks. PMID:27891508

  5. [The taphonomic aspects of cadaverous changes in corpses, buried in the plastic foils].

    PubMed

    Stuller, F; Straka, L; Macko, V; Krivos, D; Krajcovic, J; Novomeský, F

    2008-10-01

    The forensic expertise of the 6 human bodies, being murdered in organised crime activities, had been realised by the authors. All the cadavers were packed in plastic bags or plastic foils, then buried to the illegal graves, being prepared in advance. The detail overlook and autopsy of the bodies had disclosed, that due of almost airtight sealing of the cadavers in plastic materials, the postmortal cadaverous changes went on much slower and were manifested under a different picture, as seen in the human cadavers being buried in the standard wooden coffins. The authors point out the peculiarities of such a postmortal changes, with particular focusing on the estimation of postmortal period.

  6. High conductance surge cable

    DOEpatents

    Murray, Matthew M.; Wilfong, Dennis H.; Lomax, Ralph E.

    1998-01-01

    An electrical cable for connecting transient voltage surge suppressers to ectrical power panels. A strip of electrically conductive foil defines a longitudinal axis, with a length of an electrical conductor electrically attached to the metallic foil along the longitudinal axis. The strip of electrically conductive foil and the length of an electrical conductor are covered by an insulating material. For impedance matching purposes, triangular sections can be removed from the ends of the electrically conductive foil at the time of installation.

  7. High conductance surge cable

    DOEpatents

    Murray, M.M.; Wilfong, D.H.; Lomax, R.E.

    1998-12-08

    An electrical cable for connecting transient voltage surge suppressors to electrical power panels. A strip of electrically conductive foil defines a longitudinal axis, with a length of an electrical conductor electrically attached to the metallic foil along the longitudinal axis. The strip of electrically conductive foil and the length of an electrical conductor are covered by an insulating material. For impedance matching purposes, triangular sections can be removed from the ends of the electrically conductive foil at the time of installation. 6 figs.

  8. A Monte Carlo studies of the entrance foil material in a target assembly for FDG production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merouani, A.; El Khayati, N.; EL Ghayour, A.

    2015-07-01

    In this work, a Monte Carlo simulation was performed for different entrance foil Materials in the target assembly for [{sup 18}F] FDG production, to investigate the neutron generations in the entrance foil. However, the objective is to study a materials that has the more or less similar mechanical properties as the Havar{sup R} foil with less generation of secondary particles and without affecting, the yield of FDG production. (authors)

  9. 3D Molding of Veneers by Mechanical and Pneumatic Methods

    PubMed Central

    Gaff, Milan; Gašparík, Miroslav

    2017-01-01

    This paper deals with the influence of selected methods (mechanical and pneumatic) as well as various factors (wood species, moisture content, veneer shape, punch diameter, laminating foil thickness, holding method, plasticizing) on 3D molding of veneers. 3D molding was evaluated on the basis of maximum deflection of birch and beech veneers. Cracks and warping edges were also evaluated in selected groups of mechanical molding. Mechanical methods tested veneers with various treatments (steaming, water and ammonia plasticizing and lamination). The pneumatic method was based on veneer shaping using air pressure. The results indicate that birch veneers are more suitable for 3D molding. The differences between the mechanical and pneumatic methods were not considerable. The most suitable method for mechanical 3D molding was the veneer lamination by polyethylene foils with thicknesses of 80 and 125 μm, inasmuch as these achieved better results than veneer plasticized by steam. The occurrence of cracks was more frequent in beech veneers, whereas, edge warping occurred at similar rates for both wood species and depends rather on holding method during 3D molding. Use of the ammonia solution is more suitable and there occurs no marked increase in moisture as happens when soaking in water. PMID:28772684

  10. A Method to Measure and Estimate Normalized Contrast in Infrared Flash Thermography

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2016-01-01

    The paper presents further development in normalized contrast processing used in flash infrared thermography method. Method of computing normalized image or pixel intensity contrast, and normalized temperature contrast are provided. Methods of converting image contrast to temperature contrast and vice versa are provided. Normalized contrast processing in flash thermography is useful in quantitative analysis of flash thermography data including flaw characterization and comparison of experimental results with simulation. Computation of normalized temperature contrast involves use of flash thermography data acquisition set-up with high reflectivity foil and high emissivity tape such that the foil, tape and test object are imaged simultaneously. Methods of assessing other quantitative parameters such as emissivity of object, afterglow heat flux, reflection temperature change and surface temperature during flash thermography are also provided. Temperature imaging and normalized temperature contrast processing provide certain advantages over normalized image contrast processing by reducing effect of reflected energy in images and measurements, therefore providing better quantitative data. Examples of incorporating afterglow heat-flux and reflection temperature evolution in flash thermography simulation are also discussed.

  11. Catalytic activity and stability of nanometic Rh overlayers prepared by pulsed arc-plasma deposition and r.f. magnetron-sputtering

    NASA Astrophysics Data System (ADS)

    Misumi, Satoshi; Matsumoto, Akinori; Yoshida, Hiroshi; Sato, Tetsuya; Machida, Masato

    2018-01-01

    50 μm-thick Fe-Cr-Al metal foils covered by 7 nm-thick Rh overlayers were prepared by pulsed arc-plasma (AP) and r.f. magnetron sputtering technique to compare their catalytic activities. As-prepared metal foil catalysts were wrapped into a honeycomb structure with a density of 900 cells per square inches and the stoichiometric NO-CO-C3H6-O2 reaction was performed at space velocity of 1.2 × 105 h-1. During temperature ramp at 10 °C min-1, honeycomb catalysts showed steep light-off of NO, CO, and C3H6 at above 200 °C and their conversions soon reached to almost 100%. Both catalysts exhibited high turnover frequencies close to or more than 50-fold greater compared with those for a reference Rh/ZrO2 powder-coated cordierite honeycomb prepared using a conventional slurry coating. When the temperature ramping was repeated, however, the catalytic activity was decreased to the different extent depending on the preparation procedure. Significant deactivation occurred only when prepared by sputtering, whereas the sample prepared by AP showed no signs of deactivation. The deactivation is associated with the formation of passivation layers consisting of Fe, Cr, and Al oxides, which covered the surface and decreased the surface concentration of Rh. The Rh overlayer formed by AP was found to be thermally stable because of the strong adhesion to the metal foil surface, compared to the sample prepared by sputtering.

  12. Benchmark test of transport calculations of gold and nickel activation with implications for neutron kerma at Hiroshima.

