Sample records for activation linker regulates

  1. The Smad3 linker region contains a transcriptional activation domain

    PubMed Central

    2004-01-01

    Transforming growth factor-β (TGF-β)/Smads regulate a wide variety of biological responses through transcriptional regulation of target genes. Smad3 plays a key role in TGF-β/Smad-mediated transcriptional responses. Here, we show that the proline-rich linker region of Smad3 contains a transcriptional activation domain. When the linker region is fused to a heterologous DNA-binding domain, it activates transcription. We show that the linker region physically interacts with p300. The adenovirus E1a protein, which binds to p300, inhibits the transcriptional activity of the linker region, and overexpression of p300 can rescue the linker-mediated transcriptional activation. In contrast, an adenovirus E1a mutant, which cannot bind to p300, does not inhibit the linker-mediated transcription. The native Smad3 protein lacking the linker region is unable to mediate TGF-β transcriptional activation responses, although it can be phosphorylated by the TGF-β receptor at the C-terminal tail and has a significantly increased ability to form a heteromeric complex with Smad4. We show further that the linker region and the C-terminal domain of Smad3 synergize for transcriptional activation in the presence of TGF-β. Thus our findings uncover an important function of the Smad3 linker region in Smad-mediated transcriptional control. PMID:15588252

  2. The Smad3 linker region contains a transcriptional activation domain.

    PubMed

    Wang, Guannan; Long, Jianyin; Matsuura, Isao; He, Dongming; Liu, Fang

    2005-02-15

    Transforming growth factor-beta (TGF-beta)/Smads regulate a wide variety of biological responses through transcriptional regulation of target genes. Smad3 plays a key role in TGF-beta/Smad-mediated transcriptional responses. Here, we show that the proline-rich linker region of Smad3 contains a transcriptional activation domain. When the linker region is fused to a heterologous DNA-binding domain, it activates transcription. We show that the linker region physically interacts with p300. The adenovirus E1a protein, which binds to p300, inhibits the transcriptional activity of the linker region, and overexpression of p300 can rescue the linker-mediated transcriptional activation. In contrast, an adenovirus E1a mutant, which cannot bind to p300, does not inhibit the linker-mediated transcription. The native Smad3 protein lacking the linker region is unable to mediate TGF-beta transcriptional activation responses, although it can be phosphorylated by the TGF-beta receptor at the C-terminal tail and has a significantly increased ability to form a heteromeric complex with Smad4. We show further that the linker region and the C-terminal domain of Smad3 synergize for transcriptional activation in the presence of TGF-beta. Thus our findings uncover an important function of the Smad3 linker region in Smad-mediated transcriptional control.

  3. Cell biology of Smad2/3 linker region phosphorylation in vascular smooth muscle.

    PubMed

    Rezaei, Hossein B; Kamato, Danielle; Ansari, Ghazaleh; Osman, Narin; Little, Peter J

    2012-08-01

    The transforming growth factor (TGF)-β superfamily of ligands regulates a diverse set of cellular functions. Transforming growth factor-β induces its biological effects through Type I and Type II transmembrane receptors that have serine/threonine kinase activities and weak tyrosine kinase activity. In vascular smooth muscle, TGF-β binds to the TGF-β Type II receptor (TβRII) at the cell surface, recruiting the Type I receptor (TβRI) to form a heterocomplex. Consequently, after phosphorylation and activation of TβRI, the transcription factors receptor activated (R-) Smad2 and Smad3 are recruited and activated through phosphorylation of C terminal residues. Overall, Smad2/3 and co-Smad4 have similar structures consisting of three regions an N-terminal MH1 domain, a C-terminal MH2 domain and a central linker region. Phosphorylation of the Smad linker region appears to have an important role in the regulation of Smad activity and function. The mitogen-activated protein kinase (MAPK) family, CDK2, CDK4 and calcium-calmodulin dependent kinase are the main kinases that phosphorylate sites in the linker region. The role of the linker region includes enabling the formation of Smad homo-oligomers and provision of phosphorylation sites for MAPK and other kinases. In some instances, linker region phosphorylation regulates the inhibition of the nuclear translocation of Smads. In the present review, we describe TGF-β signalling through Smad2/3 and the importance of the linker region in the regulation and expression of genes induced by TGF-β superfamily ligands in the context of vascular smooth muscle. © 2011 The Authors. Clinical and Experimental Pharmacology and Physiology © 2011 Blackwell Publishing Asia Pty Ltd.

  4. Coiled-Coil Antagonism Regulates Activity of Venus Flytrap-Domain-Containing Sensor Kinases of the BvgS Family

    PubMed Central

    Lesne, Elodie; Dupré, Elian; Lensink, Marc F.; Locht, Camille

    2018-01-01

    ABSTRACT Bordetella pertussis controls the expression of its virulence regulon through the two-component system BvgAS. BvgS is a prototype for a family of multidomain sensor kinases. In BvgS, helical linkers connect periplasmic Venus flytrap (VFT) perception domains to a cytoplasmic Per-Arnt-Sim (PAS) domain and the PAS domain to the dimerization/histidine phosphotransfer (DHp) domain of the kinase. The two linkers can adopt coiled-coil structures but cannot do so simultaneously. The first linker forms a coiled coil in the kinase mode and the second in the phosphatase mode, with the other linker in both cases showing an increase in dynamic behavior. The intervening PAS domain changes its quaternary structure between the two modes. In BvgS homologues without a PAS domain, a helical “X” linker directly connects the VFT and DHp domains. Here, we used BvgS as a platform to characterize regulation in members of the PAS-less subfamily. BvgS chimeras of homologues with natural X linkers displayed various regulation phenotypes. We identified two distinct coiled-coil registers in the N- and C-terminal portions of the X linkers. Stable coil formation in the C-terminal moiety determines the phosphatase mode, similarly to BvgS; in contrast, coil formation in the N-terminal moiety along the other register leads to the kinase mode. Thus, antagonism between two registers in the VFT-DHp linker forms the basis for activity regulation in the absence of the PAS domain. The N and C moieties of the X linker play roles similar to those played by the two independent linkers in sensor kinases with a PAS domain, providing a unified mechanism of regulation for the entire family. PMID:29487240

  5. The Abl SH2-kinase linker naturally adopts a conformation competent for SH3 domain binding.

    PubMed

    Chen, Shugui; Brier, Sébastien; Smithgall, Thomas E; Engen, John R

    2007-04-01

    The core of the Abelson tyrosine kinase (c-Abl) is structurally similar to Src-family kinases where SH3 and SH2 domains pack against the backside of the kinase domain in the down-regulated conformation. Both kinase families depend upon intramolecular association of SH3 with the linker joining the SH2 and kinase domains for suppression of kinase activity. Hydrogen deuterium exchange (HX) and mass spectrometry (MS) were used to probe intramolecular interaction of the c-Abl SH3 domain with the linker in recombinant constructs lacking the kinase domain. Under physiological conditions, the c-Abl SH3 domain undergoes partial unfolding, which is stabilized by ligand binding, providing a unique assay for SH3:linker interaction in solution. Using this approach, we observed dynamic association of the SH3 domain with the linker in the absence of the kinase domain. Truncation of the linker before W254 completely prevented cis-interaction with SH3, while constructs containing amino acids past this point showed SH3:linker interactions. The observation that the Abl linker sequence exhibits SH3-binding activity in the absence of the kinase domain is unique to Abl and was not observed with Src-family kinases. These results suggest that SH3:linker interactions may have a more prominent role in Abl regulation than in Src kinases, where the down-regulated conformation is further stabilized by a second intramolecular interaction between the C-terminal tail and the SH2 domain.

  6. Effect of the SH3-SH2 domain linker sequence on the structure of Hck kinase.

    PubMed

    Meiselbach, Heike; Sticht, Heinrich

    2011-08-01

    The coordination of activity in biological systems requires the existence of different signal transduction pathways that interact with one another and must be precisely regulated. The Src-family tyrosine kinases, which are found in many signaling pathways, differ in their physiological function despite their high overall structural similarity. In this context, the differences in the SH3-SH2 domain linkers might play a role for differential regulation, but the structural consequences of linker sequence remain poorly understood. We have therefore performed comparative molecular dynamics simulations of wildtype Hck and of a mutant Hck in which the SH3-SH2 domain linker is replaced by the corresponding sequence from the homologous kinase Lck. These simulations reveal that linker replacement not only affects the orientation of the SH3 domain itself, but also leads to an alternative conformation of the activation segment in the Hck kinase domain. The sequence of the SH3-SH2 domain linker thus exerts a remote effect on the active site geometry and might therefore play a role in modulating the structure of the inactive kinase or in fine-tuning the activation process itself.

  7. Crystal structure of the Src family kinase Hck SH3-SH2 linker regulatory region supports an SH3-dominant activation mechanism.

    PubMed

    Alvarado, John J; Betts, Laurie; Moroco, Jamie A; Smithgall, Thomas E; Yeh, Joanne I

    2010-11-12

    Most mammalian cell types depend on multiple Src family kinases (SFKs) to regulate diverse signaling pathways. Strict control of SFK activity is essential for normal cellular function, and loss of kinase regulation contributes to several forms of cancer and other diseases. Previous x-ray crystal structures of the SFKs c-Src and Hck revealed that intramolecular association of their Src homology (SH) 3 domains and SH2 kinase linker regions has a key role in down-regulation of kinase activity. However, the amino acid sequence of the Hck linker represents a suboptimal ligand for the isolated SH3 domain, suggesting that it may form the polyproline type II helical conformation required for SH3 docking only in the context of the intact structure. To test this hypothesis directly, we determined the crystal structure of a truncated Hck protein consisting of the SH2 and SH3 domains plus the linker. Despite the absence of the kinase domain, the structures and relative orientations of the SH2 and SH3 domains in this shorter protein were very similar to those observed in near full-length, down-regulated Hck. However, the SH2 kinase linker adopted a modified topology and failed to engage the SH3 domain. This new structure supports the idea that these noncatalytic regions work together as a "conformational switch" that modulates kinase activity in a manner unique to the SH3 domain and linker topologies present in the intact Hck protein. Our results also provide fresh structural insight into the facile induction of Hck activity by HIV-1 Nef and other Hck SH3 domain binding proteins and implicate the existence of innate conformational states unique to individual Src family members that "fine-tune" their sensitivities to activation by SH3-based ligands.

  8. The linker region of AraC protein.

    PubMed Central

    Eustance, R J; Schleif, R F

    1996-01-01

    AraC protein, a transcriptional regulator of the L-arabinose operon in Escherichia coli, is dimeric. Each monomer consists of a domain for DNA binding plus transcription activation and a domain for dimerization plus arabinose binding. These are connected to one another by a linker region of at least 5 amino acids. Here we have addressed the question of whether any of the amino acids in the linker region play active, specific, and crucial structural roles or whether these amino acids merely serve as passive spacers between the functional domains. We found that all but one of the linker amino acids can be changed to other amino acids individually and in small groups without substantially affecting the ability of AraC protein to activate transcription when arabinose is present. When, however, the entire linker region is replaced with linker sequences from other proteins, the functioning of AraC is impaired. PMID:8955380

  9. The S4–S5 Linker Acts as a Signal Integrator for hERG K+ Channel Activation and Deactivation Gating

    PubMed Central

    Ng, Chai Ann; Perry, Matthew D.; Tan, Peter S.; Hill, Adam P.; Kuchel, Philip W.; Vandenberg, Jamie I.

    2012-01-01

    Human ether-à-go-go-related gene (hERG) K+ channels have unusual gating kinetics. Characterised by slow activation/deactivation but rapid inactivation/recovery from inactivation, the unique gating kinetics underlie the central role hERG channels play in cardiac repolarisation. The slow activation and deactivation kinetics are regulated in part by the S4–S5 linker, which couples movement of the voltage sensor domain to opening of the activation gate at the distal end of the inner helix of the pore domain. It has also been suggested that cytosolic domains may interact with the S4–S5 linker to regulate activation and deactivation kinetics. Here, we show that the solution structure of a peptide corresponding to the S4–S5 linker of hERG contains an amphipathic helix. The effects of mutations at the majority of residues in the S4–S5 linker of hERG were consistent with the previously identified role in coupling voltage sensor movement to the activation gate. However, mutations to Ser543, Tyr545, Gly546 and Ala548 had more complex phenotypes indicating that these residues are involved in additional interactions. We propose a model in which the S4–S5 linker, in addition to coupling VSD movement to the activation gate, also contributes to interactions that stabilise the closed state and a separate set of interactions that stabilise the open state. The S4–S5 linker therefore acts as a signal integrator and plays a crucial role in the slow deactivation kinetics of the channel. PMID:22359612

  10. Hemidesmosomal linker proteins regulate cell motility, invasion and tumorigenicity in oral squamous cell carcinoma derived cells.

    PubMed

    Chaudhari, Pratik Rajeev; Charles, Silvania Emlit; D'Souza, Zinia Charlotte; Vaidya, Milind Murlidhar

    2017-11-15

    BPAG1e and Plectin are hemidesmosomal linker proteins which anchor intermediate filament proteins to the cell surface through β4 integrin. Recent reports indicate that these proteins play a role in various cellular processes apart from their known anchoring function. However, the available literature is inconsistent. Further, the previous study from our laboratory suggested that Keratin8/18 pair promotes cell motility and tumor progression by deregulating β4 integrin signaling in oral squamous cell carcinoma (OSCC) derived cells. Based on these findings, we hypothesized that linker proteins may have a role in neoplastic progression of OSCC. Downregulation of hemidesmosomal linker proteins in OSCC derived cells resulted in reduced cell migration accompanied by alterations in actin organization. Further, decreased MMP9 activity led to reduced cell invasion in linker proteins knockdown cells. Moreover, loss of these proteins resulted in reduced tumorigenic potential. SWATH analysis demonstrated upregulation of N-Myc downstream regulated gene 1 (NDRG1) in linker proteins downregulated cells as compared to vector control cells. Further, the defects in phenotype upon linker proteins ablation were rescued upon loss of NDRG1 in linker proteins knockdown background. These data together indicate that hemidesmosomal linker proteins regulate cell motility, invasion and tumorigenicity possibly through NDRG1 in OSCC derived cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Human linker histones: interplay between phosphorylation and O-β-GlcNAc to mediate chromatin structural modifications

    PubMed Central

    2011-01-01

    Eukaryotic chromatin is a combination of DNA and histone proteins. It is established fact that epigenetic mechanisms are associated with DNA and histones. Initial studies emphasize on core histones association with DNA, however later studies prove the importance of linker histone H1 epigenetic. There are many types of linker histone H1 found in mammals. These subtypes are cell specific and their amount in different types of cells varies as the cell functions. Many types of post-translational modifications which occur on different residues in each subtype of linker histone H1 induce conformational changes and allow the different subtypes of linker histone H1 to interact with chromatin at different stages during cell cycle which results in the regulation of transcription and gene expression. Proposed O-glycosylation of linker histone H1 promotes condensation of chromatin while phosphorylation of linker histone H1 is known to activate transcription and gene regulation by decondensation of chromatin. Interplay between phosphorylation and O-β-GlcNAc modification on Ser and Thr residues in each subtype of linker histone H1 in Homo sapiens during cell cycle may result in diverse functional regulation of proteins. This in silico study describes the potential phosphorylation, o-glycosylation and their possible interplay sites on conserved Ser/Thr residues in various subtypes of linker histone H1 in Homo sapiens. PMID:21749719

  12. Linking Smads and transcriptional activation.

    PubMed

    Inman, Gareth J

    2005-02-15

    TGF-beta1 (transforming growth factor-beta1) is the prototypical member of a large family of pleiotropic cytokines that regulate diverse biological processes during development and adult tissue homoeostasis. TGF-beta signals via membrane bound serine/threonine kinase receptors which transmit their signals via the intracellular signalling molecules Smad2, Smad3 and Smad4. These Smads contain conserved MH1 and MH2 domains separated by a flexible linker domain. Smad2 and Smad3 act as kinase substrates for the receptors, and, following phosphorylation, they form complexes with Smad4 and translocate to the nucleus. These Smad complexes regulate gene expression and ultimately determine the biological response to TGF-beta. In this issue of the Biochemical Journal, Wang et al. have shown that, like Smad4, the linker domain of Smad3 contains a Smad transcriptional activation domain. This is capable of recruiting the p300 transcriptional co-activator and is required for Smad3-dependent transcriptional activation. This study raises interesting questions about the nature and regulation of Smad-regulated gene activation and elevates the status of the linker domain to rival that of the much-lauded MH1 and MH2 domains.

  13. Ubiquitin ligase Nedd4L targets activated Smad2/3 to limit TGF-beta signaling.

    PubMed

    Gao, Sheng; Alarcón, Claudio; Sapkota, Gopal; Rahman, Sadia; Chen, Pan-Yu; Goerner, Nina; Macias, Maria J; Erdjument-Bromage, Hediye; Tempst, Paul; Massagué, Joan

    2009-11-13

    TGF-beta induces phosphorylation of the transcription factors Smad2 and Smad3 at the C terminus as well as at an interdomain linker region. TGF-beta-induced linker phosphorylation marks the activated Smad proteins for proteasome-mediated destruction. Here, we identify Nedd4L as the ubiquitin ligase responsible for this step. Through its WW domain, Nedd4L specifically recognizes a TGF-beta-induced phosphoThr-ProTyr motif in the linker region, resulting in Smad2/3 polyubiquitination and degradation. Nedd4L is not interchangeable with Smurf1, a ubiquitin ligase that targets BMP-activated, linker-phosphorylated Smad1. Nedd4L limits the half-life of TGF-beta-activated Smads and restricts the amplitude and duration of TGF-beta gene responses, and in mouse embryonic stem cells, it limits the induction of mesoendodermal fates by Smad2/3-activating factors. Hierarchical regulation is provided by SGK1, which phosphorylates Nedd4L to prevent binding of Smad2/3. Previously identified as a regulator of renal sodium channels, Nedd4L is shown here to play a broader role as a general modulator of Smad turnover during TGF-beta signal transduction.

  14. Novel regulation of Smad3 oligomerization and DNA binding by its linker domain.

    PubMed

    Vasilaki, Eleftheria; Siderakis, Manos; Papakosta, Paraskevi; Skourti-Stathaki, Konstantina; Mavridou, Sofia; Kardassis, Dimitris

    2009-09-08

    Smad proteins are key effectors of the transforming growth factor beta (TGFbeta) signaling pathway in mammalian cells. Smads are composed of two highly structured and conserved domains called Mad homology 1 (MH1) and 2 (MH2), which are linked together by a nonconserved linker region. The recent identification of phosphorylation sites and binding sites for ubiquitin ligases in the linker regions of TGFbeta and bone morphogenetic protein (BMP) receptor-regulated Smads suggested that the linker may contribute to the regulation of Smad function by facilitating cross-talks with other signaling pathways. In the present study, we have generated and characterized novel Smad3 mutants bearing individual substitutions of conserved and nonconserved amino acid residues within a previously described transcriptionally active linker fragment. Our analysis showed that the conserved linker amino acids glutamine 222 and proline 229 play important roles in Smad functions such as homo- and hetero-oligomerization, nuclear accumulation in response to TGFbeta stimulation, and DNA binding. Furthermore, a Smad3 mutant bearing a substitution of the nonconserved amino acid asparagine 218 to alanine displayed enhanced transactivation potential relative to wild type Smad3. Finally, Smad3 P229A inhibited TGFbeta signaling when overexpressed in mammalian cells. In conclusion, our data are in line with previous studies supporting an important regulatory role of the linker region of Smads in their function as key transducers of TGFbeta signaling.

  15. Small C-terminal domain phosphatases dephosphorylate the regulatory linker regions of Smad2 and Smad3 to enhance transforming growth factor-beta signaling.

    PubMed

    Wrighton, Katharine H; Willis, Danielle; Long, Jianyin; Liu, Fang; Lin, Xia; Feng, Xin-Hua

    2006-12-15

    Transforming growth factor-beta (TGF-beta) controls a diverse set of cellular processes, and its canonical signaling is mediated via TGF-beta-induced phosphorylation of receptor-activated Smads (2 and 3) at the C-terminal SXS motif. We recently discovered that PPM1A can dephosphorylate Smad2/3 at the C-terminal SXS motif, implicating a critical role for phosphatases in regulating TGF-beta signaling. Smad2/3 activity is also regulated by phosphorylation in the linker region (and N terminus) by a variety of intracellular kinases, making it a critical platform for cross-talk between TGF-beta and other signaling pathways. Using a functional genomic approach, we identified the small C-terminal domain phosphatase 1 (SCP1) as a specific phosphatase for Smad2/3 dephosphorylation in the linker and N terminus. A catalytically inactive SCP1 mutant (dnSCP1) had no effect on Smad2/3 phosphorylation in vitro or in vivo. Of the other FCP/SCP family members SCP2 and SCP3, but not FCP1, could also dephosphorylate Smad2/3 in the linker/N terminus. Depletion of SCP1/2/3 enhanced Smad2/3 linker phosphorylation. SCP1 increased TGF-beta-induced transcriptional activity in agreement with the idea that phosphorylation in the Smad2/3 linker must be removed for a full transcriptional response. SCP1 overexpression also counteracts the inhibitory effect of epidermal growth factor on TGF-beta-induced p15 expression. Taken together, this work identifies the first example of a Smad2/3 linker phosphatase(s) and reveals an important new substrate for SCPs.

  16. Transforming growth factor-beta and platelet-derived growth factor signal via c-Jun N-terminal kinase-dependent Smad2/3 phosphorylation in rat hepatic stellate cells after acute liver injury.

    PubMed

    Yoshida, Katsunori; Matsuzaki, Koichi; Mori, Shigeo; Tahashi, Yoshiya; Yamagata, Hideo; Furukawa, Fukiko; Seki, Toshihito; Nishizawa, Mikio; Fujisawa, Junichi; Okazaki, Kazuichi

    2005-04-01

    After liver injury, transforming growth factor-beta (TGF-beta) and platelet-derived growth factor (PDGF) regulate the activation of hepatic stellate cells (HSCs) and tissue remodeling. Mechanisms of PDGF signaling in the TGF-beta-triggered cascade are not completely understood. TGF-beta signaling involves phosphorylation of Smad2 and Smad3 at linker and C-terminal regions. Using antibodies to distinguish Smad2/3 phosphorylated at linker regions from those phosphorylated at C-terminal regions, we investigated Smad2/3-mediated signaling in rat liver injured by CCl(4) administration and in cultured HSCs. In acute liver injury, Smad2/3 were transiently phosphorylated at both regions. Although linker-phosphorylated Smad2 remained in the cytoplasm of alpha-smooth muscle actin-immunoreactive mesenchymal cells adjacent to necrotic hepatocytes in centrilobular areas, linker-phosphorylated Smad3 accumulated in the nuclei. c-Jun N-terminal kinase (JNK) in the activated HSCs directly phosphorylated Smad2/3 at linker regions. Co-treatment of primary cultured HSCs with TGF-beta and PDGF activated the JNK pathway, subsequently inducing endogenous linker phosphorylation of Smad2/3. The JNK pathway may be involved in migration of resident HSCs within the space of Disse to the sites of tissue damage because the JNK inhibitor SP600125 inhibited HSC migration induced by TGF-beta and PDGF signals. Moreover, treatment of HSCs with both TGF-beta and PDGF increased transcriptional activity of plasminogen activator inhibitor-1 through linker phosphorylation of Smad3. In conclusion, TGF-beta and PDGF activate HSCs by transmitting their signals through JNK-mediated Smad2/3 phosphorylation at linker regions, both in vivo and in vitro.

  17. Structure of an Engineered β-Lactamase Maltose Binding Protein Fusion Protein: Insights into Heterotropic Allosteric Regulation

    PubMed Central

    Ke, Wei; Laurent, Abigail H.; Armstrong, Morgan D.; Chen, Yuchao; Smith, William E.; Liang, Jing; Wright, Chapman M.; Ostermeier, Marc; van den Akker, Focco

    2012-01-01

    Engineering novel allostery into existing proteins is a challenging endeavor to obtain novel sensors, therapeutic proteins, or modulate metabolic and cellular processes. The RG13 protein achieves such allostery by inserting a circularly permuted TEM-1 β-lactamase gene into the maltose binding protein (MBP). RG13 is positively regulated by maltose yet is, serendipitously, inhibited by Zn2+ at low µM concentration. To probe the structure and allostery of RG13, we crystallized RG13 in the presence of mM Zn2+ concentration and determined its structure. The structure reveals that the MBP and TEM-1 domains are in close proximity connected via two linkers and a zinc ion bridging both domains. By bridging both TEM-1 and MBP, Zn2+ acts to “twist tie” the linkers thereby partially dislodging a linker between the two domains from its original catalytically productive position in TEM-1. This linker 1 contains residues normally part of the TEM-1 active site including the critical β3 and β4 strands important for activity. Mutagenesis of residues comprising the crystallographically observed Zn2+ site only slightly affected Zn2+ inhibition 2- to 4-fold. Combined with previous mutagenesis results we therefore hypothesize the presence of two or more inter-domain mutually exclusive inhibitory Zn2+ sites. Mutagenesis and molecular modeling of an intact TEM-1 domain near MBP within the RG13 framework indicated a close surface proximity of the two domains with maltose switching being critically dependent on MBP linker anchoring residues and linker length. Structural analysis indicated that the linker attachment sites on MBP are at a site that, upon maltose binding, harbors both the largest local Cα distance changes and displays surface curvature changes, from concave to relatively flat becoming thus less sterically intrusive. Maltose activation and zinc inhibition of RG13 are hypothesized to have opposite effects on productive relaxation of the TEM-1 β3 linker region via steric and/or linker juxtapositioning mechanisms. PMID:22720063

  18. Conformational Changes of an Interdomain Linker Mediate Mechanical Signal Transmission in Sensor Kinase BvgS

    PubMed Central

    Lesne, Elodie; Dupré, Elian; Locht, Camille

    2017-01-01

    ABSTRACT The whooping cough agent, Bordetella pertussis, controls the expression of its large virulence regulon in a coordinated manner through the two-component system BvgAS. BvgS is a dimeric, multidomain sensor kinase. Each monomer comprises, in succession, tandem periplasmic Venus flytrap (VFT) domains, a transmembrane segment, a cytoplasmic Per-Arnt-Sim (PAS) domain, a kinase module, and additional phosphorelay domains. BvgS shifts between kinase and phosphatase modes of activity in response to chemical modulators that modify the clamshell motions of the VFT domains. We have shown previously that this regulation involves a shift between distinct states of conformation and dynamics of the two-helix coiled-coil linker preceding the enzymatic module. In this work, we determined the mechanism of signal transduction across the membrane via a first linker, which connects the VFT and PAS domains of BvgS, using extensive cysteine cross-linking analyses and other approaches. Modulator perception by the periplasmic domains appears to trigger a small, symmetrical motion of the transmembrane segments toward the periplasm, causing rearrangements of the noncanonical cytoplasmic coiled coil that follows. As a consequence, the interface of the PAS domains is modified, which affects the second linker and eventually causes the shift of enzymatic activity. The major features of this first linker are well conserved among BvgS homologs, indicating that the mechanism of signal transduction unveiled here is likely to be generally relevant for this family of sensor kinases. IMPORTANCE Bordetella pertussis produces virulence factors coordinately regulated by the two-component system BvgAS. BvgS is a sensor kinase, and BvgA is a response regulator that activates gene transcription when phosphorylated by BvgS. Sensor kinases homologous to BvgS are also found in other pathogens. Our goal is to decipher the mechanisms of BvgS signaling, since these sensor kinases may represent new targets for antibacterial agents. Signal perception by the sensor domains of BvgS triggers small motions of the helical linker region underneath. The protein domain that follows this linker undergoes a large conformational change that amplifies the initial signal, causing a shift of activity from kinase to phosphatase. Because BvgS homologs harbor similar regions, these signaling mechanisms are likely to apply generally to that family of sensor kinases. PMID:28507245

  19. Different states of synaptotagmin regulate evoked versus spontaneous release

    PubMed Central

    Bai, Hua; Xue, Renhao; Bao, Huan; Zhang, Leili; Yethiraj, Arun; Cui, Qiang; Chapman, Edwin R.

