Science.gov

Sample records for activation inhibits melanoma

  1. Lumican Inhibits SNAIL-Induced Melanoma Cell Migration Specifically by Blocking MMP-14 Activity.

    PubMed

    Stasiak, Marta; Boncela, Joanna; Perreau, Corinne; Karamanou, Konstantina; Chatron-Colliet, Aurore; Proult, Isabelle; Przygodzka, Patrycja; Chakravarti, Shukti; Maquart, François-Xavier; Kowalska, M Anna; Wegrowski, Yanusz; Brézillon, Stéphane

    2016-01-01

    Lumican, a small leucine rich proteoglycan, inhibits MMP-14 activity and melanoma cell migration in vitro and in vivo. Snail triggers epithelial-mesenchymal transitions endowing epithelial cells with migratory and invasive properties during tumor progression. The aim of this work was to investigate lumican effects on MMP-14 activity and migration of Snail overexpressing B16F1 (Snail-B16F1) melanoma cells and HT-29 colon adenocarcinoma cells. Lumican inhibits the Snail induced MMP-14 activity in B16F1 but not in HT-29 cells. In Snail-B16F1 cells, lumican inhibits migration, growth, and melanoma primary tumor development. A lumican-based strategy targeting Snail-induced MMP-14 activity might be useful for melanoma treatment. PMID:26930497

  2. Lumican Inhibits SNAIL-Induced Melanoma Cell Migration Specifically by Blocking MMP-14 Activity

    PubMed Central

    Stasiak, Marta; Boncela, Joanna; Perreau, Corinne; Karamanou, Konstantina; Chatron-Colliet, Aurore; Proult, Isabelle; Przygodzka, Patrycja; Chakravarti, Shukti; Maquart, François-Xavier; Kowalska, M. Anna; Wegrowski, Yanusz; Brézillon, Stéphane

    2016-01-01

    Lumican, a small leucine rich proteoglycan, inhibits MMP-14 activity and melanoma cell migration in vitro and in vivo. Snail triggers epithelial-mesenchymal transitions endowing epithelial cells with migratory and invasive properties during tumor progression. The aim of this work was to investigate lumican effects on MMP-14 activity and migration of Snail overexpressing B16F1 (Snail-B16F1) melanoma cells and HT-29 colon adenocarcinoma cells. Lumican inhibits the Snail induced MMP-14 activity in B16F1 but not in HT-29 cells. In Snail-B16F1 cells, lumican inhibits migration, growth, and melanoma primary tumor development. A lumican-based strategy targeting Snail-induced MMP-14 activity might be useful for melanoma treatment. PMID:26930497

  3. Activation of Notch1 signaling in stromal fibroblasts inhibits melanoma growth by upregulating WISP-1.

    PubMed

    Shao, H; Cai, L; Grichnik, J M; Livingstone, A S; Velazquez, O C; Liu, Z-J

    2011-10-20

    The tumor microenvironment is emerging as an important target for cancer therapy. Fibroblasts (Fbs) within the tumor stroma are critically involved in promoting tumor growth and angiogenesis through secretion of soluble factors, synthesis of extracellular matrix and direct cell-cell interaction. In this work, we aim to alter the biological activity of stromal Fbs by modulating the Notch1 signaling pathway. We show that Fbs engineered to constitutively activate the Notch1 pathway significantly inhibit melanoma growth and tumor angiogenesis. We determine that the inhibitory effect of 'Notch-engineered' Fbs is mediated by increased secretion of Wnt-induced secreted protein-1 (WISP-1) as the effects of Notch1 activation in Fbs are reversed by shRNA-mediated blockade of WISP-1. When 'Notch-engineered' Fbs are co-grafted with melanoma cells in SCID mice, shRNA-mediated blockade of WISP-1 reverses the tumor-suppressive phenotype of the 'Notch-engineered' Fbs, significantly increases melanoma growth and tumor angiogenesis. Consistent with these findings, supplement of recombinant WISP-1 protein inhibits melanoma cell growth in vitro. In addition, WISP-1 is modestly expressed in melanoma-activated Fbs but highly expressed in inactivated Fbs. Evaluation of human melanoma skin biopsies indicates that expression of WISP-1 is significantly lower in melanoma nests and surrounding areas filled with infiltrated immune cells than in the adjacent dermis unaffected by the melanoma. Overall, our study shows that constitutive activation of the Notch1 pathway confers Fbs with a suppressive phenotype to melanoma growth, partially through WISP-1. Thus, targeting tumor stromal Fbs by activating Notch signaling and/or increasing WISP-1 may represent a novel therapeutic approach to combat melanoma.

  4. Liposomal C6 Ceramide Activates Protein Phosphatase 1 to Inhibit Melanoma Cells

    PubMed Central

    Jiang, Fangzhen; Jin, Kai; Huang, Shenyu; Bao, Qi; Shao, Zheren; Hu, Xueqing; Ye, Juan

    2016-01-01

    Melanoma is one common skin cancer. In the present study, the potential anti-melanoma activity by a liposomal C6 ceramide was tested in vitro. We showed that the liposomal C6 (ceramide) was cytotoxic and anti-proliferative against a panel of human melanoma cell lines (SK-Mel2, WM-266.4 and A-375 and WM-115). In addition, liposomal C6 induced caspase-dependent apoptotic death in the melanoma cells. Reversely, its cytotoxicity was attenuated by several caspase inhibitors. Intriguingly, liposomal C6 was non-cytotoxic to B10BR mouse melanocytes and primary human melanocytes. Molecularly, liposomal C6 activated protein phosphatase 1 (PP1) to inactivate Akt-mammalian target of rapamycin (mTOR) signaling in melanoma cells. On the other hand, PP1 shRNA knockdown or exogenous expression of constitutively activate Akt1 (CA-Akt1) restored Akt-mTOR activation and significantly attenuated liposomal C6-mediated cytotoxicity and apoptosis in melanoma cells. Our results suggest that liposomal C6 activates PP1 to inhibit melanoma cells. PMID:27631768

  5. Liposomal C6 Ceramide Activates Protein Phosphatase 1 to Inhibit Melanoma Cells.

    PubMed

    Jiang, Fangzhen; Jin, Kai; Huang, Shenyu; Bao, Qi; Shao, Zheren; Hu, Xueqing; Ye, Juan

    2016-01-01

    Melanoma is one common skin cancer. In the present study, the potential anti-melanoma activity by a liposomal C6 ceramide was tested in vitro. We showed that the liposomal C6 (ceramide) was cytotoxic and anti-proliferative against a panel of human melanoma cell lines (SK-Mel2, WM-266.4 and A-375 and WM-115). In addition, liposomal C6 induced caspase-dependent apoptotic death in the melanoma cells. Reversely, its cytotoxicity was attenuated by several caspase inhibitors. Intriguingly, liposomal C6 was non-cytotoxic to B10BR mouse melanocytes and primary human melanocytes. Molecularly, liposomal C6 activated protein phosphatase 1 (PP1) to inactivate Akt-mammalian target of rapamycin (mTOR) signaling in melanoma cells. On the other hand, PP1 shRNA knockdown or exogenous expression of constitutively activate Akt1 (CA-Akt1) restored Akt-mTOR activation and significantly attenuated liposomal C6-mediated cytotoxicity and apoptosis in melanoma cells. Our results suggest that liposomal C6 activates PP1 to inhibit melanoma cells. PMID:27631768

  6. Inhibition of the mitogen-activated protein kinase pathway triggers B16 melanoma cell differentiation.

    PubMed

    Englaro, W; Bertolotto, C; Buscà, R; Brunet, A; Pagès, G; Ortonne, J P; Ballotti, R

    1998-04-17

    In B16 melanoma cells, mitogen-activated protein (MAP) kinases are activated during cAMP-induced melanogenesis (Englaro, W., Rezzonico, R., Durand-Clément, M., Lallemand, D., Ortonne, J. P., and Ballotti, R. (1995) J. Biol. Chem. 270, 24315-24320). To establish the role of the MAP kinases in melanogenesis, we studied the effects of a specific MAP kinase kinase (MEK) inhibitor PD 98059 on different melanogenic parameters. We showed that PD 98059 inhibits the activation of MAP kinase extracellular signal-regulated kinase 1 by cAMP, but does not impair the effects of cAMP either on the morphological differentiation, characterized by an increase in dendrite outgrowth, or on the up-regulation of tyrosinase that is the key enzyme in melanogenesis. On the contrary, PD 98059 promotes by itself cell dendricity and increases the tyrosinase amount and activity. Moreover, down-regulation of the MAP kinase pathway by PD 98059, or with dominant negative mutants of p21(ras) and MEK, triggers a stimulation of the tyrosinase promoter activity and enhances the effect of cAMP on this parameter. Conversely, activation of the MAP kinase pathway, using constitutive active mutants of p21(ras) and MEK, leads to an inhibition of basal and cAMP-induced tyrosinase gene transcription. These results demonstrate that the MAP kinase pathway activation is not required for cAMP-induced melanogenesis. Furthermore, the inhibition of this pathway induces B16 melanoma cell differentiation, while a sustained activation impairs the melanogenic effect of cAMP-elevating agents. PMID:9545341

  7. Mek inhibition results in marked antitumor activity against metastatic melanoma patient-derived melanospheres and in melanosphere-generated xenografts.

    PubMed

    Sette, Giovanni; Fecchi, Katia; Salvati, Valentina; Lotti, Fiorenza; Pilozzi, Emanuela; Duranti, Enrico; Biffoni, Mauro; Pagliuca, Alfredo; Martinetti, Daniela; Memeo, Lorenzo; Milella, Michele; De Maria, Ruggero; Eramo, Adriana

    2013-11-16

    One of the key oncogenic pathways involved in melanoma aggressiveness, development and progression is the RAS/BRAF/MEK pathway, whose alterations are found in most patients. These molecular anomalies are promising targets for more effective anti-cancer therapies. Some Mek inhibitors showed promising antitumor activity, although schedules and doses associated with low systemic toxicity need to be defined. In addition, it is now accepted that cancers can arise from and be maintained by the cancer stem cells (CSC) or tumor-initiating cells (TIC), commonly expanded in vitro as tumorspheres from several solid tumors, including melanoma (melanospheres). Here, we investigated the potential targeting of MEK pathway by exploiting highly reliable in vitro and in vivo pre-clinical models of melanomas based on melanospheres, as melanoma initiating cells (MIC) surrogates. MEK inhibition, through PD0325901, provided a successful strategy to affect survival of mutated-BRAF melanospheres and growth of wild type-BRAF melanospheres. A marked citotoxicity was observed in differentated melanoma cells regardless BRAF mutational status. PD0325901 treatment, dramatically inhibited growth of melanosphere-generated xenografts and determined impaired tumor vascularization of both mutated- and wild type-BRAF tumors, in the absence of mice toxicity. These results suggest that MEK inhibition might represent a valid treatment option for patients with both mutated- or wild type-BRAF melanomas, affecting tumor growth through multiple targets.

  8. Comparative analysis of MAPK and PI3K/AKT pathway activation and inhibition in human and canine melanoma.

    PubMed

    Fowles, J S; Denton, C L; Gustafson, D L

    2015-09-01

    The lack of advanced animal models of human cancers is considered a barrier to developing effective therapeutics. Canine and human melanomas are histologically disparate but show similar disease progression and response to therapies. The purpose of these studies was to compare human and canine melanoma tumours and cell lines regarding MAPK and PI3K/AKT signalling dysregulation, and response to select molecularly targeted agents. Pathway activation was investigated via microarray and mutational analysis. Growth inhibition and cell cycle effects were assessed for pathway inhibitors AZD6244 (MAPK) and rapamycin (PI3K/AKT) in human and canine melanoma cells. Human and canine melanoma share similar differential gene expression patterns within the MAPK and PI3K/AKT pathways. Constitutive pathway activation and similar sensitivity to AZD6244 and rapamycin was observed in human and canine cells. These results show that human and canine melanoma share activation and sensitivity to inhibition of cancer-related signalling pathways despite differences in activating mutations. PMID:23745794

  9. Multifunctional bioscaffolds for 3D culture of melanoma cells reveal increased MMP activity and migration with BRAF kinase inhibition.

    PubMed

    Leight, Jennifer L; Tokuda, Emi Y; Jones, Caitlin E; Lin, Austin J; Anseth, Kristi S

    2015-04-28

    Matrix metalloproteinases (MMPs) are important for many different types of cancer-related processes, including metastasis. Understanding the functional impact of changes in MMP activity during cancer treatment is an important facet not typically evaluated as part of preclinical research. With MMP activity being a critical component of the metastatic cascade, we designed a 3D hydrogel system to probe whether pharmacological inhibition affected human melanoma cell proteolytic activity; metastatic melanoma is a highly aggressive and drug-resistant form of skin cancer. The relationship between MMP activity and drug treatment is unknown, and therefore we used an in situ fluorogenic MMP sensor peptide to determine how drug treatment affects melanoma cell MMP activity in three dimensions. We encapsulated melanoma cells from varying stages of progression within PEG-based hydrogels to examine the relationship between drug treatment and MMP activity. From these results, a metastatic melanoma cell line (A375) and two inhibitors that inhibit RAF (PLX4032 and sorafenib) were studied further to determine whether changes in MMP activity led to a functional change in cell behavior. A375 cells exhibited increased MMP activity despite an overall decrease in metabolic activity with PLX4032 treatment. The changes in proteolytic activity correlated with increased cell elongation and increased single-cell migration. In contrast, sorafenib did not alter MMP activity or cell motility, showing that the changes induced by PLX4032 were not a universal response to small-molecule inhibition. Therefore, we argue the importance of studying MMP activity with drug treatment and its possible implications for unwanted side effects. PMID:25870264

  10. Angiostatin inhibits endothelial and melanoma cellular invasion by blocking matrix-enhanced plasminogen activation.

    PubMed Central

    Stack, M S; Gately, S; Bafetti, L M; Enghild, J J; Soff, G A

    1999-01-01

    Angiostatin, a kringle-containing fragment of plasminogen, is a potent inhibitor of angiogenesis. The mechanism(s) responsible for the anti-angiogenic properties of angiostatin are unknown. We now report that human angiostatin blocks plasmin(ogen)-enhanced in vitro invasion of tissue plasminogen activator (t-PA)-producing endothelial and melanoma cells. Kinetic analyses demonstrated that angiostatin functions as a non-competitive inhibitor of extracellular-matrix (ECM)-enhanced, t-PA-catalysed plasminogen activation, with a Ki of 0.9+/-0.03 microM. This mechanism suggests that t-PA has a binding site for the inhibitor angiostatin, as well as for its substrate plasminogen that, when occupied, prevents ternary complex formation between t-PA, plasminogen and matrix protein. Direct binding experiments confirmed that angiostatin bound to t-PA with an apparent Kd [Kd(app)] of 6.7+/-0.7 nM, but did not bind with high affinity to ECM proteins. Together, these data suggest that angiostatin in the cellular micro-environment can inhibit matrix-enhanced plasminogen activation, resulting in reduced invasive activity, and suggest a biochemical mechanism whereby angiostatin-mediated regulation of plasmin formation could influence cellular migration and invasion. PMID:10229661

  11. Combined inhibition of MEK and Plk1 has synergistic anti-tumor activity in NRAS mutant melanoma

    PubMed Central

    Vujic, I; Sanlorenzo, M; Ma, J; Kim, ST; Kleffel, S; Schatton, T; Rappersberger, K; Gutteridge, R; Ahmad, N; Ortiz/Urda, S

    2015-01-01

    About one third of cancers harbor activating mutations in rat sarcoma viral oncogene homolog (RAS) oncogenes. In melanoma, aberrant neuroblastoma-RAS (NRAS) signaling fuels tumor progression in about 20% of patients. Current therapeutics for NRAS driven malignancies barely impact overall survival. To date, pathway interference downstream of mutant NRAS seems to be the most promising approach. In this study, data revealed that mutant NRAS induced Plk1 expression, and pharmacologic inhibition of Plk1 stabilized the size of NRAS mutant melanoma xenografts. The combination of MEK and Plk1 inhibitors resulted in a significant growth reduction of NRAS mutant melanoma cells in vitro, and regression of xenografted NRAS mutant melanoma in vivo. Independent cell cycle arrest and increased induction of apoptosis underlies the synergistic effect of this combination. Data further suggest that the p53 signaling pathway is of key importance to the observed therapeutic efficacy. This study provides in vitro, in vivo and first mechanistic data, that a MEK/Plk1 inhibitor combination might be a promising treatment approach for patients with NRAS driven melanoma. Since mutant NRAS signaling is similar across different malignancies, this inhibitor combination could also offer a previously unreported treatment modality for NRAS mutant tumors of other cell origins. PMID:26016894

  12. Lauroside B, a megastigmane glycoside from Laurus nobilis (bay laurel) leaves, induces apoptosis in human melanoma cell lines by inhibiting NF-κB activation.

    PubMed

    Panza, Elisabetta; Tersigni, Mariaroberta; Iorizzi, Maria; Zollo, Franco; De Marino, Simona; Festa, Carmen; Napolitano, Maria; Castello, Giuseppe; Ialenti, Armando; Ianaro, Angela

    2011-02-25

    Malignant melanoma is a highly aggressive tumor that frequently resists chemotherapy, so the search for new agents for its treatment is of great importance. In the present study, the antiproliferative propensity against human melanoma cell lines of lauroside B (1), a megastigmane glycoside isolated from Laurus nobilis (bay laurel) leaves, was investigated. This compound suppressed the proliferation of three human melanoma cell lines, namely, A375, WM115, and SK-Mel-28. The 1-induced inhibition of human melanoma cell proliferation was due to the induction of apoptosis, as demonstrated by FACS analysis with annexin V/PI staining and confirmed by activation of caspase-3 and by the cleavage of poly(ADP-ribose) polymerase (PARP). Growing evidence implicates NF-κB as an important contributor to metastasis and increased chemoresistance of melanoma. Thus, it was hypothesized that 1-induced apoptosis could be associated with suppression of NF-κB activation. The results showed that exposure of human melanoma cells to 1 inhibited IκB-α degradation and constitutive NF-κB DNA-binding activity as well as the expression, regulated by NF-κB, of two antiapoptotic genes, XIAP and c-FLIP. Induction of apoptosis by 1 in human aggressive melanoma cell lines has a potential high biological value.

  13. α-Solanine inhibits human melanoma cell migration and invasion by reducing matrix metalloproteinase-2/9 activities.

    PubMed

    Lu, Ming-Kun; Shih, Yuan-Wei; Chang Chien, Tzu-Tsung; Fang, Li-Heng; Huang, Hsiang-Ching; Chen, Pin-Shern

    2010-01-01

    α-Solanine, a naturally occurring steroidal glycoalkaloid in potato sprouts, was found to possess anti-carcinogenic properties, such as inhibiting proliferation and inducing apoptosis of tumor cells. However, the effect of α-solanine on cancer metastasis remains unclear. In the present study, we examined the effect of α-solanine on metastasis in vitro. Data demonstrated that α-solanine inhibited proliferation of human melanoma cell line A2058 in a dose-dependent manner. When treated with non-toxic doses of α-solanine, cell migration and invasion were markedly suppressed. Furthermore, α-solanine reduced the activity of matrix metalloproteinase-2 (MMP-2) and MMP-9, which are involved in the migration and invasion of cancer cells. Our biochemical assays indicated that α-solanine potently suppressed the phosphorylation of c-Jun N-terminal kinase (JNK), phosphatidylinositide-3 kinase (PI3K) and Akt, while it did not affect phosphorylation of extracellular signal regulating kinase (ERK). In addition, α-solanine significantly decreased the nuclear level of nuclear factor kappa B (NF-κB), suggesting that α-solanine inhibited NF-κB activity. Taken together, the results suggested that α-solanine inhibited migration and invasion of A2058 cells by reducing MMP-2/9 activities. It also inhibited JNK and PI3K/Akt signaling pathways as well as NF-κB activity. These findings reveal new therapeutic potential for α-solanine in anti-metastatic therapy.

  14. Fad104, a Positive Regulator of Adipocyte Differentiation, Suppresses Invasion and Metastasis of Melanoma Cells by Inhibition of STAT3 Activity

    PubMed Central

    Katoh, Daiki; Nishizuka, Makoto; Osada, Shigehiro; Imagawa, Masayoshi

    2015-01-01

    Metastasis is the main cause of death in patients with cancer, and understanding the mechanisms of metastatic processes is essential for the development of cancer therapy. Although the role of several cell adhesion, migration or proliferation molecules in metastasis is established, a novel target for cancer therapy remains to be discovered. Previously, we reported that fad104 (factor for adipocyte differentiation 104), a regulatory factor of adipogenesis, regulates cell adhesion and migration. In this report, we clarify the role of fad104 in the invasion and metastasis of cancer cells. The expression level of fad104 in highly metastatic melanoma A375SM cells was lower than that in poorly metastatic melanoma A375C6 cells. Reduction of fad104 expression enhanced the migration and invasion of melanoma cells, while over-expression of FAD104 inhibited migration and invasion. In addition, melanoma cells stably expressing FAD104 showed a reduction in formation of lung colonization compared with control cells. FAD104 interacted with STAT3 and down-regulated the phosphorylation level of STAT3 in melanoma cells. These findings together demonstrate that fad104 suppressed the invasion and metastasis of melanoma cells by inhibiting activation of the STAT3 signaling pathway. These findings will aid a comprehensive description of the mechanism that controls the invasion and metastasis of cancer cells. PMID:25671570

  15. Retinoic acid-induced AP-1 transcriptional activity regulates B16 mouse melanoma growth inhibition and differentiation.

    PubMed

    Huang, Ying; Boskovic, Goran; Niles, Richard M

    2003-02-01

    Retinoic acid (RA) inhibits growth and induces differentiation of B16 mouse melanoma cells. These effects are accompanied by a large increase in PKCalpha mRNA and protein levels and surprisingly an increase in activating protein-1 (AP-1) transcriptional activity. To further investigate the RA-induced AP-1 activity we established clones of B16 cells stably expressing an AP-1-luciferase reporter gene. Treatment of these clones with phorbol dibutyrate increased AP-1 activity which peaked at 2-4 h and returned to baseline level by 24 h. In contrast, RA treatment resulted in a slow increase in AP-1 activity that reached a maximum level at 48 h and was maintained for the duration of the treatment. We tested the importance of the RA-induced AP-1 activity by establishing clones which stably express a dominant negative fos gene (A-fos) and have greatly diminished AP-1 activity. Growth rates of untreated A-fos expressing cells were similar to wt B16 and clones not expressing A-fos. However, clones expressing the dominant-negative fos had a markedly decreased sensitivity to RA-induced inhibition of anchorage-dependent and -independent growth. Treatment of wt B16 cells for 48 h with RA increased melanin production by two to fourfold, but this effect was completely lost in the A-fos clones. The ability of RA to induce RARbeta and PKCalpha expression was retained in A-fos clones, suggesting that A-fos was not interfering with RAR transcription activation functions. We tested whether the RA-induced AP-1 activity might be mediated by the ERK1/2 MAPK pathway. Inhibition of ERK1/2 phosphorylation stimulated AP-1 activity, which was not additive to that induced by RA. This finding raises the possibility that this MAPK pathway may be a target of retinoid action. Our observations suggest that AP-1 transcriptional activity induced by RA likely plays an important role in the biological changes mediated by this retinoid in B16 melanoma cells. PMID:12494454

  16. A novel 7-bromoindirubin with potent anticancer activity suppresses survival of human melanoma cells associated with inhibition of STAT3 and Akt signaling.

    PubMed

    Liu, Lucy; Kritsanida, Marina; Magiatis, Prokopios; Gaboriaud, Nicolas; Wang, Yan; Wu, Jun; Buettner, Ralf; Yang, Fan; Nam, Sangkil; Skaltsounis, Leandros; Jove, Richard

    2012-11-01

    STAT3 and Akt signaling have been validated as potential molecular targets for treatment of cancers including melanoma. These small molecule inhibitors of STAT3 or Akt signaling are promising for developing anti-melanoma therapeutic agents. MLS-2438, a novel 7-bromoindirubin, a derivative of the natural product indirubin, was synthesized with a bromo-group at the 7-position on one indole ring and a hydrophilic group at the 3'-position on the other indole ring. We tested the anticancer activity of MLS-2438 and investigated its mechanism of action in human melanoma cell lines. Here, we show that MLS-2438 inhibits viability and induces apoptosis of human melanoma cells associated with inhibition of STAT3 and Akt signaling. Several pro-apoptotic Bcl-2 family proteins are involved in the MLS-2438 mediated apoptosis. MLS-2438 inhibits Src kinase activity in vitro and phosphorylation of JAK2, Src, STAT3 and Akt in cultured cancer cells. In contrast to the decreased phosphorylation levels of JAK2, Src, STAT3 and Akt, phosphorylation levels of the MAPK (Erk1/2) signaling protein were not reduced in cells treated with MLS-2438. These results demonstrate that MLS-2438, a novel natural product derivative, is a Src inhibitor and potentially regulates kinase activity of JAK2 and Akt in cancer cells. Importantly, MLS-2438 suppressed tumor growth with low toxicity in a mouse xenograft model of human melanoma. Our findings support further development of MLS-2438 as a potential small-molecule therapeutic agent that targets both STAT3 and Akt signaling in human melanoma cells.

  17. ERBB activation modulates sensitivity to MEK1/2 inhibition in a subset of driver-negative melanoma

    PubMed Central

    Hutchinson, Katherine E.; Johnson, Douglas B.; Johnson, Adam S.; Sanchez, Violeta; Kuba, Maria; Lu, Pengcheng; Chen, Xi; Kelley, Mark C.; Wang, Qingguo; Zhao, Zhongming; Kris, Mark; Berger, Michael F.; Sosman, Jeffrey A.; Pao, William

    2015-01-01

    Melanomas are characterized by activating “driver” mutations in BRAF, NRAS, KIT, GNAQ, and GNA11. Resultant mitogen-activated protein kinase (MAPK) pathway signaling makes some melanomas susceptible to BRAF (BRAF V600 mutations), MEK1/2 (BRAF V600, L597, fusions; NRAS mutations), or other kinase inhibitors (KIT), respectively. Among driver-negative (“pan-negative”) patients, an unexplained heterogeneity of response to MEK1/2 inhibitors has been observed. Analysis of 16 pan-negative melanoma cell lines revealed that 8 (50%; termed Class I) are sensitive to the MEK1/2 inhibitor, trametinib, similar to BRAF V600E melanomas. A second set (termed Class II) display reduced trametinib sensitivity, paradoxical activation of MEK1/2 and basal activation of ERBBs 1, 2, and 3 (4 lines, 25%). In 3 of these lines, PI3K/AKT and MAPK pathway signaling is abrogated using the ERBB inhibitor, afatinib, and proliferation is even further reduced upon the addition of trametinib. A potential mechanism of ERBB activation in Class II melanomas is minimal expression of the ERK1/2 phosphatase, DUSP4, as ectopic restoration of DUSP4 attenuated ERBB signaling through potential modulation of the ERBB ligand, amphiregulin (AREG). Consistent with these data, immunohistochemical analysis of patient melanomas revealed a trend towards lower overall DUSP4 expression in pan-negative versus BRAF- and NRAS-mutant tumors. This study is the first to demonstrate that differential ERBB activity in pan-negative melanoma may modulate sensitivity to clinically-available MEK1/2 inhibitors and provides rationale for the use of ERBB inhibitors, potentially in combination with MEK1/2 inhibitors, in subsets of this disease. PMID:26084293

  18. Natural paniceins from mediterranean sponge inhibit the multidrug resistance activity of Patched and increase chemotherapy efficiency on melanoma cells

    PubMed Central

    Fiorini, Laura; Tribalat, Marie-Aude; Sauvard, Lucy; Cazareth, Julie; Lalli, Enzo; Broutin, Isabelle; Thomas, Olivier P.; Mus-Veteau, Isabelle

    2015-01-01

    Multidrug resistance has appeared to mitigate the efficiency of anticancer drugs and the possibility of successful cancer chemotherapy. The Hedgehog receptor Patched is a multidrug transporter expressed in several cancers and as such it represents a new target to circumvent chemotherapy resistance. We report herein that paniceins and especially panicein A hydroquinone, natural meroterpenoids produced by the Mediterranean sponge Haliclona (Soestella) mucosa, inhibit the doxorubicin efflux activity of Patched and enhance the cytotoxicity of this chemotherapeutic agent on melanoma cells in vitro. These results are supported by the molecular docking performed on the structure of the bacterial drug efflux pump AcrB and on the Patched model built from AcrB structure. Docking calculations show that panicein A hydroquinone interacts with AcrB and Patched model close to the doxorubicin binding site. This compound thus appears as the first antagonist of the doxorubicin efflux activity of Patched. The use of inhibitors of Patched drug efflux activity in combination with classical chemotherapy could represent a novel approach to reduce tumor drug resistance, recurrence and metastasis. PMID:26068979

  19. Activation of β2-adrenergic receptor by (R,R’)-4’-methoxy-1-naphthylfenoterol inhibits proliferation and motility of melanoma cells

    PubMed Central

    Wnorowski, Artur; Sadowska, Mariola; Paul, Rajib K.; Singh, Nagendra S.; Boguszewska-Czubara, Anna; Jimenez, Lucita; Abdelmohsen, Kotb; Toll, Lawrence; Jozwiak, Krzysztof; Bernier, Michel; Wainer, Irving W.

    2015-01-01

    (R,R’)-4’-methoxy-1-naphthylfenoterol [(R,R’)-MNF] is a highly-selective β2 adrenergic receptor (β2-AR) agonist. Incubation of a panel of human-derived melanoma cell lines with (R,R’)-MNF resulted in a dose- and time-dependent inhibition of motility as assessed by in vitro wound healing and xCELLigence migration and invasion assays. Activity of (R,R’)-MNF positively correlated with the β2-AR expression levels across tested cell lines. The anti-motility activity of (R,R’)-MNF was inhibited by the β2-AR antagonist ICI-118,551 and the protein kinase A inhibitor H-89. The adenylyl cyclase activator forskolin and the phosphodiesterase 4 inhibitor Ro 20–1724 mimicked the ability of (R,R’)-MNF to inhibit migration of melanoma cell lines in culture, highlighting the importance of cAMP for this phenomenon. (R,R’)-MNF caused significant inhibition of cell growth in β2-AR-expressing cells as monitored by radiolabeled thymidine incorporation and xCELLigence system. The MEK/ERK cascade functions in cellular proliferation, and constitutive phosphorylation of MEK and ERK at their active sites was significantly reduced upon β2-AR activation with (R,R’)-MNF. Protein synthesis was inhibited concomitantly both with increased eEF2 phosphorylation and lower expression of tumor cell regulators, EGF receptors, cyclin A and MMP-9. Taken together, these results identified β2-AR as a novel potential target for melanoma management, and (R,R’)-MNF as an efficient trigger of anti-tumorigenic cAMP/PKA-dependent signaling in β2-AR-expressing lesions. PMID:25703025

  20. Filamin A Expression Negatively Regulates Sphingosine-1-Phosphate-Induced NF-κB Activation in Melanoma Cells by Inhibition of Akt Signaling.

    PubMed

    Campos, Ludmila S; Rodriguez, Yamila I; Leopoldino, Andreia M; Hait, Nitai C; Lopez Bergami, Pablo; Castro, Melina G; Sanchez, Emilse S; Maceyka, Michael; Spiegel, Sarah; Alvarez, Sergio E

    2015-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive lipid mediator that regulates many processes in inflammation and cancer. S1P is a ligand for five G-protein-coupled receptors, S1PR1 to -5, and also has important intracellular actions. Previously, we showed that intracellular S1P is involved in tumor necrosis factor alpha (TNF)-induced NF-κB activation in melanoma cell lines that express filamin A (FLNA). Here, we show that extracellular S1P activates NF-κB only in melanoma cells that lack FLNA. In these cells, S1P, but not TNF, promotes IκB kinase (IKK) and p65 phosphorylation, IκBα degradation, p65 nuclear translocation, and NF-κB reporter activity. NF-κB activation induced by S1P was mediated via S1PR1 and S1PR2. Exogenous S1P enhanced the phosphorylation of protein kinase Cδ (PKCδ), and its downregulation reduced S1P-induced the phosphorylation of IKK and p65. In addition, silencing of Bcl10 also inhibited S1P-induced IKK phosphorylation. Surprisingly, S1P reduced Akt activation in melanoma cells that express FLNA, whereas in the absence of FLNA, high phosphorylation levels of Akt were maintained, enabling S1P-mediated NF-κB signaling. In accord, inhibition of Akt suppressed S1P-mediated IKK and p65 phosphorylation and degradation of IκBα. Hence, these results support a negative role of FLNA in S1P-mediated NF-κB activation in melanoma cells through modulation of Akt. PMID:26552704

  1. Filamin A Expression Negatively Regulates Sphingosine-1-Phosphate-Induced NF-κB Activation in Melanoma Cells by Inhibition of Akt Signaling

    PubMed Central

    Campos, Ludmila S.; Rodriguez, Yamila I.; Leopoldino, Andreia M.; Hait, Nitai C.; Lopez Bergami, Pablo; Castro, Melina G.; Sanchez, Emilse S.; Maceyka, Michael

    2015-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive lipid mediator that regulates many processes in inflammation and cancer. S1P is a ligand for five G-protein-coupled receptors, S1PR1 to -5, and also has important intracellular actions. Previously, we showed that intracellular S1P is involved in tumor necrosis factor alpha (TNF)-induced NF-κB activation in melanoma cell lines that express filamin A (FLNA). Here, we show that extracellular S1P activates NF-κB only in melanoma cells that lack FLNA. In these cells, S1P, but not TNF, promotes IκB kinase (IKK) and p65 phosphorylation, IκBα degradation, p65 nuclear translocation, and NF-κB reporter activity. NF-κB activation induced by S1P was mediated via S1PR1 and S1PR2. Exogenous S1P enhanced the phosphorylation of protein kinase Cδ (PKCδ), and its downregulation reduced S1P-induced the phosphorylation of IKK and p65. In addition, silencing of Bcl10 also inhibited S1P-induced IKK phosphorylation. Surprisingly, S1P reduced Akt activation in melanoma cells that express FLNA, whereas in the absence of FLNA, high phosphorylation levels of Akt were maintained, enabling S1P-mediated NF-κB signaling. In accord, inhibition of Akt suppressed S1P-mediated IKK and p65 phosphorylation and degradation of IκBα. Hence, these results support a negative role of FLNA in S1P-mediated NF-κB activation in melanoma cells through modulation of Akt. PMID:26552704

  2. Thymoquinone suppresses metastasis of melanoma cells by inhibition of NLRP3 inflammasome

    SciTech Connect

    Ahmad, Israr; Muneer, Kashiff M.; Tamimi, Iman A.; Chang, Michelle E.; Ata, Muhammad O.; Yusuf, Nabiha

    2013-07-01

    The inflammasome is a multi-protein complex which when activated regulates caspase-1 activation and IL-1β and IL-18 secretion. The NLRP3 (NACHT, LRR, and pyrin domain-containing protein 3) inflammasome is constitutively assembled and activated in human melanoma cells. We have examined the inhibitory effect of thymoquinone (2-isopropyl-5-methylbenzo-1,4-quinone), a major ingredient of black seed obtained from the plant Nigella sativa on metastatic human (A375) and mouse (B16F10) melanoma cell lines. We have assessed whether thymoquinone inhibits metastasis of melanoma cells by targeting NLRP3 subunit of inflammasomes. Using an in vitro cell migration assay, we found that thymoquinone inhibited the migration of both human and mouse melanoma cells. The inhibitory effect of thymoquinone on metastasis was also observed in vivo in B16F10 mouse melanoma model. The inhibition of migration of melanoma cells by thymoquinone was accompanied by a decrease in expression of NLRP3 inflammasome resulting in decrease in proteolytic cleavage of caspase-1. Inactivation of caspase-1 by thymoquinone resulted in inhibition of IL-1β and IL-18. Treatment of mouse melanoma cells with thymoquinone also inhibited NF-κB activity. Furthermore, inhibition of reactive oxygen species (ROS) by thymoquinone resulted in partial inactivation of NLRP3 inflammasome. Thus, thymoquinone exerts its inhibitory effect on migration of human and mouse melanoma cells by inhibition of NLRP3 inflammasome. Thus, our results indicate that thymoquinone can be a potential immunotherapeutic agent not only as an adjuvant therapy for melanoma, but also, in the control and prevention of metastatic melanoma. - Highlights: • Thymoquinone causes inhibition of migration of melanoma cells. • Thymoquinone causes inhibition of metastasis in vivo. • Thymoquinone causes inhibition of migration by activation of NLRP3 inflammasome.

  3. Blue light inhibits proliferation of melanoma cells

    NASA Astrophysics Data System (ADS)

    Becker, Anja; Distler, Elisabeth; Klapczynski, Anna; Arpino, Fabiola; Kuch, Natalia; Simon-Keller, Katja; Sticht, Carsten; van Abeelen, Frank A.; Gretz, Norbert; Oversluizen, Gerrit

    2016-03-01

    Photobiomodulation with blue light is used for several treatment paradigms such as neonatal jaundice, psoriasis and back pain. However, little is known about possible side effects concerning melanoma cells in the skin. The aim of this study was to assess the safety of blue LED irradiation with respect to proliferation of melanoma cells. For that purpose we used the human malignant melanoma cell line SK-MEL28. Cell proliferation was decreased in blue light irradiated cells where the effect size depended on light irradiation dosage. Furthermore, with a repeated irradiation of the melanoma cells on two consecutive days the effect could be intensified. Fluorescence-activated cell sorting with Annexin V and Propidium iodide labeling did not show a higher number of dead cells after blue light irradiation compared to non-irradiated cells. Gene expression analysis revealed down-regulated genes in pathways connected to anti-inflammatory response, like B cell signaling and phagosome. Most prominent pathways with up-regulation of genes were cytochrome P450, steroid hormone biosynthesis. Furthermore, even though cells showed a decrease in proliferation, genes connected to the cell cycle were up-regulated after 24h. This result is concordant with XTT test 48h after irradiation, where irradiated cells showed the same proliferation as the no light negative control. In summary, proliferation of melanoma cells can be decreased using blue light irradiation. Nevertheless, the gene expression analysis has to be further evaluated and more studies, such as in-vivo experiments, are warranted to further assess the safety of blue light treatment.

  4. Convection-enhanced delivery of sorafenib and suppression of tumor progression in a murine model of brain melanoma through the inhibition of signal transducer and activator of transcription 3.

    PubMed

    Zou, Zhaoxia; Yin, Yufang; Lin, Jenny; Hsu, Li-Chen J; Brandon, Vanessa L; Yang, Fan; Jove, Richard; Jandial, Rahul; Li, Gang; Chen, Mike Y

    2016-05-01

    OBJECT Despite recent advances, metastatic melanoma remains a terminal disease, in which life-threatening brain metastasis occurs in approximately half of patients. Sorafenib is a multikinase inhibitor that induces apoptosis of melanoma cells in vitro. However, systemic administration has been ineffective because adequate tissue concentrations cannot be achieved. This study investigated if convection-enhanced delivery (CED) of sorafenib would enhance tumor control and survival via inhibition of the signal transducer and activator of transcription 3 (Stat3) pathway in a murine model of metastatic brain melanoma. METHODS Melanoma cells treated with sorafenib in vitro were examined for signaling and survival changes. The effect of sorafenib given by CED was assessed by bioluminescent imaging and animal survival. RESULTS The results showed that sorafenib induced cell death in the 4 established melanoma cell lines and in 1 primary cultured melanoma cell line. Sorafenib inhibited Stat3 phosphorylation in HTB65, WYC1, and B16 cells. Accordingly, sorafenib treatment also decreased expression of Mcl-1 mRNA in melanoma cell lines. Because sorafenib targets multiple pathways, the present study demonstrated the contribution of the Stat3 pathway by showing that mouse embryonic fibroblast (MEF) Stat3 +/+ cells were significantly more sensitive to sorafenib than MEF Stat3 -/- cells. In the murine model of melanoma brain metastasis used in this study, CED of sorafenib increased survival by 150% in the treatment group compared with animals receiving the vehicle control (p < 0.01). CED of sorafenib also significantly abrogated tumor growth. CONCLUSIONS The data from this study indicate that local delivery of sorafenib effectively controls brain melanoma. These findings validate further investigation of the use of CED to distribute molecularly targeted agents. PMID:26544779

  5. Convection-enhanced delivery of sorafenib and suppression of tumor progression in a murine model of brain melanoma through the inhibition of signal transducer and activator of transcription 3.

    PubMed

    Zou, Zhaoxia; Yin, Yufang; Lin, Jenny; Hsu, Li-Chen J; Brandon, Vanessa L; Yang, Fan; Jove, Richard; Jandial, Rahul; Li, Gang; Chen, Mike Y

    2016-05-01

    OBJECT Despite recent advances, metastatic melanoma remains a terminal disease, in which life-threatening brain metastasis occurs in approximately half of patients. Sorafenib is a multikinase inhibitor that induces apoptosis of melanoma cells in vitro. However, systemic administration has been ineffective because adequate tissue concentrations cannot be achieved. This study investigated if convection-enhanced delivery (CED) of sorafenib would enhance tumor control and survival via inhibition of the signal transducer and activator of transcription 3 (Stat3) pathway in a murine model of metastatic brain melanoma. METHODS Melanoma cells treated with sorafenib in vitro were examined for signaling and survival changes. The effect of sorafenib given by CED was assessed by bioluminescent imaging and animal survival. RESULTS The results showed that sorafenib induced cell death in the 4 established melanoma cell lines and in 1 primary cultured melanoma cell line. Sorafenib inhibited Stat3 phosphorylation in HTB65, WYC1, and B16 cells. Accordingly, sorafenib treatment also decreased expression of Mcl-1 mRNA in melanoma cell lines. Because sorafenib targets multiple pathways, the present study demonstrated the contribution of the Stat3 pathway by showing that mouse embryonic fibroblast (MEF) Stat3 +/+ cells were significantly more sensitive to sorafenib than MEF Stat3 -/- cells. In the murine model of melanoma brain metastasis used in this study, CED of sorafenib increased survival by 150% in the treatment group compared with animals receiving the vehicle control (p < 0.01). CED of sorafenib also significantly abrogated tumor growth. CONCLUSIONS The data from this study indicate that local delivery of sorafenib effectively controls brain melanoma. These findings validate further investigation of the use of CED to distribute molecularly targeted agents.

  6. Pentoxifylline Inhibits WNT Signalling in β-Cateninhigh Patient-Derived Melanoma Cell Populations

    PubMed Central

    Talar, Beata; Gajos-Michniewicz, Anna; Talar, Marcin; Chouaib, Salem; Czyz, Malgorzata

    2016-01-01

    Background The heterogeneity of melanoma needs to be addressed and combination therapies seem to be necessary to overcome intrinsic and acquired resistance to newly developed immunotherapies and targeted therapies. Although the role of WNT/β-catenin pathway in melanoma was early demonstrated, its contribution to the lack of the melanoma patient response to treatment was only recently recognized. Using patient-derived melanoma cell populations, we investigated the influence of pentoxifylline on melanoma cells with either high or low expression of β-catenin. Findings Our results indicate that pentoxifylline inhibits the activity of the canonical WNT pathway in melanoma cell populations with high basal activity of this signalling. This is supported by lowered overall activity of transcription factors TCF/LEF and reduced nuclear localisation of active β-catenin. Moreover, treatment of β-cateninhigh melanoma cell populations with pentoxifylline induces downregulation of genes that are targets of the WNT/β-catenin pathway including connective tissue growth factor (CTGF) and microphthalmia-associated transcription factor (MITF-M), a melanocyte- and melanoma cell-specific regulator. Conclusions These results suggest that pentoxifylline, a drug approved by the FDA in the treatment of peripheral arterial disease, might be tested in a subset of melanoma patients with elevated activity of β-catenin. This pharmaceutical might be tested as an adjuvant drug in combination therapies when the response to immunotherapy is prevented by high activity of the WNT/β-catenin pathway. PMID:27351373

  7. Response of BRAF mutant melanoma to BRAF inhibition is mediated by a network of transcriptional regulators of glycolysis

    PubMed Central

    Parmenter, Tiffany J.; Kleinschmidt, Margarete; Kinross, Kathryn M.; Bond, Simon T.; Li, Jason; Kaadige, Mohan R.; Rao, Aparna; Sheppard, Karen E.; Hugo, Willy; Pupo, Gulietta M.; Pearson, Richard B.; McGee, Sean L.; Long, Georgina V.; Scolyer, Richard A.; Rizos, Helen; Lo, Roger S.; Cullinane, Carleen; Ayer, Donald E.; Ribas, Antoni; Johnstone, Ricky W.; Hicks, Rodney J.; McArthur, Grant A.

    2014-01-01

    Deregulated glucose metabolism fulfils the energetic and biosynthetic requirements for tumour growth driven by oncogenes. Because inhibition of oncogenic BRAF causes profound reductions in glucose uptake and a strong clinical benefit in BRAF mutant melanoma, we examined the role of energy metabolism in responses to BRAF inhibition. We observed pronounced and consistent decreases in glycolytic activity in BRAF mutant melanoma cells. Moreover, we identified a network of BRAF-regulated transcription factors that control glycolysis in melanoma cells. Remarkably, this network of transcription factors, including HIF1α, c-Myc and MondoA, drives glycolysis downstream of BRAFV600, is critical for responses to BRAF inhibition and is modulated by BRAF inhibition in clinical melanoma specimens. Furthermore, we show that concurrent inhibition of BRAF and glycolysis induces cell death in BRAF inhibitor-resistant melanoma cells. Thus, we provide a proof of principle for treatment of melanoma with combinations of BRAF inhibitors and glycolysis inhibitors. PMID:24469106

  8. Cancer stem cell vaccine expressing ESAT-6-gpi and IL-21 inhibits melanoma growth and metastases

    PubMed Central

    Zhao, Fengshu; He, Xiangfeng; Sun, Jianan; Wu, Di; Pan, Meng; Li, Miao; Wu, Songyan; Zhang, Rong; Yan, Chunguang; Dou, Jun

    2015-01-01

    Tumor vaccines may induce antitumor efficacy, however, weak immunogenicity of tumor antigens is one of the prime obstacles for excitation of the antitumor immune responses. Therefore, strategies that enhance immunogenicity of tumor vaccines are of particular interest. In this study, a novel melanoma B16F10 CD133+CD44+ cancer stem cell (CSC) vaccine expressing 6 kDa early secreted antigenic target (ESAT-6) in the glycosylphosphatidylinositol (GPI)-anchored form and secreting interleukin (IL)-21 was developed. Its anti-melanoma efficacy and mechanisms were investigated in mice. The results demonstrated that the B16F10-ESAT-6-gpi/IL-21 CD133+CD44+ CSC vaccine exhibited enhanced anti-melanoma efficacy as determined by inhibited melanoma growth, prolonged survival of melanoma bearing mice. The anti-melanoma immunity was associated with elevated levels of serum anti-ESAT-6 and interferon (IFN)-γ as well as increased cytotoxic activities of natural killer cells, splenocytes, and complement dependent cytotoxicity. Furthermore, this CSC-based vaccine apparently inhibited melanoma lung metastasis by decreasing the level of Vimentin while increasing the level of E-cadherin expression, suggesting an inhibited epithelial mesenchymal transition. Thus, the B16F10-ESAT-6-gpi/IL-21 CD133+CD44+ CSC vaccine may be used to reactivate the anti-tumor immunity and for treatment of melanoma. PMID:26692931

  9. Inhibiting Drivers of Non-mutational Drug Tolerance Is a Salvage Strategy for Targeted Melanoma Therapy

    PubMed Central

    Smith, Michael P.; Brunton, Holly; Rowling, Emily J.; Ferguson, Jennifer; Arozarena, Imanol; Miskolczi, Zsofia; Lee, Jessica L.; Girotti, Maria R.; Marais, Richard; Levesque, Mitchell P.; Dummer, Reinhard; Frederick, Dennie T.; Flaherty, Keith T.; Cooper, Zachary A.; Wargo, Jennifer A.; Wellbrock, Claudia

    2016-01-01

    Summary Once melanomas have progressed with acquired resistance to mitogen-activated protein kinase (MAPK)-targeted therapy, mutational heterogeneity presents a major challenge. We therefore examined the therapy phase before acquired resistance had developed and discovered the melanoma survival oncogene MITF as a driver of an early non-mutational and reversible drug-tolerance state, which is induced by PAX3-mediated upregulation of MITF. A drug-repositioning screen identified the HIV1-protease inhibitor nelfinavir as potent suppressor of PAX3 and MITF expression. Nelfinavir profoundly sensitizes BRAF and NRAS mutant melanoma cells to MAPK-pathway inhibitors. Moreover, nelfinavir is effective in BRAF and NRAS mutant melanoma cells isolated from patients progressed on MAPK inhibitor (MAPKi) therapy and in BRAF/NRAS/PTEN mutant tumors. We demonstrate that inhibiting a driver of MAPKi-induced drug tolerance could improve current approaches of targeted melanoma therapy. PMID:26977879

  10. Inhibiting Drivers of Non-mutational Drug Tolerance Is a Salvage Strategy for Targeted Melanoma Therapy.

    PubMed

    Smith, Michael P; Brunton, Holly; Rowling, Emily J; Ferguson, Jennifer; Arozarena, Imanol; Miskolczi, Zsofia; Lee, Jessica L; Girotti, Maria R; Marais, Richard; Levesque, Mitchell P; Dummer, Reinhard; Frederick, Dennie T; Flaherty, Keith T; Cooper, Zachary A; Wargo, Jennifer A; Wellbrock, Claudia

    2016-03-14

    Once melanomas have progressed with acquired resistance to mitogen-activated protein kinase (MAPK)-targeted therapy, mutational heterogeneity presents a major challenge. We therefore examined the therapy phase before acquired resistance had developed and discovered the melanoma survival oncogene MITF as a driver of an early non-mutational and reversible drug-tolerance state, which is induced by PAX3-mediated upregulation of MITF. A drug-repositioning screen identified the HIV1-protease inhibitor nelfinavir as potent suppressor of PAX3 and MITF expression. Nelfinavir profoundly sensitizes BRAF and NRAS mutant melanoma cells to MAPK-pathway inhibitors. Moreover, nelfinavir is effective in BRAF and NRAS mutant melanoma cells isolated from patients progressed on MAPK inhibitor (MAPKi) therapy and in BRAF/NRAS/PTEN mutant tumors. We demonstrate that inhibiting a driver of MAPKi-induced drug tolerance could improve current approaches of targeted melanoma therapy. PMID:26977879

  11. Fermented Viola mandshurica inhibits melanogenesis in B16 melanoma cells.

    PubMed

    Kwak, Yeon-Joo; Kim, Kyoung-Sook; Kim, Kyung-Mi; Yu, Hai Yang; Chung, Eunsook; Kim, Seok-Jo; Cha, Jae-Young; Lee, Young-Choon; Lee, Jai-Heon

    2011-01-01

    We assessed the effects of chloroform extract of fermented Viola mandshurica (CEFV) on melanogenesis B16 melanoma cells. CEFV treatment significantly decreased melanin content and tyrosinase activity in dose-dependent manners. To elucidate the mechanism of the inhibitory effects of CEFV on melanogenesis, we performed RT-PCR and Western blotting for melanogenesis-related genes such as tyrosinase, tyrosinase-related protein-1 (TRP-1), TRP-2, and microphthalmia-associated transcription factor (MITF). CEFV strongly inhibited mRNA as well as the protein expression of tyrosinase and MITF, but had no significant effect on TRP-1 or TRP-2 expressions. It markedly decreased the phosphorylation of cAMP responsive element binding protein (CREB), and induced the duration of extracellular signal-regulated kinase (ERK) activation, leading to reduction of MITF expression and subsequently that of tyrosinase. Therefore, we suggest that CEFV induces downregulation of melanogenesis through decreased CREB phosphorylation and ERK activation.

  12. Treatment of melanoma cells with the synthetic retinoid CD437 induces apoptosis via activation of AP-1 in vitro, and causes growth inhibition in xenografts in vivo

    PubMed Central

    1996-01-01

    Human malignant melanoma is notoriously resistant to pharmacological modulation. We describe here for the first time that the synthetic retinoid CD437 has a strong dose-dependent antiproliferative effect on human melanoma cells (IC50: 5 x 10(-6) M) via the induction of programmed cell death, as judged by analysis of cell morphology, electron microscopical features, and DNA fragmentation. Programmed cell death was preceded by a strong activation of the AP-1 complex in CD437- treated cells as demonstrated by gel retardation and chloramphenicol transferase (CAT) assays. Northern blot analysis showed a time- dependent increase in the expression of c-fos and c-jun encoding components of AP-1, whereas bcl-2 and p53 mRNA levels remained constant. CD437 also exhibited a strong growth inhibitory effect on MeWo melanoma cells in a xenograft model. In tissue sections of CD437- treated MeWo tumors from these animals, apoptotic melanoma cells and c- fos overexpressing cells were colocalized by TdT-mediated deoxyuridine triphosphate-digoxigenin nick end labeling (TUNEL) staining and in situ hybridization. Taken together, this report identifies CD437 as a retinoid that activates and upregulates the transcription factor AP-1, leading eventually to programmed cell death of exposed human melanoma cells in vitro and in vivo. Further studies are needed to evaluate whether synthetic retinoids such as CD437 represent a new class of retinoids, which may open up new ways to a more effective therapy of malignant melanoma. PMID:8991099

  13. Hair Dyes Resorcinol and Lawsone Reduce Production of Melanin in Melanoma Cells by Tyrosinase Activity Inhibition and Decreasing Tyrosinase and Microphthalmia-Associated Transcription Factor (MITF) Expression

    PubMed Central

    Lee, Shu-Mei; Chen, Yi-Shyan; Lin, Chih-Chien; Chen, Kuan-Hung

    2015-01-01

    Hair coloring products are one of the most important cosmetics for modern people; there are three major types of hair dyes, including the temporary, semi-permanent and permanent hair dyes. The selected hair dyes (such as ammonium persulfate, sodium persulfate, resorcinol and lawsone) are the important components for hair coloring products. Therefore, we analyzed the effects of these compounds on melanogenesis in B16-F10 melanoma cells. The results proved that hair dyes resorcinol and lawsone can reduce the production of melanin. The results also confirmed that resorcinol and lawsone inhibit mushroom and cellular tyrosinase activities in vitro. Resorcinol and lawsone can also downregulate the protein levels of tyrosinase and microphthalmia-associated transcription factor (MITF) in B16-F10 cells. Thus, we suggest that frequent use of hair dyes may have the risk of reducing natural melanin production in hair follicles. Moreover, resorcinol and lawsone may also be used as hypopigmenting agents to food, agricultural and cosmetic industry in the future. PMID:25584612

  14. Hair dyes resorcinol and lawsone reduce production of melanin in melanoma cells by tyrosinase activity inhibition and decreasing tyrosinase and microphthalmia-associated transcription factor (MITF) expression.

    PubMed

    Lee, Shu-Mei; Chen, Yi-Shyan; Lin, Chih-Chien; Chen, Kuan-Hung

    2015-01-09

    Hair coloring products are one of the most important cosmetics for modern people; there are three major types of hair dyes, including the temporary, semi-permanent and permanent hair dyes. The selected hair dyes (such as ammonium persulfate, sodium persulfate, resorcinol and lawsone) are the important components for hair coloring products. Therefore, we analyzed the effects of these compounds on melanogenesis in B16-F10 melanoma cells. The results proved that hair dyes resorcinol and lawsone can reduce the production of melanin. The results also confirmed that resorcinol and lawsone inhibit mushroom and cellular tyrosinase activities in vitro. Resorcinol and lawsone can also downregulate the protein levels of tyrosinase and microphthalmia-associated transcription factor (MITF) in B16-F10 cells. Thus, we suggest that frequent use of hair dyes may have the risk of reducing natural melanin production in hair follicles. Moreover, resorcinol and lawsone may also be used as hypopigmenting agents to food, agricultural and cosmetic industry in the future.

  15. Activation of MITF by Argan Oil Leads to the Inhibition of the Tyrosinase and Dopachrome Tautomerase Expressions in B16 Murine Melanoma Cells.

    PubMed

    Villareal, Myra O; Kume, Sayuri; Bourhim, Thouria; Bakhtaoui, Fatima Zahra; Kashiwagi, Kenichi; Han, Junkyu; Gadhi, Chemseddoha; Isoda, Hiroko

    2013-01-01

    Argan (Argania spinosa L.) oil has been used for centuries in Morocco as cosmetic oil to maintain a fair complexion and to cure skin pimples and chicken pox pustules scars. Although it is popular, the scientific basis for its effect on the skin has not yet been established. Here, the melanogenesis regulatory effect of argan oil was evaluated using B16 murine melanoma cells. Results of melanin assay using B16 cells treated with different concentrations of argan oil showed a dose-dependent decrease in melanin content. Western blot results showed that the expression levels of tyrosinase (TYR), tyrosinase-related protein 1 (TRP1), and dopachrome tautomerase (DCT) proteins were decreased. In addition, there was an increase in the activation of MITF and ERK1/2. Real-time PCR results revealed a downregulation of Tyr, Trp1, Dct, and Mitf mRNA expressions. Argan oil treatment causes MITF phosphorylation which subsequently inhibited the transcription of melanogenic enzymes, TYR and DCT. The inhibitory effect of argan oil on melanin biosynthesis may be attributed to tocopherols as well as the synergistic effect of its components. The results of this study provide the scientific basis for the traditionally established benefits of argan oil and present its therapeutic potential against hyperpigmentation disorders. PMID:23935660

  16. Activation of MITF by Argan Oil Leads to the Inhibition of the Tyrosinase and Dopachrome Tautomerase Expressions in B16 Murine Melanoma Cells.

    PubMed

    Villareal, Myra O; Kume, Sayuri; Bourhim, Thouria; Bakhtaoui, Fatima Zahra; Kashiwagi, Kenichi; Han, Junkyu; Gadhi, Chemseddoha; Isoda, Hiroko

    2013-01-01

    Argan (Argania spinosa L.) oil has been used for centuries in Morocco as cosmetic oil to maintain a fair complexion and to cure skin pimples and chicken pox pustules scars. Although it is popular, the scientific basis for its effect on the skin has not yet been established. Here, the melanogenesis regulatory effect of argan oil was evaluated using B16 murine melanoma cells. Results of melanin assay using B16 cells treated with different concentrations of argan oil showed a dose-dependent decrease in melanin content. Western blot results showed that the expression levels of tyrosinase (TYR), tyrosinase-related protein 1 (TRP1), and dopachrome tautomerase (DCT) proteins were decreased. In addition, there was an increase in the activation of MITF and ERK1/2. Real-time PCR results revealed a downregulation of Tyr, Trp1, Dct, and Mitf mRNA expressions. Argan oil treatment causes MITF phosphorylation which subsequently inhibited the transcription of melanogenic enzymes, TYR and DCT. The inhibitory effect of argan oil on melanin biosynthesis may be attributed to tocopherols as well as the synergistic effect of its components. The results of this study provide the scientific basis for the traditionally established benefits of argan oil and present its therapeutic potential against hyperpigmentation disorders.

  17. Activation of MITF by Argan Oil Leads to the Inhibition of the Tyrosinase and Dopachrome Tautomerase Expressions in B16 Murine Melanoma Cells

    PubMed Central

    Villareal, Myra O.; Kume, Sayuri; Bourhim, Thouria; Bakhtaoui, Fatima Zahra; Han, Junkyu; Gadhi, Chemseddoha; Isoda, Hiroko

    2013-01-01

    Argan (Argania spinosa L.) oil has been used for centuries in Morocco as cosmetic oil to maintain a fair complexion and to cure skin pimples and chicken pox pustules scars. Although it is popular, the scientific basis for its effect on the skin has not yet been established. Here, the melanogenesis regulatory effect of argan oil was evaluated using B16 murine melanoma cells. Results of melanin assay using B16 cells treated with different concentrations of argan oil showed a dose-dependent decrease in melanin content. Western blot results showed that the expression levels of tyrosinase (TYR), tyrosinase-related protein 1 (TRP1), and dopachrome tautomerase (DCT) proteins were decreased. In addition, there was an increase in the activation of MITF and ERK1/2. Real-time PCR results revealed a downregulation of Tyr, Trp1, Dct, and Mitf mRNA expressions. Argan oil treatment causes MITF phosphorylation which subsequently inhibited the transcription of melanogenic enzymes, TYR and DCT. The inhibitory effect of argan oil on melanin biosynthesis may be attributed to tocopherols as well as the synergistic effect of its components. The results of this study provide the scientific basis for the traditionally established benefits of argan oil and present its therapeutic potential against hyperpigmentation disorders. PMID:23935660

  18. Hair dyes resorcinol and lawsone reduce production of melanin in melanoma cells by tyrosinase activity inhibition and decreasing tyrosinase and microphthalmia-associated transcription factor (MITF) expression.

    PubMed

    Lee, Shu-Mei; Chen, Yi-Shyan; Lin, Chih-Chien; Chen, Kuan-Hung

    2015-01-01

    Hair coloring products are one of the most important cosmetics for modern people; there are three major types of hair dyes, including the temporary, semi-permanent and permanent hair dyes. The selected hair dyes (such as ammonium persulfate, sodium persulfate, resorcinol and lawsone) are the important components for hair coloring products. Therefore, we analyzed the effects of these compounds on melanogenesis in B16-F10 melanoma cells. The results proved that hair dyes resorcinol and lawsone can reduce the production of melanin. The results also confirmed that resorcinol and lawsone inhibit mushroom and cellular tyrosinase activities in vitro. Resorcinol and lawsone can also downregulate the protein levels of tyrosinase and microphthalmia-associated transcription factor (MITF) in B16-F10 cells. Thus, we suggest that frequent use of hair dyes may have the risk of reducing natural melanin production in hair follicles. Moreover, resorcinol and lawsone may also be used as hypopigmenting agents to food, agricultural and cosmetic industry in the future. PMID:25584612

  19. Essential role for acid sphingomyelinase-inhibited autophagy in melanoma response to cisplatin.

    PubMed

    Cervia, Davide; Assi, Emma; De Palma, Clara; Giovarelli, Matteo; Bizzozero, Laura; Pambianco, Sarah; Di Renzo, Ilaria; Zecchini, Silvia; Moscheni, Claudia; Vantaggiato, Chiara; Procacci, Patrizia; Clementi, Emilio; Perrotta, Cristiana

    2016-05-01

    The sphingolipid metabolising enzyme Acid Sphingomyelinase (A-SMase) has been recently shown to inhibit melanoma progression and correlate inversely to tumour grade. In this study we have investigated the role of A-SMase in the chemo-resistance to anticancer treatmentusing mice with melanoma allografts and melanoma cells differing in terms of expression/activity of A-SMase. Since autophagy is emerging as a key mechanism in tumour growth and chemo-resistance, we have also investigated whether an action of A-SMase in autophagy can explain its role. Melanoma sensitivity to chemotherapeutic agent cisplatin in terms of cell viability/apoptosis, tumour growth, and animal survival depended directly on the A-SMase levels in tumoural cells. A-SMase action was due to inhibition of autophagy through activation of Akt/mammalian target of rapamycin (mTOR) pathway. Treatment of melanoma-bearing mice with the autophagy inhibitor chloroquine restored sensitivity to cisplatin of tumours expressing low levels of A-SMase while no additive effects were observed in tumours characterised by sustained A-SMase levels. The fact that A-SMase in melanomas affects mTOR-regulated autophagy and plays a central role in cisplatin efficacy encourages pre-clinical testing on the modulation of A-SMase levels/activity as possible novel anti-neoplastic strategy. PMID:27107419

  20. Essential role for acid sphingomyelinase-inhibited autophagy in melanoma response to cisplatin

    PubMed Central

    Cervia, Davide; Assi, Emma; De Palma, Clara; Giovarelli, Matteo; Bizzozero, Laura; Pambianco, Sarah; Di Renzo, Ilaria; Zecchini, Silvia; Moscheni, Claudia; Vantaggiato, Chiara; Procacci, Patrizia; Clementi, Emilio; Perrotta, Cristiana

    2016-01-01

    The sphingolipid metabolising enzyme Acid Sphingomyelinase (A-SMase) has been recently shown to inhibit melanoma progression and correlate inversely to tumour grade. In this study we have investigated the role of A-SMase in the chemo-resistance to anticancer treatmentusing mice with melanoma allografts and melanoma cells differing in terms of expression/activity of A-SMase. Since autophagy is emerging as a key mechanism in tumour growth and chemo-resistance, we have also investigated whether an action of A-SMase in autophagy can explain its role. Melanoma sensitivity to chemotherapeutic agent cisplatin in terms of cell viability/apoptosis, tumour growth, and animal survival depended directly on the A-SMase levels in tumoural cells. A-SMase action was due to inhibition of autophagy through activation of Akt/mammalian target of rapamycin (mTOR) pathway. Treatment of melanoma-bearing mice with the autophagy inhibitor chloroquine restored sensitivity to cisplatin of tumours expressing low levels of A-SMase while no additive effects were observed in tumours characterised by sustained A-SMase levels. The fact that A-SMase in melanomas affects mTOR-regulated autophagy and plays a central role in cisplatin efficacy encourages pre-clinical testing on the modulation of A-SMase levels/activity as possible novel anti-neoplastic strategy. PMID:27107419

  1. Identification of small-molecule inhibitors of autotaxin that inhibit melanoma cell migration and invasion.

    PubMed

    Saunders, Lauren P; Ouellette, Amy; Bandle, Russ; Chang, William Chozen; Zhou, Hongwen; Misra, Raj N; De La Cruz, Enrique M; Braddock, Demetrios T

    2008-10-01

    Autotaxin (ATX) is a prometastatic enzyme initially isolated from the conditioned medium of human melanoma cells that stimulates a myriad of biological activities, including angiogenesis and the promotion of cell growth, survival, and differentiation through the production of lysophosphatidic acid (LPA). ATX increases the aggressiveness and invasiveness of transformed cells, and ATX levels directly correlate with tumor stage and grade in several human malignancies. To study the role of ATX in the pathogenesis of malignant melanoma, we developed antibodies and small-molecule inhibitors against recombinant human protein. Immunohistochemistry of paraffin-embedded human tissue shows that ATX levels are markedly increased in human primary and metastatic melanoma relative to benign nevi. Chemical screens identified several small-molecule inhibitors with binding constants ranging from nanomolar to low micromolar. Cell migration and invasion assays with melanoma cell lines show that ATX markedly stimulates melanoma cell migration and invasion, an effect suppressed by ATX inhibitors. The migratory phenotype can be rescued by the addition of the enzymatic product of ATX, LPA, confirming that the observed inhibition is linked to suppression of LPA production by ATX. Chemical analogues of the inhibitors show structure-activity relationships important for ATX inhibition and indicate pathways for their optimization. These studies suggest that ATX is an approachable molecular target for the rational design of chemotherapeutic agents directed against malignant melanoma.

  2. Bioactive proanthocyanidins inhibit growth and induce apoptosis in human melanoma cells by decreasing the accumulation of β-catenin

    PubMed Central

    VAID, MUDIT; SINGH, TRIPTI; PRASAD, RAM; KATIYAR, SANTOSH K.

    2016-01-01

    Melanoma is a highly aggressive form of skin cancer with poor survival rate. Aberrant activation of Wnt/β-catenin has been observed in nearly one-third of human melanoma cases thereby indicating that targeting Wnt/β-catenin signaling could be a promising strategy against melanoma development. In the present study, we determined chemotherapeutic effect of grape seed proanthocyanidins (GSPs) on the growth of melanoma cells and validated their protective effects in vivo using a xenograft mouse model, and assessed if β-catenin is the target of GSP chemotherapeutic effect. Our in vitro data show that treatment of A375 and Hs294t human melanoma cells with GSPs inhibit the growth of melanoma cells, which was associated with the reduction in the levels of β-catenin. Administration of dietary GSPs (0.2 and 0.5%, w/w) in supplementation with AIN76A control diet significantly inhibited the growth of melanoma tumor xenografts in nude mice. Furthermore, dietary GSPs inhibited the xenograft growth of Mel928 (β-catenin-activated), while did not inhibit the xenograft growth of Mel1011 (β-catenin-inactivated) cells. These observations were further verified by siRNA knockdown of β-catenin and forced overexpression of β-catenin in melanoma cells using a cell culture model. PMID:26676402

  3. Inhibition of Src family kinases with dasatinib blocks migration and invasion of human melanoma cells.

    PubMed

    Buettner, Ralf; Mesa, Tania; Vultur, Adina; Lee, Frank; Jove, Richard

    2008-11-01

    Src family kinases (SFK) are involved in regulating a multitude of biological processes, including cell adhesion, migration, proliferation, and survival, depending on the cellular context. Therefore, although SFKs are currently being investigated as potential targets for treatment strategies in various cancers, the biological responses to inhibition of SFK signaling in any given tumor type are not predictable. Dasatinib (BMS-354825) is a dual Src/Abl kinase inhibitor with potent antiproliferative activity against hematologic malignancies harboring activated BCR-ABL. In this study, we show that dasatinib blocks migration and invasion of human melanoma cells without affecting proliferation and survival. Moreover, dasatinib completely inhibits SFK kinase activity at low nanomolar concentrations in all eight human melanoma cell lines investigated. In addition, two known downstream targets of SFKs, focal adhesion kinase and Crk-associated substrate (p130(CAS)), are inhibited with similar concentrations and kinetics. Consistent with inhibition of these signaling pathways and invasion, dasatinib down-regulates expression of matrix metalloproteinase-9. We also provide evidence that dasatinib directly inhibits kinase activity of the EphA2 receptor tyrosine kinase, which is overexpressed and/or overactive in many solid tumors, including melanoma. Thus, SFKs and downstream signaling are implicated as having key roles in migration and invasion of melanoma cells.

  4. Oxidative stress inhibits distant metastasis by human melanoma cells

    PubMed Central

    Piskounova, Elena; Agathocleous, Michalis; Murphy, Malea M.; Hu, Zeping; Huddlestun, Sara E.; Zhao, Zhiyu; Leitch, A. Marilyn; Johnson, Timothy M.; DeBerardinis, Ralph J.; Morrison, Sean J.

    2015-01-01

    Solid cancer cells commonly enter the blood and disseminate systemically but are highly inefficient at forming distant metastases for poorly understood reasons. We studied human melanomas that differed in their metastasis histories in patients and in their capacity to metastasize in NSG mice. All melanomas had high frequencies of cells that formed subcutaneous tumours, but much lower percentages of cells that formed tumours after intravenous or intrasplenic transplantation, particularly among inefficient metastasizers. Melanoma cells in the blood and visceral organs experienced oxidative stress not observed in established subcutaneous tumours. Successfully metastasizing melanomas underwent reversible metabolic changes during metastasis that increased their capacity to withstand oxidative stress, including increased dependence upon NADPH-generating enzymes in the folate pathway. Anti-oxidants promoted distant metastasis in NSG mice. Folate pathway inhibition using low-dose methotrexate, ALDH1L2 knockdown, or MTHFD1 knockdown inhibited distant metastasis without significantly affecting the growth of subcutaneous tumors in the same mice. Oxidative stress thus limits distant metastasis by melanoma cells in vivo. PMID:26466563

  5. Fucose-containing sulfated polysaccharides from brown seaweeds inhibit proliferation of melanoma cells and induce apoptosis by activation of caspase-3 in vitro.

    PubMed

    Ale, Marcel Tutor; Maruyama, Hiroko; Tamauchi, Hidekazu; Mikkelsen, Jørn D; Meyer, Anne S

    2011-12-01

    Fucose-containing sulfated polysaccharides (FCSPs) extracted from seaweeds, especially brown macro-algae, are known to possess essential bioactive properties, notably growth inhibitory effects on tumor cells. In this work, we conducted a series of in vitro studies to examine the influence of FCSPs products from Sargassumhenslowianum C. Agardh (FSAR) and Fucus vesiculosus (FVES), respectively, on proliferation of melanoma B16 cells and to investigate the underlying apoptosis promoting mechanisms. Cell viability analysis showed that both FCSPs products, i.e., FSAR and FVES, decreased the proliferation of the melanoma cells in a dose-response fashion, with FSAR being more potent at lower dosages, and FVES being relatively more anti-proliferative than FSAR at higher dosages. Flow cytometric analysis by Annexin V staining of the melanoma cells exposed to the FCSPs products confirmed that both FSAR and FVES induced apoptosis. The FCSPs-induced apoptosis was evidenced by loss of plasma membrane asymmetry and translocation of the cell membrane phospholipids and was accompanied by the activation of caspase-3. The FCSPs bioactivity is proposed to be attributable to distinct structural features of the FCSPs, particularly the presence of sulfated galactofucans (notably in S.henslowianum) and sulfated fucans (notably in F. vesiculosus). This study thus indicates that unfractionated FCSPs may exert bioactive effects on skin cancer cells via induction of apoptosis through cascades of reactions that involve activation of caspase-3.

  6. Solanum nigrum Linn. water extract inhibits metastasis in mouse melanoma cells in vitro and in vivo.

    PubMed

    Wang, Hsueh-Chun; Wu, Dun-Hao; Chang, Yun-Ching; Li, Yi-Ju; Wang, Chau-Jong

    2010-11-24

    Metastatic melanoma is an aggressive skin cancer notoriously resistant to current cancer therapies. Thus, new treatment strategies are urgently needed. Solanum nigrum Linn., commonly used in Oriental medicine, has showed antineoplastic activity in human cancer cell lines. The aim of this study was to evaluate the inhibitive effect of S. nigrum Linn. water extract (SNWE) on melanoma metastasis and dissect the underlying mechanisms of SNWE actions. B16-F1 cells were analyzed for migrating and invasive abilities with SNWE treatment, and several putative targets involved in metastatic melanoma were examined. In parallel, primary mouse xenograft and lung metastasis of melanoma models were established to examine the therapeutic potential of SNWE. The results indicated SNWE significantly inhibited B16-F1 cell migration and invasion. Meanwhile, decreased Akt activity and PKCα, Ras, and NF-κB protein expressions were detected in dose-dependent manners. In line with this notion, >50% reduced tumor weight and lung metastatic nodules were observed in 1% SNWE fed mice. This was associated with reduced serum MMP-9 as well as Akt activity and PKCα, Ras, and NF-κB protein expressions. Thus, this work indicates SNWE has potential application for treating metastatic melanoma. PMID:21028816

  7. Green tea polyphenol epigallocatechin-3-gallate suppresses melanoma growth by inhibiting inflammasome and IL-1{beta} secretion

    SciTech Connect

    Ellis, Lixia Z.; Liu, Weimin; Luo, Yuchun; Okamoto, Miyako; Qu, Dovina; Dunn, Jeffrey H.; Fujita, Mayumi

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer EGCG inhibits melanoma cell growth at physiological doses (0.1-1 {mu}M). Black-Right-Pointing-Pointer EGCG inhibits melanoma cell growth via inflammasomes and IL-1{beta} suppression. Black-Right-Pointing-Pointer Inflammasomes and IL-1{beta} could be potential targets for future melanoma therapeutics. -- Abstract: Epigallocatechin-3-gallate (EGCG), the major polyphenolic component of green tea, has been demonstrated to possess anti-inflammatory, antioxidant, anti-mutagenic and anti-carcinogenic properties. The anti-melanoma effect of EGCG has been previously suggested, but no clear mechanism of action has been established. In this study, we demonstrated that EGCG inhibits melanoma cell growth at physiological doses (0.1-1 {mu}M). In the search for mechanisms of EGCG-mediated melanoma cell suppression, we found that NF-{kappa}B was inhibited, and that reduced NF-{kappa}B activity was associated with decreased IL-1{beta} secretion from melanoma cells. Since inflammasomes are involved in IL-1{beta} secretion, we investigated whether IL-1{beta} suppression was mediated by inflammasomes, and found that EGCG treatment led to downregulation of the inflammasome component, NLRP1, and reduced caspase-1 activation. Furthermore, silencing the expression of NLRP1 abolished EGCG-induced inhibition of tumor cell proliferation both in vitro and in vivo, suggesting a key role of inflammasomes in EGCG efficacy. This paper provides a novel mechanism for EGCG-induced melanoma inhibition: inflammasome downregulation {yields} decreased IL-1{beta} secretion {yields} decreased NF-{kappa}B activities {yields} decreased cell growth. In addition, it suggests inflammasomes and IL-1{beta} could be potential targets for future melanoma therapeutics.

  8. Inhibition of Melanoma Growth by Small Molecules that Promote the Mitochondrial Localization of ATF2

    PubMed Central

    Varsano, Tal; Lau, Eric; Feng, Yongmei; Garrido, Marine; Milan, Loribelle; Heynen-Genel, Susanne; Hassig, Christian A.; Ronai, Ze’ev A.

    2013-01-01

    Purpose Effective therapy for malignant melanoma, the leading cause of death from skin cancer, remains an area of significant unmet need in oncology. The elevated expression of PKCε in advanced metastatic melanoma results in the increased phosphorylation of the transcription factor ATF2 on threonine 52, which causes its nuclear localization and confers its oncogenic activities. The nuclear-to-mitochondrial translocation of ATF2 following genotoxic stress promotes apoptosis, a function that is largely lost in melanoma cells, due to its confined nuclear localization. Therefore, promoting the nuclear export of ATF2, which sensitizes melanoma cells to apoptosis, represents a novel therapeutic modality. Experimental Design We conducted a pilot high-throughput screen of 3,800 compounds to identify small molecules that promote melanoma cell death by inducing the cytoplasmic localization of ATF2. The imaging-based ATF2 translocation assay was performed using UACC903 melanoma cells that stably express doxycycline-inducible GFP-ATF2. Results We identified 2 compounds (SBI-0089410 and SBI-0087702) that promoted the cytoplasmic localization of ATF2, reduced cell viability, inhibited colony formation, cell motility, anchorage-free growth, and increased mitochondrial membrane permeability. SBI-0089410 inhibited the TPA-induced membrane tranlocation of PKC isoforms, whereas both compounds decreased ATF2 phosphorylation by PKCε and ATF2 transcriptional activity. Overexpression of either constitutively active PKCε or phosphomimic mutant ATF2T52E attenuated the cellular effects of the compounds. Conclusion The imaging-based high-throughput screen provides a proof-of-concept for the identification of small molecules that block the oncogenic addiction to PKCε signaling by promoting ATF2 nuclear export, resulting in mitochondrial membrane leakage and melanoma cell death. PMID:23589174

  9. Inhibition of peroxisome proliferator-activated receptor gamma prevents the melanogenesis in murine B16/F10 melanoma cells.

    PubMed

    Chen, Jiun-Han; Chang, Junn-Liang; Chen, Pei-Ru; Chuang, Yun-Ju; Tang, Shih-Tsang; Pan, Shwu-Fen; Lin, Tzer-Bin; Chen, Kang-Hua; Chen, Mei-Jung

    2014-01-01

    The purpose of this study was to investigate if PPARγ plays a role in the melanogenesis. B16/F10 cells were divided into five groups: control, melanin stimulating hormone (α-MSH), α-MSH+retinol, α-MSH+GW9662 (PPARγ antagonist), and GW9662. Cells in the control group were cultured in the Dulbecco's modified Eagle's medium (DMEM) for 48 hrs. To initiate the melanogenesis, cells in all α-MSH groups were cultured in medium containing α-MSH (10 nM) for 48 hrs. Cells were treated simultaneously with retinol (5 μM) in the α-MSH+retinol group. Instead of retinol, GW9662 (10 μM) was cocultured in the α-MSH+GW9662 group. Cells in the final group were cultured in the DMEM with GW9662. All the analyses were carried out 48 hours after treatments. The α-MSH was able to increase cell number, melanin production, and the activity of tyrosinase, the limiting enzyme in melanogenesis. These α-MSH-induced changes were prevented either by retinol or by GW9662. Further analyses of the activities of antioxidant enzymes including glutathione, catalase, and the superoxide dismutase (SOD) showed that α-MSH treatment raised the activity of SOD which was dependent on PPARγ level. According to our results, the α-MSH-induced melanogenesis was PPARγ dependent, which also modulated the expression of SOD. PMID:25250328

  10. MST1 activation by curcumin mediates JNK activation, Foxo3a nuclear translocation and apoptosis in melanoma cells

    SciTech Connect

    Yu, Teng; Ji, Jiang; Guo, Yong-li

    2013-11-08

    Highlights: •Curcumin activates MST1 in melanoma cells. •MST1 mediates curcumin-induced apoptosis of melanoma cells. •ROS production is involved in curcumin-induced MST1 activation. •MST1 mediates curcumin-induced JNK activation in melanoma cells. •MST1 mediates curcumin-induced Foxo3a nuclear translocation and Bim expression. -- Abstract: Different groups including ours have shown that curcumin induces melanoma cell apoptosis, here we focused the role of mammalian Sterile 20-like kinase 1 (MST1) in it. We observed that curcumin activated MST1-dependent apoptosis in cultured melanoma cells. MST1 silencing by RNA interference (RNAi) suppressed curcumin-induced cell apoptosis, while MST1 over-expressing increased curcumin sensitivity. Meanwhile, curcumin induced reactive oxygen species (ROS) production in melanoma cells, and the ROS scavenger, N-acetyl-cysteine (NAC), almost blocked MST1 activation to suggest that ROS might be required for MST1 activation by curcumin. c-Jun N-terminal protein kinase (JNK) activation by curcumin was dependent on MST1, since MST1 inhibition by RNAi or NAC largely inhibited curcumin-induced JNK activation. Further, curcumin induced Foxo3 nuclear translocation and Bim-1 (Foxo3 target gene) expression in melanoma cells, such an effect by curcumin was inhibited by MST1 RNAi. In conclusion, we suggested that MST1 activation by curcumin mediates JNK activation, Foxo3a nuclear translocation and apoptosis in melanoma cells.

  11. Platelet-derived growth factor-receptor alpha strongly inhibits melanoma growth in vitro and in vivo.

    PubMed

    Faraone, Debora; Aguzzi, Maria Simona; Toietta, Gabriele; Facchiano, Angelo M; Facchiano, Francesco; Magenta, Alessandra; Martelli, Fabio; Truffa, Silvia; Cesareo, Eleonora; Ribatti, Domenico; Capogrossi, Maurizio C; Facchiano, Antonio

    2009-08-01

    Cutaneous melanoma is the most aggressive skin cancer; it is highly metastatic and responds poorly to current therapies. The expression of platelet-derived growth factor receptors (PDGF-Rs) is reported to be reduced in metastatic melanoma compared with benign nevi or normal skin; we then hypothesized that PDGF-Ralpha may control growth of melanoma cells. We show here that melanoma cells overexpressing PDGF-Ralpha respond to serum with a significantly lower proliferation compared with that of controls. Apoptosis, cell cycle arrest, pRb dephosphorylation, and DNA synthesis inhibition were also observed in cells overexpressing PDGF-Ralpha. Proliferation was rescued by PDGF-Ralpha inhibitors, allowing to exclude nonspecific toxic effects and indicating that PDGF-Ralpha mediates autocrine antiproliferation signals in melanoma cells. Accordingly, PDGF-Ralpha was found to mediate staurosporine cytotoxicity. A protein array-based analysis of the mitogen-activated protein kinase pathway revealed that melanoma cells overexpressing PDGF-Ralpha show a strong reduction of c-Jun phosphorylated in serine 63 and of protein phosphatase 2A/Balpha and a marked increase of p38gamma, mitogen-activated protein kinase kinase 3, and signal regulatory protein alpha1 protein expression. In a mouse model of primary melanoma growth, infection with the Ad-vector overexpressing PDGF-Ralpha reached a significant 70% inhibition of primary melanoma growth (P < .001) and a similar inhibition of tumor angiogenesis. All together, these data demonstrate that PDGF-Ralpha strongly impairs melanoma growth likely through autocrine mechanisms and indicate a novel endogenous mechanism involved in melanoma control. PMID:19649203

  12. Platelet-Derived Growth Factor-Receptor α Strongly Inhibits Melanoma Growth In Vitro and In Vivo1

    PubMed Central

    Faraone, Debora; Aguzzi, Maria Simona; Toietta, Gabriele; Facchiano, Angelo M; Facchiano, Francesco; Magenta, Alessandra; Martelli, Fabio; Truffa, Silvia; Cesareo, Eleonora; Ribatti, Domenico; Capogrossi, Maurizio C; Facchiano, Antonio

    2009-01-01

    Cutaneous melanoma is the most aggressive skin cancer; it is highly metastatic and responds poorly to current therapies. The expression of platelet-derived growth factor receptors (PDGF-Rs) is reported to be reduced in metastatic melanoma compared with benign nevi or normal skin; we then hypothesized that PDGF-Rα may control growth of melanoma cells. We show here that melanoma cells overexpressing PDGF-Rα respond to serum with a significantly lower proliferation compared with that of controls. Apoptosis, cell cycle arrest, pRb dephosphorylation, and DNA synthesis inhibition were also observed in cells overexpressing PDGF-Rα. Proliferation was rescued by PDGF-Rα inhibitors, allowing to exclude nonspecific toxic effects and indicating that PDGF-Rα mediates autocrine antiproliferation signals in melanoma cells. Accordingly, PDGF-Rα was found to mediate staurosporine cytotoxicity. A protein array-based analysis of the mitogen-activated protein kinase pathway revealed that melanoma cells overexpressing PDGF-Rα show a strong reduction of c-Jun phosphorylated in serine 63 and of protein phosphatase 2A/Bα and a marked increase of p38γ, mitogen-activated protein kinase kinase 3, and signal regulatory protein α1 protein expression. In a mouse model of primary melanoma growth, infection with the Ad-vector overexpressing PDGF-Rα reached a significant 70% inhibition of primary melanoma growth (P < .001) and a similar inhibition of tumor angiogenesis. All together, these data demonstrate that PDGF-Rα strongly impairs melanoma growth likely through autocrine mechanisms and indicate a novel endogenous mechanism involved in melanoma control. PMID:19649203

  13. Nifuroxazide exerts potent anti-tumor and anti-metastasis activity in melanoma

    PubMed Central

    Zhu, Yongxia; Ye, Tinghong; Yu, Xi; Lei, Qian; Yang, Fangfang; Xia, Yong; Song, Xuejiao; Liu, Li; Deng, Hongxia; Gao, Tiantao; Peng, Cuiting; Zuo, Weiqiong; Xiong, Ying; Zhang, Lidan; Wang, Ningyu; Zhao, Lifeng; Xie, Yongmei; Yu, Luoting; Wei, Yuquan

    2016-01-01

    Melanoma is a highly malignant neoplasm of melanocytes with considerable metastatic potential and drug resistance, explaining the need for new candidates that inhibit tumor growth and metastasis. The signal transducer and activator of the transcription 3 (Stat3) signaling pathway plays an important role in melanoma and has been validated as promising anticancer target for melanoma therapy. In this study, nifuroxazide, an antidiarrheal agent identified as an inhibitor of Stat3, was evaluated for its anti-melanoma activity in vitro and in vivo. It had potent anti-proliferative activity against various melanoma cell lines and could induce G2/M phase arrest and cell apoptosis. Moreover, nifuroxazide markedly impaired melanoma cell migration and invasion by down-regulating phosphorylated-Src, phosphorylated-FAK, and expression of matrix metalloproteinase (MMP) -2, MMP-9 and vimentin. It also significantly inhibited tumor growth without obvious side effects in the A375-bearing mice model by inducing apoptosis and reducing cell proliferation and metastasis. Notably, nifuroxazide significantly inhibited pulmonary metastases, which might be associated with the decrease of myeloid-derived suppressor cells (MDSCs). These findings suggested that nifuroxazide might be a potential agent for inhibiting the growth and metastasis of melanoma. PMID:26830149

  14. Nifuroxazide exerts potent anti-tumor and anti-metastasis activity in melanoma.

    PubMed

    Zhu, Yongxia; Ye, Tinghong; Yu, Xi; Lei, Qian; Yang, Fangfang; Xia, Yong; Song, Xuejiao; Liu, Li; Deng, Hongxia; Gao, Tiantao; Peng, Cuiting; Zuo, Weiqiong; Xiong, Ying; Zhang, Lidan; Wang, Ningyu; Zhao, Lifeng; Xie, Yongmei; Yu, Luoting; Wei, Yuquan

    2016-01-01

    Melanoma is a highly malignant neoplasm of melanocytes with considerable metastatic potential and drug resistance, explaining the need for new candidates that inhibit tumor growth and metastasis. The signal transducer and activator of the transcription 3 (Stat3) signaling pathway plays an important role in melanoma and has been validated as promising anticancer target for melanoma therapy. In this study, nifuroxazide, an antidiarrheal agent identified as an inhibitor of Stat3, was evaluated for its anti-melanoma activity in vitro and in vivo. It had potent anti-proliferative activity against various melanoma cell lines and could induce G2/M phase arrest and cell apoptosis. Moreover, nifuroxazide markedly impaired melanoma cell migration and invasion by down-regulating phosphorylated-Src, phosphorylated-FAK, and expression of matrix metalloproteinase (MMP) -2, MMP-9 and vimentin. It also significantly inhibited tumor growth without obvious side effects in the A375-bearing mice model by inducing apoptosis and reducing cell proliferation and metastasis. Notably, nifuroxazide significantly inhibited pulmonary metastases, which might be associated with the decrease of myeloid-derived suppressor cells (MDSCs). These findings suggested that nifuroxazide might be a potential agent for inhibiting the growth and metastasis of melanoma. PMID:26830149

  15. Caffeine inhibits UV-mediated NF-kappaB activation in A2058 melanoma cells: an ATM-PKCdelta-p38 MAPK-dependent mechanism.

