Science.gov

Sample records for activation functions af-1

  1. Potentiation of estrogen receptor activation function 1 (AF-1) by Src/JNK through a serine 118-independent pathway.

    PubMed

    Feng, W; Webb, P; Nguyen, P; Liu, X; Li, J; Karin, M; Kushner, P J

    2001-01-01

    Estrogen receptor (ER) is activated either by ligand or by signals from tyrosine kinase-linked cell surface receptors. We investigated whether the nonreceptor Src tyrosine kinase could affect ER activity. Expression of constitutively active Src or stimulation of the endogenous Src/JNK pathway enhances transcriptional activation by the estrogen-ER complex and strongly stimulates the otherwise weak activation by the unliganded ER and the tamoxifen-ER complex. Src affects ER activation function 1 (AF-1), and not ER AF-2, and does so through its tyrosine kinase activity. This effect of Src is mediated partly through a Raf/mitogen-activated ERK kinase/extracellular signal-regulated kinase (Raf/MEK/ERK) signaling cascade and partly through a MEKK/JNKK/JNK cascade. Although, as previously shown, Src action through activated ERK stimulates AF-1 by phosphorylation at S118, Src action through activated JNK neither leads to phosphorylation of S118 nor requires S118 for its action. We therefore suggest that the Src/JNK pathway enhances AF-1 activity by modification of ER AF-1-associated proteins. Src potentiates activation functions in CREB-binding protein (CBP) and glucocorticoid receptor interacting protein 1 (GRIP1), and we discuss the possibility that the Src/JNK pathway enhances the activity of these coactivators, which are known to mediate AF-1 action. PMID:11145737

  2. Prevention of Obesity and Insulin Resistance by Estrogens Requires ERα Activation Function-2 (ERαAF-2), Whereas ERαAF-1 Is Dispensable

    PubMed Central

    Handgraaf, Sandra; Riant, Elodie; Fabre, Aurélie; Waget, Aurélie; Burcelin, Rémy; Lière, Philippe; Krust, Andrée; Chambon, Pierre; Arnal, Jean-François; Gourdy, Pierre

    2013-01-01

    The beneficial metabolic actions of estrogen-based therapies are mainly mediated by estrogen receptor α (ERα), a nuclear receptor that regulates gene transcription through two activation functions (AFs): AF-1 and AF-2. Using mouse models deleted electively for ERαAF-1 (ERαAF-1°) or ERαAF-2 (ERαAF-2°), we determined their respective roles in the actions of estrogens on body composition and glucose homeostasis in response to either a normal diet or a high-fat diet (HFD). ERαAF-2° males and females developed accelerated weight gain, massive adiposity, severe insulin resistance, and glucose intolerance—quite reminiscent of the phenotype observed in mice deleted for the entire ERα protein (ERα−/−). In striking contrast, ERαAF-1° and wild-type (wt) mice shared a similar metabolic phenotype. Accordingly, 17β-estradiol administration regulated key metabolic genes in insulin-sensitive tissues and conferred a strong protection against HFD-induced metabolic disturbances in wt and ERαAF-1° ovariectomized mice, whereas these actions were totally abrogated in ERαAF-2° and ERα−/− mice. Thus, whereas both AFs have been previously shown to contribute to endometrial and breast cancer cell proliferation, the protective effect of estrogens against obesity and insulin resistance depends on ERαAF-2 but not ERαAF-1, thereby delineating new options for selective modulation of ERα. PMID:23903353

  3. Lessons from the dissection of the activation functions (AF-1 and AF-2) of the estrogen receptor alpha in vivo.

    PubMed

    Arnal, Jean-François; Fontaine, Coralie; Abot, Anne; Valera, Marie-Cécile; Laurell, Henrik; Gourdy, Pierre; Lenfant, Françoise

    2013-06-01

    Estrogens influence most of the physiological processes in mammals, including but not limited to reproduction, cognition, behavior, vascular system, metabolism and bone integrity. Given this widespread role for estrogen in human physiology, it is not surprising that estrogen influence the pathophysiology of numerous diseases, including cancer (of the reproductive tract as breast, endometrial but also colorectal, prostate,…), as well as neurodegenerative, inflammatory-immune, cardiovascular and metabolic diseases, and osteoporosis. These actions are mediated by the activation of estrogen receptors (ER) alpha (ERα) and beta (ERβ), which regulate target gene transcription (genomic action) through two independent activation functions (AF)-1 and AF-2, but can also elicit rapid membrane initiated steroid signals (MISS). Targeted ER gene inactivation has shown that although ERβ plays an important role in the central nervous system and in the heart, ERα appears to play a prominent role in most of the other tissues. Pharmacological activation or inhibition of ERα and/or ERβ provides already the basis for many therapeutic interventions, from hormone replacement at menopause to prevention of the recurrence of breast cancer. However, the use of these estrogens or selective estrogen receptors modulators (SERMs) have also induced undesired effects. Thus, an important challenge consists now to uncouple the beneficial actions from other deleterious ones. The in vivo molecular "dissection" of ERα represents both a molecular and integrated approach that already allowed to delineate in mouse the role of the main "subfunctions" of the receptor and that could pave the way to an optimization of the ER modulation. PMID:23200732

  4. AF1q is a novel TCF7 co-factor which activates CD44 and promotes breast cancer metastasis.

    PubMed

    Park, Jino; Schlederer, Michaela; Schreiber, Martin; Ice, Ryan; Merkel, Olaf; Bilban, Martin; Hofbauer, Sebastian; Kim, Soojin; Addison, Joseph; Zou, Jie; Ji, Chunyan; Bunting, Silvia T; Wang, Zhengqi; Shoham, Menachem; Huang, Gang; Bago-Horvath, Zsuzsanna; Gibson, Laura F; Rojanasakul, Yon; Remick, Scot; Ivanov, Alexey; Pugacheva, Elena; Bunting, Kevin D; Moriggl, Richard; Kenner, Lukas; Tse, William

    2015-08-21

    AF1q is an MLL fusion partner that was identified from acute myeloid leukemia (AML) patients with t (1; 11) (q21; q23) chromosomal abnormality. The function of AF1q is not yet fully known, however, elevated AF1q expression is associated with poor clinical outcomes in various malignancies. Here, we show that AF1q specifically binds to T-cell-factor-7 (TCF7) in the Wnt signaling pathway and results in transcriptional activation of CD44 as well as multiple downstream targets of the TCF7/LEF1. In addition, enhanced AF1q expression promotes breast cancer cell proliferation, migration, mammosphere formation, and chemo-resistance. In xenograft models, enforced AF1q expression in breast cancer cells also promotes liver metastasis and lung colonization. In a cohort of 63 breast cancer patients, higher percentages of AF1q-positive cancer cells in primary sites were associated with significantly poorer overall survival (OS), disease-free survival (DFS), and brain metastasis-free survival (b-MFS). Using paired primary/metastatic samples from the same patients, we demonstrate that AF1q-positive breast cancer cells become dynamically dominant in the metastatic sites compared to the primary sites. Our findings indicate that breast cancer cells with a hyperactive AF1q/TCF7/CD44 regulatory axis in the primary sites may represent "metastatic founder cells" which have invasive properties. PMID:26079538

  5. AF1q is a novel TCF7 co-factor which activates CD44 and promotes breast cancer metastasis

    PubMed Central

    Park, Jino; Schlederer, Michaela; Schreiber, Martin; Ice, Ryan; Merkel, Olaf; Bilban, Martin; Hofbauer, Sebastian; Kim, Soojin; Addison, Joseph; Zou, Jie; Ji, Chunyan; Bunting, Silvia T.; Wang, Zhengqi; Shoham, Menachem; Huang, Gang; Bago-Horvath, Zsuzsanna; Gibson, Laura F.; Rojanasakul, Yon; Remick, Scot; Ivanov, Alexey; Pugacheva, Elena; Bunting, Kevin D.; Moriggl, Richard

    2015-01-01

    AF1q is an MLL fusion partner that was identified from acute myeloid leukemia (AML) patients with t (1; 11) (q21; q23) chromosomal abnormality. The function of AF1q is not yet fully known, however, elevated AF1q expression is associated with poor clinical outcomes in various malignancies. Here, we show that AF1q specifically binds to T-cell-factor-7 (TCF7) in the Wnt signaling pathway and results in transcriptional activation of CD44 as well as multiple downstream targets of the TCF7/LEF1. In addition, enhanced AF1q expression promotes breast cancer cell proliferation, migration, mammosphere formation, and chemo-resistance. In xenograft models, enforced AF1q expression in breast cancer cells also promotes liver metastasis and lung colonization. In a cohort of 63 breast cancer patients, higher percentages of AF1q-positive cancer cells in primary sites were associated with significantly poorer overall survival (OS), disease-free survival (DFS), and brain metastasis-free survival (b-MFS). Using paired primary/metastatic samples from the same patients, we demonstrate that AF1q-positive breast cancer cells become dynamically dominant in the metastatic sites compared to the primary sites. Our findings indicate that breast cancer cells with a hyperactive AF1q/TCF7/CD44 regulatory axis in the primary sites may represent “metastatic founder cells” which have invasive properties. PMID:26079538

  6. Identification and functional characterization of grass carp IL-17A/F1: An evaluation of the immunoregulatory role of teleost IL-17A/F1.

    PubMed

    Du, Linyong; Feng, Shiyu; Yin, Licheng; Wang, Xinyan; Zhang, Anying; Yang, Kun; Zhou, Hong

    2015-07-01

    In mammals, IL-17A and IL-17F are hallmark cytokines of Th17 cells which act significant roles in eradicating extracellular pathogens. IL-17A and IL-17F homologs nominated as IL-17A/F1-3 have been revealed in fish and their functions remain largely undefined. Here we identified and characterized grass carp IL-17A/F1 (gcIL-17A/F1) in fish immune system. In this regard, both tissue distribution and inductive expression of gcIL-17A/F1 indicated its possible involvement in immune response. Moreover, recombinant gcIL-17A/F1 (rgcIL-17A/F1) was prepared and displayed an ability to enhance pro-inflammatory cytokines (IL-1β, TNF-α and IL-6) mRNA expression in head kidney leukocytes. It is suggestive of that gcIL-17A/F1 may act as a proinflammatory cytokine in fish immunity. Besides, rgcIL-17A/F1 induced gene expression and protein release of grass carp chemokine CXCL-8 (gcCXCL-8) in head kidney cells (HKCs), probably via NF-κB, p38 and Erk1/2 pathways. In particular, culture medium from the HKCs treated by rgcIL-17A/F1 could stimulate peripheral blood leukocytes migration and immunoneutralization of endogenous gcCXCL-8 could partially attenuate this stimulation, suggesting that rgcIL-17A/F1 could recruit immune cells through producing gcCXCL-8 as mammalian IL-17 A and F. Taken together, we not only identified the pro-inflammatory role of gcIL-17A/F1 in host defense, but also provided the basis for clarifying Th17 cells in teleost. PMID:25847875

  7. In vivo role of the HNF4α AF-1 activation domain revealed by exon swapping

    PubMed Central

    Briançon, Nadège; Weiss, Mary C

    2006-01-01

    The gene encoding the nuclear receptor hepatocyte nuclear factor 4α (HNF4α) generates isoforms HNF4α1 and HNF4α7 from usage of alternative promoters. In particular, HNF4α7 is expressed in the pancreas whereas HNF4α1 is found in liver, and mutations affecting HNF4α function cause impaired insulin secretion and/or hepatic defects in humans and in tissue-specific ‘knockout' mice. HNF4α1 and α7 isoforms differ exclusively by amino acids encoded by the first exon which, in HNF4α1 but not in HNF4α7, includes the activating function (AF)-1 transactivation domain. To investigate the roles of HNF4α1 and HNF4α7 in vivo, we generated mice expressing only one isoform under control of both promoters, via reciprocal swapping of the isoform-specific first exons. Unlike Hnf4α gene disruption which causes embryonic lethality, these ‘α7-only' and ‘α1-only' mice are viable, indicating functional redundancy of the isoforms. However, the former show dyslipidemia and preliminary results indicate impaired glucose tolerance for the latter, revealing functional specificities of the isoforms. These ‘knock-in' mice provide the first test in vivo of the HNF4α AF-1 function and have permitted identification of AF-1-dependent target genes. PMID:16498401

  8. POU2AF1 Functions in the Human Airway Epithelium To Regulate Expression of Host Defense Genes.

    PubMed

    Zhou, Haixia; Brekman, Angelika; Zuo, Wu-Lin; Ou, Xuemei; Shaykhiev, Renat; Agosto-Perez, Francisco J; Wang, Rui; Walters, Matthew S; Salit, Jacqueline; Strulovici-Barel, Yael; Staudt, Michelle R; Kaner, Robert J; Mezey, Jason G; Crystal, Ronald G; Wang, Guoqing

    2016-04-01

    In the process of seeking novel lung host defense regulators by analyzing genome-wide RNA sequence data from normal human airway epithelium, we detected expression of POU domain class 2-associating factor 1 (POU2AF1), a known transcription cofactor previously thought to be expressed only in lymphocytes. Lymphocyte contamination of human airway epithelial samples obtained by bronchoscopy and brushing was excluded by immunohistochemistry staining, the observation of upregulation of POU2AF1 in purified airway basal stem/progenitor cells undergoing differentiation, and analysis of differentiating single basal cell clones. Lentivirus-mediated upregulation of POU2AF1 in airway basal cells induced upregulation of host defense genes, including MX1, IFIT3, IFITM, and known POU2AF1 downstream genes HLA-DRA, ID2, ID3, IL6, and BCL6. Interestingly, expression of these genes paralleled changes of POU2AF1 expression during airway epithelium differentiation in vitro, suggesting POU2AF1 helps to maintain a host defense tone even in pathogen-free condition. Cigarette smoke, a known risk factor for airway infection, suppressed POU2AF1 expression both in vivo in humans and in vitro in human airway epithelial cultures, accompanied by deregulation of POU2AF1 downstream genes. Finally, enhancing POU2AF1 expression in human airway epithelium attenuated the suppression of host defense genes by smoking. Together, these findings suggest a novel function of POU2AF1 as a potential regulator of host defense genes in the human airway epithelium. PMID:26927796

  9. Functional dissection of an enhancer-like element located within the second intron of the human U2AF1L4 gene.

    PubMed

    Didych, D A; Smirnov, N A; Kotova, E S; Akopov, S B; Nikolaev, L G; Sverdlov, E D

    2011-08-01

    A detailed functional and evolutionary analysis of an enhancer element of the human genome (enhancer 12) located in the second intron of the U2AF1L4 gene, which we identified earlier, is presented. Overlapping fragments of the studied genome region were analyzed for enhancer activity, and the site responsible for the activity of this element was identified using transient transfections of HeLa cells. Comparison of the enhancer 12 sequence with orthologous sequences from seven primate species revealed the existence of evolutionarily conserved sequences within this element. One of the identified conservative regions is likely responsible for the enhancer activity and is able to specifically interact in vitro with proteins of HeLa cell nuclear extract. The ability of orthologous primate sequences to compete with enhancer 12 for binding with HeLa cell nuclear extract proteins and to enhance the activity of the reporter gene in transient transfection of HeLa cells is demonstrated. PMID:22022969

  10. Degradation of AF1Q by chaperone-mediated autophagy

    SciTech Connect

    Li, Peng; Ji, Min; Lu, Fei; Zhang, Jingru; Li, Huanjie; Cui, Taixing; Li Wang, Xing; Tang, Dongqi; Ji, Chunyan

    2014-09-10

    AF1Q, a mixed lineage leukemia gene fusion partner, is identified as a poor prognostic biomarker for pediatric acute myeloid leukemia (AML), adult AML with normal cytogenetic and adult myelodysplastic syndrome. AF1Q is highly regulated during hematopoietic progenitor differentiation and development but its regulatory mechanism has not been defined clearly. In the present study, we used pharmacological and genetic approaches to influence chaperone-mediated autophagy (CMA) and explored the degradation mechanism of AF1Q. Pharmacological inhibitors of lysosomal degradation, such as chloroquine, increased AF1Q levels, whereas activators of CMA, including 6-aminonicotinamide and nutrient starvation, decreased AF1Q levels. AF1Q interacts with HSPA8 and LAMP-2A, which are core components of the CMA machinery. Knockdown of HSPA8 or LAMP-2A increased AF1Q protein levels, whereas overexpression showed the opposite effect. Using an amino acid deletion AF1Q mutation plasmid, we identified that AF1Q had a KFERQ-like motif which was recognized by HSPA8 for CMA-dependent proteolysis. In conclusion, we demonstrate for the first time that AF1Q can be degraded in lysosomes by CMA. - Highlights: • Chaperone-mediated autophagy (CMA) is involved in the degradation of AF1Q. • Macroautophagy does not contribute to the AF1Q degradation. • AF1Q has a KFERQ-like motif that is recognized by CMA core components.

  11. Pseudomonas syringae type III effector HopAF1 suppresses plant immunity by targeting methionine recycling to block ethylene induction

    PubMed Central

    Washington, Erica J.; Mukhtar, M. Shahid; Finkel, Omri M.; Wan, Li; Kieber, Joseph J.; Dangl, Jeffery L.

    2016-01-01

    HopAF1 is a type III effector protein of unknown function encoded in the genomes of several strains of Pseudomonas syringae and other plant pathogens. Structural modeling predicted that HopAF1 is closely related to deamidase proteins. Deamidation is the irreversible substitution of an amide group with a carboxylate group. Several bacterial virulence factors are deamidases that manipulate the activity of specific host protein substrates. We identified Arabidopsis methylthioadenosine nucleosidase proteins MTN1 and MTN2 as putative targets of HopAF1 deamidation. MTNs are enzymes in the Yang cycle, which is essential for the high levels of ethylene biosynthesis in Arabidopsis. We hypothesized that HopAF1 inhibits the host defense response by manipulating MTN activity and consequently ethylene levels. We determined that bacterially delivered HopAF1 inhibits ethylene biosynthesis induced by pathogen-associated molecular patterns and that Arabidopsis mtn1 mtn2 mutant plants phenocopy the effect of HopAF1. Furthermore, we identified two conserved asparagines in MTN1 and MTN2 from Arabidopsis that confer loss of function phenotypes when deamidated via site-specific mutation. These residues are potential targets of HopAF1 deamidation. HopAF1-mediated manipulation of Yang cycle MTN proteins is likely an evolutionarily conserved mechanism whereby HopAF1 orthologs from multiple plant pathogens contribute to disease in a large variety of plant hosts. PMID:27274076

  12. SERMs have substance-specific effects on bone, and these effects are mediated via ERαAF-1 in female mice.

    PubMed

    Börjesson, Anna E; Farman, Helen H; Movérare-Skrtic, Sofia; Engdahl, Cecilia; Antal, Maria Cristina; Koskela, Antti; Tuukkanen, Juha; Carlsten, Hans; Krust, Andrée; Chambon, Pierre; Sjögren, Klara; Lagerquist, Marie K; Windahl, Sara H; Ohlsson, Claes

    2016-06-01

    The bone-sparing effect of estrogens is mediated primarily via estrogen receptor (ER)α, which stimulates gene transcription through activation function (AF)-1 and AF-2. The role of ERαAF-1 for the estradiol (E2) effects is tissue specific. The selective ER modulators (SERMs) raloxifene (Ral), lasofoxifene (Las), and bazedoxifene (Bza) can be used to treat postmenopausal osteoporosis. They all reduce the risk for vertebral fractures, whereas Las and partly Bza, but not Ral, reduce the risk for nonvertebral fractures. Here, we have compared the tissue specificity of Ral, Las, and Bza and evaluated the role of ERαAF-1 for the effects of these SERMs, with an emphasis on bone parameters. We treated ovariectomized (OVX) wild-type (WT) mice and OVX mice lacking ERαAF-1 (ERαAF-1(0)) with E2, Ral, Las, or Bza. All three SERMs increased trabecular bone mass in the axial skeleton. In the appendicular skeleton, only Las increased the trabecular bone volume/tissue volume and trabecular number, whereas both Ral and Las increased the cortical bone thickness and strength. However, Ral also increased cortical porosity. The three SERMs had only a minor effect on uterine weight. Notably, all evaluated effects of these SERMs were absent in ovx ERαAF-1(0) mice. In conclusion, all SERMs had similar effects on axial bone mass. However, the SERMs had slightly different effects on the appendicular skeleton since only Las increased the trabecular bone mass and only Ral increased the cortical porosity. Importantly, all SERM effects require a functional ERαAF-1 in female mice. These results could lead to development of more specific treatments for osteoporosis. PMID:27048997

  13. U2AF1 Mutations Alter Sequence Specificity of pre-mRNA Binding and Splicing

    PubMed Central

    Okeyo-Owuor, Theresa; White, Brian S.; Chatrikhi, Rakesh; Mohan, Dipika R.; Kim, Sanghyun; Griffith, Malachi; Ding, Li; Ketkar-Kulkarni, Shamika; Hundal, Jasreet; Laird, Kholiswa M.; Kielkopf, Clara L.; Ley, Timothy J.; Walter, Matthew J.; Graubert, Timothy A.

    2014-01-01

    We previously identified missense mutations in the U2AF1 splicing factor affecting codons S34 (S34F and S34Y) or Q157 (Q157R and Q157P) in 11% of patients with de novo myelodysplastic syndromes (MDS). Although the role of U2AF1 as an accessory factor in the U2 snRNP is well established, it is not yet clear how mutations affect splicing or contribute to MDS pathophysiology. We analyzed splice junctions in RNA-seq data generated from transfected CD34+ hematopoietic cells and found significant differences in the abundance of known and novel junctions in samples expressing mutant U2AF1 (S34F). For selected transcripts, splicing alterations detected by RNA-seq were confirmed by analysis of primary de novo MDS patient samples. These effects were not due to impaired U2AF1 (S34F) localization as it co-localized normally with U2AF2 within nuclear speckles. We further found evidence in the RNA-seq data for decreased affinity of U2AF1 (S34F) for uridine (relative to cytidine) at the e-3 position immediately upstream of the splice acceptor site and corroborated this finding using affinity binding assays. These data suggest that the S34F mutation alters U2AF1 function in the context of specific RNA sequences, leading to aberrant alternative splicing of target genes, some of which may be relevant for MDS pathogenesis. PMID:25311244

  14. Transactivation Function-2 of Estrogen Receptor α Contains Transactivation Function-1-regulating Element*

    PubMed Central

    Arao, Yukitomo; Coons, Laurel A.; Zuercher, William J.; Korach, Kenneth S.

    2015-01-01

    ERα has a ligand-dependent transactivation function in the ligand binding domain of ERα C terminus (AF-2) and a ligand-independent activation function in the N terminus (AF-1). It is still not fully understood how AF-1 and AF-2 activities are regulated cooperatively by ligands. To evaluate the AF-1 involvement in the estrogenic activities of various compounds, we analyzed these transactivation functions using AF-1-truncated and AF-2-mutated ERα mutants. AF-2 is composed of two domains with flexible and static regions. We used an AF-2 flexible region mutant and an AF-2 static region mutant. Both mutants have been reported as non-E2 responsive due to disruption of E2-mediated coactivator recruitment to the AF-2. The AF-2 mutants were not activated by agonists, but surprisingly antagonists and selective estrogen receptor modulators (SERMs) activated the AF-2 mutants. This antagonist reversal activity was derived from AF-1. Furthermore, we demonstrated that the AF-2 contains an AF-1 suppression function using C-terminal-truncated ERα mutants. From these findings we hypothesized that the mutation of AF-2 disrupted its ability to suppress AF-1, causing the antagonist reversal. To assess the AF-2-mediated AF-1 suppression, we analyzed the transcription activity of physically separated AF-1 and AF-2 using a novel hybrid reporter assay. We observed that the AF-1 activity was not suppressed by the physically separated AF-2. Furthermore, SERMs did not induce the AF-1-mediated activity from the separated mutant AF-2, which differed from the intact protein. These results imply that SERM activity is dependent on a conformational change of the full-length ERα molecule, which allows for AF-1 activation. PMID:26028650

  15. Estradiol promotes functional responses in inflammatory and steady-state dendritic cells through differential requirement for activation function-1 of estrogen receptor α.

    PubMed

    Seillet, Cyril; Rouquié, Nelly; Foulon, Eliane; Douin-Echinard, Victorine; Krust, Andrée; Chambon, Pierre; Arnal, Jean-François; Guéry, Jean-Charles; Laffont, Sophie

    2013-06-01

    17β-Estradiol (E2) has been shown to regulate GM-CSF- or Flt3 ligand-driven dendritic cell (DC) development through estrogen receptor (ER) α signaling in myeloid progenitors. ERα regulates transcription of target genes through two distinct activation functions (AFs), AF-1 and AF-2, whose respective involvement varies in a cell type- or tissue-specific manner. In this study, we investigated the role of ERα AFs in the development and effector functions of inflammatory DCs, steady-state conventional DCs, and plasmacytoid DCs (pDC), using mouse lacking either AF-1 or AF-2. In agreement with previous works, we showed that E2 fostered the differentiation and effector functions of inflammatory DCs through ERα-dependent upregulation of IFN regulatory factor (IRF)-4 in GM-CSF-stimulated myeloid progenitors. Interestingly, whereas AF-1 was required for early IRF-4 upregulation in DC precursors, it was dispensable to enhance IRF-4 expression in differentiated DCs to a level compatible with the development of the more functional Ly6C(-) CD11b(+) DC subset. Presence of E2 had no effect on progenitors from either knock-in mice with 7-aa deletion in helix 12 of ERα, lacking AF-2, or ERα(-/-) mice. By contrast, in Flt3 ligand-driven DC differentiation, activation of AF-1 domain was required to promote the development of more functionally competent conventional DCs and pDCs. Moreover, lack of ERα AF-1 blunted the TLR7-mediated IFN-α response of female pDCs in vivo. Thus, our study demonstrates that ERα uses AF-1 differently in steady-state and inflammatory DC lineages to regulate their innate functions, suggesting that selective ER modulators could be used to target specific DC subsets. PMID:23626011

  16. Human PSENEN and U2AF1L4 genes are concertedly regulated by a genuine bidirectional promoter.

    PubMed

    Didych, D A; Shamsutdinov, M F; Smirnov, N A; Akopov, S B; Monastyrskaya, G S; Uspenskaya, N Y; Nikolaev, L G; Sverdlov, E D

    2013-02-15

    Head-to-head genes with a short distance between their transcription start sites may constitute up to 10% of all genes in the genomes of various species. It was hypothesized that this intergenic space may represent bidirectional promoters which are able to initiate transcription of both genes, but the true bidirectionality was proved only for a few of them. We present experimental evidence that, according to several criteria, a 269 bp region located between the PSENEN and U2AF1L4 human genes is a genuine bidirectional promoter regulating a concerted divergent transcription of these genes. Concerted transcription of PSENEN and U2AF1L4 can be necessary for regulation of T-cell activity. PMID:23246698

  17. Mutant U2AF1 Expression Alters Hematopoiesis and Pre-mRNA Splicing In Vivo

    PubMed Central

    Shirai, Cara Lunn; Ley, James N.; White, Brian S.; Kim, Sanghyun; Tibbitts, Justin; Shao, Jin; Ndonwi, Matthew; Wadugu, Brian; Duncavage, Eric J.; Okeyo-Owuor, Theresa; Liu, Tuoen; Griffith, Malachi; McGrath, Sean; Magrini, Vincent; Fulton, Robert S.; Fronick, Catrina; O’Laughlin, Michelle; Graubert, Timothy A.; Walter, Matthew J.

    2015-01-01

    SUMMARY Heterozygous somatic mutations in the spliceosome gene U2AF1 occur in ~11% of patients with myelodysplastic syndromes (MDS), the most common adult myeloid malignancy. It is unclear how these mutations contribute to disease. We examined in vivo hematopoietic consequences of the most common U2AF1 mutation using a doxycycline-inducible transgenic mouse model. Mice expressing mutant U2AF1(S34F) display altered hematopoiesis and changes in pre-mRNA splicing in hematopoietic progenitor cells by whole transcriptome analysis (RNA-seq). Integration with human RNA-seq datasets determined that common mutant U2AF1-induced splicing alterations are enriched in RNA processing genes, ribosomal genes, and recurrently-mutated MDS and acute myeloid leukemia-associated genes. These findings support the hypothesis that mutant U2AF1 alters downstream gene isoform expression, thereby contributing to abnormal hematopoiesis in MDS patients. PMID:25965570

  18. Natalizumab-induced POU2AF1/Spi-B upregulation

    PubMed Central

    Meira, Maria; Sievers, Claudia; Hoffmann, Francine; Haghikia, Aiden; Rasenack, Maria; Décard, Bernhard F.; Kuhle, Jens; Derfuss, Tobias; Kappos, Ludwig

    2016-01-01

    Objectives: To assess messenger RNA (mRNA) expression of POU2AF1 and Spi-B and their potential regulatory microRNAs (miRNAs) in natalizumab-treated patients with multiple sclerosis and in therapy-associated progressive multifocal leukoencephalopathy (PML). Methods: Expression of POU2AF1/Spi-B was analyzed by using real-time reverse transcription PCR assays on isolated B/CD8+ T lymphocytes and peripheral blood mononuclear cells (PBMCs) from cohorts of untreated and natalizumab-treated patients with and without PML. Longitudinal expression analysis was performed on CD4+, CD8+ T and B cells from 14 patients who interrupted natalizumab therapy for 8 weeks. The miRNA profiling was conducted in PBMCs from 5 untreated and 5 natalizumab-treated patients using low-density arrays followed by validation with single miRNAs assays in untreated and natalizumab-treated patients. Results: POU2AF1 and Spi-B mRNAs were upregulated in B and CD8+ T cells from natalizumab-treated patients, which was validated in PBMCs from different cohorts of natalizumab-treated patients with and without PML, with a noteworthy higher expression of Spi-B in patients with PML. In contrast, downregulation of POU2AF1/Spi-B expression was measured in B and CD8+ T cells after natalizumab discontinuation. Seventeen differentially expressed miRNAs including miR-10b, a regulator of POU2AF1 mRNA, were identified in long-term natalizumab-treated patients compared with untreated ones. Conclusions: Upregulation of POU2AF1 and Spi-B, known transactivators of the JC virus, the causative agent for PML, and its association with occurrence of PML in natalizumab-treated patients, corroborates POU2AF1/Spi-B as potential biomarkers for PML risk, which merits further evaluation. PMID:27088119

  19. The Activation Function-1 of Estrogen Receptor Alpha Prevents Arterial Neointima Development Through a Direct Effect on Smooth Muscle Cells

    PubMed Central

    Smirnova, Natalia F.; Fontaine, Coralie; Buscato, Mélissa; Lupieri, Adrien; Vinel, Alexia; Valera, Marie-Cécile; Guillaume, Maeva; Malet, Nicole; Foidart, Jean-Michel; Raymond-Letron, Isabelle; Lenfant, Francoise; Gourdy, Pierre; Katzenellenbogen, Benita S.; Katzenellenbogen, John A.; Laffargue, Muriel; Arnal, Jean-Francois

    2015-01-01

    Rationale: 17β-Estradiol (E2) exerts numerous beneficial effects in vascular disease. It regulates gene transcription through nuclear estrogen receptor α (ERα) via 2 activation functions, AF1 and AF2, and can also activate membrane ERα. The role of E2 on the endothelium relies on membrane ERα activation, but the molecular mechanisms of its action on vascular smooth muscle cells (VSMCs) are not fully understood. Objective: The aim of this study was to determine which cellular target and which ERα subfunction are involved in the preventive action of E2 on neointimal hyperplasia. Methods and Results: To trigger neointimal hyperplasia of VSMC, we used a mouse model of femoral arterial injury. Cre-Lox models were used to distinguish between the endothelial- and the VSMC-specific actions of E2. The molecular mechanisms underlying the role of E2 were further characterized using both selective ERα agonists and transgenic mice in which the ERαAF1 function had been specifically invalidated. We found that (1) the selective inactivation of ERα in VSMC abrogates the neointimal hyperplasia protection induced by E2, whereas inactivation of endothelial and hematopoietic ERα has no effect; (2) the selective activation of membrane ERα does not prevent neointimal hyperplasia; and (3) ERαAF1 is necessary and sufficient to inhibit postinjury VSMC proliferation. Conclusions: Altogether, ERαAF1-mediated nuclear action is both necessary and sufficient to inhibit postinjury arterial VSMC proliferation, whereas membrane ERα largely regulates the endothelial functions of E2. This highlights the exquisite cell/tissue-specific actions of the ERα subfunctions and helps to delineate the spectrum of action of selective ER modulators. PMID:26316608

  20. Estrogen Receptor β Isoform-Specific Induction of Transforming Growth Factor β-Inducible Early Gene-1 in Human Osteoblast Cells: An Essential Role for the Activation Function 1 Domain

    PubMed Central

    Hawse, John R.; Subramaniam, Malayannan; Monroe, David G.; Hemmingsen, Amanda H.; Ingle, James N.; Khosla, Sundeep; Oursler, Merry Jo; Spelsberg, Thomas C.

    2008-01-01

    The estrogen receptors (ER) α and β are important ligand-mediated transcription factors known to play significant biological roles in numerous tissues including bone. Despite the high homology shared by these receptors, recent studies have suggested that their function is largely unique. Although these receptors have been studied in detail for more than a decade, little data exist concerning the mechanisms by which these two proteins regulate distinct sets of genes. Using the TGFβ-inducible early gene-1 (TIEG) as a model, we demonstrate that TIEG is rapidly induced in response to estrogen in osteoblasts by ERβ, but not ERα. We have identified the regulatory elements utilized by ERβ and have demonstrated that ERβ recruits steroid receptor coactivator (SRC)1 and SRC2 to this regulatory region. Additionally, deletion of the ERβ-activation function 1 (AF1) domain drastically decreases the estrogen induction of TIEG. Through the use of chimeric receptors, we have demonstrated that the AF1 domain of ERβ is responsible for recruiting SRC1 and SRC2 and inducing the expression of TIEG in osteoblasts. Finally, SRC1, but not SRC2, is essential for TIEG induction by ERβ. Overall, these data demonstrate that the estrogen induction of TIEG is ERβ specific and that the AF1 domain of ERβ confers this specificity. Finally, a novel and important role for ERβ’s AF1 is implicated in the recruitment of specific coactivators, suggesting that the AF1 may play a significant role in conferring the differences in regulation of gene expression by these two receptors. PMID:18483178

  1. The cell-specific activity of the estrogen receptor α may be fine-tuned by phosphorylation-induced structural gymnastics

    PubMed Central

    Gburcik, Valentina; Picard, Didier

    2006-01-01

    The estrogen receptor α (ERα) regulates the transcription of target genes by recruiting coregulator proteins through several domains including the two activation functions AF1 and AF2. The contribution of the N-terminally located AF1 activity is particularly important in differentiated cells, and for ERα to integrate inputs from other signaling pathways. However, how the phosphorylation of key residues influences AF1 activity has long remained mysterious, in part because the naturally disordered AF1 domain has resisted a structural characterization. The recent discovery of two coregulators that are specific for a phosphorylated form of AF1 suggests that phosphorylation, possibly in conjunction with the subsequent binding of these coregulators, may enforce a stable structure. The binding of the "pioneer" coregulators might facilitate the subsequent recruitment of yet other coregulators. Different AF1 folds may be enabled by the combinatorial action of posttranslational modifications and coregulator binding thereby fine-tuning ERα activities in a cell- and promoter-specific fashion. PMID:16604168

  2. Regulation of Estrogen Receptor α N-Terminus Conformation and Function by Peptidyl Prolyl Isomerase Pin1

    PubMed Central

    Rajbhandari, Prashant; Finn, Greg; Solodin, Natalia M.; Singarapu, Kiran K.; Sahu, Sarata C.; Markley, John L.; Kadunc, Kelley J.; Ellison-Zelski, Stephanie J.; Kariagina, Anastasia; Haslam, Sandra Z.; Lu, Kun Ping

    2012-01-01

    Estrogen receptor alpha (ERα), a key driver of growth in the majority of breast cancers, contains an unstructured transactivation domain (AF1) in its N terminus that is a convergence point for growth factor and hormonal activation. This domain is controlled by phosphorylation, but how phosphorylation impacts AF1 structure and function is unclear. We found that serine 118 (S118) phosphorylation of the ERα AF1 region in response to estrogen (agonist), tamoxifen (antagonist), and growth factors results in recruitment of the peptidyl prolyl cis/trans isomerase Pin1. Phosphorylation of S118 is critical for Pin1 binding, and mutation of S118 to alanine prevents this association. Importantly, Pin1 isomerizes the serine118-proline119 bond from a cis to trans isomer, with a concomitant increase in AF1 transcriptional activity. Pin1 overexpression promotes ligand-independent and tamoxifen-inducible activity of ERα and growth of tamoxifen-resistant breast cancer cells. Pin1 expression correlates with proliferation in ERα-positive rat mammary tumors. These results establish phosphorylation-coupled proline isomerization as a mechanism modulating AF1 functional activity and provide insight into the role of a conformational switch in the functional regulation of the intrinsically disordered transactivation domain of ERα. PMID:22064478

  3. Identification of the functional domains of ANT-1, a novel coactivator of the androgen receptor

    SciTech Connect

    Fan Shuli; Goto, Kiminobu; Chen Guangchun; Morinaga, Hidetaka; Nomura, Masatoshi; Okabe, Taijiro; Nawata, Hajime; Yanase, Toshihiko . E-mail: yanase@intmed3.med.kyushu-u.ac.jp

    2006-03-03

    Previously, we identified a transcriptional coactivator for the activation function-1 (AF-1) domain of the human androgen receptor (AR) and designated it androgen receptor N-terminal domain transactivating protein-1 (ANT-1). This coactivator, which contains multiple tetratricopeptide repeat (TPR) motifs from amino acid (aa) 294, is identical to a component of U5 small nuclear ribonucleoprotein particles and binds specifically to the AR or glucocorticoid receptor. Here, we identified four distinct functional domains. The AR-AF-1-binding domain, which bound to either aa 180-360 or 360-532 in AR-AF-1, clearly overlapped with TAU-1 and TAU-5. This domain and the subnuclear speckle formation domain in ANT-1 were assigned within the TPR motifs, while the transactivating and nuclear localization signal domains resided within the N-terminal sequence. The existence of these functional domains may further support the idea that ANT-1 can function as an AR-AF-1-specific coactivator while mediating a transcription-splicing coupling.

  4. Linkage disequilibrium screening for multiple sclerosis implicates JAG1 and POU2AF1 as susceptibility genes in Europeans.

    PubMed

    Ban, Maria; Booth, David; Heard, Robert; Stewart, Graeme; Goris, An; Vandenbroeck, Koen; Dubois, Bénédicte; Laaksonen, Mikko; Ilonen, Jorma; Alizadeh, Mehdi; Edan, Gilles; Babron, Marie Claude; Brassat, David; Clanet, Michael; Cournu-Rebeix, Isabelle; Fontaine, Bertrand; Semana, Gilbert; Goedde, Rene; Epplen, Jorg; Weber, Alexandra; Infante-Duarte, Carmen; Zipp, Frauke; Rajda, Cecilia; Bencsik, Krisztina; Vécsei, László; Heggarty, Shirley; Graham, Colin; Hawkins, Stanley; Liguori, Maria; Momigliano-Richiardi, Patricia; Caputo, Domenico; Grimaldi, Luigi M E; Leone, Maurizio; Massacesi, Luca; Milanese, Clara; Salvetti, Marco; Savettieri, Giovani; Trojano, Maria; Bielecki, Bartosz; Mycko, Marcin P; Selmaj, Krzysztof; Santos, Monica; Maciel, Patricia; Pereira, Clara; Silva, Ana; Silva, Berta Martins; Coraddu, Francesca; Marrosu, Maria Giovanna; Akesson, Eva; Hillert, Jan; Datta, Pameli; Oturai, Annette; Harbo, Hanne F; Spurkland, Anne; Goertsches, Robert; Villoslada, Pablo; Eraksoy, Mefkure; Hensiek, Anke; Compston, Alastair; Setakis, Efrosini; Gray, Julia; Yeo, Tai Wai; Sawcer, Stephen

    2006-10-01

    By combining all the data available from the Genetic Analysis of Multiple sclerosis in EuropeanS (GAMES) project, we have been able to identify 17 microsatellite markers showing consistent evidence for apparent association. As might be expected five of these markers map within the Major Histocompatibility Complex (MHC) and are in LD with HLA-DRB1. Individual genotyping of the 12 non-MHC markers confirmed association for three of them--D11S1986, D19S552 and D20S894. Association mapping across the candidate genes implicated by these markers in 937 UK trio families revealed modestly associated haplotypes in JAG1 (p=0.019) on chromosome 20p12.2 and POU2AF1 (p=0.003) on chromosome 11q23.1. PMID:16934875

  5. Functionalized active-nucleus complex sensor

    DOEpatents

    Pines, Alexander; Wemmer, David E.; Spence, Megan; Rubin, Seth

    2003-11-25

    A functionalized active-nucleus complex sensor that selectively associates with one or more target species, and a method for assaying and screening for one or a plurality of target species utilizing one or a plurality of functionalized active-nucleus complexes with at least two of the functionalized active-nucleus complexes having an attraction affinity to different corresponding target species. The functionalized active-nucleus complex has an active-nucleus and a targeting carrier. The method involves functionalizing an active-nucleus, for each functionalized active-nucleus complex, by incorporating the active-nucleus into a macromolucular or molecular complex that is capable of binding one of the target species and then bringing the macromolecular or molecular complexes into contact with the target species and detecting the occurrence of or change in a nuclear magnetic resonance signal from each of the active-nuclei in each of the functionalized active-nucleus complexes.

  6. Activities To Help in Learning about Functions.

    ERIC Educational Resources Information Center

    Willoughby, Stephen S.

    1997-01-01

    Describes several activities and games that provide an introduction to the concept of function. Suggests that experiences should depend more on students' experiences and understanding and less on the memorization of unmotivated conventions with abstract symbols. Includes activities for a calculator as a function machine, composite functions, and…

  7. Inactive allele-specific methylation and chromatin structure of the imprinted gene U2af1-rs1 on mouse chromosome 11

    SciTech Connect

    Shibata, Hideo; Yoshino, Kiyoshi; Kamiya, Mamoru

    1996-07-01

    The imprinted U2Af1-rs1 gene that maps to mouse chromosome 11 is predominately expressed from the paternal allele. We examined the methylation of genomic sequences in and around the U2af1-rs1 locus to establish the extent of sequence modifications that accompanied the silencing of the maternal allele. The analysis of HapII or HhaI sites showed that the silent maternal allele was hypermethylated in a block of CpG sequences that covered more than 10 kb. By comparison, the expressed paternal allele was unmethylated from a CpG island upstream of the transcribed region through 2 kb. An analysis of DNaseI hypersensitivity of a putative promoter of U2af1-rs1 showed an open chromatin conformation only on the unmethylated, expressed paternal allele. These results suggest that allele-specific hypermethylation covering the gene and its upstream CpG island plays a role in maternal allele repression of U2af1-rs1, which is reflected in altered chromatin conformation of DNaseI hypersensitive sites. 9 refs., 2 figs.

  8. Functions of Symbolizing Activity: A Discussion

    ERIC Educational Resources Information Center

    Tillema, Erik

    2010-01-01

    I propose that attending how symbolizing activity functions for teachers and students helps to characterize student-teacher communication, and allows for an investigation of how symbolizing activity contributes to learning. I begin this discussion by articulating four ideas-schemes, symbolizing activity, communication, and learning. Then I propose…

  9. Obstacles to activity pacing: assessment, relationship to activity and functioning.

    PubMed

    Cane, Douglas; McCarthy, Mary; Mazmanian, Dwight

    2016-07-01

    Activity pacing is frequently included among the strategies provided to individuals with chronic pain to manage pain and improve functioning. Individuals with chronic pain may, however, limit their use of activity pacing because they perceive significant obstacles to its use. This study describes the development of a measure to assess obstacles to activity pacing and examines the relationship of this measure to activity patterns and functioning. A sample of 637 individuals with chronic pain completed items describing potential obstacles to activity pacing as part of their pretreatment assessment. Item analyses were used to construct a 14-item measure of obstacles to activity pacing. A subset of these individuals completed the measure again after completion of a group treatment program. The resulting measure demonstrated excellent internal consistency and was minimally affected by social desirability. Correlations with measures of activity and psychosocial functioning provided initial construct validity for the measure. Sex differences were found with women initially identifying more obstacles to activity pacing. Fewer obstacles were identified by both men and women after treatment, and these changes were related to modest changes in activity patterns and functioning. The present results identify a number of obstacles that may limit the use of activity pacing by individuals with chronic pain. Treatment may result in a decrease in the number of obstacles identified, and this change is related to changes in the individual's activity pattern and psychosocial functioning. PMID:26963845

  10. Contractile Function During Angiotensin-II Activation

    PubMed Central

    Zhang, Min; Prosser, Benjamin L.; Bamboye, Moradeke A.; Gondim, Antonio N.S.; Santos, Celio X.; Martin, Daniel; Ghigo, Alessandra; Perino, Alessia; Brewer, Alison C.; Ward, Christopher W.; Hirsch, Emilio; Lederer, W. Jonathan; Shah, Ajay M.

    2015-01-01

    Background Renin-angiotensin system activation is a feature of many cardiovascular conditions. Activity of myocardial reduced nicotinamide adenine dinucleotide phosphate oxidase 2 (NADPH oxidase 2 or Nox2) is enhanced by angiotensin II (Ang II) and contributes to increased hypertrophy, fibrosis, and adverse remodeling. Recent studies found that Nox2-mediated reactive oxygen species production modulates physiological cardiomyocyte function. Objectives This study sought to investigate the effects of cardiomyocyte Nox2 on contractile function during increased Ang II activation. Methods We generated a cardiomyocyte-targeted Nox2-transgenic mouse model and studied the effects of in vivo and ex vivo Ang II stimulation, as well as chronic aortic banding. Results Chronic subpressor Ang II infusion induced greater cardiac hypertrophy in transgenic than wild-type mice but unexpectedly enhanced contractile function. Acute Ang II treatment also enhanced contractile function in transgenic hearts in vivo and transgenic cardiomyocytes ex vivo. Ang II–stimulated Nox2 activity increased sarcoplasmic reticulum (SR) Ca2+ uptake in transgenic mice, increased the Ca2+ transient and contractile amplitude, and accelerated cardiomyocyte contraction and relaxation. Elevated Nox2 activity increased phospholamban phosphorylation in both hearts and cardiomyocytes, related to inhibition of protein phosphatase 1 activity. In a model of aortic banding–induced chronic pressure overload, heart function was similarly depressed in transgenic and wild-type mice. Conclusions We identified a novel mechanism in which Nox2 modulates cardiomyocyte SR Ca2+ uptake and contractile function through redox-regulated changes in phospholamban phosphorylation. This mechanism can drive increased contractility in the short term in disease states characterized by enhanced renin-angiotensin system activation. PMID:26184620

  11. Adrenal function in patients with active tuberculosis.

    PubMed Central

    Barnes, D J; Naraqi, S; Temu, P; Turtle, J R

    1989-01-01

    Although tuberculosis is a recognised cause of adrenal insufficiency, little is known about adrenal function in patients with active tuberculosis. Ninety Melanesian adults with active tuberculosis (30 pulmonary, 30 miliary, 30 extrapulmonary) had adrenal function assessed prospectively before and three to four weeks after starting antituberculous chemotherapy. Basal serum cortisol concentrations were normal in 55 (61%) and raised in 35 (39%) of the subjects. No patient had a low basal cortisol concentration. After Synacthen stimulation, cortisol responses were normal in 81 (92%) of the patients and subnormal in seven (8%). After antituberculous chemotherapy the response to Synacthen stimulation was normal in all but one patient. It is concluded that adrenal dysfunction is an uncommon problem in patients with active tuberculosis, and that, contrary to recent reports, antituberculous chemotherapy regimens that include rifampicin do not have an adverse effect on adrenal function. PMID:2763243

  12. Enzyme Specific Activity in Functionalized Nanoporous Supports

    SciTech Connect

    Lei, Chenghong; Soares, Thereza A.; Shin, Yongsoon; Liu, Jun; Ackerman, Eric J.

    2008-03-26

    Enzyme specific activity can be increased or decreased to a large extent by changing protein loading density in functionalized nanoporous support, where organophosphorus hydrolase can display a constructive orientation and thus leave a completely open entrance for substrate even at higher protein loading density, but glucose oxidase can not.

  13. Opiates and cerebral functional activity in rats

    SciTech Connect

    Trusk, T.C.

    1986-01-01

    Cerebral activity was measured using the free-fatty acid (1-/sup 14/C) octanoate as a fast functional tracer in conscious, unrestrained rats 5 minutes after intravenous injection of heroin, cocaine or saline vehicle. Regional changes of octanoate labeling density in the autoradiograms relative to saline-injected animals were used to determine the functional activity effects of each drug. Heroin and cocaine each produced a distinctive pattern of activity increases and suppression throughout the rat brain. Similar regional changes induced by both drugs were found in limbic brain regions implicated in drug reinforcement. Labeled octanoate autoradiography was used to measure the cerebral functional response to a tone that had previously been paired to heroin injections. Rats were trained in groups of three consisting of one heroin self-administration animal, and two animals receiving yoked infusion of heroin or saline. A tone was paired with each infusion during training. Behavioral experiments in similarly trained rats demonstrated that these training conditions impart secondary reinforcing properties to the tone in animals previously self-administering heroin, while the tone remains behaviorally neutral in yoked-infusion rats. Cerebral functional activity was measured during presentation of the tone without drug infusion. Octanoate labeling density changed in fifteen brain areas in response to the tone previously paired to heroin without response contingency. Labeling density was significantly modified in sixteen regions as a result of previously pairing the tone to response-contingent heroin infusions.

  14. Deep Neural Networks with Multistate Activation Functions

    PubMed Central

    Cai, Chenghao; Xu, Yanyan; Ke, Dengfeng; Su, Kaile

    2015-01-01

    We propose multistate activation functions (MSAFs) for deep neural networks (DNNs). These MSAFs are new kinds of activation functions which are capable of representing more than two states, including the N-order MSAFs and the symmetrical MSAF. DNNs with these MSAFs can be trained via conventional Stochastic Gradient Descent (SGD) as well as mean-normalised SGD. We also discuss how these MSAFs perform when used to resolve classification problems. Experimental results on the TIMIT corpus reveal that, on speech recognition tasks, DNNs with MSAFs perform better than the conventional DNNs, getting a relative improvement of 5.60% on phoneme error rates. Further experiments also reveal that mean-normalised SGD facilitates the training processes of DNNs with MSAFs, especially when being with large training sets. The models can also be directly trained without pretraining when the training set is sufficiently large, which results in a considerable relative improvement of 5.82% on word error rates. PMID:26448739

  15. Functions for diverse metabolic activities in heterochromatin.

    PubMed

    Su, Xue Bessie; Pillus, Lorraine

    2016-03-15

    Growing evidence demonstrates that metabolism and chromatin dynamics are not separate processes but that they functionally intersect in many ways. For example, the lysine biosynthetic enzyme homocitrate synthase was recently shown to have unexpected functions in DNA damage repair, raising the question of whether other amino acid metabolic enzymes participate in chromatin regulation. Using an in silico screen combined with reporter assays, we discovered that a diverse range of metabolic enzymes function in heterochromatin regulation. Extended analysis of the glutamate dehydrogenase 1 (Gdh1) revealed that it regulates silent information regulator complex recruitment to telomeres and ribosomal DNA. Enhanced N-terminal histone H3 proteolysis is observed in GDH1 mutants, consistent with telomeric silencing defects. A conserved catalytic Asp residue is required for Gdh1's functions in telomeric silencing and H3 clipping. Genetic modulation of α-ketoglutarate levels demonstrates a key regulatory role for this metabolite in telomeric silencing. The metabolic activity of glutamate dehydrogenase thus has important and previously unsuspected roles in regulating chromatin-related processes. PMID:26936955

  16. Cardiovascular function following reduced aerobic activity

    NASA Technical Reports Server (NTRS)

    Raven, P. B.; Welch-O'Connor, R. M.; Shi, X.; Blomqvist, C. G. (Principal Investigator)

    1998-01-01

    PURPOSE: The aim of this study was to test the hypothesis that a sustained reduction of physical activity (deconditioning) would alter the cardiovascular regulatory function. METHODS: Nineteen young, healthy volunteers participated in physical deconditioning for a period of 8 wk. Before (pre) and following (post) physical deconditioning, the responses of heart rate (HR), mean arterial pressure (MAP, measured by Finapres), central venous pressure (CVP), stroke volume (SV, Doppler), and forearm blood flow (FBF, plethysmography) were determined during lower body negative pressure (LBNP). The carotid baroreflex (CBR) function was assessed using a train of pulsatile neck pressure (NP) and suction, and the aortic baroreflex control of HR was assessed during steady-state phenylephrine (PE) infusion superimposed by LBNP and NP to counteract the PE increased CVP and carotid sinus pressure, respectively. RESULTS: Active physical deconditioning significantly decreased maximal oxygen uptake (-7%) and LBNP tolerance (-13%) without a change in baseline hemodynamics. Plasma volume (-3% at P = 0.135), determined by Evans Blue dilution, and blood volume (-4% at P = 0.107) were not significantly altered. During LBNP -20 to -50 torr, there was a significantly greater drop of SV per unit decrease in CVP in the post- (14.7 +/- 1.6%/mm Hg) than predeconditioning (11.2 +/- 0.7%/mm Hg) test accompanied by a greater tachycardia. Deconditioning increased the aortic baroreflex sensitivity (pre vs post: -0.61 +/- 0.12 vs -0.84 +/- 0.14 bpm.mm-1 Hg, P = 0.009) and the slope of forearm vascular resistance (calculated from [MAP-CVP]/FBF) to CVP (-2.75 +/- 0.26 vs -4.94 +/- 0.97 PRU/mm Hg, P = 0.086). However, neither the CBR-HR (-0.28 +/- 0.03 VS -0.39 +/- 0.10 bpm.mm-1 Hg) nor the CBR-MAP (-0.37 +/- 0.16 vs -0.25 +/- 0.07 mm Hg/mm Hg) gains were statistically different between pre- and postdeconditioning. CONCLUSIONS: We concluded that the functional modification of the cardiac pressure

  17. BK channel activation: structural and functional insights

    PubMed Central

    Lee, Urvi S.; Cui, Jianmin

    2010-01-01

    The voltage and Ca2+ activated K+ (BK) channels are involved in the regulation of neurotransmitter release and neuronal excitability. Structurally, BK channels are homologous to voltage- and ligand-gated K+ channels, having a voltage sensor and pore as the membrane-spanning domain and a cytosolic domain containing metal binding sites. Recently published electron cryomicroscopy (cryo-EM) and X-ray crystallographic structures of the BK channel provided the first look into the assembly of these domains, corroborating the close interactions among these domains during channel gating that have been suggested by functional studies. This review discusses these latest findings and an emerging new understanding about BK channel gating and implications for diseases such as epilepsy, in which mutations in BK channel genes have been associated. PMID:20663573

  18. Plant endosomal NHX antiporters: Activity and function.

    PubMed

    Qiu, Quan-Sheng

    2016-05-01

    The Arabidopsis NHX antiporter family contains eight members that are divided into three subclasses: vacuolar, endosomal, and plasma membrane. While the plasma membrane and vacuolar NHXs have been studied extensively, the activity and function of the endosomal NHXs are beginning to be discovered. AtNHX5 and AtNHX6 are endosomal Na(+),K(+)/H(+) antiporters that share high sequence similarity. They are localized in the Golgi, trans-Golgi network (TGN), and prevacuolear compartment (PVC). Studies have shown that AtNHX5 and AtNHX6 mediate K(+) and Na(+) transport, and regulate cellular pH homeostasis. Sequence alignment has found that AtNHX5 and AtNHX6 contain four conserved acidic amino acid residues in transmembrane domains that align with yeast and human NHXs. Three of these conserved acidic residues are critical for K(+) transport and seedling growth in Arabidopsis. Moreover, studies have shown that the precursors of the seed storage proteins are missorted to the apoplast in the nhx5 nhx6 knockout mutant, suggesting that AtNHX5 and AtNHX6 regulate protein transport into the vacuole. Further analysis found that AtNHX5 and AtNHX6 regulated the binding of VSR to its cargoes. Taken together, AtNHX5 and AtNHX6 play an important role in cellular ion and pH homeostasis, and are essential for protein transport into the vacuole. PMID:26890367

  19. An imaging agent to detect androgen receptor and its active splice variants in prostate cancer

    PubMed Central

    Imamura, Yusuke; Tien, Amy H.; Pan, Jinhe; Leung, Jacky K.; Banuelos, Carmen A.; Jian, Kunzhong; Wang, Jun; Mawji, Nasrin R.; Fernandez, Javier Garcia; Lin, Kuo-Shyan; Andersen, Raymond J.; Sadar, Marianne D.

    2016-01-01

    Constitutively active splice variants of androgen receptor (AR-Vs) lacking ligand-binding domain (LBD) are a mechanism of resistance to androgen receptor LBD–targeted (AR LBD–targeted) therapies for metastatic castration-resistant prostate cancer (CRPC). There is a strong unmet clinical need to identify prostate cancer patients with AR-V–positive lesions to determine whether they will benefit from further AR LBD–targeting therapies or should receive taxanes or investigational drugs like EPI-506 or galeterone. Both EPI-506 (NCT02606123) and galeterone (NCT02438007) are in clinical trials and are proposed to have efficacy against lesions that are positive for AR-Vs. AR activation function-1 (AF-1) is common to the N-terminal domains of full-length AR and AR-Vs. Here, we provide proof of concept for developing imaging compounds that directly bind AR AF-1 to detect both AR-Vs and full-length AR. 123I-EPI-002 had specific binding to AR AF-1, which enabled direct visualization of CRPC xenografts that express full-length AR and AR-Vs. Our findings highlight the potential of 123I-EPI-002 as an imaging agent for the detection of full-length AR and AR-Vs in CRPC. PMID:27525313

  20. The gene for human U2 snRNP auxiliary factor small 35-kDa subunit (U2AF1) maps to the progressive myoclonus epilepsy (EPM1) critical region on chromosome 21q22.3

    SciTech Connect

    Lalioti, M.D.; Rossier, C.; Antonarakis, S.E.

    1996-04-15

    We used targeted exon trapping to clone portions of genes from human chromosome 21q22.3. One trapped sequence showed complete homology with the cDNA of human U2AF{sup 35} (M96982; HGM-approved nomenclature U2AF1), which encodes for the small 35-kDa subunit of the U2 snRNP auxiliary factor. Using the U2AF1 cDNA as a probe, we mapped this gene to cosmid Q15D2, a P1, and YAC 350F7 of the Chumakov et al. contig, close to the cystathionine-{beta}-synthase gene (CBS) on 21q22.3. This localization was confirmed by PCR using oligonucleotides from the 3{prime} UTR and by FISH. As U2AF1 associated with a number of different factors during mRNA splicing, overexpression in trisomy 21 individuals could contribute to some Down syndrome phenotypes by interfering with the splicing process. Furthermore, because this gene maps in the critical region for the progressive myoclonus epilepsy I locus (EPM1), mutation analysis will be carried out in patients to evaluate the potential role of U2AF1 as a candidate for EPM1. 24 refs., 1 fig.

  1. 24 CFR 4100.1 - Functions and activities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Functions and activities. 4100.1 Section 4100.1 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) NEIGHBORHOOD REINVESTMENT CORPORATION ORGANIZATION AND CHANNELING OF FUNCTIONS § 4100.1 Functions and activities. (a) General statement....

  2. Cellular Mechanisms Controlling Caspase Activation and Function

    PubMed Central

    Parrish, Amanda B.; Freel, Christopher D.; Kornbluth, Sally

    2013-01-01

    Caspases are the primary drivers of apoptotic cell death, cleaving cellular proteins that are critical for dismantling the dying cell. Initially translated as inactive zymogenic precursors, caspases are activated in response to a variety of cell death stimuli. In addition to factors required for their direct activation (e.g., dimerizing adaptor proteins in the case of initiator caspases that lie at the apex of apoptotic signaling cascades), caspases are regulated by a variety of cellular factors in a myriad of physiological and pathological settings. For example, caspases may be modified posttranslationally (e.g., by phosphorylation or ubiquitylation) or through interaction of modulatory factors with either the zymogenic or active form of a caspase, altering its activation and/or activity. These regulatory events may inhibit or enhance enzymatic activity or may affect activity toward particular cellular substrates. Finally, there is emerging literature to suggest that caspases can participate in a variety of cellular processes unrelated to apoptotic cell death. In these settings, it is particularly important that caspases are maintained under stringent control to avoid inadvertent cell death. It is likely that continued examination of these processes will reveal new mechanisms of caspase regulation with implications well beyond control of apoptotic cell death. PMID:23732469

  3. Ovarian function and gastrointestinal motor activity.

    PubMed

    Palomba, S; Di Cello, A; Riccio, E; Manguso, F; La Sala, G B

    2011-12-01

    Gastrointestinal disorders are strictly related to the ovary function. In fact, it is noted that the prevalence of visceral pain disorders such as irritable bowel syndrome, gastroesophageal reflux disease, gallbladder and biliary tract diseases are significantly higher in women. Furthermore, symptom such as nausea, vomiting, abdominal pain, distension, satiety, bloating, diarrhoa or constipation, frequently appears in relation with pregnancy, luteal phase of the menstrual cycle or perimenopausal and menopausal states. Further support for the contribution of ovarian steroids to functional gastrointestinal disorders comes from studies demonstrating that pharmacological ovariectomy reduces abdominal pain symptoms. Therefore, addressing the influence of sex and sex hormones in the modulation of visceral pain appears critical to develop new strategies of diagnosis and therapy sex-directed for gastro-intestinal disorders. PMID:22322653

  4. Hydrogen adsorption on functionalized nanoporous activated carbons.

    PubMed

    Zhao, X B; Xiao, B; Fletcher, A J; Thomas, K M

    2005-05-12

    There is considerable interest in hydrogen adsorption on carbon nanotubes and porous carbons as a method of storage for transport and related energy applications. This investigation has involved a systematic investigation of the role of functional groups and porous structure characteristics in determining the hydrogen adsorption characteristics of porous carbons. Suites of carbons were prepared with a wide range of nitrogen and oxygen contents and types of functional groups to investigate their effect on hydrogen adsorption. The porous structures of the carbons were characterized by nitrogen (77 K) and carbon dioxide (273 K) adsorption methods. Hydrogen adsorption isotherms were studied at 77 K and pressure up to 100 kPa. All the isotherms were Type I in the IUPAC classification scheme. Hydrogen isobars indicated that the adsorption of hydrogen is very temperature dependent with little or no hydrogen adsorption above 195 K. The isosteric enthalpies of adsorption at zero surface coverage were obtained using a virial equation, while the values at various surface coverages were obtained from the van't Hoff isochore. The values were in the range 3.9-5.2 kJ mol(-1) for the carbons studied. The thermodynamics of the adsorption process are discussed in relation to temperature limitations for hydrogen storage applications. The maximum amounts of hydrogen adsorbed correlated with the micropore volume obtained from extrapolation of the Dubinin-Radushkevich equation for carbon dioxide adsorption. Functional groups have a small detrimental effect on hydrogen adsorption, and this is related to decreased adsorbate-adsorbent and increased adsorbate-adsorbate interactions. PMID:16852056

  5. Usage Of New Activation Function In Neuro-Symbolic Integration

    SciTech Connect

    Sathasivam, Saratha

    2010-12-23

    New activation function is examined for its ability to accelerate the performance of doing logic programming in Hopfield network. This method has a higher capacity and upgrades the neuro symbolic integration. Computer simulations are carried out to validate the effectiveness of the new activation function. Empirical results obtained support our theory.

  6. Macrodomains: Structure, Function, Evolution, and Catalytic Activities.

    PubMed

    Rack, Johannes Gregor Matthias; Perina, Dragutin; Ahel, Ivan

    2016-06-01

    Recent developments indicate that macrodomains, an ancient and diverse protein domain family, are key players in the recognition, interpretation, and turnover of ADP-ribose (ADPr) signaling. Crucial to this is the ability of macrodomains to recognize ADPr either directly, in the form of a metabolic derivative, or as a modification covalently bound to proteins. Thus, macrodomains regulate a wide variety of cellular and organismal processes, including DNA damage repair, signal transduction, and immune response. Their importance is further indicated by the fact that dysregulation or mutation of a macrodomain is associated with several diseases, including cancer, developmental defects, and neurodegeneration. In this review, we summarize the current insights into macrodomain evolution and how this evolution influenced their structural and functional diversification. We highlight some aspects of macrodomain roles in pathobiology as well as their emerging potential as therapeutic targets. PMID:26844395

  7. Graves' disease: thyroid function and immunologic activity

    SciTech Connect

    Gossage, A.A.; Crawley, J.C.; Copping, S.; Hinge, D.; Himsworth, R.L.

    1982-11-01

    Patients with Graves' disease were studied for two years during and after a twelve-month course of treatment. Disease activity was determined by repeated measurements of thyroidal uptake of (/sup 99m/Tc)pertechnetate during tri-iodothyronine administration. These in-vivo measurements of thyroid stimulation were compared with the results of in-vitro assays of Graves, immunoglobulin (TSH binding inhibitory activity--TBIA). There was no correlation between the thyroid uptake and TBIA on diagnosis. Pertechnetate uptake and TBIA both declined during the twelve months of antithyroid therapy. TBIA was detectable in sera from 19 of the 27 patients at diagnosis; in 11 of these 19 patients there was a good correlation (p less than 0.05) throughout the course of their disease between the laboratory assay of the Graves, immunoglobulin and the thyroid uptake. Probability of recurrence can be assessed but sustained remission of Graves' disease after treatment cannot be predicted from either measurement alone or in combination.

  8. Graves' disease: thyroid function and immunologic activity

    SciTech Connect

    Gossage, A.A.R.; Crawley, J.C.W.; Copping, S.; Hinge, D.; Himsworth, R.L.

    1982-11-01

    Patients with Graves' disease were studied for two years during and after a twelve-month course of treatment. Disease activity was determined by repeated measurements of thyroidal uptake of (/sup 9/-9..mu..Tc)pertechnetate during tri-iodothyronine administration. These in-vivo measurements of thyroid stimulation were compared with the results of in-vitro assays of Graves, immunoglobulin (TSH binding inhibitory activity - TBIA). There was no correlation between the thyroid uptake and TBIA on diagnosis. Pertechnetate uptake and TBIA both declined during the twelve months of antithyroid therapy. TBIA was detectable in sera from 19 of the 27 patients at diagnosis; in 11 of these 19 patients there was a good correlation (p<0.05) throughout the course of their disease between the laboratory assay of the Graves, immunoglobulin and the thyroid uptake. Probability of recurrence can be assessed but sustained remission of Graves' disease after treatment cannot be predicted from either measurement alone or in combination.

  9. New approaches to enhance active steering system functionalities: preliminary results

    NASA Astrophysics Data System (ADS)

    Serarslan, Benan

    2014-09-01

    An important development of the steering systems in general is active steering systems like active front steering and steer-by-wire systems. In this paper the current functional possibilities in application of active steering systems are explored. A new approach and additional functionalities are presented that can be implemented to the active steering systems without additional hardware such as new sensors and electronic control units. Commercial active steering systems are controlling the steering angle depending on the driving situation only. This paper introduce methods for enhancing active steering system functionalities depending not only on the driving situation but also vehicle parameters like vehicle mass, tyre and road condition. In this regard, adaptation of the steering ratio as a function of above mentioned vehicle parameters is presented with examples. With some selected vehicle parameter changes, the reduction of the undesired influences on vehicle dynamics of these parameter changes has been demonstrated theoretically with simulations and with real-time driving measurements.

  10. Retirement Community Residents’ Physical Activity, Depressive Symptoms, and Functional Limitations

    PubMed Central

    Phillips, Lorraine J.

    2015-01-01

    This study examined the types of physical activity (PA) retirement community residents report and the effects of PA and depressive symptoms on functional limitations. Elders (N = 38) enrolled in a 2-year sensor technology study in senior housing completed regular assessments of functional limitations and depressive symptoms with the Short Physical Performance Battery and Geriatric Depression Scale, respectively. Evaluation of reported PA using the Physical Activity Scale for the Elderly coincided with 12-month functional limitation testing. Subjects were 69% female with mean age of 85 years. Individuals reporting greater PA had significantly fewer functional limitations at 12 months. In multiple regression analysis, baseline functional limitations explained 66% of the variance in 12-month functional limitations, while current PA explained an additional 5%. Although PA explained a small amount of variance in 12-month functional limitations, as a modifiable behavior, PA should be championed and supported to help ameliorate functional limitations in older adults. PMID:24532671

  11. Immediate and Ultimate Functions of Physical Activity Play.

    ERIC Educational Resources Information Center

    McCune, Lorraine

    1998-01-01

    Play has been difficult to define because it is an aspect of many activities rather than of just a specific kind of activity. Classic theorists such as Piaget and Vygotsky emphasized representational play as play in its purist form, but both immediate and ultimate functions of play can be discerned in simple physical activity play. (Author)

  12. Association between Cognitive Activity and Cognitive Function in Older Hispanics

    PubMed Central

    Marquine, María J.; Segawa, Eisuke; Wilson, Robert S.; Bennett, David A.; Barnes, Lisa L.

    2012-01-01

    There is limited research on the association between participation in cognitively stimulating activity and cognitive function in older Hispanics. The main purpose of the present study was to explore whether frequency of cognitive activity and its association with cognitive function in Hispanics is comparable to that of non-Hispanics. In a multiethnic cohort of 1571 non-demented older adults, we assessed past and current cognitive activity, availability of cognitive resources in the home in childhood and middle age, and five domains of cognitive function. The measures of cognitive activity and cognitive resources had adequate reliability and validity in our subset of Hispanic participants (n = 81). Hispanics reported lower levels of education, lower frequency of cognitive activity and less cognitive resources than non-Hispanic White (n = 1102) and non-Hispanic Black (n = 388) participants. Despite these differences the strength of the association between cognitive activity and cognitive function was comparable across ethnic groups. Because Hispanics have lower frequency of cognitive activity, the benefit of cognitive activity to late life cognitive function may be potentially larger in this segment of the population. Thus, interventions aimed at increasing frequency of participation in cognitively stimulating activity may offer a potential target to reduce cognitive impairment in Hispanics. PMID:22676914

  13. Osteoclast function and bone-resorbing activity: An overview.

    PubMed

    Soysa, Niroshani Surangika; Alles, Neil

    2016-07-29

    Bone resorption is an important cellular function in skeletal development and remodeling of the adult skeleton. Most of the pathological bone disease conditions like osteoporosis reflect increased osteoclast activity; hence, increased bone resorption. Researchers have unraveled most of the intracellular mechanisms responsible for osteoclast bone-resorbing activity in last few decades. Therefore, understanding the fundamentals of osteoclast-induced bone resorption and the cytokines and other substances that modulate the osteoclast activity unequivocally provide insights into the development of drugs to ameliorate pathological bone diseases with enhanced bone resorption. The aim of this review is to examine the literature on osteoclast function and bone-resorbing activity. PMID:27157135

  14. Contributions to gene activation by multiple functions of Bicoid.

    PubMed Central

    Ma, X; Yuan, D; Scarborough, T; Ma, J

    1999-01-01

    Bicoid is a Drosophila morphogenetic protein required for the development of anterior structures in the embryo. To gain a better understanding of how Bicoid works as a transcriptional activator, we systematically analysed various functions of Bicoid required for gene activation. We provide evidence suggesting that Bicoid is an intrinsically weak activator. First, our biochemical experiments demonstrate that the Bicoid-DNA complexes are very unstable, suggesting a weak DNA-binding function of Bicoid. This idea is further supported by our experiments demonstrating that the same number of LexA-Bicoid fusion molecules can activate transcription more effectively from LexA sites than from Bicoid sites. Secondly, we demonstrate that transcriptional activation by the weak activator Bicoid is readily influenced by the local enhancer environment. These influences are decreased when the Bicoid function is enforced by attaching to it either a known dimerization domain or the strong activation domain VP16. VP16 can also compensate for the loss of some Bicoid sites in an enhancer element. Our experiments demonstrate that the outcome of transcriptional activation by Bicoid is determined by multiple weak functions that are interconnected, a finding that can further help us to understand how this morphogenetic protein achieves its molecular functions. PMID:10024522

  15. Acceleration of reverse analysis method using hyperbolic activation function

    NASA Astrophysics Data System (ADS)

    Pwasong, Augustine; Sathasivam, Saratha

    2015-10-01

    Hyperbolic activation function is examined for its ability to accelerate the performance of doing data mining by using a technique named as Reverse Analysis method. In this paper, we describe how Hopfield network perform better with hyperbolic activation function and able to induce logical rules from large database by using reverse analysis method: given the values of the connections of a network, we can hope to know what logical rules are entrenched in the database. We limit our analysis to Horn clauses.

  16. Two farnesoid X receptor alpha isoforms in Japanese medaka (Oryzias latipes) are differentially activated in vitro

    PubMed Central

    Howarth, Deanna L.; Hagey, Lee R.; Law, Sheran H.W.; Ai, Ni; Krasowski, Matthew D.; Ekins, Sean; Moore, John T.; Kollitz, Erin M.; Hinton, David E.; Kullman, Seth W.