    2016-01-01

    The tandem C2-domains of synaptotagmin 1 (syt) function as Ca2+-binding modules that trigger exocytosis; in the absence of Ca2+, syt inhibits spontaneous release. Here, we used proline linkers to constrain and alter the relative orientation of these C2-domains. Short poly-proline helices have a period of three, so large changes in the relative disposition of the C2-domains result from changing the length of the poly-proline linker by a single residue. The length of the linker was varied one residue at a time, revealing a periodicity of three for the ability of the linker mutants to interact with anionic phospholipids and drive evoked synaptic transmission; syt efficiently drove exocytosis when its tandem C2-domains pointed in the same direction. Analysis of spontaneous release revealed a reciprocal relationship between the activation and clamping activities of the linker mutants. Hence, different structural states of syt underlie the control of distinct forms of synaptic transmission. PMID:27001899

  20. Smad3 linker phosphorylation attenuates Smad3 transcriptional activity and TGF-β1/Smad3-induced epithelial-mesenchymal transition in renal epithelial cells.

    PubMed

    Bae, Eunjin; Kim, Seong-Jin; Hong, Suntaek; Liu, Fang; Ooshima, Akira

    2012-10-26

    Transforming growth factor-β1 (TGF-β1) has a distinct role in renal fibrosis associated with epithelial-mesenchymal transition (EMT) of the renal tubules and synthesis of extracellular matrix. Smad3 plays an essential role in fibrosis initiated by EMT. Phosphorylation of Smad3 in the C-terminal SSXS motif by type I TGF-β receptor kinase is essential for mediating TGF-β response. Smad3 activity is also regulated by phosphorylation in the linker region. However, the functional role of Smad3 linker phosphorylation is not well characterized. We now show that Smad3 EPSM mutant, which mutated the four phosphorylation sites in the linker region, markedly enhanced TGF-β1-induced EMT of Smad3-deficient primary renal tubular epithelial cells, whereas Smad3 3S-A mutant, which mutated the C-terminal phosphorylation sites, was unable to induce EMT in response to TGF-β1. Furthermore, immunoblotting and RT-PCR analysis showed a marked induction of fibrogenic gene expression with a significant reduction in E-cadherin in HK2 human renal epithelial cells expressing Smad3 EPSM. TGF-β1 could not induce the expression of α-SMA, vimentin, fibronectin and PAI-1 or reduce the expression of E-cadherin in HK2 cells expressing Smad3 3S-A in response to TGF-β1. Our results suggest that Smad3 linker phosphorylation has a negative regulatory role on Smad3 transcriptional activity and TGF-β1/Smad3-induced renal EMT. Elucidation of mechanism regulating the Smad3 linker phosphorylation can provide a new strategy to control renal fibrosis. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Regulation of Na+ channel inactivation by the DIII and DIV voltage-sensing domains.

    PubMed

    Hsu, Eric J; Zhu, Wandi; Schubert, Angela R; Voelker, Taylor; Varga, Zoltan; Silva, Jonathan R

    2017-03-06

    Functional eukaryotic voltage-gated Na + (Na V ) channels comprise four domains (DI-DIV), each containing six membrane-spanning segments (S1-S6). Voltage sensing is accomplished by the first four membrane-spanning segments (S1-S4), which together form a voltage-sensing domain (VSD). A critical Na V channel gating process, inactivation, has previously been linked to activation of the VSDs in DIII and DIV. Here, we probe this interaction by using voltage-clamp fluorometry to observe VSD kinetics in the presence of mutations at locations that have been shown to impair Na V channel inactivation. These locations include the DIII-DIV linker, the DIII S4-S5 linker, and the DIV S4-S5 linker. Our results show that, within the 10-ms timeframe of fast inactivation, the DIV-VSD is the primary regulator of inactivation. However, after longer 100-ms pulses, the DIII-DIV linker slows DIII-VSD deactivation, and the rate of DIII deactivation correlates strongly with the rate of recovery from inactivation. Our results imply that, over the course of an action potential, DIV-VSDs regulate the onset of fast inactivation while DIII-VSDs determine its recovery. © 2017 Hsu et al.

  2. Two distinct voltage-sensing domains control voltage sensitivity and kinetics of current activation in CaV1.1 calcium channels.

    PubMed

    Tuluc, Petronel; Benedetti, Bruno; Coste de Bagneaux, Pierre; Grabner, Manfred; Flucher, Bernhard E

    2016-06-01

    Alternative splicing of the skeletal muscle CaV1.1 voltage-gated calcium channel gives rise to two channel variants with very different gating properties. The currents of both channels activate slowly; however, insertion of exon 29 in the adult splice variant CaV1.1a causes an ∼30-mV right shift in the voltage dependence of activation. Existing evidence suggests that the S3-S4 linker in repeat IV (containing exon 29) regulates voltage sensitivity in this voltage-sensing domain (VSD) by modulating interactions between the adjacent transmembrane segments IVS3 and IVS4. However, activation kinetics are thought to be determined by corresponding structures in repeat I. Here, we use patch-clamp analysis of dysgenic (CaV1.1 null) myotubes reconstituted with CaV1.1 mutants and chimeras to identify the specific roles of these regions in regulating channel gating properties. Using site-directed mutagenesis, we demonstrate that the structure and/or hydrophobicity of the IVS3-S4 linker is critical for regulating voltage sensitivity in the IV VSD, but by itself cannot modulate voltage sensitivity in the I VSD. Swapping sequence domains between the I and the IV VSDs reveals that IVS4 plus the IVS3-S4 linker is sufficient to confer CaV1.1a-like voltage dependence to the I VSD and that the IS3-S4 linker plus IS4 is sufficient to transfer CaV1.1e-like voltage dependence to the IV VSD. Any mismatch of transmembrane helices S3 and S4 from the I and IV VSDs causes a right shift of voltage sensitivity, indicating that regulation of voltage sensitivity by the IVS3-S4 linker requires specific interaction of IVS4 with its corresponding IVS3 segment. In contrast, slow current kinetics are perturbed by any heterologous sequences inserted into the I VSD and cannot be transferred by moving VSD I sequences to VSD IV. Thus, CaV1.1 calcium channels are organized in a modular manner, and control of voltage sensitivity and activation kinetics is accomplished by specific molecular mechanisms within the IV and I VSDs, respectively. © 2016 Tuluc et al.

  3. Two distinct voltage-sensing domains control voltage sensitivity and kinetics of current activation in CaV1.1 calcium channels

    PubMed Central

    Tuluc, Petronel; Benedetti, Bruno; Coste de Bagneaux, Pierre; Grabner, Manfred

    2016-01-01

    Alternative splicing of the skeletal muscle CaV1.1 voltage-gated calcium channel gives rise to two channel variants with very different gating properties. The currents of both channels activate slowly; however, insertion of exon 29 in the adult splice variant CaV1.1a causes an ∼30-mV right shift in the voltage dependence of activation. Existing evidence suggests that the S3–S4 linker in repeat IV (containing exon 29) regulates voltage sensitivity in this voltage-sensing domain (VSD) by modulating interactions between the adjacent transmembrane segments IVS3 and IVS4. However, activation kinetics are thought to be determined by corresponding structures in repeat I. Here, we use patch-clamp analysis of dysgenic (CaV1.1 null) myotubes reconstituted with CaV1.1 mutants and chimeras to identify the specific roles of these regions in regulating channel gating properties. Using site-directed mutagenesis, we demonstrate that the structure and/or hydrophobicity of the IVS3–S4 linker is critical for regulating voltage sensitivity in the IV VSD, but by itself cannot modulate voltage sensitivity in the I VSD. Swapping sequence domains between the I and the IV VSDs reveals that IVS4 plus the IVS3–S4 linker is sufficient to confer CaV1.1a-like voltage dependence to the I VSD and that the IS3–S4 linker plus IS4 is sufficient to transfer CaV1.1e-like voltage dependence to the IV VSD. Any mismatch of transmembrane helices S3 and S4 from the I and IV VSDs causes a right shift of voltage sensitivity, indicating that regulation of voltage sensitivity by the IVS3–S4 linker requires specific interaction of IVS4 with its corresponding IVS3 segment. In contrast, slow current kinetics are perturbed by any heterologous sequences inserted into the I VSD and cannot be transferred by moving VSD I sequences to VSD IV. Thus, CaV1.1 calcium channels are organized in a modular manner, and control of voltage sensitivity and activation kinetics is accomplished by specific molecular mechanisms within the IV and I VSDs, respectively. PMID:27185857

  4. Differential regulation of a CLC anion channel by SPAK kinase ortholog-mediated multisite phosphorylation

    PubMed Central

    Miyazaki, Hiroaki

    2012-01-01

    Shrinkage-induced inhibition of the Caenorhabditis elegans cell volume and cell cycle-dependent CLC anion channel CLH-3b occurs by concomitant phosphorylation of S742 and S747, which are located on a 175 amino acid linker domain between cystathionine-β-synthase 1 (CBS1) and CBS2. Phosphorylation is mediated by the SPAK kinase homolog GCK-3 and is mimicked by substituting serine residues with glutamate. Type 1 serine/threonine protein phosphatases mediate swelling-induced channel dephosphorylation. S742E/S747E double mutant channels are constitutively inactive and cannot be activated by cell swelling. S742E and S747E mutant channels were fully active in the absence of GCK-3 and were inactive when coexpressed with the kinase. Both channels responded to cell volume changes. However, the S747E mutant channel activated and inactivated in response to cell swelling and shrinkage, respectively, much more slowly than either wild-type or S742E mutant channels. Slower activation and inactivation of S747E was not due to altered rates of dephosphorylation or dephosphorylation-dependent conformational changes. GCK-3 binds to the 175 amino acid inter-CBS linker domain. Coexpression of wild-type CLH-3b and GCK-3 with either wild-type or S742E linkers gave rise to similar channel activity and regulation. In contrast, coexpression with the S747E linker greatly enhanced basal channel activity and increased the rate of shrinkage-induced channel inactivation. Our findings suggest the intriguing possibility that the phosphorylation state of S742 in S747E mutant channels modulates GCK-3/channel interaction and hence channel phosphorylation. These results provide a foundation for further detailed studies of the role of multisite phosphorylation in regulating CLH-3b and GCK-3 activity. PMID:22357738

  5. Active inclusion bodies of acid phosphatase PhoC: aggregation induced by GFP fusion and activities modulated by linker flexibility

    PubMed Central

    2013-01-01

    Background Biologically active inclusion bodies (IBs) have gained much attention in recent years. Fusion with IB-inducing partner has been shown to be an efficient strategy for generating active IBs. To make full use of the advantages of active IBs, one of the key issues will be to improve the activity yield of IBs when expressed in cells, which would need more choices on IB-inducing fusion partners and approaches for engineering IBs. Green fluorescent protein (GFP) has been reported to aggregate when overexpressed, but GFP fusion has not been considered as an IB-inducing approach for these fusion proteins so far. In addition, the role of linker in fusion proteins has been shown to be important for protein characteristics, yet impact of linker on active IBs has never been reported. Results Here we report that by fusing GFP and acid phosphatase PhoC via a linker region, the resultant PhoC-GFPs were expressed largely as IBs. These IBs show high levels of specific fluorescence and specific PhoC activities (phosphatase and phosphotransferase), and can account for up to over 80% of the total PhoC activities in the cells. We further demonstrated that the aggregation of GFP moiety in the fusion protein plays an essential role in the formation of PhoC-GFP IBs. In addition, PhoC-GFP IBs with linkers of different flexibility were found to exhibit different levels of activities and ratios in the cells, suggesting that the linker region can be utilized to manipulate the characteristics of active IBs. Conclusions Our results show that active IBs of PhoC can be generated by GFP fusion, demonstrating for the first time the potential of GFP fusion to induce active IB formation of another soluble protein. We also show that the linker sequence in PhoC-GFP fusion proteins plays an important role on the regulation of IB characteristics, providing an alternative and important approach for engineering of active IBs with the goal of obtaining high activity yield of IBs. PMID:23497261

  6. Fluorescence Polarization Screening Assays for Small Molecule Allosteric Modulators of ABL Kinase Function

    PubMed Central

    Grover, Prerna; Shi, Haibin; Baumgartner, Matthew; Camacho, Carlos J.; Smithgall, Thomas E.

    2015-01-01

    The ABL protein-tyrosine kinase regulates intracellular signaling pathways controlling diverse cellular processes and contributes to several forms of cancer. The kinase activity of ABL is repressed by intramolecular interactions involving its regulatory Ncap, SH3 and SH2 domains. Small molecules that allosterically regulate ABL kinase activity through its non-catalytic domains may represent selective probes of ABL function. Here we report a screening assay for chemical modulators of ABL kinase activity that target the regulatory interaction of the SH3 domain with the SH2-kinase linker. This fluorescence polarization (FP) assay is based on a purified recombinant ABL protein consisting of the N-cap, SH3 and SH2 domains plus the SH2-kinase linker (N32L protein) and a short fluorescein-labeled probe peptide that binds to the SH3 domain. In assay development experiments, we found that the probe peptide binds to the recombinant ABL N32L protein in vitro, producing a robust FP signal that can be competed with an excess of unlabeled peptide. The FP signal is not observed with control N32L proteins bearing either an inactivating mutation in the SH3 domain or enhanced SH3:linker interaction. A pilot screen of 1200 FDA-approved drugs identified four compounds that specifically reduced the FP signal by at least three standard deviations from the untreated controls. Secondary assays showed that one of these hit compounds, the antithrombotic drug dipyridamole, enhances ABL kinase activity in vitro to a greater extent than the previously described ABL agonist, DPH. Docking studies predicted that this compound binds to a pocket formed at the interface of the SH3 domain and the linker, suggesting that it activates ABL by disrupting this regulatory interaction. These results show that screening assays based on the non-catalytic domains of ABL can identify allosteric small molecule regulators of kinase function, providing a new approach to selective drug discovery for this important kinase system. PMID:26222440

  7. Fluorescence Polarization Screening Assays for Small Molecule Allosteric Modulators of ABL Kinase Function.

    PubMed

    Grover, Prerna; Shi, Haibin; Baumgartner, Matthew; Camacho, Carlos J; Smithgall, Thomas E

    2015-01-01

    The ABL protein-tyrosine kinase regulates intracellular signaling pathways controlling diverse cellular processes and contributes to several forms of cancer. The kinase activity of ABL is repressed by intramolecular interactions involving its regulatory Ncap, SH3 and SH2 domains. Small molecules that allosterically regulate ABL kinase activity through its non-catalytic domains may represent selective probes of ABL function. Here we report a screening assay for chemical modulators of ABL kinase activity that target the regulatory interaction of the SH3 domain with the SH2-kinase linker. This fluorescence polarization (FP) assay is based on a purified recombinant ABL protein consisting of the N-cap, SH3 and SH2 domains plus the SH2-kinase linker (N32L protein) and a short fluorescein-labeled probe peptide that binds to the SH3 domain. In assay development experiments, we found that the probe peptide binds to the recombinant ABL N32L protein in vitro, producing a robust FP signal that can be competed with an excess of unlabeled peptide. The FP signal is not observed with control N32L proteins bearing either an inactivating mutation in the SH3 domain or enhanced SH3:linker interaction. A pilot screen of 1200 FDA-approved drugs identified four compounds that specifically reduced the FP signal by at least three standard deviations from the untreated controls. Secondary assays showed that one of these hit compounds, the antithrombotic drug dipyridamole, enhances ABL kinase activity in vitro to a greater extent than the previously described ABL agonist, DPH. Docking studies predicted that this compound binds to a pocket formed at the interface of the SH3 domain and the linker, suggesting that it activates ABL by disrupting this regulatory interaction. These results show that screening assays based on the non-catalytic domains of ABL can identify allosteric small molecule regulators of kinase function, providing a new approach to selective drug discovery for this important kinase system.

  8. TGF-beta and HGF transmit the signals through JNK-dependent Smad2/3 phosphorylation at the linker regions.

    PubMed

    Mori, Shigeo; Matsuzaki, Koichi; Yoshida, Katsunori; Furukawa, Fukiko; Tahashi, Yoshiya; Yamagata, Hideo; Sekimoto, Go; Seki, Toshihito; Matsui, Hirofumi; Nishizawa, Mikio; Fujisawa, Jun-ichi; Okazaki, Kazuichi

    2004-09-23

    Although hepatocyte growth factor (HGF) can act synergistically or antagonistically with transforming growth factor-beta (TGF-beta) signaling, molecular mechanism of their crosstalk remains unknown. Using antibodies which selectively distinguished receptor-regulated Smads (R-Smads) phosphorylated at linker regions from those at C-terminal regions, we herein showed that either HGF or TGF-beta treatment of normal stomach-origin cells activated the JNK pathway, thereafter inducing endogenous R-Smads phosphorylation at linker regions. However, the phosphorylation at their C-terminal regions was not induced by HGF treatment. The activated JNK could directly phosphorylate R-Smads in vitro at the same sites that were phosphorylated in response to TGF-beta or HGF in vivo. Thus, the linker regions of R-Smads were the common phosphorylation sites for HGF and TGF-beta signaling pathways. The phosphorylation induced by simultaneous treatment with HGF and TGF-beta allowed R-Smads to associate with Smad4 and to translocate into the nucleus. JNK pathway involved HGF and TGF-beta-mediated infiltration potency since a JNK inhibitor SP600125 caused the reduction of invasive capacity induced by HGF and TGF-beta signals. Moreover, a combined treatment with HGF and TGF-beta led to a potent increase in plasminogen activator inhibitor type 1 transcriptional activity through Smad3 phosphorylation at the linker region. In contrast, HGF treatment reduced TGF-beta-dependent activation of p15INK4B promoter, in which Smad3 phosphorylation at the C-terminal region was involved. In conclusion, HGF and TGF-beta transmit the signals through JNK-mediated R-Smads phosphorylation at linker regions.

  9. A protein interaction mechanism for suppressing the mechanosensitive Piezo channels.

    PubMed

    Zhang, Tingxin; Chi, Shaopeng; Jiang, Fan; Zhao, Qiancheng; Xiao, Bailong

    2017-11-27

    Piezo proteins are bona fide mammalian mechanotransduction channels for various cell types including endothelial cells. The mouse Piezo1 of 2547 residues forms a three-bladed, propeller-like homo-trimer comprising a central pore-module and three propeller-structures that might serve as mechanotransduction-modules. However, the mechanogating and regulation of Piezo channels remain unclear. Here we identify the sarcoplasmic /endoplasmic-reticulum Ca 2+ ATPase (SERCA), including the widely expressed SERCA2, as Piezo interacting proteins. SERCA2 strategically suppresses Piezo1 via acting on a 14-residue-constituted intracellular linker connecting the pore-module and mechanotransduction-module. Mutating the linker impairs mechanogating and SERCA2-mediated modulation of Piezo1. Furthermore, the synthetic linker-peptide disrupts the modulatory effects of SERCA2, demonstrating the key role of the linker in mechanogating and regulation. Importantly, the SERCA2-mediated regulation affects Piezo1-dependent migration of endothelial cells. Collectively, we identify SERCA-mediated regulation of Piezos and the functional significance of the linker, providing important insights into the mechanogating and regulation mechanisms of Piezo channels.

  10. Tgf-beta induced Erk phosphorylation of smad linker region regulates smad signaling.

    PubMed

    Hough, Chris; Radu, Maria; Doré, Jules J E

    2012-01-01

    The Transforming Growth Factor-Beta (TGF-β) family is involved in regulating a variety of cellular processes such as apoptosis, differentiation, and proliferation. TGF-β binding to a Serine/Threonine kinase receptor complex causes the recruitment and subsequent activation of transcription factors known as smad2 and smad3. These proteins subsequently translocate into the nucleus to negatively or positively regulate gene expression. In this study, we define a second signaling pathway leading to TGF-β receptor activation of Extracellular Signal Regulated Kinase (Erk) in a cell-type dependent manner. TGF-β induced Erk activation was found in phenotypically normal mesenchymal cells, but not normal epithelial cells. By activating phosphotidylinositol 3-kinase (PI3K), TGF-β stimulates p21-activated kinase2 (Pak2) to phosphorylate c-Raf, ultimately resulting in Erk activation. Activation of Erk was necessary for TGF-β induced fibroblast replication. In addition, Erk phosphorylated the linker region of nuclear localized smads, resulting in increased half-life of C-terminal phospho-smad 2 and 3 and increased duration of smad target gene transcription. Together, these data show that in mesenchymal cell types the TGF-β/PI3K/Pak2/Raf/MEK/Erk pathway regulates smad signaling, is critical for TGF-β-induced growth and is part of an integrated signaling web containing multiple interacting pathways rather than discrete smad/non-smad pathways.

  11. Enhanced SH3/Linker Interaction Overcomes Abl Kinase Activation by Gatekeeper and Myristic Acid Binding Pocket Mutations and Increases Sensitivity to Small Molecule Inhibitors*

    PubMed Central

    Panjarian, Shoghag; Iacob, Roxana E.; Chen, Shugui; Wales, Thomas E.; Engen, John R.; Smithgall, Thomas E.

    2013-01-01

    Multidomain kinases such as c-Src and c-Abl are regulated by complex allosteric interactions involving their noncatalytic SH3 and SH2 domains. Here we show that enhancing natural allosteric control of kinase activity by SH3/linker engagement has long-range suppressive effects on the kinase activity of the c-Abl core. Surprisingly, enhanced SH3/linker interaction also dramatically sensitized the Bcr-Abl tyrosine kinase associated with chronic myelogenous leukemia to small molecule inhibitors that target either the active site or the myristic acid binding pocket in the kinase domain C-lobe. Dynamics analyses using hydrogen exchange mass spectrometry revealed a remarkable allosteric network linking the SH3 domain, the myristic acid binding pocket, and the active site of the c-Abl core, providing a structural basis for the biological observations. These results suggest a rational strategy for enhanced drug targeting of Bcr-Abl and other multidomain kinase systems that use multiple small molecules to exploit natural mechanisms of kinase control. PMID:23303187

  12. Structural Basis of J Cochaperone Binding and Regulation of Hsp70

    PubMed Central

    Jiang, Jianwen; Maes, E. Guy; Taylor, Alex B; Wang, Liping; Hinck, Andrew P; Lafer, Eileen M; Sousa, Rui

    2007-01-01

    The many protein processing reactions of the ATP-hydrolyzing Hsp70s are regulated by J cochaperones, which contain J domains that stimulate Hsp70 ATPase activity and accessory domains that present protein substrates to Hsp70s. We report the structure of a J domain complexed with a J responsive portion of a mammalian Hsp70. The J domain activates ATPase activity by directing the linker that connects the Hsp70 nucleotide binding domain (NBD) and substrate binding domain (SBD) towards a hydrophobic patch on the NBD surface. Binding of the J domain to Hsp70 displaces the SBD from the NBD, which may allow the SBD flexibility to capture diverse substrates. Unlike prokaryotic Hsp70, the SBD and NBD of the mammalian chaperone interact in the ADP state. Thus, while both nucleotides and J cochaperones modulate Hsp70 NBD:linker and NBD:SBD interactions, the intrinsic persistence of those interactions differs in different Hsp70s and this may optimize their activities for different cellular roles. PMID:17996706

  13. Linker Histone Phosphorylation Regulates Global Timing of Replication Origin Firing*S⃞

    PubMed Central

    Thiriet, Christophe; Hayes, Jeffrey J.

    2009-01-01

    Despite the presence of linker histone in all eukaryotes, the primary function(s) of this histone have been difficult to clarify. Knock-out experiments indicate that H1s play a role in regulation of only a small subset of genes but are an essential component in mouse development. Here, we show that linker histone (H1) is involved in the global regulation of DNA replication in Physarum polycephalum. We find that genomic DNA of H1 knock-down cells is more rapidly replicated, an effect due at least in part to disruption of the native timing of replication fork firing. Immunoprecipitation experiments demonstrate that H1 is transiently lost from replicating chromatin via a process facilitated by phosphorylation. Our results suggest that linker histones generate a chromatin environment refractory to replication and that their transient removal via protein phosphorylation during S phase is a critical step in the epigenetic regulation of replication timing. PMID:19015270

  14. SKI promotes Smad3 linker phosphorylations associated with the tumor-promoting trait of TGFbeta.

    PubMed

    Lin, Qiushi; Chen, Dahu; Timchenko, Nikolai A; Medrano, Estela E

    2010-05-01

    The transcriptional co-regulator SKI is a potent inhibitor of TGFbeta-growth inhibitory signals. SKI binds to receptor-activated Smads in the nucleus, forming repressor complexes containing HDACs, mSin3, NCoR, and other protein partners. Alternatively, SKI binds to activated Smads in the cytoplasm, preventing their nuclear translocation. SKI is necessary for anchorage-independent growth of melanoma cells in vitro, and most important, for human melanoma xenograft growth in vivo. We recently identified a novel role of SKI in TGFbeta signaling. SKI promotes the switch of Smad3 from repressor of proliferation to activator of oncogenesis by facilitating phosphorylations in the linker domain. High levels of endogenous SKI are required by the tumor promoting trait of TGFbeta to induce expression of the plasminogen-activator inhibitor-1 (PAI-1), sustained expression of C-Myc and for aborting upregulation of p21(Waf-1). Here we discuss how SKI diversifies and amplifies its functions by associating with multiple protein partners and by promoting Smad3 linker phosphorylation(s) in response to TGFbeta signaling in melanoma cells.

  15. The JH2 domain and SH2-JH2 linker regulate JAK2 activity: A detailed kinetic analysis of wild type and V617F mutant kinase domains.