    PubMed

    Ravi, Dashnamoorthy; Muniyappa, Harish; Das, Kumuda C

    2008-01-01

    Mammalian ultraviolet (UV) radiation response is a gene induction cascade activated by several transcription factors, including NF-kappaB. Although NF-kappaB is induced by UV radiation, the signal transduction mechanism remains relatively unclear. In the present study, we show that UV-induced NF-kappaB activation is mediated by the activation of Ataxia telangiecia mutated (ATM) and protein kinase C (PKC). We also show that caffeine specifically inhibits UV-mediated NF-kappaB activation, but not TNFalpha-mediated NF-kappaB activation. In addition, our study shows that ATM, but not ATM-Rad3-related (ATR) or DNA-dependent protein kinase (DNA-PK) is involved in UV-induced NF-kappaB activation. Because SB203580 (a p38 MAPK inhibitor), or Calphostin C or rottlerin (PKC inhibitors) was able to inhibit UV-mediated NF-kappaB activation, we evaluated whether caffeine could inhibit p38 MAPK or PKC activity. Caffeine or rottlerin inhibited UV-induced phosphorylation of p38 MAPK, but not anisomycin-induced phosphorylation of p38 MAPK, suggesting that p38 MAPK is downstream of PKC. Additionally, caffeine could effectively inhibit UV-induced increases in PKC activity. Taken together, our study demonstrates that caffeine is a potent inhibitor of UV-induced NF-kappaB activation. Additionally, this inhibition occurs due to the inhibitory action of caffeine on ATM and PKC, resulting in the inhibition of p38 MAPK activation.

  16. Curcumin associated magnetite nanoparticles inhibit in vitro melanoma cell growth.

    PubMed

    de Souza, Fernanda França; dos Santos, Michelly Christine; dos Passos, Debora Cristina Silva; Lima, Emilia Celma de Oliveira; Guillo, Lidia Andreu

    2011-09-01

    Curcumin is a natural product possessing therapeutic properties but the low water solubility of this compound limits its use. We have successfully incorporated curcumin into a bilayer of dodecanoic acid attached to magnetite nanoparticles in an effort to maximize solubility and delivery efficiency. Curcumin/magnetite nanoparticles were characterized using diffused reflectance infra-red fourier transform spectroscopy (DRIFTS) and X-ray powder diffraction (XRD). Moreover curcumin associated magnetite nanoparticles inhibited in vitro melanoma cell growth. An inhibitory concentration (IC50) of 66.0 +/- 3.0 microM (48 +/- 2.2 microg-iron/mL) was observed for the curcumin/magnetite nanoparticles. Fluorescent microscopy revealed that curcumin associated magnetite nanoparticles were internalized by the melanoma cells and remained in the cytoplasm. The curcumin/magnetic nanoparticles synthesized in this study possess magnetic and water solubility properties making this a novel curcumin formulation with therapeutic potential.

  17. Acetylsalicylic acid regulates MMP-2 activity and inhibits colorectal invasion of murine B16F0 melanoma cells in C57BL/6J mice: effects of prostaglandin F(2)alpha.

    PubMed

    Tsai, Chin-Shaw Stella; Luo, Shue-Fen; Ning, Chung-Chu; Lin, Chien-Liang; Jiang, Ming-Chung; Liao, Ching-Fong

    2009-08-01

    Epidemiological studies indicate that acetylsalicylic acid may reduce the risk of mortality due to colon cancers. Metastasis is the major cause of cancer death. Matrix metalloproteinases (MMPs) play important roles in tumor invasion regulation, and prostaglandin F(2)alpha (PGF(2)alpha) is a key stimulator of MMP production. Thus, we investigated whether acetylsalicylic acid regulated MMP activity and the invasion of cancer cells and whether PGF(2)alpha attenuated acetylsalicylic acid-inhibited invasion of cancer cells. Gelatin-based zymography assays showed that acetylsalicylic acid inhibited the MMP-2 activity of B16F0 melanoma cells. Matrigel-based chemoinvasion assays showed that acetylsalicylic acid inhibited the invasion of B16F0 cells. Acetylsalicylic acid can inhibit PGF(2)alpha synthesis and PGF(2)alpha is a key stimulator of MMP-2 production. Our data showed that PGF(2)alpha treatment attenuated the acetylsalicylic acid-inhibited invasion of B16F0 cells. In animal experiments, acetylsalicylic acid reduced colorectal metastasis of B16F0 cells in C57BL/6J mice by 44%. Our results suggest that PGF(2)alpha is a therapeutic target for metastasis inhibition and acetylsalicylic acid may possess anti-metastasis ability.

  18. Interferon α/β enhances the cytotoxic response of MEK inhibition in melanoma

    PubMed Central

    Litvin, Oren; Schwartz, Sarit; Wan, Zhenmao; Schild, Tanya; Rocco, Mark; Oh, Nul Loren; Chen, Bo-Juen; Goddard, Noel; Pratilas, Christine; Pe’er, Dana

    2014-01-01

    Summary Drugs that inhibit the MAPK pathway have therapeutic benefit in melanoma, but responses vary between patients, for reasons that are still largely unknown. Here we aim at explaining this variability using pre- and post-MEK inhibition transcriptional profiles in a panel of melanoma cell-lines. We found that most targets are context-specific – under the influence of the pathway in only a subset of cell-lines. We developed a computational method to identify context-specific targets, and found differences in the activity levels of the interferon pathway, driven by a deletion of the interferon locus. We also discovered that IFNα/β treatment strongly enhances the cytotoxic effect of MEK inhibition, but only in cell lines with low activity of interferon pathway. Taken together, our results suggest that the interferon pathway plays an important role, and predicts, the response to MAPK inhibition in melanoma. Our analysis demonstrates the value of system-wide perturbation data in predicting drug response. PMID:25684207

  19. Timosaponin AIII inhibits melanoma cell migration by suppressing COX-2 and in vivo tumor metastasis.

    PubMed

    Kim, Ki Mo; Im, A-Rang; Kim, Seung Hyung; Hyun, Jin Won; Chae, Sungwook

    2016-02-01

    Melanoma is the leading cause of death from skin disease, due in large part to its propensity to metastasize. We examined the effects of timosaponin AIII, a compound isolated from Anemarrhena asphodeloides Bunge, on melanoma cancer cell migration and the molecular mechanisms underlying these effects using B16-F10 and WM-115 melanoma cells lines. Overexpression of COX-2, its metabolite prostaglandin E2 (PGE2), and PGE2 receptors (EP2 and EP4) promoted cell migration in vitro. Exposure to timosaponin AIII resulted in concentration-dependent inhibition of cell migration, which was associated with reduced levels of COX-2, PGE2, and PGE2 receptors. Transient transfection of COX-2 siRNA also inhibited cell migration. Exposure to 12-O-tetradecanoylphorbal-13-acetate enhanced cell migration, whereas timosaponin AIII inhibited 12-O-tetradecanoylphorbal-13-acetate-induced cell migration and reduced basal levels of EP2 and EP4. Moreover, timosaponin AIII inhibited activation of nuclear factor-kappa B (NF-κB), an upstream regulator of COX-2 in B16-F10 cells. Consistent with our in vitro findings, in vivo studies showed that timosaponin AIII treatment significantly reduced the total number of metastatic nodules in the mouse lung and improved histological alterations in B16-F10-injected C57BL/6 mice. In addition, C57BL/6 mice treated with timosaponin AIII showed reduced expression of COX-2 and NF-κB in the lung. Together, these results indicate that timosaponin AIII has the capacity to inhibit melanoma cell migration, an essential step in the process of metastasis, by inhibiting expression of COX-2, NF-κB, PGE2, and PGE2 receptors.

  20. Inhibition of the STAT3 signaling pathway contributes to apigenin-mediated anti-metastatic effect in melanoma

    PubMed Central

    Cao, Hui-Hui; Chu, Jian-Hong; Kwan, Hiu-Yee; Su, Tao; Yu, Hua; Cheng, Chi-Yan; Fu, Xiu-Qiong; Guo, Hui; Li, Ting; Tse, Anfernee Kai-Wing; Chou, Gui-Xin; Mo, Huan-Biao; Yu, Zhi-Ling

    2016-01-01

    Signal transducer and activator of transcription 3 (STAT3) signaling is constantly activated in human melanoma, and promotes melanoma metastasis. The dietary flavonoid apigenin is a bioactive compound that possesses low toxicity and exerts anti-metastatic activity in melanoma. However, the anti-metastasis mechanism of apigenin has not been fully elucidated. In the present study, we showed that apigenin suppressed murine melanoma B16F10 cell lung metastasis in mice, and inhibited cell migration and invasion in human and murine melanoma cells. Further study indicated that apigenin effectively suppressed STAT3 phosphorylation, decreased STAT3 nuclear localization and inhibited STAT3 transcriptional activity. Apigenin also down-regulated STAT3 target genes MMP-2, MMP-9, VEGF and Twist1, which are involved in cell migration and invasion. More importantly, overexpression of STAT3 or Twist1 partially reversed apigenin-impaired cell migration and invasion. Our data not only reveal a novel anti-metastasis mechanism of apigenin but also support the notion that STAT3 is an attractive and promising target for melanoma treatment. PMID:26911838

  1. In vitro and in vivo anti-tumor activity of CoQ0 against melanoma cells: inhibition of metastasis and induction of cell-cycle arrest and apoptosis through modulation of Wnt/β-catenin signaling pathways

    PubMed Central

    Hseu, You-Cheng; Thiyagarajan, Varadharajan; Tsou, Hsiao-Tung; Lin, Kai-Yuan; Chen, Hui-Jye; Lin, Chung-Ming; Liao, Jiuun-Wang; Yang, Hsin-Ling

    2016-01-01

    Coenzyme Q0 (CoQ0, 2,3-dimethoxy-5-methyl-1,4-benzoquinone), a novel quinone derivative, has been shown to modulate cellular redox balance. However, effect of this compound on melanoma remains unclear. This study examined the in vitro or in vivo anti-tumor, apoptosis, and anti-metastasis activities of CoQ0 (0-20 μM) through inhibition of Wnt/β-catenin signaling pathway. CoQ0 exhibits a significant cytotoxic effect on melanoma cell lines (B16F10, B16F1, and A2058), while causing little toxicity toward normal (HaCaT) cells. The suppression of β-catenin was seen with CoQ0 administration accompanied by a decrease in the expression of Wnt/β-catenin transcriptional target c-myc, cyclin D1, and survivin through GSK3β-independent pathway. We found that CoQ0 treatment caused G1 cell-cycle arrest by reducing the levels of cyclin E and CDK4. Furthermore, CoQ0 treatment induced apoptosis through caspase-9/-3 activation, PARP degradation, Bcl-2/Bax dysregulation, and p53 expression. Notably, non- or sub-cytotoxic concentrations of CoQ0 markedly inhibited migration and invasion, accompanied by the down-regulation of MMP-2 and -9, and up-regulation of TIMP-1 and -2 expressions in highly metastatic B16F10 cells. Furthermore, the in vivo study results revealed that CoQ0 treatment inhibited the tumor growth in B16F10 xenografted nude mice. Histological analysis and western blotting confirmed that CoQ0 significantly decreased the xenografted tumor progression as demonstrated by induction of apoptosis, suppression of β-catenin, and inhibition of cell cycle-, apoptotic-, and metastatic-regulatory proteins. The data suggest that CoQ0 unveils a novel mechanism by down-regulating Wnt/β-catenin pathways and could be used as a potential lead compound for melanoma chemotherapy. PMID:26968952

  2. Spirooxindole derivative SOID-8 induces apoptosis associated with inhibition of JAK2/STAT3 signaling in melanoma cells.

    PubMed

    Tian, Yan; Nam, Sangkil; Liu, Lucy; Yakushijin, Fumiko; Yakushijin, Kenichi; Buettner, Ralf; Liang, Wei; Yang, Fan; Ma, Yuelong; Horne, David; Jove, Richard

    2012-01-01

    Melanoma is generally refractory to current chemotherapy, thus new treatment strategies are needed. In this study, we synthesized a series of spirooxindole derivatives (SOID-1 to SOID-12) and evaluated their antitumor effects on melanoma. Among the 12 spirooxindole derivatives, SOID-8 showed the strongest antitumor activity by viability screening. SOID-8 inhibited viability of A2058, A375, SK-MEL-5 and SK-MEL-28 human melanoma cells in a dose- and time-dependent manner. SOID-8 also induced apoptosis of these tumor cells, which was confirmed by positive Annexin V staining and an increase of poly(ADP-ribose) polymerase cleavage. The antiapoptotic protein Mcl-1, a member of the Bcl-2 family, was downregulated and correlated with SOID-8 induced apoptosis. In addition, SOID-8 reduced tyrosine phosphorylation of Signal Tansducer and Activator of Transcription 3 (STAT3) in both dose- and time-dependent manners. This inhibition was associated with decreased levels of phosphorylation of Janus-activated kinase-2 (JAK2), an upstream kinase that mediates STAT3 phosphorylation at Tyr705. Accordingly, SOID-8 inhibited IL-6-induced activation of STAT3 and JAK2 in melanoma cells. Finally, SOID-8 suppressed melanoma tumor growth in a mouse xenograft model, accompanied with a decrease of phosphorylation of JAK2 and STAT3. Our results indicate that the antitumor activity of SOID-8 is at least partially due to inhibition of JAK2/STAT3 signaling in melanoma cells. These findings suggest that the spirooxindole derivative SOID-8 is a promising lead compound for further development of new preventive and therapeutic agents for melanoma.

  3. Genetic inactivation or pharmacological inhibition of Pdk1 delays development and inhibits metastasis of BrafV600E::Pten−/− melanoma

    PubMed Central

    Scortegagna, Marzia; Ruller, Chelsea; Feng, Yongmei; Lazova, Rossitza; Kluger, Harriet; Li, Jian-Liang; De, Surya K; Rickert, Robert; Pellecchia, Maurizio; Bosenberg, Marcus; Ronai, Ze’ev A.

    2014-01-01

    Phosphoinositide-dependent kinase-1 (PDK-1) is a serine/threonine protein kinase that phosphorylates members of the conserved AGC kinase superfamily, including AKT and PKC, and is implicated in important cellular processes including survival, metabolism and tumorigenesis. In large cohorts of nevi and melanoma samples, PDK1 expression was significantly higher in primary melanoma, compared with nevi, and was further increased in metastatic melanoma. PDK1 expression suffices for its activity, due to auto-activation, or elevated phosphorylation by phosphoinositide 3'-OH-kinase (PI 3-K). Selective inactivation of Pdk1 in the melanocytes of BrafV600E::Pten−/− or BrafV600E::Cdkn2a−/−::Pten−/− mice delayed the development of pigmented lesions and melanoma induced by systemic or local administration of 4-HT. Melanoma invasion and metastasis were significantly reduced or completely prevented by Pdk1 deletion. Administration of the PDK1 inhibitor GSK2334470 (PDKi) effectively delayed melanomagenesis and metastasis in BrafV600E::Pten−/− mice. Pdk1−/− melanomas exhibit a marked decrease in the activity of AKT, P70S6K and PKC. Notably, PDKi was as effective in inhibiting AGC kinases and colony forming efficiency of melanoma with Pten WT genotypes. Gene expression analyses identified Pdk1-dependent changes in FOXO3a-regulated genes and inhibition of FOXO3a restored proliferation and colony formation of Pdk1−/− melanoma cells. Our studies provide direct genetic evidence for the importance of PDK1, in part through FOXO3a-dependent pathway, in melanoma development and progression. PMID:24037523

  4. Cuprous oxide nanoparticles inhibit the growth and metastasis of melanoma by targeting mitochondria

    PubMed Central

    Wang, Y; Yang, F; Zhang, H-X; Zi, X-Y; Pan, X-H; Chen, F; Luo, W-D; Li, J-X; Zhu, H-Y; Hu, Y-P

    2013-01-01

    Metal and its oxide nanoparticles show ideal pharmacological activity, especially in anti-tumor therapy. Our previous study demonstrated that cuprous oxide nanoparticles (CONPs) selectively induce apoptosis of tumor cells in vitro. To explore the anti-tumor properties of CONPs in vivo, we used the particles to treat mouse subcutaneous melanoma and metastatic lung tumors, based on B16-F10 mouse melanoma cells, by intratumoral and systemic injections, respectively. The results showed that CONPs significantly reduced the growth of melanoma, inhibited the metastasis of B16-F10 cells and increased the survival rate of tumor-bearing mice. Importantly, the results also indicated that CONPs were rapidly cleared from the organs and that these particles exhibited little systemic toxicity. Furthermore, we observed that CONPs targeted the mitochondria, which resulted in the release of cytochrome C from the mitochondria and the activation of caspase-3 and caspase-9 after the CONPs entered the cells. In conclusion, CONPs can induce the apoptosis of cancer cells through a mitochondrion-mediated apoptosis pathway, which raises the possibility that CONPs could be used to cure melanoma and other cancers. PMID:23990023

  5. Molecular pathway activation features linked with transition from normal skin to primary and metastatic melanomas in human.

    PubMed

    Shepelin, Denis; Korzinkin, Mikhail; Vanyushina, Anna; Aliper, Alexander; Borisov, Nicolas; Vasilov, Raif; Zhukov, Nikolay; Sokov, Dmitry; Prassolov, Vladimir; Gaifullin, Nurshat; Zhavoronkov, Alex; Bhullar, Bhupinder; Buzdin, Anton

    2016-01-01

    Melanoma is the most aggressive and dangerous type of skin cancer, but its molecular mechanisms remain largely unclear. For transcriptomic data of 478 primary and metastatic melanoma, nevi and normal skin samples, we performed high-throughput analysis of intracellular molecular networks including 592 signaling and metabolic pathways. We showed that at the molecular pathway level, the formation of nevi largely resembles transition from normal skin to primary melanoma. Using a combination of bioinformatic machine learning algorithms, we identified 44 characteristic signaling and metabolic pathways connected with the formation of nevi, development of primary melanoma, and its metastases. We created a model describing formation and progression of melanoma at the level of molecular pathway activation. We discovered six novel associations between activation of metabolic molecular pathways and progression of melanoma: for allopregnanolone biosynthesis, L-carnitine biosynthesis, zymosterol biosynthesis (inhibited in melanoma), fructose 2, 6-bisphosphate synthesis and dephosphorylation, resolvin D biosynthesis (activated in melanoma), D-myo-inositol hexakisphosphate biosynthesis (activated in primary, inhibited in metastatic melanoma). Finally, we discovered fourteen tightly coordinated functional clusters of molecular pathways. This study helps to decode molecular mechanisms underlying the development of melanoma. PMID:26624979

  6. Molecular pathway activation features linked with transition from normal skin to primary and metastatic melanomas in human

    PubMed Central

    Shepelin, Denis; Korzinkin, Mikhail; Vanyushina, Anna; Aliper, Alexander; Borisov, Nicolas; Vasilov, Raif; Zhukov, Nikolay; Sokov, Dmitry; Prassolov, Vladimir; Gaifullin, Nurshat; Zhavoronkov, Alex; Bhullar, Bhupinder; Buzdin, Anton

    2016-01-01

    Melanoma is the most aggressive and dangerous type of skin cancer, but its molecular mechanisms remain largely unclear. For transcriptomic data of 478 primary and metastatic melanoma, nevi and normal skin samples, we performed high-throughput analysis of intracellular molecular networks including 592 signaling and metabolic pathways. We showed that at the molecular pathway level, the formation of nevi largely resembles transition from normal skin to primary melanoma. Using a combination of bioinformatic machine learning algorithms, we identified 44 characteristic signaling and metabolic pathways connected with the formation of nevi, development of primary melanoma, and its metastases. We created a model describing formation and progression of melanoma at the level of molecular pathway activation. We discovered six novel associations between activation of metabolic molecular pathways and progression of melanoma: for allopregnanolone biosynthesis, L-carnitine biosynthesis, zymosterol biosynthesis (inhibited in melanoma), fructose 2, 6-bisphosphate synthesis and dephosphorylation, resolvin D biosynthesis (activated in melanoma), D-myo-inositol hexakisphosphate biosynthesis (activated in primary, inhibited in metastatic melanoma). Finally, we discovered fourteen tightly coordinated functional clusters of molecular pathways. This study helps to decode molecular mechanisms underlying the development of melanoma. PMID:26624979

  7. Molecular pathway activation features linked with transition from normal skin to primary and metastatic melanomas in human.

    PubMed

    Shepelin, Denis; Korzinkin, Mikhail; Vanyushina, Anna; Aliper, Alexander; Borisov, Nicolas; Vasilov, Raif; Zhukov, Nikolay; Sokov, Dmitry; Prassolov, Vladimir; Gaifullin, Nurshat; Zhavoronkov, Alex; Bhullar, Bhupinder; Buzdin, Anton

    2016-01-01

    Melanoma is the most aggressive and dangerous type of skin cancer, but its molecular mechanisms remain largely unclear. For transcriptomic data of 478 primary and metastatic melanoma, nevi and normal skin samples, we performed high-throughput analysis of intracellular molecular networks including 592 signaling and metabolic pathways. We showed that at the molecular pathway level, the formation of nevi largely resembles transition from normal skin to primary melanoma. Using a combination of bioinformatic machine learning algorithms, we identified 44 characteristic signaling and metabolic pathways connected with the formation of nevi, development of primary melanoma, and its metastases. We created a model describing formation and progression of melanoma at the level of molecular pathway activation. We discovered six novel associations between activation of metabolic molecular pathways and progression of melanoma: for allopregnanolone biosynthesis, L-carnitine biosynthesis, zymosterol biosynthesis (inhibited in melanoma), fructose 2, 6-bisphosphate synthesis and dephosphorylation, resolvin D biosynthesis (activated in melanoma), D-myo-inositol hexakisphosphate biosynthesis (activated in primary, inhibited in metastatic melanoma). Finally, we discovered fourteen tightly coordinated functional clusters of molecular pathways. This study helps to decode molecular mechanisms underlying the development of melanoma.

  8. Enhanced Histone Deacetylase Activity in Malignant Melanoma Provokes RAD51 and FANCD2-Triggered Drug Resistance.

    PubMed

    Krumm, Andrea; Barckhausen, Christina; Kücük, Pelin; Tomaszowski, Karl-Heinz; Loquai, Carmen; Fahrer, Jörg; Krämer, Oliver Holger; Kaina, Bernd; Roos, Wynand Paul

    2016-05-15

    DNA-damaging anticancer drugs remain a part of metastatic melanoma therapy. Epigenetic reprogramming caused by increased histone deacetylase (HDAC) activity arising during tumor formation may contribute to resistance of melanomas to the alkylating drugs temozolomide, dacarbazine, and fotemustine. Here, we report on the impact of class I HDACs on the response of malignant melanoma cells treated with alkylating agents. The data show that malignant melanomas in situ contain a high level of HDAC1/2 and malignant melanoma cells overexpress HDAC1/2/3 compared with noncancer cells. Furthermore, pharmacologic inhibition of class I HDACs sensitizes malignant melanoma cells to apoptosis following exposure to alkylating agents, while not affecting primary melanocytes. Inhibition of HDAC1/2/3 caused sensitization of melanoma cells to temozolomide in vitro and in melanoma xenografts in vivo HDAC1/2/3 inhibition resulted in suppression of DNA double-strand break (DSB) repair by homologous recombination because of downregulation of RAD51 and FANCD2. This sensitized cells to the cytotoxic DNA lesion O(6)-methylguanine and caused a synthetic lethal interaction with the PARP-1 inhibitor olaparib. Furthermore, knockdown experiments identified HDAC2 as being responsible for the regulation of RAD51. The influence of class I HDACs on DSB repair by homologous recombination and the possible clinical implication on malignant melanoma therapy with temozolomide and other alkylating drugs suggests a combination approach where class I HDAC inhibitors such as valproic acid or MS-275 (entinostat) appear to counteract HDAC- and RAD51/FANCD2-mediated melanoma cell resistance. Cancer Res; 76(10); 3067-77. ©2016 AACR. PMID:26980768

  9. Involvement of ER stress and activation of apoptotic pathways in fisetin induced cytotoxicity in human melanoma.

    PubMed

    Syed, Deeba N; Lall, Rahul K; Chamcheu, Jean Christopher; Haidar, Omar; Mukhtar, Hasan

    2014-12-01

    The prognosis of malignant melanoma remains poor in spite of recent advances in therapeutic strategies for the deadly disease. Fisetin, a dietary flavonoid is currently being investigated for its growth inhibitory properties in various cancer models. We previously showed that fisetin inhibited melanoma growth in vitro and in vivo. Here, we evaluated the molecular basis of fisetin induced cytotoxicity in metastatic human melanoma cells. Fisetin treatment induced endoplasmic reticulum (ER) stress in highly aggressive A375 and 451Lu human melanoma cells, as revealed by up-regulation of ER stress markers including IRE1α, XBP1s, ATF4 and GRP78. Time course analysis indicated that the ER stress was associated with activation of the extrinsic and intrinsic apoptotic pathways. Fisetin treated 2-D melanoma cultures displayed autophagic response concomitant with induction of apoptosis. Prolonged treatment (16days) with fisetin in a 3-D reconstituted melanoma model resulted in inhibition of melanoma progression with significant apoptosis, as evidenced by increased staining of cleaved Caspase-3 in the treated constructs. However, no difference in the expression of autophagic marker LC-3 was noted between treated and control groups. Fisetin treatment to 2-D melanoma cultures resulted in phosphorylation and activation of the multifunctional AMP-activated protein kinase (AMPK) involved in the regulation of diverse cellular processes, including autophagy and apoptosis. Silencing of AMPK failed to prevent cell death indicating that fisetin induced cytotoxicity is mediated through both AMPK-dependent and -independent mechanisms. Taken together, our studies confirm apoptosis as the primary mechanism through which fisetin inhibits melanoma cell growth and that activation of both extrinsic and intrinsic pathways contributes to fisetin induced cytotoxicity.

  10. Impact of MAPK Pathway Activation in BRAF(V600) Melanoma on T Cell and Dendritic Cell Function.

    PubMed

    Ott, Patrick A; Bhardwaj, Nina

    2013-10-28

    Constitutive upregulation of the MAPK pathway by a BRAF(V600) mutation occurs in about half of melanomas. This leads to increased oncogenic properties such as tumor cell invasion, metastatic potential, and resistance to apoptosis. Blockade of the MAPK pathway with highly specific kinase inhibitors induces unprecedented tumor response rates in patients with advanced BRAF(V600) mutant melanoma. Immune checkpoint blockade with monoclonal antibodies targeting cytotoxic T-lymphocyte antigen 4 and programed death-1/PD-L1 has also demonstrated striking anti-tumor activity in patients with advanced melanoma. Tumor responses are likely limited by multiple additional layers of immune suppression in the tumor microenvironment. There is emerging preclinical and clinical evidence suggesting that MAPK inhibition has a beneficial effect on the immunosuppressive tumor microenvironment, providing a strong rationale for combined immunotherapy and MAPK pathway inhibition in melanoma. The T cell response has been the main focus in the studies reported to date. Since dendritic cells (DCs) are important in the induction of tumor-specific T cell responses, the impact of MAPK pathway activation in melanoma on DC function is critical for the melanoma directed immune response. BRAF(V600E) melanoma cells modulate DCs through the MAPK pathway because its blockade in melanoma cells can reverse suppression of DC function. As both MEK/BRAF inhibition and immune checkpoint blockade have recently taken center stage in the treatment of melanoma, a deeper understanding of how MAPK pathway inhibition affects the tumor immune response is needed.

  11. Bisphosphonamidate Clodronate Prodrug Exhibits Selective Cytotoxic Activity Against Melanoma Cell Lines

    PubMed Central

    Webster, Marie R.; Kamat, Chandrashekhar; Connis, Nick; Zhao, Ming; Weeraratna, Ashani T.; Rudek, Michelle A.; Hann, Christine L.; Freel Meyers, Caren L.

    2014-01-01

    Bisphosphonates are used clinically to treat disorders of calcium metabolism and malignant bone disease and are known to inhibit cancer cell growth, adhesion, and invasion. However, clinical use of these agents for the treatment of extraskeletal disease is limited due to low cell permeability. We recently described a bisphosphonamidate prodrug strategy for efficient intracellular release of bisphosphonates, including clodronate (CLO), in NSCLC cells. To evaluate anticancer activity of this prodrug class across many cancer cell types, the bisphosphonamidate clodronate prodrug (CLO prodrug) was screened against the NCI-60 cell line panel, and was found to exhibit selectivity toward melanoma cell lines. Here, we confirm efficient cellular uptake and intracellular activation of this prodrug class in melanoma cells. We further demonstrate inhibition of melanoma cell proliferation, induction of apoptosis, and an anti-tumor effect of CLO prodrug in a xenograft model. These data suggest a novel therapeutic application for the CLO prodrug and potential to selectively target melanoma cells. PMID:24310621

  12. Rac1 activity regulates proliferation of aggressive metastatic melanoma

    SciTech Connect

    Bauer, Natalie N. Chen Yihwen; Samant, Rajeev S.; Shevde, Lalita A.; Fodstad, Oystein

    2007-11-01

    Molecular mechanisms underlying the different capacity of two in vivo selected human melanoma cell variants to form experimental metastases were studied. The doubling times of the FEMX-I and FEMX-V cell sublines in vitro were 15 and 25 h, respectively. The invasive capacity of FEMX-I cells was 8-fold higher than FEMX-V cells, and the time to form approximately 10 mm s.c. tumors in nude mice was 21 versus 35 days. FEMX-I displayed a spindle-like formation in vitro, whereas FEMX-V cells had a rounded shape. Hence, we examined known determinants of cell shape and proliferation, the small GTPases. The four studied showed equal expression in both cell types, but Rac1 activity was significantly decreased in FEMX-V cells. Rac1 stimulates NF{kappa}B, and we found that endogenous NF{kappa}B activity of FEMX-V cells was 2% of that of FEMX-I cells. Inhibition of Rac1 resulted in blocked NF{kappa}B activity. Specific inhibition of either Rac1 or NF{kappa}B significantly reduced proliferation and invasion of FEMX-I cells, the more pronounced effects observed with Rac1 inhibition. These data indicate that Rac1 activity in FEMX cells regulates cell proliferation and invasion, in part via its effect on NF{kappa}B, signifying Rac1 as a key molecule in melanoma progression and metastasis.

  13. Broad-spectrum therapeutic suppression of metastatic melanoma through nuclear hormone receptor activation.

    PubMed

    Pencheva, Nora; Buss, Colin G; Posada, Jessica; Merghoub, Taha; Tavazoie, Sohail F

    2014-02-27

    Melanoma metastasis is a devastating outcome lacking an effective preventative therapeutic. We provide pharmacologic, molecular, and genetic evidence establishing the liver-X nuclear hormone receptor (LXR) as a therapeutic target in melanoma. Oral administration of multiple LXR agonists suppressed melanoma invasion, angiogenesis, tumor progression, and metastasis. Molecular and genetic experiments revealed these effects to be mediated by LXRβ, which elicits these outcomes through transcriptional induction of tumoral and stromal apolipoprotein-E (ApoE). LXRβ agonism robustly suppressed tumor growth and metastasis across a diverse mutational spectrum of melanoma lines. LXRβ targeting significantly prolonged animal survival, suppressed the progression of established metastases, and inhibited brain metastatic colonization. Importantly, LXRβ activation displayed melanoma-suppressive cooperativity with the frontline regimens dacarbazine, B-Raf inhibition, and the anti-CTLA-4 antibody and robustly inhibited melanomas that had acquired resistance to B-Raf inhibition or dacarbazine. We present a promising therapeutic approach that uniquely acts by transcriptionally activating a metastasis suppressor gene.

  14. The Pan-Aurora Kinase Inhibitor, PHA-739358, Induces Apoptosis and Inhibits Migration in Melanoma Cell Lines

    PubMed Central

    Xie, Lifang; Meyskens, Frank L

    2014-01-01

    Treatment of metastatic melanoma has long been a challenge due to its resistance to traditional chemotherapeutics leading to the search for alternative strategies. Aurora kinases are key mitotic regulators that are frequently overexpressed in various cancers including melanoma, making them ideal targets for anticancer therapeutics. Several Aurora kinase inhibitors have been developed and tested pre-clinically and clinically. PHA-739358 is currently the most advanced clinical compound; however its antitumor effect has not been tested in melanoma. In this study, the anti-proliferative and anti-invasive effects of PHA-739358 were investigated in melanoma cell lines. The results demonstrated that PHA-739358 produces a time and dose dependent inhibition of cell proliferation, induction of apoptosis, and inhibition of cell migration. Downregulation of MMP-2 via inhibition of NFκB signaling pathway may contribute to PHA-739358-induced migration inhibition. Furthermore, PHA-739358 enhanced temozolomide-induced caspase activation. This study provides a promising new strategy for the treatment of advanced melanoma. PMID:23344158

  15. Activation of Notch1 signaling is required for β-catenin–mediated human primary melanoma progression

    PubMed Central

    Balint, Klara; Xiao, Min; Pinnix, Chelsea C.; Soma, Akinobu; Veres, Imre; Juhasz, Istvan; Brown, Eric J.; Capobianco, Anthony J.; Herlyn, Meenhard; Liu, Zhao-Jun

    2005-01-01

    Notch is a highly conserved transmembrane receptor that determines cell fate. Notch signaling denotes cleavage of the Notch intracellular domain, its translocation to the nucleus, and subsequent activation of target gene transcription. Involvement of Notch signaling in several cancers is well known, but its role in melanoma remains poorly characterized. Here we show that the Notch1 pathway is activated in human melanoma. Blocking Notch signaling suppressed whereas constitutive activation of the Notch1 pathway enhanced primary melanoma cell growth both in vitro and in vivo yet had little effect on metastatic melanoma cells. Activation of Notch1 signaling enabled primary melanoma cells to gain metastatic capability. Furthermore, the oncogenic effect of Notch1 on primary melanoma cells was mediated by β-catenin, which was upregulated following Notch1 activation. Inhibiting β-catenin expression reversed Notch1-enhanced tumor growth and metastasis. Our data therefore suggest a β-catenin–dependent, stage-specific role for Notch1 signaling in promoting the progression of primary melanoma. PMID:16239965

  16. Conditional ablation of Ikkb inhibits melanoma tumor development in mice.

    PubMed

    Yang, Jinming; Splittgerber, Ryan; Yull, Fiona E; Kantrow, Sara; Ayers, Gregory D; Karin, Michael; Richmond, Ann

    2010-07-01

    Several lines of evidence suggest that tumor cells show elevated activity of the NF-kappaB transcription factor, a phenomenon often resulting from constitutive activity of IkappaB kinase beta (IKKbeta). However, others have found that loss of NF-kappaB activity or IKKbeta is tumor promoting. The role of NF-kappaB in tumor progression is therefore controversial and varies with tumor type. We sought to more extensively investigate the role IKKbeta in melanoma tumor development by specifically disrupting Ikkb in melanocytes in an established mouse model of spontaneous melanoma, whereby HRasV12 is expressed in a melanocyte-specific, doxycycline-inducible manner in mice null for the gene encoding the tumor suppressor inhibitor cyclin-dependent kinase 4/alternative reading frame (Ink4a/Arf). Our results show that Ink4a/Arf-/- mice with melanocyte-specific deletion of Ikkb were protected from HRasV12-initiated melanoma only when p53 was expressed. This protection was accompanied by cell cycle arrest, with reduced cyclin-dependent kinase 2 (Cdk2), Cdk4, Aurora kinase A, and Aurora kinase B expression. Increased p53-mediated apoptosis was also observed, with decreased expression of the antiapoptotic proteins Bcl2 and survivin. Enhanced stabilization of p53 involved increased phosphorylation at Ser15 and reduced phosphorylation of double minute 2 (Mdm2) at Ser166. Together, our findings provide genetic and mechanistic evidence that mutant HRas initiation of tumorigenesis requires Ikkbeta-mediated NF-kappaB activity. PMID:20530876

  17. Notch1 Pathway Activity Determines the Regulatory Role of Cancer-Associated Fibroblasts in Melanoma Growth and Invasion

    PubMed Central

    Shao, Hongwei; Kong, Ranran; Ferrari, Massimiliano L.; Radtke, Freddy; Capobianco, Anthony J.; Liu, Zhao-Jun

    2015-01-01

    Cancer-associated fibroblasts (CAF) play a crucial role in regulating cancer progression, yet the molecular determinant that governs the tumor regulatory role of CAF remains unknown. Using a mouse melanoma model in which exogenous melanoma cells were grafted on the skin of two lines of mice where the genetic activation or inactivation of Notch1 signaling specifically occurs in natural host stromal fibroblasts, we demonstrated that Notch1 pathway activity could determine the tumor-promoting or tumor-suppressing phenotype in CAF. CAF carrying elevated Notch1 activity significantly inhibited melanoma growth and invasion, while those with a null Notch1 promoted melanoma invasion. These findings identify the Notch1 pathway as a molecular determinant that controls the regulatory role of CAF in melanoma skin growth and invasion, unveiling Notch1 signaling as a potential therapeutic target for melanoma and potentially other solid tumors. PMID:26562315

  18. Selective BRAF inhibition decreases tumor-resident lymphocyte frequencies in a mouse model of human melanoma.

    PubMed

    Hooijkaas, Anna; Gadiot, Jules; Morrow, Michelle; Stewart, Ross; Schumacher, Ton; Blank, Christian U

    2012-08-01

    The development of targeted therapies and immunotherapies has markedly advanced the treatment of metastasized melanoma. While treatment with selective BRAF(V600E) inhibitors (like vemurafenib or dabrafenib) leads to high response rates but short response duration, CTLA-4 blocking therapies induce sustained responses, but only in a limited number of patients. The combination of these diametric treatment approaches may further improve survival, but pre-clinical data concerning this approach is limited. We investigated, using Tyr::CreER(T2)PTEN(F-/-)BRAF(F-V600E/+) inducible melanoma mice, whether BRAF(V600E) inhibition can synergize with anti-CTLA-4 mAb treatment, focusing on the interaction between the BRAF(V600E) inhibitor PLX4720 and the immune system. While PLX4720 treatment strongly decreased tumor growth, it did not induce cell death in BRAF(V600E)/PTEN(-/-) melanomas. More strikingly, PLX4720 treatment led to a decreased frequency of tumor-resident T cells, NK-cells, MDSCs and macrophages, which could not be restored by the addition of anti-CTLA-4 mAb. As this effect was not observed upon treatment of BRAF wild-type B16F10 tumors, we conclude that the decreased frequency of immune cells correlates to BRAF(V600E) inhibition in tumor cells and is not due to an off-target effect of PLX4720 on immune cells. Furthermore, anti-CTLA-4 mAb treatment of inducible melanoma mice treated with PLX4720 did not result in enhanced tumor control, while anti-CTLA-4 mAb treatment did improve the effect of tumor-vaccination in B16F10-inoculated mice. Our data suggest that vemurafenib may negatively affect the immune activity within the tumor. Therefore, the potential effect of targeted therapy on the tumor-microenvironment should be taken into consideration in the design of clinical trials combining targeted and immunotherapy.

  19. Ribozyme-Mediated Targeting of IκBγ Inhibits Melanoma Invasion and Metastasis

    PubMed Central

    Torabian, Sima Z.; de Semir, David; Nosrati, Mehdi; Bagheri, Sepideh; Dar, Altaf A.; Fong, Sylvia; Liu, Yong; Federman, Scot; Simko, Jeff; Haqq, Chris; Debs, Robert J.; Kashani-Sabet, Mohammed

    2009-01-01

    IκBγ is one member of a family of proteins that can inhibit the nuclear localization of nuclear factor-κB. However, the other specific functions of IκBγ are still poorly understood, and its effects on tumor metastasis have not yet been characterized. We examined the consequences of targeting IκBγ in melanoma cells using a hammerhead ribozyme. We developed stable transformant B16-F10 melanoma cell lines that express a ribozyme that targets mouse IκBγ (IκBγ-144-Rz). Tail-vein injection of B16-F10 cells that stably express IκBγ-144-Rz into mice resulted in a significant reduction of the metastatic potential of these cells. IκBγ-144-Rz-expressing B16 cells were shown to have increased transcriptional activity of nuclear factor-κB. We then showed that IκBγ-144-Rz-expressing cells demonstrated both reduced invasion and increased apoptosis, suggesting the existence of pathways through which IκBγ promotes melanoma metastasis. Using gene expression profiling, we identified a differentially expressed gene set that is regulated by the stable suppression of IκBγ that may participate in mediating its anti-metastatic effects; we also confirmed the altered expression levels of several of these genes by quantitative real time polymerase chain reaction. Plasmid-mediated expression of IκBγ-144-Rz produced a significant inhibition of the metastatic progression of B16-F10 cells to the lung and resulted in significant anti-invasive and pro-apoptotic effects on murine Lewis lung carcinoma cells. Our results suggest a novel role for IκBγ in promoting the metastatic progression of melanoma. PMID:19179607

  20. Fully humanized neutralizing antibodies to interleukin-8 (ABX-IL8) inhibit angiogenesis, tumor growth, and metastasis of human melanoma.

    PubMed

    Huang, Suyun; Mills, Lisa; Mian, Badar; Tellez, Carmen; McCarty, Marya; Yang, X-D; Gudas, Jean M; Bar-Eli, Menashe

    2002-07-01

    Interleukin-8 (IL-8) has recently been shown to contribute to human melanoma progression by functioning as a mitogenic and angiogenic factor. In the present study, we investigated whether targeting IL-8 by a fully human anti-IL-8 antibody (ABX-IL8) could be a potential therapeutic strategy to control angiogenesis, growth, and metastasis of melanoma. The human melanoma cells A375SM (high IL-8 producer) and TXM-13 (intermediate IL-8 producer) were injected subcutaneously into nude mice, which were then treated with ABX-IL8 (1 mg/3 times weekly, i.p., for 3 weeks). Tumor growth of both melanomas in ABX-IL8-treated mice was significantly inhibited when compared with control IgG-treated animals. ABX-IL8 treatment also suppressed experimental metastasis when the melanoma cells were injected intravenously. IL-8 blockade by ABX-IL8 significantly inhibited the promoter activity and the collagenase activity of matrix metalloproteinase-2 in human melanoma cells, resulting in decreased invasion through reconstituted basement membrane in vitro. In vivo, ABX-IL8 treatment resulted in decreased expression of matrix metalloproteinase-2, and decreased vascularization (angiogenesis) of tumors concomitant with increased apoptosis of tumor cells. Moreover, in an in vitro vessel formation assay, ABX-IL8 directly interfered with the tubule formation by human umbilical vein endothelial cells. Taken together, these results point to the potential utility of ABX-IL8 as a modality to treat melanoma and other solid tumors either alone or in combination with conventional chemotherapy or other anti-tumor agents. PMID:12107097

  1. Effective inhibition of melanoma by BI-69A11 is mediated by dual targeting of the AKT and NF-κB pathways.

    PubMed

    Feng, Yongmei; Barile, Elisa; De, Surya K; Stebbins, John L; Cortez, Apple; Aza-Blanc, Pedro; Villanueva, Jessie; Heryln, Meenhard; Krajewski, Stan; Pellecchia, Maurizio; Ronai, Ze'ev A; Chiang, Gary G

    2011-08-01

    In melanoma, the activation of pro-survival signaling pathways, such as the AKT and NF-κB pathways, is critical for tumor growth. We have recently reported that the AKT inhibitor BI-69A11 causes efficient inhibition of melanoma growth. Here, we show that in addition to its AKT inhibitory activity, BI-69A11 also targets the NF-κB pathway. In melanoma cell lines, BI-69A11 inhibited TNF-α-stimulated IKKα/β and IκB phosphorylation as well as NF-κB reporter gene expression. Furthermore, the effective inhibition of melanoma growth by BI-69A11 was attenuated upon NF-κB activation. Mechanistically, reduced NF-κB signaling by BI-69-A11 is mediated by the inhibition of sphingosine kinase 1, identified in a screen of 315 kinases. Significantly, we demonstrate that BI-69A11 is well tolerated and orally active against UACC 903 and SW1 melanoma xenografts. Our results demonstrate that BI-69A11 inhibits both the AKT and the NF-κB pathways and that the dual targeting of these pathways may be efficacious as a therapeutic strategy in melanoma. PMID:21592316

  2. Dimethylthiourea inhibition of B16 melanoma growth and induction of phenotypic alterations; relationship to ATP levels.

    PubMed Central

    Fux, A.; Sidi, Y.; Kessler-Icekson, G.; Wasserman, L.; Novogrodsky, A.; Nordenberg, J.

    1991-01-01

    1,3 Dimethylthiourea (DMTU) has previously been shown by us to inhibit the growth of melanoma cells and to induce phenotypic alterations in these cells, including ultrastructural alterations of mitochondria. These findings raised the possibility that impaired mitochondrial function might be involved in mediating the effect of DMTU on cell growth and phenotypic expression. The present study indicates that DMTU as well as another growth inhibitory methylurea derivative, tetramethylurea (TMU) significantly decrease ATP content in the B16 melanoma cell line. 1,3 Dimethylurea (1,3DMU) and 1,1 dimethylurea (1,1DMU) which are poor growth inhibitors, do not reduce ATP content significantly. Altered energy metabolism in the DMTU-treated cells is reflected by inhibition of the activity of cytochrome c oxidase and by increased lactate levels. A cell line selected for resistance to growth inhibition by DMTU was shown to be completely resistant to induction of phenotypic alterations by DMTU. These cells possess high lactate levels, high ATP content and a somewhat decreased Na/K ATPase activity as compared to wild type B16 F10 cells. 1,3 DMTU treatment of the resistant cells leads to a decrease in the activity of the mitochondrial enzyme cytochrome c oxidase, similar to its effect on the wild type B16 F10 cells. DMTU also reduces ATP content moderately in the resistant cells. However, the levels of ATP do not decrease beyond those found in untreated B16 F10 wild type cells. Taken together the results suggest that decreased ATP content might be involved, at least partially, in mediating the effects of DMTU on B16 melanoma cell growth and phenotypic expression. PMID:1850608

  3. The pharmacological NF-κB inhibitor BAY11-7082 induces cell apoptosis and inhibits the migration of human uveal melanoma cells.

    PubMed

    Hu, Shuiqing; Luo, Qingqiong; Cun, Biyun; Hu, Dan; Ge, Shengfang; Fan, Xianqun; Chen, Fuxiang

    2012-01-01

    Uveal melanomas are highly metastatic and have high rate of recurrence due to the lack of effective systemic therapy. The identification of important survival pathways in uveal melanomas provides novel therapeutic targets for effective treatment. In the present study, we found that the NF-κB signaling pathway was constitutively and highly activated in uveal melanoma cells. Treatment with the pharmacological NF-κB specific inhibitor BAY11-7082 markedly decreased the nuclear translocation of NF-κB. In a dose-dependent setting, BAY11-7082 inhibited the proliferation and growth of uveal melanoma cells by inducing apoptosis without effect on cell cycle. The migration capacity of uveal melanoma cells was also significantly suppressed by BAY11-7082 treatment. Mechanistically, BAY11-7082 increased the activity of caspase 3 and reduced the expression of anti-apoptotic protein Bcl-2, but did not influence the expression of pro-apoptotic protein Bax. Furthermore, BAY11-7082 induced uveal melanoma cell apoptosis and inhibited xenograft tumor growth in vivo. Collectively, the present study identified NF-κB as an important survival signal for uveal melanoma cells and suggested that administration of specific NF-κB inhibitor BAY11-7082 could serve as an effective treatment for patients with uveal melanoma.

  4. The Pharmacological NF-κB Inhibitor BAY11-7082 Induces Cell Apoptosis and Inhibits the Migration of Human Uveal Melanoma Cells

    PubMed Central

    Hu, Shuiqing; Luo, Qingqiong; Cun, Biyun; Hu, Dan; Ge, Shengfang; Fan, Xianqun; Chen, Fuxiang

    2012-01-01

    Uveal melanomas are highly metastatic and have high rate of recurrence due to the lack of effective systemic therapy. The identification of important survival pathways in uveal melanomas provides novel therapeutic targets for effective treatment. In the present study, we found that the NF-κB signaling pathway was constitutively and highly activated in uveal melanoma cells. Treatment with the pharmacological NF-κB specific inhibitor BAY11-7082 markedly decreased the nuclear translocation of NF-κB. In a dose-dependent setting, BAY11-7082 inhibited the proliferation and growth of uveal melanoma cells by inducing apoptosis without effect on cell cycle. The migration capacity of uveal melanoma cells was also significantly suppressed by BAY11-7082 treatment. Mechanistically, BAY11-7082 increased the activity of caspase 3 and reduced the expression of anti-apoptotic protein Bcl-2, but did not influence the expression of pro-apoptotic protein Bax. Furthermore, BAY11-7082 induced uveal melanoma cell apoptosis and inhibited xenograft tumor growth in vivo. Collectively, the present study identified NF-κB as an important survival signal for uveal melanoma cells and suggested that administration of specific NF-κB inhibitor BAY11-7082 could serve as an effective treatment for patients with uveal melanoma. PMID:23443086

  5. The pharmacological NF-κB inhibitor BAY11-7082 induces cell apoptosis and inhibits the migration of human uveal melanoma cells.

    PubMed

    Hu, Shuiqing; Luo, Qingqiong; Cun, Biyun; Hu, Dan; Ge, Shengfang; Fan, Xianqun; Chen, Fuxiang

    2012-01-01

    Uveal melanomas are highly metastatic and have high rate of recurrence due to the lack of effective systemic therapy. The identification of important survival pathways in uveal melanomas provides novel therapeutic targets for effective treatment. In the present study, we found that the NF-κB signaling pathway was constitutively and highly activated in uveal melanoma cells. Treatment with the pharmacological NF-κB specific inhibitor BAY11-7082 markedly decreased the nuclear translocation of NF-κB. In a dose-dependent setting, BAY11-7082 inhibited the proliferation and growth of uveal melanoma cells by inducing apoptosis without effect on cell cycle. The migration capacity of uveal melanoma cells was also significantly suppressed by BAY11-7082 treatment. Mechanistically, BAY11-7082 increased the activity of caspase 3 and reduced the expression of anti-apoptotic protein Bcl-2, but did not influence the expression of pro-apoptotic protein Bax. Furthermore, BAY11-7082 induced uveal melanoma cell apoptosis and inhibited xenograft tumor growth in vivo. Collectively, the present study identified NF-κB as an important survival signal for uveal melanoma cells and suggested that administration of specific NF-κB inhibitor BAY11-7082 could serve as an effective treatment for patients with uveal melanoma. PMID:23443086

  6. The FGF-2-Derived Peptide FREG Inhibits Melanoma Growth In Vitro and In Vivo

    PubMed Central

    Aguzzi, Maria S; Faraone, Debora; D'Arcangelo, Daniela; De Marchis, Francesco; Toietta, Gabriele; Ribatti, Domenico; Parazzoli, Alberto; Colombo, Paolo; Capogrossi, Maurizio C; Facchiano, Antonio

    2011-01-01

    Previous data report that fibroblast growth factor-2 (FGF-2)-derived peptide FREG potently inhibits FGF-2-dependent angiogenesis in vitro and in vivo. Here, we show that FREG inhibits up to 70% in vitro growth and invasion/migration of smooth muscle and melanoma cells. Such inhibition is mediated by platelet-derived growth factor-receptor-α (PDGF-Rα); in fact, proliferation and migration were restored upon PDGF-Rα neutralization. Further experiments demonstrated that FREG interacts with PDGF-Rα both in vitro and in vivo and stimulates its phosphorylation. We have previously shown that overexpressing PDGF-Rα strongly inhibits melanoma growth in vivo; we, therefore, hypothesized that PDGF-Rα agonists may represent a novel tool to inhibit melanoma growth in vivo. To support this hypothesis, FREG was inoculated intravenously (i.v.) in a mouse melanoma model and markedly inhibited pulmonary metastases formation. Immunohistochemical analyses showed less proliferation, less angiogenesis, and more apoptosis in metastasized lungs upon FREG treatment, as compared to untreated controls. Finally, in preliminary acute toxicity studies, FREG showed no toxicity signs in healthy animals, and neither microscopic nor macroscopic toxicity at the liver, kidney, and lungs level. Altogether, these data indicate that FREG systemic treatment strongly inhibits melanoma metastases development and indicate for the first time that agonists of PDGF-Rα may control melanoma both in vitro and in vivo. PMID:20924364

  7. The FGF-2-derived peptide FREG inhibits melanoma growth in vitro and in vivo.

    PubMed

    Aguzzi, Maria S; Faraone, Debora; D'Arcangelo, Daniela; De Marchis, Francesco; Toietta, Gabriele; Ribatti, Domenico; Parazzoli, Alberto; Colombo, Paolo; Capogrossi, Maurizio C; Facchiano, Antonio

    2011-02-01

    Previous data report that fibroblast growth factor-2 (FGF-2)-derived peptide FREG potently inhibits FGF-2-dependent angiogenesis in vitro and in vivo. Here, we show that FREG inhibits up to 70% in vitro growth and invasion/migration of smooth muscle and melanoma cells. Such inhibition is mediated by platelet-derived growth factor-receptor-α (PDGF-Rα); in fact, proliferation and migration were restored upon PDGF-Rα neutralization. Further experiments demonstrated that FREG interacts with PDGF-Rα both in vitro and in vivo and stimulates its phosphorylation. We have previously shown that overexpressing PDGF-Rα strongly inhibits melanoma growth in vivo; we, therefore, hypothesized that PDGF-Rα agonists may represent a novel tool to inhibit melanoma growth in vivo. To support this hypothesis, FREG was inoculated intravenously (i.v.) in a mouse melanoma model and markedly inhibited pulmonary metastases formation. Immunohistochemical analyses showed less proliferation, less angiogenesis, and more apoptosis in metastasized lungs upon FREG treatment, as compared to untreated controls. Finally, in preliminary acute toxicity studies, FREG showed no toxicity signs in healthy animals, and neither microscopic nor macroscopic toxicity at the liver, kidney, and lungs level. Altogether, these data indicate that FREG systemic treatment strongly inhibits melanoma metastases development and indicate for the first time that agonists of PDGF-Rα may control melanoma both in vitro and in vivo. PMID:20924364

  8. Honokiol bis-dichloroacetate (Honokiol DCA) demonstrates activity in vemurafenib-resistant melanoma in vivo

    PubMed Central

    Bonner, Michael Y.; Karlsson, Isabella; Rodolfo, Monica; Arnold, Rebecca S.; Vergani, Elisabetta; Arbiser, Jack L.

    2016-01-01

    The majority of human melanomas bears BRAF mutations and thus is treated with inhibitors of BRAF, such as vemurafenib. While patients with BRAF mutations often demonstrate an initial dramatic response to vemurafenib, relapse is extremely common. Thus, novel agents are needed for the treatment of these aggressive melanomas. Honokiol is a small molecule compound derived from Magnolia grandiflora that has activity against solid tumors and hematopoietic neoplasms. In order to increase the lipophilicity of honokiol, we have synthesized honokiol DCA, the dichloroacetate ester of honokiol. In addition, we synthesized a novel fluorinated honokiol analog, bis-trifluoromethyl-bis-(4-hydroxy-3-allylphenyl) methane (hexafluoro). Both compounds exhibited activity against A375 melanoma in vivo, but honokiol DCA was more active. Gene arrays comparing treated with vehicle control tumors demonstrated induction of the respiratory enzyme succinate dehydrogenase B (SDHB) by treatment, suggesting that our honokiol analogs induce respiration in vivo. We then examined its effect against a pair of melanomas, LM36 and LM36R, in which LM36R differs from LM36 in that LM36R has acquired vemurafenib resistance. Honokiol DCA demonstrated in vivo activity against LM36R (vemurafenib resistant) but not against parental LM36. Honokiol DCA and hexafluoro inhibited the phosphorylation of DRP1, thus stimulating a phenotype suggestive of respiration through mitochondrial normalization. Honokiol DCA may act in vemurafenib resistant melanomas to increase both respiration and reactive oxygen generation, leading to activity against aggressive melanoma in vivo. PMID:26871475

  9. Inactivation of RASA1 promotes melanoma tumorigenesis via R-Ras activation

    PubMed Central

    Sung, Hyeran; Kanchi, Krishna L.; Wang, Xue; Hill, Kristen S.; Messina, Jane L.; Lee, Ji-Hyun; Kim, Youngchul; Dees, Nathan D.; Ding, Li; Teer, Jamie K.; Yang, Shengyu; Sarnaik, Amod A.; Sondak, Vernon K.; Mulé, James J.; Wilson, Richard K.; Weber, Jeffrey S.; Kim, Minjung

    2016-01-01

    Inactivation of Ras GTPase activating proteins (RasGAPs) can activate Ras, increasing the risk for tumor development. Utilizing a melanoma whole genome sequencing (WGS) data from 13 patients, we identified two novel, clustered somatic missense mutations (Y472H and L481F) in RASA1 (RAS p21 protein activator 1, also called p120RasGAP). We have shown that wild type RASA1, but not identified mutants, suppresses soft agar colony formation and tumor growth of BRAF mutated melanoma cell lines via its RasGAP activity toward R-Ras (related RAS viral (r-ras) oncogene homolog) isoform. Moreover, R-Ras increased and RASA1 suppressed Ral-A activation among Ras downstream effectors. In addition to mutations, loss of RASA1 expression was frequently observed in metastatic melanoma samples on melanoma tissue microarray (TMA) and a low level of RASA1 mRNA expression was associated with decreased overall survival in melanoma patients with BRAF mutations. Thus, these data support that RASA1 is inactivated by mutation or by suppressed expression in melanoma and that RASA1 plays a tumor suppressive role by inhibiting R-Ras, a previously less appreciated member of the Ras small GTPases. PMID:26993606

  10. Honokiol bis-dichloroacetate (Honokiol DCA) demonstrates activity in vemurafenib-resistant melanoma in vivo.

    PubMed

    Bonner, Michael Y; Karlsson, Isabella; Rodolfo, Monica; Arnold, Rebecca S; Vergani, Elisabetta; Arbiser, Jack L

    2016-03-15

    The majority of human melanomas bears BRAF mutations and thus is treated with inhibitors of BRAF, such as vemurafenib. While patients with BRAF mutations often demonstrate an initial dramatic response to vemurafenib, relapse is extremely common. Thus, novel agents are needed for the treatment of these aggressive melanomas. Honokiol is a small molecule compound derived from Magnolia grandiflora that has activity against solid tumors and hematopoietic neoplasms. In order to increase the lipophilicity of honokiol, we have synthesized honokiol DCA, the dichloroacetate ester of honokiol. In addition, we synthesized a novel fluorinated honokiol analog, bis-trifluoromethyl-bis-(4-hydroxy-3-allylphenyl) methane (hexafluoro). Both compounds exhibited activity against A375 melanoma in vivo, but honokiol DCA was more active. Gene arrays comparing treated with vehicle control tumors demonstrated induction of the respiratory enzyme succinate dehydrogenase B (SDHB) by treatment, suggesting that our honokiol analogs induce respiration in vivo. We then examined its effect against a pair of melanomas, LM36 and LM36R, in which LM36R differs from LM36 in that LM36R has acquired vemurafenib resistance. Honokiol DCA demonstrated in vivo activity against LM36R (vemurafenib resistant) but not against parental LM36. Honokiol DCA and hexafluoro inhibited the phosphorylation of DRP1, thus stimulating a phenotype suggestive of respiration through mitochondrial normalization. Honokiol DCA may act in vemurafenib resistant melanomas to increase both respiration and reactive oxygen generation, leading to activity against aggressive melanoma in vivo. PMID:26871475

  11. Inhibition by Tyroserleutide (YSL) on the Invasion and Adhesion of the Mouse Melanoma Cell

    PubMed Central

    Yao, Zhi; Che, Xu-chun; Lu, Rong; Zheng, Min-na; Zhu, Zhi-feng; Li, Jin-ping; Jian, Xu; Shi, Lin-xi; Liu, Jun-yan; Gao, Wen-yuan

    2007-01-01

    Tyroserleutide (YSL) is an active, low-molecular-weight polypeptide, comprised of three amino acids, that has shown antitumor effects on human hepatocarcinoma BEL-7402 in vitro and in vivo. In this study, we evaluated the inhibition of YSL on invasion and adhesion of the mouse B16-F10 melanoma cell line by injecting B16-F10 cells into the tail veins of C57BL/6 mice to establish an experimental lung metastasis model. YSL inhibited B16-F10 cell metastasis to lung, reducing the number and area of metastasis lesions. When we treated B16-F10 cells with YSL (0.01, 0.1, 1, 10, or 100 μg/mL) in vitro, we found that YSL inhibited the proliferation of B16-F10 cells with a 28.11% rate of inhibition. YSL significantly decreased the adhesiveness of B16-F10 cells to Matrigel with a 29.15% inhibition rate; YSL also significantly inhibited the invasion of B16-F10 cells, producing an inhibition of 35.31%. By analyses with Western blot and real-time RT-PCR, we found that YSL markedly inhibited the expression of ICAM-1 in B16-F10 cells. These data suggest that YSL inhibits the growth, invasion, and adhesion of B16-F10 cells. PMID:17515953

  12. AC-93253 triggers the downregulation of melanoma progression markers and the inhibition of melanoma cell proliferation.

    PubMed

    Karwaciak, Iwona; Gorzkiewicz, Michal; Ryba, Katarzyna; Dastych, Jaroslaw; Pulaski, Lukasz; Ratajewski, Marcin

    2015-07-01

    A major challenge in anti-melanoma therapy is to develop treatments that are effective for advanced melanoma patients. Unfortunately, the currently used regimens are not efficient and have unsatisfactory effects on disease progression, thus increasing the pressure to develop new, profitable drugs and to identify new molecular targets. Here, we show for the first time that AC-93253, a SIRT2 inhibitor, exerts a negative effect on the expression of a set of genes involved in the progression and chemoresistance (e.g., oncogenes, apoptosis-related genes, ABC transporter genes, and cell cycle control genes) of melanoma cells. Furthermore, melanoma cells exposed to AC-93253 and doxorubicin displayed altered biological responses, including apoptosis and proliferation, compared to cells exposed to single treatments. Taken together, we conclude that the usage of AC-93253 in combined therapy could be a promising strategy for melanoma patients.

  13. Sarcophine-diol, a skin cancer chemopreventive agent, inhibits proliferation and stimulates apoptosis in mouse melanoma B₁₆F₁₀ cell line.

    PubMed

    Szymanski, Pawel T; Kuppast, Bhimanna; Ahmed, Safwat A; Khalifa, Sherief; Fahmy, Hesham

    2012-01-01

    Sarcodiol (SD) is a semi-synthetic derivative of sarcophine, a marine natural product. In our previous work, we reported the significant chemopreventive effects of SD against non-melanoma skin cancer both in vitro and in vivo mouse models. In this investigation, we extended this work to study the effect of sarcodiol on melanoma development, the more deadly form of skin cancer, using the mouse melanoma B₁₆F₁₀ cell line. In this study we report that SD inhibits the de novo DNA synthesis and enhances fragmentation of DNA. We also evaluated the antitumor effect of SD on melanoma cell viability using several biomarkers for cell proliferation and apoptosis. SD inhibits the expression levels of signal transducers and activators of transcription protein (STAT-3) and cyclin D1, an activator of cyclin-dependent kinase 4 (Cdk4). SD treatment also enhances cellular level of tumor suppressor protein 53 (p53) and stimulates cleavage of the nuclear poly (ADP-ribose) polymerase (cleaved-PARP). SD also enhances cellular levels of cleaved Caspase-3, -8, -9 and stimulates enzymatic activities of Caspase-3, -8 and -9. These results, in addition to inhibition of cell viability, suggest that SD inhibits melanoma cell proliferation by arresting the cell-division cycle in a Go quiescent phase and activates programmed cell death (apoptosis) via extrinsic and intrinsic pathways. Finally, these studies demonstrate that SD shows a very promising chemopreventive effect in melanoma B₁₆F₁₀ tumor cells.

  14. Sarcophine-diol, a skin cancer chemopreventive agent, inhibits proliferation and stimulates apoptosis in mouse melanoma B₁₆F₁₀ cell line.

    PubMed

    Szymanski, Pawel T; Kuppast, Bhimanna; Ahmed, Safwat A; Khalifa, Sherief; Fahmy, Hesham

    2012-01-01

    Sarcodiol (SD) is a semi-synthetic derivative of sarcophine, a marine natural product. In our previous work, we reported the significant chemopreventive effects of SD against non-melanoma skin cancer both in vitro and in vivo mouse models. In this investigation, we extended this work to study the effect of sarcodiol on melanoma development, the more deadly form of skin cancer, using the mouse melanoma B₁₆F₁₀ cell line. In this study we report that SD inhibits the de novo DNA synthesis and enhances fragmentation of DNA. We also evaluated the antitumor effect of SD on melanoma cell viability using several biomarkers for cell proliferation and apoptosis. SD inhibits the expression levels of signal transducers and activators of transcription protein (STAT-3) and cyclin D1, an activator of cyclin-dependent kinase 4 (Cdk4). SD treatment also enhances cellular level of tumor suppressor protein 53 (p53) and stimulates cleavage of the nuclear poly (ADP-ribose) polymerase (cleaved-PARP). SD also enhances cellular levels of cleaved Caspase-3, -8, -9 and stimulates enzymatic activities of Caspase-3, -8 and -9. These results, in addition to inhibition of cell viability, suggest that SD inhibits melanoma cell proliferation by arresting the cell-division cycle in a Go quiescent phase and activates programmed cell death (apoptosis) via extrinsic and intrinsic pathways. Finally, these studies demonstrate that SD shows a very promising chemopreventive effect in melanoma B₁₆F₁₀ tumor cells. PMID:22363217

  15. Different immunology mechanisms of Phellinus igniarius in inhibiting growth of liver cancer and melanoma cells.

    PubMed

    Zhou, Cui; Jiang, Song-Song; Wang, Cui-Yan; Li, Rong; Che, Hui-Lian

    2014-01-01

    To assess inhibition mechanisms of a Phellinus igniarius (PI) extract on cancer, C57BL/6 mice were orally treated with PI extractive after or before implanting H22 (hepatocellular carcinoma ) or B16 (melanoma) cells. Mice were orally gavaged with different doses of PI for 36 days 24h after introduction of H22 or B16 cells. Mice in another group were orally treated as above daily for 42 days and implanted with H22 cells on day 7. Then the T lymphocyte, antibody, cytokine, LAK, NK cell activity in spleen, tumor cell apoptosis status and tumor inhibition in related organs, as well as the expression of iNOS and PCNA in tumor tissue were examined. The PI extract could improve animal immunity as well as inhibit cancer cell growth and metastasis with a dose-response relationship. Notably, PI's regulation with the two kinds of tumor appeared to occur in different ways, since the antibody profile and tumor metastasis demonstrated variation between animals implanted with hepatocellular carcinoma and melanoma cells. PMID:24870774

  16. Structural Modifications of (Z)-3-(2-aminoethyl)-5-(4-ethoxybenzylidene)thiazolidine-2,4-dione that Improve Selectivity for the Inhibition of Melanoma Cells Containing Active ERK Signaling

    PubMed Central

    Jung, Kwan-Young; Samadani, Ramin; Chauhan, Jay; Nevels, Kerrick; Yap, Jeremy L.; Zhang, Jun; Worlikar, Shilpa; Lanning, Maryanna E.; Chen, Lijia; Ensey, Mary; Shukla, Sagar; Salmo, Rosene; Heinzl, Geoffrey; Gordon, Caryn; Dukes, Troy; MacKerell, Alexander D.; Shapiro, Paul; Fletcher, Steven

    2013-01-01

    Towards the development of potent and selective inhibitors of melanoma cells containing active ERK signaling, we herein report on the pharmacophore determination and optimization of the ERK docking domain inhibitor (Z)-3-(2-aminoethyl)-5-(4-ethoxybenzylidene)thiazolidine-2,4-dione. PMID:23624850

  17. Biofunctional Activities of Equisetum ramosissimum Extract: Protective Effects against Oxidation, Melanoma, and Melanogenesis

    PubMed Central

    Li, Pin-Hui; Chiu, Yu-Pin; Shih, Chieh-Chih; Wen, Zhi-Hong; Ibeto, Laura Kaodichi; Huang, Shu-Hung; Chiu, Chien Chih; Ma, Dik-Lung; Leung, Chung-Hang; Chang, Yaw-Nan; Wang, Hui-Min David

    2016-01-01

    Equisetum ramosissimum, a genus of Equisetaceae, is a medicinal plant that can be separated into ethyl acetate (EA), dichloromethane (DM), n-hexane (Hex), methanol (MeOH), and water extracts. EA extract was known to have potent antioxidative properties, reducing power, DPPH scavenging activity, and metal ion chelating activity. This study compared these five extracts in terms of their inhibiting effects on three human malignant melanomas: A375, A375.S2, and A2058. MTT assay presented the notion that both EA and DM extracts inhibited melanoma growth but did not affect the viabilities of normal dermal keratinocytes (HaCaT) or fibroblasts. Western blot analyses showed that both EA and DM extracts induced overexpression of caspase proteins in all three melanomas. To determine their roles in melanogenesis, this study analyzed their in vitro suppressive effects on mushroom tyrosinase. All extracts except for water revealed moderate suppressive effects. None of the extracts affected B16-F10 cells proliferation. EA extract inhibited cellular melanin production whereas DM extract unexpectedly enhanced cellular pigmentation in B16-F10 cells. Data for modulations of microphthalmia-associated transcription factor, tyrosinase, tyrosinase-related protein 1, and tyrosinase-related protein 2 showed that EA extract inhibited protein expression mentioned above whereas DM extract had the opposite effect. Overall, the experiments indicated that the biofunctional activities of EA extract contained in food and cosmetics protect against oxidation, melanoma, and melanin production. PMID:27403230

  18. Biofunctional Activities of Equisetum ramosissimum Extract: Protective Effects against Oxidation, Melanoma, and Melanogenesis.

    PubMed

    Li, Pin-Hui; Chiu, Yu-Pin; Shih, Chieh-Chih; Wen, Zhi-Hong; Ibeto, Laura Kaodichi; Huang, Shu-Hung; Chiu, Chien Chih; Ma, Dik-Lung; Leung, Chung-Hang; Chang, Yaw-Nan; Wang, Hui-Min David

    2016-01-01

    Equisetum ramosissimum, a genus of Equisetaceae, is a medicinal plant that can be separated into ethyl acetate (EA), dichloromethane (DM), n-hexane (Hex), methanol (MeOH), and water extracts. EA extract was known to have potent antioxidative properties, reducing power, DPPH scavenging activity, and metal ion chelating activity. This study compared these five extracts in terms of their inhibiting effects on three human malignant melanomas: A375, A375.S2, and A2058. MTT assay presented the notion that both EA and DM extracts inhibited melanoma growth but did not affect the viabilities of normal dermal keratinocytes (HaCaT) or fibroblasts. Western blot analyses showed that both EA and DM extracts induced overexpression of caspase proteins in all three melanomas. To determine their roles in melanogenesis, this study analyzed their in vitro suppressive effects on mushroom tyrosinase. All extracts except for water revealed moderate suppressive effects. None of the extracts affected B16-F10 cells proliferation. EA extract inhibited cellular melanin production whereas DM extract unexpectedly enhanced cellular pigmentation in B16-F10 cells. Data for modulations of microphthalmia-associated transcription factor, tyrosinase, tyrosinase-related protein 1, and tyrosinase-related protein 2 showed that EA extract inhibited protein expression mentioned above whereas DM extract had the opposite effect. Overall, the experiments indicated that the biofunctional activities of EA extract contained in food and cosmetics protect against oxidation, melanoma, and melanin production. PMID:27403230

  19. 6-Bromoindirubin-3'-oxime inhibits JAK/STAT3 signaling and induces apoptosis of human melanoma cells.

    PubMed

    Liu, Lucy; Nam, Sangkil; Tian, Yan; Yang, Fan; Wu, Jun; Wang, Yan; Scuto, Anna; Polychronopoulos, Panos; Magiatis, Prokopios; Skaltsounis, Leandros; Jove, Richard

    2011-06-01

    STAT3 is persistently activated and contributes to malignant progression in various cancers. Janus activated kinases (JAK) phosphorylate STAT3 in response to stimulation by cytokines or growth factors. The STAT3 signaling pathway has been validated as a promising target for development of anticancer therapeutics. Small-molecule inhibitors of JAK/STAT3 signaling represent potential molecular-targeted cancer therapeutic agents. In this study, we investigated the role of JAK/STAT3 signaling in 6-bromoindirubin-3'-oxime (6BIO)-mediated growth inhibition of human melanoma cells and assessed 6BIO as a potential anticancer drug candidate. We found that 6BIO is a pan-JAK inhibitor that induces apoptosis of human melanoma cells. 6BIO directly inhibited JAK-family kinase activity, both in vitro and in cancer cells. Apoptosis of human melanoma cells induced by 6BIO was associated with reduced phosphorylation of JAKs and STAT3 in both dose- and time-dependent manners. Consistent with inhibition of STAT3 signaling, expression of the antiapoptotic protein Mcl-1 was downregulated. In contrast to the decreased levels of phosphorylation of JAKs and STAT3, phosphorylation levels of the Akt and mitogen-activated protein kinase (MAPK) signaling proteins were not inhibited in cells treated with 6BIO. Importantly, 6BIO suppressed tumor growth in vivo with low toxicity in a mouse xenograft model of melanoma. Taken together, these results show that 6BIO is a novel pan-JAK inhibitor that can selectively inhibit STAT3 signaling and induces tumor cell apoptosis. Our findings support further development of 6BIO as a potential anticancer therapeutic agent that targets JAK/STAT3 signaling in tumor cells.

  20. Targeted inhibition of metastatic melanoma through interference with Pin1-FOXM1 signaling

    PubMed Central

    Kruiswijk, F; Hasenfuss, S C; Sivapatham, R; Baar, M P; Putavet, D; Naipal, K A T; van den Broek, N J F; Kruit, W; van der Spek, P J; van Gent, D C; Brenkman, A B; Campisi, J; Burgering, B M T; Hoeijmakers, J H J; de Keizer, P L J

    2016-01-01

    Melanoma is the most lethal form of skin cancer and successful treatment of metastatic melanoma remains challenging. BRAF/MEK inhibitors only show a temporary benefit due to rapid occurrence of resistance, whereas immunotherapy is mainly effective in selected subsets of patients. Thus, there is a need to identify new targets to improve treatment of metastatic melanoma. To this extent, we searched for markers that are elevated in melanoma and are under regulation of potentially druggable enzymes. Here, we show that the pro-proliferative transcription factor FOXM1 is elevated and activated in malignant melanoma. FOXM1 activity correlated with expression of the enzyme Pin1, which we found to be indicative of a poor prognosis. In functional experiments, Pin1 proved to be a main regulator of FOXM1 activity through MEK-dependent physical regulation during the cell cycle. The Pin1-FOXM1 interaction was enhanced by BRAFV600E, the driver oncogene in the majority of melanomas, and in extrapolation of the correlation data, interference with\\ Pin1 in BRAFV600E-driven metastatic melanoma cells impaired both FOXM1 activity and cell survival. Importantly, cell-permeable Pin1-FOXM1-blocking peptides repressed the proliferation of melanoma cells in freshly isolated human metastatic melanoma ex vivo and in three-dimensional-cultured patient-derived melanoids. When combined with the BRAFV600E-inhibitor PLX4032 a robust repression in melanoid viability was obtained, establishing preclinical value of patient-derived melanoids for prognostic use of drug sensitivity and further underscoring the beneficial effect of Pin1-FOXM1 inhibitory peptides as anti-melanoma drugs. These proof-of-concept results provide a starting point for development of therapeutic Pin1-FOXM1 inhibitors to target metastatic melanoma. PMID:26279295

  1. Fisetin Inhibits Human Melanoma Cell Invasion through Promotion of Mesenchymal to Epithelial Transition and by Targeting MAPK and NFκB Signaling Pathways

    PubMed Central

    Pal, Harish Chandra; Sharma, Samriti; Strickland, Leah Ray; Katiyar, Santosh K.; Ballestas, Mary E.; Athar, Mohammad; Elmets, Craig A.; Afaq, Farrukh

    2014-01-01

    Malignant melanoma is responsible for approximately 75% of skin cancer-related deaths. BRAF plays an important role in regulating the mitogen-activated protein kinase (MAPK) signaling cascade in melanoma with activating mutations in the serine/threonine kinase BRAF occurring in 60–70% of malignant melanomas. The BRAF-MEK-ERK (MAPK) pathway is a key regulator of melanoma cell invasion. In addition, activation of NFκB via the MAPK pathway is regulated through MEK-induced activation of IKK. These pathways are potential targets for prevention and treatment of melanoma. In this study, we investigated the effect of fisetin, a phytochemical present in fruits and vegetables, on melanoma cell invasion and epithelial-mesenchymal transition, and delineated the underlying molecular mechanism. Treatment of multiple human malignant melanoma cell lines with fisetin (5–20 µM) resulted in inhibition of cell invasion. BRAF mutated melanoma cells were more sensitive to fisetin treatment, and this was associated with a decrease in the phosphorylation of MEK1/2 and ERK1/2. In addition, fisetin inhibited the activation of IKK leading to a reduction in the activation of the NFκB signaling pathway. Treatment of cells with an inhibitor of MEK1/2 (PD98059) or of NFκB (caffeic acid phenethyl ester) also reduced melanoma cell invasion. Furthermore, treatment of fisetin promoted mesenchymal to epithelial transition in melanoma cells, which was associated with a decrease in mesenchymal markers (N-cadherin, vimentin, snail and fibronectin) and an increase in epithelial markers (E-cadherin and desmoglein). Employing three dimensional skin equivalents consisting of A375 cells admixed with normal human keratinocytes embedded onto a collagen-constricted fibroblast matrix, we found that treatment of fisetin reduced the invasive potential of melanoma cells into the dermis and increased the expression of E-cadherin with a concomitant decrease in vimentin. These results indicate that fisetin

  2. Fisetin inhibits human melanoma cell invasion through promotion of mesenchymal to epithelial transition and by targeting MAPK and NFκB signaling pathways.

    PubMed

    Pal, Harish Chandra; Sharma, Samriti; Strickland, Leah Ray; Katiyar, Santosh K; Ballestas, Mary E; Athar, Mohammad; Elmets, Craig A; Afaq, Farrukh

    2014-01-01

    Malignant melanoma is responsible for approximately 75% of skin cancer-related deaths. BRAF plays an important role in regulating the mitogen-activated protein kinase (MAPK) signaling cascade in melanoma with activating mutations in the serine/threonine kinase BRAF occurring in 60-70% of malignant melanomas. The BRAF-MEK-ERK (MAPK) pathway is a key regulator of melanoma cell invasion. In addition, activation of NFκB via the MAPK pathway is regulated through MEK-induced activation of IKK. These pathways are potential targets for prevention and treatment of melanoma. In this study, we investigated the effect of fisetin, a phytochemical present in fruits and vegetables, on melanoma cell invasion and epithelial-mesenchymal transition, and delineated the underlying molecular mechanism. Treatment of multiple human malignant melanoma cell lines with fisetin (5-20 µM) resulted in inhibition of cell invasion. BRAF mutated melanoma cells were more sensitive to fisetin treatment, and this was associated with a decrease in the phosphorylation of MEK1/2 and ERK1/2. In addition, fisetin inhibited the activation of IKK leading to a reduction in the activation of the NFκB signaling pathway. Treatment of cells with an inhibitor of MEK1/2 (PD98059) or of NFκB (caffeic acid phenethyl ester) also reduced melanoma cell invasion. Furthermore, treatment of fisetin promoted mesenchymal to epithelial transition in melanoma cells, which was associated with a decrease in mesenchymal markers (N-cadherin, vimentin, snail and fibronectin) and an increase in epithelial markers (E-cadherin and desmoglein). Employing three dimensional skin equivalents consisting of A375 cells admixed with normal human keratinocytes embedded onto a collagen-constricted fibroblast matrix, we found that treatment of fisetin reduced the invasive potential of melanoma cells into the dermis and increased the expression of E-cadherin with a concomitant decrease in vimentin. These results indicate that fisetin

  3. Cytotoxic Activity of Oleocanthal Isolated from Virgin Olive Oil on Human Melanoma Cells.

    PubMed

    Fogli, Stefano; Arena, Chiara; Carpi, Sara; Polini, Beatrice; Bertini, Simone; Digiacomo, Maria; Gado, Francesca; Saba, Alessandro; Saccomanni, Giuseppe; Breschi, Maria Cristina; Nieri, Paola; Manera, Clementina; Macchia, Marco

    2016-07-01

    Oleocanthal is one of the phenolic compounds of extra virgin olive oil with important anti-inflammatory properties. Although its potential anticancer activity has been reported, only limited evidence has been provided in cutaneous malignant melanoma. The present study is aimed at investigating the selective in vitro antiproliferative activity of oleocanthal against human malignant melanoma cells. Since oleocanthal is not commercially available, it was obtained as a pure standard by direct extraction and purification from extra virgin olive oil. Cell viability experiments carried out by WST-1 assay demonstrated that oleocanthal had a remarkable and selective activity for human melanoma cells versus normal dermal fibroblasts with IC50s in the low micromolar range of concentrations. Such an effect was paralleled by a significant inhibition of ERK1/2 and AKT phosphorylation and downregulation of Bcl-2 expression. These findings may suggest that extra virgin olive oil phenolic extract enriched in oleocanthal deserves further investigation in skin cancer. PMID:27266366

  4. Anticancer activity of cationic porphyrins in melanoma tumour-bearing mice and mechanistic in vitro studies

    PubMed Central

    2014-01-01

    Background Porphyrin TMPyP4 (P4) and its C14H28-alkyl derivative (C14) are G-quadruplex binders and singlet oxygen (1O2) generators. In contrast, TMPyP2 (P2) produces 1O2 but it is not a G-quadruplex binder. As their photosensitizing activity is currently undefined, we report in this study their efficacy against a melanoma skin tumour and describe an in vitro mechanistic study which gives insights into their anticancer activity. Methods Uptake and antiproliferative activity of photoactivated P2, P4 and C14 have been investigated in murine melanoma B78-H1 cells by FACS, clonogenic and migration assays. Apoptosis was investigated by PARP-1 cleavage and annexin-propidium iodide assays. Biodistribution and in vivo anticancer activity were tested in melanoma tumour-bearing mice. Porphyrin binding and photocleavage of G-rich mRNA regions were investigated by electrophoresis and RT-PCR. Porphyrin effect on ERK pathway was explored by Western blots. Results Thanks to its higher lipophylicity C14 was taken up by murine melanoma B78-H1 cells up to 30-fold more efficiently than P4. When photoactivated (7.2 J/cm2) in B78-H1 melanoma cells, P4 and C14, but not control P2, caused a strong inhibition of metabolic activity, clonogenic growth and cell migration. Biodistribution studies on melanoma tumour-bearing mice showed that P4 and C14 localize in the tumour. Upon irradiation (660 nm, 193 J/cm2), P4 and C14 retarded tumour growth and increased the median survival time of the treated mice by ~50% (P <0.01 by ANOVA), whereas porphyrin P2 did not. The light-dependent mechanism mediated by P4 and C14 is likely due to the binding to and photocleavage of G-rich quadruplex-forming sequences within the 5′-untranslated regions of the mitogenic ras genes. This causes a decrease of RAS protein and inhibition of downstream ERK pathway, which stimulates proliferation. Annexin V/propidium iodide and PARP-1 cleavage assays showed that the porphyrins arrested tumour growth by apoptosis

  5. DNA aptamer raised against advanced glycation end products inhibits melanoma growth in nude mice.

    PubMed

    Ojima, Ayako; Matsui, Takanori; Maeda, Sayaka; Takeuchi, Masayoshi; Inoue, Hiroyoshi; Higashimoto, Yuichiro; Yamagishi, Sho-ichi

    2014-04-01

    Epidemiological studies have suggested that diabetes is associated with an increased risk of cancer. However, the underlying molecular mechanism remains unclear. We investigated here whether DNA aptamer directed against advanced glycation end products (AGE-aptamer) inhibited melanoma growth in nude mice. G361 melanoma cells were injected intradermally into the upper flank of athymic nude mice. Mice received continuous intraperitoneal infusion (0.136 μg/day) of either AGE-aptamer (n=9) or Control-aptamer (n=8) by an osmotic mini pump. Tumor volume was measured at 4-day interval, and G361 melanoma was excised at day 43 after the aptamer treatment. We further examined the effects of AGE-aptamer on proliferation of AGE-exposed endothelial cells and G361 cells. AGE-aptamer significantly inhibited the in vivo-tumor growth of G361 melanoma. Immunohistochemical and western blotting analyses of G361 melanoma revealed that AGE-aptamer decreased expression levels of proliferating nuclear antigen, CD31 and Mac-3, markers of endothelial cells and macrophages, respectively. AGE-aptamer significantly decreased the number of tumor-associated vessels. AGE, receptor for AGE (RAGE) and vascular endothelial growth factor levels were also reduced in AGE-aptamer-treated G361 melanoma. AGE-aptamer inhibited the AGE-induced proliferation and tube formation of endothelial cells as well as the growth of G361 cells in vitro. The present findings suggest that AGE-aptamer could inhibit the AGE-RAGE axis in G361 melanoma and resultantly suppress the tumor growth in nude mice by blocking the angiogenesis. AGE-aptamer might be a novel therapeutic strategy for preventing the progression of malignant melanoma in diabetes.