    PubMed

    Hoshi, M; Hiraoka, M; Hayakawa, N; Sawada, S; Munaka, M; Kuramoto, A; Oka, T; Iwatani, K; Shizuma, K; Hasai, H

    1992-11-01

    A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a 252Cf fission neutron source to validate the use of the code for the energy spectrum analyses of Hiroshima atomic bomb neutrons. Nuclear data libraries used in the Monte Carlo neutron and photon transport code calculation were ENDF/B-III, ENDF/B-IV, LASL-SUB, and ENDL-73. The neutron moderators used were granite (the main component of which is SiO2, with a small fraction of hydrogen), Newlight [polyethylene with 3.7% boron (natural)], ammonium chloride (NH4Cl), and water (H2O). Each moderator was 65 cm thick. The neutron detectors were gold and nickel foils, which were used to detect thermal and epithermal neutrons (4.9 eV) and fast neutrons (> 0.5 MeV), respectively. Measured activity data from neutron-irradiated gold and nickel foils in these moderators decreased to about 1/1,000th or 1/10,000th, which correspond to about 1,500 m ground distance from the hypocenter in Hiroshima. For both gold and nickel detectors, the measured activities and the calculated values agreed within 10%. The slopes of the depth-yield relations in each moderator, except granite, were similar for neutrons detected by the gold and nickel foils. From the results of these studies, the Monte Carlo neutron and photon transport code was verified to be accurate enough for use with the elements hydrogen, carbon, nitrogen, oxygen, silicon, chlorine, and cadmium, and for the incident 252Cf fission spectrum neutrons.

  13. SNL-SAND-IV v. 0.9 (beta)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffin, Patrick J.

    2016-10-05

    The code is used to provide an unfolded/adjusted energy-dependent fission reactor neutron spectrum based upon an input trial spectrum and a set of measured activities. This is part of a neutron environment characterization that supports doing testing in a given reactor environment. An iterative perturbation method is used to obtain a "best fit" neutron flux spectrum for a given input set of infinitely dilute foil activities. The calculational procedure consists of the selection of a trial flux spectrum to serve as the initial approximation to the solution, and subsequent iteration to a form acceptable as an appropriate solution. The solutionmore » is specified either as time-integrated flux (fluence) for a pulsed environment or as a flux for a steady-state neutron environment.« less

  14. Foil chaff ejection systems for rocket-borne measurement of neutral winds in the mesosphere and lower thermosphere

    NASA Astrophysics Data System (ADS)

    Koizumi, Yoshiko; Shimoyama, Manabu; Oyama, Koh-Ichiro; Murayama, Yasuhiro; Tsuda, Toshitaka; Nakamura, Takuji

    2004-07-01

    The foil chaff technique has been used on microrockets such as "Viper" for a long time to measure neutral winds with high altitude resolution in the mesosphere and lower thermosphere. We have developed two new foil chaff storage and ejection systems for muti-instrumented sounding rockets. The first system uses a spring loaded split cylinder which holds the foil chaff, housed in an outer cylinder. The shaft of the split cylinder is kept in place by a lock plate and a stainless steel wire. The split cylinder is ejected by cutting the wire. The second system is of differential pressure type. The cap of an airtight cylinder has a shaft and a sponge piece for sweeping out the foil chaff. The cylinder is sealed at ground level and at the desired height of release, the cap comes out due to differential pressure and brings out the foil chaff. Both these systems were successfully tested on a Japanese sounding rocket in January 2000, releasing about 20 000 pieces of foil chaff during the rocket's descent. Neutral winds were measured in the height range of 85.5-95.0 km with a height resolution of 300 m.

  15. Method of making a multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farahmandi, C. Joseph; Dispennette, John M.; Blank, Edward

    A method of making a double layer capacitior includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator is positioned against the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodesmore » are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH.sub.3 CN). In one embodiment, the two arts of the capacitor case are conductive and function as the capacitor terminals.« less

  16. Lenz’s law with aluminum foil and a lengthwise slit

    NASA Astrophysics Data System (ADS)

    Berls, Rob; Ruiz, Michael J.

    2018-07-01

    The classic demonstration illustrating Lenz’s law by dropping a magnet through a copper pipe is presented using household aluminum foil right out of the box. Then comes the surprise. The teacher presents an aluminum foil cylinder with a missing lengthwise slice (cut before class). Will the demonstration still work? Students are amazed at the result, described in this paper and included in our accompanying video (Ruiz 2018 Video: Lenz’s law with aluminum foil http://mjtruiz.com/ped/aluminum/).

  17. Strain-Gauge Measurement of Weight of Fluid in a Tank

    NASA Technical Reports Server (NTRS)

    Figueroa, Jorge; SaintCyr, William; Rahman, Shamim; McVay, Gregory; VanDyke, David; Mitchell, William; Langford, Lester

    2003-01-01

    A method of determining the amount of fluid in a tank is based on measurement of strains induced in tank supports by the weight of the fluid. Unlike most prior methods, this method is nonintrusive: there is no need to insert instrumentation in the tank and, hence, no need to run wires, cables, or tubes through the tank wall. Also unlike most prior methods, this method is applicable even if the fluid in the tank is at supercritical pressure and temperature, because it does not depend on the presence of a liquid/gas interface (as in liquid-level-measuring methods). The strain gauges used in this method are of two types: foil and fiber-optic. Four foil gauges and one or more fiber-optic gauges are mounted on each of the tank-supporting legs. An additional fiber-optic gauge is mounted on an object, made of the same material as that of the tank-supporting legs, that is not subjected to any mechanical load. The reading obtained by the additional fiber-optic gauge is used to compensate for apparent strains caused by changes in temperature. The signals from the foil and fiber-optic gauges are conditioned, then digitized for input to a computer. As the tank is filled or emptied, the deformation in each leg increases or decreases, respectively. Measured deformations of all legs are added to obtain a composite deformation indicative of the change in weight of the tank plus fluid. An initial calibration is performed by recording data at two points (usually, empty and full) for which the mass or weight of fluid is known. It is assumed that the deformations are elastic, so that the line passing through the two points can be used as a calibration curve of mass (or weight) of fluid versus deformation. At the time of reporting the information for this article, a set of foil gauges had been tested on the supports of a 500-gallon (1,900-liter) tank. The gauges were found to be capable of measuring the deformations (up to 22 microstrain) that occurred during filling and emptying the tank. The fluid masses calculated from the gauge readings were found to be accurate within 4.5 percent. It has been estimated that once the fiber-optic gauges are put into operation, it should be possible to determine fluid masses with 3 percent or less. It may be possible to increase accuracy further by increasing the signal-to-noise ratio through the use of more deformable tank supporting legs.