    PubMed

    Sanz Sanz, Arturo; Niranjan, Yashavanthi; Hammarén, Henrik; Ungureanu, Daniela; Ruijtenbeek, Rob; Touw, Ivo P; Silvennoinen, Olli; Hilhorst, Riet

    2014-10-01

    JAK2 tyrosine kinase regulates many cellular functions. Its activity is controlled by the pseudokinase (JH2) domain by still poorly understood mechanisms. The V617F mutation in the pseudokinase domain activates JAK2 and causes myeloproliferative neoplasms. We conducted a detailed kinetic analysis of recombinant JAK2 tyrosine kinase domain (JH1) and wild-type and V617F tandem kinase (JH1JH2) domains using peptide microarrays to define the functions of the kinase domains. The results show that i) JAK2 follows a random Bi-Bi reaction mechanism ii) JH2 domain restrains the activity of the JH1 domain by reducing the affinity for ATP and ATP competitive inhibitors iii) V617F decreases affinity for ATP but increases catalytic activity compared to wild-type and iv) the SH2-JH2 linker region participates in controlling activity by reducing the affinity for ATP. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Dephosphorylation of the linker regions of Smad1 and Smad2/3 by small C-terminal domain phosphatases has distinct outcomes for bone morphogenetic protein and transforming growth factor-beta pathways.

    PubMed

    Sapkota, Gopal; Knockaert, Marie; Alarcón, Claudio; Montalvo, Ermelinda; Brivanlou, Ali H; Massagué, Joan

    2006-12-29

    Smad proteins transduce bone morphogenetic protein (BMP) and transforming growth factor-beta (TGFbeta) signals upon phosphorylation of their C-terminal SXS motif by receptor kinases. The activity of Smad1 in the BMP pathway and Smad2/3 in the TGFbeta pathway is restricted by pathway cross-talk and feedback through protein kinases, including MAPK, CDK2/4, p38MAPK, JNK, and others. These kinases phosphorylate Smads 1-3 at the region that links the N-terminal DNA-binding domain and the C-terminal transcriptional domain. Phosphatases that dephosphorylate the linker region are therefore likely to play an integral part in the regulation of Smad activity. We reported previously that small C-terminal domain phosphatases 1, 2, and 3 (SCP1-3) dephosphorylate Smad1 C-terminal tail, thereby attenuating BMP signaling. Here we provide evidence that SCP1-3 also dephosphorylate the linker regions of Smad1 and Smad2/3 in vitro, in mammalian cells and in Xenopus embryos. Overexpression of SCP 1, 2, or 3 decreased linker phosphorylation of Smads 1, 2 and 3. Moreover, RNA interference-mediated knockdown of SCP1/2 increased the BMP-dependent phosphorylation of the Smad1 linker region as well as the C terminus. In contrast, SCP1/2 knockdown increased the TGFbeta-dependent linker phosphorylation of Smad2/3 but not the C-terminal phosphorylation. Consequently, SCP1/2 knockdown inhibited TGFbeta transcriptional responses, but it enhanced BMP transcriptional responses. Thus, by dephosphorylating Smad2/3 at the linker (inhibitory) but not the C-terminal (activating) site, the SCPs enhance TGFbeta signaling, and by dephosphorylating Smad1 at both sites, the SCPs reset Smad1 to the basal unphosphorylated state.

  17. Definition of smad3 phosphorylation events that affect malignant and metastatic behaviors in breast cancer cells.

    PubMed

    Bae, Eunjin; Sato, Misako; Kim, Ran-Ju; Kwak, Mi-Kyung; Naka, Kazuhito; Gim, Jungsoo; Kadota, Mitsutaka; Tang, Binwu; Flanders, Kathleen C; Kim, Tae-Aug; Leem, Sun-Hee; Park, Taesung; Liu, Fang; Wakefield, Lalage M; Kim, Seong-Jin; Ooshima, Akira

    2014-11-01

    Smad3, a major intracellular mediator of TGFβ signaling, functions as both a positive and negative regulator in carcinogenesis. In response to TGFβ, the TGFβ receptor phosphorylates serine residues at the Smad3 C-tail. Cancer cells often contain high levels of the MAPK and CDK activities, which can lead to the Smad3 linker region becoming highly phosphorylated. Here, we report, for the first time, that mutation of the Smad3 linker phosphorylation sites markedly inhibited primary tumor growth, but significantly increased lung metastasis of breast cancer cell lines. In contrast, mutation of the Smad3 C-tail phosphorylation sites had the opposite effect. We show that mutation of the Smad3 linker phosphorylation sites greatly intensifies all TGFβ-induced responses, including growth arrest, apoptosis, reduction in the size of putative cancer stem cell population, epithelial-mesenchymal transition, and invasive activity. Moreover, all TGFβ responses were completely lost on mutation of the Smad3 C-tail phosphorylation sites. Our results demonstrate a critical role of the counterbalance between the Smad3 C-tail and linker phosphorylation in tumorigenesis and metastasis. Our findings have important implications for therapeutic intervention of breast cancer. ©2014 American Association for Cancer Research.

  18. DNA sequence-specific dimeric bisbenzimidazoles DBP(n) and DBPA(n) as inhibitors of H-NS silencing in bacterial cells.

    PubMed

    Melkina, Olga E; Koval, Vasilii S; Ivanov, Alexander A; Zhuze, Alexei L; Zavilgelsky, Gennadii B

    2018-03-01

    DNA sequence-specific fluorescent dimeric bisbenzimidazoles DBP(n) and DBPA(n), noncovalently interacting with A-T pairs in the minor groove of double-stranded DNA were used for studying and monitoring the expression of histone-like H-NS-dependent promoters. Histone-like H-NS selectively binds to AT-rich segments of DNA and silences a large number of genes in bacterial chromosomes. The H-NS-dependent promoters of Quorum Sensing (QS)-regulated lux operons of the marine bacteria mesophilic Aliivibrio fischeri, psychrophilic Aliivibrio logei were used. Escherichia coli lux biosensors were constructed by cloning fragments bearing QS-regulated promoters into the vector, thereby placing each fragment upstream of the promoterless Photorhabdus luminescens luxCDABE genes. It was shown that the dimeric bisbenzimidazoles DBP(n) and DBPA(n) counteract the H-NS silencing activity. Thus, the presence of DBP(n) or DBPA(n) in the medium leads to an approximately 10-100-fold increase in the level of transcription of QS promoters in E. coli hns + . The largest decrease in the level of H-NS repression was observed using ligands containing a linker with a length of ca. 18Å, such as DBP(2) and DBPA(2). Ligands containing linkers with n=1 and 3 are an order of magnitude less active; ligands with n=4 are inactive. DBPA(2) exhibits activity starting with a concentration of 0.5μM; the minimum concentration of DBP(2) is 5-7 times higher. It is suggested that A-T pairs located at five nucleotide pair intervals, which correspond to the linker length in highly active ligands with n=2, play a key role in the structure of H-NS-binding sites in QS-regulated promoters. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. A dual affinity-tag strategy for the expression and purification of human linker histone H1.4 in Escherichia coli.

    PubMed

    Ryan, Daniel P; Tremethick, David J

    2016-04-01

    Linker histones are an abundant and critical component of the eukaryotic chromatin landscape. They play key roles in regulating the higher order structure of chromatin and many genetic processes. Higher eukaryotes possess a number of different linker histone subtypes and new data are consistently emerging that indicate these subtypes are functionally distinct. We were interested in studying one of the most abundant human linker histone subtypes, H1.4. We have produced recombinant full-length H1.4 in Escherichia coli. An N-terminal Glutathione-S-Transferase tag was used to promote soluble expression and was combined with a C-terminal hexahistidine tag to facilitate a simple non-denaturing two-step affinity chromatography procedure that results in highly pure full-length H1.4. The purified H1.4 was shown to be functional via in vitro chromatin assembly experiments and remains active after extended storage at -80 °C. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Identification of linker regions and domain borders of the transcription activator protein NtrC from Escherichia coli by limited proteolysis, in-gel digestion, and mass spectrometry.

    PubMed

    Bantscheff, M; Weiss, V; Glocker, M O

    1999-08-24

    We have developed a mass spectrometry based method for the identification of linker regions and domain borders in multidomain proteins. This approach combines limited proteolysis and in-gel proteolytic digestions and was applied to the determination of linkers in the transcription factor NtrC from Escherichia coli. Limited proteolysis of NtrC with thermolysin and papain revealed that initial digestion yielded two major bands in SDS-PAGE that were identified by mass spectrometry as the R-domain and the still covalently linked OC-domains. Subsequent steps in limited proteolysis afforded further cleavage of the OC-fragment into the O- and the C-domain at accessible amino acid residues. Mass spectrometric identification of the tryptic/thermolytic peptides obtained after in-gel total proteolysis of the SDS-PAGE-separated domains determined the domain borders and showed that the protease accessible linker between R- and O-domain comprised amino acids Val-131 and Gln-132 within the "Q-linker" in agreement with papain and subtilisin digestion. The region between amino acid residues Thr-389 and Gln-396 marked the hitherto unknown linker sequence that connects the O- with the C-domain. High abundances of proline-, alanine-, serine-, and glutamic acid residues were found in this linker structure (PASE-linker) of related NtrC response regulator proteins. While R- and C-domains remained stable under the applied limited proteolysis conditions, the O-domain was further truncated yielding a core fragment that comprised the sequence from Ile-140 to Arg-320. ATPase activity was lost after separation of the R-domain from the OC-fragment. However, binding of OC- and C- fragments to specific DNA was observed by characteristic band-shifts in migration retardation assays, indicating intact tertiary structures of the C-domain. The outlined strategy proved to be highly efficient and afforded lead information of tertiary structural features necessary for protein design and engineering and for structure-function studies.

  1. Transforming growth factor-{beta}-inducible phosphorylation of Smad3.

    PubMed

    Wang, Guannan; Matsuura, Isao; He, Dongming; Liu, Fang

    2009-04-10

    Smad proteins transduce the transforming growth factor-beta (TGF-beta) signal at the cell surface into gene regulation in the nucleus. Upon TGF-beta treatment, the highly homologous Smad2 and Smad3 are phosphorylated by the TGF-beta receptor at the SSXS motif in the C-terminal tail. Here we show that in addition to the C-tail, three (S/T)-P sites in the Smad3 linker region, Ser(208), Ser(204), and Thr(179) are phosphorylated in response to TGF-beta. The linker phosphorylation peaks at 1 h after TGF-beta treatment, behind the peak of the C-tail phosphorylation. We provide evidence suggesting that the C-tail phosphorylation by the TGF-beta receptor is necessary for the TGF-beta-induced linker phosphorylation. Although the TGF-beta receptor is necessary for the linker phosphorylation, the receptor itself does not phosphorylate these sites. We further show that ERK is not responsible for TGF-beta-dependent phosphorylation of these three sites. We show that GSK3 accounts for TGF-beta-inducible Ser(204) phosphorylation. Flavopiridol, a pan-CDK inhibitor, abolishes TGF-beta-induced phosphorylation of Thr(179) and Ser(208), suggesting that the CDK family is responsible for phosphorylation of Thr(179) and Ser(208) in response to TGF-beta. Mutation of the linker phosphorylation sites to nonphosphorylatable residues increases the ability of Smad3 to activate a TGF-beta/Smad-target gene as well as the growth-inhibitory function of Smad3. Thus, these observations suggest that TGF-beta-induced phosphorylation of Smad3 linker sites inhibits its antiproliferative activity.

  2. A negative feedback control of transforming growth factor-beta signaling by glycogen synthase kinase 3-mediated Smad3 linker phosphorylation at Ser-204.

    PubMed

    Millet, Caroline; Yamashita, Motozo; Heller, Mary; Yu, Li-Rong; Veenstra, Timothy D; Zhang, Ying E

    2009-07-24

    Through the action of its membrane-bound type I receptor, transforming growth factor-beta (TGF-beta) elicits a wide range of cellular responses that regulate cell proliferation, differentiation, and apo ptosis. Many of these signaling responses are mediated by Smad proteins. As such, controlling Smad activity is crucial for proper signaling by TGF-beta and its related factors. Here, we show that TGF-beta induces phosphorylation at three sites in the Smad3 linker region in addition to the two C-terminal residues, and glycogen synthase kinase 3 is responsible for phosphorylation at one of these sites, namely Ser-204. Alanine substitution at Ser-204 and/or the neighboring Ser-208, the priming site for glycogen synthase kinase 3 in vivo activity, strengthened the affinity of Smad3 to CREB-binding protein, suggesting that linker phosphorylation may be part of a negative feedback loop that modulates Smad3 transcriptional activity. Thus, our findings reveal a novel aspect of the Smad3 signaling mechanism that controls the final amplitude of cellular responses to TGF-beta.

  3. A clathrin coat assembly role for the muniscin protein central linker revealed by TALEN-mediated gene editing

    PubMed Central

    Umasankar, Perunthottathu K; Ma, Li; Thieman, James R; Jha, Anupma; Doray, Balraj; Watkins, Simon C; Traub, Linton M

    2014-01-01

    Clathrin-mediated endocytosis is an evolutionarily ancient membrane transport system regulating cellular receptivity and responsiveness. Plasmalemma clathrin-coated structures range from unitary domed assemblies to expansive planar constructions with internal or flanking invaginated buds. Precisely how these morphologically-distinct coats are formed, and whether all are functionally equivalent for selective cargo internalization is still disputed. We have disrupted the genes encoding a set of early arriving clathrin-coat constituents, FCHO1 and FCHO2, in HeLa cells. Endocytic coats do not disappear in this genetic background; rather clustered planar lattices predominate and endocytosis slows, but does not cease. The central linker of FCHO proteins acts as an allosteric regulator of the prime endocytic adaptor, AP-2. By loading AP-2 onto the plasma membrane, FCHO proteins provide a parallel pathway for AP-2 activation and clathrin-coat fabrication. Further, the steady-state morphology of clathrin-coated structures appears to be a manifestation of the availability of the muniscin linker during lattice polymerization. DOI: http://dx.doi.org/10.7554/eLife.04137.001 PMID:25303365

  4. Galangin enhances TGF-β1-mediated growth inhibition by suppressing phosphorylation of threonine 179 residue in Smad3 linker region.

    PubMed

    Kwak, Mi-Kyung; Yang, Kyung-Min; Park, Jinah; Lee, Siyoung; Park, Yuna; Hong, Eunji; Sun, Eun Jin; An, Haein; Park, Sujin; Pang, Kyoungwha; Lee, Jihee; Kang, Jin Muk; Kim, Pyunggang; Ooshima, Akira; Kim, Seong-Jin

    2017-12-16

    Smad3 linker phosphorylation is a candidate target for several kinases that play important roles in cancer cell initiation, proliferation and progression. Also, Smad3 is an essential intracellular mediator of TGF-β1-induced transcriptional responses during carcinogenesis. Therefore, it is highly advantageous to identify and develop inhibitors targeting Smad3 linker phosphorylation for the treatment of cancers. Galangin (3,5,7-trihydroxyflavone) has been known to be an active flavonoid showing a cytotoxic effect on several cancer cells. However, the mechanism of action of galangin in various cancers remains unclear, and there has been no report concerning regulation of Smad3 phosphorylation by galangin. In the present study, we show that galangin significantly induced apoptosis and inhibited cell proliferation in the presence of TGF-β1 in both human prostate and pancreatic cancer cell lines. Particularly, galangin effectively inhibits phosphorylation of the Thr-179 site at Smad3 linker region through suppression of CDK4 phosphorylation. Thus, galangin can be a promising candidate as a selective inhibitor to suppress phosphorylation of Smad3 linker region. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Cooperative binding mitigates the high-dose hook effect.

    PubMed

    Roy, Ranjita Dutta; Rosenmund, Christian; Stefan, Melanie I

    2017-08-14

    The high-dose hook effect (also called prozone effect) refers to the observation that if a multivalent protein acts as a linker between two parts of a protein complex, then increasing the amount of linker protein in the mixture does not always increase the amount of fully formed complex. On the contrary, at a high enough concentration range the amount of fully formed complex actually decreases. It has been observed that allosterically regulated proteins seem less susceptible to this effect. The aim of this study was two-fold: First, to investigate the mathematical basis of how allostery mitigates the prozone effect. And second, to explore the consequences of allostery and the high-dose hook effect using the example of calmodulin, a calcium-sensing protein that regulates the switch between long-term potentiation and long-term depression in neurons. We use a combinatorial model of a "perfect linker protein" (with infinite binding affinity) to mathematically describe the hook effect and its behaviour under allosteric conditions. We show that allosteric regulation does indeed mitigate the high-dose hook effect. We then turn to calmodulin as a real-life example of an allosteric protein. Using kinetic simulations, we show that calmodulin is indeed subject to a hook effect. We also show that this effect is stronger in the presence of the allosteric activator Ca 2+ /calmodulin-dependent kinase II (CaMKII), because it reduces the overall cooperativity of the calcium-calmodulin system. It follows that, surprisingly, there are conditions where increased amounts of allosteric activator actually decrease the activity of a protein. We show that cooperative binding can indeed act as a protective mechanism against the hook effect. This will have implications in vivo where the extent of cooperativity of a protein can be modulated, for instance, by allosteric activators or inhibitors. This can result in counterintuitive effects of decreased activity with increased concentrations of both the allosteric protein itself and its allosteric activators.

  6. Interleukin 1 β-induced SMAD2/3 linker modifications are TAK1 dependent and delay TGFβ signaling in primary human mesenchymal stem cells.

    PubMed

    van den Akker, Guus G; van Beuningen, Henk M; Vitters, Elly L; Koenders, Marije I; van de Loo, Fons A; van Lent, Peter L; Blaney Davidson, Esmeralda N; van der Kraan, Peter M

    2017-12-01

    Chondrogenic differentiation of mesenchymal stem cells (MSC) requires transforming growth factor beta (TGFβ) signaling. TGFβ binds to the type I receptor activin-like kinase (ALK)5 and results in C-terminal SMAD2/3 phosphorylation (pSMAD2/3C). In turn pSMAD2/3C translocates to the nucleus and regulates target gene expression. Inflammatory mediators are known to exert an inhibitory effect on MSC differentiation. In this study we investigated the effect of interleukin 1 β (IL1β) on SMAD2/3 signaling dynamics and post-translational modifications. Co-stimulation of MSC with TGFβ and IL1β did not affect peak pSMAD2C levels at 1h post-stimulation. Surprisingly, SMAD3 transcriptional activity, as determined by the CAGA 12 -luciferase reporter construct, was enhanced by co-stimulation of TGFβ and IL1β compared to TGFβ alone. Furthermore, IL1β stimulation induced CAGA 12 -luciferase activity in a SMAD dependent way. As SMAD function can be modulated independent of canonical TGFβ signaling through the SMAD linker domain, we studied SMAD2 linker phosphorylation at specific threonine and serine residues. SMAD2 linker threonine and serine modifications were observed within 1h following TGFβ, IL1β or TGFβ and IL1β stimulation. Upon co-stimulation linker modified SMAD2 accumulated in the cytoplasm and SMAD2/3 target gene transcription (ID1, JUNB) at 2-4h was inhibited. A detailed time course analysis of IL1β-induced SMAD2 linker modifications revealed a distinct temperospatial pattern compared to TGFβ. Co-stimulation with both factors resulted in a similar kinetic profile as TGFβ alone. Nevertheless, IL1β did subtly alter TGFβ-induced pSMAD2C levels between 8 and 24h post-stimulation, which was reflected by TGFβ target gene expression (PAI1, JUNB). Direct evidence for the importance of SMAD3 linker modifications for the effect of IL1β on TGFβ signaling was obtained by over-expression of SMAD3 or a SMAD3 linker phospho-mutant. Finally, an inhibitor screening was performed to identify kinases involved in SMAD2/3 linker modifications. We identified TAK1 kinase activity as crucial for IL1β-induced SMAD2 linker modifications and CAGA 12 -luciferase activity. TGFβ and IL1β signaling interact at the SMAD2/3 level in human primary MSC. Down-stream TGFβ target genes were repressed by IL1β independent of C-terminal SMAD2 phosphorylation. We demonstrate that SMAD2/3 linker modifications are required for this interplay and identified TAK1 as a crucial mediator of IL1β-induced TGFβ signal modulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Non-T cell activation linker (NTAL) proteolytic cleavage as a terminator of activatory intracellular signals.

    PubMed

    Arbulo-Echevarria, Mikel M; Muñoz-Miranda, Juan Pedro; Caballero-García, Andrés; Poveda-Díaz, José L; Fernández-Ponce, Cecilia; Durán-Ruiz, M Carmen; Miazek, Arkadiusz; García-Cózar, Francisco; Aguado, Enrique

    2016-08-01

    Non-T cell activation linker is an adaptor protein that is tyrosine phosphorylated upon cross-linking of immune receptors expressed on B lymphocytes, NK cells, macrophages, basophils, or mast cells, allowing the recruitment of cytosolic mediators for downstream signaling pathways. Fas receptor acts mainly as a death receptor, and when cross-linked with Fas ligand, many proteins are proteolytically cleaved, including several signaling molecules in T and B cells. Fas receptor triggering also interferes with TCR intracellular signals, probably by means of proteolytic cleavage of several adaptor proteins. We have previously found that the adaptor linker for activation of T cells, evolutionarily related to non-T cell activation linker, is cleaved upon proapoptotic stimuli in T lymphocytes and thymocytes, in a tyrosine phosphorylation-dependent fashion. Here, we describe non-T cell activation linker proteolytic cleavage triggered in human B cells and monocytes by Fas cross-linking and staurosporine treatment. Non-T cell activation linker is cleaved, producing an N-terminal fragment of ∼22 kDa, and such cleavage is abrogated in the presence of caspase 8/granzyme B and caspase 3 inhibitors. Moreover, we have identified an aspartic acid residue at which non-T cell activation linker is cleaved, which similar to linker for activation of T cells, this aspartic acid residue is located close to tyrosine and serine residues, suggesting an interdependence of phosphorylation and proteolytic cleavage. Consistently, induction of non-T cell activation linker phosphorylation by pervanadate inhibits its cleavage. Interestingly, the truncated isoform of non-T cell activation linker, generated after cleavage, has a decreased signaling ability when compared with the full-length molecule. Altogether, our results suggest that cleavage of transmembrane adaptors constitutes a general mechanism for signal termination of immune receptors. © Society for Leukocyte Biology.

  8. Histone H1 chaperone activity of TAF-I is regulated by its subtype-dependent intramolecular interaction.

    PubMed

    Kajitani, Kaori; Kato, Kohsuke; Nagata, Kyosuke

    2017-04-01

    Linker histone H1 is involved in the regulation of gene activity through the maintenance of higher-order chromatin structure. Previously, we have shown that template activating factor-I (TAF-I or protein SET) is involved in linker histone H1 dynamics as a histone H1 chaperone. In human and murine cells, two TAF-I subtypes exist, namely TAF-Iα and TAF-Iβ. TAF-I has a highly acidic amino acid cluster in its C-terminal region and forms homo- or heterodimers through its dimerization domain. Both dimer formation and the C-terminal region of TAF-I are essential for the histone chaperone activity. TAF-Iα exhibits less histone chaperone activity compared with TAF-Iβ even though TAF-Iα and β differ only in their N-terminal regions. However, it is unclear how subtype-specific TAF-I activities are regulated. Here, we have shown that the N-terminal region of TAF-Iα autoinhibits its histone chaperone activity via intramolecular interaction with its C-terminal region. When the interaction between the N- and C-terminal regions of TAF-Iα is disrupted, TAF-Iα shows a histone chaperone activity similar to that of TAF-Iβ. Taken together, these results provide mechanistic insights into the concept that fine tuning of TAF-I histone H1 chaperone activity relies on the subtype compositions of the TAF-I dimer. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  9. Mesoscale Modeling of Chromatin Folding

    NASA Astrophysics Data System (ADS)

    Schlick, Tamar

    2009-03-01

    Eukaryotic chromatin is the fundamental protein/nucleic acid unit that stores the genetic material. Understanding how chromatin fibers fold and unfold in physiological conditions is important for interpreting fundamental biological processes like DNA replication and transcription regulation. Using a mesoscopic model of oligonucleosome chains and tailored sampling protocols, we elucidate the energetics of oligonucleosome folding/unfolding and the role of each histone tail, linker histones, and divalent ions in regulating chromatin structure. The resulting compact topologies reconcile features of the zigzag model with straight linker DNAs with the solenoid model with bent linker DNAs for optimal fiber organization and reveal dynamic and energetic aspects involved.

  10. Lipopolysaccharide inhibits transforming growth factor-beta1-stimulated Smad6 expression by inducing phosphorylation of the linker region of Smad3 through a TLR4-IRAK1-ERK1/2 pathway.

    PubMed

    Kim, Eun-Ye; Kim, Byung-Chul

    2011-03-09

    Smad6, one of the inhibitory Smads, plays an important role in transforming growth factor-beta1 (TGF-β1)-mediated negative regulation of pro-inflammatory signaling. In this study, we found that bacterial endotoxin lipopolysaccharide (LPS) inhibits TGF-β1-induced expression of Smad6 in RAW264.7 cells. This repression was accompanied by increased Smad3 linker phosphorylation at Thr-179 and Ser-208 and was dependent on ERK1/2 activity via the TLR4-IRAK1-linked signaling cascade. The expression of a mutant Smad3, that lacks the phosphorylation sites in the linker regions, significantly reversed the inhibitory effect of LPS on TGF-β1-induced Smad6 expression and its anti-inflammatory capacity. Collectively, our findings show how LPS pro-inflammatory signal antagonizes the anti-inflammatory activity of TGF-β1. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  11. Reversible Smad-dependent signaling between tumor suppression and oncogenesis.

    PubMed

    Sekimoto, Go; Matsuzaki, Koichi; Yoshida, Katsunori; Mori, Shigeo; Murata, Miki; Seki, Toshihito; Matsui, Hirofumi; Fujisawa, Jun-ichi; Okazaki, Kazuichi

    2007-06-01

    Cancer cells often gain advantage by reducing the tumor-suppressive activity of transforming growth factor-beta (TGF-beta) together with stimulation of its oncogenic activity as in Ras-transformed cells; however, molecular mechanisms remain largely unknown. TGF-beta activates both its type I receptor (TbetaRI) and c-Jun NH2-terminal kinase (JNK), which phosphorylate Smad2 and Smad3 at the COOH-terminal (pSmad2/3C) and linker regions (pSmad2/3L). Here, we report that Ras transformation suppresses TbetaRI-mediated pSmad3C signaling, which involves growth inhibition by down-regulating c-Myc. Instead, hyperactive Ras constitutively stimulates JNK-mediated pSmad2/3L signaling, which fosters tumor invasion by up-regulating plasminogen activator inhibitor-1 and matrix metalloproteinase-1 (MMP-1), MMP-2, and MMP-9. Conversely, selective blockade of linker phosphorylation by a mutant Smad3 lacking JNK-dependent phosphorylation sites results in preserved tumor-suppressive function via pSmad3C in Ras-transformed cells while eliminating pSmad2/3L-mediated invasive capacity. Thus, specific inhibition of the JNK/pSmad2/3L pathway should suppress cancer progression by shifting Smad-dependent signaling from oncogenesis to tumor suppression.