  6. Inhibition of melanoma development in the Nras((Q61K)) ::Ink4a(-/-) mouse model by the small molecule BI-69A11.

    PubMed

    Feng, Yongmei; Lau, Eric; Scortegagna, Marzia; Ruller, Chelsea; De, Surya K; Barile, Elisa; Krajewski, Stan; Aza-Blanc, Pedro; Williams, Roy; Pinkerton, Anthony B; Jackson, Michael; Chin, Lynda; Pellecchia, Maurizio; Bosenberg, Marcus; Ronai, Ze'ev A

    2013-01-01

    To date, there are no effective therapies for tumors bearing NRAS mutations, which are present in 15-20% of human melanomas. Here we extend our earlier studies where we demonstrated that the small molecule BI-69A11 inhibits the growth of melanoma cell lines. Gene expression analysis revealed the induction of interferon- and cell death-related genes that were associated with responsiveness of melanoma cell lines to BI-69A11. Strikingly, the administration of BI-69A11 inhibited melanoma development in genetically modified mice bearing an inducible form of activated Nras and a deletion of the Ink4a gene (Nras((Q61K)) ::Ink4a(-/-) ). Biweekly administration of BI-69A11 starting at 10 weeks or as late as 24 weeks after the induction of mutant Nras expression inhibited melanoma development (100 and 36%, respectively). BI-69A11 treatment did not inhibit the development of histiocytic sarcomas, which constitute about 50% of the tumors in this model. BI-69A11-resistant Nras((Q61K)) ::Ink4a(-/-) tumors exhibited increased CD45 expression, reflective of immune cell infiltration and upregulation of gene networks associated with the cytoskeleton, DNA damage response, and small molecule transport. The ability to attenuate the development of NRAS mutant melanomas supports further development of BI-69A11 for clinical assessment. PMID:23035722

  7. Capillary electrophoresis-based nanoscale assays for monitoring ecto-5'-nucleotidase activity and inhibition in preparations of recombinant enzyme and melanoma cell membranes.

    PubMed

    Iqbal, Jamshed; Jirovsky, David; Lee, Sang-Yong; Zimmermann, Herbert; Müller, Christa E

    2008-02-01

    Powerful capillary electrophoresis (CE) methods were developed for monitoring the reaction of ecto-5'-nucleotidase (ecto-5'-NT, CD73), a (patho)biochemically important enzyme that hydrolyzes nucleoside-5'-monophosphates to the corresponding nucleosides. The enzymatic reaction was performed either before injection into the capillary (method A) or directly within the capillary (method B). In method A, separation of substrates and products was achieved within 8 min using an eCAP fused-silica capillary (20 cm effective length, 75 microM i.d., UV detection at 260 nm), 40 mM sodium borate buffer (pH 9.1), normal polarity, and a constant voltage of 15 kV. In method B, the sandwich technique was applied; substrate dissolved in reaction buffer (10mM Hepes [pH 7.4], 2mM MgCl2, and 1mM CaCl2) was hydrodynamically injected into a fused-silica capillary (30 cm, 75 microM i.d.), followed by enzyme (recombinant rat ecto-5'-NT) and subsequent injection of substrate solution. The reaction was initiated by the application of 1 kV voltage for 1 min. The voltage was turned off for 1 min and again turned on at a constant voltage of 15 kV to elute products (nucleosides) within 4 min using borate buffer (40 mM, pH 9.1). Thus, assays could be performed within 6 min, including enzymatic reaction, separation, and quantification of the formed nucleoside. The CE methods were used for measuring enzyme kinetics and for assaying inhibitors and substrates. In addition, the online assay was successfully applied to melanoma cell membrane preparations natively expressing the human ecto-5'-NT.

  8. Raspberry pulp polysaccharides inhibit tumor growth via immunopotentiation and enhance docetaxel chemotherapy against malignant melanoma in vivo.

    PubMed

    Yang, Yong-Jing; Xu, Han-Mei; Suo, You-Rui

    2015-09-01

    It has been reported previously that the systemic efficacy of chemotherapeutic agents is substantially restricted for some cancer types, including malignant melanoma. Therefore, the development of more effective treatment modalities remains a critical, albeit elusive, goal in anticancer therapy. The study presented here evaluates the antitumor activity of raspberry pulp polysaccharides (RPPs) against malignant melanoma using a murine tumor-bearing model. Furthermore, the underlying mechanism of this antitumor activity has also been investigated. The results show that while RPP exhibits no direct cytotoxic effect on HT-29, MGC-803, HeLa, Bel-7402, L02 and B16F10 cells in vitro, it does demonstrate a dose-dependent growth inhibition of melanoma in vivo with an inhibition ratio of 59.95% at a dose of 400 mg kg(-1). Besides this, the body weight and spleen index in tumor-bearing mice have also been improved in RPP-treated groups. RPP is also found to induce splenocyte proliferation and is able to upregulate the activity of immune-related enzymes, including acid phosphatase (ACP), alkaline phosphatase (AKP), lactate dehydrogenase (LDH) and superoxide dismutase (SOD) in the spleen of tumor-bearing mice. The levels of tumor necrosis factor α (TNF-α), interferon γ (IFN-γ) and interleukin 2 (IL-2) in the serum of tumor-bearing mice show to be effectively increased upon RPP treatment. Histopathological analyses show that RPP induces tumor tissue necrosis by increasing inflammatory cell infiltration and causes no lesions to liver and kidney tissues. Remarkably, RPP further enhances the antitumor effect of the chemotherapeutic drug docetaxel and alleviates docetaxel-induced liver and kidney lesions in tumor-bearing mice. These findings indicate that RPP exhibits antitumor activity in vivo against malignant melanoma, partly by enhancing the cellular immune response of the host organism. In summary, RPP features critical properties to potentially find use as an

  9. Targeting metabolic flexibility by simultaneously inhibiting respiratory complex I and lactate generation retards melanoma progression.

    PubMed

    Chaube, Balkrishna; Malvi, Parmanand; Singh, Shivendra Vikram; Mohammad, Naoshad; Meena, Avtar Singh; Bhat, Manoj Kumar

    2015-11-10

    Melanoma is a largely incurable skin malignancy owing to the underlying molecular and metabolic heterogeneity confounded by the development of resistance. Cancer cells have metabolic flexibility in choosing either oxidative phosphorylation (OXPHOS) or glycolysis for ATP generation depending upon the nutrient availability in tumor microenvironment. In this study, we investigated the involvement of respiratory complex I and lactate dehydrogenase (LDH) in melanoma progression. We show that inhibition of complex I by metformin promotes melanoma growth in mice via elevating lactate and VEGF levels. In contrast, it leads to the growth arrest in vitro because of enhanced extracellular acidification as a result of increased glycolysis. Inhibition of LDH or lactate generation causes decrease in glycolysis with concomitant growth arrest both in vitro and in vivo. Blocking lactate generation in metformin-treated melanoma cells results in diminished cell proliferation and tumor progression in mice. Interestingly, inhibition of either LDH or complex I alone does not induce apoptosis, whereas inhibiting both together causes depletion in cellular ATP pool resulting in metabolic catastrophe induced apoptosis. Overall, our study suggests that LDH and complex I play distinct roles in regulating glycolysis and cell proliferation. Inhibition of these two augments synthetic lethality in melanoma.

  10. Pluripotency markers are differentially induced by MEK inhibition in thyroid and melanoma BRAFV600E cell lines.

    PubMed

    Dorris, Emma R; Blackshields, Gordon; Sommerville, Gary; Alhashemi, Mohsen; Dias, Andrew; McEneaney, Victoria; Smyth, Paul; O'Leary, John J; Sheils, Orla

    2016-05-01

    Oncogenic mutations in BRAF are common in melanoma and thyroid carcinoma and drive constitutive activation of the MAPK pathway. Molecularly targeted therapies of this pathway improves survival compared to chemotherapy; however, responses tend to be short-lived as resistance invariably occursCell line models of melanoma and thyroid carcinoma, +/- BRAF(V600E) activating mutation, were treated with the MEK inhibitor PD0325901. Treated and naive samples were assayed for expression of key members of the MAPK pathway. Global microRNA expression profiling of naive and resistant cells was performed via next generation sequencingand indicated pluripotency pathways in resistance. Parental cell lines were progressed to holoclones to confirm the miRNA stemness profileMembers of the MIR302/373/374/520 family of embryonic stem cell specific cell cycle regulating (ESCC) microRNAs were identified as differentially expressed between resistant BRAF(V600E) melanoma and thyroid cell lines. Upregulated expression of gene and protein stemness markers, upregulated expression of MAPK pathway genes and downregulation of the ESCC MIR302 cluster in BRAF(V600E) melanoma indicated an increased stem-like phenotype in resistant BRAF(V600E) melanoma. Conversely, downregulated expression of gene and protein stemness markers, downregulated expression of MAPK pathway genes, upregulation of the ESCC MIR520 cluster, reeexpression of cell surface receptors, and induced differentiation-associated morphology in resistant BRAF(V600E) indicate a differentiated phenotype associated with MEK inhibitor resistance in BRAF(V600E) thyroid cellsThe differential patterns of resistance observed between BRAF(V600E) melanoma and thyroid cell lines may reflect tissue type or de novo differentiation, but could have significant impact on the response of primary and metastatic cells to MEK inhibitor treatment. This study provides a basis for the investigation of the cellular differentiation/self-renewal access and its

  11. Pluripotency markers are differentially induced by MEK inhibition in thyroid and melanoma BRAFV600E cell lines.

    PubMed

    Dorris, Emma R; Blackshields, Gordon; Sommerville, Gary; Alhashemi, Mohsen; Dias, Andrew; McEneaney, Victoria; Smyth, Paul; O'Leary, John J; Sheils, Orla

    2016-05-01

    Oncogenic mutations in BRAF are common in melanoma and thyroid carcinoma and drive constitutive activation of the MAPK pathway. Molecularly targeted therapies of this pathway improves survival compared to chemotherapy; however, responses tend to be short-lived as resistance invariably occursCell line models of melanoma and thyroid carcinoma, +/- BRAF(V600E) activating mutation, were treated with the MEK inhibitor PD0325901. Treated and naive samples were assayed for expression of key members of the MAPK pathway. Global microRNA expression profiling of naive and resistant cells was performed via next generation sequencingand indicated pluripotency pathways in resistance. Parental cell lines were progressed to holoclones to confirm the miRNA stemness profileMembers of the MIR302/373/374/520 family of embryonic stem cell specific cell cycle regulating (ESCC) microRNAs were identified as differentially expressed between resistant BRAF(V600E) melanoma and thyroid cell lines. Upregulated expression of gene and protein stemness markers, upregulated expression of MAPK pathway genes and downregulation of the ESCC MIR302 cluster in BRAF(V600E) melanoma indicated an increased stem-like phenotype in resistant BRAF(V600E) melanoma. Conversely, downregulated expression of gene and protein stemness markers, downregulated expression of MAPK pathway genes, upregulation of the ESCC MIR520 cluster, reeexpression of cell surface receptors, and induced differentiation-associated morphology in resistant BRAF(V600E) indicate a differentiated phenotype associated with MEK inhibitor resistance in BRAF(V600E) thyroid cellsThe differential patterns of resistance observed between BRAF(V600E) melanoma and thyroid cell lines may reflect tissue type or de novo differentiation, but could have significant impact on the response of primary and metastatic cells to MEK inhibitor treatment. This study provides a basis for the investigation of the cellular differentiation/self-renewal access and its

  12. Pluripotency markers are differentially induced by MEK inhibition in thyroid and melanoma BRAFV600E cell lines

    PubMed Central

    Dorris, Emma R.; Blackshields, Gordon; Sommerville, Gary; Alhashemi, Mohsen; Dias, Andrew; McEneaney, Victoria; Smyth, Paul; O'Leary, John J.; Sheils, Orla

    2016-01-01

    ABSTRACT Oncogenic mutations in BRAF are common in melanoma and thyroid carcinoma and drive constitutive activation of the MAPK pathway. Molecularly targeted therapies of this pathway improves survival compared to chemotherapy; however, responses tend to be short-lived as resistance invariably occursCell line models of melanoma and thyroid carcinoma, +/− BRAFV600E activating mutation, were treated with the MEK inhibitor PD0325901. Treated and naive samples were assayed for expression of key members of the MAPK pathway. Global microRNA expression profiling of naive and resistant cells was performed via next generation sequencingand indicated pluripotency pathways in resistance. Parental cell lines were progressed to holoclones to confirm the miRNA stemness profileMembers of the MIR302/373/374/520 family of embryonic stem cell specific cell cycle regulating (ESCC) microRNAs were identified as differentially expressed between resistant BRAFV600E melanoma and thyroid cell lines. Upregulated expression of gene and protein stemness markers, upregulated expression of MAPK pathway genes and downregulation of the ESCC MIR302 cluster in BRAFV600E melanoma indicated an increased stem-like phenotype in resistant BRAFV600E melanoma. Conversely, downregulated expression of gene and protein stemness markers, downregulated expression of MAPK pathway genes, upregulation of the ESCC MIR520 cluster, reeexpression of cell surface receptors, and induced differentiation-associated morphology in resistant BRAFV600E indicate a differentiated phenotype associated with MEK inhibitor resistance in BRAFV600E thyroid cellsThe differential patterns of resistance observed between BRAFV600E melanoma and thyroid cell lines may reflect tissue type or de novo differentiation, but could have significant impact on the response of primary and metastatic cells to MEK inhibitor treatment. This study provides a basis for the investigation of the cellular differentiation/self-renewal access and its role

  13. Transcription factor LSF (TFCP2) inhibits melanoma growth

    PubMed Central

    Goto, Yuji; Yajima, Ichiro; Kumasaka, Mayuko; Ohgami, Nobutaka; Tanaka, Asami; Tsuzuki, Toyonori; Inoue, Yuji; Fukushima, Satoshi; Ihn, Hironobu; Kyoya, Mikiko; Ohashi, Hiroyuki; Kawakami, Tamihiro; Bennett, Dorothy C.; Kato, Masashi

    2016-01-01

    Late SV40 factor 3 (LSF), a transcription factor, contributes to human hepatocellular carcinoma (HCC). However, decreased expression level of LSF in skin melanoma compared to that in benign melanocytic tumors and nevi in mice and humans was found in this study. Anchorage-dependent and -independent growth of melanoma cells was suppressed by LSF overexpression through an increased percentage of G1 phase cells and an increased p21CIP1 expression level in vitro and in vivo. Anchorage-dependent growth in LSF-overexpressed melanoma cells was promoted by depletion of LSF in the LSF-overexpressed cells. Integrated results of our EMSA and chromatin immunoprecipitation assays showed binding of LSF within a 150-bp upstream region of the transcription start site of p21CIP1 in melanoma cells. Taken together, our results suggest potential roles of LSF as a growth regulator through control of the transcription of p21CIP1 in melanocytes and melanoma cells as well as a biomarker for nevus. PMID:26506241

  14. Nitrogen-containing bisphosphonates inhibit cell cycle progression in human melanoma cells.

    PubMed

    Forsea, A-M; Müller, C; Riebeling, C; Orfanos, C E; Geilen, C C

    2004-08-16

    Cutaneous melanoma is one of the highly malignant human tumours, due to its tendency to generate early metastases and its resistance to classical chemotherapy. We recently demonstrated that pamidronate, a nitrogen-containing bisphosphonate, has an antiproliferative and proapoptotic effect on different melanoma cell lines. In the present study, we compared the in vitro effects of three different bisphosphonates on human melanoma cell lines and we demonstrated that the two nitrogen-containing bisphosphonates pamidronate and zoledronate inhibited the proliferation of melanoma cells and induced apoptosis in a dose- and time-dependent manner. Moreover, cell cycle progression was altered, the two compounds causing accumulation of the cells in the S phase of the cycle. In contrast, the nonaminobisphosphonate clodronate had no effect on melanoma cells. These findings suggest a direct antitumoural effect of bisphosphonates on melanoma cells in vitro and further support the hypothesis of different intracellular mechanisms of action for nitrogen-containing and nonaminobisphosphonates. Our data indicate that nitrogen-containing bisphosphonates may be a useful novel therapeutic class for treatment and/or prevention of melanoma metastases.

  15. Decursin from Angelica gigas Nakai Inhibits B16F10 Melanoma Growth Through Induction of Apoptosis

    PubMed Central

    Kim, Byung Soo; Seo, Hyobin; Kim, Ha-Jeong; Bae, Sang Mun; Son, Hye-Nam; Lee, Yoon Jeong; Ryu, Sungpil; Park, Rang-Woon; Nam, Ju-Ock

    2015-01-01

    Abstract Decursin, a bioactive phytochemical isolated from Angelica gigas Nakai (danggwi), has shown preclinical anticancer efficacy in various cancer models. However, the antitumor effect of decursin in melanoma models remains undefined. The antitumor activities of decursin were investigated in B16F10 cells in vitro and in vivo. In this study, we show that treatment with decursin inhibited cell proliferation in a dose-dependent manner in B16F10 cells, but not in normal cells. Decursin also induced apoptosis in B16F10 cells, as determined by annexin V-staining assay and transferase-mediated nick-end labeling (TUNEL) staining assay. Decursin increased the phosphorylation of p38 as well as the expression of Bax while decreasing the phosphorylation of extracellular signaling-regulated kinase (ERK) and the expression of Bcl-2 in B16F10 cells. Moreover, decursin activated caspase-3 in B16F10 cells and xenograft tumor tissue. Together, these findings support further investigations into the potential use of decursin in the treatment of melanoma cells. PMID:26336081

  16. Decursin from Angelica gigas Nakai Inhibits B16F10 Melanoma Growth Through Induction of Apoptosis.

    PubMed

    Kim, Byung Soo; Seo, Hyobin; Kim, Ha-Jeong; Bae, Sang Mun; Son, Hye-Nam; Lee, Yoon Jeong; Ryu, Sungpil; Park, Rang-Woon; Nam, Ju-Ock

    2015-10-01

    Decursin, a bioactive phytochemical isolated from Angelica gigas Nakai (danggwi), has shown preclinical anticancer efficacy in various cancer models. However, the antitumor effect of decursin in melanoma models remains undefined. The antitumor activities of decursin were investigated in B16F10 cells in vitro and in vivo. In this study, we show that treatment with decursin inhibited cell proliferation in a dose-dependent manner in B16F10 cells, but not in normal cells. Decursin also induced apoptosis in B16F10 cells, as determined by annexin V-staining assay and transferase-mediated nick-end labeling (TUNEL) staining assay. Decursin increased the phosphorylation of p38 as well as the expression of Bax while decreasing the phosphorylation of extracellular signaling-regulated kinase (ERK) and the expression of Bcl-2 in B16F10 cells. Moreover, decursin activated caspase-3 in B16F10 cells and xenograft tumor tissue. Together, these findings support further investigations into the potential use of decursin in the treatment of melanoma cells. PMID:26336081

  17. Decursin from Angelica gigas Nakai Inhibits B16F10 Melanoma Growth Through Induction of Apoptosis.

    PubMed

    Kim, Byung Soo; Seo, Hyobin; Kim, Ha-Jeong; Bae, Sang Mun; Son, Hye-Nam; Lee, Yoon Jeong; Ryu, Sungpil; Park, Rang-Woon; Nam, Ju-Ock

    2015-10-01

    Decursin, a bioactive phytochemical isolated from Angelica gigas Nakai (danggwi), has shown preclinical anticancer efficacy in various cancer models. However, the antitumor effect of decursin in melanoma models remains undefined. The antitumor activities of decursin were investigated in B16F10 cells in vitro and in vivo. In this study, we show that treatment with decursin inhibited cell proliferation in a dose-dependent manner in B16F10 cells, but not in normal cells. Decursin also induced apoptosis in B16F10 cells, as determined by annexin V-staining assay and transferase-mediated nick-end labeling (TUNEL) staining assay. Decursin increased the phosphorylation of p38 as well as the expression of Bax while decreasing the phosphorylation of extracellular signaling-regulated kinase (ERK) and the expression of Bcl-2 in B16F10 cells. Moreover, decursin activated caspase-3 in B16F10 cells and xenograft tumor tissue. Together, these findings support further investigations into the potential use of decursin in the treatment of melanoma cells.

  18. Melanoma

    MedlinePlus

    ... have melanoma that has spread. Help the patient’s immune system fight the cancer Ipilimumab (Yervoy®), which was FDA ... How ipilimumab works : This drug helps the patient’s immune system to recognize, target, and attack cancer cells. Healthy ...

  19. Translational research in melanoma.

    PubMed

    Ray, Madhury; Farma, Jeffrey M; Hsu, Cary

    2013-10-01

    Recent breakthroughs in the fundamental understanding of the cellular and molecular basis of melanoma have culminated in new therapies with unquestionable efficacy. Immunotherapy and targeted therapy strategies have completely transformed the contemporary management of advanced melanoma. The translational research behind these developments is discussed, with an emphasis on immune checkpoint blockade and inhibition of the mitogen-activated protein kinase signaling pathway.

  20. A new melanoma diagnosis active support system.

    PubMed

    Fiorini, R A; Dacquino, G; Laguteta, G

    2004-01-01

    The aim of this paper is to present the operational performance of a new MDASS (Melanoma Diagnosis Active Support System) prototype able to distil optimal knowledge from acquired data to automatically capture and reliably discriminate and quantify the stage of disease evolution. Automated classification dermatoscopical parameters can be divided into two main classes: Size Descriptor (point size, local, and global) and Intrinsic Descriptor (morphological, geometrical, chromatic, others). Usually elementary geometric shape robust and effective characterization, invariant to environment and optical geometry transformations, on a rigorous mathematical level is a key and computational intensive problem. MDASS uses GEOGINE (GEOmetrical enGINE), a state-of-the-art OMG (Ontological Model Generator) based on n-D Tensor Moment Invariants for shape/texture effective description. MDASS main results show robust disease classification procedure with distillation of minimal reference grids for pathological cases and they ultimately achieve effective early diagnosis of melanocytic lesion. System results are validated by carefully designed experiments with certified clinical reference database. Overall system operational performance is presented. Finally, MDASS error analysis and computational complexity are addressed and discussed. PMID:17270962

  1. Chronic alcohol consumption inhibits melanoma growth but decreases the survival of mice immunized with tumor cell lysate and boosted with α-galactosylceramide

    PubMed Central

    Zhang, Faya; Zhu, Zhaohui; Meadows, Gary G.; Zhang, Hui

    2015-01-01

    Alcohol consumption increases the incidence of multiple types of cancer. However, how chronic alcohol consumption affects tumor progression and host survival remains largely unexplored. Using a mouse B16BL6 melanoma model, we studied the effects of chronic alcohol consumption on s.c. tumor growth, iNKT cell antitumor immune response, and host survival. The results indicate that although chronic alcohol consumption inhibits melanoma growth, this does not translate into increased host survival. Immunizing mice with a melanoma cell lysate does not significantly increase the median survival of water-drinking, melanoma-bearing mice, but significantly increases the median survival of alcohol-consuming, melanoma-bearing mice. Even though survival is extended in the alcohol-consuming mice after immunization, the mean survival is not different from the immunized mice in the water-drinking group. Immunization with tumor cell lysate combined with α-galatosylceramide activation of iNKT cells significantly increases host survival of both groups of melanoma-bearing mice compared to their respective non-immunized counterparts; however, the median survival of the alcohol-consuming group is significantly lower than that of the water-drinking group. Alcohol consumption increases NKT cells in the thymus and blood and skews NKT cell cytokine profile from Th1 dominant to Th2 dominant in the tumor-bearing mice. In summary, these results indicate that chronic alcohol consumption activates the immune system, which leads to the inhibition of s.c. melanoma growth and enhances the immune response to immunization with melanoma lysate. With tumor progression, alcohol consumption accelerates iNKT cell dysfunction and compromises antitumor immunity, which leads to decreased survival of melanoma-bearing mice. PMID:26118634

  2. Nuclear stiffening inhibits migration of invasive melanoma cells

    PubMed Central

    Ribeiro, Alexandre J.S.; Khanna, Payal; Sukumar, Aishwarya; Dong, Cheng; Dahl, Kris Noel

    2014-01-01

    During metastasis, melanoma cells must be sufficiently deformable to squeeze through extracellular barriers with small pore sizes. We visualize and quantify deformability of single cells using micropipette aspiration and examine the migration potential of a population of melanoma cells using a flow migration apparatus. We artificially stiffen the nucleus with recombinant overexpression of Δ50 lamin A, which is found in patients with Hutchison Gilford progeria syndrome and in aged individuals. Melanoma cells, both WM35 and Lu1205, both show reduced nuclear deformability and reduced cell invasion with the expression of Δ50 lamin A. These studies suggest that cellular aging including expression of Δ50 lamin A and nuclear stiffening may reduce the potential for metastatic cancer migration. Thus, the pathway of cancer metastasis may be kept in check by mechanical factors in addition to known chemical pathway regulation. PMID:25544862

  3. Inhibition of colony formation in agarose of metastatic human breast carcinoma and melanoma cells by synthetic glycoamine analogs.

    PubMed

    Glinsky, G V; Mossine, V V; Price, J E; Bielenberg, D; Glinsky, V V; Ananthaswamy, H N; Feather, M S

    1996-05-01

    We studied the influence of 10 synthetic glycoamine analogs on colony formation in 0.3 and 0.9% agarose by metastatic human breast carcinoma (MDA-MB-435) and melanoma (TXM-13) cells. Nine synthetic analogs significantly inhibited the colony formation in 0.9% agarose of MDA-MB-435 human breast carcinoma cells; five compounds caused a 73-83% reduction of colony formation. Seven synthetic glycoamines caused a significant inhibition of colony formation in 0.9% agarose by TXM-13 melanoma cells with the inhibitory effect ranging from 71 to 87%. The 50% inhibition (I50) doses and relative activity rank of the compounds were similar for both breast carcinoma and melanoma cell lines. The murine B16 melanoma cell aggregation assay was employed to elucidate the potential mechanism(s) of the inhibitory activity of synthetic glycoamines. The relative activity ranks of the compounds based on the independently determined I50 doses for both cell aggregation and clonogenic growth assays were very similar for the four most active synthetic analogs and clearly indicated the importance of hydrophobic amino acid in mediating the bioactivity of synthetic glycoamines. In both experimental systems (clonogenic growth in agarose and cell aggregation assay) the leading compound was N-(1-deoxy-D-fructos-1-yl)-D-leucine (Fru-D-Leu) and the least active analog was N-(l-deoxy-D-fructos-1-yl)-glycine (Fru-Gly). These results show that synthetic glycoamines may act by competing for specific carbohydrate-lectin interactions, particularly those involving beta-galactoside-specific lectins expressed on metastatic cells. PMID:8674280

  4. In vivo Effects in Melanoma of ROCK Inhibition-Induced FasL Overexpression

    PubMed Central

    Teiti, Iotefa; Florie, Bertrand; Pich, Christine; Gence, Rémi; Lajoie-Mazenc, Isabelle; Rochaix, Philippe; Favre, Gilles; Tilkin-Mariamé, Anne-Françoise

    2015-01-01

    Ectopic Fas-ligand (FasL) expression in tumor cells is responsible for both tumor escape through tumor counterattack of Fas-positive infiltrating lymphocytes and tumor rejection though inflammatory and immune responses. We have previously shown that RhoA GTPase and its effector ROCK negatively control FasL membrane expression in murine melanoma B16F10 cells. In this study, we found that B16F10 treatment with the ROCK inhibitor H1152 reduced melanoma development in vivo through FasL membrane overexpression. Although H1152 treatment did not reduce tumor growth in vitro, pretreatment of tumor cells with this inhibitor delayed tumor appearance, and slowed tumor growth in C57BL/6 immunocompetent mice. Thanks to the use of mice-bearing mutated Fas receptors (B6/lpr), we found that reduced tumor growth, observed in immunocompetent mice, was linked to FasL overexpression induced by H1152 treatment. Tumor growth analysis in immunosuppressed NUDE and IFN-γ-KO mice highlighted major roles for T lymphocytes and IFN-γ in the H1152-induced tumor growth reduction. Histological analyses of subcutaneous tumors, obtained from untreated versus H1152-treated B16F10 cells, showed that H1152 pretreatment induced a strong intratumoral infiltration of leukocytes. Cytofluorometric analysis showed that among these leukocytes, the number of activated CD8 lymphocytes was increased. Moreover, their antibody-induced depletion highlighted their main responsibility in tumor growth reduction. Subcutaneous tumor growth was also reduced by repeated intravenous injections of a clinical ROCK inhibitor, Fasudil. Finally, H1152-induced ROCK inhibition also reduced pulmonary metastasis implantation independently of T cell-mediated immune response. Altogether, our data suggest that ROCK inhibitors could become interesting pharmacological molecules for melanoma immunotherapy. PMID:26236689

  5. In vivo Effects in Melanoma of ROCK Inhibition-Induced FasL Overexpression.

    PubMed

    Teiti, Iotefa; Florie, Bertrand; Pich, Christine; Gence, Rémi; Lajoie-Mazenc, Isabelle; Rochaix, Philippe; Favre, Gilles; Tilkin-Mariamé, Anne-Françoise

    2015-01-01

    Ectopic Fas-ligand (FasL) expression in tumor cells is responsible for both tumor escape through tumor counterattack of Fas-positive infiltrating lymphocytes and tumor rejection though inflammatory and immune responses. We have previously shown that RhoA GTPase and its effector ROCK negatively control FasL membrane expression in murine melanoma B16F10 cells. In this study, we found that B16F10 treatment with the ROCK inhibitor H1152 reduced melanoma development in vivo through FasL membrane overexpression. Although H1152 treatment did not reduce tumor growth in vitro, pretreatment of tumor cells with this inhibitor delayed tumor appearance, and slowed tumor growth in C57BL/6 immunocompetent mice. Thanks to the use of mice-bearing mutated Fas receptors (B6/lpr), we found that reduced tumor growth, observed in immunocompetent mice, was linked to FasL overexpression induced by H1152 treatment. Tumor growth analysis in immunosuppressed NUDE and IFN-γ-KO mice highlighted major roles for T lymphocytes and IFN-γ in the H1152-induced tumor growth reduction. Histological analyses of subcutaneous tumors, obtained from untreated versus H1152-treated B16F10 cells, showed that H1152 pretreatment induced a strong intratumoral infiltration of leukocytes. Cytofluorometric analysis showed that among these leukocytes, the number of activated CD8 lymphocytes was increased. Moreover, their antibody-induced depletion highlighted their main responsibility in tumor growth reduction. Subcutaneous tumor growth was also reduced by repeated intravenous injections of a clinical ROCK inhibitor, Fasudil. Finally, H1152-induced ROCK inhibition also reduced pulmonary metastasis implantation independently of T cell-mediated immune response. Altogether, our data suggest that ROCK inhibitors could become interesting pharmacological molecules for melanoma immunotherapy. PMID:26236689

  6. Actin remodeling confers BRAF inhibitor resistance to melanoma cells through YAP/TAZ activation.

    PubMed

    Kim, Min Hwan; Kim, Jongshin; Hong, Hyowon; Lee, Si-Hyung; Lee, June-Koo; Jung, Eunji; Kim, Joon

    2016-03-01

    The activation of transcriptional coactivators YAP and its paralog TAZ has been shown to promote resistance to anti-cancer therapies. YAP/TAZ activity is tightly coupled to actin cytoskeleton architecture. However, the influence of actin remodeling on cancer drug resistance remains largely unexplored. Here, we report a pivotal role of actin remodeling in YAP/TAZ-dependent BRAF inhibitor resistance in BRAF V600E mutant melanoma cells. Melanoma cells resistant to the BRAF inhibitor PLX4032 exhibit an increase in actin stress fiber formation, which appears to promote the nuclear accumulation of YAP/TAZ. Knockdown of YAP/TAZ reduces the viability of resistant melanoma cells, whereas overexpression of constitutively active YAP induces resistance. Moreover, inhibition of actin polymerization and actomyosin tension in melanoma cells suppresses both YAP/TAZ activation and PLX4032 resistance. Our siRNA library screening identifies actin dynamics regulator TESK1 as a novel vulnerable point of the YAP/TAZ-dependent resistance pathway. These results suggest that inhibition of actin remodeling is a potential strategy to suppress resistance in BRAF inhibitor therapies.

  7. Inhibition of cell proliferation, migration and invasion of B16-F10 melanoma cells by α-mangostin

    SciTech Connect

    Beninati, Simone; Oliverio, Serafina; Cordella, Martina; Rossi, Stefania; Senatore, Cinzia; Liguori, Immacolata; Lentini, Alessandro; Piredda, Lucia; Tabolacci, Claudio

    2014-08-08

    Highlights: • We studied the anticancer potential of a new emerging molecule, α-mangostin (α-M). • We provide first evidences on the effects of α-M on transglutaminase activity. • We deeply examined the antimetastatic effects of α-M through many in vitro assays. • Proteomic analysis revealed that α-M promotes a reorganization at cellular level. - Abstract: In this study, we have evaluated the potential antineoplastic effects of α-mangostin (α-M), the most representative xanthone in Garcinia mangostana pericarp, on melanoma cell lines. This xanthone markedly inhibits the proliferation of high-metastatic B16-F10 melanoma cells. Furthermore, by deeply analyzing which steps in the metastatic process are influenced by xanthone it was observed that α-M strongly interferes with homotypic aggregation, adhesion, plasticity and invasion ability of B16-F10 cells, probably by the observed reduction of metalloproteinase-9 activity. The antiproliferative and antimetastatic properties of α-M have been established in human SK-MEL-28 and A375 melanoma cells. In order to identify pathways potentially involved in the antineoplastic properties of α-M, a comparative mass spectrometry proteomic approach was employed. These findings may improve our understanding of the molecular mechanisms underlying the anti-cancer effects of α-M on melanoma.

  8. Caspase dependent apoptotic inhibition of melanoma and lung cancer cells by tropical Rubus extracts.

    PubMed

    George, Blassan Plackal Adimuriyil; Abrahamse, Heidi; Hemmaragala, Nanjundaswamy M

    2016-05-01

    Rubus fairholmianus Gard. inhibits human melanoma (A375) and lung cancer (A549) cell growth by the caspase dependent apoptotic pathway. Herbal products have a long history of clinical use and acceptance. They are freely available natural compounds that can be safely used to prevent various ailments. The plants and plant derived products became the basis of traditional medicine system throughout the world for thousands of years. The effects of R. fairholmianus root acetone extract (RFRA) on the proliferation of A375 and A549 cells was examined in this study. RFRA led to a decrease in cell viability, proliferation and an increase in cytotoxicity in a dose dependent manner when compared with control and normal skin fibroblast cells (WS1). The morphology of treated cells supported apoptotic cell death. Annexin V/propidium iodide staining indicated that RFRA induced apoptosis in A375 and A549 cells and the percentages of early and late apoptotic populations significantly increased. Moreover, the apoptotic inducing ability of RFRA when analysing effector caspase 3/7 activity, indicated a marked increase in treated cells. In summary, we have shown the anticancer effects of RFRA in A375 and A549 cancer cells via induction of caspase dependent apoptosis in vitro. The extract is more effective against melanoma; which may suggest the usefulness of RFRA-based anticancer therapies. PMID:27133056

  9. Ultrasound-mediated interferon {beta} gene transfection inhibits growth of malignant melanoma

    SciTech Connect

    Yamaguchi, Kazuki; Feril, Loreto B.; Tachibana, Katsuro; Takahashi, Akira; Matsuo, Miki; Endo, Hitomi; Harada, Yoshimi; Nakayama, Juichiro

    2011-07-22

    Highlights: {yields} Successful ultrasound-mediated transfection of melanoma (C32) cells with IFN-{beta} genes both in vitro and in vivo. {yields} Ultrasound-mediated IFN-{beta} transfection inhibited proliferation of melanoma cells in vitro. {yields} Ultrasound-mediated IFN-{beta} transfection inhibited melanoma tumor growth in vivo. -- Abstract: We investigated the effects of ultrasound-mediated transfection (sonotransfection) of interferon {beta} (IFN-{beta}) gene on melanoma (C32) both in vitro and in vivo. C32 cells were sonotransfected with IFN-{beta} in vitro. Subcutaneous C32 tumors in mice were sonicated weekly immediately after intra-tumor injection with IFN-{beta} genes mixed with microbubbles. Successful sonotransfection with IFN-{beta} gene in vitro was confirmed by ELISA, which resulted in C32 growth inhibition. In vivo, the growth ratio of tumors transfected with IFN-{beta} gene was significantly lower than the other experimental groups. These results may lead to a new method of treatment against melanoma and other hard-to-treat cancers.

  10. Effect of low frequency magnetic fields on melanoma: tumor inhibition and immune modulation

    PubMed Central

    2013-01-01

    Background We previously found that the low frequency magnetic fields (LF-MF) inhibited gastric and lung cancer cell growth. We suppose that exposure to LF-MF may modulate immune function so as to inhibit tumor. We here investigated whether LF-MF can inhibit the proliferation and metastasis of melanoma and influence immune function. Methods The effect of MF on the proliferation, cell cycle and ultrastracture of B16-F10 in vitro was detected by cell counting Kit-8 assay, flow cytometry, and transmission electron microscopy. Lung metastasis mice were prepared by injection of 2 × 105 B16-F10 melanoma cells into the tail vein in C57BL/6 mice. The mice were then exposed to an LF-MF (0.4 T, 7.5 Hz) for 43 days. Survival rate, tumor markers and the innate and adaptive immune parameters were measured. Results The growth of B16-F10 cells was inhibited after exposure to the LF-MF. The inhibition was related to induction of cell cycle arrest and decomposition of chromatins. Moreover, the LF-MF prolonged the mouse survival rate and inhibited the proliferation of B16-F10 in melanoma metastasis mice model. Furthermore, the LF-MF modulated the immune response via regulation of immune cells and cytokine production. In addition, the number of Treg cells was decreased in mice with the LF-MF exposure, while the numbers of T cells as well as dendritic cells were significantly increased. Conclusion LF-MF inhibited the growth and metastasis of melanoma cancer cells and improved immune function of tumor-bearing mice. This suggests that the inhibition may be attributed to modulation of LF-MF on immune function and LF-MF may be a potential therapy for treatment of melanoma. PMID:24314291

  11. The effects of a cyclooxygenase-2 (COX-2) expression and inhibition on human uveal melanoma cell proliferation and macrophage nitric oxide production

    PubMed Central

    Marshall, Jean-Claude; Caissie, Amanda L; Cruess, Stephanie R; Cools-Lartigue, Jonathan; Burnier, Miguel N

    2007-01-01

    Background Cyclooxygenase-2 (COX-2) expression has previously been identified in uveal melanoma although the biological role of COX-2 in this intraocular malignancy has not been elucidated. This study aimed to investigate the effect of a COX-2 inhibitor on the proliferation rate of human uveal melanoma cells, as well as its effect on the cytotoxic response of macrophages. Methods Human uveal melanoma cell lines were transfected to constitutively express COX-2 and the proliferative rate of these cells using two different methods, with and without the addition of Amfenac, was measured. Nitric oxide production by macrophages was measured after exposure to melanoma-conditioned medium from both groups of cells as well as with and without Amfenac, the active metabolite of Nepafenac. Results Cells transfected to express COX-2 had a higher proliferation rate than those that did not. The addition of Amfenac significantly decreased the proliferation rate of all cell lines. Nitric oxide production by macrophages was inhibited by the addition of melanoma conditioned medium, the addition of Amfenac partially overcame this inhibition. Conclusion Amfenac affected both COX-2 transfected and non-transfected uveal melanoma cells in terms of their proliferation rates as well as their suppressive effects on macrophage cytotoxic activity. PMID:18042295

  12. The "SWOT" of BRAF inhibition in melanoma: RAF inhibitors, MEK inhibitors or both?

    PubMed

    Nissan, Moriah H; Solit, David B

    2011-12-01

    Activating mutations in the BRAF gene are among the most prevalent kinase mutations in human cancer. BRAF mutations are most frequent in patients with melanoma where they occur in approximately 50% of patients with advanced disease. Remarkable clinical activity has recently been reported with highly selective RAF inhibitors in melanoma patients whose tumors harbor V600E BRAF mutations. The response rates of RAF inhibitors in patients with BRAF-mutant melanomas far exceed the activity level of any prior therapy studied in this disease. The results suggest that we have entered an era of personalized therapy for patients with metastatic melanoma in which treatment selection will be guided by BRAF mutational status. This review will discuss the strengths, weaknesses, opportunities and threats ("SWOT") of developing RAF and MEK selective inhibitors as anti-cancer therapies, recent insights into the mechanisms of intrinsic and acquired resistance to these agents, and current efforts to develop mechanism-based combination therapies. PMID:21997758

  13. The "SWOT" of BRAF inhibition in melanoma: RAF inhibitors, MEK inhibitors or both?

    PubMed

    Nissan, Moriah H; Solit, David B

    2011-12-01

    Activating mutations in the BRAF gene are among the most prevalent kinase mutations in human cancer. BRAF mutations are most frequent in patients with melanoma where they occur in approximately 50% of patients with advanced disease. Remarkable clinical activity has recently been reported with highly selective RAF inhibitors in melanoma patients whose tumors harbor V600E BRAF mutations. The response rates of RAF inhibitors in patients with BRAF-mutant melanomas far exceed the activity level of any prior therapy studied in this disease. The results suggest that we have entered an era of personalized therapy for patients with metastatic melanoma in which treatment selection will be guided by BRAF mutational status. This review will discuss the strengths, weaknesses, opportunities and threats ("SWOT") of developing RAF and MEK selective inhibitors as anti-cancer therapies, recent insights into the mechanisms of intrinsic and acquired resistance to these agents, and current efforts to develop mechanism-based combination therapies.

  14. Fisetin inhibits human melanoma cell growth through direct binding to p70S6K and mTOR: findings from 3-D melanoma skin equivalents and computational modeling.

    PubMed

    Syed, Deeba N; Chamcheu, Jean-Christopher; Khan, Mohammad Imran; Sechi, Mario; Lall, Rahul K; Adhami, Vaqar M; Mukhtar, Hasan

    2014-06-01

    The incidence of melanoma continues to rise. Inspite of treatment advances, the prognosis remains grim once the disease has metastasized, emphasizing the need to explore additional therapeutic strategies. One such approach is through the use of mechanism-based dietary intervention. We previously showed that the flavonoid fisetin inhibits melanoma cell proliferation, in vitro and in vivo. Here, we studied fisetin-mediated regulation of kinases involved in melanoma growth and progression. Time-course analysis in 3-D melanoma constructs that transitioned from radial to vertical growth showed that fisetin treatment resulted in significant decrease in melanocytic lesions in contrast to untreated controls that showed large tumor nests and invading disseminated cells. Further studies in melanoma cultures and mouse xenografts showed that fisetin-mediated growth inhibition was associated with dephosphorylation of AKT, mTOR and p70S6K proteins. In silico modeling indicated direct interaction of fisetin with mTOR and p70S6K with favorable free energy values. These findings were validated by cell-free competition assays that established binding of fisetin to p70S6K and mTOR while little affinity was detected with AKT. Kinase activity studies reflected similar trend with % inhibition observed for p70S6K and mTOR at lower doses than AKT. Our studies characterized, for the first time, the differential interactions of any botanical agent with kinases involved in melanoma growth and demonstrate that fisetin inhibits mTOR and p70S6K through direct binding while the observed inhibitory effect of fisetin on AKT is mediated indirectly, through targeting interrelated pathways.

  15. Alternol inhibits the proliferation and induces the differentiation of the mouse melanoma B16F0 cell line.

    PubMed

    Wang, Caixia; Xu, Wenjuan; Hao, Wenjin; Wang, Bingsheng; Zheng, Qiusheng

    2016-08-01

    High malignant potential and low susceptibility to treatment are characteristics of malignant melanoma. Alternol, a novel compound purified from microbial fermentation products obtained from the bark of the yew tree, exhibits a variety of antitumor activities. Based on these findings, the aim of the present study was to extend the knowledge on the antineoplastic effect of alternol in the mouse melanoma B16F0 cell line. Alternol significantly inhibited the proliferation and colony formation of B16F0 cells in a dose-dependent manner as detected by MTT and soft agar colony formation assays. NaOH alkaline lysis and oxidation of Dopa indicated that alternol enhanced the melanin content and tyrosinase activity of the B16F0 cells and results also showed a dose‑response relationship. Morphologic changes accompanied by extended dendrites were discovered in the B16F0 cells after treatment with alternol. Furthermore, the mRNA levels of tyrosinase, Trp1 and Trp2 were increased by alternol. Our results confirmed that alternol possesses marked antineoplastic properties against melanoma cells, indicating that this microbial fermentation product is a promising agent for the differentiation therapy of cancer. The inhibition of cell proliferation and colony formation by alternol was associated with both cytotoxicity and induction of differentiation.

  16. Lentivirus-mediated downregulation of MAT2B inhibits cell proliferation and induces apoptosis in melanoma.

    PubMed

    Lei, Yu; Zhang, Bo; Zhang, Yaohua; Zhao, Yuan; Sun, Jingying; Zhang, Xuejun; Yang, Sen

    2016-09-01

    Malignant melanoma is the most lethal of skin cancers and its pathogenesis is complex and heterogeneous. The efficacy of conventional therapeutic regimens for melanoma remains limited. Thus, it is important to explore novel effective therapeutic targets in the treatment of melanoma. The MAT2B gene encodes for the regulatory subunit of methionine adenosyltransferase (MAT). Recent studies have suggested that MAT2B may have functional roles other than modulating catalytic activity of MAT. In order to identify the roles of MAT2B in the tumorigenesis of malignant melanoma, we compared MAT2B expression profile in melanoma tissues with that in benign nevus samples. We employed lentivirus-mediated RNAi to downregulate the expression of MAT2B in malignant melanoma cell lines (A375 and Mel-RM), and investigated the effects of MAT2B on cell growth, colony-formation ability and apoptosis in vitro, as well as tumor growth of a xenograft model in vivo. The expression levels of BCL2 and XAF1 proteins, which were closely related to tumor cell apoptosis, were analyzed by western blot analysis. Our data showed that MAT2B was elevated in both primary and metastatic melanoma tissues compared with benign nevus samples. Lentivirus-mediated downregulation of MAT2B suppressed cell growth, colony formation and induced apoptosis in A375 and Mel-RM cell lines in vitro, affected protein expression of BCL2 and XAF1, extended the transplanted tumor growth in vivo. These results indicated that MAT2B was critical in the proliferation of melanoma cells and tumorigenicity. It may be considered as a potential anti-melanoma therapeutic target. PMID:27573889

  17. Biotransformed soybean extract (BSE) inhibits melanoma cell growth and viability in vitro: involvement of nuclear factor-kappa B signaling.

    PubMed

    Vilela, Fernanda Maria Pinto; Syed, Deeba N; Chamcheu, Jean Christopher; Calvo-Castro, Laura A; Fortes, Vanessa Silveira; Fonseca, Maria José Vieira; Mukhtar, Hasan

    2014-01-01

    Melanoma is recognized as one of the most aggressive cancers with a relatively high propensity for metastasis. The prognosis of melanoma remains poor in spite of treatment advances, emphasizing the importance of additional preventive measures. Isoflavonoids have become not only potential chemopreventive, but also important therapeutic natural agents. We evaluated the antiproliferative and proapoptotic properties of biotransformed soybean extract (BSE) in A375 melanoma cells. Previous analyses demonstrated that the concentration of daidzein, genistein and aminoacids/peptides present in BSE, fermented by Aspergillus awamori is much higher than in the non biotransformed extract (NBSE). Experiments comparing the efficacy of the extracts in preventing cancer cell growth showed that treatment (24 h) of aggressive melanoma cells (A375 and 451Lu) with BSE resulted in a dose-dependent inhibition of growth and viability. In contrast, treatment with similar doses of NBSE failed to inhibit melanoma cell viability. Further studies in A375 cells showed that decrease in cell viability with BSE treatment (1.5-1.9 mg/ml; 24 h) was associated with induction of apoptosis. Immunoblot analysis revealed that BSE treatment resulted in induction of PARP cleavage, activation of caspase-3, -7, and -8 and increased expression of TRAIL and its receptor DR4. BSE did not activate the intrinsic apoptotic pathway in A375 cells, as no change was observed in caspase-9 expression. The expression of Bcl-2 apoptotic proteins such as Bid and Bax remained unaffected with BSE treated cells. Interestingly, we also showed that BSE treatment increased the phosphorylation and activation of IKK, IκBα degradation and p65/NF-κB translocation to the nucleus, and that stimulation of the NF-???B pathway was required for BSE-induced apoptosis of A375 cells. Our findings indicate that the biotransformation of soybean plays a crucial role in the extract anti-cancer effect observed in melanoma cells. However

  18. L1 cell adhesion molecule induces melanoma cell motility by activation of mitogen-activated protein kinase pathways.

    PubMed

    Yi, Young-Su; Baek, Kwang-Soo; Cho, Jae Youl

    2014-06-01

    L1 cell adhesion molecule (L1CAM) is highly expressed in various types of cancer cells and has been implicated in the control of cell proliferation and motility. Recently, L1CAM was reported to induce the motility of melanoma cells, but the mechanism of this induction remains poorly understood. In this study, we investigated the molecular mechanisms by which L1CAM induces the motility of melanoma cells. Unlike other types of cancer cells, B16F10 melanoma cells highly expressed L1CAM at both the RNA and protein levels, and the expression of L1CAM induced AP-1 activity. In accordance to AP-1 activation, MAPK signaling pathways were activated by L1CAM. Inhibition of L1CAM expression by L1CAM-specific siRNA suppressed the activation of MAPKs such as ERK and p38. However, no significant change was observed in JNK activation. As expected, upstream MAP2K, MKK3/6, MAP3K, and TAK1 were also deactivated by the inhibition of L1CAM expression. L1CAM induced the motility of B16F10 cells. Inhibition of L1CAM expression suppressed migration and invasion of B16F10 cells, but no suppressive effect was observed on their proliferation and anti-apoptotic resistance. Treatment of B16F10 cells with U0126, an ERK inhibitor, or SB203580, a p38 inhibitor, suppressed the migration and invasion abilities of B16F10 cells. Taken together, our results suggest that L1CAM induces the motility of B16F10 melanoma cells via the activation of MAPK pathways. This finding provides a more detailed molecular mechanism of L1CAM-mediated induction of melanoma cell motility. PMID:24974583

  19. Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma

    NASA Astrophysics Data System (ADS)

    Sun, Chong; Wang, Liqin; Huang, Sidong; Heynen, Guus J. J. E.; Prahallad, Anirudh; Robert, Caroline; Haanen, John; Blank, Christian; Wesseling, Jelle; Willems, Stefan M.; Zecchin, Davide; Hobor, Sebastijan; Bajpe, Prashanth K.; Lieftink, Cor; Mateus, Christina; Vagner, Stephan; Grernrum, Wipawadee; Hofland, Ingrid; Schlicker, Andreas; Wessels, Lodewyk F. A.; Beijersbergen, Roderick L.; Bardelli, Alberto; di Nicolantonio, Federica; Eggermont, Alexander M. M.; Bernards, Rene

    2014-04-01

    Treatment of BRAF(V600E) mutant melanoma by small molecule drugs that target the BRAF or MEK kinases can be effective, but resistance develops invariably. In contrast, colon cancers that harbour the same BRAF(V600E) mutation are intrinsically resistant to BRAF inhibitors, due to feedback activation of the epidermal growth factor receptor (EGFR). Here we show that 6 out of 16 melanoma tumours analysed acquired EGFR expression after the development of resistance to BRAF or MEK inhibitors. Using a chromatin-regulator-focused short hairpin RNA (shRNA) library, we find that suppression of sex determining region Y-box 10 (SOX10) in melanoma causes activation of TGF-β signalling, thus leading to upregulation of EGFR and platelet-derived growth factor receptor-β (PDGFRB), which confer resistance to BRAF and MEK inhibitors. Expression of EGFR in melanoma or treatment with TGF-β results in a slow-growth phenotype with cells displaying hallmarks of oncogene-induced senescence. However, EGFR expression or exposure to TGF-β becomes beneficial for proliferation in the presence of BRAF or MEK inhibitors. In a heterogeneous population of melanoma cells having varying levels of SOX10 suppression, cells with low SOX10 and consequently high EGFR expression are rapidly enriched in the presence of drug, but this is reversed when the drug treatment is discontinued. We find evidence for SOX10 loss and/or activation of TGF-β signalling in 4 of the 6 EGFR-positive drug-resistant melanoma patient samples. Our findings provide a rationale for why some BRAF or MEK inhibitor-resistant melanoma patients may regain sensitivity to these drugs after a `drug holiday' and identify patients with EGFR-positive melanoma as a group that may benefit from re-treatment after a drug holiday.

  20. Ginsenoside Rg3 Inhibits Melanoma Cell Proliferation through Down-Regulation of Histone Deacetylase 3 (HDAC3) and Increase of p53 Acetylation

    PubMed Central

    Shan, Xiu; Fu, Yuan-Shan; Aziz, Faisal; Wang, Xiao-Qi; Yan, Qiu; Liu, Ji-Wei

    2014-01-01

    Malignant melanoma is an aggressive and deadly form of skin cancer, and despite recent advances in available therapies, is still lacking in completely effective treatments. Rg3, a monomer extracted from ginseng roots, has been attempted for the treatment of many cancers. It is reported that the expressions of histone deacetylase 3 (HDAC3) and p53 acetylation correlate with tumor cell growth. However, the antitumor effect of Rg3 on melanoma and the mechanism by which it regulates HDAC3 expression and p53 acetylation remain unknown. We found high expression of HDAC3 in human melanoma tissues to be significantly correlated to lymph node metastasis and clinical stage of disease (p<0.05). In melanoma cells, Rg3 inhibited cell proliferation and induced G0/G1 cell cycle arrest. Rg3 also decreased the expression of HDAC3 and increased the acetylation of p53 on lysine (k373/k382). Moreover, suppression of HDAC3 by either siRNA or a potent HDAC3 inhibitor (MS-275) inhibited cell proliferation, increased p53 acetylation and transcription activity. In A375 melanoma xenograft studies, we demonstrated that Rg3 and HDAC3 short hairpin RNA (shHDAC3) inhibited the growth of xenograft tumors with down-regulation of HDAC3 expression and up-regulation of p53 acetylation. In conclusion, Rg3 has antiproliferative activity against melanoma by decreasing HDAC3 and increasing acetylation of p53 both in vitro and in vivo. Thus, Rg3 serves as a potential therapeutic agent for the treatment of melanoma. PMID:25521755

  1. Tamoxifen inhibits tumor cell invasion and metastasis in mouse melanoma through suppression of PKC/MEK/ERK and PKC/PI3K/Akt pathways

    SciTech Connect

    Matsuoka, Hiroshi; Tsubaki, Masanobu; Yamazoe, Yuzuru; Ogaki, Mitsuhiko; Satou, Takao; Itoh, Tatsuki; Kusunoki, Takashi; Nishida, Shozo

    2009-07-15

    In melanoma, several signaling pathways are constitutively activated. Among these, the protein kinase C (PKC) signaling pathways are activated through multiple signal transduction molecules and appear to play major roles in melanoma progression. Recently, it has been reported that tamoxifen, an anti-estrogen reagent, inhibits PKC signaling in estrogen-negative and estrogen-independent cancer cell lines. Thus, we investigated whether tamoxifen inhibited tumor cell invasion and metastasis in mouse melanoma cell line B16BL6. Tamoxifen significantly inhibited lung metastasis, cell migration, and invasion at concentrations that did not show anti-proliferative effects on B16BL6 cells. Tamoxifen also inhibited the mRNA expressions and protein activities of matrix metalloproteinases (MMPs). Furthermore, tamoxifen suppressed phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt through the inhibition of PKC{alpha} and PKC{delta} phosphorylation. However, other signal transduction factor, such as p38 mitogen-activated protein kinase (p38MAPK) was unaffected. The results indicate that tamoxifen suppresses the PKC/mitogen-activated protein kinase kinase (MEK)/ERK and PKC/phosphatidylinositol-3 kinase (PI3K)/Akt pathways, thereby inhibiting B16BL6 cell migration, invasion, and metastasis. Moreover, tamoxifen markedly inhibited not only developing but also clinically evident metastasis. These findings suggest that tamoxifen has potential clinical applications for the treatment of tumor cell metastasis.

  2. Host immunity contributes to the anti-melanoma activity of BRAF inhibitors.

    PubMed

    Knight, Deborah A; Ngiow, Shin Foong; Li, Ming; Parmenter, Tiffany; Mok, Stephen; Cass, Ashley; Haynes, Nicole M; Kinross, Kathryn; Yagita, Hideo; Koya, Richard C; Graeber, Thomas G; Ribas, Antoni; McArthur, Grant A; Smyth, Mark J

    2013-03-01

    The BRAF mutant, BRAF(V600E), is expressed in nearly half of melanomas, and oral BRAF inhibitors induce substantial tumor regression in patients with BRAF(V600E) metastatic melanoma. The inhibitors are believed to work primarily by inhibiting BRAF(V600E)-induced oncogenic MAPK signaling; however, some patients treated with BRAF inhibitors exhibit increased tumor immune infiltration, suggesting that a combination of BRAF inhibitors and immunotherapy may be beneficial. We used two relatively resistant variants of Braf(V600E)-driven mouse melanoma (SM1 and SM1WT1) and melanoma-prone mice to determine the role of host immunity in type I BRAF inhibitor PLX4720 antitumor activity. We found that PLX4720 treatment downregulated tumor Ccl2 gene expression and decreased tumor CCL2 expression in both Braf(V600E) mouse melanoma transplants and in de novo melanomas in a manner that was coincident with reduced tumor growth. While PLX4720 did not directly increase tumor immunogenicity, analysis of SM1 tumor-infiltrating leukocytes in PLX4720-treated mice demonstrated a robust increase in CD8(+) T/FoxP3(+)CD4(+) T cell ratio and NK cells. Combination therapy with PLX4720 and anti-CCL2 or agonistic anti-CD137 antibodies demonstrated significant antitumor activity in mouse transplant and de novo tumorigenesis models. These data elucidate a role for host CCR2 in the mechanism of action of type I BRAF inhibitors and support the therapeutic potential of combining BRAF inhibitors with immunotherapy.

  3. Anti-proliferative and cytotoxic activity of rosuvastatin against melanoma cells

    PubMed Central

    Czajkowski, Rafal; Zegarska, Barbara; Kowaliszyn, Bogna; Pokrywczynska, Marta; Drewa, Tomasz

    2016-01-01

    Introduction Statins are considered potential candidate agents for melanoma chemoprevention. Statin-induced mevalonate pathway inhibition leads to reduction of cholesterol synthesis and also to decreased cellular levels of non-steroidal isoprenoids, geranylgeranyl pyrophosphate and farnesyl pyrophosphate. This results in the impairment of protein prenylation which affects carcinogenesis. Aim To analyze anti-proliferative and cytotoxic activity of rosuvastatin against melanoma cells. Material and methods Melanoma cell lines (A375 and WM1552C) and normal fibroblasts (BJ) were used as the primary research material. Cells were treated with rosuvastatin at concentrations ranging from 0.01 µM to 10 µM. Cell viability was analyzed with the use of an MTT assay. Expression of proliferation marker Ki67 was assessed on the basis of immunofluorescence staining. Results Rosuvastatin reduced A375 and BJ cell viability in a time- and dose-dependent manner. After 72 h incubation, the IC50, half maximal inhibitory concentration, was 2.3 µM for melanoma cells and 7.4 µM for normal fibroblasts. In turn, rosuvastatin exhibited relatively lower activity against WM1552C cells. A significant reduction of Ki67 expression was also noted for BJ fibroblasts after prolonged incubation with the tested drug. Conclusions The results indicate that the anti-melanoma properties of rosuvastatin are highly dependent on the tumor cell line assessed. However, the concentrations required to decrease melanoma cell viability in vitro exceed the plasma concentrations reached in patients treated with rosuvastatin at well-tolerated doses. What is more disturbing, reduction of proliferation and viability observed in BJ fibroblasts indicated that rosuvastatin at high doses may be toxic for normal cells. PMID:27605895

  4. Anti-proliferative and cytotoxic activity of rosuvastatin against melanoma cells

    PubMed Central

    Czajkowski, Rafal; Zegarska, Barbara; Kowaliszyn, Bogna; Pokrywczynska, Marta; Drewa, Tomasz

    2016-01-01

    Introduction Statins are considered potential candidate agents for melanoma chemoprevention. Statin-induced mevalonate pathway inhibition leads to reduction of cholesterol synthesis and also to decreased cellular levels of non-steroidal isoprenoids, geranylgeranyl pyrophosphate and farnesyl pyrophosphate. This results in the impairment of protein prenylation which affects carcinogenesis. Aim To analyze anti-proliferative and cytotoxic activity of rosuvastatin against melanoma cells. Material and methods Melanoma cell lines (A375 and WM1552C) and normal fibroblasts (BJ) were used as the primary research material. Cells were treated with rosuvastatin at concentrations ranging from 0.01 µM to 10 µM. Cell viability was analyzed with the use of an MTT assay. Expression of proliferation marker Ki67 was assessed on the basis of immunofluorescence staining. Results Rosuvastatin reduced A375 and BJ cell viability in a time- and dose-dependent manner. After 72 h incubation, the IC50, half maximal inhibitory concentration, was 2.3 µM for melanoma cells and 7.4 µM for normal fibroblasts. In turn, rosuvastatin exhibited relatively lower activity against WM1552C cells. A significant reduction of Ki67 expression was also noted for BJ fibroblasts after prolonged incubation with the tested drug. Conclusions The results indicate that the anti-melanoma properties of rosuvastatin are highly dependent on the tumor cell line assessed. However, the concentrations required to decrease melanoma cell viability in vitro exceed the plasma concentrations reached in patients treated with rosuvastatin at well-tolerated doses. What is more disturbing, reduction of proliferation and viability observed in BJ fibroblasts indicated that rosuvastatin at high doses may be toxic for normal cells.

  5. Androgen Receptor Exon 1 Mutation Causes Androgen Insensitivity by Creating Phosphorylation Site and Inhibiting Melanoma Antigen-A11 Activation of NH2- and Carboxyl-terminal Interaction-dependent Transactivation*

    PubMed Central

    Lagarde, William H.; Blackwelder, Amanda J.; Minges, John T.; Hnat, Andrew T.; French, Frank S.; Wilson, Elizabeth M.

    2012-01-01

    Naturally occurring germ line mutations in the X-linked human androgen receptor (AR) gene cause incomplete masculinization of the external genitalia by disrupting AR function in males with androgen insensitivity syndrome. Almost all AR missense mutations that cause androgen insensitivity syndrome are located in the highly structured DNA and ligand binding domains. In this report we investigate the functional defect associated with an AR exon 1 missense mutation, R405S, that caused partial androgen insensitivity. The 46,XX heterozygous maternal carrier had a wild-type Arg-405 CGC allele but transmitted an AGC mutant allele coding for Ser-405. At birth, the 46,XY proband had a bifid scrotum, hypospadias, and micropenis consistent with clinical stage 3 partial androgen insensitivity. Androgen-dependent transcriptional activity of AR-R405S expressed in CV1 cells was less than wild-type AR and refractory in androgen-dependent AR NH2- and carboxyl interaction transcription assays that depend on the coregulator effects of melanoma antigen-A11. This mutation created a Ser-405 phosphorylation site evident by the gel migration of an AR-R405S NH2-terminal fragment as a double band that converted to the wild-type single band after treatment with λ-phosphatase. Detrimental effects of the R405S mutation were related to the proximity of the AR WXXLF motif 433WHTLF437 required for melanoma antigen-A11 and p300 to stimulate transcriptional activity associated with the AR NH2- and carboxyl-terminal interaction. We conclude that the coregulator effects of melanoma antigen-A11 on the AR NH2- and carboxyl-terminal interaction amplify the androgen-dependent transcriptional response to p300 required for normal human male sex development in utero. PMID:22334658

  6. [Issues around melanoma].

    PubMed

    Haanen, John

    2011-01-01

    Over the past 30 years little progress has been made in the treatment of patients with a metastatic melanoma. Recently there have been two new developments. One of these is ipilimumab, a monoclonal antibody that blocks the function of the protein cytotoxic T lymphocyte-associated antigen 4 (CTLA4) which inhibits activated T lymphocytes. This gives the immune system a chance to build up an immune response to the melanoma. The other development is vemurafenib, a small molecule that inhibits a mutated protein (BRAF) that occurs in many melanomas. The BRAF mutation leads to uninhibited proliferation.

  7. MiR-21 enhances melanoma invasiveness via inhibition of tissue inhibitor of metalloproteinases 3 expression: in vivo effects of MiR-21 inhibitor.

    PubMed

    Martin del Campo, Sara E; Latchana, Nicholas; Levine, Kala M; Grignol, Valerie P; Fairchild, Ene T; Jaime-Ramirez, Alena Cristina; Dao, Thao-Vi; Karpa, Volodymyr I; Carson, Mary; Ganju, Akaansha; Chan, Anthony N; Carson, William E

    2015-01-01

    Metastatic melanoma is the most aggressive form of this cancer. It is important to understand factors that increase or decrease metastatic activity in order to more effectively research and implement treatments for melanoma. Increased cell invasion through the extracellular matrix is required for metastasis and is enhanced by matrix metalloproteinases (MMPs). Tissue inhibitor of metalloproteinases 3 (TIMP3) inhibits MMP activity. It was previously shown by our group that miR-21, a potential regulator of TIMP3, is over-expressed in cutaneous melanoma. It was therefore hypothesized that increased levels of miR-21 expression would lead to decreased expression of TIMP3 and thereby enhance the invasiveness of melanoma cells. miR-21 over-expression in the melanoma cell lines WM1552c, WM793b, A375 and MEL 39 was accomplished via transfection with pre-miR-21. Immunoblot analysis of miR-21-overexpressing cell lines revealed reduced expression of TIMP3 as compared to controls. This in turn led to a significant increase in the invasiveness of the radial growth phase cell line WM1552c and the vertical growth phase cell line WM793b (p < 0.05), but not in the metastatic cell lines A375 or MEL 39. The proliferation and migration of miR-21 over-expressing cell lines was not affected. Reduced expression of TIMP3 was achieved by siRNA knockdown and significantly enhanced invasion of melanoma cell lines, mimicking the effects of miR-21 over-expression. Treatment of tumor cells with a linked nucleic acid antagomir to miR-21 inhibited tumor growth and increased tumor expression of TIMP3 in vivo in 01B74 Athymic NCr-nu/nu mice. Intra-tumoral injections of anti-miR-21 produced similar effects. This data shows that increased expression of miR-21 enhanced the invasive potential of melanoma cell lines through TIMP3 inhibition. Therefore, inhibition of miR-21 in melanoma may reduce melanoma invasiveness.

  8. IGF-1R inhibition induces schedule-dependent sensitization of human melanoma to temozolomide.

    PubMed

    Ramcharan, Roger; Aleksic, Tamara; Kamdoum, Wilfride Petnga; Gao, Shan; Pfister, Sophia X; Tanner, Jordan; Bridges, Esther; Asher, Ruth; Watson, Amanda J; Margison, Geoffrey P; Woodcock, Mick; Repapi, Emmanouela; Li, Ji-Liang; Middleton, Mark R; Macaulay, Valentine M

    2015-11-24

    Prior studies implicate type 1 IGF receptor (IGF-1R) in mediating chemo-resistance. Here, we investigated whether IGF-1R influences response to temozolomide (TMZ), which generates DNA adducts that are removed by O6-methylguanine-DNA methyltransferase (MGMT), or persist causing replication-associated double-strand breaks (DSBs). Initial assessment in 10 melanoma cell lines revealed that TMZ resistance correlated with MGMT expression (r = 0.79, p = 0.009), and in MGMT-proficient cell lines, with phospho-IGF-1R (r = 0.81, p = 0.038), suggesting that TMZ resistance associates with IGF-1R activation. Next, effects of IGF-1R inhibitors (IGF-1Ri) AZ3801 and linsitinib (OSI-906) were tested on TMZ-sensitivity, cell cycle progression and DSB induction. IGF-1Ri sensitized BRAF wild-type and mutant melanoma cells to TMZ in vitro, an effect that was independent of MGMT. Cells harboring wild-type p53 were more sensitive to IGF-1Ri, and showed schedule-dependent chemo-sensitization that was most effective when IGF-1Ri followed TMZ. This sequence sensitized to clinically-achievable TMZ concentrations and enhanced TMZ-induced apoptosis. Simultaneous or prior IGF-1Ri caused less effective chemo-sensitization, associated with increased G1 population and reduced accumulation of TMZ-induced DSBs. Clinically relevant sequential (TMZ → IGF-1Ri) treatment was tested in mice bearing A375M (V600E BRAF, wild-type p53) melanoma xenografts, achieving peak plasma/tumor IGF-1Ri levels comparable to clinical Cmax, and inducing extensive intratumoral apoptosis. TMZ or IGF-1Ri caused minor inhibition of tumor growth (gradient reduction 13%, 25% respectively), while combination treatment caused supra-additive growth delay (72%) that was significantly different from control (p < 0.01), TMZ (p < 0.01) and IGF-1Ri (p < 0.05) groups. These data highlight the importance of scheduling when combining IGF-1Ri and other targeted agents with drugs that induce replication-associated DNA damage. PMID

  9. IGF-1R inhibition induces schedule-dependent sensitization of human melanoma to temozolomide

    PubMed Central

    Ramcharan, Roger; Aleksic, Tamara; Kamdoum, Wilfride Petnga; Gao, Shan; Pfister, Sophia X.; Tanner, Jordan; Bridges, Esther; Asher, Ruth; Watson, Amanda J.; Margison, Geoffrey P.; Woodcock, Mick; Repapi, Emmanouela; Li, Ji-Liang; Middleton, Mark R.; Macaulay, Valentine M.

    2015-01-01

    Prior studies implicate type 1 IGF receptor (IGF-1R) in mediating chemo-resistance. Here, we investigated whether IGF-1R influences response to temozolomide (TMZ), which generates DNA adducts that are removed by O6-methylguanine-DNA methyltransferase (MGMT), or persist causing replication-associated double-strand breaks (DSBs). Initial assessment in 10 melanoma cell lines revealed that TMZ resistance correlated with MGMT expression (r = 0.79, p = 0.009), and in MGMT-proficient cell lines, with phospho-IGF-1R (r = 0.81, p = 0.038), suggesting that TMZ resistance associates with IGF-1R activation. Next, effects of IGF-1R inhibitors (IGF-1Ri) AZ3801 and linsitinib (OSI-906) were tested on TMZ-sensitivity, cell cycle progression and DSB induction. IGF-1Ri sensitized BRAF wild-type and mutant melanoma cells to TMZ in vitro, an effect that was independent of MGMT. Cells harboring wild-type p53 were more sensitive to IGF-1Ri, and showed schedule-dependent chemo-sensitization that was most effective when IGF-1Ri followed TMZ. This sequence sensitized to clinically-achievable TMZ concentrations and enhanced TMZ-induced apoptosis. Simultaneous or prior IGF-1Ri caused less effective chemo-sensitization, associated with increased G1 population and reduced accumulation of TMZ-induced DSBs. Clinically relevant sequential (TMZ → IGF-1Ri) treatment was tested in mice bearing A375M (V600E BRAF, wild-type p53) melanoma xenografts, achieving peak plasma/tumor IGF-1Ri levels comparable to clinical Cmax, and inducing extensive intratumoral apoptosis. TMZ or IGF-1Ri caused minor inhibition of tumor growth (gradient reduction 13%, 25% respectively), while combination treatment caused supra-additive growth delay (72%) that was significantly different from control (p < 0.01), TMZ (p < 0.01) and IGF-1Ri (p < 0.05) groups. These data highlight the importance of scheduling when combining IGF-1Ri and other targeted agents with drugs that induce replication-associated DNA damage. PMID

  10. Inhibition of melanocortin 1 receptor slows melanoma growth, reduces tumor heterogeneity and increases survival.

    PubMed

    Kansal, Rita G; McCravy, Matthew S; Basham, Jacob H; Earl, Joshua A; McMurray, Stacy L; Starner, Chelsey J; Whitt, Michael A; Albritton, Lorraine M

    2016-05-01

    Melanoma risk is increased in patients with mutations of melanocortin 1 receptor (MC1R) yet the basis for the increased risk remains unknown. Here we report in vivo evidence supporting a critical role for MC1R in regulating melanoma tumor growth and determining overall survival time. Inhibition of MC1R by its physiologically relevant competitive inhibitor, agouti signaling protein (ASIP), reduced melanin synthesis and morphological heterogeneity in murine B16-F10 melanoma cells. In the lungs of syngeneic C57BL/6 mice, mCherry-marked, ASIP-secreting lung tumors inhibited MC1R on neighboring tumors lacking ASIP in a dose dependent manner as evidenced by a proportional loss of pigment in tumors from mice injected with 1:1, 3:1 and 4:1 mixtures of parental B16-F10 to ASIP-expressing tumor cells. ASIP-expressing B16-F10 cells formed poorly pigmented tumors in vivo that correlated with a 20% longer median survival than those bearing parental B16-F10 tumors (p=0.0005). Mice injected with 1:1 mixtures also showed survival benefit (p=0.0054), whereas injection of a 4:1 mixture showed no significant difference in survival. The longer survival time of mice bearing ASIP-expressing tumors correlated with a significantly slower growth rate than parental B16-F10 tumors as judged by quantification of numbers of tumors and total tumor load (p=0.0325), as well as a more homogeneous size and morphology of ASIP-expressing lung tumors. We conclude that MC1R plays an important role in regulating melanoma growth and morphology. Persistent inhibition of MC1R provided a significant survival advantage resulting in part from slower tumor growth, establishing MC1R as a compelling new molecular target for metastatic melanoma. PMID:27028866

  11. Inhibition of melanocortin 1 receptor slows melanoma growth, reduces tumor heterogeneity and increases survival

    PubMed Central

    Kansal, Rita G.; McCravy, Matthew S.; Basham, Jacob H.; Earl, Joshua A.; McMurray, Stacy L.; Starner, Chelsey J.

    2016-01-01

    Melanoma risk is increased in patients with mutations of melanocortin 1 receptor (MC1R) yet the basis for the increased risk remains unknown. Here we report in vivo evidence supporting a critical role for MC1R in regulating melanoma tumor growth and determining overall survival time. Inhibition of MC1R by its physiologically relevant competitive inhibitor, agouti signaling protein (ASIP), reduced melanin synthesis and morphological heterogeneity in murine B16-F10 melanoma cells. In the lungs of syngeneic C57BL/6 mice, mCherry-marked, ASIP-secreting lung tumors inhibited MC1R on neighboring tumors lacking ASIP in a dose dependent manner as evidenced by a proportional loss of pigment in tumors from mice injected with 1:1, 3:1 and 4:1 mixtures of parental B16-F10 to ASIP-expressing tumor cells. ASIP-expressing B16-F10 cells formed poorly pigmented tumors in vivo that correlated with a 20% longer median survival than those bearing parental B16-F10 tumors (p=0.0005). Mice injected with 1:1 mixtures also showed survival benefit (p=0.0054), whereas injection of a 4:1 mixture showed no significant difference in survival. The longer survival time of mice bearing ASIP-expressing tumors correlated with a significantly slower growth rate than parental B16-F10 tumors as judged by quantification of numbers of tumors and total tumor load (p=0.0325), as well as a more homogeneous size and morphology of ASIP-expressing lung tumors. We conclude that MC1R plays an important role in regulating melanoma growth and morphology. Persistent inhibition of MC1R provided a significant survival advantage resulting in part from slower tumor growth, establishing MC1R as a compelling new molecular target for metastatic melanoma. PMID:27028866

  12. Response to BRAF inhibition in melanoma is enhanced when combined with immune checkpoint blockade.

    PubMed

    Cooper, Zachary A; Juneja, Vikram R; Sage, Peter T; Frederick, Dennie T; Piris, Adriano; Mitra, Devarati; Lo, Jennifer A; Hodi, F Stephen; Freeman, Gordon J; Bosenberg, Marcus W; McMahon, Martin; Flaherty, Keith T; Fisher, David E; Sharpe, Arlene H; Wargo, Jennifer A

    2014-07-01

    BRAF-targeted therapy results in objective responses in the majority of patients; however, the responses are short lived (∼6 months). In contrast, treatment with immune checkpoint inhibitors results in a lower response rate, but the responses tend to be more durable. BRAF inhibition results in a more favorable tumor microenvironment in patients, with an increase in CD8(+) T-cell infiltrate and a decrease in immunosuppressive cytokines. There is also increased expression of the immunomodulatory molecule PDL1, which may contribute to the resistance. On the basis of these findings, we hypothesized that BRAF-targeted therapy may synergize with the PD1 pathway blockade to enhance antitumor immunity. To test this hypothesis, we developed a BRAF(V600E)/Pten(-/-) syngeneic tumor graft immunocompetent mouse model in which BRAF inhibition leads to a significant increase in the intratumoral CD8(+) T-cell density and cytokine production, similar to the effects of BRAF inhibition in patients. In this model, CD8(+) T cells were found to play a critical role in the therapeutic effect of BRAF inhibition. Administration of anti-PD1 or anti-PDL1 together with a BRAF inhibitor led to an enhanced response, significantly prolonging survival and slowing tumor growth, as well as significantly increasing the number and activity of tumor-infiltrating lymphocytes. These results demonstrate synergy between combined BRAF-targeted therapy and immune checkpoint blockade. Although clinical trials combining these two strategies are ongoing, important questions still remain unanswered. Further studies using this new melanoma mouse model may provide therapeutic insights, including optimal timing and sequence of therapy.

  13. Inhibition of Autophagy Enhances Curcumin United light irradiation-induced Oxidative Stress and Tumor Growth Suppression in Human Melanoma Cells.

    PubMed

    Niu, Tianhui; Tian, Yan; Mei, Zhusong; Guo, Guangjin

    2016-01-01

    Malignant melanoma is the most aggressive form of skin carcinoma, which possesses fast propagating and highly invasive characteristics. Curcumin is a natural phenol compound that has various biological activities, such as anti-proliferative and apoptosis-accelerating impacts on tumor cells. Unfortunately, the therapeutical activities of Cur are severely hindered due to its extremely low bioavailability. In this study, a cooperative therapy of low concentration Cur combined with red united blue light irradiation was performed to inspect the synergistic effects on the apoptosis, proliferation and autophagy in human melanoma A375 cell. The results showed that red united blue light irradiation efficaciously synergized with Cur to trigger oxidative stress-mediated cell death, induce apoptosis and inhibit cell proliferation. Meanwhile, Western blotting revealed that combined disposure induced the formation of autophagosomes. Conversely, inhibition of the autophagy enhanced apoptosis, obstructed cell cycle arrest and induced reversible proliferation arrest to senescence. These findings suggest that Cur combined with red united blue light irradiation could generate photochemo-preventive effects via enhancing apoptosis and triggering autophagy, and pharmacological inhibition of autophagy convert reversible arrested cells to senescence, therefore reducing the possibility that damaged cells might escape programmed death. PMID:27502897

  14. Inhibition of Autophagy Enhances Curcumin United light irradiation-induced Oxidative Stress and Tumor Growth Suppression in Human Melanoma Cells

    PubMed Central

    Niu, Tianhui; Tian, Yan; Mei, Zhusong; Guo, Guangjin

    2016-01-01

    Malignant melanoma is the most aggressive form of skin carcinoma, which possesses fast propagating and highly invasive characteristics. Curcumin is a natural phenol compound that has various biological activities, such as anti-proliferative and apoptosis-accelerating impacts on tumor cells. Unfortunately, the therapeutical activities of Cur are severely hindered due to its extremely low bioavailability. In this study, a cooperative therapy of low concentration Cur combined with red united blue light irradiation was performed to inspect the synergistic effects on the apoptosis, proliferation and autophagy in human melanoma A375 cell. The results showed that red united blue light irradiation efficaciously synergized with Cur to trigger oxidative stress-mediated cell death, induce apoptosis and inhibit cell proliferation. Meanwhile, Western blotting revealed that combined disposure induced the formation of autophagosomes. Conversely, inhibition of the autophagy enhanced apoptosis, obstructed cell cycle arrest and induced reversible proliferation arrest to senescence. These findings suggest that Cur combined with red united blue light irradiation could generate photochemo-preventive effects via enhancing apoptosis and triggering autophagy, and pharmacological inhibition of autophagy convert reversible arrested cells to senescence, therefore reducing the possibility that damaged cells might escape programmed death. PMID:27502897

  15. MAPK pathway inhibition enhances the efficacy of an anti-endothelin B receptor drug conjugate by inducing target expression in melanoma.

    PubMed

    Asundi, Jyoti; Lacap, Jennifer A; Clark, Suzanna; Nannini, Michelle; Roth, Leslie; Polakis, Paul

    2014-06-01

    Therapies targeting the mitogen-activated protein (MAP) kinase pathway in melanoma have produced significant clinical responses; however, duration of response is limited by acquisition of drug resistance. Rational drug combinations may improve outcomes in this setting. We assessed the therapeutic combination of an antibody-drug conjugate (ADC) targeting the endothelin B receptor (EDNRB) with small-molecule inhibitors of the MAP kinase signaling pathway in melanoma. Cell lines and tumor models containing either mutant BRAF or NRAS, or wild-type for both, were exposed to small-molecule inhibitors of BRAF and MEK. Expression of EDNRB was analyzed and the therapeutic impact of combining the anti-EDNRB ADC with the BRAF and MEK inhibitors was assessed. Increased expression of EDNRB in response to inhibition of BRAF and/or MEK was observed and augmented the antitumor activity of the ADC. Enhanced target expression and ADC antitumor activity were realized irrespective of the response of the tumor model to the BRAF or MEK inhibitors alone and could be achieved in melanoma with mutant NRAS, BRAF, or neither mutation. Cells that acquired resistance to BRAF inhibition through long-term culture retained drug-induced elevated levels of EDNRB expression. Expression of EDNRB was not enhanced in normal human melanocytes by inhibition of BRAF and the combination of the ADC with MAPK inhibitors was well-tolerated in mice. The anti-EDNRB ADC combines well with BRAF and MEK inhibitors and could have therapeutic use in the majority of human melanoma cases.