    2010-01-01

    The nuclear receptor farnesoid X receptor alpha (FXRα, NR1H4) is activated by bile acids in multiple species including mouse, rat, and human and in this study we have identified two isoforms of Fxrα in Japanese medaka (Oryzias latipes), a small freshwater teleost. Both isoforms share a high amino acid sequence identity to mammalian FXRα (~70% in the ligand-binding domain). Fxrα1 and Fxrα2 differ within the AF1 domain due to alternative splicing at the fourth intron-exon boundary. This process results in Fxrα1 having an extended N-terminus compared to Fxrα2. A Gal4DBD-FxrαLBD fusion construct was activated by chenodeoxycholic, cholic, deoxycholic and lithocholic acids, and the synthetic agonist GW4064 in transient transactivation assays. Activation of the Gal4DBD-FxrαLBD fusion construct was enhanced by addition of PGC-1α, as demonstrated through titration assays. Surprisingly, when the full-length versions of the two Fxrα isoforms were compared in transient transfection assays, Fxrα2 was activated by C24 bile acids and GW4064, while Fxrα1 was not significantly activated by any of the compounds tested. Since the only significant difference between the full-length constructs was sequence in the AF1 domain, these experiments highlight a key functional region in the Fxrα AF1 domain. Furthermore, mammalian two-hybrid studies demonstrated the ability of Fxrα2, but not Fxrα1, to interact with PGC-1α and SRC-1, and supported our results from the transient transfection reporter gene activation assays. These data demonstrate that both mammalian and teleost FXR (Fxrα2 isoform) are activated by primary and secondary bile acids. PMID:20430454

  17. Effects of Physical (In)activity on Platelet Function

    PubMed Central

    Heber, Stefan; Volf, Ivo

    2015-01-01

    As platelet activation is closely related to the liberation of growth factors and inflammatory mediators, platelets play a central role in the development of CVD. Virtually all cardiovascular risk factors favor platelet hyperreactivity and, accordingly, also physical (in)activity affects platelet function. Within this paper, we will summarize and discuss the current knowledge on the impact of acute and habitual exercise on platelet function. Although there are apparent discrepancies regarding the reported effects of acute, strenuous exercise on platelet activation, a deeper analysis of the available literature reveals that the applied exercise intensity and the subjects' cardiorespiratory fitness represent critical determinants for the observed effects. Consideration of these factors leads to the summary that (i) acute, strenuous exercise can lead to platelet activation, (ii) regular physical activity and/or physical fitness diminish or prevent platelet activation in response to acute exercise, and (iii) habitual physical activity and/or physical fitness also favorably modulate platelet function at physical rest. Notably, these effects of exercise on platelet function show obvious similarities to the well-recognized relation between exercise and the risk for cardiovascular events where vigorous exercise transiently increases the risk for myocardial infarction and a physically active lifestyle dramatically reduces cardiovascular mortality. PMID:26557653

  18. TGF-β Activation and Function in Immunity

    PubMed Central

    Travis, Mark A.; Sheppard, Dean

    2014-01-01

    The cytokine TGF-β plays an integral role in regulating immune responses. TGF-β has pleiotropic effects on adaptive immunity, especially in the regulation of effector and regulatory CD4+ T cell responses. Many immune and nonimmune cells can produce TGF-β, but it is always produced as an inactive complex that must be activated to exert functional effects. Thus, activation of latent TGF-β provides a crucial layer of regulation that controls TGF-β function. In this review, we highlight some of the important functional roles for TGF-β in immunity, focusing on its context-specific roles in either dampening or promoting T cell responses. We also describe how activation of TGF-β controls its function in the immune system, with a focus on the key roles for members of the integrin family in this process. PMID:24313777

  19. A current-type PWM rectifier with active damping function

    SciTech Connect

    Sato, Yukihiko; Kataoka, Teruo

    1996-05-01

    A new control method for current-type pulse-width modulation (PWM) rectifiers which can provide active damping function is presented. This damping function is effective only on the harmonic components of ac input current selectively. Thus steady-state waveform distortion and transient oscillation of the input current are reduced by the active damping effects. The active damping function can be realized by feedback control of an LC filter connected to the ac side of the rectifier, and it does not require any additional components in the main circuits, permitting a simple circuit configuration. The control system of the proposed PWM rectifier is analyzed by using a simple block diagram developed in the present paper. From the analytical results, the influence of the circuit parameters and control delay on the active damping effects and the stability of the operation are clarified to establish the design method. To confirm the effectiveness of the active damping function, some results of basic experiments are included. As an example of application of the active damping function, the proposed rectifier is applied to reduce the harmonic currents generated by conventional rectifiers operating in parallel with the proposed rectifier. Some experimental results in this application are also included.

  20. Ultrananocrystalline diamond thin films functionalized with therapeutically active collagen networks.

    SciTech Connect

    Huang, H.; Chen, M.; Bruno, P.; Lam, R.; Robinson, E.; Gruen, D.; Ho, D.; Materials Science Division; Northwestern Univ.

    2009-01-01

    The fabrication of biologically amenable interfaces in medicine bridges translational technologies with their surrounding biological environment. Functionalized nanomaterials catalyze this coalescence through the creation of biomimetic and active substrates upon which a spectrum of therapeutic elements can be delivered to adherent cells to address biomolecular processes in cancer, inflammation, etc. Here, we demonstrate the robust functionalization of ultrananocrystalline diamond (UNCD) with type I collagen and dexamethasone (Dex), an anti-inflammatory drug, to fabricate a hybrid therapeutically active substrate for localized drug delivery. UNCD oxidation coupled with a pH-mediated collagen adsorption process generated a comprehensive interface between the two materials, and subsequent Dex integration, activity, and elution were confirmed through inflammatory gene expression assays. These studies confer a translational relevance to the biofunctionalized UNCD in its role as an active therapeutic network for potent regulation of cellular activity toward applications in nanomedicine.

  1. Functional domain analysis of the Saccharomyces MAL-activator.

    PubMed

    Hu, Z; Gibson, A W; Kim, J H; Wojciechowicz, L A; Zhang, B; Michels, C A

    1999-08-01

    MAL63 of the MAL6 locus and its homologues at the other MAL loci encode transcription activators required for the maltose-inducible expression of the MAL structural genes. We carried out a deletion analysis of LexA-MAL63 gene fusions to localize the functional domains of the Mal63 MAL-activator protein. Our results indicate that the sequence-specific DNA-binding domain of Mal63p is contained in residues 1-100; that residues 60-283 constitute a functional core region including the transactivation domain; that residues 251-299 are required to inhibit the activation function of Mal63p; and that the rest of the C-terminal region of the protein contains a maltose-responsive domain that acts to relieve the inhibitory effect on the activation function. Abundant overproduction of Mal63p does not overcome the negative regulation of MAL gene expression in the absence of maltose, suggesting that a titratable MAL-specific repressor similar to Gal80p is not involved in the negative regulation of the MAL-activator. A model for maltose-inducible autoregulation of the MAL-activator is presented. PMID:10447589

  2. Synchronization-based approach for detecting functional activation of brain

    NASA Astrophysics Data System (ADS)

    Hong, Lei; Cai, Shi-Min; Zhang, Jie; Zhuo, Zhao; Fu, Zhong-Qian; Zhou, Pei-Ling

    2012-09-01

    In this paper, we investigate a synchronization-based, data-driven clustering approach for the analysis of functional magnetic resonance imaging (fMRI) data, and specifically for detecting functional activation from fMRI data. We first define a new measure of similarity between all pairs of data points (i.e., time series of voxels) integrating both complete phase synchronization and amplitude correlation. These pairwise similarities are taken as the coupling between a set of Kuramoto oscillators, which in turn evolve according to a nearest-neighbor rule. As the network evolves, similar data points naturally synchronize with each other, and distinct clusters will emerge. The clustering behavior of the interaction network of the coupled oscillators, therefore, mirrors the clustering property of the original multiple time series. The clustered regions whose cross-correlation coefficients are much greater than other regions are considered as the functionally activated brain regions. The analysis of fMRI data in auditory and visual areas shows that the recognized brain functional activations are in complete correspondence with those from the general linear model of statistical parametric mapping, but with a significantly lower time complexity. We further compare our results with those from traditional K-means approach, and find that our new clustering approach can distinguish between different response patterns more accurately and efficiently than the K-means approach, and therefore more suitable in detecting functional activation from event-related experimental fMRI data.

  3. Dipeptides Increase Functional Activity of Human Skin Fibroblasts.

    PubMed

    Malinin, V V; Durnova, A O; Polyakova, V O; Kvetnoi, I M

    2015-05-01

    We analyzed the effect of dipeptide Glu-Trp and isovaleroyl-Glu-Trp in concentrations of 0.2, 2 and 20 μg/ml and Actovegin preparation on functional activity of human skin fibroblasts. Dipeptides, especially Glu-Trp, produce a stimulating effect on human skin fibroblasts and their effect is equivalent to that of Actovegin. Dipeptides stimulate cell renewal processes by activating synthesis of Ki-67 and reducing expression of caspase-9 and enhance antioxidant function of the cells by stimulating the expression of Hsp-90 and inducible NO-synthase. These findings suggest that dipeptides are promising candidates for preparations stimulating reparative processes. PMID:26033609

  4. In vivo activation and functions of the protease factor XII.

    PubMed

    Björkqvist, Jenny; Nickel, Katrin F; Stavrou, Evi; Renné, Thomas

    2014-11-01

    Combinations of proinflammatory and procoagulant reactions are the unifying principle for a variety of disorders affecting the cardiovascular system. Factor XII (FXII, Hageman factor) is a plasma protease that initiates the contact system. The biochemistry of the contact system in vitro is well understood; however, its in vivo functions are just beginning to emerge. The current review concentrates on activators and functions of the FXII-driven contact system in vivo. Elucidating its physiologic activities offers the exciting opportunity to develop strategies for the safe interference with both thrombotic and inflammatory diseases. PMID:25187064

  5. Functional Language Networks in Sedentary and Physically Active Older Adults

    PubMed Central

    Zlatar, Zvinka Z.; Towler, Stephen; McGregor, Keith M.; Dzierzewski, Joseph M.; Bauer, Andrew; Phan, Stephanie; Cohen, Matthew; Marsiske, Michael; Manini, Todd M.; Crosson, Bruce

    2013-01-01

    Functional magnetic resonance imaging (fMRI) studies have identified consistent age-related changes during various cognitive tasks, such that older individuals display more positive and less negative task-related activity than young adults. Recently, evidence shows that chronic physical exercise may alter aging-related changes in brain activity; however, the effect of exercise has not been studied for the neural substrates of language function. Additionally, the potential mechanisms by which aging alters neural recruitment remain understudied. To address these points, the present study enrolled elderly adults who were either sedentary or physically active to characterize the neural correlates of language function during semantic fluency between these groups in comparison to a young adult sample. Participants underwent fMRI during semantic fluency and transcranial magnetic stimulation to collect the ipsilateral silent period, a measure of interhemispheric inhibition. Results indicated that sedentary older adults displayed reductions in negative task-related activity compared to the active old group in areas of the attention network. Longer interhemispheric inhibition was associated with more negative task-related activity in the right and left posterior perisylvian cortex, suggesting that sedentary aging may result in losses in task facilitatory cortical inhibition. However, these losses may be mitigated by regular engagement in physical exercise. PMID:23458438

  6. The restless brain: how intrinsic activity organizes brain function.

    PubMed

    Raichle, Marcus E

    2015-05-19

    Traditionally studies of brain function have focused on task-evoked responses. By their very nature such experiments tacitly encourage a reflexive view of brain function. While such an approach has been remarkably productive at all levels of neuroscience, it ignores the alternative possibility that brain functions are mainly intrinsic and ongoing, involving information processing for interpreting, responding to and predicting environmental demands. I suggest that the latter view best captures the essence of brain function, a position that accords well with the allocation of the brain's energy resources, its limited access to sensory information and a dynamic, intrinsic functional organization. The nature of this intrinsic activity, which exhibits a surprising level of organization with dimensions of both space and time, is revealed in the ongoing activity of the brain and its metabolism. As we look to the future, understanding the nature of this intrinsic activity will require integrating knowledge from cognitive and systems neuroscience with cellular and molecular neuroscience where ion channels, receptors, components of signal transduction and metabolic pathways are all in a constant state of flux. The reward for doing so will be a much better understanding of human behaviour in health and disease. PMID:25823869

  7. The restless brain: how intrinsic activity organizes brain function

    PubMed Central

    Raichle, Marcus E.

    2015-01-01

    Traditionally studies of brain function have focused on task-evoked responses. By their very nature such experiments tacitly encourage a reflexive view of brain function. While such an approach has been remarkably productive at all levels of neuroscience, it ignores the alternative possibility that brain functions are mainly intrinsic and ongoing, involving information processing for interpreting, responding to and predicting environmental demands. I suggest that the latter view best captures the essence of brain function, a position that accords well with the allocation of the brain's energy resources, its limited access to sensory information and a dynamic, intrinsic functional organization. The nature of this intrinsic activity, which exhibits a surprising level of organization with dimensions of both space and time, is revealed in the ongoing activity of the brain and its metabolism. As we look to the future, understanding the nature of this intrinsic activity will require integrating knowledge from cognitive and systems neuroscience with cellular and molecular neuroscience where ion channels, receptors, components of signal transduction and metabolic pathways are all in a constant state of flux. The reward for doing so will be a much better understanding of human behaviour in health and disease. PMID:25823869

  8. 24 CFR 4100.1 - Functions and activities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Functions and activities. 4100.1 Section 4100.1 Housing and Urban Development Regulations Relating to Housing and Urban Development... to conduct a variety of programs designed primarily to revitalize older urban neighborhoods...

  9. 24 CFR 4100.1 - Functions and activities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... The Corporation also supports the organizational development of, and provides technical assistance to... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Functions and activities. 4100.1 Section 4100.1 Housing and Urban Development Regulations Relating to Housing and Urban...

  10. 24 CFR 4100.1 - Functions and activities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... The Corporation also supports the organizational development of, and provides technical assistance to... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Functions and activities. 4100.1 Section 4100.1 Housing and Urban Development Regulations Relating to Housing and Urban...

  11. Heated Proteins are Still Active in a Functionalized Nanoporous Support

    SciTech Connect

    Chen, Baowei; Qi, Wen N.; Li, Xiaolin; Lei, Chenghong; Liu, Jun

    2013-07-08

    We report that even under the heated condition, the conformation and activity of a protein can be hoarded in a functionalized nanoporous support via non-covalent interaction, although the hoarded protein was not exhibiting the full protein activity, the protein released subsequently still maintained its native conformation and activity. Glucose oxidase (GOX) was spontaneously and largely entrapped in aminopropyl-functionalized mesoporous silica (NH2-FMS) at 20 oC via a dominant electrostatic interaction. Although FMS-GOX displayed 45% activity of the free enzyme in solution, the GOX released from FMS exhibited its 100% activity prior to the entrapment. Surprisingly, the released GOX from FMS still maintained 89% of its initial activity prior to the entrapment after FMS-GOX was incubated at 60 oC for 1 h prior to release, while the free GOX in solution lost nearly all activity under the same incubation. Intrinsic fluorescence emission of GOX and native electrophoresis demonstrated that the heating resulted in significant conformational changes and oligomeric structures of the free GOX, but FMS efficiently maintained the thermal stability of GOX therein and resisted the thermal denaturation and oligomeric aggregation.

  12. Human brain activity with functional NIR optical imager

    NASA Astrophysics Data System (ADS)

    Luo, Qingming

    2001-08-01

    In this paper we reviewed the applications of functional near infrared optical imager in human brain activity. Optical imaging results of brain activity, including memory for new association, emotional thinking, mental arithmetic, pattern recognition ' where's Waldo?, occipital cortex in visual stimulation, and motor cortex in finger tapping, are demonstrated. It is shown that the NIR optical method opens up new fields of study of the human population, in adults under conditions of simulated or real stress that may have important effects upon functional performance. It makes practical and affordable for large populations the complex technology of measuring brain function. It is portable and low cost. In cognitive tasks subjects could report orally. The temporal resolution could be millisecond or less in theory. NIR method will have good prospects in exploring human brain secret.

  13. Ankylosing spondylitis functional and activity indices in clinical practice

    PubMed Central

    Popescu, C; Trandafir, M; Bădică, AM; Morar, F; Predeţeanu, D

    2014-01-01

    Background: Clinicians have at hand several indices to evaluate disease activity and functionality in ankylosing spondylitis (AS), in order to evaluate the prognostic and the treatment of AS patients. Objectives: to examine the relationship between functional and activity scores in AS; to note whether disease activity is associated with any clinical or laboratory variables. Methods: the study included AS patients, classified according to the revised New York criteria; data recorded: demographics, disease duration, type of articular involvement, HLA B27 presence, history of uveitis, calculation of BASFI, BASDAI and ASDASCRP, quantification of inflammation markers. Results: 50 AS patients; ASDASCRP correlated significantly (p < 0.001) with BASFI (r = 811), BASDAI (r = 0.810) and with erythrocyte sedimentation rate (ESR; r = 0.505); HLA B27 positive patients had a median BASDAI 5 times higher than HLA B27 negative patients (p = 0.033); compared with patients with strictly axial disease form, patients with axial and peripheral disease had a median ESR 3 times higher (p = 0.042) and a median BASDAI 2 times higher (p = 0.050). Conclusions: functional and activity AS indices are strongly correlated in assessing disease severity; inflammation and HLA B27 can predict the high value of these indices; axial and peripheral disease pattern is associated with higher disease activity. PMID:24653763

  14. Serotonin and Dopamine: Unifying Affective, Activational, and Decision Functions

    PubMed Central

    Cools, Roshan; Nakamura, Kae; Daw, Nathaniel D

    2011-01-01

    Serotonin, like dopamine (DA), has long been implicated in adaptive behavior, including decision making and reinforcement learning. However, although the two neuromodulators are tightly related and have a similar degree of functional importance, compared with DA, we have a much less specific understanding about the mechanisms by which serotonin affects behavior. Here, we draw on recent work on computational models of dopaminergic function to suggest a framework by which many of the seemingly diverse functions associated with both DA and serotonin—comprising both affective and activational ones, as well as a number of other functions not overtly related to either—can be seen as consequences of a single root mechanism. PMID:20736991

  15. Motivational activation: a unifying hypothesis of orexin/hypocretin function

    PubMed Central

    Mahler, Stephen V; Moorman, David E; Smith, Rachel J; James, Morgan H; Aston-Jones, Gary

    2015-01-01

    Orexins (hypocretins) are two peptides (orexin A and B) produced from the pre-pro-orexin precursor and expressed in a limited region of dorsolateral hypothalamus. Orexins were originally thought to specifically mediate feeding and promote wakefulness, but it is now clear that they participate in a wide range of behavioral and physiological processes under select circumstances. Orexins primarily mediate behavior under situations of high motivational relevance, such as during physiological need states, exposure to threats or reward opportunities. We hypothesize that many behavioral functions of orexins (including regulation of sleep/wake cycling) reflect a fundamentally integrated function for orexins in translating motivational activation into organized suites of psychological and physiological processes supporting adaptive behaviors. We also discuss how numerous forms of neural heterogeneity modulate this function, allowing orexin neurons to organize diverse, adaptive responses in a variety of motivationally relevant situations. Thus, the involvement of orexins in diverse behaviors may reflect a common underlying function for this peptide system. PMID:25254979

  16. Self-assembly of active colloidal molecules with dynamic function

    NASA Astrophysics Data System (ADS)

    Soto, Rodrigo; Golestanian, Ramin

    Catalytically active colloids maintain non-equilibrium conditions in which they produce and deplete chemicals at their surface. While individual colloids that are symmetrically coated do not exhibit dynamical activity, the concentration fields resulting from their chemical activity decay as 1/r and produce gradients that attract or repel other colloids depending on their surface chemistry and ambient variables. This results in a non-equilibrium analogue of ionic systems, but with the remarkable novel feature of action-reaction symmetry breaking. In dilute conditions these active colloids join up to form molecules via generalized ionic bonds. Colloids are found to join up to form self-assembled molecules that could be inert or have spontaneous activity in the form of net translational velocity and spin depending on their symmetry properties and their constituents. As the interactions do not satisfy detailed-balance, it is possible to achieve structures with time dependent functionality. We study a molecule that adopts spontaneous oscillations and another that exhibits a run-and-tumble dynamics similar to bacteria. Our study shows that catalytically active colloids could be used for designing self-assembled structures that posses dynamical functionalities.

  17. Immunomodulation of phloretin by impairing dendritic cell activation and function.

    PubMed

    Lin, Chi-Chen; Chu, Ching-Liang; Ng, Chin-Sheng; Lin, Ching-Yen; Chen, Der-Yuan; Pan, I-Hong; Huang, Kao-Jean

    2014-05-01

    Dietary compounds in fruits and vegetables have been shown to exert many biological activities. In addition to antioxidant effects, a number of flavonoids are able to modulate inflammatory responses. Here, we demonstrated that phloretin (PT), a natural dihydrochalcone found in many fruits, suppressed the activation and function of mouse dendritic cells (DCs). Phloretin disturbed the multiple intracellular signaling pathways in DCs induced by the Toll-like receptor 4 (TLR4) agonist lipopolysaccharide (LPS), including ROS, MAPKs (ERK, JNK, p38 MAPK), and NF-κB, and thereby reducing the production of inflammatory cytokines and chemokines. Phloretin also effectively suppressed the activation of DCs treated with different dosages of LPS or various TLR agonists. The LPS-induced DC maturation was attenuated by phloretin because the expression levels of the MHC class II and the co-stimulatory molecules were down-regulated, which then inhibited the LPS-stimulating DCs and the subsequent naïve T cell activation in a mixed lymphocyte reaction. Moreover, in vivo administration of phloretin suppressed the phenotypic maturation of the LPS-challenged splenic DCs and decreased the IFN-γ production from the activated CD4 T cells. Thus, we suggest that phloretin may potentially be an immunomodulator by impairing the activation and function of DCs and phloretin-contained fruits may be helpful in the improvement of inflammation and autoimmune diseases. PMID:24651121

  18. Function and biotechnology of extremophilic enzymes in low water activity

    PubMed Central

    2012-01-01

    Enzymes from extremophilic microorganisms usually catalyze chemical reactions in non-standard conditions. Such conditions promote aggregation, precipitation, and denaturation, reducing the activity of most non-extremophilic enzymes, frequently due to the absence of sufficient hydration. Some extremophilic enzymes maintain a tight hydration shell and remain active in solution even when liquid water is limiting, e.g. in the presence of high ionic concentrations, or at cold temperature when water is close to the freezing point. Extremophilic enzymes are able to compete for hydration via alterations especially to their surface through greater surface charges and increased molecular motion. These properties have enabled some extremophilic enzymes to function in the presence of non-aqueous organic solvents, with potential for design of useful catalysts. In this review, we summarize the current state of knowledge of extremophilic enzymes functioning in high salinity and cold temperatures, focusing on their strategy for function at low water activity. We discuss how the understanding of extremophilic enzyme function is leading to the design of a new generation of enzyme catalysts and their applications to biotechnology. PMID:22480329

  19. Chemical Signaling and Functional Activation in Colloidosome-Based Protocells.

    PubMed

    Sun, Shiyong; Li, Mei; Dong, Faqin; Wang, Shengjie; Tian, Liangfei; Mann, Stephen

    2016-04-13

    An aqueous-based microcompartmentalized model involving the integration of partially hydrophobic Fe(III)-rich montmorillonite (FeM) clay particles as structural and catalytic building blocks for colloidosome membrane assembly, self-directed membrane remodeling, and signal-induced protocell communication is described. The clay colloidosomes exhibit size- and charge-selective permeability, and show dual catalytic functions involving spatially confined enzyme-mediated dephosphorylation and peroxidase-like membrane activity. The latter is used for the colloidosome-mediated synthesis and assembly of a temperature-responsive poly(N-isopropylacrylamide)(PNIPAM)/clay-integrated hybrid membrane. In situ PNIPAM elaboration of the membrane is coupled to a glucose oxidase (GOx)-mediated signaling pathway to establish a primitive model of chemical communication and functional activation within a synthetic "protocell community" comprising a mixed population of GOx-containing silica colloidosomes and alkaline phosphatase (ALP)-containing FeM-clay colloidosomes. Triggering the enzyme reaction in the silica colloidosomes gives a hydrogen peroxide signal that induces polymer wall formation in a coexistent population of the FeM-clay colloidosomes, which in turn generates self-regulated membrane-gated ALP-activity within the clay microcompartments. The emergence of new functionalities in inorganic colloidosomes via chemical communication between different protocell populations provides a first step toward the realization of interacting communities of synthetic functional microcompartments. PMID:26923794

  20. Aldehyde dehydrogenase 2 activation in heart failure restores mitochondrial function and improves ventricular function and remodelling

    PubMed Central

    Gomes, Katia M.S.; Campos, Juliane C.; Bechara, Luiz R.G.; Queliconi, Bruno; Lima, Vanessa M.; Disatnik, Marie-Helene; Magno, Paulo; Chen, Che-Hong; Brum, Patricia C.; Kowaltowski, Alicia J.; Mochly-Rosen, Daria; Ferreira, Julio C.B.

    2014-01-01

    Aims We previously demonstrated that pharmacological activation of mitochondrial aldehyde dehydrogenase 2 (ALDH2) protects the heart against acute ischaemia/reperfusion injury. Here, we determined the benefits of chronic activation of ALDH2 on the progression of heart failure (HF) using a post-myocardial infarction model. Methods and results We showed that a 6-week treatment of myocardial infarction-induced HF rats with a selective ALDH2 activator (Alda-1), starting 4 weeks after myocardial infarction at a time when ventricular remodelling and cardiac dysfunction were present, improved cardiomyocyte shortening, cardiac function, left ventricular compliance and diastolic function under basal conditions, and after isoproterenol stimulation. Importantly, sustained Alda-1 treatment showed no toxicity and promoted a cardiac anti-remodelling effect by suppressing myocardial hypertrophy and fibrosis. Moreover, accumulation of 4-hydroxynonenal (4-HNE)-protein adducts and protein carbonyls seen in HF was not observed in Alda-1-treated rats, suggesting that increasing the activity of ALDH2 contributes to the reduction of aldehydic load in failing hearts. ALDH2 activation was associated with improved mitochondrial function, including elevated mitochondrial respiratory control ratios and reduced H2O2 release. Importantly, selective ALDH2 activation decreased mitochondrial Ca2+-induced permeability transition and cytochrome c release in failing hearts. Further supporting a mitochondrial mechanism for ALDH2, Alda-1 treatment preserved mitochondrial function upon in vitro aldehydic load. Conclusions Selective activation of mitochondrial ALDH2 is sufficient to improve the HF outcome by reducing the toxic effects of aldehydic overload on mitochondrial bioenergetics and reactive oxygen species generation, suggesting that ALDH2 activators, such as Alda-1, have a potential therapeutic value for treating HF patients. PMID:24817685

  1. XIAP reverses various functional activities of FRNK in endothelial cells

    SciTech Connect

    Ahn, Sunyoung; Kim, Hyun Jeong; Chi, Sung-Gil; Park, Heonyong

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer FRNK domain is recruited into focal adhesion (FA), controlling endothelial cell adhesion. Black-Right-Pointing-Pointer XIAP binds the FRNK domain of FAK. Black-Right-Pointing-Pointer XIAP inhibits recruitment of FRNK into Fas and FRNK-promoted cell adhesion. Black-Right-Pointing-Pointer XIAP plays a key role in vascular functions of FRNK or FRNK domain-mediated vascular functions of FAK. -- Abstract: In endothelial cells, focal adhesion kinase (FAK) regulates cell proliferation, migration, adhesion, and shear-stimulated activation of MAPK. We recently found that FAK is recruited into focal adhesion (FA) sites through interactions with XIAP (X-chromosome linked inhibitor of apoptosis protein) and activated by Src kinase in response to shear stress. In this study, we examined which domain(s) of FAK is(are) important for various vascular functions such as FA recruiting, XIAP-binding and shear stress-stimulated ERK activation. Through a series of experiments, we determined that the FRNK domain is recruited into FA sites and promotes endothelial cell adhesion. Interestingly, XIAP knockdown was shown to reduce FA recruitment of FRNK and the cell adhesive effect of FRNK. In addition, we found that XIAP interacts with FRNK, suggesting cross-talk between XIAP and FRNK. We also demonstrated that FRNK inhibits endothelial cell migration and shear-stimulated ERK activation. These inhibitory effects of FRNK were reversed by XIAP knockdown. Taken together, we can conclude that XIAP plays a key role in vascular functions of FRNK or FRNK domain-mediated vascular functions of FAK.

  2. Pressure is not a state function for generic active fluids

    NASA Astrophysics Data System (ADS)

    Solon, A. P.; Fily, Y.; Baskaran, A.; Cates, M. E.; Kafri, Y.; Kardar, M.; Tailleur, J.

    2015-08-01

    Pressure is the mechanical force per unit area that a confined system exerts on its container. In thermal equilibrium, it depends only on bulk properties--such as density and temperature--through an equation of state. Here we show that in a wide class of active systems the pressure depends on the precise interactions between the active particles and the confining walls. In general, therefore, active fluids have no equation of state. Their mechanical pressure exhibits anomalous properties that defy the familiar thermodynamic reasoning that holds in equilibrium. The pressure remains a function of state, however, in some specific and well-studied active models that tacitly restrict the character of the particle-wall and/or particle-particle interactions.

  3. Effects of Active Individual Muscle Stretching on Muscle Function

    PubMed Central

    Nakamura, Kouichi; Kodama, Takayuki; Mukaino, Yoshito

    2014-01-01

    [Purpose] We investigated the effect of active individual muscle stretching (AID) on muscle function. [Subjects] We used the right legs of 40 healthy male students. [Methods] Subjects were divided into an AID group, which performed stretching, and a control group, which did not. We examined and compared muscle function before and after stretching in the AID and control groups using a goniometer and Cybex equipment. [Results] A significant increase in flexibility and a significant decrease in muscle strength output were observed in the AID group after the intervention. [Conclusion] These results suggest that AID induces an increase in flexibility and a temporary decrease in muscle output strength. PMID:24707080

  4. Review: Production and functionality of active peptides from milk.

    PubMed

    Muro Urista, C; Álvarez Fernández, R; Riera Rodriguez, F; Arana Cuenca, A; Téllez Jurado, A

    2011-08-01

    In recent years, research on the production of active peptides obtained from milk and their potential functionality has grown, to a great extent. Bioactive peptides have been defined as specific protein fragments that have a positive impact on body functions or conditions, and they may ultimately have an influence on health. Individual proteins of casein or milk-derived products such as cheese and yogurt have been used as a protein source to study the isolation and activity of peptides with several applications. Currently, the milk whey waste obtained in the production of cheese also represents a protein source from which active peptides could be isolated with potential industrial applications. The active properties of milk peptides and the results found with regard to their physiological effects have led to the classification of peptides as belonging to the group of ingredients of protein nature, appropriate for use in functional foods or pharmaceutical formulations. In this study, the main peptides obtained from milk protein and the past research studies about its production and biological activities will be explained. Second, an analysis will be made on the methods to determinate the biological activities, the separation of bioactive peptides and its structure identification. All of these form the base required to obtain synthetic peptides. Finally, we explain the experimental animal and human trials done in the past years. Nevertheless, more research is required on the design and implementation of equipment for the industrial production and separation of peptides. In addition, different authors suggest that more emphasis should therefore be given to preclinical studies, proving that results are consistent and that effects are demonstrated repeatedly by several research human groups. PMID:21917640

  5. Self-assembly of active colloidal molecules with dynamic function

    NASA Astrophysics Data System (ADS)

    Soto, Rodrigo; Golestanian, Ramin

    2015-05-01

    Catalytically active colloids maintain nonequilibrium conditions in which they produce and deplete chemicals and hence effectively act as sources and sinks of molecules. While individual colloids that are symmetrically coated do not exhibit any form of dynamical activity, the concentration fields resulting from their chemical activity decay as 1 /r and produce gradients that attract or repel other colloids depending on their surface chemistry and ambient variables. This results in a nonequilibrium analog of ionic systems, but with the remarkable novel feature of action-reaction symmetry breaking. We study solutions of such chemically active colloids in dilute conditions when they join up to form molecules via generalized ionic bonds and discuss how we can achieve structures with time-dependent functionality. In particular, we study a molecule that adopts a spontaneous oscillatory pattern of conformations and another that exhibits a run-and-tumble dynamics similar to bacteria. Our study shows that catalytically active colloids could be used for designing self-assembled structures that possess dynamical functionalities that are determined by their prescribed three-dimensional structures, a strategy that follows the design principle of proteins.

  6. FUNCTION FOLLOWS FORM: ACTIVATION OF SHAPE & FUNCTION FEATURES DURING OBJECT IDENTIFICATION

    PubMed Central

    Yee, Eiling; Huffstetler, Stacy; Thompson-Schill, Sharon L.

    2011-01-01

    Most theories of semantic memory characterize knowledge of a given object as comprising a set of semantic features. But how does conceptual activation of these features proceed during object identification? We present the results of a pair of experiments that demonstrate that object recognition is a dynamically unfolding process in which function follows form. We used eye movements to explore whether activating one object’s concept leads to the activation of others that share perceptual (shape) or abstract (function) features. Participants viewed four-picture displays and clicked on the picture corresponding to a heard word. In critical trials, the conceptual representation of one of the objects in the display was similar in shape or function (i.e., its purpose) to the heard word. Importantly, this similarity was not apparent in the visual depictions (e.g., for the target “frisbee,” the shape-related object was a triangular slice of pizza – a shape that a frisbee cannot take); preferential fixations on the related object were therefore attributable to overlap of the conceptual representations on the relevant features. We observed relatedness effects for both shape and function, but shape effects occurred earlier than function effects. We discuss the implications of these findings for current accounts of the representation of semantic memory. PMID:21417543

  7. Functions of AMP-activated protein kinase in adipose tissue

    PubMed Central

    Daval, Marie; Foufelle, Fabienne; Ferré, Pascal

    2006-01-01

    AMP-activated protein kinase (AMPK) is involved in cellular energy homeostasis. Its functions have been extensively studied in muscles and liver. AMPK stimulates pathways which increase energy production (glucose transport, fatty acid oxidation) and switches off pathways which consume energy (lipogenesis, protein synthesis, gluconeogenesis). This has led to the concept that AMPK has an interesting pharmaceutical potential in situations of insulin resistance and it is indeed the target of existing drugs and hormones which improve insulin sensitivity. Adipose tissue is a key player in energy metabolism through the release of substrates and hormones involved in metabolism and insulin sensitivity. Activation of AMPK in adipose tissue can be achieved through situations such as fasting and exercise. Leptin and adiponectin as well as hypoglycaemic drugs are activators of adipose tissue AMPK. This activation probably involves changes in the AMP/ATP ratio and the upstream kinase LKB1. When activated, AMPK limits fatty acid efflux from adipocytes and favours local fatty acid oxidation. Since fatty acids have a key role in insulin resistance, especially in muscles, activating AMPK in adipose tissue might be found to be beneficial in insulin-resistant states, particularly as AMPK activation also reduces cytokine secretion in adipocytes. PMID:16709632

  8. Functional Implications of Plasma Membrane Condensation for T Cell Activation

    PubMed Central

    Quinn, Carmel M.; Engelhardt, Karin; Williamson, David; Grewal, Thomas; Jessup, Wendy; Harder, Thomas; Gaus, Katharina

    2008-01-01

    The T lymphocyte plasma membrane condenses at the site of activation but the functional significance of this receptor-mediated membrane reorganization is not yet known. Here we demonstrate that membrane condensation at the T cell activation sites can be inhibited by incorporation of the oxysterol 7-ketocholesterol (7KC), which is known to prevent the formation of raft-like liquid-ordered domains in model membranes. We enriched T cells with 7KC, or cholesterol as control, to assess the importance of membrane condensation for T cell activation. Upon 7KC treatment, T cell antigen receptor (TCR) triggered calcium fluxes and early tyrosine phosphorylation events appear unaltered. However, signaling complexes form less efficiently on the cell surface, fewer phosphorylated signaling proteins are retained in the plasma membrane and actin restructuring at activation sites is impaired in 7KC-enriched cells resulting in compromised downstream activation responses. Our data emphasizes lipids as an important medium for the organization at T cell activation sites and strongly indicates that membrane condensation is an important element of the T cell activation process. PMID:18509459

  9. Spillover-mediated feedforward-inhibition functionally segregates interneuron activity

    PubMed Central

    Coddington, Luke T.; Rudolph, Stephanie; Lune, Patrick Vande; Overstreet-Wadiche, Linda; Wadiche, Jacques I.

    2013-01-01

    Summary Neurotransmitter spillover represents a form of neural transmission not restricted to morphologically defined synaptic connections. Communication between climbing fibers (CFs) and molecular layer interneurons (MLIs) in the cerebellum is mediated exclusively by glutamate spillover. Here, we show how CF stimulation functionally segregates MLIs based on their location relative to glutamate release. Excitation of MLIs that reside within the domain of spillover diffusion coordinates inhibition of MLIs outside the diffusion limit. CF excitation of MLIs is dependent on extrasynaptic NMDA receptors that enhance the spatial and temporal spread of CF signaling. Activity mediated by functionally segregated MLIs converges onto neighboring Purkinje cells (PCs) to generate a long-lasting biphasic change in inhibition. These data demonstrate how glutamate release from single CFs modulates excitability of neighboring PCs, thus expanding the influence of CFs on cerebellar cortical activity in a manner not predicted by anatomical connectivity. PMID:23707614

  10. Polyhexamethylene biguanide functionalized cationic silver nanoparticles for enhanced antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Ashraf, Sumaira; Akhtar, Nasrin; Ghauri, Muhammad Afzal; Rajoka, Muhammad Ibrahim; Khalid, Zafar M.; Hussain, Irshad

    2012-05-01

    Polyhexamethylene biguanide (PHMB), a broad spectrum disinfectant against many pathogens, was used as a stabilizing ligand for the synthesis of fairly uniform silver nanoparticles. The particles formed were characterized using UV-visible spectroscopy, FTIR, dynamic light scattering, electrophoretic mobility, and TEM to measure their morphology and surface chemistry. PHMB-functionalized silver nanoparticles were then evaluated for their antimicrobial activity against a gram-negative bacterial strain, Escherichia coli. These silver nanoparticles were found to have about 100 times higher bacteriostatic and bactericidal activities, compared to the previous reports, due to the combined antibacterial effect of silver nanoparticles and PHMB. In addition to other applications, PHMB-functionalized silver nanoparticles would be extremely useful in textile industry due to the strong interaction of PHMB with cellulose fabrics.

  11. Toxoplasma gondii Actively Inhibits Neuronal Function in Chronically Infected Mice

    PubMed Central

    Haroon, Fahad; Händel, Ulrike; Angenstein, Frank; Goldschmidt, Jürgen; Kreutzmann, Peter; Lison, Holger; Fischer, Klaus-Dieter; Scheich, Henning; Wetzel, Wolfram; Schlüter, Dirk; Budinger, Eike

    2012-01-01

    Upon infection with the obligate intracellular parasite Toxoplasma gondii, fast replicating tachyzoites infect a broad spectrum of host cells including neurons. Under the pressure of the immune response, tachyzoites convert into slow-replicating bradyzoites, which persist as cysts in neurons. Currently, it is unclear whether T. gondii alters the functional activity of neurons, which may contribute to altered behaviour of T. gondii–infected mice and men. In the present study we demonstrate that upon oral infection with T. gondii cysts, chronically infected BALB/c mice lost over time their natural fear against cat urine which was paralleled by the persistence of the parasite in brain regions affecting behaviour and odor perception. Detailed immunohistochemistry showed that in infected neurons not only parasitic cysts but also the host cell cytoplasm and some axons stained positive for Toxoplasma antigen suggesting that parasitic proteins might directly interfere with neuronal function. In fact, in vitro live cell calcium (Ca2+) imaging studies revealed that tachyzoites actively manipulated Ca2+ signalling upon glutamate stimulation leading either to hyper- or hypo-responsive neurons. Experiments with the endoplasmatic reticulum Ca2+ uptake inhibitor thapsigargin indicate that tachyzoites deplete Ca2+ stores in the endoplasmatic reticulum. Furthermore in vivo studies revealed that the activity-dependent uptake of the potassium analogue thallium was reduced in cyst harbouring neurons indicating their functional impairment. The percentage of non-functional neurons increased over time In conclusion, both bradyzoites and tachyzoites functionally silence infected neurons, which may significantly contribute to the altered behaviour of the host. PMID:22530040

  12. Toxoplasma gondii actively inhibits neuronal function in chronically infected mice.

    PubMed

    Haroon, Fahad; Händel, Ulrike; Angenstein, Frank; Goldschmidt, Jürgen; Kreutzmann, Peter; Lison, Holger; Fischer, Klaus-Dieter; Scheich, Henning; Wetzel, Wolfram; Schlüter, Dirk; Budinger, Eike

    2012-01-01

    Upon infection with the obligate intracellular parasite Toxoplasma gondii, fast replicating tachyzoites infect a broad spectrum of host cells including neurons. Under the pressure of the immune response, tachyzoites convert into slow-replicating bradyzoites, which persist as cysts in neurons. Currently, it is unclear whether T. gondii alters the functional activity of neurons, which may contribute to altered behaviour of T. gondii-infected mice and men. In the present study we demonstrate that upon oral infection with T. gondii cysts, chronically infected BALB/c mice lost over time their natural fear against cat urine which was paralleled by the persistence of the parasite in brain regions affecting behaviour and odor perception. Detailed immunohistochemistry showed that in infected neurons not only parasitic cysts but also the host cell cytoplasm and some axons stained positive for Toxoplasma antigen suggesting that parasitic proteins might directly interfere with neuronal function. In fact, in vitro live cell calcium (Ca(2+)) imaging studies revealed that tachyzoites actively manipulated Ca(2+) signalling upon glutamate stimulation leading either to hyper- or hypo-responsive neurons. Experiments with the endoplasmatic reticulum Ca(2+) uptake inhibitor thapsigargin indicate that tachyzoites deplete Ca(2+) stores in the endoplasmatic reticulum. Furthermore in vivo studies revealed that the activity-dependent uptake of the potassium analogue thallium was reduced in cyst harbouring neurons indicating their functional impairment. The percentage of non-functional neurons increased over time In conclusion, both bradyzoites and tachyzoites functionally silence infected neurons, which may significantly contribute to the altered behaviour of the host. PMID:22530040

  13. Cell trapping in activated micropores for functional analysis.

    PubMed

    Talasaz, AmirAli H; Powell, Ashley A; Stahl, Patrik; Ronaghi, Mostafa; Jeffrey, Stefanie S; Mindrinos, Michael; Davis, Ronald W

    2006-01-01

    This paper presents a novel device which provides the opportunity to perform high-throughput biochemical assays on different individual cells. In particular, the proposed device is suited to screen the rare cells in biological samples for early stage cancer diagnosis and explore their biochemical functionality. In the process, single cells are precisely positioned and captured in activated micropores. To show the performance of the proposed device, cultured yeast cells and human epithelial circulating tumor cells are successfully captured. PMID:17945673

  14. Comparative studies of brain activation with MEG and functional MRI

    SciTech Connect

    George, J.S.; Aine, C.J.; Sanders, J.A.; Lewine, J.D.; Caprihan, A.

    1993-12-31

    The past two years have witnessed the emergence of MRI as a functional imaging methodology. Initial demonstrations involved the injection of a paramagnetic contrast agent and required ultrafast echo planar imaging capability to adequately resolve the passage of the injected bolus. By measuring the local reduction in image intensity due to magnetic susceptibility, it was possible to calculate blood volume, which changes as a function of neural activation. Later developments have exploited endogenous contrast mechanisms to monitor changes in blood volume or in venous blood oxygen content. Recently, we and others have demonstrated that it is possible to make such measurements in a clinical imager, suggesting that the large installed base of such machines might be utilized for functional imaging. Although it is likely that functional MRI (fMRI) will subsume some of the clinical and basic neuroscience applications now touted for MEG, it is also clear that these techniques offer different largely complementary, capabilities. At the very least, it is useful to compare and cross-validate the activation maps produced by these techniques. Such studies will be valuable as a check on results of neuromagnetic distributed current reconstructions and will allow better characterization of the relationship between neurophysiological activation and associated hemodynamic changes. A more exciting prospect is the development of analyses that combine information from the two modalities to produce a better description of underlying neural activity than is possible with either technique in isolation. In this paper we describe some results from initial comparative studies and outline several techniques that can be used to treat MEG and fMRI data within a unified computational framework.

  15. Studies of higher nervous activity in functional phychoses.

    PubMed

    Astrup, C

    1975-01-01

    Psychiatric illnesses can be conceived of as experiments of nature, providing a variety of pathopsychological mechanisms which may elucidate normal psychological processes. Clinically the reactive psychoses are predominantly psychogenic reaction types. They present disturbances of higher nervous activity, similar to those of the neuroses. The unconditional reflex activity is practically as in normal controls, and the most outstanding finding was the large effect of psychodynamic complex structures. This is a physiological parallel to the clinical manifestations with great concern over experienced mental trauma. In the manic-depressive psychoses the most characteristic feature is a marked disturbance of unconditional reflex activity. This factor may be an important physiological mechanism underlying the more biological than psychodynamic reaction type and partly explain the changes of mood and associated interferences with sleep, body weight, sexual activity, aggression and other instinctual and vegetative functions. Schizophrenic psychoses also present changes of unconditional reflex activity, predominantly in the direction of inhibition of response. In addition there are severe dissociations within and between the three levels of unconditional reflexes and the two signaling systems. It is suggested that schizophrenia represents a functional maladaptation, which can be explained from the principles of autokinesis and schizokinesis established by Gantt in animal experiments. Prognostic models based on experimentally established impairment of performances were shown to predict long-term risks of schizophrenic defects just as well as models based on constellations of clinical symptoms. I would predict that psychophysiology and experimental psychology will become increasingly more important for establishing diagnosis and prognosis in the functional psychoses. The data of this article point toward a basis for a prophylactic psychiatry. PMID:1236657

  16. Site–Specific Monoubiquitination Activates Ras by Impeding GTPase Activating Protein Function

    PubMed Central

    Baker, Rachael; Lewis, Steven M.; Sasaki, Atsuo T.; Wilkerson, Emily M.; Locasale, Jason W.; Cantley, Lewis C.; Kuhlman, Brian; Dohlman, Henrik G.; Campbell, Sharon L.

    2012-01-01

    SUMMARY Cell growth and differentiation are controlled by growth factor receptors coupled to the GTPase Ras. Oncogenic mutations disrupt GTPase activity leading to persistent Ras signaling and cancer progression. Recent evidence indicates that monoubiquitination of Ras leads to Ras activation. Mutation of the primary site of monoubiquitination impairs the ability of activated K–Ras to promote tumor growth. To determine the mechanism of human Ras activation we chemically ubiquitinated the protein and analyzed its function by NMR, computational modeling, and biochemical activity measurements. We established that monoubiquitination has little effect on Ras GTP binding, GTP hydrolysis, or exchange factor activation, but severely abrogates the response to GTPase activating proteins in a site–specific manner. These findings reveal a new mechanism by which Ras can trigger persistent signaling in the absence of receptor activation or an oncogenic mutation. PMID:23178454

  17. Platelet Serotonin Transporter Function Predicts Default-Mode Network Activity

    PubMed Central

    Kasess, Christian H.; Meyer, Bernhard M.; Hofmaier, Tina; Diers, Kersten; Bartova, Lucie; Pail, Gerald; Huf, Wolfgang; Uzelac, Zeljko; Hartinger, Beate; Kalcher, Klaudius; Perkmann, Thomas; Haslacher, Helmuth; Meyer-Lindenberg, Andreas; Kasper, Siegfried; Freissmuth, Michael; Windischberger, Christian; Willeit, Matthäus; Lanzenberger, Rupert; Esterbauer, Harald; Brocke, Burkhard; Moser, Ewald; Sitte, Harald H.; Pezawas, Lukas

    2014-01-01

    Background The serotonin transporter (5-HTT) is abundantly expressed in humans by the serotonin transporter gene SLC6A4 and removes serotonin (5-HT) from extracellular space. A blood-brain relationship between platelet and synaptosomal 5-HT reuptake has been suggested, but it is unknown today, if platelet 5-HT uptake can predict neural activation of human brain networks that are known to be under serotonergic influence. Methods A functional magnetic resonance study was performed in 48 healthy subjects and maximal 5-HT uptake velocity (Vmax) was assessed in blood platelets. We used a mixed-effects multilevel analysis technique (MEMA) to test for linear relationships between whole-brain, blood-oxygen-level dependent (BOLD) activity and platelet Vmax. Results The present study demonstrates that increases in platelet Vmax significantly predict default-mode network (DMN) suppression in healthy subjects independent of genetic variation within SLC6A4. Furthermore, functional connectivity analyses indicate that platelet Vmax is related to global DMN activation and not intrinsic DMN connectivity. Conclusion This study provides evidence that platelet Vmax predicts global DMN activation changes in healthy subjects. Given previous reports on platelet-synaptosomal Vmax coupling, results further suggest an important role of neuronal 5-HT reuptake in DMN regulation. PMID:24667541

  18. The impact of chromospheric activity on observed initial mass functions

    SciTech Connect

    Stassun, Keivan G.; Scholz, Aleks; Dupuy, Trent J.; Kratter, Kaitlin M.

    2014-12-01

    Using recently established empirical calibrations for the impact of chromospheric activity on the radii, effective temperatures, and estimated masses of active low-mass stars and brown dwarfs, we reassess the shape of the initial mass function (IMF) across the stellar/substellar boundary in the Upper Sco star-forming region (age ∼ 5-10 Myr). We adjust the observed effective temperatures to warmer values using the observed strength of the chromospheric Hα emission, and redetermine the estimated masses of objects using pre-main-sequence evolutionary tracks in the H-R diagram. The effect of the activity-adjusted temperatures is to shift the objects to higher masses by 3%-100%. While the slope of the resulting IMF at substellar masses is not strongly changed, the peak of the IMF does shift from ≈0.06 to ≈0.11 M {sub ☉}. Moreover, for objects with masses ≲ 0.2 M {sub ☉}, the ratio of brown dwarfs to stars changes from ∼80% to ∼33%. These results suggest that activity corrections are essential for studies of the substellar mass function, if the masses are estimated from spectral types or from effective temperatures.

  19. Assessment of strontium oxide functionalized graphene nanoflakes for enhanced photocatalytic activity: A density functional theory approach

    NASA Astrophysics Data System (ADS)

    Divya, A.; Mathavan, T.; Asath, R. Mohamed; Archana, J.; Hayakawa, Y.; Benial, A. Milton Franklin

    2016-05-01

    A series of strontium oxide functionalized graphene nanoflakes were designed and their optoelectronic properties were studied for enhanced photocatalytic activity. The efficiency of designed molecules was studied using various parameters such as HOMO-LUMO energy gap, light harvesting efficiency and exciton binding energy. The computed results show that by increasing the degree of functionalization of strontium oxide leads to lowering the band gap of hydrogen terminated graphene nanoflakes. Furthermore, the study explores the role of strontium oxide functionalization in Frontier Molecular Orbitals, ionization potential, electron affinity, exciton binding energy and light harvesting efficiency of designed molecules. The infrared and Raman spectra were simulated for pure and SrO functionalized graphene nanoflakes. The electron rich and electron deficient regions which are favorable for electrophilic and nucleophilic attacks respectively were analyzed using molecular electrostatic potential surface analysis.

  20. Functionalized chalcones with basic functionalities have antibacterial activity against drug sensitive Staphylococcus aureus.

    PubMed

    Liu, X L; Xu, Y J; Go, M L

    2008-08-01

    A library of chalcones with basic functionalities were evaluated for antibacterial activity against drug sensitive strains of Staphylococcus aureus and Escherichia coli. The most active compounds were 2-52 and 2-57 (MIC 6.3 microM S. aureus). These compounds had no activity against E. coli (MIC>100 microM). Both compounds were characterized by a ring A that was substituted with 2-hydroxy-4,6-dimethoxy-3-(1-methylpiperidin-4-yl) groups. The phenolic OH and 1-methylpiperidinyl groups were required for activity but the phenolic OH may play a more critical role. While the compounds were comparable to licochalcone A in terms of antibacterial activity, they caused less hemolysis of sheep erythrocytes at high concentrations (100 microM). It was noted that the structural requirements for limiting hemolytic activity were less stringent than those required for antibacterial activity. The present findings suggest that the chalcone framework is an attractive template for optimization to achieve better potency, lower toxicity and a wider spectrum of antibacterial activity. PMID:18031869

  1. Ginger extract inhibits LPS induced macrophage activation and function

    PubMed Central

    2008-01-01

    Background Macrophages play a dual role in host defence. They act as the first line of defence by mounting an inflammatory response to antigen exposure and also act as antigen presenting cells and initiate the adaptive immune response. They are also the primary infiltrating cells at the site of inflammation. Inhibition of macrophage activation is one of the possible approaches towards modulating inflammation. Both conventional and alternative approaches are being studied in this regard. Ginger, an herbal product with broad anti inflammatory actions, is used as an alternative medicine in a number of inflammatory conditions like rheumatic disorders. In the present study we examined the effect of ginger extract on macrophage activation in the presence of LPS stimulation. Methods Murine peritoneal macrophages were stimulated by LPS in presence or absence of ginger extract and production of proinflammatory cytokines and chemokines were observed. We also studied the effect of ginger extract on the LPS induced expression of MHC II, B7.1, B7.2 and CD40 molecules. We also studied the antigen presenting function of ginger extract treated macrophages by primary mixed lymphocyte reaction. Results We observed that ginger extract inhibited IL-12, TNF-α, IL-1β (pro inflammatory cytokines) and RANTES, MCP-1 (pro inflammatory chemokines) production in LPS stimulated macrophages. Ginger extract also down regulated the expression of B7.1, B7.2 and MHC class II molecules. In addition ginger extract negatively affected the antigen presenting function of macrophages and we observed a significant reduction in T cell proliferation in response to allostimulation, when ginger extract treated macrophages were used as APCs. A significant decrease in IFN-γ and IL-2 production by T cells in response to allostimulation was also observed. Conclusion In conclusion ginger extract inhibits macrophage activation and APC function and indirectly inhibits T cell activation. PMID:18173849

  2. In Vivo Interaction of Steroid Receptor Coactivator (SRC)-1 and the Activation Function-2 Domain of the Thyroid Hormone Receptor (TR) β in TRβ E457A Knock-In and SRC-1 Knockout mice

    PubMed Central

    Alonso, Manuela; Goodwin, Charles; Liao, XiaoHui; Ortiga-Carvalho, Tania; Machado, Danielle S.; Wondisford, Fredric E.; Refetoff, Samuel; Weiss, Roy E.

    2009-01-01

    The activation function-2 (AF-2) domain of the thyroid hormone (TH) receptor (TR)-β is a TH-dependent binding site for nuclear coactivators (NCoA), which modulate TH-dependent gene transcription. In contrast, the putative AF-1 domain is a TH-independent region interacting with NCoA. We determined the specificity of the AF-2 domain and NCoA interaction by evaluating thyroid function in mice with combined disruption of the AF-2 domain in TRβ, due to a point mutation (E457A), and deletion of one of the NCoAs, steroid receptor coactivator (SRC)-1. The E457A mutation was chosen because it abolishes NCoA recruitment in vitro while preserving normal TH binding and corepressor interactions resulting in resistance to TH. At baseline, disruption of SRC-1 in the homozygous knock-in (TRβE457A/E457A) mice worsened the degree of resistance to TH, resulting in increased serum T4 and TSH. During TH deprivation, disruption of AF-2 and SRC-1 resulted in a TSH rise 50% of what was seen when AF-2 alone was removed, suggesting that SRC-1 was interacting outside of the AF-2 domain. Therefore, 1) during TH deprivation, SRC-1 is necessary for activating the hypothalamic-pituitary-thyroid axis; 2) ligand-dependent repression of TSH requires an intact AF-2; and 3) SRC-1 may interact with the another region of the TRβ or the TRα to regulate TH action in the pituitary. This report demonstrates the dual interaction of NCoA in vivo: the TH-independent up-regulation possibly through another domain and TH-dependent down-regulation through the AF-2 domain. PMID:19406944

  3. In vivo interaction of steroid receptor coactivator (SRC)-1 and the activation function-2 domain of the thyroid hormone receptor (TR) beta in TRbeta E457A knock-in and SRC-1 knockout mice.

    PubMed

    Alonso, Manuela; Goodwin, Charles; Liao, Xiaohui; Ortiga-Carvalho, Tania; Machado, Danielle S; Wondisford, Fredric E; Refetoff, Samuel; Weiss, Roy E

    2009-08-01

    The activation function-2 (AF-2) domain of the thyroid hormone (TH) receptor (TR)-beta is a TH-dependent binding site for nuclear coactivators (NCoA), which modulate TH-dependent gene transcription. In contrast, the putative AF-1 domain is a TH-independent region interacting with NCoA. We determined the specificity of the AF-2 domain and NCoA interaction by evaluating thyroid function in mice with combined disruption of the AF-2 domain in TRbeta, due to a point mutation (E457A), and deletion of one of the NCoAs, steroid receptor coactivator (SRC)-1. The E457A mutation was chosen because it abolishes NCoA recruitment in vitro while preserving normal TH binding and corepressor interactions resulting in resistance to TH. At baseline, disruption of SRC-1 in the homozygous knock-in (TRbeta(E457A/E457A)) mice worsened the degree of resistance to TH, resulting in increased serum T(4) and TSH. During TH deprivation, disruption of AF-2 and SRC-1 resulted in a TSH rise 50% of what was seen when AF-2 alone was removed, suggesting that SRC-1 was interacting outside of the AF-2 domain. Therefore, 1) during TH deprivation, SRC-1 is necessary for activating the hypothalamic-pituitary-thyroid axis; 2) ligand-dependent repression of TSH requires an intact AF-2; and 3) SRC-1 may interact with the another region of the TRbeta or the TRalpha to regulate TH action in the pituitary. This report demonstrates the dual interaction of NCoA in vivo: the TH-independent up-regulation possibly through another domain and TH-dependent down-regulation through the AF-2 domain. PMID:19406944

  4. Modulatory role of the ovarian function in neuroimmunoendocrine axis activity.

    PubMed

    Perelló, Mario; Giovambattista, Andrés; Castrogiovanni, Daniel; Gaillard, Rolf C; Spinedi, Eduardo

    2011-01-01

    The aim of this study was to evaluate the effect of ovariectomy on the acute-phase response of inflammatory stress. Ex vivo adrenocortical, peripheral mononuclear cell (PMNC) and adipocyte activities were studied in intact and ovariectomized mice. Endotoxemia was mimicked by intraperitoneal administration of bacterial lipopolysaccharide (LPS; 25 mg per mouse) to sham-operated and 21-day ovariectomized mice. Circulating corticosterone, tumor necrosis factor-α (TNFα) and leptin concentrations were monitored before and 30-120 min after the administration of LPS. Additionally, in vitro experiments were performed with isolated corticoadrenal cells, PMNCs and omental adipocytes from sham-operated and ovariectomized mice incubated with specific secretagogues. The results indicate that while ovariectomy enhanced TNFα secretion after in vivo administration of LPS, it reduced corticoadrenal response and abrogated LPS-elicited leptin secretion into the circulation. While the corticoadrenal sensitivity to ACTH stimulation was reduced by ovariectomy, the LPS-induced PMNC response was not affected. Exogenous leptin enhanced baseline PMNC function regardless of surgery. Finally, ovariectomy drastically reduced in vitro adipocyte functionality. Our data support the notion that ovariectomy modified neuroendocrine-immune-adipocyte axis function and strongly suggest that ovarian activity could play a pivotal role in the development of an adequate immune defense mechanism after injury. PMID:20606490

  5. The Structure of A Biologically Active Estrogen Receptor-Coactivator Complex on DNA

    PubMed Central

    Yi, Ping; Wang, Zhao; Feng, Qin; Pintilie, Grigore D.; Foulds, Charles E.; Lanz, Rainer B.; Ludtke, Steven J.; Schmid, Michael F.; Chiu, Wah; O’Malley, Bert W.

    2015-01-01

    SUMMARY Estrogen receptor (ER) is a transcription factor critical for development, reproduction, metabolism and cancer. ER function hinges on its ability to recruit primary and secondary coactivators, yet structural information on the full-length receptor-coactivator complex to complement pre-existing and sometimes controversial biochemical information is lacking. Here we use cryo-EM to determine the quaternary structure of an active complex of DNA-bound ERα, steroid receptor coactivator 3 (SRC-3) and a secondary coactivator (p300). Our structural model suggests the following assembly mechanism for the complex: each of the two ligand-bound ERα monomers independently recruits one SRC-3 protein via the transactivation domain of ERα; the two SRC-3s in turn bind to different regions of one p300 protein through multiple contacts. We also present structural evidence for the location of activation function 1 (AF-1) in a full-length nuclear receptor, which supports a role for AF-1 in SRC-3 recruitment. PMID:25728767

  6. Osteoblast differentiation is functionally associated with decreased AMP kinase activity.

    PubMed

    Kasai, Takayuki; Bandow, Kenjiro; Suzuki, Hiraku; Chiba, Norika; Kakimoto, Kyoko; Ohnishi, Tomokazu; Kawamoto, Shin-ichiro; Nagaoka, Eiichi; Matsuguchi, Tetsuya

    2009-12-01

    Osteoblasts, originating from mesenchymal stem cells, play a pivotal role in bone formation and mineralization. Several transcription factors including runt-related transcription factor 2 (Runx2) have been reported to be essential for osteoblast differentiation, whereas the cytoplasmic signal transduction pathways controlling the differentiation process have not been fully elucidated. AMP-activated protein kinase (AMPK) is a serine-threonine kinase generally regarded as a key regulator of cellular energy homeostasis, polarity, and division. Recent lines of evidence have indicated that the activity of the catalytic alpha subunit of AMPK is regulated through its phosphorylation by upstream AMPK kinases (AMPKKs) including LKB1. Here, we explored the role of AMPK in osteoblast differentiation using in vitro culture models. Phosphorylation of AMPKalpha was significantly decreased during osteoblastic differentiation in both primary osteoblasts and MC3T3-E1, a mouse osteoblastic cell line. Conversely, the terminal differentiation of primary osteoblasts and MC3T3-E1 cells, represented by matrix mineralization, was significantly inhibited by glucose restriction and stimulation with metformin, both of which are known activators of AMPK. Matrix mineralization of MC3T3-E1 cells was also inhibited by the forced expression of a constitutively active form of AMPKalpha. Metformin significantly inhibited gene expression of Runx2 along with osteoblast differentiation markers including osteocalcin (Ocn), bone sialo protein (Bsp), and osteopontin (Opn). Thus, our present data indicate that differentiation of osteoblasts is functionally associated with decreased AMPK activity. PMID:19725053

  7. [Biodiversity and Function Analyses of BIOLAK Activated Sludge Metagenome].

    PubMed

    Tian, Mei; Liu, Han-hu; Shen, Xin; Zhao, Fang-qing; Chen, Shuai; Yao, Yong-jia

    2015-05-01

    The BIOLAK is a multi-stage activated sludge process, which has been successfully promoted worldwide. However, the biological community and function of the BIOLAK activated sludge ( the core component in the process) have not been reported so far. In this study, taking Lianyungang Dapu Industrial Zone WWTP as an example, a large-scale metagenomic data (428 588 high-quality DNA sequences) of the BIOLAK activated sludge were obtained by means of a new generation of high-throughput sequencing technology. Amazing biodiversity was revealed in the BIOLAK activated sludge, which included 47 phyla, 872 genera and 1351 species. There were 33 phyla identified in the Bacteria domain (289 933 sequences). Proteohacteria was the most abundant phylum (62.54%), followed by Bacteroidetes (11.29%), Nitrospirae ( 5. 65%) and Planctomycetes (4.79%), suggesting that these groups played a key role in the BIOLAK wastewater treatment system. Among the 748 bacterial genera, Nitrospira (5.60%) was the most prevalent genus, which was a key group in the nitrogen cycle. Followed by Gemmatimonas (2.45%), which was an important genus in the biological phosphorus removal process. In Archaea domain (1019 sequences), three phyla and 39 genera were detected. In Eukaryota domain (1055 sequences), 60 genera and 10 phyla were identified, among which Ciliophora was the largest phylum (257 sequences). Meanwhile, 448 viral sequences were detected in the BIOLAK sludge metagenome, which were dominated by bacteriophages. The proportions of nitrogen, aromatic compounds and phosphorus metabolism in the BIOLAK sludge were 2.50%, 2.28% and 1.56%, respectively, which were higher than those in the sludge of United States and Australia. Among four processes of nitrogen metabolism, denitrification-related genes were most abundant (80.81%), followed by ammonification (12.78%), nitrification,(4.38%) and nitrogen fixation (2.04%). In conclusion, the BIOLAK activated sludge had amazing biodiversity, meanwhile

  8. Influence of gold nanoparticles on platelets functional activity in vitro

    NASA Astrophysics Data System (ADS)

    Akchurin, Garif G.; Akchurin, George G.; Ivanov, Alexey N.; Kirichuk, Vyacheslav F.; Terentyuk, George S.; Khlebtsov, Boris N.; Khlebtsov, Nikolay G.

    2008-02-01

    Now in the leading biomedical centers of the world approved new technology of laser photothermal destruction of cancer cells using plasmon gold nanoparticles. Investigations of influence of gold nanoparticles on white rat platelets aggregative activity in vitro have been made. Platelet aggregation was investigated in platelet rich plasma (PRP) with help of laser analyzer 230 LA <>, Russia). Aggregation inductor was ADP solution in terminal concentration 2.5 micromole (<>, Russia). Gold nanoshells soluted in salt solution were used for experiments. Samples of PRP were incubated with 50 or 100 μl gold nanoshells solution in 5 minute, after that we made definition ADP induced platelet aggregation. We found out increase platelet function activity after incubation with nanoparticles solution which shown in maximum ADP-induced aggregation degree increase. Increase platelet function activity during intravenous nanoshells injection can be cause of thrombosis on patients. That's why before clinical application of cancer cell destruction based on laser photothermal used with plasmon gold nanoparticles careful investigations of thrombosis process and detail analyze of physiological blood parameters are very necessary.

  9. Active membrane having uniform physico-chemically functionalized ion channels

    DOEpatents

    Gerald, II, Rex E; Ruscic, Katarina J; Sears, Devin N; Smith, Luis J; Klingler, Robert J; Rathke, Jerome W

    2012-09-24

    The present invention relates to a physicochemically-active porous membrane for electrochemical cells that purports dual functions: an electronic insulator (separator) and a unidirectional ion-transporter (electrolyte). The electrochemical cell membrane is activated for the transport of ions by contiguous ion coordination sites on the interior two-dimensional surfaces of the trans-membrane unidirectional pores. One dimension of the pore surface has a macroscopic length (1 nm-1000 .mu.m) and is directed parallel to the direction of an electric field, which is produced between the cathode and the anode electrodes of an electrochemical cell. The membrane material is designed to have physicochemical interaction with ions. Control of the extent of the interactions between the ions and the interior pore walls of the membrane and other materials, chemicals, or structures contained within the pores provides adjustability of the ionic conductivity of the membrane.

  10. Hemodynamic responses to functional activation accessed by optical imaging

    NASA Astrophysics Data System (ADS)

    Ni, Songlin; Li, Pengcheng; Yang, Yuanyuan; Lv, Xiaohua; Luo, Qingming

    2006-01-01

    A multi-wavelength light-emitting diode (LED) and laser diode (LD) based optical imaging system was developed to visualize the changes in cerebral blood flow, oxygenation following functional activation simultaneously in rodent cortex. The 2-D blood flow image was accessed by laser speckle contrast imaging, and the spectroscopic imaging of intrinsic signal was used for the calculation of oxyhemoglobin (HbO), deoxyhemoglobin (Hb) and total hemoglobin (HbT) concentration. The combination of spectroscopic imaging and laser speckle contrast imaging provides the capability to simultaneously investigate the spatial and temporal blood flow and hemoglobin concentration changes with high resolution, which may lead to a better understanding of the coupling between neuronal activation and vascular responses. The optical imaging system been built is compact and convenient to investigators. And it is reliable to acquire raw data. In present study, the hemodynamic responses to cortical spreading depression (CSD) in parietal cortex of ~-chloralose/urethan anesthetized rats were demonstrated.

  11. Mitogen-activated protein kinases in male reproductive function

    PubMed Central

    Li, Michelle W.M.; Mruk, Dolores D.; Cheng, C. Yan

    2009-01-01

    Recent studies have shown that male reproductive function is modulated via the mitogen-activated protein kinase (MAPK) cascade. The MAPK cascade is involved in numerous male reproductive processes, including spermatogenesis, sperm maturation and activation, capacitation and acrosome reaction, before fertilization of the oocyte. In this review, we discuss the latest findings in this rapidly developing field regarding the role of MAPK in male reproduction in animal models and in human spermatozoa in vitro. This research will facilitate the design of future studies in humans, although much work is needed before this information can be used to manage male infertility and environmental toxicant-induced testicular injury in men, such as blood–testis-barrier disruption. PMID:19303360

  12. Diesel-Enriched Particulate Matter Functionally Activates Human Dendritic Cells

    PubMed Central

    Porter, Michael; Karp, Matthew; Killedar, Smruti; Bauer, Stephen M.; Guo, Jia; Williams, D'Ann; Breysse, Patrick; Georas, Steve N.; Williams, Marc A.

    2007-01-01

    Epidemiologic studies have associated exposure to airborne particulate matter (PM) with exacerbations of asthma. It is unknown how different sources of PM affect innate immunity. We sought to determine how car- and diesel exhaust–derived PM affects dendritic cell (DC) activation. DC development was modeled using CD34+ hematopoietic progenitors. Airborne PM was collected from exhaust plenums of Fort McHenry Tunnel providing car-enriched particles (CEP) and diesel-enriched particles (DEP). DC were stimulated for 48 hours with CEP, DEP, CD40-ligand, or lipopolysaccharide. DC activation was assessed by flow cytometry, enzyme-linked immunosorbent assay, and standard culture techniques. DEP increased uptake of fluorescein isothiocyanate–dextran (a model antigen) by DC. Diesel particles enhanced cell-surface expression of co-stimulatory molecules (e.g., CD40 [P < 0.01] and MHC class II [P < 0.01]). By contrast, CEP poorly affected antigen uptake and expression of cell surface molecules, and did not greatly affect cytokine secretion by DC. However, DEP increased production of TNF, IL-6, and IFN-γ (P < 0.01), IL-12 (P < 0.05), and vascular endothelial growth factor (P < 0.001). In co-stimulation assays of PM-exposed DC and alloreactive CD4+ T cells, both CEP and DEP directed a Th2-like pattern of cytokine production (e.g., enhanced IL-13 and IL-18 and suppressed IFN-γ production). CD4+ T cells were not functionally activated on exposure to either DEP or CEP. Car- and diesel-enriched particles exert a differential effect on DC activation. Our data support the hypothesis that DEP (and to a lesser extent CEP) regulate important functional aspects of human DC, supporting an adjuvant role for this material. PMID:17630318

  13. Active robotic training improves locomotor function in a stroke survivor

    PubMed Central

    2012-01-01

    Background Clinical outcomes after robotic training are often not superior to conventional therapy. One key factor responsible for this is the use of control strategies that provide substantial guidance. This strategy not only leads to a reduction in volitional physical effort, but also interferes with motor relearning. Methods We tested the feasibility of a novel training approach (active robotic training) using a powered gait orthosis (Lokomat) in mitigating post-stroke gait impairments of a 52-year-old male stroke survivor. This gait training paradigm combined patient-cooperative robot-aided walking with a target-tracking task. The training lasted for 4-weeks (12 visits, 3 × per week). The subject’s neuromotor performance and recovery were evaluated using biomechanical, neuromuscular and clinical measures recorded at various time-points (pre-training, post-training, and 6-weeks after training). Results Active robotic training resulted in considerable increase in target-tracking accuracy and reduction in the kinematic variability of ankle trajectory during robot-aided treadmill walking. These improvements also transferred to overground walking as characterized by larger propulsive forces and more symmetric ground reaction forces (GRFs). Training also resulted in improvements in muscle coordination, which resembled patterns observed in healthy controls. These changes were accompanied by a reduction in motor cortical excitability (MCE) of the vastus medialis, medial hamstrings, and gluteus medius muscles during treadmill walking. Importantly, active robotic training resulted in substantial improvements in several standard clinical and functional parameters. These improvements persisted during the follow-up evaluation at 6 weeks. Conclusions The results indicate that active robotic training appears to be a promising way of facilitating gait and physical function in moderately impaired stroke survivors. PMID:22906099

  14. Endothelial RIG-I activation impairs endothelial function

    SciTech Connect

    Asdonk, Tobias; Nickenig, Georg; Zimmer, Sebastian

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer RIG-I activation impairs endothelial function in vivo. Black-Right-Pointing-Pointer RIG-I activation alters HCAEC biology in vitro. Black-Right-Pointing-Pointer EPC function is affected by RIG-I stimulation in vitro. -- Abstract: Background: Endothelial dysfunction is a crucial part of the chronic inflammatory atherosclerotic process and is mediated by innate and acquired immune mechanisms. Recent studies suggest that pattern recognition receptors (PRR) specialized in immunorecognition of nucleic acids may play an important role in endothelial biology in a proatherogenic manner. Here, we analyzed the impact of endothelial retinoic acid inducible gene I (RIG-I) activation upon vascular endothelial biology. Methods and results: Wild type mice were injected intravenously with 32.5 {mu}g of the RIG-ligand 3pRNA (RNA with triphosphate at the 5 Prime end) or polyA control every other day for 7 days. In 3pRNA-treated mice, endothelium-depended vasodilation was significantly impaired, vascular oxidative stress significantly increased and circulating endothelial microparticle (EMP) numbers significantly elevated compared to controls. To gain further insight in RIG-I dependent endothelial biology, cultured human coronary endothelial cells (HCAEC) and endothelial progenitor cells (EPC) were stimulated in vitro with 3pRNA. Both cells types express RIG-I and react with receptor upregulation upon stimulation. Reactive oxygen species (ROS) formation is enhanced in both cell types, whereas apoptosis and proliferation is not significantly affected in HCAEC. Importantly, HCAEC release significant amounts of proinflammatory cytokines in response to RIG-I stimulation. Conclusion: This study shows that activation of the cytoplasmatic nucleic acid receptor RIG-I leads to endothelial dysfunction. RIG-I induced endothelial damage could therefore be an important pathway in atherogenesis.