  18. SU-E-T-25: Real Time Simulator for Designing Electron Dual Scattering Foil Systems.

    PubMed

    Carver, R; Hogstrom, K; Price, M; Leblanc, J; Harris, G

    2012-06-01

    To create a user friendly, accurate, real time computer simulator to facilitate the design of dual foil scattering systems for electron beams on radiotherapy accelerators. The simulator should allow for a relatively quick, initial design that can be refined and verified with subsequent Monte Carlo (MC) calculations and measurements. The simulator consists of an analytical algorithm for calculating electron fluence and a graphical user interface (GUI) C++ program. The algorithm predicts electron fluence using Fermi-Eyges multiple Coulomb scattering theory with a refined Moliere formalism for scattering powers. The simulator also estimates central-axis x-ray dose contamination from the dual foil system. Once the geometry of the beamline is specified, the simulator allows the user to continuously vary primary scattering foil material and thickness, secondary scattering foil material and Gaussian shape (thickness and sigma), and beam energy. The beam profile and x-ray contamination are displayed in real time. The simulator was tuned by comparison of off-axis electron fluence profiles with those calculated using EGSnrc MC. Over the energy range 7-20 MeV and using present foils on the Elekta radiotherapy accelerator, the simulator profiles agreed to within 2% of MC profiles from within 20 cm of the central axis. The x-ray contamination predictions matched measured data to within 0.6%. The calculation time was approximately 100 ms using a single processor, which allows for real-time variation of foil parameters using sliding bars. A real time dual scattering foil system simulator has been developed. The tool has been useful in a project to redesign an electron dual scattering foil system for one of our radiotherapy accelerators. The simulator has also been useful as an instructional tool for our medical physics graduate students. © 2012 American Association of Physicists in Medicine.

  19. Transient changes in electric fields induced by interaction of ultraintense laser pulses with insulator and metal foils: Sustainable fields spanning several millimeters

    NASA Astrophysics Data System (ADS)

    Inoue, Shunsuke; Tokita, Shigeki; Hashida, Masaki; Sakabe, Shuji

    2015-04-01

    The temporal evolutions of electromagnetic fields generated by the interaction between ultraintense lasers (1.3 ×1018 and 8.2 ×1018W /c m2 ) and solid targets at a distance of several millimeters from the laser-irradiated region have been investigated by electron deflectometry. For three types of foil targets (insulating foil, conductive foil, and insulating foil onto which a metal disk was deposited), transient changes in the fields were observed. We found that the direction, strength, and temporal evolution of the generated fields differ markedly for these three types of targets. The results provide an insight for studying the emission dynamics of laser-accelerated fast electrons.

  20. Role of target material in proton acceleration from thin foils irradiated by ultrashort laser pulses.

    PubMed

    Tayyab, M; Bagchi, S; Ramakrishna, B; Mandal, T; Upadhyay, A; Ramis, R; Chakera, J A; Naik, P A; Gupta, P D

    2014-08-01

    We report on the proton acceleration studies from thin metallic foils of varying atomic number (Z) and thicknesses, investigated using a 45 fs, 10 TW Ti:sapphire laser system. An optimum foil thickness was observed for efficient proton acceleration for our laser conditions, dictated by the laser ASE prepulse and hot electron propagation behavior inside the material. The hydrodynamic simulations for ASE prepulse support the experimental observation. The observed maximum proton energy at different thicknesses for a given element is in good agreement with the reported scaling laws. The results with foils of different atomic number Z suggest that a judicious choice of the foil material can enhance the proton acceleration efficiency, resulting into higher proton energy.

  1. Direct synthesis of carbon nanotubes using Cu-Sn catalyst on Cu substrates and their corrosion behavior in 0.6 M NaCl solution

    NASA Astrophysics Data System (ADS)

    Jeong, Namjo; Jwa, Eunjin; Kim, Chansoo; Choi, Ji Yeon; Nam, Joo-youn; Park, Soon-chul; Jang, Moon-seok

    2017-11-01

    We report the high-yield and large-area synthesis of a spaghetti-like carbon nanotubes (CNTs) on macroscopic Cu substrates (foil and foam) using a Cu-Sn alloy catalyst. In addition, we investigate the corrosion properties of the as-synthesized CNT/Cu foil system in 0.6 M NaCl solution. Electrochemical analysis showed that the corrosion resistance of the CNT/Cu foil system improved by a factor of ∼100 compared to the as-received Cu foil. Thus, it is concluded that a dense network of CNT was uniformly coated on the Cu foil and this coating functioned as an efficient barrier to corrosion under simulated seawater conditions.

  2. Positron annihilation lifetime spectroscopy study of Kapton thin foils

    NASA Astrophysics Data System (ADS)

    Kanda, G. S.; Ravelli, L.; Löwe, B.; Egger, W.; Keeble, D. J.

    2016-01-01

    Variable energy positron annihilation lifetime spectroscopy (VE-PALS) experiments on polyimide material Kapton are reported. Thin Kapton foils are widely used in a variety of mechanical, electronic applications. PALS provides a sensitive probe of vacancy-related defects in a wide range of materials, including open volume in polymers. Varying the positron implantation energy enables direct measurement of thin foils. Thin Kapton foils are also commonly used to enclose the positron source material in conventional PALS measurements performed with unmoderated radionuclide sources. The results of depth-profiled positron lifetime measurements on 7.6 μm and 25 μm Kapton foils are reported and determine a dominant 385(1) ps lifetime component. The absence of significant nanosecond lifetime component due to positronium formation is confirmed.

  3. The transonic multi-foil Augmentor-Wing

    NASA Technical Reports Server (NTRS)

    Farbridge, J. E.; Smith, R. C.

    1977-01-01

    The paper describes the development of a transonic blown multi-foil Augmentor-Wing airfoil section that has a thickness/chord (t/c) value of 0.18. In comparison with an unblown single-foil supercritical section of the same overall t/c the new multi-foil section is characterized by an increased drag rise Mach number, increased buffet boundaries, and a reduction in 'effective' drag due to blowing. Potential advantages of the Augmentor-Wing are considered and the testing of three high-speed models in a trisonic pressurized wind tunnel (possessing a two-dimensional transonic insert) is discussed. The data indicate that a very thick wing is feasible since separations toward the rear of the main foil can be controlled both by shroud location and augmentor blowing.

  4. Remaining Technical Challenges and Future Plans for Oil-Free Turbomachinery

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Bruckner, Robert J.

    2010-01-01

    The application of Oil-Free technologies (foil gas bearings, solid lubricants and advanced analysis and predictive modeling tools) to advanced turbomachinery has been underway for several decades. During that time, full commercialization has occurred in aircraft air cycle machines, turbocompressors and cryocoolers and ever-larger microturbines. Emerging products in the automotive sector (turbochargers and superchargers) indicate that high volume serial production of foil bearings is imminent. Demonstration of foil bearings in APU s and select locations in propulsion gas turbines illustrates that such technology also has a place in these future systems. Foil bearing designs, predictive tools and advanced solid lubricants have been reported that can satisfy anticipated requirements but a major question remains regarding the scalability of foil bearings to ever larger sizes to support heavier rotors. In this paper, the technological history, primary physics, engineering practicalities and existing experimental and experiential database for scaling foil bearings are reviewed and the major remaining technical challenges are identified.