  16. Blocking of lung endothelial cell adhesion molecule-1 (Lu-ECAM-1) inhibits murine melanoma lung metastasis.

    PubMed

    Zhu, D; Cheng, C F; Pauli, B U

    1992-06-01

    The 90-kD lung endothelial cell adhesion molecule-1 (Lu-ECAM-1) selectively promotes Ca(2+)-dependent adhesion of lung-metastatic B16 melanoma cells. Corresponding with their metastatic performance, high lung-metastatic B16-F10 melanoma cells bind in significantly higher numbers to Lu-ECAM-1 than their intermediate and low lung-metastatic counterparts B16-L8-F10 and B16-F0, respectively. Maximum attachment is observed at a density of approximately 2.4 x 10(2) Lu-ECAM-1 sites/microns2 of plastic surface. B16 melanoma cell binding to Lu-ECAM-1 is blocked by mAb 6D3 and is competitively inhibited by soluble Lu-ECAM-1. C57B1/6 mice passively immunized with anti-Lu-ECAM-1 mAb 6D3 or actively immunized with purified Lu-ECAM-1 exhibit an anti-Lu-ECAM-1 antibody titer-dependent reduction in the number of B16 experimental metastases. Lu-ECAM-1 promotes neither binding nor metastasis of other lung-metastatic tumor cells (e.g., KLN205). Our data indicate that an "antiadhesion" therapy directed at interfering with the adherence of blood-borne tumor cells to organ-specific vascular endothelium is efficient in the control of metastasis formation in selective organ sites.

  17. Blocking of lung endothelial cell adhesion molecule-1 (Lu-ECAM-1) inhibits murine melanoma lung metastasis.

    PubMed Central

    Zhu, D; Cheng, C F; Pauli, B U

    1992-01-01

    The 90-kD lung endothelial cell adhesion molecule-1 (Lu-ECAM-1) selectively promotes Ca(2+)-dependent adhesion of lung-metastatic B16 melanoma cells. Corresponding with their metastatic performance, high lung-metastatic B16-F10 melanoma cells bind in significantly higher numbers to Lu-ECAM-1 than their intermediate and low lung-metastatic counterparts B16-L8-F10 and B16-F0, respectively. Maximum attachment is observed at a density of approximately 2.4 x 10(2) Lu-ECAM-1 sites/microns2 of plastic surface. B16 melanoma cell binding to Lu-ECAM-1 is blocked by mAb 6D3 and is competitively inhibited by soluble Lu-ECAM-1. C57B1/6 mice passively immunized with anti-Lu-ECAM-1 mAb 6D3 or actively immunized with purified Lu-ECAM-1 exhibit an anti-Lu-ECAM-1 antibody titer-dependent reduction in the number of B16 experimental metastases. Lu-ECAM-1 promotes neither binding nor metastasis of other lung-metastatic tumor cells (e.g., KLN205). Our data indicate that an "antiadhesion" therapy directed at interfering with the adherence of blood-borne tumor cells to organ-specific vascular endothelium is efficient in the control of metastasis formation in selective organ sites. Images PMID:1601982

  18. A Matrix Metalloproteinase-1/Protease Activated Receptor-1 signaling axis promotes melanoma invasion and metastasis

    PubMed Central

    Blackburn, Jessica S.; Liu, Ingrid; Coon, Charles I.; Brinckerhoff, Constance E.

    2009-01-01

    Hallmarks of malignant melanoma are its propensity to metastasize and its resistance to treatment, giving patients with advanced disease a poor prognosis. The transition of melanoma from non-invasive radial growth phase (RGP) to invasive and metastatically competent vertical growth phase (VGP) is a major step in tumor progression, yet the mechanisms governing this transformation are unknown. Matrix Metalloproteinase-1 (MMP-1) is highly expressed by VGP melanomas, and is thought to contribute to melanoma progression by degrading type I collagen within the skin to facilitate melanoma invasion. Protease activated receptor-1 (PAR-1) is activated by MMP-1, and is also expressed by VGP melanomas. However, the effects MMP-1 signaling through PAR-1 have not been examined in melanoma. Here, we demonstrate that an MMP-1/PAR-1 signaling axis exists in VGP melanoma, and is necessary for melanoma invasion. Introduction of MMP-1 into RGP melanoma cells induced gene expression associated with tumor progression and promoted invasion in vitro, and enhanced tumor growth and conferred metastatic capability in vivo. This study demonstrates that both the type I collagenase and PAR-1 activating functions of MMP-1 are required for melanoma progression, and suggests that MMP-1 may be a major contributor to the transformation of melanoma from non-invasive to malignant disease. PMID:19734937

  19. Structure-activity relationship of prenyl-substituted polyphenols from Artocarpus heterophyllus as inhibitors of melanin biosynthesis in cultured melanoma cells.

    PubMed

    Arung, Enos Tangke; Shimizu, Kuniyoshi; Kondo, Ryuichiro

    2007-09-01

    A series of prenylated, flavone-based polyphenols, compounds 1-8, were isolated from the wood of Artocarpus heterophyllus. These compounds, which have previously been shown not to inhibit tyrosinase activity, were found to be active inhibitors of the in vivo melanin biosynthesis in B16 melanoma cells, with little or no cytotoxicity. To clarify the structural requirement for inhibition, some structure-activity relationships were studied, in comparison with related compounds lacking prenyl side chains. Our experiments indicate that both prenyl and OH groups, as well as the type of substitution pattern, are crucial for the inhibition of melanin production in B16 melanoma cells.

  20. Concurrent MEK and autophagy inhibition is required to restore cell death associated danger-signalling in Vemurafenib-resistant melanoma cells.

    PubMed

    Martin, S; Dudek-Perić, A M; Maes, H; Garg, A D; Gabrysiak, M; Demirsoy, S; Swinnen, J V; Agostinis, P

    2015-02-01

    Vemurafenib (PLX4032), an inhibitor of BRAF(V600E), has demonstrated significant clinical anti-melanoma effects. However, the majority of treated patients develop resistance, due to a variety of molecular mechanisms including MAPK reactivation through MEK. The induction of a cancer cell death modality associated with danger-signalling resulting in surface mobilization of crucial damage-associated-molecular-patterns (DAMPs), e.g. calreticulin (CRT) and heat shock protein-90 (HSP90), from dying cells, is emerging to be crucial for therapeutic success. Both cell death and danger-signalling are modulated by autophagy, a key adaptation mechanism stimulated during melanoma progression. However, whether melanoma cell death induced by MAPK inhibition is associated with danger-signalling, and the reliance of these mechanisms on autophagy, has not yet been scrutinized. Using a panel of isogenic PLX4032-sensitive and resistant melanoma cell lines we show that PLX4032-induced caspase-dependent cell death and DAMPs exposure in the drug-sensitive cells, but failed to do so in the drug-resistant cells, displaying heightened MEK activation. MEK inhibitor, U0126, treatment sensitized PLX4032-resistant cells to death and re-established their danger-signalling capacity. Only melanoma cells exposing death-induced danger-signals were phagocytosed and induced DC maturation. Although the PLX4032-resistant melanoma cells displayed higher basal and drug-induced autophagy, compromising autophagy, pharmacologically or by ATG5 knockdown, was insufficient to re-establish their PLX4032 sensitivity. Interestingly, autophagy abrogation was particularly efficacious in boosting cell death and ecto-CRT/ecto-HSP90 in PLX4032-resistant cells upon blockage of MEK hyper-activation by U0126. Thus combination of MEK inhibitors with autophagy blockers may represent a novel treatment regime to increase both cell death and danger-signalling in Vemurafenib-resistant metastatic melanoma.

  1. Cilengitide downmodulates invasiveness and vasculogenic mimicry of neuropilin 1 expressing melanoma cells through the inhibition of αvβ5 integrin.

    PubMed

    Ruffini, Federica; Graziani, Grazia; Levati, Lauretta; Tentori, Lucio; D'Atri, Stefania; Lacal, Pedro M

    2015-03-15

    During melanoma progression, tumour cells show increased adhesiveness to the vascular wall, invade the extracellular matrix (ECM) and frequently form functional channels similar to vascular vessels (vasculogenic mimicry). These properties are mainly mediated by the interaction of integrins with ECM components. Since we had previously identified neuropilin 1 (NRP-1), a coreceptor of vascular endothelial growth factor A (VEGF-A), as an important determinant of melanoma aggressiveness, aims of this study were to identify the specific integrins involved in the highly invasive phenotype of NRP-1 expressing cells and to investigate their role as targets to counteract melanoma progression. Melanoma aggressiveness was evaluated in vitro as cell ability to migrate through an ECM layer and to form tubule-like structures using transfected cells. Integrins relevant to these processes were identified using specific blocking antibodies. The αvβ5 integrin was found to be responsible for about 80% of the capability of NRP-1 expressing cells to adhere on vitronectin. In these cells αvβ5 expression level was twice higher than in low-invasive control cells and contributed to the ability of melanoma cells to form tubule-like structures on matrigel. Cilengitide, a potent inhibitor of αν integrins activation, reduced ECM invasion, vasculogenic mimicry and secretion of VEGF-A and metalloproteinase 9 by melanoma cells. In conclusion, we demonstrated that ανβ5 integrin is involved in the highly aggressive phenotype of melanoma cells expressing NRP-1. Moreover, we identified a novel mechanism that contributes to the antimelanoma activity of the αv integrin inhibitor cilengitide based on the inhibition of vasculogenic mimicry.

  2. The combination of glutamate receptor antagonist MK-801 with tamoxifen and its active metabolites potentiates their antiproliferative activity in mouse melanoma K1735-M2 cells

    SciTech Connect

    Ribeiro, Mariana P.C.; Nunes-Correia, Isabel; Santos, Armanda E.; Custódio, José B.A.

    2014-02-15

    Recent reports suggest that N-methyl-D-aspartate receptor (NMDAR) blockade by MK-801 decreases tumor growth. Thus, we investigated whether other ionotropic glutamate receptor (iGluR) antagonists were also able to modulate the proliferation of melanoma cells. On the other hand, the antiestrogen tamoxifen (TAM) decreases the proliferation of melanoma cells, and is included in combined therapies for melanoma. As the efficacy of TAM is limited by its metabolism, we investigated the effects of the NMDAR antagonist MK-801 in combination with TAM and its active metabolites, 4-hydroxytamoxifen (OHTAM) and endoxifen (EDX). The NMDAR blockers MK-801 and memantine decreased mouse melanoma K1735-M2 cell proliferation. In contrast, the NMDAR competitive antagonist APV and the AMPA and kainate receptor antagonist NBQX did not affect cell proliferation, suggesting that among the iGluR antagonists only the NMDAR channel blockers inhibit melanoma cell proliferation. The combination of antiestrogens with MK-801 potentiated their individual effects on cell biomass due to diminished cell proliferation, since it decreased the cell number and DNA synthesis without increasing cell death. Importantly, TAM metabolites combined with MK-801 promoted cell cycle arrest in G1. Therefore, the data obtained suggest that the activity of MK-801 and antiestrogens in K1735-M2 cells is greatly enhanced when used in combination. - Highlights: • MK-801 and memantine decrease melanoma cell proliferation. • The combination of MK-801 with antiestrogens inhibits melanoma cell proliferation. • These combinations greatly enhance the effects of the compounds individually. • MK-801 combined with tamoxifen active metabolites induces cell cycle arrest in G1. • The combination of MK-801 and antiestrogens is an innovative strategy for melanoma.

  3. Berberine, an isoquinoline alkaloid, inhibits melanoma cancer cell migration by reducing the expressions of cyclooxygenase-2, prostaglandin E2 and prostaglandin E2 receptors

    PubMed Central

    Singh, Tripti; Vaid, Mudit; Katiyar, Nandan; Sharma, Samriti; Katiyar, Santosh K.

    2011-01-01

    Melanoma is the leading cause of death from skin disease due, in large part, to its propensity to metastasize. We have examined the effect of berberine, an isoquinoline alkaloid, on human melanoma cancer cell migration and the molecular mechanisms underlying these effects using melanoma cell lines, A375 and Hs294. Using an in vitro cell migration assay, we show that over expression of cyclooxygenase (COX)-2, its metabolite prostaglandin E2 (PGE2) and PGE2 receptors promote the migration of cells. We found that treatment of A375 and Hs294 cells with berberine resulted in concentration-dependent inhibition of migration of these cells, which was associated with a reduction in the levels of COX-2, PGE2 and PGE2 receptors (EP2 and EP4). Treatment of cells with celecoxib, a COX-2 inhibitor, or transient transfection of cells with COX-2 small interfering RNA, also inhibited cell migration. Treatment of the cells with 12-O-tetradecanoylphorbol-13-acetate (TPA), an inducer of COX-2 or PGE2, enhanced cell migration, whereas berberine inhibited TPA- or PGE2-promoted cell migration. Berberine reduced the basal levels as well as PGE2-stimulated expression levels of EP2 and EP4. Treatment of the cells with the EP4 agonist stimulated cell migration and berberine blocked EP4 agonist-induced cell migration activity. Moreover, berberine inhibited the activation of nuclear factor-kappa B (NF-κB), an upstream regulator of COX-2, in A375 cells, and treatment of cells with caffeic acid phenethyl ester, an inhibitor of NF-κB, inhibited cell migration. Together, these results indicate for the first time that berberine inhibits melanoma cell migration, an essential step in invasion and metastasis, by inhibition of COX-2, PGE2 and PGE2 receptors. PMID:20974686

  4. CCR5 Blockade Suppresses Melanoma Development Through Inhibition of IL-6-Stat3 Pathway via Upregulation of SOCS3.

    PubMed

    Tang, Qiu; Jiang, Jun; Liu, Jian

    2015-12-01

    In order to understand how tumor cells can escape immune surveillance mechanisms and thus develop antitumor therapies, it is critically important to investigate the mechanisms by which the immune system interacts with the tumor microenvironment. In our current study, we found that chemokine receptor 5 (CCR5) neutralization resulted in reduced melanoma tumor size, decreased percentage of CD11b+ Gr-1(+) myeloid-derived suppressor cells (MDSCs), and increased proportion of cluster of differentiation (CD)3+ T cells in tumor tissues. Suppressive activity of MDSCs on CD4+ T cells and CD8+ T cell proliferation is significantly inhibited by anti-CCR5 antibody. CCR5 blockade also suppresses interleukin (IL)-6 induction, which in turn deactivates signal transducer and activator of transcription 3 (Stat3) in tumors. Furthermore, the suppressed B16 tumor growth induced by CCR5 blockade is abolished with additional administration of recombinant IL-6. CCR5 blockade also induces suppressor of cytokine signaling 3 (SOCS3) upregulations, and anti-CCR5 antibody fails to suppress expression of phospho-Stat3 (p-Stat3), matrix metallopeptidase 9 (MMP9), and IL-6 in cells transfected with SOCS3 short-interfering RNA (SiRNA). All these data suggest that CCR5 blockade suppresses melanoma development through inhibition of IL-6-Stat3 pathway via upregulation of SOCS3.

  5. New imidazoquinoxaline derivatives: Synthesis, biological evaluation on melanoma, effect on tubulin polymerization and structure-activity relationships.

    PubMed

    Zghaib, Zahraa; Guichou, Jean-François; Vappiani, Johanna; Bec, Nicole; Hadj-Kaddour, Kamel; Vincent, Laure-Anaïs; Paniagua-Gayraud, Stéphanie; Larroque, Christian; Moarbess, Georges; Cuq, Pierre; Kassab, Issam; Deleuze-Masquéfa, Carine; Diab-Assaf, Mona; Bonnet, Pierre-Antoine

    2016-06-01

    Microtubules are considered as important targets of anticancer therapy. EAPB0503 and its structural imidazo[1,2-a]quinoxaline derivatives are major microtubule-interfering agents with potent anticancer activity. In this study, the synthesis of several new derivatives of EAPB0503 is described, and the anticancer efficacy of 13 novel derivatives on A375 human melanoma cell line is reported. All new compounds show significant antiproliferative activity with IC50 in the range of 0.077-122μM against human melanoma cell line (A375). Direct inhibition of tubulin polymerization assay in vitro is also assessed. Results show that compounds 6b, 6e, 6g, and EAPB0503 highly inhibit tubulin polymerization with percentages of inhibition of 99%, 98%, 90%, and 84% respectively. Structure-activity relationship studies within the series are also discussed in line with molecular docking studies into the colchicine-binding site of tubulin.

  6. Hinokitiol, a tropolone derivative, inhibits mouse melanoma (B16-F10) cell migration and in vivo tumor formation.

    PubMed

    Huang, Chien-Hsun; Lu, Shing-Hwa; Chang, Chao-Chien; Thomas, Philip Aloysius; Jayakumar, Thanasekaran; Sheu, Joen-Rong

    2015-01-01

    Invasion and metastasis are the major causes of treatment failure in patients with cancer. Hinokitiol, a natural bioactive compound found in Chamacyparis taiwanensis, has been used in hair tonics, cosmetics, and food as an antimicrobial agent. In this study, we investigated the effects and possible mechanisms of action of hinokitiol on migration by the metastatic melanoma cell line, B16-F10, in which matrix metalloproteinase-1 (MMP-1) is found to be highly- expressed. Treatment with hinokitiol revealed a concentration-dependent inhibition of migration of B16-F10 melanoma cells. Hinokitiol appeared to achieve this effect by reducing the expression of MMP-1 and by suppressing the phosphorylation of mitogen- activated protein kinase (MAPK) signaling molecules such as extracellular signal-regulated kinase (ERK) 1/2, p38 MAPK and c-Jun N-terminal kinases (JNK). On the other hand, hinokitiol treatment reversed IκB-α degradation and inhibited the phosphorylation of p65 nuclear factor kappa B (NF-κB) and cJun in B16-F10 cells. In addition, hinokitiol suppressed the translocation of p65 NF-κB from the cytosol to the nucleus, suggesting reduced NF-κB activation. Consistent with these in vitro findings, our in vivo study demonstrated that hinokitiol treatment significantly reduced the total number of mouse lung metastatic nodules and improved histological alterations in B16-F10 injected C57BL/6 mice. These findings suggest that treatment of B16-F10 cells with hinokitiol significantly inhibits metastasis, possibly by blocking MMP-1 activation, MAPK signaling pathways and inhibition of the transcription factors, NF-κB and c-Jun, involved in cancer cell migration. These results may accelerate the development of novel therapeutic agents for the treatment of malignant cancers. PMID:25449038

  7. Proteome analysis identified the PPARγ ligand 15d-PGJ2 as a novel drug inhibiting melanoma progression and interfering with tumor-stroma interaction.

    PubMed

    Paulitschke, Verena; Gruber, Silke; Hofstätter, Elisabeth; Haudek-Prinz, Verena; Klepeisz, Philipp; Schicher, Nikolaus; Jonak, Constanze; Petzelbauer, Peter; Pehamberger, Hubert; Gerner, Christopher; Kunstfeld, Rainer

    2012-01-01

    Peroxisome proliferator-activated receptors (PPARs) have been originally thought to be restricted to lipid metabolism or glucose homeostasis. Recently, evidence is growing that PPARγ ligands have inhibitory effects on tumor growth. To shed light on the potential therapeutic effects on melanoma we tested a panel of PPAR agonists on their ability to block tumor proliferation in vitro. Whereas ciglitazone, troglitazone and WY14643 showed moderate effects on proliferation, 15d-PGJ2 displayed profound anti-tumor activity on four different melanoma cell lines tested. Additionally, 15d-PGJ2 inhibited proliferation of tumor-associated fibroblasts and tube formation of endothelial cells. 15d-PGJ2 induced the tumor suppressor gene p21, a G(2)/M arrest and inhibited tumor cell migration. Shot gun proteome analysis in addition to 2D-gel electrophoresis and immunoprecipitation of A375 melanoma cells suggested that 15d-PGJ2 might exert its effects via modification and/or downregulation of Hsp-90 (heat shock protein 90) and several chaperones. Applying the recently established CPL/MUW database with a panel of defined classification signatures, we demonstrated a regulation of proteins involved in metastasis, transport or protein synthesis including paxillin, angio-associated migratory cell protein or matrix metalloproteinase-2 as confirmed by zymography. Our data revealed for the first time a profound effect of the single compound 15d-PGJ2 on melanoma cells in addition to the tumor-associated microenvironment suggesting synergistic therapeutic efficiency. PMID:23049949

  8. Rapid progression of intracranial melanoma metastases controlled with combined BRAF/MEK inhibition after discontinuation of therapy: a clinical challenge.

    PubMed

    N Cagney, Daniel; Alexander, Brian M; Hodi, F Stephen; Buchbinder, Elizabeth I; Ott, Patrick A; Aizer, Ayal A

    2016-09-01

    Novel systemic therapies with anti-tumor activity in the brain including small molecules targeting BRAF and MEK, and immune checkpoint inhibition, offer the possibility of improved control of intracranial disease. A number of prospective trials support the judicious use of modern systemic therapies in patients with melanoma and limited brain metastases .The intracranial clinical course of patients who progress extracranially on BRAF/MEK inhibition remains poorly described in the literature. In this report, we highlight a series of clinical cases, with rapid progression of intracranial disease following discontinuation of dabrafenib/trametinib for extracranial disease progression or toxicity, a previously unreported finding in the medical literature with significant implications for patient care.

  9. Antitumor Activity of Kielmeyera Coriacea Leaf Constituents in Experimental Melanoma, Tested in Vitro and in Vivo in Syngeneic Mice

    PubMed Central

    Figueiredo, Carlos Rogério; Matsuo, Alisson Leonardo; Massaoka, Mariana Hiromi; Girola, Natalia; Azevedo, Ricardo Alexandre; Rabaça, Aline Nogueira; Farias, Camyla Fernandes; Pereira, Felipe Valença; Matias, Natalia Silva; Silva, Luciana Pereira; Rodrigues, Elaine Guadelupe; Lago, João Henrique Guilardi; Travassos, Luiz Rodolpho; Silva, Regildo Márcio Gonçalves

    2014-01-01

    Purpose: The antitumor activity of Kielmeyera coriacea (Clusiaceae), a medicinal plant used in the treatment of parasitic, as well as fungal and bacterial infections by the Brazilian Cerrado population, was investigated. Methods: A chloroform extract (CE) of K. coriacea was tested in the murine melanoma cell line (B16F10-Nex2) and a panel of human tumor cell lines. Tumor cell migration was determined by the wound-healing assay and the in vivo antitumor activity of CE was investigated in a melanoma cell metastatic model. 1H NMR and GC/MS were used to determine CE chemical composition. Results: We found that CE exhibited strong cytotoxic activity against murine melanoma cells and a panel of human tumor cell lines in vitro. CE also inhibited growth of B16F10-Nex2 cells at sub lethal concentrations, inducing cell cycle arrest at S phase, and inhibition of tumor cell migration. Most importantly, administration of CE significantly reduced the number of melanoma metastatic nodules in vivo. Chemical analysis of CE indicated the presence of the long chain fatty compounds, 1-eicosanol, 1-docosanol, and 2-nonadecanone as main constituents. Conclusion: These results indicate that K. coriacea is a promising medicinal plant in cancer therapy exhibiting antitumor activity both in vitro and in vivo against different tumor cell lines. PMID:25364658

  10. Curcumin combined with FAPαc vaccine elicits effective antitumor response by targeting indolamine-2,3-dioxygenase and inhibiting EMT induced by TNF-α in melanoma.

    PubMed

    Jiang, Guan-Min; Xie, Wan-Ying; Wang, Hong-Sheng; Du, Jun; Wu, Bai-Ping; Xu, Wei; Liu, Hui-Fang; Xiao, Ping; Liu, Zhi-Gang; Li, Hong-Yan; Liu, Shuang-Quan; Yin, Wen-Jun; Zhang, Qiu-Gui; Liang, Jian-Ping; Huang, Hong-Jun

    2015-09-22

    Fibroblast activation protein α (FAPα) is a potential target for cancer therapy. However, elimination of FAPα+ fibroblasts activates secretion of IFN-γ and TNF-α. IFN-γ can in turn induce expression indolamine-2,3-dioxygenase (IDO), thereby contributing to immunosuppression, while TNF-α can induce EMT. These two reactive effects would limit the efficacy of a tumor vaccine. We found that curcumin can inhibit IDO expression and TNF-α-induced EMT. Moreover, FAPαc vaccine and CpG combined with curcumin lavage inhibited tumor growth and prolonged the survival of mice implanted with melanoma cells. The combination of FAPαc vaccine, CpG and curcumin stimulated FAPα antibody production and CD8+ T cell-mediated killing of FAPα-expressing stromal cells without adverse reactive effects. We suggest a combination of curcumin and FAPαc vaccine for melanoma therapy. PMID:26305550

  11. microRNA-7-5p inhibits melanoma cell proliferation and metastasis by suppressing RelA/NF-κB.

    PubMed

    Giles, Keith M; Brown, Rikki A M; Ganda, Clarissa; Podgorny, Melissa J; Candy, Patrick A; Wintle, Larissa C; Richardson, Kirsty L; Kalinowski, Felicity C; Stuart, Lisa M; Epis, Michael R; Haass, Nikolas K; Herlyn, Meenhard; Leedman, Peter J

    2016-05-31

    microRNA-7-5p (miR-7-5p) is a tumor suppressor in multiple cancer types and inhibits growth and invasion by suppressing expression and activity of the epidermal growth factor receptor (EGFR) signaling pathway. While melanoma is not typically EGFR-driven, expression of miR-7-5p is reduced in metastatic tumors compared to primary melanoma. Here, we investigated the biological and clinical significance of miR-7-5p in melanoma. We found that augmenting miR-7-5p expression in vitro markedly reduced tumor cell viability, colony formation and induced cell cycle arrest. Furthermore, ectopic expression of miR-7-5p reduced migration and invasion of melanoma cells in vitro and reduced metastasis in vivo. We used cDNA microarray analysis to identify a subset of putative miR-7-5p target genes associated with melanoma and metastasis. Of these, we confirmed nuclear factor kappa B (NF-κB) subunit RelA, as a novel direct target of miR-7-5p in melanoma cells, such that miR-7-5p suppresses NF-κB activity to decrease expression of canonical NF-κB target genes, including IL-1β, IL-6 and IL-8. Importantly, the effects of miR-7-5p on melanoma cell growth, cell cycle, migration and invasion were recapitulated by RelA knockdown. Finally, analysis of gene array datasets from multiple melanoma patient cohorts revealed an association between elevated RelA expression and poor survival, further emphasizing the clinical significance of RelA and its downstream signaling effectors. Taken together, our data show that miR-7-5p is a potent inhibitor of melanoma growth and metastasis, in part through its inactivation of RelA/NF-κB signaling. Furthermore, miR-7-5p replacement therapy could have a role in the treatment of this disease. PMID:27203220

  12. Activation of hERG3 channel stimulates autophagy and promotes cellular senescence in melanoma

    PubMed Central

    Perez-Neut, Mathew; Haar, Lauren; Rao, Vidhya; Santha, Sreevidya; Lansu, Katherine; Rana, Basabi; Jones, Walter K.; Gentile, Saverio

    2016-01-01

    Ion channels play a major factor in maintaining cellular homeostasis but very little is known about the role of these proteins in cancer biology. In this work we have discovered that, the Kv11.3 (hERG3) a plasma-membrane potassium channel plays a critical role in the regulation of autophagy in a cancer cell model. We have found that pharmacologic stimulation of the Kv11.3 channel with a small molecule activator, NS1643 induced autophagy via activation of an AMPK-dependent signaling pathway in melanoma cell line. In addition, we have found that NS1643 produced a strong inhibition of cell proliferation by activating a cellular senescence program. Furthermore, inhibition of autophagy via siRNA targeting AMPK or treatment with hydroxychloroquine an autophagy inhibitor activates apoptosis in NS1643-treated cells. Thus, we propose that, Kv11.3 is a novel mediator of autophagy, autophagy can be a survival mechanism contributing to cellular senescence, and that use of a combinatorial pharmacologic approach of Kv11.3 activator with inhibitors of autophagy represents a novel therapeutic approach against melanoma. PMID:26942884

  13. A novel AKT1 mutant amplifies an adaptive melanoma response to BRAF inhibition

    PubMed Central

    Shi, Hubing; Hong, Aayoung; Kong, Xiangju; Koya, Richard C.; Song, Chunying; Moriceau, Gatien; Hugo, Willy; Yu, Clarissa C.; Ng, Charles; Chodon, Thinle; Scolyer, Richard A.; Kefford, Richard F.; Ribas, Antoni; Long, Georgina V.; Lo, Roger S.

    2013-01-01

    BRAF inhibitor (BRAFi) therapy leads to remarkable anti-melanoma responses, but the initial tumor shrinkage is commonly incomplete, providing a nidus for subsequent disease progression. Adaptive signaling may underlie early BRAFi resistance and influence the selection pattern for genetic variants causing late, acquired resistance. We show here that BRAFi (or BRAFi+MEKi) therapy in patients frequently led to rebound p-AKT levels in their melanomas early on treatment. In cell lines, BRAFi treatment led to rebound levels of RTKs (including PDGFRβ), PIP3, pleckstrin homology domain (PHD) recruitment, and p-AKT. PTEN expression limited this BRAFi-elicited PI3K-AKT signaling, which could be rescued by introduction of a mutant AKT1 (Q79K) kown to confer acquired BRAFi resistance. Functionally, AKT1 Q79K conferred BRAFi resistance via amplifying BRAFi-elicited PI3K-AKT signaling. Additionally, MAPK pathway inhibition enhanced clonogenic growth dependency on PI3K or AKT. Thus, adaptive or genetic upregulation of AKT critically participates in melanoma survival during BRAFi therapy. PMID:24265152

  14. BRAF inhibition decreases cellular glucose uptake in melanoma in association with reduction in cell volume

    PubMed Central

    Theodosakis, Nicholas; Held, Matthew A.; Marzuka-Alcala, Alexander; Meeth, Katrina M.; Micevic, Goran; Long, Georgina V.; Scolyer, Richard A.; Stern, David F.; Bosenberg, Marcus W.

    2015-01-01

    BRAF kinase inhibitors have dramatically impacted treatment of BRAFV600E/K-driven metastatic melanoma. Early responses assessed using [18F]fluorodeoxyglucose uptake-positron emission tomography (FDG-PET) have shown dramatic reduction of radiotracer signal within two weeks of treatment. Despite high response rates, relapse occurs in nearly all cases, frequently at sites of treated metastatic disease. It remains unclear whether initial loss of 18FDG uptake is due to tumor cell death or other reasons. Here we provide evidence of melanoma cell volume reduction in a patient cohort treated with BRAF inhibitors. We present data demonstrating that BRAF inhibition reduces melanoma glucose uptake per cell, but that this change is no longer significant following normalization for cell volume changes. We also demonstrate that volume normalization greatly reduces differences in transmembrane glucose transport and hexokinase-mediated phosphorylation. Mechanistic studies suggest that this loss of cell volume is due in large part to decreases in new protein translation as a consequence of vemurafenib treatment. Ultimately, our findings suggest that cell volume regulation constitutes an important physiologic parameter that may significantly contribute to radiographic changes observed in clinic. PMID:25948295

  15. Nuclear heparanase-1 activity suppresses melanoma progression via its DNA-binding affinity.

    PubMed

    Yang, Y; Gorzelanny, C; Bauer, A T; Halter, N; Komljenovic, D; Bäuerle, T; Borsig, L; Roblek, M; Schneider, S W

    2015-11-19

    Heparanase-1 (HPSE) plays a pivotal role in structural remodeling of the ECM and the glycocalyx, thus conferring protumorigenic, proangiogenic and prometastatic properties to many cancer entities. In addition to its extracellular function, recent studies suggest an intracellular activity of HPSE with a largely unknown significance during tumor progression. Therefore, we investigated the relevance of the dual functions of HPSE to malignant melanoma in vitro, as well as in different mouse melanoma models based on the intradermal or intravenous injection of melanoma cells. Consistent with its extracellular action, an HPSE deficiency led to a reduced shedding of the glycocalyx accompanied by a reduced availability of vascular endothelial growth factor, affecting tumor growth and vascularization. In contrast, we measured an elevated expression of the protumorigenic factors pentraxin-3, tissue factor, TNF-α and most prominently, MMP-9, upon HPSE knockdown. In vivo, an HPSE deficiency was related to increased lymph node metastasis. Since the inhibition of its extracellular function with heparin was unable to block the gene regulatory impact of HPSE, we proposed an intracellular mechanism. Immunostaining revealed a counter-staining of HPSE and NF-κB in the nucleus, suggesting a close relationship between both proteins. This finding was further supported by the discovery of a direct charge-driven molecular interaction between HPSE and DNA by using atomic force microscopy and a co-precipitation approach. Our findings are novel and point towards a dual function for HPSE in malignant melanoma with a protumorigenic extracellular activity and a tumor-suppressive nuclear action. The identification of molecular strategies to shuttle extracellular HPSE into the nuclei of cancer cells could provide new therapeutic options. PMID:25745999

  16. Overcoming acquired BRAF inhibitor resistance in melanoma via targeted inhibition of Hsp90 with ganetespib.

    PubMed

    Acquaviva, Jaime; Smith, Donald L; Jimenez, John-Paul; Zhang, Chaohua; Sequeira, Manuel; He, Suqin; Sang, Jim; Bates, Richard C; Proia, David A

    2014-02-01

    Activating BRAF kinase mutations serve as oncogenic drivers in over half of all melanomas, a feature that has been exploited in the development of new molecularly targeted approaches to treat this disease. Selective BRAF(V600E) inhibitors, such as vemurafenib, typically induce initial, profound tumor regressions within this group of patients; however, durable responses have been hampered by the emergence of drug resistance. Here, we examined the activity of ganetespib, a small-molecule inhibitor of Hsp90, in melanoma lines harboring the BRAF(V600E) mutation. Ganetespib exposure resulted in the loss of mutant BRAF expression and depletion of mitogen-activated protein kinase and AKT signaling, resulting in greater in vitro potency and antitumor efficacy compared with targeted BRAF and MAP-ERK kinase (MEK) inhibitors. Dual targeting of Hsp90 and BRAF(V600E) provided combinatorial benefit in vemurafenib-sensitive melanoma cells in vitro and in vivo. Importantly, ganetespib overcame mechanisms of intrinsic and acquired resistance to vemurafenib, the latter of which was characterized by reactivation of extracellular signal-regulated kinase (ERK) signaling. Continued suppression of BRAF(V600E) by vemurafenib potentiated sensitivity to MEK inhibitors after acquired resistance had been established. Ganetespib treatment reduced, but not abolished, elevations in steady-state ERK activity. Profiling studies revealed that the addition of a MEK inhibitor could completely abrogate ERK reactivation in the resistant phenotype, with ganetespib displaying superior combinatorial activity over vemurafenib. Moreover, ganetespib plus the MEK inhibitor TAK-733 induced tumor regressions in vemurafenib-resistant xenografts. Overall these data highlight the potential of ganetespib as a single-agent or combination treatment in BRAF(V600E)-driven melanoma, particularly as a strategy to overcome acquired resistance to selective BRAF inhibitors. PMID:24398428

  17. A Natural Bacterial-Derived Product, the Metalloprotease Arazyme, Inhibits Metastatic Murine Melanoma by Inducing MMP-8 Cross-Reactive Antibodies

    PubMed Central

    Pereira, Felipe V.; Ferreira-Guimarães, Carla A.; Paschoalin, Thaysa; Scutti, Jorge A. B.; Melo, Filipe M.; Silva, Luis S.; Melo, Amanda C. L.; Silva, Priscila; Tiago, Manoela; Matsuo, Alisson L.; Juliano, Luiz; Juliano, Maria A.; Carmona, Adriana K.; Travassos, Luiz R.; Rodrigues, Elaine G.

    2014-01-01

    The increased incidence, high rates of mortality and few effective means of treatment of malignant melanoma, stimulate the search for new anti-tumor agents and therapeutic targets to control this deadly metastatic disease. In the present work the antitumor effect of arazyme, a natural bacterial-derived metalloprotease secreted by Serratia proteomaculans, was investigated. Arazyme significantly reduced the number of pulmonary metastatic nodules after intravenous inoculation of B16F10 melanoma cells in syngeneic mice. In vitro, the enzyme showed a dose-dependent cytostatic effect in human and murine tumor cells, and this effect was associated to the proteolytic activity of arazyme, reducing the CD44 expression at the cell surface, and also reducing in vitro adhesion and in vitro/in vivo invasion of these cells. Arazyme treatment or immunization induced the production of protease-specific IgG that cross-reacted with melanoma MMP-8. In vitro, this antibody was cytotoxic to tumor cells, an effect increased by complement. In vivo, arazyme-specific IgG inhibited melanoma lung metastasis. We suggest that the antitumor activity of arazyme in a preclinical model may be due to a direct cytostatic activity of the protease in combination with the elicited anti-protease antibody, which cross-reacts with MMP-8 produced by tumor cells. Our results show that the bacterial metalloprotease arazyme is a promising novel antitumor chemotherapeutic agent. PMID:24788523

  18. Camphene isolated from essential oil of Piper cernuum (Piperaceae) induces intrinsic apoptosis in melanoma cells and displays antitumor activity in vivo.

    PubMed

    Girola, Natalia; Figueiredo, Carlos R; Farias, Camyla F; Azevedo, Ricardo A; Ferreira, Adilson K; Teixeira, Sarah F; Capello, Tabata M; Martins, Euder G A; Matsuo, Alisson L; Travassos, Luiz R; Lago, João H G

    2015-11-27

    Natural monoterpenes were isolated from the essential oil of Piper cernuum Vell. (Piperaceae) leaves. The crude oil and the individual monoterpenes were tested for cytotoxicity in human tumor cell lineages and B16F10-Nex2 murine melanoma cells. In the present work we demonstrate the activity of camphene against different cancer cells, with its mechanism of action being investigated in vitro and in vivo in murine melanoma. Camphene induced apoptosis by the intrinsic pathway in melanoma cells mainly by causing endoplasmic reticulum (ER) stress, with release of Ca(2+) together with HmgB1 and calreticulin, loss of mitochondrial membrane potential and up regulation of caspase-3 activity. Importantly, camphene exerted antitumor activity in vivo by inhibiting subcutaneous tumor growth of highly aggressive melanoma cells in a syngeneic model, suggesting a promising role of this compound in cancer therapy. PMID:26471302

  19. Amino acid alcohols: growth inhibition and induction of differentiated features in melanoma cells.

    PubMed

    Landau, O; Wasserman, L; Deutsch, A A; Reiss, R; Panet, H; Novogrodsky, A; Nordenberg, J

    1993-05-14

    The effects of a series of D- and L-amino acid alcohols on the proliferation and phenotypic expression of B16 mouse melanoma cells were evaluated. B16 melanoma cells were incubated for different time intervals in the presence of D- or L-phenylalaninol (PHE), D- or L-alaninol (AL), D- or L-leucinol (LE), L-histidinol (HIS), L-tyrosinol (TYR) and L-methioninol (MET). All agents, including the D or L configuration, induced an anti-proliferative effect, although of considerably different magnitude. D-PHE was the most active growth inhibitor. The growth inhibitory effects were accompanied by phenotypic alterations, which included morphological changes and enhancement in the activities of NADPH cytochrome c reductase and tau-glutamyl transpeptidase. These phenotypic alterations correlated with the growth inhibitory effects of the different agents and seem to reflect a higher differentiated state. PMID:8099846

  20. Curcumin Analog DM-1 in Monotherapy or Combinatory Treatment with Dacarbazine as a Strategy to Inhibit In Vivo Melanoma Progression

    PubMed Central

    Faião-Flores, Fernanda; Quincoces Suarez, José Agustín; Fruet, Andréa Costa; Maria-Engler, Silvya Stuchi; Pardi, Paulo Celso; Maria, Durvanei Augusto

    2015-01-01

    Malignant melanoma is a highly aggressive form of skin cancer with a high mortality rate if not discovered in early stages. Although a limited number of treatment options for melanoma currently exist, patients with a more aggressive form of this cancer frequently decline treatment. DM-1 is a sodium phenolate and curcumin analog with proven anticancer, anti-proliferative and anti-metastatic properties. In this paper, the DM-1 compound showed in vivo antitumor activity alone or in combination with chemotherapeutic DTIC in B16F10 melanoma-bearing mice. Beneficial effects such as melanoma tumor burden reduction with pyknotic nuclei, decreased nuclei/cytoplasmic ratio and nuclear degradation occurred after DM-1 treatment. No toxicological changes were observed in the liver, kidneys, spleen and lungs after DM-1 monotherapy or DTIC combined therapy. DTIC+DM-1 treatment induced the recovery of anemia arising from melanoma and immunomodulation. Both DM-1 treatment alone and in combination with DTIC induced apoptosis with the cleavage of caspase-3, -8 and -9. Furthermore, melanoma tumors treated with DM-1 showed a preferential apoptotic intrinsic pathway by decreasing Bcl-2/Bax ratio. Considering the chemoresistance exhibited by melanoma towards conventional chemotherapy drugs, DM-1 compound in monotherapy or in combination therapy provides a promising improvement in melanoma treatment with a reduction of side effects. PMID:25742310

  1. Inhibition of melanoma cell proliferation by resveratrol is correlated with upregulation of quinone reductase 2 and p53

    SciTech Connect

    Hsieh Tzechen; Wang Zhirong; Hamby, Carl V.; Wu, Joseph M. . E-mail: Joseph_Wu@nymc.edu

    2005-08-19

    Resveratrol (trans-3,4',5-trihydroxystilbene) is a grape-derived polyphenol under intensive study for its potential in cancer prevention. In the case of cultured human melanoma cells, no one to our knowledge has investigated whether resveratrol exerts similar anti-proliferative activities in cells with different metastatic potential. Therefore, we examined the effects of this polyphenol on the growth of weakly metastatic Line IV clone 3 and on autologous, highly metastatic Line IV clone 1 cultured melanoma cells. Comparable inhibition of growth and colony formation resulted from treatment by resveratrol in both cell lines. Flow cytometric analysis revealed that resveratrol-treated clone 1 cells had a dose-dependent increase in S phase and a concomitant reduction in the G{sub 1} phase. No detectable change in cell cycle phase distribution was found in similarly treated clone 3 cells. Western blots demonstrated a significant increase in the expression of the tumor suppressor gene p53, without a commensurate change in p21 and several other cell cycle regulatory proteins in both cell types. Chromatography of Line IV clone 3 and clone 1 cell extracts on resveratrol affinity columns revealed that the basal expression of dihydronicotinamide riboside quinone reductase 2 (NQO2) was higher in Line IV clone 1 than clone 3 cells. Levels of NQO2 but not its structural analog NQO1 were dose-dependently increased by resveratrol in both cell lines. We propose that induction of NQO2 may relate to the observed increased expression of p53 that, in turn, contributes to the observed suppression of cell growth in both melanoma cell lines.

  2. Induction of arginosuccinate synthetase (ASS) expression affects the antiproliferative activity of arginine deiminase (ADI) in melanoma cells.

    PubMed

    Manca, Antonella; Sini, Maria Cristina; Izzo, Francesco; Ascierto, Paolo A; Tatangelo, Fabiana; Botti, Gerardo; Gentilcore, Giusy; Capone, Marilena; Mozzillo, Nicola; Rozzo, Carla; Cossu, Antonio; Tanda, Francesco; Palmieri, Giuseppe

    2011-06-01

    Arginine deiminase (ADI), an arginine-degrading enzyme, has been used in the treatment of tumours sensitive to arginine deprivation, such as malignant melanoma (MM) and hepatocellular carcinoma (HCC). Endogenous production of arginine is mainly dependent on activity of ornithine transcarbamylase (OTC) and argininosuccinate synthetase (ASS) enzymes. We evaluated the effect of ADI treatment on OTC and ASS expression in a series of melanoma cell lines. Twenty-five primary melanoma cell lines and normal fibroblasts as controls underwent cell proliferation assays and Western blot analyses in the presence or absence of ADI. Tissue sections from primary MMs (N = 20) and HCCs (N = 20) were investigated by immunohistochemistry for ASS expression. Overall, 21/25 (84%) MM cell lines presented a cell growth inhibition by ADI treatment; none of them presented constitutive detectable levels of the ASS protein. However, 7/21 (33%) ADI-sensitive melanoma cell lines presented markedly increased expression levels of the ASS protein following ADI treatment, with a significantly higher IC50 median value. Growth was not inhibited and the IC50 was not reached among the remaining 4/25 (16%) MM cell lines; all of them showed constitutive ASS expression. The OTC protein was found expressed in all melanoma cell lines before and after the ADI treatment. Lack of ASS immunostaining was observed in all analyzed in vivo specimens. Our findings suggest that response to ADI treatment in melanoma is significantly correlated with the ability of cells to express ASS either constitutively at basal level (inducing drug resistance) or after the treatment (reducing sensitivity to ADI).

  3. Inhibition of Cell Proliferation in an NRAS Mutant Melanoma Cell Line by Combining Sorafenib and α-Mangostin

    PubMed Central

    Xia, Yun; Li, Ying; Westover, Kenneth D.; Sun, Jiaming; Chen, Hongxiang; Zhang, Jianming; Fisher, David E.

    2016-01-01

    α-Mangostin is a natural product commonly used in Asia for cosmetic and medicinal applications including topical treatment of acne and skin cancer. Towards finding new pharmacological strategies that overcome NRAS mutant melanoma, we performed a cell proliferation-based combination screen using a collection of well-characterized small molecule kinase inhibitors and α-Mangostin. We found that α-Mangostin significantly enhances Sorafenib pharmacological efficacy against an NRAS mutant melanoma cell line. The synergistic effects of α-Mangostin and Sorafenib were associated with enhanced inhibition of activated AKT and ERK, induced ER stress, and reduced autophagy, eventually leading to apoptosis. The structure of α-Mangostin resembles several inhibitors of the Retinoid X receptor (RXR). MITF expression, which is regulated by RXR, was modulated by α-Mangostin. Molecular docking revealed that α-Mangostin can be accommodated by the ligand binding pocket of RXR and may thereby compete with RXR-mediated control of MITF expression. In summary, these data demonstrate an unanticipated synergy between α-Mangostin and sorafenib, with mechanistic actions that convert a known safe natural product to a candidate combinatorial therapeutic agent. PMID:27152946

  4. Hinokitiol Inhibits Melanogenesis via AKT/mTOR Signaling in B16F10 Mouse Melanoma Cells.

    PubMed

    Tsao, Yu-Tzu; Huang, Yu-Fen; Kuo, Chun-Yu; Lin, Yu-Chiang; Chiang, Wei-Cheng; Wang, Wei-Kuang; Hsu, Chia-Wei; Lee, Che-Hsin

    2016-01-01

    H inokitiol purified from the heartwood of cupressaceous plants has had various biological functions of cell differentiation and growth. Hinokitiol has been demonstrated as having an important role in anti-inflammation and anti-bacteria effect, suggesting that it is potentially useful in therapies for hyperpigmentation. Previously, hinokitiol inhibited the production of melanin by inhibiting tyrosinase activity. The autophagic signaling pathway can induce hypopigmentation. This study is warranted to investigate the mechanism of hinokitiol-induced hypopigmentation through autophagy in B16F10 melanoma cells. The melanin contents and expression of microthphalmia associated transcription factor (MITF) and tyrosinase were inhibited by treatment with hinokitiol. Moreover, the phosphorylation of the protein express levels of phospho-protein kinase B (P-AKT) and phospho-mammalian targets of rapamycin (P-mTOR) were reduced after hinokitiol treatment. In addition, the microtubule associated protein 1 light chain 3 (LC3) -II and beclin 1 (autophagic markers) were increased after the B16F10 cell was treated with hinokitiol. Meanwhile, hinokitiol decreased cellular melanin contents in a dose-dependent manner. These findings establish that hinokitiol inhibited melanogenesis through the AKT/mTOR signaling pathway. PMID:26901194

  5. Inhibition of gallium-67 uptake in melanoma by an anti-human transferrin receptor monoclonal antibody

    SciTech Connect

    Chan, S.M.; Hoffer, P.B.; Maric, N.; Duray, P.

    1987-08-01

    The effect of an anti-human transferrin receptor (anti-TFR) monoclonal antibody (MoAb), designated B3/25, and an anti-melanoma antibody, designated 96.5, on the uptake of gallium-67 (/sup 67/Ga) by tumor was studied. Three groups of six athymic mice bearing a human melanoma were injected via tail vein with (a) 0.55 mg human serum albumin (HSA) (control group), (b) 0.5 mg MoAb B3/25 + 0.55 mg HSA, and (c) 0.5 mg MoAb 96.5 + 0.55 mg HSA, respectively. Twenty-four hours later, each mouse was given an intravenous dose of 5 microCi (/sup 67/Ga) citrate. Biodistribution of activity (percent injected dose per gram) determined 48 hr after injection of /sup 67/Ga showed a 75% decrease in tumor uptake in the group of mice that received B3/25 (anti-TFR MoAb) compared with the control group. In contrast, MoAb 96.5 did not show any effect on melanoma uptake of /sup 67/Ga. Histologic findings suggest that the decreased uptake was not due to cellular damage resulting from binding of B3/25 to TFR. The results of this study strongly suggest the involvement of TFR in the in vivo tumor uptake of /sup 67/Ga.

  6. Phase II Study of Nilotinib in Melanoma Harboring KIT Alterations Following Progression to Prior KIT Inhibition

    PubMed Central

    Carvajal, Richard D.; Lawrence, Donald P.; Weber, Jeffrey S.; Gajewski, Thomas F.; Gonzalez, Rene; Lutzky, Jose; O’Day, Steven J.; Hamid, Omid; Wolchok, Jedd D.; Chapman, Paul B.; Sullivan, Ryan J.; Teitcher, Jerrold B.; Ramaiya, Nikhil; Giobbie-Hurder, Anita; Antonescu, Cristina R.; Heinrich, Michael C.; Bastian, Boris C.; Corless, Christopher L.; Fletcher, Jonathan A.; Hodi, F. Stephen

    2016-01-01

    Purpose Although durable responses can be achieved with tyrosine kinase inhibitors such as imatinib in melanomas harboring KIT mutations, the efficacy of alternative inhibitors after progression to imatinib and the activity of these agents on brain metastases is unknown. Experimental Design We conducted a phase II study of nilotinib 400 mg BID in two cohorts of patients with melanomas harboring KIT mutations or amplification: A) those refractory or intolerant to a prior KIT inhibitor; and B) those with brain metastases. The primary endpoint was 4-month disease control rate. Secondary endpoints included response rate, time-to-progression and overall survival. A Simon two-stage and a single-stage design was planned to assess for the primary endpoint in Cohorts A and B, respectively. Results Twenty patients were enrolled and 19 treated (11-Cohort A; 8-Cohort B). Three patients on Cohort A (27%; 95% CI, 8% – 56%) and 1 on Cohort B (12.5%; 90% CI, 0.6% – 47%) achieved the primary endpoint. Two partial responses were observed in Cohort A (18.2%, 90% CI, 3% – 47%); none were observed in Cohort B. The median time-to-progression and overall survival was 3·3 (90% CI, 2.1 – 3.9 months) and 9.1 months (90% CI, 4.3 – 14.2 months), respectively, in all treated patients. Conclusion Nilotinib may achieve disease control in patients with melanoma harboring KIT alterations and whose disease progressed after imatinib therapy. The efficacy of this agent in KIT altered melanoma with brain metastasis is limited. PMID:25695690

  7. A melanoma subtype with intrinsic resistance to BRAF inhibition identified by receptor tyrosine kinases gene-driven classification

    PubMed Central

    Dugo, Matteo; Nicolini, Gabriella; Tragni, Gabrina; Bersani, Ilaria; Tomassetti, Antonella; Colonna, Valentina; Del Vecchio, Michele; De Braud, Filippo; Canevari, Silvana

    2015-01-01

    Dysregulation of receptor tyrosine kinases (RTKs) contributes to several aspects of oncogenesis including drug resistance. In melanoma, distinct RTKs have been involved in BRAF inhibitors (BRAFi) resistance, yet the utility of RTKs expression pattern to identify intrinsically resistant tumors has not been assessed. Transcriptional profiling of RTKs and integration with a previous classification, reveals three robust subtypes in two independent datasets of melanoma cell lines and one cohort of melanoma samples. This classification was validated by Western blot in a panel of patient-derived melanoma cell lines. One of the subtypes identified here for the first time displayed the highest and lowest expression of EGFR and ERBB3, respectively, and included BRAF-mutant tumors all intrinsically resistant to BRAFi PLX4720, as assessed by analysis of the Cancer Cell Line Encyclopedia pharmacogenomic study and by in vitro growth inhibition assays. High levels of EGFR were detected, even before therapy, in tumor cells of one of three melanoma patients unresponsive to BRAFi. Use of different pharmacological inhibitors highlighted the relevance of PI3K/mTOR signaling for growth of this PLX4720-resistant subtype. Our results identify a specific molecular profile of melanomas intrinsically resistant to BRAFi and suggest the PI3K/mTOR pathway as a potential therapeutic target for these tumors. PMID:25742786

  8. MicroRNA-206 induces G1 arrest in melanoma by inhibition of CDK4 and Cyclin D.

    PubMed

    Georgantas, Robert W; Streicher, Katie; Luo, Xiaobing; Greenlees, Lydia; Zhu, Wei; Liu, Zheng; Brohawn, Philip; Morehouse, Christopher; Higgs, Brandon W; Richman, Laura; Jallal, Bahija; Yao, Yihong; Ranade, Koustubh

    2014-03-01

    Expression profiling of microRNAs in melanoma lesional skin biopsies compared with normal donor skin biopsies, as well as melanoma cell lines compared with normal melanocytes, revealed that hsa-miR-206 was down-regulated in melanoma (-75.4-fold, P = 1.7 × 10(-4)). MiR-206 has been implicated in a large number of cancers, including breast, lung, colorectal, ovarian, and prostate cancers; however, its role in tumor development remains largely unknown, its biologic function is poorly characterized, and its targets affecting cancer cells are largely unknown. MiR-206 reduced growth and migration/invasion of multiple melanoma cell lines. Bioinformatics identified cell cycle genes CDK2, CDK4, Cyclin C, and Cyclin D1 as strong candidate targets. Western blots and 3'UTR reporter gene assays revealed that miR-206 inhibited translation of CDK4, Cyclin D1, and Cyclin C. Additionally, hsa-miR-206 transfection induced G1 arrest in multiple melanoma cell lines. These observations support hsa-miR-206 as a tumor suppressor in melanoma and identify Cyclin C, Cyclin D1, and CDK4 as miR-206 targets.

  9. MicroRNA-206 induces G1 arrest in melanoma by inhibition of CDK4 and Cyclin D.

    PubMed

    Georgantas, Robert W; Streicher, Katie; Luo, Xiaobing; Greenlees, Lydia; Zhu, Wei; Liu, Zheng; Brohawn, Philip; Morehouse, Christopher; Higgs, Brandon W; Richman, Laura; Jallal, Bahija; Yao, Yihong; Ranade, Koustubh

    2014-03-01

    Expression profiling of microRNAs in melanoma lesional skin biopsies compared with normal donor skin biopsies, as well as melanoma cell lines compared with normal melanocytes, revealed that hsa-miR-206 was down-regulated in melanoma (-75.4-fold, P = 1.7 × 10(-4)). MiR-206 has been implicated in a large number of cancers, including breast, lung, colorectal, ovarian, and prostate cancers; however, its role in tumor development remains largely unknown, its biologic function is poorly characterized, and its targets affecting cancer cells are largely unknown. MiR-206 reduced growth and migration/invasion of multiple melanoma cell lines. Bioinformatics identified cell cycle genes CDK2, CDK4, Cyclin C, and Cyclin D1 as strong candidate targets. Western blots and 3'UTR reporter gene assays revealed that miR-206 inhibited translation of CDK4, Cyclin D1, and Cyclin C. Additionally, hsa-miR-206 transfection induced G1 arrest in multiple melanoma cell lines. These observations support hsa-miR-206 as a tumor suppressor in melanoma and identify Cyclin C, Cyclin D1, and CDK4 as miR-206 targets. PMID:24289491

  10. Simultaneous knockdown of BRAF and expression of INK4A in melanoma cells leads to potent growth inhibition and apoptosis

    SciTech Connect

    Zhao Yanhua; Zhang Yan; Yang Zhen; Li, Albert; Dong Jianli

    2008-06-06

    Abnormal BRAF and p16INK4A co-exist in 60% of melanomas. BRAF mutation also occurs in 80% of benign nevi where it turns-on p16INK4A resulting in proliferative senescence; loss of p16INK4A removes the inhibitory block leading to melanoma development. Since only melanomas with wild-type BRAF have amplified CDK4 and cyclin D1 genes, p16INK4A-CDK4/6-cyclin D pathway is viewed as linearly downstream of BRAF. Thus, co-occurrence of aberrant BRAF and INK4A may be remnant of changes during melanoma formation without functional significance. To explore this notion, we simultaneously knocked down BRAF (via siRNA) and expressed INK4A cDNA in melanoma cells and observed enhanced growth inhibition. Notably, although each alone had no statistically significant effect on apoptosis, co-expression of BRAF siRNA and INK4A cDNA caused potent apoptosis, which was associated with up-regulation of BIM and down-regulation of BCL2. Our results suggest that aberrant BRAF and INK4A cooperate to promote proliferation and survival of melanoma cells.

  11. MiR-203 inhibits melanoma invasive and proliferative abilities by targeting the polycomb group gene BMI1.

    PubMed

    Chang, Xiao; Sun, Yong; Han, Siqi; Zhu, Wei; Zhang, Haiping; Lian, Shi

    2015-01-01

    Metastasis is the major problem in malignant melanoma, posing a therapeutic challenge to clinicians. The investigation of the underlying mechanism driving this progress remains a large unmet need. In this study, we revealed a miR-203-BMI1 axis that regulated melanoma metastasis. We found significantly deregulation of miR-203 and up-regulation of BMI1 in melanoma, particularly in metastatic melanoma. An inverse correlation between the levels of miR-203 and BMI1 was further observed in melanoma tissues and cell lines. We also identified BMI1 as a downstream target gene of miR-203, which bound to the 3'UTR of BMI1. Overexpression of miR-203 was associated with decreased BMI1 expression and impaired cell invasion and tumor sphere formation activities. Re-expression of BMI1 markedly rescued miR-203-mediated suppression of these events. Taken together, our results demonstrated that miR-203 regulated melanoma invasive and proliferative abilities in part by targeting BMI1, providing new insights into potential mechanisms of melanoma metastasis.

  12. Antitumor Activity of miR-1280 in Melanoma by Regulation of Src

    PubMed Central

    Sun, Vera; Zhou, Wen B; Nosrati, Mehdi; Majid, Shahana; Thummala, Suresh; de Semir, David; Bezrookove, Vladimir; de Feraudy, Sebastien; Chun, Liane; Schadendorf, Dirk; Debs, Robert; Kashani-Sabet, Mohammed; Dar, Altaf A

    2015-01-01

    MicroRNAs (miRNAs) play a key role in cancer progression by coordinately repressing target genes involved in cell proliferation, migration, and invasion. miRNAs regulate gene expression by repressing translation or directing sequence-specific degradation of complementary mRNA. Here, we report that expression of miR-1280 is significantly suppressed in human melanoma specimens when compared with nevi, and in human melanoma cell lines when compared with cultured normal human melanocytes. The proto-oncogene Src was identified as a target of miR-1280 action. Levels of Src expression were significantly higher in melanoma samples and cell lines than in nevi and normal melanocytes. miR-1280 overexpression significantly suppressed the luciferase activity of reporter plasmids containing the full-length 3′ untranslated region of Src. miR-1280-mediated suppression of Src led to substantial decreases in melanoma cell proliferation, cell cycle progression, invasion, as well as induced melanoma cell apoptosis. The effects of miR-1280 overexpression on melanoma cell proliferation and growth were reversed by Src overexpression. Intratumoral delivery of miR-1280 significantly suppressed melanoma cell growth in vivo. Our results demonstrate a novel role for miR-1280 as a tumor suppressor in melanoma, identify the Src signaling pathway as a target of miR-1280 action, and suggest a potential therapeutic role for miR-1280 in melanoma. PMID:25195599

  13. Antitumor activity of miR-1280 in melanoma by regulation of Src.

    PubMed

    Sun, Vera; Zhou, Wen B; Nosrati, Mehdi; Majid, Shahana; Thummala, Suresh; de Semir, David; Bezrookove, Vladimir; de Feraudy, Sebastien; Chun, Liane; Schadendorf, Dirk; Debs, Robert; Kashani-Sabet, Mohammed; Dar, Altaf A

    2015-01-01

    MicroRNAs (miRNAs) play a key role in cancer progression by coordinately repressing target genes involved in cell proliferation, migration, and invasion. miRNAs regulate gene expression by repressing translation or directing sequence-specific degradation of complementary mRNA. Here, we report that expression of miR-1280 is significantly suppressed in human melanoma specimens when compared with nevi, and in human melanoma cell lines when compared with cultured normal human melanocytes. The proto-oncogene Src was identified as a target of miR-1280 action. Levels of Src expression were significantly higher in melanoma samples and cell lines than in nevi and normal melanocytes. miR-1280 overexpression significantly suppressed the luciferase activity of reporter plasmids containing the full-length 3' untranslated region of Src. miR-1280-mediated suppression of Src led to substantial decreases in melanoma cell proliferation, cell cycle progression, invasion, as well as induced melanoma cell apoptosis. The effects of miR-1280 overexpression on melanoma cell proliferation and growth were reversed by Src overexpression. Intratumoral delivery of miR-1280 significantly suppressed melanoma cell growth in vivo. Our results demonstrate a novel role for miR-1280 as a tumor suppressor in melanoma, identify the Src signaling pathway as a target of miR-1280 action, and suggest a potential therapeutic role for miR-1280 in melanoma. PMID:25195599

  14. Cooperative interactions of PTEN deficiency and RAS activation in melanoma metastasis.

    PubMed

    Kim, Minjung

    2010-11-01

    Melanoma displays frequent activation of RAS/RAF/MAPK and PI3K/AKT signaling pathways as well as inactivation of CDKN2A (INK4a/ARF) and PTEN tumor suppressors via genetic and epigenetic alterations. Pathogenetic roles of these melanoma-prone mutations and their genetic interactions have been established in genetically engineered mouse models. Here, we catalog frequent genetic alterations observed in human melanomas and describe mouse models of melanoma initiation and progression, including our recent study that investigated the genetic interactions of RAS activation and PTEN loss in a CDKN2A (INK4a/ARF) null melanoma prone genetic background. We showed that loss of PTEN cooperates with HRAS activation, leading to increased development of melanoma and emergence of metastasis. Moreover, we observed that RNA i-mediated PTEN inactivation in RAS-driven melanomas enhanced migration and invasion with concomitant downregulation of E-cadherin, the major regulator of epithelial and mesenchymal transition, and enhanced AKT2 phosphorylation, which has been previously linked to invasion and metastasis of several cancer types, including breast and ovary. These data show that activated RAS cooperates with PTEN loss in melanoma genesis and progression.

  15. Gallic acid ester derivatives induce apoptosis and cell adhesion inhibition in melanoma cells: The relationship between free radical generation, glutathione depletion and cell death.

    PubMed

    Locatelli, Claudriana; Leal, Paulo C; Yunes, Rosendo A; Nunes, Ricardo J; Creczynski-Pasa, Tânia B

    2009-10-01

    Malignant melanoma is a lethal disease, and the incidence and mortality associated with it are increasing worldwide. It has a significant tendency to develop both metastasis and resistance to chemotherapy. The tumor cells show abnormal redox regulation, and although the molecular mechanisms involved are not well characterized, they seem to be related to oxidative stress. In a previous study, we showed the antitumoral properties of gallic acid ester derivatives in leukemia cells. Here, we show the effect of octyl, decyl, dodecyl and tetradecyl gallates on B16F10 cells, a melanoma cell line. All compounds induced cytotoxic effects, and the IC(50) values obtained were between 7microM and 17microM after 48h of incubation. Cell death occurred through apoptosis, as demonstrated by the genomic DNA fragmentation pattern. The gallates were able to induce significant production of free radicals, deplete both glutathione and ATP, activate NF-kappaB and promote the inhibition of cell adhesion under the experimental conditions. The glutathione depletion induced by these compounds was related to the inhibition of gamma-glutamylcysteine synthase activity. These results suggest that gallates induce tumoral cell death through apoptosis as a consequence of oxidative stress, though they use different mechanisms to do so. These findings are important since melanoma cells are resistant to death because of their high level of antioxidant defense, adhesion capability and propensity to metastasize.

  16. Effects of AKT inhibitor therapy in response and resistance to BRAF inhibition in melanoma

    PubMed Central

    2014-01-01

    Background The clinical use of BRAF inhibitors for treatment of metastatic melanoma is limited by the development of drug resistance. In this study we investigated whether co-targeting the MAPK and the PI3K-AKT pathway can prevent emergence of resistance or provide additional growth inhibitory effects in vitro. Methods Anti-tumor effects of the combination of the BRAF inhibitor (BRAFi) dabrafenib and GSK2141795B (AKTi) in a panel of 23 BRAF mutated melanoma cell lines were evaluated on growth inhibition by an ATP-based luminescent assay, on cell cycle and apoptosis by flow cytometry and on cell signaling by western blot. Moreover, we investigated the possibilities of delaying or reversing resistance or achieving further growth inhibition by combining AKTi with dabrafenib and/or the MEK inhibitor (MEKi) trametinib by using long term cultures. Results More than 40% of the cell lines, including PTEN-/- and AKT mutants showed sensitivity to AKTi (IC50 < 1.5 μM). The combination of dabrafenib and AKTi synergistically potentiated growth inhibition in the majority of cell lines with IC50 > 5 nM dabrafenib. Combinatorial treatment induced apoptosis only in cell lines sensitive to AKTi. In long term cultures of a PTEN-/- cell line, combinatorial treatment with the MAPK inhibitors, dabrafenib and trametinib, and AKTi markedly delayed the emergence of drug resistance. Moreover, combining AKTi with the MAPK inhibitors from the beginning provided superior growth inhibitory effects compared to addition of AKTi upon development of resistance to MAPK inhibitors in this particular cell line. Conclusions AKTi combined with BRAFi-based therapy may benefit patients with tumors harboring BRAF mutations and particularly PTEN deletions or AKT mutations. PMID:24735930

  17. miR-203 inhibits melanoma invasive and proliferative abilities by targeting the polycomb group gene BMI1

    SciTech Connect

    Chang, Xiao; Sun, Yong; Han, Siqi; Zhu, Wei; Zhang, Haiping; Lian, Shi

    2015-01-02

    Highlights: • First reported deregulation of miR-203 and up-regulation of BMI1 in metastatic melanoma. • miR-203 decreased BMI1 expression by directly binding to 3′UTR. • Further found miR-203 overexpression suppressed cell invasion and stemness. • Re-expression of BMI1 rescued miR-203-mediated suppression. • miR-203-BMI1 axis may be potential therapeutic targets of melanoma metastasis. - Abstract: Metastasis is the major problem in malignant melanoma, posing a therapeutic challenge to clinicians. The investigation of the underlying mechanism driving this progress remains a large unmet need. In this study, we revealed a miR-203-BMI1 axis that regulated melanoma metastasis. We found significantly deregulation of miR-203 and up-regulation of BMI1 in melanoma, particularly in metastatic melanoma. An inverse correlation between the levels of miR-203 and BMI1 was further observed in melanoma tissues and cell lines. We also identified BMI1 as a downstream target gene of miR-203, which bound to the 3′UTR of BMI1. Overexpression of miR-203 was associated with decreased BMI1 expression and impaired cell invasion and tumor sphere formation activities. Re-expression of BMI1 markedly rescued miR-203-mediated suppression of these events. Taken together, our results demonstrated that miR-203 regulated melanoma invasive and proliferative abilities in part by targeting BMI1, providing new insights into potential mechanisms of melanoma metastasis.

  18. Casticin Induced Apoptosis in A375.S2 Human Melanoma Cells through the Inhibition of NF-[Formula: see text]B and Mitochondria-Dependent Pathways In Vitro and Inhibited Human Melanoma Xenografts in a Mouse Model In Vivo.

    PubMed

    Shiue, Yin-Wen; Lu, Chi-Cheng; Hsiao, Yu-Ping; Liao, Ching-Lung; Lin, Jing-Pin; Lai, Kuang-Chi; Yu, Chien-Chih; Huang, Yi-Ping; Ho, Heng-Chien; Chung, Jing-Gung

    2016-01-01

    Casticin, a polymethoxyflavone occurring in natural plants, has been shown to have anticancer activities. In the present study, we aims to investigate the anti-skin cancer activity of casticin on melanoma cells in vitro and the antitumor effect of casticin on human melanoma xenografts in nu/nu mice in vivo. A flow cytometric assay was performed to detect expression of viable cells, cell cycles, reactive oxygen species production, levels of [Formula: see text] and caspase activity. A Western blotting assay and confocal laser microscope examination were performed to detect expression of protein levels. In the in vitro studies, we found that casticin induced morphological cell changes and DNA condensation and damage, decreased the total viable cells, and induced G2/M phase arrest. Casticin promoted reactive oxygen species (ROS) production, decreased the level of [Formula: see text], and promoted caspase-3 activities in A375.S2 cells. The induced G2/M phase arrest indicated by the Western blotting assay showed that casticin promoted the expression of p53, p21 and CHK-1 proteins and inhibited the protein levels of Cdc25c, CDK-1, Cyclin A and B. The casticin-induced apoptosis indicated that casticin promoted pro-apoptotic proteins but inhibited anti-apoptotic proteins. These findings also were confirmed by the fact that casticin promoted the release of AIF and Endo G from mitochondria to cytosol. An electrophoretic mobility shift assay (EMSA) assay showed that casticin inhibited the NF-[Formula: see text]B binding DNA and that these effects were time-dependent. In the in vivo studies, results from immuno-deficient nu/nu mice bearing the A375.S2 tumor xenograft indicated that casticin significantly suppressed tumor growth based on tumor size and weight decreases. Early G2/M arrest and mitochondria-dependent signaling contributed to the apoptotic A375.S2 cell demise induced by casticin. In in vivo experiments, A375.S2 also efficaciously suppressed tumor volume in a

  19. Carnosic Acid Inhibits the Epithelial-Mesenchymal Transition in B16F10 Melanoma Cells: A Possible Mechanism for the Inhibition of Cell Migration

    PubMed Central

    Park, So Young; Song, Hyerim; Sung, Mi-Kyung; Kang, Young-Hee; Lee, Ki Won; Park, Jung Han Yoon

    2014-01-01

    Carnosic acid is a natural benzenediol abietane diterpene found in rosemary and exhibits anti-inflammatory, antioxidant, and anti-carcinogenic activities. In this study, we evaluated the effects of carnosic acid on the metastatic characteristics of B16F10 melanoma cells. When B16F10 cells were cultured in an in vitro Transwell system, carnosic acid inhibited cell migration in a dose-dependent manner. Carnosic acid suppressed the adhesion of B16F10 cells, as well as the secretion of matrix metalloproteinase (MMP)-9, tissue inhibitor of metalloproteinase (TIMP)-1, urokinase plasminogen activator (uPA), and vascular cell adhesion molecule (VCAM)-1. Interestingly, secretion of TIMP-2 increased significantly in B16F10 cells treated with 10 μmol/L carnosic acid. Additionally, carnosic acid suppressed the mesenchymal markers snail, slug, vimentin, and N-cadherin and induced epithelial marker E-cadherin. Furthermore, carnosic acid suppressed phosphorylation of Src, FAK, and AKT. These results indicate that inhibition of the epithelial-mesenchymal transition may be important for the carnosic acid-induced inhibition of B16F10 cell migration. PMID:25036034

  20. Melanoma cell galectin-1 ligands functionally correlate with malignant potential*

    PubMed Central

    Yazawa, Erika M.; Geddes-Sweeney, Jenna E.; Cedeno-Laurent, Filiberto; Walley, Kempland C.; Barthel, Steven R.; Opperman, Matthew J.; Liang, Jennifer; Lin, Jennifer Y.; Schatton, Tobias; Laga, Alvaro C.; Mihm, Martin C.; Qureshi, Abrar A.; Widlund, Hans R.; Murphy, George F.; Dimitroff, Charles J.

    2015-01-01

    Galectin-1 (Gal-1)-binding to Gal-1 ligands on immune and endothelial cells can influence melanoma development through dampening anti-tumor immune responses and promoting angiogenesis. However, whether Gal-1 ligands are functionally expressed on melanoma cells to help control intrinsic malignant features remains poorly understood. Here, we analyzed expression, identity and function of Gal-1 ligands in melanoma progression. Immunofluorescent analysis of benign and malignant human melanocytic neoplasms revealed that Gal-1 ligands were abundant in severely-dysplastic nevi as well as in primary and metastatic melanomas. Biochemical assessments indicated that melanoma cell adhesion molecule (MCAM) was a major Gal-1 ligand on melanoma cells that was largely dependent on its N-glycans. Other melanoma cell Gal-1 ligand activity conferred by O-glycans was negatively regulated by α2,6 sialyltransferase ST6GalNAc2. In Gal-1-deficient mice, MCAM-silenced (MCAMKD) or ST6GalNAc2-overexpressing (ST6O/E) melanoma cells exhibited slower growth rates, underscoring a key role for melanoma cell Gal-1 ligands and host Gal-1 in melanoma growth. Further analysis of MCAMKD or ST6O/E melanoma cells in cell migration assays indicated that Gal-1 ligand-dependent melanoma cell migration was severely inhibited. These findings provide a refined perspective on Gal-1 – melanoma cell Gal-1 ligand interactions as contributors to melanoma malignancy. PMID:25756799

  1. Melanin biosynthesis inhibitory activity of a compound isolated from young green barley (Hordeum vulgare L.) in B16 melanoma cells.

    PubMed

    Meng, Tian Xiao; Irino, Nobuto; Kondo, Ryuichiro

    2015-07-01

    In the course to find compounds that inhibit melanin biosynthesis (i.e., whitening agents), we evaluated the effects of the methanol-soluble fraction (i.e., the water-soluble portion of methanol extracts-CHP20P-MeOH eluted fraction) from young green barley leaves on melanin production in B16 melanoma cells. Activity-guided fractionation led to an isolate called tricin (compound 1) as an inhibitory compound of melanin production in B16 melanoma cells. Furthermore, tricin analogs such as tricetin, tricetin trimethyl ether, luteolin, and apigenin were used for analyzing the structure-activity relationships (SAR) of 5,7-dihydroxyflavones studies. Tricin demonstrated stronger inhibitory activity compared to three other compounds. The results suggest that a hydroxyl group at the C-4' position and methoxy groups at the C-3',5' positions of the tricin skeleton may have important roles in this inhibitory activity in B16 melanoma cells. Our results suggest that tricin inhibits melanin biosynthesis with higher efficacy than arbutin, and it could be used as a whitening agent. PMID:25827948

  2. Melanin biosynthesis inhibitory activity of a compound isolated from young green barley (Hordeum vulgare L.) in B16 melanoma cells.

    PubMed

    Meng, Tian Xiao; Irino, Nobuto; Kondo, Ryuichiro

    2015-07-01

    In the course to find compounds that inhibit melanin biosynthesis (i.e., whitening agents), we evaluated the effects of the methanol-soluble fraction (i.e., the water-soluble portion of methanol extracts-CHP20P-MeOH eluted fraction) from young green barley leaves on melanin production in B16 melanoma cells. Activity-guided fractionation led to an isolate called tricin (compound 1) as an inhibitory compound of melanin production in B16 melanoma cells. Furthermore, tricin analogs such as tricetin, tricetin trimethyl ether, luteolin, and apigenin were used for analyzing the structure-activity relationships (SAR) of 5,7-dihydroxyflavones studies. Tricin demonstrated stronger inhibitory activity compared to three other compounds. The results suggest that a hydroxyl group at the C-4' position and methoxy groups at the C-3',5' positions of the tricin skeleton may have important roles in this inhibitory activity in B16 melanoma cells. Our results suggest that tricin inhibits melanin biosynthesis with higher efficacy than arbutin, and it could be used as a whitening agent.

  3. Chronic inflammation promotes myeloid-derived suppressor cell activation blocking antitumor immunity in transgenic mouse melanoma model.

    PubMed

    Meyer, Christiane; Sevko, Alexandra; Ramacher, Marcel; Bazhin, Alexandr V; Falk, Christine S; Osen, Wolfram; Borrello, Ivan; Kato, Masashi; Schadendorf, Dirk; Baniyash, Michal; Umansky, Viktor

    2011-10-11

    Tumor microenvironment is characterized by chronic inflammation represented by infiltrating leukocytes and soluble mediators, which lead to a local and systemic immunosuppression associated with cancer progression. Here, we used the ret transgenic spontaneous murine melanoma model that mimics human melanoma. Skin tumors and metastatic lymph nodes showed increased levels of inflammatory factors such as IL-1β, GM-CSF, and IFN-γ, which correlated with tumor progression. Moreover, Gr1(+)CD11b(+) myeloid-derived suppressor cells (MDSCs), known to inhibit tumor reactive T cells, were enriched in melanoma lesions and lymphatic organs during tumor progression. MDSC infiltration was associated with a strong TCR ζ-chain down-regulation in all T cells. Coculturing normal splenocytes with tumor-derived MDSC induced a decreased T-cell proliferation and ζ-chain expression, verifying the MDSC immunosuppressive function and suggesting that the tumor inflammatory microenvironment supports MDSC recruitment and immunosuppressive activity. Indeed, upon manipulation of the melanoma microenvironment with the phosphodiesterase-5 inhibitor sildenafil, we observed reduced levels of numerous inflammatory mediators (e.g., IL-1β, IL-6, VEGF, S100A9) in association with decreased MDSC amounts and immunosuppressive function, indicating an antiinflammatory effect of sildenafil. This led to a partial restoration of ζ-chain expression in T cells and to a significantly increased survival of tumor-bearing mice. CD8 T-cell depletion resulted in an abrogation of sildenafil beneficial outcome, suggesting the involvement of MDSC and CD8 T cells in the observed therapeutic effects. Our data imply that inhibition of chronic inflammation in the tumor microenvironment should be applied in conjunction with melanoma immunotherapies to increase their efficacy. PMID:21969559

  4. Novel synthetic derivatives of the natural product berbamine inhibit Jak2/Stat3 signaling and induce apoptosis of human melanoma cells.

    PubMed

    Nam, Sangkil; Xie, Jun; Perkins, Angela; Ma, Yuelong; Yang, Fan; Wu, Jun; Wang, Yan; Xu, Rong-Zhen; Huang, Wendong; Horne, David A; Jove, Richard

    2012-10-01

    Persistent Jak/Stat3 signal transduction plays a crucial role in tumorigenesis and immune development. Activated Jak/Stat3 signaling has been validated as a promising molecular target for cancer therapeutics discovery and development. Berbamine (BBM), a natural bis-benzylisoquinoline alkaloid, was identified from the traditional Chinese herbal medicine Berberis amurensis used for treatment of cancer patients. While BBM has been shown to have potent antitumor activities with low toxicity in various cancer types, the molecular mechanism of action of BBM remains largely unknown. Here, we determine the antitumor activities of 13 synthetic berbamine derivatives (BBMDs) against human solid tumor cells. BBMD3, which is the most potent in this series of novel BBMDs, exhibits over 6-fold increase in biological activity compared to natural BBM. Moreover, BBMD3, directly inhibits Jak2 autophosphorylation kinase activity in vitro with IC(50)0.69 μM. Autophosphorylation of Jak2 kinase at Tyr1007/1008 sites also was strongly inhibited in the range of 15 μM of BBMD3 in human melanoma cells at 4h after treatment. Following inhibition of autophosphorylation of Jak2, BBMD3 blocked constitutive activation of downstream Stat3 signaling in melanoma cells. BBMD3 also down-regulated expression of the Stat3 target proteins Mcl-1and Bcl-x(L), associated with induction of apoptosis. In sum, our findings demonstrate that the novel berbamine derivative BBMD3 is an inhibitor of the Jak2/Stat3 signaling pathway, providing evidence for a molecular mechanism whereby BBMD3 exerts at least in part the apoptosis of human melanoma cells. In addition, BBMD3 represents a promising lead compound for development of new therapeutics for cancer treatment.

  5. Detention of copper by sulfur nanoparticles inhibits the proliferation of A375 malignant melanoma and MCF-7 breast cancer cells.

    PubMed

    Liu, Hao; Zhang, Yikai; Zheng, Shanyuan; Weng, Zeping; Ma, Jun; Li, Yangqiu; Xie, Xinyuan; Zheng, Wenjie

    2016-09-01

    Selective induction of cell death or growth inhibition of cancer cells is the future of chemotherapy. Clinical trials have found that cancer tissues are enriched with copper. Based on this finding, many copper-containing compounds and complexes have been designed to "copper" cancer cells using copper as bait. However, recent studies have demonstrated that copper boosts tumor development, and copper deprivation from serum was shown to effectively inhibit the promotion of cancer. Mechanistically, copper is an essential cofactor for mitogen-activated protein kinase (MAPK)/extracellular activating kinase (ERK) kinase (MEK), a central molecule in the BRAF/MEK/ERK pathway. Therefore, depleting copper from cancer cells by directly sequestering copper has a wider field for research and potential for combination therapy. Based on the affinity between sulfur and copper, we therefore designed sulfur nanoparticles (Nano-S) that detain copper, achieving tumor growth restriction. We found that spherical Nano-S could effectively bind copper and form a tighter surficial structure. Moreover, this Nano-S detention of copper effectively inhibited the proliferation of A375 melanoma and MCF-7 breast cancer cells with minimum toxicity to normal cells. Mechanistic studies revealed that Nano-S triggered inactivation of the MEK-ERK pathway followed by inhibition of the proliferation of the A375 and MCF-7 cells. In addition, lower Nano-S concentrations and shorter exposure stimulated the expression of a copper transporter as compensation, which further increased the cellular uptake and anticancer activities of cisplatin. Collectively, our results highlight the potential of Nano-S as an anticancer agent or adjuvant through its detention of copper.

  6. Combined inhibition of Hsp90 and heme oxygenase-1 induces apoptosis and endoplasmic reticulum stress in melanoma.

    PubMed

    Barbagallo, Ignazio; Parenti, Rosalba; Zappalà, Agata; Vanella, Luca; Tibullo, Daniele; Pepe, Francesco; Onni, Toniangelo; Li Volti, Giovanni

    2015-10-01

    Heat shock proteins are ubiquitous molecular chaperones involved in post-translational folding, stability, activation and maturation of many proteins that are essential mediators of signal transduction and cell cycle progression. Heat shock protein 90 (Hsp90) has recently emerged as an attractive therapeutic target in cancer treatment since it may act as a key regulator of various oncogene products and cell-signaling molecules. Heme oxygenase-1 (HO-1; also known as Hsp32) is an inducible enzyme participating in heme degradation and involved in oxidative stress resistance. Recent studies indicate that HO-1 activation may play a role in tumor development and progression. In the present study we investigated the chemotherapic effects of combining an Hsp90 inhibitor (NMS E973) and an HO-1 inhibitor (SnMP) on A375 melanoma cells. NMS E973 treatment was able to reduce cell viability and induce endoplasmic reticulum (ER) stress (i.e. Ire1α, ERO1, PDI, BIP and CHOP). Interestingly, no significant effect was observed in reactive oxygen species (ROS) formation. Finally, NMS E973 treatment resulted in a significant HO-1 overexpression, which in turn serves as a possible chemoresistance molecular mechanism. Interestingly, the combination of NMS E973 and SnMP produced an increase of ROS and reduced cell viability compared to NMS E973 treatment alone. The inhibitors combination exhibited higher ER stress, apoptosis as evidenced by bifunctional apoptosis regulator (BFAR) mRNA expression and lower phosphorylation of Akt when compared to NMS E973 alone. In conclusion, these data suggest that HO-1 inhibition potentiates NMS E973 toxicity and may be exploited as a strategy for melanoma treatment.