  15. Dual Function of Phosphoubiquitin in E3 Activation of Parkin.

    PubMed

    Walinda, Erik; Morimoto, Daichi; Sugase, Kenji; Shirakawa, Masahiro

    2016-08-01

    Mutations in the gene encoding parkin, an auto-inhibited E3 ubiquitin ligase that functions in the clearance of damaged mitochondria, are the most common cause of autosomal recessive juvenile Parkinsonism. The mechanism regulating parkin activation remains poorly understood. Here we show, by using isothermal titration calorimetry, solution NMR, and fluorescence spectroscopy, that parkin can bind ubiquitin and phosphomimetic ubiquitin by recognizing the canonical hydrophobic patch and C terminus of ubiquitin. The affinity of parkin for both phosphomimetic and unmodified ubiquitin is markedly enhanced upon removal of the ubiquitin-like (UBL) domain of parkin. This suggests that the agonistic binding of ubiquitin to parkin in trans is counterbalanced by the antagonistic activity of the parkin UBL domain in cis Intriguingly, UBL binding is enthalpy-driven, whereas ubiquitin binding is driven by an increase in the total entropy of the system. These thermodynamic differences are explained by different chemistry in the ubiquitin- and UBL-binding pockets of parkin and, as shown by molecular dynamics simulations, are not a consequence of changes in protein conformational entropy. Indeed, comparison of conformational fluctuations reveals that the RING1-IBR element becomes considerably more rigid upon complex formation. A model of parkin activation is proposed in which E2∼Ub binding triggers large scale diffusional motion of the RING2 domain toward the ubiquitin-stabilized RING1-IBR assembly to complete formation of the active parkin-E2∼Ub transfer complex. Thus, ubiquitin plays a dual role in parkin activation by competing with the inhibitory UBL domain and stabilizing the active form of parkin. PMID:27284007

  16. Activities and Programs That Improve Children’s Executive Functions

    PubMed Central

    Diamond, Adele

    2014-01-01

    Executive functions (EFs; e.g., reasoning, working memory, and self-control) can be improved. Good news indeed, since EFs are critical for school and job success and for mental and physical health. Various activities appear to improve children’s EFs. The best evidence exists for computer-based training, traditional martial arts, and two school curricula. Weaker evidence, though strong enough to pass peer review, exists for aerobics, yoga, mindfulness, and other school curricula. Here I address what can be learned from the research thus far, including that EFs need to be progressively challenged as children improve and that repeated practice is key. Children devote time and effort to activities they love; therefore, EF interventions might use children’s motivation to advantage. Focusing narrowly on EFs or aerobic activity alone appears not to be as efficacious in improving EFs as also addressing children’s emotional, social, and character development (as do martial arts, yoga, and curricula shown to improve EFs). Children with poorer EFs benefit more from training; hence, training might provide them an opportunity to “catch up” with their peers and not be left behind. Remaining questions include how long benefits of EF training last and who benefits most from which activities. PMID:25328287

  17. Moonlighting transcriptional activation function of a fungal sulfur metabolism enzyme

    PubMed Central

    Levati, Elisabetta; Sartini, Sara; Bolchi, Angelo; Ottonello, Simone; Montanini, Barbara

    2016-01-01

    Moonlighting proteins, including metabolic enzymes acting as transcription factors (TF), are present in a variety of organisms but have not been described in higher fungi so far. In a previous genome-wide analysis of the TF repertoire of the plant-symbiotic fungus Tuber melanosporum, we identified various enzymes, including the sulfur-assimilation enzyme phosphoadenosine-phosphosulfate reductase (PAPS-red), as potential transcriptional activators. A functional analysis performed in the yeast Saccharomyces cerevisiae, now demonstrates that a specific variant of this enzyme, PAPS-red A, localizes to the nucleus and is capable of transcriptional activation. TF moonlighting, which is not present in the other enzyme variant (PAPS-red B) encoded by the T. melanosporum genome, relies on a transplantable C-terminal polypeptide containing an alternating hydrophobic/hydrophilic amino acid motif. A similar moonlighting activity was demonstrated for six additional proteins, suggesting that multitasking is a relatively frequent event. PAPS-red A is sulfur-state-responsive and highly expressed, especially in fruitbodies, and likely acts as a recruiter of transcription components involved in S-metabolism gene network activation. PAPS-red B, instead, is expressed at low levels and localizes to a highly methylated and silenced region of the genome, hinting at an evolutionary mechanism based on gene duplication, followed by epigenetic silencing of this non-moonlighting gene variant. PMID:27121330

  18. Dextromethorphan inhibits activations and functions in dendritic cells.

    PubMed

    Chen, Der-Yuan; Song, Pei-Shan; Hong, Jau-Shyong; Chu, Ching-Liang; Pan, I-Horng; Chen, Yi-Ming; Lin, Ching-Hsiung; Lin, Sheng-Hao; Lin, Chi-Chen

    2013-01-01

    Dendritic cells (DCs) play an important role in connecting innate and adaptive immunity. Thus, DCs have been regarded as a major target for the development of immunomodulators. In this study, we examined the effect of dextromethorphan (DXM), a common cough suppressant with a high safety profile, on the activation and function of DCs. In the presence of DXM, the LPS-induced expression of the costimulatory molecules in murine bone marrow-derived dendritic cells (BMDCs) was significantly suppressed. In addition, DXM treatment reduced the production of reactive oxygen species (ROS), proinflammatory cytokines, and chemokines in maturing BMDCs that were activated by LPS. Therefore, DXM abrogated the ability of LPS-stimulated DCs to induce Ag-specific T-cell activation, as determined by their decreased proliferation and IFN- γ secretion in mixed leukocyte cultures. Moreover, the inhibition of LPS-induced MAPK activation and NF- κ B translocation may contribute to the suppressive effect of DXM on BMDCs. Remarkably, DXM decreased the LPS-induced surface expression of CD80, CD83, and HLA-DR and the secretion of IL-6 and IL-12 in human monocyte-derived dendritic cells (MDDCs). These findings provide a new insight into the impact of DXM treatment on DCs and suggest that DXM has the potential to be used in treating DC-related acute and chronic diseases. PMID:23781253

  19. Moonlighting transcriptional activation function of a fungal sulfur metabolism enzyme.

    PubMed

    Levati, Elisabetta; Sartini, Sara; Bolchi, Angelo; Ottonello, Simone; Montanini, Barbara

    2016-01-01

    Moonlighting proteins, including metabolic enzymes acting as transcription factors (TF), are present in a variety of organisms but have not been described in higher fungi so far. In a previous genome-wide analysis of the TF repertoire of the plant-symbiotic fungus Tuber melanosporum, we identified various enzymes, including the sulfur-assimilation enzyme phosphoadenosine-phosphosulfate reductase (PAPS-red), as potential transcriptional activators. A functional analysis performed in the yeast Saccharomyces cerevisiae, now demonstrates that a specific variant of this enzyme, PAPS-red A, localizes to the nucleus and is capable of transcriptional activation. TF moonlighting, which is not present in the other enzyme variant (PAPS-red B) encoded by the T. melanosporum genome, relies on a transplantable C-terminal polypeptide containing an alternating hydrophobic/hydrophilic amino acid motif. A similar moonlighting activity was demonstrated for six additional proteins, suggesting that multitasking is a relatively frequent event. PAPS-red A is sulfur-state-responsive and highly expressed, especially in fruitbodies, and likely acts as a recruiter of transcription components involved in S-metabolism gene network activation. PAPS-red B, instead, is expressed at low levels and localizes to a highly methylated and silenced region of the genome, hinting at an evolutionary mechanism based on gene duplication, followed by epigenetic silencing of this non-moonlighting gene variant. PMID:27121330

  20. Predicting activity approach based on new atoms similarity kernel function.

    PubMed

    Abu El-Atta, Ahmed H; Moussa, M I; Hassanien, Aboul Ella

    2015-07-01

    Drug design is a high cost and long term process. To reduce time and costs for drugs discoveries, new techniques are needed. Chemoinformatics field implements the informational techniques and computer science like machine learning and graph theory to discover the chemical compounds properties, such as toxicity or biological activity. This is done through analyzing their molecular structure (molecular graph). To overcome this problem there is an increasing need for algorithms to analyze and classify graph data to predict the activity of molecules. Kernels methods provide a powerful framework which combines machine learning with graph theory techniques. These kernels methods have led to impressive performance results in many several chemoinformatics problems like biological activity prediction. This paper presents a new approach based on kernel functions to solve activity prediction problem for chemical compounds. First we encode all atoms depending on their neighbors then we use these codes to find a relationship between those atoms each other. Then we use relation between different atoms to find similarity between chemical compounds. The proposed approach was compared with many other classification methods and the results show competitive accuracy with these methods. PMID:26117822

  1. Antihelminthic niclosamide modulates dendritic cells activation and function.

    PubMed

    Wu, Chieh-Shan; Li, Yi-Rong; Chen, Jeremy J W; Chen, Ying-Che; Chu, Chiang-Liang; Pan, I-Hong; Wu, Yu-Shan; Lin, Chi-Chen

    2014-01-01

    Dendritic cells (DCs) link the sensing of the environment by the innate immune system to the initiation of adaptive immune responses. Accordingly, DCs are considered to be a major target in the development of immunomodulating compounds. In this study, the effect of niclosamide, a Food and Drug Administration-approved antihelminthic drug, on the activation of lipopolysaccharide (LPS)-stimulated murine bone marrow-derived DCs was examined. Our experimental results show that niclosamide reduced the pro-inflammatory cytokine and chemokine expression of LPS-activated DCs. In addition, niclosamide also affected the expression of MHC and costimulatory molecules and influenced the ability of the cells to take up antigens. Therefore, in mixed cell cultures composed of syngeneic OVA-specific T cells and DCs, niclosamide-treated DCs showed a decreased ability to stimulate T cell proliferation and IFN-γ production. Furthermore, intravenous injection of niclosamide also attenuated contact hypersensitivity (CHS) in mice during sensitization with 2,4-dinitro-1-fluorobenzene. Blocking the LPS-induced activation of MAPK-ERK, JNK and NF-κB may contribute to the inhibitory effect of niclosamide on DC activation. Collectively, our findings suggest that niclosamide can manipulate the function of DCs. These results provide new insight into the immunopharmacological role of niclosamide and suggest that it may be useful for the treatment of chronic inflammatory disorders or DC-mediated autoimmune diseases. PMID:24561310

  2. Dextromethorphan Inhibits Activations and Functions in Dendritic Cells

    PubMed Central

    Chen, Der-Yuan; Song, Pei-Shan; Hong, Jau-Shyong; Chu, Ching-Liang; Pan, I-Horng; Chen, Yi-Ming; Lin, Ching-Hsiung; Lin, Sheng-Hao; Lin, Chi-Chen

    2013-01-01

    Dendritic cells (DCs) play an important role in connecting innate and adaptive immunity. Thus, DCs have been regarded as a major target for the development of immunomodulators. In this study, we examined the effect of dextromethorphan (DXM), a common cough suppressant with a high safety profile, on the activation and function of DCs. In the presence of DXM, the LPS-induced expression of the costimulatory molecules in murine bone marrow-derived dendritic cells (BMDCs) was significantly suppressed. In addition, DXM treatment reduced the production of reactive oxygen species (ROS), proinflammatory cytokines, and chemokines in maturing BMDCs that were activated by LPS. Therefore, DXM abrogated the ability of LPS-stimulated DCs to induce Ag-specific T-cell activation, as determined by their decreased proliferation and IFN-γ secretion in mixed leukocyte cultures. Moreover, the inhibition of LPS-induced MAPK activation and NF-κB translocation may contribute to the suppressive effect of DXM on BMDCs. Remarkably, DXM decreased the LPS-induced surface expression of CD80, CD83, and HLA-DR and the secretion of IL-6 and IL-12 in human monocyte-derived dendritic cells (MDDCs). These findings provide a new insight into the impact of DXM treatment on DCs and suggest that DXM has the potential to be used in treating DC-related acute and chronic diseases. PMID:23781253

  3. Inferring deep-brain activity from cortical activity using functional near-infrared spectroscopy

    PubMed Central

    Liu, Ning; Cui, Xu; Bryant, Daniel M.; Glover, Gary H.; Reiss, Allan L.

    2015-01-01

    Functional near-infrared spectroscopy (fNIRS) is an increasingly popular technology for studying brain function because it is non-invasive, non-irradiating and relatively inexpensive. Further, fNIRS potentially allows measurement of hemodynamic activity with high temporal resolution (milliseconds) and in naturalistic settings. However, in comparison with other imaging modalities, namely fMRI, fNIRS has a significant drawback: limited sensitivity to hemodynamic changes in deep-brain regions. To overcome this limitation, we developed a computational method to infer deep-brain activity using fNIRS measurements of cortical activity. Using simultaneous fNIRS and fMRI, we measured brain activity in 17 participants as they completed three cognitive tasks. A support vector regression (SVR) learning algorithm was used to predict activity in twelve deep-brain regions using information from surface fNIRS measurements. We compared these predictions against actual fMRI-measured activity using Pearson’s correlation to quantify prediction performance. To provide a benchmark for comparison, we also used fMRI measurements of cortical activity to infer deep-brain activity. When using fMRI-measured activity from the entire cortex, we were able to predict deep-brain activity in the fusiform cortex with an average correlation coefficient of 0.80 and in all deep-brain regions with an average correlation coefficient of 0.67. The top 15% of predictions using fNIRS signal achieved an accuracy of 0.7. To our knowledge, this study is the first to investigate the feasibility of using cortical activity to infer deep-brain activity. This new method has the potential to extend fNIRS applications in cognitive and clinical neuroscience research. PMID:25798327

  4. Physical activity, functional ability, and disease activity in children and adolescents with juvenile idiopathic arthritis.

    PubMed

    Gueddari, S; Amine, B; Rostom, S; Badri, D; Mawani, N; Ezzahri, M; Moussa, F; Shyen, S; Abouqal, R; Chkirat, B; Hajjaj-Hassouni, N

    2014-09-01

    Juvenile idiopathic arthritis (JIA) is a chronic condition known to cause pain-related complications in youth and affect children's physical functioning. There is no data in Arabic children with JIA about the impact of illness upon their physical activity. The objective of this study was to explore physical activity (PA) in children and adolescents with JIA compared with a healthy population and to examine associations between PA, functional ability, and disease activity. Our study included patients with JIA and group control aged between 8 and 17 years. The diagnosis was used according to the International League of Association of Rheumatology (ILAR) criteria 2001. Sociodemographic data and clinical features were collected. Physical activity level and energy expenditure were assessed with a 1-day activity diary and the metabolic equivalent (MET), respectively. Functional ability was assessed with the Moroccan version of the Childhood Health Assessment Questionnaire (CHAQ). Disease activity was measured using the Juvenile Arthritis Disease Activity Score (JADAS). Fifty patients and 50 controls were included (mean ± SD age 11.5 ± 3.3 and 10.5 ± 3.8 years, respectively; p = 0.49) with masculine predominance n = 30 (59.6 %) and n = 29 (58 %), respectively (p = 0.26). The median disease duration was 4.3 years (2-5). The median analog scale (VAS) pain was 20 (10-40). Fourteen patients (28 %) had an active disease. Patient population consisted in majority of oligoarticular arthritis (28 %), 14 patients. The mean of energy expenditure and physical activity were significantly higher in the JIA group. The JIA group spent more time in bed and less time on moderate to vigorous PA than the control group. There is no significant relationship between PA, functional ability, and disease activity. Our study suggests that children and adolescents with JIA have low PA levels and are at risk of losing the benefits of PA. Low PA is not related to

  5. Transition metal activation and functionalization of carbon-hydrogen bonds

    SciTech Connect

    Jones, W.D.

    1992-06-01

    We are investigating the fundamental thermodynamic and kinetic factors that influence carbon-hydrogen bond activation at homogeneous transition metal centers and the conversion of hydrocarbons into functionalized products of potential use to the chemical industry. Advances have been made in both understanding the interactions of hydrocarbons with metals and in the functionalization of hydrocarbons. We have found that RhCl(PR{sub 3}){sub 2}(CNR) complexes can catalyze the insertion of isonitriles into the C-H bonds or arenes upon photolysis. The mechanism of these reactions was found to proceed by way of initial phosphine dissociation, followed by C-H activation and isonitrile insertion. We have also examined reactions of a series of arenes with (C{sub 5}Me{sub 5})Rh(PMe{sub 3})PhH and begun to map out the kinetic and thermodynamic preferences for arene coordination. The effects of resonance, specifically the differences in the Hueckel energies of the bound vs free ligand, are now believed to fully control the C-H activation/{eta}{sup 2}-coordination equilibria. We have begun to examine the reactions of rhodium isonitrile pyrazolylborates for alkane and arene C-H bond activation. A new, labile, carbodiimide precursor has been developed for these studies. We have completed studies of the reactions of (C{sub 5}Me{sub 5})Rh(PMe{sub 3})H{sub 2} with D{sub 2} and PMe{sub 3} that indicate that both {eta}{sup 5} {yields} {eta}{sup 3} ring slippage and metal to ring hydride migration occur more facilely than thermal reductive elimination of H{sub 2}. We have examined the reactions of heterocycles with (C{sub 5}Me{sub 5})Rh(PMe{sub 3})PhH and found that pyrrole and furan undergo C-H or N-H activation. Thiophene, however, undergoes C-S bond oxidative addition, and the mechanism of activation has been shown to proceed through sulfur coordination prior to C-S insertion.

  6. Structural aspects of calcium-release activated calcium channel function

    PubMed Central

    Stathopulos, Peter B; Ikura, Mitsuhiko

    2013-01-01

    Store-operated calcium (Ca2+) entry is the process by which molecules located on the endo/sarcoplasmic reticulum (ER/SR) respond to decreased luminal Ca2+ levels by signaling Ca2+ release activated Ca2+ channels (CRAC) channels to open on the plasma membrane (PM). This activation of PM CRAC channels provides a sustained cytosolic Ca2+ elevation associated with myriad physiological processes. The identities of the molecules which mediate SOCE include stromal interaction molecules (STIMs), functioning as the ER/SR luminal Ca2+ sensors, and Orai proteins, forming the PM CRAC channels. This review examines the current available high-resolution structural information on these CRAC molecular components with particular focus on the solution structures of the luminal STIM Ca2+ sensing domains, the crystal structures of cytosolic STIM fragments, a closed Orai hexameric crystal structure and a structure of an Orai1 N-terminal fragment in complex with calmodulin. The accessible structural data are discussed in terms of potential mechanisms of action and cohesiveness with functional observations. PMID:24213636

  7. Functional activity of human hepatocytes under traumatic disease.

    PubMed

    Kudryavtseva, M V; Stein, G I; Shashkov, B V; Kudryavtsev, B N

    1998-03-01

    Absorption and fluorescent cytophotometry techniques were applied to studies of RNA as well as of total glycogen and its fractions as the parameters of functional activity of the hepatocytes in patients with severe mechanical trauma, both with and without autointoxication (AI). Slides were stained with gallocyanine-chromalums to determine the RNA content and were processed by the fluorescent PAS-reaction for the glycogen content. To trace the dynamics of RNA and glycogen contents in the liver punction biopsies were done in the same patients. A quick increase in the RNA content took place in both groups of patients at the first period (within the first 3 days) of traumatic disease. At the second period of disease the hepatocyte RNA content in patients without AI was found to decrease up to the initial level whereas that in patients with AI increased on the average by 36% of the initial values. The total glycogen content in hepatocytes of all the patients changed insignificantly in the course of disease but its labile fraction in patients with AI decreased to 70% of the total. The increase of hepatocyte synthetic activity and the maintenance of the high glycogen level are indicative of the large compensatory potential of the liver that enables it to carry an intensive functional load under AI conditions. PMID:9570502

  8. Steroid receptor RNA activator: Biologic function and role in disease.

    PubMed

    Liu, Chan; Wu, Hong-Tao; Zhu, Neng; Shi, Ya-Ning; Liu, Zheng; Ao, Bao-Xue; Liao, Duan-Fang; Zheng, Xi-Long; Qin, Li

    2016-08-01

    Steroid receptor RNA activator (SRA) is a type of long noncoding RNA (lncRNA) which coordinates the functions of various transcription factors, enhances steroid receptor-dependent gene expression, and also serves as a distinct scaffold. The novel, profound and expanded roles of SRA are emerging in critical aspects of coactivation of nuclear receptors (NRs). As a nuclear receptor coactivator, SRA can coactivate androgen receptor (AR), estrogen receptor α (ERα), ERβ, progesterone receptor (PR), glucocorticoid receptor (GR), thyroid hormone receptor and retinoic acid receptor (RAR). Although SRA is one of the least well-understood molecules, increasing studies have revealed that SRA plays a key role in both biological processes, such as myogenesis and steroidogenesis, and pathological changes, including obesity, cardiomyopathy, and tumorigenesis. Furthermore, the SRA-related signaling pathways, such as the mitogen-activated protein kinase (p38 MAPK), Notch and tumor necrosis factor α (TNFα) pathways, play critical roles in the pathogenesis of estrogen-dependent breast cancers. In addition, the most recent data demonstrates that SRA expression may serve as a new prognostic marker in patients with ER-positive breast cancer. Thus, elucidating the molecular mechanisms underlying SRA-mediated functions is important to develop proper novel strategies to target SRA in the diagnosis and treatment of human diseases. PMID:27282881

  9. Active chemisorption sites in functionalized ionic liquids for carbon capture.

    PubMed

    Cui, Guokai; Wang, Jianji; Zhang, Suojiang

    2016-07-25

    Development of novel technologies for the efficient and reversible capture of CO2 is highly desired. In the last decade, CO2 capture using ionic liquids has attracted intensive attention from both academia and industry, and has been recognized as a very promising technology. Recently, a new approach has been developed for highly efficient capture of CO2 by site-containing ionic liquids through chemical interaction. This perspective review focuses on the recent advances in the chemical absorption of CO2 using site-containing ionic liquids, such as amino-based ionic liquids, azolate ionic liquids, phenolate ionic liquids, dual-functionalized ionic liquids, pyridine-containing ionic liquids and so on. Other site-containing liquid absorbents such as amine-based solutions, switchable solvents, and functionalized ionic liquid-amine blends are also investigated. Strategies have been discussed for how to activate the existent reactive sites and develop novel reactive sites by physical and chemical methods to enhance CO2 absorption capacity and reduce absorption enthalpy. The carbon capture mechanisms of these site-containing liquid absorbents are also presented. Particular attention has been paid to the latest progress in CO2 capture in multiple-site interactions by amino-free anion-functionalized ionic liquids. In the last section, future directions and prospects for carbon capture by site-containing ionic liquids are outlined. PMID:27243042

  10. Vinpocetine modulates metabolic activity and function during retinal ischemia.

    PubMed

    Nivison-Smith, Lisa; O'Brien, Brendan J; Truong, Mai; Guo, Cindy X; Kalloniatis, Michael; Acosta, Monica L

    2015-05-01

    Vinpocetine protects against a range of degenerative conditions and insults of the central nervous system via multiple modes of action. Little is known, however, of its effects on metabolism. This may be highly relevant, as vinpocetine is highly protective against ischemia, a process that inhibits normal metabolic function. This study uses the ischemic retina as a model to characterize vinpocetine's effects on metabolism. Vinpocetine reduced the metabolic demand of the retina following ex vivo hypoxia and ischemia to normal levels based on lactate dehydrogenase activity. Vinpocetine delivered similar effects in an in vivo model of retinal ischemia-reperfusion, possibly through increasing glucose availability. Vinpocetine's effects on glucose also appeared to improve glutamate homeostasis in ischemic Müller cells. Other actions of vinpocetine following ischemia-reperfusion, such as reduced cell death and improved retinal function, were possibly a combination of the drug's actions on metabolism and other retinal pathways. Vinpocetine's metabolic effects appeared independent of its other known actions in ischemia, as it recovered retinal function in a separate metabolic model where the glutamate-to-glutamine metabolic pathway was inhibited in Müller cells. The results of this study indicate that vinpocetine mediates ischemic damage partly through altered metabolism and has potential beneficial effects as a treatment for ischemia of neuronal tissues. PMID:25696811

  11. Functional role of lipid rafts in CD20 activity?

    PubMed

    Janas, Eva; Priest, Richard; Malhotra, Rajneesh

    2005-01-01

    CD20 is a B-lymphocyte-specific integral membrane protein, implicated in the regulation of transmembrane calcium conductance, cell-cycle progression and B-lymphocyte proliferation. CD20 is proposed to function as a SOCC (store-operated calcium channel). SOCCs are activated by receptor-stimulated calcium depletion of intracellular stores. Sustained calcium conductivity across the plasma membrane mediated by SOCC activity is required for long-term calcium-dependent processes, such as transcriptional control and gene expression. Cross-linking of CD20 by antibodies (e.g. Rituxan) has been reported to induce a rapid redistribution of CD20 into specialized microdomains at the plasma membrane, known as lipid rafts. Recruitment of CD20 into lipid rafts and its homo-oligomerization are suggested to be crucial for CD20 activity and regulation. This review outlines recent biochemical studies characterizing the role of CD20 in calcium signalling in B-lymphocytes and evaluates an engagement of lipid rafts in the regulation of CD20-mediated calcium conductivity. PMID:15649140

  12. Neurosteroid Structure-Activity Relationships for Functional Activation of Extrasynaptic δGABA(A) Receptors.

    PubMed

    Carver, Chase Matthew; Reddy, Doodipala Samba

    2016-04-01

    Synaptic GABAA receptors are primary mediators of rapid inhibition in the brain and play a key role in the pathophysiology of epilepsy and other neurologic disorders. The δ-subunit GABAA receptors are expressed extrasynaptically in the dentate gyrus and contribute to tonic inhibition, promoting network shunting as well as reducing seizure susceptibility. However, the neurosteroid structure-function relationship at δGABA(A) receptors within the native hippocampus neurons remains unclear. Here we report a structure-activity relationship for neurosteroid modulation of extrasynaptic GABAA receptor-mediated tonic inhibition in the murine dentate gyrus granule cells. We recorded neurosteroid allosteric potentiation of GABA as well as direct activation of tonic currents using a wide array of natural and synthetic neurosteroids. Our results shows that, for all neurosteroids, the C3α-OH group remains obligatory for extrasynaptic receptor functional activity, as C3β-OH epimers were inactive in activating tonic currents. Allopregnanolone and related pregnane analogs exhibited the highest potency and maximal efficacy in promoting tonic currents. Alterations at the C17 or C20 region of the neurosteroid molecule drastically altered the transduction kinetics of tonic current activation. The androstane analogs had the weakest modulatory response among the analogs tested. Neurosteroid potentiation of tonic currents was completely (approximately 95%) diminished in granule cells from δ-knockout mice, suggesting that δ-subunit receptors are essential for neurosteroid activity. The neurosteroid sensitivity of δGABA(A) receptors was confirmed at the systems level using a 6-Hz seizure test. A consensus neurosteroid pharmacophore model at extrasynaptic δGABA(A) receptors is proposed based on a structure-activity relationship for activation of tonic current and seizure protection. PMID:26857959

  13. Functional Anatomy of T Cell Activation and Synapse Formation

    PubMed Central

    Fooksman, David R.; Vardhana, Santosh; Vasiliver-Shamis, Gaia; Liese, Jan; Blair, David; Waite, Janelle; Sacristán, Catarina; Victora, Gabriel; Zanin-Zhorov, Alexandra; Dustin, Michael L.

    2010-01-01

    T cell activation and function require a structured engagement of antigen-presenting cells. These cell contacts are characterized by two distinct dynamics in vivo: transient contacts resulting from promigratory junctions called immunological kinapses or prolonged contacts from stable junctions called immunological synapses. Kinapses operate in the steady state to allow referencing to self-peptide-MHC (pMHC) and searching for pathogen-derived pMHC. Synapses are induced by T cell receptor (TCR) interactions with agonist pMHC under specific conditions and correlate with robust immune responses that generate effector and memory T cells. High-resolution imaging has revealed that the synapse is highly coordinated, integrating cell adhesion, TCR recognition of pMHC complexes, and an array of activating and inhibitory ligands to promote or prevent T cell signaling. In this review, we examine the molecular components, geometry, and timing underlying kinapses and synapses. We integrate recent molecular and physiological data to provide a synthesis and suggest ways forward. PMID:19968559

  14. Estimation of Evapotranspiration as a function of Photosynthetic Active Radiation

    NASA Astrophysics Data System (ADS)

    Wesley, E.; Migliaccio, K.; Judge, J.

    2012-12-01

    The purpose of this research project is to more accurately measure the water balance and energy movements to properly allocate water resources at the Snapper Creek Site in Miami-Dade County, FL, by quantifying and estimating evapotranspiration (ET). ET is generally estimated using weather based equations, this project focused on estimating ET as a function of Photosynthetic Active Radiation (PAR). The project objectives were first to compose a function of PAR and calculated coefficients that can accurately estimate daily ET values with the least amount of variables used in its estimation equation, and second, to compare the newly identified ET estimation PAR function to TURC estimations, in comparison to our actual Eddy Covariance (EC) ET data and determine the differences in ET values. PAR, volumetric water content (VWC), and temperature (T) data were quality checked and used in developing singular and multiple variable regression models fit with SigmaPlot software. Fifteen different ET estimation equations were evaluated against EC ET and TURC estimated ET using R2 and slope factors. The selected equation that best estimated EC ET was cross validated using a 5 month data set; its daily and monthly ET values and sums were compared against the commonly used TURC equation. Using a multiple variable regression model, an equation with three variables (i.e., VWC, T, and PAR) was identified that best fit EC ET daily data. However, a regression was also found that used only PAR and provided ET predictions of similar accuracy. The PAR based regression model predicted daily EC ET more accurately than the traditional TURC method. Using only PAR to estimate ET reduces the input variables as compared to using the TURC model which requires T and solar radiation. Thus, not only is the PAR approach more accurate but also more cost effective. The PAR-based ET estimation equation derived in this study may be over fit considering only 5 months of data were used to produce the PAR

  15. Site-specific monoubiquitination activates Ras by impeding GTPase-activating protein function

    PubMed Central

    Hobbs, G Aaron; Gunawardena, Harsha P; Baker, Rachael; Campbell, Sharon L

    2013-01-01

    KRas has recently been shown to be activated by monoubiquitination (mUb). Similar to oncogenic mutations, mUb of Ras at position 147 activates Ras by causing a defect in GTPase activating protein (GAP) function. To characterize the mechanism by which mUb impairs GAP-mediated downregulation of Ras, we made various modifications at position 147 of Ras and examined the impact on Ras sensitivity to GAP function. Whereas small modifications (iodoacetamide and glutathione) at position 147 of Ras do not affect GAP-mediated hydrolysis, ligation of Ras to UbG76C (native linker), UbX77C (one residue longer), and PDZ2 (with a native ubiquitin linker) was defective in GAP-mediated GTP hydrolysis. However, restoration of GAP activity was observed for Ras modified with the PDZ2 domain containing a shorter and stiffer linker region than ubiquitin. Therefore, the properties of the linker region dictate whether modification affects GAP-mediated hydrolysis, and our data indicate that the GAP defect requires a minimum linker length of 7 to 8 residues. PMID:24030601

  16. Strategies to reduce dendritic cell activation through functional biomaterial design

    PubMed Central

    Hume, Patrick S.; He, Jing; Haskins, Kathryn; Anseth, Kristi S.

    2012-01-01

    Dendritic cells play a key role in determining adaptive immunity, and there is growing interest in characterizing and manipulating the interactions between dendritic cells and biomaterial surfaces. Contact with several common biomaterials can induce the maturation of immature dendritic cells, but substrates that reduce dendritic cell maturation are of particular interest within the field of cell-based therapeutics where the goal is to reduce the immune response to cell-laden material carriers. In this study, we use a materials-based strategy to functionalize poly(ethylene glycol) hydrogels with immobilized immunosuppressive factors (TGF-β1 and IL-10) to reduce the maturation of immature dendritic cells. TGF-β1 and IL-10 are commonly employed as soluble factors to program dendritic cells in vitro, and we demonstrate that these proteins retain bioactivity towards dendritic cells when immobilized on hydrogel surfaces. Following stimulation with lipopolysaccharide (LPS) and/or cytokines, a dendritic cell line interacting with the surfaces of immunosuppressive hydrogels expressed reduced markers of maturation, including IL-12 and MHCII. The bioactivity of these immunomodulatory hydrogels was further confirmed with primary bone marrow dendritic cells (BMDCs) isolated from non-obese diabetic (NOD) mice, as quantified by a decrease in activation markers and a significantly reduced capacity to activate T cells. Furthermore, by introducing a second signal to promote BMDC-material interactions combined with the presentation of tolerizing signals, the mulitfunctional PEG hydrogels were found to further increase signaling towards BMDCs, as evidenced by greater reductions in maturation markers. PMID:22361099

  17. SOFIA Telescope Functional Integration and Performance Test Activities

    NASA Astrophysics Data System (ADS)

    Waddell, P.; Haas, M. R.; Dunham, E. W.; Bremers, E.; Harms, F.; Keas, P. J.; Lattner, K.; Lillienthal, D.; Meyer, A. W.; Wolf, J.

    2004-12-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a 2.7-m telescope installed in a Boeing 747SP. Collaborators developing the SOFIA telescope and observatory completed an intense period of activation between mid-June and mid-August, 2004. The integration activities included a preliminary modal survey; alignment of the Wide Field, Fine Field, and Focal Plane Imagers; installation of the secondary and tertiary mirrors; and their alignment relative to the primary mirror. Once these preliminaries were completed, SOFIA was rolled out of its hangar for a series of ground-based, on-sky tests using HIPO, the first science instrument to be installed on the telescope. First light was achieved observing Polaris on August 18, 2004. The on-sky test period encompassed 12 nights in late August and early September and included telescope step function response and first-order pointing control, image quality and optical tracking stability measurements, evaluation of the tracking imagers, gravity deformation studies, gyro alignment and bias rate measurement and correction, and performance tests of the secondary mirror Focus Centering Mechanism and Tilt Chopping Mechanism. It also included tests of the complete telescope command set, including Image Quality Compensation (IQC), quasi-static Flexible Body Compensation (FBC), reference frame transformations and trajectory estimation algorithms. This poster summarizes the results and describes the expected performance of SOFIA at the start of science observations. SOFIA is jointly funded by NASA and DLR and is managed by USRA and DSI. The successful, on-schedule completion of these tests involved close coordination by these three parties, CSA Engineering, CSEM, Kayser-Threde, L-3 Communications, Lowell Observatory, MAN-Technologies, Orbital Sciences, and others.

  18. Mastering tricyclic ring systems for desirable functional cannabinoid activity

    PubMed Central

    Petrov, Ravil R.; Knight, Lindsay; Chen, Shao-Rui; Wager-Miller, Jim; McDaniel, Steven W.; Diaz, Fanny; Barth, Francis; Pan, Hui-Lin; Mackie, Ken; Cavasotto, Claudio N.; Diaz, Philippe

    2013-01-01

    There is growing interest in using cannabinoid receptor 2 (CB2) agonists for the treatment of neuropathic pain and other indications. In continuation of our ongoing program aiming for the development of new small molecule cannabinoid ligands, we have synthesized a novel series of carbazole and γ-carboline derivatives. The affinities of the newly synthesized compounds were determined by a competitive radioligand displacement assay for human CB2 cannabinoid receptor and rat CB1 cannabinoid receptor. Functional activity and selectivity at human CB1 and CB2 receptors were characterized using receptor internalization and [35S]GTP-γ-S assays. The structure-activity relationship and optimization studies of the carbazole series have led to the discovery of a non-selective CB1 and CB2 agonist, compound 4. Our subsequent research efforts to increase CB2 selectivity of this lead compound have led to the discovery of CB2 selective compound 64, which robustly internalized CB2 receptors. Compound 64 had potent inhibitory effects on pain hypersensitivity in a rat model of neuropathic pain. Other potent and CB2 receptor–selective compounds, including compounds 63 and 68, and a selective CB1 agonist, compound 74 were also discovered. In addition, we identified the CB2 ligand 35 which failed to promote CB2 receptor internalization and inhibited compound CP55,940-induced CB2 internalization despite a high CB2 receptor affinity. The present study provides novel tricyclic series as a starting point for further investigations of CB2 pharmacology and pain treatment. PMID:24125850

  19. Activated spinal cord ependymal stem cells rescue neurological function.

    PubMed

    Moreno-Manzano, Victoria; Rodríguez-Jiménez, Francisco Javier; García-Roselló, Mireia; Laínez, Sergio; Erceg, Slaven; Calvo, Maria Teresa; Ronaghi, Mohammad; Lloret, Maria; Planells-Cases, Rosa; Sánchez-Puelles, Jose María; Stojkovic, Miodrag

    2009-03-01

    Spinal cord injury (SCI) is a major cause of paralysis. Currently, there are no effective therapies to reverse this disabling condition. The presence of ependymal stem/progenitor cells (epSPCs) in the adult spinal cord suggests that endogenous stem cell-associated mechanisms might be exploited to repair spinal cord lesions. epSPC cells that proliferate after SCI are recruited by the injured zone, and can be modulated by innate and adaptive immune responses. Here we demonstrate that when epSPCs are cultured from rats with a SCI (ependymal stem/progenitor cells injury [epSPCi]), these cells proliferate 10 times faster in vitro than epSPC derived from control animals and display enhanced self renewal. Genetic profile analysis revealed an important influence of inflammation on signaling pathways in epSPCi after injury, including the upregulation of Jak/Stat and mitogen activated protein kinase pathways. Although neurospheres derived from either epSPCs or epSPCi differentiated efficiently to oligodendrocites and functional spinal motoneurons, a better yield of differentiated cells was consistently obtained from epSPCi cultures. Acute transplantation of undifferentiated epSPCi or the resulting oligodendrocyte precursor cells into a rat model of severe spinal cord contusion produced a significant recovery of motor activity 1 week after injury. These transplanted cells migrated long distances from the rostral and caudal regions of the transplant to the neurofilament-labeled axons in and around the lesion zone. Our findings demonstrate that modulation of endogenous epSPCs represents a viable cell-based strategy for restoring neuronal dysfunction in patients with spinal cord damage. PMID:19259940

  20. Real-time segmentation by Active Geometric Functions.

    PubMed

    Duan, Qi; Angelini, Elsa D; Laine, Andrew F

    2010-06-01

    Recent advances in 4D imaging and real-time imaging provide image data with clinically important cardiac dynamic information at high spatial or temporal resolution. However, the enormous amount of information contained in these data has also raised a challenge for traditional image analysis algorithms in terms of efficiency. In this paper, a novel deformable model framework, Active Geometric Functions (AGF), is introduced to tackle the real-time segmentation problem. As an implicit framework paralleling to level-set, AGF has mathematical advantages in efficiency and computational complexity as well as several flexible feature similar to level-set framework. AGF is demonstrated in two cardiac applications: endocardial segmentation in 4D ultrasound and myocardial segmentation in MRI with super high temporal resolution. In both applications, AGF can perform real-time segmentation in several milliseconds per frame, which was less than the acquisition time per frame. Segmentation results are compared to manual tracing with comparable performance with inter-observer variability. The ability of such real-time segmentation will not only facilitate the diagnoses and workflow, but also enables novel applications such as interventional guidance and interactive image acquisition with online segmentation. PMID:19800708

  1. Functional Activation of the Flagellar Type III Secretion Export Apparatus

    PubMed Central

    Phillips, Andrew M.; Calvo, Rebecca A.; Kearns, Daniel B.

    2015-01-01

    Flagella are assembled sequentially from the inside-out with morphogenetic checkpoints that enforce the temporal order of subunit addition. Here we show that flagellar basal bodies fail to proceed to hook assembly at high frequency in the absence of the monotopic protein SwrB of Bacillus subtilis. Genetic suppressor analysis indicates that SwrB activates the flagellar type III secretion export apparatus by the membrane protein FliP. Furthermore, mutants defective in the flagellar C-ring phenocopy the absence of SwrB for reduced hook frequency and C-ring defects may be bypassed either by SwrB overexpression or by a gain-of-function allele in the polymerization domain of FliG. We conclude that SwrB enhances the probability that the flagellar basal body adopts a conformation proficient for secretion to ensure that rod and hook subunits are not secreted in the absence of a suitable platform on which to polymerize. PMID:26244495

  2. Expression of functionally active sialylated human erythropoietin in plants

    PubMed Central

    Jez, Jakub; Castilho, Alexandra; Grass, Josephine; Vorauer-Uhl, Karola; Sterovsky, Thomas; Altmann, Friedrich; Steinkellner, Herta

    2013-01-01

    Recombinant human erythropoietin (rhEPO), a glycohormone, is one of the leading biopharmaceutical products. The production of rhEPO is currently restricted to mammalian cell expression systems because of rhEPO's highly complex glycosylation pattern, which is a major determinant for drug-efficacy. Here we evaluate the ability of plants to produce different glycoforms of rhEPO. cDNA constructs were delivered to Nicotiana benthamiana (N. benthamiana) and transiently expressed by a viral based expression system. Expression levels up to 85 mg rhEPO/kg fresh leaf material were achieved. Moreover, co-expression of rhEPO with six mammalian genes required for in planta protein sialylation resulted in the synthesis of rhEPO decorated mainly with bisialylated N-glycans (NaNa), the most abundant glycoform of circulating hEPO in patients with anemia. A newly established peptide tag (ELDKWA) fused to hEPO was particularly well-suited for purification of the recombinant hormone based on immunoaffinity. Subsequent lectin chromatography allowed enrichment of exclusively sialylated rhEPO. All plant-derived glycoforms exhibited high biological activity as determined by a cell-based receptor-binding assay. The generation of rhEPO carrying largely homogeneous glycosylation profiles (GnGnXF, GnGn, and NaNa) will facilitate further investigation of functionalities with potential implications for medical applications. PMID:23325672

  3. Molecularly imprinted hydrogels as functional active packaging materials.

    PubMed

    Benito-Peña, Elena; González-Vallejo, Victoria; Rico-Yuste, Alberto; Barbosa-Pereira, Letricia; Cruz, José Manuel; Bilbao, Ainhoa; Alvarez-Lorenzo, Carmen; Moreno-Bondi, María Cruz

    2016-01-01

    This paper describes the synthesis of novel molecularly imprinted hydrogels (MIHs) for the natural antioxidant ferulic acid (FA), and their application as packaging materials to prevent lipid oxidation of butter. A library of MIHs was synthesized using a synthetic surrogate of FA, 3-(4-hydroxy-3-methoxyphenyl)propionic acid (HFA), as template molecule, ethyleneglycol dimethacrylate (EDMA) as cross-linker, and 1-allylpiperazine (1-ALPP) or 2-(dimethylamino)ethyl methacrylate (DMAEMA), in combination with 2-hydroxyethyl methacrylate (HEMA) as functional monomers, at different molar concentrations. The DMAEMA/HEMA-based MIHs showed the greatest FA loading capacity, while the 1-ALLP/HEMA-based polymers exhibited the highest imprinting effect. During cold storage, FA-loaded MIHs protected butter from oxidation and led to TBARs values that were approximately half those of butter stored without protection and 25% less than those recorded for butter covered with hydrogels without FA, potentially extending the shelf life of butter. Active packaging is a new field of application for MIHs with great potential in the food industry. PMID:26213001

  4. Functional characterization of alpha-synuclein protein with antimicrobial activity.

    PubMed

    Park, Seong-Cheol; Moon, Jeong Chan; Shin, Su Young; Son, Hyosuk; Jung, Young Jun; Kim, Nam-Hong; Kim, Young-Min; Jang, Mi-Kyeong; Lee, Jung Ro

    2016-09-16

    Alpha-synuclein (α-Syn), a small (14 kDa) protein associated with Parkinson's disease, is abundant in human neural tissues. α-Syn plays an important role in maintaining a supply of synaptic vesicles in presynaptic terminals; however, the mechanism by which it performs this function are not well understood. In addition, there is a correlation between α-Syn over-expression and upregulation of an innate immune response. Given the growing body of literature surrounding antimicrobial peptides (AMPs) in the brain, and the similarities between α-Syn and a previously characterized AMP, Amyloid-β, we set out to investigate if α-Syn shares AMP-like properties. Here we demonstrate that α-Syn exhibits antibacterial activity against Escherichia coli and Staphylococcus aureus. In addition, we demonstrate a role for α-Syn in inhibiting various pathogenic fungal strains such as Aspergillus flavus, Aspergillus fumigatus and Rhizoctonia solani. We also analyzed localizations of recombinant α-Syn protein in E. coli and Candida albicans. These results suggest that in addition to α-Syn's role in neurotransmitter release, it appears to be a natural AMP. PMID:27520375

  5. Altered Hub Functioning and Compensatory Activations in the Connectome: A Meta-Analysis of Functional Neuroimaging Studies in Schizophrenia

    PubMed Central

    Crossley, Nicolas A.; Mechelli, Andrea; Ginestet, Cedric; Rubinov, Mikail; Bullmore, Edward T.; McGuire, Philip

    2016-01-01

    Background: Functional neuroimaging studies of schizophrenia have identified abnormal activations in many brain regions. In an effort to interpret these findings from a network perspective, we carried out a meta-analysis of this literature, mapping anatomical locations of under- and over-activation to the topology of a normative human functional connectome. Methods: We included 314 task-based functional neuroimaging studies including more than 5000 patients with schizophrenia and over 5000 controls. Coordinates of significant under- or over-activations in patients relative to controls were mapped to nodes of a normative connectome defined by a prior meta-analysis of 1641 functional neuroimaging studies of task-related activation in healthy volunteers. Results: Under-activations and over-activations were reported in a wide diversity of brain regions. Both under- and over-activations were significantly more likely to be located in hub nodes that constitute the “rich club” or core of the normative connectome. In a subset of 121 studies that reported both under- and over-activations in the same patients, we found that, in network terms, these abnormalities were located in close topological proximity to each other. Under-activation in a peripheral node was more frequently associated specifically with over-activation of core nodes than with over-activation of another peripheral node. Conclusions: Although schizophrenia is associated with altered brain functional activation in a wide variety of regions, abnormal responses are concentrated in hubs of the normative connectome. Task-specific under-activation in schizophrenia is accompanied by over-activation of topologically central, less functionally specialized network nodes, which may represent a compensatory response. PMID:26472684

  6. Nanodelivery of Parthenolide Using Functionalized Nanographene Enhances its Anticancer Activity

    PubMed Central

    Karmakar, A.; Mustafa, T.; Kannarpady, G.; Bratton, S.M.; Radominska-Pandya, A.; Crooks, P.A.

    2014-01-01

    Advances in anticancer chemotherapy have been hindered by the lack of biocompatibility of new prospective drugs. One significant challenge concerns water insolubility, which compromises the bioavailability of the drugs leading to increased dosage and higher systemic toxicity. To overcome these problems, nanodelivery has been established as a promising approach for increasing the efficacy and lowering the required dosage of chemotherapeutics. The naturally derived compound, parthenolide (PTL), is known for its anti-inflammatory and anticancer activity, but its poor water solubility limits its clinical value. In the present study, we have used carboxyl-functionalized nanographene (fGn) delivery to overcome the extreme hydrophobicity of this drug. A water-soluble PTL analog, dimethylamino parthenolide (DMAPT), was also examined for comparison with the anticancer efficacy of our PTL-fGn complex. Delivery by fGn was found to increase the anticancer/apoptotic effects of PTL (but not DMAPT) when delivered to the human pancreatic cancer cell line, Panc-1. The IC50 value for PTL decreased from 39 µM to 9.5 µM when delivered as a mixture with fGn. The IC50 of DMAPT did not decrease when delivered as DMAPT-fGn and was significantly higher than that for PTL-fGn. There were significant increases in ROS formation and in mitochondrial membrane disruption in Panc-1 cells after PTL-fGn treatment as compared to PTL treatment, alone. Increases in toxicity were also seen with apoptosis detection assays using flow cytometry, ethidium bromide/acridine orange/DAPI staining, and TUNEL. Thus, fGn delivery was successfully used to overcome the poor water solubility of PTL, providing a strategy for improving the effectiveness of this anticancer agent. PMID:25574376

  7. High-throughput functional comparison of promoter and enhancer activities.

    PubMed

    Nguyen, Thomas A; Jones, Richard D; Snavely, Andrew R; Pfenning, Andreas R; Kirchner, Rory; Hemberg, Martin; Gray, Jesse M

    2016-08-01

    Promoters initiate RNA synthesis, and enhancers stimulate promoter activity. Whether promoter and enhancer activities are encoded distinctly in DNA sequences is unknown. We measured the enhancer and promoter activities of thousands of DNA fragments transduced into mouse neurons. We focused on genomic loci bound by the neuronal activity-regulated coactivator CREBBP, and we measured enhancer and promoter activities both before and after neuronal activation. We find that the same sequences typically encode both enhancer and promoter activities. However, gene promoters generate more promoter activity than distal enhancers, despite generating similar enhancer activity. Surprisingly, the greater promoter activity of gene promoters is not due to conventional core promoter elements or splicing signals. Instead, we find that particular transcription factor binding motifs are intrinsically biased toward the generation of promoter activity, whereas others are not. Although the specific biases we observe may be dependent on experimental or cellular context, our results suggest that gene promoters are distinguished from distal enhancers by specific complements of transcriptional activators. PMID:27311442

  8. Physical Activity and Function in Older, Long-term Colorectal Cancer Survivors

    PubMed Central

    Johnson, Brent L.; Trentham-Dietz, Amy; Koltyn, Kelli F.; Colbert, Lisa H.

    2009-01-01

    Objective Increasing age and cancer history are related to impaired physical function. Since physical activity has been shown to ameliorate age-related functional declines, we evaluated the association between physical activity and function in older, long-term colorectal cancer survivors. Methods In 2006–2007, mailed surveys were sent to colorectal cancer survivors, aged ≥65 years when diagnosed during 1995 – 2000, and identified through a state cancer registry. Information on physical activity, physical function and relevant covariates was obtained and matched to registry data. Analysis of covariance and linear regression were used to compare means and trends in physical function across levels of activity in the final analytic sample of 843 cases. Results A direct, dose-dependent association between physical activity and function was observed (ptrend <.001), with higher SF-36 physical function subscores in those reporting high vs. low activity levels (65.0 ± 1.7 vs. 42.7 ± 1.7 (mean ± standard error)). Walking, gardening, housework, and exercise activities were all independently related to better physical function. Moderate-vigorous intensity activity (ptrend <.001) was associated with function, but light activity (ptrend =0.39) was not. Conclusion Results from this cross-sectional study indicate significant associations between physical activity and physical function in older, long-term colorectal cancer survivors. PMID:19123055

  9. The Contribution of Executive Functions to Participation in School Activities of Children with High Functioning Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Zingerevich, Chaya; Patricia D., LaVesser

    2009-01-01

    This study describes the contribution of executive functions to participation in school activities of children diagnosed with ASD ages 6-9 years while controlling for sensory processing. Twenty-four children, ages 73-112 months (S.D. = 11.4), diagnosed with high functioning ASD were assessed with the Wisconsin Card Sorting Test. Their teachers…

  10. Physical activity and functional limitations in older adults: a systematic review related to Canada's Physical Activity Guidelines

    PubMed Central

    2010-01-01

    Background The purpose was to conduct systematic reviews of the relationship between physical activity of healthy community-dwelling older (>65 years) adults and outcomes of functional limitations, disability, or loss of independence. Methods Prospective cohort studies with an outcome related to functional independence or to cognitive function were searched, as well as exercise training interventions that reported a functional outcome. Electronic database search strategies were used to identify citations which were screened (title and abstract) for inclusion. Included articles were reviewed to complete standardized data extraction tables, and assess study quality. An established system of assessing the level and grade of evidence for recommendations was employed. Results Sixty-six studies met inclusion criteria for the relationship between physical activity and functional independence, and 34 were included with a cognitive function outcome. Greater physical activity of an aerobic nature (categorized by a variety of methods) was associated with higher functional status (expressed by a host of outcome measures) in older age. For functional independence, moderate (and high) levels of physical activity appeared effective in conferring a reduced risk (odds ratio ~0.5) of functional limitations or disability. Limitation in higher level performance outcomes was reduced (odds ratio ~0.5) with vigorous (or high) activity with an apparent dose-response of moderate through to high activity. Exercise training interventions (including aerobic and resistance) of older adults showed improvement in physiological and functional measures, and suggestion of longer-term reduction in incidence of mobility disability. A relatively high level of physical activity was related to better cognitive function and reduced risk of developing dementia; however, there were mixed results of the effects of exercise interventions on cognitive function indices. Conclusions There is a consistency of

  11. 20 CFR 641.856 - What functions and activities constitute costs of administration?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... systems and procedures, including information systems, required for these administrative functions; (2...) Travel costs incurred for official business in carrying out administrative activities or the overall management of the program; and (5) Costs of information systems related to administrative functions...

  12. Relationship between physical functioning and physical activity in the lifestyle interventions and independence for elders pilot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    OBJECTIVES: To determine whether participation in usual moderate-intensity or more-vigorous physical activity (MVPA) is associated with physical function performance and to identify sociodemographic, psychosocial, and disease-related covariates that may also compromise physical function performance....

  13. Methodology for the systems engineering process. Volume 1: System functional activities

    NASA Technical Reports Server (NTRS)

    Nelson, J. H.

    1972-01-01

    Systems engineering is examined in terms of functional activities that are performed in the conduct of a system definition/design, and system development is described in a parametric analysis that combines functions, performance, and design variables. Emphasis is placed on identification of activities performed by design organizations, design specialty groups, as well as a central systems engineering organizational element. Identification of specific roles and responsibilities for doing functions, and monitoring and controlling activities within the system development operation are also emphasized.

  14. A bidirectional relationship between physical activity and executive function in older adults

    PubMed Central

    Daly, Michael; McMinn, David; Allan, Julia L.

    2015-01-01

    Physically active lifestyles contribute to better executive function. However, it is unclear whether high levels of executive function lead people to be more active. This study uses a large sample and multi-wave data to identify whether a reciprocal association exists between physical activity and executive function. Participants were 4555 older adults tracked across four waves of the English Longitudinal Study of Aging. In each wave executive function was assessed using a verbal fluency test and a letter cancelation task and participants reported their physical activity levels. Fixed effects regressions showed that changes in executive function corresponded with changes in physical activity. In longitudinal multilevel models low levels of physical activity led to subsequent declines in executive function. Importantly, poor executive function predicted reductions in physical activity over time. This association was found to be over 50% larger in magnitude than the contribution of physical activity to changes in executive function. This is the first study to identify evidence for a robust bidirectional link between executive function and physical activity in a large sample of older adults tracked over time. PMID:25628552

  15. Complement Activation in Trauma Patients Alters Platelet Function.

    PubMed

    Atefi, Gelareh; Aisiku, Omozuanvbo; Shapiro, Nathan; Hauser, Carl; Dalle Lucca, Jurandir; Flaumenhaft, Robert; Tsokos, George C

    2016-09-01

    Trauma remains the main cause of death for both civilians and those in uniform. Trauma-associated coagulopathy is a complex process involving inflammation, coagulation, and platelet dysfunction. It is unknown whether activation of complement, which occurs invariably in trauma patients, is involved in the expression of trauma-associated coagulopathy. We designed a prospective study in which we enrolled 40 trauma patients and 30 healthy donors upon arrival to the emergency department of BIDMC. Platelets from healthy individuals were incubated with sera from trauma patients and their responsiveness to a thrombin receptor-activating peptide was measured using aggregometry. Complement deposition on platelets from trauma patients was measured by flow cytometry. Normal platelets displayed hypoactivity after incubation with trauma sera even though exposure to trauma sera resulted in increased agonist-induced calcium flux. Depletion of complement from sera further blocked activation of hypoactive platelets. Conversely, complement activation increased aggregation of platelets. Platelets from trauma patients were found to have significantly higher amounts of C3a and C4d on their surface compared with platelets from controls. Depletion of complement (C4d, C3a) reversed the ability of trauma sera to augment agonist-induced calcium flux in donor platelets. Our data indicate that complement enhances platelet aggregation. Despite its complement content, trauma sera render platelets hypoactive and complement depletion further blocks activation of hypoactive platelets. The defect in platelet activation induced by trauma sera is distal to receptor activation since agonist-induced Ca2+ flux is elevated in the presence of trauma sera owing to complement deposition. PMID:27355402

  16. Physical Activity and Right Ventricular Structure and Function

    PubMed Central

    Aaron, Carrie P.; Tandri, Harikrishna; Barr, R. Graham; Johnson, W. Craig; Bagiella, Emilia; Chahal, Harjit; Jain, Aditya; Kizer, Jorge R.; Bertoni, Alain G.; Lima, João A. C.; Bluemke, David A.; Kawut, Steven M.

    2011-01-01

    Rationale: Intense exercise in elite athletes is associated with increased left ventricular (LV) and right ventricular (RV) mass and volumes. However, the effect of physical activity on the RV in an older community-based population is unknown. Objectives: We studied the association between levels of physical activity in adults and RV mass and volumes. Methods: The Multi-Ethnic Study of Atherosclerosis (MESA) performed cardiac magnetic resonance imaging on community-based participants without clinical cardiovascular disease. RV volumes were determined from manually contoured endocardial margins. RV mass was determined from the difference between epicardial and endocardial volumes multiplied by the specific gravity of myocardium. Metabolic equivalent–minutes/day were calculated from the self-reported frequency, duration, and intensity of physical activity. Measurements and Main Results: The study sample (n = 1,867) was aged 61.8 ± 10 years, 48% male, 44% white, 27% African American, 20% Hispanic, and 9% Chinese. Higher levels of moderate and vigorous physical activity were linearly associated with higher RV mass (P = 0.02) after adjusting for demographics, anthropometrics, smoking, cholesterol, diabetes mellitus, hypertension, and LV mass. Higher levels of intentional exercise (physical activity done for the sole purpose of conditioning or fitness) were nonlinearly associated with RV mass independent of LV mass (P = 0.03). There were similar associations between higher levels of physical activity and larger RV volumes. Conclusions: Higher levels of physical activity in adults were associated with greater RV mass independent of the associations with LV mass; similar results were found for RV volumes. Exercise-associated RV remodeling may have important clinical implications. PMID:20813888

  17. Catalytic activities of platinum nanotubes: a density functional study

    NASA Astrophysics Data System (ADS)

    Mukherjee, Prajna; Gupta, Bikash C.; Jena, Puru

    2015-10-01

    In this work we investigate the catalytic properties of platinum nanotubes using density functional theory based calculations. In particular, we study the dissociation of hydrogen and oxygen molecules as well as oxidation of CO molecules. The results indicate that platinum nanotubes have good catalytic properties and can be effectively used in converting CO molecule to CO2.

  18. Antifouling activity of enzyme-functionalized silica nanobeads.

    PubMed

    Zanoni, Michele; Habimana, Olivier; Amadio, Jessica; Casey, Eoin

    2016-03-01

    The amelioration of biofouling in industrial processing equipment is critical for performance and reliability. While conventional biocides are effective in biofouling control, they are potentially hazardous to the environment and in some cases corrosive to materials. Enzymatic approaches have been shown to be effective and can overcome the disadvantages of traditional biocides, however they are typically uneconomic for routine biofouling control. The aim of this study was to design a robust and reusable enzyme-functionalized nano-bead system having biofilm dispersion properties. This work describes the biochemical covalent functionalization of silica-based nanobeads (hereafter referred to as Si-NanoB) with Proteinase K (PK). Results showed that PK-functionalized Si-NanoB are effective in dispersing both protein-based model biofilms and structurally altering Pseudomonas fluorescens biofilms, with significant decreases in surface coverage and thickness of 30.1% and 38.85%, respectively, while increasing surface roughness by 19 % following 24 h treatments on bacterial biofilms. This study shows that enzyme-functionalized nanobeads may potentially be an environmentally friendly and cost effective alternative to pure enzyme and chemical treatments. PMID:26370186

  19. Activity of glucose oxidase functionalized onto magnetic nanoparticles

    PubMed Central

    Kouassi, Gilles K; Irudayaraj, Joseph; McCarty, Gregory

    2005-01-01

    Background Magnetic nanoparticles have been significantly used for coupling with biomolecules, due to their unique properties. Methods Magnetic nanoparticles were synthesized by thermal co-precipitation of ferric and ferrous chloride using two different base solutions. Glucose oxidase was bound to the particles by direct attachment via carbodiimide activation or by thiophene acetylation of magnetic nanoparticles. Transmission electron microscopy was used to characterize the size and structure of the particles while the binding of glucose oxidase to the particles was confirmed using Fourier transform infrared spectroscopy. Results The direct binding of glucose oxidase via carbodiimide activity was found to be more effective, resulting in bound enzyme efficiencies between 94–100% while thiophene acetylation was 66–72% efficient. Kinetic and stability studies showed that the enzyme activity was more preserved upon binding onto the nanoparticles when subjected to thermal and various pH conditions. The overall activity of glucose oxidase was improved when bound to magnetic nanoparticles Conclusion Binding of enzyme onto magnetic nanoparticles via carbodiimide activation is a very efficient method for developing bioconjugates for biological applications PMID:15762994

  20. Time delays and capability of elderly to activate speaker function for continuous telephone CPR

    PubMed Central

    2013-01-01

    Background Telephone-CPR (T-CPR) can increase rate of bystander CPR as well as CPR quality. Instructions for T-CPR were developed when most callers used a land line. Telephones today are often wireless and can be brought to the patient. They often have speaker function which further allows the rescuer to receive instructions while performing CPR. We wanted to measure adult lay people’s ability to activate the speaker function on their own mobile phone. Methods Elderly lay people, previously trained in CPR, were contacted by telephone. Participants with speaker function experience were asked to activate this without further instructions, while participants with no experience were given instructions on how to activate it. Participants were divided in three groups; Group 1: Can activate the speaker function without instruction, Group 2: Can activate the speaker function with instruction, and Group 3: Unable to activate the speaker function. Time to activation for group 1 and 2 was compared using Mann-Whitney U-test. Results Seventy-two elderly lay people, mean age 68 ± 6 years participated in the study. Thirty-five (35)% of the participants were able to activate the speaker function without instructions, 29% with instructions and 36% were unable to activate the speaker function. The median time to activate the speaker function was 8s and 93s, with and without instructions, respectively (p < 0.01). Conclusion One-third of the elderly could activate speaker function quickly, and two-third either used a long time or could not activate the function. PMID:23676015

  1. Prostaglandin D2-loaded microspheres effectively activate macrophage effector functions.

    PubMed

    Pereira, Priscilla Aparecida Tartari; Bitencourt, Claudia da Silva; dos Santos, Daiane Fernanda; Nicolete, Roberto; Gelfuso, Guilherme Martins; Faccioli, Lúcia Helena

    2015-10-12

    Biodegradable lactic-co-glycolic acid (PLGA) microspheres (MS) improve the stability of biomolecules stability and allow enable their sustained release. Lipid mediators represent a strategy for improving host defense; however, most of these mediators, such as prostaglandin D2 (PGD2), have low water solubility and are unstable. The present study aimed to develop and characterize MS loaded with PGD2 (PGD2-MS) to obtain an innovative tool to activate macrophages. PGD2-MS were prepared using an oil-in-water emulsion solvent extraction-evaporation process, and the size, zeta potential, surface morphology and encapsulation efficiency were determined. It was also evaluated in vitro the phagocytic index, NF-κB activation, as well as nitric oxide and cytokine production by alveolar macrophages (AMs) in response to PGD2-MS. PGD2-MS were spherical with a diameter of 5.0±3.3 μm and regular surface, zeta potential of -13.4±5.6 mV, and 36% of encapsulation efficiency, with 16-26% release of entrapped PGD2 at 4 and 48 h, respectively. PGD2-MS were more efficiently internalized by AMs than unloaded-MS, and activated NF-κB more than free PGD2. Moreover, PGD2-MS stimulated the production of nitric oxide, TNF-α, IL-1β, and TGF-β, more than free PGD2, indicating that microencapsulation increased the activating effect of PGD2 on cells. In LPS-pre-treated AMs, PGD2-MS decreased the release of IL-6 but increased the production of nitric oxide and IL-1β. These results show that the morphological characteristics of PGD2-MS facilitated interaction with, and activation of phagocytic cells; moreover, PGD2-MS retained the biological activities of PGD2 to trigger effector mechanisms in AMs. It is suggested that PGD2-MS represent a strategy for therapeutic intervention in the lungs of immunocompromised subjects. PMID:26143263

  2. Spatial Correlation Function of the Chandra Selected Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Yang, Y.; Mushotzky, R. F.; Barger, A. J.; Cowie, L. L.

    2006-01-01

    We present the spatial correlation function analysis of non-stellar X-ray point sources in the Chandra Large Area Synoptic X-ray Survey of Lockman Hole Northwest (CLASXS). Our 9 ACIS-I fields cover a contiguous solid angle of 0.4 deg(exp 2) and reach a depth of 3 x 10(exp -15) erg/square cm/s in the 2-8 keV band. We supplement our analysis with data from the Chandra Deep Field North (CDFN). The addition of this field allows better probe of the correlation function at small scales. A total of 233 and 252 sources with spectroscopic information are used in the study of the CLASXS and CDFN fields respectively. We calculate both redshift-space and projected correlation functions in co-moving coordinates, averaged over the redshift range of 0.1 < z < 3.0, for both CLASXS and CDFN fields for a standard cosmology with Omega(sub Lambda) = 0.73,Omega(sub M) = 0.27, and h = 0.71 (H(sub 0) = 100h km/s Mpc(exp -1). The correlation function for the CLASXS field over scales of 3 Mpc< s < 200 Mpc can be modeled as a power-law of the form xi(s) = (S/SO)(exp - gamma), with gamma = 1.6(sup +0.4 sub -0.3) and S(sub o) = 8.0(sup +.14 sub -1.5) Mpc. The redshift-space correlation function for CDFN on scales of 1 Mpc< s < 100 Mpc is found to have a similar correlation length so = 8.55(sup +0.74 sub -0.74) Mpc, but a shallower slope (gamma = 1.3 +/- 0.1). The real-space correlation functions derived from the projected correlation functions, are found to be tau(sub 0 = 8.1(sup +1.2 sub -2.2) Mpc, and gamma = 2.1 +/- 0.5 for the CLASXS field, and tau(sub 0) = 5.8(sup +.1.0 sub -1.5) Mpc, gamma = 1.38(sup +0.12 sub -0.14 for the CDFN field. By comparing the real- and redshift-space correlation functions in the combined CLASXS and CDFN samples, we are able to estimate the redshift distortion parameter Beta = 0.4 +/- 0.2 at an effective redshift z = 0.94. We compare the correlation functions for hard and soft spectra sources in the CLASXS field and find no significant difference between the

  3. Patterns of functional enzyme activity in fungus farming ambrosia beetles

    PubMed Central

    2012-01-01

    Introduction In wood-dwelling fungus-farming weevils, the so-called ambrosia beetles (Curculionidae: Scolytinae and Platypodinae), wood in the excavated tunnels is used as a medium for cultivating fungi by the combined action of digging larvae (which create more space for the fungi to grow) and of adults sowing and pruning the fungus. The beetles are obligately dependent on the fungus that provides essential vitamins, amino acids and sterols. However, to what extent microbial enzymes support fungus farming in ambrosia beetles is unknown. Here we measure (i) 13 plant cell-wall degrading enzymes in the fungus garden microbial consortium of the ambrosia beetle Xyleborinus saxesenii, including its primary fungal symbionts, in three compartments of laboratory maintained nests, at different time points after gallery foundation and (ii) four specific enzymes that may be either insect or microbially derived in X. saxesenii adult and larval individuals. Results We discovered that the activity of cellulases in ambrosia fungus gardens is relatively small compared to the activities of other cellulolytic enzymes. Enzyme activity in all compartments of the garden was mainly directed towards hemicellulose carbohydrates such as xylan, glucomannan and callose. Hemicellulolytic enzyme activity within the brood chamber increased with gallery age, whereas irrespective of the age of the gallery, the highest overall enzyme activity were detected in the gallery dump material expelled by the beetles. Interestingly endo-β-1,3(4)-glucanase activity capable of callose degradation was identified in whole-body extracts of both larvae and adult X. saxesenii, whereas endo-β-1,4-xylanase activity was exclusively detected in larvae. Conclusion Similar to closely related fungi associated with bark beetles in phloem, the microbial symbionts of ambrosia beetles hardly degrade cellulose. Instead, their enzyme activity is directed mainly towards comparatively more easily accessible hemicellulose

  4. Management with willow short rotation coppice increase the functional gene diversity and functional activity of a heavy metal polluted soil.

    PubMed

    Xue, K; van Nostrand, J D; Vangronsveld, J; Witters, N; Janssen, J O; Kumpiene, J; Siebielec, G; Galazka, R; Giagnoni, L; Arenella, M; Zhou, J-Z; Renella, G

    2015-11-01

    We studied the microbial functional diversity, biochemical activity, heavy metals (HM) availability and soil toxicity of Cd, Pb and Zn contaminated soils, kept under grassland or short rotation coppice (SRC) to attenuate the risks associated with HM contamination and restore the soil ecological functions. Soil microbial functional diversity was analyzed by the GeoChip, a functional gene microarray containing probes for genes involved in nutrient cycling, metal resistance and stress response. Soil under SRC showed a higher abundance of microbial genes involved in C, N, P and S cycles and resistance to various HM, higher microbial biomass, respiration and enzyme activity rates, and lower HM availability than the grassland soil. The linkages between functional genes of soil microbial communities and soil chemical properties, HM availability and biochemical activity were also investigated. Soil toxicity and N, P and Pb availability were important factors in shaping the microbial functional diversity, as determined by CCA. We concluded that in HM contaminated soils the microbial functional diversity was positively influenced by SRC management through the reduction of HM availability and soil toxicity increase of nutrient cycling. The presented results can be important in predicting the long term environmental sustainability of plant-based soil remediation. PMID:26183942

  5. Physical activity and cognitive functioning in the oldest old: Within- and between-person cognitive activity and psychosocial mediators

    PubMed Central

    Robitaille, Annie; Muniz, Graciela; Lindwall, Magnus; Piccinin, Andrea M.; Hoffman, Lesa; Johansson, Boo; Hofer, Scott M.

    2014-01-01

    Objective The current study examines the role of social contact intensity, cognitive activity, and depressive symptoms as within- and between-person mediators for the relationships between physical activity and cognitive functioning. Method All three types of mediators were considered simultaneously using multilevel structural equations modeling with longitudinal data. The sample consisted of 470 adults ranging from 79.37 to 97.92 years of age (M = 83.4; SD = 3.2) at the first occasion. Results Between-person differences in cognitive activity mediated the relationship between physical activity and cognitive functioning, such that individuals who participated in more physical activities, on average, engaged in more cognitive activities and, in turn, showed better cognitive functioning. Mediation of between-person associations between physical activity and memory through social contact intensity was also significant. At the within-person level, only cognitive activity mediated the relationship between physical activity and change in cognition; however, the indirect effect was small. Depressive symptomatology was not found to significantly mediate within- or between-person effects on cognitive change. Discussion Our findings highlight the implications of physical activity participation for the prevention of cognitive decline and the importance of meditational processes at the between-person level. Physical activity can provide older adults with an avenue to make new friendships and engage in more cognitive activities which, in turn, attenuates cognitive decline. PMID:25598770

  6. Temporal Dynamics of Activation of Thematic and Functional Knowledge During Conceptual Processing of Manipulable Artifacts

    PubMed Central

    Kalénine, Solène; Mirman, Daniel; Middleton, Erica L.; Buxbaum, Laurel J.

    2012-01-01

    The current research aimed at specifying the activation time course of different types of semantic information during object conceptual processing and the effect of context on this time course. We distinguished between thematic and functional knowledge and the specificity of functional similarity. Two experiments were conducted with healthy older adults using eye tracking in a word-to-picture matching task. The time course of gaze fixations was used to assess activation of distractor objects during the identification of manipulable artifact targets (e.g., broom). Distractors were (a) thematically related (e.g., dustpan), (b) related by a specific function (e.g., vacuum cleaner), or (c) related by a general function (e.g., sponge). Growth curve analyses were used to assess competition effects when target words were presented in isolation (Experiment 1) and embedded in contextual sentences of different generality levels (Experiment 2). In the absence of context, there was earlier and shorter lasting activation of thematically related as compared to functionally related objects. The time course difference was more pronounced for general functions than specific functions. When contexts were provided, functional similarities that were congruent with context generality level increased in salience with earlier activation of those objects. Context had little impact on thematic activation time course. These data demonstrate that processing a single manipulable artifact concept implicitly activates thematic and functional knowledge with different time courses and that context speeds activation of context-congruent functional similarity. PMID:22449134

  7. Visible-Light-Activated Bactericidal Functions of Carbon "Quantum" Dots.

    PubMed

    Meziani, Mohammed J; Dong, Xiuli; Zhu, Lu; Jones, Les P; LeCroy, Gregory E; Yang, Fan; Wang, Shengyuan; Wang, Ping; Zhao, Yiping; Yang, Liju; Tripp, Ralph A; Sun, Ya-Ping

    2016-05-01

    Carbon dots, generally defined as small carbon nanoparticles with various surface passivation schemes, have emerged as a new class of quantum-dot-like nanomaterials, with their optical properties and photocatalytic functions resembling those typically found in conventional nanoscale semiconductors. In this work, carbon dots were evaluated for their photoinduced bactericidal functions, with the results suggesting that the dots were highly effective in bacteria-killing with visible-light illumination. In fact, the inhibition effect could be observed even simply under ambient room lighting conditions. Mechanistic implications of the results are discussed and so are opportunities in the further development of carbon dots into a new class of effective visible/natural light-responsible bactericidal agents for a variety of bacteria control applications. PMID:27064729

  8. Emergent Public Spaces: Generative Activities on Function Interpolation

    ERIC Educational Resources Information Center

    Carmona, Guadalupe; Dominguez, Angeles; Krause, Gladys; Duran, Pablo

    2011-01-01

    This study highlights ways in which generative activities may be coupled with network-based technologies in the context of teacher preparation to enhance preservice teachers' cognizance of how their own experience as students provides a blueprint for the learning environments they may need to generate in their future classrooms. In this study, the…

  9. Functionally charged nanosize particles differentially activate BV2 microglia.

    EPA Science Inventory

    The effect of particle surface charge on the biological activation of immortalized mouse microglia (BV2) was examined. Nanosize (860-950 nm) spherical polystyrene microparticles (SPM) were coated with carboxyl (COOH-) or dimethyl amino (CH3)2-N- groups to give a net negative or p...