  5. Resistence seam welding thin copper foils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollar, D.L. Jr.

    1991-02-01

    Use of flat flexible circuits in the electronics industry is expanding. The term flexible circuits'' is defined here as copper foil which has been bonded to an insulating film such as Kapton film. The foil is photo processed to produce individual circuit paths similar to printed circuit boards. Another insulating film is laminated over the conductors to complete the flexible circuit. Flexible circuits, like multiwire cables, are susceptible to electromagnetic radiation (EMR) interference. On multiwire cables the interference problem is mitigated by adding a woven wire braid shielding over the conductors. Shielding on flexible circuits is accomplished by enclosing themore » circuits in a copper foil envelope. However, the copper foil must be electrically sealed around the flexcircuit to be effective. Ultimately, a resistance seam welding process and appropriate equipment were developed which would provide the required electrical seal between two layers of 2-oz (0.0028-inch thick) copper foil on a 1.1-inch wide, 30-inch long, 0.040-inch thick flexible circuit. 4 refs., 19 figs.« less

  6. The Chevron Foil Thrust Bearing: Improved Performance Through Passive Thermal Management and Effective Lubricant Mixing

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert

    2013-01-01

    An improved foil thrust bearing is described that eliminates or reduces the need for forced cooling of the bearing foils while at the same time improves the load capacity of the bearing, enhances damping, provides overload tolerance, and eliminates the high speed load capacity drop-off that plagues the current state of the art. The performance improvement demonstrated by the chevron foil thrust bearing stems from a novel trailing edge shape that splays the hot lubricant in the thin film radially, thus preventing hot lubricant carry-over into the ensuing bearing sector. Additionally, the chevron shaped trailing edge induces vortical mixing of the hot lubricant with the gas that is naturally resident within the inter-pad region of a foil thrust bearing. The elimination of hot gas carry-over in combination with the enhanced mixing has enabled a completely passive thermally managed foil bearing design. Laboratory testing at NASA has confirmed the original analysis and reduced this concept to practice.

  7. Gas Foil Bearings for Space Propulsion Nuclear Electric Power Generation

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; DellaCorte, Christopher

    2006-01-01

    The choice of power conversion technology is critical in directing the design of a space vehicle for the future NASA mission to Mars. One candidate design consists of a foil bearing supported turbo alternator driven by a helium-xenon gas mixture heated by a nuclear reactor. The system is a closed-loop, meaning there is a constant volume of process fluid that is sealed from the environment. Therefore, foil bearings are proposed due to their ability to use the process gas as a lubricant. As such, the rotor dynamics of a foil bearing supported rotor is an important factor in the eventual design. The current work describes a rotor dynamic analysis to assess the viability of such a system. A brief technology background, assumptions, analyses, and conclusions are discussed in this report. The results indicate that a foil bearing supported turbo alternator is possible, although more work will be needed to gain knowledge about foil bearing behavior in helium-xenon gas.

  8. Tungsten foil laminate for structural divertor applications - Joining of tungsten foils

    NASA Astrophysics Data System (ADS)

    Reiser, Jens; Rieth, Michael; Möslang, Anton; Dafferner, Bernhard; Hoffmann, Jan; Mrotzek, Tobias; Hoffmann, Andreas; Armstrong, D. E. J.; Yi, Xiaoou

    2013-05-01

    This paper is the fourth in our series on tungsten laminates. The aim of this paper is to discuss laminate synthesis, meaning the joining of tungsten foils. It is obvious that the properties of the tungsten laminate strongly depend on the combination of (i) interlayer and (ii) joining technology, as this combination defines (i) the condition of the tungsten foil after joining (as-received or recrystallised) as well as (ii) the characteristics of the interface between the tungsten foil and the interlayer (wettability or diffusion leading to a solid solution or the formation of intermetallics). From the example of tungsten laminates joined by brazing with (i) an eutectic silver copper brazing filler, (ii) copper, (iii) titanium, and (iv) zirconium, the microstructure will be discussed, with special focus on the interface. Based on our assumptions of the mechanism of the extraordinary ductility of tungsten foil we present three syntheses strategies and make recommendations for the synthesis of high temperature tungsten laminates.

  9. High fidelity studies of exploding foil initiator bridges, Part 1: Experimental method

    NASA Astrophysics Data System (ADS)

    Bowden, Mike; Neal, William

    2017-01-01

    Simulations of high voltage detonators, such as Exploding Bridgewire (EBW) and Exploding Foil Initiators (EFI), have historically been simple, often empirical, one-dimensional models capable of predicting parameters such as current, voltage and in the case of EFIs, flyer velocity. Correspondingly, experimental methods have in general been limited to the same parameters. With the advent of complex, first principles magnetohydrodynamic codes such as ALEGRA and ALE-MHD, it is now possible to simulate these components in three dimensions, predicting a much greater range of parameters than before. A significant improvement in experimental capability was therefore required to ensure these simulations could be adequately validated. In this first paper of a three part study, the experimental method for determining the current, voltage, flyer velocity and multi-dimensional profile of detonator components is presented. This improved capability, along with high fidelity simulations, offer an opportunity to gain a greater understanding of the processes behind the functioning of EBW and EFI detonators.

  10. Super fast detection of latent fingerprints with water soluble CdTe quantum dots.

    PubMed

    Cai, Kaiyang; Yang, Ruiqin; Wang, Yanji; Yu, Xuejiao; Liu, Jianjun

    2013-03-10

    A new method based on the use of highly fluorescent water-soluble cadmium telluride (CdTe) quantum dots (QDs) capped with mercaptosuccinic acid (MSA) was explored to develop latent fingerprints. After optimized the effectiveness of QDs method contains pH value and developing time, super fast detection was achieved. Excellent fingerprint images were obtained in 1-3s after immersed the latent fingerprints into quantum dots solution on various non-porous surfaces, i.e. adhesive tape, transparent tape, aluminum foil and stainless steel. High sensitivity of the new latent fingerprints develop method was obtained by developing the fingerprints pressed on aluminum foil successively with the same finger. Compared with methyl violet and rhodamine 6G, the MSA-CdTe QDs showed the higher develop speed and fingerprint image quality. Clear image can be maintained for months by extending exposure time of CCD camera, storing fingerprints in a low temperature condition and secondary development. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Method and electrochemical cell for synthesis and treatment of metal monolayer electrocatalysts metal, carbon, and oxide nanoparticles ion batch, or in continuous fashion

    DOEpatents

    Adzic, Radoslav; Zhang, Junliang; Sasaki, Kotaro

    2015-04-28

    An apparatus and method for synthesis and treatment of electrocatalyst particles in batch or continuous fashion is provided. In one embodiment, the apparatus comprises a sonication bath and a two-compartment chamber submerged in the sonication bath. The upper and lower compartments are separated by a microporous material surface. The upper compartment comprises a cover and a working electrode (WE) connected to a Pt foil contact, with the foil contact connected to the microporous material. The upper chamber further comprises reference counter electrodes. The lower compartment comprises an electrochemical cell containing a solution of metal ions. In one embodiment, the method for synthesis of electrocatalysts comprises introducing a plurality of particles into the apparatus and applying sonication and an electrical potential to the microporous material connected to the WE. After the non-noble metal ions are deposited onto the particles, the non-noble metal ions are displaced by noble-metal ions by galvanic displacement.