  12. The Growth-Suppressive Function of the Polycomb Group Protein Polyhomeotic Is Mediated by Polymerization of Its Sterile Alpha Motif (SAM) Domain*

    PubMed Central

    Robinson, Angela K.; Leal, Belinda Z.; Chadwell, Linda V.; Wang, Renjing; Ilangovan, Udayar; Kaur, Yogeet; Junco, Sarah E.; Schirf, Virgil; Osmulski, Pawel A.; Gaczynska, Maria; Hinck, Andrew P.; Demeler, Borries; McEwen, Donald G.; Kim, Chongwoo A.

    2012-01-01

    Polyhomeotic (Ph), a member of the Polycomb Group (PcG), is a gene silencer critical for proper development. We present a previously unrecognized way of controlling Ph function through modulation of its sterile alpha motif (SAM) polymerization leading to the identification of a novel target for tuning the activities of proteins. SAM domain containing proteins have been shown to require SAM polymerization for proper function. However, the role of the Ph SAM polymer in PcG-mediated gene silencing was uncertain. Here, we first show that Ph SAM polymerization is indeed required for its gene silencing function. Interestingly, the unstructured linker sequence N-terminal to Ph SAM can shorten the length of polymers compared with when Ph SAM is individually isolated. Substituting the native linker with a random, unstructured sequence (RLink) can still limit polymerization, but not as well as the native linker. Consequently, the increased polymeric Ph RLink exhibits better gene silencing ability. In the Drosophila wing disc, Ph RLink expression suppresses growth compared with no effect for wild-type Ph, and opposite to the overgrowth phenotype observed for polymer-deficient Ph mutants. These data provide the first demonstration that the inherent activity of a protein containing a polymeric SAM can be enhanced by increasing SAM polymerization. Because the SAM linker had not been previously considered important for the function of SAM-containing proteins, our finding opens numerous opportunities to manipulate linker sequences of hundreds of polymeric SAM proteins to regulate a diverse array of intracellular functions. PMID:22275371

  13. Gating mechanism of Kv11.1 (hERG) K+ channels without covalent connection between voltage sensor and pore domains.

    PubMed

    de la Peña, Pilar; Domínguez, Pedro; Barros, Francisco

    2018-03-01

    Kv11.1 (hERG, KCNH2) is a voltage-gated potassium channel crucial in setting the cardiac rhythm and the electrical behaviour of several non-cardiac cell types. Voltage-dependent gating of Kv11.1 can be reconstructed from non-covalently linked voltage sensing and pore modules (split channels), challenging classical views of voltage-dependent channel activation based on a S4-S5 linker acting as a rigid mechanical lever to open the gate. Progressive displacement of the split position from the end to the beginning of the S4-S5 linker induces an increasing negative shift in activation voltage dependence, a reduced z g value and a more negative ΔG 0 for current activation, an almost complete abolition of the activation time course sigmoid shape and a slowing of the voltage-dependent deactivation. Channels disconnected at the S4-S5 linker near the S4 helix show a destabilization of the closed state(s). Furthermore, the isochronal ion current mode shift magnitude is clearly reduced in the different splits. Interestingly, the progressive modifications of voltage dependence activation gating by changing the split position are accompanied by a shift in the voltage-dependent availability to a methanethiosulfonate reagent of a Cys introduced at the upper S4 helix. Our data demonstrate for the first time that alterations in the covalent connection between the voltage sensor and the pore domains impact on the structural reorganizations of the voltage sensor domain. Also, they support the hypothesis that the S4-S5 linker integrates signals coming from other cytoplasmic domains that constitute either an important component or a crucial regulator of the gating machinery in Kv11.1 and other KCNH channels.

  14. Cystathionine β-Synthase (CBS) Domains 1 and 2 Fulfill Different Roles in Ionic Strength Sensing of the ATP-binding Cassette (ABC) Transporter OpuA*

    PubMed Central

    Karasawa, Akira; Erkens, Guus B.; Berntsson, Ronnie P.-A.; Otten, Renee; Schuurman-Wolters, Gea K.; Mulder, Frans A. A.; Poolman, Bert

    2011-01-01

    The cystathionine β-synthase module of OpuA in conjunction with an anionic membrane surface acts as a sensor of internal ionic strength, which allows the protein to respond to osmotic stress. We now show by chemical modification and cross-linking studies that CBS2-CBS2 interface residues are critical for transport activity and/or ionic regulation of transport, whereas CBS1 serves no functional role. We establish that Cys residues in CBS1, CBS2, and the nucleotide-binding domain are more accessible for cross-linking at high than low ionic strength, indicating that these domains undergo conformational changes when transiting between the active and inactive state. Structural analyses suggest that the cystathionine β-synthase module is largely unstructured. Moreover, we could substitute CBS1 by a linker and preserve ionic regulation of transport. These data suggest that CBS1 serves as a linker and the structured CBS2-CBS2 interface forms a hinge point for ionic strength-dependent rearrangements that are transmitted to the nucleotide-binding domain and thereby affect translocation activity. PMID:21878634

  15. Dynamics of linker residues modulate the nucleic acid binding properties of the HIV-1 nucleocapsid protein zinc fingers.

    PubMed

    Zargarian, Loussiné; Tisné, Carine; Barraud, Pierre; Xu, Xiaoqian; Morellet, Nelly; René, Brigitte; Mély, Yves; Fossé, Philippe; Mauffret, Olivier

    2014-01-01

    The HIV-1 nucleocapsid protein (NC) is a small basic protein containing two zinc fingers (ZF) separated by a short linker. It is involved in several steps of the replication cycle and acts as a nucleic acid chaperone protein in facilitating nucleic acid strand transfers occurring during reverse transcription. Recent analysis of three-dimensional structures of NC-nucleic acids complexes established a new property: the unpaired guanines targeted by NC are more often inserted in the C-terminal zinc finger (ZF2) than in the N-terminal zinc finger (ZF1). Although previous NMR dynamic studies were performed with NC, the dynamic behavior of the linker residues connecting the two ZF domains remains unclear. This prompted us to investigate the dynamic behavior of the linker residues. Here, we collected 15N NMR relaxation data and used for the first time data at several fields to probe the protein dynamics. The analysis at two fields allows us to detect a slow motion occurring between the two domains around a hinge located in the linker at the G35 position. However, the amplitude of motion appears limited in our conditions. In addition, we showed that the neighboring linker residues R29, A30, P31, R32, K33 displayed restricted motion and numerous contacts with residues of ZF1. Our results are fully consistent with a model in which the ZF1-linker contacts prevent the ZF1 domain to interact with unpaired guanines, whereas the ZF2 domain is more accessible and competent to interact with unpaired guanines. In contrast, ZF1 with its large hydrophobic plateau is able to destabilize the double-stranded regions adjacent to the guanines bound by ZF2. The linker residues and the internal dynamics of NC regulate therefore the different functions of the two zinc fingers that are required for an optimal chaperone activity.

  16. Dynamics of Linker Residues Modulate the Nucleic Acid Binding Properties of the HIV-1 Nucleocapsid Protein Zinc Fingers

    PubMed Central

    Zargarian, Loussiné; Tisné, Carine; Barraud, Pierre; Xu, Xiaoqian; Morellet, Nelly; René, Brigitte; Mély, Yves; Fossé, Philippe; Mauffret, Olivier

    2014-01-01

    The HIV-1 nucleocapsid protein (NC) is a small basic protein containing two zinc fingers (ZF) separated by a short linker. It is involved in several steps of the replication cycle and acts as a nucleic acid chaperone protein in facilitating nucleic acid strand transfers occurring during reverse transcription. Recent analysis of three-dimensional structures of NC-nucleic acids complexes established a new property: the unpaired guanines targeted by NC are more often inserted in the C-terminal zinc finger (ZF2) than in the N-terminal zinc finger (ZF1). Although previous NMR dynamic studies were performed with NC, the dynamic behavior of the linker residues connecting the two ZF domains remains unclear. This prompted us to investigate the dynamic behavior of the linker residues. Here, we collected 15N NMR relaxation data and used for the first time data at several fields to probe the protein dynamics. The analysis at two fields allows us to detect a slow motion occurring between the two domains around a hinge located in the linker at the G35 position. However, the amplitude of motion appears limited in our conditions. In addition, we showed that the neighboring linker residues R29, A30, P31, R32, K33 displayed restricted motion and numerous contacts with residues of ZF1. Our results are fully consistent with a model in which the ZF1-linker contacts prevent the ZF1 domain to interact with unpaired guanines, whereas the ZF2 domain is more accessible and competent to interact with unpaired guanines. In contrast, ZF1 with its large hydrophobic plateau is able to destabilize the double-stranded regions adjacent to the guanines bound by ZF2. The linker residues and the internal dynamics of NC regulate therefore the different functions of the two zinc fingers that are required for an optimal chaperone activity. PMID:25029439

  17. Impact of linker engineering on the catalytic activity of metal–organic frameworks containing Pd(II)–bipyridine complexes

    DOE PAGES

    Li, Xinle; Van Zeeland, Ryan; Maligal-Ganesh, Raghu V.; ...

    2016-08-09

    A series of mixed-linker bipyridyl metal–organic framework (MOF)-supported palladium(II) catalysts were used to elucidate the electronic and steric effects of linker substitution on the activity of these catalysts in the context of Suzuki–Miyaura cross-coupling reactions. m-6,6'-Me 2bpy-MOF-PdCl 2 exhibited 110- and 496-fold enhancements in activity compared to nonfunctionalized m-bpy-MOF-PdCl 2 and m-4,4'-Me 2bpy-MOF-PdCl 2, respectively. Furthermore, this result clearly demonstrates that the stereoelectronic properties of metal-binding linker units are critical to the activity of single-site organometallic catalysts in MOFs and highlights the importance of linker engineering in the design and development of efficient MOF catalysts.

  18. Reassembly and co-crystallization of a family 9 processive endoglucanase from its component parts: structural and functional significance of the intermodular linker

    PubMed Central

    Petkun, Svetlana; Rozman Grinberg, Inna; Lamed, Raphael; Jindou, Sadanari; Burstein, Tal; Yaniv, Oren; Shoham, Yuval; Shimon, Linda J.W.; Frolow, Felix

    2015-01-01

    Non-cellulosomal processive endoglucanase 9I (Cel9I) from Clostridium thermocellum is a modular protein, consisting of a family-9 glycoside hydrolase (GH9) catalytic module and two family-3 carbohydrate-binding modules (CBM3c and CBM3b), separated by linker regions. GH9 does not show cellulase activity when expressed without CBM3c and CBM3b and the presence of the CBM3c was previously shown to be essential for endoglucanase activity. Physical reassociation of independently expressed GH9 and CBM3c modules (containing linker sequences) restored 60–70% of the intact Cel9I endocellulase activity. However, the mechanism responsible for recovery of activity remained unclear. In this work we independently expressed recombinant GH9 and CBM3c with and without their interconnecting linker in Escherichia coli. We crystallized and determined the molecular structure of the GH9/linker-CBM3c heterodimer at a resolution of 1.68 Å to understand the functional and structural importance of the mutual spatial orientation of the modules and the role of the interconnecting linker during their re-association. Enzyme activity assays and isothermal titration calorimetry were performed to study and compare the effect of the linker on the re-association. The results indicated that reassembly of the modules could also occur without the linker, albeit with only very low recovery of endoglucanase activity. We propose that the linker regions in the GH9/CBM3c endoglucanases are important for spatial organization and fixation of the modules into functional enzymes. PMID:26401442

  19. Eviction of linker histone H1 by NAP-family histone chaperones enhances activated transcription.

    PubMed

    Zhang, Qian; Giebler, Holli A; Isaacson, Marisa K; Nyborg, Jennifer K

    2015-01-01

    In the Metazoan nucleus, core histones assemble the genomic DNA to form nucleosome arrays, which are further compacted into dense chromatin structures by the linker histone H1. The extraordinary density of chromatin creates an obstacle for accessing the genetic information. Regulation of chromatin dynamics is therefore critical to cellular homeostasis, and histone chaperones serve as prominent players in these processes. In the current study, we examined the role of specific histone chaperones in negotiating the inherently repressive chromatin structure during transcriptional activation. Using a model promoter, we demonstrate that the human nucleosome assembly protein family members hNap1 and SET/Taf1β stimulate transcription in vitro during pre-initiation complex formation, prior to elongation. This stimulatory effect is dependent upon the presence of activators, p300, and Acetyl-CoA. We show that transcription from our chromatin template is strongly repressed by H1, and that both histone chaperones enhance RNA synthesis by overcoming H1-induced repression. Importantly, both hNap1 and SET/Taf1β directly bind H1, and function to enhance transcription by evicting the linker histone from chromatin reconstituted with H1. In vivo studies demonstrate that SET/Taf1β, but not hNap1, strongly stimulates activated transcription from the chromosomally-integrated model promoter, consistent with the observation that SET/Taf1β is nuclear, whereas hNap1 is primarily cytoplasmic. Together, these observations indicate that SET/Taf1β may serve as a critical regulator of H1 dynamics and gene activation in vivo. These studies uncover a novel function for SET that mechanistically couples transcriptional derepression with H1 dynamics. Furthermore, they underscore the significance of chaperone-dependent H1 displacement as an essential early step in the transition of a promoter from a dense chromatin state into one that is permissive to transcription factor binding and robust activation.

  20. Cellulase Linkers Are Optimized Based on Domain Type and Function: Insights from Sequence Analysis, Biophysical Measurements, and Molecular Simulation

    PubMed Central

    Sammond, Deanne W.; Payne, Christina M.; Brunecky, Roman; Himmel, Michael E.; Crowley, Michael F.; Beckham, Gregg T.

    2012-01-01

    Cellulase enzymes deconstruct cellulose to glucose, and are often comprised of glycosylated linkers connecting glycoside hydrolases (GHs) to carbohydrate-binding modules (CBMs). Although linker modifications can alter cellulase activity, the functional role of linkers beyond domain connectivity remains unknown. Here we investigate cellulase linkers connecting GH Family 6 or 7 catalytic domains to Family 1 or 2 CBMs, from both bacterial and eukaryotic cellulases to identify conserved characteristics potentially related to function. Sequence analysis suggests that the linker lengths between structured domains are optimized based on the GH domain and CBM type, such that linker length may be important for activity. Longer linkers are observed in eukaryotic GH Family 6 cellulases compared to GH Family 7 cellulases. Bacterial GH Family 6 cellulases are found with structured domains in either N to C terminal order, and similar linker lengths suggest there is no effect of domain order on length. O-glycosylation is uniformly distributed across linkers, suggesting that glycans are required along entire linker lengths for proteolysis protection and, as suggested by simulation, for extension. Sequence comparisons show that proline content for bacterial linkers is more than double that observed in eukaryotic linkers, but with fewer putative O-glycan sites, suggesting alternative methods for extension. Conversely, near linker termini where linkers connect to structured domains, O-glycosylation sites are observed less frequently, whereas glycines are more prevalent, suggesting the need for flexibility to achieve proper domain orientations. Putative N-glycosylation sites are quite rare in cellulase linkers, while an N-P motif, which strongly disfavors the attachment of N-glycans, is commonly observed. These results suggest that linkers exhibit features that are likely tailored for optimal function, despite possessing low sequence identity. This study suggests that cellulase linkers may exhibit function in enzyme action, and highlights the need for additional studies to elucidate cellulase linker functions. PMID:23139804

  1. Smad2 and Smad3 phosphorylated at both linker and COOH-terminal regions transmit malignant TGF-beta signal in later stages of human colorectal cancer.

    PubMed

    Matsuzaki, Koichi; Kitano, Chiaki; Murata, Miki; Sekimoto, Go; Yoshida, Katsunori; Uemura, Yoshiko; Seki, Toshihito; Taketani, Shigeru; Fujisawa, Jun-ichi; Okazaki, Kazuichi

    2009-07-01

    Transforming growth factor (TGF)-beta initially inhibits growth of mature epithelial cells. Later, however, autocrine TGF-beta signaling acts in concert with the Ras pathway to induce a proliferative and invasive phenotype. TGF-beta activates not only TGF-beta type I receptor (TbetaRI) but also Ras-associated kinases, which differentially phosphorylate the mediators Smad2 and Smad3 to create distinct phosphorylated forms: COOH-terminally phosphorylated Smad2/3 (pSmad2C and pSmad3C) and both linker and COOH-terminally phosphorylated Smad2/3 (pSmad2L/C and pSmad3L/C). In this study, we investigated actions of pSmad2L/C and pSmad3L/C in cancer progression. TGF-beta inhibited cell growth by down-regulating c-Myc oncoprotein through the pSmad2C and pSmad3C pathway; TGF-beta signaling, in turn, enhanced cell growth by up-regulating c-Myc through the cyclin-dependent kinase (CDK) 4-dependent pSmad2L/C and pSmad3L/C pathways in cell nuclei. Alternatively, TbetaRI and c-Jun NH2-terminal kinase (JNK) together created cytoplasmic pSmad2L/C, which entered the nucleus and stimulated cell invasion, partly by up-regulating matrix metalloproteinase-9. In 20 clinical samples, pSmad2L/C and pSmad3L/C showed nuclear localization at invasion fronts of all TGF-beta-producing human metastatic colorectal cancers. In vitro kinase assay confirmed that nuclear CDK4 and cytoplasmic JNK obtained from the tumor tissue could phosphorylate Smad2 or Smad3 at their linker regions. We suggest that CDK4, together with JNK, alters tumor-suppressive TGF-beta signaling to malignant characteristics in later stages of human colorectal cancer. The linker phosphorylation of Smad2 and Smad3 may represent a target for intervention in human metastatic cancer.

  2. Human Protein-disulfide Isomerase Is a Redox-regulated Chaperone Activated by Oxidation of Domain a′*

    PubMed Central

    Wang, Chao; Yu, Jiang; Huo, Lin; Wang, Lei; Feng, Wei; Wang, Chih-chen

    2012-01-01

    Protein-disulfide isomerase (PDI), with domains arranged as abb′xa′c, is a key enzyme and chaperone localized in the endoplasmic reticulum (ER) catalyzing oxidative folding and preventing misfolding/aggregation of proteins. It has been controversial whether the chaperone activity of PDI is redox-regulated, and the molecular basis is unclear. Here, we show that both the chaperone activity and the overall conformation of human PDI are redox-regulated. We further demonstrate that the conformational changes are triggered by the active site of domain a′, and the minimum redox-regulated cassette is located in b′xa′. The structure of the reduced bb′xa′ reveals for the first time that domain a′ packs tightly with both domain b′ and linker x to form one compact structural module. Oxidation of domain a′ releases the compact conformation and exposes the shielded hydrophobic areas to facilitate its high chaperone activity. Thus, the study unequivocally provides mechanistic insights into the redox-regulated chaperone activity of human PDI. PMID:22090031

  3. CryoEM structure of a prokaryotic cyclic nucleotide-gated ion channel

    PubMed Central

    James, Zachary M.; Borst, Andrew J.; Haitin, Yoni; Frenz, Brandon; DiMaio, Frank; Zagotta, William N.; Veesler, David

    2017-01-01

    Cyclic nucleotide-gated (CNG) and hyperpolarization-activated cyclic nucleotide-regulated (HCN) ion channels play crucial physiological roles in phototransduction, olfaction, and cardiac pace making. These channels are characterized by the presence of a carboxyl-terminal cyclic nucleotide-binding domain (CNBD) that connects to the channel pore via a C-linker domain. Although cyclic nucleotide binding has been shown to promote CNG and HCN channel opening, the precise mechanism underlying gating remains poorly understood. Here we used cryoEM to determine the structure of the intact LliK CNG channel isolated from Leptospira licerasiae—which shares sequence similarity to eukaryotic CNG and HCN channels—in the presence of a saturating concentration of cAMP. A short S4–S5 linker connects nearby voltage-sensing and pore domains to produce a non–domain-swapped transmembrane architecture, which appears to be a hallmark of this channel family. We also observe major conformational changes of the LliK C-linkers and CNBDs relative to the crystal structures of isolated C-linker/CNBD fragments and the cryoEM structures of related CNG, HCN, and KCNH channels. The conformation of our LliK structure may represent a functional state of this channel family not captured in previous studies. PMID:28396445

  4. Light-regulated synthesis of cyclic-di-GMP by a bidomain construct of the cyanobacteriochrome Tlr0924 (SesA) without stable dimerization

    DOE PAGES

    Blain-Hartung, Matthew D.; Rockwell, Nathan Clarke; Lagarias, J. Clark

    2017-10-26

    Here, phytochromes and cyanobacteriochromes (CBCRs) use double bond photoisomerization of their linear tetrapyrrole (bilin) chromophores within cGMP-specific phosphodiesterases/Adenylyl cyclases/FhlA (GAF) domain-containing photosensory modules to regulate activity of C-terminal output domains. CBCRs exhibit much more diverse photocycles than phytochromes, and are often found in large modular proteins such as Tlr0924 (SesA), one of three blue light regulators of cell aggregation in the cyanobacterium Thermosynechococcus elongatus. Tlr0924 contains a single bilin-binding GAF domain adjacent to a C-terminal diguanylate cyclase (GGDEF) domain whose catalytic activity requires formation of a dimeric transition state presumably supported by a multi-domain extension at its N-terminus. To probemore » the structural basis of light-mediated signal propagation from the photosensory input domain to a signaling output domain for a representative CBCR, these studies explore the properties of a bidomain GAF-GGDEF construct of Tlr0924 (Tlr0924Δ) that retains light-regulated diguanylate cyclase activity. Surprisingly, CD spectroscopy and size exclusion chromatography data do not support formation of stable dimers in the either the blue-absorbing 15ZP b dark state or the green-absorbing 15EP g photoproduct state of Tlr0924Δ. Analysis of variants containing site-specific mutations reveals that proper signal transmission requires both chromophorylation of the GAF domain and individual residues within the amphipathic linker region between GAF and GGDEF domains. Based on these data, we propose a model in which bilin binding and light signals are propagated from the GAF domain via the linker region to alter the equilibrium and interconversion dynamics between active and inactive conformations of the GGDEF domain to favor or disfavor formation of catalytic competent dimers.« less

  5. Light-regulated synthesis of cyclic-di-GMP by a bidomain construct of the cyanobacteriochrome Tlr0924 (SesA) without stable dimerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blain-Hartung, Matthew D.; Rockwell, Nathan Clarke; Lagarias, J. Clark

    Here, phytochromes and cyanobacteriochromes (CBCRs) use double bond photoisomerization of their linear tetrapyrrole (bilin) chromophores within cGMP-specific phosphodiesterases/Adenylyl cyclases/FhlA (GAF) domain-containing photosensory modules to regulate activity of C-terminal output domains. CBCRs exhibit much more diverse photocycles than phytochromes, and are often found in large modular proteins such as Tlr0924 (SesA), one of three blue light regulators of cell aggregation in the cyanobacterium Thermosynechococcus elongatus. Tlr0924 contains a single bilin-binding GAF domain adjacent to a C-terminal diguanylate cyclase (GGDEF) domain whose catalytic activity requires formation of a dimeric transition state presumably supported by a multi-domain extension at its N-terminus. To probemore » the structural basis of light-mediated signal propagation from the photosensory input domain to a signaling output domain for a representative CBCR, these studies explore the properties of a bidomain GAF-GGDEF construct of Tlr0924 (Tlr0924Δ) that retains light-regulated diguanylate cyclase activity. Surprisingly, CD spectroscopy and size exclusion chromatography data do not support formation of stable dimers in the either the blue-absorbing 15ZP b dark state or the green-absorbing 15EP g photoproduct state of Tlr0924Δ. Analysis of variants containing site-specific mutations reveals that proper signal transmission requires both chromophorylation of the GAF domain and individual residues within the amphipathic linker region between GAF and GGDEF domains. Based on these data, we propose a model in which bilin binding and light signals are propagated from the GAF domain via the linker region to alter the equilibrium and interconversion dynamics between active and inactive conformations of the GGDEF domain to favor or disfavor formation of catalytic competent dimers.« less

  6. Structural insights into the recognition of the internal A-rich linker from OxyS sRNA by Escherichia coli Hfq

    PubMed Central

    Wang, Lijun; Wang, Weiwei; Li, Fudong; Zhang, Jiahai; Wu, Jihui; Gong, Qingguo; Shi, Yunyu

    2015-01-01

    Small RNA OxyS is induced during oxidative stress in Escherichia coli and it is an Hfq-dependent negative regulator of mRNA translation. OxyS represses the translation of fhlA and rpoS mRNA, which encode the transcriptional activator and σs subunit of RNA polymerase, respectively. However, little is known regarding how Hfq, an RNA chaperone, interacts with OxyS at the atomic level. Here, using fluorescence polarization and tryptophan fluorescence quenching assays, we verified that the A-rich linker region of OxyS sRNA binds Hfq at its distal side. We also report two crystal structures of Hfq in complex with A-rich RNA fragments from this linker region. Both of these RNA fragments bind to the distal side of Hfq and adopt a different conformation compared with those previously reported for the (A-R-N)n tripartite recognition motif. Furthermore, using fluorescence polarization, electrophoresis mobility shift assays and in vivo translation assays, we found that an Hfq mutant, N48A, increases the binding affinity of OxyS for Hfq in vitro but is defective in the negative regulation of fhlA translation in vivo, suggesting that the normal function of OxyS depends on the details of the interaction with Hfq that may be related to the rapid recycling of Hfq in the cell. PMID:25670676

  7. Designed inhibitors with hetero linkers for gastric proton pump H+,K+-ATPase: Steered molecular dynamics and metadynamics studies.