  10. Twist1 activity thresholds define multiple functions in limb development

    PubMed Central

    Krawchuk, Dayana; Weiner, Shoshana J.; Chen, You-Tzung; Lu, Benson; Costantini, Frank; Behringer, Richard R.; Laufer, Ed

    2010-01-01

    Summary The basic helix-loop-helix transcription factor Twist1 is essential for normal limb development. Twist1−/− embryos die at midgestation. However, studies on early limb buds found that Twist1−/− mutant limb mesenchyme has an impaired response to FGF signaling from the apical ectodermal ridge, which disrupts the feedback loop between the mesenchyme and AER, and reduces and shifts anteriorly Shh expression in the zone of polarizing activity. We have combined Twist1 null, hypomorph and conditional alleles to generate a Twist1 allelic series that survives to birth. As Twist1 activity is reduced, limb skeletal defects progress from preaxial polydactyly to girdle reduction combined with hypoplasia, aplasia or mirror symmetry of all limb segments. With reduced Twist1 activity there is striking and progressive upregulation of ectopic Shh expression in the anterior of the limb, combined with an anterior shift in the posterior Shh domain, which is expressed at normal intensity, and loss of the posterior AER. Consequently limb outgrowth is initially impaired, before an ectopic anterior Shh domain expands the AER, promoting additional growth and repatterning. Reducing the dosage of FGF targets of the Etv gene family, which are known repressors of Shh expression in the anterior limb mesenchyme, strongly enhances the anterior skeletal phenotype. Conversely this and other phenotypes are suppressed by reducing the dosage of the Twist1 antagonist Hand2. Our data support a model whereby multiple Twist1 activity thresholds contribute to early limb bud patterning, and suggest how particular combinations of skeletal defects result from differing amounts of Twist1 activity. PMID:20732316

  11. Activity Adherence and Physical Function in Older Adults with Functional Limitations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lifestyle Interventions and Independence for Elders Pilot (LIFE-P) was a trial to examine the effects of physical activity on measures of disability risk in previously sedentary older adults at risk for disability. We examined adherence and retention to the LIPE-P physical activity (PA) interventio...

  12. How to Make an Active Zone: Unexpected Universal Functional Redundancy between RIMs and RIM-BPs.

    PubMed

    Acuna, Claudio; Liu, Xinran; Südhof, Thomas C

    2016-08-17

    RIMs and RIM-binding proteins (RBPs) are evolutionary conserved multidomain proteins of presynaptic active zones that are known to recruit Ca(2+) channels; in addition, RIMs perform well-recognized functions in tethering and priming synaptic vesicles for exocytosis. However, deletions of RIMs or RBPs in mice cause only partial impairments in various active zone functions and have no effect on active zone structure, as visualized by electron micrographs, suggesting that their contribution to active zone functions is limited. Here, we show in synapses of the calyx of Held in vivo and hippocampal neurons in culture that combined, but not individual, deletions of RIMs and RBPs eliminate tethering and priming of synaptic vesicles, deplete presynaptic Ca(2+) channels, and ablate active zone complexes, as analyzed by electron microscopy of chemically fixed synapses. Thus, RBPs perform unexpectedly broad roles at the active zone that together with those of RIMs are essential for all active zone functions. PMID:27537484

  13. Selective activation of functional suppressor cells by human seminal fluid.

    PubMed Central

    Witkin, S S

    1986-01-01

    The ability of seminal fluid (SF) to induce suppressor cell activity from peripheral blood mononuclear cells (PBMN) was examined. PBMN were incubated with SF for 48 h, washed to remove SF components, treated with mitomycin C (mit C) and co-cultured with Raji cells, a lymphoblastoid cell line. Raji cell proliferation was inhibited by SF-treated PBMN proportionally to SF concentration. SF (50-200 micrograms), mit C-treated Raji cells or mit C-treated PBMN pre-incubated with phytohaemagglutinin were without effect on Raji cell growth. Suppressor T lymphocytes generated by incubation of PBMN with concanavalin A inhibited Raji cells to the same extent as did SF-treated PBMN. All activity was lost following heating at 56 degrees C for 30 min; freezing and thawing reduced the ability of SF to induce suppression by 50%. Dialysis of SF or treatment with antibody to prostaglandin E2 led to a 50% reduction in suppression. PMID:2943541

  14. Functional Nanoparticles Activate a Decellularized Liver Scaffold for Blood Detoxification.

    PubMed

    Xu, Fen; Kang, Tianyi; Deng, Jie; Liu, Junli; Chen, Xiaolei; Wang, Yuan; Ouyang, Liang; Du, Ting; Tang, Hong; Xu, Xiaoping; Chen, Shaochen; Du, Yanan; Shi, Yujun; Qian, Zhiyong; Wei, Yuquan; Deng, Hongxin; Gou, Maling

    2016-04-01

    Extracorporeal devices have great promise for cleansing the body of virulence factors that are caused by venomous injuries, bacterial infections, and biological weaponry. The clinically used extracorporeal devices, such as artificial liver-support systems that are mainly based on dialysis or electrostatic interaction, are limited to remove a target toxin. Here, a liver-mimetic device is shown that consists of decellularized liver scaffold (DLS) populated with polydiacetylene (PDA) nanoparticles. DLS has the gross shape and 3D architecture of a liver, and the PDA nanoparticles selectively capture and neutralize the pore-forming toxins (PFTs). This device can efficiently and target-orientedly remove PFTs in human blood ex vivo without changing blood components or activating complement factors, showing potential application in antidotal therapy. This work provides a proof-of-principle for blood detoxification by a nanoparticle-activated DLS, and can lead to the development of future medical devices for antidotal therapy. PMID:26914158

  15. Functionalization, cyclization and antiviral activity of A-secotriterpenoids.

    PubMed

    Grishko, Victoria V; Galaiko, Natalia V; Tolmacheva, Irina A; Kucherov, Igor I; Eremin, Vladimir F; Boreko, Eugene I; Savinova, Olga V; Slepukhin, Pavel A

    2014-08-18

    Triterpene derivatives with an α,β-alkenenitrile moiety in the five-membered ring A have been synthesized by nitrile anion cyclizations of 1-cyano-2,3-secotriterpenoids. Oxime-containing precursors, 2,3-secointermediates and five-membered ring A products of cyclizations were screened for in vitro antiviral activity against enveloped viruses - influenza A virus and human immunodeficiency virus type I (HIV-1). Lupane ketoxime and the 2,3-secolupane C-3 aldoxime which possess antiviral activities against both influenza A virus (EC50 12.9-18.2 μM) and HIV-1 (EC50 0.06 μM) were the most promising compounds. PMID:24997292

  16. Activity, regulation, copy number and function in the glyoxalase system.

    PubMed

    Rabbani, Naila; Xue, Mingzhan; Thornalley, Paul J

    2014-04-01

    Molecular, catalytic and structural properties of glyoxalase pathway enzymes of many species are now known. Current research has focused on the regulation of activity and expression of Glo1 (glyoxalase I) and Glo2 (glyoxalase II) and their role in health and disease. Human GLO1 has MRE (metal-response element), IRE (insulin-response element), E2F4 (early gene 2 factor isoform 4), AP-2α (activating enhancer-binding protein 2α) and ARE (antioxidant response-element) regulatory elements and is a hotspot for copy number variation. The human Glo2 gene, HAGH (hydroxyacylglutathione hydrolase), has a regulatory p53-response element. Glo1 is linked to healthy aging, obesity, diabetes and diabetic complications, chronic renal disease, cardiovascular disease, other disorders and multidrug resistance in cancer chemotherapy. Mathematical modelling of the glyoxalase pathway predicts that pharmacological levels of increased Glo1 activity markedly decrease cellular methylglyoxal and related glycation, and pharmacological Glo1 inhibition markedly increases cellular methylglyoxal and related glycation. Glo1 inducers are in development to sustain healthy aging and for treatment of vascular complications of diabetes and other disorders, and cell-permeant Glo1 inhibitors are in development for treatment of multidrug-resistant tumours, malaria and potentially pathogenic bacteria and fungi. PMID:24646254

  17. Nanoscale friction as a function of activation energies

    NASA Astrophysics Data System (ADS)

    Chong, W. W. F.; Rahnejat, H.

    2015-12-01

    Understanding the scale-dependence of friction is increasingly viewed as a critical quest. With progressively thinner films, mixed and boundary regimes of lubrication have become commonplace. Therefore, at the micro-scale a greater need for mitigating friction is desired in order to improve operational efficiency of many machines and mechanisms. Furthermore, there is a growing tendency to use low friction hard wear-resistant advanced coatings to guard against wear. In parallel, there has been much attention paid to lubricant rheology and formulation. However, only in recent times there has been an emerging view of lubricant-surface combination as a system. In this perspective it is essential to relate the observed and measured friction at component level to the underlying interactions in micro/nano-scales. This is the approach in this paper. Observed phenomenon at micro-scale are related back to the activation energies of lubricant-surface system, providing in particular results for surface modified Ni-SiC coated specimen in combination with formulated lubricants, the combination of which represent the lubricant-surface system of choice in cylinders of high performance race engine. The nano-scale conjunction of an AFM tip with lubricated surface-engineered specimen, subjected to various conjunctional loading and sliding kinematics is investigated. It is shown that the measured frictional characteristics can be adequately described in terms of activation energies in line with the Eyring’s thermal activation model for cases of fairly smooth asperity tip contact conjunctions.

  18. Diverse Activities of Histone Acylations Connect Metabolism to Chromatin Function.

    PubMed

    Dutta, Arnob; Abmayr, Susan M; Workman, Jerry L

    2016-08-18

    Modifications of histones play important roles in balancing transcriptional output. The discovery of acyl marks, besides histone acetylation, has added to the functional diversity of histone modifications. Since all modifications use metabolic intermediates as substrates for chromatin-modifying enzymes, the prevalent landscape of histone modifications in any cell type is a snapshot of its metabolic status. Here, we review some of the current findings of how differential use of histone acylations regulates gene expression as response to metabolic changes and differentiation programs. PMID:27540855

  19. The nuclear factor SPBP contains different functional domains and stimulates the activity of various transcriptional activators.

    PubMed

    Rekdal, C; Sjøttem, E; Johansen, T

    2000-12-22

    SPBP (stromelysin-1 platelet-derived growth factor-responsive element binding protein) was originally cloned from a cDNA expression library by virtue of its ability to bind to a platelet-derived growth factor-responsive element in the human stromelysin-1 promoter. A 937-amino acid-long protein was deduced from a 3995-nucleotide murine cDNA sequence. By analyses of both human and murine cDNAs, we now show that SPBP is twice as large as originally found. The human SPBP gene contains six exons and is located on chromosome 22q13.1-13.3. Two isoforms differing in their C termini are expressed due to alternative splicing. PCR analyses of multitissue cDNA panels showed that SPBP is expressed in most tissues except for ovary and prostate. Functional mapping revealed that SPBP is a nuclear, multidomain protein containing an N-terminal region with transactivating ability, a novel type of DNA-binding domain containing an AT hook motif, and a bipartite nuclear localization signal as well as a C-terminal zinc finger domain. This type of zinc finger domain is also found in the trithorax family of chromatin-based transcriptional regulator proteins. Using cotransfection experiments, we find that SPBP enhances the transcriptional activity of various transcription factors such as c-Jun, Ets1, Sp1, and Pax6. Hence, SPBP seems to act as a transcriptional coactivator. PMID:10995766

  20. Application of a Novel Functional Gene Microarray to Probe the Functional Ecology of Ammonia Oxidation in Nitrifying Activated Sludge

    PubMed Central

    Short, Michael D.; Abell, Guy C. J.; Bodrossy, Levente; van den Akker, Ben

    2013-01-01

    We report on the first study trialling a newly-developed, functional gene microarray (FGA) for characterising bacterial and archaeal ammonia oxidisers in activated sludge. Mixed liquor (ML) and media biofilm samples from a full-scale integrated fixed-film activated sludge (IFAS) plant were analysed with the FGA to profile the diversity and relative abundance of ammonia-oxidising archaea and bacteria (AOA and AOB respectively). FGA analyses of AOA and AOB communities revealed ubiquitous distribution of AOA across all samples – an important finding for these newly-discovered and poorly characterised organisms. Results also revealed striking differences in the functional ecology of attached versus suspended communities within the IFAS reactor. Quantitative assessment of AOB and AOA functional gene abundance revealed a dominance of AOB in the ML and approximately equal distribution of AOA and AOB in the media-attached biofilm. Subsequent correlations of functional gene abundance data with key water quality parameters suggested an important functional role for media-attached AOB in particular for IFAS reactor nitrification performance and indicate possible functional redundancy in some IFAS ammonia oxidiser communities. Results from this investigation demonstrate the capacity of the FGA to resolve subtle ecological shifts in key microbial communities in nitrifying activated sludge and indicate its value as a tool for better understanding the linkages between the ecology and performance of these engineered systems. PMID:24155925

  1. Intrinsic network activity in tinnitus investigated using functional MRI.

    PubMed

    Leaver, Amber M; Turesky, Ted K; Seydell-Greenwald, Anna; Morgan, Susan; Kim, Hung J; Rauschecker, Josef P

    2016-08-01

    Tinnitus is an increasingly common disorder in which patients experience phantom auditory sensations, usually ringing or buzzing in the ear. Tinnitus pathophysiology has been repeatedly shown to involve both auditory and non-auditory brain structures, making network-level studies of tinnitus critical. In this magnetic resonance imaging (MRI) study, two resting-state functional connectivity (RSFC) approaches were used to better understand functional network disturbances in tinnitus. First, we demonstrated tinnitus-related reductions in RSFC between specific brain regions and resting-state networks (RSNs), defined by independent components analysis (ICA) and chosen for their overlap with structures known to be affected in tinnitus. Then, we restricted ICA to data from tinnitus patients, and identified one RSN not apparent in control data. This tinnitus RSN included auditory-sensory regions like inferior colliculus and medial Heschl's gyrus, as well as classically non-auditory regions like the mediodorsal nucleus of the thalamus, striatum, lateral prefrontal, and orbitofrontal cortex. Notably, patients' reported tinnitus loudness was positively correlated with RSFC between the mediodorsal nucleus and the tinnitus RSN, indicating that this network may underlie the auditory-sensory experience of tinnitus. These data support the idea that tinnitus involves network dysfunction, and further stress the importance of communication between auditory-sensory and fronto-striatal circuits in tinnitus pathophysiology. Hum Brain Mapp 37:2717-2735, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:27091485

  2. Physical activity, motor function, and white matter hyperintensity burden in healthy older adults

    PubMed Central

    Yang, Jingyun; Arfanakis, Konstantinos; Arvanitakis, Zoe; Leurgans, Sue E.; Turner, Arlener D.; Barnes, Lisa L.; Bennett, David A.; Buchman, Aron S.

    2015-01-01

    Objective: To test the hypothesis that physical activity modifies the association between white matter hyperintensity (WMH) burden and motor function in healthy older persons without dementia. Methods: Total daily activity (exercise and nonexercise physical activity) was measured for up to 11 days with actigraphy (Actical; Philips Respironics, Bend, OR) in 167 older adults without dementia participating in the Rush Memory and Aging Project. Eleven motor performances were summarized into a previously described global motor score. WMH volume was expressed as percent of intracranial volume. Linear regression models, adjusted for age, education, and sex, were performed with total WMH volume as the predictor and global motor score as the outcome. Terms for total daily physical activity and its interaction with WMH volume were then added to the model. Results: Higher WMH burden was associated with lower motor function (p = 0.006), and total daily activity was positively associated with motor function (p = 0.002). Total daily activity modified the association between WMH and motor function (p = 0.007). WMH burden was not associated with motor function in persons with high activity (90th percentile). By contrast, higher WMH burden remained associated with lower motor function in persons with average (50th percentile; estimate = −0.304, slope = −0.133) and low (10th percentile; estimate = −1.793, slope = −0.241) activity. Conclusions: Higher levels of physical activity may reduce the effect of WMH burden on motor function in healthy older adults. PMID:25762710

  3. Activation-Enabled Syntheses of Functionalized Pillar[5]arene Derivatives.

    PubMed

    Han, Jie; Hou, Xisen; Ke, Chenfeng; Zhang, Huacheng; Strutt, Nathan L; Stern, Charlotte L; Stoddart, J Fraser

    2015-07-01

    A series of regioselective di- and trifunctionalized pillar[5]arene derivatives have been synthesized by a deprotection-followed-by-activation strategy, and their constitutions have been established as a result of having access to their solid-state structures. De-O-methylation occurs in a stepwise manner at lower temperatures under kinetic control, affording the desired oligo-substituted pillar[5]arene derivatives. In addition, the regioisomers of these derivatives can be isolated by installing triflate groups on the free hydroxyl groups. PMID:26083303

  4. Executive Functions in Learning Processes: Do They Benefit from Physical Activity?

    ERIC Educational Resources Information Center

    Barenberg, Jonathan; Berse, Timo; Dutke, Stephan

    2011-01-01

    As executive functions play an essential role in learning processes, approaches capable of enhancing executive functioning are of particular interest to educational psychology. Recently, the hypothesis has been advanced that executive functioning may benefit from changes in neurobiological processes induced by physical activity. The present…

  5. Function of redox-active tyrosine in photosystem II.

    PubMed

    Ishikita, Hiroshi; Knapp, Ernst-Walter

    2006-06-01

    Water oxidation at photosystem II Mn-cluster is mediated by the redox-active tyrosine Y(Z). We calculated the redox potential (E(m)) of Y(Z) and its symmetrical counterpart Y(D), by solving the linearized Poisson-Boltzmann equation. The calculated E(m)(Y( )/Y(-)) were +926 mV/+694 mV for Y(Z)/Y(D) with the Mn-cluster in S2 state. Together with the asymmetric position of the Mn-cluster relative to Y(Z/D), differences in H-bond network between Y(Z) (Y(Z)/D1-His(190)/D1-Asn(298)) and Y(D) (Y(D)/D2-His(189)/D2-Arg(294)/CP47-Glu(364)) are crucial for E(m)(Y(Z/D)). When D1-His(190) is protonated, corresponding to a thermally activated state, the calculated E(m)(Y(Z)) was +1216 mV, which is as high as the E(m) for P(D1/D2). We observed deprotonation at CP43-Arg(357) upon S-state transition, which may suggest its involvement in the proton exit pathway. E(m)(Y(D)) was affected by formation of P(D2)(+) (but not P(D1)(+)) and sensitive to the protonation state of D2-Arg(180). This points to an electrostatic link between Y(D) and P(D2). PMID:16513785

  6. Functionally relevant diversity of closely related Nitrospira in activated sludge

    PubMed Central

    Gruber-Dorninger, Christiane; Pester, Michael; Kitzinger, Katharina; Savio, Domenico F; Loy, Alexander; Rattei, Thomas; Wagner, Michael; Daims, Holger

    2015-01-01

    Nitrospira are chemolithoautotrophic nitrite-oxidizing bacteria that catalyze the second step of nitrification in most oxic habitats and are important for excess nitrogen removal from sewage in wastewater treatment plants (WWTPs). To date, little is known about their diversity and ecological niche partitioning within complex communities. In this study, the fine-scale community structure and function of Nitrospira was analyzed in two full-scale WWTPs as model ecosystems. In Nitrospira-specific 16S rRNA clone libraries retrieved from each plant, closely related phylogenetic clusters (16S rRNA identities between clusters ranged from 95.8% to 99.6%) within Nitrospira lineages I and II were found. Newly designed probes for fluorescence in situ hybridization (FISH) allowed the specific detection of several of these clusters, whose coexistence in the WWTPs was shown for prolonged periods of several years. In situ ecophysiological analyses based on FISH, relative abundance and spatial arrangement quantification, as well as microautoradiography revealed functional differences of these Nitrospira clusters regarding the preferred nitrite concentration, the utilization of formate as substrate and the spatial coaggregation with ammonia-oxidizing bacteria as symbiotic partners. Amplicon pyrosequencing of the nxrB gene, which encodes subunit beta of nitrite oxidoreductase of Nitrospira, revealed in one of the WWTPs as many as 121 species-level nxrB operational taxonomic units with highly uneven relative abundances in the amplicon library. These results show a previously unrecognized high diversity of Nitrospira in engineered systems, which is at least partially linked to niche differentiation and may have important implications for process stability. PMID:25148481

  7. Promoter-dependent activity on androgen receptor N-terminal domain mutations in androgen insensitivity syndrome.

    PubMed

    Tadokoro-Cuccaro, Rieko; Davies, John; Mongan, Nigel P; Bunch, Trevor; Brown, Rosalind S; Audi, Laura; Watt, Kate; McEwan, Iain J; Hughes, Ieuan A

    2014-01-01

    Androgen receptor (AR) mutations are associated with androgen insensitivity syndrome (AIS). Missense mutations identified in the AR-N-terminal domain (AR-NTD) are rare, and clinical phenotypes are typically mild. We investigated 7 missense mutations and 2 insertion/deletions located in the AR-NTD. This study aimed to elucidate the pathogenic role of AR-NTD mutants in AIS and to use this knowledge to further define AR-NTD function. AR-NTD mutations (Q120E, A159T, G216R, N235K, G248V, L272F, and P380R) were introduced into AR-expression plasmids. Stably expressing cell lines were established for del57L and ins58L. Transactivation was measured using luciferase reporter constructs under the control of GRE and Pem promoters. Intrinsic fluorescence spectroscopy and partial proteolysis studies were performed for mutations which showed reduced activities by using a purified AR-AF1 protein. Pem-luciferase reporter activation was reduced for A159T, N235K, and G248V but not the GRE-luciferase reporter. Protein structure analysis detected no significant change in the AR-AF1 region for these mutations. Reduced cellular expression and transactivation activity were observed for ins58L. The mutations Q120E, G216R, L272F, P380R, and del57L showed small or no detectable changes in function. Thus, clinical and experimental analyses have identified novel AR-signalling defects associated with mutations in the structurally disordered AR-NTD domain in patients with AIS. PMID:25500996

  8. Mitochondrial activity and brain functions during cortical depolarization

    NASA Astrophysics Data System (ADS)

    Mayevsky, Avraham; Sonn, Judith

    2008-12-01

    Cortical depolarization (CD) of the cerebral cortex could be developed under various pathophysiological conditions. In animal models, CD was recorded under partial or complete ischemia as well as when cortical spreading depression (SD) was induced externally or by internal stimulus. The development of CD in patients and the changes in various metabolic parameters, during CD, was rarely reported. Brain metabolic, hemodynamic, ionic and electrical responses to the CD event are dependent upon the O2 balance in the tissue. When the O2 balance is negative (i.e. ischemia), the CD process will be developed due to mitochondrial dysfunction, lack of energy and the inhibition of Na+-K+-ATPase. In contradiction, when oxygen is available (i.e. normoxia) the development of CD after induction of SD will accelerate mitochondrial respiration for retaining ionic homeostasis and normal brain functions. We used the multiparametric monitoring approach that enable real time monitoring of mitochondrial NADH redox state, microcirculatory blood flow and oxygenation, extracellular K+, Ca2+, H+ levels, DC steady potential and electrocorticogram (ECoG). This monitoring approach, provide a unique tool that has a significant value in analyzing the pathophysiology of the brain when SD developed under normoxia, ischemia, or hypoxia. We applied the same monitoring approach to patients suffered from severe head injury or exposed to neurosurgical procedures.

  9. TMJ function after partial condylectomy in active mandibular condylar hyperplasia

    PubMed Central

    Olate, Sergio; Martinez, Felipe; Uribe, Francisca; Pozzer, Leandro; Cavalieri-Pereira, Lucas; de Moraes, Marcio

    2014-01-01

    Condylar hyperplasia is a frequent pathology that causes severe facial asymmetries. The partial condylectomy generally halts the disease. The aim of this research was to examine post-condylectomy TMJ function; 14 patients were included in this study, 6 male and 8 female. The average age was 21 years old. In all, the partial condylectomy was performed with preauricular or endaural access and the osteotomy were performed with drills, saw or an ultrasonic system. The patients were assessed with 3 or more time after surgery and were considering maximum mouth opening, right and left lateralities, presence of pain, noises, alterations in the facial nerve (VII) and esthetic alteration from the scar. The analysis was performed with the visual analog scale (VAS) and with a 7 cm metallic rule. Data analysis was descriptive plus chi-square test considering p value < 0.05 for statistical differences. With an average of 11 month after surgery, the results showed that the open mouth (over 35 mm) and lateralities (average 9 mm for the both right and left side) were normal and without statistical differences between the right or left side. Noise was observed in 3 patients and pain was observed in two patients with level 2 and 1 (VAS score). Scar was not related to problem with patient and the temporal branch of facial nerve was observed with limitations but without problem for patients. It can be concluded that the condylectomy is a safe and effective procedure with low morbidity for patients. PMID:24753777

  10. Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1.

    PubMed

    Shmuel, Amir; Augath, Mark; Oeltermann, Axel; Logothetis, Nikos K

    2006-04-01

    Most functional brain imaging studies use task-induced hemodynamic responses to infer underlying changes in neuronal activity. In addition to increases in cerebral blood flow and blood oxygenation level-dependent (BOLD) signals, sustained negative responses are pervasive in functional imaging. The origin of negative responses and their relationship to neural activity remain poorly understood. Through simultaneous functional magnetic resonance imaging and electrophysiological recording, we demonstrate a negative BOLD response (NBR) beyond the stimulated regions of visual cortex, associated with local decreases in neuronal activity below spontaneous activity, detected 7.15 +/- 3.14 mm away from the closest positively responding region in V1. Trial-by-trial amplitude fluctuations revealed tight coupling between the NBR and neuronal activity decreases. The NBR was associated with comparable decreases in local field potentials and multiunit activity. Our findings indicate that a significant component of the NBR originates in neuronal activity decreases. PMID:16547508

  11. Function Follows Form: Activation of Shape and Function Features during Object Identification

    ERIC Educational Resources Information Center

    Yee, Eiling; Huffstetler, Stacy; Thompson-Schill, Sharon L.

    2011-01-01

    Most theories of semantic memory characterize knowledge of a given object as comprising a set of semantic features. But how does conceptual activation of these features proceed during object identification? We present the results of a pair of experiments that demonstrate that object recognition is a dynamically unfolding process in which function…

  12. The Complex Association between Religious Activities and Functional Limitations in Older Adults

    ERIC Educational Resources Information Center

    Hybels, Celia F.; Blazer, Dan G.; George, Linda K.; Koenig, Harold G.

    2012-01-01

    Purpose of the Study: To examine the longitudinal associations between 3 dimensions of religious involvement--religious attendance, use of religious media, and private religious activities--and 3 domains of functional status--limitations in basic activities of daily living (ADL), instrumental activities of daily living (IADL), and mobility in…

  13. AMOLED (active matrix OLED) functionality and usable lifetime at temperature

    NASA Astrophysics Data System (ADS)

    Fellowes, David A.; Wood, Michael V.; Prache, Olivier; Jones, Susan

    2005-05-01

    Active Matrix Organic Light Emitting Diode (AMOLED) displays are known to exhibit high levels of performance, and these levels of performance have continually been improved over time with new materials and electronics design. eMagin Corporation developed a manually adjustable temperature compensation circuit with brightness control to allow for excellent performance over a wide temperature range. Night Vision and Electronic Sensors Directorate (US Army) tested the performance and survivability of a number of AMOLED displays in a temperature chamber over a range from -55°C to +85°C. Although device performance of AMOLEDs has always been its strong suit, the issue of usable display lifetimes for military applications continues to be an area of discussion and research. eMagin has made improvements in OLED materials and worked towards the development of a better understanding of usable lifetime for operation in a military system. NVESD ran luminance degradation tests of AMOLED panels at 50°C and at ambient to characterize the lifetime of AMOLED devices. The result is a better understanding of the applicability of AMOLEDs in military systems: where good fits are made, and where further development is needed.

  14. The effects of physical activity on functional MRI activation associated with cognitive control in children: a randomized controlled intervention

    PubMed Central

    Chaddock-Heyman, Laura; Erickson, Kirk I.; Voss, Michelle W.; Knecht, Anya M.; Pontifex, Matthew B.; Castelli, Darla M.; Hillman, Charles H.; Kramer, Arthur F.

    2013-01-01

    This study used functional magnetic resonance imaging (fMRI) to examine the influence of a 9-month physical activity program on task-evoked brain activation during childhood. The results demonstrated that 8- to 9-year-old children who participated in 60+ min of physical activity, 5 days per week, for 9 months, showed decreases in fMRI brain activation in the right anterior prefrontal cortex coupled with within-group improvements in performance on a task of attentional and interference control. Children assigned to a wait-list control group did not show changes in brain function. Furthermore, at post-test, children in the physical activity group showed similar anterior frontal brain patterns and incongruent accuracy rates to a group of college-aged young adults. Children in the wait-list control group still differed from the young adults in terms of anterior prefrontal activation and performance at post-test. There were no significant changes in fMRI activation in the anterior cingulate cortex (ACC) for either group. These results suggest that physical activity during childhood may enhance specific elements of prefrontal cortex function involved in cognitive control. PMID:23487583

  15. The Role of Physical Activity and Physical Function on the Risk of Falls in Older Mexican Americans.

    PubMed

    Lewis, Zakkoyya H; Markides, Kyriakos S; Ottenbacher, Kenneth J; Al Snih, Soham

    2016-07-01

    We investigated the relationship between physical activity and physical function on the risk of falls over time in a cohort of Mexican-American adults aged 75 and older from the Hispanic Established Population for the Epidemiologic Study of the Elderly (H-EPESE). Participants were divided into four groups according to their level of physical activity and physical function: low physical activity and low physical function (n = 453); low physical activity and high physical function (n = 54); high physical activity and low physical function (n = 307); and high physical activity and high physical function (n = 197). Using generalized linear equation estimation, we showed that participants with high physical activity and low physical function had a greater fall risk over time, followed by the high physical activity and high physical function group. Participants seldom took part in activities that improve physical function. To prevent falls, modifications to physical activity should be made for older Mexican Americans. PMID:26502457

  16. Mental Health in Multiple Sclerosis Patients without Limitation of Physical Function: The Role of Physical Activity

    PubMed Central

    Tallner, Alexander; Waschbisch, Anne; Hentschke, Christian; Pfeifer, Klaus; Mäurer, Mathias

    2015-01-01

    Multiple sclerosis (MS) patients, in general, show reduced physical function, physical activity, and quality of life. Positive associations between physical activity and quality of life have been reported. In particular, we were interested in the relation between physical activity and mental health in MS patients without limitation of physical function, since limitations of physical function may influence both physical activity and quality of life. Assessment comprised the Baecke questionnaire on physical activity, the Short Form 36 Health Survey (SF-36), and Beck Depression Inventory (BDI). We ranked our sample according to physical activity into four groups and performed an ANOVA to analyze the relationship between levels of physical activity and health-related quality of life (HRQoL). Then we performed a subgroup analysis and included patients with unlimited walking distance and a score of less than 18 in the BDI. Most active vs. inactive patients were compared for the mental subscales of the SF-36 and depression scores. From 632 patients, 265 met inclusion criteria and hence quartiles were filled with 67 patients each. Active and inactive patients did not differ considerably in physical function. In contrast, mental subscales of the SF-36 were higher in active patients. Remarkable and significant differences were found regarding vitality, general health perception, social functioning and mental health, all in favor of physically active patients. Our study showed that higher physical activity is still associated with higher mental health scores even if limitations of physical function are accounted for. Therefore, we believe that physical activity and exercise have considerable health benefits for MS patients. PMID:26147422

  17. Docosahexaenoic acid modulates inflammatory and antineurogenic functions of activated microglial cells.

    PubMed

    Antonietta Ajmone-Cat, Maria; Lavinia Salvatori, Maria; De Simone, Roberta; Mancini, Melissa; Biagioni, Stefano; Bernardo, Antonietta; Cacci, Emanuele; Minghetti, Luisa

    2012-03-01

    The complex process of microglial activation encompasses several functional activation states associated either with neurotoxic/antineurogenic or with neurotrophic/proneurogenic properties, depending mainly on the extent of activation and the nature of the activating stimuli. Several studies have demonstrated that acute exposure to the prototypical activating agent lipopolysaccharide (LPS) confers antineurogenic properties upon microglial cells. Acutely activated microglia ortheir conditioned media (CM) reduce neural stem progenitor cell (NPC) survival and prevent NPC differentiation into neurons. The present study tested the hypothesis that docosahexaenoic acid (DHA), a long-chain polyunsatured fatty acid (L-PUFA) with potent immunomodulatory properties, could dampen microglial proinflammatory functions and modulate their antineurogenic effect. We demonstrate that DHA dose dependently inhibits the synthesis of inflammatory products in activated microglia without inducing an alternative antiinflammatory phenotype. Among the possible DHA mechanisms of action, we propose the inhibition of p38 MAPK phosphorylation and the activation of the nuclear receptor peroxisome proliferator activated receptor (PPAR)-γ. The attenuation of M1 proinflammatory phenotype has relevant consequences for the survival and differentiation of NPC, because DHA reverses the antineurogenic activities of conditioned media from LPS-activated microglia. Our study identifies new relevant potentially protective and proneurogenic functions of DHA, exerted through the modulation of microglial functions, that could be exploited to sustain or promote neuroregenerative processes in damaged/aged brain. PMID:22057807

  18. Functional impairment of natural killer cells in active ulcerative colitis: reversion of the defective natural killer activity by interleukin 2.

    PubMed Central

    Manzano, L; Alvarez-Mon, M; Abreu, L; Antonio Vargas, J; de la Morena, E; Corugedo, F; Duràntez, A

    1992-01-01

    We have studied the functional characteristics and clinical importance of the natural killer (NK) cytotoxicity of peripheral blood mononuclear cells (PBMNC) from patients with ulcerative colitis. Normal NK activity was observed in PBMNC from patients with inactive disease, but a pronounced decrease was found in those with active disease. Clinical change from active to inactive disease was associated with enhancement of the depressed NK activity. The impairment of NK cytotoxicity found in patients with active disese could not be ascribed to a deficient number of NK cells as the amounts of HNK-1+, CD16+ (Leu 11), and CD11b (OKM1) cells in PBMNC were within normal ranges. This defective cytotoxic PBMNC activity was normalised by short term (18 hour) incubation with recombinant interleukin 2 (rIL-2). Moreover, long term (5 day) incubation of these effector cells with rIL-2 induced strong cytotoxic activity against NK resistant and NK sensitive target cells in patients with active and inactive disease. We also found that both precursors and effectors of cytotoxic activity promoted by short term and long term incubation with rIL-2 of PBMNC from the patients showed the phenotype of NK cells (CD16+, CD3-). Taken together, these results show that active ulcerative colitis is associated with a defective function of NK cells that is found to be normal in the inactive stage of the disease. The possible pathogenic and therapeutic implications of these findings are discussed. PMID:1541421

  19. Oxidative Dehydrogenation on Nanocarbon: Intrinsic Catalytic Activity and Structure-Function Relationships.

    PubMed

    Qi, Wei; Liu, Wei; Guo, Xiaoling; Schlögl, Robert; Su, Dangsheng

    2015-11-01

    Physical and chemical insights into the nature and quantity of the active sites and the intrinsic catalytic activity of nanocarbon materials in alkane oxidative dehydrogenation (ODH) reactions are reported using a novel in situ chemical titration process. A study on the structure-function relationship reveals that the active sites are identical both in nature and function on various nanocarbon catalysts. Additionally, the quantity of the active sites could be used as a metric to normalize the reaction rates, and thus to evaluate the intrinsic activity of nanocarbon catalysts. The morphology of the nanocarbon catalysts at the microscopic scale exhibits a minor influence on their intrinsic ODH catalytic activity. The number of active sites calculated from the titration process indicates the number of catalytic centers that are active (that is, working) under the reaction conditions. PMID:26388451

  20. Longitudinal Analysis of Physical Performance, Functional Status, Physical Activity, and Mood in Relation to Executive Function Among Older Fallers

    PubMed Central

    Best, John R.; Davis, Jennifer C.; Liu-Ambrose, Teresa

    2016-01-01

    BACKGROUND Older fallers are at risk of experiencing functional decline within 1 to 3 years; however, not all older fallers show near-term decline. Executive function (EF), which refers to the cognitive processes important for goal-oriented and controlled behavior, may be one factor that underlies resiliency against decline. OBJECTIVES To examine whether good EF at baseline and maintenance of EF over time predict maintenance of physical performance, functional status, physical activity, and mood over a one-year period. Conversely, to examine whether baseline functioning in these non-cognitive domains predicts maintenance of EF over the same period of time. DESIGN 12-month prospective cohort study. SETTING Vancouver Falls Prevention Clinic. PARTICIPANTS Community-dwelling older adults (N = 199; mean age = 81.6; 63% female) referred to the clinic after suffering a fall. MEASURMENTS At each time point, structural equation modeling created a latent EF variable from performance on five EF tasks. Physical performance (physiological falls risk and gait speed), instrumental activities of daily living (IADLs), physical activity, and depressive symptoms were also assessed at each time point. RESULTS Higher baseline EF predicted decreases in depressive symptoms and maintenance of IADLs from baseline to follow-up (p<.01). Improvements in EF correlated with increases in gait speed and physical activity, and with the maintenance of IADLs over the follow-up (p<.05). All effects were independent of demographic characteristics and global cognitive function. Baseline performance in the non-cognitive domains did not predict changes in EF. CONCLUSION Among older fallers, EF is a marker for resiliency in several non-cognitive domains, and therefore, should be assessed. Furthermore, interventions to improve EF should be tested among older fallers with EF deficits. PMID:26096385

  1. Physical Activity Level and Physical Functionality in Nonagenarians Compared to Individuals Aged 60–74 Years

    PubMed Central

    Frisard, Madlyn I.; Fabre, Jennifer M.; Russell, Ryan D.; King, Christina M.; DeLany, James P.; Wood, Robert H.; Ravussin, Eric

    2009-01-01

    Background Functional dependence and the risks of disability increase with age. The loss of independence is thought to be partially due to a decrease in physical activity. However, in populations, accurate measurement of physical activity is challenging and may not provide information on functional impairment. Methods This study therefore assessed physical functionality and physical activity level in a group of nonagenarians (11 men/11 women; 93 ± 1 years, 66.6 ± 2.4 kg, body mass index [BMI] = 24 ± 1 kg/m2) and a group of participants aged 60–74 years (17 men/15 women; 70 ± 1 years, 83.3 ± 3.0 kg, BMI = 29 ± 1 kg/m2) from the Louisiana Healthy Aging Study. Physical activity level was calculated from total energy expenditure (TEE) and resting metabolic rate (RMR). Physical functionality was assessed using the Reduced Continuous Scale Physical Functional Performance Test (CS-PFP10). Results Nonagenarians had lower absolute ( p < .001) and adjusted ( p < .007) TEE compared to participants aged 60–74 years which was attributed to a reduction in both RMR and physical activity level. Nonagenarians also had reduced functional performance ( p < .001) which was correlated with activity level (r = 0.68, p < .001). Conclusions When compared to individuals aged 60–74 years, 73% of the reduction in TEE in nonagenarians can be attributed to a reduction in physical activity level, the remaining being accounted for by a reduction in RMR. The reduced physical activity in nonagenarians is associated with less physical functionality. This study provides the first objective comparison of physical functionality and actual levels of physical activity in older individuals. PMID:17634327

  2. Neighborhood satisfaction, functional limitations, and self-efficacy influences on physical activity in older women

    PubMed Central

    Morris, Katherine S; McAuley, Edward; Motl, Robert W

    2008-01-01

    Background Perceptions of one's environment and functional status have been linked to physical activity in older adults. However, little is known about these associations over time, and even less about the possible mediators of this relationship. We examined the roles played by neighborhood satisfaction, functional limitations, self-efficacy, and physical activity in a sample of older women over a 6-month period. Methods Participants (N = 137, M age = 69.6 years) completed measures of neighborhood satisfaction, functional limitations, self-efficacy, and physical activity at baseline and again 6 months later. Results Analyses indicated that changes in neighborhood satisfaction and functional limitations had direct effects on residual changes in self-efficacy, and changes in self-efficacy were associated with changes in physical activity at 6 months. Conclusion Our findings support a social cognitive model of physical activity in which neighborhood satisfaction and functional status effects on physical activity are in part mediated by intermediate individual outcomes such as self-efficacy. Additionally, these findings lend support to the position that individual perceptions of both the environment and functional status can have prospective effects on self-efficacy cognitions and ultimately, physical activity behavior. PMID:18304326

  3. Trajectory of change in pain, depression, and physical functioning after physical activity adoption in fibromyalgia.

    PubMed

    Steiner, Jennifer L; Bigatti, Silvia M; Ang, Dennis C

    2015-07-01

    Fibromyalgia is associated with widespread pain, depression, and declines in physical functioning. The purpose of this study was to examine the trajectory of these symptoms over time related to physical activity adoption and maintenance via motivational interviewing versus education, to increase physical activity. There were no treatment group differences; we divided the sample (n = 184) based on changes in physical activity. Repeated measures analyses demonstrated differential patterns in depression, pain, and physical functioning at 24 and 36 weeks. Findings suggest increased physical activity may serve as a multiple-target intervention that provides moderate to large, long-lasting benefits for individuals with fibromyalgia. PMID:24165860

  4. Physical activity levels and functional performance in the Osteoarthritis Initiative: a graded relationship

    PubMed Central

    Dunlop, Dorothy D.; Song, Jing; Semanik, Pamela A.; Sharma, Leena; Chang, Rowland W.

    2010-01-01

    Objective Physical activity improves function for adults with arthritis, but it is unknown if there is a graded relationship with functional benefit. We examine the cross-sectional and longitudinal relationship between self-reported physical activity and observed functional performance in adults with knee osteoarthritis. Methods The Osteoarthritis Initiative cohort included 2589 persons with knee osteoarthritis (2301 having longitudinal follow-up) aged 45 to 79 years at baseline. Two years of prospective annual functional performance was assessed from timed 20 meter walk tests. We used linear regression to estimate differences across physical activity quartiles in subsequent function (baseline and 1-year activity predicts 1- and 2-year function, respectively) adjusted for demographics (age, gender, race/ethnicity, education, marital status) and health factors (osteoarthritis severity, knee symptoms, knee pain, knee injury, body mass index, comorbidity, depression, smoking, alcohol use, other joint pain). Results Increasing physical activity levels had a significant graded relationship with functional performance. Adults in physical activity quartile groups, from least to most active, had average gait speed of 4.0, 4.2, 4.3, 4.5 feet/second respectively at baseline (p-value for trend <.001) and 4.1, 4.2, 4.3, 4.5 feet/second after one year (p-value for trend <.001); increasing trends remained significant after adjusting for covariates. Findings were similar within gender and age groups. Conclusion These prospective data showed a consistent graded relationship between physical activity level and better performance in adults with knee osteoarthritis. These findings support guidelines that encourage persons with arthritis who cannot attain minimum recommended physical activity to be as active as possible. PMID:20862681

  5. Mutations in the Catalytic Loop HRD Motif Alter the Activity and Function of Drosophila Src64

    PubMed Central

    Strong, Taylor C.; Kaur, Gurvinder; Thomas, Jeffrey H.

    2011-01-01

    The catalytic loop HRD motif is found in most protein kinases and these amino acids are predicted to perform functions in catalysis, transition to, and stabilization of the active conformation of the kinase domain. We have identified mutations in a Drosophila src gene, src64, that alter the three HRD amino acids. We have analyzed the mutants for both biochemical activity and biological function during development. Mutation of the aspartate to asparagine eliminates biological function in cytoskeletal processes and severely reduces fertility, supporting the amino acid's critical role in enzymatic activity. The arginine to cysteine mutation has little to no effect on kinase activity or cytoskeletal reorganization, suggesting that the HRD arginine may not be critical for coordinating phosphotyrosine in the active conformation. The histidine to leucine mutant retains some kinase activity and biological function, suggesting that this amino acid may have a biochemical function in the active kinase that is independent of its side chain hydrogen bonding interactions in the active site. We also describe the phenotypic effects of other mutations in the SH2 and tyrosine kinase domains of src64, and we compare them to the phenotypic effects of the src64 null allele. PMID:22132220

  6. Second-Order Perturbation Theory for Generalized Active Space Self-Consistent-Field Wave Functions.

    PubMed

    Ma, Dongxia; Li Manni, Giovanni; Olsen, Jeppe; Gagliardi, Laura

    2016-07-12

    A multireference second-order perturbation theory approach based on the generalized active space self-consistent-field (GASSCF) wave function is presented. Compared with the complete active space (CAS) and restricted active space (RAS) wave functions, GAS wave functions are more flexible and can employ larger active spaces and/or different truncations of the configuration interaction expansion. With GASSCF, one can explore chemical systems that are not affordable with either CASSCF or RASSCF. Perturbation theory to second order on top of GAS wave functions (GASPT2) has been implemented to recover the remaining electron correlation. The method has been benchmarked by computing the chromium dimer ground-state potential energy curve. These calculations show that GASPT2 gives results similar to CASPT2 even with a configuration interaction expansion much smaller than the corresponding CAS expansion. PMID:27276688

  7. Preference as a Function of Active Interresponse Times: A Test of the Active Time Model

    ERIC Educational Resources Information Center

    Misak, Paul; Cleaveland, J. Mark

    2011-01-01

    In this article, we describe a test of the active time model for concurrent variable interval (VI) choice. The active time model (ATM) suggests that the time since the most recent response is one of the variables controlling choice in concurrent VI VI schedules of reinforcement. In our experiment, pigeons were trained in a multiple concurrent…

  8. Effect of acute exercise on some haematological parameters and neutrophil functions in active and inactive subjects.

    PubMed

    Benoni, G; Bellavite, P; Adami, A; Chirumbolo, S; Lippi, G; Brocco, G; Cuzzolin, L

    1995-01-01

    In this work we studied the possible effects of acute exercise on some haematological parameters and on some functions of neutrophils in seven active and six inactive subjects. Physical exercise (10 min on a cycle ergometer at a heart rate of 150 beats.min-1) induced a significant increase in total leucocyte, lymphocyte and neutrophil concentrations in active subjects; serum iron and ferritin concentrations were lower in active compared to inactive subjects. Cellular adhesion, bactericidal activity and superoxide anion production did not change after exercise, while we also observed some differences between active and inactive subjects before exercise. In particular, the neutrophils from active subjects showed a significantly higher percentage of adhesion, higher bactericidal activity and lower superoxide anion production. In conclusion, the training induced changes in some neutrophil functions, while acute exercise influenced, overall, leucocyte concentrations. PMID:7768243

  9. Orientation of functional activating regions in the Escherichia coli CRP protein during transcription activation at class II promoters.

    PubMed Central

    Williams, R M; Rhodius, V A; Bell, A I; Kolb, A; Busby, S J

    1996-01-01

    At class II CRP-dependent promoters the DNA site for CRP overlaps the DNA site for RNA polymerase, covering the -35 region. Transcription activation at class II CRP- dependent promoters requires a contact between an activating region in the upstream subunit of the bound CRP dimer and a contact site in the C-terminal domain of the alpha-subunit of RNA polymerase. Transcription activation is suppressed by amino acid substitutions in the activating region, but activation can be restored by second site substitutions at K52 or E96. These substitutions identify two separate regions on the surface of CRP that appear to be able to interact with RNA polymerase specifically at class II promoters. Using the method of 'oriented heterodimers' we show that these alternative activating regions are functional in the downstream subunit of the bound CRP dimer. PMID:8604346

  10. Function-based classification of carbohydrate-active enzymes by recognition of short, conserved peptide motifs.

    PubMed

    Busk, Peter Kamp; Lange, Lene

    2013-06-01

    Functional prediction of carbohydrate-active enzymes is difficult due to low sequence identity. However, similar enzymes often share a few short motifs, e.g., around the active site, even when the overall sequences are very different. To exploit this notion for functional prediction of carbohydrate-active enzymes, we developed a simple algorithm, peptide pattern recognition (PPR), that can divide proteins into groups of sequences that share a set of short conserved sequences. When this method was used on 118 glycoside hydrolase 5 proteins with 9% average pairwise identity and representing four characterized enzymatic functions, 97% of the proteins were sorted into groups correlating with their enzymatic activity. Furthermore, we analyzed 8,138 glycoside hydrolase 13 proteins including 204 experimentally characterized enzymes with 28 different functions. There was a 91% correlation between group and enzyme activity. These results indicate that the function of carbohydrate-active enzymes can be predicted with high precision by finding short, conserved motifs in their sequences. The glycoside hydrolase 61 family is important for fungal biomass conversion, but only a few proteins of this family have been functionally characterized. Interestingly, PPR divided 743 glycoside hydrolase 61 proteins into 16 subfamilies useful for targeted investigation of the function of these proteins and pinpointed three conserved motifs with putative importance for enzyme activity. Furthermore, the conserved sequences were useful for cloning of new, subfamily-specific glycoside hydrolase 61 proteins from 14 fungi. In conclusion, identification of conserved sequence motifs is a new approach to sequence analysis that can predict carbohydrate-active enzyme functions with high precision. PMID:23524681

  11. Increased premotor cortex activation in high functioning autism during action observation.

    PubMed

    Perkins, Tom J; Bittar, Richard G; McGillivray, Jane A; Cox, Ivanna I; Stokes, Mark A

    2015-04-01

    The mirror neuron (MN) hypothesis of autism has received considerable attention, but to date has produced inconsistent findings. Using functional MRI, participants with high functioning autism or Asperger's syndrome were compared to typically developing individuals (n=12 in each group). Participants passively observed hand gestures that included waving, pointing, and grasping. Concerning the MN network, both groups activated similar regions including prefrontal, inferior parietal and superior temporal regions, with the autism group demonstrating significantly greater activation in the dorsal premotor cortex. Concerning other regions, participants with autism demonstrated increased activity in the anterior cingulate and medial frontal gyrus, and reduced activation in calcarine, cuneus, and middle temporal gyrus. These results suggest that during observation of hand gestures, frontal cortex activation is affected in autism, which we suggest may be linked to abnormal functioning of the MN system. PMID:25726458

  12. Distinct Developmental Functions of Prostasin (CAP1/PRSS8) Zymogen and Activated Prostasin.

    PubMed

    Friis, Stine; Madsen, Daniel H; Bugge, Thomas H

    2016-02-01

    The membrane-anchored serine prostasin (CAP1/PRSS8) is essential for barrier acquisition of the interfollicular epidermis and for normal hair follicle development. Consequently, prostasin null mice die shortly after birth. Prostasin is found in two forms in the epidermis: a one-chain zymogen and a two-chain proteolytically active form, generated by matriptase-dependent activation site cleavage. Here we used gene editing to generate mice expressing only activation site cleavage-resistant (zymogen-locked) endogenous prostasin. Interestingly, these mutant mice displayed normal interfollicular epidermal development and postnatal survival, but had defects in whisker and pelage hair formation. These findings identify two distinct in vivo functions of epidermal prostasin: a function in the interfollicular epidermis, not requiring activation site cleavage, that can be mediated by the zymogen-locked version of prostasin and a proteolysis-dependent function of activated prostasin in hair follicles, dependent on zymogen conversion by matriptase. PMID:26719335

  13. A novel pattern mining approach for identifying cognitive activity in EEG based functional brain networks.

    PubMed

    Thilaga, M; Vijayalakshmi, R; Nadarajan, R; Nandagopal, D

    2016-06-01

    The complex nature of neuronal interactions of the human brain has posed many challenges to the research community. To explore the underlying mechanisms of neuronal activity of cohesive brain regions during different cognitive activities, many innovative mathematical and computational models are required. This paper presents a novel Common Functional Pattern Mining approach to demonstrate the similar patterns of interactions due to common behavior of certain brain regions. The electrode sites of EEG-based functional brain network are modeled as a set of transactions and node-based complex network measures as itemsets. These itemsets are transformed into a graph data structure called Functional Pattern Graph. By mining this Functional Pattern Graph, the common functional patterns due to specific brain functioning can be identified. The empirical analyses show the efficiency of the proposed approach in identifying the extent to which the electrode sites (transactions) are similar during various cognitive load states. PMID:27401999

  14. Physical activity and obesity mediate the association between childhood motor function and adolescents' academic achievement.

    PubMed

    Kantomaa, Marko T; Stamatakis, Emmanuel; Kankaanpää, Anna; Kaakinen, Marika; Rodriguez, Alina; Taanila, Anja; Ahonen, Timo; Järvelin, Marjo-Riitta; Tammelin, Tuija

    2013-01-29

    The global epidemic of obesity and physical inactivity may have detrimental implications for young people's cognitive function and academic achievement. This prospective study investigated whether childhood motor function predicts later academic achievement via physical activity, fitness, and obesity. The study sample included 8,061 children from the Northern Finland Birth Cohort 1986, which contains data about parent-reported motor function at age 8 y and self-reported physical activity, predicted cardiorespiratory fitness (cycle ergometer test), obesity (body weight and height), and academic achievement (grades) at age 16 y. Structural equation models with unstandardized (B) and standardized (β) coefficients were used to test whether, and to what extent, physical activity, cardiorespiratory fitness, and obesity at age 16 mediated the association between childhood motor function and adolescents' academic achievement. Physical activity was associated with a higher grade-point average, and obesity was associated with a lower grade-point average in adolescence. Furthermore, compromised motor function in childhood had a negative indirect effect on adolescents' academic achievement via physical inactivity (B = -0.023, 95% confidence interval = -0.031, -0.015) and obesity (B = -0.025, 95% confidence interval = -0.039, -0.011), but not via cardiorespiratory fitness. These results suggest that physical activity and obesity may mediate the association between childhood motor function and adolescents' academic achievement. Compromised motor function in childhood may represent an important factor driving the effects of obesity and physical inactivity on academic underachievement. PMID:23277558

  15. Using function-focused care to increase physical activity among older adults.

    PubMed

    Resnick, Barbara; Galik, Elizabeth

    2013-01-01

    Despite the known benefits of physical activity for older adults, adherence to regular physical activity recommendations is poor. Less than half of adults in this country meet physical activity recommendations with reasons for lack of adherence including such things as access, motivation, pain, fear, comorbidities, among others. To overcome these challenges, function-focused care was developed. Function-focused care is a philosophy of care that focuses on evaluating the older adult's underlying capability with regard to function and physical activity and helping him or her optimize and maintain physical function and ability and continually increase time spent in physical activity. Examples of function-focused care include such things as using verbal cues during bathing, so the older individual performs the tasks rather than the caregiver bathing the individual; walking a resident or patient to the bathroom rather than using a urinal, or taking a resident to an exercise class. There are now over 20 studies supporting the benefits of function-focused care approaches across all settings and different types of patient groups (i.e, those with mild versus moderate-to-severe cognitive impairment). The approaches for implementation of function-focused care have also been well supported and have moved beyond establishing effectiveness to considering dissemination and implementation of this approach into real world clinical settings. The process of dissemination and implementation has likewise been articulated and supported, and ongoing work needs to continue in this venue across all care settings. PMID:24894140

  16. Functional near-infrared spectroscopy (fNIRS) of brain function during active balancing using a video game system.

    PubMed

    Karim, Helmet; Schmidt, Benjamin; Dart, Dwight; Beluk, Nancy; Huppert, Theodore

    2012-03-01

    Functional near-infrared spectroscopy (fNIRS) is a portable, non-invasive, brain imaging technology that uses low levels of non-ionizing light to record changes in cerebral blood flow in the brain through optical sensors placed on the surface of the scalp. These signals are recorded via flexible fiber optic cables, which allow neuroimaging experiments to be conducted on participants while performing tasks such as standing or walking. FNIRS has the potential to provide new insights into the evolution of brain activation during ambulatory motor learning tasks and standing tasks to probe balance and vestibular function. In this study, a 32 channel fNIRS system was used to record blood flow changes in the frontal, motor, sensory, and temporal cortices during active balancing associated with playing a video game simulating downhill skiing (Nintendo Wii™; Wii-fit™). Using fNIRS, we found activation of superior temporal gyrus, which was modulated by the difficulty of the balance task. This region had been previously implicated in vestibular function from other animal and human studies. PMID:22078300

  17. Alterations in brain activation during cognitive empathy are related to social functioning in schizophrenia.

    PubMed

    Smith, Matthew J; Schroeder, Matthew P; Abram, Samantha V; Goldman, Morris B; Parrish, Todd B; Wang, Xue; Derntl, Birgit; Habel, Ute; Decety, Jean; Reilly, James L; Csernansky, John G; Breiter, Hans C

    2015-01-01

    Impaired cognitive empathy (ie, understanding the emotional experiences of others) is associated with poor social functioning in schizophrenia. However, it is unclear whether the neural activity underlying cognitive empathy relates to social functioning. This study examined the neural activation supporting cognitive empathy performance and whether empathy-related activation during correctly performed trials was associated with self-reported cognitive empathy and measures of social functioning. Thirty schizophrenia outpatients and 24 controls completed a cognitive empathy paradigm during functional magnetic resonance imaging. Neural activity corresponding to correct judgments about the expected emotional expression in a social interaction was compared in schizophrenia subjects relative to control subjects. Participants also completed a self-report measure of empathy and 2 social functioning measures (social competence and social attainment). Schizophrenia subjects demonstrated significantly lower accuracy in task performance and were characterized by hypoactivation in empathy-related frontal, temporal, and parietal regions as well as hyperactivation in occipital regions compared with control subjects during accurate cognitive empathy trials. A cluster with peak activation in the supplementary motor area (SMA) extending to the anterior midcingulate cortex (aMCC) correlated with social competence and social attainment in schizophrenia subjects but not controls. These results suggest that neural correlates of cognitive empathy may be promising targets for interventions aiming to improve social functioning and that brain activation in the SMA/aMCC region could be used as a biomarker for monitoring treatment response. PMID:24583906

  18. Alterations in Brain Activation During Cognitive Empathy Are Related to Social Functioning in Schizophrenia

    PubMed Central

    Smith, Matthew J.; Schroeder, Matthew P.; Abram, Samantha V.; Goldman, Morris B.; Parrish, Todd B.; Wang, Xue; Derntl, Birgit; Habel, Ute; Decety, Jean; Reilly, James L.; Csernansky, John G.; Breiter, Hans C.

    2015-01-01

    Impaired cognitive empathy (ie, understanding the emotional experiences of others) is associated with poor social functioning in schizophrenia. However, it is unclear whether the neural activity underlying cognitive empathy relates to social functioning. This study examined the neural activation supporting cognitive empathy performance and whether empathy-related activation during correctly performed trials was associated with self-reported cognitive empathy and measures of social functioning. Thirty schizophrenia outpatients and 24 controls completed a cognitive empathy paradigm during functional magnetic resonance imaging. Neural activity corresponding to correct judgments about the expected emotional expression in a social interaction was compared in schizophrenia subjects relative to control subjects. Participants also completed a self-report measure of empathy and 2 social functioning measures (social competence and social attainment). Schizophrenia subjects demonstrated significantly lower accuracy in task performance and were characterized by hypoactivation in empathy-related frontal, temporal, and parietal regions as well as hyperactivation in occipital regions compared with control subjects during accurate cognitive empathy trials. A cluster with peak activation in the supplementary motor area (SMA) extending to the anterior midcingulate cortex (aMCC) correlated with social competence and social attainment in schizophrenia subjects but not controls. These results suggest that neural correlates of cognitive empathy may be promising targets for interventions aiming to improve social functioning and that brain activation in the SMA/aMCC region could be used as a biomarker for monitoring treatment response. PMID:24583906

  19. Brain Activation during Semantic Processing in Autism Spectrum Disorders via Functional Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Harris, Gordon J.; Chabris, Christopher F.; Clark, Jill; Urban, Trinity; Aharon, Itzhak; Steele, Shelley; McGrath, Lauren; Condouris, Karen; Tager-Flusberg, Helen

    2006-01-01

    Language and communication deficits are core features of autism spectrum disorders (ASD), even in high-functioning adults with ASD. This study investigated brain activation patterns using functional magnetic resonance imaging in right-handed adult males with ASD and a control group, matched on age, handedness, and verbal IQ. Semantic processing in…

  20. A Physical Activity Program Improves Behavior and Cognitive Functions in Children with ADHD: An Exploratory Study

    ERIC Educational Resources Information Center

    Verret, Claudia; Guay, Marie-Claude; Berthiaume, Claude; Gardiner, Phillip; Beliveau, Louise

    2012-01-01

    Objective: The objective of this study is to explore the effects of a moderate- to high-intensity physical activity program on fitness, cognitive functions, and ADHD-related behavior in children with ADHD. Method: Fitness level, motor skills, behaviors, and cognitive functions are assessed by standardized tests before and after a 10-week training…

  1. The Geriatric Hand: Correlation of Hand-Muscle Function and Activity Restriction in Elderly

    ERIC Educational Resources Information Center

    Incel, Nurgul Arinci; Sezgin, Melek; As, Ismet; Cimen, Ozlem Bolgen; Sahin, Gunsah

    2009-01-01

    On the basis of the importance of hand manipulation in activities of daily living (ADL), deterioration of hand function because of various factors reduces quality and independence of life of the geriatric population. The aim of this study was to identify age-induced changes in manual function and to quantify the correlations between hand-muscle…

  2. Some Problems for Representations of Brain Organization Based on Activation in Functional Imaging

    ERIC Educational Resources Information Center

    Sidtis, John J.

    2007-01-01

    Functional brain imaging has overshadowed traditional lesion studies in becoming the dominant approach to the study of brain-behavior relationships. The proponents of functional imaging studies frequently argue that this approach provides an advantage over lesion studies by observing normal brain activity in vivo without the disruptive effects of…

  3. Epidemiological investigation of muscle-strengthening activities and cognitive function among older adults.

    PubMed

    Loprinzi, Paul D

    2016-06-01

    Limited research has examined the association of muscle-strengthening activities and executive cognitive function among older adults, which was this study's purpose. Data from the 1999-2002 NHANES were employed (N = 2157; 60-85 years). Muscle-strengthening activities were assessed via self-report, with cognitive function assessed using the digit symbol substitution test. After adjusting for age, age-squared, gender, race-ethnicity, poverty level, body mass index, C-reactive protein, smoking, comorbid illness and physical activity, muscle-strengthening activities were significantly associated with cognitive function (βadjusted = 3.4; 95% CI: 1.7-5.1; P < 0.001). Compared to those not engaging in aerobic exercise and not meeting muscle-strengthening activity guidelines, those doing 1 (βadjusted = 3.7; 95% CI: 1.9-5.4; P < 0.001) and both (βadjusted = 6.6; 95% CI: 4.8-8.3; P < 0.001) of these behaviors had a significantly higher executive cognitive function score. In conclusion, muscle-strengthening activities are associated with executive cognitive function among older U.S. adults, underscoring the importance of promoting both aerobic exercise and muscle-strengthening activities to older adults. PMID:27048445

  4. Function of steroidogenic factor 1 domains in nuclear localization, transactivation, and interaction with transcription factor TFIIB and c-Jun.

    PubMed

    Li, L A; Chiang, E F; Chen, J C; Hsu, N C; Chen, Y J; Chung, B C

    1999-09-01

    Normal endocrine development and function require nuclear hormone receptor SF-1 (steroidogenic factor 1). To understand the molecular mechanism of SF-1 action, we have investigated its domain function by mutagenesis and functional analyses. Our mutant studies show that the putative AF2 (activation function 2) helix located at the C-terminal end is indispensable for gene activation. SF-1 does not have an N-terminal AF1 domain. Instead, it contains a unique FP region, composed of the Ftz-F1 box and the proline cluster, after the zinc finger motif. The FP region interacts with transcription factor IIB (TFIIB) in vitro. This interaction requires residues 178-201 of TFIIB, a domain capable of binding several transcription factors. The FP region also mediates physical interaction with c-Jun, and this interaction greatly enhances SF-1 activity. The putative SF-1 ligand, 25-hydroxycholesterol, has no effects on these bindings. In addition, the Ftz-F1 box contains a bipartite nuclear localization signal (NLS). Removing the basic residues at either end of the key nuclear localization sequence NLS2.2 abolishes the nuclear transport. Expression of mutants containing only the FP region or lacking the AF2 domain blocks wild-type SF-1 activity in cells. By contrast, the mutant having a truncated nuclear localization signal lacks this dominant negative effect. These results delineate the importance of the FP and AF2 regions in nuclear localization, protein-protein interaction, and transcriptional activation. PMID:10478848

  5. Altered sensorimotor activation patterns in idiopathic dystonia—an activation likelihood estimation meta‐analysis of functional brain imaging studies

    PubMed Central

    Herz, Damian M.; Haagensen, Brian N.; Lorentzen, Anne K.; Eickhoff, Simon B.; Siebner, Hartwig R.

    2015-01-01

    Abstract Dystonia is characterized by sustained or intermittent muscle contractions causing abnormal, often repetitive, movements or postures. Functional neuroimaging studies have yielded abnormal task‐related sensorimotor activation in dystonia, but the results appear to be rather variable across studies. Further, study size was usually small including different types of dystonia. Here we performed an activation likelihood estimation (ALE) meta‐analysis of functional neuroimaging studies in patients with primary dystonia to test for convergence of dystonia‐related alterations in task‐related activity across studies. Activation likelihood estimates were based on previously reported regional maxima of task‐related increases or decreases in dystonia patients compared to healthy controls. The meta‐analyses encompassed data from 179 patients with dystonia reported in 18 functional neuroimaging studies using a range of sensorimotor tasks. Patients with dystonia showed bilateral increases in task‐related activation in the parietal operculum and ventral postcentral gyrus as well as right middle temporal gyrus. Decreases in task‐related activation converged in left supplementary motor area and left postcentral gyrus, right superior temporal gyrus and dorsal midbrain. Apart from the midbrain cluster, all between‐group differences in task‐related activity were retrieved in a sub‐analysis including only the 14 studies on patients with focal dystonia. For focal dystonia, an additional cluster of increased sensorimotor activation emerged in the caudal cingulate motor zone. The results show that dystonia is consistently associated with abnormal somatosensory processing in the primary and secondary somatosensory cortex along with abnormal sensorimotor activation of mesial premotor and right lateral temporal cortex. Hum Brain Mapp 37:547–557, 2016. © 2015 Wiley Periodicals, Inc. PMID:26549606

  6. Altered sensorimotor activation patterns in idiopathic dystonia-an activation likelihood estimation meta-analysis of functional brain imaging studies.

    PubMed

    Løkkegaard, Annemette; Herz, Damian M; Haagensen, Brian N; Lorentzen, Anne K; Eickhoff, Simon B; Siebner, Hartwig R

    2016-02-01

    Dystonia is characterized by sustained or intermittent muscle contractions causing abnormal, often repetitive, movements or postures. Functional neuroimaging studies have yielded abnormal task-related sensorimotor activation in dystonia, but the results appear to be rather variable across studies. Further, study size was usually small including different types of dystonia. Here we performed an activation likelihood estimation (ALE) meta-analysis of functional neuroimaging studies in patients with primary dystonia to test for convergence of dystonia-related alterations in task-related activity across studies. Activation likelihood estimates were based on previously reported regional maxima of task-related increases or decreases in dystonia patients compared to healthy controls. The meta-analyses encompassed data from 179 patients with dystonia reported in 18 functional neuroimaging studies using a range of sensorimotor tasks. Patients with dystonia showed bilateral increases in task-related activation in the parietal operculum and ventral postcentral gyrus as well as right middle temporal gyrus. Decreases in task-related activation converged in left supplementary motor area and left postcentral gyrus, right superior temporal gyrus and dorsal midbrain. Apart from the midbrain cluster, all between-group differences in task-related activity were retrieved in a sub-analysis including only the 14 studies on patients with focal dystonia. For focal dystonia, an additional cluster of increased sensorimotor activation emerged in the caudal cingulate motor zone. The results show that dystonia is consistently associated with abnormal somatosensory processing in the primary and secondary somatosensory cortex along with abnormal sensorimotor activation of mesial premotor and right lateral temporal cortex. Hum Brain Mapp 37:547-557, 2016. © 2015 Wiley Periodicals, Inc. PMID:26549606

  7. Biochemical Analysis of Distinct Activation Functions in p300 That Enhance Transcription Initiation with Chromatin Templates

    PubMed Central

    Kraus, W. Lee; Manning, E. Tory; Kadonaga, James T.

    1999-01-01

    To investigate the mechanisms of transcriptional enhancement by the p300 coactivator, we analyzed wild-type and mutant versions of p300 with a chromatin transcription system in vitro. Estrogen receptor, NF-κB p65 plus Sp1, and Gal4-VP16 were used as different sequence-specific activators. The CH3 domain (or E1A-binding region) was found to be essential for the function of each of the activators tested. The bromodomain was also observed to be generally important for p300 coactivator activity, though to a lesser extent than the CH3 domain/E1A-binding region. The acetyltransferase activity and the C-terminal region (containing the steroid receptor coactivator/p160-binding region and the glutamine-rich region) were each found to be important for activation by estrogen receptor but not for that by Gal4-VP16. The N-terminal region of p300, which had been previously found to interact with nuclear hormone receptors, was not seen to be required for any of the activators, including estrogen receptor. Single-round transcription experiments revealed that the functionally important subregions of p300 contribute to its ability to promote the assembly of transcription initiation complexes. In addition, the acetyltransferase activity of p300 was observed to be distinct from the broadly essential activation function of the CH3 domain/E1A-binding region. These results indicate that specific regions of p300 possess distinct activation functions that are differentially required to enhance the assembly of transcription initiation complexes. Interestingly, with the estrogen receptor, four distinct regions of p300 each have an essential role in the transcription activation process. These data exemplify a situation in which a network of multiple activation functions is required to achieve gene transcription. PMID:10567538

  8. Patient Participation and Physical Activity during Rehabilitation and Future Functional Outcomes in Patients following Hip Fracture

    PubMed Central

    Lenze, Eric J.; Munin, Michael C.; Harrison, Christopher C; Brach, Jennifer S

    2016-01-01

    Objective We examined the association between physical activity recorded by Actigraphy during therapy sessions (therapy) to therapist rated patient participation and self reported future functional outcomes. We hypothesized those participants who were more active during rehab would have higher participation scores and better functional outcomes following hip fracture compared to those who were less active. Design Longitudinal study with 3 and 6 month follow-up. Setting Participants were recruited from skilled nursing (SN) and inpatient rehabilitation (IR) facilities. Participants Participants included 18 community dwelling older adults admitted to SN or IR facilities after hip fracture. Participants were included if they were ≥ 60 years of age and ambulatory with or without assistance from a device or another person. Intervention Not Applicable Main Outcome Measure Physical activity was quantified during participants’ rehab using the Actigraph accelerometer worn consecutively over 5 days. The Pittsburgh Participation Rating Scale was used to quantify patient participation during their inpatient therapy sessions. Self reported functional outcomes were measured by the Hip Fracture Functional Recovery Scale (HFRS) at baseline, 3 and 6 months following fracture. Results Participants with higher Actigraphy counts during rehab were ranked by their therapists as having excellent participation compared to those who were less active. Participants who were more active reported better functional abilities at both 3 and 6 month time points and achieved 78% and 91% recovery of self reported pre-fracture function compared to those who were less active achieving 64% and 73% recovery. Conclusion Actigraphy provides an objective measure of physical activity exhibiting predictive validity for future functional outcomes and concurrent validity against patient participation in patients after hip fracture. PMID:19345777

  9. Abnormal fusiform activation during emotional-face encoding assessed with functional magnetic resonance imaging.

    PubMed

    Adleman, Nancy E; Kayser, Reilly R; Olsavsky, Aviva K; Bones, Brian L; Muhrer, Eli J; Fromm, Stephen J; Pine, Daniel S; Zarate, Carlos; Leibenluft, Ellen; Brotman, Melissa A

    2013-05-30

    This functional magnetic resonance imaging study shows that children and adults with bipolar disorder (BD), compared with healthy subjects, exhibit impaired memory for emotional faces and abnormal fusiform activation during encoding. Fusiform activation abnormalities in BD were correlated with mania severity and may therefore represent a trait and state BD biomarker. PMID:23541333

  10. Relation of Physical Activity to Memory Functioning in Older Adults: The Memory Workout Program.

    ERIC Educational Resources Information Center

    Rebok, George W.; Plude, Dana J.

    2001-01-01

    The Memory Workout, a CD-ROM program designed to help older adults increase changes in physical and cognitive activity influencing memory, was tested with 24 subjects. Results revealed a significant relationship between exercise time, exercise efficacy, and cognitive function, as well as interest in improving memory and physical activity.…

  11. Participation in Daily Activities of Young Adults with High Functioning Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    McCollum, Mary; LaVesser, Patti; Berg, Christine

    2016-01-01

    Young adults with an autism spectrum disorder (ASD) struggle to assume adult roles. This research assessed the feasibility of using the Adolescent and Young Adult Activity Card Sort (AYA-ACS) with emerging adults with high functioning ASD. Two phases were utilized during this research: (1) comparing the activity participation reported by emerging…

  12. IMPORTANCE OF ACTIVATED CARBON'S OXYGEN SURFACE FUNCTIONAL GROUPS ON ELEMENTAL MERCURY ADSORPTION

    EPA Science Inventory

    The effect of varying physical and chemical properties of activated carbons on adsorption of elemental mercury [Hg(0)] was studied by treating two activated carbons to modify their surface functional groups and pore structures. Heat treatment (1200 K) in nitrogen (N2), air oxidat...

  13. Does quadriceps neuromuscular activation capability explain mobility function among older men and women?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Age-related impairment of neuromuscular activation has been shown to contribute to weakness in older adults. However, it is unclear to what extent impaired neuromuscular activation independently accounts for decline of mobility function. The hypothesis of this study is that capability to produce rap...

  14. Does neuromuscular activation capability explain mobility function among older men and women?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Age-related impairment of neuromuscular activation has been shown to contribute to weakness in older adults. However, it is unclear to what extent impaired neuromuscular activation independently accounts for decline of mobility function. The hypothesis of this study is that capability to produce rap...

  15. Rev-RRE Functional Activity Differs Substantially Among Primary HIV-1 Isolates.

    PubMed

    Jackson, Patrick E; Tebit, Denis M; Rekosh, David; Hammarskjold, Marie-Louise

    2016-09-01

    The HIV-1 replication cycle requires the nucleocytoplasmic export of intron-containing viral RNAs, a process that is ordinarily restricted. HIV overcomes this by means of the viral Rev protein, which binds to an RNA secondary structure called the Rev response element (RRE) present in all unspliced or incompletely spliced viral RNA transcripts. The resulting mRNP complex is exported through interaction with cellular factors. The Rev-RRE binding interaction is increasingly understood to display remarkable structural plasticity, but little is known about how Rev-RRE sequence differences affect functional activity. To study this issue, we utilized a lentiviral vector assay in which vector titer is dependent on the activity of selected Rev-RRE pairs. We found that Rev-RRE functional activity varies significantly (up to 24-fold) between naturally occurring viral isolates. The activity differences of the Rev-RRE cognate pairs track closely with Rev, but not with RRE activity. This variation in Rev activity is not correlated with differences in Rev steady state protein levels. These data suggest that Rev sequence differences drive substantial variation in Rev-RRE functional activity between patients. Such variation may play a role in viral adaptation to different immune milieus within and between patients and may be significant in the establishment of latency. The identification of differences in Rev-RRE functional activity in naturally occurring isolates may also permit more efficient production of lentiviral vectors. PMID:27147495

  16. Diode laser threshold current density and lasing wavelength as functions of active region thickness

    SciTech Connect

    Streifer, W.; Scifres, D.R.; Burnham, R.D.