  12. Variation across individuals and items determine learning outcomes from fast mapping.

    PubMed

    Coutanche, Marc N; Koch, Griffin E

    2017-11-01

    An approach to learning words known as "fast mapping" has been linked to unique neurobiological and behavioral markers in adult humans, including rapid lexical integration. However, the mechanisms supporting fast mapping are still not known. In this study, we sought to help change this by examining factors that modulate learning outcomes. In 90 subjects, we systematically manipulated the typicality of the items used to support fast mapping (foils), and quantified learners' inclination to employ semantic, episodic, and spatial memory through the Survey of Autobiographical Memory (SAM). We asked how these factors affect lexical competition and recognition performance, and then asked how foil typicality and lexical competition are related in an independent dataset. We find that both the typicality of fast mapping foils, and individual differences in how different memory systems are employed, influence lexical competition effects after fast mapping, but not after other learning approaches. Specifically, learning a word through fast mapping with an atypical foil led to lexical competition, while a typical foil led to lexical facilitation. This effect was particularly evident in individuals with a strong tendency to employ semantic memory. We further replicated the relationship between continuous foil atypicality and lexical competition in an independent dataset. These findings suggest that semantic properties of the foils that support fast mapping can influence the degree and nature of subsequent lexical integration. Further, the effects of foils differ based on an individual's tendency to draw-on the semantic memory system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Compliant Foil Journal Bearing Performance at Alternate Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.; Puleo, Bernadette J.

    2008-01-01

    An experimental test program has been conducted to determine the highly loaded performance of current generation gas foil bearings at alternate pressures and temperatures. Typically foil bearing performance has been reported at temperatures relevant to turbomachinery applications but only at an ambient pressure of one atmosphere. This dearth of data at alternate pressures has motivated the current test program. Two facilities were used in the test program, the ambient pressure rig and the high pressure rig. The test program utilized a 35 mm diameter by 27 mm long foil journal bearing having an uncoated Inconel X-750 top foil running against a shaft with a PS304 coated journal. Load capacity tests were conducted at 3, 6, 9, 12, 15, 18, and 21 krpm at temperatures from 25 to 500 C and at pressures from 0.1 to 2.5 atmospheres. Results show an increase in load capacity with increased ambient pressure and a reduction in load capacity with increased ambient temperature. Below one-half atmosphere of ambient pressure a dramatic loss of load capacity is experienced. Additional lightly loaded foil bearing performance in nitrogen at 25 C and up to 48 atmospheres of ambient pressure has also been reported. In the lightly loaded region of operation the power loss increases for increasing pressure at a fixed load. Knowledge of foil bearing performance at operating conditions found within potential machine applications will reduce program development risk of future foil bearing supported turbomachines.

  14. Load Capacity Estimation of Foil Air Journal Bearings for Oil-Free Turbomachinery Applications

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Valco, Mark J.

    2000-01-01

    This paper introduces a simple "Rule of Thumb" (ROT) method to estimate the load capacity of foil air journal bearings, which are self-acting compliant-surface hydrodynamic bearings being considered for Oil-Free turbo-machinery applications such as gas turbine engines. The ROT is based on first principles and data available in the literature and it relates bearing load capacity to the bearing size and speed through an empirically based load capacity coefficient, D. It is shown that load capacity is a linear function of bearing surface velocity and bearing projected area. Furthermore, it was found that the load capacity coefficient, D, is related to the design features of the bearing compliant members and operating conditions (speed and ambient temperature). Early bearing designs with basic or "first generation" compliant support elements have relatively low load capacity. More advanced bearings, in which the compliance of the support structure is tailored, have load capacities up to five times those of simpler designs. The ROT enables simplified load capacity estimation for foil air journal bearings and can guide development of new Oil-Free turbomachinery systems.

  15. Flexible patch composed of PZT thin-film on stainless steel foil for energy harvesting from low-frequency human motions

    NASA Astrophysics Data System (ADS)

    Wang, Yin Jie; Chen, Chao Ting; Chen, Jiun Jung; Yeh, Sou Peng; Wu, Wen Jong

    2015-03-01

    To harvest energy from human motion and generate power for the emerging wearable devices, energy harvesters are required to work at very low frequency. There are several studies based on energy harvesting through human gait, which can generate significant power. However, when wearing these kind of devices, additional effort may be required and the user may feel uncomfortable when moving. The energy harvester developed here is composed of a 10 μm PZT thin-film deposited on 50 μm thick stainless steel foil by the aerosol deposition method. The PZT layer and the stainless steel foil are both very thin, thus the patch is highly flexible. The patch can be attached on the skin to harvester power through human motions such as the expansion of the chest region while breathing. The energy harvester will first be tested with a moving stage for power output measurements. The energy density can be determined for different deformation ranges and frequencies. The fabrication processes and testing results will all be detailed in this paper.

  16. The recognition of mental health disorders and its association with psychiatric scepticism, knowledge of psychiatry, and the Big Five personality factors: an investigation using the overclaiming technique.

    PubMed

    Swami, Viren; Persaud, Raj; Furnham, Adrian

    2011-03-01

    The present study examined the general public's ability to recognise mental health disorders and this ability's association with psychiatric scepticism, knowledge of psychiatry, and the Big Five personality factors. A total of 477 members of the British general public completed an overclaiming scale, in which they were asked to rate the degree to which they believed 20 mental health disorders (of which five were foils designed to resemble real disorders) were real or fake. Participants also completed a novel scale measuring psychiatric scepticism, a single-item measure of knowledge of psychiatry, and a measure of the Big Five personality factors. Results showed that participants were significantly more likely to rate foils as fake disorders than real disorders. In addition, the difference between real and foil ratings was significantly predicted by knowledge of psychiatry, psychiatric scepticism, and the Big Five personality factors of agreeableness and openness to experience. These results are discussed in relation to the overclaiming technique as a novel method to study mental health literacy.

  17. Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO 2 reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Kun; Sandberg, Robert B.; Akey, Austin J.

    Here, electrocatalytic CO 2 reduction to higher-value hydrocarbons beyond C 1 products is desirable for applications in energy storage, transportation and the chemical industry. Cu catalysts have shown the potential to catalyse C–C coupling for C 2+ products, but still suffer from low selectivity in water. Here, we use density functional theory to determine the energetics of the initial C–C coupling steps on different Cu facets in CO 2 reduction, and suggest that the Cu(100) and stepped (211) facets favour C 2+ product formation over Cu(111). To demonstrate this, we report the tuning of facet exposure on Cu foil throughmore » the metal ion battery cycling method. Compared with the polished Cu foil, our 100-cycled Cu nanocube catalyst with exposed (100) facets presents a sixfold improvement in C 2+ to C 1 product ratio, with a highest C 2+ Faradaic efficiency of over 60% and H 2 below 20%, and a corresponding C 2+ current of more than 40 mA cm –2.« less

  18. Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO 2 reduction

    DOE PAGES

    Jiang, Kun; Sandberg, Robert B.; Akey, Austin J.; ...