    PubMed

    Jana, Kalyanashis; Bandyopadhyay, Tusar; Ganguly, Bishwajit

    2017-11-01

    Acid suppressant SCH28080 and its derivatives reversibly reduce acid secretion activity of the H + ,K + -ATPase in a K + competitive manner. The results on homologation of the SCH28080 by varying the linker chain length suggested the improvement in efficacy. However, the pharmacokinetic studies reveal that the hydrophobic nature of the CH 2 linker units may not help it to function as a better acid suppressant. We have exploited the role of linker unit to enhance the efficacy of such reversible acid suppressant drug molecules using hetero linker, i.e., disulfide and peroxy linkers. The logarithm of partition coefficient defined for a drug molecule relates to the partition coefficient, which allows the optimum solubility characteristics to reach the active site. The logarithm of partition coefficient calculated for the designed inhibitors suggests that inhibitors would possibly reach the active site in sufficient concentration like in the case of SCH28080. The steered molecular dynamics studies have revealed that the Inhibitor-1 with disulfide linker unit is more stable at the active site due to greater noncovalent interactions compared to the SCH28080. Centre of mass distance analysis suggests that the Cysteine-813 amino acid residue selectively plays an important role in the inhibition of H + ,K + -ATPase for Inhibitor-1. Furthermore, the quantum chemical calculations with M11L/6-31+G(d,p) level of theory have been performed to account the noncovalent interactions responsible for the stabilization of inhibitor molecules in the active site gorge of the gastric proton pump at different time scale. The hydrogen bonding and hydrophobic interaction studies corroborate the center of mass distance analysis as well. Well-tempered metadynamics free energy surface and center of mass separation analysis for the Inhibitor-1 is in good agreement with the steered molecular dynamics results. The torsional angle of the linker units seems to be crucial for better efficacy of drug molecules. The torsional angle of linker units of SCH28080 (COCH 2 C) and of Inhibitor 1 (CSSC) prefers to lie within ∼60°-90° for a longer time during the simulations, whereas, the peroxy linker (COOC) of Inhibitor 2 prefers to adopt ∼120-160°. Therefore, it appears that the smaller torsion angle of linker units can achieve better interactions with the active site residues of H + ,K + -ATPase to inhibit the acid secretion activity. The reversible drug molecules with disulfide linker unit would be a promising candidate as proton pump antagonist to H + ,K + -ATPase. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. A histone-mimicking interdomain linker in a multidomain protein modulates multivalent histone binding

    PubMed Central

    Kostrhon, Sebastian; Kontaxis, Georg; Kaufmann, Tanja; Schirghuber, Erika; Kubicek, Stefan; Konrat, Robert

    2017-01-01

    N-terminal histone tails are subject to many posttranslational modifications that are recognized by and interact with designated reader domains in histone-binding proteins. BROMO domain adjacent to zinc finger 2B (BAZ2B) is a multidomain histone-binding protein that contains two histone reader modules, a plant homeodomain (PHD) and a bromodomain (BRD), linked by a largely disordered linker. Although previous studies have reported specificity of the PHD domain for the unmodified N terminus of histone H3 and of the BRD domain for H3 acetylated at Lys14 (H3K14ac), the exact mode of H3 binding by BAZ2B and its regulation are underexplored. Here, using isothermal titration calorimetry and NMR spectroscopy, we report that acidic residues in the BAZ2B PHD domain are essential for H3 binding and that BAZ2B PHD–BRD establishes a polyvalent interaction with H3K14ac. Furthermore, we provide evidence that the disordered interdomain linker modulates the histone-binding affinity by interacting with the PHD domain. In particular, lysine-rich stretches in the linker, which resemble the positively charged N terminus of histone H3, reduce the binding affinity of the PHD finger toward the histone substrate. Phosphorylation, acetylation, or poly(ADP-ribosyl)ation of the linker residues may therefore act as a cellular mechanism to transiently tune BAZ2B histone-binding affinity. Our findings further support the concept of interdomain linkers serving a dual role in substrate binding by appropriately positioning the adjacent domains and by electrostatically modulating substrate binding. Moreover, inhibition of histone binding by a histone-mimicking interdomain linker represents another example of regulation of protein–protein interactions by intramolecular mimicry. PMID:28864776

  9. Growth differentiation factor 9 signaling requires ERK1/2 activity in mouse granulosa and cumulus cells.

    PubMed

    Sasseville, Maxime; Ritter, Lesley J; Nguyen, Thao M; Liu, Fang; Mottershead, David G; Russell, Darryl L; Gilchrist, Robert B

    2010-09-15

    Ovarian folliculogenesis is driven by the combined action of endocrine cues and paracrine factors. The oocyte secretes powerful mitogens, such as growth differentiation factor 9 (GDF9), that regulate granulosa cell proliferation, metabolism, steroidogenesis and differentiation. This study investigated the role of the epidermal growth factor receptor (EGFR)-extracellular signal-regulated kinase 1 and 2 (ERK1/2; also known as MAPK3/1) signaling pathway on GDF9 action on granulosa cells. Results show that mitogenic action of the oocyte is prevented by pharmacological inhibition of the EGFR-ERK1/2 pathway. Importantly, EGFR-ERK1/2 activity as well as rous sarcoma oncogene family kinases (SFK) are required for signaling through SMADs, mediating GDF9, activin A and TGFbeta1 mitogenic action in granulosa cells. GDF9 could not activate ERK1/2 or affect EGF-stimulated ERK1/2 in granulosa cells. However, induction of the SMAD3-specific CAGA reporter by GDF9 in granulosa cells required active EGFR, SFKs and ERK1/2 as did GDF9-responsive gene expression. Finally, the EGFR-SFKs-ERK1/2 pathway was shown to be required for the maintenance of phosphorylation of the SMAD3 linker region. Together our results suggest that receptivity of granulosa cells to oocyte-secreted factors, including GDF9, is regulated by the level of activation of the EGFR and resulting ERK1/2 activity, through the requisite permissive phosphorylation of SMAD3 in the linker region. Our results indicate that oocyte-secreted TGFbeta-like ligands and EGFR-ERK1/2 signaling are cooperatively required for the unique granulosa cell response to the signal from oocytes mediating granulosa cell survival and proliferation and hence the promotion of follicle growth and ovulation.

  10. Architecture of the Yeast RNA Polymerase II Open Complex and Regulation of Activity by TFIIF

    PubMed Central

    Fishburn, James

    2012-01-01

    To investigate the function and architecture of the open complex state of RNA polymerase II (Pol II), Saccharomyces cerevisiae minimal open complexes were assembled by using a series of heteroduplex HIS4 promoters, TATA binding protein (TBP), TFIIB, and Pol II. The yeast system demonstrates great flexibility in the position of active open complexes, spanning 30 to 80 bp downstream from TATA, consistent with the transcription start site scanning behavior of yeast Pol II. TFIIF unexpectedly modulates the activity of the open complexes, either repressing or stimulating initiation. The response to TFIIF was dependent on the sequence of the template strand within the single-stranded bubble. Mutations in the TFIIB reader and linker region, which were inactive on duplex DNA, were suppressed by the heteroduplex templates, showing that a major function of the TFIIB reader and linker is in the initiation or stabilization of single-stranded DNA. Probing of the architecture of the minimal open complexes with TFIIB-FeBABE [TFIIB–p-bromoacetamidobenzyl–EDTA-iron(III)] derivatives showed that the TFIIB core domain is surprisingly positioned away from Pol II, and the addition of TFIIF repositions the TFIIB core domain to the Pol II wall domain. Together, our results show an unexpected architecture of minimal open complexes and the regulation of activity by TFIIF and the TFIIB core domain. PMID:22025674

  11. T cell receptor for antigen induces linker for activation of T cell–dependent activation of a negative signaling complex involving Dok-2, SHIP-1, and Grb-2

    PubMed Central

    Dong, Shen; Corre, Béatrice; Foulon, Eliane; Dufour, Evelyne; Veillette, André; Acuto, Oreste; Michel, Frédérique

    2006-01-01

    Adaptor proteins positively or negatively regulate the T cell receptor for antigen (TCR) signaling cascade. We report that after TCR stimulation, the inhibitory adaptor downstream of kinase (Dok)-2 and its homologue Dok-1 are involved in a multimolecular complex including the lipid phosphatase Src homology 2 domain–containing inositol polyphosphate 5′-phosphatase (SHIP)-1 and Grb-2 which interacts with the membrane signaling scaffold linker for activation of T cells (LAT). Knockdown of LAT and SHIP-1 expression indicated that SHIP-1 favored recruitment of Dok-2 to LAT. Knockdown of Dok-2 and Dok-1 revealed their negative control on Akt and, unexpectedly, on Zap-70 activation. Our findings support the view that Dok-1 and -2 are critical elements of a LAT-dependent negative feedback loop that attenuates early TCR signal. Dok-1 and -2 may therefore exert a critical role in shaping the immune response and as gatekeepers for T cell tolerance. PMID:17043143

  12. Linker histone partial phosphorylation: effects on secondary structure and chromatin condensation

    PubMed Central

    Lopez, Rita; Sarg, Bettina; Lindner, Herbert; Bartolomé, Salvador; Ponte, Inma; Suau, Pedro; Roque, Alicia

    2015-01-01

    Linker histones are involved in chromatin higher-order structure and gene regulation. We have successfully achieved partial phosphorylation of linker histones in chicken erythrocyte soluble chromatin with CDK2, as indicated by HPCE, MALDI-TOF and Tandem MS. We have studied the effects of linker histone partial phosphorylation on secondary structure and chromatin condensation. Infrared spectroscopy analysis showed a gradual increase of β-structure in the phosphorylated samples, concomitant to a decrease in α-helix/turns, with increasing linker histone phosphorylation. This conformational change could act as the first step in the phosphorylation-induced effects on chromatin condensation. A decrease of the sedimentation rate through sucrose gradients of the phosphorylated samples was observed, indicating a global relaxation of the 30-nm fiber following linker histone phosphorylation. Analysis of specific genes, combining nuclease digestion and qPCR, showed that phosphorylated samples were more accessible than unphosphorylated samples, suggesting local chromatin relaxation. Chromatin aggregation was induced by MgCl2 and analyzed by dynamic light scattering (DLS). Phosphorylated chromatin had lower percentages in volume of aggregated molecules and the aggregates had smaller hydrodynamic diameter than unphosphorylated chromatin, indicating that linker histone phosphorylation impaired chromatin aggregation. These findings provide new insights into the effects of linker histone phosphorylation in chromatin condensation. PMID:25870416

  13. Expression of the Grb2-related protein of the lymphoid system in B cell subsets enhances B cell antigen receptor signaling through mitogen-activated protein kinase pathways.

    PubMed

    Yankee, Thomas M; Solow, Sasha A; Draves, Kevin D; Clark, Edward A

    2003-01-01

    Adapter proteins play a critical role in regulating signals triggered by Ag receptor cross-linking. These small molecules link receptor proximal events with downstream signaling pathways. In this study, we explore the expression and function of the Grb2-related protein of the lymphoid system (GrpL)/Grb2-related adaptor downstream of Shc adapter protein in human B cells. GrpL is expressed in naive B cells and is down-regulated following B cell Ag receptor ligation. By contrast, germinal center and memory B cells express little or no GrpL. Using human B cell lines, we detected constitutive interactions between GrpL and B cell linker protein, Src homology (SH)2 domain-containing leukocyte protein of 76 kDa, hemopoietic progenitor kinase 1, and c-Cbl. The N-terminal SH3 domain of GrpL binds c-Cbl while the C-terminal SH3 domain binds B cell linker protein and SH2 domain-containing leukocyte protein of 76 kDa. Exogenous expression of GrpL in a GrpL-negative B cell line leads to enhanced Ag receptor-induced extracellular signal-related kinase and p38 mitogen-activated protein kinase phosphorylation. Thus, GrpL expression in human B cell subsets appears to regulate Ag receptor-mediated signaling events.

  14. Specific electrostatic interactions between charged amino acid residues regulate binding of von Willebrand factor to blood platelets.

    PubMed

    Interlandi, Gianluca; Yakovenko, Olga; Tu, An-Yue; Harris, Jeff; Le, Jennie; Chen, Junmei; López, José A; Thomas, Wendy E

    2017-11-10

    The plasma protein von Willebrand factor (VWF) is essential for hemostasis initiation at sites of vascular injury. The platelet-binding A1 domain of VWF is connected to the VWF N-terminally located D'D3 domain through a relatively unstructured amino acid sequence, called here the N-terminal linker. This region has previously been shown to inhibit the binding of VWF to the platelet surface receptor glycoprotein Ibα (GpIbα). However, the molecular mechanism underlying the inhibitory function of the N-terminal linker has not been elucidated. Here, we show that an aspartate at position 1261 is the most critical residue of the N-terminal linker for inhibiting binding of the VWF A1 domain to GpIbα on platelets in blood flow. Through a combination of molecular dynamics simulations, mutagenesis, and A1-GpIbα binding experiments, we identified a network of salt bridges between Asp 1261 and the rest of A1 that lock the N-terminal linker in place such that it reduces binding to GpIbα. Mutations aimed at disrupting any of these salt bridges activated binding unless the mutated residue also formed a salt bridge with GpIbα, in which case the mutations inhibited the binding. These results show that interactions between charged amino acid residues are important both to directly stabilize the A1-GpIbα complex and to indirectly destabilize the complex through the N-terminal linker. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. The SH2 domain of Abl kinases regulates kinase autophosphorylation by controlling activation loop accessibility.

    PubMed

    Lamontanara, Allan Joaquim; Georgeon, Sandrine; Tria, Giancarlo; Svergun, Dmitri I; Hantschel, Oliver

    2014-11-17

    The activity of protein kinases is regulated by multiple molecular mechanisms, and their disruption is a common driver of oncogenesis. A central and almost universal control element of protein kinase activity is the activation loop that utilizes both conformation and phosphorylation status to determine substrate access. In this study, we use recombinant Abl tyrosine kinases and conformation-specific kinase inhibitors to quantitatively analyse structural changes that occur after Abl activation. Allosteric SH2-kinase domain interactions were previously shown to be essential for the leukemogenesis caused by the Bcr-Abl oncoprotein. We find that these allosteric interactions switch the Abl activation loop from a closed to a fully open conformation. This enables the trans-autophosphorylation of the activation loop and requires prior phosphorylation of the SH2-kinase linker. Disruption of the SH2-kinase interaction abolishes activation loop phosphorylation. Our analysis provides a molecular mechanism for the SH2 domain-dependent activation of Abl that may also regulate other tyrosine kinases.

  16. The SH2 domain of Abl kinases regulates kinase autophosphorylation by controlling activation loop accessibility

    NASA Astrophysics Data System (ADS)

    Lamontanara, Allan Joaquim; Georgeon, Sandrine; Tria, Giancarlo; Svergun, Dmitri I.; Hantschel, Oliver

    2014-11-01

    The activity of protein kinases is regulated by multiple molecular mechanisms, and their disruption is a common driver of oncogenesis. A central and almost universal control element of protein kinase activity is the activation loop that utilizes both conformation and phosphorylation status to determine substrate access. In this study, we use recombinant Abl tyrosine kinases and conformation-specific kinase inhibitors to quantitatively analyse structural changes that occur after Abl activation. Allosteric SH2-kinase domain interactions were previously shown to be essential for the leukemogenesis caused by the Bcr-Abl oncoprotein. We find that these allosteric interactions switch the Abl activation loop from a closed to a fully open conformation. This enables the trans-autophosphorylation of the activation loop and requires prior phosphorylation of the SH2-kinase linker. Disruption of the SH2-kinase interaction abolishes activation loop phosphorylation. Our analysis provides a molecular mechanism for the SH2 domain-dependent activation of Abl that may also regulate other tyrosine kinases.

  17. Into the linker's DENN: A tyrosine's control of autophagy.

    PubMed

    Caplan, Steve

    2017-04-28

    The small GTP-binding protein Rab12 plays an important role in the initiation of starvation-induced macroautophagy (autophagy) and is activated by the guanine-nucleotide exchange factor DENND3. However, the molecular mechanism by which DENND3 becomes activated has remained elusive. Xu and McPherson now identify a novel mechanism of DENND3 intramolecular binding that is regulated by the phosphorylation of a single tyrosine residue. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Role of the S4-S5 linker in CNG channel activation.

    PubMed

    Kusch, Jana; Zimmer, Thomas; Holschuh, Jascha; Biskup, Christoph; Schulz, Eckhard; Nache, Vasilica; Benndorf, Klaus

    2010-10-20

    Cyclic nucleotide-gated (CNG) channels mediate sensory signal transduction in retinal and olfactory cells. The channels are activated by the binding of cyclic nucleotides to a cyclic nucleotide-binding domain (CNBD) in the C-terminus that is located at the intracellular side. The molecular events translating the ligand binding to the pore opening are still unknown. We investigated the role of the S4-S5 linker in the activation process by quantifying its interaction with other intracellular regions. To this end, we constructed chimeric channels in which the N-terminus, the S4-S5 linker, the C-linker, and the CNBD of the retinal CNGA1 subunit were systematically replaced by the respective regions of the olfactory CNGA2 subunit. Macroscopic concentration-response relations were analyzed, yielding the apparent affinity to cGMP and the Hill coefficient. The degree of functional coupling of intracellular regions in the activation gating was determined by thermodynamic double-mutant cycle analysis. We observed that all four intracellular regions, including the relatively short S4-S5 linker, are involved in controlling the apparent affinity of the channel to cGMP and, moreover, in determining the degree of cooperativity between the subunits, as derived from the Hill coefficient. The interaction energies reveal an interaction of the S4-S5 linker with both the N-terminus and the C-linker, but no interaction with the CNBD. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Preparative two-step purification of recombinant H1.0 linker histone and its domains.

    PubMed

    Ivic, Nives; Bilokapic, Silvija; Halic, Mario

    2017-01-01

    H1 linker histones are small basic proteins that have a key role in the formation and maintenance of higher-order chromatin structures. Additionally, many examples have shown that linker histones play an important role in gene regulation, modulated by their various subtypes and posttranslational modifications. Obtaining high amounts of very pure linker histones, especially for efficient antibody production, remains a demanding and challenging procedure. Here we present an easy and fast method to purify human linker histone H1.0 overexpressed in Escherichia coli, as well as its domains: N-terminal/globular domain and C-terminal intrinsically disordered domain. This purification protocol relies on a simple affinity chromatography step followed by cation exchange due to the highly basic properties of histone proteins. Therefore, this protocol can also be applied to other linker histones. Highly pure proteins in amounts sufficient for most biochemical experiments can be obtained. The functional quality of purified H1.0 histone and its domains has been confirmed by pull-down, gel-mobility shift assays and the nuclear import assay.

  20. Pivotal role of extended linker 2 in the activation of Gα by G protein-coupled receptor.

    PubMed

    Huang, Jianyun; Sun, Yutong; Zhang, J Jillian; Huang, Xin-Yun

    2015-01-02

    G protein-coupled receptors (GPCRs) relay extracellular signals mainly to heterotrimeric G-proteins (Gαβγ) and they are the most successful drug targets. The mechanisms of G-protein activation by GPCRs are not well understood. Previous studies have revealed a signal relay route from a GPCR via the C-terminal α5-helix of Gα to the guanine nucleotide-binding pocket. Recent structural and biophysical studies uncover a role for the opening or rotating of the α-helical domain of Gα during the activation of Gα by a GPCR. Here we show that β-adrenergic receptors activate eight Gαs mutant proteins (from a screen of 66 Gαs mutants) that are unable to bind Gβγ subunits in cells. Five of these eight mutants are in the αF/Linker 2/β2 hinge region (extended Linker 2) that connects the Ras-like GTPase domain and the α-helical domain of Gαs. This extended Linker 2 is the target site of a natural product inhibitor of Gq. Our data show that the extended Linker 2 is critical for Gα activation by GPCRs. We propose that a GPCR via its intracellular loop 2 directly interacts with the β2/β3 loop of Gα to communicate to Linker 2, resulting in the opening and closing of the α-helical domain and the release of GDP during G-protein activation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Differential regulation of Smad3 and of the type II transforming growth factor-β receptor in mitosis: implications for signaling.

    PubMed

    Hirschhorn, Tal; Barizilay, Lior; Smorodinsky, Nechama I; Ehrlich, Marcelo

    2012-01-01

    The response to transforming growth factor-β (TGF-β) depends on cellular context. This context is changed in mitosis through selective inhibition of vesicle trafficking, reduction in cell volume and the activation of mitotic kinases. We hypothesized that these alterations in cell context may induce a differential regulation of Smads and TGF-β receptors. We tested this hypothesis in mesenchymal-like ovarian cancer cells, arrested (or not) in mitosis with 2-methoxyestradiol (2ME2). In mitosis, without TGF-β stimulation, Smad3 was phosphorylated at the C-terminus and linker regions and localized to the mitotic spindle. Phosphorylated Smad3 interacted with the negative regulators of Smad signaling, Smurf2 and Ski, and failed to induce a transcriptional response. Moreover, in cells arrested in mitosis, Smad3 levels were progressively reduced. These phosphorylations and reduction in the levels of Smad3 depended on ERK activation and Mps1 kinase activity, and were abrogated by increasing the volume of cells arrested in mitosis with hypotonic medium. Furthermore, an Mps1-dependent phosphorylation of GFP-Smad3 was also observed upon its over-expression in interphase cells, suggesting a mechanism of negative regulation which counters increases in Smad3 concentration. Arrest in mitosis also induced a block in the clathrin-mediated endocytosis of the type II TGF-β receptor (TβRII). Moreover, following the stimulation of mitotic cells with TGF-β, the proteasome-mediated attenuation of TGF-β receptor activity, the degradation and clearance of TβRII from the plasma membrane, and the clearance of the TGF-β ligand from the medium were compromised, and the C-terminus phosphorylation of Smad3 was prolonged. We propose that the reduction in Smad3 levels, its linker phosphorylation, and its association with negative regulators (observed in mitosis prior to ligand stimulation) represent a signal attenuating mechanism. This mechanism is balanced by the retention of active TGF-β receptors at the plasma membrane. Together, both mechanisms allow for a regulated cellular response to TGF-β stimuli in mitosis.

  2. Differential Regulation of Smad3 and of the Type II Transforming Growth Factor-β Receptor in Mitosis: Implications for Signaling

    PubMed Central

    Hirschhorn, Tal; Barizilay, Lior; Smorodinsky, Nechama I.; Ehrlich, Marcelo

    2012-01-01

    The response to transforming growth factor-β (TGF-β) depends on cellular context. This context is changed in mitosis through selective inhibition of vesicle trafficking, reduction in cell volume and the activation of mitotic kinases. We hypothesized that these alterations in cell context may induce a differential regulation of Smads and TGF-β receptors. We tested this hypothesis in mesenchymal-like ovarian cancer cells, arrested (or not) in mitosis with 2-methoxyestradiol (2ME2). In mitosis, without TGF-β stimulation, Smad3 was phosphorylated at the C-terminus and linker regions and localized to the mitotic spindle. Phosphorylated Smad3 interacted with the negative regulators of Smad signaling, Smurf2 and Ski, and failed to induce a transcriptional response. Moreover, in cells arrested in mitosis, Smad3 levels were progressively reduced. These phosphorylations and reduction in the levels of Smad3 depended on ERK activation and Mps1 kinase activity, and were abrogated by increasing the volume of cells arrested in mitosis with hypotonic medium. Furthermore, an Mps1-dependent phosphorylation of GFP-Smad3 was also observed upon its over-expression in interphase cells, suggesting a mechanism of negative regulation which counters increases in Smad3 concentration. Arrest in mitosis also induced a block in the clathrin-mediated endocytosis of the type II TGF-β receptor (TβRII). Moreover, following the stimulation of mitotic cells with TGF-β, the proteasome-mediated attenuation of TGF-β receptor activity, the degradation and clearance of TβRII from the plasma membrane, and the clearance of the TGF-β ligand from the medium were compromised, and the C-terminus phosphorylation of Smad3 was prolonged. We propose that the reduction in Smad3 levels, its linker phosphorylation, and its association with negative regulators (observed in mitosis prior to ligand stimulation) represent a signal attenuating mechanism. This mechanism is balanced by the retention of active TGF-β receptors at the plasma membrane. Together, both mechanisms allow for a regulated cellular response to TGF-β stimuli in mitosis. PMID:22927969

  3. PTEN Regulates Beta-Catenin in Androgen Signaling: Implication in Prostate Cancer Progression

    DTIC Science & Technology

    2007-03-01

    Smad3 and Smad4 proteins contain a number of functional domains, including MH1, MH2, and the linker region (2). It appears that theMH2 domain is involved...domains or Smad4 linker region. These data demonstrate that the MH2 domains of Smad3 and Smad4 are involved in the interaction with hZimp10. hZimp10...length (FL), MH1 domain (MH1, 1–146 amino acids), linker domain (L, 147–308 amino acids), and MH2 domain (MH2, 309 –553 amino acids) and GST- Smad3 full

  4. Glycosylated linkers in multimodular lignocellulose-degrading enzymes dynamically bind to cellulose

    PubMed Central

    Payne, Christina M.; Resch, Michael G.; Chen, Liqun; Crowley, Michael F.; Himmel, Michael E.; Taylor, Larry E.; Sandgren, Mats; Ståhlberg, Jerry; Stals, Ingeborg; Tan, Zhongping; Beckham, Gregg T.

    2013-01-01

    Plant cell-wall polysaccharides represent a vast source of food in nature. To depolymerize polysaccharides to soluble sugars, many organisms use multifunctional enzyme mixtures consisting of glycoside hydrolases, lytic polysaccharide mono-oxygenases, polysaccharide lyases, and carbohydrate esterases, as well as accessory, redox-active enzymes for lignin depolymerization. Many of these enzymes that degrade lignocellulose are multimodular with carbohydrate-binding modules (CBMs) and catalytic domains connected by flexible, glycosylated linkers. These linkers have long been thought to simply serve as a tether between structured domains or to act in an inchworm-like fashion during catalytic action. To examine linker function, we performed molecular dynamics (MD) simulations of the Trichoderma reesei Family 6 and Family 7 cellobiohydrolases (TrCel6A and TrCel7A, respectively) bound to cellulose. During these simulations, the glycosylated linkers bind directly to cellulose, suggesting a previously unknown role in enzyme action. The prediction from the MD simulations was examined experimentally by measuring the binding affinity of the Cel7A CBM and the natively glycosylated Cel7A CBM-linker. On crystalline cellulose, the glycosylated linker enhances the binding affinity over the CBM alone by an order of magnitude. The MD simulations before and after binding of the linker also suggest that the bound linker may affect enzyme action due to significant damping in the enzyme fluctuations. Together, these results suggest that glycosylated linkers in carbohydrate-active enzymes, which are intrinsically disordered proteins in solution, aid in dynamic binding during the enzymatic deconstruction of plant cell walls. PMID:23959893

  5. Histone H1 and Chromosomal Protein HMGN2 Regulate Prolactin-induced STAT5 Transcription Factor Recruitment and Function in Breast Cancer Cells.

    PubMed

    Schauwecker, Suzanne M; Kim, J Julie; Licht, Jonathan D; Clevenger, Charles V

    2017-02-10

    The hormone prolactin (PRL) contributes to breast cancer pathogenesis through various signaling pathways, one of the most notable being the JAK2/signal transducer and activator of transcription 5 (STAT5) pathway. PRL-induced activation of the transcription factor STAT5 results in the up-regulation of numerous genes implicated in breast cancer pathogenesis. However, the molecular mechanisms that enable STAT5 to access the promoters of these genes are not well understood. Here, we show that PRL signaling induces chromatin decompaction at promoter DNA, corresponding with STAT5 binding. The chromatin-modifying protein high mobility group nucleosomal binding domain 2 (HMGN2) specifically promotes STAT5 accessibility at promoter DNA by facilitating the dissociation of the linker histone H1 in response to PRL. Knockdown of H1 rescues the decrease in PRL-induced transcription following HMGN2 knockdown, and it does so by allowing increased STAT5 recruitment. Moreover, H1 and STAT5 are shown to function antagonistically in regulating PRL-induced transcription as well as breast cancer cell biology. While reduced STAT5 activation results in decreased PRL-induced transcription and cell proliferation, knockdown of H1 rescues both of these effects. Taken together, we elucidate a novel mechanism whereby the linker histone H1 prevents STAT5 binding at promoter DNA, and the PRL-induced dissociation of H1 mediated by HMGN2 is necessary to allow full STAT5 recruitment and promote the biological effects of PRL signaling. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Histone H1 and Chromosomal Protein HMGN2 Regulate Prolactin-induced STAT5 Transcription Factor Recruitment and Function in Breast Cancer Cells*

    PubMed Central

    Schauwecker, Suzanne M.; Kim, J. Julie; Licht, Jonathan D.; Clevenger, Charles V.