    1983-03-01

    Based on a simple model of the band-to-band absorption of a diode laser active region, we formulatean expression for modal gain as a function of pumping current. Using this result yields expressions for threshold current density and lasing photon energy which depend on device parameters including active region thickness, laser length, internal losses, facet reflectivity, etc.

  17. Functional Specificity of the Visual Word Form Area: General Activation for Words and Symbols but Specific Network Activation for Words

    ERIC Educational Resources Information Center

    Reinke, Karen; Fernandes, Myra; Schwindt, Graeme; O'Craven, Kathleen; Grady, Cheryl L.

    2008-01-01

    The functional specificity of the brain region known as the Visual Word Form Area (VWFA) was examined using fMRI. We explored whether this area serves a general role in processing symbolic stimuli, rather than being selective for the processing of words. Brain activity was measured during a visual 1-back task to English words, meaningful symbols…

  18. Activities of daily living, instrumental activities for daily living and predictors of functional capacity of older men in Jamaica

    PubMed Central

    Bourne, Paul Andrew

    2009-01-01

    Background: An extensive search of the literature found no studies that have examined functional capacity [Activities of Daily Living (ADL) and Instrumental Activities for Daily Living (I) ADL)] of Jamaican older men as well as factors that determine their functional capacity. Aims: The current study examines 1) ADL, 2) (I) ADL), 3) self-reported health status, 4) functional capacity, and 5) factors that determine functional capacity of older men. Methods and Method: Stratified multistage probability sampling technique was used to draw a sample of 2,000 55+ year men. A132-item questionnaire was used to collect the data. Descriptive statistics provide background information on the sample, cross tabulations were used to examine non-metric variables and logistic regression provides a model of predictors of functional capacity. Result: Fifty-five percent of sample indicated good current health status. Four percent was mostly satisfied with life; 21.7% had moderate dependence; 77.1% had high dependence (i.e. independence); 1.2% had low dependence; 21.9% were ages 75 years and older; 35.6% were ages 65 to 74 years and 42.6% reported ages 55 to 64 years. Functional capacity can be determined by church attendance (β=0.245; 95% CI: 0.264, 1.291); social support (β=0.129; 95% CI: 0.129, 0.258), area of residence (β=-0.060; 95% CI: -0.427, -0.061) and lastly by age of respondents. Conclusion: Ageing in explains deterioration in their (I) ADL, suggesting the challenges of ageing men's independence. More rural men were rarely satisfied with life; but more of them had a greater functional capacity than urban men. Depression was found to negatively relate to functional capacity, and church attendees had a greater functional status than non-attendees. PMID:22666693

  19. Effects of immunomodulators on functional activity of innate immunity cells infected with Streptococcus pneumoniae.

    PubMed

    Plekhova, N G; Kondrashova, N M; Somova, L M; Drobot, E I; Lyapun, I N

    2015-02-01

    Low activity of bactericidal enzymes was found in innate immunity cells infected with S. pneumonia. The death of these cells was fastened under these conditions. On the contrary, treatment with antibiotic maxifloxacin was followed by an increase in activity of bactericidal enzymes in phagocytes and induced their death via necrosis. Analysis of the therapeutic properties of immunomodulators tinrostim and licopid in combination with maxifloxacin showed that these combinations correct functional activity of cells infected with S. pneumonia. PMID:25708326

  20. Psychometric Evaluation of the Physical Activity Enjoyment Scale in Adults with Functional Limitations.

    PubMed

    Murrock, Carolyn J; Bekhet, Abir; Zauszniewski, Jaclene A

    2016-01-01

    Enjoyment is an important construct for understanding physical activity participation, and it has not been examined in adults with functional limitations. This secondary analysis reported the reliability and validity of the Physical Activity Enjoyment Scale (PACES) in a convenience sample of 40 adults with functional limitations. The participants completed the PACES, Center for Epidemiological Studies Depression Scale (CES-D), and the Late Life Function and Disability Instrument (LLFDI) prior to beginning a 12-week feasibility dance intervention study. Results indicated reliability as Cronbach's alpha was .95 and mean inter-item correlation was .52. To further support reliability, homogeneity of the instrument was evaluated using item-to-total scale correlations. Homogeneity was supported as all items had corrected item-to-total correlations greater than .30. For validity, the PACES was significantly related to only the Physical Function component of the LLFDI (r = .38, p = .02), but not the CES-D. Exploratory factor analysis revealed a 3-factor structure that accounted for 73.76% of the variance. This feasibility intervention dance study represented the first attempt to examine the psychometric properties of the PACES in adults with functional limitations. The findings demonstrate support for the scale's reliability and validity among adults with functional limitations. Results are informative as further psychometric testing of the PACES is recommended using randomized clinical trials with larger sample sizes. Enjoyment for physical activity is an important construct for understanding physical activity participation in adults with functional limitations. PMID:26980666

  1. New insights into the multidimensional concept of macrophage ontogeny, activation and function.

    PubMed

    Ginhoux, Florent; Schultze, Joachim L; Murray, Peter J; Ochando, Jordi; Biswas, Subhra K

    2016-01-01

    Macrophages have protective roles in immunity to pathogens, tissue development, homeostasis and repair following damage. Maladaptive immunity and inflammation provoke changes in macrophage function that are causative of disease. Despite a historical wealth of knowledge about macrophages, recent advances have revealed unknown aspects of their development and function. Following development, macrophages are activated by diverse signals. Such tissue microenvironmental signals together with epigenetic changes influence macrophage development, activation and functional diversity, with consequences in disease and homeostasis. We discuss here how recent discoveries in these areas have led to a multidimensional concept of macrophage ontogeny, activation and function. In connection with this, we also discuss how technical advances facilitate a new roadmap for the isolation and analysis of macrophages at high resolution. PMID:26681460

  2. Activity-driven local ATP synthesis is required for synaptic function

    PubMed Central

    Rangaraju, Vidhya; Calloway, Nathaniel; Ryan, Timothy A.

    2014-01-01

    Summary Cognitive function is tightly related to metabolic state but the locus of this control is not well understood. Synapses are thought to present large ATP demands however it is unclear how fuel availability and electrical activity impact synaptic ATP levels, and how ATP availability controls synaptic function. We developed a quantitative genetically-encoded optical reporter of presynaptic ATP, Syn-ATP, and find that electrical activity imposes large metabolic demands that are met via activity-driven control of both glycolysis and mitochondrial function. We discovered that the primary source of activity-driven metabolic demand is the synaptic vesicle cycle. In metabolically intact synapses, activity-driven ATP synthesis is well matched to the energetic needs of synaptic function which at steady state results in ~ 106 free ATPs per nerve terminal. Despite this large reservoir of ATP we find that several key aspects of presynaptic function are severely impaired following even brief interruptions in activity-stimulated ATP synthesis. PMID:24529383

  3. Physical activity interventions and children's mental function: An introduction and overview

    PubMed Central

    Tomporowski, Phillip D.; Lambourne, Kate; Okumura, Michelle S.

    2011-01-01

    Background This review provides a historical overview of physical activity interventions designed by American educators and an evaluation of research that has assessed the effects of exercise on children's mental function. Method Historical descriptions of the emergence of American physical education doctrine throughout the 20th century were evaluated. Prior reviews of studies that assessed the effects of single acute bouts of exercise and the effects of chronic exercise training on children's mental function were examined and the results of recent studies were summarized. Results Physical activity interventions designed for American children have reflected two competing views: activities should promote physical fitness and activities should promote social, emotional, and intellectual development. Research results indicate that exercise fosters the emergence of children's mental function; particularly executive functioning. The route by which physical activity impacts mental functioning is complex and is likely moderated by several variables, including physical fitness level, health status, and numerous psycho-social factors. Conclusion Physical activity interventions for children should be designed to meet multiple objectives; e.g., optimize physical fitness, promote health-related behaviors that offset obesity, and facilitate mental development. PMID:21420981

  4. Identifying the functional contribution of the defatty-acylase activity of SIRT6.

    PubMed

    Zhang, Xiaoyu; Khan, Saba; Jiang, Hong; Antonyak, Marc A; Chen, Xiao; Spiegelman, Nicole A; Shrimp, Jonathan H; Cerione, Richard A; Lin, Hening

    2016-08-01

    Mammalian sirtuin 6 (SIRT6) exhibits many pivotal functions and multiple enzymatic activities, but the contribution of each activity to the various functions is unclear. We identified a SIRT6 mutant (G60A) that possesses efficient defatty-acylase activity but has substantially decreased deacetylase activity in vitro and no detectable deacetylase activity in cells. The G60A mutant has a decreased ability to bind NAD(+), but the presence of fatty-acyl lysine peptides restores NAD(+) binding, explaining the retention of the defatty-acylase activity. Using this mutant, we found that the defatty-acylase activity of SIRT6 regulates the secretion of numerous proteins. Notably, many ribosomal proteins were secreted via exosomes from Sirt6 knockout mouse embryonic fibroblasts, and these exosomes increased NIH 3T3 cell proliferation compared with control exosomes. Our data indicate that distinct activities of SIRT6 regulate different pathways and that the G60A mutant is a useful tool to study the contribution of defatty-acylase activity to SIRT6's various functions. PMID:27322069

  5. Physical activity in prefrail older adults: confidence and satisfaction related to physical function.

    PubMed

    Rejeski, W Jack; King, Abby C; Katula, Jeffrey A; Kritchevsky, Stephen; Miller, Michael E; Walkup, Michael P; Glynn, Nancy W; Pahor, Marco

    2008-01-01

    We examined the hypothesis that physical activity will have favorable effects on measures of self-efficacy for a 400-m walk and satisfaction with physical functioning in older adults 70+ years of age who have deficits in mobility. We randomized a total of 412 adults aged 70-89 years at elevated risk for mobility disability to either a physical activity or a successful aging educational control intervention for 12 months. Participants in the physical activity intervention had more favorable changes in both outcomes as a result of treatment than those in the successful aging intervention. Gender, age, and scores on a short physical performance battery did not moderate these effects. Physical activity is an effective means of intervening on self-efficacy and satisfaction with physical function in older adults with impaired lower extremity functioning. This is an important finding in light of the importance of these process variables in behavior change and quality of life. PMID:18332190

  6. Theoretical study on the adsorption of phenol on activated carbon using density functional theory.

    PubMed

    Cam, Le Minh; Van Khu, Le; Ha, Nguyen Ngoc

    2013-10-01

    Density functional theory (DFT) calculations performed at the PBE/DZP level using the DFT-D2 method were utilized to investigate the adsorption of phenol on pristine activated carbon (AC) and on activated carbon functionalized with OH, CHO, or COOH groups. Over the pristine AC, the phenol molecule undergoes weak physical adsorption due to van der Waals interactions between the aromatic part of the phenol and the basal planes of the AC. Among the three functional groups used to functionalize the AC, the carboxylic group was found to interact most strongly with the hydroxyl group of phenol. These results suggest that functionalized AC-COOH has great potential for use in environmental applications as an adsorbent of phenol molecules in aqueous phases. PMID:23918222

  7. Application of neural networks with orthogonal activation functions in control of dynamical systems

    NASA Astrophysics Data System (ADS)

    Nikolić, Saša S.; Antić, Dragan S.; Milojković, Marko T.; Milovanović, Miroslav B.; Perić, Staniša Lj.; Mitić, Darko B.

    2016-04-01

    In this article, we present a new method for the synthesis of almost and quasi-orthogonal polynomials of arbitrary order. Filters designed on the bases of these functions are generators of generalised quasi-orthogonal signals for which we derived and presented necessary mathematical background. Based on theoretical results, we designed and practically implemented generalised first-order (k = 1) quasi-orthogonal filter and proved its quasi-orthogonality via performed experiments. Designed filters can be applied in many scientific areas. In this article, generated functions were successfully implemented in Nonlinear Auto Regressive eXogenous (NARX) neural network as activation functions. One practical application of the designed orthogonal neural network is demonstrated through the example of control of the complex technical non-linear system - laboratory magnetic levitation system. Obtained results were compared with neural networks with standard activation functions and orthogonal functions of trigonometric shape. The proposed network demonstrated superiority over existing solutions in the sense of system performances.

  8. Dissociation of bactericidal activity from other functions of activated macrophages in exudates induced by thioglycolate medium.

    PubMed Central

    Spitalny, G L

    1981-01-01

    Macrophages displayed increased spreading, increased Fc-receptor-mediated phagocytosis, and increased secretion of plasminogen activator when collected from the peritoneal cavities of either Listeria-immune mice challenged intraperitoneally 3 days earlier with Listeria or nonimmune mice injected intraperitoneally 3 days earlier with fluid thioglycolate medium. In contrast, macrophages from the thioglycolate-induced peritoneal exudates were severely impaired in vitro in their ability to destroy Listeria. Injection of thioglycolate markedly interfered with the destruction of sublethal intraperitoneal challenge of Listeria, which resulted in nonimmune animals dying of an overwhelming systemic infection. In animals immune to Listeria, injection of thioglycolate delayed the onset of the expression of immunity to an intraperitoneal challenge of bacteria. The thioglycolate-induced suppression of bactericidal activity was determined to be confined to the site of injection. Results of experiments indicated that the colloidal agar in thioglycolate medium was the cause of the impairment of macrophage bactericidal activity. In addition to the impairment of bactericidal activity induced by agar, additional studies showed that an intraperitoneal injection of colloidal agar (0.075% wt/vol) by itself was a sufficient inflammatory stimulus for the accumulation of a large number of host phagocytic cells. Images PMID:6795125

  9. [Active aging from the perspective of aged individuals who are functionally independent].

    PubMed

    Ferreira, Olivia Galvão Lucena; Maciel, Silvana Carneiro; Silva, Antonia Oliveira; dos Santos, Walberto Silva; Moreira, Maria Adelaide Silva P

    2010-12-01

    The objective of this study was to identify the social representations of the elderly regarding active aging. Semi-structured interviews were performed with 100 functionally independent aged individuals from João Pessoa, Paraiba, Brazil. The data was organized and analyzed using Alceste software. Results showed that the aged individuals' statements about active aging are permeated with positive contents. However, when aging is not associated with the word active, it is still represented as losses and disabilities. Despite the existence of losses during the process, active aging should be encouraged among the elderly, as it means living a quality, plentiful life. Maintaining the elderly functionally independent is the first step to achieving active aging and thus improving their quality of life. PMID:21337791

  10. Application of Activity-Based Protein Profiling to Study Enzyme Function in Adipocytes

    PubMed Central

    Galmozzi, Andrea; Dominguez, Eduardo; Cravatt, Benjamin F.; Saez, Enrique

    2014-01-01

    Activity-Based Protein Profiling (ABPP) is a chemical proteomics approach that utilizes small-molecule probes to determine the functional state of enzymes directly in native systems. ABPP probes selectively label active enzymes, but not their inactive forms, facilitating the characterization of changes in enzyme activity that occur without alterations in protein levels. ABPP can be a tool superior to conventional gene expression and proteomic profiling methods to discover new enzymes active in adipocytes, and to detect differences in the activity of characterized enzymes that may be associated with disorders of adipose tissue function. ABPP probes have been developed that react selectively with most members of specific enzyme classes. Here, using as an example the serine hydrolase family that includes many enzymes with critical roles in adipocyte physiology, we describe methods to apply ABPP analysis to the study of adipocyte enzymatic pathways. PMID:24529438

  11. Physical activity and memory functions: are neurotrophins and cerebral gray matter volume the missing link?

    PubMed

    Flöel, A; Ruscheweyh, R; Krüger, K; Willemer, C; Winter, B; Völker, K; Lohmann, H; Zitzmann, M; Mooren, F; Breitenstein, C; Knecht, S

    2010-02-01

    Epidemiological studies reveal better cognitive function in physically active individuals. Possible mediators for this effect are neurotrophins, which are up-regulated through physical exercise and induce neuronal growth and synaptogenesis in the animal model. Here we cross-sectionally assessed 75 healthy older individuals for levels of physical activity, aerobic fitness, and memory encoding, as well as neurotrophin levels and cerebral gray matter volume. We found that physical activity, but not cardiovascular fitness, was associated with better memory encoding after controlling for age, sex, education, depression, alcohol consumption, and smoking. Higher levels of physical activity were associated with higher levels of the neurotrophin granulocyte colony stimulating factor (G-CSF) and increased cerebral gray matter volume in prefrontal and cingulate cortex as assessed by magnetic resonance voxel-based morphometry. While mediating factors will need to be further elucidated, these findings indicate that even low-level physical activity exerts beneficial effects on memory functions in older individuals. PMID:19853041

  12. Continuous monitoring of functional activities using wearable, wireless gyroscope and accelerometer technology.

    PubMed

    Wagenaar, Robert C; Sapir, Inbal; Zhang, Yuting; Markovic, Stacey; Vaina, Lucia M; Little, Thomas D C

    2011-01-01

    The development of functional activity monitors (FAMs) will allow rehabilitation researchers and clinicians to evaluate treatment efficacy, to monitor compliance to exercise instructions, and to provide real time feedback in the treatment of movement disorders during the performance of daily activities. The purpose of the present study was to develop and test a small sized wearable FAM system comprised of three sensors positioned on the sternum and both thighs, wireless Bluetooth transmission capability to a smartphone, and computationally efficient activity detection algorithms for the accurate detection of functional activities. Each sensor was composed of a tri-axial accelerometer and a tri-axial gyroscope. Computationally efficient activity recognition algorithms were developed, using a sliding window of 1 second, the variability of the tilt angle time series and power spectral analysis. In addition, it includes a decision tree that identifies postures such as sitting, standing and lying, walking at comfortable, slow and fast speeds, transitions between these functional activities (e.g, sit-to-stand and stand-to-sit), activity duration and step frequency. In a research lab setting the output of the FAM system, video recordings and a 3D motion analysis system were compared in 10 healthy young adults. The results show that the agreement between the FAM system and the video recordings ranged from 98.10% to 100% for all postures, transfers and walking periods. There were no significant differences in activity durations and step frequency between measurement instruments. PMID:22255423

  13. Developmental changes in motor cortex activity as infants develop functional motor skills.

    PubMed

    Nishiyori, Ryota; Bisconti, Silvia; Meehan, Sean K; Ulrich, Beverly D

    2016-09-01

    Despite extensive research examining overt behavioral changes of motor skills in infants, the neural basis underlying the emergence of functional motor control has yet to be determined. We used functional near-infrared spectroscopy (fNIRS) to record hemodynamic activity of the primary motor cortex (M1) from 22 infants (11 six month-olds, 11 twelve month-olds) as they reached for an object, and stepped while supported over a treadmill. Based on the developmental systems framework, we hypothesized that as infants increased goal-directed experience, neural activity shifts from a diffused to focal pattern. Results showed that for reaching, younger infants showed diffuse areas of M1 activity that became focused by 12 months. For elicited stepping, younger infants produced much less M1 activity which shifted to diffuse activity by 12 months. Thus, the data suggest that as infants gain goal-directed experience, M1 activity emerges, initially showing a diffuse area of activity, becoming refined as the behavior stabilizes. Our data begin to document the cortical activity underlying early functional skill acquisition. PMID:27096281

  14. Phosphorylation of Mutationally Introduced Tyrosine in the Activation Loop of HER2 Confers Gain-of-Function Activity

    PubMed Central

    Hu, Zexi; Wan, Xiaobo; Hao, Rui; Zhang, Heng; Li, Li; Li, Lin; Xie, Qiang; Wang, Peng; Gao, Yibo; Chen, She; Wei, Min; Luan, Zhidong; Zhang, Aiqun; Huang, Niu; Chen, Liang

    2015-01-01

    Amplification, overexpression, and somatic mutation of the HER2 gene have been reported to play a critical role in tumorigenesis of various cancers. The HER2 H878Y mutation was recently reported in 11% of hepatocellular carcinoma (HCC) patients. However, its functional impact on the HER2 protein and its role in tumorigenesis has not been determined. Here, we show that HER2 H878Y is a gain-of-function mutation. Y878 represents a phosphorylation site, and phospho-Y878 interacts with R898 residue to stabilize the active conformation of HER2, thereby enhancing its kinase activity. H878Y mutant is transforming and the transformed cells are sensitive to HER2 kinase inhibitors. Thus, our study reveals the following novel mechanism underlying the tumorigenic function of the HER2 H878Y mutation: the introduction of a tyrosine residue into the kinase activation loop via mutagenesis modulates the conformation of the kinase, thereby enhancing its activity. PMID:25853726

  15. Structural basis of the cofactor function of denatured albumin in plasminogen activation by tissue-type plasminogen activator.

    PubMed

    Galántai, Rita; Módos, Károly; Fidy, Judit; Kolev, Krasimir; Machovich, Raymund

    2006-03-17

    Certain denatured proteins function as cofactors in the activation of plasminogen by tissue-type plasminogen activator. The present study approached the structural requirements for the cofactor activity of a model protein (human serum albumin). Heat denaturation of 100-230 microM albumin (80 degrees C and 60-90 min) reproducibly yielded aggregates with radius in the range of 10-150 nm. The major determinant of the cofactor potency was the size of the aggregates. The increase of particle size correlated with the cofactor activity, and there was a minimal requirement for the size of the cofactor (about 10 nm radius). Similar to other proteins, the molecular aggregates with cofactor function contained a significant amount of antiparallel intermolecular beta-sheets. Plasmin pre-digestion increased the cofactor efficiency (related to C-terminal lysine exposure) and did not affect profoundly the structure of the aggregates, suggesting a long-lasting and even a self-augmenting cofactor function of the denatured protein. PMID:16438933

  16. Relationship Between Cortical Thickness and Functional Activation in the Early Blind

    PubMed Central

    Anurova, Irina; Renier, Laurent A.; De Volder, Anne G.; Carlson, Synnöve; Rauschecker, Josef P.

    2015-01-01

    Early blindness results in both structural and functional changes of the brain. However, these changes have rarely been studied in relation to each other. We measured alterations in cortical thickness (CT) caused by early visual deprivation and their relationship with cortical activity. Structural and functional magnetic resonance imaging was performed in 12 early blind (EB) humans and 12 sighted controls (SC). Experimental conditions included one-back tasks for auditory localization and pitch identification, and a simple sound-detection task. Structural and functional data were analyzed in a whole-brain approach and within anatomically defined regions of interest in sensory areas of the spared (auditory) and deprived (visual) modalities. Functional activation during sound-localization or pitch-identification tasks correlated negatively with CT in occipital areas of EB (calcarine sulcus, lingual gyrus, superior and middle occipital gyri, and cuneus) and in nonprimary auditory areas of SC. These results suggest a link between CT and activation and demonstrate that the relationship between cortical structure and function may depend on early sensory experience, probably via selective pruning of exuberant connections. Activity-dependent effects of early sensory deprivation and long-term practice are superimposed on normal maturation and aging. Together these processes shape the relationship between brain structure and function over the lifespan. PMID:24518755

  17. Radiomic Texture Analysis Mapping Predicts Areas of True Functional MRI Activity

    PubMed Central

    Hassan, Islam; Kotrotsou, Aikaterini; Bakhtiari, Ali Shojaee; Thomas, Ginu A.; Weinberg, Jeffrey S.; Kumar, Ashok J.; Sawaya, Raymond; Luedi, Markus M.; Zinn, Pascal O.; Colen, Rivka R.

    2016-01-01

    Individual analysis of functional Magnetic Resonance Imaging (fMRI) scans requires user-adjustment of the statistical threshold in order to maximize true functional activity and eliminate false positives. In this study, we propose a novel technique that uses radiomic texture analysis (TA) features associated with heterogeneity to predict areas of true functional activity. Scans of 15 right-handed healthy volunteers were analyzed using SPM8. The resulting functional maps were thresholded to optimize visualization of language areas, resulting in 116 regions of interests (ROIs). A board-certified neuroradiologist classified different ROIs into Expected (E) and Non-Expected (NE) based on their anatomical locations. TA was performed using the mean Echo-Planner Imaging (EPI) volume, and 20 rotation-invariant texture features were obtained for each ROI. Using forward stepwise logistic regression, we built a predictive model that discriminated between E and NE areas of functional activity, with a cross-validation AUC and success rate of 79.84% and 80.19% respectively (specificity/sensitivity of 78.34%/82.61%). This study found that radiomic TA of fMRI scans may allow for determination of areas of true functional activity, and thus eliminate clinician bias. PMID:27151623

  18. Genome-wide identification and characterization of functional neuronal activity-dependent enhancers

    PubMed Central

    Malik, Athar N.; Vierbuchen, Thomas; Hemberg, Martin; Rubin, Alex A.; Ling, Emi; Couch, Cameron H.; Stroud, Hume; Spiegel, Ivo; Farh, Kyle Kai-How; Harmin, David A.; Greenberg, Michael E.

    2015-01-01

    SUMMARY Experience-dependent gene transcription is required for nervous system development and function. However, the DNA regulatory elements that control this program of gene expression are not well defined. Here we characterize the enhancers that function across the genome to mediate activity-dependent transcription in mouse cortical neurons. We find that the subset of enhancers enriched for monomethylation of histone H3 lysine 4 (H3K4me1) and binding of the transcriptional co-activator CREBBP (CBP) that shows increased acetylation of histone H3 lysine 27 (H3K27ac) upon membrane depolarization of cortical neurons functions to regulate activity-dependent transcription. A subset of these enhancers appears to require binding of FOS, which previously was thought to bind primarily to promoters. These findings suggest that FOS functions at enhancers to control activity-dependent gene programs that are critical for nervous system function and provide a resource of functional cis-regulatory elements that may give insight into the genetic variants that contribute to brain development and disease. PMID:25195102

  19. [Strategies for data analysis of brain activation studies with functional MR tomography].

    PubMed

    Kleinschmidt, A; Hänicke, W; Requardt, M; Merboldt, K D; Frahm, J

    1995-04-01

    The sensitivity of gradient-echo magnetic resonance imaging (MRI) to changes in cerebral blood oxygenation has been introduced for mapping functional brain activation. To benefit from the high spatial and temporal resolution of the respective dynamic MRI data sets, their analysis requires algorithms that are capable of both precisely delineating task-related activation patterns and demonstrating functional connectivity of interacting areas. Here, we present various strategies for data evaluation by means of correlational analyses that surpass the quality of subtraction-based activation maps by improving both sensitivity and robustness. On a pixel-by-pixel basis the approach correlates signal time courses with a reference function, reflecting the temporal sequence of activated and control states. Extended versions employ the calculation of auto- or cross-correlation functions that increase sensitivity, but require periodic stimulations. Following individual correction for non-specific but correlated signal fluctuations, mapping of task-related coherent activation can be improved using neighborhood principles. Such refined strategies are expected to enhance the usefulness of oxygenation-sensitive MRI for studying the functional anatomy of the human brain under both physiological and pathological conditions. PMID:7597156

  20. Regulation of pumping function of the heart in developing body under changing regimens of motor activity.

    PubMed

    Vafina, E Z; Abzalov, R A; Abzalov, N I; Nikitin, A S; Gulyakov, A A

    2014-06-01

    We analyzed parameters of the pumping function of the heart in rats subjected to enhanced motor activity after a preliminary 70-day hypokinesia under conditions of α- and β-adrenergic receptor stimulation with norepinephrine followed by blockade of β-adrenergic receptor with propranolol (obsidian) and α1-adrenergic receptors with doxazosin. After norepinephrine administration, the HR and cardiac output were higher in rats with enhanced physical activity after preliminary hypokinesia than in rats with low physical activity. After propranolol administration, stroke volume and cardiac output in 100-day-old rats with limited activity were lower, and HR higher was than in rats with enhanced physical activity after preliminary 70-day hypokinesia. After administration of doxazosin, rats with limited motor activity demonstrated more pronounced changes in HR than rats with enhanced physical activity after preliminary 70-day hypokinesia. PMID:24970234

  1. ALG-2 activates the MVB sorting function of ALIX through relieving its intramolecular interaction

    PubMed Central

    Sun, Sheng; Zhou, Xi; Corvera, Joe; Gallick, Gary E; Lin, Sue-Hwa; Kuang, Jian

    2015-01-01

    The modular adaptor protein ALIX is critically involved in endosomal sorting complexes required for transport (ESCRT)-mediated multivesicular body (MVB) sorting of activated epidermal growth factor receptor (EGFR); however, ALIX contains a default intramolecular interaction that renders ALIX unable to perform this ESCRT function. The ALIX partner protein ALG-2 is a calcium-binding protein that belongs to the calmodulin superfamily. Prompted by a defined biological function of calmodulin, we determined the role of ALG-2 in regulating ALIX involvement in MVB sorting of activated EGFR. Our results show that calcium-dependent ALG-2 interaction with ALIX completely relieves the intramolecular interaction of ALIX and promotes CHMP4-dependent ALIX association with the membrane. EGFR activation induces increased ALG-2 interaction with ALIX, and this increased interaction is responsible for increased ALIX association with the membrane. Functionally, inhibition of ALIX activation by ALG-2 inhibits MVB sorting of activated EGFR as effectively as inhibition of ALIX interaction with CHMP4 does; however, inhibition of ALIX activation by ALG-2 does not affect cytokinetic abscission or equine infectious anemia virus (EIAV) budding. These findings indicate that calcium-dependent ALG-2 interaction with ALIX is specifically responsible for generating functional ALIX that supports MVB sorting of ubiquitinated membrane receptors.

  2. Sex on the brain! Associations between sexual activity and cognitive function in older age

    PubMed Central

    Wright, Hayley; Jenks, Rebecca A.

    2016-01-01

    Background: the relationship between cognition and sexual activity in healthy older adults is under-researched. A limited amount of research in this area has shown that sexual activity is associated with better cognition in older men. The current study explores the possible mediating factors in this association in men and women, and attempts to provide an explanation in terms of physiological influences on cognitive function. Methods: using newly available data from Wave 6 of the English Longitudinal Study of Ageing, the current study explored associations between sexual activity and cognition in adults aged 50–89 (n = 6,833). Two different tests of cognitive function were analysed: number sequencing, which broadly relates to executive function, and word recall, which broadly relates to memory. Results: after adjusting for age, education, wealth, physical activity, depression, cohabiting, self-rated health, loneliness and quality of life, there were significant associations between sexual activity and number sequencing and recall in men. However, in women there was a significant association between sexual activity and recall, but not number sequencing. Conclusions: possible mediators of these associations (e.g. neurotransmitters) are discussed. The cross-sectional nature of the analysis is limiting, but provides a promising avenue for future explorations and longitudinal studies. The findings have implications for the promotion of sexual counselling in healthcare settings, where maintaining a healthy sex life in older age could be instrumental in improving cognitive function and well-being. PMID:26826237

  3. Physical Activity and Cognitive Function in Older Adults: The Mediating Effect of Depressive Symptoms.

    PubMed

    Vance, David E; Marson, Daniel C; Triebel, Kristen L; Ball, Karlene K; Wadley, Virginia G; Cody, Shameka L

    2016-01-01

    Depressive symptoms and social networks may influence the relationship between physical activity and cognition. Using structural equation modeling, depressive symptoms and social networks were examined as mediators between physical activity and cognition in community-dwelling older adults (N = 122), with a range of cognitive abilities (e.g., normal, mild cognitive impairment). The model included age, physical activity, sedentary behavior, sleeping, social networks, depressive symptoms, and cognitive function. A path was observed between physical activity, depressive symptoms, and cognition; specifically, those who were more physically active experienced less depression and better cognitive functioning. No relationship between social networks and cognition was found. This model fits the data well (goodness-of-fit index = .93, adjusted goodness-of-fit index = .90, root mean square error of approximation = .06). Results suggest that physical activity may mitigate depressive symptoms, with beneficial effects on cognitive functioning in both those with and without mild cognitive impairment. Suggestions for managing depression and improving cognitive functioning are provided. PMID:27224681

  4. Cerebral activation focusing on strong tasting food: a functional magnetic resonance imaging study.

    PubMed

    Kikuchi, Senichiro; Kubota, Fumio; Nisijima, Koichi; Washiya, Sumio; Kato, Satoshi

    2005-02-28

    Very little research has been conducted on taste imagery because of the difficulty of doing so. We conducted a functional magnetic resonance imaging study to observe cerebral activation patterns produced in volunteers concentrating on pickled plums (umeboshi), a traditional Japanese food with a strong and sour taste. Activation was observed in the right insula, the bilateral opercula, the bilateral orbitofrontal cortices and the left Broca's area. Activation in the insula (primary gustatory area) was very weak and limited to one side. The activation pattern was similar to that of taste perception. Our results showed that it is possible for humans to imagine tastes. PMID:15706236

  5. Simulation of Preterm Neonatal Brain Metabolism During Functional Neuronal Activation Using a Computational Model.

    PubMed

    Hapuarachchi, T; Scholkmann, F; Caldwell, M; Hagmann, C; Kleiser, S; Metz, A J; Pastewski, M; Wolf, M; Tachtsidis, I

    2016-01-01

    We present a computational model of metabolism in the preterm neonatal brain. The model has the capacity to mimic haemodynamic and metabolic changes during functional activation and simulate functional near-infrared spectroscopy (fNIRS) data. As an initial test of the model's efficacy, we simulate data obtained from published studies investigating functional activity in preterm neonates. In addition we simulated recently collected data from preterm neonates during visual activation. The model is well able to predict the haemodynamic and metabolic changes from these observations. In particular, we found that changes in cerebral blood flow and blood pressure may account for the observed variability of the magnitude and sign of stimulus-evoked haemodynamic changes reported in preterm infants. PMID:26782202

  6. Premature Sperm Activation and Defective Spermatogenesis Caused by Loss of spe-46 Function in Caenorhabditis elegans

    PubMed Central

    Liau, Wei-Siang; Nasri, Ubaydah; Elmatari, Daniel; Rothman, Jason; LaMunyon, Craig W.

    2013-01-01

    Given limited resources for motility, sperm cell activation must be precisely timed to ensure the greatest likelihood of fertilization. Like those of most species, the sperm of C. elegans become active only after encountering an external signaling molecule. Activation coincides with spermiogenesis, the final step in spermatogenesis, when the spherical spermatid undergoes wholesale reorganization to produce a pseudopod. Here, we describe a gene involved in sperm activation, spe-46. This gene was identified in a suppressor screen of spe-27(it132ts), a sperm-expressed gene whose product functions in the transduction of the spermatid activation signal. While spe-27(it132ts) worms are sterile at 25°C, the spe-46(hc197)I; spe-27(it132ts)IV double mutants regain partial fertility. Single nucleotide polymorphism mapping, whole genome sequencing, and transformation rescue were employed to identify the spe-46 coding sequence. It encodes a protein with seven predicted transmembrane domains but with no other predicted functional domains or homology outside of nematodes. Expression is limited to spermatogenic tissue, and a transcriptional GFP fusion shows expression corresponds with the onset of the pachytene stage of meiosis. The spe-46(hc197) mutation bypasses the need for the activation signal; mutant sperm activate prematurely without an activation signal in males, and mutant males are sterile. In an otherwise wild-type genome, the spe-46(hc197) mutation induces a sperm defective phenotype. In addition to premature activation, spe-46(hc197) sperm exhibit numerous defects including aneuploidy, vacuolization, protruding spikes, and precocious fusion of membranous organelles. Hemizygous worms [spe-46(hc197)/mnDf111] are effectively sterile. Thus, spe-46 appears to be involved in the regulation of spermatid activation during spermiogenesis, with the null phenotype being an absence of functional sperm and hypomorphic phenotypes being premature spermatid activation and numerous

  7. Self-reported physical activity is associated with cognitive function in lean, but not obese individuals.

    PubMed

    Galioto Wiedemann, R; Calvo, D; Meister, J; Spitznagel, M B

    2014-12-01

    Convergent evidence demonstrates that greater physical activity is associated with better cognitive functioning across many patient and healthy samples. However, this relationship has not been well examined among obese individuals and remains unclear. The present study examined the relationship between performance-based measures of attention/executive function and self-reported physical activity, as measured by the International Physical Activity Questionnaire, among lean (n = 36) and obese (n = 36) college students. Lean individuals performed better than obese individuals on measures of attention/executive function. No significant differences in self-reported physical activity emerged between weight groups. Higher self-reported physical activity was related to faster reaction time in lean individuals but slower reaction time in obese individuals. Additionally, in lean individuals, higher levels of self-reported physical activity were related to more errors on a task of speeded inhibitory control. The results are consistent with previous research demonstrating that greater physical activity is associated with faster attention and executive function abilities in healthy samples and highlight the importance of examining reaction time and accuracy indices separately on these measures. The lack of association among obese individuals may be due in part to inaccurate self-report in the current study. Additionally, the cognitive consequences of obesity may outweigh the benefits of physical activity in this group. Future work should investigate these associations in obese individuals using physical activity interventions, as well as a combination of self-report and objective measures to investigate discrepancies in reporting. PMID:25826160

  8. Functional Based Adaptive and Fuzzy Sliding Controller for Non-Autonomous Active Suspension System

    NASA Astrophysics Data System (ADS)

    Huang, Shiuh-Jer; Chen, Hung-Yi

    In this paper, an adaptive sliding controller is developed for controlling a vehicle active suspension system. The functional approximation technique is employed to substitute the unknown non-autonomous functions of the suspension system and release the model-based requirement of sliding mode control algorithm. In order to improve the control performance and reduce the implementation problem, a fuzzy strategy with online learning ability is added to compensate the functional approximation error. The update laws of the functional approximation coefficients and the fuzzy tuning parameters are derived from the Lyapunov theorem to guarantee the system stability. The proposed controller is implemented on a quarter-car hydraulic actuating active suspension system test-rig. The experimental results show that the proposed controller suppresses the oscillation amplitude of the suspension system effectively.

  9. Beyond apoptosis: the mechanism and function of phosphatidylserine asymmetry in the membrane of activating mast cells.

    PubMed

    Rysavy, Noel M; Shimoda, Lori M N; Dixon, Alyssa M; Speck, Mark; Stokes, Alexander J; Turner, Helen; Umemoto, Eric Y

    2014-01-01

    Loss of plasma membrane asymmetry is a hallmark of apoptosis, but lipid bilayer asymmetry and loss of asymmetry can contribute to numerous cellular functions and responses that are independent of programmed cell death. Exofacial exposure of phosphatidylserine occurs in lymphocytes and mast cells after antigenic stimulation and in the absence of apoptosis, suggesting that there is a functional requirement for phosphatidylserine exposure in immunocytes. In this review we examine current ideas as to the nature of this functional role in mast cell activation. Mechanistically, there is controversy as to the candidate proteins responsible for phosphatidylserine translocation from the internal to external leaflet, and here we review the candidacies of mast cell PLSCR1 and TMEM16F. Finally we examine the potential relationship between functionally important mast cell membrane perturbations and phosphatidylserine exposure during activation. PMID:25759911

  10. Reverse evolution leads to genotypic incompatibility despite functional and active site convergence.

    PubMed

    Kaltenbach, Miriam; Jackson, Colin J; Campbell, Eleanor C; Hollfelder, Florian; Tokuriki, Nobuhiko

    2015-01-01

    Understanding the extent to which enzyme evolution is reversible can shed light on the fundamental relationship between protein sequence, structure, and function. Here, we perform an experimental test of evolutionary reversibility using directed evolution from a phosphotriesterase to an arylesterase, and back, and examine the underlying molecular basis. We find that wild-type phosphotriesterase function could be restored (>10(4)-fold activity increase), but via an alternative set of mutations. The enzyme active site converged towards its original state, indicating evolutionary constraints imposed by catalytic requirements. We reveal that extensive epistasis prevents reversions and necessitates fixation of new mutations, leading to a functionally identical sequence. Many amino acid exchanges between the new and original enzyme are not tolerated, implying sequence incompatibility. Therefore, the evolution was phenotypically reversible but genotypically irreversible. Our study illustrates that the enzyme's adaptive landscape is highly rugged, and different functional sequences may constitute separate fitness peaks. PMID:26274563

  11. Dysfunctional Activation of the Cerebellum in Schizophrenia: A Functional Neuroimaging Meta-Analysis

    PubMed Central

    Bernard, Jessica A.; Mittal, Vijay A.

    2014-01-01

    The cognitive dysmetria framework postulates that the deficits seen in schizophrenia are due to underlying cerebello-thalamo-cortical dysfunction. The cerebellum is thought to be crucial in the formation of internal models for both motor and cognitive behaviors. In healthy individuals there is a functional topography within the cerebellum. Alterations in the functional topography and activation of the cerebellum in schizophrenia patients may be indicative of altered internal models, providing support for this framework. Using state-of-the-art neuroimaging meta-analysis, we investigated cerebellar activation across a variety of task domains affected in schizophrenia and in comparison to healthy controls. Our results indicate an altered functional topography in patients. This was especially apparent for emotion and working memory tasks, and may be related to deficits in these domains. Results suggest that an altered cerebellar functional topography in schizophrenia may be contributing to the many deficits associated with the disease, perhaps due to dysfunctional internal models. PMID:26392921

  12. Amygdala activity can be modulated by unexpected chord functions during music listening.

    PubMed

    Koelsch, Stefan; Fritz, Thomas; Schlaug, Gottfried

    2008-12-01

    Numerous earlier studies have investigated the cognitive processing of musical syntax with regular and irregular chord sequences. However, irregular sequences may also be perceived as unexpected, and therefore have a different emotional valence than regular sequences. We provide behavioral data showing that irregular chord functions presented in chord sequence paradigms are perceived as less pleasant than regular sequences. A reanalysis of functional MRI data showed increased blood oxygen level-dependent signal changes bilaterally in the amygdala in response to music-syntactically irregular (compared with regular) chord functions. The combined data indicate that music-syntactically irregular events elicit brain activity related to emotional processes, and that, in addition to intensely pleasurable music or highly unpleasant music, single chord functions can also modulate amygdala activity. PMID:19050462

  13. Beyond apoptosis: The mechanism and function of phosphatidylserine asymmetry in the membrane of activating mast cells

    PubMed Central

    Rysavy, Noel M.; Shimoda, Lori M. N.; Dixon, Alyssa M.; Speck, Mark; Stokes, Alexander J.; Turner, Helen; Umemoto, Eric Y.

    2014-01-01

    Loss of plasma membrane asymmetry is a hallmark of apoptosis, but lipid bilayer asymmetry and loss of asymmetry can contribute to numerous cellular functions and responses that are independent of programmed cell death. Exofacial exposure of phosphatidylserine occurs in lymphocytes and mast cells after antigenic stimulation and in the absence of apoptosis, suggesting that there is a functional requirement for phosphatidylserine exposure in immunocytes. In this review we examine current ideas as to the nature of this functional role in mast cell activation. Mechanistically, there is controversy as to the candidate proteins responsible for phosphatidylserine translocation from the internal to external leaflet, and here we review the candidacies of mast cell PLSCR1 and TMEM16F. Finally we examine the potential relationship between functionally important mast cell membrane perturbations and phosphatidylserine exposure during activation. PMID:25759911

  14. Neural Changes following Behavioral Activation for a Depressed Breast Cancer Patient: A Functional MRI Case Study

    PubMed Central

    Gawrysiak, Michael J.; Carvalho, John P.; Rogers, Baxter P.; Nicholas, Christopher R. N.; Dougherty, John H.; Hopko, Derek R.

    2012-01-01

    Functional neuroimaging is an innovative but at this stage underutilized method to assess the efficacy of psychotherapy for depression. Functional magnetic resonance imaging (fMRI) was used in this case study to examine changes in brain activity in a depressed breast cancer patient receiving an 8-session Behavioral Activation Treatment for Depression (BATD), based on the work of Hopko and Lejuez (2007). A music listening paradigm was used during fMRI brain scans to assess reward responsiveness at pre- and posttreatment. Following treatment, the patient exhibited attenuated depression and changes in blood oxygenation level dependence (BOLD) response in regions of the prefrontal cortex and the subgenual cingulate cortex. These preliminary findings outline a novel means to assess psychotherapy efficacy and suggest that BATD elicits functional brain changes in areas implicated in the pathophysiology of depression. Further research is necessary to explore neurobiological mechanisms of change in BATD, particularly the potential mediating effects of reward responsiveness and associated brain functioning. PMID:22953146

  15. Resting-state activity in development and maintenance of normal brain function

    PubMed Central

    Pizoli, Carolyn E.; Snyder, Abraham Z.; Shimony, Joshua S.; Limbrick, David D.; Schlaggar, Bradley L.; Smyth, Matthew D.

    2011-01-01

    One of the most intriguing recent discoveries concerning brain function is that intrinsic neuronal activity manifests as spontaneous fluctuations of the blood oxygen level–dependent (BOLD) functional MRI signal. These BOLD fluctuations exhibit temporal synchrony within widely distributed brain regions known as resting-state networks. Resting-state networks are present in the waking state, during sleep, and under general anesthesia, suggesting that spontaneous neuronal activity plays a fundamental role in brain function. Despite its ubiquitous presence, the physiological role of correlated, spontaneous neuronal activity remains poorly understood. One hypothesis is that this activity is critical for the development of synaptic connections and maintenance of synaptic homeostasis. We had a unique opportunity to test this hypothesis in a 5-y-old boy with severe epileptic encephalopathy. The child developed marked neurologic dysfunction in association with a seizure disorder, resulting in a 1-y period of behavioral regression and progressive loss of developmental milestones. His EEG showed a markedly abnormal pattern of high-amplitude, disorganized slow activity with frequent generalized and multifocal epileptiform discharges. Resting-state functional connectivity MRI showed reduced BOLD fluctuations and a pervasive lack of normal connectivity. The child underwent successful corpus callosotomy surgery for treatment of drop seizures. Postoperatively, the patient's behavior returned to baseline, and he resumed development of new skills. The waking EEG revealed a normal background, and functional connectivity MRI demonstrated restoration of functional connectivity architecture. These results provide evidence that intrinsic, coherent neuronal signaling may be essential to the development and maintenance of the brain's functional organization. PMID:21709227

  16. Family Functioning: Associations with Weight Status, Eating Behaviors, and Physical Activity in Adolescents

    PubMed Central

    Berge, Jerica M.; Wall, Melanie; Larson, Nicole; Loth, Katie A.; Neumark-Sztainer, Dianne

    2012-01-01

    Purpose This paper examines the relationship between family functioning (e.g. communication, closeness, problem solving, behavioral control) and adolescent weight status and relevant eating and physical activity behaviors. Methods Data are from EAT 2010 (Eating and Activity in Teens), a population-based study that assessed eating and activity among socioeconomically and racially/ethnically diverse youth (n = 2,793). Adolescents (46.8% boys, 53.2% girls) completed anthropometric assessments and surveys at school in 2009–2010. Multiple linear regression was used to test the relationship between family functioning and adolescent weight, dietary intake, family meal patterns, and physical activity. Additional regression models were fit to test for interactions by race/ethnicity. Results For adolescent girls, higher family functioning was associated with lower body mass index z-score and percent overweight, less sedentary behavior, higher intake of fruits and vegetables, and more frequent family meals and breakfast consumption. For adolescent boys, higher family functioning was associated with more physical activity, less sedentary behavior, less fast food consumption, and more frequent family meals and breakfast consumption. There was one significant interaction by race/ethnicity for family meals; the association between higher family functioning and more frequent family meals was stronger for non-white boys compared to white boys. Overall, strengths of associations tended to be small with effect sizes ranging from - 0.07 to 0.31 for statistically significant associations. Conclusions Findings suggest that family functioning may be protective for adolescent weight and weight-related health behaviors across all race/ethnicities, although assumptions regarding family functioning in the homes of overweight children should be avoided given small effect sizes. PMID:23299010

  17. Physical activity and cognitive function in individuals over 60 years of age: a systematic review

    PubMed Central

    Carvalho, Ashley; Rea, Irene Maeve; Parimon, Tanyalak; Cusack, Barry J

    2014-01-01

    Background It is unclear whether physical activity in later life is beneficial for maintenance of cognitive function. We performed a systematic review examining the effects of exercise on cognitive function in older individuals, and present possible mechanisms whereby physical activity may improve cognition. Methods Sources consisted of PubMed, Medline, CINAHL, the Cochrane Controlled Trials Register, and the University of Washington, School of Medicine Library Database, with a search conducted on August 15, 2012 for publications limited to the English language starting January 1, 2000. Randomized controlled trials including at least 30 participants and lasting at least 6 months, and all observational studies including a minimum of 100 participants for one year, were evaluated. All subjects included were at least 60 years of age. Results Twenty-seven studies met the inclusion criteria. Twenty-six studies reported a positive correlation between physical activity and maintenance or enhancement of cognitive function. Five studies reported a dose-response relationship between physical activity and cognition. One study showed a nonsignificant correlation. Conclusion The preponderance of evidence suggests that physical activity is beneficial for cognitive function in the elderly. However, the majority of the evidence is of medium quality with a moderate risk of bias. Larger randomized controlled trials are needed to clarify the association between exercise and cognitive function and to determine which types of exercise have the greatest benefit on specific cognitive domains. Despite these caveats, the current evidence suggests that physical activity may help to improve cognitive function and, consequently, delay the progression of cognitive impairment in the elderly. PMID:24748784

  18. Scapular Muscle-Activation Ratios in Patients With Shoulder Injuries During Functional Shoulder Exercises

    PubMed Central

    Moeller, Chad R.; Bliven, Kellie C. Huxel; Valier, Alison R. Snyder

    2014-01-01

    Context: Alterations in scapular muscle activation, which are common with glenohumeral (GH) injuries, affect stability and function. Rehabilitation aims to reestablish activation between muscles for stability by progressing to whole-body movements. Objective: To determine scapular muscle-activation ratios and individual muscle activity (upper trapezius [UT], middle trapezius [MT], lower trapezius [LT], serratus anterior [SA]) differences between participants with GH injuries and healthy control participants during functional rehabilitation exercises. Design: Cross-sectional study. Setting: Laboratory. Patients or Other Participants: Thirty-nine participants who had GH injuries (n = 20; age = 23.6 ± 3.2 years, height = 170.7 ± 11.5 cm, mass = 74.7 ± 13.1 kg) or were healthy (n = 19; age = 24.4 ± 3.3 years, height = 173.6 ± 8.6 cm, mass = 74.7 ± 14.8 kg) were tested. Intervention(s): Clinical examination confirmed each participant's classification as GH injury or healthy control. Participants performed 4 exercises (bow and arrow, external rotation with scapular squeeze, lawnmower, robbery) over 3 seconds with no load while muscle activity was recorded. Main Outcome Measure(s): We used surface electromyography to measure UT, MT, LT, and SA muscle activity. Scapular muscle-activation ratios (UT:MT, UT:LT, and UT:SA) were calculated (normalized mean electromyography of the UT divided by normalized mean electromyography of the MT, LT, and SA). Exercise × group analyses of variance with repeated measures were conducted. Results: No group differences for activation ratios or individual muscle activation amplitude were found (P > .05). Similar UT:MT and UT:LT activation ratios during bow-and-arrow and robbery exercises were seen (P > .05); both had greater activation than external-rotation-with-scapular-squeeze and lawnmower exercises (P < .05). The bow-and-arrow exercise elicited the highest activation from the UT, MT, and LT muscles; SA activation was greatest

  19. Withdrawal from extended-access cocaine self-administration results in dysregulated functional activity and altered locomotor activity in rats

    PubMed Central

    Calipari, Erin S.; Beveridge, Thomas J.R.; Jones, Sara R.; Porrino, Linda J.

    2013-01-01

    Much work has focused on determining the consequences of cocaine self-administration on specific neurotransmitter systems, thus neglecting the global changes that occur. Previous imaging studies have focused on the effects of cocaine self-administration in the presence of high blood levels of cocaine, but have not determined the functional effects of cocaine self-administration after cocaine has cleared. Extended-access cocaine self-administration, where animals administer cocaine for 6 hours each day, results in escalation in the rate of cocaine intake and is believed to model the transition from recreational use to addiction in humans. We aimed to determine the functional changes following acute (48 hours) withdrawal from an extended-access, defined intake self-administration paradigm (5 days, 40 inj/day, 6hrs/day), a time point when behavioral changes are present. Using the 2-[14C]deoxyglucose method to measure rates of local cerebral glucose metabolism, an indicator of functional activity, we found reductions in circuits related to learning and memory, attention, sleep, and reward processing, which have important clinical implications for cocaine addiction. Additionally, lower levels of functional activity were found in the dorsal raphe and locus coeruleus, suggesting that cocaine self-administration may have broader effects on brain function than previously noted. These widespread neurochemical reductions were concomitant with substantial behavioral differences in these animals, highlighted by increased vertical activity and decreased stereotypy. These data demonstrate that behavioral and neurochemical impairments following cocaine self-administration are present in the absence of drug and persist after cocaine has been cleared PMID:24118121

  20. Functional Improvement Following Diastasis Rectus Abdominus Repair in an Active Duty Navy Female.

    PubMed

    Gallus, Katerina M; Golberg, Kathy F; Field, Robert

    2016-08-01

    Return to physical activity following childbirth can be a difficult process complicated by structural changes during pregnancy. A common problem is the development of a diastasis of the rectus abdominus (DRA), defined as a horizontal separation of the abdominus muscles at the linea alba. Recent data indicate that the greater the distance of separation of the muscle, the worse the functional ability. We describe a 24-year-old active duty U.S. Navy female G1P2 with a diagnosis of DRA. At 2 months postpartum, she was referred to physical therapy because of back pain and inability to meet baseline activities of daily living. After 4 months of physical therapy, she was unable to complete curl ups as required by U.S. Navy physical fitness standards. Abdominoplasty with imbrication of the abdominal wall diastasis was performed followed by additional physical therapy, after which she returned to baseline functioning. The restoration of functional ability postoperatively suggests there is a therapeutic indication for surgical correction of DRA. In high-functioning military patients with DRA who fail to return to baseline level of activity following a trial of physical therapy, surgical intervention should be considered to obtain the optimal functional ability. PMID:27483541

  1. Motor Cortex Activity During Functional Motor Skills: An fNIRS Study.

    PubMed

    Nishiyori, Ryota; Bisconti, Silvia; Ulrich, Beverly

    2016-01-01

    Assessments of brain activity during motor task performance have been limited to fine motor movements due to technological constraints presented by traditional neuroimaging techniques, such as functional magnetic resonance imaging. Functional near-infrared spectroscopy (fNIRS) offers a promising method by which to overcome these constraints and investigate motor performance of functional motor tasks. The current study used fNIRS to quantify hemodynamic responses within the primary motor cortex in twelve healthy adults as they performed unimanual right, unimanual left, and bimanual reaching, and stepping in place. Results revealed that during both unimanual reaching tasks, the contralateral hemisphere showed significant activation in channels located approximately 3 cm medial to the C3 (for right-hand reach) and C4 (for left-hand reach) landmarks. Bimanual reaching and stepping showed activation in similar channels, which were located bilaterally across the primary motor cortex. The medial channels, surrounding Cz, showed significantly higher activations during stepping when compared to bimanual reaching. Our results extend the viability of fNIRS to study motor function and build a foundation for future investigation of motor development in infants during nascent functional behaviors and monitor how they may change with age or practice. PMID:26243304

  2. Lag Synchronization of Switched Neural Networks via Neural Activation Function and Applications in Image Encryption.

    PubMed

    Wen, Shiping; Zeng, Zhigang; Huang, Tingwen; Meng, Qinggang; Yao, Wei

    2015-07-01

    This paper investigates the problem of global exponential lag synchronization of a class of switched neural networks with time-varying delays via neural activation function and applications in image encryption. The controller is dependent on the output of the system in the case of packed circuits, since it is hard to measure the inner state of the circuits. Thus, it is critical to design the controller based on the neuron activation function. Comparing the results, in this paper, with the existing ones shows that we improve and generalize the results derived in the previous literature. Several examples are also given to illustrate the effectiveness and potential applications in image encryption. PMID:25594985

  3. Altered Intrinsic Regional Activity and Interregional Functional Connectivity in Post-stroke Aphasia

    PubMed Central

    Yang, Mi; Li, Jiao; Li, Yibo; Li, Rong; Pang, Yajing; Yao, Dezhong; Liao, Wei; Chen, Huafu

    2016-01-01

    Several neuroimaging studies have examined cerebral function in patients who suffer from aphasia, but the mechanism underlying this disorder remains poorly understood. In this study, we examined alterations in the local regional and remote interregional network cerebral functions in aphasia combined with amplitude of low-frequency fluctuations and interregional functional connectivity (FC) using resting-state functional magnetic resonance imaging. A total of 17 post-stroke aphasic patients, all having suffered a stroke in the left hemisphere, as well as 20 age- and sex-matched healthy controls, were enrolled in this study. The aphasic patients showed significantly increased intrinsic regional activity mainly in the contralesional mesial temporal (hippocampus/parahippocampus, [HIP/ParaHIP]) and lateral temporal cortices. In addition, intrinsic regional activity in the contralesional HIP/ParaHIP was negatively correlated with construction score. Aphasic patients showed increased remote interregional FC between the contralesional HIP/ParaHIP and fusiform gyrus, but reduced FC in the ipsilesional occipital and parietal cortices. These findings suggested that the intrinsic regional brain dysfunctions in aphasia were related to interregional functional connectivity. Changes in the intrinsic regional brain activity and associated remote functional connectivity pattern would provide valuable information to enhance the understanding of the pathophysiological mechanisms of aphasia. PMID:27091494

  4. The cellular bromodomain protein Brd4 has multiple functions in E2-mediated papillomavirus transcription activation.

    PubMed

    Helfer, Christine M; Yan, Junpeng; You, Jianxin

    2014-08-01

    The cellular bromodomain protein Brd4 functions in multiple processes of the papillomavirus life cycle, including viral replication, genome maintenance, and gene transcription through its interaction with the viral protein, E2. However, the mechanisms by which E2 and Brd4 activate viral transcription are still not completely understood. In this study, we show that recruitment of positive transcription elongation factor b (P-TEFb), a functional interaction partner of Brd4 in transcription activation, is important for E2's transcription activation activity. Furthermore, chromatin immunoprecipitation (ChIP) analyses demonstrate that P-TEFb is recruited to the actual papillomavirus episomes. We also show that E2's interaction with cellular chromatin through Brd4 correlates with its papillomavirus transcription activation function since JQ1(+), a bromodomain inhibitor that efficiently dissociates E2-Brd4 complexes from chromatin, potently reduces papillomavirus transcription. Our study identifies a specific function of Brd4 in papillomavirus gene transcription and highlights the potential use of bromodomain inhibitors as a method to disrupt the human papillomavirus (HPV) life cycle. PMID:25140737

  5. Antioxidant activity and functional properties of enzymatic protein hydrolysates from common carp (Cyprinus carpio) roe (egg).

    PubMed

    Chalamaiah, M; Jyothirmayi, T; Diwan, Prakash V; Dinesh Kumar, B

    2015-09-01

    Previously, we have reported the composition, molecular mass distribution and in vivo immunomodulatory effects of common carp roe protein hydrolysates. In the current study, antioxidative activity and functional properties of common carp (Cyprinus carpio) roe (egg) protein hydrolysates, prepared by pepsin, trypsin and Alcalase, were evaluated. The three hydrolysates showed excellent antioxidant activities in a dose dependent manner in various in vitro models such as 2,2 diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, 2,2'-azino-bis(3-ethylbenzthiazoline-6)-sulfonic acid (ABTS(+)) radical scavenging activity, ferric reducing antioxidant power (FRAP) and ferrous ion (Fe(2+)) chelating ability. Enzymatic hydrolysis significantly increased protein solubility of the hydrolysates to above 62 % over a wide pH range (2-12). Carp roe hydrolysates exhibited good foaming and emulsification properties. The results suggest that bioactive carp roe protein hydrolysates (CRPHs) with good functional properties could be useful in health food/nutraceutical/pharmaceutical industry for various applications. PMID:26344996

  6. The fast neutron fluence and the activation detector activity calculations using the effective source method and the adjoint function

    SciTech Connect

    Hep, J.; Konecna, A.; Krysl, V.; Smutny, V.

    2011-07-01

    This paper describes the application of effective source in forward calculations and the adjoint method to the solution of fast neutron fluence and activation detector activities in the reactor pressure vessel (RPV) and RPV cavity of a VVER-440 reactor. Its objective is the demonstration of both methods on a practical task. The effective source method applies the Boltzmann transport operator to time integrated source data in order to obtain neutron fluence and detector activities. By weighting the source data by time dependent decay of the detector activity, the result of the calculation is the detector activity. Alternatively, if the weighting is uniform with respect to time, the result is the fluence. The approach works because of the inherent linearity of radiation transport in non-multiplying time-invariant media. Integrated in this way, the source data are referred to as the effective source. The effective source in the forward calculations method thereby enables the analyst to replace numerous intensive transport calculations with a single transport calculation in which the time dependence and magnitude of the source are correctly represented. In this work, the effective source method has been expanded slightly in the following way: neutron source data were performed with few group method calculation using the active core calculation code MOBY-DICK. The follow-up neutron transport calculation was performed using the neutron transport code TORT to perform multigroup calculations. For comparison, an alternative method of calculation has been used based upon adjoint functions of the Boltzmann transport equation. Calculation of the three-dimensional (3-D) adjoint function for each required computational outcome has been obtained using the deterministic code TORT and the cross section library BGL440. Adjoint functions appropriate to the required fast neutron flux density and neutron reaction rates have been calculated for several significant points within the RPV

  7. An investigation into the relationship between age and physiological function in highly active older adults

    PubMed Central

    Pollock, Ross D; Carter, Scott; Velloso, Cristiana P; Duggal, Niharika A; Lord, Janet M; Lazarus, Norman R; Harridge, Stephen D R

    2015-01-01

    Despite extensive research, the relationship between age and physiological function remains poorly characterised and there are currently no reliable markers of human ageing. This is probably due to a number of confounding factors, particularly in studies of a cross-sectional nature. These include inter-subject genetic variation, as well as inter-generational differences in nutrition, healthcare and insufficient levels of physical activity as well as other environmental factors. We have studied a cohort of highly and homogeneously active older male (n = 84) and female (n = 41) cyclists aged 55–79 years who it is proposed represent a model for the study of human ageing free from the majority of confounding factors, especially inactivity. The aim of the study was to identify physiological markers of ageing by assessing the relationship between function and age across a wide range of indices. Each participant underwent a detailed physiological profiling which included measures of cardiovascular, respiratory, neuromuscular, metabolic, endocrine and cognitive functions, bone strength, and health and well-being. Significant associations between age and function were observed for many functions. The maximal rate of oxygen consumption ( showed the closest association with age (r = −0.443 to −0.664; P < 0.001), but even here the variance in age for any given level was high, precluding the clear identification of the age of any individual. The results of this cross-sectional study suggest that even when many confounding variables are removed the relationship between function and healthy ageing is complex and likely to be highly individualistic and that physical activity levels must be taken into account in ageing studies. Key Points The relationship between age and physiological function remains poorly defined and there are no physiological markers that can be used to reliably predict the age of an individual. This could be due to a variety of confounding

  8. Hydrodynamics-Based Functional Forms of Activity Metabolism: A Case for the Power-Law Polynomial Function in Animal Swimming Energetics

    PubMed Central

    Papadopoulos, Anthony

    2009-01-01

    The first-degree power-law polynomial function is frequently used to describe activity metabolism for steady swimming animals. This function has been used in hydrodynamics-based metabolic studies to evaluate important parameters of energetic costs, such as the standard metabolic rate and the drag power indices. In theory, however, the power-law polynomial function of any degree greater than one can be used to describe activity metabolism for steady swimming animals. In fact, activity metabolism has been described by the conventional exponential function and the cubic polynomial function, although only the power-law polynomial function models drag power since it conforms to hydrodynamic laws. Consequently, the first-degree power-law polynomial function yields incorrect parameter values of energetic costs if activity metabolism is governed by the power-law polynomial function of any degree greater than one. This issue is important in bioenergetics because correct comparisons of energetic costs among different steady swimming animals cannot be made unless the degree of the power-law polynomial function derives from activity metabolism. In other words, a hydrodynamics-based functional form of activity metabolism is a power-law polynomial function of any degree greater than or equal to one. Therefore, the degree of the power-law polynomial function should be treated as a parameter, not as a constant. This new treatment not only conforms to hydrodynamic laws, but also ensures correct comparisons of energetic costs among different steady swimming animals. Furthermore, the exponential power-law function, which is a new hydrodynamics-based functional form of activity metabolism, is a special case of the power-law polynomial function. Hence, the link between the hydrodynamics of steady swimming and the exponential-based metabolic model is defined. PMID:19333397

  9. Molecular and functional identification of three interleukin-17A/F (IL-17A/F) homologues in large yellow croaker (Larimichthys crocea).

    PubMed

    Ding, Yang; Ao, Jingqun; Ai, Chunxiang; Chen, Xinhua

    2016-02-01

    The interleukin-17 (IL-17) cytokine family plays a central role in the coordination of inflammatory responses. In fish species, three genes that have a similar homology to both IL-17A and IL-17F were designated IL-17A/F1, 2, and 3. In this study, we identified three IL-17A/F homologues (LycIL-17A/F1, 2, and 3) from large yellow croaker (Larimichthys crocea). The deduced LycIL-17A/F1 and 3 had four cysteine residues conserved in teleost IL-17A/F1 and 3 homologues and shared a domain similar to the B chain of human IL-17F. The deduced LycIL-17A/F2 possessed the unique arrangement of six cysteine residues as teleost IL-17A/F2 (except Fugu IL-17A/F2) and higher vertebrate IL-17A and F, and shared a domain similar to the D/E chain of human IL-17A. Phylogenetic analysis showed that teleost IL-17A/F1 and 3 fall into a major clade, whereas IL-17A/F2 forms a separated clade and is clustered with IL-17N. Based on structural and phylogenetic analyses, we suggest that teleost IL-17A/Fs may be classified into two subgroups: one consisting of IL-17A/F1 and 3, and the other composed of IL-17A/F2. The three LycIL-17A/Fs were constitutively expressed in all tissues examined although at a different level. Following challenge with Aeromonas hydrophila, expression of these three LycIL-17A/Fs was rapidly increased in head kidney and gills. The in vivo assays showed that recombinant LycIL-17A/F1, 2, and 3 all were able to enhance the expression of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α2), chemokines (CXCL8 and CXCL13), and antimicrobial peptide hepcidin in head kidney. Furthermore, LycIL-17A/Fs appeared to mediate pro-inflammatory responses via NF-κB signalling. These results therefore reveal similar functions between the two subgroup members,LycIL-17A/F1 and 3 and LycIL-17A/F2, in promoting inflammation and host defences. PMID:26429410

  10. A FRET biosensor reveals spatiotemporal activation and functions of aurora kinase A in living cells.

    PubMed

    Bertolin, Giulia; Sizaire, Florian; Herbomel, Gaëtan; Reboutier, David; Prigent, Claude; Tramier, Marc

    2016-01-01

    Overexpression of AURKA is a major hallmark of epithelial cancers. It encodes the multifunctional serine/threonine kinase aurora A, which is activated at metaphase and is required for cell cycle progression; assessing its activation in living cells is mandatory for next-generation drug design. We describe here a Förster's resonance energy transfer (FRET) biosensor detecting the conformational changes of aurora kinase A induced by its autophosphorylation on Thr288. The biosensor functionally replaces the endogenous kinase in cells and allows the activation of the kinase to be followed throughout the cell cycle. Inhibiting the catalytic activity of the kinase prevents the conformational changes of the biosensor. Using this approach, we discover that aurora kinase A activates during G1 to regulate the stability of microtubules in cooperation with TPX2 and CEP192. These results demonstrate that the aurora kinase A biosensor is a powerful tool to identify new regulatory pathways controlling aurora kinase A activation. PMID:27624869

  11. Predictors of Postpartum Sexual Activity and Function in a Diverse Population of Women

    PubMed Central

    Yee, Lynn M.; Kaimal, Anjali J.; Nakagawa, Sanae; Houston, Kathryn; Kuppermann, Miriam

    2016-01-01

    Introduction The purpose of this study was to identify predictors of postpartum sexual activity and functioning in a diverse population of women using the Sexual Health Outcomes in Women Questionnaire (SHOW-Q). Methods This was a prospective study of 160 postpartum women assessing relationships between demographic factors, mode of birth, depression, breastfeeding, and sexual activity and function. Questionnaires were administered over the telephone 8 to 10 weeks postpartum and in person 6 to 8 months postpartum. Primary outcomes were sexual activity at 8 to 10 weeks postpartum and global and subscale SHOW-Q scores at 6 to 8 months postpartum; the primary predictor was mode of birth. Associations were assessed using multiple linear and logistic regression analyses. Results Seventy-five percent of this population (n = 140 at 8–10 weeks, n = 129 at 6–8 months) gave birth vaginally, and 60.7% resumed sexual activity by 8 to 10 weeks postpartum. Only multiparity was associated with increased odds of having resumed sexual activity by 8 to 10 weeks postpartum (adjusted odds ratio [aOR], 2.44; P = .03), whereas older age was associated with decreased odds (aOR, 0.92; P = .02) of having resumed sexual activity. Women who were depressed (effect estimate, −13.3; P = .01), older (−1.1, P = .01), or exclusively breastfeeding (−16.5, P < .001) had significantly poorer sexual satisfaction, whereas multiparous women reported better sexual satisfaction (11.1, P = .03). A significant relationship between mode of birth and SHOW-Q scores did not emerge, although we did observe a trend toward lower SHOW-Q scores among women who underwent cesarean compared with those giving birth vaginally. Discussion Multiparity and younger age predict early resumption of sexual activity, whereas depression and breastfeeding are associated with poorer postpartum sexual functioning. The relationship between mode of birth and resumed sexual activity or postpartum sexual function remains

  12. Screening SIRT1 Activators from Medicinal Plants as Bioactive Compounds against Oxidative Damage in Mitochondrial Function

    PubMed Central

    Wang, Yi; Liang, Xinying; Chen, Yaqi; Zhao, Xiaoping

    2016-01-01

    Sirtuin type 1 (SIRT1) belongs to the family of NAD+ dependent histone deacetylases and plays a critical role in cellular metabolism and response to oxidative stress. Traditional Chinese medicines (TCMs), as an important part of natural products, have been reported to exert protective effect against oxidative stress in mitochondria. In this study, we screened SIRT1 activators from TCMs and investigated their activities against mitochondrial damage. 19 activators were found in total by in vitro SIRT1 activity assay. Among those active compounds, four compounds, ginsenoside Rb2, ginsenoside F1, ginsenoside Rc, and schisandrin A, were further studied to validate the SIRT1-activation effects by liquid chromatography-mass spectrometry and confirm their activities against oxidative damage in H9c2 cardiomyocytes exposed to tert-butyl hydroperoxide (t-BHP). The results showed that those compounds enhanced the deacetylated activity of SIRT1, increased ATP content, and inhibited intracellular ROS formation as well as regulating the activity of Mn-SOD. These SIRT1 activators also showed moderate protective effects on mitochondrial function in t-BHP cells by recovering oxygen consumption and increasing mitochondrial DNA content. Our results suggested that those compounds from TCMs attenuated oxidative stress-induced mitochondrial damage in cardiomyocytes through activation of SIRT1. PMID:26981165

  13. Physical activity in aging: changes in patterns and their relationship to health and function.

    PubMed

    DiPietro, L

    2001-10-01

    Sedentary behavior is an important risk factor for chronic disease morbidity and mortality in aging. However, there is a limited amount of information on the type and amount of activity needed to promote optimal health and function in older people. The purpose of this review is to describe the change in patterns of habitual physical activity in aging and the relationship of these changes to physical function and selected chronic diseases. We undertook a literature review of large population-based studies of physical activity in older people, and there is encouraging evidence that moderate levels of physical activity may provide protection from certain chronic diseases. Additionally, substantial health effects can be accrued independent of the fitness effects achieved through sustained vigorous activity. Thus, regular participation (i.e., 30 minutes/day on most days of the week) in activities of moderate intensity (such as walking, climbing stairs, biking, or yardwork/gardening), which increase accumulated daily energy expenditure and maintain muscular strength, but may not be of sufficient intensity for improving fitness, should be encouraged in older adults. Public policy should focus on ways of increasing volitional and lifestyle activity in older people, as well as on increasing the availability and accessibility of senior and community center programs for promoting physical activity throughout the life span. PMID:11730234

  14. Executive function moderates the intention-behavior link for physical activity and dietary behavior.

    PubMed

    Hall, Peter A; Fong, Geoffrey T; Epp, Lynette J; Elias, Lorin J

    2008-01-01

    Dominant theories of health behavior posit that social-cognitive and conative variables are sufficient to explain health behavior tendencies. The current studies challenge this assumption in two ways: (1) by demonstrating that unique variance in health protective behavior is predictable by knowing about individual differences in executive functioning, and (2) by demonstrating that executive function moderates the association between intention and behavior. In Studies 1 and 2, participants completed a computer-based task of executive function (Go/NoGo task) and articulated 1-week behavioral intentions for physical activity (Study 1) and dietary behavior (Study 2). Hierarchical regression analyses revealed that executive function predicts unique variance in both behaviors, and strongly moderates the association between behavioral intention and behavioral performance. Together behavioral intention and executive function explain more variance in health protective behavior than 'rational actor' models that have been widely adopted and disseminated. PMID:25160480

  15. Human T lymphocytes express N-methyl-D-aspartate receptors functionally active in controlling T cell activation

    SciTech Connect

    Miglio, Gianluca; Varsaldi, Federica; Lombardi, Grazia . E-mail: lombardi@pharm.unipmn.it

    2005-12-30

    The aim of this study was to investigate the expression and the functional role of N-methyl-D-aspartate (NMDA) receptors in human T cells. RT-PCR analysis showed that human resting peripheral blood lymphocytes (PBL) and Jurkat T cells express genes encoding for both NR1 and NR2B subunits: phytohemagglutinin (PHA)-activated PBL also expresses both these genes and the NR2A and NR2D genes. Cytofluorimetric analysis showed that NR1 expression increases as a consequence of PHA (10 {mu}g/ml) treatment. D-(-)-2-Amino-5-phosphonopentanoic acid (D-AP5), and (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine [(+)-MK 801], competitive and non-competitive NMDA receptor antagonists, respectively, inhibited PHA-induced T cell proliferation, whereas they did not affect IL-2 (10 U/ml)-induced proliferation of PHA blasts. These effects were due to the prevention of T cell activation (inhibition of cell aggregate formation and CD25 expression), but not to cell cycle arrest or death. These results demonstrate that human T lymphocytes express NMDA receptors, which are functionally active in controlling cell activation.