    2018-01-15

    Here, electrocatalytic CO 2 reduction to higher-value hydrocarbons beyond C 1 products is desirable for applications in energy storage, transportation and the chemical industry. Cu catalysts have shown the potential to catalyse C–C coupling for C 2+ products, but still suffer from low selectivity in water. Here, we use density functional theory to determine the energetics of the initial C–C coupling steps on different Cu facets in CO 2 reduction, and suggest that the Cu(100) and stepped (211) facets favour C 2+ product formation over Cu(111). To demonstrate this, we report the tuning of facet exposure on Cu foil throughmore » the metal ion battery cycling method. Compared with the polished Cu foil, our 100-cycled Cu nanocube catalyst with exposed (100) facets presents a sixfold improvement in C 2+ to C 1 product ratio, with a highest C 2+ Faradaic efficiency of over 60% and H 2 below 20%, and a corresponding C 2+ current of more than 40 mA cm –2.« less

  19. Chromatographic and Spectral Analysis of Two Main Extractable Compounds Present in Aqueous Extracts of Laminated Aluminum Foil Used for Protecting LDPE-Filled Drug Vials

    PubMed Central

    Akapo, Samuel O.; Syed, Sajid; Mamangun, Anicia; Skinner, Wayne

    2009-01-01

    Laminated aluminum foils are increasingly being used to protect drug products packaged in semipermeable containers (e.g., low-density polyethylene (LDPE)) from degradation and/or evaporation. The direct contact of such materials with primary packaging containers may potentially lead to adulteration of the drug product by extractable or leachable compounds present in the closure system. In this paper, we described a simple and reliable HPLC method for analysis of an aqueous extract of laminated aluminum foil overwrap used for packaging LDPE vials filled with aqueous pharmaceutical formulations. By means of combined HPLC-UV, GC/MS, LC/MS/MS, and NMR spectroscopy, the two major compounds detected in the aqueous extracts of the representative commercial overwraps were identified as cyclic oligomers with molecular weights of 452 and 472 and are possibly formed from poly-condensation of the adhesive components, namely, isophthalic acid, adipic acid, and diethylene glycol. Lower molecular weight compounds that might be associated with the “building blocks” of these compounds were not detected in the aqueous extracts. PMID:20140083

  20. Maintaining stable radiation pressure acceleration of ion beams via cascaded electron replenishment

    NASA Astrophysics Data System (ADS)

    Shen, X. F.; Qiao, B.; Chang, H. X.; Zhang, W. L.; Zhang, H.; Zhou, C. T.; He, X. T.

    2017-03-01

    A method to maintain ion stable radiation pressure acceleration (RPA) from laser-irradiated thin foils is proposed, where a series of high-Z nanofilms are placed behind to successively replenish co-moving electrons into the accelerating foil as electron charging stations (ECSs). Such replenishment of co-moving electrons, on the one hand, helps to keep a dynamic balance between the electrostatic pressure in the accelerating slab and the increasing laser radiation pressure with a Gaussian temporal profile at the rising front, i.e. dynamically matching the optimal condition of RPA; on the other hand, it aids in suppressing the foil Coulomb explosion due to loss of electrons induced by transverse instabilities during RPA. Two-dimensional and three-dimensional particle-in-cell simulations show that a monoenergetic Si14+ beam with a peak energy of 3.7 GeV and particle number 4.8× {10}9 (charge 11 nC) can be obtained at an intensity of 7 × 1021 W cm-2 and the conversion efficiency from laser to high energy ions is improved significantly by using the ECSs in our scheme.

  1. 76 FR 66013 - Approval and Promulgation of Air Quality Implementation Plans; Missouri; Reasonably Available...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ... 57215): Paper, Film, and Foil Coatings; Metal Furniture Coatings; and Large Appliance Coatings... Emissions Paper, Film, and Foil Coatings. From Industrial Surface Coating Operations. 10 CSR 10-5.220... Paneling Coatings Paper, Film, and Foil Coatings Miscellaneous Industrial Adhesives Large Appliance...

  2. Effect of growth temperature and precursor concentration on synthesis of CVD-graphene from camphor

    NASA Astrophysics Data System (ADS)

    Rajaram, Narasimman; Patel, Biren; Ray, Abhijit; Mukhopadhyay, Indrajit

    2018-05-01

    Here, we have synthesized CVD-graphene from camphor by using atmospheric pressure (AP)-CVD system on Cu foil. We have studied the effect of growth temperature and camphor concentration by using scanning electron microscopy (SEM) and Raman spectroscopy. The domain size of the graphene is increasing with an increase in the temperature and camphor quantity. The complete coverage of graphene on the Cu foil achieved at 1020 °C. Higher camphor quantity leads to growth of multilayer graphene. The graphene is transferred by PMMA-assisted method onto the glass substrate. The sheet resistance and transmittance of the graphene are 1.5 kohm/sq and 92.7%, respectively.

  3. Preparation of carbon-free TEM microgrids by metal sputtering.

    PubMed

    Janbroers, S; de Kruijff, T R; Xu, Q; Kooyman, P J; Zandbergen, H W

    2009-08-01

    A new method for preparing carbon-free, temperature-stable Transmission Electron Microscope (TEM) grids is presented. An 80% Au/20% Pd metal film is deposited onto a 'holey' microgrid carbon supported on standard mixed-mesh Au TEM grids. Subsequently, the carbon film is selectively removed using plasma cleaning. In this way, an all-metal TEM film is made containing the 'same' microgrid as the original carbon film. Although electron transparency of the foil is reduced significantly, the open areas for TEM inspection of material over these areas are maintained. The metal foil can be prepared with various thicknesses and ensures good electrical conductivity. The new Au/Pd grids are stable to at least 775K under vacuum conditions.

  4. Microwave accelerator E-beam pumped laser

    DOEpatents

    Brau, Charles A.; Stein, William E.; Rockwood, Stephen D.

    1980-01-01

    A device and method for pumping gaseous lasers by means of a microwave accelerator. The microwave accelerator produces a relativistic electron beam which is applied along the longitudinal axis of the laser through an electron beam window. The incident points of the electron beam on the electron beam window are varied by deflection coils to enhance the cooling characteristics of the foil. A thyratron is used to reliably modulate the microwave accelerator to produce electron beam pulses which excite the laser medium to produce laser pulse repetition frequencies not previously obtainable. An aerodynamic window is also disclosed which eliminates foil heating problems, as well as a magnetic bottle for reducing laser cavity length and pressures while maintaining efficient energy deposition.

  5. Investigation of Insulation Materials for Future Radioisotope Power Systems (RPS)

    NASA Technical Reports Server (NTRS)

    Cornell, Peggy A.; Hurwitz, Frances I.; Ellis, David L.; Schmitz, Paul C.