  7. Melanogenesis inhibitory activity of two generic drugs: cinnarizine and trazodone in mouse B16 melanoma cells.

    PubMed

    Chang, Te-Sheng; Lin, Victor Chia-Hsiang

    2011-01-01

    More than 200 generic drugs were screened to identify the inhibitory activity on melanogenesis in mouse B16 melanoma cells. Cinnarizine and trazodone were identified as melanogenesis inhibitors. The inhibitory effects of the two drugs on cell survival, melanogenesis, and tyrosinase activity were investigated. The results showed that both cinnarizine and trazodone inhibited melanogenesis in B16 cells by a dose-dependent manner at the non-cytotoxic concentrations. Based on the results of the present study, seeking new melanogenesis inhibitors from generic drugs is an alternative approach to developing new depigmenting agents in cosmeceuticals. Moreover, cinnarizine and trazodone were proven to be good candidates as skin-whitening agents for treatment of skin hyperpigmentation. PMID:22272104

  8. Melanogenesis Inhibitory Activity of Two Generic Drugs: Cinnarizine and Trazodone in Mouse B16 Melanoma Cells

    PubMed Central

    Chang, Te-Sheng; Lin, Victor Chia-Hsiang

    2011-01-01

    More than 200 generic drugs were screened to identify the inhibitory activity on melanogenesis in mouse B16 melanoma cells. Cinnarizine and trazodone were identified as melanogenesis inhibitors. The inhibitory effects of the two drugs on cell survival, melanogenesis, and tyrosinase activity were investigated. The results showed that both cinnarizine and trazodone inhibited melanogenesis in B16 cells by a dose-dependent manner at the non-cytotoxic concentrations. Based on the results of the present study, seeking new melanogenesis inhibitors from generic drugs is an alternative approach to developing new depigmenting agents in cosmeceuticals. Moreover, cinnarizine and trazodone were proven to be good candidates as skin-whitening agents for treatment of skin hyperpigmentation. PMID:22272104

  9. Stress from Nucleotide Depletion Activates the Transcriptional Regulator HEXIM1 to Suppress Melanoma.

    PubMed

    Tan, Justin L; Fogley, Rachel D; Flynn, Ryan A; Ablain, Julien; Yang, Song; Saint-André, Violaine; Fan, Zi Peng; Do, Brian T; Laga, Alvaro C; Fujinaga, Koh; Santoriello, Cristina; Greer, Celeste B; Kim, Yoon Jung; Clohessy, John G; Bothmer, Anne; Pandell, Nicole; Avagyan, Serine; Brogie, John E; van Rooijen, Ellen; Hagedorn, Elliott J; Shyh-Chang, Ng; White, Richard M; Price, David H; Pandolfi, Pier Paolo; Peterlin, B Matija; Zhou, Yi; Kim, Tae Hoon; Asara, John M; Chang, Howard Y; Young, Richard A; Zon, Leonard I

    2016-04-01

    Studying cancer metabolism gives insight into tumorigenic survival mechanisms and susceptibilities. In melanoma, we identify HEXIM1, a transcription elongation regulator, as a melanoma tumor suppressor that responds to nucleotide stress. HEXIM1 expression is low in melanoma. Its overexpression in a zebrafish melanoma model suppresses cancer formation, while its inactivation accelerates tumor onset in vivo. Knockdown of HEXIM1 rescues zebrafish neural crest defects and human melanoma proliferation defects that arise from nucleotide depletion. Under nucleotide stress, HEXIM1 is induced to form an inhibitory complex with P-TEFb, the kinase that initiates transcription elongation, to inhibit elongation at tumorigenic genes. The resulting alteration in gene expression also causes anti-tumorigenic RNAs to bind to and be stabilized by HEXIM1. HEXIM1 plays an important role in inhibiting cancer cell-specific gene transcription while also facilitating anti-cancer gene expression. Our study reveals an important role for HEXIM1 in coupling nucleotide metabolism with transcriptional regulation in melanoma. PMID:27058786

  10. MicroRNA-203 inhibits malignant melanoma cell migration by targeting versican.

    PubMed

    Bu, Pingyuan; Yang, Ping

    2014-07-01

    MicroRNA (miR)-203 has been demonstrated to function as a suppressor in tumorigenesis. Recently, miR-203 was reported to play a role in malignant melanoma (MM); however, the detailed function of miR-203 in MM remains unclear. In the present study, the expression of miR-203 was shown to be significantly downregulated in MM tissues when compared with normal adjacent tissues. Based on a bioinformatic prediction, versican was further identified as a novel target of miR-203, and the expression of versican was markedly increased in MM tissues. Inhibition of miR-203 increased the protein expression of versican, while upregulation of miR-203 inhibited the protein expression of versican in MM A375 cells. In addition, the upregulation of versican significantly promoted A375 cell migration; however, upregulation of miR-203 suppressed A375 cell migration. The present study further investigated whether miR-203 was involved in versican-mediated A375 cell migration, and the results indicated that upregulation of miR-203 significantly inhibited A375 cell migration, which was impaired by overexpression of versican. These observations indicated that versican functions as a downstream effector in miR-203-mediated MM cell migration. Therefore, the results demonstrated that miR-203 exhibited an inhibitory effect on MM cell migration via directly targeting versican, thus, may become an effective inhibitor for MM metastasis.

  11. Melanoma-associated antigen synthesized in vitro for active specific immunotherapy.

    PubMed

    Hayashibe, K

    1992-11-01

    The immunogenicity of the antigen molecule is a prerequisite for active specific immunotherapy for melanoma. Since most of the melanoma-associated antigens recognized by the murine immune system are known to be not immunogenic in man, a detection and analysis system for melanoma-associated antigens is required to reflect in vivo immune responses in patients with melanoma. One of the promising approaches, an attempt to develop human monoclonal antibodies from B lymphocytes of patients with melanoma, has met with limited success due to the difficulties of producing large amounts of antibodies and using them in immunochemical assays, because most of them belong to the IgM class and have low affinity. Our approach is to utilize the screening of a cDNA expression library constructed from mRNA extracted from cultured melanoma cells with antibodies from patients with melanoma. The cloned cDNA, designated as D-1, had 1029 bp and showed no significant homology with viral and mammalian sequences stored in GENETYX. cDNA D-1 hybridized to a 2.0 kb mRNA species from 3 different cell lines of human melanoma, neuroblastoma, erythroleukemia, B lymphoid, and T lymphoid cells, but not from a renal carcinoma cell line, normal peripheral lymphocytes, or normal fibroblasts. The in vivo expression and distribution of mRNA related to cDNA D-1 has been examined in tissue specimens by in situ hybridization and shown to be rather restricted on melanoma cells. The polypeptide antigen encoded by cDNA D-1 may be a valuable immunogen for implementing active specific immunotherapy in patients with melanoma.

  12. Redox control of retinoic acid receptor activity: a novel mechanism for retinoic acid resistance in melanoma cells.

    PubMed

    Demary, K; Wong, L; Liou, J S; Faller, D V; Spanjaard, R A

    2001-06-01

    Retinoic acid (RA) slows growth and induces differentiation of tumor cells through activation of RA receptors (RARs). However, melanoma cell lines display highly variable responsiveness to RA, which is a poorly understood phenomenon. By using Northern and Western blot analyses, we show that RA-resistant A375 and RA-responsive S91 melanoma cells express comparable levels of major components of RAR-signaling pathways. However, A375 cells have substantially higher intracellular reactive oxygen species (ROS) levels than S91 cells. Lowering ROS levels in A375 cells through hypoxic culture conditions restores RAR-dependent trans-activity, which could be further enhanced by addition of the antioxidant N-acetyl-cysteine. Hypoxia also enhances RAR activity in the moderately RA-responsive C32 cells, which have intermediate ROS levels. Conversely, increasing oxidative stress in highly RA-responsive S91 and B16 cells, which have low ROS levels, by treatment with H(2)O(2) impairs RAR activity. Consistent with these observations, RA more potently inhibited the proliferation of hypoxic A375 cells than that of normoxic cells. Oxidative states diminish, whereas reducing conditions enhance, DNA binding of retinoid X receptor/RAR heterodimers in vitro, providing a molecular basis for the observed inverse correlation between RAR activity and ROS levels. The redox state of melanoma cells provides a novel, epigenetic control mechanism of RAR activity and RA resistance. PMID:11356710

  13. Melanogenesis inhibitory activity of sesquiterpenes from Canarium ovatum resin in mouse B16 melanoma cells.

    PubMed

    Kikuchi, Takashi; Watanabe, Kensuke; Tochigi, Yuichi; Yamamoto, Ayako; Fukatsu, Makoto; Ezaki, Yoichiro; Tanaka, Reiko; Akihisa, Toshihiro

    2012-08-01

    Four known sesquiterpene alcohols, i.e., 1-4, ten triterpene alcohols, i.e., 5-14, and four triterpene acids, i.e., 15-18, were isolated from the MeOH extract of Canarium ovatum resin (elemi resin). Upon evaluation of the previously described compounds 1-18 on the melanogenesis in B16 melanoma cells induced with α-melanocyte-stimulating hormone (α-MSH), three sesquiterpene alcohols, i.e., cryptomeridiol (1), 4-epicryptomeridiol (2), and cadin-1(14)-ene-7α,11-diol (4), exhibited inhibitory effects with 27.4-34.1 and 39.0-56.9% reduction of melanin content at 50 and 100 μM, respectively, with no or very low toxicity to the cells (80.9-103.9% of cell viability at 100 μM). Western-blot analysis revealed that compounds 1 and 2 reduced the protein levels of MITF (=microphtalmia-associated transcription factor), tyrosinase, and TRP-2 (=tyrosine-related protein 2), mostly in a concentration-dependent manner, suggesting that these compounds exhibit melanogenesis inhibitory activity on α-MSH-stimulated B16 melanoma cells by, at least in part, inhibiting the expression of MITF, followed by decreasing the expression of tyrosinase and TRP-2. Three sesquiterpene alcohols, i.e., 1, 2, and 4, are, therefore, considered to be valuable as potential skin-whitening agents.

  14. Inhibition of integrins αv/α5-dependent functions in melanoma cells by an ECD-disintegrin acurhagin-C.

    PubMed

    Shih, Chun-Ho; Chiang, Tin-Bin; Wang, Wen-Jeng

    2013-04-24

    Acurhagin-C, a Glu-Cys-Asp (ECD)-disintegrin from Agkistrodon acutus venom, has been reported as an endothelial apoptosis inducer, previously. Here we further evaluate its potential applications in cancer therapy. In vitro assays indicated that acurhagin-C not only may influence the cell viability at higher concentration, but also can potently and dose-dependently decrease cell proliferation in murine B16-F10 melanoma. Otherwise, it also had a dose-dependent inhibition on B16-F10 cell adhesion to extracellular matrices, collagen VI, gelatin B and fibronectin, as well as disturbed transendothelial migration of B16-F10 cell. Morphological study found that acurhagin-C dramatically affected B16-F10 cell adhesion to immobilized fibronectin, leading to the formation of multicellular aggregates with rounded shape. Detected by flow cytometry, acurhagin-C was able to induce B16-F10 cell apoptosis and alter cell cycle distribution through its interactions with integrins αv/α5, and thereafter initiation the apoptotic pathways of caspase-8/-9. Furthermore, acurhagin-C could synergistically enhance the anti-proliferative activity of methotrexate in B16-F10 cells and human melanoma SK-MEL-1 cells, without diminishing the growth of human epidermal melanocytes. Taken together, acurhagin-C proved to be a potent inhibitor of integrin-based functions in melanoma cells by activating the complex apoptotic pathways. PMID:23333557

  15. Antibiotic drug tigecycline inhibits melanoma progression and metastasis in a p21CIP1/Waf1-dependent manner

    PubMed Central

    Tan, Peng; Zhang, Yanli; Liu, Lichao; Yang, Liqun; Liu, Yaling; Cui, Hongjuan

    2016-01-01

    Antibiotics are common durgs with low toxicity but high effectiveness. They have been suggested to be drug candidates for cancer therapy in recent years. Here, we tried to investigate the antitumour effect of tigecycline on malignant melanoma. We showed that tigecycline dramatically inhibited cell proliferation and induced cell cycle arrest at G0/G1 phase. At the same time, tigecycline suppressed cell invasion and migration through preventing epithelial-mesenchymal transition (EMT) process. In addition, tigecycline also significantly blocked tumor growth in vivo. Expression of cell cycle-related proteins were investigated and resulted in downregulation of G1/S checkpoint proteins, such as CDK2 and Cyclin E. However, cyclin-dependent kinase inhibitor 1 (CDKN1A, p21CIP1/Waf1) was downregulated after tigecycline treatment, which was not conformed to its conventional function. To explain this, we overexpressed p21 in melanoma cells. We found that p21 overexpression significantly rescued tigecycline-induced cell proliferation inhibition as well as migration and invasion suppression. Taken together, our results revealed that the essential role of p21 in the inhibitory effect of tigecycline on proliferation, migration and invasion of melanoma. Tigecycline might act as a candidate therapeutic drug for treatment of patients suffering from malignant melanoma. PMID:26621850

  16. Enhanced anti-tumor activity of a new curcumin-related compound against melanoma and neuroblastoma cells

    PubMed Central

    2010-01-01

    Background Sharing the common neuroectodermal origin, melanoma and neuroblastoma are tumors widely diffused among adult and children, respectively. Clinical prognosis of aggressive neuroectodermal cancers remains dismal, therefore the search for novel therapies against such tumors is warranted. Curcumin is a phytochemical compound widely studied for its antioxidant, anti-inflammatory and anti-cancer properties. Recently, we have synthesized and tested in vitro various curcumin-related compounds in order to select new anti-tumor agents displaying stronger and selective growth inhibition activity on neuroectodermal tumors. Results In this work, we have demonstrated that the new α,β-unsaturated ketone D6 was more effective in inhibiting tumor cells growth when compared to curcumin. Normal fibroblasts proliferation was not affected by this treatment. Clonogenic assay showed a significant dose-dependent reduction in both melanoma and neuroblastoma colony formation only after D6 treatment. TUNEL assay, Annexin-V staining, caspases activation and PARP cleavage unveiled the ability of D6 to cause tumor cell death by triggering apoptosis, similarly to curcumin, but with a stronger and quicker extent. These apoptotic features appear to be associated with loss of mitochondrial membrane potential and cytochrome c release. In vivo anti-tumor activity of curcumin and D6 was surveyed using sub-cutaneous melanoma and orthotopic neuroblastoma xenograft models. D6 treated mice exhibited significantly reduced tumor growth compared to both control and curcumin treated ones (Melanoma: D6 vs control: P < 0.001 and D6 vs curcumin P < 0.01; Neuroblastoma: D6 vs both control and curcumin: P < 0.001). Conclusions Our data indicate D6 as a good candidate to develop new therapies against neural crest-derived tumors. PMID:20525240

  17. In vitro antitumor activity of 3'-desamino-3'(2-methoxy-4-morpholinyl) doxorubicin on human melanoma cells sensitive or resistant to triazene compounds.

    PubMed

    Alvino, E; Gilberti, S; Cantagallo, D; Massoud, R; Gatteschi, A; Tentori, L; Bonmassar, E; D'Atri, S

    1997-01-01

    A new methoxymorpholinyl derivative of Adriamycin (ADR), FCE 23762 (MRD), has recently been selected for phase I clinical trials for its reduced cardiotoxicity and for its cytotoxic activity against a broad spectrum of solid tumors and leukemias that are sensitive or resistant to ADR. The purpose of the present study was to compare the in vitro antitumor activity of MRD and ADR on human melanoma lines with different chemosensitivity to triazene compounds, among which dacarbazine remains a reference drug in the treatment of melanoma. Both MRD and ADR were tested in vitro on three melanoma lines, MI13443-MEL, SK-MEL-28, and M14, previously screened for their chemosensitivity to the triazene compound p-(3-methyl-1-triazeno) benzoic acid, potassium salt (MTBA). The three lines were also analyzed for P-170 expression, total glutathione (GSH) content, and GSH-related enzyme activity. All melanomas, whether sensitive or resistant to MTBA, were susceptible to anthracycline treatment. The cytotoxic activity of MRD was comparable with that of ADR, and no substantial difference was found in cell growth inhibition between the two drugs. When the relative chemosensitivity of the three lines was considered, SK-MEL-28 was found to be slightly less sensitive to MRD treatment than the other tumors. This finding seems to correlate with the higher GSH-peroxidase activity of this melanoma relative to that of the MI13443 and M14 lines. These results show a homogeneous response of melanoma lines to MRD treatment in vitro, suggesting that phase I clinical trials concerning this drug, which in vivo appears to be activated to a more cytotoxic metabolite, could be extended to metastatic melanomas, including those completely resistant to triazene compounds.

  18. Let-7a inhibits migration of melanoma cells via down-regulation of HMGA2 expression

    PubMed Central

    Hou, Xiaocan; Wan, Wencui; Wang, Jing; Li, Mingzhe; Wang, Yiwen; Yao, Yaobing; Feng, Lihong; Jing, Lijun; Lu, Hong; Jia, Yanjie; Peng, Tao

    2016-01-01

    This study aimed to investigate the effects of exosomes derived from BM-MSCs transduced with let-7a on B16f10 cells and BM-MSCs. BM-MSCs were transduced with let-7a and the exosomes of them were isolated for further culture of B16f10 cells and BM-MSCs. The migration of B16f10 cells were detected by transwell, proliferation of B16f10 cells and BM-MSCs was examined by MTT method, HMGA2 expression was measured by western blot. In addition, the let-7a secreted level in exosomes and IGF level were measured by RT-PCR and ELISA respectively. Our results showed that the level of let-7a in exosomes derived from Let-7a-transducted BM-MSCs was increased after treated by exosomes. HMGA2 in B16f10 cells was down-regulated and cell survival rate of BM-MSCs was decreased. However, neither cell survival rate of B16f10 cells nor IGF-1 secreted by B16f10 cells in different groups had significant differences. In conclusion, Let-7a contained in exosomes can inhibit the migration of Melanoma cells and inhibit the proliferation of BM-MSCs. PMID:27725848

  19. Antiproliferative Activity of Double Point Modified Analogs of 1,25-Dihydroxyvitamin D2 Against Human Malignant Melanoma Cell Lines

    PubMed Central

    Piotrowska, Anna; Wierzbicka, Justyna; Nadkarni, Sharmin; Brown, Geoffrey; Kutner, Andrzej; Żmijewski, Michał A.

    2016-01-01

    Vitamin D is a lipid soluble steroid hormone with pleiotropic biological properties, including regulation of cell proliferation, differentiation and apoptosis. As to these desirable anticancer actions, 1,25-dihydroxyvitamins D and analogs have been reported to inhibit the proliferation and to induce differentiation of a wide variety of cancer cell types, including human malignant melanoma. However, there is a need for novel and more efficacious vitamin D analogs, and how best to design such is still an open issue. A series of double point modified (DPM) analogs of 1,25-dihydroxyvitamin D2 (1,25(OH)2D2) induced differentiation of the vitamin D receptor (VDR) positive A375 and VDR negative SK-MEL 188b human malignant melanoma cell lines. Surprisingly, the dose of 1,25(OH)2D2 required to inhibit the proliferation of the A375 melanoma cell line by was several fold lower than that required in the case of 1,25(OH)2D3. To evaluate the impact of the modification in the side chain (additional 22-hydroxyl) and in the A-ring (5,6-trans modification), the regular side-chain of vitamin D2 or D3 was retained in the structure of our analogs. As expected, 5,6-trans modification was advantageous to enhancing the anti-proliferative activity of analogs, but not as a single point modification (SPM). Very unexpectedly, the additional 22-hydroxyl in the side-chain reduced significantly the anti-proliferative activity of both the natural and 5,6-trans series analogs. Finally, an induction of pigmentation in melanoma SK-MEL 188b cells was observed to sensitized cells to the effect of vitamin D analogs. PMID:26760999

  20. MicroRNA-199a-5p inhibits tumor proliferation in melanoma by mediating HIF-1α.

    PubMed

    Yang, Xinghua; Lei, Shaorong; Long, Jianhong; Liu, Xiaojin; Wu, Qizhen

    2016-06-01

    The expression of hypoxia-inducible factor 1α (HIF-1α) is often abundant in human cancer and it is associated with poor prognosis. The present study aimed to investigate its regulation by microRNA (miRNA). The expression of miRNA-199a-5p (miR-199a-5p) in melanoma was detected by quantitative polymerase chain reaction on samples from 25 melanoma patients. The target of miR-199a-5p was predicted and demonstrated by a dual‑luciferase reporter system. The effects of miR-199a-5p on melanoma cells were assayed in B16 and HME1 melanoma cell lines. Furthermore, the potential of miR‑199a‑5p as a therapeutic target was illustrated in xenograft nude mice models. Low expression of miR‑199a‑5p in tumor melanoma tissue samples from patients was associated with high histological grade and advanced tumor stage. The 3'-untranslated region of HIF‑1α was identified as a target of miR‑199a‑5p by Targetscan software. The dual-luciferase reporter assay demonstrated that miR‑199a‑5p transfection of mimics decreased the luciferase activity significantly (P<0.05). In the B16 and HME1 cell lines, overexpression of miR‑199a‑5p suppressed cell proliferation and arrested the cell cycle in the G1 phase. In vivo overexpression of miR‑199a‑5p significantly suppressed xenograft growth and downregulated the expression of HIF‑1α (P<0.05). The results from the present study suggest that miR‑199a‑5p suppressed melanoma proliferation via HIF‑1α, suggesting it may be a potential therapeutic target for melanoma treatment. PMID:27122154

  1. Phorbol ester phorbol-12-myristate-13-acetate promotes anchorage-independent growth and survival of melanomas through MEK-independent activation of ERK1/2

    SciTech Connect

    Jorgensen, Kjersti; Skrede, Martina; Cruciani, Veronique; Mikalsen, Svein-Ole; Slipicevic, Ana; Florenes, Vivi Ann . E-mail: v.a.florenes@labmed.uio.no

    2005-04-01

    The phorbol ester, phorbol-12-myristate-13-acetate (PMA), an activator of PKCs, is known to stimulate the in vitro growth of monolayer cultures of normal human melanocytes whereas it inhibits the growth of most malignant melanoma cell lines. We examined the effect of PMA on proliferation and survival of melanoma cells grown as multicellular aggregates in suspension (spheroids), and aimed to elucidate downstream targets of PKC signaling. In contrast to monolayer cultures, PMA increased cell proliferation as well as protected melanoma cells from suspension-mediated apoptosis (anoikis). Supporting the importance of PKC in anchorage-independent growth, treatment of anoikis-resistant melanoma cell lines with antisense oligonucleotides against PKC-{alpha}, or the PKC inhibitor Goe6976, strongly induced anoikis. PMA induced activation of ERK1/2, but this effect was not prevented by the MEK inhibitors PD98059 or by U0126. Whereas PD98059 treatment alone led to marked activation of the pro-apoptotic Bim and Bad proteins and significantly increased anoikis, these effects were clearly reversed by PMA. In conclusion, our results indicate that the protective effect of PMA on anchorage-independent survival of melanoma cells at least partly is mediated by MEK-independent activation of ERK1/2 and inactivation of downstream pro-apoptotic effector proteins.

  2. A novel microtubule de-stabilizing complementarity-determining region C36L1 peptide displays antitumor activity against melanoma in vitro and in vivo

    PubMed Central

    Figueiredo, Carlos R.; Matsuo, Alisson L.; Azevedo, Ricardo A.; Massaoka, Mariana H.; Girola, Natalia; Polonelli, Luciano; Travassos, Luiz R.

    2015-01-01

    Short peptide sequences from complementarity-determining regions (CDRs) of different immunoglobulins may exert anti-infective, immunomodulatory and antitumor activities regardless of the specificity of the original monoclonal antibody (mAb). In this sense, they resemble early molecules of innate immunity. C36L1 was identified as a bioactive light-chain CDR1 peptide by screening 19 conserved CDR sequences targeting murine B16F10-Nex2 melanoma. The 17-amino acid peptide is readily taken up by melanoma cells and acts on microtubules causing depolymerization, stress of the endoplasmic reticulum and intrinsic apoptosis. At low concentrations, C36L1 inhibited migration, invasion and proliferation of B16F10-Nex2 cells with cell cycle arrest at G2/M phase, by regulating the PI3K/Akt signaling axis involving Rho-GTPase and PTEN mediation. Peritumor injection of the peptide delayed growth of subcutaneously grafted melanoma cells. Intraperitoneal administration of C36L1 induced a significant immune-response dependent anti-tumor protection in a syngeneic metastatic melanoma model. Dendritic cells stimulated ex-vivo by the peptide and transferred to animals challenged with tumor cells were equally effective. The C36 VL CDR1 peptide is a promising microtubule-interacting drug that induces tumor cell death by apoptosis and inhibits metastases of highly aggressive melanoma cells. PMID:26391685

  3. Ajoene inhibits both primary tumor growth and metastasis of B16/BL6 melanoma cells in C57BL/6 mice.

    PubMed

    Taylor, Peter; Noriega, Raquel; Farah, Carla; Abad, María-Jesús; Arsenak, Miriam; Apitz, Rafael

    2006-08-01

    Ajoene is an organosulphur compound derived from garlic with important effects on several membrane-associated processes such as platelet aggregation, as well as being cytotoxic for tumor cell lines in vitro. In the present study, we investigated the effect of ajoene on different cell types in vitro, as well as its inhibitory effects on both primary tumors and metastasis in a mouse model. We found ajoene to inhibit tumor cell growth in vitro, but also to inhibit strongly metastasis to lung in the B16/BL6 melanoma tumor model in C57BL/6 mice. As far as we are aware, this is the first report of the anti-metastatic effect of ajoene. Ajoene also inhibited tumor-endothelial cell adhesion, as well as the in vivo TNF-alpha response to lipopolysaccharide. Possible mechanisms of its antitumoral activity are discussed in the light of these results.

  4. Tumor growth suppressive effect of IL-4 through p21-mediated activation of STAT6 in IL-4Rα overexpressed melanoma models

    PubMed Central

    Song, Ju Kyoung; Jung, Yu Yeon; Kim, Youngsoo; Kim, Kyung Bo; Hwang, Dae Yeon; Yoon, Do Young; Song, Min Jong; Han, Sang Bae; Hong, Jin Tae

    2016-01-01

    To evaluate the significance of interleukin 4 (IL-4) in tumor development, we compared B16F10 melanoma growth in IL-4-overespressing transgenic mice (IL-4 mice) and non-transgenic mice. In IL-4 mice, reduced tumor volume and weight were observed when compared with those of non-transgenic mice. Significant activation of DNA binding activity of STAT6, phosphorylation of STAT6 as well as IL-4, IL-4Rα and p21 expression were found in the tumor tissues of IL-4 mice compared to non-transgenic mice. Higher expression of IL-4, STAT6 and p21 in human melanoma tissue compared to normal human skin tissue was also found. Higher expression of apoptotic protein such as cleaved caspase-3, cleaved caspase-8, cleaved caspase-9, Bax, p53 and p21, but lower expression levels of survival protein such as Bcl-2 were found in the tumor of IL-4 mice. In vitro study, we found that overexpression of IL-4 significantly inhibited SK-MEL-28 human melanoma cell and B16F10 murine melanoma cell growth via p21-mediated activation of STAT6 pathway as well as increased expression of apoptotic cell death proteins. Moreover, p21 knockdown with siRNA abolished IL-4 induced activation of STAT6 and expression of p53 and p21 accompanied with reduced IL-4 expression as well as melanoma cell growth inhibition. Therefore, these results showed that IL-4 overexpression suppressed tumor development through p21-mediated activation of STAT6 pathways in melanoma models. PMID:26993600

  5. Pleckstrin homology domain-interacting protein (PHIP) as a marker and mediator of melanoma metastasis

    PubMed Central

    De Semir, David; Nosrati, Mehdi; Bezrookove, Vladimir; Dar, Altaf A.; Federman, Scot; Bienvenu, Geraldine; Venna, Suraj; Rangel, Javier; Climent, Joan; Meyer Tamgüney, Tanja M.; Thummala, Suresh; Tong, Schuyler; Leong, Stanley P. L.; Haqq, Chris; Billings, Paul; Miller, James R.; Sagebiel, Richard W.; Debs, Robert; Kashani-Sabet, Mohammed

    2012-01-01

    Although melanomas with mutant v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) can now be effectively targeted, there is no molecular target for most melanomas expressing wild-type BRAF. Here, we show that the activation of Pleckstrin homology domain-interacting protein (PHIP), promotes melanoma metastasis, can be used to classify a subset of primary melanomas, and is a prognostic biomarker for melanoma. Systemic, plasmid-based shRNA targeting of Phip inhibited the metastatic progression of melanoma, whereas stable suppression of Phip in melanoma cell lines suppressed metastatic potential and prolonged the survival of tumor-bearing mice. The human PHIP gene resides on 6q14.1, and although 6q loss has been observed in melanoma, the PHIP locus was preserved in melanoma cell lines and patient samples, and its overexpression was an independent adverse predictor of survival in melanoma patients. In addition, a high proportion of PHIP-overexpressing melanomas harbored increased PHIP copy number. PHIP-overexpressing melanomas include tumors with wild-type BRAF, neuroblastoma RAS viral (v-ras) oncogene homolog, and phosphatase and tensin homolog, demonstrating PHIP activation in triple-negative melanoma. These results describe previously unreported roles for PHIP in predicting and promoting melanoma metastasis, and in the molecular classification of melanoma. PMID:22511720

  6. Pleckstrin homology domain-interacting protein (PHIP) as a marker and mediator of melanoma metastasis.

    PubMed

    De Semir, David; Nosrati, Mehdi; Bezrookove, Vladimir; Dar, Altaf A; Federman, Scot; Bienvenu, Geraldine; Venna, Suraj; Rangel, Javier; Climent, Joan; Meyer Tamgüney, Tanja M; Thummala, Suresh; Tong, Schuyler; Leong, Stanley P L; Haqq, Chris; Billings, Paul; Miller, James R; Sagebiel, Richard W; Debs, Robert; Kashani-Sabet, Mohammed

    2012-05-01

    Although melanomas with mutant v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) can now be effectively targeted, there is no molecular target for most melanomas expressing wild-type BRAF. Here, we show that the activation of Pleckstrin homology domain-interacting protein (PHIP), promotes melanoma metastasis, can be used to classify a subset of primary melanomas, and is a prognostic biomarker for melanoma. Systemic, plasmid-based shRNA targeting of Phip inhibited the metastatic progression of melanoma, whereas stable suppression of Phip in melanoma cell lines suppressed metastatic potential and prolonged the survival of tumor-bearing mice. The human PHIP gene resides on 6q14.1, and although 6q loss has been observed in melanoma, the PHIP locus was preserved in melanoma cell lines and patient samples, and its overexpression was an independent adverse predictor of survival in melanoma patients. In addition, a high proportion of PHIP-overexpressing melanomas harbored increased PHIP copy number. PHIP-overexpressing melanomas include tumors with wild-type BRAF, neuroblastoma RAS viral (v-ras) oncogene homolog, and phosphatase and tensin homolog, demonstrating PHIP activation in triple-negative melanoma. These results describe previously unreported roles for PHIP in predicting and promoting melanoma metastasis, and in the molecular classification of melanoma. PMID:22511720

  7. Intravenous Delivery of siRNA Targeting CD47 Effectively Inhibits Melanoma Tumor Growth and Lung Metastasis

    PubMed Central

    Wang, Yuhua; Xu, Zhenghong; Guo, Shutao; Zhang, Lu; Sharma, Arati; Robertson, Gavin P; Huang, Leaf

    2013-01-01

    CD47 is a “self marker” that is usually overexpressed on the surface of cancer cells to enable them to escape immunosurveillance. Recognition of CD47 by its receptor, signal regulatory protein α (SIRPα), which is expressed in the macrophages, inhibits phagocytic destruction of cancer cells by the macrophages. In this study, we have first shown that clinical isolates of human melanoma significantly upregulate CD47, possibly as a mechanism to defend themselves against the macrophages. We then exploited RNA interference (RNAi) technology to test the hypothesis that knocking down CD47 in the tumor cells will render them targets for macrophage destruction; hence, creating a novel anti-cancer therapy. Anti-CD47 siRNA was encapsulated in a liposome-protamine-hyaluronic acid (LPH) nanoparticle (NP) formulation to address the challenge of targeted delivery of siRNA-based therapeutics in vivo. Efficient silencing of CD47 in tumor tissues with systemic administration of LPH(CD47) also significantly inhibited the growth of melanoma tumors. In a lung metastasis model, LPH(CD47) efficiently inhibited lung metastasis to about 27% of the untreated control. Moreover, no hematopoietic toxicity was observed in the animals that received multiple doses of LPH(CD47). Our findings indicate CD47 as a potential prognostic marker for melanoma development as well as a target for therapeutic intervention with RNAi-based nanomedicines. PMID:23774794

  8. Selective growth inhibition of a human malignant melanoma cell line by sesame oil in vitro.

    PubMed

    Smith, D E; Salerno, J W

    1992-06-01

    Ayurveda, an ancient and comprehensive system of natural medicine, recommends regular topical application to the skin of sesame oil, above all other oils, as a health-promoting procedure. We examined the effect of sesame oil and several other vegetable oils and their major component fatty acids on the proliferation rate of human normal and malignant melanocytes growing at similar rates in serum-free media. We found that sesame and safflower oils, both of which contain large amounts of linoleate in triglyceride form, selectively inhibited malignant melanoma growth over normal melanocytes whereas coconut, olive and mineral oils, which contain little or no linoleate as triglyceride, did not. These oils were tested at a range of 10-300 micrograms/ml. We found that of the fatty acids tested, only linoleic acid was selectively inhibitory while palmitic and oleic were not. These fatty acids were tested in the range of 3-100 micrograms/ml. These results suggest that certain vegetable oils rich in linoleic acid, such as the sesame oil, recommended for topical use by Ayurveda, may contain selective antineoplastic properties which are similar to those demonstrated for essential polyunsaturated fatty acids and their metabolites. This suggests that whole vegetable oils may have potential clinical usefulness.

  9. Oligosaccharide modification by swainsonine treatment inhibits pulmonary colonization by B16-F10 murine melanoma cells.

    PubMed Central

    Humphries, M J; Matsumoto, K; White, S L; Olden, K

    1986-01-01

    Oligosaccharide moieties of cell-surface glycoconjugates are thought to be involved in recognition events associated with tumor metastasis and invasion. Using swainsonine (SW), an inhibitor of Golgi alpha-mannosidase II that results in the formation of hybrid-type oligosaccharides on N-linked glycoproteins, we have tested the hypothesis that specific glycan structures are required for pulmonary colonization by tumor cells. B16-F10 murine melanoma cells were treated with SW in growth medium and then injected intravenously into syngeneic C57BL/6 mice. This treatment resulted in dramatic inhibition of colonization, but it had no effect on B16-F10 viability or on cellular tumorigenicity after subcutaneous implantation. SW-treated radiolabeled B16-F10 cells were cleared from the lungs at a greater rate than control cells, suggesting that one effect of treatment is to alter tumor cell retention in the target organ. Our results implicate specific glycan structures in pulmonary colonization and offer a potential approach for identification of specific macromolecules involved in tumor cell-organ recognition during metastasis. Images PMID:3081900

  10. Inhibition of HSP90 by AT13387 delays the emergence of resistance to BRAF inhibitors and overcomes resistance to dual BRAF and MEK inhibition in melanoma models.

    PubMed

    Smyth, Tomoko; Paraiso, Kim H T; Hearn, Keisha; Rodriguez-Lopez, Ana M; Munck, Joanne M; Haarberg, H Eirik; Sondak, Vernon K; Thompson, Neil T; Azab, Mohammad; Lyons, John F; Smalley, Keiran S M; Wallis, Nicola G

    2014-12-01

    Emergence of clinical resistance to BRAF inhibitors, alone or in combination with MEK inhibitors, limits clinical responses in melanoma. Inhibiting HSP90 offers an approach to simultaneously interfere with multiple resistance mechanisms. Using the HSP90 inhibitor AT13387, which is currently in clinical trials, we investigated the potential of HSP90 inhibition to overcome or delay the emergence of resistance to these kinase inhibitors in melanoma models. In vitro, treating vemurafenib-sensitive cells (A375 or SK-MEL-28) with a combination of AT13387 and vemurafenib prevented colony growth under conditions in which vemurafenib treatment alone generated resistant colonies. In vivo, when AT13387 was combined with vemurafenib in a SK-MEL-28, vemurafenib-sensitive model, no regrowth of tumors was observed over 5 months, although 2 of 7 tumors in the vemurafenib monotherapy group relapsed in this time. Together, these data suggest that the combination of these agents can delay the emergence of resistance. Cell lines with acquired vemurafenib resistance, derived from these models (A375R and SK-MEL-28R) were also sensitive to HSP90 inhibitor treatment; key clients were depleted, apoptosis was induced, and growth in 3D culture was inhibited. Similar effects were observed in cell lines with acquired resistance to both BRAF and MEK inhibitors (SK-MEL-28RR, WM164RR, and 1205LuRR). These data suggest that treatment with an HSP90 inhibitor, such as AT13387, is a potential approach for combating resistance to BRAF and MEK inhibition in melanoma. Moreover, frontline combination of these agents with an HSP90 inhibitor could delay the emergence of resistance, providing a strong rationale for clinical investigation of such combinations in BRAF-mutated melanoma.

  11. Anticancer Activity of Saponins from Allium chinense against the B16 Melanoma and 4T1 Breast Carcinoma Cell

    PubMed Central

    Yu, Zhihui; Zhang, Tong; Zhou, Fengjuan; Xiao, Xiuqing; Ding, Xuezhi; He, Hao; Rang, Jie; Quan, Meifang; Wang, Ting; Zuo, Mingxing; Xia, Liqiu

    2015-01-01

    The cytotoxic substance of A. chinense saponins (ACSs) was isolated using ethanol extraction and purified with the D101 macroporous adsorption resin approach. We investigated the anticancer activity of ACSs in the B16 melanoma and 4T1 breast carcinoma cell lines. Methylthioninium chloride and hematoxylin-eosin staining with Giemsa dyestuff were used when the cells were treated with ACSs. The results showed that the cells morphologies changed significantly; ACSs induced cell death in B16 and 4T1 cells based on acridine orange/ethidium bromide double fluorescence staining, with the number and degree of apoptotic tumor cells increasing as ACS concentration increased. ACSs inhibited the proliferation of B16 and 4T1 cells in a dose-dependent manner. They also inhibited cell migration and colony formation and exhibited a concentration-dependent effect. In addition, ACSs apparently inhibited the growth of melanoma in vivo. The preliminary antitumor in vivo assay revealed that early medication positively affected tumor inhibition action and effectively protected the liver and spleen of C57 BL/6 mice from injury. This study provides evidence for the cytotoxicity of ACSs and a strong foundation for further research to establish the theoretical basis for cell death and help in the design and development of new anticancer drugs. PMID:26146506

  12. Simultaneous Inhibition of Key Growth Pathways in Melanoma Cells and Tumor Regression by a Designed Bidentate Constrained Helical Peptide

    PubMed Central

    Dhar, Amlanjyoti; Mallick, Shampa; Ghosh, Piya; Maiti, Atanu; Ahmed, Israr; Bhattacharyya, Seemana; Mandal, Tapashi; Manna, Asit; Roy, Koushik; Singh, Sandeep; Nayak, Dipak Kumar; Wilder, Paul T.; Markowitz, Joseph; Weber, David J.; Ghosh, Mrinal K.; Chattopadhyay, Samit; Guha, Rajdeep; Konar, Aditya; Bandyopadhyay, Santu; Roy, Siddhartha

    2014-01-01

    Protein-protein interactions are part of a large number of signaling networks and potential targets for drug development. However, discovering molecules that can specifically inhibit such interactions is a major challenge. S100B, a calcium-regulated protein, plays a crucial role in the proliferation of melanoma cells through protein-protein interactions. In this article, we report the design and development of a bidentate conformationally constrained peptide against dimeric S100B based on a natural tight binding peptide, TRTK-12. The helical conformation of the peptide was constrained by substitution of α-amino isobutyric acid----an amino acid having high helical propensity----in positions which do not interact with S100B. A branched bidentate version of the peptide, bound to S100B tightly with a dissociation constant of 8 nM. When conjugated to a cell penetrating peptide, it caused growth inhibition and rapid apoptosis in melanoma cells. The molecule exerts anti-proliferative action through simultaneous inhibition of key growth pathways including reactivation of wild-type p53 and inhibition of Akt and STAT-3 phosphorylation. The apoptosis induced by the bidentate constrained helix is caused by direct migration of p53 to mitochondria. At moderate intravenous dose, the peptide completely inhibits melanoma growth in a mouse model without any significant observable toxicity. The specificity was shown by lack of ability of a double mutant peptide to cause tumor regression at the same dose level. The methodology described here for direct protein-protein interaction inhibition may be effective for rapid development of inhibitors against relatively weak protein-protein interactions for de novo drug development. PMID:24839139

  13. Low natural-killer-cell activity in familial melanoma patients and their relatives.

    PubMed

    Hersey, P; Edwards, A; Honeyman, M; McCarthy, W H

    1979-07-01

    Patients with melanoma who had one or more close relatives with melanoma were studied for their natural-killer-cell (NK) activity against cultured melanoma cells and Chang cells. A high proportion of the patients and their relatives were found to have low NK activity against these target cells. In most of the patients this could not be attributed to general depression of their immune function, since B- and T-cell numbers and the mitogenic response to PHA were within normal limits. The levels of NK activity of the patients and their relatives were found to be significantly correlated, suggesting that the NK activity in these families may have been genetically (or environmentally) determined. Several genetic markers were examined in the patients and their relatives for association with the disease state and NK activity. No association with HLA antigens or ABO blood groups was detected, but there was a low incidence of the Rhesus negative phenotype in the patients (the Rh phenotype had previously been associated with high NK activity). The present results indicate that NK activity has a familial association in families with a high incidence of melanoma, and raise the question whether low NK activity may be one of the predisposing factors in the development of familial melanoma.

  14. Dehydroleucodine inhibits tumor growth in a preclinical melanoma model by inducing cell cycle arrest, senescence and apoptosis.

    PubMed

    Costantino, Valeria V; Lobos-Gonzalez, Lorena; Ibañez, Jorge; Fernandez, Dario; Cuello-Carrión, F Darío; Valenzuela, Manuel A; Barbieri, Manuel A; Semino, Silvana N; Jahn, Graciela A; Quest, Andrew F G; Lopez, Luis A

    2016-03-01

    Malignant melanoma represents the fastest growing public health risk of all cancer types worldwide. Several strategies and anti-cancer drugs have been used in an effort to improve treatments, but the development of resistance to anti-neoplastic drugs remains the major cause of chemotherapy failure in melanomas. Previously, we showed that the sesquiterpene lactone, dehydroleucodine (DhL), promotes the accumulation of DNA damage markers, such as H2AX and 53BP1, in human tumor cells. Also DhL was shown to trigger either cell senescence or apoptosis in a concentration-dependent manner in HeLa and MCF7 cells. Here, we evaluated the effects of DhL on B16F0 mouse melanoma cells in vitro and in a pre-clinical melanoma model. DhL inhibited the proliferation of B16F0 cells by inducing senescence or apoptosis in a concentration-dependent manner. Also, DhL reduced the expression of the cell cycle proteins cyclin D1 and B1 and the inhibitor of apoptosis protein, survivin. In melanomas generated by subcutaneous injection of B16F0 cells into C57/BL6 mice, the treatment with 20 mg DhL /Kg/day in preventive, simultaneous and therapeutic protocols reduced tumor volumes by 70%, 60% and 50%, respectively. DhL treatments reduced the number of proliferating, while increasing the number of senescent and apoptotic tumor cells. To estimate the long-term effects of DhL, a mathematical model was applied to fit experimental data. Extrapolation beyond experimental time points revealed that DhL administration following preventive and therapeutic protocols is predicted to be more effective than simultaneous treatments with DhL in restricting tumor growth.

  15. Melanoma Expressed-CD70 Is Regulated by RhoA and MAPK Pathways without Affecting Vemurafenib Treatment Activity

    PubMed Central

    Sarrabayrouse, Guillaume; Gallardo, Franck; Gence, Rémi; Tilkin-Mariamé, Anne-Françoise

    2016-01-01

    CD70 is a costimulatory molecule member of the Tumor Necrosis Factor family that is expressed on activated immune cells. Its ectopic expression has been described in several types of cancer cells including lymphomas, renal cell carcinomas and glioblastomas. We have recently described its expression in a part of tumor cells from the vast majority of melanoma biopsies and human melanoma cell lines, and found that CD70 expression decreased over time as the disease progressed. Here, we show that RhoA, BRAF and Mitogen Activating Protein Kinase pathways are involved in the positive transcriptional regulation of CD70 expression in melanomas. Interestingly, the clinical inhibitor of the common BRAF V600E/D variants, Vemurafenib (PLX-4032), which is currently used to treat melanoma patients with BRAF V600E/D-mutated metastatic melanomas, decreased CD70 expression in human CD70+ melanoma cell lines. This decrease was seen in melanoma cells both with and without the BRAFV600E/D mutation, although was less efficient in those lacking the mutation. But interestingly, by silencing CD70 in CD70+ melanoma cell lines we show that PLX-4032-induced melanoma cell killing and its inhibitory effect on MAPK pathway activation are unaffected by CD70 expression. Consequently, our work demonstrates that CD70 ectopic expression in melanomas is not a valuable biomarker to predict tumor cells sensitivity to BRAF V600 inhibitors. PMID:26828592

  16. Melanoma Expressed-CD70 Is Regulated by RhoA and MAPK Pathways without Affecting Vemurafenib Treatment Activity.

    PubMed

    Pich, Christine; Teiti, Iotefa; Sarrabayrouse, Guillaume; Gallardo, Franck; Gence, Rémi; Tilkin-Mariamé, Anne-Françoise

    2016-01-01

    CD70 is a costimulatory molecule member of the Tumor Necrosis Factor family that is expressed on activated immune cells. Its ectopic expression has been described in several types of cancer cells including lymphomas, renal cell carcinomas and glioblastomas. We have recently described its expression in a part of tumor cells from the vast majority of melanoma biopsies and human melanoma cell lines, and found that CD70 expression decreased over time as the disease progressed. Here, we show that RhoA, BRAF and Mitogen Activating Protein Kinase pathways are involved in the positive transcriptional regulation of CD70 expression in melanomas. Interestingly, the clinical inhibitor of the common BRAF V600E/D variants, Vemurafenib (PLX-4032), which is currently used to treat melanoma patients with BRAF V600E/D-mutated metastatic melanomas, decreased CD70 expression in human CD70+ melanoma cell lines. This decrease was seen in melanoma cells both with and without the BRAFV600E/D mutation, although was less efficient in those lacking the mutation. But interestingly, by silencing CD70 in CD70+ melanoma cell lines we show that PLX-4032-induced melanoma cell killing and its inhibitory effect on MAPK pathway activation are unaffected by CD70 expression. Consequently, our work demonstrates that CD70 ectopic expression in melanomas is not a valuable biomarker to predict tumor cells sensitivity to BRAF V600 inhibitors. PMID:26828592

  17. Sensitization of Melanoma Cells for Death Ligand TRAIL Is Based on Cell Cycle Arrest, ROS Production, and Activation of Proapoptotic Bcl-2 Proteins.

    PubMed

    Quast, Sandra-Annika; Steinhorst, Katja; Plötz, Michael; Eberle, Jürgen

    2015-11-01

    The death ligand TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) represents a promising strategy for melanoma due to significant expression of TRAIL receptor 1 in melanoma metastases and high TRAIL sensitivity through this receptor. However, prevalent and inducible resistance are limiting its clinical use. In previous work, we and others have described multiple strategies leading to TRAIL sensitization; however, the common principles of these strategies remained elusive. Here, we demonstrate in melanoma cell lines (TRAIL-sensitive, TRAIL-resistant, and TRAIL-selected cells with acquired resistance) that cell cycle arrest clearly correlates with enhanced TRAIL sensitivity. Cell cycle arrest was induced by high cell confluence, serum starvation, or cyclin-dependent kinase (CDK) 4/6 inhibition. Addressing the signaling pathways revealed disruption of mitochondrial membrane potential and production of reactive oxygen species (ROS) in response to antiproliferative conditions alone. Activation of the proapoptotic Bcl-2 protein Bax and inhibition of apoptosis by Bcl-2 overexpression or by the antioxidant N-acetyl cysteine underlined the critical involvement of mitochondrial apoptosis pathways and of ROS, respectively. Most pronounced was the upregulation of small proapoptotic Bcl-2 proteins (Puma and Bcl-xS). These data provide a general understanding on TRAIL sensitization as well as an alternative view on CDK inhibitors and may suggest selective targeting of melanoma cells by cell cycle inhibition and TRAIL.

  18. Apoptosis initiation and angiogenesis inhibition: melanoma targets for nanosecond pulsed electric fields.

    PubMed

    Chen, Xinhua; Kolb, Juergen F; Swanson, R James; Schoenbach, Karl H; Beebe, Stephen J

    2010-08-01

    Many effective anti-cancer strategies target apoptosis and angiogenesis mechanisms. Applications of non-ionizing, nanosecond pulsed electric fields (nsPEFs) induce apoptosis in vitro and eliminate cancer in vivo; however in vivo mechanisms require closer analysis. These studies investigate nsPEF-induced apoptosis and anti-angiogenesis examined by fluorescent microscopy, immunoblots, and morphology. Six hours after treatment with one hundred 300 ns pulses at 40 kV/cm, cells transiently expressed active caspases indicating that caspase-mediated mechanisms. Three hours after treatment transient peaks in Histone 2AX phosphorylation coincided with terminal deoxynucleotidyl transferase dUTP nick end labeling positive cells and pyknotic nuclei, suggesting caspase-independent mechanisms on nuclei/DNA. Large DNA fragments, but not 180 bp fragmentation ladders, were observed, suggesting incomplete apoptosis. Nevertheless, tumor weight and volume decreased and tumors disappeared. One week after treatment, vessel numbers, vascular endothelial growth factor (VEGF), platelet derived endothelial cell growth factor (PD-ECGF), CD31, CD35 and CD105 were decreased, indicating anti-angiogenesis. The nsPEFs activate multiple melanoma therapeutic targets, which is consistent with successes of nsPEF applications for tumor treatment in vivo as a new cancer therapeutic modality.

  19. HIF1α and HIF2α independently activate SRC to promote melanoma metastases

    PubMed Central

    Hanna, Sara C.; Krishnan, Bhavani; Bailey, Sean T.; Moschos, Stergios J.; Kuan, Pei-Fen; Shimamura, Takeshi; Osborne, Lukas D.; Siegel, Marni B.; Duncan, Lyn M.; O’Brien, E. Tim; Superfine, Richard; Miller, C. Ryan; Simon, M. Celeste; Wong, Kwok-Kin; Kim, William Y.

    2013-01-01

    Malignant melanoma is characterized by a propensity for early lymphatic and hematogenous spread. The hypoxia-inducible factor (HIF) family of transcription factors is upregulated in melanoma by key oncogenic drivers. HIFs promote the activation of genes involved in cancer initiation, progression, and metastases. Hypoxia has been shown to enhance the invasiveness and metastatic potential of tumor cells by regulating the genes involved in the breakdown of the ECM as well as genes that control motility and adhesion of tumor cells. Using a Pten-deficient, Braf-mutant genetically engineered mouse model of melanoma, we demonstrated that inactivation of HIF1α or HIF2α abrogates metastasis without affecting primary tumor formation. HIF1α and HIF2α drive melanoma invasion and invadopodia formation through PDGFRα and focal adhesion kinase–mediated (FAK-mediated) activation of SRC and by coordinating ECM degradation via MT1-MMP and MMP2 expression. These results establish the importance of HIFs in melanoma progression and demonstrate that HIF1α and HIF2α activate independent transcriptional programs that promote metastasis by coordinately regulating cell invasion and ECM remodeling. PMID:23563312

  20. Soluble CD44 inhibits melanoma tumor growth by blocking cell surface CD44 binding to hyaluronic acid.

    PubMed

    Ahrens, T; Sleeman, J P; Schempp, C M; Howells, N; Hofmann, M; Ponta, H; Herrlich, P; Simon, J C

    2001-06-01

    Proteolytic cleavage of the extracellular domain of CD44 from the surface of cells has been observed recently in different cell types. In cell culture supernatants of human melanoma cell lines a 70 kDa soluble CD44 protein (solCD44) was detected at concentrations of 250-300 ng/ml. Protease inhibitor studies revealed that serine proteases and metalloproteases are involved in the cleavage of CD44 from the surface of melanoma cells. To analyse a possible function of soluble CD44 a human malignant melanoma cell line was stably transfected with cDNAs encoding either wild type soluble CD44s or mutated forms with defective HA binding properties (CD44sR41A and CD44sR150A/R154A). Soluble CD44s almost completely inhibited hyaluronic acid binding by melanoma cells, whereas soluble CD44 mutated in the HA binding domain had no effect. When cultivated on hyaluronic acid, melanoma cell proliferation was induced by 30% for both the parental and the control transfected cells. This increase in proliferation was blocked completely in solCD44s-secreting transfectants, whereas solCD44sR41A and solCD44sR150A/R154A-secreting cells again showed hyaluronic acid-induced cell proliferation. These cell lines were subcutaneously injected into MF1 nu/nu mice to compare their growth as tumors in vivo. Compared to tumors derived from parental and control transfected cells, we observed a dramatic reduction of primary tumor growth with solCD44s expressing MM cells. Transfectants expressing solCD44s mutated in the HA binding domain in contrast developed fast-growing primary tumors. These results provide strong evidence that direct solCD44 interactions with hyaluronic acid interfere competitively with processes induced by hyaluronic acid binding to surface CD44. Autocrine, or drug-induced secretion of solCD44 by human melanoma cells may thus exert potent antitumoral effects in vivo. PMID:11423990

  1. Extrinsic factors can mediate resistance to BRAF inhibition in central nervous system melanoma metastases.

    PubMed

    Seifert, Heike; Hirata, Eishu; Gore, Martin; Khabra, Komel; Messiou, Christina; Larkin, James; Sahai, Erik

    2016-01-01

    Here, we retrospectively review imaging of 68 consecutive unselected patients with BRAF V600-mutant metastatic melanoma for organ-specific response and progression on vemurafenib. Complete or partial responses were less often seen in the central nervous system (CNS) (36%) and bone (16%) compared to lung (89%), subcutaneous (83%), spleen (71%), liver (85%) and lymph nodes/soft tissue (83%), P < 0.001. CNS was also the most common site of progression. Based on this, we tested in vitro the efficacy of the BRAF inhibitors PLX4720 and dabrafenib in the presence of cerebrospinal fluid (CSF). Exogenous CSF dramatically reduced cell death in response to both BRAF inhibitors. Effective cell killing was restored by co-administration of a PI-3 kinase inhibitor. We conclude that the efficacy of vemurafenib is variable in different organs with CNS being particularly prone to resistance. Extrinsic factors, such as ERK- and PI3K-activating factors in CSF, may mediate BRAF inhibitor resistance in the CNS.

  2. Proteasome inhibition blocks NF-κB and ERK1/2 pathways, restores antigen expression and sensitizes resistant human melanoma to TCR-engineered CTLs

    PubMed Central

    Jazirehi, Ali R.; Economou, James S.

    2012-01-01

    Adoptive cell transfer (ACT) of ex vivo engineered autologous lymphocytes encoding high-affinity MART-1/HLA-A*0201-specific T-cell receptor (TCR) α/β chains (F5 CTL), densely infiltrate into sites of metastatic disease, mediating dramatic but partial clinical responses in melanoma patients. We hypothesized that MART-1 down-modulation in addition to aberrant apoptotic/survival signaling could confer resistance to death signals delivered by transgenic CTLs. To explore this hypothesis, we established an in vitro model of resistant (R) lines from MART-1+/HLA-A*0201+ F5 CTL-sensitive parental (P) lines under serial F5 CTL-selective pressure. We have recently reported that several melanoma R lines, while retaining MART-1 expression, exhibited constitutive NF-κB activation and over-expression of NF-κB-dependent resistance factors. Another established melanoma cell line M244, otherwise sensitive to F5 CTL, yielded R lines after serial F5 CTL selective pressure which had both reduced MART-1 expression levels, thus, could not be recognized, and were resistant to CTL-delivered apoptotic death signals. The proteasome inhibitor bortezomib blocked NF-κB activity, decreased phopspho-ERK1/2, increased phospho-JNK levels, reduced expression of resistance-factors, restored MART-1 expression to sufficient levels, which in combination allowed M244R lines be sensitized to F5 CTL-killing. These findings suggest that proteasome inhibition in immune resistant tumors can restore proapoptotic signaling and improve tumor antigen expression. PMID:22532603

  3. Recurrent activating mutations of G-protein-coupled receptor CYSLTR2 in uveal melanoma

    PubMed Central

    Moore, Amanda R; Ceraudo, Emilie; Sher, Jessica J; Guan, Youxin; Shoushtari, Alexander N; Chang, Matthew T; Zhang, Jenny Q; Walczak, Edward G; Kazmi, Manija A; Taylor, Barry S; Huber, Thomas; Chi, Ping; Sakmar, Thomas P; Chen, Yu

    2016-01-01

    Uveal melanomas are molecularly distinct from cutaneous melanomas and lack mutations in BRAF, NRAS, KIT, and NF1. Instead, they are characterized by activating mutations in GNAQ and GNA11, two highly homologous α subunits of Gαq/11 heterotrimeric G proteins, and in PLCB4 (phospholipase C β4), the downstream effector of Gαq signaling 1–3. We analyzed genomics data from 136 uveal melanoma samples and found a recurrent mutation in CYSLTR2 (cysteinyl leukotriene receptor 2) encoding a p.Leu129Gln substitution in 4 of 9 samples that lacked mutations in GNAQ, GNA11, and PLCB4 but in 0 of 127 samples that harbored mutations in these genes. The Leu129Gln CysLT2R mutant protein constitutively activates endogenous Gαq and is unresponsive to stimulation by leukotriene. Expression of Leu129Gln CysLT2R in melanocytes enforces expression of a melanocyte-lineage signature, drives phorbol ester–independent growth in vitro, and promotes tumorigenesis in vivo. Our findings implicate CYSLTR2 as a uveal melanoma oncogene and highlight the critical role of Gαq signaling in uveal melanoma pathogenesis. PMID:27089179

  4. Enhancement of melphalan activity by buthionine sulfoximine and electroporation in melanoma cells.

    PubMed

    Ongaro, Alessia; Pellati, Agnese; De Mattei, Monica; De Terlizzi, Francesca; Rossi, Carlo R; Campana, Luca G

    2015-03-01

    Melphalan represents the reference drug for locoregional chemotherapy of melanoma; nevertheless, treatment failure may occur because of resistance to chemotherapy. Refractory melanoma cells show either an increased capability of drug inactivation, which is known to be associated with elevated intracellular levels of glutathione (GSH), or a decreased melphalan uptake. The aim of this study was to explore a biochemical and a biophysical strategy, and their combination, to overcome melphalan resistance in melanoma cells. The biochemical strategy was based on the treatment of melanoma cells with DL-buthionine (S,R)-sulfoximine (BSO) to deplete the GSH levels, thus reducing melphalan inactivation. In the biophysical strategy, cell membrane electroporation was used to increase melphalan uptake. The SK-MEL 28-resistant human melanoma cell line was pretreated with 50 μmol/l BSO for 24 h and then treated with increasing melphalan doses, with or without electroporation. Spectrophotometric quantification of cell viability was used to determine melphalan cytotoxicity. Intracellular total GSH was measured using a kinetic enzymatic assay. BSO induced 3.50-fold GSH depletion in untreated cells and a similar reduction was also maintained in melphalan-treated cells. BSO pretreatment produced a 2.46-fold increase in melphalan cytotoxicity. Electroporation increased melphalan cytotoxicity 1.42-fold. The combination of both BSO pretreatment with melphalan plus electroporation led to a 4.40-fold increase in melphalan cytotoxicity compared with melphalan alone. Pretreatment with BSO and cell membrane permeabilization by electroporation enhanced the cytotoxic activity of melphalan in melanoma cells. Their rational combination deserves further investigation and may improve the efficacy of locoregional chemotherapy of melanoma.

  5. Jolkinolide B induces apoptosis and inhibits tumor growth in mouse melanoma B16F10 cells by altering glycolysis

    PubMed Central

    Gao, Caixia; Yan, Xinyan; Wang, Bo; Yu, Lina; Han, Jichun; Li, Defang; Zheng, Qiusheng

    2016-01-01

    Most cancer cells preferentially rely on glycolysis to produce the energy (adenosine triphosphate, ATP) for growth and proliferation. Emerging evidence demonstrates that the apoptosis in cancer cells could be closely associated with the inhibition of glycolysis. In this study, we have found that jolkinolide B (JB), a bioactive diterpenoid extracted from the root of Euphorbia fischeriana Steud, induced tumor cells apoptosis and decreased the production of ATP and lactic acid in mouse melanoma B16F10 cells. Furthermore, we found that JB downregulated the mRNA expression of glucose transporter genes (Glut1, Glut3 and Glut4) and glycolysis-related kinase genes (Hk2 and Ldha) in B16F10 cells. Moreover, treatment with JB upregulated the mRNA expression of pro-apoptosis genes (Bax), downregulated the mRNA expression of anti-apoptosis genes (Bcl-2, Caspase-3 and Caspase-9), decreased the potential of mitochondrial membrane and increased reactive oxygen species (ROS) levels in B16F10 cells. Finally, intragastric administration of JB suppressed tumor growth and induced tumor apoptosis in mouse xenograft model of murine melanoma B16F10 cells. Taken together, these results suggest that JB could induce apoptosis through the mitochondrial pathway and inhibit tumor growth. The inhibition of glycolysis could play a crucial role in the induction of apoptosis in JB-treated B16F10 cells. PMID:27796318

  6. Retinal vasculitis and ocular vitreous metastasis following complete response to PD-1 inhibition in a patient with metastatic cutaneous melanoma.

    PubMed

    Manusow, Joshua S; Khoja, Leila; Pesin, Nataly; Joshua, Anthony M; Mandelcorn, Efrem D

    2014-01-01

    We report on a 36-year-old woman treated with the anti PD-1 antibody Pembrolizumab for metastatic cutaneous melanoma in the first line setting. She achieved a complete response and then relapsed with metastases to the vitreous cavity with an associated angiographically determined retinal vasculitis. Vitreous metastasis without choroidal involvement is unusual and may be due to individual cell extravasation, vitreous hemorrhage containing malignant cells, or direct spread through the optic nerve. This finding highlights the need for immune sanctuary sites to be monitored in the presence of PD-1 inhibition and we hypothesize that the use of PD-1 inhibitor potentiated the patient's angiographically determined retinal vasculitis. PMID:25516805

  7. Inhibition of Immune Checkpoints and Vascular Endothelial Growth Factor as Combination Therapy for Metastatic Melanoma: An Overview of Rationale, Preclinical Evidence, and Initial Clinical Data.

    PubMed

    Ott, Patrick A; Hodi, F Stephen; Buchbinder, Elizabeth I

    2015-01-01

    The role of angiogenesis as a mediator of immune regulation in the tumor microenvironment has recently come into focus. Furthermore, emerging evidence indicates that immunotherapy can lead to immune-mediated vasculopathy in the tumor, suggesting that the tumor vasculature may be an important interface between the tumor-directed immune response and the cancer itself. The advent of immune checkpoint inhibition as an effective immunotherapeutic strategy for many cancers has led to a better understanding of this interface. While the inhibition of angiogenesis through targeting of vascular endothelial growth factor (VEGF) has been used successfully for the treatment of cancer for many years, the mechanisms of its anti-tumor activity remain poorly understood. Initial studies of the complex relationship between angiogenesis, VEGF signaling and the immune system suggest that the combination of immune checkpoint blockade with angiogenesis inhibition has potential. While the majority of this work has been performed in metastatic melanoma, immunotherapy is rapidly showing promise in a broad range of malignancies and efforts to enhance immunotherapy will broadly impact the future of oncology. Here, we review the preclinical rationale and clinical investigations of combined angiogenesis inhibition and immunotherapy/immune checkpoint inhibition as a potentially promising combinatorial approach for cancer treatment.

  8. Fluorescent peptide biosensor for monitoring CDK4/cyclin D kinase activity in melanoma cell extracts, mouse xenografts and skin biopsies.

    PubMed

    Prével, Camille; Pellerano, Morgan; González-Vera, Juan A; Henri, Pauline; Meunier, Laurent; Vollaire, Julien; Josserand, Véronique; Morris, May C

    2016-11-15

    Melanoma constitutes the most aggressive form of skin cancer, which further metastasizes into a deadly form of cancer. The p16(INK4a)-Cyclin D-CDK4/6-pRb pathway is dysregulated in 90% of melanomas. CDK4/Cyclin D kinase hyperactivation, associated with mutation of CDK4, amplification of Cyclin D or loss of p16(INK4a) leads to increased risk of developing melanoma. This kinase therefore constitutes a key biomarker in melanoma and an emerging pharmacological target, however there are no tools enabling direct detection or quantification of its activity. Here we report on the design and application of a fluorescent peptide biosensor to quantify CDK4 activity in melanoma cell extracts, skin biopsies and melanoma xenografts. This biosensor provides sensitive means of comparing CDK4 activity between different melanoma cell lines and further responds to CDK4 downregulation by siRNA or small-molecule inhibitors. By affording means of monitoring CDK4 hyperactivity consequent to cancer-associated molecular alterations in upstream signaling pathways that converge upon this kinase, this biosensor offers an alternative to immunological identification of melanoma-specific biomarkers, thereby constituting an attractive tool for diagnostic purposes, providing complementary functional information to histological analysis, of particular utility for detection of melanoma onset in precancerous lesions. This is indeed the first fluorescent peptide biosensor which has been successfully implemented to monitor kinase activity in skin samples and melanoma tumour xenografts. Moreover by enabling to monitor response to CDK4 inhibitors, this biosensor constitutes an attractive companion assay to identify compounds of therapeutic relevance for melanoma. PMID:27203461

  9. Fluorescent peptide biosensor for monitoring CDK4/cyclin D kinase activity in melanoma cell extracts, mouse xenografts and skin biopsies.

    PubMed

    Prével, Camille; Pellerano, Morgan; González-Vera, Juan A; Henri, Pauline; Meunier, Laurent; Vollaire, Julien; Josserand, Véronique; Morris, May C

    2016-11-15

    Melanoma constitutes the most aggressive form of skin cancer, which further metastasizes into a deadly form of cancer. The p16(INK4a)-Cyclin D-CDK4/6-pRb pathway is dysregulated in 90% of melanomas. CDK4/Cyclin D kinase hyperactivation, associated with mutation of CDK4, amplification of Cyclin D or loss of p16(INK4a) leads to increased risk of developing melanoma. This kinase therefore constitutes a key biomarker in melanoma and an emerging pharmacological target, however there are no tools enabling direct detection or quantification of its activity. Here we report on the design and application of a fluorescent peptide biosensor to quantify CDK4 activity in melanoma cell extracts, skin biopsies and melanoma xenografts. This biosensor provides sensitive means of comparing CDK4 activity between different melanoma cell lines and further responds to CDK4 downregulation by siRNA or small-molecule inhibitors. By affording means of monitoring CDK4 hyperactivity consequent to cancer-associated molecular alterations in upstream signaling pathways that converge upon this kinase, this biosensor offers an alternative to immunological identification of melanoma-specific biomarkers, thereby constituting an attractive tool for diagnostic purposes, providing complementary functional information to histological analysis, of particular utility for detection of melanoma onset in precancerous lesions. This is indeed the first fluorescent peptide biosensor which has been successfully implemented to monitor kinase activity in skin samples and melanoma tumour xenografts. Moreover by enabling to monitor response to CDK4 inhibitors, this biosensor constitutes an attractive companion assay to identify compounds of therapeutic relevance for melanoma.

  10. Simvastatin rises reactive oxygen species levels and induces senescence in human melanoma cells by activation of p53/p21 pathway

    SciTech Connect

    Guterres, Fernanda Augusta de Lima Barbosa; Martinez, Glaucia Regina; Rocha, Maria Eliane Merlin; Winnischofer, Sheila Maria Brochado

    2013-11-15

    Recent studies demonstrated that simvastatin has antitumor properties in several types of cancer cells, mainly by inducing apoptosis and inhibiting growth. The arrest of proliferation is a feature of cellular senescence; however, the occurrence of senescence in melanoma cells upon simvastatin treatment has not been investigated until now. Our results demonstrated that exposure of human metastatic melanoma cells (WM9) to simvastatin induces a senescent phenotype, characterized by G1 arrest, positive staining for senescence-associated β-galactosidase assay, and morphological changes. Also, the main pathways leading to cell senescence were examined in simvastatin-treated human melanoma cells, and the expression levels of phospho-p53 and p21 were upregulated by simvastatin, suggesting that cell cycle regulators and DNA damage pathways are involved in the onset of senescence. Since simvastatin can act as a pro-oxidant agent, and oxidative stress may be related to senescence, we measured the intracellular ROS levels in WM9 cells upon simvastatin treatment. Interestingly, we found an increased amount of intracellular ROS in these cells, which was accompanied by elevated expression of catalase and peroxiredoxin-1. Collectively, our results demonstrated that simvastatin can induce senescence in human melanoma cells by activation of p53/p21 pathway, and that oxidative stress may be related to this process. - Highlights: • Lower concentrations of simvastatin can induce senescent phenotype in melanoma cells. • Simvastatin induces senescence in human melanoma cells via p53/p21 pathway. • Senescent phenotype is related with increased intracellular ROS. • Partial detoxification of ROS by catalase/peroxiredoxin-1 could lead cells to senescence rather than apoptosis.

  11. MMS 1001 inhibits melanin synthesis via ERK activation.

    PubMed

    Lee, Hyun-E; Song, Jiho; Kim, Su Yeon; Park, Kyoung-Chan; Min, Kyung Hoon; Kim, Dong-Seok

    2013-03-01

    Melanin plays major a role in pigmentation of hair, eyes, and skin in mammals. In this study, the inhibitory effects of MMS 1001 on alpha-MSH-stimulated melanogenesis were investigated in B16F10 melanoma cells. MMS 1001 did not show cytotoxic effects up to 10 microM. Melanin content and intracellular tyrosinase activity were inhibited by MMS 1001 treatment in a dose-dependent manner. In Western blot analysis, MITF expression was decreased by MMS 1001. In addition, tyrosinase expressions were also reduced after MMS 1001 treatment. Further results showed that the phosphorylation of ERK was induced by MMS 1001. Moreover, a specific MEK inhibitor, PD98059, abrogated the inhibitory effects of MMS 1001 on melanin production and tyrosinase expression. These results indicate that the hypopigmentary effects of MMS 1001 resulted from the inhibition of MITF and tyrosinase expression via phosphorylation of ERK. Thus, MMS 1001 could be developed as a new effective skin-whitening agent.

  12. O6-methylguanine-DNA methyltransferase activities in biopsies of human melanoma tumours.

    PubMed Central

    Egyházi, S.; Hansson, J.; Ringborg, U.

    1995-01-01

    Tumour samples obtained from one primary melanoma and several lymph node and skin metastases were analysed for O6-methylguanine-DNA methyltransferase (MGMT) activity. While lymph node and skin metastases had similar average MGMT activity, the variance was significantly higher in lymph node metastases. Variability in MGMT activity was frequently observed in different metastases in the same individual and to a lesser extent within metastases. PMID:7819045

  13. Quantitative expression profiling of G-protein-coupled receptors (GPCRs) in metastatic melanoma: the constitutively active orphan GPCR GPR18 as novel drug target.

    PubMed

    Qin, Y; Verdegaal, E M E; Siderius, M; Bebelman, J P; Smit, M J; Leurs, R; Willemze, R; Tensen, C P; Osanto, S

    2011-02-01

    G-protein-coupled receptors (GPCRs) have been implicated in the tumorigenesis and metastasis of human cancers and are considered amongst the most desirable targets for drug development. Utilizing a robust quantitative PCR array, we quantified expression of 94 human GPCRs, including 75 orphan GPCRs and 19 chemokine receptors, and 36 chemokine ligands, in 40 melanoma metastases from different individuals and benign nevi. Inter-metastatic site comparison revealed that orphan GPR174 and CCL28 are statistically significantly overexpressed in subcutaneous metastases, while P2RY5 is overexpressed in brain metastases. Comparison between metastases (all three metastatic sites) and benign nevi revealed that 16 genes, including six orphan receptors (GPR18, GPR34, GPR119, GPR160, GPR183 and P2RY10) and chemokine receptors CCR5, CXCR4, and CXCR6, were statistically significantly differentially expressed. Subsequent functional experiments in yeast and melanoma cells indicate that GPR18, the most abundantly overexpressed orphan GPCR in all melanoma metastases, is constitutively active and inhibits apoptosis, indicating an important role for GPR18 in tumor cell survival. GPR18 and five other orphan GPCRs with yet unknown biological function may be considered potential novel anticancer targets in metastatic melanoma. PMID:20880198

  14. AC-1001 H3 CDR peptide induces apoptosis and signs of autophagy in vitro and exhibits antimetastatic activity in a syngeneic melanoma model.

    PubMed

    Rabaça, Aline N; Arruda, Denise C; Figueiredo, Carlos R; Massaoka, Mariana H; Farias, Camyla F; Tada, Dayane B; Maia, Vera C; Silva Junior, Pedro I; Girola, Natalia; Real, Fernando; Mortara, Renato A; Polonelli, Luciano; Travassos, Luiz R

    2016-09-01

    Antibody-derived peptides modulate functions of the immune system and are a source of anti-infective and antitumor substances. Recent studies have shown that they comprise amino acid sequences of immunoglobulin complementarity-determining regions, but also fragments of constant regions. VH CDR3 of murine mAb AC-1001 displays antimetastatic activities using B16F10-Nex2 murine melanoma cells in a syngeneic model. The peptide was cytotoxic in vitro in murine and human melanoma cells inducing reactive oxygen species (ROS) and apoptosis by the intrinsic pathway. Signs of autophagy were also suggested by the increased expression of LC3/LC3II and Beclin 1 and by ultrastructural evidence. AC-1001 H3 bound to both G- and F-actin and inhibited tumor cell migration. These results are important evidence of the antitumor activity of Ig CDR-derived peptides. PMID:27642552

  15. Concomitant Inhibition of PI3Kβ and BRAF or MEK in PTEN-Deficient/BRAF-Mutant Melanoma Treatment: Preclinical Assessment of SAR260301 Oral PI3Kβ-Selective Inhibitor.

    PubMed

    Bonnevaux, Hélène; Lemaitre, Olivier; Vincent, Loic; Levit, Mikhail N; Windenberger, Fanny; Halley, Frank; Delorme, Cécile; Lengauer, Christoph; Garcia-Echeverria, Carlos; Virone-Oddos, Angela

    2016-07-01

    Class IA PI3K pathway activation resulting from PTEN deficiency has been associated with lack of sensitivity of melanoma to BRAF kinase inhibitors. Although previous studies have shown synergistic activity when pan-PI3K inhibitors were combined with MAPK inhibitors in the treatment of melanoma exhibiting concurrent genetic abnormalities, overlapping adverse events in patients limit optimal dosing and clinical application. With the aim of specifically targeting PTEN-deficient cancers and minimizing the potential for on-target toxicity when inhibiting multiple PI3K isoforms, we developed a program to discover PI3Kβ-selective kinase inhibitors and identified SAR260301 as a potent PI3Kβ-selective, orally available compound, which is now in clinical development. Herein, we provide a detailed biological characterization of SAR260301, and show that this compound has outstanding biochemical and cellular selectivity for the PI3Kβ isoform versus the α, δ, and γ isoforms and a large panel of protein and lipid kinases. We demonstrate that SAR260301 blocks PI3K pathway signaling preferentially in PTEN-deficient human tumor models, and has synergistic antitumor activity when combined with vemurafenib (BRAF inhibitor) or selumetinib (MEK inhibitor) in PTEN-deficient/BRAF-mutated human melanoma tumor models. Combination treatments were very well tolerated, suggesting the potential for a superior safety profile at optimal dosing using selective compounds to inhibit multiple signaling pathways. Together, these experiments provide a preclinical proof-of-concept for safely combining inhibitors of PI3Kβ and BRAF or MEK kinase modulators to improve antitumor activity in PTEN-deficient/BRAF-mutant melanoma, and support the evaluation of SAR260301-based combinations in clinical studies. Mol Cancer Ther; 15(7); 1460-71. ©2016 AACR. PMID:27196754

  16. High intensity focused ultrasound enhances anti-tumor immunity by inhibiting the negative regulatory effect of miR-134 on CD86 in a murine melanoma model

    PubMed Central

    Yang, Min; Zha, He; Sun, Hui; Li, Xue-Ru; Li, Ai-Fang; Gu, Yue; Duan, Liang; Luo, Jin-Yong; Li, Chong-Yan; Wang, Yan; Wang, Zhi-Biao; He, Tong-Chuan; Zhou, Lan

    2015-01-01

    HIFU has been demonstrated to enhance anti-tumor immunity, however, the mechanism of which has not been well elucidated. Emerging evidence indicates that miRNAs play important roles in immune response. In this study, we used the B16F10 melanoma allograft mouse model to investigate the role of miRNAs in HIFU-enhanced anti-tumor immunity. We found that HIFU treatment decreased circulating B16F10 cells and pulmonary metastasis nodules while increased IFN-γ and TNF-α in the peripheral blood and cumulative mouse survival, which was associated with inhibition of miR-134 expression and activation of CD86 expression in tumor tissues. Further, we determined that miR-134 directly binds to the 3′UTR of CD86 mRNA to suppress its expression in B16F10 cells. When B16F10 cells transfected with miR-134 were co-cultured with normal splenic lymphocytes, the secretion of IFN-γ and TNF-α from lymphocytes was reduced and B16F10 cell survival was increased. HIFU exposure efficiently decreased miR-134 while increased CD86 expression in B16F10 cells in vitro. CD86 knockdown with siRNA markedly rescued the viability of HIFU-treated B16F10 cells that co-cultured with lymphocytes. Altogether, our results suggest that HIFU down-regulates miR-134 to release the inhibition of miR-134 on CD86 in melanoma cells, thereby enhancing anti-tumor immune response. PMID:26485753

  17. Novel approaches in melanoma prevention and therapy.

    PubMed

    Grimaldi, Antonio M; Cassidy, Pamela B; Leachmann, Sancy; Ascierto, Paolo A

    2014-01-01

    The incidence of cutaneous melanoma has risen at a rate significantly higher than that for other malignancies. This increase persists despite efforts to educate the public about the dangers of excess exposure to UV radiation from both the sun and tanning beds. Melanoma affects a relatively younger population and is notorious for its propensity to metastasize and for its poor response to current therapeutic regimens. These factors make prevention an integral component to the goal of decreasing melanoma-related mortality. Transformation of melanocytes into malignant melanoma involves the interplay between genetic factors, UV exposure, and the tumor microenvironment. The roles of UV radiation in the etiology of melanoma are mediated by both direct damage of DNA through formation of photoproducts and production of reactive oxygen species (ROS). Many of the promising antioxidant agents under development for the prevention of melanoma are derived from foodstuffs. B-Raf is a member of the Raf kinase family of serine/threonine-specific protein kinases that plays a role in regulating the MAP kinase/ERKs signaling pathway. About 50 % of melanomas harbor activating BRAF mutations. BRAF mutations are found in 59 % of the melanomas arising in skin with intermittent sun exposure, such as trunk and arms, as compared with only 23 % of the acral melanomas, 11 % of mucosal melanomas, and 0 % of uveal melanomas. Two new agents, ipilimumab and vemurafenib, have been shown to improve outcome of advanced melanoma as presented at the plenary session of the 2011 annual meeting of the American Society of Clinical Oncology. Vemurafenib is the first personalized compound which demonstrated an improvement in progression-free survival (PFS) and overall survival (OS) in metastatic melanoma harboring the BRAFV600 mutation and represents the first drug of a class that exerts its anti-proliferative activity through inhibition of a highly specific molecular target. GSK2118436 (dabrafenib), the

  18. Epigenetic activation of a cryptic TBC1D16 transcript enhances melanoma progression by targeting EGFR

    PubMed Central

    Vizoso, Miguel; Ferreira, Humberto J; Lopez-Serra, Paula; Javier Carmona, F; Martínez-Cardús, Anna; Girotti, Maria Romina; Villanueva, Alberto; Guil, Sonia; Moutinho, Catia; Liz, Julia; Portela, Anna; Heyn, Holger; Moran, Sebastian; Vidal, August; Martinez-Iniesta, Maria; Manzano, Jose L; Fernandez-Figueras, Maria Teresa; Elez, Elena; Muñoz-Couselo, Eva; Botella-Estrada, Rafael; Berrocal, Alfonso; Pontén, Fredrik; van den Oord, Joost; Gallagher, William M; Frederick, Dennie T; Flaherty, Keith T; McDermott, Ultan; Lorigan, Paul; Marais, Richard; Esteller, Manel

    2016-01-01

    Metastasis is responsible for most cancer-related deaths, and, among common tumor types, melanoma is one with great potential to metastasize. Here we study the contribution of epigenetic changes to the dissemination process by analyzing the changes that occur at the DNA methylation level between primary cancer cells and metastases. We found a hypomethylation event that reactivates a cryptic transcript of the Rab GTPase activating protein TBC1D16 (TBC1D16-47 kDa; referred to hereafter as TBC1D16-47KD) to be a characteristic feature of the metastatic cascade. This short isoform of TBC1D16 exacerbates melanoma growth and metastasis both in vitro and in vivo. By combining immunoprecipitation and mass spectrometry, we identified RAB5C as a new TBC1D16 target and showed that it regulates EGFR in melanoma cells. We also found that epigenetic reactivation of TBC1D16-47KD is associated with poor clinical outcome in melanoma, while conferring greater sensitivity to BRAF and MEK inhibitors. PMID:26030178

  19. Evaluation of surrogate tissues as indicators of drug activity in a melanoma skin model.

    PubMed

    Parekh, Palak R; Choudhuri, Rohini; Weyemi, Urbain; Martin, Olga A; Bonner, William M; Redon, Christophe E

    2016-08-01

    The development of novel cancer treatments is a challenging task, partly because results from model systems often fail to predict drug efficacy in humans, and also tumors are often inaccessible for biochemical analysis, preventing effective monitoring of drug activity in vivo. Utilizing a model system, we evaluated the use of drug-induced DNA damage in surrogate tissues as indicators of drug efficacy. Samples of a commercially available melanoma skin model (Mattek MLNM-FT-A375) containing keratinocyte and fibroblast layers with melanoma nodules were subjected to various chemotherapeutic regimens for one, four, or eight days. At these times they were analyzed for DNA double-stranded breaks (γH2AX foci) and apoptosis (TUNEL). A wide range of drug responses in both tumor and normal tissues were observed and cataloged. For the melanoma, the most common drug response was apoptosis. The basal keratinocyte layer, which was the most reliable indicator of drug response in the melanoma skin model, responded with γH2AX foci formation that was abrupt and transient. The relationships between tumor and surrogate tissue drug responses are complex, indicating that while surrogate tissue drug responses may be useful clinical tools, careful control of variables such as the timing of sampling may be important in interpreting the results. PMID:27339860

  20. Epigenetic activation of a cryptic TBC1D16 transcript enhances melanoma progression by targeting EGFR.

    PubMed

    Vizoso, Miguel; Ferreira, Humberto J; Lopez-Serra, Paula; Carmona, F Javier; Martínez-Cardús, Anna; Girotti, Maria Romina; Villanueva, Alberto; Guil, Sonia; Moutinho, Catia; Liz, Julia; Portela, Anna; Heyn, Holger; Moran, Sebastian; Vidal, August; Martinez-Iniesta, Maria; Manzano, Jose L; Fernandez-Figueras, Maria Teresa; Elez, Elena; Muñoz-Couselo, Eva; Botella-Estrada, Rafael; Berrocal, Alfonso; Pontén, Fredrik; Oord, Joost van den; Gallagher, William M; Frederick, Dennie T; Flaherty, Keith T; McDermott, Ultan; Lorigan, Paul; Marais, Richard; Esteller, Manel

    2015-07-01

    Metastasis is responsible for most cancer-related deaths, and, among common tumor types, melanoma is one with great potential to metastasize. Here we study the contribution of epigenetic changes to the dissemination process by analyzing the changes that occur at the DNA methylation level between primary cancer cells and metastases. We found a hypomethylation event that reactivates a cryptic transcript of the Rab GTPase activating protein TBC1D16 (TBC1D16-47 kDa; referred to hereafter as TBC1D16-47KD) to be a characteristic feature of the metastatic cascade. This short isoform of TBC1D16 exacerbates melanoma growth and metastasis both in vitro and in vivo. By combining immunoprecipitation and mass spectrometry, we identified RAB5C as a new TBC1D16 target and showed that it regulates EGFR in melanoma cells. We also found that epigenetic reactivation of TBC1D16-47KD is associated with poor clinical outcome in melanoma, while conferring greater sensitivity to BRAF and MEK inhibitors.

  1. High LIFr expression stimulates melanoma cell migration and is associated with unfavorable prognosis in melanoma.

    PubMed

    Guo, Hongwei; Cheng, Yabin; Martinka, Magdalena; McElwee, Kevin

    2015-09-22

    Increased or decreased expression of LIF receptor (LIFr) has been reported in several human cancers, including skin cancer, but its role in melanoma is unknown. In this study, we investigated the expression pattern of LIFr in melanoma and assessed its prognostic value. Using tissue microarrays consisting of 441 melanomas and 96 nevi, we found that no normal nevi showed high LIFr expression. LIFr staining was significantly increased in primary melanoma compared to dysplastic nevi (P = 0.0003) and further increased in metastatic melanoma (P = 0.0000). Kaplan-Meier survival curve and univariate Cox regression analyses showed that increased expression of LIFr was correlated with poorer 5-year patient survival (overall survival, P = 0.0000; disease-specific survival, P = 0.0000). Multivariate Cox regression analyses indicated that increased LIFr expression was an independent prognostic marker for primary melanoma (P = 0.036). LIFr knockdown inhibited melanoma cell migration in wound healing assays and reduced stress fiber formation. LIFr knockdown correlated with STAT3 suppression, but not YAP, suggesting that LIFr activation might stimulate melanoma cell migration through the STAT3 pathway. Our data indicate that strong LIFr expression identifies potentially highly malignant melanocytic lesions at an early stage and LIFr may be a potential target for the development of early intervention therapeutics. PMID:26329521

  2. Holothurian glycosaminoglycan inhibits metastasis via inhibition of P-selectin in B16F10 melanoma cells.

    PubMed

    Yue, Zhiqiang; Wang, Aiyun; Zhu, Zhijie; Tao, Li; Li, Yao; Zhou, Liang; Chen, Wenxing; Lu, Yin

    2015-12-01

    P-selectin-mediated tumor cell adhesion to platelets is a well-established stage in the process of tumor metastasis. Through computerized structural analysis, we found a marine-derived polysaccharide, holothurian glycosaminoglycan (hGAG), behaved as a ligand-competitive inhibitor of P-selectin, indicating its potential to disrupt the binding of P-selectin to cell surface receptor and activation of downstream regulators of tumor cell migration. Our experimental data demonstrated that hGAG significantly inhibited P-selectin-mediated adhesion of tumor cells to platelets and tumor cell migration in vitro and reduced subsequent pulmonary metastasis in vivo. Furthermore, abrogation of the P-selectin-mediated adhesion of tumor cells led to down-regulation of protein levels of integrins, FAK and MMP-2/9 in B16F10 cells, which is a crucial molecular mechanism of hGAG to inhibit tumor metastasis. In conclusion, hGAG has emerged as a novel anti-cancer agent via blocking P-selectin-mediated malignant events of tumor metastasis.