  16. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    NASA Astrophysics Data System (ADS)

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2016-01-01

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. Following previous methods in the literature, we test the ability of semi-empirical group contribution methods in Köhler theory to predict the effective hygroscopicity parameter, kappa. However, in our approach we also account for liquid-liquid phase boundaries to simulate phase-limited activation behavior. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of 2. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. The model can be incorporated into scale-bridging test beds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger-scale models.

  17. Revisiting the mechanism of coagulation factor XIII activation and regulation from a structure/functional perspective

    PubMed Central

    Gupta, Sneha; Biswas, Arijit; Akhter, Mohammad Suhail; Krettler, Christoph; Reinhart, Christoph; Dodt, Johannes; Reuter, Andreas; Philippou, Helen; Ivaskevicius, Vytautas; Oldenburg, Johannes

    2016-01-01

    The activation and regulation of coagulation Factor XIII (FXIII) protein has been the subject of active research for the past three decades. Although discrete evidence exists on various aspects of FXIII activation and regulation a combinatorial structure/functional view in this regard is lacking. In this study, we present results of a structure/function study of the functional chain of events for FXIII. Our study shows how subtle chronological submolecular changes within calcium binding sites can bring about the detailed transformation of the zymogenic FXIII to its activated form especially in the context of FXIIIA and FXIIIB subunit interactions. We demonstrate what aspects of FXIII are important for the stabilization (first calcium binding site) of its zymogenic form and the possible modes of deactivation (thrombin mediated secondary cleavage) of the activated form. Our study for the first time provides a structural outlook of the FXIIIA2B2 heterotetramer assembly, its association and dissociation. The FXIIIB subunits regulatory role in the overall process has also been elaborated upon. In summary, this study provides detailed structural insight into the mechanisms of FXIII activation and regulation that can be used as a template for the development of future highly specific therapeutic inhibitors targeting FXIII in pathological conditions like thrombosis. PMID:27453290

  18. The two Drosophila cytochrome C proteins can function in both respiration and caspase activation

    PubMed Central

    Arama, Eli; Bader, Maya; Srivastava, Mayank; Bergmann, Andreas; Steller, Hermann

    2006-01-01

    Cytochrome C has two apparently separable cellular functions: respiration and caspase activation during apoptosis. While a role of the mitochondria and cytochrome C in the assembly of the apoptosome and caspase activation has been established for mammalian cells, the existence of a comparable function for cytochrome C in invertebrates remains controversial. Drosophila possesses two cytochrome c genes, cyt-c-d and cyt-c-p. We show that only cyt-c-d is required for caspase activation in an apoptosis-like process during spermatid differentiation, whereas cyt-c-p is required for respiration in the soma. However, both cytochrome C proteins can function interchangeably in respiration and caspase activation, and the difference in their genetic requirements can be attributed to differential expression in the soma and testes. Furthermore, orthologues of the apoptosome components, Ark (Apaf-1) and Dronc (caspase-9), are also required for the proper removal of bulk cytoplasm during spermatogenesis. Finally, several mutants that block caspase activation during spermatogenesis were isolated in a genetic screen, including mutants with defects in spermatid mitochondrial organization. These observations establish a role for the mitochondria in caspase activation during spermatogenesis. PMID:16362035

  19. Covalent binding of hyper-activated Rhizomucor miehei lipase (RML) on hetero-functionalized siliceous supports.

    PubMed

    Garmroodi, Maryam; Mohammadi, Mehdi; Ramazani, Ali; Ashjari, Maryam; Mohammadi, Javad; Sabour, Behrouz; Yousefi, Maryam

    2016-05-01

    Physical adsorption onto hydrophobic supports has proven to be an effective way to improve the activity of lipases. Covalent binding, on the other hand, enhances the active lifetime of the immobilized biocatalysts. To combine the benefits of adsorption and covalent binding, immobilization of RML on new hetero-functional supports are reported. For this, chemical modification of silica and silica mesoporous nanoparticles was performed by the simultaneous use of two coupling linkers; Octyltriethoxysilane (OTES) for hydrophobic interaction and glycidoxypropyltrimethoxylsilane (GPTMS) for covalent linkage of RML. Altering the GPTMS/OTES ratio makes possible to have different amount of octyl and epoxy groups on the supports. The results showed that immobilization of RML on octyl-functionalized supports produces specific activity almost 1.5-2 folds greater than the specific activity of the free enzyme. The observed hyper-activation decreased with increasing epoxy groups on the supports confirming the enhancement of covalent nature of the attachment. Leaching experiment was also confirmed positive effect of the presence of epoxy groups on the supports. Regarding the specific activity of the immobilized preparations and desorption percentages of RML from each support, the most suitable carrier obtains from the functionalization of the supports in presence of GPTMS and OTES in the ratio of 1:1. PMID:26812114

  20. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    DOE PAGESBeta

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2016-01-19

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. Following previous methods in the literature, we test the ability of semi-empirical group contribution methods in Köhler theory to predict themore » effective hygroscopicity parameter, kappa. However, in our approach we also account for liquid–liquid phase boundaries to simulate phase-limited activation behavior. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of 2. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. The model can be incorporated into scale-bridging test beds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger-scale models.« less

  1. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    DOE PAGESBeta

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2016-01-19

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. Following previous methods in the literature, we test the ability of semi-empirical group contribution methods in Kohler theory to predict themore » effective hygroscopicity parameter, kappa. However, in our approach we also account for liquid–liquid phase boundaries to simulate phase-limited activation behavior. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of 2. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. Furthermore, the model can be incorporated into scale-bridging test beds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger-scale models.« less

  2. Revisiting the mechanism of coagulation factor XIII activation and regulation from a structure/functional perspective.

    PubMed

    Gupta, Sneha; Biswas, Arijit; Akhter, Mohammad Suhail; Krettler, Christoph; Reinhart, Christoph; Dodt, Johannes; Reuter, Andreas; Philippou, Helen; Ivaskevicius, Vytautas; Oldenburg, Johannes

    2016-01-01

    The activation and regulation of coagulation Factor XIII (FXIII) protein has been the subject of active research for the past three decades. Although discrete evidence exists on various aspects of FXIII activation and regulation a combinatorial structure/functional view in this regard is lacking. In this study, we present results of a structure/function study of the functional chain of events for FXIII. Our study shows how subtle chronological submolecular changes within calcium binding sites can bring about the detailed transformation of the zymogenic FXIII to its activated form especially in the context of FXIIIA and FXIIIB subunit interactions. We demonstrate what aspects of FXIII are important for the stabilization (first calcium binding site) of its zymogenic form and the possible modes of deactivation (thrombin mediated secondary cleavage) of the activated form. Our study for the first time provides a structural outlook of the FXIIIA2B2 heterotetramer assembly, its association and dissociation. The FXIIIB subunits regulatory role in the overall process has also been elaborated upon. In summary, this study provides detailed structural insight into the mechanisms of FXIII activation and regulation that can be used as a template for the development of future highly specific therapeutic inhibitors targeting FXIII in pathological conditions like thrombosis. PMID:27453290

  3. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    NASA Astrophysics Data System (ADS)

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2015-09-01

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. The model combines Köhler theory with semi-empirical group contribution methods to estimate molar volumes, activity coefficients and liquid-liquid phase boundaries to predict the effective hygroscopicity parameter, kappa. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of two. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. The model can be incorporated into scale-bridging testbeds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger scale models.

  4. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    SciTech Connect

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2016-01-01

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. Following previous methods in the literature, we test the ability of semi-empirical group contribution methods in Köhler theory to predict the effective hygroscopicity parameter, kappa. However, in our approach we also account for liquid–liquid phase boundaries to simulate phase-limited activation behavior. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of 2. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. The model can be incorporated into scale-bridging test beds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger-scale models.

  5. Approaches to Modelling the Dynamical Activity of Brain Function Based on the Electroencephalogram

    NASA Astrophysics Data System (ADS)

    Liley, David T. J.; Frascoli, Federico

    The brain is arguably the quintessential complex system as indicated by the patterns of behaviour it produces. Despite many decades of concentrated research efforts, we remain largely ignorant regarding the essential processes that regulate and define its function. While advances in functional neuroimaging have provided welcome windows into the coarse organisation of the neuronal networks that underlie a range of cognitive functions, they have largely ignored the fact that behaviour, and by inference brain function, unfolds dynamically. Modelling the brain's dynamics is therefore a critical step towards understanding the underlying mechanisms of its functioning. To date, models have concentrated on describing the sequential organisation of either abstract mental states (functionalism, hard AI) or the objectively measurable manifestations of the brain's ongoing activity (rCBF, EEG, MEG). While the former types of modelling approach may seem to better characterise brain function, they do so at the expense of not making a definite connection with the actual physical brain. Of the latter, only models of the EEG (or MEG) offer a temporal resolution well matched to the anticipated temporal scales of brain (mental processes) function. This chapter will outline the most pertinent of these modelling approaches, and illustrate, using the electrocortical model of Liley et al, how the detailed application of the methods of nonlinear dynamics and bifurcation theory is central to exploring and characterising their various dynamical features. The rich repertoire of dynamics revealed by such dynamical systems approaches arguably represents a critical step towards an understanding of the complexity of brain function.

  6. Prefrontal activation predicts social functioning improvement after initial treatment in late-onset depression.

    PubMed

    Pu, Shenghong; Nakagome, Kazuyuki; Yamada, Takeshi; Yokoyama, Katsutoshi; Matsumura, Hiroshi; Nagata, Izumi; Kaneko, Koichi

    2015-03-01

    The activation of oxygenated hemoglobin (oxy-Hb) has been shown to be lacking in the prefrontal cortex (PFC) of patients with late-onset depression (LOD), in verbal fluency task (VFT)-related near-infrared spectroscopy (NIRS). In our previous studies, we have emphasized the connection between the lack of activation in the frontopolar cortex and social functioning disorder in patients with LOD. In this study, we investigated whether the responsiveness to medical treatment of untreated patients with LOD, particularly social functioning improvements, could be predicted by NIRS findings at the initial examination. The subjects were 29 patients with LOD who were diagnosed with major depression at 65 years or older at the initial examination (mean age ± standard deviation, 72.4 ± 5.71 years). We measured the changes in hemoglobin concentration in the prefrontal and temporal cortex regions during a VFT by using 52-channel NIRS. In addition, depression status and social functioning were evaluated with the Hamilton Depression Rating Scale and the Social Adaptation Self-evaluation Scale, respectively, at the initial examination and 8 weeks after the treatment. A negative correlation was found between the NIRS activation in the right ventrolateral PFC region before treatment and the improvement in social functioning. These results suggested that the social functioning improvements were greater in LOD with initially lower NIRS activation in the right ventrolateral PFC region. NIRS is a simple technique that can be used before treatment to evaluate the social functioning levels of patients with LOD, and predict social functioning improvement after treatment. PMID:25659188

  7. Direct activation and anti-repression functions of GAL4-VP16 use distinct molecular mechanisms.

    PubMed Central

    Lyons, J G; Chambon, P

    1995-01-01

    In order to determine whether the molecular mechanisms used for direct activation by GAL4-VP16 are the same as those used for anti-repression, we have employed monoclonal antibodies specific for the VP16 activation domain. In the absence of added repressors, GAL4-VP16 was able to stimulate transcription from a template containing GAL4-binding sites, and the antibodies raised against the VP16 activation domain failed to inhibit this direct activation. GAL4-VP16 also was able to prevent histone H1-mediated repression by a mechanism that was strongly dependent on the presence of specific GAL4-binding elements in the promoter. However, in contrast to the assays conducted in the absence of repressors, the antibodies were strong inhibitors of GAL4-VP16-activated transcription in the presence of histone H1. Thus the binding of the antibodies distinguished between the direct activation and anti-repression functions of GAL4-VP16, indicating that these functions operate through distinct molecular mechanisms. The anti-repression-specific mechanism that is inhibitable by the antibodies acted at an early stage of preinitiation complex formation. Deletions of individual subdomains of the VP16 activation domain demonstrated that there was not a discrete subdomain responsible for the anti-repression function of GAL4-VP16. Thus, the inhibitory effect of the antibodies appeared to be due to the location of the epitope within the activator protein rather than to some inherent biochemical property of that region of the protein that is required specifically for anti-repression. The inhibitory effect of the antibodies also ruled out the possibility that steric exclusion of repressor proteins from the promoter was the sole means of anti-repression by the transcriptional activator. Images Figure 1 Figure 2 PMID:8554536

  8. Activation of C-H bonds and functionalization of hydrocarbons of the adamantane series. Review

    SciTech Connect

    Bagrii, Ye.I.; Karaulova, Ye.N.

    1993-12-31

    The highly symmetrical compact structure of an adamantane molecule gives its derivatives unusual properties. This governs the use of compounds with an adamantane fragment both for scientific research and in industry, and in particular in medicine. Importants ways of producing functional derivatives of adamantane without changing its carbon skeleton are processes occurring via the activation of the C-H bond. Detailed information concerning these reactions was given in an earlier monograph, which dealt with research published mainly before 1986. In the present review an examination is made of later investigations of C-H bond activation in adamantane, including research using biological and biomimetic methods of activation.

  9. Dimerization of matrix metalloproteinase-2 (MMP-2): functional implication in MMP-2 activation.

    PubMed

    Koo, Bon-Hun; Kim, Yeon Hyang; Han, Jung Ho; Kim, Doo-Sik

    2012-06-29

    Matrix metalloproteinase-2 (MMP-2) functions in diverse biological processes through the degradation of extracellular and non-extracellular matrix molecules. Because of its potential for tissue damage, there are several ways to regulate MMP-2 activity, including gene expression, compartmentalization, zymogen activation, and enzyme inactivation by extracellular inhibitors. Enzyme regulation through zymogen activation is important for the regulation of MMP-2 activity. In our previous studies, we showed that thrombin directly cleaved the propeptide of MMP-2 at specific sites for enzyme activation. We also demonstrated that heparan sulfate was required for thrombin-mediated activation of pro-MMP-2 by binding to thrombin, presumably through conformational changes at the active site of the enzyme. This suggests a regulatory mechanism for thrombin-mediated activation of pro-MMP-2. In this study, we found that MMP-2 formed a reduction-sensitive homodimer in a controlled manner and that Ca(2+) ion was essential for homodimerization of MMP-2. Homodimerization was not associated with protein kinase C-mediated phosphorylation of MMP-2. MMP-2 formed a homodimer through an intermolecular disulfide bond between Cys(102) and the neighboring Cys(102). Homodimerization of MMP-2 enhanced thrombin-mediated activation of pro-MMP-2. Moreover, the MMP-2 homodimer could cleave a small peptide substrate without removal of the propeptide. Taken together, our experimental data suggest a novel regulatory mechanism for pro-MMP-2 activation that is modulated through homodimerization of MMP-2. PMID:22577146

  10. Functional response and population dynamics for fighting predator, based on activity distribution.

    PubMed

    Garay, József; Varga, Zoltán; Gámez, Manuel; Cabello, Tomás

    2015-03-01

    The classical Holling type II functional response, describing the per capita predation as a function of prey density, was modified by Beddington and de Angelis to include interference of predators that increases with predator density and decreases the number of killed prey. In the present paper we further generalize the Beddington-de Angelis functional response, considering that all predator activities (searching and handling prey, fight and recovery) have time duration, the probabilities of predator activities depend on the encounter probabilities, and hence on the prey and predator abundance, too. Under these conditions, the aim of the study is to introduce a functional response for fighting the predator and to analyse the corresponding dynamics, when predator-predator-prey encounters also occur. From this general approach, the Holling type functional responses can also be obtained as particular cases. In terms of the activity distribution, we give biologically interpretable sufficient conditions for stable coexistence. We consider two-individual (predator-prey) and three-individual (predator-predator-prey) encounters. In the three-individual encounter model there is a relatively higher fighting rate and a lower killing rate. Using numerical simulation, we surprisingly found that when the intrinsic prey growth rate and the conversion rate are small enough, the equilibrium predator abundance is higher in the three-individual encounter case. The above means that, when the equilibrium abundance of the predator is small, coexistence appears first in the three-individual encounter model. PMID:25556688

  11. Importance of being Nernst: Synaptic activity and functional relevance in stem cell-derived neurons

    PubMed Central

    Bradford, Aaron B; McNutt, Patrick M

    2015-01-01

    Functional synaptogenesis and network emergence are signature endpoints of neurogenesis. These behaviors provide higher-order confirmation that biochemical and cellular processes necessary for neurotransmitter release, post-synaptic detection and network propagation of neuronal activity have been properly expressed and coordinated among cells. The development of synaptic neurotransmission can therefore be considered a defining property of neurons. Although dissociated primary neuron cultures readily form functioning synapses and network behaviors in vitro, continuously cultured neurogenic cell lines have historically failed to meet these criteria. Therefore, in vitro-derived neuron models that develop synaptic transmission are critically needed for a wide array of studies, including molecular neuroscience, developmental neurogenesis, disease research and neurotoxicology. Over the last decade, neurons derived from various stem cell lines have shown varying ability to develop into functionally mature neurons. In this review, we will discuss the neurogenic potential of various stem cells populations, addressing strengths and weaknesses of each, with particular attention to the emergence of functional behaviors. We will propose methods to functionally characterize new stem cell-derived neuron (SCN) platforms to improve their reliability as physiological relevant models. Finally, we will review how synaptically active SCNs can be applied to accelerate research in a variety of areas. Ultimately, emphasizing the critical importance of synaptic activity and network responses as a marker of neuronal maturation is anticipated to result in in vitro findings that better translate to efficacious clinical treatments. PMID:26240679

  12. Differential Item Functioning Analysis of the 2003-04 NHANES Physical Activity Questionnaire

    ERIC Educational Resources Information Center

    Gao, Yong; Zhu, Weimo

    2011-01-01

    Using differential item functioning (DIF) analyses, this study examined whether there were any DIF items in the National Health and Nutrition Examination Survey (NHANES) physical activity (PA) questionnaire. A subset of adult data from the 2003-04 NHANES study (n = 3,083) was used. PA items related to respondents' occupational, transportation,…

  13. Gain-Of-Function Mutational Activation of Human TRNA Synthetase Procytokine

    SciTech Connect

    Yang, X.L.; Kapoor, M.; Otero, F.J.; Slike, B.M.; Tsuruta, H.; Frausto, R.; Bates, A.; Ewalt, K.L.; Cheresh, D.A.; Schimmel, P.; /Scripps Res. Inst. /SLAC, SSRL

    2009-04-30

    Disease-causing mutations occur in genes for aminoacyl tRNA synthetases. That some mutations are dominant suggests a gain of function. Native tRNA synthetases, such as tyrosyl-tRNA synthetase (TyrRS) and tryptophanyl-tRNA synthetase, catalyze aminoacylation and are also procytokines that are activated by natural fragmentation. In principle, however, gain-of-function phenotypes could arise from mutational activation of synthetase procytokines. From crystal structure analysis, we hypothesized that a steric block of a critical Glu-Leu-Arg (ELR) motif in full-length TyrRS suppresses the cytokine activity of a natural fragment. To test this hypothesis, we attempted to uncover ELR in the procytokine by mutating a conserved tyrosine (Y341) that tethers ELR. Site-specific proteolytic cleavage and small-angle X-ray scattering established subtle opening of the structure by the mutation. Strikingly, four different assays demonstrated mutational activation of cytokine functions. The results prove the possibilities for constitutive gain-of-function mutations in tRNA synthetases.

  14. Integrating Functional Neuroimaging and Human Operant Research: Brain Activation Correlated with Presentation of Discriminative Stimuli

    ERIC Educational Resources Information Center

    Schlund, Michael W.; Cataldo, Michael F.

    2005-01-01

    Results of numerous human imaging studies and nonhuman neurophysiological studies on "reward" highlight a role for frontal, striatal, and thalamic regions in operant learning. By integrating operant and functional neuroimaging methodologies, the present investigation examined brain activation to two types of discriminative stimuli correlated with…

  15. A Functional Analysis of Moderate-to-Vigorous Physical Activity in Young Children

    ERIC Educational Resources Information Center

    Larson, Tracy A.; Normand, Matthew P.; Morley, Allison J.; Miller, Bryon G.

    2013-01-01

    Inadequate physical activity increases the risks related to a number of health problems in children, most notably obesity and the corresponding range of associated health problems. The purpose of the current study was to conduct a functional analysis to investigate the effects of several consequent variables on moderate-to-vigorous physical…

  16. Functional, photochemically active, and chemically asymmetric membranes by interfacial polymerization of derivatized multifunctional prepolymers

    DOEpatents

    Lonsdale, Harold K.; Wamser, Carl C.

    1988-01-01

    The preparation of a novel class of thin film membranes by interfacial polymerization is disclosed, said membanes incorporating as part of their polymeric structure the functionality of monomeric or oligomeric precursors. Specific embodiments include porphyrin and phthalocyanime derivatives that are photochemically or electrochemically active, as well as chemically asymmetric membranes.

  17. Functional, photochemically active, and chemically asymmetric membranes by interfacial polymerization of derivatized multifunctional prepolymers

    DOEpatents

    Lonsdale, H.K.; Wamser, C.C.

    1990-04-17

    The preparation of a novel class of thin film membranes by interfacial polymerization is disclosed, said membranes incorporating as part of their polymeric structure the functionality of monomeric or oligomeric precursors. Specific embodiments include porphyrin and phthalocyanine derivatives that are photochemically or electrochemically active, as well as chemically asymmetric membranes.

  18. Functional, photochemically active, and chemically asymmetric membranes by interfacial polymerization of derivatized multifunctional prepolymers

    DOEpatents

    Lonsdale, Harold K.; Wamser, Carl C.

    1990-01-01

    The preparation of a novel class of thin film membranes by interfacial polymerization is disclosed, said membranes incorporating as part of their polymeric structure the functionality of monomeric or oligomeric precursors. Specific embodiments include porphyrin and phthalocyanine derivatives that are photochemically or electrochemically active, as well as chemically asymmetric membranes.

  19. Anti-candidal activity of genetically engineered histatin variants with multiple functional domains.

    PubMed

    Oppenheim, Frank G; Helmerhorst, Eva J; Lendenmann, Urs; Offner, Gwynneth D

    2012-01-01

    The human bodily defense system includes a wide variety of innate antimicrobial proteins. Histatins are small molecular weight proteins produced by the human salivary glands that exhibit antifungal and antibacterial activities. While evolutionarily old salivary proteins such as mucins and proline-rich proteins contain large regions of tandem repeats, relatively young proteins like histatins do not contain such repeated domains. Anticipating that domain duplications have a functional advantage, we genetically engineered variants of histatin 3 with one, two, three, or four copies of the functional domain by PCR and splice overlap. The resulting proteins, designated reHst3 1-mer, reHist3 2-mer, reHis3 3-mer and reHist3 4-mer, exhibited molecular weights of 4,062, 5,919, 7,777, and 9,634 Da, respectively. The biological activities of these constructs were evaluated in fungicidal assays toward Candida albicans blastoconidia and germinated cells. The antifungal activities per mole of protein increased concomitantly with the number of functional domains present. This increase, however, was higher than could be anticipated from the molar concentration of functional domains present in the constructs. The demonstrated increase in antifungal activity may provide an evolutionary explanation why such domain multiplication is a frequent event in human salivary proteins. PMID:23251551

  20. Young Adult Outcome of Hyperactive Children: Adaptive Functioning in Major Life Activities

    ERIC Educational Resources Information Center

    Barkley, Russell A.; Fischer, Mariellen; Smallish, Lori; Fletcher, Kenneth

    2006-01-01

    Objective: The authors report the adaptive functioning of hyperactive and control children in southeastern Wisconsin (Milwaukee) followed to young adulthood. Method: Interviews with participants concerning major life activities were collected between 1992 and 1996 and used along with employer ratings and high school records at the young adult…

  1. Description of Functional Disability among Younger Stroke Patients: Exploration of Activity and Participation and Environmental Factors

    ERIC Educational Resources Information Center

    Snogren, Maria; Sunnerhagen, Katharina Stibrant

    2009-01-01

    The aim of the study is to describe disability among younger stroke patients by analyzing activity and participation and the environmental aspect as well as to compare assessed and self-perceived problems after stroke. International Classification of Functioning and Health (ICF) is a tool that provides a scientific basis for understanding and…

  2. A Goal Activation Approach to the Study of Executive Function: An Application to Antisaccade Tasks

    ERIC Educational Resources Information Center

    Nieuwenhuis, Sander; Broerse, Annelies; Nielen, Marjan M. A.; de Jong, Ritske

    2004-01-01

    We argue that a general control process, responsible for the activation and maintenance of task goals, is central to the concept of executive function. Failures of this process can become manifest as "goal neglect": disregard of a task requirement even though it has been understood (Duncan, 1995). We discuss the results of several published and…

  3. Synergistic effect between defect sites and functional groups on the hydrolysis of cellulose over activated carbon.

    PubMed

    Foo, Guo Shiou; Sievers, Carsten

    2015-02-01

    The chemical oxidation of activated carbon by H2 O2 and H2 SO4 is investigated, structural and chemical modifications are characterized, and the materials are used as catalysts for the hydrolysis of cellulose. Treatment with H2 O2 enlarges the pore size and imparts functional groups such as phenols, lactones, and carboxylic acids. H2 SO4 treatment targets the edges of carbon sheets primarily, and this effect is more pronounced with a higher temperature. Adsorption isotherms demonstrate that the adsorption of oligomers on functionalized carbon is dominated by van der Waals forces. The materials treated chemically are active for the hydrolysis of cellulose despite the relative weakness of most of their acid sites. It is proposed that a synergistic effect between defect sites and functional groups enhances the activity by inducing a conformational change in the glucan chains if they are adsorbed at defect sites. This activates the glycosidic bonds for hydrolysis by in-plane functional groups. PMID:25504913

  4. Functional Brain Activation Differences in Stuttering Identified with a Rapid fMRI Sequence

    ERIC Educational Resources Information Center

    Loucks, Torrey; Kraft, Shelly Jo; Choo, Ai Leen; Sharma, Harish; Ambrose, Nicoline G.

    2011-01-01

    The purpose of this study was to investigate whether brain activity related to the presence of stuttering can be identified with rapid functional MRI (fMRI) sequences that involved overt and covert speech processing tasks. The long-term goal is to develop sensitive fMRI approaches with developmentally appropriate tasks to identify deviant speech…

  5. NEUROBEHAVIORAL DATA INTERPRETATION IN NEUROTOXICITY STUDIES: FOB, MOTOR ACTIVITY AND FUNCTION

    EPA Science Inventory

    Neurobehavioral evaluations are emerging as a key component in neurotoxicity testing. The tests most often used for screening are the functional observational battery (FOB) and motor activity. The FOB is a series of non-invasive observational and manipulative measures which ass...

  6. High fat fed heart failure animals have enhanced mitochondrial function and acyl-coa dehydrogenase activities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have previously shown that administration of high fat in heart failure (HF) increased mitochondrial respiration and did not alter left ventricular (LV) function. PPARalpha is a nuclear transcription factor that activates expression of genes involved in fatty acid uptake and utilization. We hypoth...

  7. A Double-Blind Atropine Trial for Active Learning of Autonomic Function

    ERIC Educational Resources Information Center

    Fry, Jeffrey R.; Burr, Steven A.

    2011-01-01

    Here, we describe a human physiology laboratory class measuring changes in autonomic function over time in response to atropine. Students use themselves as subjects, generating ownership and self-interest in the learning as well as directly experiencing the active link between physiology and pharmacology in people. The class is designed to…

  8. Gain-of-Function Mutational Activation of Human tRNA Synthetase Procytokine

    PubMed Central

    Yang, Xiang-Lei; Kapoor, Mili; Otero, Francella J.; Slike, Bonnie M.; Tsuruta, Hiro; Frausto, Ricardo; Bates, Alison; Ewalt, Karla L.; Cheresh, David A.; Schimmel, Paul

    2008-01-01

    Summary Disease-causing mutations occur in genes for aminoacyl tRNA synthetases. That some mutations are dominant suggests a gain-of-function. Native tRNA synthetases, like TyrRS and TrpRS, catalyze aminoacylation and are also procytokines that are activated by natural fragmentation. In principle, however, gain-of-function phenotypes could arise from mutational activation of synthetase procytokines. From crystal structure analysis we hypothesized that a steric block of a critical ELR motif in full-length TyrRS suppresses the cytokine activity of a natural fragment. To test this hypothesis, we attempted to uncover ELR in the procytokine by mutating a conserved tyrosine (Y341) that tethers ELR. Site-specific proteolytic cleavage and small angle X-ray scattering established subtle opening of the structure by the mutation. Strikingly, four different assays demonstrated mutational activation of cytokine functions. The results prove the possibilities for constitutive gain-of-function mutations in tRNA synthetases. PMID:18096501

  9. Gain-of-function mutational activation of human tRNA synthetase procytokine.

    PubMed

    Yang, Xiang-Lei; Kapoor, Mili; Otero, Francella J; Slike, Bonnie M; Tsuruta, Hiro; Frausto, Ricardo; Bates, Alison; Ewalt, Karla L; Cheresh, David A; Schimmel, Paul

    2007-12-01

    Disease-causing mutations occur in genes for aminoacyl tRNA synthetases. That some mutations are dominant suggests a gain of function. Native tRNA synthetases, such as tyrosyl-tRNA synthetase (TyrRS) and tryptophanyl-tRNA synthetase, catalyze aminoacylation and are also procytokines that are activated by natural fragmentation. In principle, however, gain-of-function phenotypes could arise from mutational activation of synthetase procytokines. From crystal structure analysis, we hypothesized that a steric block of a critical Glu-Leu-Arg (ELR) motif in full-length TyrRS suppresses the cytokine activity of a natural fragment. To test this hypothesis, we attempted to uncover ELR in the procytokine by mutating a conserved tyrosine (Y341) that tethers ELR. Site-specific proteolytic cleavage and small-angle X-ray scattering established subtle opening of the structure by the mutation. Strikingly, four different assays demonstrated mutational activation of cytokine functions. The results prove the possibilities for constitutive gain-of-function mutations in tRNA synthetases. PMID:18096501

  10. Physical activity in prefrail older adults: confidence and satisfaction related to physical function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We examined the hypothesis that physical activity will have favorable effects on measures of self-efficacy for a 400-m walk and satisfaction with physical functioning in older adults 701 years of age who have deficits in mobility. We randomized a total of 412 adults aged 70–89 years at elevated risk...

  11. Poor Vision, Functioning, and Depressive Symptoms: A Test of the Activity Restriction Model

    ERIC Educational Resources Information Center

    Bookwala, Jamila; Lawson, Brendan

    2011-01-01

    Purpose: This study tested the applicability of the activity restriction model of depressed affect to the context of poor vision in late life. This model hypothesizes that late-life stressors contribute to poorer mental health not only directly but also indirectly by restricting routine everyday functioning. Method: We used data from a national…

  12. A TR-FRET-based functional assay for screening activators of CARM1.

    PubMed

    Zeng, Hao; Wu, Jiacai; Bedford, Mark T; Sbardella, Gianluca; Hoffmann, F Michael; Bi, Kun; Xu, Wei

    2013-05-10

    Epigenetics is an emerging field that demands selective cell-permeable chemical probes to perturb, especially in vivo, the activity of specific enzymes involved in modulating the epigenetic codes. Coactivator-associated arginine methyltransferase 1 (CARM1) is a coactivator of estrogen receptor α (ERα), the main target in human breast cancer. We previously showed that twofold overexpression of CARM1 in MCF7 breast cancer cells increased the expression of ERα-target genes involved in differentiation and reduced cell proliferation, thus leading to the hypothesis that activating CARM1 by chemical activators might be therapeutically effective in breast cancer. Selective, potent, cell-permeable CARM1 activators will be essential to test this hypothesis. Here we report the development of a cell-based, time-resolved (TR) FRET assay that uses poly(A) binding protein 1 (PABP1) methylation to monitor cellular activity of CARM1. The LanthaScreen TR-FRET assay uses MCF7 cells expressing GFP-PABP1 fusion protein through BacMam gene delivery system, methyl-PABP1 specific antibody, and terbium-labeled secondary antibody. This assay has been validated as reflecting the expression and/or activity of CARM1 and optimized for high throughput screening to identify CARM1 allosteric activators. This TR-FRET platform serves as a generic tool for functional screening of cell-permeable, chemical modulators of CARM1 for elucidation of its in vivo functions. PMID:23585185

  13. Functional activation of the egr-1 (early growth response-1) gene by hydrogen peroxide.

    PubMed

    Nose, K; Ohba, M

    1996-06-01

    The redox-based regulation of gene expression is one of the fundamental mechanisms of cellular functions, and hydrogen peroxide seems to act as an intracellular second messenger of signal transduction of cytokines. Hydrogen peroxide at non-toxic doses induced the accumulation of mRNA for the early growth response-1 (egr-1) gene in mouse osteoblastic cells. The Egr-1 protein is a transcription factor that binds the GCGGGGGCG sequence and contains a zinc-finger structure that is essential for DNA binding. Egr-1 protein is sensitive to oxidative stress and loses specific DNA-binding activity when exposed to high levels of oxidative stress. Incubating cells with hydrogen peroxide at about 50 microM, however, increased the accumulation of Egr-1 protein, and the Egr-1 product seemed to be functional, judging by its binding activity to the GCGGGGGCG sequence and its ability to activate the chloramphenicol acetyltransferase reporter gene under the control of the human thymidine kinase enhancer containing the Egr-1 binding sequence. It was reported that the activity of Egr-1 protein as a transcription factor was negatively regulated by active oxygens. However, with appropriate concentrations of active oxygen, its capacity to bind a specific DNA sequence and to enhance the transcriptional activity of target genes is thought to be elevated. PMID:8687376

  14. Parahippocampal activation evoked by masked traumatic images in posttraumatic stress disorder: a functional MRI study.

    PubMed

    Sakamoto, Hideshi; Fukuda, Rin; Okuaki, Tomoyuki; Rogers, Mark; Kasai, Kiyoto; Machida, Toru; Shirouzu, Ichiro; Yamasue, Hidenori; Akiyama, Tsuyoshi; Kato, Nobumasa

    2005-07-01

    Posttraumatic stress disorder (PTSD) has been widely studied, but its neural mechanism is still unclear. The purpose of this study is to identify dysfunctional areas in PTSD throughout the whole brain to help to elucidate the neural mechanisms of PTSD. Sixteen patients with PTSD and sixteen healthy controls participated in this study. Traumatic images under perceptual threshold including scenes of earthquakes, traffic accidents, ambulances, emergency rooms, and crimes were presented to the participants, and brain activation was measured using functional MRI. Functional brain images of both groups were evaluated with random effect analysis for the whole brain. In the control group, activation in the ventral frontoparietal areas correlated significantly with presentation of the masked traumatic stimuli. In the PTSD group, activation was not observed in these areas, but significant activation correlated with the masked traumatic stimuli in the parahippocampal region including the left parahippocampal gyrus and tail of the left hippocampus. These results suggest that in PTSD patients activation in the ventral frontoparietal network associated with visual attention processing is attenuated, while the left hippocampal area associated with episodic and autobiographical memory is abnormally easily activated. This pattern of activation corresponds well to the clinical characteristics of PTSD, in which even slight traumatic stimuli tend to induce intrusive recollection or flashbacks, despite a general decrease in attention and ability to concentrate. PMID:15955491

  15. In vivo effects of eltrombopag on platelet function in immune thrombocytopenia: no evidence of platelet activation

    PubMed Central

    Psaila, Bethan; Bussel, James B.; Linden, Matthew D.; Babula, Bracken; Li, Youfu; Barnard, Marc R.; Tate, Chinara; Mathur, Kanika; Frelinger, Andrew L.

    2012-01-01

    The effects of eltrombopag, a thrombopoietin-receptor agonist, on platelet function in immune thrombocytopenia (ITP) are not fully characterized. This study used whole blood flow cytometry to examine platelet function in 20 patients receiving eltrombopag treatment at days 0, 7, and 28. Platelet surface expression of activated GPIIb/IIIa, P-selectin, and GPIb was measured with and without low and high adenosine diphosphate (ADP) and thrombin receptor activating peptide (TRAP) concentrations. Before eltrombopag treatment with no ex vivo agonist, platelet activation was higher in ITP patients than controls. Platelet GPIb and activated GPIIb/IIIa expression without added agonist was unchanged following eltrombopag treatment, whereas a slight increase in P-selectin was observed. Expression of P-selectin and activated GPIIb/IIIa in response to high-dose ADP was lower during eltrombopag treatment than at baseline. Eltrombopag led to a slight increase in platelet reactivity to TRAP only in responders to eltrombopag but not to levels above those in controls; whole blood experiments demonstrated that this increase was probably because of higher platelet counts rather than higher platelet reactivity. In conclusion, although thrombocytopenic ITP patients have higher baseline platelet activation than controls, eltrombopag did not cause platelet activation or hyper-reactivity, irrespective of whether the platelet count increased. PMID:22294727

  16. ASSESSMENT OF UPPER EXTREMITY IMPAIRMENT, FUNCTION, AND ACTIVITY FOLLOWING STROKE: FOUNDATIONS FOR CLINICAL DECISION MAKING

    PubMed Central

    Lang, Catherine E.; Bland, Marghuretta D.; Bailey, Ryan R.; Schaefer, Sydney Y.; Birkenmeier, Rebecca L.

    2012-01-01

    The purpose of this review is to provide a comprehensive approach for assessing the upper extremity (UE) after stroke. First, common upper extremity impairments and how to assess them are briefly discussed. While multiple UE impairments are typically present after stroke, the severity of one impairment, paresis, is the primary determinant of UE functional loss. Second, UE function is operationally defined and a number of clinical measures are discussed. It is important to consider how impairment and loss of function affect UE activity outside of the clinical environment. Thus, this review also identifies accelerometry as an objective method for assessing UE activity in daily life. Finally, the role that each of these levels of assessment should play in clinical decision making is discussed in order to optimize the provision of stroke rehabilitation services. PMID:22975740

  17. Optogenetic Activation of an Inhibitory Network Enhances Feed-Forward Functional Connectivity in Auditory Cortex

    PubMed Central

    Hamilton, Liberty S.; Sohl-Dickstein, Jascha; Huth, Alexander G.; Carels, Vanessa M.; Deisseroth, Karl; Bao, Shaowen

    2013-01-01

    Summary The mammalian neocortex is a highly interconnected network of different types of neurons organized into both layers and columns. Overlaid on this structural organization is a pattern of functional connectivity that can be rapidly and flexibly altered during behavior. Parvalbumin-positive (PV) inhibitory neurons, which are implicated in cortical oscillations and can change neuronal selectivity, may play a pivotal role in these dynamic changes. We found that optogenetic activation of PV neurons in the auditory cortex enhanced feed-forward functional connectivity in the putative thalamorecipient circuit and in cortical columnar circuits. In contrast, PV stimulation induced no change in connectivity between sites in the same layers. The activity of PV neurons may thus serve as a gating mechanism to enhance feed-forward, but not lateral or feedback, information flow in cortical circuits. Functionally, it may preferentially enhance the contribution of bottom-up sensory inputs to perception. PMID:24267655

  18. A new era for functional labeling of neurons: activity-dependent promoters have come of age.

    PubMed

    Kawashima, Takashi; Okuno, Hiroyuki; Bito, Haruhiko

    2014-01-01

    Genetic labeling of neurons with a specific response feature is an emerging technology for precise dissection of brain circuits that are functionally heterogeneous at the single-cell level. While immediate early gene mapping has been widely used for decades to identify brain regions which are activated by external stimuli, recent characterization of the promoter and enhancer elements responsible for neuronal activity-dependent transcription have opened new avenues for live imaging of active neurons. Indeed, these advancements provided the basis for a growing repertoire of novel experiments to address the role of active neuronal networks in cognitive behaviors. In this review, we summarize the current literature on the usage and development of activity-dependent promoters and discuss the future directions of this expanding new field. PMID:24795570

  19. A new era for functional labeling of neurons: activity-dependent promoters have come of age

    PubMed Central

    Kawashima, Takashi; Okuno, Hiroyuki; Bito, Haruhiko

    2014-01-01

    Genetic labeling of neurons with a specific response feature is an emerging technology for precise dissection of brain circuits that are functionally heterogeneous at the single-cell level. While immediate early gene mapping has been widely used for decades to identify brain regions which are activated by external stimuli, recent characterization of the promoter and enhancer elements responsible for neuronal activity-dependent transcription have opened new avenues for live imaging of active neurons. Indeed, these advancements provided the basis for a growing repertoire of novel experiments to address the role of active neuronal networks in cognitive behaviors. In this review, we summarize the current literature on the usage and development of activity-dependent promoters and discuss the future directions of this expanding new field. PMID:24795570

  20. New insights into the activation, interaction partners and possible functions of MK5/PRAK.

    PubMed

    Perander, Maria; Keyse, Stephen M; Seternes, Ole-Morten

    2016-01-01

    MAP kinase-activated protein kinase 5 (MK5) was first described as a downstream target of the p38 MAP kinase pathway leading to its alternative acronym of p38-regulated/activated protein kinase (PRAK). However, since the discovery that MK5 is a bona fide interaction partner of the atypical MAP kinases ERK3 and ERK4 and that this interaction leads to both the activation and subcellular relocalisation of MK5, there has been considerable debate as to the relative roles of these MAPK pathways in mediating the activation and biological functions of MK5. Here we discuss recent progress in defining novel upstream components of the ERK3/ERK4 signalling pathway, our increased understanding of the mechanism by which MK5 interacts with and is activated by ERK3 and ERK4, and the discovery of novel interaction partners for MK5. Finally, we review recent literature that suggests novel biological functions for MK5 in a range of physiological and pathophysiological conditions including neuronal function and cancer. PMID:26709779

  1. P2Y12 expression and function in alternatively activated human microglia

    PubMed Central

    Ase, Ariel R.; Kinsara, Angham; Rao, Vijayaraghava T.S.; Michell-Robinson, Mackenzie; Leong, Soo Yuen; Butovsky, Oleg; Ludwin, Samuel K.; Séguéla, Philippe; Bar-Or, Amit; Antel, Jack P.

    2015-01-01

    Objective: To investigate and measure the functional significance of altered P2Y12 expression in the context of human microglia activation. Methods: We performed in vitro and in situ experiments to measure how P2Y12 expression can influence disease-relevant functional properties of classically activated (M1) and alternatively activated (M2) human microglia in the inflamed brain. Results: We demonstrated that compared to resting and classically activated (M1) human microglia, P2Y12 expression is increased under alternatively activated (M2) conditions. In response to ADP, the endogenous ligand of P2Y12, M2 microglia have increased ligand-mediated calcium responses, which are blocked by selective P2Y12 antagonism. P2Y12 antagonism was also shown to decrease migratory and inflammatory responses in human microglia upon exposure to nucleotides that are released during CNS injury; no effects were observed in human monocytes or macrophages. In situ experiments confirm that P2Y12 is selectively expressed on human microglia and elevated under neuropathologic conditions that promote Th2 responses, such as parasitic CNS infection. Conclusion: These findings provide insight into the roles of M2 microglia in the context of neuroinflammation and suggest a mechanism to selectively target a functionally unique population of myeloid cells in the CNS. PMID:25821842

  2. Altered resting-state functional activity in posttraumatic stress disorder: A quantitative meta-analysis

    PubMed Central

    Wang, Ting; Liu, Jia; Zhang, Junran; Zhan, Wang; Li, Lei; Wu, Min; Huang, Hua; Zhu, Hongyan; Kemp, Graham J.; Gong, Qiyong

    2016-01-01

    Many functional neuroimaging studies have reported differential patterns of spontaneous brain activity in posttraumatic stress disorder (PTSD), but the findings are inconsistent and have not so far been quantitatively reviewed. The present study set out to determine consistent, specific regional brain activity alterations in PTSD, using the Effect Size Signed Differential Mapping technique to conduct a quantitative meta-analysis of resting-state functional neuroimaging studies of PTSD that used either a non-trauma (NTC) or a trauma-exposed (TEC) comparison control group. Fifteen functional neuroimaging studies were included, comparing 286 PTSDs, 203 TECs and 155 NTCs. Compared with NTC, PTSD patients showed hyperactivity in the right anterior insula and bilateral cerebellum, and hypoactivity in the dorsal medial prefrontal cortex (mPFC); compared with TEC, PTSD showed hyperactivity in the ventral mPFC. The pooled meta-analysis showed hypoactivity in the posterior insula, superior temporal, and Heschl’s gyrus in PTSD. Additionally, subgroup meta-analysis (non-medicated subjects vs. NTC) identified abnormal activation in the prefrontal-limbic system. In meta-regression analyses, mean illness duration was positively associated with activity in the right cerebellum (PTSD vs. NTC), and illness severity was negatively associated with activity in the right lingual gyrus (PTSD vs. TEC). PMID:27251865

  3. Joint maximum likelihood estimation of activation and Hemodynamic Response Function for fMRI.

    PubMed

    Bazargani, Negar; Nosratinia, Aria

    2014-07-01

    Blood Oxygen Level Dependent (BOLD) functional magnetic resonance imaging (fMRI) maps the brain activity by measuring blood oxygenation level, which is related to brain activity via a temporal impulse response function known as the Hemodynamic Response Function (HRF). The HRF varies from subject to subject and within areas of the brain, therefore a knowledge of HRF is necessary for accurately computing voxel activations. Conversely a knowledge of active voxels is highly beneficial for estimating the HRF. This work presents a joint maximum likelihood estimation of HRF and activation based on low-rank matrix approximations operating on regions of interest (ROI). Since each ROI has limited data, a smoothing constraint on the HRF is employed via Tikhonov regularization. The method is analyzed under both white noise and colored noise. Experiments with synthetic data show that accurate estimation of the HRF is possible with this method without prior assumptions on the exact shape of the HRF. Further experiments involving real fMRI experiments with auditory stimuli are used to validate the proposed method. PMID:24835179

  4. Altered resting-state functional activity in posttraumatic stress disorder: A quantitative meta-analysis.

    PubMed

    Wang, Ting; Liu, Jia; Zhang, Junran; Zhan, Wang; Li, Lei; Wu, Min; Huang, Hua; Zhu, Hongyan; Kemp, Graham J; Gong, Qiyong

    2016-01-01

    Many functional neuroimaging studies have reported differential patterns of spontaneous brain activity in posttraumatic stress disorder (PTSD), but the findings are inconsistent and have not so far been quantitatively reviewed. The present study set out to determine consistent, specific regional brain activity alterations in PTSD, using the Effect Size Signed Differential Mapping technique to conduct a quantitative meta-analysis of resting-state functional neuroimaging studies of PTSD that used either a non-trauma (NTC) or a trauma-exposed (TEC) comparison control group. Fifteen functional neuroimaging studies were included, comparing 286 PTSDs, 203 TECs and 155 NTCs. Compared with NTC, PTSD patients showed hyperactivity in the right anterior insula and bilateral cerebellum, and hypoactivity in the dorsal medial prefrontal cortex (mPFC); compared with TEC, PTSD showed hyperactivity in the ventral mPFC. The pooled meta-analysis showed hypoactivity in the posterior insula, superior temporal, and Heschl's gyrus in PTSD. Additionally, subgroup meta-analysis (non-medicated subjects vs. NTC) identified abnormal activation in the prefrontal-limbic system. In meta-regression analyses, mean illness duration was positively associated with activity in the right cerebellum (PTSD vs. NTC), and illness severity was negatively associated with activity in the right lingual gyrus (PTSD vs. TEC). PMID:27251865

  5. c-Src function is necessary and sufficient for triggering microglial cell activation.

    PubMed

    Socodato, Renato; Portugal, Camila C; Domith, Ivan; Oliveira, Nádia A; Coreixas, Vivian S M; Loiola, Erick C; Martins, Tânia; Santiago, Ana Raquel; Paes-de-Carvalho, Roberto; Ambrósio, António F; Relvas, João B

    2015-03-01

    Microglial cells are the resident macrophages of the central nervous system. Their function is essential for neuronal tissue homeostasis. After inflammatory stimuli, microglial cells become activated changing from a resting and highly ramified cell shape to an amoeboid-like morphology. These morphological changes are associated with the release of proinflammatory cytokines and glutamate, as well as with high phagocytic activity. The acquisition of such phenotype has been associated with activation of cytoplasmic tyrosine kinases, including those of the Src family (SFKs). In this study, using both in vivo and in vitro inflammation models coupled to FRET-based time-lapse microscopy, lentiviruses-mediated shRNA delivery and genetic gain-of-function experiments, we demonstrate that among SFKs c-Src function is necessary and sufficient for triggering microglia proinflammatory signature, glutamate release, microglia-induced neuronal loss, and phagocytosis. c-Src inhibition in retinal neuroinflammation experimental paradigms consisting of intravitreal injection of LPS or ischemia-reperfusion injury significantly reduced microglia activation changing their morphology to a more resting phenotype and prevented neuronal apoptosis. Our data demonstrate an essential role for c-Src in microglial cell activation. PMID:25421817

  6. Endostatin: A novel inhibitor of androgen receptor function in prostate cancer

    PubMed Central

    Lee, Joo Hyoung; Isayeva, Tatyana; Larson, Matthew R.; Sawant, Anandi; Cha, Ha-Ram; Chanda, Diptiman; Chesnokov, Igor N.; Ponnazhagan, Selvarangan

    2015-01-01

    Acquired resistance to androgen receptor (AR)-targeted therapies compels the development of novel treatment strategies for castration-resistant prostate cancer (CRPC). Here, we report a profound effect of endostatin on prostate cancer cells by efficient intracellular trafficking, direct interaction with AR, reduction of nuclear AR level, and down-regulation of AR-target gene transcription. Structural modeling followed by functional analyses further revealed that phenylalanine-rich α1-helix in endostatin—which shares structural similarity with noncanonical nuclear receptor box in AR—antagonizes AR transcriptional activity by occupying the activation function (AF)-2 binding interface for coactivators and N-terminal AR AF-1. Together, our data suggest that endostatin can be recognized as an endogenous AR inhibitor that impairs receptor function through protein–protein interaction. These findings provide new insights into endostatin whose antitumor effect is not limited to inhibiting angiogenesis, but can be translated to suppressing AR-mediated disease progression in CRPC. PMID:25605930

  7. Structure–activity relationship of memapsin 2: implications on physiological functions and Alzheimer's disease

    PubMed Central

    Li, Xiaoman; Hong, Lin; Coughlan, Kathleen; Wang, Liang; Cao, Liu; Tang, Jordan

    2013-01-01

    Memapsin 2 (BACE1, β-secretase), a membrane aspartic protease, functions in the cleavage of the type I transmembrane protein, β-amyloid precursor protein (APP), leading to the production of amyloid β (Aβ) in the brain. Since Aβ is closely associated with the pathogenesis of Alzheimer's disease, understanding the biological function, particularly the catalytic activities of memapsin 2, would assist in a better understanding of the disease and the development of its inhibitors. The transmembrane and cytosolic domains of memapsin 2 function in cellular transport and localization, which are important regulatory mechanisms for its activity. The catalytic ectodomain contains a long substrate cleft that is responsible for substrate recognition, specificity, and peptide bond hydrolysis. The substrate cleft accommodates 11 residues of the substrate in separate binding subsites. Besides APP, a number of membrane proteins have been reported to be substrates of memapsin 2. The elucidation for the specificity of these subsites and the amino acid sequences surrounding the memapsin 2 cleavage site in these proteins has led to the establishment of a predictive model that can quantitatively estimate the efficiency of cleavage for any potential substrates. Such tools may be employed for future studies of memapsin 2 about its biological function. Herein, we review the current knowledge on the structure–function relationship of memapsin 2 and its relationship in the biological function. PMID:23676825

  8. Carbohydrate-functionalized nanovaccines preserve HIV-1 antigen stability and activate antigen presenting cells.

    PubMed

    Vela Ramirez, J E; Roychoudhury, R; Habte, H H; Cho, M W; Pohl, N L B; Narasimhan, B

    2014-01-01

    The functionalization of polymeric nanoparticles with ligands that target specific receptors on immune cells offers the opportunity to tailor adjuvant properties by conferring pathogen mimicking attributes to the particles. Polyanhydride nanoparticles are promising vaccine adjuvants with desirable characteristics such as immunomodulation, sustained antigen release, activation of antigen presenting cells (APCs), and stabilization of protein antigens. These capabilities can be exploited to design nanovaccines against viral pathogens, such as HIV-1, due to the important role of dendritic cells (DCs) and macrophages in viral spread. In this work, an optimized process was developed for carbohydrate functionalization of HIV-1 antigen-loaded polyanhydride nanoparticles. The carbohydrate-functionalized nanoparticles preserved antigenic properties upon release and also enabled sustained antigen release kinetics. Particle internalization was observed to be chemistry-dependent with positively charged nanoparticles being taken up more efficiently by DCs. Up-regulation of the activation makers CD40 and CD206 was demonstrated with carboxymethyl-α-d-mannopyranosyl-(1,2)-d-mannopyranoside functionalized nanoparticles. The secretion of the cytokines IL-6 and TNF-α was shown to be chemistry-dependent upon stimulation with carbohydrate-functionalized nanoparticles. These results offer important new insights upon the interactions between carbohydrate-functionalized nanoparticles and APCs and provide foundational information for the rational design of targeted nanovaccines against HIV-1. PMID:25068589

  9. Carbohydrate-functionalized nanovaccines preserve HIV-1 antigen stability and activate antigen presenting cells

    PubMed Central

    Vela Ramirez, J.E.; Roychoudhury, R.; Habte, H.H.; Cho, M. W.; Pohl, N. L. B.; Narasimhan, B.

    2015-01-01

    The functionalization of polymeric nanoparticles with ligands that target specific receptors on immune cells offers the opportunity to tailor adjuvant properties by conferring pathogen mimicking attributes to the particles. Polyanhydride nanoparticles are promising vaccine adjuvants with desirable characteristics such as immunomodulation, sustained antigen release, activation of antigen presenting cells, and stabilization of protein antigens. These capabilities can be exploited to design nanovaccines against viral pathogens, such as HIV-1, due to the important role of dendritic cells and macrophages in viral spread. In this work, an optimized process was developed for carbohydrate functionalization of HIV-1 antigen-loaded polyanhydride nanoparticles. The carbohydrate-functionalized nanoparticles preserved antigenic properties upon release and also enabled sustained antigen release kinetics. Particle internalization was observed to be chemistry-dependent with positively charged nanoparticles being taken up more efficiently by dendritic cells. Up-regulation of the activation makers CD40 and CD206 was demonstrated with carboxymethyl-α-d-mannopyranosyl-(1,2)-d-mannopyranoside functionalized nanoparticles. The secretion of the cytokines IL-6 and TNF-α was shown to be chemistry-dependent upon stimulation with carbohydrate-functionalized nanoparticles. These results offer important new insights upon the interactions between carbohydrate-functionalized nanoparticles and antigen presenting cells and provide foundational information for the rational design of targeted nanovaccines against HIV-1. PMID:25068589

  10. Functionally Active Gap Junctions between Connexin 43-Positive Mesenchymal Stem Cells and Glioma Cells.

    PubMed

    Gabashvili, A N; Baklaushev, V P; Grinenko, N F; Levinskii, A B; Mel'nikov, P A; Cherepanov, S A; Chekhonin, V P

    2015-05-01

    The formation of functional gap junctions between mesenchymal stem cells and cells of low-grade rat glioma C6 cells was studied in in vitro experiments. Immunocytochemical analysis with antibodies to connexin 43 extracellular loop 2 showed that mesenchymal stem cells as well as C6 glioma cells express the main astroglial gap junction protein connexin 43. Analysis of migration activity showed that mesenchymal stem cells actively migrate towards C6 glioma cells. During co-culturing, mesenchymal stem cells and glioma C6 form functionally active gap junctions mediating the transport of cytoplasmic dye from glioma cells to mesenchymal stem cells in the opposite direction. Fluorometry showed that the intensity of transport of low-molecular substances through heterologous gap junctions between mesenchymal stem cells and glioma cells is similar to that through homologous gap junctions between glioma cells. This phenomenon can be used for the development of new methods of cell therapy of high-grade gliomas. PMID:26033611

  11. Linking activity and function to ecosystem dynamics in a coastal bacterioplankton community

    PubMed Central

    Gifford, Scott M.; Sharma, Shalabh; Moran, Mary Ann

    2014-01-01

    For bacterial communities containing hundreds to thousands of distinct populations, connecting functional processes and environmental dynamics at high taxonomic resolution has remained challenging. Here we use the expression of ribosomal proteins (%RP) as a proxy for in situ activity of 200 taxa within 20 metatranscriptomic samples in a coastal ocean time series encompassing both seasonal variability and diel dynamics. %RP patterns grouped the taxa into seven activity clusters with distinct profiles in functional gene expression and correlations with environmental gradients. Clusters 1–3 had their highest potential activity in the winter and fall, and included some of the most active taxa, while Clusters 4–7 had their highest potential activity in the spring and summer. Cluster 1 taxa were characterized by gene expression for motility and complex carbohydrate degradation (dominated by Gammaproteobacteria and Bacteroidetes), and Cluster 2 taxa by transcription of genes for amino acid and aromatic compound metabolism and aerobic anoxygenic phototrophy (Roseobacter). Other activity clusters were enriched in transcripts for proteorhodopsin and methylotrophy (Cluster 4; SAR11 and methylotrophs), photosynthesis and attachment (Clusters 5 and 7; Synechococcus, picoeukaryotes, Verucomicrobia, and Planctomycetes), and sulfur oxidation (Cluster 7; Gammaproteobacteria). The seasonal patterns in activity were overlain, and sometimes obscured, by large differences in %RP over shorter day-night timescales. Seventy-eight taxa, many of them heterotrophs, had a higher %RP activity index during the day than night, indicating a strong diel activity rhythm at this coastal site. Emerging from these taxonomically- and time-resolved estimates of in situ microbial activity are predictions of specific ecological groupings of microbial taxa in a dynamic coastal environment. PMID:24795712

  12. p38 mitogen-activated protein kinase activation during platelet storage: consequences for platelet recovery and hemostatic function in vivo

    PubMed Central

    Canault, Matthias; Duerschmied, Daniel; Brill, Alexander; Stefanini, Lucia; Schatzberg, Daphne; Cifuni, Stephen M.

    2010-01-01

    Platelets undergo several modifications during storage that reduce their posttransfusion survival and functionality. One important feature of these changes, which are known as platelet storage lesion, is the shedding of the surface glycoproteins GPIb-α and GPV. We recently demonstrated that tumor necrosis factor-α converting enzyme (TACE/ADAM17) mediates mitochondrial injury-induced shedding of adhesion receptors and that TACE activity correlates with reduced posttransfusion survival of these cells. We now confirm that TACE mediates receptor shedding and clearance of platelets stored for 16 hours at 37°C or 22°C. We further demonstrate that both storage and mitochondrial injury lead to the phosphorylation of p38 mitogen-activated kinase (MAPK) in platelets and that TACE-mediated receptor shedding from mouse and human platelets requires p38 MAP kinase signaling. Protein kinase C, extracellular regulated-signal kinase MAPK, and caspases were not involved in TACE activation. Both inhibition of p38 MAPK and inactivation of TACE during platelet storage led to a markedly improved posttransfusion recovery and hemostatic function of platelets in mice. p38 MAPK inhibitors had only minor effects on the aggregation of fresh platelets under static or flow conditions in vitro. In summary, our data suggest that inhibition of p38 MAPK or TACE during storage may significantly improve the quality of stored platelets. PMID:19965619

  13. Changes in everyday function among individuals with psychometrically defined Mild Cognitive Impairment in the ACTIVE Study

    PubMed Central

    Wadley, Virginia G.; Crowe, Michael; Marsiske, Michael; Cook, Sarah E.; Unverzagt, Frederick W.; Rosenberg, Adrienne L.; Rexroth, Daniel

    2007-01-01

    Objectives. Because many individuals with Mild Cognitive Impairment (MCI) will progress to a dementia diagnosis, this population is at high risk for losing functional independence. We examine trajectories of change in everyday function for individuals with cognitive deficits suggestive of MCI. Design. We utilized data from the longitudinal, multi-site Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) study, which allowed for post-hoc classification of MCI status at baseline using psycho metric definitions for amnestic MCI, non-amnestic MCI, multi-domain MCI, and no MCI. Setting. Six U.S. cities. Participants. 2832 volunteers (mean age 74 years; 26% African American) living independently, recruited from senior housing, community centers, and hospitals and clinics. Measurements. Mixed effect models examined changes in self-reported instrumental and basic activities of daily living (IADLs and ADLs) from the MDS Home Care Interview in 2,358 participants over a three-year period. Results. In models for IADL performance, IADL difficulty, and a Daily Functioning Composite, there was a significant time by MCI classification interaction for each MCI subtype, indicating that all MCI groups showed faster rates of decline in everyday function relative to cognitively normal participants with no MCI. Conclusion. Results demonstrate the importance of MCI as a clinical entity that not only predicts progression to dementia but also predicts functional declines in activities that are key to autonomy and quality of life. MCI classification guidelines should allow for functional changes in MCI, and clinicians should monitor for such changes. Preservation of function may serve as a meaningful outcome for intervention efforts. PMID:17661957

  14. In Vitro Culture of Functionally Active Buffalo Hepatocytes Isolated by Using a Simplified Manual Perfusion Method

    PubMed Central

    Panda, Santanu; Bisht, Sonu; Malakar, Dhruba; Mohanty, Ashok K.; Kaushik, Jai K.

    2015-01-01

    Background In farm animals, there is no suitable cell line available to understand liver-specific functions. This has limited our understanding of liver function and metabolism in farm animals. Culturing and maintenance of functionally active hepatocytes is difficult, since they survive no more than few days. Establishing primary culture of hepatocytes can help in studying cellular metabolism, drug toxicity, hepatocyte specific gene function and regulation. Here we provide a simple in vitro method for isolation and short-term culture of functionally active buffalo hepatocytes. Results Buffalo hepatocytes were isolated from caudate lobes by using manual enzymatic perfusion and mechanical disruption of liver tissue. Hepatocyte yield was (5.3±0.66)×107 cells per gram of liver tissue with a viability of 82.3±3.5%. Freshly isolated hepatocytes were spherical with well contrasted border. After 24 hours of seeding onto fibroblast feeder layer and different extracellular matrices like dry collagen, matrigel and sandwich collagen coated plates, hepatocytes formed confluent monolayer with frequent clusters. Cultured hepatocytes exhibited typical cuboidal and polygonal shape with restored cellular polarity. Cells expressed hepatocyte-specific marker genes or proteins like albumin, hepatocyte nuclear factor 4α, glucose-6-phosphatase, tyrosine aminotransferase, cytochromes, cytokeratin and α1-antitrypsin. Hepatocytes could be immunostained with anti-cytokeratins, anti-albumin and anti α1-antitrypsin antibodies. Abundant lipid droplets were detected in the cytosol of hepatocytes using oil red stain. In vitro cultured hepatocytes could be grown for five days and maintained for up to nine days on buffalo skin fibroblast feeder layer. Cultured hepatocytes were viable for functional studies. Conclusion We developed a convenient and cost effective technique for hepatocytes isolation for short-term culture that exhibited morphological and functional characteristics of active

  15. The Daily Activity Report (DAR) a Novel Measure of Functional Outcome for Serious Mental Illness.

    PubMed

    Velligan, Dawn I; Mintz, Jim; Sierra, Cynthia; Martin, Mona L; Fredrick, Megan; Maglinte, Gregory A; Corey-Lisle, Patricia K

    2016-05-01

    The assessment of real-world functional outcomes in clinical trials for medications targeting negative symptoms and cognitive impairment is extremely important. We tested the psychometric properties of the Daily Activity Report (DAR), a novel assessment of productive daily activity. We administered the DAR and additional assessments of functional outcome, functional capacity, cognition and symptomatology to 50 individuals with schizophrenia at 2 time points, 1 month apart and to 25 healthy controls. The DAR records a person's daily activity for 7 consecutive days based upon phone calls made 3 times a day. A total score and scores in 3 domains; instrumental activities (ie, independent living), social and work or school related activities are generated for the DAR. Inter-item consistency was high 0.89-0.94 for each domain and 0.88 overall. Test-retest reliability across 1 month for the total DAR score was 0.67,P< .0001. The total DAR score as well as scores for social activity and nondomestic work/school differed significantly between control and patient participants (P< .0001). DAR domain scores were associated with negative symptoms and functional outcomes, but the primary score related to these measures was the work/school dimension of the DAR. DAR scores were only weakly and nonsignificantly related to positive symptoms. This study provides preliminary support for the reliability and validity of the DAR using interviewer administration. The development of a patient reported version of the DAR using smart phone technology with automatic scoring is the next step. PMID:26712856

  16. The Daily Activity Report (DAR) a Novel Measure of Functional Outcome for Serious Mental Illness

    PubMed Central

    Velligan, Dawn I.; Mintz, Jim; Sierra, Cynthia; Martin, Mona L.; Fredrick, Megan; Maglinte, Gregory A.; Corey-Lisle, Patricia K.

    2016-01-01

    The assessment of real-world functional outcomes in clinical trials for medications targeting negative symptoms and cognitive impairment is extremely important. We tested the psychometric properties of the Daily Activity Report (DAR), a novel assessment of productive daily activity. We administered the DAR and additional assessments of functional outcome, functional capacity, cognition and symptomatology to 50 individuals with schizophrenia at 2 time points, 1 month apart and to 25 healthy controls. The DAR records a person’s daily activity for 7 consecutive days based upon phone calls made 3 times a day. A total score and scores in 3 domains; instrumental activities (ie, independent living), social and work or school related activities are generated for the DAR. Inter-item consistency was high 0.89–0.94 for each domain and 0.88 overall. Test–retest reliability across 1 month for the total DAR score was 0.67, P < .0001. The total DAR score as well as scores for social activity and nondomestic work/school differed significantly between control and patient participants (P < .0001). DAR domain scores were associated with negative symptoms and functional outcomes, but the primary score related to these measures was the work/school dimension of the DAR. DAR scores were only weakly and nonsignificantly related to positive symptoms. This study provides preliminary support for the reliability and validity of the DAR using interviewer administration. The development of a patient reported version of the DAR using smart phone technology with automatic scoring is the next step. PMID:26712856

  17. Physical Activity and Physical Function in Individuals Post-bariatric Surgery

    PubMed Central

    Josbeno, Deborah A.; Kalarchian, Melissa; Sparto, Patrick J.; Otto, Amy D.; Jakicic, John M.

    2016-01-01

    Background A better understanding of the physical activity behavior of individuals who undergo bariatric surgery will enable the development of effective post-surgical exercise guidelines and interventions to enhance weight loss outcomes. This study characterized the physical activity profile and physical function of 40 subjects 2–5 years post-bariatric surgery and examined the association between physical activity, physical function, and weight loss after surgery. Methods Moderate-to-vigorous intensity physical activity (MVPA) was assessed with the BodyMedia SenseWear® Pro (SWPro) armband, and physical function (PF) was measured using the physical function subscale of the 36-Item Short Form Health Survey instrument (SF-36PF). Height and weight were measured. Results Percent of excess weight loss (%EWL) was associated with MVPA (r = 0.44, p = 0.01) and PF (r = 0.38, p = 0.02); MVPA was not associated with PF (r = 0.24, p = 0.14). Regression analysis demonstrated that MVPA was associated with %EWL (β = 0.38, t = 2.43, p = 0.02). Subjects who participated in ≥150 min/week of MVPA had a greater %EWL (68.2 ± 19, p = 0.01) than those who participated in <150 min/week (52.5 ± 17.4). Conclusions Results suggest that subjects are capable of performing most mobility activities. However, the lack of an association between PF and MVPA suggests that a higher level of PF does not necessarily correspond to a higher level of MVPA participation. Thus, the barriers to adoption of a more physically active lifestyle may not be fully explained by the subjects’ physical limitations. Further understanding of this relationship is needed for the development of post-surgical weight loss guidelines and interventions. PMID:21153567

  18. Rapid eye movement-related brain activation in human sleep: a functional magnetic resonance imaging study.

    PubMed

    Wehrle, Renate; Czisch, Michael; Kaufmann, Christian; Wetter, Thomas C; Holsboer, Florian; Auer, Dorothee P; Pollmächer, Thomas

    2005-05-31

    In animal models, ponto-geniculo-occipital waves appear as an early sign of rapid eye movement sleep and may be functionally significant for brain plasticity processes. In this pilot study, we use a combined polysomnographic and functional magnetic resonance imaging approach, and show distinct magnetic resonance imaging signal increases in the posterior thalamus and occipital cortex in close temporal relationship to rapid eye movements during human rapid eye movement sleep. These findings are consistent with cell recordings in animal experiments and demonstrate that functional magnetic resonance imaging can be utilized to detect ponto-geniculo-occipital-like activity in humans. Studying intact neuronal networks underlying sleep regulation is no longer confined to animal models, but has been shown to be feasible in humans by a combined functional magnetic resonance imaging and electroencephalograph approach. PMID:15891584

  19. The brain of opera singers: experience-dependent changes in functional activation.

    PubMed

    Kleber, B; Veit, R; Birbaumer, N; Gruzelier, J; Lotze, M

    2010-05-01

    Several studies have shown that motor-skill training over extended time periods results in reorganization of neural networks and changes in brain morphology. Yet, little is known about training-induced adaptive changes in the vocal system, which is largely subserved by intrinsic reflex mechanisms. We investigated highly accomplished opera singers, conservatory level vocal students, and laymen during overt singing of an Italian aria in a neuroimaging experiment. We provide the first evidence that the training of vocal skills is accompanied by increased functional activation of bilateral primary somatosensory cortex representing articulators and larynx. Opera singers showed additional activation in right primary sensorimotor cortex. Further training-related activation comprised the inferior parietal lobe and bilateral dorsolateral prefrontal cortex. At the subcortical level, expert singers showed increased activation in the basal ganglia, the thalamus, and the cerebellum. A regression analysis of functional activation with accumulated singing practice confirmed that vocal skills training correlates with increased activity of a cortical network for enhanced kinesthetic motor control and sensorimotor guidance together with increased involvement of implicit motor memory areas at the subcortical and cerebellar level. Our findings may have ramifications for both voice rehabilitation and deliberate practice of other implicit motor skills that require interoception. PMID:19692631

  20. Structure and Function of the 5'-<' Exoribonuclease Rat1 and its Activating Partner Rai1

    SciTech Connect

    Xiang, S.; Cooper-Morgan, A; Jiao, X; Kiledjian, M; Manley, J; Tong, L

    2009-01-01

    The 5??3? exoribonucleases (XRNs) comprise a large family of conserved enzymes in eukaryotes with crucial functions in RNA metabolism and RNA interference1, 2, 3, 4, 5. XRN2, or Rat1 in yeast6, functions primarily in the nucleus and also has an important role in transcription termination by RNA polymerase II (refs 7-14). Rat1 exoribonuclease activity is stimulated by the protein Rai1 (refs 15, 16). Here we report the crystal structure at 2.2 A resolution of Schizosaccharomyces pombe Rat1 in complex with Rai1, as well as the structures of Rai1 and its murine homologue Dom3Z alone at 2.0 A resolution. The structures reveal the molecular mechanism for the activation of Rat1 by Rai1 and for the exclusive exoribonuclease activity of Rat1. Biochemical studies confirm these observations, and show that Rai1 allows Rat1 to degrade RNAs with stable secondary structure more effectively. There are large differences in the active site landscape of Rat1 compared to related and PIN (PilT N terminus) domain-containing nucleases17, 18, 19, 20. Unexpectedly, we identified a large pocket in Rai1 and Dom3Z that contains highly conserved residues, including three acidic side chains that coordinate a divalent cation. Mutagenesis and biochemical studies demonstrate that Rai1 possesses pyrophosphohydrolase activity towards 5? triphosphorylated RNA. Such an activity is important for messenger RNA degradation in bacteria21, but this is, to our knowledge, the first demonstration of this activity in eukaryotes and suggests that Rai1/Dom3Z may have additional important functions in RNA metabolism.

  1. Antioxidant Effect of Melatonin on the Functional Activity of Colostral Phagocytes in Diabetic Women

    PubMed Central

    Fagundes, Danny L. G.; Calderon, Iracema M. P.; França, Eduardo L.