    2013-01-01

    NASA's Radioisotope Power System (RPS) Technology Advancement Project is developing next generation high temperature insulation materials that directly benefit thermal management and improve performance of RPS for future science missions. Preliminary studies on the use of multilayer insulation (MLI) for Stirling convertors used on the Advanced Stirling Radioisotope Generator (ASRG) have shown the potential benefits of MLI for space vacuum applications in reducing generator size and increasing specific power (W/kg) as compared to the baseline Microtherm HT (Microtherm, Inc.) insulation. Further studies are currently being conducted at NASA Glenn Research Center (GRC) on candidate MLI foils and aerogel composite spacers. This paper presents the method of testing of foils and spacers and experimental results to date.

  6. Investigation of Insulation Materials for Future Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    Cornell, Peggy A.; Hurwitz, Frances I.; Ellis, David L.; Schmitz, Paul C.

    2013-01-01

    NASA's Radioisotope Power Systems (RPS) Technology Advancement Project is developing next generation high-temperature insulation materials that directly benefit thermal management and improve performance of RPS for future science missions. Preliminary studies on the use of multilayer insulation (MLI) for Stirling convertors used on the Advanced Stirling Radioisotope Generator (ASRG) have shown the potential benefits of MLI for space vacuum applications in reducing generator size and increasing specific power (W/kg) as compared to the baseline Microtherm HT (Microtherm, Inc.) insulation. Further studies are currently being conducted at NASA Glenn Research Center on candidate MLI foils and aerogel composite spacers. This paper presents the method of testing of foils and spacers and experimental results to date.

  7. GRAPHITE BONDING METHOD

    DOEpatents

    King, L.D.P.

    1964-02-25

    A process for bonding or joining graphite members together in which a thin platinum foil is placed between the members, heated in an inert atmosphere to a temperature of 1800 deg C, and then cooled to room temperature is described. (AEC)

  8. Checking for Ketones

    MedlinePlus

    ... doctor about them as well as record-keeping methods he or she recommends. Most include either packages of strips or foil-wrapped strips (which store longer). Urine tests are simple, but to get good results you have to follow directions carefully. Check ...

  9. ZIRCONIUM-CLADDING OF THORIUM

    DOEpatents

    Beaver, R.J.

    1961-11-21

    A method of cladding thorium with zirconium is described. The quality of the bond achieved between thorium and zirconium by hot-rolling is improved by inserting and melting a thorium-zirconium alloy foil between the two materials prior to rolling. (AEC)

  10. Ultrastable gold substrates: Properties of a support for high-resolution electron cryomicroscopy of biological specimens

    PubMed Central

    Russo, Christopher J.; Passmore, Lori A.

    2016-01-01

    Electron cryomicroscopy (cryo-EM) allows structure determination of a wide range of biological molecules and specimens. All-gold supports improve cryo-EM images by reducing radiation-induced motion and image blurring. Here we compare the mechanical and electrical properties of all-gold supports to amorphous carbon foils. Gold supports are more conductive, and have suspended foils that are not compressed by differential contraction when cooled to liquid nitrogen temperatures. These measurements show how the choice of support material and geometry can reduce specimen movement by more than an order of magnitude during low-dose imaging. We provide methods for fabrication of all-gold supports and preparation of vitrified specimens. We also analyse illumination geometry for optimal collection of high resolution, low-dose data. Together, the support structures and methods herein can improve the resolution and quality of images from any electron cryomicroscope. PMID:26592474

  11. Longitudinally Jointed Edge-Wise Compression HoneyComb Composite Sandwich Coupon Testing And Fe Analysis: Three Methods of Strain Measurement, And Comparison

    NASA Technical Reports Server (NTRS)

    Farrokh, Babak; Rahim, Nur Aida Abul; Segal, Ken; Fan, Terry; Jones, Justin; Hodges, Ken; Mashni, Noah; Garg, Naman; Sang, Alex

    2013-01-01

    Three distinct strain measurement methods (i.e., foil resistance strain gages, fiber optic strain sensors, and a three-dimensional digital image photogrammetry that gives full field strain and displacement measurements) were implemented to measure strains on the back and front surfaces of a longitudinally jointed curved test article subjected to edge-wise compression testing, at NASA Goddard Space Flight Center, according to ASTM C364. The pre-test finite element analysis (FEA) was conducted to assess ultimate failure load and predict strain distribution pattern throughout the test coupon. The predicted strain pattern contours were then utilized as guidelines for installing the strain measurement instrumentations. The foil resistance strain gages and fiber optic strain sensors were bonded on the specimen at locations with nearly the same analytically predicted strain values, and as close as possible to each other, so that, comparisons between the measured strains by strain gages and fiber optic sensors, as well as the three-dimensional digital image photogrammetric system are relevant. The test article was loaded to failure (at 167 kN), at the compressive strain value of 10,000 micro epsilon. As a part of this study, the validity of the measured strains by fiber optic sensors is examined against the foil resistance strain gages and the three-dimensional digital image photogrammetric data, and comprehensive comparisons are made with FEA predictions.

  12. Effect of applied voltage on surface properties of anodised titanium in mixture of β-glycerophosphate (β-GP) and calcium acetate (CA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuan, Lee Te, E-mail: gd130079@siswa.uthm.edu.my; Rathi, Muhammad Fareez Mohamad, E-mail: cd110238@siswa.uthm.edu.my; Abidin, Muhamad Yusuf Zainal, E-mail: cd110221@siswa.uthm.edu.my

    Anodic oxidation is a surface modification method which combines electric field driven metal and oxygen ion diffusion for formation of oxide layer on the anode surface. This method has been widely used to modify the surface morphology of biomaterial especially titanium. This study aimed to investigate the effect of applied voltage on titanium. Specifically, the titanium foil was anodised in mixture of β-glycerophosphate disodium salt pentahydrate (β-GP) and calcium acetate monohydrate (CA) with different applied voltage (50-350 V), electrolyte concentration (0.04 M β-GP + 0.4 M CA), anodising time (10minutes) and current density (50 and 70 mA.cm{sup −2}) at room temperature. Surfacemore » oxide properties of anodised titanium were characterised by digital single-lens reflex camera (DSLR camera), field emission scanning electron microscope (FESEM) and atomic force microscopy (AFM). At lower applied voltage (≤150 V), surface of titanium foils were relatively smooth. With increasing applied voltage (≥250 V), the oxide layer became more porous and donut-shaped pores were formed on the surface of titanium foils. The AFM results indicated that the surface roughness of anodised titanium increases with increasing of applied voltage. The porous and rough surface is able to promote the osseointegration and reduce the suffering time of patient.« less

  13. Progress and status of the IAEA coordinated research project: production of Mo-99 using LEU fission or neutron activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldman, Ira N.; Adelfang, Pablo; Ramamoorthy, Natesan