  3. The activation of human endogenous retrovirus K (HERV-K) is implicated in melanoma cell malignant transformation

    SciTech Connect

    Serafino, A. Balestrieri, E.; Pierimarchi, P.; Matteucci, C.; Moroni, G.; Oricchio, E.; Rasi, G.; Mastino, A.; Spadafora, C.; Garaci, E.; Vallebona, P. Sinibaldi

    2009-03-10

    Melanoma development is a multi-step process arising from a series of genetic and epigenetic events. Although the sequential stages involved in progression from melanocytes to malignant melanoma are clearly defined, our current understanding of the mechanisms leading to melanoma onset is still incomplete. Growing evidence show that the activation of endogenous retroviral sequences might be involved in transformation of melanocytes as well as in the increased ability of melanoma cells to escape immune surveillance. Here we show that human melanoma cells in vitro undergo a transition from adherent to a more malignant, non-adherent phenotype when exposed to stress conditions. Melanoma-derived non-adherent cells are characterized by an increased proliferative potential and a decreased expression of both HLA class I molecules and Melan-A/MART-1 antigen, similarly to highly malignant cells. These phenotypic and functional modifications are accompanied by the activation of human endogenous retrovirus K expression (HERV-K) and massive production of viral-like particles. Down-regulation of HERV-K expression by RNA interference prevents the transition from the adherent to the non-adherent growth phenotype in low serum. These results implicate HERV-K in at least some critical steps of melanoma progression.

  4. The X protein of hepatitis B virus activates hepatoma cell proliferation through repressing melanoma inhibitory activity 2 gene

    SciTech Connect

    Xu, Yilin; Yang, Yang; Cai, Yanyan; Liu, Fang; Liu, Yingle; Zhu, Ying; Wu, Jianguo

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer We demonstrated that HBV represses MIA2 gene expression both invitro and in vivo. Black-Right-Pointing-Pointer The X protein of HBV plays a major role in such regulation. Black-Right-Pointing-Pointer Knock-down of MIA2 in HepG2 cells activates cell growth and proliferation. Black-Right-Pointing-Pointer HBx activates cell proliferation, over-expression of MIA2 impaired such regulation. Black-Right-Pointing-Pointer HBx activates hepatoma cell proliferation through repressing MIA2 expression. -- Abstract: Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer deaths globally. Chronic hepatitis B virus (HBV) infection accounts for over 75% of all HCC cases; however, the molecular pathogenesis of HCC is not well understood. In this study, we found that the expression of the newly identified gene melanoma inhibitory activity 2 (MIA2) was reduced by HBV infection invitro and invivo, and that HBV X protein (HBx) plays a major role in this regulation. Recent studies have revealed that MIA2 is a potential tumor suppressor, and that, in most HCCs, MIA2 expression is down-regulated or lost. We found that the knock-down of MIA2 in HepG2 cells activated cell growth and proliferation, suggesting that MIA2 inhibits HCC cell growth and proliferation. In addition, the over-expression of HBx alone induced cell proliferation, whereas MIA2 over-expression impaired the HBx-mediated induction of proliferation. Taken together, our results suggest that HBx activates hepatoma cell growth and proliferation through repression of the potential tumor suppressor MIA2.

  5. Effective innate and adaptive anti-melanoma immunity through localized TLR-7/8 activation

    PubMed Central

    Singh, Manisha; Khong, Hiep; Dai, Zhimin; Huang, Xue-Fei; Wargo, Jennifer A.; Cooper, Zachary A.; Vasilakos, John P.; Hwu, Patrick; Overwijk, Willem W.

    2014-01-01

    Intratumoral immune activation can induce local and systemic anti-tumor immunity. Imiquimod is a cream-formulated, TLR-7 agonist that is FDA-approved for the treatment of non-melanoma skin cancers, but has limited activity against melanoma. We studied the anti-tumor activity and mechanism of action of a novel, injectable, tissue-retained TLR 7/8 agonist, 3M-052, which avoids systemic distribution. Intratumoral administration of 3M-052 generated systemic anti-tumor immunity, and suppressed both injected and distant, uninjected wild-type B16.F10 melanomas. Treated tumors showed increased level of CCL2 chemokines and infiltration of M1 phenotype-shifted macrophages, which could kill tumor cells directly through production of nitric oxide and CCL2, was essential for the anti-tumor activity of 3M-052. CD8+ T cells, B cells, Type I IFN, IFN-γ, and pDC were contributed to efficient tumor suppression whereas perforin, NK cells and CD4 T cells were not required. Finally, 3M-052 therapy potentiated checkpoint blockade therapy with anti-CTLA-4 and anti-PD-L1 antibodies, even when checkpoint blockade alone was ineffective. Our findings suggest that intratumoral treatment with 3M-052 is a promising approach for the treatment of cancer and establish a rational strategy and mechanistic understanding for combination therapy with intratumoral, tissue-retained TLR7/8 agonist and checkpoint blockade in metastatic cancer. PMID:25252955

  6. Radiosensitization and downregulation of heterogeneous nuclear ribonucleoprotein K (hnRNP K) upon inhibition of mitogen/extracellular signal-regulated kinase (MEK) in malignant melanoma cells

    PubMed Central

    Eder, Stefan; Lamkowski, Andreas; Priller, Markus; Port, Matthias; Steinestel, Konrad

    2015-01-01

    Background Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is an important cofactor in the p53-mediated DNA damage response pathway upon ionizing radiation (IR) and exerts anti-apoptotic effects also independent of p53 pathway activation. Furthermore, hnRNP K is overexpressed in various neoplasms including malignant melanoma (MM). Here, we investigate the role of hnRNP K in the radioresistance of MM cells. Methods and results Our results show cytoplasmic expression of hnRNP K in human MM surgical specimens, but not in benign nevi, and a quick dose- and time-dependent upregulation in response to IR accompanied by cytoplasmic redistribution of the protein in the IPC-298 cellular tumor model carrying an activating NRAS mutation (p.Q61L). SiRNA-based knockdown of hnRNP K induced a delayed decline in γH2AX/53BP1-positive DNA repair foci upon IR. Pharmacological interference with MAPK signaling abrogated ERK phosphorylation, diminished cellular hnRNP K levels, impaired γH2AX/53BP1-foci repair and proliferative capability and increased apoptosis comparable to the observed hnRNP K knockdown phenotype in IPC-298 cells. Conclusion Our results indicate that pharmacological interference with MAPK signaling increases vulnerability of NRAS-mutant malignant melanoma cells to ionizing radiation along with downregulation of endogenous hnRNP K and point towards a possible use for combined MEK inhibition and localized radiation therapy of MM in the NRAS-mutant setting where BRAF inhibitors offer no clinical benefit. PMID:26136337

  7. Stepwise multi-photon activation fluorescence reveals a new method of melanoma imaging for dermatologists

    NASA Astrophysics Data System (ADS)

    Lai, Zhenhua; Lian, Christine; Ma, Jie; Yu, Jingyi; Gu, Zetong; Rajadhyaksha, Milind; DiMarzio, Charles A.

    2014-02-01

    Previous research has shown that the stepwise multi-photon activated fluorescence (SMPAF) of melanin, activated by a continuous-wave (CW) mode near infrared (NIR) laser, is a low cost and reliable method of detecting melanin. SMPAF images of melanin in a mouse hair and a formalin fixed mouse melanoma were compared with conventional multiphoton fluorescence microscopy (MPFM) images and confocal reflectance microscopy (CRM) images, all of which were acquired at an excitation wavelength of 920 nm, to further prove the effectiveness of SMPAF in detecting melanin. SMPAF images add specificity for melanin detection to MPFM images and CRM images. Melanin SMPAF can be a promising technology to enable melanoma imaging for dermatologists.

  8. Basic and clinical aspects of malignant melanoma

    SciTech Connect

    Nathanson, L. )

    1987-01-01

    This book contains the following 10 chapters: The role of oncogenes in the pathogenesis of malignant melanoma; Laminin and fibronectin modulate the metastatic activity of melanoma cells; Structure, function and biosynthesis of ganglioside antigens associated with human tumors derived from the neuroectoderm; Epidemiology of ocular melanoma; Malignant melanoma: Prognostic factors; Endocrine influences on the natural history of human malignant melanoma; Psychosocial factors associated with prognostic indicators, progression, psychophysiology, and tumor-host response in cutaneous malignant melanoma; Central nervous system metastases in malignant melanoma; Interferon trials in the management of malignant melanoma and other neoplasms: an overview; and The treatment of malignant melanoma by fast neutrons.

  9. Exceptional antineoplastic activity of a dendritic-cell-targeted vaccine loaded with a Listeria peptide proposed against metastatic melanoma

    PubMed Central

    Calderon-Gonzalez, Ricardo; Bronchalo-Vicente, Lucia; Freire, Javier; Frande-Cabanes, Elisabet; Alaez-Alvarez, Lidia; Gomez-Roman, Javier; Yañez-Diaz, Sonsóles; Alvarez-Dominguez, Carmen

    2016-01-01

    Vaccination with dendritic cells (DCs) is proposed to induce lasting responses against melanoma but its survival benefit in patients needs to be demonstrated. We propose a DC-targeted vaccine loaded with a Listeria peptide with exceptional anti-tumour activity to prevent metastasis of melanoma. Mice vaccinated with vaccines based on DCs loaded with listeriolysin O peptide (91–99) (LLO91–99) showed clear reduction of metastatic B16OVA melanoma size and adhesion, prevention of lung metastasis, enhanced survival, and reversion of immune tolerance. Robust innate and specific immune responses explained the efficiency of DC-LLO91–99 vaccines against B16OVA melanoma. The noTable features of this vaccine related to melanoma reduction were: expansion of immune-dominant LLO91–99-specific CD8 T cells that helped to expand melanoma-specific CD8+ T cells; high numbers of tumour-infiltrating lymphocytes with a cytotoxic phenotype; and a decrease in CD4+CD25high regulatory T cells. This vaccine might be a useful alternative treatment for advanced melanoma, alone or in combination with other therapies. PMID:26942874

  10. The activation of melanogenesis by p-CREB and MITF signaling with extremely low-frequency electromagnetic fields on B16F10 melanoma.

    PubMed

    Kim, Yu-Mi; Cho, Sang-Eun; Seo, Young-Kwon

    2016-10-01

    Melanin in the skin determines the skin color, and decreased melanin causes many hypopigmentation disorders and increased damage to skin by ultraviolet B (UVB) light irradiation. Here, we stimulate melanogenesis in B16F10 melanoma cells by using specific frequencies of ELF-EMFs. In this study, we focus on the melanogenesis of EMF-ELFs and find that 60-75Hz ELF-EMFs upregulate melanin synthesis by stimulated expression of tyrosinase and TRP-1 through inhibition of phosphorylation ERK, activation of CREB, and MITF up-regulation in B16F10 melanoma cells. The results show that 60-75Hz ELF-EMFs significantly increase secreted melanin, cellular melanin content, and tyrosinase activity, and the cell mitochondria activity, cell viability, and cell membrane condition are unchanged. Furthermore, the protein expression level of MITF and p-CREB signaling pathway are significantly increased. Moreover, 60Hz ELF-EMFs reduce the phosphorylate of ERK in B16F10 melanoma cells. These findings indicate that stimulation of melanogenesis by using ELF-EMFs has therapeutic potential for treating hypopigmentation disorders such as vitiligo. PMID:27543340

  11. Factors significantly increasing or inhibiting early stages of malignant melanoma (M.M.) and non-invasive evaluation of new treatment by ingestion and external application of optimal doses of the most effective anti-M.M. substances: haritaki, cilantro, vitamin D3, nori, EPA with DHA, & application of special (+) solar energy stored paper, which reduced the M.M. active area & asbestos rapidly.

    PubMed

    Omura, Yoshiaki; Jones, Marilyn; Duvvi, Harsha; Paluch, Kamila; Shimotsuura, Yasuhiro; Ohki, Motomu

    2013-01-01

    Sterilizing the pre-cancer skin of malignant melanoma (M.M.) with 70% Isopropyl alcohol intensified malignancy & the malignant response extended to surrounding normal looking skin, while sterilizing with 80% (vodka) or 12% (plum wine) ethyl alcohol completely inhibited M.M. in the area (both effects lasted for about 90 minutes initially). Burnt food (bread, vegetables, meat, and fish), a variety of smoked & non-smoked fish-skin, many animal's skin, pepper, Vitamin C over 75 mg, mango, pineapple, coconut, almond, sugars, Saccharine & Aspartame, garlic, onion, etc & Electromagnetic field from cellular phones worsened M.M. & induced abnormal M.M. response of surrounding skin. We found the following factors inhibit early stage of M.M. significantly: 1) Increasing normal cell telomere, by taking 500 mg Haritaki, often reached between 400-1150 ng& gradually diminished, but the M.M. response was completely inhibited until normal cell telomeres are reduced to 150 ng, which takes 6-8 hours. More than 70 mg Vitamin C, Orange Juice, & other high Vitamin C containing substances shouldn't be taken because they completely inhibit the effects of Haritaki. 2) We found Chrysotile asbestos & Tremolite asbestos (% of the Chrysotile amount) coexist. A special Cilantro tablet was used to remove asbestos & some toxic metals. 3) Vitamin D3 400 I.U. has a maximum inhibiting effect on M.M. but 800 I.U. or higher promotes malignancy. 4) Noricontaining Iodine, etc., was used. 5) EPA 180 mm with DHA 120 mg was most effectively used after metastasis to the surrounding skin was eliminated. When we combined 1 Cilantro tablet & Vitamin D3 400 I.U. withsmall Nori pieces & EPA with DHA, the effect of complete inhibition of M.M. lasted 9-11 hours. When these anti-M.M.substances (Haritaki, Vitamin D3, Cilantro, Nori, EPA. with DHA) were taken together, the effect lasted 12-14 hoursand M.M. involvement in surrounding normal-looking skin disappeared rapidly & original dark brown or black are as

  12. Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAF(V600E) melanoma.

    PubMed

    Hu-Lieskovan, Siwen; Mok, Stephen; Homet Moreno, Blanca; Tsoi, Jennifer; Robert, Lidia; Goedert, Lucas; Pinheiro, Elaine M; Koya, Richard C; Graeber, Thomas G; Comin-Anduix, Begoña; Ribas, Antoni

    2015-03-18

    Combining immunotherapy and BRAF targeted therapy may result in improved antitumor activity with the high response rates of targeted therapy and the durability of responses with immunotherapy. However, the first clinical trial testing the combination of the BRAF inhibitor vemurafenib and the CTLA4 antibody ipilimumab was terminated early because of substantial liver toxicities. MEK [MAPK (mitogen-activated protein kinase) kinase] inhibitors can potentiate the MAPK inhibition in BRAF mutant cells while potentially alleviating the unwanted paradoxical MAPK activation in BRAF wild-type cells that lead to side effects when using BRAF inhibitors alone. However, there is the concern of MEK inhibitors being detrimental to T cell functionality. Using a mouse model of syngeneic BRAF(V600E)-driven melanoma, SM1, we tested whether addition of the MEK inhibitor trametinib would enhance the antitumor activity of combined immunotherapy with the BRAF inhibitor dabrafenib. Combination of dabrafenib and trametinib with pmel-1 adoptive cell transfer (ACT) showed complete tumor regression, increased T cell infiltration into tumors, and improved in vivo cytotoxicity. Single-agent dabrafenib increased tumor-associated macrophages and T regulatory cells (Tregs) in tumors, which decreased with the addition of trametinib. The triple combination therapy resulted in increased melanosomal antigen and major histocompatibility complex (MHC) expression and global immune-related gene up-regulation. Given the up-regulation of PD-L1 seen with dabrafenib and/or trametinib combined with antigen-specific ACT, we tested the combination of dabrafenib, trametinib, and anti-PD1 therapy in SM1 tumors, and observed superior antitumor effect. Our findings support the testing of triple combination therapy of BRAF and MEK inhibitors with immunotherapy in patients with BRAF(V600E) mutant metastatic melanoma.

  13. Overexpression of melanoma inhibitory activity (MIA) enhances extravasation and metastasis of A-mel 3 melanoma cells in vivo

    PubMed Central

    Guba, M; Bosserhoff, A-K; Steinbauer, M; Abels, C; Anthuber, M; Buettner, R; Jauch, K-W

    2000-01-01

    The secreted MIA protein is strongly expressed by advanced primary and metastatic melanomas but not in normal melanocytes. Previous studies have shown that MIA serum levels correlate with clinical tumour progression in melanoma patients. To provide direct evidence that MIA plays a role in metastasis of malignant melanomas, A-mel 3 hamster melanoma cells were transfected with sense- and antisense rhMIA cDNA and analysed subsequently for changes in their tumorigenic and metastatic potential. Enforced expression of MIA in A-mel 3 cells significantly increased their metastatic potential without affecting primary tumour growth, cell proliferation or apoptosis rate in hamsters, compared with control or antisense transfected cells. Additionally, MIA overexpressing transfectants showed a higher rate of both tumour cell invasion and extravasation. Cells transfected with MIA antisense generally exerted an opposite response. The above changes in function attributed to the expression of MIA may underlie the contribution of MIA to the malignant phenotype. © 2000 Cancer Research Campaign PMID:11027436

  14. Casticin Inhibits A375.S2 Human Melanoma Cell Migration/Invasion through Downregulating NF-κB and Matrix Metalloproteinase-2 and -1.

    PubMed

    Wu, Zih-Yun; Lien, Jin-Cherng; Huang, Yi-Ping; Liao, Ching-Lung; Lin, Jen-Jyh; Fan, Ming-Jen; Ko, Yang-Ching; Hsiao, Yu-Ping; Lu, Hsu-Feng; Chung, Jing-Gung

    2016-01-01

    Casticin is one of the main components from Fructus Viticis, which is widely used as an anti-inflammatory agent. The mechanism of how casticin affects melanoma cell migration and invasion is still not well known. Here we studied the anti-metastasis effects of casticin on A375.S2 melanoma cells by using a non-lethal concentration. First; we used an adhesion assay to test the A375.S2 cells' adhesion ability after treatment with casticin. We next investigated the cell migration ability after casticin treatment by using a wound healing assay to prove that the migration of A375.S2 cells can be inhibited by casticin and double checked the results using the transwell-migration assay. The suppressive effects on matrix metalloproteinase-2; and -9 (MMP-2; and -9) activities were examined by gelatin zymography. Furthermore, western blotting was used to investigate the protein level changes in A375.S2 cells. We found that p-EGFR; Ras and p-ERK1/2 are decreased by casticin, indicating that casticin can down-regulate the migration and invasion ability of A375.S2 cells via the p-EGFR/Ras/p-ERK pathway. The NF-κB p65 and p-ERK levels in nuclear proteins are also decreased by treatment with casticin. An EMSA assay also discovered that the NF-κB p65 and DNA interaction is decreased. NF-κB p65 protein level was examined by immunofluorescence staining and also decreased. Our findings suggest that casticin has anti-metastatic potential by decreasing the invasiveness of A375.S2 cells. We also found that casticin suppressed A375.S2 cell proliferation and cell adhesion ability, but did not affect cell death, as examined using cytometry and a collagen adhesion assay. Based on these observations, casticin could be used as an inhibitor of migration and invasion of human melanoma cells in the future. PMID:27007357

  15. SIRT1 regulates lamellipodium extension and migration of melanoma cells.

    PubMed

    Kunimoto, Risa; Jimbow, Kowichi; Tanimura, Akihiko; Sato, Masahiro; Horimoto, Kouhei; Hayashi, Takashi; Hisahara, Shin; Sugino, Toshiya; Hirobe, Tomohisa; Yamashita, Toshiharu; Horio, Yoshiyuki

    2014-06-01

    Melanoma is highly metastatic, but the mechanism of melanoma cell migration is still unclear. We found that melanoma cells expressed the nicotinamide adenine dinucleotide-dependent protein deacetylase SIRT1 in the cytoplasm. Cell membrane extension and migration of melanoma cells were inhibited by SIRT1 inhibitors or SIRT1 knockdown, whereas SIRT1 activators enhanced elongation of protrusion and cellular motility. In B16F1 cells, growth factor stimulation induced lamellipodium extension, a characteristic feature at the leading edge of migrating cells, and SIRT1 was found in the lamellipodium. SIRT1 inhibitor nicotinamide (NAM) or SIRT1 small interfering RNAs suppressed the lamellipodium extension by serum or platelet-derived growth factor (PDGF). The lamellipodium formation by dominant-active Rac1 was also inhibited by NAM, a SIRT1 inhibitor. NAM inhibited the accumulation of phosphorylated Akt at the submembrane by serum or PDGF. Using fluorescence resonance energy transfer, we found that NAM impaired PDGF-dependent increase in the phosphatidylinositol-3,4,5-trisphosphate level at the leading edge. NAM inhibited the abdominal metastasis of transplanted B16F1 melanoma cells in C57BL6/J mice and improved survival. Finally, SIRT1-knockdown B16F1 cells showed significantly reduced metastasis in transplanted mice compared with that in control B16F1 cells. These results indicate that SIRT1 inhibition is a strategy to suppress metastasis of melanoma cells. PMID:24480879

  16. ADAM15 expression is downregulated in melanoma metastasis compared to primary melanoma

    SciTech Connect

    Ungerer, Christopher; Doberstein, Kai; Boehm, Beate; Pfeilschifter, Josef; Mihic-Probst, Daniela; Gutwein, Paul

    2010-10-22

    Research highlights: {yields} Strong ADAM15 expression is found in normal melanocytes. {yields} ADAM15 expression is significantly downregulated in patients with melanoma metastasis. {yields} TGF-{beta} can downregulate ADAM15 expression in melanoma cells. {yields} Overexpression of ADAM15 in melanoma cells inhibits migration, proliferation and invasion of melanoma cells. {yields} Conclusion: ADAM15 represents an tumor suppressor protein in melanoma. -- Abstract: In a mouse melanoma metastasis model it has been recently shown that ADAM15 overexpression in melanoma cells significantly reduced the number of metastatic nodules on the lung. Unfortunately, the expression of ADAM15 in human melanoma tissue has not been determined so far. In our study, we characterized the expression of ADAM15 in tissue micro-arrays of patients with primary melanoma with melanoma metastasis. ADAM15 was expressed in melanocytes and endothelial cells of benign nevi and melanoma tissue. Importantly, ADAM15 was significantly downregulated in melanoma metastasis compared to primary melanoma. We further demonstrate that IFN-{gamma} and TGF-{beta} downregulate ADAM15 protein levels in melanoma cells. To investigate the role of ADAM15 in melanoma progression, we overexpressed ADAM15 in melanoma cells. Importantly, overexpression of ADAM15 in melanoma cells reduced the migration, invasion and the anchorage dependent and independent cell growth of melanoma cells. In summary, the downregulation of ADAM15 plays an important role in melanoma progression and ADAM15 act as a tumorsuppressor in melanoma.

  17. A novel o-naphtoquinone inhibits N-cadherin expression and blocks melanoma cell invasion via AKT signaling.

    PubMed

    Montenegro, Raquel Carvalho; de Vasconcellos, Marne Carvalho; Barbosa, Gleyce Dos Santos; Burbano, Rommel M R; Souza, Luciana G S; Lemos, Telma L G; Costa-Lotufo, Letícia V; de Moraes, Manoel Odorico

    2013-10-01

    The down-regulation or loss of epithelial markers is often accompanied by the up-regulation of mesenchymal markers. E-cadherin generally suppresses invasiveness, whereas N-cadherin promotes invasion and metastasis in vitro. The aim of this work is to investigate the role of biflorin, a naphthoquinone with proven anticancer properties, on the expression of N-cadherin and AKT proteins in MDA-MB-435 invasive melanoma cancer cells after 12h of exposure to 1, 2.5 and 5 μM biflorin. Biflorin inhibited MDA-MB-435 invasion in a dose-dependent manner (p<0.01). Likewise, biflorin down-regulated N-cadherin and AKT-1 expression in a dose-dependent manner. Biflorin did not inhibit the adhesion of MDA-MB-435 cells to any tested substrates. Additionally, biflorin blocked the invasiveness of cells by down-regulating N-cadherin, most likely via AKT-1 signaling. As such, biflorin may be a novel anticancer agent and a new prototype for drug design. PMID:23912027

  18. Akt3 and Mutant V600EB-Raf Cooperate to Promote Early Melanoma Development

    PubMed Central

    Cheung, Mitchell; Sharma, Arati; Madhunapantula, SubbaRao V.; Robertson, Gavin P.

    2008-01-01

    B-Raf is the most mutated gene in melanoma; however, mechanism through which it promotes early melanomas remains uncertain. Most nevi contain activated V600EB-Raf but few develop into melanoma and expression in melanocytes is inhibitory with low protein levels present in surviving cells, suggesting unknown cooperative oncogenic events are necessary for melanoma development. Since many melanomas have V600EB-Raf and active Akt3, it is possible these proteins cooperatively facilitate melanocyte transformation. In this study, Akt3 is shown to phosphorylate V600EB-Raf to lower its activity as well as that of the downstream MAP kinase pathway to levels promoting early melanoma development. Expression of active Akt3 in early melanoma cells containing V600EB-Raf reduced MAP kinase signaling and promoted anchorage independent growth. Furthermore, expression of both V600EB-Raf and active Akt3 in melanocytes promoted a transformed phenotype. Mechanistically, aberrant Akt3 activity in early melanomas serves to phosphorylate serines 364 and 428 on V600EB-Raf in order to reduce activity of V600EB-Raf to levels that promote rather than inhibit proliferation, which aids melanocytic transformation. Inhibition of V600EB-Raf or Akt3 in advanced melanoma cells in which both pathways were active reduced anchorage independent growth and tumor development in a cooperatively acting manner. Inhibition of Akt3 alone in these cells led to increased MAP kinase signaling. In summary, these results suggest that activating B-Raf mutations initially promote nevi development but the resulting high, intense activation of the MAP kinase pathway inhibits further tumor progression requiring Akt3 activation to bypass this barrier and aid melanoma development. PMID:18451171

  19. Effects of Wnt-10b on proliferation and differentiation of murine melanoma cells

    SciTech Connect

    Misu, Masayasu; Ouji, Yukiteru; Kawai, Norikazu; Nishimura, Fumihiko; Nakamura-Uchiyama, Fukumi; Yoshikawa, Masahide

    2015-08-07

    In spite of the strong expression of Wnt-10b in melanomas, its role in melanoma cells has not been elucidated. In the present study, the biological effects of Wnt-10b on murine B16F10 (B16) melanoma cells were investigated using conditioned medium from Wnt-10b-producing COS cells (Wnt-CM). After 2 days of culture in the presence of Wnt-CM, proliferation of B16 melanoma cells was inhibited, whereas tyrosinase activity was increased. An in vitro wound healing assay demonstrated that migration of melanoma cells to the wound area was inhibited with the addition of Wnt-CM. Furthermore, evaluation of cellular senescence revealed prominent induction of SA-β-gal-positive senescent cells in cultures with Wnt-CM. Finally, the growth of B16 melanoma cell aggregates in collagen 3D-gel cultures was markedly suppressed in the presence of Wnt-CM. These results suggest that Wnt-10b represses tumor cell properties, such as proliferation and migration of B16 melanoma cells, driving them toward a more differentiated state along a melanocyte lineage. - Highlights: • Wnt-10b inhibited proliferation and migration of melanoma cells. • Wnt-10b induced tyrosinase activity and senescence of melanoma cells. • Wnt-10b suppressed growth of cell aggregates in collagen 3D-gel cultures. • Wnt-10b represses tumor cell properties, driving them toward a more differentiated state along a melanocyte lineage.

  20. Prophylactic Dendritic Cell-Based Vaccines Efficiently Inhibit Metastases in Murine Metastatic Melanoma.

    PubMed

    Markov, Oleg V; Mironova, Nadezhda L; Sennikov, Sergey V; Vlassov, Valentin V; Zenkova, Marina A

    2015-01-01

    Recent data on the application of dendritic cells (DCs) as anti-tumor vaccines has shown their great potential in therapy and prophylaxis of cancer. Here we report on a comparison of two treatment schemes with DCs that display the models of prophylactic and therapeutic vaccination using three different experimental tumor models: namely, Krebs-2 adenocarcinoma (primary tumor), melanoma (B16, metastatic tumor without a primary node) and Lewis lung carcinoma (LLC, metastatic tumor with a primary node). Dendritic cells generated from bone marrow-derived DC precursors and loaded with lysate of tumor cells or transfected with the complexes of total tumor RNA with cationic liposomes were used for vaccination. Lipofectamine 2000 and liposomes consisting of helper lipid DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine) and cationic lipid 2D3 (1,26-Bis(1,2-de-O-tetradecyl-rac-glycerol)-7,11,16,20-tetraazahexacosan tetrahydrocloride) were used for RNA transfection. It was shown that DCs loaded with tumor lysate were ineffective in contrast to tumor-derived RNA. Therapeutic vaccination with DCs loaded by lipoplexes RNA/Lipofectamine 2000 was the most efficient for treatment of non-metastatic Krebs-2, where a 1.9-fold tumor growth retardation was observed. Single prophylactic vaccination with DCs loaded by lipoplexes RNA/2D3 was the most efficient to treat highly aggressive metastatic tumors LLC and B16, where 4.7- and 10-fold suppression of the number of lung metastases was observed, respectively. Antimetastatic effect of single prophylactic DC vaccination in metastatic melanoma model was accompanied by the reductions in the levels of Th2-specific cytokines however the change of the levels of Th1/Th2/Th17 master regulators was not found. Failure of double prophylactic vaccination is explained by Th17-response polarization associated with autoimmune and pro-inflammatory reactions. In the case of therapeutic DC vaccine the polarization of Th1-response was found nevertheless

  1. Prophylactic Dendritic Cell-Based Vaccines Efficiently Inhibit Metastases in Murine Metastatic Melanoma

    PubMed Central

    Sennikov, Sergey V.; Vlassov, Valentin V.; Zenkova, Marina A.

    2015-01-01

    Recent data on the application of dendritic cells (DCs) as anti-tumor vaccines has shown their great potential in therapy and prophylaxis of cancer. Here we report on a comparison of two treatment schemes with DCs that display the models of prophylactic and therapeutic vaccination using three different experimental tumor models: namely, Krebs-2 adenocarcinoma (primary tumor), melanoma (B16, metastatic tumor without a primary node) and Lewis lung carcinoma (LLC, metastatic tumor with a primary node). Dendritic cells generated from bone marrow-derived DC precursors and loaded with lysate of tumor cells or transfected with the complexes of total tumor RNA with cationic liposomes were used for vaccination. Lipofectamine 2000 and liposomes consisting of helper lipid DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine) and cationic lipid 2D3 (1,26-Bis(1,2-de-O-tetradecyl-rac-glycerol)-7,11,16,20-tetraazahexacosan tetrahydrocloride) were used for RNA transfection. It was shown that DCs loaded with tumor lysate were ineffective in contrast to tumor-derived RNA. Therapeutic vaccination with DCs loaded by lipoplexes RNA/Lipofectamine 2000 was the most efficient for treatment of non-metastatic Krebs-2, where a 1.9-fold tumor growth retardation was observed. Single prophylactic vaccination with DCs loaded by lipoplexes RNA/2D3 was the most efficient to treat highly aggressive metastatic tumors LLC and B16, where 4.7- and 10-fold suppression of the number of lung metastases was observed, respectively. Antimetastatic effect of single prophylactic DC vaccination in metastatic melanoma model was accompanied by the reductions in the levels of Th2-specific cytokines however the change of the levels of Th1/Th2/Th17 master regulators was not found. Failure of double prophylactic vaccination is explained by Th17-response polarization associated with autoimmune and pro-inflammatory reactions. In the case of therapeutic DC vaccine the polarization of Th1-response was found nevertheless

  2. Melanoma resistance to photodynamic therapy: new insights

    PubMed Central

    Huang, Ying-Ying; Vecchio, Daniela; Avci, Pinar; Yin, Rui; Garcia-Diaz, Maria; Hamblin, Michael R.

    2012-01-01

    Melanoma is the most dangerous form of skin cancer, with a steeply rising incidence and a poor prognosis in its advanced stages. Melanoma is highly resistant to traditional chemotherapy and radiotherapy, although modern targeted therapies such as BRAF inhibitors are showing some promise. Photodynamic therapy (PDT, the combination of photosensitizing dyes and visible light) has been tested for melanoma with some promising results, but melanoma is generally considered to also be resistant to PDT. Optical interference by the highly-pigmented melanin, the anti-oxidant effect of melanin, the sequestration of photosensitizers inside melanosomes, defects in apoptotic pathways, and the efflux of photosensitizers by ATP-binding cassette (ABC) transporters have all been implicated in melanoma resistance to PDT. Approaches to overcoming melanoma resistance to PDT include: the discovery of highly active photosensitizers absorbing in the 700–800-nm near infrared spectral region; interventions that can temporarily reduce the amount or the pigmentation of the melanin; compounds that can reverse apoptotic defects or inhibit drug-efflux of photosensitizers; and immunotherapy approaches that can take advantage of the ability of PDT to activate the host immune system to the treated tumor. PMID:23152406

  3. JUN dependency in distinct early and late BRAF inhibition adaptation states of melanoma.

    PubMed

    Titz, Bjoern; Lomova, Anastasia; Le, Allison; Hugo, Willy; Kong, Xiangju; Ten Hoeve, Johanna; Friedman, Michael; Shi, Hubing; Moriceau, Gatien; Song, Chunying; Hong, Aayoung; Atefi, Mohammad; Li, Richard; Komisopoulou, Evangelia; Ribas, Antoni; Lo, Roger S; Graeber, Thomas G

    2016-01-01

    A prominent mechanism of acquired resistance to BRAF inhibitors in BRAF (V600) -mutant melanoma is associated with the upregulation of receptor tyrosine kinases. Evidences suggested that this resistance mechanism is part of a more complex cellular adaptation process. Using an integrative strategy, we found this mechanism to invoke extensive transcriptomic, (phospho-) proteomic and phenotypic alterations that accompany a cellular transition to a de-differentiated, mesenchymal and invasive state. Even short-term BRAF-inhibitor exposure leads to an early adaptive, differentiation state change-characterized by a slow-cycling, persistent state. The early persistent state is distinct from the late proliferative, resistant state. However, both differentiation states share common signaling alterations including JUN upregulation. Motivated by the similarities, we found that co-targeting of BRAF and JUN is synergistic in killing fully resistant cells; and when used up-front, co-targeting substantially impairs the formation of the persistent subpopulation. We confirmed that JUN upregulation is a common response to BRAF inhibitor treatment in clinically treated patient tumors. Our findings demonstrate that events shared between early- and late-adaptation states provide candidate up-front co-treatment targets. PMID:27648299

  4. JUN dependency in distinct early and late BRAF inhibition adaptation states of melanoma

    PubMed Central

    Titz, Bjoern; Lomova, Anastasia; Le, Allison; Hugo, Willy; Kong, Xiangju; ten Hoeve, Johanna; Friedman, Michael; Shi, Hubing; Moriceau, Gatien; Song, Chunying; Hong, Aayoung; Atefi, Mohammad; Li, Richard; Komisopoulou, Evangelia; Ribas, Antoni; Lo, Roger S; Graeber, Thomas G

    2016-01-01

    A prominent mechanism of acquired resistance to BRAF inhibitors in BRAFV600-mutant melanoma is associated with the upregulation of receptor tyrosine kinases. Evidences suggested that this resistance mechanism is part of a more complex cellular adaptation process. Using an integrative strategy, we found this mechanism to invoke extensive transcriptomic, (phospho-) proteomic and phenotypic alterations that accompany a cellular transition to a de-differentiated, mesenchymal and invasive state. Even short-term BRAF-inhibitor exposure leads to an early adaptive, differentiation state change—characterized by a slow-cycling, persistent state. The early persistent state is distinct from the late proliferative, resistant state. However, both differentiation states share common signaling alterations including JUN upregulation. Motivated by the similarities, we found that co-targeting of BRAF and JUN is synergistic in killing fully resistant cells; and when used up-front, co-targeting substantially impairs the formation of the persistent subpopulation. We confirmed that JUN upregulation is a common response to BRAF inhibitor treatment in clinically treated patient tumors. Our findings demonstrate that events shared between early- and late-adaptation states provide candidate up-front co-treatment targets. PMID:27648299

  5. JUN dependency in distinct early and late BRAF inhibition adaptation states of melanoma

    PubMed Central

    Titz, Bjoern; Lomova, Anastasia; Le, Allison; Hugo, Willy; Kong, Xiangju; ten Hoeve, Johanna; Friedman, Michael; Shi, Hubing; Moriceau, Gatien; Song, Chunying; Hong, Aayoung; Atefi, Mohammad; Li, Richard; Komisopoulou, Evangelia; Ribas, Antoni; Lo, Roger S; Graeber, Thomas G

    2016-01-01

    A prominent mechanism of acquired resistance to BRAF inhibitors in BRAFV600-mutant melanoma is associated with the upregulation of receptor tyrosine kinases. Evidences suggested that this resistance mechanism is part of a more complex cellular adaptation process. Using an integrative strategy, we found this mechanism to invoke extensive transcriptomic, (phospho-) proteomic and phenotypic alterations that accompany a cellular transition to a de-differentiated, mesenchymal and invasive state. Even short-term BRAF-inhibitor exposure leads to an early adaptive, differentiation state change—characterized by a slow-cycling, persistent state. The early persistent state is distinct from the late proliferative, resistant state. However, both differentiation states share common signaling alterations including JUN upregulation. Motivated by the similarities, we found that co-targeting of BRAF and JUN is synergistic in killing fully resistant cells; and when used up-front, co-targeting substantially impairs the formation of the persistent subpopulation. We confirmed that JUN upregulation is a common response to BRAF inhibitor treatment in clinically treated patient tumors. Our findings demonstrate that events shared between early- and late-adaptation states provide candidate up-front co-treatment targets.

  6. JUN dependency in distinct early and late BRAF inhibition adaptation states of melanoma.

    PubMed

    Titz, Bjoern; Lomova, Anastasia; Le, Allison; Hugo, Willy; Kong, Xiangju; Ten Hoeve, Johanna; Friedman, Michael; Shi, Hubing; Moriceau, Gatien; Song, Chunying; Hong, Aayoung; Atefi, Mohammad; Li, Richard; Komisopoulou, Evangelia; Ribas, Antoni; Lo, Roger S; Graeber, Thomas G

    2016-01-01

    A prominent mechanism of acquired resistance to BRAF inhibitors in BRAF (V600) -mutant melanoma is associated with the upregulation of receptor tyrosine kinases. Evidences suggested that this resistance mechanism is part of a more complex cellular adaptation process. Using an integrative strategy, we found this mechanism to invoke extensive transcriptomic, (phospho-) proteomic and phenotypic alterations that accompany a cellular transition to a de-differentiated, mesenchymal and invasive state. Even short-term BRAF-inhibitor exposure leads to an early adaptive, differentiation state change-characterized by a slow-cycling, persistent state. The early persistent state is distinct from the late proliferative, resistant state. However, both differentiation states share common signaling alterations including JUN upregulation. Motivated by the similarities, we found that co-targeting of BRAF and JUN is synergistic in killing fully resistant cells; and when used up-front, co-targeting substantially impairs the formation of the persistent subpopulation. We confirmed that JUN upregulation is a common response to BRAF inhibitor treatment in clinically treated patient tumors. Our findings demonstrate that events shared between early- and late-adaptation states provide candidate up-front co-treatment targets.

  7. Characterization and Inducing Melanoma Cell Apoptosis Activity of Mannosylerythritol Lipids-A Produced from Pseudozyma aphidis.

    PubMed

    Fan, Linlin; Li, Hongji; Niu, Yongwu; Chen, Qihe

    2016-01-01

    Mannosylerythritol lipids (MELs) are natural glycolipid biosurfactants which have potential applications in the fields of food, cosmetic and medicine. In this study, MELs were produced from vegetable oil by Pseudozyma aphidis. Their structural data through LC/MS, GC/MS and NMR analysis revealed that MEL-A with two acetyls was the major compound and the identified homologs of MEL-A contained a length of C8 to C14 fatty acid chains. This glycolipid exhibited a surface tension of 27.69 mN/m at a critical micelle concentration (CMC), self-assembling into particles in the water solution. It was observed to induce cell growth-inhibition and apoptosis of B16 melanoma cells in a dose-dependent manner, as well as cause cell cycle arrest at the S phase. Further quantitative RT-PCR analysis and western blotting revealed an increasing tendency of both mRNA and protein expressions of Caspase-12, CHOP, GRP78 and Caspase-3, and a down-regulation of protein Bcl-2. Combined with the up regulation of signaling IRE1 and ATF6, it can be speculated that MEL-A-induced B16 melanoma cell apoptosis was associated with the endoplasmic reticulum stress (ERS). PMID:26828792

  8. Characterization and Inducing Melanoma Cell Apoptosis Activity of Mannosylerythritol Lipids-A Produced from Pseudozyma aphidis

    PubMed Central

    Fan, Linlin; Li, Hongji; Niu, Yongwu; Chen, Qihe

    2016-01-01

    Mannosylerythritol lipids (MELs) are natural glycolipid biosurfactants which have potential applications in the fields of food, cosmetic and medicine. In this study, MELs were produced from vegetable oil by Pseudozyma aphidis. Their structural data through LC/MS, GC/MS and NMR analysis revealed that MEL-A with two acetyls was the major compound and the identified homologs of MEL-A contained a length of C8 to C14 fatty acid chains. This glycolipid exhibited a surface tension of 27.69 mN/m at a critical micelle concentration (CMC), self-assembling into particles in the water solution. It was observed to induce cell growth-inhibition and apoptosis of B16 melanoma cells in a dose-dependent manner, as well as cause cell cycle arrest at the S phase. Further quantitative RT-PCR analysis and western blotting revealed an increasing tendency of both mRNA and protein expressions of Caspase-12, CHOP, GRP78 and Caspase-3, and a down-regulation of protein Bcl-2. Combined with the up regulation of signaling IRE1 and ATF6, it can be speculated that MEL-A-induced B16 melanoma cell apoptosis was associated with the endoplasmic reticulum stress (ERS). PMID:26828792

  9. Combinatorial drug screening and molecular profiling reveal diverse mechanisms of intrinsic and adaptive resistance to BRAF inhibition in V600E BRAF mutant melanomas

    PubMed Central

    Roller, Devin G.; Capaldo, Brian; Bekiranov, Stefan; Mackey, Aaron J.; Conaway, Mark R.; Petricoin, Emanuel F.; Gioeli, Daniel; Weber, Michael J.

    2016-01-01

    Over half of BRAFV600E melanomas display intrinsic resistance to BRAF inhibitors, in part due to adaptive signaling responses. In this communication we ask whether BRAFV600E melanomas share common adaptive responses to BRAF inhibition that can provide clinically relevant targets for drug combinations. We screened a panel of 12 treatment-naïve BRAFV600E melanoma cell lines with MAP Kinase pathway inhibitors in pairwise combination with 58 signaling inhibitors, assaying for synergistic cytotoxicity. We found enormous diversity in the drug combinations that showed synergy, with no two cell lines having an identical profile. Although the 6 lines most resistant to BRAF inhibition showed synergistic benefit from combination with lapatinib, the signaling mechanisms by which this combination generated synergistic cytotoxicity differed between the cell lines. We conclude that adaptive responses to inhibition of the primary oncogenic driver (BRAFV600E) are determined not only by the primary oncogenic driver but also by diverse secondary genetic and epigenetic changes (“back-seat drivers”) and hence optimal drug combinations will be variable. Because upregulation of receptor tyrosine kinases is a major source of drug resistance arising from diverse adaptive responses, we propose that inhibitors of these receptors may have substantial clinical utility in combination with inhibitors of the MAP Kinase pathway. PMID:26673621

  10. β-Caryophyllene potently inhibits solid tumor growth and lymph node metastasis of B16F10 melanoma cells in high-fat diet-induced obese C57BL/6N mice.

    PubMed

    Jung, Jae In; Kim, Eun Ji; Kwon, Gyoo Taik; Jung, Yoo Jin; Park, Taesung; Kim, Yongkang; Yu, Rina; Choi, Myung-Sook; Chun, Hyang Sook; Kwon, Seung-Hae; Her, Song; Lee, Ki Won; Park, Jung Han Yoon

    2015-09-01

    We reported previously that high-fat diet (HFD) feeding stimulated solid tumor growth and lymph node (LN) metastasis in C57BL/6N mice injected with B16F10 melanoma cells. β-caryophyllene (BCP) is a natural bicyclic sesquiterpene found in many essential oils and has been shown to exert anti-inflammatory activities. To examine whether BCP inhibits HFD-induced melanoma progression, 4-weeks old, male C57BL/6N mice were fed a control diet (CD, 10 kcal% fat) or HFD (60 kcal% fat + 0, 0.15 or 0.3% BCP) for the entire experimental period. After 16 weeks of feeding, B16F10s were subcutaneously injected into mice. Three weeks later, tumors were resected, and mice were killed 2 weeks post-resection. Although HFD feeding increased body weight gain, fasting blood glucose levels, solid tumor growth, LN metastasis, tumor cell proliferation, angiogenesis and lymphangiogenesis, it decreased apoptotic cells, all of which were suppressed by dietary BCP. HFD feeding increased the number of lipid vacuoles and F4/80+ macrophage (MΦ) and macrophage mannose receptor (MMR)+ M2-MΦs in tumor tissues and adipose tissues surrounding the LN, which was suppressed by BCP. HFD feeding increased the levels of CCL19 and CCL21 in the LN and the expression of CCR7 in the tumor; these changes were blocked by dietary BCP. In vitro culture results revealed that BCP inhibited lipid accumulation in 3T3-L1 preadipocytes; monocyte migration and monocyte chemoattractant protein-1 secretion by B16F10s, adipocytes and M2-MΦs; angiogenesis and lymphangiogenesis. The suppression of adipocyte and M2-cell accumulation and the inhibition of CCL19/21-CCR7 axis may be a part of mechanisms for the BCP suppression of HFD-stimulated melanoma progression.

  11. Inhibition of autophagy enhances the anticancer activity of silver nanoparticles

    PubMed Central

    Lin, Jun; Huang, Zhihai; Wu, Hao; Zhou, Wei; Jin, Peipei; Wei, Pengfei; Zhang, Yunjiao; Zheng, Fang; Zhang, Jiqian; Xu, Jing; Hu, Yi; Wang, Yanhong; Li, Yajuan; Gu, Ning; Wen, Longping

    2014-01-01

    Silver nanoparticles (Ag NPs) are cytotoxic to cancer cells and possess excellent potential as an antitumor agent. A variety of nanoparticles have been shown to induce autophagy, a critical cellular degradation process, and the elevated autophagy in most of these situations promotes cell death. Whether Ag NPs can induce autophagy and how it might affect the anticancer activity of Ag NPs has not been reported. Here we show that Ag NPs induced autophagy in cancer cells by activating the PtdIns3K signaling pathway. The autophagy induced by Ag NPs was characterized by enhanced autophagosome formation, normal cargo degradation, and no disruption of lysosomal function. Consistent with these properties, the autophagy induced by Ag NPs promoted cell survival, as inhibition of autophagy by either chemical inhibitors or ATG5 siRNA enhanced Ag NPs-elicited cancer cell killing. We further demonstrated that wortmannin, a widely used inhibitor of autophagy, significantly enhanced the antitumor effect of Ag NPs in the B16 mouse melanoma cell model. Our results revealed a novel biological activity of Ag NPs in inducing cytoprotective autophagy, and inhibition of autophagy may be a useful strategy for improving the efficacy of Ag NPs in anticancer therapy. PMID:25484080

  12. Truncating PREX2 mutations activate its GEF activity and alter gene expression regulation in NRAS-mutant melanoma

    PubMed Central

    Lissanu Deribe, Yonathan; Shi, Yanxia; Rai, Kunal; Nezi, Luigi; Amin, Samir B.; Wu, Chia-Chin; Akdemir, Kadir C.; Mahdavi, Mozhdeh; Peng, Qian; Chang, Qing Edward; Hornigold, Kirsti; Arold, Stefan T.; Welch, Heidi C. E.; Garraway, Levi A.; Chin, Lynda

    2016-01-01

    PREX2 (phosphatidylinositol-3,4,5-triphosphate-dependent Rac-exchange factor 2) is a PTEN (phosphatase and tensin homolog deleted on chromosome 10) binding protein that is significantly mutated in cutaneous melanoma and pancreatic ductal adenocarcinoma. Here, genetic and biochemical analyses were conducted to elucidate the nature and mechanistic basis of PREX2 mutation in melanoma development. By generating an inducible transgenic mouse model we showed an oncogenic role for a truncating PREX2 mutation (PREX2E824*) in vivo in the context of mutant NRAS. Using integrative cross-species gene expression analysis, we identified deregulated cell cycle and cytoskeleton organization as significantly perturbed biological pathways in PREX2 mutant tumors. Mechanistically, truncation of PREX2 activated its Rac1 guanine nucleotide exchange factor activity, abolished binding to PTEN and activated the PI3K (phosphatidyl inositol 3 kinase)/Akt signaling pathway. We further showed that PREX2 truncating mutations or PTEN deletion induces down-regulation of the tumor suppressor and cell cycle regulator CDKN1C (also known as p57KIP2). This down-regulation occurs, at least partially, through DNA hypomethylation of a differentially methylated region in chromosome 11 that is a known regulatory region for expression of the CDKN1C gene. Together, these findings identify PREX2 as a mediator of NRAS-mutant melanoma development that acts through the PI3K/PTEN/Akt pathway to regulate gene expression of a cell cycle regulator. PMID:26884185

  13. Evaluation of antioxidant and anti-melanogenic activities of different extracts from aerial parts of Nepeta binaludensis Jamzad in murine melanoma B16F10 cells

    PubMed Central

    Tayarani-Najaran, Zahra; Akaberi, Maryam; Vatani, Mohsen; Emami, Seyed Ahmad

    2016-01-01

    Objective(s): Nepeta binaludensis Jamzad (Lamiaceae) has been used in folk medicine of Iran to cure various diseases. The plant is an endemic species to the country that has recently been identified in Razavi Khorasan province. To evaluate the antioxidant and anti-melanogenesis of N. binaludensis, in this study the inhibitory activity of different extracts of N. binaludensis in murine melanoma B16F10 cells is investigated. Materials and Methods: The effects of petroleum ether, dichloromethane, ethyl acetate, and methanol extracts isolated from the plant on melanogenesis in B16 melanoma cells were investigated. To assess the inhibitory effects of this plant on melanogenesis, various assays were used including cytotoxicity, inhibition of mushroom tyrosinase and cellular tyrosinase, determination of melanin content, the effect of extracts on reactive oxygen species and western blot analysis of proteins involved in melanogenesis process. Results: The content of melanin and the activity of tyrosinase were significantly reduced with different extracts of N. binaludensis in cells. Reactive oxygen species was also significantly decreased following the treatment of cell with the mentioned extracts, while a resazurin assay showed no cytotoxicity. Furthermore, we have found that the plant decreased the amount of tyrosinase and microphthalmia-associated transcription factor proteins, which verify the role of suppression of microphthalmia-associated transcription factor protein in melanogenesis inhibition. Conclusion: Taken together the data indicate that N. binaludensis has inhibitory activity on melanin synthesis with no cytotoxic effects in B16 melanoma cells. Therefore, it merits future investigations to apply as whitening agent in hyperpigmentation. PMID:27482348

  14. Tumor-associated antigen/IL-21-transduced dendritic cell vaccines enhance immunity and inhibit immunosuppressive cells in metastatic melanoma.

    PubMed

    Aravindaram, K; Wang, P-H; Yin, S-Y; Yang, N-S

    2014-05-01

    Dendritic cell (DC)-based vaccine approaches are being actively evaluated for developing immunotherapeutic agents against cancers. In this study, we investigated the use of engineered DCs expressing transgenic tumor-associated antigen hgp100 and the regulatory cytokine interleukin-21, namely DC-hgp100/mIL-21, as a therapeutic vaccine against melanoma. Tumor-bearing mice were injected intratumorally with transgenic DCs followed by three booster injections. Transgenic DC-hgp100/mIL-21 showed significant reduction in primary tumor growth and metastasis compared with DC-hgp100 alone and DC-mIL-21 alone. In vivo depletion of specific immune cell types (CD8(+) T, CD4(+) T and Natural killer (NK)-1.1(+) cells) effectively blocked the protective effect of this combinational vaccine. In adoptive transfer experiments, a survival rate of nearly 90% was observed at 60 days post-tumor inoculation for the combinational vaccine group. In contrast, all mice in the DC-hgp100 and DC-mIL-21-only groups died within 43-46 days after tumor challenge. Considerably increased levels of interferon (IFN)-γ, tumor necrosis factor (TNF)-α, granulocyte macrophage colony-stimulating factor (GM-CSF) and cytotoxic T lymphocytes (CTLs) were detected with the combination vaccine group compared with other individual treatment groups. In comparison with the DC-hgp100 or mIL-21 groups, the combinational DC-hgp100/mIL-21 vaccine also drastically suppressed the myeloid-derived suppressor cells (MDSCs) and T-regulatory (Treg) cell populations. Our findings suggest that a combinational DC- and gene-based hgp100 and mIL-21 vaccine therapy strategy warrants further evaluation as a clinically relevant cancer vaccine approach for human melanoma patients.

  15. Priming Endothelial Cells With a Melanoma-Derived Extracellular Matrix Triggers the Activation of αvβ3/VEGFR2 Axis.

    PubMed

    Helal-Neto, Edward; Brandão-Costa, Renata M; Saldanha-Gama, Roberta; Ribeiro-Pereira, Cristiane; Midlej, Victor; Benchimol, Marlene; Morandi, Verônica; Barja-Fidalgo, Christina

    2016-11-01

    The unique composition of tumor-produced extracellular matrix (ECM) can be a determining factor in changing the profile of endothelial cells in the tumor microenvironment. As the main receptor for ECM proteins, integrins can activate a series of signaling pathways related to cell adhesion, migration, and differentiation of endothelial cells that interact with ECM proteins. We studied the direct impact of the decellularized ECM produced by a highly metastatic human melanoma cell line (MV3) on the activation of endothelial cells and identified the intracellular signaling pathways associated with cell differentiation. Our data show that compared to the ECM derived from a human melanocyte cell line (NGM-ECM), ECM produced by a melanoma cell line (MV3-ECM) is considerably different in ultrastructural organization and composition and possesses a higher content of tenascin-C and laminin and a lower expression of fibronectin. When cultured directly on MV3-ECM, endothelial cells change morphology and show increased adhesion, migration, proliferation, and tubulogenesis. Interaction of endothelial cells with MV3-ECM induces the activation of integrin signaling, increasing FAK phosphorylation and its association with Src, which activates VEGFR2, potentiating the receptor response to VEGF. The blockage of αvβ3 integrin inhibited the FAK-Src association and VEGFR activation, thus reducing tubulogenesis. Together, our data suggest that the interaction of endothelial cells with the melanoma-ECM triggers integrin-dependent signaling, leading to Src pathway activation that may potentiate VEGFR2 activation and up-regulate angiogenesis. J. Cell. Physiol. 231: 2464-2473, 2016. © 2016 Wiley Periodicals, Inc.

  16. Priming Endothelial Cells With a Melanoma-Derived Extracellular Matrix Triggers the Activation of αvβ3/VEGFR2 Axis.

    PubMed

    Helal-Neto, Edward; Brandão-Costa, Renata M; Saldanha-Gama, Roberta; Ribeiro-Pereira, Cristiane; Midlej, Victor; Benchimol, Marlene; Morandi, Verônica; Barja-Fidalgo, Christina

    2016-11-01

    The unique composition of tumor-produced extracellular matrix (ECM) can be a determining factor in changing the profile of endothelial cells in the tumor microenvironment. As the main receptor for ECM proteins, integrins can activate a series of signaling pathways related to cell adhesion, migration, and differentiation of endothelial cells that interact with ECM proteins. We studied the direct impact of the decellularized ECM produced by a highly metastatic human melanoma cell line (MV3) on the activation of endothelial cells and identified the intracellular signaling pathways associated with cell differentiation. Our data show that compared to the ECM derived from a human melanocyte cell line (NGM-ECM), ECM produced by a melanoma cell line (MV3-ECM) is considerably different in ultrastructural organization and composition and possesses a higher content of tenascin-C and laminin and a lower expression of fibronectin. When cultured directly on MV3-ECM, endothelial cells change morphology and show increased adhesion, migration, proliferation, and tubulogenesis. Interaction of endothelial cells with MV3-ECM induces the activation of integrin signaling, increasing FAK phosphorylation and its association with Src, which activates VEGFR2, potentiating the receptor response to VEGF. The blockage of αvβ3 integrin inhibited the FAK-Src association and VEGFR activation, thus reducing tubulogenesis. Together, our data suggest that the interaction of endothelial cells with the melanoma-ECM triggers integrin-dependent signaling, leading to Src pathway activation that may potentiate VEGFR2 activation and up-regulate angiogenesis. J. Cell. Physiol. 231: 2464-2473, 2016. © 2016 Wiley Periodicals, Inc. PMID:27420801

  17. A novel adamantyl benzylbenzamide derivative, AP736, inhibits melanogenesis in B16F10 mouse melanoma cells via glycogen synthase kinase 3β phosphorylation.

    PubMed

    Shin, Hong-Ju; Oh, Chang Taek; Kwon, Tae-Rin; Beak, Heung Soo; Joo, Yung Hyup; Kim, Jeong-Hwan; Lee, Chang Seok; Lee, John Hwan; Kim, Beom Joon; Shin, Song Seok; Park, Eun-Seok

    2015-11-01

    Recently, much effort has been made to develop effective dermatological depigmenting compounds. In this study, we investigated the novel candidate compound, AP736 (an adamantyl benzylbenzamide derivative), and its effects on melanogenesis in B16F10 melanoma cells, as well as the mechanisms involved. AP736 has been reported to exert anti-melanogenic effects in melanocytes in vitro and in artificial skin equivalents through the inhibition of key melanogenic enzymes and the suppression of the cAMP-protein kinase A (PKA)-cAMP response element‑binding protein (CREB) signaling pathway. Thus, we examined another pathway of melanogenesis involving the effects of AP736 on the glycogen synthesis kinase 3β (GSK3β) pathway. Melanin content and tyrosinase activity were measured using a spectrophotometer after the cells were treated with AP736. The AP736-induced activation of signaling pathways was examined by western blot analysis. We confirmed that AP736 decreased melanin production in a dose-dependent manner; however, it did not directly inhibit tyrosinase, the rate-limiting melanogenic enzyme. The expression of microphthalmia-associated transcription factor, tyrosinase, and related signal transduction pathways was also investigated. The Wnt signaling pathway is deeply involved in melanogenesis; therefore, phosphorylation by GSK3β was assessed following treatment with AP736. AP736 induced GSK3β phosphorylation (inactivation), but it did not alter the level of β-catenin. Furthermore, the expression of α-melanocyte-stimulating hormone-induced tyrosinase was downregulated by AP736. Our data suggest that AP736 exerts hypopigmentary effects through the downregulation of tyrosinase via GSK3β phosphorylation. PMID:26398893

  18. Valencene from the Rhizomes of Cyperus rotundus Inhibits Skin Photoaging-Related Ion Channels and UV-Induced Melanogenesis in B16F10 Melanoma Cells.

    PubMed

    Nam, Joo Hyun; Nam, Da-Yeong; Lee, Dong-Ung

    2016-04-22

    Ultraviolet (UV) radiation deeply penetrates skin and causes inflammation and pigmentary changes and triggers immune responses. Furthermore, accumulating evidence suggests that calcium ion channels, such as TRPV1 and ORAI1, mediate diverse dermatological processes including melanogenesis, skin wrinkling, and inflammation. The rhizomes of Cyperus rotundus have been used to treat inflammatory diseases including dermatitis. However, their effects on UV-induced photoaging-related ion channels remain unknown. Therefore, this study was undertaken to evaluate the antagonistic effects of C. rotundus extract and their constituents on TRPV1 and ORAI1 channels. Electrophysiological analysis revealed that valencene (1) isolated from the hexane fraction potently inhibited capsaicin-induced TRPV1 and ORAI1 currents at 90 μM (69 ± 15% and 97 ± 2% at -60 and -120 mV, respectively). The inhibitory effect of 1 on cytoplasmic Ca(2+) concentrations in response to ORAI1 activation (85 ± 2% at 50 μM) was also confirmed. Furthermore, 1 concentration-dependently decreased the melanin content after UVB irradiation in murine B16F10 melanoma cells by 82.66 ± 2.14% at 15 μg/mL. These results suggest that C. rotundus rhizomes have potential therapeutic effects on UV-induced photoaging and indicate that the therapeutic and cosmetic applications of 1 are worth further investigation. PMID:26967731

  19. Inhibition of cytokine-induced microvascular arrest of tumor cells by recombinant endostatin prevents experimental hepatic melanoma metastasis.

    PubMed

    Mendoza, Lorea; Valcárcel, María; Carrascal, Teresa; Egilegor, Eider; Salado, Clarisa; Sim, B Kim Lee; Vidal-Vanaclocha, Fernando

    2004-01-01

    We investigated effects of endostatin (ES) in the prometastatic microenvironment of inflammation occurring during the microvascular phase of cancer cell infiltration in the liver. We used a model of intrasplenic injection of B16 melanoma (B16M) cells leading to hepatic metastasis through vascular cell adhesion molecule-(VCAM-1)-mediated capillary arrest of cancer cells via interleukin-18 (IL-18)-dependent mechanism. We show that administration of 50 mg/kg recombinant human (rh) ES 30 min before B16M, plus repetition of same dose for 3 additional days decreased metastasis number by 60%. A single dose of rhES before B16M injection reduced hepatic microvascular retention of luciferase-transfected B16M by 40% and inhibited hepatic production of tumor necrosis factor alpha (TNF-alpha) and IL-18 and VCAM-1 expression by hepatic sinusoidal endothelia (HSE). Consistent with these data, rhES inhibited VCAM-1-dependent B16M cell adhesion to primary cultured HSE receiving B16M conditioned medium, and it abolished the HSE cell production of TNF-alpha and IL-18 induced by tumor-derived vascular endothelial cell growth factor (VEGF). rhES abrogated recombinant murine VEGF-induced tyrosine phosphorylation of KDR/flk-1 receptor in HSE cells, preventing the proinflammatory action of tumor-derived VEGF on HSE. rhES also abolished hepatic production of TNF-alpha, microvascular retention of luciferase-transfected B16M, and adhesion of B16M cells to isolated HSE cells, all of them induced in mice given 5 micro g/kg recombinant murine VEGF for 18 h. This capillary inflammation-deactivating capability constitutes a nonantiangiogenic antitumoral action of endostatin that decreases cancer cell arrest within liver microvasculature and prevents metastases promoted by proinflammatory cytokines induced by VEGF. PMID:14729638

  20. Anti-proliferative and proapoptotic effects of (-)-epigallocatechin-3-gallate on human melanoma: possible implications for the chemoprevention of melanoma.

    PubMed

    Nihal, Minakshi; Ahmad, Nihal; Mukhtar, Hasan; Wood, Gary S

    2005-04-20

    Melanoma accounts for only about 4% of all skin cancer cases but most of skin cancer-related deaths. Standard systemic therapies such as interferon (IFN) have not been adequately effective in the management of melanoma. Therefore, novel approaches are needed for prevention and treatment of this disease. Chemoprevention by naturally occurring agents present in food and beverages has shown benefits in certain cancers including nonmelanoma skin cancers. Here, employing 2 human melanoma cell lines (A-375 amelanotic malignant melanoma and Hs-294T metastatic melanoma) and normal human epidermal melanocytes (NHEM), we studied the antiproliferative effects of epigallocatechin-3-gallate (EGCG), the major polyphenolic antioxidant present in green tea. EGCG treatment was found to result in a dose-dependent decrease in the viability and growth of both melanoma cell lines. Interestingly, at similar EGCG concentrations, the normal melanocytes were not affected. EGCG treatment of the melanoma cell lines resulted in decreased cell proliferation (as assessed by Ki-67 and PCNA protein levels) and induction of apoptosis (as assessed cleavage of PARP, TUNEL assay and JC-1 assay). EGCG also significantly inhibited the colony formation ability of the melanoma cells studied. EGCG treatment of melanoma cells resulted in a downmodulation of anti-apoptotic protein Bcl2, upregulation of proapoptotic Bax and activation of caspases -3, -7 and -9. Furthermore, our data demonstrated that EGCG treatment resulted in a significant, dose-dependent decrease in cyclin D1 and cdk2 protein levels and induction of cyclin kinase inhibitors (ckis) p16INK4a, p21WAF1/CIP1 and p27KIP1. Our data suggest that EGCG causes significant induction of cell cycle arrest and apoptosis of melanoma cells that is mediated via modulations in the cki-cyclin-cdk network and Bcl2 family proteins. Thus, EGCG, alone or in conjunction with current therapies, could be useful for the management of melanoma.

  1. Trp2 peptide vaccine adjuvanted with (R)-DOTAP inhibits tumor growth in an advanced melanoma model

    PubMed Central

    Vasievich, Elizabeth A.; Ramishetti, Srinivas; Zhang, Yuan; Huang, Leaf

    2012-01-01

    Previously we have shown cationic lipid (R)-DOTAP as the immunologically active enantiomer of the DOTAP racemic mixture, initiating complete tumor regression in an exogenous antigen model (murine cervical cancer model). Here, we investigate the use of (R)-DOTAP as an efficacious adjuvant delivering an endogenous antigen in an aggressive murine solid tumor melanoma model. (R)-DOTAP/Trp2 peptide complexes showed decreasing size and charge with increasing peptide concentration, taking a rod-shape at highest concentrations. The particles were stable for at 2 weeks at 4°C. A dose of 75nmol Trp2 (formulated in (R)-DOTAP) was able to show statistically significant tumor growth delay compared to lower doses of 5 and 25nmol which were no different than untreated tumors. (R)-DOTAP/Trp2 (75nmol) treated mice also showed increased T cell IFN-γ secretion after restimulation with Trp2, as well as CTL activity in vivo. This vaccination group also showed the highest population of functionally active tumor-infiltrating lymphocytes, indicated by IFN-γ secretion after restimulation with Trp2. Thus, (R)-DOTAP has shown the ability to break tolerance as an adjuvant. Its activity to enhance immunogenicity of other tumor associated antigens should be studied further. PMID:22142394

  2. Anti-proliferative and pro-apoptotic activity of GD2 ganglioside-specific monoclonal antibody 3F8 in human melanoma cells

    PubMed Central

    Tsao, Chun-Yen; Sabbatino, Francesco; Cheung, Nai-Kong V; Hsu, Jeff Chi-feng; Villani, Vincenzo; Wang, Xinhui; Ferrone, Soldano

    2015-01-01

    The beneficial clinical effects of immunotherapy with GD2-specific monoclonal antibodies (mAbs) in melanoma and neuroblastoma patients have stimulated interest in characterizing the mechanisms underlying their antitumor effects. Previous studies have shown that GD2-specific mAbs mediate complement- and cell-dependent cytotoxicity and induce caspase-dependent apoptosis of tumor cells. In this study, we showed that GD2-specific mAb 3F8, which is undergoing clinical evaluation, inhibited the in vitro growth and induced apoptosis of melanoma cells. This effect was dose- and time-dependent, mediated by the interaction of mAb 3F8 combining site with GD2 ganglioside, associated with GD2 expression level on the cell surface, mAb internalization and increase of GD2 containing endosomes triggered by mAb 3F8. The induction of apoptosis by mAb 3F8 was mediated by caspase 3-, 7-, and 8-dependent pathways, downregulation of the anti-apoptotic molecules survivin and cytochrome c, and caspase 9 independent-AIF release from mitochondria. In addition, analyses of signaling pathway components demonstrated that mAb 3F8 strongly inhibited AKT and FAK activation and increased cleaved PARP expression. These results indicated that multiple mechanisms played a role in the antitumor activity of mAb 3F8 in melanoma cells. This information should provide a mechanistic basis for the optimization of the rational design of immunotherapeutic strategies in the mAb-based treatment of GD2 positive tumors. PMID:26405581

  3. Asiaticoside, a component of Centella asiatica, inhibits melanogenesis in B16F10 mouse melanoma.

    PubMed

    Kwon, Ku Jung; Bae, Seunghee; Kim, Karam; An, In Sook; Ahn, Kyu Joong; An, Sungkwan; Cha, Hwa Jun

    2014-07-01

    Melanogenesis is the process of generating pigmentation via melanin synthesis and delivery. Three key enzymes, tyrosinase, tyrosinase-related protein 1 (TRP1) and TRP2, metabolize melanin from L-tyrosine. Melanin synthesizing enzymes are regulated by microphthalmia-associated transcription factor (MITF). The titrated extract of Centella asiatica (TECA) contains the major components asiatic acid, asiaticoside and madecassic acid. The present study revealed that TECA reduces the melanin content in melanocytes. Moreover, the asiaticoside contained in TECA modulated melanogenesis by inhibiting tyrosinase mRNA expression. The decrease in tyrosinase mRNA levels was mediated through MITF. Uniquely, asiaticoside inhibited MITF by decreasing its DNA binding affinity. In conclusion, the results of the present study indicate that asiaticoside treatment may have beneficial effects in hyperpigmentation diseases or for skin whitening.

  4. Selective down-regulation of tyrosinase family gene TYRP1 by inhibition of the activity of melanocyte transcription factor, MITF

    PubMed Central

    Fang, Dong; Tsuji, Yoshiaki; Setaluri, Vijayasaradhi

    2002-01-01

    Tyrosinase (TYR), tyrosinase-related protein-1 (TYRP1/gp75) and dopachrome tautomerase (DCT/TYRP2) belong to a family of melanocyte-specific gene products involved in melanin pigmentation. During melanocyte development expression of tyrosinase family genes is thought to be orchestrated in part by the binding of a shared basic helix–loop–helix transcription factor MITF to the M box, a regulatory element conserved among these genes. In transformed melanocytes, expression of tyrosinase and TYRPs is highly variable. Whereas TYR expression in melanoma cells is regulated by both transcriptional and post-translational mechanisms, TYRP1/gp75 transcription is often completely extinguished during melanoma tumor progression. In this study, we investigated the mechanisms of selective repression of TYRP1 transcription. Interestingly, in early stage melanoma cells TYRP1 mRNA could be induced by inhibition of protein synthesis. Transient transfection experiments with a minimal TYRP1 promoter showed that the promoter activity correlates with expression of the endogenous TYRP1 gene. Nucleotide deletion analysis revealed novel regulatory sequences that attenuate the M box-dependent MITF activity, but which are not involved in the repression of TYRP1. Gel mobility shift analysis showed that binding of the transcription factor MITF to the TYRP1 M box is selectively inhibited in TYRP1– cells. These data suggest that protein factors that modulate the activity of MITF in melanoma cells repress TYRP1 and presumably other MITF target genes. PMID:12136092

  5. Evaluation of the inhibition of mushroom tyrosinase and cellular tyrosinase activities of oxyresveratrol: comparison with mulberroside A.

    PubMed

    Kim, Jeong-Keun; Park, Keun-Tae; Lee, Hyun-Sun; Kim, Mijin; Lim, Young-Hee

    2012-08-01

    The inhibitory effects of oxyresveratrol, the aglycone of mulberroside A, on mushroom and cellular tyrosinase activities and melanin synthesis were evaluated. Mulberroside A and oxyresveratrol showed inhibitory activity against mushroom tyrosinase, with oxyresveratrol demonstrating a greater inhibitory effect than that of mulberroside A. Oxyresveratrol and mulberroside A strongly inhibited melanin production in Streptomyces bikiniensis and exhibited dose-dependent inhibition of tyrosinase activity and inhibition of melanin synthesis in B16F10 melanoma cells. However, the compounds exhibited nearly similar inhibitory effects on the activity of cellular tyrosinase and melanin synthesis in murine melanocytes. The inhibition of melanin synthesis by mulberroside A and oxyresveratrol was involved in suppressing the expression level of melanogenic enzymes, tyrosinase, tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2). These results indicate that the inhibition rate of mushroom tyrosinase might not provide an accurate estimate of the inhibition rate of melanin synthesis in melanocytes.

  6. PDK1 and SGK3 contribute to the growth of BRAF mutant melanomas and are potential therapeutic targets

    PubMed Central

    Scortegagna, Marzia; Lau, Eric; Zhang, Tongwu; Feng, Yongmei; Sereduk, Chris; Yin, Hongwei; De, Surya K.; Meeth, Katrina; Platt, James T.; Langdon, Casey G.; Halaban, Ruth; Pellecchia, Maurizio; Davies, Michael A.; Brown, Kevin; Stern, David F.; Bosenberg, Marcus; Ronai, Ze’ev A.

    2015-01-01

    Melanoma development involves members of the AGC kinase family including AKT, PKC and, most recently, PDK1, as elucidated recently in studies of Braf::Pten mutant melanomas. Here we report that PDK1 contributes functionally to skin pigmentation and to the development of melanomas harboring a wild-type PTEN genotype, which occurs in ~70% of human melanomas. The PDK1 substrate SGK3 was determined to be is an important mediator of PDK1 activities in melanoma cells. Genetic or pharmacological inhibition of PDK1 and SGK3 attenuated melanoma growth by inducing G1 phase cell cycle arrest. In a synthetic lethal screen, pan-PI3K inhibition synergized with PDK1 inhibition to suppress melanoma growth, suggesting that focused blockade of PDK1/PI3K signaling might offer a new therapeutic modality for wild-type PTEN tumors. We also noted that responsiveness to PDK1 inhibition associated with decreased expression of pigmentation genes and increased expression of cytokines and inflammatory genes, suggesting a method to stratify melanoma patients for PDK1-based therapies. Overall, our work highlights the potential significance of PDK1 as a therapeutic target to improve melanoma treatment. PMID:25712345

  7. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma

    SciTech Connect

    Krauthammer, Michael; Kong, Yong; Ha, Byung Hak; Evans, Perry; Bacchiocchi, Antonella; McCusker, James P.; Cheng, Elaine; Davis, Matthew J.; Goh, Gerald; Choi, Murim; Ariyan, Stephan; Narayan, Deepak; Dutton-Regester, Ken; Capatana, Ana; Holman, Edna C.; Bosenberg, Marcus; Sznol, Mario; Kluger, Harriet M.; Brash, Douglas E.; Stern, David F.; Materin, Miguel A.; Lo, Roger S.; Mane, Shrikant; Ma, Shuangge; Kidd, Kenneth K.; Hayward, Nicholas K.; Lifton, Richard P.; Schlessinger, Joseph; Boggon, Titus J.; Halaban, Ruth

    2012-10-11

    We characterized the mutational landscape of melanoma, the form of skin cancer with the highest mortality rate, by sequencing the exomes of 147 melanomas. Sun-exposed melanomas had markedly more ultraviolet (UV)-like C>T somatic mutations compared to sun-shielded acral, mucosal and uveal melanomas. Among the newly identified cancer genes was PPP6C, encoding a serine/threonine phosphatase, which harbored mutations that clustered in the active site in 12% of sun-exposed melanomas, exclusively in tumors with mutations in BRAF or NRAS. Notably, we identified a recurrent UV-signature, an activating mutation in RAC1 in 9.2% of sun-exposed melanomas. This activating mutation, the third most frequent in our cohort of sun-exposed melanoma after those of BRAF and NRAS, changes Pro29 to serine (RAC1{sup P29S}) in the highly conserved switch I domain. Crystal structures, and biochemical and functional studies of RAC1{sup P29S} showed that the alteration releases the conformational restraint conferred by the conserved proline, causes an increased binding of the protein to downstream effectors, and promotes melanocyte proliferation and migration. These findings raise the possibility that pharmacological inhibition of downstream effectors of RAC1 signaling could be of therapeutic benefit.

  8. Plasminogen activator inhibitor-1 regulates infiltration of macrophages into melanoma via phosphorylation of FAK-Tyr⁹²⁵.

    PubMed

    Thapa, Bikash; Koo, Bon-Hun; Kim, Yeon Hyang; Kwon, Hyung-Joo; Kim, Doo-Sik

    2014-08-01

    Tumor-infiltrating macrophages are potential candidates for cancer immunotherapy. However, the detailed molecular mechanism underlying macrophage infiltration into tumors is poorly understood. Based on our previous finding that plasminogen activator inhibitor-1 (PAI-1) enhances vitronectin-dependent migration of macrophages, we investigated the potential role of PAI-1 in macrophage invasion into melanoma. Experimental evidence obtained from spheroid confrontation assay clearly showed that PAI-1 overexpression significantly enhanced the invasion of RAW 264.7 cells into B16F10 melanoma. We further demonstrated that PAI-1 induces phosphorylation of focal adhesion kinase (FAK) at Tyr(925), which, in turn, mediated the invasion of macrophages into the melanoma. This work further illustrates that low-density lipoprotein receptor related-protein 1 (LRP1) is essential for PAI-1-mediated FAK phosphorylation and macrophage invasion into melanoma. In conclusion, our study demonstrates a novel role of PAI-1 in macrophage invasion into melanoma and provides insights into the underlying molecular mechanism.

  9. Narrow-band UVB radiation promotes dendrite formation by activating Rac1 in B16 melanoma cells.

    PubMed

    Wang, Wu-Qing; Wu, Jin-Feng; Xiao, Xiao-Qing; Xiao, Qin; Wang, Jing; Zuo, Fu-Guo

    2013-09-01

    Melanocytes are found scattered throughout the basal layer of the epidermis. Following hormone or ultraviolet (UV) light stimulation, the melanin pigments contained in melanocytes are transferred through the dendrites to the surrounding keratinocytes to protect against UV light damage or carcinogenesis. This has been considered as a morphological indicator of melanocytes and melanoma cells. Small GTPases of the Rho family have been implicated in the regulation of actin reorganization underlying dendrite formation in melanocytes and melanoma cells. It has been proven that ultraviolet light plays a pivotal role in melanocyte dendrite formation; however, the molecular mechanism underlying this process has not been fully elucidated. The effect of small GTPases, such as Rac1 and RhoA, on the morphology of B16 melanoma cells treated with narrow-band UVB radiation was investigated. The morphological changes were observed under a phase contrast microscope and the F-actin microfilament of the cytoskeleton was observed under a laser scanning confocal microscope. The pull-down assay was performed to detect the activity of the small GTPases Rac1 and RhoA. The morphological changes were evident, with globular cell bodies and increased numbers of tree branch-like dendrites. The cytoskeletal F-actin appeared disassembled following narrow-band UVB irradiation of B16 melanoma cells. Treatment of B16 melanoma cells with narrow-band UVB radiation resulted in the activation of Rac1 in a time-dependent manner. In conclusion, the present study may provide a novel method through which narrow-band UVB radiation may be used to promote dendrite formation by activating the Rac1 signaling pathway, resulting in F-actin rearrangement in B16 melanoma cells. PMID:24649261

  10. Biologically active monoiodinated alpha-MSH derivatives for receptor binding studies using human melanoma cells

    SciTech Connect

    Eberle, A.N.; Verin, V.J.; Solca, F.; Siegrist, W.; Kueenlin, C.B.; Bagutti, C.; Stutz, S.; Girard, J. , University Hospital, Basel )

    1991-01-01

    Three different monoiodinated radioligands of alpha-MSH (alpha-melanocyte-stimulating hormone) were compared in a binding assay with human D10 melanoma cells: (Tyr(125I)2)-alpha-MSH, (Tyr(125I)2,NIe4)-alpha-MSH, and (Tyr(125I)2,NIe4,D-Phe7)-alpha-MSH. They were prepared either by the classical chloramine T method or by the Enzymobead method. A simple and rapid purification scheme was developed consisting of a primary separation on reversed-phase C18 silica cartridges immediately after the iodination, followed by HPLC purification before each binding experiment. Biological testing of the three radioligands showed that they all retained high melanotropic activity in the B16 melanin assay and the Anolis melanophore assay. However, in human D10 melanoma cells, (Tyr(125I)2,NIe4)-alpha-MSH led to a high degree of non-specific binding to the cells which could not be displaced by excess alpha-MSH and only partially by (NIe4)-alpha-MSH. The (Tyr(125I)2,NIe4,D-Phe7)-alpha-MSH tracer gave similar results but with a much lower proportion of non-specific binding. On the other hand, (Tyr(125I)2)-alpha-MSH proved to be an excellent radioligand whose non-specific binding to the D10 cells was not higher than 20% of the total binding.

  11. Evaluation of Depigmenting Activity by 8-Hydroxydaidzein in Mouse B16 Melanoma Cells and Human Volunteers

    PubMed Central

    Tai, Sorgan Shou-Ku; Lin, Ching-Gong; Wu, Mon-Han; Chang, Te-Sheng

    2009-01-01

    In our previous study, 8-hydroxydaidzein (8-OHDe) was demonstrated to be a potent and unique suicide substrate of mushroom tyrosinase. In this study, the compound was evaluated for in vitro cellular tyrosinase and melanogenesis inhibitory activities in mouse B16 melanoma cells and for in vivo skin-whitening activity in human volunteers. Tyrosinase activity and melanogenesis in the cell culture incubated with 10 μM of 8-OHDe were decreased to 20.1% and 51.8% of control, respectively, while no obvious cytotoxicity was observed in this concentration. In contrast, a standard tyrosinase inhibitor, kojic acid, showed 69.9% and 71.3% of control in cellular tyrosinase and melanogenesis activity, respectively, at a concentration as high as 100 μM. Hence, 8-OHDe exhibited more than an inhibitory effects on melanin production in B16 cells 10-fold stronger than kojic acid. In addition, when a cream containing 4% 8-OHDe was applied to human skin in an in vivo study, significant increases in the dL*-values were observed after three weeks. Moreover, the increase in the dL*-values after 8-week treatment with 4% 8-OHDe (from −0.57 to 1.94) is stronger than those of 2% 8-OHDe treatment (from 0.26 to 0.94) and 2% ascorbic acid-2-glucoside treatment (from 0.07 to 1.54). From the results of the study, it was concluded that 8-OHDe, the potent suicide substrate of mushroom tyrosinase, has depigmenting activities in both mouse melanoma cells and in human volunteers. Thus, the compound has significant potential for use in cosmetics as a skin-whitening ingredient. PMID:20057943

  12. Ocular albinism type 1-induced melanoma cell migration is mediated through the RAS/RAF/MEK/ERK signaling pathway.

    PubMed

    Bai, Jun; Xie, Xin; Lei, Yun; An, Gaili; He, Li; Lv, Xiaopeng

    2014-07-01

    Malignant melanoma has the highest risk of mortality among all types of skin cancer due to its highly metastatic potential. The ocular albinism type 1 (OA1) protein is a pigment cell‑specific glycoprotein, which shares significant structural and functional features with G protein‑coupled receptors. However, the role of OA1 in melanoma has yet to be elucidated. The present study aimed to investigate whether OA1 is involved in melanoma cell migration. OA1 was found to stimulate cell migration in a dose‑dependent manner in cultured human melanoma cells. Furthermore, knockdown of OA1 using small interfering RNA was observed to significantly inhibit melanoma cell migration. In addition, the mechanism underlying OA1‑induced melanoma cell migration was investigated. Stimulation of the RAS/RAF/mitogen activated protein kinase kinase (MEK)/extracellular signal‑regulated kinase (ERK) pathway using growth factors enhanced OA1 expression and melanoma cell migration, whereas inhibition of this pathway using U0126 was observed to markedly decrease OA1 expression and the number of migrated cells. These findings indicate that OA1 is involved in melanoma cell migration and that OA1‑induced melanoma cell migration is mediated through the RAS/RAF/MEK/ERK signaling pathway. Therefore, OA1 may serve as a novel therapeutic target for melanoma. PMID:24736838

  13. Monoclonal antibody OKM5 inhibits the in vitro binding of Plasmodium falciparum-infected erythrocytes to monocytes, endothelial, and C32 melanoma cells

    SciTech Connect

    Barnwell, J.W.; Ockenhouse, C.F.; Knowles, D.M. II

    1985-11-01

    Plasmodium falciparum-infected erythrocytes bind in vitro to human endothelial cells, monocytes, and a certain melanoma cell line. Evidence suggests that this interaction is mediated by similar mechanisms which lead to the sequestration of parasitized erythrocytes in vivo through their attachment to endothelial cells of small blood vessels. They show here the monoclonal antibody OKM5, previously shown to react with the membranes of endothelial cells, monocyte,s and platelets, also reacts with the C32 melanoma cell line which also binds P. falciparum-infected erythrocytes. At relatively low concentrations, OKM5 inhibits and reverses the in vitro adherence of infected erythrocytes to target cells. As with monocytes, OKM5 antibody recognizes an /sup 125/I-labeled protein of approximately 88 Kd on the surface of C32 melanoma cells. It seems likely, therefore, that the 88 Kd polypeptide plays a role in cytoadherence, possibly as the receptor or part of a receptor for a ligand on the surface of infected erythrocytes.

  14. Antiangiogenesis, Loss of Cell Adhesion and Apoptosis Are Involved in the Antitumoral Activity of Proteases from V. cundinamarcensis (C. candamarcensis) in Murine Melanoma B16F1

    PubMed Central

    Dittz, Dalton; Figueiredo, Cinthia; Lemos, Fernanda O.; Viana, Celso T. R.; Andrade, Silvia P.; Souza-Fagundes, Elaine M.; Fujiwara, Ricardo T.; Salas, Carlos E.; Lopes, Miriam T. P.