    2017-01-01

    The hormone prolactin (PRL) contributes to breast cancer pathogenesis through various signaling pathways, one of the most notable being the JAK2/signal transducer and activator of transcription 5 (STAT5) pathway. PRL-induced activation of the transcription factor STAT5 results in the up-regulation of numerous genes implicated in breast cancer pathogenesis. However, the molecular mechanisms that enable STAT5 to access the promoters of these genes are not well understood. Here, we show that PRL signaling induces chromatin decompaction at promoter DNA, corresponding with STAT5 binding. The chromatin-modifying protein high mobility group nucleosomal binding domain 2 (HMGN2) specifically promotes STAT5 accessibility at promoter DNA by facilitating the dissociation of the linker histone H1 in response to PRL. Knockdown of H1 rescues the decrease in PRL-induced transcription following HMGN2 knockdown, and it does so by allowing increased STAT5 recruitment. Moreover, H1 and STAT5 are shown to function antagonistically in regulating PRL-induced transcription as well as breast cancer cell biology. While reduced STAT5 activation results in decreased PRL-induced transcription and cell proliferation, knockdown of H1 rescues both of these effects. Taken together, we elucidate a novel mechanism whereby the linker histone H1 prevents STAT5 binding at promoter DNA, and the PRL-induced dissociation of H1 mediated by HMGN2 is necessary to allow full STAT5 recruitment and promote the biological effects of PRL signaling. PMID:28035005

  7. Essential role of the flexible linker on the conformational equilibrium of bacterial peroxiredoxin reductase for effective regeneration of peroxiredoxin

    PubMed Central

    Kamariah, Neelagandan; Eisenhaber, Birgit; Eisenhaber, Frank; Grüber, Gerhard

    2017-01-01

    Reactive oxygen species (ROS) can damage DNA, proteins, and lipids, so cells have antioxidant systems that regulate ROS. In many bacteria, a dedicated peroxiredoxin reductase, alkyl hydroperoxide reductase subunit F (AhpF), catalyzes the rapid reduction of the redox-active disulfide center of the antioxidant protein peroxiredoxin (AhpC) to detoxify ROS such as hydrogen peroxide, organic hydroperoxide, and peroxynitrite. AhpF is a flexible multidomain protein that enables a series of electron transfers among the redox centers by accepting reducing equivalents from NADH. A flexible linker connecting the N-terminal domain (NTD) and C-terminal domain (CTD) of AhpF suggests that the enzyme adopts a large-scale domain motion that alternates between the closed and open states to shuttle electrons from the CTD via the NTD to AhpC. Here, we conducted comprehensive mutational, biochemical, and biophysical analyses to gain insights into the role of the flexible linker and the residues critical for the domain motions of Escherichia coli AhpF (EcAhpF) during electron transfer. Small-angle X-ray scattering studies of linker mutants revealed that a group of charged residues, 200EKR202, is crucial for the swiveling motion of the NTD. Moreover, NADH binding significantly affected EcAhpF flexibility and the movement of the NTD relative to the CTD. The mutants also exhibited a decrease in H2O2 reduction by the AhpF-AhpC ensemble. We propose that a concerted movement involving the NTD, C-terminal NADH, and FAD domains, and the flexible linker between them is essential for optimal intra-domain cross-talk and for efficient electron transfer to the redox partner AhpC required for peroxidation. PMID:28270505

  8. Identification of Epithelial-Mesenchymal Transition-related Target Genes Induced by the Mutation of Smad3 Linker Phosphorylation.

    PubMed

    Park, Sujin; Yang, Kyung-Min; Park, Yuna; Hong, Eunji; Hong, Chang Pyo; Park, Jinah; Pang, Kyoungwha; Lee, Jihee; Park, Bora; Lee, Siyoung; An, Haein; Kwak, Mi-Kyung; Kim, Junil; Kang, Jin Muk; Kim, Pyunggang; Xiao, Yang; Nie, Guangjun; Ooshima, Akira; Kim, Seong-Jin

    2018-03-01

    Smad3 linker phosphorylation plays essential roles in tumor progression and metastasis. We have previously reported that the mutation of Smad3 linker phosphorylation sites (Smad3-Erk/Pro-directed kinase site mutant constructs [EPSM]) markedly reduced the tumor progression while increasing the lung metastasis in breast cancer. We performed high-throughput RNA-Sequencing of the human prostate cancer cell lines infected with adenoviral Smad3-EPSM to identify the genes regulated by Smad3-EPSM. In this study, we identified genes which are differentially regulated in the presence of Smad3-EPSM. We first confirmed that Smad3-EPSM strongly enhanced a capability of cell motility and invasiveness as well as the expression of epithelial-mesenchymal transition marker genes, CDH2 , SNAI1 , and ZEB1 in response to TGF-β1 in human pancreatic and prostate cancer cell lines. We identified GADD45B , CTGF , and JUNB genes in the expression profiles associated with cell motility and invasiveness induced by the Smad3-EPSM. These results suggested that inhibition of Smad3 linker phosphorylation may enhance cell motility and invasiveness by inducing expression of GADD45B , CTGF , and JUNB genes in various cancers.

  9. Cross-talk between Tetraspanin CD9 and Transmembrane Adaptor Protein Non-T Cell Activation Linker (NTAL) in Mast Cell Activation and Chemotaxis*

    PubMed Central

    Hálová, Ivana; Dráberová, Lubica; Bambousková, Monika; Machyna, Martin; Stegurová, Lucie; Smrž, Daniel; Dráber, Petr

    2013-01-01

    Chemotaxis, a process leading to movement of cells toward increasing concentrations of chemoattractants, is essential, among others, for recruitment of mast cells within target tissues where they play an important role in innate and adaptive immunity. Chemotaxis is driven by chemoattractants, produced by various cell types, as well as by intrinsic cellular regulators, which are poorly understood. In this study we prepared a new mAb specific for the tetraspanin CD9. Binding of the antibody to bone marrow-derived mast cells triggered activation events that included cell degranulation, Ca2+ response, dephosphorylation of ezrin/radixin/moesin (ERM) family proteins, and potent tyrosine phosphorylation of the non-T cell activation linker (NTAL) but only weak phosphorylation of the linker for activation of T cells (LAT). Phosphorylation of the NTAL was observed with whole antibody but not with its F(ab)2 or Fab fragments. This indicated involvement of the Fcγ receptors. As documented by electron microscopy of isolated plasma membrane sheets, CD9 colocalized with the high-affinity IgE receptor (FcϵRI) and NTAL but not with LAT. Further tests showed that both anti-CD9 antibody and its F(ab)2 fragment inhibited mast cell chemotaxis toward antigen. Experiments with bone marrow-derived mast cells deficient in NTAL and/or LAT revealed different roles of these two adaptors in antigen-driven chemotaxis. The combined data indicate that chemotaxis toward antigen is controlled in mast cells by a cross-talk among FcϵRI, tetraspanin CD9, transmembrane adaptor proteins NTAL and LAT, and cytoskeleton-regulatory proteins of the ERM family. PMID:23443658

  10. Unveiling the Effects of Linker Substitution in Suzuki Coupling with Palladium Nanoparticles in Metal–Organic Frameworks [Unveiling the Effects of Linker Substitution in Suzuki Coupling Reaction with Palladium Nanoparticles in Metal–Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xinle; Zhang, Biying; Van Zeeland, Ryan

    The establishment of structure–property relationships in heterogeneous catalysis is of prime importance but remains a formidable challenge. Metal–organic frameworks (MOFs) featuring excellent chemical tunability are emerging as an auspicious platform for the atomic-level control of heterogeneous catalysis. Herein, we encapsulate palladium nanoparticles (Pd NPs) in a series of isoreticular mixed-linker MOFs, and the obtained MOF-Pd NPs catalysts were used to unveil the electronic and steric effects of linker substitution on the activity of these catalysts in the Suzuki–Miyaura cross-coupling reactions. Significantly, m-6,6'-Me2bpy-MOF-Pd exhibits a remarkable enhancement in the activity compared to non-functionalized m-bpy-MOF-Pd and m-4,4'-Me 2bpy-MOF-Pd. This study unambiguously demonstratesmore » that the stereoelectronic properties of linker units are crucial to the catalytic activity of nanoparticles encapsulated in MOFs. More interestingly, the trend of activity change is consistent with our previous work on catalytic sites generated in situ from Pd(II) coordinated in MOFs bearing the same functional groups, which suggests that both MOF-Pd NPs and MOF-Pd(II) catalysts generate similar active centers during Suzuki–Miyaura coupling reactions. Lastly, this work paves a new avenue to the fabrication of advanced and tunable MOF-based catalysts through rational linker engineering.« less

  11. Unveiling the Effects of Linker Substitution in Suzuki Coupling with Palladium Nanoparticles in Metal–Organic Frameworks [Unveiling the Effects of Linker Substitution in Suzuki Coupling Reaction with Palladium Nanoparticles in Metal–Organic Frameworks

    DOE PAGES

    Li, Xinle; Zhang, Biying; Van Zeeland, Ryan; ...

    2018-01-18

    The establishment of structure–property relationships in heterogeneous catalysis is of prime importance but remains a formidable challenge. Metal–organic frameworks (MOFs) featuring excellent chemical tunability are emerging as an auspicious platform for the atomic-level control of heterogeneous catalysis. Herein, we encapsulate palladium nanoparticles (Pd NPs) in a series of isoreticular mixed-linker MOFs, and the obtained MOF-Pd NPs catalysts were used to unveil the electronic and steric effects of linker substitution on the activity of these catalysts in the Suzuki–Miyaura cross-coupling reactions. Significantly, m-6,6'-Me2bpy-MOF-Pd exhibits a remarkable enhancement in the activity compared to non-functionalized m-bpy-MOF-Pd and m-4,4'-Me 2bpy-MOF-Pd. This study unambiguously demonstratesmore » that the stereoelectronic properties of linker units are crucial to the catalytic activity of nanoparticles encapsulated in MOFs. More interestingly, the trend of activity change is consistent with our previous work on catalytic sites generated in situ from Pd(II) coordinated in MOFs bearing the same functional groups, which suggests that both MOF-Pd NPs and MOF-Pd(II) catalysts generate similar active centers during Suzuki–Miyaura coupling reactions. Lastly, this work paves a new avenue to the fabrication of advanced and tunable MOF-based catalysts through rational linker engineering.« less

  12. Periodic perturbations in Shaker K+ channel gating kinetics by deletions in the S3–S4 linker

    PubMed Central

    Gonzalez, Carlos; Rosenman, Eduardo; Bezanilla, Francisco; Alvarez, Osvaldo; Latorre, Ramon

    2001-01-01

    Upon depolarization positive charges contained in the transmembrane segment S4 of voltage-dependent channels are displaced from the cytoplasmic to the external milieu. This charge movement leads to channel opening. In Shaker K+ channels four positively charged arginines in the S4 domain are transferred from the internal to the external side of the channel during activation. The distance traveled by the S4 segment during activation is unknown, but large movements should be constrained by the S3–S4 linker. Constructing deletion mutants, we show that the activation time constant and the midpoint of the voltage activation curve of the Shaker K+ channel macroscopic currents becomes a periodic function of the S3–S4 linker length for linkers shorter than 7 aa residues. The periodicity is that typical of α-helices. Moreover, a linker containing only 3 aa is enough to recover the wild-type phenotype. The deletion method revealed the importance of the S3–S4 linker in determining the channel gating kinetics and indicated that the α-helical nature of S4 extends toward its N terminus. These results support the notion that a small displacement of the S4 segment suffices to displace the four gating charges involved in channel opening. PMID:11493701

  13. The length of the linker between the epidermal growth factor-like domains in factor VIIa is critical for a productive interaction with tissue factor.

    PubMed

    Persson, Egon; Madsen, Jesper J; Olsen, Ole H

    2014-12-01

    Formation of the factor VIIa (FVIIa)-tissue factor (TF) complex triggers the blood coagulation cascade. Using a structure-based rationale, we investigated how the length of the linker region between the two epidermal growth factor (EGF)-like domains in FVIIa influences TF binding and the allosteric activity enhancement, as well as the interplay between the γ-carboxyglutamic acid (Gla)-containing and protease domains. Removal of two residues from the native linker was compatible with normal cofactor binding and accompanying stimulation of the enzymatic activity, as was extension by two (Gly-Ser) residues. In sharp contrast, truncation by three or four residues abolished the TF-mediated stabilization of the active conformation of FVIIa and abrogated TF-induced activity enhancement. In addition, FVIIa variants with short linkers associated 80-fold slower with soluble TF (sTF) as compared with wild-type FVIIa, resulting in a corresponding increase in the equilibrium dissociation constant. Molecular modeling suggested that the shortest FVIIa variants would have to be forced into a tense and energetically unfavorable conformation in order to be able to interact productively with TF, explaining our experimental observations. We also found a correlation between linker length and the residual intrinsic enzymatic activity of Ca(2+)-free FVIIa; stepwise truncation resulting in gradually higher activity with des(83-86)-FVIIa reaching the level of Gla-domainless FVIIa. The linker appears to determine the average distance between the negatively charged Gla domain and a structural element in the protease domain, presumably of opposite charge, and proximity has a negative impact on apo-FVIIa activity. © 2014 The Protein Society.

  14. Allosteric regulation in NMDA receptors revealed by the genetically encoded photo-cross-linkers

    PubMed Central

    Tian, Meilin; Ye, Shixin

    2016-01-01

    Allostery is essential to neuronal receptor function, but its transient nature poses a challenge for characterization. The N-terminal domains (NTDs) distinct from ligand binding domains are a major locus for allosteric regulation of NMDA receptors (NMDARs), where different modulatory binding sites have been observed. The inhibitor ifenprodil, and related phenylethanoamine compounds specifically targeting GluN1/GluN2B NMDARs have neuroprotective activity. However, whether they use differential structural pathways than the endogenous inhibitor Zn2+ for regulation is unknown. We applied genetically encoded unnatural amino acids (Uaas) and monitored the functional changes in living cells with photo-cross-linkers specifically incorporated at the ifenprodil binding interface between GluN1 and GluN2B subunits. We report constraining the NTD domain movement, by a light induced crosslinking bond that introduces minimal perturbation to the ligand binding, specifically impedes the transduction of ifenprodil but not Zn2+ inhibition. Subtle distance changes reveal interfacial flexibility and NTD rearrangements in the presence of modulators. Our results present a much richer dynamic picture of allostery than conventional approaches targeting the same interface, and highlight key residues that determine functional and subtype specificity of NMDARs. The light-sensitive mutant neuronal receptors provide complementary tools to the photo-switchable ligands for opto-neuropharmacology. PMID:27713495

  15. Influencing Antibody-Mediated Attenuation of Methamphetamine CNS Distribution through Vaccine Linker Design.

    PubMed

    Gooyit, Major; Miranda, Pedro O; Wenthur, Cody J; Ducime, Alex; Janda, Kim D

    2017-03-15

    Active vaccination examining a single hapten engendered with a series of peptidic linkers has resulted in the production of antimethamphetamine antibodies. Given the limited chemical complexity of methamphetamine, the structure of the linker species embedded within the hapten could have a substantial effect on the ultimate efficacy of the resulting vaccines. Herein, we investigate linker effects by generating a series of methamphetamine haptens that harbor a linker with varying amino acid identity, peptide length, and associated carrier protein. Independent changes in each of these parameters were found to result in alterations in both the quantity and quality of the antibodies induced by vaccination. Although it was found that the consequence of the linker design was also dependent on the identity of the carrier protein, we demonstrate overall that the inclusion of a short, structurally simple, amino acid linker benefits the efficacy of a methamphetamine vaccine in limiting brain penetration of the free drug.

  16. Novel Concepts of MS-Cleavable Cross-linkers for Improved Peptide Structure Analysis

    NASA Astrophysics Data System (ADS)

    Hage, Christoph; Falvo, Francesco; Schäfer, Mathias; Sinz, Andrea

    2017-10-01

    The chemical cross-linking/mass spectrometry (MS) approach is gaining increasing importance as an alternative method for studying protein conformation and for deciphering protein interaction networks. This study is part of our ongoing efforts to develop innovative cross-linking principles for a facile and efficient assignment of cross-linked products. We evaluate two homobifunctional, amine-reactive, and MS-cleavable cross-linkers regarding their potential for automated analysis of cross-linked products. We introduce the bromine phenylurea (BrPU) linker that possesses a unique structure yielding a distinctive fragmentation pattern on collisional activation. Moreover, BrPU delivers the characteristic bromine isotope pattern and mass defect for all cross-linker-decorated fragments. We compare the fragmentation behavior of the BrPU linker with that of our previously described MS-cleavable TEMPO-Bz linker (which consists of a 2,2,6,6-tetramethylpiperidine-1-oxy moiety connected to a benzyl group) that was developed to perform free-radical-initiated peptide sequencing. Comparative collisional activation experiments (collision-induced dissociation and higher-energy collision-induced dissociation) with both cross-linkers were conducted in negative electrospray ionization mode with an Orbitrap Fusion mass spectrometer using five model peptides. As hypothesized in a previous study, the presence of a cross-linked N-terminal aspartic acid residue seems to be the prerequisite for the loss of an intact peptide from the cross-linked products. As the BrPU linker combines a characteristic mass shift with an isotope signature, it presents a more favorable combination for automated assignment of cross-linked products compared with the TEMPO-Bz linker. [Figure not available: see fulltext.

  17. Ezrin tunes T-cell activation by controlling Dlg1 and microtubule positioning at the immunological synapse

    PubMed Central

    Lasserre, Rémi; Charrin, Stéphanie; Cuche, Céline; Danckaert, Anne; Thoulouze, Maria-Isabel; de Chaumont, Fabrice; Duong, Tarn; Perrault, Nathalie; Varin-Blank, Nadine; Olivo-Marin, Jean-Christophe; Etienne-Manneville, Sandrine; Arpin, Monique; Di Bartolo, Vincenzo; Alcover, Andrés

    2010-01-01

    T-cell receptor (TCR) signalling is triggered and tuned at immunological synapses by the generation of signalling complexes that associate into dynamic microclusters. Microcluster movement is necessary to tune TCR signalling, but the molecular mechanism involved remains poorly known. We show here that the membrane-microfilament linker ezrin has an important function in microcluster dynamics and in TCR signalling through its ability to set the microtubule network organization at the immunological synapse. Importantly, ezrin and microtubules are important to down-regulate signalling events leading to Erk1/2 activation. In addition, ezrin is required for appropriate NF-AT activation through p38 MAP kinase. Our data strongly support the notion that ezrin regulates immune synapse architecture and T-cell activation through its interaction with the scaffold protein Dlg1. These results uncover a crucial function for ezrin, Dlg1 and microtubules in the organization of the immune synapse and TCR signal down-regulation. Moreover, they underscore the importance of ezrin and Dlg1 in the regulation of NF-AT activation through p38. PMID:20551903

  18. Nuclear BK Channels Regulate Gene Expression via the Control of Nuclear Calcium Signaling

    PubMed Central

    Li, Boxing; Jie, Wei; Huang, Lianyan; Wei, Peng; Li, Shuji; Luo, Zhengyi; Friedman, Allyson K.; Meredith, Andrea L.; Han, Ming-Hu; Zhu, Xin-Hong; Gao, Tian-Ming

    2014-01-01

    Ion channels are essential for the regulation of neuronal functions. The significance of plasma membrane, mitochondrial, endoplasmic reticulum, and lysosomal ion channels in the regulation of Ca2+ is well established. In contrast, surprisingly less is known about the function of ion channels on the nuclear envelope (NE). Here we demonstrate the presence of functional large-conductance, calcium-activated potassium channels (BK channels) on the NE of rodent hippocampal neurons. Functionally blockade of nuclear BK channels (nBK channels) induces NE-derived Ca2+ release, nucleoplasmic Ca2+ elevation, and cAMP response element binding protein (CREB)-dependent transcription. More importantly, blockade of nBK channels regulates nuclear Ca2+-sensitive gene expression and promotes dendritic arborization in a nuclear Ca2+-dependent manner. These results suggest that nBK channel functions as a molecular linker between neuronal activity and nuclear Ca2+ to convey the signals from synapse to nucleus and is a new modulator for synaptic activity-dependent neuronal functions at the NE level. PMID:24952642

  19. Design of monodisperse and well-defined polypeptide-based polyvalent inhibitors of anthrax toxin.

    PubMed

    Patke, Sanket; Boggara, Mohan; Maheshwari, Ronak; Srivastava, Sunit K; Arha, Manish; Douaisi, Marc; Martin, Jacob T; Harvey, Ian B; Brier, Matthew; Rosen, Tania; Mogridge, Jeremy; Kane, Ravi S

    2014-07-28

    The design of polyvalent molecules, presenting multiple copies of a specific ligand, represents a promising strategy to inhibit pathogens and toxins. The ability to control independently the valency and the spacing between ligands would be valuable for elucidating structure-activity relationships and for designing potent polyvalent molecules. To that end, we designed monodisperse polypeptide-based polyvalent inhibitors of anthrax toxin in which multiple copies of an inhibitory toxin-binding peptide were separated by flexible peptide linkers. By tuning the valency and linker length, we designed polyvalent inhibitors that were over four orders of magnitude more potent than the corresponding monovalent ligands. This strategy for the rational design of monodisperse polyvalent molecules may not only be broadly applicable for the inhibition of toxins and pathogens, but also for controlling the nanoscale organization of cellular receptors to regulate signaling and the fate of stem cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Molecular dynamics simulation unveils the conformational flexibility of the interdomain linker in the bacterial transcriptional regulator GabR from Bacillus subtilis bound to pyridoxal 5’-phosphate

    PubMed Central

    Narzi, Daniele; Guidoni, Leonardo

    2017-01-01

    GabR from Bacillus subtilis is a transcriptional regulator belonging to the MocR subfamily of the GntR regulators. The structure of the MocR regulators is characterized by the presence of two domains: i) a N-terminal domain, about 60 residue long, possessing the winged-Helix-Turn-Helix (wHTH) architecture with DNA recognition and binding capability; ii) a C-terminal domain (about 350 residue) folded as the pyridoxal 5’-phosphate (PLP) dependent aspartate aminotransferase (AAT) with dimerization and effector binding functions. The two domains are linked to each other by a peptide bridge. Although structural and functional characterization of MocRs is proceeding at a fast pace, virtually nothing is know about the molecular changes induced by the effector binding and on how these modifications influence the properties of the regulator. An extensive molecular dynamics simulation on the crystallographic structure of the homodimeric B. subtilis GabR has been undertaken with the aim to envisage the role and the importance of conformational flexibility in the action of GabR. Molecular dynamics has been calculated for the apo (without PLP) and holo (with PLP bound) forms of the GabR. A comparison between the molecular dynamics trajectories calculated for the two GabR forms suggested that one of the wHTH domain detaches from the AAT-like domain in the GabR PLP-bound form. The most evident conformational change in the holo PLP-bound form is represented by the rotation and the subsequent detachment from the subunit surface of one of the wHTH domains. The movement is mediated by a rearrangement of the linker connecting the AAT domain possibly triggered by the presence of the negative charge of the PLP cofactor. This is the second most significant conformational modification. The C-terminal section of the linker docks into the “active site” pocket and establish stabilizing contacts consisting of hydrogen-bonds, salt-bridges and hydrophobic interactions. PMID:29253008

  1. [Construction of cTnC-linker-TnI (P) Genes, Expression of Fusion Protein and Preparation of Lyophilized Protein].

    PubMed

    Song, Xiaoli; Liu, Xiaoyun; Cai, Lei; Wu, Jianwei; Wang, Jihua

    2015-12-01

    In order to construct and express human cardiac troponin C-linker-troponin I(P) [ cTnC-linker-TnI(P)] fusion protein, detect its activity and prepare lyophilized protein, we searched the CDs of human cTnC and cTnI from GenBank, synthesized cTnC and cTnI(30-110aa) into cloning vector by a short DNA sequence coding for 15 neutral amino acid residues. pCold I-cTnC-linker-TnI(P) was constructed and transformed into E. coli BL21(DE3). Then, cTnC-linker-TnI(P) fusion protein was induced by isopropyl-β-D-thiogalactopyranoside (IPTG). Soluable expression of cTnC-linker-TnI(P) in prokaryotic system was successfully obtained. The fusion protein was purified by Ni²⁺ Sepharose 6 Fast Flow affinity chromatography with over 95% purity and prepared into lyophilized protein. The activity of purified cTnC-linker-TnI(P) and its lyophilized protein were detected by Wondfo Finecare™ cTnI Test. Lyophilized protein of cTnC-linker-TnI(P) was stable for 10 or more days at 37 °C and 4 or more months at 25 °C and 4 °C. The expression system established in this research is feasible and efficient. Lyophilized protein is stable enough to be provided as biological raw materials for further research.

  2. Smart linkers in polymer-drug conjugates for tumor-targeted delivery.

    PubMed

    Chang, Minglu; Zhang, Fang; Wei, Ting; Zuo, Tiantian; Guan, Yuanyuan; Lin, Guimei; Shao, Wei

    2016-01-01

    To achieve effective chemotherapy, many types of drug delivery systems have been developed for the specific environments in tumor tissues. Polymer-drug conjugates are increasingly used in tumor therapy due to several significant advantages over traditional delivery systems. In the fabrication of polymer-drug conjugates, a smart linker is an important component that joins two fragments or molecules together and can be cleared by a specific stimulus, which results in targeted drug delivery and controlled release. By regulating the conjugation between the drug and the nanocarriers, stimulus-sensitive systems based on smart linkers can offer high payloads, certified stability, controlled release and targeted delivery. In this review, we summarize the current state of smart linkers (e.g. disulfide, hydrazone, peptide, azo) used recently in various polymer-drug conjugate-based delivery systems with a primary focus on their sophisticated design principles and drug delivery mechanisms as well as in vivo processes.

  3. Electro-chemical coupling in the voltage-dependent phosphatase Ci-VSP

    PubMed Central

    Kohout, Susy C.; Bell, Sarah C.; Liu, Lijun; Xu, Qiang; Minor, Daniel L.; Isacoff, Ehud Y.