    2008-07-15

    Since late 2004, the IAEA has developed and implemented a Coordinated Research Project (CRP) to assist countries interested in initiating indigenous, small-scale production of Mo-99 to meet local nuclear medicine requirements. The objective of the CRP is to provide interested countries with access to non-proprietary technologies and methods to produce Mo-99 using LEU foil or LEU mini-plate targets, or for the utilization of n,gamma neutron activation, e.g. through the use of gel generators. The project has made further progress since the RERTR 2006 meeting, with a Technical Workshop on Operational Aspects of Mo99 Production held 28-30 November 2006 in Viennamore » and the Second Research Coordination Meeting held in Bucharest, Romania 16-20 April 2007. The paper describes activities carried out as noted above, and as well as the provision of LEU foils to a number of participants, and the progress by a number of groups in preparing for LEU target assembly and disassembly, irradiation, chemical processing, and waste management. The participants' progress in particular on thermal hydraulics computations required for using LEU targets is notable, as also the progress in gel generator plant operations in India and Kazakhstan. Poland has joined as a new research agreement holder and an application by Egypt to be a contract holder is undergoing internal review in the IAEA and is expected to be approved. The IAEA has also participated in several open meetings of the U.S. National Academy of Sciences Study on Producing Medical Radioisotopes without HEU, which will also be discussed in the paper. (author)« less

  14. Process for producing molybdenum foil and collapsible tubing

    NASA Technical Reports Server (NTRS)

    Bretts, G. R.; Gavert, R. B.; Groschke, G. F.

    1971-01-01

    Manufacturing process produces molybdenum foil 0.002 cm thick and 305 m long, and forms foil into high-strength, thin-walled tubing which can be flattened for storage on a spool. Desirable metal properties include high thermal conductivity stiffness, yield and tensile stress, and low thermal expansion coeffecient.

  15. Bonded foil pressure transducers

    NASA Astrophysics Data System (ADS)

    Daube, Bernie W.

    The design of bonded-foil pressure transducers is discussed, with consideration given to individual components of both the electrical and the mechanical sections of the bonded-foil pressure transducers, as well as to the temperature control and the accuracy specification of these devices. Particular attention is given to applications of bonded foil pressure transducers, which include solid and liquid rocket engine testing for fuel and exhaust pressures, fuel and oil pressure monitoring on jet engines, and nuclear underground safety system pressure monitoring and nuclear test monitoring. A diagram of a transducer cutaway view is included.

  16. Measuring Hydrogen Concentrations in Metals

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1985-01-01

    Commercial corrosion-measurement system adapted to electrochemical determination of hydrogen concentrations in metals. New technique based on diffusion of hydrogen through foil specimen of metal. In sample holder, hydrogen produced on one side of foil, either by corrosion reaction or by cathodic current. Hydrogen diffused through foil removed on other side by constant anode potential, which leads to oxidation of hydrogen to water. Anode current is measure of concentration of hydrogen diffusing through foil. System used to study hydrogen uptake, hydrogen elimination by baking, effect of heat treatment, and effect of electroplating on high-strength steels.

  17. Elevated-Temperature Tensile-Testing of Foil-Gage Metals

    NASA Technical Reports Server (NTRS)

    Blackburn, L. B.; Ellingsworth, J. R.

    1986-01-01

    Automated system for measuring strain in metal foils at temperatures above 500 degrees F (260 degrees C) uses mechanical extensometer and displacement transducer. System includes counterbalance feature, which eliminates weight contribution of extensometer and reduces grip pressure required for attachment to specimen. Counterbalancing feature overcomes two major difficulties in using extensometers with foil-gage specimens: (1) Weight of extensometer and transducer represents significant fraction of total load applied to specimen and may actually damage it; and (2) grip pressure required for attachment of extensometer to specimens may induce bending stresses in foil-gage materials.

  18. Fast electron propagation in Ti foils irradiated with sub-picosecond laser pulses at Iλ{sup 2}>10{sup 18} Wcm{sup −2}μm{sup 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makita, M.; Nersisyan, G.; McKeever, K.

    2014-02-15

    We have studied the propagation of fast electrons through laser irradiated Ti foils by monitoring the emission of hard X-rays and K-α radiation from bare foils and foils backed by a thick epoxy layer. Key observations include strong refluxing of electrons and divergence of the electron beam in the foil with evidence of magnetic field collimation. Our diagnostics have allowed us to estimate the fast electron temperature and fraction of laser energy converted to fast electrons. We have observed clear differences between the fast electron temperatures observed with bare and epoxy backed targets which may be due to the effectsmore » of refluxing.« less

  19. Titanium conversion coatings on the aluminum foil AA 8021 used for lithium-ion battery package

    NASA Astrophysics Data System (ADS)

    Xia, Xu-Feng; Gu, Ying-Ying; Xu, Shi-Ai

    2017-10-01

    In this study, an environment-friendly titanium (Ti) conversion coating was successfully deposited on the aluminum foil AA 8021 in the solution containing hexafluorotitanic acid (H2TiF6), and its morphology, composition, growth process, hydrophilicity and corrosion resistance were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive spectroscopy (EDS), X-ray photoelectric spectroscopy (XPS), contact-angle measurements (CAM) and salt spray exposure. The peeling strength between the Ti treated Al foil and the modified polypropylene (PP) film (PP grafted with maleic anhydride, PP-g-MAH) (Al/PP-g-MAH) was measured by T-peeling test. The results show that the Ti conversion coating is a multi-component coating composed primarily of metal oxides (TiO2 and Al2O3) and metal fluoride (AlF3). Ti treated Al foil shows better corrosion resistance than untreated and alkali-cleaned Al foils. The peeling strength of PP-g-MAH film with Ti treated Al foils is approximately 30 times higher than that with untreated Al foils. Thus, Ti treatment is a promising approach to improve the corrosion resistance and peeling strength of aluminum/polymer composite film (Al/P) used in the lithium-ion battery package.

  20. A Systems Approach to the Solid Lubrication of Foil Air Bearings for Oil-Free Turbomachinery

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Zaldana, Antonio R.; Radil, Kevin C.

    2002-01-01

    Foil air bearings are self-acting hydrodynamic bearings which rely upon solid lubricants to reduce friction and minimize wear during sliding which occurs at start-up and shut-down when surface speeds are too low to allow the formation of a hydrodynamic air film. This solid lubrication is typically accomplished by coating the non-moving foil surface with a thin, soft polymeric film. The following paper introduces a systems approach in which the solid lubrication is provided by a combination of self lubricating shaft coatings coupled with various wear resistant and lubricating foil coatings. The use of multiple materials, each providing different functions is modeled after oil-lubricated hydrodynamic sleeve bearing technology which utilizes various coatings and surface treatments in conjunction with oil lubricants to achieve optimum performance. In this study, room temperature load capacity tests are performed on journal foil air bearings operating at 14,000 rpm. Different shaft and foil coating technologies such as plasma sprayed composites, ceramic, polymer and inorganic lubricant coatings are evaluated as foil bearing lubricants. The results indicate that bearing performance is improved through the individual use of the lubricants and treatments tested. Further, combining several solid lubricants together yielded synergistically better results than any material alone.

Top