    2015-01-01

    The proteolytic enzymes from V. cundinamarcensis latex, (P1G10), display healing activity in animal models following various types of lesions. P1G10 or the purified isoforms act as mitogens on fibroblast and epithelial cells by stimulating angiogenesis and wound healing in gastric and cutaneous ulcers models. Based on evidence that plant proteinases act as antitumorals, we verified this effect on a murine melanoma model. The antitumoral effect analyzed mice survival and tumor development after subcutaneous administration of P1G10 into C57BL/6J mice bearing B16F1 low metastatic melanoma. Possible factors involved in the antitumoral action were assessed, i.e., cytotoxicity, cell adhesion and apoptosis in vitro, haemoglobin (Hb), vascular endothelial growth factor (VEGF), tumor growth factor-β (TGF-β), tumor necrosis factor-α (TNF-α) content and N-acetyl-glucosaminidase (NAG) activity. We observed that P1G10 inhibited angiogenesis measured by the decline of Hb and VEGF within the tumor, and TGF-β displayed a non-significant increase and TNF-α showed a minor non-significant reduction. On the other hand, there was an increase in NAG activity. In treated B16F1 cells, apoptosis was induced along with decreased cell binding to extracellular matrix components (ECM) and anchorage, without impairing viability. PMID:25826531

  15. Ganglioside GD2-specific trifunctional surrogate antibody Surek demonstrates therapeutic activity in a mouse melanoma model

    PubMed Central

    2012-01-01

    Background Trifunctional bispecific antibodies (trAb) are a special class of bispecific molecules recruiting and activating T cells and accessory immune cells simultaneously at the targeted tumor. The new trAb Ektomab that targets the melanoma-associated ganglioside antigen GD2 and the signaling molecule human CD3 (hCD3) on T cells demonstrated potent T-cell activation and tumor cell destruction in vitro. However, the relatively low affinity for the GD2 antigen raised the question of its therapeutic capability. To further evaluate its efficacy in vivo it was necessary to establish a mouse model. Methods We generated the surrogate trAb Surek, which possesses the identical anti-GD2 binding arm as Ektomab, but targets mouse CD3 (mCD3) instead of hCD3, and evaluated its chemical and functional quality as a therapeutic antibody homologue. The therapeutic and immunizing potential of Surek was investigated using B78-D14, a B16 melanoma transfected with GD2 and GD3 synthases and showing strong GD2 surface expression. The induction of tumor-associated and autoreactive antibodies was evaluated. Results Despite its low affinity of approximately 107 M-1 for GD2, Surek exerted efficient tumor cell destruction in vitro at an EC50 of 70ng/ml [0.47nM]. Furthermore, Surek showed strong therapeutic efficacy in a dose-dependent manner and is superior to the parental GD2 mono-specific antibody, while the use of a control trAb with irrelevant target specificity had no effect. The therapeutic activity of Surek was strictly dependent on CD4+ and CD8+ T cells, and cured mice developed a long-term memory response against a second challenge even with GD2-negative B16 melanoma cells. Moreover, tumor protection was associated with humoral immune responses dominated by IgG2a and IgG3 tumor-reactive antibodies indicating a Th1-biased immune response. Autoreactive antibodies against the GD2 target antigen were not induced. Conclusion Our data suggest that Surek revealed strong tumor elimination

  16. Bromelain inhibits nuclear factor kappa-B translocation, driving human epidermoid carcinoma A431 and melanoma A375 cells through G(2)/M arrest to apoptosis.

    PubMed

    Bhui, Kulpreet; Tyagi, Shilpa; Srivastava, Amit Kumar; Singh, Madhulika; Roy, Preeti; Singh, Richa; Shukla, Yogeshwer

    2012-03-01

    Bromelain, obtained from pineapple, is already in use clinically as adjunct in chemotherapy. Our objective was to test its ability to act as a sole anti-cancer agent. Therefore, we describe its anti-proliferative, anti-inflammatory and subsequent anti-cancer effects in vitro, against human epidermoid carcinoma-A431 and melanoma-A375 cells. Bromelain exhibited reduction in proliferation of both these cell-lines and suppressed their potential for anchorage-independent growth. Further, suppression of inflammatory signaling by bromelain was evident by inhibition of Akt regulated-nuclear factor-kappaB activation via suppression of inhibitory-kappaBα phosphorylation and concomitant reduction in cyclooxygenase-2. Since, the inflammatory cascade is well-known to be closely allied to cancer; we studied the effect of bromelain on events/molecules central to it. Bromelain caused depletion of intracellular glutathione and generation of reactive oxygen-species followed by mitochondrial membrane depolarization. This led to bromelain-induced cell-cycle arrest at G(2)/M phase which was mediated by modulation of cyclin B1, phospho-cdc25C, Plk1, phospho-cdc2, and myt1. This was subsequently followed by induction of apoptosis, indicated by membrane-blebbing, modulation of Bax-Bcl-2 ratio, Apaf-1, caspase-9, and caspase-3; chromatin-condensation, increase in caspase-activity and DNA-fragmentation. Bromelain afforded substantial anti-cancer potential in these settings; hence we suggest it as a potential prospect for anti-cancer agent besides only an additive in chemotherapy.

  17. The RAC1 P29S Hotspot Mutation in Melanoma Confers Resistance to Pharmacological Inhibition of RAF

    PubMed Central

    Cabeceiras, Peter K.; Mahdavi, Mozhdeh; Gutschner, Tony; Genovese, Giannicola; Wang, Guocan; Fang, Zhuangna; Tepper, James M.; Stemke-Hale, Katherine; Tsai, Kenneth Y.; Davies, Michael A.; Mills, Gordon B.

    2014-01-01

    Following mutations in BRAF and NRAS, the RAC1 c.85C>T single nucleotide variant (SNV) encoding P29S amino acid change represents the next most frequently observed protein-coding hotspot mutation in melanoma. However, the biological and clinical significance of the RAC1 P29S somatic mutation in approximately 4–9% of patients remains unclear. Here, we demonstrate that melanoma cell lines possessing the RAC1 hotspot variant are resistant to RAF inhibitors (vemurafenib and dabrafenib). Enforced expression of RAC1 P29S in sensitive BRAF mutant melanoma cell lines confers resistance manifested by increased viability, decreased apoptosis and enhanced tumor growth in vivo upon treatment with RAF inhibitors. Conversely, RNAi mediated silencing of endogenous RAC1 P29S in a melanoma cell line with a co-occurring BRAF V600 mutation increased sensitivity to vemurafenib and dabrafenib. Our results suggest RAC1 P29S status may offer a predictive biomarker for RAF inhibitor resistance in melanoma patients, where it should be evaluated clinically. PMID:25056119

  18. Recurrent inactivating RASA2 mutations in melanoma

    PubMed Central

    Arafeh, Rand; Qutob, Nouar; Emmanuel, Rafi; Keren-Paz, Alona; Madore, Jason; Elkahloun, Abdel; Wilmott, James S.; Gartner, Jared J.; Di Pizio, Antonella; Winograd-Katz, Sabina; Sindiri, Sivasish; Rotkopf, Ron; Dutton-Regester, Ken; Johansson, Peter; Pritchard, Antonia; Waddell, Nicola; Hill, Victoria K.; Lin, Jimmy C.; Hevroni, Yael; Rosenberg, Steven A.; Khan, Javed; Ben-Dor, Shifra; Niv, Masha Y.; Ulitsky, Igor; Mann, Graham J; Scolyer, Richard A.; Hayward, Nicholas K.; Samuels, Yardena

    2016-01-01

    Analysis of 501 melanoma exomes revealed RASA2, encoding a RasGAP, as a tumor-suppressor gene mutated in 5% of melanomas. Recurrent loss-of-function mutations in RASA2 were found to increase RAS activation, melanoma cell growth and migration. RASA2 expression was lost in ≥30% of human melanomas and was associated with reduced patient survival. These findings reveal RASA2 inactivation as a melanoma driver and highlight the importance of Ras GAPs in cancer. PMID:26502337

  19. The expanding roles of 1-methyl-tryptophan (1-MT): in addition to inhibiting kynurenine production, 1-MT activates the synthesis of melatonin in skin cells.

    PubMed

    Moreno, Ana C R; Clara, Renan O; Coimbra, Janine B; Júlio, Ariane R; Albuquerque, Renata C; Oliveira, Edson M; Maria-Engler, Silvya S; Campa, Ana

    2013-10-01

    Indoleamine 2,3-dioxygenase 1 (IDO1), the rate-limiting enzyme of tryptophan catabolism, has been strongly associated with the progression of malignancy and poor survival in melanoma patients. As a result, IDO1 is a leading target for interventions aimed at restoring melanoma immune surveillance. Here, in a scenario involving the tryptophan catabolism, we report that melatonin biosynthesis is driven by 1-methyl-tryptophan (1-MT), a competitive inhibitor of IDO1, in human fibroblasts, melanocytes and melanoma cells. In addition to melatonin biosynthesis, 1-MT induced the expression of tryptophan hydroxylase, arylalkylamine-N-acetyltransferase and hydroxyindole O-methyltransferase mRNA in fibroblasts and melanocytes. We observed a great variability in the levels of IDO1 mRNA expression and kynurenine release between skin cells and melanoma cell lines in response to interferon-γ, a classical IDO1 inducer. In this setting, melatonin was shown to downregulate kynurenine production. Furthermore, in a condition of low basal activity of IDO1, it was observed that 1-MT, as well melatonin, inhibited the proliferation of human melanoma cells. Taken together, our results suggest that 1-MT may serve as more than just a tool to disrupt tumor immune escape (via the inhibition of IDO1) because it was shown to act directly on the proliferation of human melanoma cells and induce melatonin biosynthesis in the tumor milieu. Moreover, 1-MT-mediated inhibition of IDO occurs in normal skin and melanoma cells, which addresses the possibility that all cells in the skin microenvironment can be targeted by 1-MT. Our findings provide innovative approaches into understanding tumor therapy related to the control of tryptophan metabolism by 1-MT.

  20. Statins Reduce Melanoma Development and Metastasis through MICA Overexpression.

    PubMed

    Pich, Christine; Teiti, Iotefa; Rochaix, Philippe; Mariamé, Bernard; Couderc, Bettina; Favre, Gilles; Tilkin-Mariamé, Anne-Françoise

    2013-01-01

    Survival of melanoma patients after metastases detection remains short. Several clinical trials have shown moderate efficiency in improving patient survival, and the search for pharmacological agents to enhance the immune response and reduce melanoma metastases is still necessary. Statins block the mevalonate pathway, which leads to decreases in GTPase isoprenylation and activity, particularly those of the Ras superfamily. They are widely used as hypocholesterolemic agents in cardiovascular diseases and several studies have shown that they also have protective effects against cancers. Furthermore, we have previously demonstrated that treatment of melanoma cells with inhibitors of the mevalonate pathway, such as statins, favor the development of specific adaptive immune responses against these tumors. In the present study, we tested statin impact on the innate immune response against human metastatic melanoma cells. Our data shows that treatment of two human melanoma cell lines with statins induced a weak but significant increase of MHC class I Chain-related protein A (MICA) membrane expression. Peroxisome Proliferator-Activated Receptor gamma is involved in this statin-induced MICA overexpression, which is independent of Ras and Rho GTPase signaling pathways. Interestingly, this MICA overexpression makes melanoma cells more sensitive to in vitro lysis by NK cells. The impact of statin treatment on in vivo development of melanoma tumors and metastases was investigated in nude mice, because murine NK cells, which express NKG2D receptors, are able to recognize and kill human tumor cells expressing MICA. The results demonstrated that both local tumor growth and pulmonary metastases were strongly inhibited in nude mice injected with statin-treated melanoma cells. These results suggest that statins could be effective in melanoma immunotherapy treatments. PMID:23493799

  1. Zebrafish Melanoma.

    PubMed

    Kaufman, Charles K

    2016-01-01

    Melanoma skin cancer is a potentially deadly disease in humans and has remained extremely difficult to treat once it has metastasized. In just the last 10 years, a number of models of melanoma have been developed in the zebrafish that are biologically faithful to the human disease and have already yielded important insights into the fundamental biology of melanoma and offered new potential avenues for treatment. With the diversity and breadth of the molecular genetic tools available in the zebrafish, these melanoma models will continue to be refined and expanded upon to keep pace with the rapidly evolving field of melanoma biology. PMID:27165365

  2. Alkaloid constituents from flower buds and leaves of sacred lotus (Nelumbo nucifera, Nymphaeaceae) with melanogenesis inhibitory activity in B16 melanoma cells.

    PubMed

    Nakamura, Seikou; Nakashima, Souichi; Tanabe, Genzo; Oda, Yoshimi; Yokota, Nami; Fujimoto, Katsuyoshi; Matsumoto, Takahiro; Sakuma, Rika; Ohta, Tomoe; Ogawa, Keiko; Nishida, Shino; Miki, Hisako; Matsuda, Hisashi; Muraoka, Osamu; Yoshikawa, Masayuki

    2013-02-01

    Methanolic extracts from the flower buds and leaves of sacred lotus (Nelumbo nucifera, Nymphaeaceae) were found to show inhibitory effects on melanogenesis in theophylline-stimulated murine B16 melanoma 4A5 cells. From the methanolic extracts, a new alkaloid, N-methylasimilobine N-oxide, was isolated together with eleven benzylisoquinoline alkaloids. The absolute stereostructure of the new alkaloid was determined from chemical and physicochemical evidence. Among the constituents isolated, nuciferine, N-methylasimilobine, (-)-lirinidine, and 2-hydroxy-1-methoxy-6a,7-dehydroaporphine showed potent inhibition of melanogenesis. Comparison of the inhibitory activities of synthetic related alkaloids facilitated characterization of the structure-activity relationships of aporphine- and benzylisoquinoline-type alkaloids. In addition, 3-30 μM nuciferine and N-methylasimilobine inhibited the expression of tyrosinase mRNA, 3-30 μM N-methylasimilobine inhibited the expression of TRP-1 mRNA, and 10-30 μM nuciferine inhibited the expression of TRP-2 mRNA.

  3. Alkaloid constituents from flower buds and leaves of sacred lotus (Nelumbo nucifera, Nymphaeaceae) with melanogenesis inhibitory activity in B16 melanoma cells.

    PubMed

    Nakamura, Seikou; Nakashima, Souichi; Tanabe, Genzo; Oda, Yoshimi; Yokota, Nami; Fujimoto, Katsuyoshi; Matsumoto, Takahiro; Sakuma, Rika; Ohta, Tomoe; Ogawa, Keiko; Nishida, Shino; Miki, Hisako; Matsuda, Hisashi; Muraoka, Osamu; Yoshikawa, Masayuki

    2013-02-01

    Methanolic extracts from the flower buds and leaves of sacred lotus (Nelumbo nucifera, Nymphaeaceae) were found to show inhibitory effects on melanogenesis in theophylline-stimulated murine B16 melanoma 4A5 cells. From the methanolic extracts, a new alkaloid, N-methylasimilobine N-oxide, was isolated together with eleven benzylisoquinoline alkaloids. The absolute stereostructure of the new alkaloid was determined from chemical and physicochemical evidence. Among the constituents isolated, nuciferine, N-methylasimilobine, (-)-lirinidine, and 2-hydroxy-1-methoxy-6a,7-dehydroaporphine showed potent inhibition of melanogenesis. Comparison of the inhibitory activities of synthetic related alkaloids facilitated characterization of the structure-activity relationships of aporphine- and benzylisoquinoline-type alkaloids. In addition, 3-30 μM nuciferine and N-methylasimilobine inhibited the expression of tyrosinase mRNA, 3-30 μM N-methylasimilobine inhibited the expression of TRP-1 mRNA, and 10-30 μM nuciferine inhibited the expression of TRP-2 mRNA. PMID:23270663

  4. CD10 expressed by fibroblasts and melanoma cells degrades endothelin-1 secreted by human keratinocytes.

    PubMed

    Xie, Lining; Moroi, Yoichi; Takahara, Masakazu; Tsuji, Gaku; Oba, Junna; Hayashida, Sayaka; Takeuchi, Satoshi; Shan, Baoen; Uchi, Hiroshi; Furue, Masutaka

    2011-01-01

    Endothelin-1 (ET-1) is a potent multifunctional peptide linked to wound healing, pigmentation, carcinogenesis, and fibrosclerotic processes in the skin. Whereas ET-1 was thought to be digested by receptor-mediated endocytosis, it is also reported to be biochemically degraded by the neutral endopeptidase CD10 using kidney homogenates. Although keratinocytes (KC) and fibroblasts (Fb) are sources of both ET-1 and CD10, respectively, there is no report investigating the direct association between CD10 expression and its function in relation to ET-1 degradation in the skin. CD10 expression in melanoma cells is associated with clinical prognosis, suggesting an important role in the invasive and metastatic potential of melanoma cells. Here, cultured KC produced much higher amounts of ET-1 than did cultured Fb or melanoma cells. In contrast, KC and A375 melanoma cells did not express CD10, while Fb, SK-MEL-28 and G361 melanoma cells constitutively expressed CD10. KC-derived ET-1 was down-modulated by both CD10-positive Fb and CD10-positive melanoma cells, and the inhibition was partially reversed under substitution conditions using CD10-knockdown Fb or CD10-knockdown melanoma cells. This indicates that CD10 on cultured Fb and melanoma cells is biochemically active in the degradation or down-modulation of ET-1 secreted from KC. These findings may lead to better understanding of skin homeostasis and of the malignant potential of melanoma.

  5. Mitochondrial oxidative stress is the achille's heel of melanoma cells resistant to Braf-mutant inhibitor

    PubMed Central

    André, Fanny; Jonneaux, Aurélie; Scalbert, Camille; Garçon, Guillaume; Malet-Martino, Myriam; Balayssac, Stéphane; Rocchi, Stephane; Savina, Ariel; Formstecher, Pierre; Mortier, Laurent; Kluza, Jérome; Marchetti, Philippe

    2013-01-01

    Vemurafenib/PLX4032, a selective inhibitor of mutant BRAFV600E, constitutes a paradigm shift in melanoma therapy. Unfortunately, acquired resistance, which unavoidably occurs, represents one major limitation to clinical responses. Recent studies have highlighted that vemurafenib activated oxidative metabolism in BRAFV600E melanomas expressing PGC1α. However, the oxidative state of melanoma resistant to BRAF inhibitors is unknown. We established representative in vitro and in vivo models of human melanoma resistant to vemurafenib including primary specimens derived from melanoma patients. Firstly, our study reveals that vemurafenib increased mitochondrial respiration and ROS production in BRAFV600E melanoma cell lines regardless the expression of PGC1α. Secondly, melanoma cells that have acquired resistance to vemurafenib displayed intrinsically high rates of mitochondrial respiration associated with elevated mitochondrial oxidative stress irrespective of the presence of vemurafenib. Thirdly, the elevated ROS level rendered vemurafenib-resistant melanoma cells prone to cell death induced by pro-oxidants including the clinical trial drug, elesclomol. Based on these observations, we propose that the mitochondrial oxidative signature of resistant melanoma constitutes a novel opportunity to overcome resistance to BRAF inhibition. PMID:24161908

  6. Melanoma proliferation and chemoresistance controlled by the DEK oncogene

    PubMed Central

    Khodadoust, Michael S.; Verhaegen, Monique; Kappes, Ferdinand; Riveiro-Falkenbach, Erica; Cigudosa, Juan C.; Kim, David S.L.; Chinnaiyan, Arul M.; Markovitz, David M.; Soengas, María S.

    2009-01-01

    Gain of chromosome 6p is a consistent feature of advanced melanomas. However, the identity of putative oncogene(s) associated with this amplification has remained elusive. The chromatin remodeling factor DEK is an attractive candidate as it maps to 6p (i.e. within common melanoma-amplified loci). Moreover, DEK expression is increased in metastatic melanomas, although the functional relevance of this induction remains unclear. Importantly, in other tumor types, DEK can display various tumorigenic effects, in part through its ability to promote proliferation and inhibit p53-dependent apoptosis. Here, we report a generalized upregulation of DEK protein in cells from aggressive melanomas. In addition, we provide genetic and mechanistic evidence to support a key role of DEK in the maintenance of malignant phenotypes of melanoma cells. Specifically, we show that long-term DEK downregulation by independent shRNAs resulted in premature senescence of a variety of melanoma cell lines. Short-term abrogation of DEK expression was also functionally relevant, as it attenuated the traditional resistance of melanomas to DNA damaging agents. Unexpectedly, DEK shRNA had no impact on p53 levels or p53-dependent apoptosis. Instead, we identified a new role for DEK in the transcriptional activation of the antiapoptotic MCL-1. Other MCL-1 related factors such as BCL-2 or BCL-xL were unaffected by changes in the endogenous levels of DEK, indicating a selective impact of this gene on the apoptotic machinery of melanoma cells. These results provide support for DEK as a long sought-after oncogene mapping at chromosome 6, with novel functions in melanoma proliferation and chemoresistance. PMID:19679545

  7. Pyrostegia venusta heptane extract containing saturated aliphatic hydrocarbons induces apoptosis on B16F10-Nex2 melanoma cells and displays antitumor activity in vivo

    PubMed Central

    Figueiredo, Carlos R.; Matsuo, Alisson L.; Pereira, Felipe V.; Rabaça, Aline N.; Farias, Camyla F.; Girola, Nátalia; Massaoka, Mariana H.; Azevedo, Ricardo A.; Scutti, Jorge A.B.; Arruda, Denise C.; Silva, Luciana P.; Rodrigues, Elaine G.; Lago, João Henrique G.; Travassos, Luiz R.; Silva, Regildo M.G.

    2014-01-01

    Background: Pyrostegia venusta (Ker. Gawl.) Miers (Bignoniacea) is a medicinal plant from the Brazilian Cerrado used to treat leucoderma and common diseases of the respiratory system. Objective: To investigate the antitumor activity of P.venusta extracts against melanoma. Materials and Methods: The cytotoxic activity and tumor induced cell death of heptane extract (HE) from P. venusta flowers was evaluated against murine melanoma B16F10-Nex2 cells in vitro and in a syngeneic model in vivo. Results: We found that HE induced apoptosis in melanoma cells by disruption of the mitochondrial membrane potential, induction of reactive oxygen species and late apoptosis evidenced by plasma membrane blebbing, cell shrinkage, chromatin condensation and DNA fragmentation, exposure of phosphatidylserine on the cell surface and activation of caspase-2,-3,-8,-9. HE was also protective against singeneyc subcutaneous melanoma HE compounds were also able to induce cell cycle arrest at G2/M phases on tumor cells. On fractionation of HE in silica gel we isolated a cytotoxic fraction that contained a mixture of saturated hydrocarbons identified by 1H NMR and GC-MS analyses. Predominant species were octacosane (C28H58-36%) and triacontane (C30H62-13%), which individually showed significant cytotoxic activity against murine melanoma B16F10-Nex2 cells in vitro and a very promising antitumor protection against subcutaneous melanoma in vivo. Conclusion: The results suggest that the components of the heptane extract, mainly octasane and triacontane, which showed antitumor properties in experimental melanoma upon regional administration, might also be therapeutic in human cancer, such as in the mostly epidermal and slowly invasive melanomas, such as acral lentiginous melanoma, as an adjuvant treatment to surgical excision. PMID:24991116

  8. The transcription factor ATF2 promotes melanoma metastasis by suppressing protein fucosylation

    PubMed Central

    Lau, Eric; Feng, Yongmei; Claps, Giuseppina; Fukuda, Michiko N.; Perlina, Ally; Donn, Dylan; Jilaveanu, Lucia; Kluger, Harriet; Freeze, Hudson H.; Ronai, Ze’ev A.

    2016-01-01

    Melanoma is one of the most lethal skin cancers worldwide, primarily because of its propensity to metastasize. Thus, the elucidation of mechanisms that govern metastatic propensity is urgently needed. We found that protein kinase Cε (PKCε)–mediated activation of activating transcription factor 2 (ATF2) controls the migratory and invasive behaviors of melanoma cells. PKCε-dependent phosphorylation of ATF2 promoted its transcriptional repression of the gene encoding fucokinase (FUK), which mediates the fucose salvage pathway and thus global cellular protein fucosylation. In primary melanocytes and cell lines representing early-stage melanoma, the abundance of PKCε-phosphorylated ATF2 was low, thereby enabling the expression of FUK and cellular protein fucosylation, which promoted cellular adhesion and reduced motility. In contrast, increased expression of the gene encoding PKCε and abundance of phosphorylated, transcriptionally active ATF2 were observed in advanced-stage melanomas and correlated with decreased FUK expression, decreased cellular protein fucosylation, attenuated cell adhesion, and increased cell motility. Restoring fucosylation in mice either by dietary fucose supplementation or by genetic manipulation of murine Fuk expression attenuated primary melanoma growth, increased the number of intratumoral natural killer cells, and decreased distal metastasis in murine isograft models. Tumor microarray analysis of human melanoma specimens confirmed reduced fucosylation in metastatic tumors and a better prognosis for primary melanomas that had high abundance of fucosylation. Thus, inhibiting PKCε or ATF2 or increasing protein fucosylation in tumor cells may improve clinical outcome in melanoma patients. PMID:26645581

  9. Killing of human melanoma cells induced by activation of class I interferon-regulated signaling pathways via MDA-7/IL-24.

    PubMed

    Ekmekcioglu, Suhendan; Mumm, John B; Udtha, Malini; Chada, Sunil; Grimm, Elizabeth A

    2008-07-01

    Restoration of the tumor-suppression function by gene transfer of the melanoma differentiation-associated gene 7 (MDA7)/interleukin 24 (IL-24) successfully induces apoptosis in melanoma tumors in vivo. To address the molecular mechanisms involved, we previously revealed that MDA7/IL-24 treatment of melanoma cells down-regulates interferon regulatory factor (IRF)-1 expression and concomitantly up-regulates IRF-2 expression, which competes with the activity of IRF-1 and reverses the induction of IRF-1-regulated inducible nitric oxide synthase (iNOS). Interferons (IFNs) influence melanoma cell survival by modulating apoptosis. A class I IFN (IFN-alpha) has been approved for the treatment of advanced melanoma with some limited success. A class II IFN (IFN-gamma), on the other hand, supports melanoma cell survival, possibly through constitutive activation of iNOS expression. We therefore conducted this study to explore the molecular pathways of MDA7/IL-24 regulation of apoptosis via the intracellular induction of IFNs in melanoma. We hypothesized that the restoration of the MDA7/IL-24 axis leads to upregulation of class I IFNs and induction of the apoptotic cascade. We found that MDA7/IL-24 induces the secretion of endogenous IFN-beta, another class I IFN, leading to the arrest of melanoma cell growth and apoptosis. We also identified a series of apoptotic markers that play a role in this pathway, including the regulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas-FasL. In summary, we described a novel pathway of MDA7/IL-24 regulation of apoptosis in melanoma tumors via endogenous IFN-beta induction followed by IRF regulation and TRAIL/FasL system activation. PMID:18511292

  10. Melanoma and Hawaii's youth.

    PubMed

    Williams, Laura

    2004-03-01

    Hawaii's sandy beaches, warm crystal waters, and mild climate attract tourists and residents alike to enjoy hours of outdoor activities under the sun. As frequent participants of these sun related activities, Hawaii's youth are exposed to high levels and duration of ultraviolet radiation throughout their early lives. This study aims to define occurrence trends of cutaneous malignant melanoma in Hawaii in correlation to increased childhood ultraviolet exposure. This paper addresses trends in melanoma incidence during 1979-2002 for Hawaii residents < 25 years of age. Data obtained from this review were analyzed by age group and ethnicity. Results show that although the incidence of melanoma is increasing for Hawaii residents over 25 years of age, the rate of melanoma occurrence in Hawaii's youth (< 25 years) is not increasing. PMID:15124743

  11. Aurora B is regulated by the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway and is a valuable potential target in melanoma cells.

    PubMed

    Bonet, Caroline; Giuliano, Sandy; Ohanna, Mickaël; Bille, Karine; Allegra, Maryline; Lacour, Jean-Philippe; Bahadoran, Philippe; Rocchi, Stéphane; Ballotti, Robert; Bertolotto, Corine

    2012-08-24

    Metastatic melanoma is a deadly skin cancer and is resistant to almost all existing treatment. Vemurafenib, which targets the BRAFV600E mutation, is one of the drugs that improves patient outcome, but the patients next develop secondary resistance and a return to cancer. Thus, new therapeutic strategies are needed to treat melanomas and to increase the duration of v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) inhibitor response. The ERK pathway controls cell proliferation, and Aurora B plays a pivotal role in cell division. Here, we confirm that Aurora B is highly expressed in metastatic melanoma cells and that Aurora B inhibition triggers both senescence-like phenotypes and cell death in melanoma cells. Furthermore, we show that the BRAF/ERK axis controls Aurora B expression at the transcriptional level, likely through the transcription factor FOXM1. Our results provide insight into the mechanism of Aurora B regulation and the first molecular basis of Aurora B regulation in melanoma cells. The inhibition of Aurora B expression that we observed in vemurafenib-sensitive melanoma cells was rescued in cells resistant to this drug. Consistently, these latter cells remain sensitive to the effect of the Aurora B inhibitor. Noteworthy, wild-type BRAF melanoma cells are also sensitive to Aurora B inhibition. Collectively, our findings, showing that Aurora B is a potential target in melanoma cells, particularly in those vemurafenib-resistant, may open new avenues to improve the treatment of metastatic melanoma.

  12. Inhibition of CDK1 activity by sumoylation.

    PubMed

    Xiao, Yuxuan; Lucas, Benjamin; Molcho, Elana; Schiff, Tania; Vigodner, Margarita

    2016-09-16

    Sumoylation (a covalent modification by Small Ubiquitin-like Modifiers or SUMO proteins) has been implicated in the regulation of various cellular events including cell cycle progression. We have recently identified CDK1, a master regulator of mitosis and meiosis, as a SUMO target both in vivo and in vitro, supporting growing evidence concerning a close cross talk between sumoylation and phosphorylation during cell cycle progression. However, any data regarding the effect of sumoylation upon CDK1 activity have been missing. In this study, we performed a series of in vitro experiments to inhibit sumoylation by three different means (ginkgolic acid, physiological levels of oxidative stress, and using an siRNA approach) and assessed the changes in CDK1 activity using specific antibodies and a kinase assay. We have also tested for an interaction between SUMO and active and/or inactive CDK1 isoforms in addition to having assessed the status of CDK1-interacting sumoylated proteins upon inhibition of sumoylation. Our data suggest that inhibition of sumoylation increases the activity of CDK1 probably through changes in sumoylated status and/or the ability of specific proteins to bind CDK1 and inhibit its activity. PMID:27520372

  13. Black tea polyphenols inhibit tumor proteasome activity.

    PubMed

    Mujtaba, Taskeen; Dou, Q Ping

    2012-01-01

    Tea is a widely consumed beverage and its constituent polyphenols have been associated with potential health benefits. Although black tea polyphenols have been reported to possess potent anticancer activities, the effect of its polyphenols, theaflavins on the tumor's cellular proteasome function, an important biological target in cancer prevention, has not been carefully studied. Here black tea extract (T5550) enriched in theaflavins inhibited the chymotrypsin-like (CT) activity of the proteasome and proliferation of human multiple myeloma cells in a dose-dependent manner. Also an isolated theaflavin (TF-1) can bind to, and inhibit the purified 20S proteasome, accompanied by suppression of tumor cell proliferation, suggesting that the tumor proteasome is an important target whose inhibition is at least partially responsible for the anticancer effects of black tea.

  14. Paradox-Breaking RAF Inhibitors that Also Target SRC Are Effective in Drug-Resistant BRAF Mutant Melanoma

    PubMed Central

    Girotti, Maria Romina; Lopes, Filipa; Preece, Natasha; Niculescu-Duvaz, Dan; Zambon, Alfonso; Davies, Lawrence; Whittaker, Steven; Saturno, Grazia; Viros, Amaya; Pedersen, Malin; Suijkerbuijk, Bart M.J.M.; Menard, Delphine; McLeary, Robert; Johnson, Louise; Fish, Laura; Ejiama, Sarah; Sanchez-Laorden, Berta; Hohloch, Juliane; Carragher, Neil; Macleod, Kenneth; Ashton, Garry; Marusiak, Anna A.; Fusi, Alberto; Brognard, John; Frame, Margaret; Lorigan, Paul; Marais, Richard; Springer, Caroline

    2015-01-01

    Summary BRAF and MEK inhibitors are effective in BRAF mutant melanoma, but most patients eventually relapse with acquired resistance, and others present intrinsic resistance to these drugs. Resistance is often mediated by pathway reactivation through receptor tyrosine kinase (RTK)/SRC-family kinase (SFK) signaling or mutant NRAS, which drive paradoxical reactivation of the pathway. We describe pan-RAF inhibitors (CCT196969, CCT241161) that also inhibit SFKs. These compounds do not drive paradoxical pathway activation and inhibit MEK/ERK in BRAF and NRAS mutant melanoma. They inhibit melanoma cells and patient-derived xenografts that are resistant to BRAF and BRAF/MEK inhibitors. Thus, paradox-breaking pan-RAF inhibitors that also inhibit SFKs could provide first-line treatment for BRAF and NRAS mutant melanomas and second-line treatment for patients who develop resistance. PMID:25500121

  15. MITF and PAX3 Play Distinct Roles in Melanoma Cell Migration; Outline of a "Genetic Switch" Theory Involving MITF and PAX3 in Proliferative and Invasive Phenotypes of Melanoma.

    PubMed

    Eccles, Michael R; He, Shujie; Ahn, Antonio; Slobbe, Lynn J; Jeffs, Aaron R; Yoon, Han-Seung; Baguley, Bruce C

    2013-09-11

    Melanoma is a very aggressive neoplasm with a propensity to undergo progression and invasion early in its evolution. The molecular pathways underpinning invasion in melanoma are now just beginning to be elucidated, but a clear understanding of the transition from non-invasive to invasive melanoma cells remains elusive. Microphthalmia-associated transcription factor (MITF), is thought to be a central player in melanoma biology, and it controls many aspects of the phenotypic expression of the melanocytic lineage. However, recently the paired box transcription factor PAX3 was shown to transcriptionally activate POU3F2/BRN2, leading to direct repression of MITF expression. Here we present a theory to explain melanoma phenotype switching and discuss the predictions that this theory makes. One prediction is that independent and opposing roles for MITF and PAX3 in melanoma would be expected, and we present empirical evidence supporting this: in melanoma tissues PAX3 expression occurs independently of MITF, and PAX3 does not play a key role in melanoma cell proliferation. Furthermore, we show that knockdown of PAX3 inhibits cell migration in a group of "lower MITF" melanoma cell lines, while knockdown of MITF promotes cell migration in a complementary "higher MITF" group of melanoma cell lines. Moreover, the morphological effects of knocking down PAX3 versus MITF in melanoma cells were found to differ. While these data support the notion of independent roles for MITF and PAX3, additional experiments are required to provide robust examination of the proposed genetic switch theory. Only upon clear delineation of the mechanisms associated with progression and invasion of melanoma cells will successful treatments for invasive melanoma be developed.

  16. Inhibitory components from the buds of clove (Syzygium aromaticum) on melanin formation in B16 melanoma cells.

    PubMed

    Arung, Enos Tangke; Matsubara, Eri; Kusuma, Irawan Wijaya; Sukaton, Edi; Shimizu, Kuniyoshi; Kondo, Ryuichiro

    2011-03-01

    In the course to find a new whitening agent, we evaluated the methanol extract from bud of clove (Syzygium aromaticum) on melanin formation in B16 melanoma cells. Eugenol and eugenol acetate were isolated as the active compounds and showed melanin inhibition of 60% and 40% in B16 melanoma cell with less cytotoxicity at the concentration of 100 and 200 μg/mL, respectively. Furthermore, an essential oil prepared from the bud of clove, which contain eugenol and eugenol acetate as dominant components, showed melanin inhibition of 50% and 80% in B16 melanoma cells at the concentration of 100 and 200 μg/mL, respectively.

  17. Role of ING4 in human melanoma cell migration, invasion and patient survival.

    PubMed

    Li, Jun; Martinka, Magdalena; Li, Gang

    2008-07-01

    Inhibitor of growth (ING) 4 has been reported as a tumor suppressor and shown to diminish colony-forming efficiency, induce p53-dependent apoptosis and arrest cell cycle at G(2)-M phase. In this study, we investigated the role of ING4 in human melanoma pathogenesis. Using the tissue microarray technology, we found that ING4 expression is significantly decreased in malignant melanoma compared with dysplastic nevi (P < 0.0001, chi(2) test) and reduced ING4 staining is associated with melanoma thickness, ulceration (P = 0.034 and 0.002, respectively, chi(2) test) as well as poor overall and disease-specific 5-year survival of primary melanoma patients (P = 0.0002 and 0.001, respectively, chi(2) test). Cox regression analysis revealed that reduced ING4 staining is an independent factor for the poor prognosis of patients with primary melanomas. Furthermore, we found that overexpression of ING4 suppressed cell migration by 63% and inhibited the activity of Ras homolog gene family member A (RhoA) small GTPase protein and Rho-associated kinase (ROCK)-mediated formation of stress fiber in melanoma cells. Moreover, our data showed that overexpression of ING4 inhibited melanoma cell invasion by 43% compared with the control (P = 0.006, t-test) and ING4-overexpressing melanoma cells showed significantly reduced activity of matrix metalloproteinase (MMP)-2 and MMP-9. Taken together, this study highlights the importance of ING4 in melanoma pathogenesis and ING4 may serve as a promising prognostic marker and a potential therapeutic target for human melanoma.

  18. Specifically targeting ERK1 or ERK2 kills Melanoma cells

    PubMed Central

    2012-01-01

    Background Overcoming the notorious apoptotic resistance of melanoma cells remains a therapeutic challenge given dismal survival of patients with metastatic melanoma. However, recent clinical trials using a BRAF inhibitor revealed encouraging results for patients with advanced BRAF mutant bearing melanoma, but drug resistance accompanied by recovery of phospho-ERK (pERK) activity present challenges for this approach. While ERK1 and ERK2 are similar in amino acid composition and are frequently not distinguished in clinical reports, the possibility they regulate distinct biological functions in melanoma is largely unexplored. Methods Rather than indirectly inhibiting pERK by targeting upstream kinases such as BRAF or MEK, we directly (and near completely) reduced ERK1 and ERK2 using short hairpin RNAs (shRNAs) to achieve sustained inhibition of pERK1 and/or pERK2. Results and discussion Using A375 melanoma cells containing activating BRAFV600E mutation, silencing ERK1 or ERK2 revealed some differences in their biological roles, but also shared roles by reduced cell proliferation, colony formation in soft agar and induced apoptosis. By contrast, chemical mediated inhibition of mutant BRAF (PLX4032) or MEK (PD0325901) triggered less killing of melanoma cells, although they did inhibit proliferation. Death of melanoma cells by silencing ERK1 and/or ERK2 was caspase dependent and accompanied by increased levels of Bak, Bad and Bim, with reduction in p-Bad and detection of activated Bax levels and loss of mitochondrial membrane permeability. Rare treatment resistant clones accompanied silencing of either ERK1 and/or ERK2. Unexpectedly, directly targeting ERK levels also led to reduction in upstream levels of BRAF, CRAF and pMEK, thereby reinforcing the importance of silencing ERK as regards killing and bypassing drug resistance. Conclusions Selectively knocking down ERK1 and/or ERK2 killed A375 melanoma cells and also increased the ability of PLX4032 to kill A375 cells

  19. Assay and Inhibition of Diacylglycerol Lipase Activity

    PubMed Central

    Johnston, Meghan; Bhatt, Shachi R.; Sikka, Surina; Mercier, Richard W.; West, Jay M.; Makriyannis, Alexandros; Gatley, S. John; Duclos, Richard I.

    2012-01-01

    A series of N-formyl-α-amino acid esters of β-lactone derivatives structurally related to tetrahydrolipstatin (THL) and O-3841 were synthesized that inhibit human and murine diacylglycerol lipase (DAGL) activities. New ether lipid reporter compounds were developed for an in vitro assay to efficiently screen inhibitors of 1,2-diacyl-sn-glycerol hydrolysis and related lipase activities using fluorescence resonance energy transfer (FRET). A standardized thin layer chromatography (TLC) radioassay of diacylglycerol lipase activity utilizing the labeled endogenous substrate [1″-14C]1-stearoyl-2-arachidonoyl-sn-glycerol with phosphorimaging detection was used to quantify inhibition by following formation of the initial product [1″-14C]2-arachidonoylglycerol and further hydrolysis under the assay conditions to [1-14C]arachidonic acid. PMID:22738638

  20. Storkhead box 2 and melanoma inhibitory activity promote oral squamous cell carcinoma progression

    PubMed Central

    Sasahira, Tomonori; Nishiguchi, Yukiko; Fujiwara, Rina; Kurihara, Miyako; Kirita, Tadaaki; Bosserhoff, Anja Katrin; Kuniyasu, Hiroki

    2016-01-01

    Background Storkhead box protein 2 (STOX2) is a transcriptional factor associated with pre-eclampsia with fetal growth restriction. We recently reported that melanoma inhibitory activity (MIA) promotes oral squamous cell carcinoma (OSCC) progression. However, the relationship between STOX2 and MIA remains unknown in malignancies. Methods We used immunohistochemistry and PCR to investigate MIA and STOX2 expression in OSCC. We also performed functional analysis in human OSCC cells. Results MIA and STOX2 mRNA levels were higher in OSCCs than in normal oral epithelial cells, and upregulation of STOX2 was significantly correlated with overexpression of MIA. Immunostaining for STOX2 was associated with nodal metastasis (P = 0.0002) and MIA expression (P < 0.0001). Furthermore, MIA expression (P = 0.0035) and STOX2 expression (P = 0.0061) were associated with poor outcome in OSCCs. In vitro analysis using OSCC cells revealed that MIA increased expression of STOX2 by paracrine manner. Moreover, STOX2 accelerated OSCC cell growth, invasion, suppressed apoptosis, and enhanced resistance to paclitaxel, cisplatin, and 5-FU. Conclusions Our results suggest that MIA-STOX2 signaling may be a useful diagnostic and therapeutic target in OSCCs. PMID:27050375

  1. Spongian diterpenoids inhibit androgen receptor activity

    PubMed Central

    Yang, Yu Chi; Meimetis, Labros G; Tien, Amy H; Mawji, Nasrin R; Carr, Gavin; Wang, Jun; Andersen, Raymond J; Sadar, Marianne D

    2013-01-01

    Androgen receptor (AR) is a ligand-activated transcription factor and a validated drug target for all stages of prostate cancer. Antiandrogens compete with physiological ligands for AR ligand-binding domain (LBD). High-throughput screening of a marine natural product library for small molecules that inhibit AR transcriptional activity yielded the furanoditerpenoid spongia-13(16),-14-dien-19-oic acid, designated terpene 1 (T1). Characterization of T1 and the structurally related semi-synthetic analogues (T2 and T3) revealed that these diterpenoids have antiandrogen properties that include inhibition of both androgen-dependent proliferation and AR transcriptional activity by a mechanism that involved competing with androgen for AR LBD and blocking essential N/C interactions required for androgen-induced AR transcriptional activity. Structure activity relationship analyses revealed some chemical features of T1 that are associated with activity and yielded T3 as the most potent analogue. In vivo, T3 significantly reduced the weight of seminal vesicles, which are an androgen-dependent tissue, thereby confirming T3’s on-target activity. The ability to create analogues of diterpenoids that have varying antiandrogen activity represents a novel class of chemical compounds for the analysis of AR ligand-binding properties and therapeutic development. PMID:23443807

  2. Surgical treatment of advanced melanoma.

    PubMed

    Hussussian, Christopher J

    2010-01-01

    Primary surgical treatment should be considered for patients with metastatic melanoma. Because of the poor response of melanoma to chemotherapy or radiation therapy, surgery can be the best approach to quickly eliminate detectable disease and return the patient to normal activities. In properly selected patients, surgery can lead to significant palliation and prolongation of survival. This article reviews the principles of patient selection and the potential benefits of surgical management of melanoma metastatic to various sites. Novel adjuvant therapies are being developed to augment the benefits of surgical treatment of advanced melanoma in the future.

  3. Sox4 Mediated Dicer Expression is Critical for Suppression of Melanoma Cell Invasion

    PubMed Central

    Jafarnejad, Seyed Mehdi; Ardekani, Gholamreza Safaee; Ghaffari, Mazyar; Martinka, Magdalena; Li, Gang

    2016-01-01

    We previously reported reduced expression of Sox4 in metastatic melanoma and its role in suppression of cell migration and invasion through inhibition of NF-κB p50. Sox4 can also bind to the promoter sequence of Dicer, a miRNA biogenesis factor. Interestingly, altered expression of Dicer was also observed in cancers. However, the potential mechanisms which regulate Dicer expression and its potential significance in melanoma progression are unknown. Here we studied the regulation of Dicer expression by Sox4 and its role in suppression of melanoma invasion. Our data showed that Sox4 positively regulates Dicer expression by binding to its promoter sequences and enhancing its activity. We found that knockdown of Dicer enhances the matrigel invasion of melanoma cells by at least 2-fold. In addition, we revealed that overexpression of exogenous Dicer reverts the enhanced melanoma cell invasion upon Sox4 knockdown. Furthermore, we examined the expression of Dicer protein in a large set of melanocytic lesions (n=504) at different stages by tissue microarray and found that Dicer expression is inversely correlated with melanoma progression (P < 0.0001). Consistently, reduced Dicer expression was correlated with a poorer overall and disease-specific 5-year survival of patients (P = 0.015 and 0.0029, respectively). In addition, we found a significant correlation between expression of Sox4 and Dicer proteins in melanoma biopsies (P = 0.009), further indicating the regulation of Dicer expression by Sox4. Finally, we revealed that knockdown of Sox4 induces a major change in the expression pattern of miRNAs in melanoma cells, mainly due to reduced expression of Dicer. Our results pinpoint the regulation of Dicer expression by Sox4 in melanoma and the critical role of Dicer in suppression of melanoma invasion. Our findings on Sox4 regulated miRNA biogenesis pathway may aid toward the development of novel targeted therapeutic approaches for melanoma. PMID:22689055

  4. Cell Surface CD74-MIF Interactions Drive Melanoma Survival in Response to Interferon-γ

    PubMed Central

    Tanese, Keiji; Hashimoto, Yuuri; Berkova, Zuzana; Wang, Yuling; Samaniego, Felipe; Lee, Jeffrey E.; Ekmekcioglu, Suhendan; Grimm, Elizabeth A.

    2015-01-01

    While melanoma is believed to be a highly immunogenic tumor and recent developments in immunotherapies are promising. Interferon-γ (IFN-γ) produced by immune cells plays a crucial role in tumor immune surveillance; however, it has also been reported to be pro-tumorigenic. In the current study, we found that IFN-γ enhances the expression of CD74, which interacts with its ligand, macrophage migration inhibitory factor (MIF), and thereby activates the PI3K/AKT pathway in melanoma, promoting tumor survival. IFN-γ increased phosphorylation of AKT Ser473 and upregulated total and cell surface expression of CD74 in human melanoma cell lines tested. CD74 was highly expressed in melanoma tissues. Moreover, the expression of CD74 on tumor cells correlated with plasma IFN-γ levels in melanoma patient samples. In our analysis of melanoma cell lines, all produced MIF constitutively. Blockade of CD74-MIF interaction reduced AKT phosphorylation and expression of pro-tumorigenic molecules, including interleukin-6, interleukin-8 and BCL-2. Inhibition of CD74-MIF interaction significantly suppressed tumor growth in the presence of IFN-γ in our xenograft mouse model. Thus, we conclude that IFN-γ promotes melanoma cell survival by regulating CD74-MIF signaling, suggesting that targeting the CD74-MIF interaction under IFN-γ–stimulatory conditions would be an effective therapeutic approach for melanoma. PMID:26039541

  5. Cell Surface CD74-MIF Interactions Drive Melanoma Survival in Response to Interferon-γ.

    PubMed

    Tanese, Keiji; Hashimoto, Yuuri; Berkova, Zuzana; Wang, Yuling; Samaniego, Felipe; Lee, Jeffrey E; Ekmekcioglu, Suhendan; Grimm, Elizabeth A

    2015-11-01

    Melanoma is believed to be a highly immunogenic tumor and recent developments in immunotherapies are promising. IFN-γ produced by immune cells has a crucial role in tumor immune surveillance; however, it has also been reported to be pro-tumorigenic. In the current study, we found that IFN-γ enhances the expression of CD74, which interacts with its ligand, macrophage migration inhibitory factor (MIF), and thereby activates the PI3K/AKT pathway in melanoma, promoting tumor survival. IFN-γ increased phosphorylation of AKT Ser473 and upregulated total cell surface expression of CD74 in human melanoma cell lines tested. CD74 was highly expressed in melanoma tissues. Moreover, the expression of CD74 on tumor cells correlated with plasma IFN-γ levels in melanoma patient samples. In our analysis of melanoma cell lines, all produced MIF constitutively. Blockade of CD74-MIF interaction reduced AKT phosphorylation and expression of pro-tumorigenic molecules, including IL-6, IL-8, and BCL-2. Inhibition of CD74-MIF interaction significantly suppressed tumor growth in the presence of IFN-γ in our xenograft mouse model. Thus, we conclude that IFN-γ promotes melanoma cell survival by regulating CD74-MIF signaling, suggesting that targeting the CD74-MIF interaction under IFN-γ-stimulatory conditions would be an effective therapeutic approach for melanoma.

  6. Umbelliprenin from Ferula szowitsiana inhibits the growth of human M4Beu metastatic pigmented malignant melanoma cells through cell-cycle arrest in G1 and induction of caspase-dependent apoptosis.

    PubMed

    Barthomeuf, Chantal; Lim, Suzanne; Iranshahi, Mehrdad; Chollet, Philippe

    2008-01-01

    Metastatic malignant melanoma have a bad prognosis (median survival: 6-8 months) mainly due to the development of lung, hepatic and brain metastases. In this study we have used the resazurin reduction test and FACS analysis to assess the cytostatic and cytotoxic effect of umbelliprenin from Ferula szowitsiana (Apiaceae) on human solid cancer cells and human primary fibroblasts. We have observed that the cell susceptibility to umbelliprenin decreases in the order M4Beu (metastatic pigmented malignant melanoma)>A549 (nonsmall cell lung carcinoma) approximately PC3 (androgen-resistant prostate carcinoma)>PA1 (ovary teratocarcinoma)>human primary fibroblasts approximately MCF7 (breast adenocarcinoma)>DLD1 (colon adenocarcinoma). M4Beu cell-proliferation is inhibited through cell-cycle arrest in G1 and induction of caspase-dependent apoptosis. The finding that the cytotoxic effect of umbelliprenin is markedly more pronounced in M4Beu cells than in primary fibroblasts, suggests a therapeutic margin. As M4Beu cell proliferation is more potently inhibited by umbelliprenin (IC50 12.3 microM) than by the citrus coumarin auraptene (7-geranyloxycoumarin, IC50 17.1 microM) previously reported capable of inhibiting the prevalence of lung metastasis in mice bearing B16BL6 murine melanoma, our data suggest that umbelliprenin orally administered and foods and folk medicines containing this coumarin, may afford protection against the development and early recurrence of malignant melanoma. In vivo investigations are needed to test these hypotheses.

  7. The effect of divalent cations on Cloudman melanoma cells.

    PubMed

    Borovanský, J; Riley, P A

    1983-01-01

    The effect of Ca2+, Cd2+, Cu2+, Mg2+ and Zn2+ as acetates (10(-3) - 10(-5)M) and of 2% DMSO on the proliferation and differentiation of clone M3 of the Cloudman S91 mouse melanoma was studied and compared with the behaviour of GPK (keratocyte) and MRC5 (fibroblast) cell lines. Whereas neither calcium nor magnesium ions influenced the proliferation of the cells as measured by [3H]-thymidine incorporation, absorbance at 280 nm of NaOH cell digests and cell counts, cadmium, zinc and copper ions selectively inhibited the melanoma line. Cd2+ (10(-5)M) and Zn2+ (10(-4)M) were selectively cytotoxic to melanoma cells in contrast to keratocytes and fibroblasts. No direct effect of the cations on melanogenesis, as estimated from the ratio of absorbance at 350 nm and 280 nm and by tyrosinase assays, was demonstrated. DMSO stimulated melanogenesis in melanoma cells but inhibited their growth. Experiments with ouabain indicate that active transport is involved in the uptake of zinc by melanoma cells. PMID:6682780

  8. MIG6 is MEK-regulated and affects EGF-induced migration in mutant NRAS melanoma

    PubMed Central

    Vu, Ha Linh; Rosenbaum, Sheera; Capparelli, Claudia; Purwin, Timothy J.; Davies, Michael A.; Berger, Adam C.; Aplin, Andrew E.

    2015-01-01

    Activating mutations in NRAS are frequent driver events in cutaneous melanoma. NRAS is a GTP-binding protein, whose most well-characterized downstream effector is RAF leading to activation of MEK-ERK1/2 signaling. While there are no FDA-approved targeted therapies for melanoma patients with a primary mutation in NRAS, one form of targeted therapy that has been explored is MEK inhibition. In clinical trials, MEK inhibitors have shown disappointing efficacy in mutant NRAS patients, the reasons for which are unclear. To explore the effects of MEK inhibitors in mutant NRAS melanoma, we utilized a high-throughput reverse-phase protein array (RPPA) platform to identify signaling alterations. RPPA analysis of phospho-proteomic changes in mutant NRAS melanoma in response to trametinib indicated a compensatory increase in AKT signaling and decreased expression of mitogen-inducible gene 6 (MIG6), a negative regulator of EGFR/ERBB receptors. MIG6 expression did not alter the growth or survival properties of mutant NRAS melanoma cells. Rather, we identified a role for MIG6 as a negative regulator of EGF-induced signaling and cell migration and invasion. In MEK inhibited cells, further depletion of MIG6 increased migration and invasion, whereas MIG6 expression decreased these properties. Therefore, a decrease in MIG6 may promote the migration and invasiveness of MEK-inhibited mutant NRAS melanoma especially in response to EGF stimulation. PMID:26967478

  9. Na+/K+-ATPase: Activity and inhibition

    NASA Astrophysics Data System (ADS)

    Čolović, M.; Krstić, D.; Krinulović, K.; Momić, T.; Savić, J.; Vujačić, A.; Vasić, V.

    2009-09-01

    The aim of the study was to give an overview of the mechanism of inhibition of Na+/K+-ATPase activity induced by some specific and non specific inhibitors. For this purpose, the effects of some ouabain like compounds (digoxin, gitoxin), noble metals complexes ([PtCl2DMSO2], [AuCl4]-, [PdCl4]2-, [PdCl(dien)]+, [PdCl(Me4dien)]+), transition metal ions (Cu2+, Zn2+, Fe2+, Co2+), and heavy metal ions (Hg2+, Pb2+, Cd2+) on the activity of Na+/K+-ATPase from rat synaptic plasma membranes (SPM), porcine cerebral cortex and human erythrocytes were discussed.

  10. Enhancing anti-melanoma immunity by electrochemotherapy and in vivo dendritic-cell activation

    PubMed Central

    Gerlini, Gianni; Di Gennaro, Paola; Borgognoni, Lorenzo

    2012-01-01

    Combining electrochemotherapy with dendritic cell-based immunotherapy is a promising strategy against human metastatic melanoma that deserves to be clinically assessed. While electrochemotherapy induces a rapid regression of metastases, immunotherapy generates systemic anticancer immunity, contributes to eradicate the tumor and maintains an immunological memory to control relapse. PMID:23264927

  11. The inhibition of cell proliferation using silencing of N-cadherin gene by siRNA process in human melanoma cell lines.

    PubMed

    Ciołczyk-Wierzbicka, D; Gil, D; Laidler, P

    2012-01-01

    Malignant melanoma is a disease with high mortality rate caused by rapid metastasis. Cell motility is physically and biochemically restricted by cadherin-mediated cell interactions and signalling pathways, and alterations in cadherin expression strongly correlate with E to N-cadherin switch as well as the metastasis and progression of tumours. Contrary to E-cadherin, N-cadherin plays an important role in stimulating processes of cell division, migration, differentiation and death. In this study we investigated the role of N-cadherin in proliferation and AKT, ERK, beta-catenin signalling pathway in human melanoma cells: WM793(VGP), WM115(VGP) from the primary tumor site, as well as Lu1205(lung) and WM266-4(skin) from metastatic sites. N-cadherin, pAKT(S473), β-catenin, pERK1/2(T202/Y204), cyclin D1, cyclin D3, cyclin-dependent kinases CDK4, CDK6, and p15, p16, p21, p27 inhibitors expression was determined by western blot analysis. The study on proliferation of cells was performed with the use of BrdU incorporation and crystal violet staining assays. Knock-out of N-cadherin gene expression by siRNA process reduced the expression of: pAKT(S473), pERK1/2(T202/Y204), betacatenin, cyclin D1, cyclin D3, cyclin-dependent kinases CDK4, CDK6 while increasing expression of cell cycle inhibitors p21 and p27, and significantly decreased cell proliferation (50-70%). The collected data indicate that N-cadherin mediates the effect of cell cycle in G1 phase by AKT, β-catenin, and ERK signalling pathway. These results suggest that increased expression of N-cadherin significantly contributes to the increased invasive potential of melanoma cells. Silencing of N-cadherin arrests cell growth at G1 phase and inhibits the entry into S-phase which is of great importance as to its possible future use in cancer treatment. PMID:22300088

  12. [Choroidal melanoma].

    PubMed

    Desjardins, Laurence

    2016-03-01

    Choroidal melanoma is the most common form of eye cancer in adults. Treatments enabling the tumour to be destroyed or removed while preserving the eye socket are mainly based on surgery, proton therapy and brachytherapy. PMID:26944641

  13. Uveal melanoma: Estimating prognosis

    PubMed Central

    Kaliki, Swathi; Shields, Carol L; Shields, Jerry A

    2015-01-01

    Uveal melanoma is the most common primary malignant tumor of the eye in adults, predominantly found in Caucasians. Local tumor control of uveal melanoma is excellent, yet this malignancy is associated with relatively high mortality secondary to metastasis. Various clinical, histopathological, cytogenetic features and gene expression features help in estimating the prognosis of uveal melanoma. The clinical features associated with poor prognosis in patients with uveal melanoma include older age at presentation, male gender, larger tumor basal diameter and thickness, ciliary body location, diffuse tumor configuration, association with ocular/oculodermal melanocytosis, extraocular tumor extension, and advanced tumor staging by American Joint Committee on Cancer classification. Histopathological features suggestive of poor prognosis include epithelioid cell type, high mitotic activity, higher values of mean diameter of ten largest nucleoli, higher microvascular density, extravascular matrix patterns, tumor-infiltrating lymphocytes, tumor-infiltrating macrophages, higher expression of insulin-like growth factor-1 receptor, and higher expression of human leukocyte antigen Class I and II. Monosomy 3, 1p loss, 6q loss, and 8q and those classified as Class II by gene expression are predictive of poor prognosis of uveal melanoma. In this review, we discuss the prognostic factors of uveal melanoma. A database search was performed on PubMed, using the terms “uvea,” “iris,” “ciliary body,” “choroid,” “melanoma,” “uveal melanoma” and “prognosis,” “metastasis,” “genetic testing,” “gene expression profiling.” Relevant English language articles were extracted, reviewed, and referenced appropriately. PMID:25827538

  14. Cutaneous melanoma.

    PubMed

    Eggermont, Alexander M M; Spatz, Alan; Robert, Caroline

    2014-03-01

    In the past decade, major advances have been made in the understanding of melanoma. New predisposition genes have been reported and key somatic events, such as BRAF mutation, directly translated into therapeutic management. Surgery for localised melanoma and regional lymph node metastases is the standard of care. Sentinel-node biopsy provides precise staging, but has not been reported to affect survival. The effect of lymph-node dissection on survival is a topic of investigation. Two distinct approaches have emerged to try to extend survival in patients with metastatic melanoma: immunomodulation with anti-CTLA4 monoclonal antibodies, and targeted therapy with BRAF inhibitors or MEK inhibitors for BRAF-mutated melanoma. The combination of BRAF inhibitors and MEK inhibitors might improve progression-free survival further and, possibly, increase overall survival. Response patterns differ substantially-anti-CTLA4 immunotherapy can induce long-term responses, but only in a few patients, whereas targeted drugs induce responses in most patients, but nearly all of them relapse because of pre-existing or acquired resistance. Thus, the long-term prognosis of metastatic melanoma remains poor. Anti-PD1 and anti-PDL1 antibodies have emerged as breakthrough drugs for melanoma that have high response rates and long durability. Biomarkers that have predictive value remain elusive in melanoma, although emerging data for adjuvant therapy indicate that interferon sensitivity is associated with ulceration of the primary melanoma. Intense investigation continues for clinical and biological markers that predict clinical benefit of immunotherapeutic drugs, such as interferon alfa or anti-CTLA4 antibodies, and the mechanisms that lead to resistance of targeted drugs.

  15. The BRAFV600E inhibitor, PLX4032, increases type I collagen synthesis in melanoma cells

    PubMed Central

    Jenkins, Molly H.; Croteau, Walburga; Mullins, David W.; Brinckerhoff, Constance E.

    2016-01-01

    Vertical growth phase (VGP) melanoma is frequently metastatic, a process mediated by changes in gene expression, which are directed by signal transduction pathways in the tumor cells. A prominent signaling pathway is the Ras-Raf-Mek-Erk MAPK pathway, which increases expression of genes that promote melanoma progression. Many melanomas harbor a mutation in this pathway, BRAFV600E, which constitutively activates MAPK signaling and expression of downstream target genes that facilitate tumor progression. In BRAFV600E melanoma, the small molecule inhibitor, vemurafenib (PLX4032), has revolutionized therapy for melanoma by inducing rapid tumor regression. This compound down-regulates the expression of many genes. However, in this study, we document that blocking the Ras-Raf-Mek-Erk MAPK pathway, either with an ERK (PLX4032) or a MEK (U1026) signaling inhibitor, in BRAFV600E human and murine melanoma cell lines increases collagen synthesis in vitro and collagen deposition in vivo. Since TGFβ signaling is a major mediator of collagen synthesis, we examined whether blocking TGFβ signaling with a small molecule inhibitor would block this increase in collagen. However, there was minimal reduction in collagen synthesis in response to blocking TGFβ signaling, suggesting additional mechanism(s), which may include activation of the p38 MAPK pathway. Presently, it is unclear whether this increased collagen synthesis and deposition in melanomas represent a therapeutic benefit or an unwanted “off target” effect of inhibiting the Ras-Raf-Erk-Mek pathway. PMID:25989506

  16. Current and Future Trials of Targeted Therapies in Cutaneous Melanoma

    PubMed Central

    Madhunapantula, SubbaRao V.; Robertson, Gavin P.; Drabick, Joseph J.

    2013-01-01

    In order to effectively treat melanoma, targeted inhibition of key mechanistic events regulating melanoma development such as cell proliferation, survival, angiogenesis and invasion or metastasis needs to be accomplished. The Mitogen Activated Protein Kinase (MAPK) pathway has been identified as a key player in melanoma development making this cascade an important therapeutic target. However, identification of the ideal pathway member to therapeutically target for maximal clinical benefit remains a challenge. In normal cells, the MAPK pathway relays extracellular signals from the cell membrane to the nucleus via a cascade of phosphorylation events, which promote cancer development. Dysregulation of the MAPK pathway occurs frequently in many human cancers including melanoma. Mutations in the B-RAF and RAS genes, genetic or epigenetic modifications are the key aberrations observed in this signaling cascade. Constitutive activation of this pathway causes oncogenic transformation of cells by promoting cell proliferation, invasion, metastasis, migration, survival and angiogenesis. This review provides an overview of (a) key members of MAPK signaling regulating melanoma development; (b) key proteins which can serve as biomarkers to assess disease progression; (c) the clinical efficacy of various pharmacological agents targeting MAPK pathway; (d) current clinical trials evaluating downstream targets of the MAPK pathway; (e) issues associated with pharmacological agents such as drug resistance, induction of cancers; and finally (e) various strategies overcoming drug resistance. PMID:23288642

  17. Dual inhibition of protein kinase C and p53-MDM2 or PKC and mTORC1 are novel efficient therapeutic approaches for uveal melanoma

    PubMed Central

    Dahmani, Ahmed; Raymondie, Chloé; Cassoux, Nathalie; Piperno-Neumann, Sophie; Némati, Fariba; Laurent, Cécile; De Koning, Leanne; Halilovic, Ensar; Jeay, Sebastien; Wylie, Andrew; Emery, Caroline; Roman-Roman, Sergio

    2016-01-01

    Uveal melanoma (UM) is the most common cancer of the eye in adults. Many UM patients develop metastases for which no curative treatment has been identified. Novel therapeutic approaches are therefore urgently needed. UM is characterized by mutations in the genes GNAQ and GNA11 which activate the PKC pathway, leading to the use of PKC inhibitors as a rational strategy to treat UM tumors. Encouraging clinical activity has been noted in UM patients treated with PKC inhibitors. However, it is likely that curative treatment regimens will require a combination of targeted therapeutic agents. Employing a large panel of UM patient-derived xenograft models (PDXs), several PKC inhibitor-based combinations were tested in vivo using the PKC inhibitor AEB071. The most promising approaches were further investigated in vitro using our unique panel of UM cell lines. When combined with AEB071, the two agents CGM097 (p53-MDM2 inhibitor) and RAD001 (mTORC1 inhibitor) demonstrated greater activity than single agents, with tumor regression observed in several UM PDXs. Follow-up studies in UM cell lines on these two drug associations confirmed their combination activity and ability to induce cell death. While no effective treatment currently exists for metastatic uveal melanoma, we have discovered using our unique panel of preclinical models that combinations between PKC/mTOR inhibitors and PKC/p53-MDM2 inhibitors are two novel and very effective therapeutic approaches for this disease. Together, our study reveals that combining PKC and p53-MDM2 or mTORC1 inhibitors may provide significant clinical benefit for UM patients. PMID:27507190

  18. Suppressing irrelevant information: knowledge activation or inhibition?

    PubMed

    McNamara, Danielle S; McDaniel, Mark A

    2004-03-01

    In 3 experiments, the authors examined the role of knowledge activation in the suppression of contextually irrelevant meanings for ambiguous homographs. In Experiments 1 and 2, participants with greater baseball knowledge, regardless of reading skill, more quickly suppressed the irrelevant meaning of ambiguous words in baseball-related, but not general-topic, sentences. Experiment 3 demonstrated that participants with greater general knowledge, regardless of reading skill, more quickly suppressed the irrelevant meaning of the ambiguous words in general-topic sentences. As predicted by D. S. McNamara's (1997) knowledge-based account of suppression, ambiguity effects are influenced by greater activation of knowledge related to the intended meaning of the homograph. These results challenge inhibition (e.g. M. A. Gernsbacher, K. R. Varner. & M. Faust, 1990) as the sole mechanism responsible for the suppression of irrelevant information.

  19. Recurrent inactivating RASA2 mutations in melanoma.

    PubMed

    Arafeh, Rand; Qutob, Nouar; Emmanuel, Rafi; Keren-Paz, Alona; Madore, Jason; Elkahloun, Abdel; Wilmott, James S; Gartner, Jared J; Di Pizio, Antonella; Winograd-Katz, Sabina; Sindiri, Sivasish; Rotkopf, Ron; Dutton-Regester, Ken; Johansson, Peter; Pritchard, Antonia L; Waddell, Nicola; Hill, Victoria K; Lin, Jimmy C; Hevroni, Yael; Rosenberg, Steven A; Khan, Javed; Ben-Dor, Shifra; Niv, Masha Y; Ulitsky, Igor; Mann, Graham J; Scolyer, Richard A; Hayward, Nicholas K; Samuels, Yardena

    2015-12-01

    Analysis of 501 melanoma exomes identified RASA2, encoding a RasGAP, as a tumor-suppressor gene mutated in 5% of melanomas. Recurrent loss-of-function mutations in RASA2 were found to increase RAS activation, melanoma cell growth and migration. RASA2 expression was lost in ≥30% of human melanomas and was associated with reduced patient survival. These findings identify RASA2 inactivation as a melanoma driver and highlight the importance of RasGAPs in cancer. PMID:26502337

  20. Ghrelin inhibits sympathetic nervous activity in sepsis.

    PubMed

    Wu, Rongqian; Zhou, Mian; Das, Padmalaya; Dong, Weifeng; Ji, Youxin; Yang, Derek; Miksa, Michael; Zhang, Fangming; Ravikumar, Thanjavur S; Wang, Ping

    2007-12-01

    Our previous studies have shown that norepinephrine (NE) upregulates proinflammatory cytokines by activating alpha(2)-adrenoceptor. Therefore, modulation of the sympathetic nervous system represents a novel treatment for sepsis. We have also shown that a novel stomach-derived peptide, ghrelin, is downregulated in sepsis and that its intravenous administration decreases proinflammatory cytokines and mitigates organ injury. However, it remains unknown whether ghrelin inhibits sympathetic activity through central ghrelin receptors [i.e., growth hormone secretagogue receptor 1a (GHSR-la)] in sepsis. To study this, sepsis was induced in male rats by cecal ligation and puncture (CLP). Ghrelin was administered through intravenous or intracerebroventricular injection 30 min before CLP. Our results showed that intravenous administration of ghrelin significantly reduced the elevated NE and TNF-alpha levels at 2 h after CLP. NE administration partially blocked the inhibitory effect of ghrelin on TNF-alpha in sepsis. GHSR-la inhibition by the administration of a GHSR-la antagonist, [d-Arg(1),d-Phe(5), d-Trp(7,9),Leu(11)]substance P, significantly increased both NE and TNF-alpha levels even in normal animals. Markedly elevated circulating levels of NE 2 h after CLP were also significantly decreased by intracerebroventricular administration of ghrelin. Ghrelin's inhibitory effect on NE release was completely blocked by intracerebroventricular injection of the GHSR-1a antagonist or a neuropeptide Y (NPY)/Y(1) receptor antagonist. However, ghrelin's downregulatory effect on TNF-alpha release was only partially diminished by these agents. Thus ghrelin has sympathoinhibitory properties that are mediated by central ghrelin receptors involving a NPY/Y1 receptor-dependent pathway. Ghrelin's inhibitory effect on TNF-alpha production in sepsis is partially because of its modulation of the overstimulated sympathetic nerve activation.

  1. STING activator c-di-GMP enhances the anti-tumor effects of peptide vaccines in melanoma-bearing mice.

    PubMed

    Wang, Zili; Celis, Esteban

    2015-08-01

    Therapeutic vaccines to induce anti-tumor CD8 T cells have been used in clinical trials for advanced melanoma patients, but the clinical response rate and overall survival time have not improved much. We believe that these dismal outcomes are caused by inadequate number of antigen-specific CD8 T cells generated by most vaccines. In contrast, huge CD8 T cell responses readily occur during acute viral infections. High levels of type-I interferon (IFN-I) are produced during these infections, and this cytokine not only exhibits anti-viral activity but also promotes CD8 T cell responses. The studies described here were performed to determine whether promoting the production of IFN-I could enhance the potency of a peptide vaccine. We report that cyclic diguanylate monophosphate (c-di-GMP), which activates the stimulator of interferon genes, potentiated the immunogenicity and anti-tumor effects of a peptide vaccine against mouse B16 melanoma. The synergistic effects of c-di-GMP required co-administration of costimulatory anti-CD40 antibody, the adjuvant poly-IC, and were mediated in part by IFN-I. These findings demonstrate that peptides representing CD8 T cell epitopes can be effective inducers of large CD8 T cell responses in vaccination strategies that mimic acute viral infections.

  2. Assaying Wnt5A-mediated invasion in melanoma cells.

    PubMed

    O'Connell, Michael P; French, Amanda D; Leotlela, Poloko D; Weeraratna, Ashani T

    2008-01-01

    Wnt5A has been implicated in melanoma metastasis, and the progression of other cancers including pancreatic, gastric, prostate, and lung cancers. Assays to test motility and invasion include both in vivo assays and in vitro assays. The in vivo assays include the use of tail vein or footpad injections of metastatic cells, and are often laborious and expensive. In vitro invasion assays provide quick readouts that can help to establish conditions that either activate or inhibit melanoma cell motility, and to assess whether the conditions in question are worth translating into an in vivo model. Here we describe two standard methods for assaying motility and invasion in vitro including wound healing assays and Matrigel invasion assays (Boyden chamber assays). In addition, we and several other laboratories have previously shown that melanoma cells require matrix metalloproteinase (MMP)-2 for their invasion, and have recently shown that Wnt5A treatment can increase the levels of this enzyme in melanoma cells, as demonstrated by gelatin zymography. The use of these techniques can help to assess the migratory capacity of melanoma cells in response to Wnt treatment.

  3. The natural yeast extract isolated by ethanol precipitation inhibits melanin synthesis by modulating tyrosinase activity and downregulating melanosome transfer.

    PubMed

    Lee, Woo Jin; Rhee, Do Young; Bang, Seung Hyun; Kim, Su Yeon; Won, Chong Hyun; Lee, Mi Woo; Choi, Jee Ho; Chang, Sung Eun

    2015-01-01

    This study was conducted to examine the effects of EP-2, a natural yeast extract isolated by ethanol precipitation from Saccharomyces cerevisiae, on melanogenesis and to determine its underlying mechanism of action. Our results show that although EP-2 is not a direct tyrosinase inhibitor, when EP-2 was added to the culture media of B16F10 melanoma cells, intracellular tyrosinase activity was decreased. However, EP-2 had no effect on the expression of microphthalmia-associated transcription factor or tyrosinase. EP-2 was found to inhibit melanogenesis and melanosome transfer when it was added to melanocytes and keratinocytes in coculture. In addition, protease-activated receptor 2, a key protein associated with melanosome transfer from melanocytes to keratinocytes, was downregulated in the presence of EP-2. In conclusion, EP-2 is a potent inhibitor of melanogenesis and its hypomelanogenic effect is related to the inhibition of tyrosinase activity and transfer of melanosomes.

  4. Choroidal melanoma

    PubMed Central

    Singh, Parul; Singh, Abhishek

    2012-01-01

    Choroidal melanoma is the most common primary intra-ocular malignant tumor and second most common site of ten malignant melanoma sites in the body. Current diagnosis of choroidal melanoma is based on both the clinical experience of the specialist and modern diagnostic techniques such as indirect ophthalmoscopy, A- and B-ultrasonography scans, fundus fluorescein angiography, and transillumination. Invasive studies such as fine needle aspiration cytology can have significant morbidity and should only be considered if therapeutic intervention is indicated and diagnosis cannot be established by any other means. Several modes of treatment are available for choroidal melanoma. Multiple factors are taken into account when deciding one approach over other approaches, such as visual acuity of the affected eye, visual acuity of the contralateral eye, tumor size, location, ocular structures involved and presence of metastases. A comprehensive review of literature available in books and indexed journals was done. This article discusses in detail epidemiology, diagnosis, current available treatment options, and prognosis and survival of choroidal melanoma. PMID:22557869

  5. Melanoma Diagnosis

    NASA Astrophysics Data System (ADS)

    Horsch, Alexander

    The chapter deals with the diagnosis of the malignant melanoma of the skin. This aggressive type of cancer with steadily growing incidence in white populations can hundred percent be cured if it is detected in an early stage. Imaging techniques, in particular dermoscopy, have contributed significantly to improvement of diagnostic accuracy in clinical settings, achieving sensitivities for melanoma experts of beyond 95% at specificities of 90% and more. Automatic computer analysis of dermoscopy images has, in preliminary studies, achieved classification rates comparable to those of experts. However, the diagnosis of melanoma requires a lot of training and experience, and at the time being, average numbers of lesions excised per histology-proven melanoma are around 30, a number which clearly is too high. Further improvements in computer dermoscopy systems and their competent use in clinical settings certainly have the potential to support efforts of improving this situation. In the chapter, medical basics, current state of melanoma diagnosis, image analysis methods, commercial dermoscopy systems, evaluation of systems, and methods and future directions are presented.

  6. Biflorin induces cytotoxicity by DNA interaction in genetically different human melanoma cell lines.

    PubMed

    Ralph, Ana Carolina Lima; Calcagno, Danielle Queiroz; da Silva Souza, Luciana Gregório; de Lemos, Telma Leda Gomes; Montenegro, Raquel Carvalho; de Arruda Cardoso Smith, Marília; de Vasconcellos, Marne Carvalho

    2016-08-01

    Cancer is a public health problem and the second leading cause of death worldwide. The incidence of cutaneous melanoma has been notably increasing, resulting in high aggressiveness and poor survival rates. Taking into account the antitumor activity of biflorin, a substance isolated from Capraria biflora L. roots that is cytotoxic in vitro and in vivo, this study aimed to demonstrate the action of biflorin against three established human melanoma cell lines that recapitulate the molecular landscape of the disease in terms of genetic alterations and mutations, such as the TP53, NRAS and BRAF genes. The results presented here indicate that biflorin reduces the viability of melanoma cell lines by DNA interactions. Biflorin causes single and double DNA strand breaks, consequently inhibiting cell cycle progression, replication and DNA repair and promoting apoptosis. Our data suggest that biflorin could be considered as a future therapeutic option for managing melanoma. PMID:27079618

  7. Discovery of potent competitive inhibitors of indoleamine 2,3-dioxygenase with in vivo pharmacodynamic activity and efficacy in a mouse melanoma model.

    PubMed

    Yue, Eddy W; Douty, Brent; Wayland, Brian; Bower, Michael; Liu, Xiangdong; Leffet, Lynn; Wang, Qian; Bowman, Kevin J; Hansbury, Michael J; Liu, Changnian; Wei, Min; Li, Yanlong; Wynn, Richard; Burn, Timothy C; Koblish, Holly K; Fridman, Jordan S; Metcalf, Brian; Scherle, Peggy A; Combs, Andrew P

    2009-12-10

    A hydroxyamidine chemotype has been discovered as a key pharmacophore in novel inhibitors of indoleamine 2,3-dioxygenase (IDO). Optimization led to the identification of 5l, which is a potent (HeLa IC(50) = 19 nM) competitive inhibitor of IDO. Testing of 5l in mice demonstrated pharmacodynamic inhibition of IDO, as measured by decreased kynurenine levels (>50%) in plasma and dose dependent efficacy in mice bearing GM-CSF-secreting B16 melanoma tumors.

  8. Inhibition of acetylcholinesterase activity by essential oil from Citrus paradisi.

    PubMed

    Miyazawa, M; Tougo, H; Ishihara, M

    2001-01-01

    Inhibition of acetylcholinesterase (AChE) activity by essential oils of Citrus paradisi (grapefruit pink in USA) was studied. Inhibition of AChE was measured by the colorimetric method. Nootkatone and auraptene were isolated from C. paradisi oil and showed 17-24% inhibition of AChE activity at the concentration of 1.62 microg/mL. PMID:11858553

  9. Antibody Therapy Targeting CD47 and CD271 Effectively Suppresses Melanoma Metastasis in Patient-Derived Xenografts.

    PubMed

    Ngo, Michael; Han, Arum; Lakatos, Anita; Sahoo, Debashis; Hachey, Stephanie J; Weiskopf, Kipp; Beck, Andrew H; Weissman, Irving L; Boiko, Alexander D

    2016-08-01

    The high rate of metastasis and recurrence among melanoma patients indicates the existence of cells within melanoma that have the ability to both initiate metastatic programs and bypass immune recognition. Here, we identify CD47 as a regulator of melanoma tumor metastasis and immune evasion. Protein and gene expression analysis of clinical melanoma samples reveals that CD47, an anti-phagocytic signal, correlates with melanoma metastasis. Antibody-mediated blockade of CD47 coupled with targeting of CD271(+) melanoma cells strongly inhibits tumor metastasis in patient-derived xenografts. This therapeutic effect is mediated by drastic changes in the tumor and metastatic site immune microenvironments, both of whichwhich exhibit greatly increased density of differentiated macrophages and significantly fewer inflammatory monocytes, pro-metastatic macrophages (CCR2(+)/VEGFR1(+)), and neutrophils, all of which are associated with disease progression. Thus, antibody therapy that activates the innate immune response in combination with selective targeting of CD271(+) melanoma cells represents a powerful therapeutic approach against metastatic melanoma. PMID:27477289

  10. MT1-MMP dependent repression of the tumor suppressor SPRY4 contributes to MT1-MMP driven melanoma cell motility

    PubMed Central

    Shaverdashvili, Khvaramze; Zhang, Keman; Osman, Iman; Honda, Kord; Jobava, Rauli; Bedogni, Barbara

    2015-01-01

    Metastatic melanoma is the deadliest of all skin cancers. Despite progress in diagnostics and treatment of melanoma, the prognosis for metastatic patients remains poor. We previously showed that Membrane-type 1 Matrix Metalloproteinase (MT1-MMP) is one of the drivers of melanoma metastasis. Classically, MT1-MMP regulates a verity of cellular functions including cell-to-cell interaction and cell-to-matrix communication. Recently, MT1-MMP has been found to also modulate gene expression. To specifically assess MT1-MMP dependent gene regulation in melanoma, microarray gene expression analysis was performed in a melanoma cell line whose metastatic properties depend on the activity of MT1-MMP. We identified the tumor suppressor gene SPRY4 as a new transcriptional target of MT1-MMP that is negatively regulated by the protease. Knockdown of MT1-MMP enhances SPRY4 expression at the mRNA and protein level. SPRY4 expression inversely correlates with that of MT1-MMP in melanoma samples and importantly, correlates with melanoma patient survival. SPRY4 modulates MT1-MMP dependent cell migration such that inhibition of SPRY4 rescues cell migration that has been impaired by MT1-MMP knock down. MT1-MMP decreases SPRY4 in part through an MMP2/RAC1 axis we previously show promotes cell motility downstream of MT1-MMP. These results identify the tumor suppressor SPRY4 as a novel molecular effector of MT1-MMP affecting melanoma cell motility. PMID:26392417

  11. Complement Activation and Inhibition in Retinal Diseases.

    PubMed

    Kleinman, Mark E; Ambati, Jayakrishna

    2016-01-01

    Within the past several decades, a brigade of dedicated researchers from around the world has provided essential insights into the critical niche of immune-mediated inflammation in the pathogenesis of age-related macular degeneration (AMD). Yet, the question has lingered as to whether disease-initiating events are more or less dependent on isolated immune-related responses, unimpeded inflammation, endogenous pathways of age-related cell senescence and oxidative stress, or any of the other numerous molecular derangements that have been identified in the natural history of AMD. There is now an abundant cache of data signifying immune system activation as an impetus in the pathogenesis of this devastating condition. Furthermore, recent rigorous investigations have revealed multiple inciting factors, including several important complement-activating components, thus creating a new array of disease-modulating targets for the research and development of molecular therapeutic interventions. While the precise in vivo effects of complement activation and inhibition in the progression and treatment of AMD remain to be determined, ongoing clinical trials of the first generation of complement-targeted therapeutics are hoped to yield critical data on the contribution of this pathway to the disease process. PMID:26501209

  12. LncRNA GAS5 is a critical regulator of metastasis phenotype of melanoma cells and inhibits tumor growth in vivo

    PubMed Central

    Chen, Long; Yang, Huixin; Xiao, Yanbin; Tang, Xiaoxia; Li, Yuqian; Han, Qiaoqiao; Fu, Junping; Yang, Yuye; Zhu, Yuechun

    2016-01-01

    The present study intended to demonstrate the effects of long noncoding RNA growth arrest-specific transcript 5 (GAS5) on the migration and invasion of melanoma cells. We first detected the expression of GAS5 among four kinds of melanoma cell lines, followed by constructing GAS5-knocked down and overexpressed stable cells. Next, we evaluated the effects of GAS5 on cell migration and invasion using wound healing and gelatin zymography assays. Finally, melanoma cells with different GAS5 expression were injected into nude mice, and the tumor volumes were recorded and tumor tissues were analyzed after sacrificing the mice. This study systematically examined the function of GAS5 in mediating melanoma metastasis and revealed that GAS5 plays an anticancer role in melanoma via regulating gelatinase A and B, both in vitro and in vivo. PMID:27445498

  13. Uveal Melanoma

    PubMed Central

    Papastefanou, Vasilios P.; Cohen, Victoria M. L.