    2010-01-01

    In the voltage sensing phosphatase, Ci-VSP, a voltage sensing domain (VSD) controls a lipid phosphatase domain (PD). The mechanism by which the domains are allosterically coupled is not well understood. Using an in vivo assay, we find that the inter-domain linker that connects the VSD to the PD is essential for coupling the full-length protein. Biochemical assays show that the linker is also needed for activity in the isolated PD. We identify a late step of VSD motion in the full-length protein that depends on the linker. Strikingly, this VSD motion is found to require PI(4,5)P2, a substrate of Ci-VSP. These results suggest that the voltage-driven motion of the VSD turns the enzyme on by rearranging the linker into an activated conformation, and that this activated conformation is stabilized by PI(4,5)P2. We propose that Ci-VSP activity is self-limited because its decrease of PI(4,5)P2 levels decouples the VSD from the enzyme. PMID:20364128

  4. Identification of Epithelial-Mesenchymal Transition-related Target Genes Induced by the Mutation of Smad3 Linker Phosphorylation

    PubMed Central

    Park, Sujin; Yang, Kyung-Min; Park, Yuna; Hong, Eunji; Hong, Chang Pyo; Park, Jinah; Pang, Kyoungwha; Lee, Jihee; Park, Bora; Lee, Siyoung; An, Haein; Kwak, Mi-Kyung; Kim, Junil; Kang, Jin Muk; Kim, Pyunggang; Xiao, Yang; Nie, Guangjun; Ooshima, Akira

    2018-01-01

    Background Smad3 linker phosphorylation plays essential roles in tumor progression and metastasis. We have previously reported that the mutation of Smad3 linker phosphorylation sites (Smad3-Erk/Pro-directed kinase site mutant constructs [EPSM]) markedly reduced the tumor progression while increasing the lung metastasis in breast cancer. Methods We performed high-throughput RNA-Sequencing of the human prostate cancer cell lines infected with adenoviral Smad3-EPSM to identify the genes regulated by Smad3-EPSM. Results In this study, we identified genes which are differentially regulated in the presence of Smad3-EPSM. We first confirmed that Smad3-EPSM strongly enhanced a capability of cell motility and invasiveness as well as the expression of epithelial-mesenchymal transition marker genes, CDH2, SNAI1, and ZEB1 in response to TGF-β1 in human pancreatic and prostate cancer cell lines. We identified GADD45B, CTGF, and JUNB genes in the expression profiles associated with cell motility and invasiveness induced by the Smad3-EPSM. Conclusions These results suggested that inhibition of Smad3 linker phosphorylation may enhance cell motility and invasiveness by inducing expression of GADD45B, CTGF, and JUNB genes in various cancers. PMID:29629343

  5. Molecular Basis of Valine-Citrulline-PABC Linker Instability in Site-Specific ADCs and Its Mitigation by Linker Design.

    PubMed

    Dorywalska, Magdalena; Dushin, Russell; Moine, Ludivine; Farias, Santiago E; Zhou, Dahui; Navaratnam, Thayalan; Lui, Victor; Hasa-Moreno, Adela; Casas, Meritxell Galindo; Tran, Thomas-Toan; Delaria, Kathy; Liu, Shu-Hui; Foletti, Davide; O'Donnell, Christopher J; Pons, Jaume; Shelton, David L; Rajpal, Arvind; Strop, Pavel

    2016-05-01

    The degree of stability of antibody-drug linkers in systemic circulation, and the rate of their intracellular processing within target cancer cells are among the key factors determining the efficacy of antibody-drug conjugates (ADC) in vivo Previous studies demonstrated the susceptibility of cleavable linkers, as well as auristatin-based payloads, to enzymatic cleavage in rodent plasma. Here, we identify Carboxylesterase 1C as the enzyme responsible for the extracellular hydrolysis of valine-citrulline-p-aminocarbamate (VC-PABC)-based linkers in mouse plasma. We further show that the activity of Carboxylesterase 1C towards VC-PABC-based linkers, and consequently the stability of ADCs in mouse plasma, can be effectively modulated by small chemical modifications to the linker. While the introduced modifications can protect the VC-PABC-based linkers from extracellular cleavage, they do not significantly alter the intracellular linker processing by the lysosomal protease Cathepsin B. The distinct substrate preference of the serum Carboxylesterase 1C offers the opportunity to modulate the extracellular stability of cleavable ADCs without diminishing the intracellular payload release required for ADC efficacy. Mol Cancer Ther; 15(5); 958-70. ©2016 AACR. ©2016 American Association for Cancer Research.

  6. The actin-microtubule cross-linking activity of Drosophila Short stop is regulated by intramolecular inhibition

    PubMed Central

    Applewhite, Derek A.; Grode, Kyle D.; Duncan, Mara C.; Rogers, Stephen L.

    2013-01-01

    Actin and microtubule dynamics must be precisely coordinated during cell migration, mitosis, and morphogenesis—much of this coordination is mediated by proteins that physically bridge the two cytoskeletal networks. We have investigated the regulation of the Drosophila actin-microtubule cross-linker Short stop (Shot), a member of the spectraplakin family. Our data suggest that Shot's cytoskeletal cross-linking activity is regulated by an intramolecular inhibitory mechanism. In its inactive conformation, Shot adopts a “closed” conformation through interactions between its NH2-terminal actin-binding domain and COOH-terminal EF-hand-GAS2 domain. This inactive conformation is targeted to the growing microtubule plus end by EB1. On activation, Shot binds along the microtubule through its COOH-terminal GAS2 domain and binds to actin with its NH2-terminal tandem CH domains. We propose that this mechanism allows Shot to rapidly cross-link dynamic microtubules in response to localized activating signals at the cell cortex. PMID:23885120

  7. Creating Hierarchical Pores by Controlled Linker Thermolysis in Multivariate Metal-Organic Frameworks.

    PubMed

    Feng, Liang; Yuan, Shuai; Zhang, Liang-Liang; Tan, Kui; Li, Jia-Luo; Kirchon, Angelo; Liu, Ling-Mei; Zhang, Peng; Han, Yu; Chabal, Yves J; Zhou, Hong-Cai

    2018-02-14

    Sufficient pore size, appropriate stability, and hierarchical porosity are three prerequisites for open frameworks designed for drug delivery, enzyme immobilization, and catalysis involving large molecules. Herein, we report a powerful and general strategy, linker thermolysis, to construct ultrastable hierarchically porous metal-organic frameworks (HP-MOFs) with tunable pore size distribution. Linker instability, usually an undesirable trait of MOFs, was exploited to create mesopores by generating crystal defects throughout a microporous MOF crystal via thermolysis. The crystallinity and stability of HP-MOFs remain after thermolabile linkers are selectively removed from multivariate metal-organic frameworks (MTV-MOFs) through a decarboxylation process. A domain-based linker spatial distribution was found to be critical for creating hierarchical pores inside MTV-MOFs. Furthermore, linker thermolysis promotes the formation of ultrasmall metal oxide nanoparticles immobilized in an open framework that exhibits high catalytic activity for Lewis acid-catalyzed reactions. Most importantly, this work provides fresh insights into the connection between linker apportionment and vacancy distribution, which may shed light on probing the disordered linker apportionment in multivariate systems, a long-standing challenge in the study of MTV-MOFs.

  8. Macromolecular cross-linked enzyme aggregates (M-CLEAs) of α-amylase.

    PubMed

    Nadar, Shamraja S; Muley, Abhijeet B; Ladole, Mayur R; Joshi, Pranoti U

    2016-03-01

    Macromolecular cross-linked enzyme aggregates (M-CLEAs) of α-amylase were prepared by precipitation and subsequent cross-linking. The non-toxic, biodegradable, biocompatible, renewable polysaccharide based macromolecular cross-linkers viz. agar, chitosan, dextran, and gum arabic were used as a substitute for traditional glutaraldehyde to augment activity recovery toward macromolecular substrate. Macromolecular cross-linkers were prepared by periodate mediated controlled oxidation of polysaccharides. The effects of precipitating agent, concentration and different cross-linkers on activity recovery of α-amylase CLEAs were investigated. α-Amylase aggregated with ammonium sulphate and cross-linked by dextran showed 91% activity recovery, whereas glutaraldehyde CLEAs (G-CLEAs) exhibited 42% activity recovery. M-CLEAs exhibited higher thermal stability in correlation with α-amylase and G-CLEAs. Moreover, dextran and chitosan M-CLEAs showed same affinity for starch hydrolysis as of free α-amylase. The changes in secondary structures revealed the enhancements in structural and conformational rigidity attributed by cross-linkers. Finally, after five consecutive cycles dextran M-CLEAs retained 1.25 times higher initial activity than G-CLEAs. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Switch-like Arp2/3 activation upon WASP and WIP recruitment to an apparent threshold level by multivalent linker proteins in vivo.

    PubMed

    Sun, Yidi; Leong, Nicole T; Jiang, Tommy; Tangara, Astou; Darzacq, Xavier; Drubin, David G

    2017-08-16

    Actin-related protein 2/3 (Arp2/3) complex activation by nucleation promoting factors (NPFs) such as WASP, plays an important role in many actin-mediated cellular processes. In yeast, Arp2/3-mediated actin filament assembly drives endocytic membrane invagination and vesicle scission. Here we used genetics and quantitative live-cell imaging to probe the mechanisms that concentrate NPFs at endocytic sites, and to investigate how NPFs regulate actin assembly onset. Our results demonstrate that SH3 (Src homology 3) domain-PRM (proline-rich motif) interactions involving multivalent linker proteins play central roles in concentrating NPFs at endocytic sites. Quantitative imaging suggested that productive actin assembly initiation is tightly coupled to accumulation of threshold levels of WASP and WIP, but not to recruitment kinetics or release of autoinhibition. These studies provide evidence that WASP and WIP play central roles in establishment of a robust multivalent SH3 domain-PRM network in vivo, giving actin assembly onset at endocytic sites a switch-like behavior.

  10. Inter-domain Synergism Is Required for Efficient Feeding of Cellulose Chain into Active Site of Cellobiohydrolase Cel7A.

    PubMed

    Kont, Riin; Kari, Jeppe; Borch, Kim; Westh, Peter; Väljamäe, Priit

    2016-12-09

    Structural polysaccharides like cellulose and chitin are abundant and their enzymatic degradation to soluble sugars is an important route in green chemistry. Processive glycoside hydrolases (GHs), like cellobiohydrolase Cel7A of Trichoderma reesei (TrCel7A) are key components of efficient enzyme systems. TrCel7A consists of a catalytic domain (CD) and a smaller carbohydrate-binding module (CBM) connected through the glycosylated linker peptide. A tunnel-shaped active site rests in the CD and contains 10 glucose unit binding sites. The active site of TrCel7A is lined with four Trp residues with two of them, Trp-40 and Trp-38, in the substrate binding sites near the tunnel entrance. Although addressed in numerous studies the elucidation of the role of CBM and active site aromatics has been obscured by a complex multistep mechanism of processive GHs. Here we studied the role of the CBM-linker and Trp-38 of TrCel7A with respect to binding affinity, on- and off-rates, processivity, and synergism with endoglucanase. The CBM-linker increased the on-rate and substrate affinity of the enzyme. The Trp-38 to Ala substitution resulted in increased off-rates and decreased processivity. The effect of the Trp-38 to Ala substitution on on-rates was strongly dependent on the presence of the CBM-linker. This compensation between CBM-linker and Trp-38 indicates synergism between CBM-linker and CD in feeding the cellulose chain into the active site. The inter-domain synergism was pre-requisite for the efficient degradation of cellulose in the presence of endoglucanase. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Inter-domain Synergism Is Required for Efficient Feeding of Cellulose Chain into Active Site of Cellobiohydrolase Cel7A*

    PubMed Central

    Kont, Riin; Kari, Jeppe; Borch, Kim; Westh, Peter; Väljamäe, Priit

    2016-01-01

    Structural polysaccharides like cellulose and chitin are abundant and their enzymatic degradation to soluble sugars is an important route in green chemistry. Processive glycoside hydrolases (GHs), like cellobiohydrolase Cel7A of Trichoderma reesei (TrCel7A) are key components of efficient enzyme systems. TrCel7A consists of a catalytic domain (CD) and a smaller carbohydrate-binding module (CBM) connected through the glycosylated linker peptide. A tunnel-shaped active site rests in the CD and contains 10 glucose unit binding sites. The active site of TrCel7A is lined with four Trp residues with two of them, Trp-40 and Trp-38, in the substrate binding sites near the tunnel entrance. Although addressed in numerous studies the elucidation of the role of CBM and active site aromatics has been obscured by a complex multistep mechanism of processive GHs. Here we studied the role of the CBM-linker and Trp-38 of TrCel7A with respect to binding affinity, on- and off-rates, processivity, and synergism with endoglucanase. The CBM-linker increased the on-rate and substrate affinity of the enzyme. The Trp-38 to Ala substitution resulted in increased off-rates and decreased processivity. The effect of the Trp-38 to Ala substitution on on-rates was strongly dependent on the presence of the CBM-linker. This compensation between CBM-linker and Trp-38 indicates synergism between CBM-linker and CD in feeding the cellulose chain into the active site. The inter-domain synergism was pre-requisite for the efficient degradation of cellulose in the presence of endoglucanase. PMID:27780868

  12. A synthetic biology approach for evaluating the functional contribution of designer cellulosome components to deconstruction of cellulosic substrates

    PubMed Central

    2013-01-01

    Background Select cellulolytic bacteria produce multi-enzymatic cellulosome complexes that bind to the plant cell wall and catalyze its efficient degradation. The multi-modular interconnecting cellulosomal subunits comprise dockerin-containing enzymes that bind cohesively to cohesin-containing scaffoldins. The organization of the modules into functional polypeptides is achieved by intermodular linkers of different lengths and composition, which provide flexibility to the complex and determine its overall architecture. Results Using a synthetic biology approach, we systematically investigated the spatial organization of the scaffoldin subunit and its effect on cellulose hydrolysis by designing a combinatorial library of recombinant trivalent designer scaffoldins, which contain a carbohydrate-binding module (CBM) and 3 divergent cohesin modules. The positions of the individual modules were shuffled into 24 different arrangements of chimaeric scaffoldins. This basic set was further extended into three sub-sets for each arrangement with intermodular linkers ranging from zero (no linkers), 5 (short linkers) and native linkers of 27–35 amino acids (long linkers). Of the 72 possible scaffoldins, 56 were successfully cloned and 45 of them expressed, representing 14 full sets of chimaeric scaffoldins. The resultant 42-component scaffoldin library was used to assemble designer cellulosomes, comprising three model C. thermocellum cellulases. Activities were examined using Avicel as a pure microcrystalline cellulose substrate and pretreated cellulose-enriched wheat straw as a model substrate derived from a native source. All scaffoldin combinations yielded active trivalent designer cellulosome assemblies on both substrates that exceeded the levels of the free enzyme systems. A preferred modular arrangement for the trivalent designer scaffoldin was not observed for the three enzymes used in this study, indicating that they could be integrated at any position in the designer cellulosome without significant effect on cellulose-degrading activity. Designer cellulosomes assembled with the long-linker scaffoldins achieved higher levels of activity, compared to those assembled with short-and no-linker scaffoldins. Conclusions The results demonstrate the robustness of the cellulosome system. Long intermodular scaffoldin linkers are preferable, thus leading to enhanced degradation of cellulosic substrates, presumably due to the increased flexibility and spatial positioning of the attached enzymes in the complex. These findings provide a general basis for improved designer cellulosome systems as a platform for bioethanol production. PMID:24341331

  13. Insertion of inter-domain linkers improves expression and bioactivity of Zygote arrest (Zar) fusion proteins.

    PubMed

    Cook, Jonathan M; Charlesworth, Amanda

    2017-04-01

    Developmentally important proteins that are crucial for fertilization and embryogenesis are synthesized through highly regulated translation of maternal mRNA. The Zygote arrest proteins, Zar1 and Zar2, are crucial for embryogenesis and have been implicated in binding mRNA and repressing mRNA translation. To investigate Zar1 and Zar2, the full-length proteins had been fused to glutathione-S-transferase (GST) or MS2 protein tags with minimal inter-domain linkers derived from multiple cloning sites; however, these fusion proteins expressed poorly and/or lacked robust function. Here, we tested the effect of inserting additional linkers between the fusion domains. Three linkers were tested, each 17 amino acids long with different physical and chemical properties: flexible hydrophilic, rigid extended or rigid helical. In the presence of any of the three linkers, GST-Zar1 and GST-Zar2 had fewer breakdown products. Moreover, in the presence of any of the linkers, MS2-Zar1 was expressed to higher levels, and in dual luciferase tethered assays, both MS2-Zar1 and MS2-Zar2 repressed luciferase translation to a greater extent. These data suggest that for Zar fusion proteins, increasing the length of linkers, regardless of their physical or chemical properties, improves stability, expression and bioactivity. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. A Novel MS-Cleavable Azo Cross-Linker for Peptide Structure Analysis by Free Radical Initiated Peptide Sequencing (FRIPS)

    NASA Astrophysics Data System (ADS)

    Iacobucci, Claudio; Hage, Christoph; Schäfer, Mathias; Sinz, Andrea

    2017-10-01

    The chemical cross-linking/mass spectrometry (MS) approach is a growing research field in structural proteomics that allows gaining insights into protein conformations. It relies on creating distance constraints between cross-linked amino acid side chains that can further be used to derive protein structures. Currently, the most urgent task for designing novel cross-linking principles is an unambiguous and automated assignment of the created cross-linked products. Here, we introduce the homobifunctional, amine-reactive, and water soluble cross-linker azobisimidoester (ABI) as a prototype of a novel class of cross-linkers. The ABI-linker possesses an innovative modular scaffold combining the benefits of collisional activation lability with open shell chemistry. This MS-cleavable cross-linker can be efficiently operated via free radical initiated peptide sequencing (FRIPS) in positive ionization mode. Our proof-of-principle study challenges the gas phase behavior of the ABI-linker for the three amino acids, lysine, leucine, and isoleucine, as well as the model peptide thymopentin. The isomeric amino acids leucine and isoleucine could be discriminated by their characteristic side chain fragments. Collisional activation experiments were conducted via positive electrospray ionization (ESI) on two Orbitrap mass spectrometers. The ABI-mediated formation of odd electron product ions in MS/MS and MS3 experiments was evaluated and compared with a previously described azo-based cross-linker. All cross-linked products were amenable to automated analysis by the MeroX software, underlining the future potential of the ABI-linker for structural proteomics studies. [Figure not available: see fulltext.

  15. The O-Glycosylated Linker from the Trichoderma reesei Family 7 Cellulase Is a Flexible, Disordered Protein

    PubMed Central

    Beckham, Gregg T.; Bomble, Yannick J.; Matthews, James F.; Taylor, Courtney B.; Resch, Michael G.; Yarbrough, John M.; Decker, Steve R.; Bu, Lintao; Zhao, Xiongce; McCabe, Clare; Wohlert, Jakob; Bergenstråhle, Malin; Brady, John W.; Adney, William S.; Himmel, Michael E.; Crowley, Michael F.

    2010-01-01

    Fungi and bacteria secrete glycoprotein cocktails to deconstruct cellulose. Cellulose-degrading enzymes (cellulases) are often modular, with catalytic domains for cellulose hydrolysis and carbohydrate-binding modules connected by linkers rich in serine and threonine with O-glycosylation. Few studies have probed the role that the linker and O-glycans play in catalysis. Since different expression and growth conditions produce different glycosylation patterns that affect enzyme activity, the structure-function relationships that glycosylation imparts to linkers are relevant for understanding cellulase mechanisms. Here, the linker of the Trichoderma reesei Family 7 cellobiohydrolase (Cel7A) is examined by simulation. Our results suggest that the Cel7A linker is an intrinsically disordered protein with and without glycosylation. Contrary to the predominant view, the O-glycosylation does not change the stiffness of the linker, as measured by the relative fluctuations in the end-to-end distance; rather, it provides a 16 Å extension, thus expanding the operating range of Cel7A. We explain observations from previous biochemical experiments in the light of results obtained here, and compare the Cel7A linker with linkers from other cellulases with sequence-based tools to predict disorder. This preliminary screen indicates that linkers from Family 7 enzymes from other genera and other cellulases within T. reesei may not be as disordered, warranting further study. PMID:21112302

  16. GSK3 controls axon growth via CLASP-mediated regulation of growth cone microtubules

    PubMed Central

    Hur, Eun-Mi; Saijilafu; Lee, Byoung Dae; Kim, Seong-Jin; Xu, Wen-Lin; Zhou, Feng-Quan

    2011-01-01

    Suppression of glycogen synthase kinase 3 (GSK3) activity in neurons yields pleiotropic outcomes, causing both axon growth promotion and inhibition. Previous studies have suggested that specific GSK3 substrates, such as adenomatous polyposis coli (APC) and collapsin response mediator protein 2 (CRMP2), support axon growth by regulating the stability of axonal microtubules (MTs), but the substrate(s) and mechanisms conveying axon growth inhibition remain elusive. Here we show that CLIP (cytoplasmic linker protein)-associated protein (CLASP), originally identified as a MT plus end-binding protein, displays both plus end-binding and lattice-binding activities in nerve growth cones, and reveal that the two MT-binding activities regulate axon growth in an opposing manner: The lattice-binding activity mediates axon growth inhibition induced by suppression of GSK3 activity via preventing MT protrusion into the growth cone periphery, whereas the plus end-binding property supports axon extension via stabilizing the growing ends of axonal MTs. We propose a model in which CLASP transduces GSK3 activity levels to differentially control axon growth by coordinating the stability and configuration of growth cone MTs. PMID:21937714

  17. The Regulatory and Kinase Domains but Not the Interdomain Linker Determine Human Double-stranded RNA-activated Kinase (PKR) Sensitivity to Inhibition by Viral Non-coding RNAs.

    PubMed

    Sunita, S; Schwartz, Samantha L; Conn, Graeme L

    2015-11-20

    Double-stranded RNA (dsRNA)-activated protein kinase (PKR) is an important component of the innate immune system that presents a crucial first line of defense against viral infection. PKR has a modular architecture comprising a regulatory N-terminal dsRNA binding domain and a C-terminal kinase domain interposed by an unstructured ∼80-residue interdomain linker (IDL). Guided by sequence alignment, we created IDL deletions in human PKR (hPKR) and regulatory/kinase domain swap human-rat chimeric PKRs to assess the contributions of each domain and the IDL to regulation of the kinase activity by RNA. Using circular dichroism spectroscopy, limited proteolysis, kinase assays, and isothermal titration calorimetry, we show that each PKR protein is properly folded with similar domain boundaries and that each exhibits comparable polyinosinic-cytidylic (poly(rI:rC)) dsRNA activation profiles and binding affinities for adenoviral virus-associated RNA I (VA RNAI) and HIV-1 trans-activation response (TAR) RNA. From these results we conclude that the IDL of PKR is not required for RNA binding or mediating changes in protein conformation or domain interactions necessary for PKR regulation by RNA. In contrast, inhibition of rat PKR by VA RNAI and TAR RNA was found to be weaker than for hPKR by 7- and >300-fold, respectively, and each human-rat chimeric domain-swapped protein showed intermediate levels of inhibition. These findings indicate that PKR sequence or structural elements in the kinase domain, present in hPKR but absent in rat PKR, are exploited by viral non-coding RNAs to accomplish efficient inhibition of PKR. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Functional interactions between A' helices in the C-linker of open CNG channels.

    PubMed

    Hua, Li; Gordon, Sharona E

    2005-03-01

    Cyclic nucleotide-gated (CNG) channels are nonselective cation channels that are activated by the direct binding of the cyclic nucleotides cAMP and cGMP. The region linking the last membrane-spanning region (S6) to the cyclic nucleotide binding domain in the COOH terminus, termed the C-linker, has been shown to play an important role in coupling cyclic nucleotide binding to opening of the pore. In this study, we explored the intersubunit proximity between the A' helices of the C-linker regions of CNGA1 in functional channels using site-specific cysteine substitution. We found that intersubunit disulfide bonds can be formed between the A' helices in open channels, and that inducing disulfide bonds in most of the studied constructs resulted in potentiation of channel activation. This suggests that the A' helices of the C-linker regions are in close proximity when the channel is in the open state. Our finding is not compatible with a homology model of the CNGA1 C-linker made from the recently published X-ray crystallographic structure of the hyperpolarization-activated, cyclic nucleotide-modulated (HCN) channel COOH terminus, and leads us to suggest that the C-linker region depicted in the crystal structure may represent the structure of the closed state. The opening conformational change would then involve a movement of the A' helices from a position parallel to the axis of the membrane to one perpendicular to the axis of the membrane.

  19. Modulation of procaspase-7 self-activation by PEST amino acid residues of the N-terminal prodomain and intersubunit linker.

    PubMed

    Alves, Juliano; Garay-Malpartida, Miguel; Occhiucci, João M; Belizário, José E

    2017-12-01

    Procaspase-7 zymogen polypeptide is composed of a short prodomain, a large subunit (p20), and a small subunit (p10) connected to an intersubunit linker. Caspase-7 is activated by an initiator caspase-8 and -9, or by autocatalysis after specific cleavage at IQAD 198 ↓S located at the intersubunit linker. Previously, we identified that PEST regions made of amino acid residues Pro (P), Glu (E), Asp (D), Ser (S), Thr (T), Asn (N), and Gln (Q) are conserved flanking amino acid residues in the cleavage sites within a prodomain and intersubunit linker of all caspase family members. Here we tested the impact of alanine substitution of PEST amino acid residues on procaspase-7 proteolytic self-activation directly in Escherichia coli. The p20 and p10 subunit cleavage were significantly delayed in double caspase-7 mutants in the prodomain (N18A/P26A) and intersubunit linker (S199A/P201A), compared with the wild-type caspase-7. The S199A/P201A mutants effectively inhibited the p10 small subunit cleavage. However, the mutations did not change the kinetic parameters (k cat /K M ) and optimal tetrapeptide specificity (DEVD) of the purified mutant enzymes. The results suggest a role of PEST-amino acid residues in the molecular mechanism for prodomain and intersubunit cleavage and caspase-7 self-activation.

  20. Dependence of the Linker Histone and Chromatin Condensation on the Nucleosome Environment.

    PubMed

    Perišić, Ognjen; Schlick, Tamar

    2017-08-24

    The linker histone (LH), an auxiliary protein that can bind to chromatin and interact with the linker DNA to form stem motifs, is a key element of chromatin compaction. By affecting the chromatin condensation level, it also plays an active role in gene expression. However, the presence and variable concentration of LH in chromatin fibers with different DNA linker lengths indicate that its folding and condensation are highly adaptable and dependent on the immediate nucleosome environment. Recent experimental studies revealed that the behavior of LH in mononucleosomes markedly differs from that in small nucleosome arrays, but the associated mechanism is unknown. Here we report a structural analysis of the behavior of LH in mononucleosomes and oligonucleosomes (2-6 nucleosomes) using mesoscale chromatin simulations. We show that the adapted stem configuration heavily depends on the strength of electrostatic interactions between LH and its parental DNA linkers, and that those interactions tend to be asymmetric in small oligonucleosome systems. Namely, LH in oligonucleosomes dominantly interacts with one DNA linker only, as opposed to mononucleosomes where LH has similar interactions with both linkers and forms a highly stable nucleosome stem. Although we show that the LH condensation depends sensitively on the electrostatic interactions with entering and exiting DNA linkers, other interactions, especially by nonparental cores and nonparental linkers, modulate the structural condensation by softening LH and thus making oligonucleosomes more flexible, in comparison to to mono- and dinucleosomes. We also find that the overall LH/chromatin interactions sensitively depend on the linker length because the linker length determines the maximal nucleosome stem length. For mononucleosomes with DNA linkers shorter than LH, LH condenses fully, while for DNA linkers comparable or longer than LH, the LH extension in mononucleosomes strongly follows the length of DNA linkers, unhampered by neighboring linker histones. Thus, LH is more condensed for mononucleosomes with short linkers, compared to oligonucleosomes, and its orientation is variable and highly environment-dependent. More generally, the work underscores the agility of LH whose folding dynamics critically controls genomic packaging and gene expression.