    2013-01-01

    Melatonin is involved in a number of physiological and oxidative processes, including functional regulation in human milk. The present study investigated the mechanisms of action of melatonin and its effects on the functional activity of colostral phagocytes in diabetic women. Colostrum samples were collected from normoglycemic (N = 38) and diabetic (N = 38) women. We determined melatonin concentration, superoxide release, bactericidal activity and intracellular Ca2+ release by colostral phagocytes treated or not with 8-(Diethylamino) octyl-3,4,5-trimethoxybenzoate hydrochloride (TMB-8) and incubated with melatonin and its precursor (N-acetyl-serotonin-NAS), antagonist (luzindole) and agonist (chloromelatonin-CMLT). Melatonin concentration was higher in colostrum samples from hyperglycemic than normoglycemic mothers. Melatonin stimulated superoxide release by colostral phagocytes from normoglycemic but not hyperglycemic women. NAS increased superoxide, irrespective of glycemic status, whereas CMTL increased superoxide only in cells from the normoglycemic group. Phagocytic activity in colostrum increased significantly in the presence of melatonin, NAS and CMLT, irrespective of glycemic status. The bactericidal activity of colostral phagocytes against enterophatogenic Escherichia coli (EPEC) increased in the presence of melatonin or NAS in the normoglycemic group, but not in the hyperglycemic group. Luzindole blocked melatonin action on colostrum phagocytes. Phagocytes from the normoglycemic group treated with melatonin exhibited an increase in intracellular Ca2+ release. Phagocytes treated with TMB-8 (intracellular Ca2+ inhibitor) decreased superoxide, bactericidal activity and intracellular Ca2+ release in both groups. The results obtained suggest an interactive effect of glucose metabolism and melatonin on colostral phagocytes. In colostral phagocytes from normoglycemic mothers, melatonin likely increases the ability of colostrum to protect against EPEC

  2. Antioxidant effect of melatonin on the functional activity of colostral phagocytes in diabetic women.

    PubMed

    Morceli, Gliciane; Honorio-França, Adenilda C; Fagundes, Danny L G; Calderon, Iracema M P; França, Eduardo L

    2013-01-01

    Melatonin is involved in a number of physiological and oxidative processes, including functional regulation in human milk. The present study investigated the mechanisms of action of melatonin and its effects on the functional activity of colostral phagocytes in diabetic women. Colostrum samples were collected from normoglycemic (N = 38) and diabetic (N = 38) women. We determined melatonin concentration, superoxide release, bactericidal activity and intracellular Ca(2+) release by colostral phagocytes treated or not with 8-(Diethylamino) octyl-3,4,5-trimethoxybenzoate hydrochloride (TMB-8) and incubated with melatonin and its precursor (N-acetyl-serotonin-NAS), antagonist (luzindole) and agonist (chloromelatonin-CMLT). Melatonin concentration was higher in colostrum samples from hyperglycemic than normoglycemic mothers. Melatonin stimulated superoxide release by colostral phagocytes from normoglycemic but not hyperglycemic women. NAS increased superoxide, irrespective of glycemic status, whereas CMTL increased superoxide only in cells from the normoglycemic group. Phagocytic activity in colostrum increased significantly in the presence of melatonin, NAS and CMLT, irrespective of glycemic status. The bactericidal activity of colostral phagocytes against enterophatogenic Escherichia coli (EPEC) increased in the presence of melatonin or NAS in the normoglycemic group, but not in the hyperglycemic group. Luzindole blocked melatonin action on colostrum phagocytes. Phagocytes from the normoglycemic group treated with melatonin exhibited an increase in intracellular Ca(2+) release. Phagocytes treated with TMB-8 (intracellular Ca(2+) inhibitor) decreased superoxide, bactericidal activity and intracellular Ca(2+) release in both groups. The results obtained suggest an interactive effect of glucose metabolism and melatonin on colostral phagocytes. In colostral phagocytes from normoglycemic mothers, melatonin likely increases the ability of colostrum to protect against

  3. Suboptimal Muscle Synergy Activation Patterns Generalize their Motor Function across Postures

    PubMed Central

    Sohn, M. Hongchul; Ting, Lena H.

    2016-01-01

    We used a musculoskeletal model to investigate the possible biomechanical and neural bases of using consistent muscle synergy patterns to produce functional motor outputs across different biomechanical conditions, which we define as generalizability. Experimental studies in cats demonstrate that the same muscle synergies are used during reactive postural responses at widely varying configurations, producing similarly-oriented endpoint force vectors with respect to the limb axis. However, whether generalizability across postures arises due to similar biomechanical properties or to neural selection of a particular muscle activation pattern has not been explicitly tested. Here, we used a detailed cat hindlimb model to explore the set of feasible muscle activation patterns that produce experimental synergy force vectors at a target posture, and tested their generalizability by applying them to different test postures. We used three methods to select candidate muscle activation patterns: (1) randomly-selected feasible muscle activation patterns, (2) optimal muscle activation patterns minimizing muscle effort at a given posture, and (3) generalizable muscle activation patterns that explicitly minimized deviations from experimentally-identified synergy force vectors across all postures. Generalizability was measured by the deviation between the simulated force direction of the candidate muscle activation pattern and the experimental synergy force vectors at the test postures. Force angle deviations were the greatest for the randomly selected feasible muscle activation patterns (e.g., >100°), intermediate for effort-wise optimal muscle activation patterns (e.g., ~20°), and smallest for generalizable muscle activation patterns (e.g., <5°). Generalizable muscle activation patterns were suboptimal in terms of effort, often exceeding 50% of the maximum possible effort (cf. ~5% in minimum-effort muscle activation patterns). The feasible muscle activation ranges of individual

  4. Surface activity and flocculation behavior of polyethylene glycol-functionalized silica nanoparticles.

    PubMed

    Björkegren, Sanna Maria Sofi; Nordstierna, Lars; Törncrona, Anders; Persson, Michael E; Palmqvist, Anders E C

    2015-08-15

    Colloidal silica nanoparticles have been functionalized with methyl polyethylene glycol silane (mPEG silane) and the PEGylated particles have been characterized with focus on exploring their surface chemical properties. The degree of surface functionalization was quantified using NMR diffusometry, and the measurements showed that the silane binds covalently to the silica surface. Samples with surface coverages ranging from 0.068 to 0.315 μmol silane/m(2) have been analyzed. The functionalized particles proved to be surface active and showed a significant reduction in surface charge and zeta potential with increasing degree of PEG functionalization. All samples showed colloidal stability at neutral pH and above within the range studied. At lower pH, the samples with low surface coverage displayed a reversible flocculation behavior, while samples with a high surface coverage and samples without functionalization remained stable. This suggests that steric stabilization is effective at low pH when the surface coverage is high enough; electrostatic stabilization is effective for samples without functionalization; and that inter-particle PEG-silica interactions cause flocculation of particles with too low degrees of PEG functionalization. PMID:25957235

  5. Brain activation to negative stimuli mediates a relationship between adolescent marijuana use and later emotional functioning.

    PubMed

    Heitzeg, Mary M; Cope, Lora M; Martz, Meghan E; Hardee, Jillian E; Zucker, Robert A

    2015-12-01

    This work investigated the impact of heavy marijuana use during adolescence on emotional functioning, as well as the brain functional mediators of this effect. Participants (n=40) were recruited from the Michigan Longitudinal Study (MLS). Data on marijuana use were collected prospectively beginning in childhood as part of the MLS. Participants were classified as heavy marijuana users (n=20) or controls with minimal marijuana use. Two facets of emotional functioning-negative emotionality and resiliency (a self-regulatory mechanism)-were assessed as part of the MLS at three time points: mean age 13.4, mean age 19.6, and mean age 23.1. Functional neuroimaging data during an emotion-arousal word task were collected at mean age 20.2. Negative emotionality decreased and resiliency increased across the three time points in controls but not heavy marijuana users. Compared with controls, heavy marijuana users had less activation to negative words in temporal, prefrontal, and occipital cortices, insula, and amygdala. Activation of dorsolateral prefrontal cortex to negative words mediated an association between marijuana group and later negative emotionality. Activation of the cuneus/lingual gyrus mediated an association between marijuana group and later resiliency. Results support growing evidence that heavy marijuana use during adolescence affects later emotional outcomes. PMID:26403581

  6. Structural and functional neural adaptations in obstructive sleep apnea: An activation likelihood estimation meta-analysis.

    PubMed

    Tahmasian, Masoud; Rosenzweig, Ivana; Eickhoff, Simon B; Sepehry, Amir A; Laird, Angela R; Fox, Peter T; Morrell, Mary J; Khazaie, Habibolah; Eickhoff, Claudia R

    2016-06-01

    Obstructive sleep apnea (OSA) is a common multisystem chronic disorder. Functional and structural neuroimaging has been widely applied in patients with OSA, but these studies have often yielded diverse results. The present quantitative meta-analysis aims to identify consistent patterns of abnormal activation and grey matter loss in OSA across studies. We used PubMed to retrieve task/resting-state functional magnetic resonance imaging and voxel-based morphometry studies. Stereotactic data were extracted from fifteen studies, and subsequently tested for convergence using activation likelihood estimation. We found convergent evidence for structural atrophy and functional disturbances in the right basolateral amygdala/hippocampus and the right central insula. Functional characterization of these regions using the BrainMap database suggested associated dysfunction of emotional, sensory, and limbic processes. Assessment of task-based co-activation patterns furthermore indicated that the two regions obtained from the meta-analysis are part of a joint network comprising the anterior insula, posterior-medial frontal cortex and thalamus. Taken together, our findings highlight the role of right amygdala, hippocampus and insula in the abnormal emotional and sensory processing in OSA. PMID:27039344

  7. Effects of sotrastaurin, mycophenolic acid and everolimus on human B-lymphocyte function and activation.

    PubMed

    Matz, Mareen; Lehnert, Martin; Lorkowski, Christine; Fabritius, Katharina; Unterwalder, Nadine; Doueiri, Salim; Weber, Ulrike A; Mashreghi, Mir-Farzin; Neumayer, Hans-H; Budde, Klemens

    2012-10-01

    Humoral rejection processes may lead to allograft injury and subsequent dysfunction. Today, only one B-cell-specific agent is in clinical use and the effects of standard and new immunosuppressant substances on B-cell activation and function are not fully clarified. The impact of sotrastaurin, mycophenolic acid and everolimus on human B-lymphocyte function was assessed by analysing proliferation, apoptosis, CD80/CD86 expression and immunoglobulin and IL-10 production in primary stimulated B cells. In addition, B-cell co-cultures with pre-activated T cells were performed to evaluate the effect of the different immunosuppressive agents on T-cell-dependent immunoglobulin production. Sotrastaurin did not inhibit B-cell proliferation, CD80/CD86 expression, and IgG production and had only minor effects on IgM levels at the highest concentration administered. In contrast, mycophenolic acid and everolimus had strong effects on all B-cell functions in a dose-dependent manner. All immunosuppressive agents caused decreased immunoglobulin levels in T-cell-dependent B-cell cultures. The data provided here suggest that mycophenolic acid and everolimus, but not sotrastaurin, are potent inhibitors of human B-lymphocyte function and activation. PMID:22816666

  8. Early visual deprivation from congenital cataracts disrupts activity and functional connectivity in the face network.

    PubMed

    Grady, Cheryl L; Mondloch, Catherine J; Lewis, Terri L; Maurer, Daphne

    2014-05-01

    The development of the face-processing network has been examined with functional neuroimaging, but the effect of visual deprivation early in life on this network is not known. We examined this question in a group of young adults who had been born with dense, central cataracts in both eyes that blocked all visual input to the retina until the cataracts were removed during infancy. We used functional magnetic resonance imaging to examine regions in the "core" and "extended" face networks as participants viewed faces and other objects, and performed a face discrimination task. This task required matching faces on the basis of facial features or on the spacing between the facial features. The Cataract group (a) had reduced discrimination performance on the Spacing task relative to Controls; (b) used the same brain regions as Controls when passively viewing faces or making judgments about faces, but showed reduced activation during passive viewing of faces, especially in extended face-network regions; and (c) unlike Controls, showed activation in face-network regions for objects. In addition, the functional connections of the fusiform gyri with the rest of the face network were altered, and these brain changes were related to Cataract participants' performance on the face discrimination task. These results provide evidence that early visual input is necessary to set up or preserve activity and functional connectivity in the face-processing network that will later mediate expert face processing. PMID:24657305

  9. Function of Piwi, a nuclear Piwi/Argonaute protein, is independent of its slicer activity.

    PubMed

    Darricarrère, Nicole; Liu, Na; Watanabe, Toshiaki; Lin, Haifan

    2013-01-22

    The Piwi protein subfamily is essential for Piwi-interacting RNA (piRNA) biogenesis, transposon silencing, and germ-line development, all of which have been proposed to require Piwi endonuclease activity, as validated for two cytoplasmic Piwi proteins in mice. However, recent evidence has led to questioning of the generality of this mechanism for the Piwi members that reside in the nucleus. Drosophila offers a distinct opportunity to study the function of nuclear Piwi proteins because, among three Drosophila Piwi proteins--called Piwi, Aubergine, and Argonaute 3--Piwi is the only member of this subfamily that is localized in the nucleus and expressed in both germ-line and somatic cells in the gonad, where it is responsible for piRNA biogenesis and regulatory functions essential for fertility. In this study, we demonstrate beyond doubt that the slicer activity of Piwi is not required for any known functions in vivo. We show that, in transgenic flies with the DDX catalytic triad of PIWI mutated, neither primary nor secondary piRNA biogenesis is detectably affected, transposons remain repressed, and fertility is normal. Our observations demonstrate that the mechanism of Piwi is independent of its in vitro endonuclease activity. Instead, it is consistent with the alternative mode of Piwi function as a molecule involved in the piRNA-directed guidance of epigenetic factors to chromatin. PMID:23297219

  10. Functional analysis of Human Papillomavirus Virus-Like Particle activated Langerhans cells in vitro

    PubMed Central

    Yan, Lisa; Woodham, Andrew W.; Da Silva, Diane M.; Kast, W. Martin

    2016-01-01

    Langerhans cells (LC) are antigen presenting cells responsible for initiating an immune response against human papillomaviruses (HPV) entering the epithelial layer in vivo as they are the first immune cell that HPV comes into contact with. LC become activated in response to foreign antigens, which causes internal signaling resulting in the increased expression of co-stimulatory molecules and the secretion of inflammatory cytokines. Functionally activated LC are then capable of migrating to the lymph nodes where they interact with antigen specific T cells and initiate an adaptive T cell response in vivo. However, HPV has evolved in a manner that suppresses LC function, and thus the induction of antigen specific T cells is hindered. While many methods exist to monitor the activity of LC in vitro, the migration and induction of cytotoxic T-cells is ultimately indicative of a functional immune response. Here, methods in analyzing functional migration and induction of antigen specific T cells after stimulation of LC with HPV virus-like particles in vitro are described. PMID:25348318

  11. Association between physical activity in daily life and pulmonary function in adult smokers

    PubMed Central

    Barboza, Miriane Lilian; Barbosa, Alan Carlos Brisola; Spina, Giovanna Domingues; Sperandio, Evandro Fornias; Arantes, Rodolfo Leite; Gagliardi, Antonio Ricardo de Toledo; Romiti, Marcello; Dourado, Victor Zuniga

    2016-01-01

    Objective: To determine whether the level of physical activity in daily life (PADL) is associated with pulmonary function in adult smokers. Methods: We selected 62 adult smokers from among the participants of an epidemiological study conducted in the city of Santos, Brazil. The subjects underwent forced spirometry for pulmonary function assessment. The level of PADL was assessed by the International Physical Activity Questionnaire and triaxial accelerometry, the device being used for seven days. The minimum level of PADL, in terms of quantity and intensity, was defined as 150 min/week of moderate to vigorous physical activity. Correlations between the studied variables were tested with Pearson's or Spearman's correlation coefficient, depending on the distribution of the variables. We used linear multiple regression in order to analyze the influence of PADL on the spirometric variables. The level of significance was set at 5%. Results: Evaluating all predictors, corrected for confounding factors, and using pulmonary function data as outcome variables, we found no significant associations between physical inactivity, as determined by accelerometry, and spirometric indices. The values for FVC were lower among the participants with arterial hypertension, and FEV1/FVC ratios were lower among those with diabetes mellitus. Obese participants and those with dyslipidemia presented with lower values for FVC and FEV1. Conclusions: Our results suggest that there is no consistent association between physical inactivity and pulmonary function in adult smokers. Smoking history should be given special attention in COPD prevention strategies, as should cardiovascular and metabolic comorbidities. PMID:27167434

  12. Metabolic Control of Dendritic Cell Activation and Function: Recent Advances and Clinical Implications

    PubMed Central

    Everts, Bart; Pearce, Edward J.

    2014-01-01

    Dendritic cells (DCs) are key regulators of both immunity and tolerance by controlling activation and polarization of effector T helper cell and regulatory T cell responses. Therefore, there is a major focus on developing approaches to manipulate DC function for immunotherapy. It is well known that changes in cellular activation are coupled to profound changes in cellular metabolism. Over the past decade there is a growing appreciation that these metabolic changes also underlie the capacity of immune cells to perform particular functions. This has led to the concept that the manipulation of cellular metabolism can be used to shape innate and adaptive immune responses. While most of our understanding in this area has been gained from studies with T cells and macrophages, evidence is emerging that the activation and function of DCs are also dictated by the type of metabolism these cells commit to. We here discuss these new insights and explore whether targeting of metabolic pathways in DCs could hold promise as a novel approach to manipulate the functional properties of DCs for clinical purposes. PMID:24847328

  13. Reconstructing ecosystem functions of the active microbial community of the Baltic Sea oxygen depleted sediments.

    PubMed

    Thureborn, Petter; Franzetti, Andrea; Lundin, Daniel; Sjöling, Sara

    2016-01-01

    Baltic Sea deep water and sediments hold one of the largest anthropogenically induced hypoxic areas in the world. High nutrient input and low water exchange result in eutrophication and oxygen depletion below the halocline. As a consequence at Landsort Deep, the deepest point of the Baltic Sea, anoxia in the sediments has been a persistent condition over the past decades. Given that microbial communities are drivers of essential ecosystem functions we investigated the microbial community metabolisms and functions of oxygen depleted Landsort Deep sediments by metatranscriptomics. Results show substantial expression of genes involved in protein metabolism demonstrating that the Landsort Deep sediment microbial community is active. Identified expressed gene suites of metabolic pathways with importance for carbon transformation including fermentation, dissimilatory sulphate reduction and methanogenesis were identified. The presence of transcripts for these metabolic processes suggests a potential for heterotrophic-autotrophic community synergism and indicates active mineralisation of the organic matter deposited at the sediment as a consequence of the eutrophication process. Furthermore, cyanobacteria, probably deposited from the water column, are transcriptionally active in the anoxic sediment at this depth. Results also reveal high abundance of transcripts encoding integron integrases. These results provide insight into the activity of the microbial community of the anoxic sediment at the deepest point of the Baltic Sea and its possible role in ecosystem functioning. PMID:26823996

  14. The Neural Signature of Subliminal Visuomotor Priming: Brain Activity and Functional Connectivity Profiles.

    PubMed

    Ulrich, Martin; Kiefer, Markus

    2016-06-01

    Unconscious visuomotor priming defined as the advantage in reaction time (RT) or accuracy for target shapes mapped to the same (congruent condition) when compared with a different (incongruent condition) motor response as a preceding subliminally presented prime shape has been shown to modulate activity within a visuomotor network comprised of parietal and frontal motor areas in previous functional magnetic resonance imaging (fMRI) studies. The present fMRI study investigated whether, in addition to changes in brain activity, unconscious visuomotor priming results in a modulation of functional connectivity profiles. Activity associated with congruent compared with incongruent trials was lower in the bilateral inferior and medial superior frontal gyri, in the inferior parietal lobules, and in the right caudate nucleus and adjacent portions of the thalamus. Functional connectivity increased under congruent relative to incongruent conditions between ventral visual stream areas (e.g., calcarine, fusiform, and lingual gyri), the precentral gyrus, the supplementary motor area, posterior parietal areas, the inferior frontal gyrus, and the caudate nucleus. Our findings suggest that an increase in coupling between visuomotor regions, reflecting higher efficiency of processing, is an important neural mechanism underlying unconscious visuomotor priming, in addition to changes in the magnitude of activation. PMID:25858968

  15. Bcl-2 does not require Raf kinase activity for its death-protective function.

    PubMed Central

    Olivier, R; Otter, I; Monney, L; Wartmann, M; Borner, C

    1997-01-01

    It has been widely accepted that the oncogene product bcl-2 protects mammalian cells from programmed cell death (apoptosis). The molecules and signalling pathways upon which bcl-2 acts are, however, still ill-defined. Recently, bcl-2 was shown to interact with c-raf-1 in vitro. Furthermore, an active form of c-raf-1 delayed apoptosis induced by trophic factor deprivation and enhanced the death-suppressive function of bcl-2 when co-expressed. This has led to the hypothesis that bcl-2 communicates cell-death protection via a raf-dependent signal transduction pathway. Here we show, by various immunological and biochemical methods, that bcl-2 does not stably associate with c-raf-1 in cellular extracts prepared from fibroblasts before or after treatment with agents that induce apoptosis. Unexpectedly, bcl-2 function is entirely maintained, if not improved, when raf-dependent signalling is experimentally abrogated. In fact, bcl-2 allows the stable overexpression of a kinase-defective dominant-negative raf mutant that usually interferes with cell viability and/or proliferation. Our results indicate that bcl-2 does not require c-raf-1 kinase activity and an associated mitogen-activated protein kinase signalling pathway for its survival function. This property may be exploited to dissect cellular events that are dependent or independent of c-raf-1 kinase activity. PMID:9164843

  16. Reconstructing ecosystem functions of the active microbial community of the Baltic Sea oxygen depleted sediments

    PubMed Central

    Franzetti, Andrea; Lundin, Daniel; Sjöling, Sara

    2016-01-01

    Baltic Sea deep water and sediments hold one of the largest anthropogenically induced hypoxic areas in the world. High nutrient input and low water exchange result in eutrophication and oxygen depletion below the halocline. As a consequence at Landsort Deep, the deepest point of the Baltic Sea, anoxia in the sediments has been a persistent condition over the past decades. Given that microbial communities are drivers of essential ecosystem functions we investigated the microbial community metabolisms and functions of oxygen depleted Landsort Deep sediments by metatranscriptomics. Results show substantial expression of genes involved in protein metabolism demonstrating that the Landsort Deep sediment microbial community is active. Identified expressed gene suites of metabolic pathways with importance for carbon transformation including fermentation, dissimilatory sulphate reduction and methanogenesis were identified. The presence of transcripts for these metabolic processes suggests a potential for heterotrophic-autotrophic community synergism and indicates active mineralisation of the organic matter deposited at the sediment as a consequence of the eutrophication process. Furthermore, cyanobacteria, probably deposited from the water column, are transcriptionally active in the anoxic sediment at this depth. Results also reveal high abundance of transcripts encoding integron integrases. These results provide insight into the activity of the microbial community of the anoxic sediment at the deepest point of the Baltic Sea and its possible role in ecosystem functioning. PMID:26823996

  17. Physiological and pathophysiological implications of micromotion activity in urinary bladder function.

    PubMed

    Vahabi, B; Drake, M J

    2015-02-01

    'Micromotions' is a term signifying the presence of localized microcontractions and microelongations, alongside non-motile areas. The motile areas tend to shift over the bladder surface with time, and the intravesical pressure reflects moment-by-moment summation of the interplay between net contractile force generated by micromotions and general bladder tone. Functionally, the bladder structure may comprise modules with variable linkage, which supports presence of localized micromotions (no functional linkage between modules), propagating contractions (where emergence of linkage allows sequential activation) and the shifting of micromotions over time. Detrusor muscle, interstitial cells and intramural innervation have properties potentially relevant for initiating, coordinating and modulating micromotions. Conceptually, such activity could facilitate the generation of afferent activity (filling state reporting) in the absence of intravesical pressure change and the ability to transition to voiding at any bladder volume. This autonomous activity is an intrinsic property, seen in various experimental contexts including the clinical setting of human (female) overactive bladder. 'Disinhibited autonomy' may explain the obvious micromotions in isolated bladders and perhaps contribute clinically in neurological disease causing detrusor overactivity. Furthermore, any process that could increase the initiation or propagation of microcontractions might be anticipated to have a functional effect, increasing the likelihood of urinary urgency and detrusor overactivity respectively. Thus, models of bladder outlet obstruction, neurological trauma and ageing provide a useful framework for detecting cellular changes in smooth muscle, interstitial cells and innervation, and the consequent effects on micromotions. PMID:25154454

  18. N-methyl-D-aspartate receptor encephalitis mediates loss of intrinsic activity measured by functional MRI.

    PubMed

    Brier, Matthew R; Day, Gregory S; Snyder, Abraham Z; Tanenbaum, Aaron B; Ances, Beau M

    2016-06-01

    Spontaneous brain activity is required for the development and maintenance of normal brain function. Many disease processes disrupt the organization of intrinsic brain activity, but few pervasively reduce the amplitude of resting state blood oxygen level dependent (BOLD) fMRI fluctuations. We report the case of a female with anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis, longitudinally studied during the course of her illness to determine the contribution of NMDAR signaling to spontaneous brain activity. Resting state BOLD fMRI was measured at the height of her illness and 18 weeks following discharge from hospital. Conventional resting state networks were defined using established methods. Correlation and covariance matrices were calculated by extracting the BOLD time series from regions of interest and calculating either the correlation or covariance quantity. The intrinsic activity was compared between visits, and to expected activity from 45 similarly aged healthy individuals. Near the height of the illness, the patient exhibited profound loss of consciousness, high-amplitude slowing of the electroencephalogram, and a severe reduction in the amplitude of spontaneous BOLD fMRI fluctuations. The patient's neurological status and measures of intrinsic activity improved following treatment. We conclude that NMDAR-mediated signaling plays a critical role in the mechanisms that give rise to organized spontaneous brain activity. Loss of intrinsic activity is associated with profound disruptions of consciousness and cognition. PMID:27025853

  19. The orexin neuropeptide system: physical activity and hypothalamic function throughout the aging process

    PubMed Central

    Zink, Anastasia N.; Perez-Leighton, Claudio Esteban; Kotz, Catherine M.

    2014-01-01

    There is a rising medical need for novel therapeutic targets of physical activity. Physical activity spans from spontaneous, low intensity movements to voluntary, high-intensity exercise. Regulation of spontaneous and voluntary movement is distributed over many brain areas and neural substrates, but the specific cellular and molecular mechanisms responsible for mediating overall activity levels are not well understood. The hypothalamus plays a central role in the control of physical activity, which is executed through coordination of multiple signaling systems, including the orexin neuropeptides. Orexin producing neurons integrate physiological and metabolic information to coordinate multiple behavioral states and modulate physical activity in response to the environment. This review is organized around three questions: (1) How do orexin peptides modulate physical activity? (2) What are the effects of aging and lifestyle choices on physical activity? (3) What are the effects of aging on hypothalamic function and the orexin peptides? Discussion of these questions will provide a summary of the current state of knowledge regarding hypothalamic orexin regulation of physical activity during aging and provide a platform on which to develop improved clinical outcomes in age-associated obesity and metabolic syndromes. PMID:25408639

  20. Characterization of nitric oxide synthase activity in sheep urinary tract: functional implications.

    PubMed Central

    García-Pascual, A.; Costa, G.; Labadia, A.; Persson, K.; Triguero, D.

    1996-01-01

    1. To define further the role of nitric oxide (NO) in urinary tract function, we have measured the presence of nitric oxide synthase (NOS) activity, and its relationship with functional NO-mediated responses to electrical field stimulation (EFS) in the urethra, the detrusor and the ureter from sheep. NOS activity was assayed by the conversion of L-[14C]-arginine to L-[14C]-citrulline. Endogenous production of citrulline was confirmed by thin layer chromatography. 2. NOS enzymatic activity was detected in the cytosolic fraction from tissue homogenates with the following regional distribution (pmol citrulline mg-1 protein min-1): urethra (33 +/- 3.3), detrusor (13.1 +/- 1.1) and ureter (1.5 +/- 0.2). No activity was detected in the particulate fraction of any region. 3. NOS activity was dependent on Ca(2+)-calmodulin and required exogenously added NADPH and tetrahydrobyoptein (BH4) for maximal activity. Exclusion of calmodulin from the incubation mixture did not modify NOS activity, but it was significantly reduced in the presence of the calmodulin antagonist, calmidazolium, suggesting the presence of enough endogenous calmodulin to sustain the observed NOS activity. 4. NOS activity was inhibited to a greater extent by NG-nitro-L-arginine (L-NOARG) and its methyl ester (L-NAME) than by NG-monomethyl-L-arginine (L-NMMA), while 7-nitroindazole (7-NI) was a weak inhibitor and L-cannavine had no effect. 5. Citrulline formation could be inhibited by superoxide dismutase in an oxyhaemoglobin-sensitive manner, suggesting feedback inhibition of NOS by NO. 6. EFS induced prominent NO-mediated relaxations in the urethra while minor or no responses were observed in the detrusor and the ureter, respectively. Urethral relaxations to EFS were inhibited by NOS inhibitors with the rank order of potency: L-NOARG = L-NAME > 7-NI > L-NMMA. 7. In conclusion, we have demonstrated the presence of NO-synthesizing enzymatic activity in the sheep urinary tract which shows similar

  1. Physical Activity and Brain Function in Older Adults at Increased Risk for Alzheimer’s Disease

    PubMed Central

    Smith, J. Carson; Nielson, Kristy A.; Woodard, John L.; Seidenberg, Michael; Rao, Stephen M.

    2013-01-01

    Leisure-time physical activity (PA) and exercise training are known to help maintain cognitive function in healthy older adults. However, relatively little is known about the effects of PA on cognitive function or brain function in those at increased risk for Alzheimer’s disease through the presence of the apolipoproteinE epsilon4 (APOE-ε4) allele, diagnosis of mild cognitive impairment (MCI), or the presence of metabolic disease. Here, we examine the question of whether PA and exercise interventions may differentially impact cognitive trajectory, clinical outcomes, and brain structure and function among individuals at the greatest risk for AD. The literature suggests that the protective effects of PA on risk for future dementia appear to be larger in those at increased genetic risk for AD. Exercise training is also effective at helping to promote stable cognitive function in MCI patients, and greater cardiorespiratory fitness is associated with greater brain volume in early-stage AD patients. In APOE-ε4 allele carriers compared to non-carriers, greater levels of PA may be more effective in reducing amyloid burden and are associated with greater activation of semantic memory-related neural circuits. A greater research emphasis should be placed on randomized clinical trials for exercise, with clinical, behavioral, and neuroimaging outcomes in people at increased risk for AD. PMID:24961307

  2. Selection and validation of enzymatic activities as functional markers in wood biotechnology and fungal ecology.

    PubMed

    Mathieu, Yann; Gelhaye, Eric; Dumarçay, Stéphane; Gérardin, Philippe; Harvengt, Luc; Buée, Marc

    2013-02-15

    The dead wood and forest soils are sources of diversity and under-explored fungal strains with biotechnological potential, which require to be studied. Numerous enzymatic tests have been proposed to investigate the functional potential of the soil microbial communities or to test the functional abilities of fungal strains. Nevertheless, the diversity of these functional markers and their relevance in environmental studies or biotechnological screening does still have not been demonstrated. In this work, we assessed ten different extracellular enzymatic activities involved in the wood decaying process including β-etherase that specifically cleaves the β-aryl ether linkages in the lignin polymer. For this purpose, a collection of 26 fungal strains, distributed within three ecological groups (white, brown and soft rot fungi), has been used. Among the ten potential functional markers, the combinatorial use of only six of them allowed separation between the group of white and soft rot fungi from the brown rot fungi. Moreover, our results suggest that extracellular β-etherase is a rare and dispensable activity among the wood decay fungi. Finally, we propose that this set of markers could be useful for the analysis of fungal communities in functional and environmental studies, and for the selection of strains with biotechnological interests. PMID:23206919

  3. MicroRNA functionalized microporous titanium oxide surface by lyophilization with enhanced osteogenic activity.

    PubMed

    Wu, Kaimin; Song, Wen; Zhao, Lingzhou; Liu, Mengyuan; Yan, Jun; Andersen, Morten Østergaard; Kjems, Jørgen; Gao, Shan; Zhang, Yumei

    2013-04-10

    Developing biomedical titanium (Ti) implants with high osteogenic ability and consequent rigid osseointegration is a constant requirement from the clinic. In this study, we fabricate novel miRNA functionalized microporous Ti implants by lyophilizing miRNA lipoplexes onto a microporous titanium oxide surface formed by microarc oxidation (MAO). The microporous titanium oxide surface provides a larger surface area for miRNA loading and enables spatial retention of the miRNAs within the pores until cellular delivery. The loading of lipoplexes into the micropores on the MAO Ti surface is facilitated by the superhydrophilicity and Ti-OH groups gathering of the MAO surface after UV irradiation followed by lyophilization. A high miRNA transfection efficiency was observed in mesenchymal stem cells (MSCs) seeded onto the miRNA functionalized surface with no apparent cytotoxicity. When functionalizing the Ti surface with miR-29b that enhances osteogenic activity and antimiR-138 that inhibits miR-138 inhibition of endogenous osteogenesis, clear stimulation of MSC osteogenic differentiation was observed, in terms of up-regulating osteogenic expression and enhancing alkaline phosphatase production, collagen secretion and ECM mineralization. The novel miRNA functionalized Ti implants with enhanced osteogenic activity promisingly lead to more rapid and robust osseointegration of a clinical bone implant interface. Our study implies that lyophilization may constitute a versatile method for miRNA loading to other biomaterials with the aim of controlling cellular function. PMID:23459382

  4. Maternal Immune Activation Leads to Selective Functional Deficits in Offspring Parvalbumin Interneurons

    PubMed Central

    Canetta, Sarah; Bolkan, Scott; Padilla-Coreano, Nancy; Song, LouJin; Sahn, Ryan; Harrison, Neil; Gordon, Joshua A.; Brown, Alan; Kellendonk, Christoph

    2015-01-01

    Summary Abnormalities in prefrontal GABAergic transmission, particularly in fast-spiking interneurons that express parvalbumin (PV), are hypothesized to contribute to the pathophysiology of multiple psychiatric disorders including schizophrenia, bipolar disorder, anxiety disorders and depression. While primarily histological abnormalities have been observed in patients and in animal models of psychiatric disease, evidence for abnormalities in functional neurotransmission at the level of specific interneuron populations has been lacking in animal models and is difficult to establish in human patients. Using an animal model of a psychiatric disease risk factor, prenatal maternal immune activation (MIA), we found reduced functional GABAergic transmission in the medial prefrontal cortex (mPFC) of adult MIA offspring. Decreased transmission was selective for interneurons expressing PV, and was not observed in calretinin-expressing neurons. This deficit in PV function in MIA offspring was associated with increased anxiety-like behavior and impairments in attentional set shifting, but did not affect working memory. Furthermore, cell-type specific optogenetic inhibition of mPFC PV interneurons was sufficient to impair attentional set shifting and enhance anxiety levels. Finally, we found that in vivo mPFC gamma oscillations, which are supported by PV interneuron function, were linearly correlated with the degree of anxiety displayed in adult mice, and that this correlation was disrupted in MIA offspring. These results demonstrate a selective functional vulnerability of PV interneurons to maternal immune activation, leading to affective and cognitive symptoms that have high relevance for schizophrenia and other psychiatric disorders. PMID:26830140

  5. Structure-based activity prediction for an enzyme of unknown function

    PubMed Central

    Hermann, Johannes C.; Marti-Arbona, Ricardo; Fedorov, Alexander A.; Fedorov, Elena; Almo, Steven C.; Shoichet, Brian K.; Raushel, Frank M.

    2008-01-01

    With many genomes sequenced, a pressing challenge in biology is predicting the function of the proteins that the genes encode. When proteins are unrelated to others of known activity, bioinformatics inference for function becomes problematic. It would thus be useful to interrogate protein structures for function directly. Here, we predict the function of an enzyme of unknown activity, Tm0936 from Thermotoga maritima, by docking high-energy intermediate forms of thousands of candidate metabolites. The docking hit list was dominated by adenine analogues, which appeared to undergo C6-deamination. Four of these, including 5-methylthioadenosine and S-adenosylhomocysteine (SAH), were tested as substrates, and three had substantial catalytic rate constants (105 M−1s−1). The X-ray crystal structure of the complex between Tm0936 and the product resulting from the deamination of SAH, S-inosylhomocysteine, was determined, and it corresponded closely to the predicted structure. The deaminated products can be further metabolized by T. maritima in a previously uncharacterized SAH degradation pathway. Structure-based docking with high-energy forms of potential substrates may be a useful tool to annotate enzymes for function. PMID:17603473

  6. The functional subunit of a dimeric transcription activator protein depends on promoter architecture.

    PubMed Central

    Zhou, Y; Pendergrast, P S; Bell, A; Williams, R; Busby, S; Ebright, R H

    1994-01-01

    In Class I CAP-dependent promoters, the DNA site for CAP is located upstream of the DNA site for RNA polymerase. In Class II CAP-dependent promoters, the DNA site for CAP overlaps the DNA site for RNA polymerase, replacing the -35 site. We have used an 'oriented heterodimers' approach to identify the functional subunit of CAP at two Class I promoters having different distances between the DNA sites for CAP and RNA polymerase [CC(-61.5) and CC(-72.5)] and at one Class II promoter [CC(-41.5)]. Our results indicate that transcription activation at Class I promoters, irrespective of the distance between the DNA sites for CAP and RNA polymerase, requires the activating region of the promoter-proximal subunit of CAP. In striking contrast, our results indicate that transcription activation at Class II promoters requires the activating region of the promoter-distal subunit of CAP. Images PMID:7925296

  7. Structure-Functional Study of Tyrosine and Methionine Dipeptides: An Approach to Antioxidant Activity Prediction

    PubMed Central

    Torkova, Anna; Koroleva, Olga; Khrameeva, Ekaterina; Fedorova, Tatyana; Tsentalovich, Mikhail

    2015-01-01

    Quantum chemical methods allow screening and prediction of peptide antioxidant activity on the basis of known experimental data. It can be used to design the selective proteolysis of protein sources in order to obtain products with antioxidant activity. Molecular geometry and electronic descriptors of redox-active amino acids, as well as tyrosine and methionine-containing dipeptides, were studied by Density Functional Theory method. The calculated data was used to reveal several descriptors responsible for the antioxidant capacities of the model compounds based on their experimentally obtained antioxidant capacities against ABTS (2,2′-Azino-bis-(3-ethyl-benzothiazoline-6-sulfonate)) and peroxyl radical. A formula to predict antioxidant activity of peptides was proposed. PMID:26512651

  8. Structure-Functional Study of Tyrosine and Methionine Dipeptides: An Approach to Antioxidant Activity Prediction.

    PubMed

    Torkova, Anna; Koroleva, Olga; Khrameeva, Ekaterina; Fedorova, Tatyana; Tsentalovich, Mikhail

    2015-01-01

    Quantum chemical methods allow screening and prediction of peptide antioxidant activity on the basis of known experimental data. It can be used to design the selective proteolysis of protein sources in order to obtain products with antioxidant activity. Molecular geometry and electronic descriptors of redox-active amino acids, as well as tyrosine and methionine-containing dipeptides, were studied by Density Functional Theory method. The calculated data was used to reveal several descriptors responsible for the antioxidant capacities of the model compounds based on their experimentally obtained antioxidant capacities against ABTS (2,2'-Azino-bis-(3-ethyl-benzothiazoline-6-sulfonate)) and peroxyl radical. A formula to predict antioxidant activity of peptides was proposed. PMID:26512651

  9. Presynaptic spinophilin tunes neurexin signalling to control active zone architecture and function

    PubMed Central

    Muhammad, Karzan; Reddy-Alla, Suneel; Driller, Jan H; Schreiner, Dietmar; Rey, Ulises; Böhme, Mathias A.; Hollmann, Christina; Ramesh, Niraja; Depner, Harald; Lützkendorf, Janine; Matkovic, Tanja; Götz, Torsten; Bergeron, Dominique D.; Schmoranzer, Jan; Goettfert, Fabian; Holt, Mathew; Wahl, Markus C.; Hell, Stefan W.; Scheiffele, Peter; Walter, Alexander M.; Loll, Bernhard; Sigrist, Stephan J.

    2015-01-01

    Assembly and maturation of synapses at the Drosophila neuromuscular junction (NMJ) depend on trans-synaptic neurexin/neuroligin signalling, which is promoted by the scaffolding protein Syd-1 binding to neurexin. Here we report that the scaffold protein spinophilin binds to the C-terminal portion of neurexin and is needed to limit neurexin/neuroligin signalling by acting antagonistic to Syd-1. Loss of presynaptic spinophilin results in the formation of excess, but atypically small active zones. Neuroligin-1/neurexin-1/Syd-1 levels are increased at spinophilin mutant NMJs, and removal of single copies of the neurexin-1, Syd-1 or neuroligin-1 genes suppresses the spinophilin-active zone phenotype. Evoked transmission is strongly reduced at spinophilin terminals, owing to a severely reduced release probability at individual active zones. We conclude that presynaptic spinophilin fine-tunes neurexin/neuroligin signalling to control active zone number and functionality, thereby optimizing them for action potential-induced exocytosis. PMID:26471740

  10. Electrochemical assay of active prostate-specific antigen (PSA) using ferrocene-functionalized peptide probes

    SciTech Connect

    Zhao, Ning; He, Yuqing; Mao, Xun; Sun, Yuhan; Zhang, Xibao; Li, Chen-Zhong; Lin, Yuehe; Liu, Guodong

    2010-03-24

    This paper presents a novel approach to electrochemically determine enzymatically active PSA using ferrocene-functionalized helix peptide (CHSSLKQK). The principle of electrochemical measurement is based on the specific proteolytic cleavage events of the FC-peptide on the gold electrode surface in the presence of PSA, resulting the change of the current signal of the electrode. The percentage of the decreased current is linear with the concentration of active PSA at the range of 0.5-40 ng/mL with a detection limit of 0.2 ng/mL. The direct transduction of peptide cleavage events into an electrical signal provides a simple, sensitive method for detecting the enzymatic activity of PSA and determining the active PSA concentration.

  11. Presynaptic spinophilin tunes neurexin signalling to control active zone architecture and function.

    PubMed

    Muhammad, Karzan; Reddy-Alla, Suneel; Driller, Jan H; Schreiner, Dietmar; Rey, Ulises; Böhme, Mathias A; Hollmann, Christina; Ramesh, Niraja; Depner, Harald; Lützkendorf, Janine; Matkovic, Tanja; Götz, Torsten; Bergeron, Dominique D; Schmoranzer, Jan; Goettfert, Fabian; Holt, Mathew; Wahl, Markus C; Hell, Stefan W; Scheiffele, Peter; Walter, Alexander M; Loll, Bernhard; Sigrist, Stephan J

    2015-01-01

    Assembly and maturation of synapses at the Drosophila neuromuscular junction (NMJ) depend on trans-synaptic neurexin/neuroligin signalling, which is promoted by the scaffolding protein Syd-1 binding to neurexin. Here we report that the scaffold protein spinophilin binds to the C-terminal portion of neurexin and is needed to limit neurexin/neuroligin signalling by acting antagonistic to Syd-1. Loss of presynaptic spinophilin results in the formation of excess, but atypically small active zones. Neuroligin-1/neurexin-1/Syd-1 levels are increased at spinophilin mutant NMJs, and removal of single copies of the neurexin-1, Syd-1 or neuroligin-1 genes suppresses the spinophilin-active zone phenotype. Evoked transmission is strongly reduced at spinophilin terminals, owing to a severely reduced release probability at individual active zones. We conclude that presynaptic spinophilin fine-tunes neurexin/neuroligin signalling to control active zone number and functionality, thereby optimizing them for action potential-induced exocytosis. PMID:26471740

  12. Phytochemical profiles, antioxidant activities of functional herb Abrus cantoniensis and Abrus mollis.

    PubMed

    Yang, Mei; Shen, Qing; Li, Lin-Qiu; Huang, Ye-Qing; Cheung, Hon-Yeung

    2015-06-15

    It has been claimed that consumptions of Abrus cantoniensis (AC) and Abrus mollis (AM) as folk beverages and soups are good to cleanse liver toxicants and prevent liver diseases. There is scant information on the phytochemical profiles and antioxidant activities of these two varieties. Five major phytochemicals in these two cultivars were qualitatively and quantitatively compared using UPLC-PDA. A high level of total phenolic content (TPC) and total flavonoid content (TFC) was found in AC and AM. AC, in general, showed some antioxidant activities comparable to that of BHT, and stronger radical scavenging activities and higher reducing power than that of AM (p<0.05). When principal component analysis (PCA) was applied, high correlation between TPC, TFC and their antioxidant activities was found. Hence, this study proved that, both AC and AM could serve as antioxidant-rich component in foods or beverages to promote health function. PMID:25660890

  13. The regulation and function of the striated muscle activator of rho signaling (STARS) protein

    PubMed Central

    Wallace, Marita A.; Lamon, Séverine; Russell, Aaron P.

    2012-01-01

    Healthy living throughout the lifespan requires continual growth and repair of cardiac, smooth, and skeletal muscle. To effectively maintain these processes muscle cells detect extracellular stress signals and efficiently transmit them to activate appropriate intracellular transcriptional programs. The striated muscle activator of Rho signaling (STARS) protein, also known as Myocyte Stress-1 (MS1) protein and Actin-binding Rho-activating protein (ABRA) is highly enriched in cardiac, skeletal, and smooth muscle. STARS binds actin, co-localizes to the sarcomere and is able to stabilize the actin cytoskeleton. By regulating actin polymerization, STARS also controls an intracellular signaling cascade that stimulates the serum response factor (SRF) transcriptional pathway; a pathway controlling genes involved in muscle cell proliferation, differentiation, and growth. Understanding the activation, transcriptional control and biological roles of STARS in cardiac, smooth, and skeletal muscle, will improve our understanding of physiological and pathophysiological muscle development and function. PMID:23248604

  14. The functional activity of hypothalamic signaling systems in rats with neonatal diabetes mellitus treated with metformin.

    PubMed

    Derkach, K V; Sukhov, I B; Kuznetsova, L A; Buzanakov, D M; Shpakov, A O

    2016-03-01

    The effect of the two-month metformin treatment (200 mg/kg/day) of rats with the neonatal model of type 2 diabetes mellitus on the functional activity of hypothalamic signaling systems was studied. It was shown that metformin treatment restored the sensitivity of hypothalamic adenylyl cyclase signaling system to agonists of the type 4 melanocortin receptor and the type 2 dopamine receptor but did not influence significantly the functions of the insulin signaling system. These data suggest new targets and mechanisms of metformin action in the CNS, which may mediate its restoring effect on energy homeostasis impaired in diabetic pathology. PMID:27193707

  15. Influenza matrix protein 2 alters CFTR expression and function through its ion channel activity

    PubMed Central

    Londino, James D.; Lazrak, Ahmed; Jurkuvenaite, Asta; Collawn, James F.; Noah, James W.

    2013-01-01

    The human cystic fibrosis transmembrane conductance regulator (CFTR) is a cyclic AMP-activated chloride (Cl−) channel in the lung epithelium that helps regulate the thickness and composition of the lung epithelial lining fluid. We investigated whether influenza M2 protein, a pH-activated proton (H+) channel that traffics to the plasma membrane of infected cells, altered CFTR expression and function. M2 decreased CFTR activity in 1) Xenopus oocytes injected with human CFTR, 2) epithelial cells (HEK-293) stably transfected with CFTR, and 3) human bronchial epithelial cells (16HBE14o−) expressing native CFTR. This inhibition was partially reversed by an inhibitor of the ubiquitin-activating enzyme E1. Next we investigated whether the M2 inhibition of CFTR activity was due to an increase of secretory organelle pH by M2. Incubation of Xenopus oocytes expressing CFTR with ammonium chloride or concanamycin A, two agents that alkalinize the secretory pathway, inhibited CFTR activity in a dose-dependent manner. Treatment of M2- and CFTR-expressing oocytes with the M2 ion channel inhibitor amantadine prevented the loss in CFTR expression and activity; in addition, M2 mutants, lacking the ability to transport H+, did not alter CFTR activity in Xenopus oocytes and HEK cells. Expression of an M2 mutant retained in the endoplasmic reticulum also failed to alter CFTR activity. In summary, our data show that M2 decreases CFTR activity by increasing secretory organelle pH, which targets CFTR for destruction by the ubiquitin system. Alteration of CFTR activity has important consequences for fluid regulation and may potentially modify the immune response to viral infection. PMID:23457187

  16. Associations of Monitor-Assessed Activity with Performance-Based Physical Function

    PubMed Central

    Reid, Natasha; Daly, Robin M.; Winkler, Elisabeth A. H.; Gardiner, Paul A.; Eakin, Elizabeth G.; Owen, Neville; Dunstan, David W.; Healy, Genevieve N.

    2016-01-01

    The purpose of this study was to investigate the cross-sectional associations of monitor-derived measures of sedentary time and physical activity with performance-based physical function in healthy Australian adults. Data from 602 participants (mean age 58.1±10.0 years; 58% female) from the 2011/12 wave of the Australian Diabetes, Obesity and Lifestyle (AusDiab3) study were analyzed. The thigh-worn activPAL3™ monitor (7-days continuous wear) was used to derive time during waking hours spent: sitting/reclining; standing; and, stepping (overall, and separately as light [<3 METs] and moderate-to-vigorous physical activity [MVPA; ≥3 METs]), and number of sit-stand transitions. Associations of these (in hours/day, or 15 transitions/day) with physical function measures (8ft Timed Up and Go [TUG-8; log-transformed seconds] and Knee Extensor Strength [KES; kg]) were tested via linear regression, adjusting for confounders. Interactions by sex and age-category (<45; 45–54; 55–64; ≥65 years) were tested. In all participants, KES was significantly (p<0.05) associated with stepping and MVPA stepping only; none of the activity measures were associated with TUG-8. However, subgroup analysis revealed that in older adults (≥65 years), TUG-8 was associated with stepping and MVPA stepping (both p<0.05). All associations with sitting time, standing, sit-stand transition and sex interactions were not statistically significant. In summary, sitting time was not significantly associated with impaired muscle strength or gait/mobility in Australian adults aged 36–80 years, but light- to moderate activity (stepping) was positively associated with muscle strength, and gait/mobility in older adults aged ≥65 years. The direction of causation is not known and remains important to investigate considering the high prevalence of both poor function and limited activity in older age. PMID:27073888

  17. Functional differences between junctional and extrajunctional adrenergic receptor activation in mammalian ventricle

    PubMed Central

    Ajijola, Olujimi A.; Vaseghi, Marmar; Zhou, Wei; Yamakawa, Kentaro; Benharash, Peyman; Hadaya, Joseph; Lux, Robert L.; Mahajan, Aman

    2013-01-01

    Increased cardiac sympathetic activation worsens dispersion of repolarization and is proarrhythmic. The functional differences between intrinsic nerve stimulation and adrenergic receptor activation remain incompletely understood. This study was undertaken to determine the functional differences between efferent cardiac sympathetic nerve stimulation and direct adrenergic receptor activation in porcine ventricles. Female Yorkshire pigs (n = 13) underwent surgical exposure of the heart and stellate ganglia. A 56-electrode sock was placed over the ventricles to record epicardial electrograms. Animals underwent bilateral sympathetic stimulation (BSS) (n = 8) or norepinephrine (NE) administration (n = 5). Activation recovery intervals (ARIs) were measured at each electrode before and during BSS or NE. The degree of ARI shortening during BSS or NE administration was used as a measure of functional nerve or adrenergic receptor density. During BSS, ARI shortening was nonuniform across the epicardium (F value 9.62, P = 0.003), with ARI shortening greatest in the mid-basal lateral right ventricle and least in the midposterior left ventricle (LV) (mean normalized values: 0.9 ± 0.08 vs. 0.56 ± 0.08; P = 0.03). NE administration resulted in greater ARI shortening in the LV apex than basal segments [0.91 ± 0.04 vs. 0.63 ± 0.05 (averaged basal segments); P = 0.003]. Dispersion of ARIs increased in 50% and 60% of the subjects undergoing BSS and NE, respectively, but decreased in the others. There is nonuniform response to cardiac sympathetic activation of both porcine ventricles, which is not fully explained by adrenergic receptor density. Different pools of adrenergic receptors may mediate the cardiac electrophysiological effects of efferent sympathetic nerve activity and circulating catecholamines. PMID:23241324

  18. A Conserved Cysteine Motif Is Critical for Rice Ceramide Kinase Activity and Function

    PubMed Central

    Liu, Zhe; Fang, Ce; Li, Jian; Su, Jian-Bin; Greenberg, Jean T.; Wang, Hong-Bin; Yao, Nan

    2011-01-01

    Background Ceramide kinase (CERK) is a key regulator of cell survival in dicotyledonous plants and animals. Much less is known about the roles of CERK and ceramides in mediating cellular processes in monocot plants. Here, we report the characterization of a ceramide kinase, OsCERK, from rice (Oryza sativa spp. Japonica cv. Nipponbare) and investigate the effects of ceramides on rice cell viability. Principal Findings OsCERK can complement the Arabidopsis CERK mutant acd5. Recombinant OsCERK has ceramide kinase activity with Michaelis-Menten kinetics and optimal activity at 7.0 pH and 40°C. Mg2+ activates OsCERK in a concentration-dependent manner. Importantly, a CXXXCXXC motif, conserved in all ceramide kinases and important for the activity of the human enzyme, is critical for OsCERK enzyme activity and in planta function. In a rice protoplast system, inhibition of CERK leads to cell death and the ratio of added ceramide and ceramide-1-phosphate, CERK's substrate and product, respectively, influences cell survival. Ceramide-induced rice cell death has apoptotic features and is an active process that requires both de novo protein synthesis and phosphorylation, respectively. Finally, mitochondria membrane potential loss previously associated with ceramide-induced cell death in Arabidopsis was also found in rice, but it occurred with different timing. Conclusions OsCERK is a bona fide ceramide kinase with a functionally and evolutionarily conserved Cys-rich motif that plays an important role in modulating cell fate in plants. The vital function of the conserved motif in both human and rice CERKs suggests that the biochemical mechanism of CERKs is similar in animals and plants. Furthermore, ceramides induce cell death with similar features in monocot and dicot plants. PMID:21483860

  19. Transcriptional regulator Leu3 of Saccharomyces cerevisiae: separation of activator and repressor functions.

    PubMed Central

    Sze, J Y; Remboutsika, E; Kohlhaw, G B

    1993-01-01

    The Leu3 protein of Saccharomyces cerevisiae binds to specific DNA sequences present in the 5' noncoding region of at least five RNA polymerase II-transcribed genes. Leu3 functions as a transcriptional activator only when the metabolic intermediate alpha-isopropylmalate is also present. In the absence of alpha-isopropylmalate, Leu3 causes transcription to be repressed below basal levels. We show here that different portions of the Leu3 protein are responsible for activation and repression. Fusion of the 30 C-terminal residues of Leu3 to the DNA-binding domain of the Gal4 protein created a strong cross-species activator, demonstrating that the short C-terminal region is not only required but also sufficient for transcriptional activation. Using a recently developed Leu3-responsive in vitro transcription assay as a test system for repression (J. Sze, M. Woontner, J. Jaehning, and G. B. Kohlhaw, Science 258:1143-1145, 1992), we show that mutant forms of the Leu3 protein that lack the activation domain still function as repressors. The shortest repressor thus identified had only about 15% of the mass of the full-length Leu3 protein and was centered on the DNA-binding region of Leu3. Implications of this finding for the mechanism of repression are discussed. Images PMID:8355711

  20. Transcriptional regulator Leu3 of Saccharomyces cerevisiae: separation of activator and repressor functions.

    PubMed

    Sze, J Y; Remboutsika, E; Kohlhaw, G B

    1993-09-01

    The Leu3 protein of Saccharomyces cerevisiae binds to specific DNA sequences present in the 5' noncoding region of at least five RNA polymerase II-transcribed genes. Leu3 functions as a transcriptional activator only when the metabolic intermediate alpha-isopropylmalate is also present. In the absence of alpha-isopropylmalate, Leu3 causes transcription to be repressed below basal levels. We show here that different portions of the Leu3 protein are responsible for activation and repression. Fusion of the 30 C-terminal residues of Leu3 to the DNA-binding domain of the Gal4 protein created a strong cross-species activator, demonstrating that the short C-terminal region is not only required but also sufficient for transcriptional activation. Using a recently developed Leu3-responsive in vitro transcription assay as a test system for repression (J. Sze, M. Woontner, J. Jaehning, and G. B. Kohlhaw, Science 258:1143-1145, 1992), we show that mutant forms of the Leu3 protein that lack the activation domain still function as repressors. The shortest repressor thus identified had only about 15% of the mass of the full-length Leu3 protein and was centered on the DNA-binding region of Leu3. Implications of this finding for the mechanism of repression are discussed. PMID:8355711

  1. Osteoinductive activity of insulin-functionalized cell culture surfaces obtained using diazonium chemistry

    NASA Astrophysics Data System (ADS)

    Mikulska, Anna; Filipowska, Joanna; Osyczka, Anna; Nowakowska, Maria; Szczubiałka, Krzysztof

    2014-12-01

    Polymeric surfaces suitable for cell culture (DR/Pec) were constructed from diazoresin (DR) and pectin (Pec) in a form of ultrathin films using the layer-by-layer (LbL) technique. The surfaces were functionalized with insulin using diazonium chemistry. Such functionalized surfaces were used to culture human mesenchymal stem cells (hMSCs) to assess their suitability for bone tissue engineering and regeneration. The activity of insulin immobilized on the surfaces (DR/Pec/Ins) was compared to that of insulin dissolved in the culture medium. Human MSC grown on insulin-immobilized DR/Pec surfaces displayed increased proliferation and higher osteogenic activity. The latter was determined by means of alkaline phosphatase (ALP) activity, which increases at early stages of osteoblasts differentiation. Insulin dissolved in the culture medium did not stimulate cell proliferation and its osteogenic activity was significantly lower. Addition of recombinant human bone morphogenetic protein 2 (rhBMP-2) to the culture medium further increased ALP activity in hMSCs indicating additive osteogenic action of immobilized insulin and rhBMP-2

  2. Quantifying the lifetime circadian rhythm of physical activity: a covariate-dependent functional approach

    PubMed Central

    Xiao, Luo; Huang, Lei; Schrack, Jennifer A.; Ferrucci, Luigi; Zipunnikov, Vadim; Crainiceanu, Ciprian M.

    2015-01-01

    Objective measurement of physical activity using wearable devices such as accelerometers may provide tantalizing new insights into the association between activity and health outcomes. Accelerometers can record quasi-continuous activity information for many days and for hundreds of individuals. For example, in the Baltimore Longitudinal Study on Aging physical activity was recorded every minute for 773 adults for an average of 7 days per adult. An important scientific problem is to separate and quantify the systematic and random circadian patterns of physical activity as functions of time of day, age, and gender. To capture the systematic circadian pattern, we introduce a practical bivariate smoother and two crucial innovations: (i) estimating the smoothing parameter using leave-one-subject-out cross validation to account for within-subject correlation and (ii) introducing fast computational techniques that overcome problems both with the size of the data and with the cross-validation approach to smoothing. The age-dependent random patterns are analyzed by a new functional principal component analysis that incorporates both covariate dependence and multilevel structure. For the analysis, we propose a practical and very fast trivariate spline smoother to estimate covariate-dependent covariances and their spectra. Results reveal several interesting, previously unknown, circadian patterns associated with human aging and gender. PMID:25361695

  3. A density functional theory model of mechanically activated silyl ester hydrolysis

    SciTech Connect

    Pill, Michael F.; Schmidt, Sebastian W.; Beyer, Martin K.; Clausen-Schaumann, Hauke; Kersch, Alfred

    2014-01-28

    To elucidate the mechanism of the mechanically activated dissociation of chemical bonds between carboxymethylated amylose (CMA) and silane functionalized silicon dioxide, we have investigated the dissociation kinetics of the bonds connecting CMA to silicon oxide surfaces with density functional calculations including the effects of force, solvent polarizability, and pH. We have determined the activation energies, the pre-exponential factors, and the reaction rate constants of candidate reactions. The weakest bond was found to be the silyl ester bond between the silicon and the alkoxy oxygen atom. Under acidic conditions, spontaneous proton addition occurs close to the silyl ester such that neutral reactions become insignificant. Upon proton addition at the most favored position, the activation energy for bond hydrolysis becomes 31 kJ mol{sup −1}, which agrees very well with experimental observation. Heterolytic bond scission in the protonated molecule has a much higher activation energy. The experimentally observed bi-exponential rupture kinetics can be explained by different side groups attached to the silicon atom of the silyl ester. The fact that different side groups lead to different dissociation kinetics provides an opportunity to deliberately modify and tune the kinetic parameters of mechanically activated bond dissociation of silyl esters.

  4. The Rap1-RIAM-talin axis of integrin activation and blood cell function.

    PubMed

    Lagarrigue, Frederic; Kim, Chungho; Ginsberg, Mark H

    2016-07-28

    Integrin adhesion receptors mediate the adhesion of blood cells, such as leukocytes, to other cells, such as endothelial cells. Integrins also are critical for anchorage of hematopoietic precursors to the extracellular matrix. Blood cells can dynamically regulate the affinities of integrins for their ligands ("activation"), an event central to their functions. Here we review recent progress in understanding the mechanisms of integrin activation with a focus on the functions of blood cells. We discuss how talin binding to the integrin β cytoplasmic domain, in conjunction with the plasma membrane, induces long-range allosteric rearrangements that lead to integrin activation. Second, we review our understanding of how signaling events, particularly those involving Rap1 small guanosine triphosphate (GTP)hydrolases, can regulate the talin-integrin interaction and resulting activation. Third, we review recent findings that highlight the role of the Rap1-GTP-interacting adapter molecule (RIAM), encoded by the APBB1IP gene, in leukocyte integrin activation and consequently in leukocyte trafficking. PMID:27207789

  5. An AP endonuclease functions in active DNA demethylation and gene imprinting in Arabidopsis [corrected].

    PubMed

    Li, Yan; Córdoba-Cañero, Dolores; Qian, Weiqiang; Zhu, Xiaohong; Tang, Kai; Zhang, Huiming; Ariza, Rafael R; Roldán-Arjona, Teresa; Zhu, Jian-Kang

    2015-01-01

    Active DNA demethylation in plants occurs through base excision repair, beginning with removal of methylated cytosine by the ROS1/DME subfamily of 5-methylcytosine DNA glycosylases. Active DNA demethylation in animals requires the DNA glycosylase TDG or MBD4, which functions after oxidation or deamination of 5-methylcytosine, respectively. However, little is known about the steps following DNA glycosylase action in the active DNA demethylation pathways in plants and animals. We show here that the Arabidopsis APE1L protein has apurinic/apyrimidinic endonuclease activities and functions downstream of ROS1 and DME. APE1L and ROS1 interact in vitro and co-localize in vivo. Whole genome bisulfite sequencing of ape1l mutant plants revealed widespread alterations in DNA methylation. We show that the ape1l/zdp double mutant displays embryonic lethality. Notably, the ape1l+/-zdp-/- mutant shows a maternal-effect lethality phenotype. APE1L and the DNA phosphatase ZDP are required for FWA and MEA gene imprinting in the endosperm and are important for seed development. Thus, APE1L is a new component of the active DNA demethylation pathway and, together with ZDP, regulates gene imprinting in Arabidopsis. PMID:25569774

  6. Optical Detection of Enzymatic Activity and Inhibitors on Non-Covalently Functionalized Fluorescent Graphene Oxide.

    PubMed

    Kang, Tae Woog; Jeon, Su-Ji; Kim, Hye-In; Park, Jung Hyun; Yim, DaBin; Lee, Hye-Rim; Ju, Jong-Min; Kim, Man-Jin; Kim, Jong-Ho

    2016-05-24

    It has been of great interest to measure the activity of acetylcholinesterase (AChE) and its inhibitor, as AChE is known to accelerate the aggregation of the amyloid beta peptides that underlie Alzheimer's disease. Herein, we report the development of graphene oxide (GO) fluorescence-based biosensors for the detection of AChE activity and AChE inhibitors. To this end, GO was non-covalently functionalized with phenoxy-modified dextran (PhO-dex-GO) through hydrophobic interaction; the resulting GO showed excellent colloidal stability and intense fluorescence in various aqueous solutions as compared to pristine GO and the GO covalently functionalized with dextran. The fluorescence of PhO-dex-GO remarkably increased as AChE catalyzed the hydrolysis of acetylthiocholine (ATCh) to give thiocholine and acetic acid. It was found that the turn-on fluorescence response of PhO-dex-GO to AChE activity was induced by protonation of carboxyl groups on it from the product of the enzymatic hydrolysis reaction, acetic acid. On the basis of its turn-on fluorescence response, PhO-dex-GO was able to report kinetic and thermodynamic parameters involving a maximum velocity, a Michaelis constant, and an inhibition dissociation constant for AChE activity and inhibition. These parameters enable us to determine the activity of AChE and the efficiency of the inhibitor. PMID:27136042

  7. Structural and functional diversity in the activity and regulation of DAPK-related protein kinases.

    PubMed

    Temmerman, Koen; Simon, Bertrand; Wilmanns, Matthias

    2013-11-01

    Within the large group of calcium/calmodulin-dependent protein kinases (CAMKs) of the human kinome, there is a distinct branch of highly related kinases that includes three families: death-associated protein-related kinases, myosin light-chain-related kinases and triple functional domain protein-related kinases. In this review, we refer to these collectively as DMT kinases. There are several functional features that span the three families, such as a broad involvement in apoptotic processes, cytoskeletal association and cellular plasticity. Other CAMKs contain a highly conserved HRD motif, which is a prerequisite for kinase regulation through activation-loop phosphorylation, but in all 16 members of the DMT branch, this is replaced by an HF/LD motif. This DMT kinase signature motif substitutes phosphorylation-dependent active-site interactions with a local hydrophobic core that maintains an active kinase conformation. Only about half of the DMT kinases have an additional autoregulatory domain, C-terminal to the kinase domain that binds calcium/calmodulin in order to regulate kinase activity. Protein substrates have been identified for some of the DMT kinases, but little is known about the mechanism of recognition. Substrate conformation could be an equally important parameter in substrate recognition as specific preferences in sequence position. Taking the data together, this kinase branch encapsulates a treasure trove of features that renders it distinct from many other protein kinases and calls for future research activities in this field. PMID:23745726

  8. Osteoinductive activity of insulin-functionalized cell culture surfaces obtained using diazonium chemistry

    PubMed Central

    Mikulska, Anna; Filipowska, Joanna; Osyczka, Anna M.; Nowakowska, Maria; Szczubiałka, Krzysztof

    2015-01-01

    Polymeric surfaces suitable for cell culture (DR/Pec) were constructed from diazoresin (DR) and pectin (Pec) in a form of ultrathin films using the layer-by-layer (LbL) technique. The surfaces were functionalized with insulin using diazonium chemistry. Such functionalized surfaces were used to culture human mesenchymal stem cells (hMSCs) to assess their suitability for bone tissue engineering and regeneration. The activity of insulin immobilized on the surfaces (DR/Pec/Ins) was compared to that of insulin dissolved in the culture medium. Human MSC grown on insulin-immobilized DR/Pec surfaces displayed increased proliferation and higher osteogenic activity. The latter was determined by means of alkaline phosphatase (ALP) activity, which increases at early stages of osteoblasts differentiation. Insulin dissolved in the culture medium did not stimulate cell proliferation and its osteogenic activity was significantly lower. Addition of recombinant human bone morphogenetic protein 2 (rhBMP-2) to the culture medium further increased ALP activity in hMSCs indicating additive osteogenic action of immobilized insulin and rhBMP-2. PMID:25629028

  9. Forecasting of electronic devices lifetime on the basis of activation models of functional parameters drift

    NASA Astrophysics Data System (ADS)

    Kozlova, I. N.

    2016-04-01

    We propose a model of functional parameters drift for electronic devices, allowing predicting their lifetime. The method of model parameters estimation is developed. The developed model allows optimizing the accelerated tests modes, taking into account the complex impact of stress factors. The results are applicable for modern electronic devices with a failure rate less than 1 FIT. The results are applicable if the physical and chemical processes leading to electronic devices degradation have an activation mechanism; the activation process is due to the temperature.

  10. Estradiol treatment, physical activity, and muscle function in ovarian-senescent mice.

    PubMed

    Greising, Sarah M; Carey, Ryan S; Blackford, Jennifer E; Dalton, Laurin E; Kosir, Allison M; Lowe, Dawn A

    2011-08-01

    Estradiol (E(2)) treatment in young adult, ovariectomized mice increases physical activity and reverses deleterious effects on skeletal muscle. Here we test the hypothesis that E(2) treatment improves muscle function and physical activity in aged, ovarian-senescent mice. Plasma E(2) levels and vaginal cytology confirmed ovarian senescence in 20-month-old C57BL/6 mice. Mice were then randomly divided into activity groups, having access to a running wheel or not, and further into those receiving E(2) or placebo. Placebo-treated mice wheel ran more than E(2)-treated mice (P=0.03), with no difference between treatment groups in cage activities such as time spent being active and ambulation distance (P≥0.55). Soleus muscles from aged mice that wheel ran adapted by getting larger and stronger, irrespective of E(2) status (P≤0.02). Soleus muscle fatigue resistance was greater in mice treated with E(2) (P=0.02), but maximal isometric tetanic force was not affected (P≥0.79). Because E(2) treatment did not improve physical activity or overall muscle function in the aged, ovarian-senescent mice as predicted, a second study was initiated to examine E(2) treatment of young adult mice prematurely ovarian senescent from exposure to the chemical, 4-vinylcyclohexene diepoxide (VCD). Four-month-old C57BL/6 female mice were dosed with oil (control) or VCD. Vaginal cytology confirmed ovarian senescence in all mice treated with VCD 63 days after the onset of dosing, and then a subset of the VCD mice received E(2) (VCD+E(2)). Wheel running distance did not differ among control, VCD, and VCD+E(2) mice (P≥0.34). Soleus muscle concentric, isometric, and eccentric in vitro forces were greater in VCD+E(2) than in VCD mice (P<0.04), indicating beneficial estrogenic effects on muscle function. In general, aged and young mice with senescent ovaries were less responsive to E(2) treatment, in terms of physical activities and muscle function, than what has previously been shown for young

  11. Estradiol treatment, physical activity, and muscle function in ovarian-senescent mice

    PubMed Central

    Greising, Sarah M.; Carey, Ryan S.; Blackford, Jennifer E.; Dalton, Laurin E.; Kosir, Allison M.; Lowe, Dawn A.

    2011-01-01

    Estradiol (E2) treatment in young adult, ovariectomized mice increases physical activity and reverses deleterious effects on skeletal muscle. Here we test the hypothesis that E2 treatment improves muscle function and physical activity in aged, ovarian-senescent mice. Plasma E2 levels and vaginal cytology confirmed ovarian senescence in 20-month-old C57BL/6 mice. Mice were then randomly divided into activity groups, having access to a running wheel or not, and further into those receiving E2 or placebo. Placebo-treated mice wheel ran more than E2-treated mice (P=0.03), with no difference between treatment groups in cage activities such as time spent being active and ambulation distance (P≥0.55). Soleus muscles from aged mice that wheel ran adapted by getting larger and stronger, irrespective of E2 status (P≤0.02). Soleus muscle fatigue resistance was greater in mice treated with E2 (P=0.02), but maximal isometric tetanic force was not affected (P≥0.79). Because E2 treatment did not improve physical activity or overall muscle function in the aged, ovarian-senescent mice as predicted, a second study was initiated to examine E2 treatment of young adult mice prematurely ovarian senescent from exposure to the chemical, 4-vinylcyclohexene diepoxide (VCD). 4-month-old C57BL/6 female mice were dosed with oil (control) or VCD. Vaginal cytology confirmed ovarian senescence in all mice treated with VCD 63 days after the onset of dosing, and then a subset of the VCD mice received E2 (VCD+E2). Wheel running distance did not differ among control, VCD, and VCD+E2 mice (P≥0.34). Soleus muscle concentric, isometric, and eccentric in vitro forces were greater in VCD+E2 than VCD mice (P<0.04), indicating beneficial estrogenic effects on muscle function. In general, aged and young mice with senescent ovaries were less responsive to E2 treatment, in terms of physical activities and muscle function, than what has previously been shown for young, ovariectomized mice. These results

  12. Effects of soil type and farm management on soil ecological functional genes and microbial activities.

    PubMed

    Reeve, Jennifer R; Schadt, Christopher W; Carpenter-Boggs, Lynne; Kang, Sanghoon; Zhou, Jizhong; Reganold, John P

    2010-09-01

    Relationships between soil microbial diversity and soil function are the subject of much debate. Process-level analyses have shown that microbial function varies with soil type and responds to soil management. However, such measurements cannot determine the role of community structure and diversity in soil function. The goal of this study was to investigate the role of gene frequency and diversity, measured by microarray analysis, on soil processes. The study was conducted in an agro-ecosystem characterized by contrasting management practices and soil types. Eight pairs of adjacent commercial organic and conventional strawberry fields were matched for soil type, strawberry variety, and all other environmental conditions. Soil physical, chemical and biological analyses were conducted including functional gene microarrays (FGA). Soil physical and chemical characteristics were primarily determined by soil textural type (coarse vs fine-textured), but biological and FGA measures were more influenced by management (organic vs conventional). Organically managed soils consistently showed greater functional activity as well as FGA signal intensity (SI) and diversity. Overall FGA SI and diversity were correlated to total soil microbial biomass. Functional gene group SI and/or diversity were correlated to related soil chemical and biological measures such as microbial biomass, cellulose, dehydrogenase, ammonium and sulfur. Management was the dominant determinant of soil biology as measured by microbial gene frequency and diversity, which paralleled measured microbial processes. PMID:20376100

  13. Activation of different split functionalities on re-association of RNA-DNA hybrids.

    PubMed

    Afonin, Kirill A; Viard, Mathias; Martins, Angelica N; Lockett, Stephen J; Maciag, Anna E; Freed, Eric O; Heldman, Eliahu; Jaeger, Luc; Blumenthal, Robert; Shapiro, Bruce A

    2013-04-01

    Split-protein systems, an approach that relies on fragmentation of proteins with their further conditional re-association to form functional complexes, are increasingly used for various biomedical applications. This approach offers tight control of protein functions and improved detection sensitivity. Here we report a similar technique based on a pair of RNA-DNA hybrids that can be used generally for triggering different split functionalities. Individually, each hybrid is inactive but when two cognate hybrids re-associate, different functionalities are triggered inside mammalian cells. As a proof of concept, this work mainly focuses on the activation of RNA interference. However, the release of other functionalities (such as resonance energy transfer and RNA aptamer) is also shown. Furthermore, in vivo studies demonstrate a significant uptake of the hybrids by tumours together with specific gene silencing. This split-functionality approach presents a new route in the development of 'smart' nucleic acid-based nanoparticles and switches for various biomedical applications. PMID:23542902

  14. The associations of physical activity and television watching with change in kidney function in older adults

    PubMed Central

    Hawkins, Marquis; Newman, Anne B.; Madero, Magdalena; Patel, Kushang V.; Shlipak, Michael G.; Cooper, Jennifer; Johansen, Kirsten L.; Navaneethan, Sankar D.; Fried, Linda F

    2015-01-01

    BACKGROUND Physical activity (PA) may play a role in preserving kidney health. The purpose of this study was to determine if PA and sedentary behavior are associated with incident chronic kidney disease (CKD) and change in kidney function in older adults. METHODS The Health, Aging and Body Composition study is a prospective cohort of 3,075 well-functioning older adults. PA and television watching was measured by self-report and serum cystatin C was used to estimate glomerular filtration rate (eGFR). CKD was defined as an eGFR <60 ml/min/1.73m2. Rapid kidney function decline was defined as an annual loss in eGFR of >3ml/min/1.73m2. Discrete survival analysis was used to determine if baseline PA and television watching were related to 10-year cumulative incidence of CKD and rapid decline in kidney function. RESULTS Individuals who reported watching television >3 hours/day had a higher risk of incident CKD (HR 1.34; 95% CI: 1.09, 1.65) and experiencing a rapid decline in kidney function (HR 1.26; 95% CI 1.05, 1.52) compared to individuals who watched television < 2 hours/day. PA was not related to either outcome. CONCLUSIONS High levels of television watching are associated with declining kidney function; the mechanisms that underlie this association need further study. PMID:24762526

  15. Functional determinants of ras interference 1 mutants required for their inhbitory activity on endocytosis

    SciTech Connect

    Galvis, Adriana; Giambini, Hugo; Villasana, Zoilmar; Barbieri, M. Alejandro

    2009-03-10

    In this study, we initiated experiments to address the structure-function relationship of Rin1. A total of ten substitute mutations were created, and their effects on Rin1 function were examined. Of the ten mutants, four of them (P541A, E574A, Y577F, T580A) were defective in Rab5 binding, while two other Rin1 mutants (D537A, Y561F) partially interacted with Rab5. Mutations in several other residues (Y506F, Y523F, T572A, Y578F) resulted in partial loss of Rab5 function. Biochemical studies showed that six of them (D537A, P541A, Y561F, E574A, Y577F, T580A) were unable to activate Rab5 in an in vitro assay. In addition, Rin1: D537A and Rin1: Y561F mutants showed dominant inhibition of Rab5 function. Consistent with the biochemical studies, we observed that these two Rin1 mutants have lost their ability to stimulate the endocytosis of EGF, form enlarged Rab5-positive endosomes, or support in vitro endosome fusion. Based on these data, our results showed that mutations in the Vps9 domain of Rin1 lead to a loss-of-function phenotype, indicating a specific structure-function relationship between Rab5 and Rin1.