    2011-01-01

    Uveal melanoma is the most common primary intraocular malignancy and the leading primary intraocular disease which can be fatal in adults. In this paper epidemiologic, pathogenetic, and clinical aspects of uveal melanoma are discussed. Despite the advance in local ocular treatments, there has been no change in patient survival for three decades. Development of metastases affects prognosis significantly. Current survival rates, factors predictive of metastatic potential and metastatic screening algorithms are discussed. Proposed and emerging treatments for uveal melanoma metastases are also overviewed. Current advances in genetics and cytogenetics have provided a significant insight in tumours with high metastatic potential and the molecular mechanisms that underlie their development. Biopsy of those lesions may prove to be important for prognostication and to allow further research into genetic mutations and potential new therapeutic targets in the future. PMID:21773036

  14. Human malignant melanoma-derived progestagen-associated endometrial protein immunosuppresses T lymphocytes in vitro.

    PubMed

    Ren, Suping; Chai, Lina; Wang, Chunyan; Li, Changlan; Ren, Qiquan; Yang, Lihua; Wang, Fumei; Qiao, Zhixin; Li, Weijing; He, Min; Riker, Adam I; Han, Ying; Yu, Qun

    2015-01-01

    Progestagen-associated endometrial protein (PAEP) is a glycoprotein of the lipocalin family that acts as a negative regulator of T cell receptor-mediated activation. However, the function of tumor-derived PAEP on the human immune system in the tumor microenvironment is unknown. PAEP is highly expressed in intermediate and thick primary melanomas (Breslow's 2.5mm or greater) and metastatic melanomas, correlating with its expression in daughter cell lines established in vitro. The current study investigates the role of melanoma cell-secreted PAEP protein in regulating T cell function. Upon the enrichment of CD3+, CD4+ and CD8+ T cells from human peripheral blood mononuclear cells, each subset was then mixed with either melanoma-derived PAEP protein or PAEP-poor supernatant of gene-silenced tumor cells. IL-2 and IFN-γ secretion of CD4+ T cells significantly decreased with the addition of PAEP-rich supernatant. And the addition of PAEP-positive cell supernatant to activated lymphocytes significantly inhibited lymphocyte proliferation and cytotoxic T cell activity, while increasing lymphocyte apoptosis. Our result suggests that melanoma cell-secreted PAEP protein immunosuppresses the activation, proliferation and cytotoxicity of T lymphocytes, which might partially explain the mechanism of immune tolerance induced by melanoma cells within the tumor microenvironment. PMID:25785839

  15. Inhibitors of melanogenesis increase toxicity of cyclophosphamide and lymphocytes against melanoma cells.

    PubMed

    Slominski, Andrzej; Zbytek, Blazej; Slominski, Radomir

    2009-03-15

    High mortality rate for metastatic melanoma is related to its resistant to the current methods of therapy. Melanogenesis is a metabolic pathway characteristic for normal and malignant melanocytes that can affect the behavior of melanoma cells or its surrounding environment. Human melanoma cells in which production of melanin pigment is dependent on tyrosine levels in medium were used for experiments. Peripheral blood mononuclear cells were derived from the buffy coats purchased from Lifeblood Biological Services. Cell pigmentation was evaluated macroscopically, and tyrosinase activity was measured spectrophotometrically. Cell proliferation and viability were measured using lactate dehydrogenase release MTT, [(3)H]-thymidine incorporation and DNA content analyses, and gene expression was measured by real time RT-PCR. Pigmented melanoma cells were significantly less sensitive to cyclophosphamide and to killing action of IL-2-activated peripheral blood lymphocytes. The inhibition of melanogenesis by either blocking tyrosinase catalytic site or chelating copper ions sensitized melanoma cells towards cytotoxic action of cyclophosphamide, and amplified immunotoxic activities of IL-2 activated lymphocytes. Exogenous L-DOPA inhibited lymphocyte proliferation producing the cell cycle arrest in G1/0 and dramatically inhibited the production of IL-1beta, TNF-alpha, IL-6 and IL-10. Thus, the active melanogenesis could not only impair the cytotoxic action of cyclophosphamid but also has potent immunosuppressive properties. This resistance to a chemotherapeutic agent or immunotoxic activity of lymphocytes could be reverted by the action of tyrosinase inhibitors. Thus, the inhibition of melanogenesis might represent a valid therapeutic target for the management of advanced melanotic melanomas. PMID:19085934

  16. The mixture of different parts of Nelumbo nucifera and two bioactive components inhibited tyrosinase activity and melanogenesis.

    PubMed

    Jung, Su-Young; Jung, Won-Seok; Jung, Ho-Kyung; Lee, Gyeong-Hwan; Cho, Jung-Hee; Cho, Hyun-Woo; Choi, In-Young

    2014-01-01

    Melanin is the pigment responsible for the color of the eyes, hair, and skin in humans. Tyrosinase is well known to be the key enzyme in melanin biosynthesis. JKTM-12 is composed of the flowers, roots, seeds, and receptacles of Nelumbo nucifera (lotus). In this study, JKTM-12 was investigated for its inhibitory effects on tyrosinase activity and melanin biosynthesis in B16F10 melanoma cells. Moreover, two main bioactive compounds (hyperoside and astragalin) were found from the receptacles of N. nucifera, which are used as the main material of JKTM-12. JKTM-12 was shown to inhibit tyrosinase activity and melanin biosynthesis in alpha-melanocyte-stimulating hormone-stimulated B16F10 melanoma cells. Hyperoside and astragalin, which are the main bioactive compounds of JKTM-12, not only inhibited tyrosinase activity and melanogenesis but also tyrosinase-related protein 1 and tyrosinase-related protein 2 mRNA expression without cytotoxicity at various experiment doses (0.1, 1, and 10 μg/ml). These results suggest that JKTM-12 has the potential for skin whitening with hyperoside and astragalin as the main bioactive compounds. PMID:25898764

  17. Stathmin Potentiates Vinflunine and Inhibits Paclitaxel Activity

    PubMed Central

    Malesinski, Soazig; Tsvetkov, Philipp O.; Kruczynski, Anna; Peyrot, Vincent; Devred, François

    2015-01-01

    Cell biology and crystallographic studies have suggested a functional link between stathmin and microtubule targeting agents (MTAs). In a previous study we showed that stathmin increases vinblastine (VLB) binding to tubulin, and that conversely VLB increases stathmin binding to tubulin. This constituted the first biochemical evidence of the direct relationship between stathmin and an antimitotic drug, and revealed a new mechanism of action for VLB. The question remained if the observed interaction was specific for this drug or represented a general phenomenon for all MTAs. In the present study we investigated the binding of recombinant stathmin to purified tubulin in the presence of paclitaxel or another Vinca alkaloid, vinflunine, using Isothermal Titration Calorimetry (ITC). These experiments revealed that stathmin binding to tubulin is increased in the presence of vinflunine, whereas no signal is observed in the presence of paclitaxel. Further investigation using turbidity and co-sedimentation showed that stathmin inhibited paclitaxel microtubule-stabilizing activity. Taken together with the previous study using vinblastine, our results suggest that stathmin can be seen as a modulator of MTA activity and binding to tubulin, providing molecular explanation for multiple previous cellular and in vivo studies showing that stathmin expression level affects MTAs efficiency. PMID:26030092

  18. Redox Modulation of FAK Controls Melanoma Survival - Role of NOX4

    PubMed Central

    Ribeiro-Pereira, Cristiane; Moraes, João Alfredo; Souza, Mariele de Jesus; Laurindo, Francisco R.; Arruda, Maria Augusta; Barja-Fidalgo, Christina

    2014-01-01

    Studies have demonstrated that reactive oxygen species (ROS) generated by NADPH oxidase are essential for melanoma proliferation and survival. However, the mechanisms by which NADPH oxidase regulates these effects are still unclear. In this work, we investigate the role of NADPH oxidase-derived ROS in the signaling events that coordinate melanoma cell survival. Using the highly metastatic human melanoma cell line MV3, we observed that pharmacological NADPH oxidase inhibition reduced melanoma viability and induced dramatic cellular shape changes. These effects were accompanied by actin cytoskeleton rearrangement, diminished FAKY397 phosphorylation, and decrease of FAK-actin and FAK-cSrc association, indicating disassembly of focal adhesion processes, a phenomenon that often results in anoikis. Accordingly, NADPH oxidase inhibition also enhanced hypodiploid DNA content, and caspase-3 activation, suggesting activation of the apoptotic machinery. NOX4 is likely to be involved in these effects, since silencing of NOX4 significantly inhibited basal ROS production, reduced FAKY397 phosphorylation and decreased tumor cell viability. Altogether, the results suggest that intracellular ROS generated by the NADPH oxidase, most likely NOX4, transmits cell survival signals on melanoma cells through the FAK pathway, maintaining adhesion contacts and cell viability. PMID:24911159

  19. UV-induction of keratinocyte endothelin-1 downregulates E-cadherin in melanocytes and melanoma cells.

    PubMed

    Jamal, Sumayah; Schneider, Robert J

    2002-08-01

    Endothelin-1 (ET-1), a peptide that is secreted by keratinocytes in the skin in response to ultraviolet irradiation, is a ligand for the endothelin-B (ET(B)) receptor. Blockade of this receptor inhibits melanoma cell growth and induces cell death in vivo and in vitro. Additionally, ET(B) is a melanoma progression marker. These findings suggest that the ET-1/ET(B) receptor pathway contributes to melanoma development or progression. Here, we demonstrate that activation of the ET-1/ET(B) pathway downregulates E-cadherin and associated catenin proteins in human melanocytes and melanoma cells. E-cadherin is an established suppressor of melanoma cell invasion in vitro and in vivo. Downregulation of E-cadherin by ET-1/ET(B) involves the downstream activation of caspase-8 but not of distal, executioner caspases, and does not lead to apoptosis. ET-1 also induces a transient association between caspase-8 and E-cadherin:beta-catenin complexes. Hence, activation of the ET-1/ET(B) pathway promotes molecular events known to promote melanoma invasion.

  20. A phase I study of the investigational NEDD8-activating enzyme inhibitor pevonedistat (TAK-924/MLN4924) in patients with metastatic melanoma.

    PubMed

    Bhatia, Shailender; Pavlick, Anna C; Boasberg, Peter; Thompson, John A; Mulligan, George; Pickard, Michael D; Faessel, Hélène; Dezube, Bruce J; Hamid, Omid

    2016-08-01

    Purpose The therapeutic index of proteasome inhibitors may be improved through selective inhibition of a sub-component of the ubiquitin-proteasome system, such as the NEDD8-conjugation pathway. This multicenter, phase I, dose-escalation study assessed safety and the maximum tolerated dose (MTD), pharmacokinetics, pharmacodynamics, and antitumor activity of pevonedistat, an investigational NEDD8-activating enzyme (NAE) inhibitor, in patients with metastatic melanoma. Methods Patients received intravenous pevonedistat on Days 1, 4, 8, 11 (schedule A) or 1, 8, 15 (schedule B) of 21-day cycles. Results 26 patients received pevonedistat 50-278 mg/m(2) on schedule A; 11 patients received pevonedistat 157 mg/m(2) on schedule B. The schedule A MTD was 209 mg/m(2): dose-limiting toxicities (DLTs) included grade 3 hypophosphatemia and grade 3 increased blood creatinine (associated with grade 3 hyperbilirubinemia). Two schedule A patients experienced acute organ failure toxicities, one of whom experienced grade 5 acute renal failure. Dose escalation did not occur in schedule B: DLTs included grade 3 myocarditis, grade 2 acute renal failure, and grade 2 hyperbilirubinemia in a single patient. Pevonedistat pharmacokinetics were approximately dose-proportional across the dose range studied, with a biphasic disposition profile characterized by a short elimination half-life (~10 h). Pharmacodynamic studies showed increases in NAE-regulated transcripts post-treatment; all post-dose biopsy samples were positive for pevonedistat-NEDD8 adduct. One schedule A patient achieved a partial response; 15 patients had stable disease (4 lasting ≥6.5 months). Conclusions Pevonedistat was generally well tolerated at the MTD. Anticipated pharmacodynamic effects of NAE inhibition were observed with single-agent pevonedistat in peripheral blood and tumor tissue. PMID:27056178

  1. Multifunctional biodegradable polymer nanoparticles with uniform sizes: generation and in vitro anti-melanoma activity

    NASA Astrophysics Data System (ADS)

    Liang, Ruijing; Wang, Jing; Wu, Xian; Dong, Liyun; Deng, Renhua; Wang, Ke; Sullivan, Martin; Liu, Shanqin; Wu, Min; Tao, Juan; Yang, Xiangliang; Zhu, Jintao

    2013-11-01

    We present a simple, yet versatile strategy for the fabrication of uniform biodegradable polymer nanoparticles (NPs) with controllable sizes by a hand-driven membrane-extrusion emulsification approach. The size and size distribution of the NPs can be easily tuned by varying the experimental parameters, including initial polymer concentration, surfactant concentration, number of extrusion passes, membrane pore size, and polymer molecular weight. Moreover, hydrophobic drugs (e.g., paclitaxel (PTX)) and inorganic NPs (e.g., quantum dots (QDs) and magnetic NPs (MNPs)) can be effectively and simultaneously encapsulated into the polymer NPs to form the multifunctional hybrid NPs through this facile route. These PTX-loaded NPs exhibit high encapsulation efficiency and drug loading density as well as excellent drug sustained release performance. As a proof of concept, the A875 cell (melanoma cell line) experiment in vitro, including cellular uptake analysis by fluorescence microscope, cytotoxicity analysis of NPs, and magnetic resonance imaging (MRI) studies, indicates that the PTX-loaded hybrid NPs produced by this technique could be potentially applied as a multifunctional delivery system for drug delivery, bio-imaging, and tumor therapy, including malignant melanoma therapy.

  2. p16/CDKN2 and CDK4 gene mutations in sporadic melanoma development and progression.

    PubMed

    Piccinin, S; Doglioni, C; Maestro, R; Vukosavljevic, T; Gasparotto, D; D'Orazi, C; Boiocchi, M

    1997-02-20

    The p16/CDKN2(MTS1) gene encoding for the p16 inhibitor of cyclin D/CDK4 complexes is frequently mutated and deleted in a large fraction of melanoma cell lines, and p16 germline mutations have also been observed in familial melanomas. Moreover, a CDK4 gene mutation, responsible for a functional resistance of CDK4 kinase to p16 inhibitory activity, has been described to occur in some cases of familial melanoma. These data strongly support the idea that deregulation of the CDK4/cyclin D pathway, via CDKN2 or CDK4 mutations, is of biological significance in the development of melanoma. To shed light on the role of these alterations in the development and progression of sporadic melanoma, 12 primary melanomas and 9 corresponding metastases were analyzed for CDKN2 and CDK4 gene mutations. Of the 12 primary melanomas analyzed, 4 showed the presence of mutational inactivation of the p 16 protein and 2 carried silent mutations. No metastases showed the presence of CDKN2 mutations, indicating that mutations of this cyclin-dependent kinase inhibitor is not common in the progression of sporadic melanoma. On the other hand, the absence, in the metastases, of the CDKN2 mutation detected in the corresponding primary tumors suggests that 9p21 homozygous deletion may play a major role in the metastatic spreading of this type of tumor. None of the cases analyzed showed the presence of an Arg24Cys mutation, which functionally protects CDK4 from p16 inhibition. This indicates that CDK4 mutation plays a minor role in the development and progression of sporadic melanoma.

  3. Melanoma immunotherapy.

    PubMed

    Sivendran, Shanthi; Glodny, Bradley; Pan, Michael; Merad, Miriam; Saenger, Yvonne

    2010-01-01

    Melanoma immunotherapy has been an area of intense research for decades, and this work is now yielding more tangible results for patients. Work has focused on 4 main areas: cytokine therapy, administration of immune-modulating antibodies, adoptive T-cell therapy, and vaccines. Cytokine therapy is an established treatment for advanced melanoma, and immune-modulating antibodies have recently emerged as an exciting new area of drug development with efficacy now established in a phase III trial. Adoptive T-cell therapy provides the proof of principle that T cells can attack and eliminate tumors. It has been challenging, however, to adapt this treatment for widespread use. Vaccines have generally yielded poor results, but intratumor pathogen-based strategies have shown encouraging results in recent trials, perhaps due to stronger immune stimulation. A review of the field of melanoma immunotherapy is provided here, with emphasis on those agents that have reached clinical testing. Novel strategies to induce the immune system to attack melanomas are reviewed. In the future, it is envisioned that immunotherapy will have further application in combination with cytotoxic and targeted therapies.

  4. Serum chemotactic inhibitory activity: heat activation of chemotactic inhibition.

    PubMed Central

    Epps, D E; Williams, R C

    1976-01-01

    Serum chemotactic inhibitory activity (CIA) was studied in 46 patients with various systemic diseases, using a system consisting of normal human leukocytes as indicator cells and 10% fresh normal serum as a control chemotactic attractant. It was shown, as previously reported, that an association exists between CIA and skin test anergy. Heat treatment of sera at 56 C for 30 min increased both the incidence and the degree of chemotactic inhibition observed in these patients. The effects of heat treatment of sera containing CIA on other chemotactic attractants (C3a, bacteria-derived chemotactic factor (BF), and casein) are shown. Before heat treatment, some sera suppressed chemotaxis mediated by BF in the absence of suppression of normal serum-mediated chemotaxis, indicating the possible involvement of more than one system of inhibition. Multiple systems were further supported by data indicating that room temperature incubation resulted in a loss of CIA as measured by normal serum-mediated chemotoxis with no apparent decrease in the inhibition of BF -mediated chemotaxis. Separation of sera containing CIA by Sephadex G-200 showed chemotactic inhibitory activity to be increased in both the void volume region. Experiments showed that heat treating before separation resulted in similar increases in both peaks, implying the presence of an antagonist to CIA. Experiments demonstrating that sera containing CIA do not suppress casein-mediated chemotaxis by means of an irreversible inactivation of chemotactic factor are included along with experiments demonstrating a cellular mode of action. The possible presence of two systems of chemotactic inhibition, one acting directly upon chemotactic factors and one interacting with the responding cell, are discussed. PMID:773824

  5. Malignant Melanoma of the Foot

    MedlinePlus

    ... Javascript in your browser. Malignant Melanoma of the Foot What is Malignant Melanoma? Melanoma is a cancer ... age groups, even the young. Melanoma in the Foot Melanoma that occurs in the foot or ankle ...

  6. Inhibitory effects of whisky congeners on melanogenesis in mouse B16 melanoma cells.

    PubMed

    Ohguchi, Kenji; Koike, Minako; Suwa, Yoshihide; Koshimizu, Seiichi; Mizutani, Yuki; Nozawa, Yoshinori; Akao, Yukihiro

    2008-04-01

    We examined the effect of whisky congeners, substances other than ethanol in whisky, on melanogenesis in mouse B16 melanoma cells. Treatment with whisky congeners significantly blocked melanogenesis. Our results indicate that the inhibitory effects of whisky congeners on melanogenesis is due to direct inhibition of tyrosinase activity and to suppression of tyrosinase protein levels.

  7. PARP-1 regulates metastatic melanoma through modulation of vimentin-induced malignant transformation.

    PubMed

    Rodríguez, María Isabel; Peralta-Leal, Andreína; O'Valle, Francisco; Rodriguez-Vargas, José Manuel; Gonzalez-Flores, Ariannys; Majuelos-Melguizo, Jara; López, Laura; Serrano, Santiago; de Herreros, Antonio García; Rodríguez-Manzaneque, Juan Carlos; Fernández, Rubén; Del Moral, Raimundo G; de Almodóvar, José Mariano; Oliver, F Javier

    2013-06-01

    PARP inhibition can induce anti-neoplastic effects when used as monotherapy or in combination with chemo- or radiotherapy in various tumor settings; however, the basis for the anti-metastasic activities resulting from PARP inhibition remains unknown. PARP inhibitors may also act as modulators of tumor angiogenesis. Proteomic analysis of endothelial cells revealed that vimentin, an intermediary filament involved in angiogenesis and a specific hallmark of EndoMT (endothelial to mesenchymal transition) transformation, was down-regulated following loss of PARP-1 function in endothelial cells. VE-cadherin, an endothelial marker of vascular normalization, was up-regulated in HUVEC treated with PARP inhibitors or following PARP-1 silencing; vimentin over-expression was sufficient to drive to an EndoMT phenotype. In melanoma cells, PARP inhibition reduced pro-metastatic markers, including vasculogenic mimicry. We also demonstrated that vimentin expression was sufficient to induce increased mesenchymal/pro-metastasic phenotypic changes in melanoma cells, including ILK/GSK3-β-dependent E-cadherin down-regulation, Snail1 activation and increased cell motility and migration. In a murine model of metastatic melanoma, PARP inhibition counteracted the ability of melanoma cells to metastasize to the lung. These results suggest that inhibition of PARP interferes with key metastasis-promoting processes, leading to suppression of invasion and colonization of distal organs by aggressive metastatic cells. PMID:23785295

  8. PARP-1 Regulates Metastatic Melanoma through Modulation of Vimentin-induced Malignant Transformation

    PubMed Central

    O'Valle, Francisco; Rodriguez-Vargas, José Manuel; Gonzalez-Flores, Ariannys; Majuelos-Melguizo, Jara; López, Laura; Serrano, Santiago; de Herreros, Antonio García; Rodríguez-Manzaneque, Juan Carlos; Fernández, Rubén; del Moral, Raimundo G.; de Almodóvar, José Mariano; Oliver, F. Javier

    2013-01-01

    PARP inhibition can induce anti-neoplastic effects when used as monotherapy or in combination with chemo- or radiotherapy in various tumor settings; however, the basis for the anti-metastasic activities resulting from PARP inhibition remains unknown. PARP inhibitors may also act as modulators of tumor angiogenesis. Proteomic analysis of endothelial cells revealed that vimentin, an intermediary filament involved in angiogenesis and a specific hallmark of EndoMT (endothelial to mesenchymal transition) transformation, was down-regulated following loss of PARP-1 function in endothelial cells. VE-cadherin, an endothelial marker of vascular normalization, was up-regulated in HUVEC treated with PARP inhibitors or following PARP-1 silencing; vimentin over-expression was sufficient to drive to an EndoMT phenotype. In melanoma cells, PARP inhibition reduced pro-metastatic markers, including vasculogenic mimicry. We also demonstrated that vimentin expression was sufficient to induce increased mesenchymal/pro-metastasic phenotypic changes in melanoma cells, including ILK/GSK3-β-dependent E-cadherin down-regulation, Snail1 activation and increased cell motility and migration. In a murine model of metastatic melanoma, PARP inhibition counteracted the ability of melanoma cells to metastasize to the lung. These results suggest that inhibition of PARP interferes with key metastasis-promoting processes, leading to suppression of invasion and colonization of distal organs by aggressive metastatic cells. PMID:23785295

  9. Brazilein from Caesalpinia sappan L. Antioxidant Inhibits Adipocyte Differentiation and Induces Apoptosis through Caspase-3 Activity and Anthelmintic Activities against Hymenolepis nana and Anisakis simplex

    PubMed Central

    Liang, Chia-Hua; Chan, Leong-Perng; Chou, Tzung-Han; Chiang, Feng-Yu; Yen, Chuan-Min; Chen, Pin-Ju; Ding, Hsiou-Yu

    2013-01-01

    Brazilein, a natural, biologically active compound from Caesalpinia sappan L., has been shown to exhibit anti-inflammatory and antioxidant properties and to inhibit the growth of several cancer cells. This study verifies the antioxidant and antitumor characteristics of brazilein in skin cancer cells and is the first time to elucidate the inhibition mechanism of adipocyte differentiation, cestocidal activities against Hymenolepis nana, and reduction of spontaneous movement in Anisakis simplex. Brazilein exhibits an antioxidant capacity as well as the ability to scavenge DPPH• and ABTS•+ free radicals and to inhibit lipid peroxidation. Brazilein inhibited intracellular lipid accumulation during adipocyte differentiation in 3T3-L1 cells and suppressed the induction of peroxisome proliferator-activated receptor γ (PPARγ), the master regulator of adipogenesis, suggesting that brazilein presents the antiobesity effects. The toxic effects of brazilein were evaluated in terms of cell viability, induction of apoptosis, and the activity of caspase-3 in BCC cells. The inhibition of the growth of skin cancer cells (A431, BCC, and SCC25) by brazilein is greater than that of human skin malignant melanoma (A375) cells, mouse leukemic monocyte macrophage (RAW 264.7 cells), and noncancerous cells (HaCaT and BNLCL2 cells). The anthelmintic activities of brazilein against Hymenolepis nana are better than those of Anisakis simplex. PMID:23554834

  10. Melanoma therapy: Check the checkpoints.

    PubMed

    Furue, Masutaka; Kadono, Takafumi

    2016-02-01

    Recent mutational and translational studies have revealed that the Ras/Raf/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway plays a key role in melanomagenesis. Mutations in NRAS and BRAF are found in the majority of melanomas resulting in the formation of constitutively active NRAS and BRAF molecules, which leads to the proliferation and survival of melanoma cells through the activation of MEK/ERK signals. Inhibitors of BRAF or MEK significantly extend the progression-free survival and overall survival of melanoma patients compared with conventional chemotherapies. Combining BRAF and MEK inhibitors further enhances the clinical effectiveness. Cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) is an immune checkpoint molecule that downregulates T-cell activation by binding to B7 (CD80/CD86) molecules on antigen-presenting cells. Programmed death receptor ligand 1 on melanoma cells negatively regulates T-cell function by binding to the programmed death-1 (PD-1) receptor on T cells. Antibodies against CTLA-4 and PD-1 also enhance the survival of melanoma patients. In this review, we summarize the clinical effectiveness and adverse events of the BRAF inhibitors, MEK inhibitors and anti-immune checkpoint antibodies in melanoma treatment.

  11. DNA methylation contributes toward silencing of antioncogenic microRNA-203 in human and canine melanoma cells.

    PubMed

    Noguchi, Shunsuke; Mori, Takashi; Nakagawa, Takayuki; Itamoto, Kazuhito; Haraguchi, Tomoya; Mizuno, Takuya

    2015-10-01

    Melanoma is a poor-prognosis cancer in both humans and dogs. We have elucidated the antitumor mechanisms of antioncogenic microRNA (miR)-203 which is downregulated in human melanoma, as well as in canine melanoma. The aim of this study was to clarify the mechanism of this downregulation. We focused on epigenetic aberration of miR-203 transcription. Treatment with 5-aza-2'-deoxycitidine (5-aza) markedly upregulated the expression level of miR-203 in almost all of the cell lines tested. Furthermore, bisulfite sequencing or methylation-specific PCR showed DNA methylation of CpG islands upstream of the miR-203 coding region (MIR203) in both human and canine melanoma cells, as well as in canine clinical specimens, but not in human normal melanocytes. The results of a luciferase activity assay showed obvious suppression of the transcription of miR-203 by DNA methylation. The use of the luciferase activity assay for CREB1 and an inhibition assay of miR-203 function performed with an miR-203 inhibitor confirmed the contribution of miR-203 upregulation toward the negative regulation of the target gene of miR-203. These results indicate that canine melanoma might be a preclinical model of human melanoma for epigenetic studies. In addition, this study suggests that agents that can demethylate MIR203 could be a common promising therapeutic agent for the treatment of human and canine melanomas.

  12. [Inhibition of aromatics on ammonia-oxidizing activity of sediment].

    PubMed

    Dong, Chun-hong; Hu, Hong-ying; Wei, Dong-bin; Huang, Xia; Qian, Yi

    2004-03-01

    The inhibition of 24 aromatics on ammonia-oxidizing activity of nitrifying bacteria in sediment was measured. The effects of the kind, number and position of substituted groups on ammonia-oxidizing activity of nitrifying bacteria were discussed. The inhibition of mono-substituted benzenes on ammonia-oxidizing activity of nitrifying bacteria were in order of -OH > -NO2 > -NH2 > -Cl > -CH3 > -H. The position of substituted groups of di-substituted benzenes also affected the inhibition, and the inhibitions of dimethylbenzenes(xylene) were in order of meta-> ortho-> para-. The increase in number of substituted group on benzene-ring enhanced the inhibition of aromatics studied in this study on nitrifying bacteria. There was a linear relationship between inhibition (IC50, mumol.L-1) of aromatics on ammonia-oxidizing activity and total electronegativity (sigma E) of aromatics: lgIC50 = 14.72 - 0.91 sigma E.

  13. Hyperoxia Inhibits T Cell Activation in Mice

    NASA Astrophysics Data System (ADS)

    Hughes-Fulford, M.; Meissler, J.; Aguayo, E. T.; Globus, R.; Aguado, J.; Candelario, T.

    2013-02-01

    , spleens were removed and the splenocytes were isolated and kept as individual biological samples. We have also examined transcription factors (JASPAR) and pathways of the immune system to help us understand the mechanism of regulation. Results: Our recent mouse immunology experiment aboard STS-131 suggests that the early T cell immune response was inhibited in animals that have been exposed to spaceflight, even 24 hours after return to earth. Moreover, recent experiments in hyperoxic mice show that many of the same genes involved in early T cell activation were altered. Specifically, expression of IL-2Rα, Cxcl2, TNFα, FGF2, LTA and BCL2 genes are dysregulated in mice exposed to hyperoxia. Conclusions: If these hyperoxia-induced changes of gene expression in early T cell activation are additive to the changes seen in the microgravity of spaceflight, there could be an increased infection risk to EVA astronauts, which should be addressed prior to conducting a Mars or other long-term mission.

  14. Genetic alterations of PTEN in human melanoma.

    PubMed

    Aguissa-Touré, Almass-Houd; Li, Gang

    2012-05-01

    The PTEN gene is one of the most frequently inactivated tumor suppressor genes in sporadic cancers. Inactivating mutations and deletions of the PTEN gene are found in many types of cancers, including melanoma. However, the exact frequency of PTEN alteration in melanoma is unknown. In this study, we comprehensively reviewed 16 studies on PTEN genetic changes in melanoma cell lines and tumor biopsies. To date, 76 PTEN alterations have been reported in melanoma cell lines and 38 PTEN alterations in melanoma biopsies. The rate of PTEN alterations in melanoma cell lines, primary melanoma, and metastatic melanoma is 27.6, 7.3, and 15.2%, respectively. Three mutations were found in both melanoma cell lines and biopsies. These mutations are scattered throughout the gene, with the exception of exon 9. A mutational hot spot is found in exon 5, which encodes the phosphatase activity domain. Evidence is also presented to suggest that numerous homozygous deletions and missense variants exist in the PTEN transcript. Studying PTEN functions and implications of its mutations and other genes could provide insights into the precise nature of PTEN function in melanoma and additional targets for new therapeutic approaches. PMID:22076652

  15. Overcoming immunosuppression in the melanoma microenvironment induced by chronic inflammation.

    PubMed

    Umansky, Viktor; Sevko, Alexandra

    2012-02-01

    Malignant melanoma is known by its rapid progression and poor response to currently applied treatments. Despite the well-documented melanoma immunogenicity, the results of immunotherapeutic clinical trials are not satisfactory. This poor antitumor reactivity is due to the development of chronic inflammation in the tumor microenvironment characterized by infiltrating leukocytes and soluble mediators, which lead to an immunosuppression associated with cancer progression. Using the ret transgenic mouse melanoma model that closely resembles human melanoma, we demonstrated increased levels of chronic inflammatory factors in skin tumors and metastatic lymph nodes, which correlated with tumor progression. Furthermore, Gr1(+)CD11b(+) myeloid-derived suppressor cells (MDSC), known to block tumor-reactive T cells, were enriched in melanoma lesions and showed an enhanced immunosuppressive capacity. This MDSC accumulation was associated with a strong TCR ζ-chain downregulation in T cells suggesting that the tumor inflammatory microenvironment supports MDSC recruitment and immunosuppressive activity. Indeed, upon administration of phosphodiesterase-5 inhibitor sildenafil or paclitaxel in non-cytotoxic doses, we observed reduced levels of chronic inflammatory mediators in association with decreased MDSC amounts and immunosuppressive function. This led to a partial restoration of ζ-chain expression in T cells and to a significantly increased survival of tumor-bearing mice. CD8 T-cell depletion resulted in an abrogation of beneficial outcome of both drugs, suggesting the involvement of MDSC and CD8 T cells in the observed therapeutic effects. Our data imply that inhibition of chronic inflammation in the tumor microenvironment should be applied in conjunction with melanoma immunotherapies to increase their efficacy. PMID:22120757

  16. Obesity and lipid stress inhibit carnitine acetyltransferase activity[S

    PubMed Central

    Seiler, Sarah E.; Martin, Ola J.; Noland, Robert C.; Slentz, Dorothy H.; DeBalsi, Karen L.; Ilkayeva, Olga R.; An, Jie; Newgard, Christopher B.; Koves, Timothy R.; Muoio, Deborah M.

    2014-01-01

    Carnitine acetyltransferase (CrAT) is a mitochondrial matrix enzyme that catalyzes the interconversion of acetyl-CoA and acetylcarnitine. Emerging evidence suggests that this enzyme functions as a positive regulator of total body glucose tolerance and muscle activity of pyruvate dehydrogenase (PDH), a mitochondrial enzyme complex that promotes glucose oxidation and is feedback inhibited by acetyl-CoA. Here, we used tandem mass spectrometry-based metabolic profiling to identify a negative relationship between CrAT activity and muscle content of lipid intermediates. CrAT specific activity was diminished in muscles from obese and diabetic rodents despite increased protein abundance. This reduction in enzyme activity was accompanied by muscle accumulation of long-chain acylcarnitines (LCACs) and acyl-CoAs and a decline in the acetylcarnitine/acetyl-CoA ratio. In vitro assays demonstrated that palmitoyl-CoA acts as a direct mixed-model inhibitor of CrAT. Similarly, in primary human myocytes grown in culture, nutritional and genetic manipulations that promoted mitochondrial influx of fatty acids resulted in accumulation of LCACs but a pronounced decrease of CrAT-derived short-chain acylcarnitines. These results suggest that lipid-induced antagonism of CrAT might contribute to decreased PDH activity and glucose disposal in the context of obesity and diabetes. PMID:24395925

  17. Endogenously synthesized n-3 fatty acids in fat-1 transgenic mice prevent melanoma progression by increasing E-cadherin expression and inhibiting β-catenin signaling.

    PubMed

    Yin, Xuan; Yu, Xiong-Wei; Zhu, Pan; Zhang, Yuan-Ming; Zhang, Xiao-Hong; Wang, Feng; Zhang, Jin-Jie; Yan, Wang; Xi, Yang; Wan, Jian-Bo; Kang, Jing-Xuan; Zou, Zu-Quan; Bu, Shi-Zhong

    2016-10-01

    Malignant melanoma is the most lethal form of skin cancer. Although preclinical studies have shown that n-3 polyunsaturated fatty acids (PUFAs) are beneficial for prevention of melanoma, the molecular mechanisms underlying the protective effects of n‑3 PUFAs on melanoma remain largely unknown. In the present study, endogenously increased levels of n-3 PUFAs in the tumor tissues of omega‑3 fatty acid desaturase (fat‑1) transgenic mice was associated with a reduction in the growth rate of melanoma xenografts. This reduction in tumor growth in fat‑1 mice compared with wild‑type controls may have been associated, in part, to the: i) Increased expression of E‑cadherin and the reduced expression of its transcriptional repressors, the zinc finger E‑box binding homeobox 1 and snail family transcriptional repressor 1; ii) significant repression of the epidermal growth factor receptor/Akt/β‑catenin signaling pathway; and iii) formation of significant levels of n‑3 PUFA‑derived lipid mediators, particularly resolvin D2 and E1, maresin 1 and 15‑hydroxyeicosapentaenoic acid. In addition, vitamin E administration counteracted n‑3 PUFA‑induced lipid peroxidation and enhanced the antitumor effect of n‑3 PUFAs, which suggests that the protective role of n‑3 PUFAs against melanoma is not mediated by n‑3 PUFAs‑induced lipid peroxidation. These results highlight a potential role of n‑3 PUFAs supplementation for the chemoprevention of melanoma in high‑risk individuals, and as a putative adjuvant agent in the treatment of malignant melanoma.

  18. Endogenously synthesized n-3 fatty acids in fat-1 transgenic mice prevent melanoma progression by increasing E-cadherin expression and inhibiting β-catenin signaling.

    PubMed

    Yin, Xuan; Yu, Xiong-Wei; Zhu, Pan; Zhang, Yuan-Ming; Zhang, Xiao-Hong; Wang, Feng; Zhang, Jin-Jie; Yan, Wang; Xi, Yang; Wan, Jian-Bo; Kang, Jing-Xuan; Zou, Zu-Quan; Bu, Shi-Zhong

    2016-10-01

    Malignant melanoma is the most lethal form of skin cancer. Although preclinical studies have shown that n-3 polyunsaturated fatty acids (PUFAs) are beneficial for prevention of melanoma, the molecular mechanisms underlying the protective effects of n‑3 PUFAs on melanoma remain largely unknown. In the present study, endogenously increased levels of n-3 PUFAs in the tumor tissues of omega‑3 fatty acid desaturase (fat‑1) transgenic mice was associated with a reduction in the growth rate of melanoma xenografts. This reduction in tumor growth in fat‑1 mice compared with wild‑type controls may have been associated, in part, to the: i) Increased expression of E‑cadherin and the reduced expression of its transcriptional repressors, the zinc finger E‑box binding homeobox 1 and snail family transcriptional repressor 1; ii) significant repression of the epidermal growth factor receptor/Akt/β‑catenin signaling pathway; and iii) formation of significant levels of n‑3 PUFA‑derived lipid mediators, particularly resolvin D2 and E1, maresin 1 and 15‑hydroxyeicosapentaenoic acid. In addition, vitamin E administration counteracted n‑3 PUFA‑induced lipid peroxidation and enhanced the antitumor effect of n‑3 PUFAs, which suggests that the protective role of n‑3 PUFAs against melanoma is not mediated by n‑3 PUFAs‑induced lipid peroxidation. These results highlight a potential role of n‑3 PUFAs supplementation for the chemoprevention of melanoma in high‑risk individuals, and as a putative adjuvant agent in the treatment of malignant melanoma. PMID:27573698

  19. Cyclin-Dependent Kinase 5 (CDK5) Controls Melanoma Cell Motility, Invasiveness, and Metastatic Spread—Identification of a Promising Novel therapeutic target1

    PubMed Central

    Bisht, Savita; Nolting, Jens; Schütte, Ute; Haarmann, Jens; Jain, Prashi; Shah, Dhruv; Brossart, Peter; Flaherty, Patrick; Feldmann, Georg

    2015-01-01

    Despite considerable progress in recent years, the overall prognosis of metastatic malignant melanoma remains poor, and curative therapeutic options are lacking. Therefore, better understanding of molecular mechanisms underlying melanoma progression and metastasis, as well as identification of novel therapeutic targets that allow inhibition of metastatic spread, are urgently required. The current study provides evidence for aberrant cyclin-dependent kinase 5 (CDK5) activation in primary and metastatic melanoma lesions by overexpression of its activator protein CDK5R1/p35. Moreover, using melanoma in vitro model systems, shRNA-mediated inducible knockdown of CDK5 was found to cause marked inhibition of cell motility, invasiveness, and anchorage-independent growth, while at the same time net cell growth was not affected. In vivo, CDK5 knockdown inhibited growth of orthotopic xenografts as well as formation of lung and liver colonies in xenogenic injection models mimicking systemic metastases. Inhibition of lung metastasis was further validated in a syngenic murine melanoma model. CDK5 knockdown was accompanied by dephosphorylation and overexpression of caldesmon, and concomitant caldesmon knockdown rescued cell motility and proinvasive phenotype. Finally, it was found that pharmacological inhibition of CDK5 activity by means of roscovitine as well as by a novel small molecule CDK5-inhibitor, N-(5-isopropylthiazol-2-yl)-3-phenylpropanamide, similarly caused marked inhibition of invasion/migration, colony formation, and anchorage-independent growth of melanoma cells. Thus, experimental data presented here provide strong evidence for a crucial role of aberrantly activated CDK5 in melanoma progression and metastasis and establish CDK5 as promising target for therapeutic intervention. PMID:26310376

  20. RIPK1 regulates survival of human melanoma cells upon endoplasmic reticulum stress through autophagy.

    PubMed

    Luan, Qi; Jin, Lei; Jiang, Chen Chen; Tay, Kwang Hong; Lai, Fritz; Liu, Xiao Ying; Liu, Yi Lun; Guo, Su Tang; Li, Chun Ying; Yan, Xu Guang; Tseng, Hsin-Yi; Zhang, Xu Dong

    2015-01-01

    Although RIPK1 (receptor [TNFRSF]-interacting protein kinase 1) is emerging as a critical determinant of cell fate in response to cellular stress resulting from activation of death receptors and DNA damage, its potential role in cell response to endoplasmic reticulum (ER) stress remains undefined. Here we report that RIPK1 functions as an important prosurvival mechanism in melanoma cells undergoing pharmacological ER stress induced by tunicamycin (TM) or thapsigargin (TG) through activation of autophagy. While treatment with TM or TG upregulated RIPK1 and triggered autophagy in melanoma cells, knockdown of RIPK1 inhibited autophagy and rendered the cells sensitive to killing by TM or TG, recapitulating the effect of inhibition of autophagy. Consistently, overexpression of RIPK1 enhanced induction of autophagy and conferred resistance of melanoma cells to TM- or TG-induced cell death. Activation of MAPK8/JNK1 or MAPK9/JNK2, which phosphorylated BCL2L11/BIM leading to its dissociation from BECN1/Beclin 1, was involved in TM- or TG-induced, RIPK1-mediated activation of autophagy; whereas, activation of the transcription factor HSF1 (heat shock factor protein 1) downstream of the ERN1/IRE1-XBP1 axis of the unfolded protein response was responsible for the increase in RIPK1 in melanoma cells undergoing pharmacological ER stress. Collectively, these results identify upregulation of RIPK1 as an important resistance mechanism of melanoma cells to TM- or TG-induced ER stress by protecting against cell death through activation of autophagy, and suggest that targeting the autophagy-activating mechanism of RIPK1 may be a useful strategy to enhance sensitivity of melanoma cells to therapeutic agents that induce ER stress.

  1. Inhibitory effect of quercetin isolated from rose hip (Rosa canina L.) against melanogenesis by mouse melanoma cells.

    PubMed

    Fujii, Takashi; Saito, Morio

    2009-09-01

    We investigated the effects of compounds isolated from a methanolic extract of rose hips on melanin biosynthesis in B16 mouse melanoma cells and the possible mechanisms responsible for the inhibition of melanin biosynthesis. We found that, among the isolated compounds, quercetin was a particularly potent melanogenesis inhibitor. To reveal the mechanism for this inhibition, the effects on tyrosinase of B16 mouse melanoma were measured. Quercetin decreased the intracellular tyrosinase activity as well as the tyrosinase activity in a cell culture-free system. We also examined the cellular level of tyrosinase protein and found that quercetin dose-dependently inhibited tyrosinase protein expression. We consider from these results that the inhibition of melanogenesis by quercetin was due to the inhibition of both tyrosinase activity and of the protein expression.

  2. The MAPK pathway as an apoptosis enhancer in melanoma.

    PubMed

    Haydn, Johannes M; Hufnagel, Anita; Grimm, Johannes; Maurus, Katja; Schartl, Manfred; Meierjohann, Svenja

    2014-07-15

    Inhibition of RAF/MEK/ERK signaling is beneficial for many patients with BRAF(V600E)-mutated melanoma. However, primary and secondary resistances restrict long-lasting therapy success. Combination therapies are therefore urgently needed. Here, we evaluate the cellular effect of combining a MEK inhibitor with a genotoxic apoptosis inducer. Strikingly, we observed that an activated MAPK pathway promotes in several melanoma cell lines the pro-apoptotic response to genotoxic stress, and MEK inhibition reduces intrinsic apoptosis. This goes along with MEK inhibitor induced increased RAS and P-AKT levels. The protective effect of the MEK inhibitor depends on PI3K signaling, which prevents the induction of pro-apoptotic PUMA that mediates apoptosis after DNA damage. We could show that the MEK inhibitor dependent feedback loop is enabled by several factors, including EGF receptor and members of the SPRED family. The simultaneous knockdown of SPRED1 and SPRED2 mimicked the effects of MEK inhibitor such as PUMA repression and protection from apoptosis. Our data demonstrate that MEK inhibition of BRAF(V600E)-positive melanoma cells can protect from genotoxic stress, thereby achieving the opposite of the intended anti-tumorigenic effect of the combination of MEK inhibitor with inducers of intrinsic apoptosis.

  3. Are some melanomas caused by artificial light?

    PubMed

    Kvaskoff, Marina; Weinstein, Philip

    2010-09-01

    The incidence rate of cutaneous melanoma has been increasing faster than that of any other cancer in white-skinned populations over the past decades. The main risk factors for melanoma (i.e. exposure to sunlight, naevus count, phototype, and family history of melanoma) may not wholly explain the epidemiological trends observed for this cancer. The light-at-night theory postulates that increasing use of artificial light-at-night may contribute to the increasing breast cancer incidence through suppressed secretion of melatonin (a hormone produced in the dark and inhibited by light, which regulates circadian rhythms). Here, we postulate that this theory may also apply to melanoma and that it may explain a part of this cancer burden. Consistent with our hypothesis is evidence from experimental studies suggesting a lightening effect of melatonin on frog skin and mammal hair during seasonal changes, its antioxidant and anti-carcinogenic effects in skin melanocytes, as well as the expression of melatonin receptors in melanocytes. Also, epidemiological data suggest lower melatonin concentrations in melanoma patients compared with controls; a potential therapeutic effect of melatonin in patients with metastatic disease; a higher prevalence of melanoma in pilots and aircrews, with increased risks with higher time zones travelled; and increased melanoma risks in office workers exposed to fluorescent lighting. Moreover, melanoma incidence and seasonal patterns are consistent with a reduction of melatonin secretion with intensity of exposure to light, although it remains difficult to distinguish the effect of melatonin disruption from that of sun exposure on the basis of ecological studies. Finally, the reported associations between hormonal factors and melanoma are consistent with melatonin inhibition increasing the risk of melanoma by increasing circulating oestrogen levels. Despite the existing suggestive evidence, the light-at-night hypothesis has never been directly tested

  4. Histamine release inhibition activity of bisbenzylisoquinoline alkaloids.

    PubMed

    Nakamura, K; Tsuchiya, S; Sugimoto, Y; Sugimura, Y; Yamada, Y

    1992-12-01

    Eleven examples of bisbenzylisoquinoline alkaloids (head-to-head; 10, head-to-tail; 1) and one half molecule type (N-methylcoclaurine), were tested by in vitro histamine release inhibition assay. The order of the potency of the inhibitory effect was ranked thus: homoaromoline, aromoline, isotetrandrine, cepharanthine, fangchinoline, obaberine, and tetrandrine. The following substances, cepharanoline, berbamine, oxyacanthine, and cycleanine (head-to-tail structure) had no inhibitory effect. N-Methylcoclaurine showed an inhibitory effect comparable to that of fangchinoline. PMID:1484888

  5. Antipneumococcal activity of neuraminidase inhibiting artocarpin.

    PubMed

    Walther, E; Richter, M; Xu, Z; Kramer, C; von Grafenstein, S; Kirchmair, J; Grienke, U; Rollinger, J M; Liedl, K R; Slevogt, H; Sauerbrei, A; Saluz, H P; Pfister, W; Schmidtke, M

    2015-05-01

    Streptococcus (S.) pneumoniae is a major cause of secondary bacterial pneumonia during influenza epidemics. Neuraminidase (NA) is a virulence factor of both pneumococci and influenza viruses. Bacterial neuraminidases (NAs) are structurally related to viral NA and susceptible to oseltamivir, an inhibitor designed to target viral NA. This prompted us to evaluate the antipneumococcal potential of two NA inhibiting natural compounds, the diarylheptanoid katsumadain A and the isoprenylated flavone artocarpin. Chemiluminescence, fluorescence-, and hemagglutination-based enzyme assays were applied to determine the inhibitory efficiency (IC(50) value) of the tested compounds towards pneumococcal NAs. The mechanism of inhibition was studied via enzyme kinetics with recombinant NanA NA. Unlike oseltamivir, which competes with the natural substrate of NA, artocarpin exhibits a mixed-type inhibition with a Ki value of 9.70 μM. Remarkably, artocarpin was the only NA inhibitor (NAI) for which an inhibitory effect on pneumococcal growth (MIC: 0.99-5.75 μM) and biofilm formation (MBIC: 1.15-2.97 μM) was observable. In addition, we discovered that the bactericidal effect of artocarpin can reduce the viability of pneumococci by a factor of >1000, without obvious harm to lung epithelial cells. This renders artocarpin a promising natural product for further investigations.

  6. Antipneumococcal activity of neuraminidase inhibiting artocarpin.

    PubMed

    Walther, E; Richter, M; Xu, Z; Kramer, C; von Grafenstein, S; Kirchmair, J; Grienke, U; Rollinger, J M; Liedl, K R; Slevogt, H; Sauerbrei, A; Saluz, H P; Pfister, W; Schmidtke, M

    2015-05-01

    Streptococcus (S.) pneumoniae is a major cause of secondary bacterial pneumonia during influenza epidemics. Neuraminidase (NA) is a virulence factor of both pneumococci and influenza viruses. Bacterial neuraminidases (NAs) are structurally related to viral NA and susceptible to oseltamivir, an inhibitor designed to target viral NA. This prompted us to evaluate the antipneumococcal potential of two NA inhibiting natural compounds, the diarylheptanoid katsumadain A and the isoprenylated flavone artocarpin. Chemiluminescence, fluorescence-, and hemagglutination-based enzyme assays were applied to determine the inhibitory efficiency (IC(50) value) of the tested compounds towards pneumococcal NAs. The mechanism of inhibition was studied via enzyme kinetics with recombinant NanA NA. Unlike oseltamivir, which competes with the natural substrate of NA, artocarpin exhibits a mixed-type inhibition with a Ki value of 9.70 μM. Remarkably, artocarpin was the only NA inhibitor (NAI) for which an inhibitory effect on pneumococcal growth (MIC: 0.99-5.75 μM) and biofilm formation (MBIC: 1.15-2.97 μM) was observable. In addition, we discovered that the bactericidal effect of artocarpin can reduce the viability of pneumococci by a factor of >1000, without obvious harm to lung epithelial cells. This renders artocarpin a promising natural product for further investigations. PMID:25592264

  7. Fully Regressive Melanoma

    PubMed Central

    Ehrsam, Eric; Kallini, Joseph R.; Lebas, Damien; Modiano, Philippe; Cotten, Hervé

    2016-01-01

    Fully regressive melanoma is a phenomenon in which the primary cutaneous melanoma becomes completely replaced by fibrotic components as a result of host immune response. Although 10 to 35 percent of cases of cutaneous melanomas may partially regress, fully regressive melanoma is very rare; only 47 cases have been reported in the literature to date. AH of the cases of fully regressive melanoma reported in the literature were diagnosed in conjunction with metastasis on a patient. The authors describe a case of fully regressive melanoma without any metastases at the time of its diagnosis. Characteristic findings on dermoscopy, as well as the absence of melanoma on final biopsy, confirmed the diagnosis.

  8. Fully Regressive Melanoma

    PubMed Central

    Ehrsam, Eric; Kallini, Joseph R.; Lebas, Damien; Modiano, Philippe; Cotten, Hervé

    2016-01-01

    Fully regressive melanoma is a phenomenon in which the primary cutaneous melanoma becomes completely replaced by fibrotic components as a result of host immune response. Although 10 to 35 percent of cases of cutaneous melanomas may partially regress, fully regressive melanoma is very rare; only 47 cases have been reported in the literature to date. AH of the cases of fully regressive melanoma reported in the literature were diagnosed in conjunction with metastasis on a patient. The authors describe a case of fully regressive melanoma without any metastases at the time of its diagnosis. Characteristic findings on dermoscopy, as well as the absence of melanoma on final biopsy, confirmed the diagnosis. PMID:27672418

  9. miR-33a is downregulated in melanoma cells and modulates cell proliferation by targeting PCTAIRE1

    PubMed Central

    TIAN, FANGZHEN; WEI, HONGTU; TIAN, HUA; QIU, YING; XU, JIAN

    2016-01-01

    MicroRNA-33a (miR-33a) was previously identified as a lipid regulator that controls the cellular balance between cholesterol and fatty acid metabolism. However, its role in tumor progression is largely unknown. The present study identified that miR-33a acts as a tumor suppressor in melanoma cells. The present study revealed that miR-33a was downregulated in melanoma cells compared with melanocytes. Overexpression of miR-33a suppressed the colony formation of human melanoma SK-MEL-1 and WM-115 cells. Furthermore, a bromodeoxyuridine incorporation assay and anaphase analysis revealed that miR-33a inhibits melanoma cell proliferation. miR-33a overexpression inhibited p27 phosphorylation and upregulated p27 expression. Additionally, the present study demonstrated that PCTAIRE1 was a direct target of miR-33a; miR-33a overexpression suppressed the luciferase activity of a reporter construct containing a 3′-untranslated region of PCTAIRE1 and downregulated PCTAIRE1 in melanoma cells. An overexpression of PCTAIRE1 reversed the miR-33a-induced p27 accumulation and tumor suppressive effects. In summary, the present findings offer novel mechanistic insights into miR-33a and its downstream target in melanoma cells. PMID:27073545

  10. High fat diet increases melanoma cell growth in the bone marrow by inducing osteopontin and interleukin 6

    PubMed Central

    Chen, Guang-Liang; Luo, Yubin; Eriksson, Daniel; Meng, Xianyi; Qian, Cheng; Bäuerle, Tobias; Chen, Xiao-Xiang; Schett, Georg; Bozec, Aline

    2016-01-01

    The impact of metabolic stress induced by obesity on the bone marrow melanoma niche is largely unknown. Here we employed diet induced obese mice model, where mice received high-fat (HFD) or normal diet (ND) for 6 weeks before challenge with B16F10 melanoma cells. Tumor size, bone loss and osteoclasts numbers were assessed histologically in the tibial bones. For defining the molecular pathway, osteopontin knock-out mice, interleukin 6 neutralizing antibody or Janus kinase 2 inhibition were carried out in the same model. Mechanistic studies such as adipocyte-melanoma co-cultures for defining adipocyte induced changes of tumor cell proliferation and expression profiles were also performed. As results, HFD enhanced melanoma burden in bone by increasing tumor area and osteoclast numbers. This process was associated with higher numbers of bone marrow adipocytes expressing IL-6 in direct vicinity to tumor cells. Inhibition of IL-6 or of downstream JAK2 blocked HFD-induced tumor progression. Furthermore, the phenotypic changes of melanoma cells triggered macrophage and osteoclast accumulation accompanied by increased osteopontin expression. Osteopontin triggered osteoclastogenesis and also exerted a positive feedback loop to tumor cells, which was abrogated in its absence. Metabolic stress by HFD promotes melanoma growth in the bone marrow by an increase in bone marrow adipocytes and IL-6-JAK2-osteopontin mediated activation of tumor cells and osteoclast differentiation. PMID:27049717

  11. Specific Activation of A3, A2A and A1 Adenosine Receptors in CD73-Knockout Mice Affects B16F10 Melanoma Growth, Neovascularization, Angiogenesis and Macrophage Infiltration

    PubMed Central

    Koszałka, Patrycja; Gołuńska, Monika; Urban, Aleksandra; Stasiłojć, Grzegorz; Stanisławowski, Marcin; Majewski, Marceli; Składanowski, Andrzej C.; Bigda, Jacek

    2016-01-01

    CD73 (ecto-5'-nucleotidase), a cell surface enzyme hydrolyzing AMP to adenosine, was lately demonstrated to play a direct role in tumor progression including regulation of tumor vascularization. It was also shown to stimulate tumor macrophage infiltration. Interstitial adenosine, accumulating in solid tumors due to CD73 enzymatic activity, is recognized as a main mediator regulating the production of pro- and anti-angiogenic factors, but the engagement of specific adenosine receptors in tumor progression in vivo is still poorly researched. We have analyzed the role of high affinity adenosine receptors A1, A2A, and A3 in B16F10 melanoma progression using specific agonists (CCPA, CGS-21680 and IB-MECA, respectively). We limited endogenous extracellular adenosine background using CD73 knockout mice treated with CD73 chemical inhibitor, AOPCP (adenosine α,β-methylene 5’-diphosphate). Activation of any adenosine receptor significantly inhibited B16F10 melanoma growth but only at its early stage. At 14th day of growth, the decrease in tumor neovascularization and MAPK pathway activation induced by CD73 depletion was reversed by all agonists. Activation of A1AR primarily increased angiogenic activation measured by expression of VEGF-R2 on tumor blood vessels. However, mainly A3AR activation increased both the microvessel density and expression of pro-angiogenic factors. All agonists induced significant increase in macrophage tumor infiltration, with IB-MECA being most effective. This effect was accompanied by substantial changes in cytokines regulating macrophage polarization between pro-inflammatory and pro-angiogenic phenotype. Our results demonstrate an evidence that each of the analyzed receptors has a specific role in the stimulation of tumor angiogenesis and confirm significantly more multifaceted role of adenosine in its regulation than was already observed. They also reveal previously unexplored consequences to extracellular adenosine signaling depletion in

  12. Cutaneous Melanoma in Asians

    PubMed Central

    Kim, Sang Yub

    2016-01-01

    Malignant melanoma is a rare disease in Asians but potentially the most aggressive form of skin cancer worldwide. It can occur in any melanocyte-containing anatomic site. Four main cutaneous melanoma subtypes are recognized: lentigo maligna melanoma, superficial spreading melanoma, acral lentiginous melanoma (ALM), and nodular melanoma. Generally, excessive exposure to ultraviolet (UV) radiation increases the risk of melanoma. The exception is ALM, which is the most common melanoma subtype in Asians and is not associated with UV radiation. ALM presents as dark brownish to black, irregular maculopatches, nodules, or ulcers on the palms, soles, and nails. The lesions may be misdiagnosed as more benign lesions, such as warts, ulcers, hematomas, foreign bodies, or fungal infections, especially in amelanotic acral melanomas where black pigments are absent. The aim of this brief review is to improve understanding and the rate of early detection thereby reducing mortality, especially regarding cutaneous melanoma in Asians. PMID:27689028

  13. Nutrition and melanoma prevention.

    PubMed

    Jensen, J Daniel; Wing, Gregory J; Dellavalle, Robert P

    2010-01-01

    Melanoma has continued to rise in incidence despite public efforts to promote sun protection behaviors. Because sunscreen use does not completely prevent skin cancer induced by ultraviolet radiation, additional chemopreventive methods for protecting against and reversing the effects of ultraviolet photodamage need evaluation. Recent years have brought increased interest in dietary factors, such as natural botanicals and vitamins, for the prevention of melanoma. This contribution provides a narrative review of the relevant, nutrition-related literature found by searching the keywords "melanoma chemoprevention," "nutrition and melanoma," "dietary botanicals and melanoma prevention," "green tea and melanoma," "vitamin D and melanoma," and "vitamin E and melanoma" in the PubMed database. Although randomized controlled trials of humans are lacking, basic science and epidemiologic studies show promising benefits of many natural products in chemoprevention for melanoma. Future studies, hopefully, will yield concrete answers and clarify the role of commonly available dietary nutrients in melanoma chemoprevention.

  14. Cutaneous Melanoma in Asians.

    PubMed

    Kim, Sang Yub; Yun, Sook Jung

    2016-09-01

    Malignant melanoma is a rare disease in Asians but potentially the most aggressive form of skin cancer worldwide. It can occur in any melanocyte-containing anatomic site. Four main cutaneous melanoma subtypes are recognized: lentigo maligna melanoma, superficial spreading melanoma, acral lentiginous melanoma (ALM), and nodular melanoma. Generally, excessive exposure to ultraviolet (UV) radiation increases the risk of melanoma. The exception is ALM, which is the most common melanoma subtype in Asians and is not associated with UV radiation. ALM presents as dark brownish to black, irregular maculopatches, nodules, or ulcers on the palms, soles, and nails. The lesions may be misdiagnosed as more benign lesions, such as warts, ulcers, hematomas, foreign bodies, or fungal infections, especially in amelanotic acral melanomas where black pigments are absent. The aim of this brief review is to improve understanding and the rate of early detection thereby reducing mortality, especially regarding cutaneous melanoma in Asians. PMID:27689028

  15. Cutaneous Melanoma in Asians

    PubMed Central

    Kim, Sang Yub

    2016-01-01

    Malignant melanoma is a rare disease in Asians but potentially the most aggressive form of skin cancer worldwide. It can occur in any melanocyte-containing anatomic site. Four main cutaneous melanoma subtypes are recognized: lentigo maligna melanoma, superficial spreading melanoma, acral lentiginous melanoma (ALM), and nodular melanoma. Generally, excessive exposure to ultraviolet (UV) radiation increases the risk of melanoma. The exception is ALM, which is the most common melanoma subtype in Asians and is not associated with UV radiation. ALM presents as dark brownish to black, irregular maculopatches, nodules, or ulcers on the palms, soles, and nails. The lesions may be misdiagnosed as more benign lesions, such as warts, ulcers, hematomas, foreign bodies, or fungal infections, especially in amelanotic acral melanomas where black pigments are absent. The aim of this brief review is to improve understanding and the rate of early detection thereby reducing mortality, especially regarding cutaneous melanoma in Asians.

  16. Recovery of a cell surface fetal antigen from circulating immune complexes of melanoma patients.

    PubMed

    Wong, J H; Aguero, B; Gupta, R K; Morton, D L

    1988-01-01

    A well-characterized 69.5 x 10(3) dalton glycoprotein fetal antigen (FA), isolated from the spent culture medium of a melanoma cell line, UCLA-SO-14 (M14), was utilized to characterize the antigen component of circulating immune complexes (CIC) from melanoma patients. Ten serum samples from five patients with stage II melanoma at 1 and 4 months prior to the clinical detection of recurrent disease were selected for study. The CIC were dissociated with low pH and ultrafiltered through a 100 x 10(3) dalton exclusion limit membrane. The low pH treatment resulted in an increase in antibody titer in eight of ten serum samples. The antibody activity in membrane immunofluorescence was quantitatively inhibited by the filtered antigen fraction and purified FA, suggesting the presence of anti-FA antibodies in the treated serum, which possibly were complexed with FA in the untreated sample. As determined by competitive inhibition in an enzyme-linked immunosorbent assay, the filtrate (antigen fraction) contained an antigen that was immunologically similar to FA. These results clearly demonstrate that FA, expressed on the cell surface of melanoma cells, is present in CIC of selected melanoma patients.

  17. 3,3',4,4',5,5'-hexahydroxystilbene impairs melanoma progression in a metastatic mouse model.

    PubMed

    Paulitschke, Verena; Schicher, Nikolaus; Szekeres, Thomas; Jäger, Walter; Elbling, Leonilla; Riemer, Angelika B; Scheiner, Otto; Trimurtulu, Golakoti; Venkateswarlu, Somepalli; Mikula, Mario; Swoboda, Alexander; Fiebiger, Edda; Gerner, Christopher; Pehamberger, Hubert; Kunstfeld, Rainer

    2010-06-01

    Stilbenes comprise a group of polyphenolic compounds, which exert inhibitory effects on various malignancies. The aim of this study was to evaluate the antitumor effects of a previously unreported stilbene derivative-3,3',4,4',5,5'-hexahydroxystilbene, termed M8-on human melanoma cells. Cell-cycle analysis of the metastatic melanoma cell line M24met showed that M8 treatment induces G(2)/M arrest accompanied with a dose- and time-dependent upregulation of p21 and downregulation of CDK-2 and leads to apoptosis. M8 induces the expression of phosphorylated p53, proteins involved in the mismatch repair machinery (MSH6, MSH2, and MLH1) and a robust tail moment in a comet assay. In addition, M8 inhibited cell migration in Matrigel assays. Shotgun proteomics and western analysis showed the regulation among others of paxillin, integrin-linked protein kinase, p21-activated kinase, and ROCK-1 indicating that M8 inhibits mesenchymal and amoeboid cell migration. These in vitro data were confirmed in vivo in a metastatic human melanoma severe combined immunodeficient (SCID) mouse model. We showed that M8 significantly impairs tumor growth. M8 also interfered with the metastatic process, as M8 treatment prevented the metastatic spread of melanoma cells to distant lymph nodes in vivo. In summary, M8 exerts strong antitumor effects with the potential to become a new drug for the treatment of metastatic melanoma.

  18. ANTIPROLIFERATIVE EFFECT OF INOSITOL HEXAPHOSPHATE ON HUMAN SKIN MELANOMA CELLS IN VITRO.

    PubMed

    Wawszczyk, Joanna; Kapral, Małgorzata; Lodowska, Jolanta; Jesse, Katarzyna; Hollek, Andrzej; Węglarz, Ludmiła

    2015-01-01

    Human malignant melanoma is a highly metastatic tumor with poor prognosis. The majority of metastatic melanomas are resistant to diverse chemotherapeutic agents. Consequently, the search for novel antimelanoma agents continues. In recent years, the interest in plants and their biologically active constituents as a source of novel potential drugs significantly increased. Inositol hexaphosphate (IP6) is a naturally occurring compound that has been shown to inhibit the growth of a wide variety of tumor cells in multiple experimental model systems. The aim of this study was to evaluate the antiproliferative and cytotoxic influence of IP6 on melanotic melanoma cells in vitro. The A2058 cells used as a model of human skin melanoma malignum were exposed to different concentrations of IP6 (0.1-5 mM) for a various period of time and their growth was determined by sulforhodamine B assay after 24, 48 and 72 h. The cytotoxicity of IP6 was measured at 24 and 72 h by XTT assay. IP6 has been found to cause dose-dependent growth suppression of A2058 melanoma cells. At low concentrations (0.1 and 0.5 mM) it did not exert any influence on the cell proliferation as compared to control cultures. Higher concentrations of IP6 (from 1 to 5 mM) had a statistically significant, suppressive effect on cell proliferation after 24 h incubation. When the experimental time period was increased up to 72 h, statistically significant inhibition of cell proliferation was monitored at all IP6 concentrations used. Data obtained from XTT assay indicated that IP6 had dose- and time-dependent cytotoxic effect on melanoma cells. The results demonstrate the antiproliferative and cytotoxic properties of IP6 in a wide range of concentrations on human A2058 melanoma cells. Hence, it can be suggested that IP6 could have a promising therapeutic significance in treating cancer.

  19. Fisetin, a phytochemical, potentiates sorafenib-induced apoptosis and abrogates tumor growth in athymic nude mice implanted with BRAF-mutated melanoma cells.

    PubMed

    Pal, Harish Chandra; Baxter, Ronald D; Hunt, Katherine M; Agarwal, Jyoti; Elmets, Craig A; Athar, Mohammad; Afaq, Farrukh

    2015-09-29

    Melanoma is the most deadly form of cutaneous malignancy, and its incidence rates are rising worldwide. In melanoma, constitutive activation of the BRAF/MEK/ERK (MAPK) and PI3K/AKT/mTOR (PI3K) signaling pathways plays a pivotal role in cell proliferation, survival and tumorigenesis. A combination of compounds that lead to an optimal blockade of these critical signaling pathways may provide an effective strategy for prevention and treatment of melanoma. The phytochemical fisetin is known to possess anti-proliferative and pro-apoptotic activities. We found that fisetin treatment inhibited PI3K signaling pathway in melanoma cells. Therefore, we investigated the effect of fisetin and sorafenib (an RAF inhibitor) alone and in combination on cell proliferation, apoptosis and tumor growth. Combination treatment (fisetin + sorafenib) more effectively reduced the growth of BRAF-mutated human melanoma cells at lower doses when compared to individual agents. In addition, combination treatment resulted in enhanced (i) apoptosis, (ii) cleavage of caspase-3 and PARP, (iii) expression of Bax and Bak, (iv) inhibition of Bcl2 and Mcl-1, and (v) inhibition of expression of PI3K, phosphorylation of MEK1/2, ERK1/2, AKT and mTOR. In athymic nude mice subcutaneously implanted with melanoma cells (A375 and SK-MEL-28), we found that combination therapy resulted in greater reduction of tumor growth when compared to individual agents. Furthermore, combination therapy was more effective than monotherapy in: (i) inhibition of proliferation and angiogenesis, (ii) induction of apoptosis, and (iii) inhibition of the MAPK and PI3K pathways in xenograft tumors. These data suggest that simultaneous inhibition of both these signaling pathways using combination of fisetin and sorafenib may serve as a therapeutic option for the management of melanoma.

  20. Fisetin, a dietary flavonoid, augments the anti-invasive and anti-metastatic potential of sorafenib in melanoma.

    PubMed

    Pal, Harish C; Diamond, Ariana C; Strickland, Leah R; Kappes, John C; Katiyar, Santosh K; Elmets, Craig A; Athar, Mohammad; Afaq, Farrukh

    2016-01-12

    Melanoma is the most aggressive and deadly form of cutaneous neoplasm due to its propensity to metastasize. Oncogenic BRAF drives sustained activation of the BRAF/MEK/ERK (MAPK) pathway and cooperates with PI3K/AKT/mTOR (PI3K) signaling to induce epithelial to mesenchymal transition (EMT), leading to cell invasion and metastasis. Therefore, targeting these pathways is a promising preventive/therapeutic strategy. We have shown that fisetin, a flavonoid, reduces human melanoma cell invasion by inhibiting EMT. In addition, fisetin inhibited melanoma cell proliferation and tumor growth by downregulating the PI3K pathway. In this investigation, we aimed to determine whether fisetin can potentiate the anti-invasive and anti-metastatic effects of sorafenib in BRAF-mutated melanoma. We found that combination treatment (fisetin + sorafenib) more effectively reduced the migration and invasion of BRAF-mutated melanoma cells both in vitro and in raft cultures compared to individual agents. Combination treatment also effectively inhibited EMT as observed by a decrease in N-cadherin, vimentin and fibronectin and an increase in E-cadherin both in vitro and in xenograft tumors. Furthermore, combination therapy effectively inhibited Snail1, Twist1, Slug and ZEB1 protein expression compared to monotherapy. The expression of MMP-2 and MMP-9 in xenograft tumors was further reduced in combination treatment compared to individual agents. Bioluminescent imaging of athymic mice, intravenously injected with stably transfected CMV-luciferase-ires-puromycin.T2A.EGFP-tagged A375 melanoma cells, demonstrated fewer lung metastases following combination treatment versus monotherapy. Our findings demonstrate that fisetin potentiates the anti-invasive and anti-metastatic effects of sorafenib. Our data suggest that fisetin may be a worthy adjuvant chemotherapy for the management of melanoma.

  1. Fisetin, a dietary flavonoid, augments the anti-invasive and anti-metastatic potential of sorafenib in melanoma

    PubMed Central

    Pal, Harish C.; Diamond, Ariana C.; Strickland, Leah R.; Kappes, John C.; Katiyar, Santosh K.; Elmets, Craig A.; Athar, Mohammad; Afaq, Farrukh

    2016-01-01

    Melanoma is the most aggressive and deadly form of cutaneous neoplasm due to its propensity to metastasize. Oncogenic BRAF drives sustained activation of the BRAF/MEK/ERK (MAPK) pathway and cooperates with PI3K/AKT/mTOR (PI3K) signaling to induce epithelial to mesenchymal transition (EMT), leading to cell invasion and metastasis. Therefore, targeting these pathways is a promising preventive/therapeutic strategy. We have shown that fisetin, a flavonoid, reduces human melanoma cell invasion by inhibiting EMT. In addition, fisetin inhibited melanoma cell proliferation and tumor growth by downregulating the PI3K pathway. In this investigation, we aimed to determine whether fisetin can potentiate the anti-invasive and anti-metastatic effects of sorafenib in BRAF-mutated melanoma. We found that combination treatment (fisetin + sorafenib) more effectively reduced the migration and invasion of BRAF-mutated melanoma cells both in vitro and in raft cultures compared to individual agents. Combination treatment also effectively inhibited EMT as observed by a decrease in N-cadherin, vimentin and fibronectin and an increase in E-cadherin both in vitro and in xenograft tumors. Furthermore, combination therapy effectively inhibited Snail1, Twist1, Slug and ZEB1 protein expression compared to monotherapy. The expression of MMP-2 and MMP-9 in xenograft tumors was further reduced in combination treatment compared to individual agents. Bioluminescent imaging of athymic mice, intravenously injected with stably transfected CMV-luciferase-ires-puromycin. T2A.EGFP-tagged A375 melanoma cells, demonstrated fewer lung metastases following combination treatment versus monotherapy. Our findings demonstrate that fisetin potentiates the anti-invasive and anti-metastatic effects of sorafenib. Our data suggest that fisetin may be a worthy adjuvant chemotherapy for the management of melanoma. PMID:26517521

  2. Recombinant Interferon Alfa-2b in Treating Patients With Melanoma

    ClinicalTrials.gov

    2016-05-17

    Stage IA Skin Melanoma; Stage IB Skin Melanoma; Stage IIA Skin Melanoma; Stage IIB Skin Melanoma; Stage IIC Skin Melanoma; Stage IIIA Skin Melanoma; Stage IIIB Skin Melanoma; Stage IIIC Skin Melanoma; Stage IV Skin Melanoma

  3. Casticin induces DNA damage and inhibits DNA repair-associated protein expression in B16F10 mouse melanoma cancer cells.

    PubMed

    Shih, Yung-Luen; Chou, Jason; Yeh, Ming-Yang; Chou, Hsiao-Min; Chou, Hsiu-Chen; Lu, Hsu-Feng; Shang, Hung-Sheng; Chueh, Fu-Shin; Chu, Yung-Lin; Hsueh, Shu-Ching; Chung, Jing-Gung

    2016-10-01

    Casticin, a polymethoxyflavone, has been demonstrated to possess anticancer activities, yet no study has shown in detail that casticin induces DNA damage in lung cancer cells. The purpose of this study was to investigate the possible molecular mechanisms of casticin which induce DNA damage and nuclear condensation in murine melanoma cancer B16F10 cells. In this study, by examining and capturing images using phase contrast microscopy, we found that casticin induced cell morphological changes. Moreover, it decreased the total number of viable cells which was measured by flow cytometry. Casticin-induced DNA damage and nuclear DNA condensation were measured by DAPI staining, respectively. Western blotting indicated that casticin decreased the protein levels of O6‑methylguanine-DNA methyltransferase (MGMT), breast cancer 1, early onset (BRCA1), mediator of DNA damage checkpoint 1 (MDC1), DNA-dependent protein kinase (DNA-PK) but increased phospho-p53 tumor suppressor protein (p-p53), phospho-ataxia telangiectasia mutated kinase (p-ATM), phospho-histone H2A.X (Ser139) and poly(ADP-ribose) polymerase (PARP) in the B16F10 cells. Furthermore, we used confocal laser system microscopy to examine the protein expression levels and we found that casticin increased the expression of p-p53 and p-H2A.X in the B16F10 cells. Collectively, casticin induced DNA damage and affected DNA repair proteins in the B16F10 cells in vitro.

  4. Casticin induces DNA damage and inhibits DNA repair-associated protein expression in B16F10 mouse melanoma cancer cells.

    PubMed

    Shih, Yung-Luen; Chou, Jason; Yeh, Ming-Yang; Chou, Hsiao-Min; Chou, Hsiu-Chen; Lu, Hsu-Feng; Shang, Hung-Sheng; Chueh, Fu-Shin; Chu, Yung-Lin; Hsueh, Shu-Ching; Chung, Jing-Gung

    2016-10-01

    Casticin, a polymethoxyflavone, has been demonstrated to possess anticancer activities, yet no study has shown in detail that casticin induces DNA damage in lung cancer cells. The purpose of this study was to investigate the possible molecular mechanisms of casticin which induce DNA damage and nuclear condensation in murine melanoma cancer B16F10 cells. In this study, by examining and capturing images using phase contrast microscopy, we found that casticin induced cell morphological changes. Moreover, it decreased the total number of viable cells which was measured by flow cytometry. Casticin-induced DNA damage and nuclear DNA condensation were measured by DAPI staining, respectively. Western blotting indicated that casticin decreased the protein levels of O6‑methylguanine-DNA methyltransferase (MGMT), breast cancer 1, early onset (BRCA1), mediator of DNA damage checkpoint 1 (MDC1), DNA-dependent protein kinase (DNA-PK) but increased phospho-p53 tumor suppressor protein (p-p53), phospho-ataxia telangiectasia mutated kinase (p-ATM), phospho-histone H2A.X (Ser139) and poly(ADP-ribose) polymerase (PARP) in the B16F10 cells. Furthermore, we used confocal laser system microscopy to examine the protein expression levels and we found that casticin increased the expression of p-p53 and p-H2A.X in the B16F10 cells. Collectively, casticin induced DNA damage and affected DNA repair proteins in the B16F10 cells in vitro. PMID:27572101

  5. Cytotoxic activity against human neuroblastoma and melanoma cells mediated by IgM antibodies derived from peripheral blood of healthy donors.

    PubMed

    Devarapu, Satish Kumar; Mamidi, Srinivas; Plöger, Frank; Dill, Othmar; Blixt, Ola; Kirschfink, Michael; Schwartz-Albiez, Reinhard

    2016-06-15

    A small percentage of healthy donors identified in the Western population carry antibodies in their peripheral blood which convey cytotoxic activity against certain human melanoma and neuroblastoma cell lines. We measured the cytotoxic activity of sera and plasmas from healthy donors on the human neuroblastoma cell line Kelly and various melanoma cell lines. Antibodies of IgM isotype, presumably belonging to the class of naturally occurring antibodies, exerted cytotoxic activity in a complement-dependent fashion. Apart from complement-dependent tumor cell lysis, we observed C3 opsonization in all tumor cell lines upon treatment with cytotoxic plasmas. Cell lines tested primarily expressed membrane complement regulatory proteins (mCRP) CD46, CD55 and CD59 to various extents. Blocking of mCRPs by monoclonal antibodies enhanced cell lysis and opsonization, though some melanoma cells remained resistant to complement attack. Epitopes recognized by cytotoxic antibodies were represented by gangliosides such as GD2 and GD3, as evidenced by cellular sialidase pretreatment and enhanced expression of distinct gangliosides. It remains to be clarified why only a small fraction of healthy persons carry these antitumor cytotoxic antibodies. PMID:26830059

  6. Cytotoxic activity against human neuroblastoma and melanoma cells mediated by IgM antibodies derived from peripheral blood of healthy donors.

    PubMed

    Devarapu, Satish Kumar; Mamidi, Srinivas; Plöger, Frank; Dill, Othmar; Blixt, Ola; Kirschfink, Michael; Schwartz-Albiez, Reinhard

    2016-06-15

    A small percentage of healthy donors identified in the Western population carry antibodies in their peripheral blood which convey cytotoxic activity against certain human melanoma and neuroblastoma cell lines. We measured the cytotoxic activity of sera and plasmas from healthy donors on the human neuroblastoma cell line Kelly and various melanoma cell lines. Antibodies of IgM isotype, presumably belonging to the class of naturally occurring antibodies, exerted cytotoxic activity in a complement-dependent fashion. Apart from complement-dependent tumor cell lysis, we observed C3 opsonization in all tumor cell lines upon treatment with cytotoxic plasmas. Cell lines tested primarily expressed membrane complement regulatory proteins (mCRP) CD46, CD55 and CD59 to various extents. Blocking of mCRPs by monoclonal antibodies enhanced cell lysis and opsonization, though some melanoma cells remained resistant to complement attack. Epitopes recognized by cytotoxic antibodies were represented by gangliosides such as GD2 and GD3, as evidenced by cellular sialidase pretreatment and enhanced expression of distinct gangliosides. It remains to be clarified why only a small fraction of healthy persons carry these antitumor cytotoxic antibodies.

  7. Therapeutic Interventions to Disrupt the Protein Synthetic Machinery in Melanoma

    PubMed Central

    Kardos, Gregory R.; Robertson, Gavin P.

    2015-01-01

    Control of the protein synthetic machinery is deregulated in many cancers, including melanoma, in order to increase protein production. Tumor suppressors and oncogenes play key roles in protein synthesis from the transcription of rRNA and ribosome biogenesis to mRNA translation initiation and protein synthesis. Major signaling pathways are altered in melanoma to modulate the protein synthetic machinery thereby promoting tumor development. However, despite the importance of this process in melanoma development, involvement of the protein synthetic machinery in this cancer type is an underdeveloped area of study. Here, we review the coupling of melanoma development to deregulation of the protein synthetic machinery. We examine existing knowledge regarding RNA Polymerase I inhibition and mRNA translation focusing on their inhibition for therapeutic applications in melanoma. Furthermore, the contribution of amino acid biosynthesis and involvement of ribosomal proteins are also reviewed as future therapeutic strategies to target deregulated protein production in melanoma. PMID:26139519

  8. Axitinib in Treating Patients With Melanoma That is Metastatic or Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2016-05-31

    Extraocular Extension Melanoma; Metastatic Intraocular Melanoma; Recurrent Intraocular Melanoma; Recurrent Melanoma; Stage IIIA Intraocular Melanoma; Stage IIIA Melanoma; Stage IIIB Intraocular Melanoma; Stage IIIB Melanoma; Stage IIIC Intraocular Melanoma; Stage IIIC Melanoma; Stage IV Intraocular Melanoma; Stage IV Melanoma

  9. Exploiting cannabinoid-induced cytotoxic autophagy to drive melanoma cell death.

    PubMed

    Armstrong, Jane L; Hill, David S; McKee, Christopher S; Hernandez-Tiedra, Sonia; Lorente, Mar; Lopez-Valero, Israel; Eleni Anagnostou, Maria; Babatunde, Fiyinfoluwa; Corazzari, Marco; Redfern, Christopher P F; Velasco, Guillermo; Lovat, Penny E

    2015-06-01

    Although the global incidence of cutaneous melanoma is increasing, survival rates for patients with metastatic disease remain <10%. Novel treatment strategies are therefore urgently required, particularly for patients bearing BRAF/NRAS wild-type tumors. Targeting autophagy is a means to promote cancer cell death in chemotherapy-resistant tumors, and the aim of this study was to test the hypothesis that cannabinoids promote autophagy-dependent apoptosis in melanoma. Treatment with Δ(9)-Tetrahydrocannabinol (THC) resulted in the activation of autophagy, loss of cell viability, and activation of apoptosis, whereas cotreatment with chloroquine or knockdown of Atg7, but not Beclin-1 or Ambra1, prevented THC-induced autophagy and cell death in vitro. Administration of Sativex-like (a laboratory preparation comprising equal amounts of THC and cannabidiol (CBD)) to mice bearing BRAF wild-type melanoma xenografts substantially inhibited melanoma viability, proliferation, and tumor growth paralleled by an increase in autophagy and apoptosis compared with standard single-agent temozolomide. Collectively, our findings suggest that THC activates noncanonical autophagy-mediated apoptosis of melanoma cells, suggesting that cytotoxic autophagy induction with Sativex warrants clinical evaluation for metastatic disease. PMID:25674907

  10. Effect of chlorogenic acid on melanogenesis of B16 melanoma cells.

    PubMed

    Li, Hao-Rong; Habasi, Maidina; Xie, Lian-Zhen; Aisa, Haji Akber

    2014-08-25

    Chlorogenic acid (CGA), the ester formed between caffeic acid and l-quinic acid, is a widespread phenolic compound. It is part of the human diet, found in foods such as coffee, apples, pears, etc. CGA is also was widely used in cosmetics, but the effects of CGA on melanogenesis are unknown. In this study, we analyzed the effects of CGA on cell proliferation, melanin content and tyrosinase of B16 murine melanoma cells. Additionally, the enzymatic reactions of CGA in B16 melanoma cells lytic solution were detected by UV spectrophotometry. Results showed CGA at 30 and 60 μM significantly suppresses cell proliferation. 8-MOP at 100 μM significantly promotes cell proliferation, but CGA can counter this. Incubated for 24 h, CGA (500 μM) improves melanogenesis while suppressing tyrosinase activity in B16 melanoma cells or 8-methoxypsoralen (8-MOP) co-incubated B16 melanoma cells. After 12 h, B16 melanoma cell treatment with CGA leads to an increase in melanin accumulation, however, after 48 h there is a decrease in melanin production which correlates broadly with a decrease in tyrosinase activity. CGA incubated with lytic solution 24 h turned brown at 37 °C. The formation of new products (with a maximum absorption at 295 nm) is associated with reduction of CGA (maximum absorption at 326 nm). Therefore, CGA has its two sidesroles in melanogenesis of B16 melanoma cells. CGA is a likely a substrate of melanin, but the metabolic product(s) of CGA may suppress melanogenesis in B16 melanoma cells by inhibiting tyrosinase activity.

  11. Effect of chlorogenic acid on melanogenesis of B16 melanoma cells.

    PubMed

    Li, Hao-Rong; Habasi, Maidina; Xie, Lian-Zhen; Aisa, Haji Akber

    2014-01-01

    Chlorogenic acid (CGA), the ester formed between caffeic acid and l-quinic acid, is a widespread phenolic compound. It is part of the human diet, found in foods such as coffee, apples, pears, etc. CGA is also was widely used in cosmetics, but the effects of CGA on melanogenesis are unknown. In this study, we analyzed the effects of CGA on cell proliferation, melanin content and tyrosinase of B16 murine melanoma cells. Additionally, the enzymatic reactions of CGA in B16 melanoma cells lytic solution were detected by UV spectrophotometry. Results showed CGA at 30 and 60 μM significantly suppresses cell proliferation. 8-MOP at 100 μM significantly promotes cell proliferation, but CGA can counter this. Incubated for 24 h, CGA (500 μM) improves melanogenesis while suppressing tyrosinase activity in B16 melanoma cells or 8-methoxypsoralen (8-MOP) co-incubated B16 melanoma cells. After 12 h, B16 melanoma cell treatment with CGA leads to an increase in melanin accumulation, however, after 48 h there is a decrease in melanin production which correlates broadly with a decrease in tyrosinase activity. CGA incubated with lytic solution 24 h turned brown at 37 °C. The formation of new products (with a maximum absorption at 295 nm) is associated with reduction of CGA (maximum absorption at 326 nm). Therefore, CGA has its two sidesroles in melanogenesis of B16 melanoma cells. CGA is a likely a substrate of melanin, but the metabolic product(s) of CGA may suppress melanogenesis in B16 melanoma cells by inhibiting tyrosinase activity. PMID:25157464

  12. Biomarkers in melanoma.

    PubMed

    Griewank, Klaus G

    2016-01-01

    Malignant melanoma remains the skin cancer with the highest number of mortalities worldwide. While early diagnosis and complete surgical excision remain the best possibility for curing disease, prognosis at the stage of metastasis is still poor. Recent years have brought about considerable advances in terms of understanding the pathogenesis of melanoma and treating advanced disease. The discovery of activating BRAF mutations in around 50% of tumors has led to the introduction of targeted therapies downregulating BRAF signaling output. These have been further refined as combination therapies, which by targeting multiple targets have further improved the clinical outcome. A comparable, potentially even superior therapeutic alternative has been the introduction of immunotherapeutic approaches, including PD-1 and CTLA-4 checkpoint blockade therapies. Despite all genetic knowledge acquired in recent years, a clearly applicable prognostic signature of clinical value has not been established. General prognostic assessment of cutaneous melanoma remains based on clinical and pathological criteria (most importantly tumor thickness). The main challenges lying ahead are to establish a reliable prognostic test effectively determining which tumors will metastasize. Additionally establishing biomarkers which will allow patients to be stratified according to the most promising systemic therapy (immunotherapies and/or BRAF inhibitor therapies) is of utmost importance for patients with metastasized disease. Identifying serum biomarkers enabling disease to be monitored as well as determining tumor properties (i.e. resistance) would also be of great value. While initial results have proven promising, there re