  16. Effects of soil type and farm management on soil ecological functional genes and microbial activities

    SciTech Connect

    Reeve, Jennifer; Schadt, Christopher Warren; Carpenter-Boggs, Lynne; Kang, S.; Zhou, Jizhong; Reganold, John P.

    2010-01-01

    Relationships between soil microbial diversity and soil function are the subject of much debate. Process-level analyses have shown that microbial function varies with soil type and responds to soil management. However, such measurements cannot determine the role of community structure and diversity in soil function. The goal of this study was to investigate the role of gene frequency and diversity, measured by microarray analysis, on soil processes. The study was conducted in an agro-ecosystem characterized by contrasting management practices and soil types. Eight pairs of adjacent commercial organic and conventional strawberry fields were matched for soil type, strawberry variety, and all other environmental conditions. Soil physical, chemical and biological analyses were conducted including functional gene microarrays (FGA). Soil physical and chemical characteristics were primarily determined by soil textural type (coarse vs fine-textured), but biological and FGA measures were more influenced by management (organic vs conventional). Organically managed soils consistently showed greater functional activity as well as FGA signal intensity (SI) and diversity. Overall FGA SI and diversity were correlated to total soil microbial biomass. Functional gene group SI and/or diversity were correlated to related soil chemical and biological measures such as microbial biomass, cellulose, dehydrogenase, ammonium and sulfur. Management was the dominant determinant of soil biology as measured by microbial gene frequency and diversity, which paralleled measured microbial processes.

  17. Heterogeneity of functional responses in differentiated myeloid cell lines reveals EPRO cells as a valid model of murine neutrophil functional activation.

    PubMed

    Gaines, Peter; Chi, Jeffrey; Berliner, Nancy

    2005-05-01

    Mature neutrophils display multiple functional responses upon activation that include chemotaxis, adhesion to and transmigration across endothelial cells, phagocytosis, and pathogen destruction via potent microbicidal enzymes and reactive oxygen species. We are using myeloid cell line models to investigate the signaling pathways that govern neutrophil functional activation. To facilitate these studies, we have performed a direct comparison of functional responses of human and murine myeloid cell line models upon neutrophil differentiation. Our results show that EPRO cells, promyelocytes that undergo complete neutrophil maturation, demonstrate a full spectrum of functional responses, including respiratory burst, chemotaxis toward two murine chemokines, and phagocytosis. We also extend previous studies of granulocyte-colony stimulating factor-induced 32Dcl3 cells, showing they demonstrate chemotaxis and phogocytosis but completely lack a respiratory burst as a result of the absent expression of a critical oxidase subunit, gp91(phox). Induced human leukemic NB4 and HL-60 cells display a respiratory burst and phagocytosis but have defective chemotaxis to multiple chemoattractants. We also tested each cell line for the ability to up-regulate cell-surface membrane-activated complex-1 (Mac-1) expression upon activation, a response mediating neutrophil adhesion and a surrogate marker for degranulation. We show that EPRO cells, but not 32Dcl3 or NB4, significantly increase Mac-1 surface expression upon functional activation. Together, these data show that EPRO and MPRO cells demonstrate complete, functional activation upon neutrophil differentiation, suggesting these promyelocytic models accurately reflect the functional capacity of mature murine neutrophils. PMID:15673544

  18. Spontaneous brain activity observed with functional magnetic resonance imaging as a potential biomarker in neuropsychiatric disorders

    PubMed Central

    Zhou, Yuan; Wang, Kun; Liu, Yong; Song, Ming; Song, Sonya W.

    2010-01-01

    As functional magnetic resonance imaging (fMRI) studies have yielded increasing amounts of information about the brain’s spontaneous activity, they have revealed fMRI’s potential to locate changes in brain hemodynamics that are associated with neuropsychiatric disorders. In this paper, we review studies that support the notion that changes in brain spontaneous activity observed by fMRI can be used as potential biomarkers for diagnosis and treatment evaluation in neuropsychiatric disorders. We first review the methods used to study spontaneous activity from the perspectives of (1) the properties of local spontaneous activity, (2) the spatial pattern of spontaneous activity, and (3) the topological properties of brain networks. We also summarize the major findings associated with major neuropsychiatric disorders obtained using these methods. Then we review the pilot studies that have used spontaneous activity to discriminate patients from normal controls. Finally, we discuss current challenges and potential research directions to further elucidate the clinical use of spontaneous brain activity in neuropsychiatric disorders. PMID:22132039

  19. Type I interferons produced by dendritic cells promote their phenotypic and functional activation.

    PubMed

    Montoya, Maria; Schiavoni, Giovanna; Mattei, Fabrizio; Gresser, Ion; Belardelli, Filippo; Borrow, Persephone; Tough, David F

    2002-05-01

    Resting dendritic cells (DCs) are resident in most tissues and can be activated by environmental stimuli to mature into potent antigen-presenting cells. One important stimulus for DC activation is infection; DCs can be triggered through receptors that recognize microbial components directly or by contact with infection-induced cytokines. We show here that murine DCs undergo phenotypic maturation upon exposure to type I interferons (type I IFNs) in vivo or in vitro. Moreover, DCs either derived from bone marrow cells in vitro or isolated from the spleens of normal animals express IFN-alpha and IFN-beta, suggesting that type I IFNs can act in an autocrine manner to activate DCs. Consistent with this idea, the ability to respond to type I IFN was required for the generation of fully activated DCs from bone marrow precursors, as DCs derived from the bone marrow of mice lacking a functional receptor for type I IFN had reduced expression of costimulatory and adhesion molecules and a diminished ability to stimulate naive T-cell proliferation compared with DCs derived from control bone marrow. Furthermore, the addition of neutralizing anti-IFN-alpha/beta antibody to purified splenic DCs in vitro partially blocked the "spontaneous" activation of these cells, inhibiting the up-regulation of costimulatory molecules, secretion of IFN-gamma, and T-cell stimulatory activity. These results show that DCs both secrete and respond to type I IFN, identifying type I interferons as autocrine DC activators. PMID:11964292

  20. MAVS Forms Functional Prion-Like Aggregates To Activate and Propagate Antiviral Innate Immune Response

    PubMed Central

    Hou, Fajian; Sun, Lijun; Zheng, Hui; Skaug, Brian; Jiang, Qiu-Xing; Chen, Zhijian J.

    2011-01-01

    SUMMARY In response to viral infection, RIG-I–like RNA helicases bind to viral RNA and activate the mitochondrial protein MAVS, which in turn activates the transcription factors IRF3 and NF-κB to induce type-I interferons. We have previously shown that RIG-I binds to unanchored lysine-63 (K63) polyubiquitin chains and that this binding is important for MAVS activation; however, the mechanism underlying MAVS activation is not understood. Here we show that viral infection induces the formation of very large MAVS aggregates, which potently activate IRF3 in the cytosol. We find that a fraction of recombinant MAVS protein forms fibrils capable of activating IRF3. Remarkably, the MAVS fibrils behave like prions and effectively convert endogenous MAVS into functional aggregates. We also show that, in the presence of K63 ubiquitin chains, RIG-I catalyzes the conversion of MAVS on the mitochondrial membrane to prion-like aggregates. These results suggest that a prion-like conformational switch of MAVS activates and propagates the antiviral signaling cascade. PMID:21782231

  1. Olfactory stimulatory with grapefruit and lavender oils change autonomic nerve activity and physiological function.

    PubMed

    Nagai, Katsuya; Niijima, Akira; Horii, Yuko; Shen, Jiao; Tanida, Mamoru

    2014-10-01

    This review summarizes the effects of olfactory stimulation with grapefruit and lavender oils on autonomic nerve activity and physiological function. Olfactory stimulation with the scent of grapefruit oil (GFO) increases the activity of sympathetic nerves that innervate white and brown adipose tissues, the adrenal glands, and the kidneys, decreases the activity of the gastric vagal nerve in rats and mice. This results in an increase in lipolysis, thermogenesis, and blood pressure, and a decrease in food intake. Olfactory stimulation with the scent of lavender oil (LVO) elicits the opposite changes in nerve activity and physiological variables. Olfactory stimulation with scent of limonene, a component of GFO, and linalool, a component of LVO, has similar effects to stimulation with GFO and LVO, respectively. The histamine H1-receptor antagonist, diphenhydramine, abolishes all GFO-induced changes in nerve activity and physiological variables, and the hitstamine H3-receptor antagonist, thioperamide, eliminates all LVO-induced changes. Lesions to the hypothalamic suprachiasmatic nucleus and anosmic treatment with ZnSO4 also abolish all GFO- and LVO-induced changes. These findings indicate that limonene and linalool might be the active substances in GFO and LVO, and suggest that the suprachiasmatic nucleus and histamine are involved in mediating the GFO- and LVO-induced changes in nerve activity and physiological variables. PMID:25002406

  2. Mapping of functional activity in brain with /sup 18/F-fluoro-deoxyglucose

    SciTech Connect

    Alavi, A.; Reivich, M.; Greenberg, J.; Hand, P.; Rosenquist, A.; Rintelmann, W.; Christman, D.; Fowler, J.; Goldman, A.; MacGregor, R.; Wolf, A.

    1981-01-01

    The efficacy of using the /sup 18/F-fluoro-deoxyglucose (/sup 18/F-DG) for measuring regional cerebral glucose utilization in man during functional activation is demonstrated. Normal male volunteers subjected to sensory stimuli (visual, auditory, tactile) exhibited focal increases in glucose metabolism in response to the stimulus. Unilateral visual hemifield stimulation caused the contralateral striate cortex to become more active metabolically than the striate cortex ipsilateral to the stimulated hemifield. Similarly, stroking of the fingers and hand of one arm with a brush produced an increase in metabolism in the contralateral postcentral gyrus compared to the homologous ipsilateral region. The auditory stimulus, which consisted of monaural listening to either a meaningful or nonmeaningful story, caused an increase in glucose metabolism in the right temporal cortex independent of which ear was stimulated. These results demonstrate that the /sup 18/F-DG technique is capable of providing functional maps in vivo in the human brain.

  3. Dienamine Activation of Diazoenals: Application to the Direct Synthesis of Functionalized 1,4-Oxazines.

    PubMed

    Kalepu, Jagadeesh; Katukojvala, Sreenivas

    2016-06-27

    A novel rhodium-catalyzed dienamine activation of diazoenals resulted in a new class of γ-functionalized donor-acceptor dienamines. The synthetic utility of these dienamines has been demonstrated in a cooperative rhodium(II)/Brønsted acid and gold(I)-catalyzed direct [3+3] annulation of enaldiazo ketones with N-propargyl anilines, thus leading to highly substituted enal-functionalized 1,4-oxazines. The reaction is proposed to involve dienamine activation through the diacceptor rhodium enalcarbenoid NH-insertion and a gold-catalyzed intramolecular site-selective 6-exo-dig heterocyclization. The methodology was applied to the efficient synthesis of structurally complex [1,4]oxazino[4,3-a]quinolone, which is present in the antibacterial agent PNU-286607. PMID:26949079

  4. ALD Functionalized Nanoporous Gold: Thermal Stability, Mechanical Properties, and Catalytic Activity

    SciTech Connect

    Biener, M M; Biener, J; Wichmann, A; Wittstock, A; Baumann, T F; Baeumer, M; Hamza, A V

    2011-03-24

    Nanoporous metals have many technologically promising applications but their tendency to coarsen limits their long-term stability and excludes high temperature applications. Here, we demonstrate that atomic layer deposition (ALD) can be used to stabilize and functionalize nanoporous metals. Specifically, we studied the effect of nanometer-thick alumina and titania ALD films on thermal stability, mechanical properties, and catalytic activity of nanoporous gold (np-Au). Our results demonstrate that even only one-nm-thick oxide films can stabilize the nanoscale morphology of np-Au up to 1000 C, while simultaneously making the material stronger and stiffer. The catalytic activity of np-Au can be drastically increased by TiO{sub 2} ALD coatings. Our results open the door to high temperature sensor, actuator, and catalysis applications and functionalized electrodes for energy storage and harvesting applications.

  5. The tracking system analytic calibration activity for Mariner Mars 1971: Its function and scope

    NASA Technical Reports Server (NTRS)

    Madrid, G. A.

    1974-01-01

    The functions of the Tracking System Analytic Calibration activity for Mariner Mars 1971 (MM'71), its objectives for this and future missions, and the support provided to the MM'71 Navigation Team during operations are described. Support functions encompass calibration of tracking data by estimating physical parameters whose uncertainties represent limitations to navigational accuracy, and detailed analysis of the tracking data to uncover and resolve any anomalies. Separate articles treat the activities and results of producing calibrations for the various error sources: Deep Space Station Locations, timing and polar motion, charged particles, and the troposphere. Two other articles are also included discussing the effects of the media error sources on orbit determination and the merits of the smoothing technique used for DRIVID.

  6. Structural Waters Define a Functional Channel Mediating Activation of the GPCR, rhodopsin

    SciTech Connect

    Angel, T.; Gupta, S; Jastrzebska, B; Palczewski, K; Chance, M

    2009-01-01

    Structural water molecules may act as prosthetic groups indispensable for proper protein function. In the case of allosteric activation of G protein-coupled receptors (GPCRs), water likely imparts structural plasticity required for agonist-induced signal transmission. Inspection of structures of GPCR superfamily members reveals the presence of conserved embedded water molecules likely important to GPCR function. Coupling radiolytic hydroxyl radical labeling with rapid H2O18 solvent mixing, we observed no exchange of these structural waters with bulk solvent in either ground state or for the Meta II or opsin states. However, the radiolysis approach permitted labeling of selected side chain residues within the transmembrane helices and revealed activation-induced changes in local structural constraints likely mediated by dynamics of both water and protein. These results suggest both a possible general mechanism for water-dependent communication in family A GPCRs based on structural conservation, and a strategy for probing membrane protein structure.

  7. Ctk1 function is necessary for full translation initiation activity in Saccharomyces cerevisiae.

    PubMed

    Coordes, Britta; Brünger, Katharina M; Burger, Kaspar; Soufi, Boumediene; Horenk, Juliane; Eick, Dirk; Olsen, Jesper V; Sträßer, Katja

    2015-01-01

    Translation is a fundamental and highly regulated cellular process. Previously, we reported that the kinase and transcription elongation factor Ctk1 increases fidelity during translation elongation in Saccharomyces cerevisiae. Here, we show that loss of Ctk1 function also affects the initiation step of translation. Translation active extracts from Ctk1-depleted cells show impaired translation activity of capped mRNA, but not mRNA reporters containing the cricket paralysis virus (CrPV) internal ribosome entry site (IRES). Furthermore, the formation of 80S initiation complexes is decreased, which is probably due to reduced subunit joining. In addition, we determined the changes in the phosphorylation pattern of a ribosome enriched fraction after depletion of Ctk1. Thus, we provide a catalogue of phosphoproteomic changes dependent on Ctk1. Taken together, our data suggest a stimulatory function of Ctk1 in 80S formation during translation initiation. PMID:25416238

  8. The Peroxisome Proliferator Activated Receptor‐γ Pioglitazone Improves Vascular Function and Decreases Disease Activity in Patients With Rheumatoid Arthritis

    PubMed Central

    Marder, Wendy; Khalatbari, Shokoufeh; Myles, James D.; Hench, Rita; Lustig, Susan; Yalavarthi, Srilakshmi; Parameswaran, Aishwarya; Brook, Robert D.; Kaplan, Mariana J.

    2013-01-01

    Background Rheumatoid arthritis (RA) is associated with heightened mortality due to atherosclerotic cardiovascular disease (CVD). Inflammatory pathways in RA negatively affect vascular physiology and promote metabolic disturbances that contribute to CVD. We hypothesized that the peroxisome proliferator activated receptor‐γ (PPAR‐γ) pioglitazone could promote potent vasculoprotective and anti‐inflammatory effects in RA. Methods and Results One hundred forty‐three non‐diabetic adult RA patients (76.2% female, age 55.2±12.1 [mean±SD]) on stable RA standard of care treatment were enrolled in a randomized, double‐blind placebo controlled crossover trial of 45 mg daily pioglitazone versus placebo, with a 3‐month duration/arm and a 2‐month washout period. Pulse wave velocity of the aorta (PWV), brachial artery flow mediated dilatation (FMD), nitroglycerin mediated dilatation (NMD), microvascular endothelial function (reactive hyperemia index [RHI]), and circulating biomarkers of inflammation, insulin resistance, and atherosclerosis risk all were quantified. RA disease activity was assessed with the 28‐Joint Count Disease Activity Score (DAS‐28) C‐reactive protein (CRP) and the Short Form (36) Health Survey quality of life questionnaire. When added to standard of care RA treatment, pioglitazone significantly decreased pulse wave velocity (ie, aortic stiffness) (P=0.01), while FMD and RHI remained unchanged when compared to treatment with placebo. Further, pioglitazone significantly reduced RA disease activity (P=0.02) and CRP levels (P=0.001), while improving lipid profiles. The drug was well tolerated. Conclusions Addition of pioglitazone to RA standard of care significantly improves aortic elasticity and decreases inflammation and disease activity with minimal safety issues. The clinical implications of these findings remain to be established. Clinical Trial Registration URL: ClinicalTrials.gov Unique Identifier: NCT00554853. PMID:24252844

  9. Adsorption and destruction of PCDD/Fs using surface-functionalized activated carbons.

    PubMed

    Atkinson, J D; Hung, P C; Zhang, Z; Chang, M B; Yan, Z; Rood, M J

    2015-01-01

    Activated carbon adsorbs polychlorinated dibenzo-p-dioxins and -furans (PCDD/Fs) from gas streams but can simultaneously generate PCDD/Fs via de novo synthesis, increasing an already serious disposal problem for the spent sorbent. To increase activated carbon's PCDD/F sorption capacity and lifetime while reducing the impact of hazardous waste, it is beneficial to develop carbon-based sorbents that simultaneously destroy PCDD/Fs while adsorbing the toxic chemicals from gas streams. In this work, hydrogen-treated and surface-functionalized (i.e., oxygen, bromine, nitrogen, and sulfur) activated carbons are tested in a bench-scale reactor as adsorbents for PCDD/Fs. All tested carbons adsorb PCDD/F efficiently, with international toxic equivalent removal efficiencies exceeding 99% and mass removal efficiencies exceeding 98% for all but one tested material. Hydrogen-treated materials caused negligible destruction and possible generation of PCDD/Fs, with total mass balances between 100% and 107%. All tested surface-functionalized carbons, regardless of functionality, destroyed PCDD/Fs, with total mass balances between 73% and 96%. Free radicals on the carbon surface provided by different functional groups may contribute to PCDD/F destruction, as has been hypothesized in the literature. Surface-functionalized materials preferentially destroyed higher-order (more chlorine) congeners, supporting a dechlorination mechanism as opposed to oxidation. Carbons impregnated with sulfur are particularly effective at destroying PCDD/Fs, with destruction efficiency improving with increasing sulfur content to as high as 27%. This is relevant because sulfur-treated carbons are used for mercury adsorption, increasing the possibility of multi-pollutant control. PMID:25150825

  10. The GATOR2 Component Wdr24 Regulates TORC1 Activity and Lysosome Function.

    PubMed

    Cai, Weili; Wei, Youheng; Jarnik, Michal; Reich, John; Lilly, Mary A

    2016-05-01

    TORC1 is a master regulator of metabolism in eukaryotes that responds to multiple upstream signaling pathways. The GATOR complex is a newly defined upstream regulator of TORC1 that contains two sub-complexes, GATOR1, which inhibits TORC1 activity in response to amino acid starvation and GATOR2, which opposes the activity of GATOR1. While the GATOR1 complex has been implicated in a wide array of human pathologies including cancer and hereditary forms of epilepsy, the in vivo relevance of the GATOR2 complex remains poorly understood in metazoans. Here we define the in vivo role of the GATOR2 component Wdr24 in Drosophila. Using a combination of genetic, biochemical, and cell biological techniques we demonstrate that Wdr24 has both TORC1 dependent and independent functions in the regulation of cellular metabolism. Through the characterization of a null allele, we show that Wdr24 is a critical effector of the GATOR2 complex that promotes the robust activation of TORC1 and cellular growth in a broad array of Drosophila tissues. Additionally, epistasis analysis between wdr24 and genes that encode components of the GATOR1 complex revealed that Wdr24 has a second critical function, the TORC1 independent regulation of lysosome dynamics and autophagic flux. Notably, we find that two additional members of the GATOR2 complex, Mio and Seh1, also have a TORC1 independent role in the regulation of lysosome function. These findings represent a surprising and previously unrecognized function of GATOR2 complex components in the regulation of lysosomes. Consistent with our findings in Drosophila, through the characterization of a wdr24-/- knockout HeLa cell line we determined that Wdr24 promotes lysosome acidification and autophagic flux in mammalian cells. Taken together our data support the model that Wdr24 is a key effector of the GATOR2 complex, required for both TORC1 activation and the TORC1 independent regulation of lysosomes. PMID:27166823

  11. APOBEC3 inhibits DEAD-END function to regulate microRNA activity

    PubMed Central

    2013-01-01

    The RNA binding protein DEAD-END (DND1) is one of the few proteins known to regulate microRNA (miRNA) activity at the level of miRNA-mRNA interaction. DND1 blocks miRNA interaction with the 3′-untranslated region (3′-UTR) of specific mRNAs and restores protein expression. Previously, we showed that the DNA cytosine deaminase, APOBEC3 (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide like 3), interacts with DND1. APOBEC3 has been primarily studied for its role in restricting and inactivating retroviruses and retroelements. In this report, we examine the significance of DND1-APOBEC3 interaction. We found that while human DND1 inhibits miRNA-mediated inhibition of P27, human APOBEC3G is able to counteract this repression and restore miRNA activity. APOBEC3G, by itself, does not affect the 3′-UTR of P27. We found that APOBEC3G also blocks DND1 function to restore miR-372 and miR-206 inhibition through the 3′-UTRs of LATS2 and CX43, respectively. In corollary experiments, we tested whether DND1 affects the viral restriction function or mutator activity of APOBEC3. We found that DND1 does not affect APOBEC3 inhibition of infectivity of exogenous retrovirus HIV (ΔVif) or retrotransposition of MusD. In addition, examination of Ter/Ter;Apobec3−/− mice, lead us to conclude that DND1 does not regulate the mutator activity of APOBEC3 in germ cells. In summary, our results show that APOBEC3 is able to modulate DND1 function to regulate miRNA mediated translational regulation in cells but DND1 does not affect known APOBEC3 function. PMID:23890083

  12. APOBEC3 inhibits DEAD-END function to regulate microRNA activity.

    PubMed

    Ali, Sara; Karki, Namrata; Bhattacharya, Chitralekha; Zhu, Rui; MacDuff, Donna A; Stenglein, Mark D; Schumacher, April J; Demorest, Zachary L; Harris, Reuben S; Matin, Angabin; Aggarwal, Sita

    2013-01-01

    The RNA binding protein DEAD-END (DND1) is one of the few proteins known to regulate microRNA (miRNA) activity at the level of miRNA-mRNA interaction. DND1 blocks miRNA interaction with the 3'-untranslated region (3'-UTR) of specific mRNAs and restores protein expression. Previously, we showed that the DNA cytosine deaminase, APOBEC3 (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide like 3), interacts with DND1. APOBEC3 has been primarily studied for its role in restricting and inactivating retroviruses and retroelements. In this report, we examine the significance of DND1-APOBEC3 interaction. We found that while human DND1 inhibits miRNA-mediated inhibition of P27, human APOBEC3G is able to counteract this repression and restore miRNA activity. APOBEC3G, by itself, does not affect the 3'-UTR of P27. We found that APOBEC3G also blocks DND1 function to restore miR-372 and miR-206 inhibition through the 3'-UTRs of LATS2 and CX43, respectively. In corollary experiments, we tested whether DND1 affects the viral restriction function or mutator activity of APOBEC3. We found that DND1 does not affect APOBEC3 inhibition of infectivity of exogenous retrovirus HIV (ΔVif) or retrotransposition of MusD. In addition, examination of Ter/Ter;Apobec3-/- mice, lead us to conclude that DND1 does not regulate the mutator activity of APOBEC3 in germ cells. In summary, our results show that APOBEC3 is able to modulate DND1 function to regulate miRNA mediated translational regulation in cells but DND1 does not affect known APOBEC3 function. PMID:23890083

  13. The GATOR2 Component Wdr24 Regulates TORC1 Activity and Lysosome Function

    PubMed Central

    Cai, Weili; Wei, Youheng; Jarnik, Michal; Reich, John; Lilly, Mary A.

    2016-01-01

    TORC1 is a master regulator of metabolism in eukaryotes that responds to multiple upstream signaling pathways. The GATOR complex is a newly defined upstream regulator of TORC1 that contains two sub-complexes, GATOR1, which inhibits TORC1 activity in response to amino acid starvation and GATOR2, which opposes the activity of GATOR1. While the GATOR1 complex has been implicated in a wide array of human pathologies including cancer and hereditary forms of epilepsy, the in vivo relevance of the GATOR2 complex remains poorly understood in metazoans. Here we define the in vivo role of the GATOR2 component Wdr24 in Drosophila. Using a combination of genetic, biochemical, and cell biological techniques we demonstrate that Wdr24 has both TORC1 dependent and independent functions in the regulation of cellular metabolism. Through the characterization of a null allele, we show that Wdr24 is a critical effector of the GATOR2 complex that promotes the robust activation of TORC1 and cellular growth in a broad array of Drosophila tissues. Additionally, epistasis analysis between wdr24 and genes that encode components of the GATOR1 complex revealed that Wdr24 has a second critical function, the TORC1 independent regulation of lysosome dynamics and autophagic flux. Notably, we find that two additional members of the GATOR2 complex, Mio and Seh1, also have a TORC1 independent role in the regulation of lysosome function. These findings represent a surprising and previously unrecognized function of GATOR2 complex components in the regulation of lysosomes. Consistent with our findings in Drosophila, through the characterization of a wdr24-/- knockout HeLa cell line we determined that Wdr24 promotes lysosome acidification and autophagic flux in mammalian cells. Taken together our data support the model that Wdr24 is a key effector of the GATOR2 complex, required for both TORC1 activation and the TORC1 independent regulation of lysosomes. PMID:27166823

  14. The Activating Transcription Factor 3 Protein Suppresses the Oncogenic Function of Mutant p53 Proteins*

    PubMed Central

    Wei, Saisai; Wang, Hongbo; Lu, Chunwan; Malmut, Sarah; Zhang, Jianqiao; Ren, Shumei; Yu, Guohua; Wang, Wei; Tang, Dale D.; Yan, Chunhong

    2014-01-01

    Mutant p53 proteins (mutp53) often acquire oncogenic activities, conferring drug resistance and/or promoting cancer cell migration and invasion. Although it has been well established that such a gain of function is mainly achieved through interaction with transcriptional regulators, thereby modulating cancer-associated gene expression, how the mutp53 function is regulated remains elusive. Here we report that activating transcription factor 3 (ATF3) bound common mutp53 (e.g. R175H and R273H) and, subsequently, suppressed their oncogenic activities. ATF3 repressed mutp53-induced NFKB2 expression and sensitized R175H-expressing cancer cells to cisplatin and etoposide treatments. Moreover, ATF3 appeared to suppress R175H- and R273H-mediated cancer cell migration and invasion as a consequence of preventing the transcription factor p63 from inactivation by mutp53. Accordingly, ATF3 promoted the expression of the metastasis suppressor SHARP1 in mutp53-expressing cells. An ATF3 mutant devoid of the mutp53-binding domain failed to disrupt the mutp53-p63 binding and, thus, lost the activity to suppress mutp53-mediated migration, suggesting that ATF3 binds to mutp53 to suppress its oncogenic function. In line with these results, we found that down-regulation of ATF3 expression correlated with lymph node metastasis in TP53-mutated human lung cancer. We conclude that ATF3 can suppress mutp53 oncogenic function, thereby contributing to tumor suppression in TP53-mutated cancer. PMID:24554706

  15. Effect of Citrocard on functional activity of cardiomyocyte mitochondria during chronic alcohol intoxication.

    PubMed

    Perfilova, V N; Ostrovskii, O V; Verovskii, V E; Popova, T A; Lebedeva, S A; Dib, H

    2007-03-01

    Chronic administration of 50% ethanol in a dose of 8 g/kg produces a toxic effect on functional activity of cardiomyocyte mitochondria, which manifested in decreased rates of respiration and oxidative phosphorylation. Structural GABA analogue Citrocard (phenibut citrate) and reference preparation piracetam in doses of 50 and 200 mg/kg, respectively, prevented the damaging effect of alcohol, which was seen from increased indexes of oxidative phosphorylation in treated animals compared to the control group. PMID:18225758

  16. Tools for Resolving Functional Activity and Connectivity within Intact Neural Circuits

    PubMed Central

    Jennings, Joshua H.; Stuber, Garret D.

    2014-01-01

    Mammalian neural circuits are sophisticated biological systems that choreograph behavioral processes vital for survival. While the inherent complexity of discrete neural circuits has proven difficult to decipher, many parallel methodological developments promise to help delineate the function and connectivity of molecularly defined neural circuits. Here, we review recent technological advances designed to precisely monitor and manipulate neural circuit activity. We propose a holistic, multifaceted approach for unraveling how behavioral states are manifested through the cooperative interactions between discrete neurocircuit elements. PMID:24405680

  17. Fate of Organic Functionalities Conjugated to Theranostic Nanoparticles upon Their Activation.

    PubMed

    Martinelli, Jonathan; Denkova, Antonia G; Arranja, Alexandra; Terpstra, Baukje E; Zhang, Wuyuan; Djanashvili, Kristina

    2016-02-17

    Neutron activation is widely applied for the preparation of radioactive isotopes to be used in imaging and/or therapy. The type of diagnostic/therapeutic agents varies from small chelates coordinating radioactive metal ions to complex nanoparticulate systems. Design of these agents often relies on conjugation of certain organic functionalities that determine their pharmacokinetics, biodistribution, targeting, and cell-penetrating abilities, or simply on tagging them with an optical label. The conjugation chemistry at the surface of nanoparticles and their final purification often require laborious procedures that become even more troublesome when radioactive materials are involved. This study represents a thorough investigation on the effects of neutron activation on the organic moieties of functionalized nanoparticles, with special focus on (166)Ho2O3 particles conjugated with PEG-fluorescein and PEG-polyarginine motives. Spectroscopic and thermogravimetric analyses demonstrate only a limited degradation of PEG-fluorescein upon irradiation of the particles up to 10 h using a thermal neutron flux of 5 × 10(16) m(-2) s(-1). Cell experiments show that the polyarginine-based mechanisms of membrane penetration remain unaltered after exposure of the functionalized particles to the mixed field of neutrons and gammas present during activation. This confirms that radiation damage on the PEG-polyarginines is minimal. Intrinsic radiations from (166)Ho do not seem to affect the integrity of conjugated organic material. These findings open up a new perspective to simplify the procedures for the preparation of functionalized metal-based nanosystems that need to be activated by neutron irradiation in order to be applied for diagnostic and/or therapeutic purposes. PMID:26619135

  18. Novel aspects of blood coagulation factor XIII. I. Structure, distribution, activation, and function

    SciTech Connect

    Muszbek, L.; Adany, R.; Mikkola, H.

    1996-10-01

    Blood coagulation factor XIII (FXIII) is a protransglutaminase that becomes activated by the concerted action of thrombin and Ca{sup 2+} in the final stage of the clotting cascade. In addition to plasma, FXIII also occurs in platelets, monocytes, and monocyte-derived macrophages. While the plasma factor is a heterotetramer consisting of paired A and B subunits (A{sub 2}B{sub 2}), its cellular counterpart lacks the B subunits and is a homodimer of potentially active A subunits (A{sub 2}). The gene coding for the A and B subunits has been localized to chromosomes 6p24-25 and 1q31-32.1, respectively. The genomic as well as the primary protein structure of both subunits has been established. Plasma FXIII circulates in association with its substrate precursor, fibrinogen. Fibrin(ogen) has an important regulatory role in the activation of plasma FXIII, for instance the proteolytic removal of activation peptide by thrombin, the dissociation of subunits A and B, and the exposure of the originally buried active site on the free A subunits. The end result of this process is the formation of an active transglutaminase, which crosslinks peptide chains through {epsilon}({gamma}-glutamyl)lysyl isopeptide bonds. The protein substrates of activated FXIII include components of the clotting-fibrinolytic system, adhesive and contractile proteins. The main physiological function of plasma FXIII is to cross-link fibrin and protect it from the fibrinolytic enzyme plasmin. The latter effect is achieved mainly by covalently linking {alpha}{sub 2} antiplasmin, the most potent physiological inhibitor of plasmin, to fibrin. Plasma FXIII seems to be involved in wound healing and tissue repair, and it is essential to maintaining pregnancy. Cellular FXIII, if exposed to the surface of the cells, might support or perhaps take over the hemostatic functions of plasma FXIII; however, its intracellular role has remained mostly unexplored. 328 refs., 4 figs.

  19. Interaction between organophosphate pesticide exposure and PON1 activity on thyroid function

    SciTech Connect

    Lacasana, Marina; Lopez-Flores, Inmaculada; Rodriguez-Barranco, Miguel; Aguilar-Garduno, Clemente; Blanco-Munoz, Julia; Perez-Mendez, Oscar; Gamboa, Ricardo; Gonzalez-Alzaga, Beatriz; Bassol, Susana; Cebrian, Mariano E.

    2010-11-15

    Organophosphate pesticides are widely used in agricultural purposes. Recently, a few studies have demonstrated the ability of these chemicals to alter the function of the thyroid gland in human. Moreover, the paraoxonase-1 enzyme (PON1) plays an important role in the toxicity of some organophosphate pesticides, with low PON1 activity being associated with higher pesticide sensitivity. This study evaluates the interaction between exposure to organophosphate compounds and PON1 enzyme activity on serum levels of TSH and thyroid hormones in a population of workers occupationally exposed to pesticides. A longitudinal study was conducted on a population of floriculture workers from Mexico, during two periods of high and low-intensity levels of pesticide application. A structured questionnaire was completed by workers containing questions on sociodemographic characteristics and other variables of interest. Urine and blood samples were taken, and biomarkers of exposure (dialkylphosphates), susceptibility (PON1 polymorphisms and activity) and effect (thyroid hormone levels) were determined. Interaction between dialkylphosphates and PON1 polymorphisms or PON1 activity on hormone levels was evaluated by generalized estimating equation (GEE) models. A significant interaction was found between serum diazoxonase activity and total dialkylphosphates ({Sigma}DAP) on TSH levels. Thus, when PON1 activity was increased we observed a decrease in the percentage of variation of TSH level for each increment in one logarithmic unit of the {Sigma}DAP levels. This interaction was also observed with the PON1{sub 192}RR genotype. These results suggest a stronger association between organophosphate pesticides and thyroid function in individuals with lower PON1 activity.

  20. Diacylglycerol Kinases: Regulated Controllers of T Cell Activation, Function, and Development

    PubMed Central

    Joshi, Rohan P.; Koretzky, Gary A.

    2013-01-01

    Diacylglycerol kinases (DGKs) are a diverse family of enzymes that catalyze the conversion of diacylglycerol (DAG), a crucial second messenger of receptor-mediated signaling, to phosphatidic acid (PA). Both DAG and PA are bioactive molecules that regulate a wide set of intracellular signaling proteins involved in innate and adaptive immunity. Clear evidence points to a critical role for DGKs in modulating T cell activation, function, and development. More recently, studies have elucidated factors that control DGK function, suggesting an added complexity to how DGKs act during signaling. This review summarizes the available knowledge of the function and regulation of DGK isoforms in signal transduction with a particular focus on T lymphocytes. PMID:23531532

  1. The cosmological evolution and luminosity function of X-ray selected active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Maccacaro, T.; Gioia, I. M.; Avni, Y.; Giommi, P.; Griffiths, R. E.; Liebert, J.; Stocke, J.; Danziger, J.

    1983-01-01

    The cosmological evolution and the X-ray luminosity function of X-ray selected active galactic nuclei (AGNs) are derived and discussed. The sample used consists of 31 AGNs extracted from a fully identified sample of X-ray sources from the Einstein Observatory Medium Sensitivity Survey and is therefore exclusively defined by its X-ray properties. The distribution in space is found to be strongly nonuniform. The amount of cosmological evolution required by the X-ray data is derived in the framework of pure luminosity evolution and is found to be smaller than the amount determined from optically selected samples. The X-ray luminosity function is derived. It can be satisfactorily represented by a single power law only over a limited range of absolute luminosities. Evidence that the luminosity function flattens at low luminosity or steepens at high luminosity, or both, is presented and discussed.

  2. Extensive site-directed mutagenesis reveals interconnected functional units in the alkaline phosphatase active site.

    PubMed

    Sunden, Fanny; Peck, Ariana; Salzman, Julia; Ressl, Susanne; Herschlag, Daniel

    2015-01-01

    Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called 'catalytic residues' are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modes of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes. PMID:25902402

  3. Identification of BRCA1 missense substitutions that confer partial functional activity: potential moderate risk variants?

    PubMed Central

    Lovelock, Paul K; Spurdle, Amanda B; Mok, Myth TS; Farrugia, Daniel J; Lakhani, Sunil R; Healey, Sue; Arnold, Stephen; Buchanan, Daniel; Investigators, kConFab; Couch, Fergus J; Henderson, Beric R; Goldgar, David E; Tavtigian, Sean V; Chenevix-Trench, Georgia; Brown, Melissa A

    2007-01-01

    Introduction Many of the DNA sequence variants identified in the breast cancer susceptibility gene BRCA1 remain unclassified in terms of their potential pathogenicity. Both multifactorial likelihood analysis and functional approaches have been proposed as a means to elucidate likely clinical significance of such variants, but analysis of the comparative value of these methods for classifying all sequence variants has been limited. Methods We have compared the results from multifactorial likelihood analysis with those from several functional analyses for the four BRCA1 sequence variants A1708E, G1738R, R1699Q, and A1708V. Results Our results show that multifactorial likelihood analysis, which incorporates sequence conservation, co-inheritance, segregation, and tumour immunohistochemical analysis, may improve classification of variants. For A1708E, previously shown to be functionally compromised, analysis of oestrogen receptor, cytokeratin 5/6, and cytokeratin 14 tumour expression data significantly strengthened the prediction of pathogenicity, giving a posterior probability of pathogenicity of 99%. For G1738R, shown to be functionally defective in this study, immunohistochemistry analysis confirmed previous findings of inconsistent 'BRCA1-like' phenotypes for the two tumours studied, and the posterior probability for this variant was 96%. The posterior probabilities of R1699Q and A1708V were 54% and 69%, respectively, only moderately suggestive of increased risk. Interestingly, results from functional analyses suggest that both of these variants have only partial functional activity. R1699Q was defective in foci formation in response to DNA damage and displayed intermediate transcriptional transactivation activity but showed no evidence for centrosome amplification. In contrast, A1708V displayed an intermediate transcriptional transactivation activity and a normal foci formation response in response to DNA damage but induced centrosome amplification. Conclusion

  4. Amine-functionalized, silver-exchanged zeolite NaY: Preparation, characterization and antibacterial activity

    NASA Astrophysics Data System (ADS)

    Hanim, Siti Aishah Mohd; Malek, Nik Ahmad Nizam Nik; Ibrahim, Zaharah

    2016-01-01

    Amine-functionalized, silver-exchanged zeolite NaY (ZSA) were prepared with three different concentrations of 3-aminopropyltriethoxysilane (APTES) (0.01, 0.20 and 0.40 M) and four different concentrations of silver ions (25%, 50%, 100% and 200% from zeolite cation exchange capacity (CEC)). The samples were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX), surface area analysis, thermogravimetric analysis (TGA) and zeta potential (ZP) analysis. The FTIR results indicated that the zeolite was functionalized by APTES and that the intensity of the peaks corresponding to APTES increased as the concentration of APTES used was increased. The antibacterial activities of the silver-exchanged zeolite NaY (ZS) and ZSA were studied against Escherichia coli ATCC11229 and Staphylococcus aureus ATCC6538 using the disc diffusion technique (DDT) and minimum inhibitory concentration (MIC). The antibacterial activity of ZSA increased with the increase in APTES on ZS, and E. coli was more susceptible towards the sample compared to S. aureus. The FESEM micrographs of the bacteria after contact with the ZSA suggested different mechanisms of bacterial death for these two bacteria due to exposure to the studied sample. The functionalization of ZS with APTES improved the antibacterial activity of the silver-zeolite, depending on the concentration of silver ions and APTES used during modification.

  5. SIRT1 reduces endothelial activation without affecting vascular function in ApoE-/- mice

    PubMed Central

    Stein, Sokrates; Schäfer, Nicola; Breitenstein, Alexander; Besler, Christian; Winnik, Stephan; Lohmann, Christine; Heinrich, Kathrin; Brokopp, Chad E.; Handschin, Christoph; Landmesser, Ulf; Tanner, Felix C.; Lüscher, Thomas F.; Matter, Christian M.

    2010-01-01

    Excessive production of reactive oxygen species (ROS) contributes to progression of atherosclerosis, at least in part by causing endothelial dysfunction and inflammatory activation. The class III histone deacetylase SIRT1 has been implicated in extension of lifespan. In the vasculature,SIRT1 gain-of-function using SIRT1 overexpression or activation has been shown to improve endothelial function in mice and rats via stimulation of endothelial nitric oxide (NO) synthase (eNOS). However, the effects of SIRT1 loss-of-function on the endothelium in atherosclerosis remain to be characterized. Thus, we have investigated the endothelial effects of decreased endogenous SIRT1 in hypercholesterolemic ApoE-/- mice. We observed no difference in endothelial relaxation and eNOS (Ser1177) phosphorylation between 20-week old male atherosclerotic ApoE-/- SIRT1+/- and ApoE-/- SIRT1+/+ mice. However, SIRT1 prevented endothelial superoxide production, inhibited NF-κB signaling, and diminished expression of adhesion molecules. Treatment of young hypercholesterolemic ApoE-/- SIRT1+/- mice with lipopolysaccharide to boost NF-κB signaling led to a more pronounced endothelial expression of ICAM-1 and VCAM-1 as compared to ApoE-/- SIRT1+/+ mice. In conclusion, endogenous SIRT1 diminishes endothelial activation in ApoE-/- mice, but does not affect endothelium-dependent vasodilatation. PMID:20606253

  6. Brain activity during the flow experience: a functional near-infrared spectroscopy study.

    PubMed

    Yoshida, Kazuki; Sawamura, Daisuke; Inagaki, Yuji; Ogawa, Keita; Ikoma, Katsunori; Sakai, Shinya

    2014-06-24

    Flow is the holistic experience felt when an individual acts with total involvement. Although flow is likely associated with many functions of the prefrontal cortex (PFC), such as attention, emotion, and reward processing, no study has directly investigated the activity of the PFC during flow. The objective of this study was to examine activity in the PFC during the flow state using functional near-infrared spectroscopy (fNIRS). Twenty right-handed university students performed a video game task under conditions designed to induce psychological states of flow and boredom. During each task and when completing the flow state scale for occupational tasks, change in oxygenated hemoglobin (oxy-Hb) concentration in frontal brain regions was measured using fNIRS. During the flow condition, oxy-Hb concentration was significantly increased in the right and left ventrolateral prefrontal cortex. Oxy-Hb concentration tended to decrease in the boredom condition. There was a significant increase in oxy-Hb concentration in the right and left dorsolateral prefrontal cortex, right and left frontal pole areas, and left ventrolateral PFC when participants were completing the flow state scale after performing the task in the flow condition. In conclusion, flow is associated with activity of the PFC, and may therefore be associated with functions such as cognition, emotion, maintenance of internal goals, and reward processing. PMID:24836375

  7. Atorvastatin activates autophagy and promotes neurological function recovery after spinal cord injury

    PubMed Central

    Gao, Shuang; Zhang, Zhong-ming; Shen, Zhao-liang; Gao, Kai; Chang, Liang; Guo, Yue; Li, Zhuo; Wang, Wei; Wang, Ai-mei

    2016-01-01

    Atorvastatin, a lipid-lowering medication, provides neuroprotective effects, although the precise mechanisms of action remain unclear. Our previous studies confirmed activated autophagy following spinal cord injury, which was conducive to recovery of neurological functions. We hypothesized that atorvastatin could also activate autophagy after spinal cord injury, and subsequently improve recovery of neurological functions. A rat model of spinal cord injury was established based on the Allen method. Atorvastatin (5 mg/kg) was intraperitoneally injected at 1 and 2 days after spinal cord injury. At 7 days post-injury, western blot assay, reverse transcription-polymerase chain reaction, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining results showed increased Beclin-1 and light chain 3B gene and protein expressions in the spinal cord injury + atorvastatin group. Additionally, caspase-9 and caspase-3 expression was decreased, and the number of TUNEL-positive cells was reduced. Compared with the spinal cord injury + saline group, Basso, Beattie, and Bresnahan locomotor rating scale scores significantly increased in the spinal cord injury + atorvastatin group at 14–42 days post-injury. These findings suggest that atorvastatin activated autophagy after spinal cord injury, inhibited apoptosis, and promoted recovery of neurological function. PMID:27482228

  8. Novel Active Surface Prepared by Embedded Functionalized Clays in an Acrylate Coating.

    PubMed

    Xia, Yining; Ghasemlou, Mehran; Rubino, Maria; Auras, Rafael; Baghdachi, Jamil

    2015-11-11

    The research on a self-decontaminating surface has received significant attention because of the growth of pathogenic microorganisms on surfaces. In this study, a novel and simple technique for producing an active surface with antimicrobial functionality is demonstrated. A tethering platform was developed by grafting the biocide ampicillin (Amp) to a nanoclay and dispersing the nanoclay in a UV-curable acrylate coating applied on polypropylene films as the substrate. A coupling agent, [3-(glycidyloxy)propyl]trimethoxysilane, was used as a linker between the nanoclay and Amp. The Amp-functionalized clay was further modified with an organic surfactant to improve the compatibility with the coating. Several characterization assays, such as Fourier infrared transform analysis, thermogravimetric analysis, and X-ray diffraction, were conducted to confirm the presence of Amp in the nanoclay. Transmission electron microscopy images revealed that the clay particles were well dispersed in the coating and had a partial exfoliated morphology. The active coating surface was effective in inhibiting the growth of Gram-positive Listeria monocytogenes and Gram-negative Salmonella Typhimurium via contact. These findings suggest the potential for the development of active surfaces with the implementation of nanotechnology to achieve diverse functionalities. PMID:26488557

  9. Cavitand-functionalized porous silicon as an active surface for organophosphorus vapor detection.

    PubMed

    Tudisco, Cristina; Betti, Paolo; Motta, Alessandro; Pinalli, Roberta; Bombaci, Luigi; Dalcanale, Enrico; Condorelli, Guglielmo G

    2012-01-24

    This paper reports on the preparation of a porous silicon-based material covalently functionalized with cavitand receptors suited for the detection of organophosphorus vapors. Two different isomeric cavitands, both containing one acid group at the upper rim, specifically designed for covalent anchoring on silicon, were grafted on H-terminated porous silicon (PSi) by thermal hydrosilylation. The covalently functionalized surfaces and their complexation properties were characterized by combining different analytical techniques, namely X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and mass spectroscopy analysis coupled with thermal desorption experiments. Complexation experiments were performed by exposing both active surfaces and a control surface consisting of PSi functionalized with a structurally similar but inactive methylene-bridged cavitand (MeCav) to dimethyl methylphosphonate (DMMP) vapors. Comparison between active and inactive surfaces demonstrated the recognition properties of the new surfaces. Finally, the nature of the involved interactions, the energetic differences between active and inactive surfaces toward DMMP complexation, and the comparison with a true nerve gas agent (sarin) were studied by DFT modeling. The results revealed the successful grafting reaction, the specific host-guest interactions of the PSi-bonded receptors, and the reversibility of the guest complexation. PMID:22185658

  10. Acetylation of pregnane X receptor protein determines selective function independent of ligand activation

    SciTech Connect

    Biswas, Arunima; Pasquel, Danielle; Tyagi, Rakesh Kumar; Mani, Sridhar

    2011-03-18

    Research highlights: {yields} Pregnane X receptor (PXR), a major regulatory protein, is modified by acetylation. {yields} PXR undergoes dynamic deacetylation upon ligand-mediated activation. {yields} SIRT1 partially mediates PXR deacetylation. {yields} PXR deacetylation per se induces lipogenesis mimicking ligand-mediated activation. -- Abstract: Pregnane X receptor (PXR), like other members of its class of nuclear receptors, undergoes post-translational modification [PTM] (e.g., phosphorylation). However, it is unknown if acetylation (a major and common form of protein PTM) is observed on PXR and, if it is, whether it is of functional consequence. PXR has recently emerged as an important regulatory protein with multiple ligand-dependent functions. In the present work we show that PXR is indeed acetylated in vivo. SIRT1 (Sirtuin 1), a NAD-dependent class III histone deacetylase and a member of the sirtuin family of proteins, partially mediates deacetylation of PXR. Most importantly, the acetylation status of PXR regulates its selective function independent of ligand activation.

  11. TYK2 Kinase Activity Is Required for Functional Type I Interferon Responses In Vivo

    PubMed Central

    Prchal-Murphy, Michaela; Semper, Christian; Lassnig, Caroline; Wallner, Barbara; Gausterer, Christian; Teppner-Klymiuk, Ingeborg; Kobolak, Julianna; Müller, Simone; Kolbe, Thomas; Karaghiosoff, Marina; Dinnyés, Andras; Rülicke, Thomas; Leitner, Nicole R.; Strobl, Birgit; Müller, Mathias

    2012-01-01

    Tyrosine kinase 2 (TYK2) is a member of the Janus kinase (JAK) family and is involved in cytokine signalling. In vitro analyses suggest that TYK2 also has kinase-independent, i.e., non-canonical, functions. We have generated gene-targeted mice harbouring a mutation in the ATP-binding pocket of the kinase domain. The Tyk2 kinase-inactive (Tyk2K923E) mice are viable and show no gross abnormalities. We show that kinase-active TYK2 is required for full-fledged type I interferon- (IFN) induced activation of the transcription factors STAT1-4 and for the in vivo antiviral defence against viruses primarily controlled through type I IFN actions. In addition, TYK2 kinase activity was found to be required for the protein’s stability. An inhibitory function was only observed upon over-expression of TYK2K923E in vitro. Tyk2K923E mice represent the first model for studying the kinase-independent function of a JAK in vivo and for assessing the consequences of side effects of JAK inhibitors. PMID:22723949

  12. Effect of heroin-conditioned auditory stimuli on cerebral functional activity in rats

    SciTech Connect

    Trusk, T.C.; Stein, E.A.

    1988-08-01

    Cerebral functional activity was measured as changes in distribution of the free fatty acid (1-14C)octanoate in autoradiograms obtained from rats during brief presentation of a tone previously paired to infusions of heroin or saline. Rats were trained in groups of three consisting of one heroin self-administering animal and two animals receiving yoked infusions of heroin or saline. Behavioral experiments in separate groups of rats demonstrated that these training parameters imparts secondary reinforcing properties to the tone for animals self-administering heroin while the tone remains behaviorally neutral in yoked-infusion animals. The optical densities of thirty-seven brain regions were normalized to a relative index for comparisons between groups. Previous pairing of the tone to heroin infusions irrespective of behavior (yoked-heroin vs. yoked-saline groups) produced functional activity changes in fifteen brain areas. In addition, nineteen regional differences in octanoate labeling density were evident when comparison was made between animals previously trained to self-administer heroin to those receiving yoked-heroin infusions, while twelve differences were noted when comparisons were made between the yoked vehicle and self administration group. These functional activity changes are presumed related to the secondary reinforcing capacity of the tone acquired by association with heroin, and may identify neural substrates involved in auditory signalled conditioning of positive reinforcement to opiates.

  13. Separation of the transcriptional activation and replication functions of the bovine papillomavirus-1 E2 protein.

    PubMed

    Winokur, P L; McBride, A A

    1992-11-01

    Replication of bovine papillomavirus-1 (BPV-1) DNA requires two viral gene products, the E1 protein and the full-length E2 protein. The 48 kDa E2 protein is a site-specific DNA-binding protein that binds to several sites which lie adjacent to the BPV-1 origin of replication. The 85 amino acid C-terminal domain contains the specific DNA binding and dimerization properties of the protein. The approximately 200 amino acid N-terminal domain is crucial for transcriptional activation. Both of these domains are highly conserved among different papillomaviruses. An internal hinge region separates the two functional domains. The region varies in amino acid sequence and length among the E2 proteins of different papillomaviruses. A series of mutations were constructed within the E2 open reading frame which delete various regions of the conserved DNA binding and transactivation domains as well as the internal hinge region. Two mutated E2 proteins that lack portions of the conserved DNA-binding domain but which support DNA replication were identified using transient replication assays. These mutated E2 proteins were unable to function as transcriptional activators. Conversely, two E2 proteins containing large deletions of the hinge region were able to activate transcription, but were defective for replication. Thus, the replication and transactivation functions of the E2 protein are separable. PMID:1327758

  14. Atorvastatin activates autophagy and promotes neurological function recovery after spinal cord injury.

    PubMed

    Gao, Shuang; Zhang, Zhong-Ming; Shen, Zhao-Liang; Gao, Kai; Chang, Liang; Guo, Yue; Li, Zhuo; Wang, Wei; Wang, Ai-Mei

    2016-06-01

    Atorvastatin, a lipid-lowering medication, provides neuroprotective effects, although the precise mechanisms of action remain unclear. Our previous studies confirmed activated autophagy following spinal cord injury, which was conducive to recovery of neurological functions. We hypothesized that atorvastatin could also activate autophagy after spinal cord injury, and subsequently improve recovery of neurological functions. A rat model of spinal cord injury was established based on the Allen method. Atorvastatin (5 mg/kg) was intraperitoneally injected at 1 and 2 days after spinal cord injury. At 7 days post-injury, western blot assay, reverse transcription-polymerase chain reaction, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining results showed increased Beclin-1 and light chain 3B gene and protein expressions in the spinal cord injury + atorvastatin group. Additionally, caspase-9 and caspase-3 expression was decreased, and the number of TUNEL-positive cells was reduced. Compared with the spinal cord injury + saline group, Basso, Beattie, and Bresnahan locomotor rating scale scores significantly increased in the spinal cord injury + atorvastatin group at 14-42 days post-injury. These findings suggest that atorvastatin activated autophagy after spinal cord injury, inhibited apoptosis, and promoted recovery of neurological function. PMID:27482228

  15. Activated NKT cells imprint NK-cell differentiation, functionality and education.

    PubMed

    Riese, Peggy; Trittel, Stephanie; May, Tobias; Cicin-Sain, Luka; Chambers, Benedict J; Guzmán, Carlos A

    2015-06-01

    NK cells represent a vital component of the innate immune system. The recent discoveries demonstrating that the functionality of NK cells depends on their differentiation and education status underscore their potential as targets for immune intervention. However, to exploit their full potential, a detailed understanding of the cellular interactions involved in these processes is required. In this regard, the cross-talk between NKT cells and NK cells needs to be better understood. Our results provide strong evidence for NKT cell-induced effects on key biological features of NK cells. NKT-cell activation results in the generation of highly active CD27(high) NK cells with improved functionality. In this context, degranulation activity and IFNγ production were mainly detected in the educated subset. In a mCMV infection model, we also demonstrated that NKT-cell stimulation induced the generation of highly functional educated and uneducated NK cells, crucial players in viral control. Thus, our findings reveal new fundamental aspects of the NKT-NK cell axis that provide important hints for the manipulation of NK cells in clinical settings. PMID:25808315

  16. Polyphenol-Rich Propolis Extracts Strengthen Intestinal Barrier Function by Activating AMPK and ERK Signaling

    PubMed Central

    Wang, Kai; Jin, Xiaolu; Chen, Yifan; Song, Zehe; Jiang, Xiasen; Hu, Fuliang; Conlon, Michael A.; Topping, David L.

    2016-01-01

    Propolis has abundant polyphenolic constituents and is used widely as a health/functional food. Here, we investigated the effects of polyphenol-rich propolis extracts (PPE) on intestinal barrier function in human intestinal epithelial Caco-2 cells, as well as in rats. In Caco-2 cells, PPE increased transepithelial electrical resistance and decreased lucifer yellow flux. PPE-treated cells showed increased expression of the tight junction (TJ) loci occludin and zona occludens (ZO)-1. Confocal microscopy showed organized expressions in proteins related to TJ assembly, i.e., occludin and ZO-1, in response to PPE. Furthermore, PPE led to the activation of AMPK, ERK1/2, p38, and Akt. Using selective inhibitors, we found that the positive effects of PPE on barrier function were abolished in cells in which AMPK and ERK1/2 signaling were inhibited. Moreover, rats fed a diet supplemented with PPE (0.3% in the diet) exhibited increased colonic epithelium ZO-1 expression. Overall, these data suggest that PPE strengthens intestinal barrier function by activating AMPK and ERK signaling and provide novel insights into the potential application of propolis for human gut health. PMID:27164138

  17. Polyphenol-Rich Propolis Extracts Strengthen Intestinal Barrier Function by Activating AMPK and ERK Signaling.

    PubMed

    Wang, Kai; Jin, Xiaolu; Chen, Yifan; Song, Zehe; Jiang, Xiasen; Hu, Fuliang; Conlon, Michael A; Topping, David L

    2016-01-01

    Propolis has abundant polyphenolic constituents and is used widely as a health/functional food. Here, we investigated the effects of polyphenol-rich propolis extracts (PPE) on intestinal barrier function in human intestinal epithelial Caco-2 cells, as well as in rats. In Caco-2 cells, PPE increased transepithelial electrical resistance and decreased lucifer yellow flux. PPE-treated cells showed increased expression of the tight junction (TJ) loci occludin and zona occludens (ZO)-1. Confocal microscopy showed organized expressions in proteins related to TJ assembly, i.e., occludin and ZO-1, in response to PPE. Furthermore, PPE led to the activation of AMPK, ERK1/2, p38, and Akt. Using selective inhibitors, we found that the positive effects of PPE on barrier function were abolished in cells in which AMPK and ERK1/2 signaling were inhibited. Moreover, rats fed a diet supplemented with PPE (0.3% in the diet) exhibited increased colonic epithelium ZO-1 expression. Overall, these data suggest that PPE strengthens intestinal barrier function by activating AMPK and ERK signaling and provide novel insights into the potential application of propolis for human gut health. PMID:27164138

  18. High-throughput mutagenesis reveals functional determinants for DNA targeting by activation-induced deaminase.

    PubMed

    Gajula, Kiran S; Huwe, Peter J; Mo, Charlie Y; Crawford, Daniel J; Stivers, James T; Radhakrishnan, Ravi; Kohli, Rahul M

    2014-09-01

    Antibody maturation is a critical immune process governed by the enzyme activation-induced deaminase (AID), a member of the AID/APOBEC DNA deaminase family. AID/APOBEC deaminases preferentially target cytosine within distinct preferred sequence motifs in DNA, with specificity largely conferred by a small 9-11 residue protein loop that differs among family members. Here, we aimed to determine the key functional characteristics of this protein loop in AID and to thereby inform our understanding of the mode of DNA engagement. To this end, we developed a methodology (Sat-Sel-Seq) that couples saturation mutagenesis at each position across the targeting loop, with iterative functional selection and next-generation sequencing. This high-throughput mutational analysis revealed dominant characteristics for residues within the loop and additionally yielded enzymatic variants that enhance deaminase activity. To rationalize these functional requirements, we performed molecular dynamics simulations that suggest that AID and its hyperactive variants can engage DNA in multiple specific modes. These findings align with AID's competing requirements for specificity and flexibility to efficiently drive antibody maturation. Beyond insights into the AID-DNA interface, our Sat-Sel-Seq approach also serves to further expand the repertoire of techniques for deep positional scanning and may find general utility for high-throughput analysis of protein function. PMID:25064858

  19. High-throughput mutagenesis reveals functional determinants for DNA targeting by activation-induced deaminase

    PubMed Central

    Gajula, Kiran S.; Huwe, Peter J.; Mo, Charlie Y.; Crawford, Daniel J.; Stivers, James T.; Radhakrishnan, Ravi; Kohli, Rahul M.

    2014-01-01

    Antibody maturation is a critical immune process governed by the enzyme activation-induced deaminase (AID), a member of the AID/APOBEC DNA deaminase family. AID/APOBEC deaminases preferentially target cytosine within distinct preferred sequence motifs in DNA, with specificity largely conferred by a small 9–11 residue protein loop that differs among family members. Here, we aimed to determine the key functional characteristics of this protein loop in AID and to thereby inform our understanding of the mode of DNA engagement. To this end, we developed a methodology (Sat-Sel-Seq) that couples saturation mutagenesis at each position across the targeting loop, with iterative functional selection and next-generation sequencing. This high-throughput mutational analysis revealed dominant characteristics for residues within the loop and additionally yielded enzymatic variants that enhance deaminase activity. To rationalize these functional requirements, we performed molecular dynamics simulations that suggest that AID and its hyperactive variants can engage DNA in multiple specific modes. These findings align with AID's competing requirements for specificity and flexibility to efficiently drive antibody maturation. Beyond insights into the AID-DNA interface, our Sat-Sel-Seq approach also serves to further expand the repertoire of techniques for deep positional scanning and may find general utility for high-throughput analysis of protein function. PMID:25064858

  20. Bromodomain protein 4 mediates the papillomavirus E2 transcriptional activation function.

    PubMed

    Schweiger, Michal-Ruth; You, Jianxin; Howley, Peter M

    2006-05-01

    The papillomavirus E2 regulatory protein has essential roles in viral transcription and the initiation of viral DNA replication as well as for viral genome maintenance. Brd4 has recently been identified as a major E2-interacting protein and, in the case of the bovine papillomavirus type 1, serves to tether E2 and the viral genomes to mitotic chromosomes in dividing cells, thus ensuring viral genome maintenance. We have explored the possibility that Brd4 is involved in other E2 functions. By analyzing the binding of Brd4 to a series of alanine-scanning substitution mutants of the human papillomavirus type 16 E2 N-terminal transactivation domain, we found that amino acids required for Brd4 binding were also required for transcriptional activation but not for viral DNA replication. Functional studies of cells expressing either the C-terminal domain of Brd4 that can bind E2 and compete its binding to Brd4 or short interfering RNA to knock down Brd4 protein levels revealed a role for Brd4 in the transcriptional activation function of E2 but not for its viral DNA replication function. Therefore, these studies establish a broader role for Brd4 in the papillomavirus life cycle than as the chromosome tether for E2 during mitosis. PMID:16611886

  1. Reverse evolution leads to genotypic incompatibility despite functional and active site convergence

    PubMed Central

    Kaltenbach, Miriam; Jackson, Colin J; Campbell, Eleanor C; Hollfelder, Florian; Tokuriki, Nobuhiko

    2015-01-01

    Understanding the extent to which enzyme evolution is reversible can shed light on the fundamental relationship between protein sequence, structure, and function. Here, we perform an experimental test of evolutionary reversibility using directed evolution from a phosphotriesterase to an arylesterase, and back, and examine the underlying molecular basis. We find that wild-type phosphotriesterase function could be restored (>104-fold activity increase), but via an alternative set of mutations. The enzyme active site converged towards its original state, indicating evolutionary constraints imposed by catalytic requirements. We reveal that extensive epistasis prevents reversions and necessitates fixation of new mutations, leading to a functionally identical sequence. Many amino acid exchanges between the new and original enzyme are not tolerated, implying sequence incompatibility. Therefore, the evolution was phenotypically reversible but genotypically irreversible. Our study illustrates that the enzyme's adaptive landscape is highly rugged, and different functional sequences may constitute separate fitness peaks. DOI: http://dx.doi.org/10.7554/eLife.06492.001 PMID:26274563

  2. Muscle Strength, Physical Activity, and Functional Limitations in Older Adults with Central Obesity

    PubMed Central

    Germain, Cassandra M.; Batsis, John A.; Vasquez, Elizabeth; McQuoid, Douglas R.

    2016-01-01

    Background. Obesity and muscle weakness are independently associated with increased risk of physical and functional impairment in older adults. It is unknown whether physical activity (PA) and muscle strength combined provide added protection against functional impairment. This study examines the association between muscle strength, PA, and functional outcomes in older adults with central obesity. Methods. Prevalence and odds of physical (PL), ADL, and IADL limitation were calculated for 6,388 community dwelling adults aged ≥ 60 with central obesity. Individuals were stratified by sex-specific hand grip tertiles and PA. Logistic models were adjusted for age, education, comorbidities, and body-mass index and weighted. Results. Overall prevalence of PL and ADL and IADL limitations were progressively lower by grip category. Within grip categories, prevalence was lower for individuals who were active than those who were inactive. Adjusted models showed significantly lower odds of PL OR 0.42 [0.31, 0.56]; ADL OR 0.60 [0.43, 0.84], and IADL OR 0.46 [0.35, 0.61] for those in the highest grip strength category as compared to those in the lowest grip category. Conclusion. Improving grip strength in obese elders who are not able to engage in traditional exercise is important for reducing odds of physical and functional impairment. PMID:27034833

  3. Antioxidant activities and functional properties of protein and peptide fractions isolated from salted herring brine.

    PubMed

    Taheri, Ali; Sabeena Farvin, K H; Jacobsen, Charlotte; Baron, Caroline P

    2014-01-01

    In the present study proteins isolated from herring brine, which is a by-product of marinated herring production were evaluated for their functional properties and antioxidant activity. Herring brine was collected from the local herring industry and proteins were precipitated by adjusting the pH to 4.5 and the obtained supernatant was further fractionated by using ultrafiltration membranes with molecular weight cut offs of 50, 10 and 1kDa. The obtained >50kDa, 50-10kDa, 10-1kDa fractions and pH precipitated fraction were studied for their functional properties and antioxidant activity. Functional properties revealed that >50kDa polypeptides showed good emulsion activity index when compared to the other fractions. However all fractions had low emulsion stability index. The pH precipitated fraction showed the highest foaming capacity and stability at pH 10. The 50-10kDa and 10-1kDa peptide fractions showed good radical scavenging activity and reducing power at a concentration of 0.5mg protein/ml. All the fractions demonstrated low iron chelating activity and did not inhibit oxidation in a soybean phosphatidylcholine liposome model system. However all the fractions were to some extent able to delay iron catalyzed lipid oxidation in 5% fish oil in water emulsions and the 10-50kDa fraction was the best. These results show the potential of proteins and peptide fractions recovered from waste water from the herring industry as source of natural antioxidants for use in food products. PMID:24001848

  4. Towards an automated selection of spontaneous co-activity maps in functional magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Sourty, Marion; Thoraval, Laurent; Roquet, Daniel; Armspach, Jean-Paul; Foucher, Jack

    2015-03-01

    Functional magnetic resonance imaging allows to assess large scale functional integration of the brain. One of the leading techniques to extract functionally relevant networks is spatial independent component analysis (ICA). Spatial ICA separates independent spatial sources, many of whom are noise or imaging artifacts, whereas some do correspond to functionally relevant Spontaneous co-Activity Maps (SAMs). For research purposes, ICA is generally performed on group data. This strategy is well adapted to uncover commonly shared networks, e.g. resting-state networks, but fails to capture idiosyncratic functional networks which may be related to pathological activity, e.g. epilepsy, hallucinations. To capture these subject specific networks, ICA has to be applied to single subjects using a large number of components, from which a tenth are SAMs. Up to now, SAMs have to be selected manually by an expert based on predefined criteria. We aim to semi-automate the selection process in order to save time. To this end, some approaches have been proposed but none with the near 100 % sensitivity required for clinical purposes. In this paper, we propose a computerized version of the SAM's criteria used by experts, based on frequential and spatial characteristics of functional networks. Here we present a pre-selection method and its results at different resolutions, with different scanners or imaging sequences. While preserving a near 100 % sensitivity, it allows an average of 70 % reduction of components to be classified which save 55% of experts' time. In comparison, group ICA fails to detect about 25% of the SAMs.

  5. Results of a workshop concerning impacts of various activities on the functions of bottomland hardwoods

    USGS Publications Warehouse

    Roelle, James E.; Auble, Gregor T.; Hamilton, David B.; Horak, Gerald C.; Johnson, Richard L.; Segelquist, Charles A.

    1987-01-01

    Under Section 404 of the Clean Water Act, the U.S. Environmental Protection Agency (EPA) has regulatory responsibilities related to the discharge of dredged or fill material into the Nation’s waters. In addition to its advisory role in the U.S. Army Corps of Engineers' permit program, EPA has a number of specific authorities, including formulation of the Section 404(b)(1) guidelines, use of Section 404(c) to prohibit disposal at particular sites, and enforcement actions for unauthorized discharges. A number of recent court cases focus on the geographic scope of Section 404 jurisdiction in potential bottomland hardwood (BLH) wetlands and the nature of landclearing activities in these areas that require a permit under Section 404. Accordingly, EPA needs to establish the scientific basis for implementing its responsibilities under Section 404 in bottomland hardwoods. EPA is approaching this task through a series of workshops designed to provide current scientific information on bottomland hardwoods and to organize that information in a manner pertinent to key policy questions. The first two workshops in the series were originally conceived as technically oriented meetings that would provide the information necessary to develop policy options at the third workshop. More specifically, the first workshop was designed to examine a zonation concept as a means of characterizing different BLH communities and describing variations in their functions along a soil moisture gradient. The second workshop was perceived as an attempt to evaluate the impacts of various activities on those functions. However, one conclusion of the first workshop, which was held in December 1984 in St. Francisville, Louisiana, was that the zonation approach does not describe the variability in the functions performed by BLH ecosystems sufficiently well to allow its use as the sole basis for developing a regulatory framework. That is, factors other than zone were considered critical for an effective

  6. Induction of mixed-function oxidase activity in mouse lymphoid tissues by polycyclic aromatic hydrocarbons

    SciTech Connect

    Griffin, G.D.; Egan, B.Z.; Lee, N.E.; Burtis, C.A.

    1986-01-01

    Polycyclic aromatic hydrocarbon (PAH) exposure can cause mixed-function oxidase (MFO) enzyme induction in certain tissues of various organisms. Measurements of such induction might serve as a useful bioindicator of human exposure to PAHs, provided readily obtainable human tissues can be utilized for such measurements. The authors have investigated the MFO activity in various lymphoid tissues of the C3H mouse as a model system and have studied the effect of systemic PAH treatment on such enzyme activity. An MFO enzyme assay was used to measure the activity of 7-ethoxyresorufin deethylase, an enzyme activity that may be specific for the cytochrome P-448 subset of MFO enzymes (those enzymes that are induced in cells or tissues following PAH administration). Intraperitoneal injection of mice with 180 mg/kg (4.6 mg) benzo(a)pyrene (BaP) or 160 mg/kg (4.0 mg) 3-methylcholanthrene (MC) produced a significant induction in MFO activity in mouse spleen S9 fractions 48 h after the injection. Induction ratios (induced activity/control activity) between 4 and 5 were seen with BaP; MC produced induction ratios of 2.5-3.0. Enzyme activity was not induced in the spleen within 16 h following BaP or MC administration. Other experiments indicated that MFO activity could be induced in thymus cells 48 h after either BaP or MC treatment. Treatment with BaP or MC did produce significant enzyme induction in the liver and lung tissues from the animals both 16 and 48 h after chemical treatment.

  7. Cognitive activity, cognitive function, and brain diffusion characteristics in old age.

    PubMed

    Arfanakis, Konstantinos; Wilson, Robert S; Barth, Christopher M; Capuano, Ana W; Vasireddi, Anil; Zhang, Shengwei; Fleischman, Debra A; Bennett, David A

    2016-06-01

    The objective of this work was to test the hypotheses that a) more frequent cognitive activity in late life is associated with higher brain diffusion anisotropy and lower trace of the diffusion tensor, and b) brain diffusion characteristics partially mediate the association of late life cognitive activity with cognition. As part of a longitudinal cohort study, 379 older people without dementia rated their frequency of participation in cognitive activities, completed a battery of cognitive function tests, and underwent diffusion tensor imaging. We used tract-based spatial statistics to test the association between late life cognitive activity and brain diffusion characteristics. Clusters with statistically significant findings defined regions of interest in which we tested the hypothesis that diffusion characteristics partially mediate the association of late life cognitive activity with cognition. More frequent cognitive activity in late life was associated with higher level of global cognition after adjustment for age, sex, education, and indicators of early life cognitive enrichment (p = 0.001). More frequent cognitive activity was also related to higher fractional anisotropy in the left superior and inferior longitudinal fasciculi, left fornix, and corpus callosum, and lower trace in the thalamus (p < 0.05, FWE-corrected). After controlling for fractional anisotropy or trace from these regions, the regression coefficient for the association of late life cognitive a