  1. c-Jun N-terminal kinase 1 promotes transforming growth factor-β1-induced epithelial-to-mesenchymal transition via control of linker phosphorylation and transcriptional activity of Smad3.

    PubMed

    Velden, Jos L J van der; Alcorn, John F; Guala, Amy S; Badura, Elsbeth C H L; Janssen-Heininger, Yvonne M W

    2011-04-01

    Transforming growth factor (TGF)-β1 is a key mediator of lung remodeling and fibrosis. Epithelial cells are both a source of and can respond to TGF-β1 with epithelial-to-mesenchymal transition (EMT). We recently determined that TGF-β1-induced EMT in lung epithelial cells requires the presence of c-Jun N-terminal kinase (JNK) 1. Because TGF-β1 signals via Smad complexes, the goal of the present study was to determine the impact of JNK1 on phosphorylation of Smad3 and Smad3-dependent transcriptional responses in lung epithelial cells. Evaluation of JNK1-deficient lung epithelial cells demonstrated that TGF-β1-induced terminal phosphorylation of Smad3 was similar, whereas phosphorylation of mitogen-activated protein kinase sites in the linker regions of Smad3 was diminished, in JNK1-deficient cells compared with wild-type cells. In comparison to wild-type Smad3, expression of a mutant Smad3 in which linker mitogen-activated protein kinase sites were ablated caused a marked attenuation in JNK1 or TGF-β1-induced Smad-binding element transcriptional activity, and expression of plasminogen activator inhibitor-1, fibronectin-1, high-mobility group A2, CArG box-binding factor-A, and fibroblast-specific protein-1, genes critical in the process of EMT. JNK1 enhanced the interaction between Smad3 and Smad4, which depended on linker phosphorylation of Smad3. Conversely, Smad3 with phosphomimetic mutations in the linker domain further enhanced EMT-related genes and proteins, even in the absence of JNK1. Finally, we demonstrated a TGF-β1-induced interaction between Smad3 and JNK1. Collectively, these results demonstrate that Smad3 phosphorylation in the linker region and Smad transcriptional activity are directly or indirectly controlled by JNK1, and provide a putative mechanism whereby JNK1 promotes TGF-β1-induced EMT.

  2. Optimization of the central linker of dicationic bis-benzimidazole anti-MRSA and anti-VRE agents.

    PubMed

    Hu, Laixing; Kully, Maureen L; Boykin, David W; Abood, Norman

    2009-07-01

    A series of bis-benzimidazole diamidine compounds containing different central linkers has been synthesized and evaluated for in vitro antibacterial activities, including drug-resistant bacterial strains. Seven compounds have shown potent antibacterial activities. The anti-MRSA and anti-VRE activities of compound 1h were more potent than that of the lead compound 1a and vancomycin.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Jinqi; Cook, Aaron A.; Bergmeier, Wolfgang

    The dynamic regulation of ERK1 and -2 (ERK1/2) is required for precise signal transduction controlling cell proliferation, differentiation, and survival. However, the underlying mechanisms regulating the activation of ERK1/2 are not completely understood. In this study, we show that phosphorylation of RasGRP2, a guanine nucleotide exchange factor (GEF), inhibits its ability to activate the small GTPase Rap1 that ultimately leads to decreased activation of ERK1/2 in cells. ERK2 phosphorylates RasGRP2 at Ser394 located in the linker region implicated in its autoinhibition. These studies identify RasGRP2 as a novel substrate of ERK1/2 and define a negative-feedback loop that regulates the BRaf–MEK–ERKmore » signaling cascade. This negative-feedback loop determines the amplitude and duration of active ERK1/2. -- Highlights: •ERK2 phosphorylates the guanine nucleotide exchange factor RasGRP2 at Ser394. •Phosphorylated RasGRP2 has decreased capacity to active Rap1b in vitro and in cells. •Phosphorylation of RasGRP2 by ERK1/2 introduces a negative-feedback loop into the BRaf-MEK-ERK pathway.« less

  4. Asymmetric activation mechanism of a homodimeric red light regulated photoreceptor.

    PubMed

    Gourinchas, Geoffrey; Heintz, Udo; Winkler, Andreas

    2018-06-05

    Organisms adapt to environmental cues using diverse signaling networks. In order to sense and integrate light for regulating various biological functions, photoreceptor proteins have evolved in a modular way. This modularity is targeted in the development of optogenetic tools enabling the control of cellular events with high spatiotemporal precision. However, the limited understanding of signaling mechanisms impedes the rational design of innovative photoreceptor-effector couples. Here we reveal molecular details of signal transduction in phytochrome-regulated diguanylyl-cyclases. Asymmetric structural changes of the full-length homodimer result in a functional heterodimer featuring two different photoactivation states. Structural changes around the cofactors result in a quasi-translational rearrangement of the distant coiled-coil sensor-effector linker. Eventually, this regulates enzymatic activity by modulating the dimer interface of the output domains. Considering the importance of phytochrome heterodimerization in plant signaling, our mechanistic details of asymmetric photoactivation in a bacterial system reveal novel aspects of the evolutionary adaptation of phytochromes. © 2018, Gourinchas et al.

  5. Molecular dissection of the interaction between the SH3 domain and the SH2-Kinase Linker region in PTK6.

    PubMed

    Kim, Han Ie; Jung, Jinwon; Lee, Eun-Saem; Kim, Yong-Chul; Lee, Weontae; Lee, Seung-Taek

    2007-11-03

    PTK6 (also known as Brk) is an intracellular tyrosine kinase that contains SH3, SH2, and tyrosine kinase catalytic (Kinase) domains. The SH3 domain of PTK6 interacts with the N-terminal half of the linker (Linker) region between the SH2 and Kinase domains. Site-directed mutagenesis and surface plasmon resonance studies showed that a tryptophan residue (Trp44) in the SH3 domain and proline residues in the Linker region, in the order of Pro177, Pro175, and Pro179, contribute to the interaction. The three-dimensional modeled structure of the SH3-Linker complex was in agreement with the biochemical data. Disruption of the intramolecular interaction between the SH3 domain and the Linker region by mutation of Trp44, Pro175, Pro177, and Pro179 markedly increased the catalytic activity of PTK6 in HEK 293 cells. These results demonstrate that Trp44 in the SH3 domain and Pro177, Pro175, and Pro179 in the N-terminal half of the Linker region play important roles in the SH3-Linker interaction to maintain the protein in an inactive conformation along with the phosphorylated Tyr447-SH2 interaction.

  6. Pin1 promotes transforming growth factor-beta-induced migration and invasion.

    PubMed

    Matsuura, Isao; Chiang, Keng-Nan; Lai, Chen-Yu; He, Dongming; Wang, Guannan; Ramkumar, Romila; Uchida, Takafumi; Ryo, Akihide; Lu, Kunping; Liu, Fang

    2010-01-15

    Transforming growth factor-beta (TGF-beta) regulates a wide variety of biological activities. It induces potent growth-inhibitory responses in normal cells but promotes migration and invasion of cancer cells. Smads mediate the TGF-beta responses. TGF-beta binding to the cell surface receptors leads to the phosphorylation of Smad2/3 in their C terminus as well as in the proline-rich linker region. The serine/threonine phosphorylation sites in the linker region are followed by the proline residue. Pin1, a peptidyl-prolyl cis/trans isomerase, recognizes phosphorylated serine/threonine-proline motifs. Here we show that Smad2/3 interacts with Pin1 in a TGF-beta-dependent manner. We further show that the phosphorylated threonine 179-proline motif in the Smad3 linker region is the major binding site for Pin1. Although epidermal growth factor also induces phosphorylation of threonine 179 and other residues in the Smad3 linker region the same as TGF-beta, Pin1 is unable to bind to the epidermal growth factor-stimulated Smad3. Further analysis suggests that phosphorylation of Smad3 in the C terminus is necessary for the interaction with Pin1. Depletion of Pin1 by small hairpin RNA does not significantly affect TGF-beta-induced growth-inhibitory responses and a number of TGF-beta/Smad target genes analyzed. In contrast, knockdown of Pin1 in human PC3 prostate cancer cells strongly inhibited TGF-beta-mediated migration and invasion. Accordingly, TGF-beta induction of N-cadherin, which plays an important role in migration and invasion, is markedly reduced when Pin1 is depleted in PC3 cells. Because Pin1 is overexpressed in many cancers, our findings highlight the importance of Pin1 in TGF-beta-induced migration and invasion of cancer cells.

  7. Stochastic Ratcheting on a Funneled Energy Landscape Is Necessary for Highly Efficient Contractility of Actomyosin Force Dipoles

    NASA Astrophysics Data System (ADS)

    Komianos, James E.; Papoian, Garegin A.

    2018-04-01

    Current understanding of how contractility emerges in disordered actomyosin networks of nonmuscle cells is still largely based on the intuition derived from earlier works on muscle contractility. In addition, in disordered networks, passive cross-linkers have been hypothesized to percolate force chains in the network, hence, establishing large-scale connectivity between local contractile clusters. This view, however, largely overlooks the free energy of cross-linker binding at the microscale, which, even in the absence of active fluctuations, provides a thermodynamic drive towards highly overlapping filamentous states. In this work, we use stochastic simulations and mean-field theory to shed light on the dynamics of a single actomyosin force dipole—a pair of antiparallel actin filaments interacting with active myosin II motors and passive cross-linkers. We first show that while passive cross-linking without motor activity can produce significant contraction between a pair of actin filaments, driven by thermodynamic favorability of cross-linker binding, a sharp onset of kinetic arrest exists at large cross-link binding energies, greatly diminishing the effectiveness of this contractility mechanism. Then, when considering an active force dipole containing nonmuscle myosin II, we find that cross-linkers can also serve as a structural ratchet when the motor dissociates stochastically from the actin filaments, resulting in significant force amplification when both molecules are present. Our results provide predictions of how actomyosin force dipoles behave at the molecular level with respect to filament boundary conditions, passive cross-linking, and motor activity, which can explicitly be tested using an optical trapping experiment.

  8. Computational modeling and in-vitro/in-silico correlation of phospholipid-based prodrugs for targeted drug delivery in inflammatory bowel disease

    NASA Astrophysics Data System (ADS)

    Dahan, Arik; Markovic, Milica; Keinan, Shahar; Kurnikov, Igor; Aponick, Aaron; Zimmermann, Ellen M.; Ben-Shabat, Shimon

    2017-11-01

    Targeting drugs to the inflamed intestinal tissue(s) represents a major advancement in the treatment of inflammatory bowel disease (IBD). In this work we present a powerful in-silico modeling approach to guide the molecular design of novel prodrugs targeting the enzyme PLA2, which is overexpressed in the inflamed tissues of IBD patients. The prodrug consists of the drug moiety bound to the sn-2 position of phospholipid (PL) through a carbonic linker, aiming to allow PLA2 to release the free drug. The linker length dictates the affinity of the PL-drug conjugate to PLA2, and the optimal linker will enable maximal PLA2-mediated activation. Thermodynamic integration and Weighted Histogram Analysis Method (WHAM)/Umbrella Sampling method were used to compute the changes in PLA2 transition state binding free energy of the prodrug molecule (ΔΔGtr) associated with decreasing/increasing linker length. The simulations revealed that 6-carbons linker is the optimal one, whereas shorter or longer linkers resulted in decreased PLA2-mediated activation. These in-silico results were shown to be in excellent correlation with experimental in-vitro data. Overall, this modern computational approach enables optimization of the molecular design of novel prodrugs, which may allow targeting the free drug specifically to the diseased intestinal tissue of IBD patients.

  9. A unique mid-sequence linker used to multimerize the lipid-phosphatidylserine (PS) binding peptide-peptoid hybrid PPS1.

    PubMed

    Shukla, Satya Prakash; Manarang, Joseph C; Udugamasooriya, D Gomika

    2017-09-08

    Ligand multimerizations enhance the binding affinity towards cell surface biomarkers through their avidity effects. Typical linkers connect individual monomeric ligand moieties from one end (e.g., C- or N-terminus of a peptide) and exclusively target protein receptors. The lipid phosphatidylserine (PS) is normally present on the cytoplasmic side of the eukaryotic cell membrane, but in tumors and tumor endothelial cells, this negatively charged PS flips to the outer layer. We recently reported a PS binding peptide-peptoid hybrid (PPS1) that has distinct positively charged and hydrophobic residue-containing regions. The PPS1 monomer is inactive, and upon C-terminal dimerization (PPS1D1), it triggers cytotoxicity. In the current study, a unique series of PPS1 multimeric derivatives were synthesized by switching the linker from the C-terminus to an internal position. The unimportant fourth residue (N-lys) from the C-terminus was utilized to build the linker. The synthesis strategy was developed employing variations of (I) the linker size, (II) the number of positively charged residues, and (III) the number of hydrophobic regions. Cytotoxicity of these new derivatives on HCC4017 lung cancer cells showed that a minimum of two hydrophobic regions was important to retain the activity and that the shortest linker length was optimal for activity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Long-range allosteric signaling in red light–regulated diguanylyl cyclases

    PubMed Central

    Gourinchas, Geoffrey; Etzl, Stefan; Göbl, Christoph; Vide, Uršula; Madl, Tobias; Winkler, Andreas

    2017-01-01

    Nature has evolved an astonishingly modular architecture of covalently linked protein domains with diverse functionalities to enable complex cellular networks that are critical for cell survival. The coupling of sensory modules with enzymatic effectors allows direct allosteric regulation of cellular signaling molecules in response to diverse stimuli. We present molecular details of red light–sensing bacteriophytochromes linked to cyclic dimeric guanosine monophosphate–producing diguanylyl cyclases. Elucidation of the first crystal structure of a full-length phytochrome with its enzymatic effector, in combination with the characterization of light-induced changes in conformational dynamics, reveals how allosteric light regulation is fine-tuned by the architecture and composition of the coiled-coil sensor-effector linker and also the central helical spine. We anticipate that consideration of molecular principles of sensor-effector coupling, going beyond the length of the characteristic linker, and the appreciation of dynamically driven allostery will open up new directions for the design of novel red light–regulated optogenetic tools. PMID:28275738

  11. Quantitative relation between intermolecular and intramolecular binding of pro-rich peptides to SH3 domains.

    PubMed

    Zhou, Huan-Xiang

    2006-11-01

    Flexible linkers are often found to tether binding sequence motifs or connect protein domains. Here we analyze three usages of flexible linkers: 1), intramolecular binding of proline-rich peptides (PRPs) to SH3 domains for kinase regulation; 2), intramolecular binding of PRP for increasing the folding stability of SH3 domains; and 3), covalent linking of PRPs and other ligands for high-affinity bivalent binding. The basis of these analyses is a quantitative relation between intermolecular and intramolecular binding constants. This relation has the form K(i) = K(e0)p for intramolecular binding and K(e) = K(e01)K(e02)p for bivalent binding. The effective concentration p depends on the length of the linker and the distance between the linker attachment points in the bound state. Several applications illustrate the usefulness of the quantitative relation. These include intramolecular binding to the Itk SH3 domain by an internal PRP and to a circular permutant of the alpha-spectrin SH3 domain by a designed PRP, and bivalent binding to the two SH3 domains of Grb2 by two linked PRPs. These and other examples suggest that flexible linkers and sequence motifs tethered to them, like folded protein domains, are also subject to tight control during evolution.

  12. Serine-204 in the Linker Region of Smad3 Mediates the Collagen-I Response to TGF-β in a Cell Phenotype-Specific Manner

    PubMed Central

    Browne, James A.; Liu, Xiaoying; Schnaper, H. William; Hayashida, Tomoko

    2013-01-01

    Regulation of TGF-β1/Smad3 signaling in fibrogenesis is complex. Previous work by our lab suggests that ERK MAP kinase phosphorylates the linker region (LR) of Smad3 to enhance TGF-β-induced collagen-I accumulation. However the roles of the individual Smad3LR phosphorylation sites (T179, S204, S208 and S213) in the collagen-I response to TGF-β are not clear. To address this issue, we tested the ability of Smad3 constructs expressing wild-type Smad3 or Smad3 with mutated LR phosphorylation sites to reconstitute TGF-β-stimulated COL1A2 promoter activity in Smad3-null or -knockdown cells. Blocking ERK in fibroblasts and renal mesangial cells inhibited both S204 phosphorylation and Smad3-mediated COL1A2 promoter activity. Mutations replacing serine at S204 or S208 in the linker region decreased Smad3-mediated COL1A2 promoter activity, whereas mutating T179 enhanced basal COL1A2 promoter activity and did not prevent TGF-β stimulation. Interestingly, mutation of all four Smad3LR sites (T179, S204, S208 and S213) was not inhibitory, suggesting primacy of the two inhibitory sites. These results suggest that in these mesenchymal cells, phosphorylation of the T179 and possibly S213 sites may act as a brake on the signal, whereas S204 phosphorylation by ERK in some manner releases that brake. Renal epithelial cells (HKC) respond differently from MEF or mesangial cells; blocking ERK neither changed TGF-β-stimulated S204 phosphorylation nor prevented Smad3-mediated COL1A2 promoter activity in HKC. Furthermore, re-expression of wild type-Smad3 or the S204A-Smad3 mutant in Smad3-knockdown HKC reconstituted Smad3-mediated COL1A2 promoter activity. Collectively, these data suggest that Serine-204 phosphorylation in the Smad3LR is a critical event by which ERK enhances Smad3-mediated COL1A2 promoter activity in mesenchymal cells. PMID:24080014

  13. Serine-204 in the linker region of Smad3 mediates the collagen-I response to TGF-β in a cell phenotype-specific manner.

    PubMed

    Browne, J A; Liu, X; Schnaper, H W; Hayashida, T

    2013-11-15

    Regulation of TGF-β1/Smad3 signaling in fibrogenesis is complex. Previous work by our lab suggests that ERK MAP kinase phosphorylates the linker region (LR) of Smad3 to enhance TGF-β-induced collagen-I accumulation. However the roles of the individual Smad3LR phosphorylation sites (T179, S204, S208 and S213) in the collagen-I response to TGF-β are not clear. To address this issue, we tested the ability of Smad3 constructs expressing wild-type Smad3 or Smad3 with mutated LR phosphorylation sites to reconstitute TGF-β-stimulated COL1A2 promoter activity in Smad3-null or -knockdown cells. Blocking ERK in fibroblasts and renal mesangial cells inhibited both S204 phosphorylation and Smad3-mediated COL1A2 promoter activity. Mutations replacing serine at S204 or S208 in the linker region decreased Smad3-mediated COL1A2 promoter activity, whereas mutating T179 enhanced basal COL1A2 promoter activity and did not prevent TGF-β stimulation. Interestingly, mutation of all four Smad3LR sites (T179, S204, S208 and S213) was not inhibitory, suggesting primacy of the two inhibitory sites. These results suggest that in these mesenchymal cells, phosphorylation of the T179 and possibly S213 sites may act as a brake on the signal, whereas S204 phosphorylation by ERK in some manner releases that brake. Renal epithelial cells (HKC) respond differently from MEF or mesangial cells; blocking ERK neither changed TGF-β-stimulated S204 phosphorylation nor prevented Smad3-mediated COL1A2 promoter activity in HKC. Furthermore, re-expression of wild type-Smad3 or the S204A-Smad3 mutant in Smad3-knockdown HKC reconstituted Smad3-mediated COL1A2 promoter activity. Collectively, these data suggest that Serine-204 phosphorylation in the Smad3LR is a critical event by which ERK enhances Smad3-mediated COL1A2 promoter activity in mesenchymal cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Syk Mediates BCR- and CD40-Signaling Intergration during B Cell Activation

    PubMed Central

    Ying, Haiyan; Li, Zhenping; Yang, Lifen; Zhang, Jian

    2010-01-01

    CD40 is essential for optimal B cell activation. It has been shown that CD40 stimulation can augment BCR-induced B cell responses, but the molecular mechanism(s) by which CD40 regulates BCR signaling is poorly understood. In this report, we attempted to characterize the signaling synergy between BCR- and CD40-mediated pathways during B cell activation. We found that spleen tyrosine kinase (Syk) is involved in CD40 signaling, and is synergistically activated in B cells in response to BCR/CD40 costimulation. CD40 stimulation alone also activates B cell linker (BLNK), Bruton tyrosine kinase (Btk), and Vav-2 downstream of Syk, and significantly enhances BCR-induced formation of complex consisting of, Vav-2, Btk, BLNK, and phospholipase C-gamma2 (PLC-γ2) leading to activation of extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase, Akt, and NF-κB required for optimal B cell activation. Therefore, our data suggest that CD40 can strengthen BCR-signaling pathway and quantitatively modify BCR signaling during B cell activation. PMID:21074890

  15. Effect of Redox “Non-Innocent” Linker on the Catalytic Activity of Copper-Catecholate-Decorated Metal–Organic Frameworks

    DOE PAGES

    Zhang, Xuan; Vermeulen, Nicolaas A.; Huang, Zhiyuan; ...

    2017-12-26

    Two new UiO-68 type of Zr-MOFs featuring redox non-innocent catechol-based linkers of different redox activities have been synthesized through a de novo mixed-linker strategy. Also, metalation of the MOFs with Cu(II) precursors triggers the reduction of Cu(II) by the phenyl-catechol groups to Cu(I) with the concomitant formation of semiquinone radicals as evidenced by EPR and XPS characterization. The MOF-supported catalysts are selective toward the allylic oxidation of cyclohexene and it is found that the presence of in situ-generated Cu(I) species exhibits enhanced catalytic activity as compared to a similar MOF with Cu(II) metalated naphthalenyl-dihydroxy groups. Here, this work unveils themore » importance of metal-support redox interactions in the catalytic activity of MOF-supported catalysts which are not easily accessible in traditional metal oxide supports.« less

  16. Effect of Redox “Non-Innocent” Linker on the Catalytic Activity of Copper-Catecholate-Decorated Metal–Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xuan; Vermeulen, Nicolaas A.; Huang, Zhiyuan

    Two new UiO-68 type of Zr-MOFs featuring redox non-innocent catechol-based linkers of different redox activities have been synthesized through a de novo mixed-linker strategy. Also, metalation of the MOFs with Cu(II) precursors triggers the reduction of Cu(II) by the phenyl-catechol groups to Cu(I) with the concomitant formation of semiquinone radicals as evidenced by EPR and XPS characterization. The MOF-supported catalysts are selective toward the allylic oxidation of cyclohexene and it is found that the presence of in situ-generated Cu(I) species exhibits enhanced catalytic activity as compared to a similar MOF with Cu(II) metalated naphthalenyl-dihydroxy groups. Here, this work unveils themore » importance of metal-support redox interactions in the catalytic activity of MOF-supported catalysts which are not easily accessible in traditional metal oxide supports.« less

  17. Low-Reynolds-number predator.

    PubMed

    Ebrahimian, Mehran; Yekehzare, Mohammad; Ejtehadi, Mohammad Reza

    2015-12-01

    To generalize simple bead-linker model of swimmers to higher dimensions and to demonstrate the chemotaxis ability of such swimmers, here we introduce a low-Reynolds predator, using a two-dimensional triangular bead-spring model. Two-state linkers as mechanochemical enzymes expand as a result of interaction with particular activator substances in the environment, causing the whole body to translate and rotate. The concentration of the chemical stimulator controls expansion versus the contraction rate of each arm and so affects the ability of the body for diffusive movements; also the variation of activator substance's concentration in the environment breaks the symmetry of linkers' preferred state, resulting in the drift of the random walker along the gradient of the density of activators. External food or danger sources may attract or repel the body by producing or consuming the chemical activators of the organism's enzymes, inducing chemotaxis behavior. Generalization of the model to three dimensions is straightforward.

  18. Low-Reynolds-number predator

    NASA Astrophysics Data System (ADS)

    Ebrahimian, Mehran; Yekehzare, Mohammad; Ejtehadi, Mohammad Reza

    2015-12-01

    To generalize simple bead-linker model of swimmers to higher dimensions and to demonstrate the chemotaxis ability of such swimmers, here we introduce a low-Reynolds predator, using a two-dimensional triangular bead-spring model. Two-state linkers as mechanochemical enzymes expand as a result of interaction with particular activator substances in the environment, causing the whole body to translate and rotate. The concentration of the chemical stimulator controls expansion versus the contraction rate of each arm and so affects the ability of the body for diffusive movements; also the variation of activator substance's concentration in the environment breaks the symmetry of linkers' preferred state, resulting in the drift of the random walker along the gradient of the density of activators. External food or danger sources may attract or repel the body by producing or consuming the chemical activators of the organism's enzymes, inducing chemotaxis behavior. Generalization of the model to three dimensions is straightforward.

  19. Crucial role of dynamic linker histone binding and divalent ions for DNA accessibility and gene regulation revealed by mesoscale modeling of oligonucleosomes

    PubMed Central

    Collepardo-Guevara, Rosana; Schlick, Tamar

    2012-01-01

    Monte Carlo simulations of a mesoscale model of oligonucleosomes are analyzed to examine the role of dynamic-linker histone (LH) binding/unbinding in high monovalent salt with divalent ions, and to further interpret noted chromatin fiber softening by dynamic LH in monovalent salt conditions. We find that divalent ions produce a fiber stiffening effect that competes with, but does not overshadow, the dramatic softening triggered by dynamic-LH behavior. Indeed, we find that in typical in vivo conditions, dynamic-LH binding/unbinding reduces fiber stiffening dramatically (by a factor of almost 5, as measured by the elasticity modulus) compared with rigidly fixed LH, and also the force needed to initiate chromatin unfolding, making it consistent with those of molecular motors. Our data also show that, during unfolding, divalent ions together with LHs induce linker-DNA bending and DNA–DNA repulsion screening, which guarantee formation of heteromorphic superbeads-on-a-string structures that combine regions of loose and compact fiber independently of the characteristics of the LH–core bond. These structures might be important for gene regulation as they expose regions of the DNA selectively. Dynamic control of LH binding/unbinding, either globally or locally, in the presence of divalent ions, might constitute a mechanism for regulation of gene expression. PMID:22790986

  20. Non-canonical Smads phosphorylation induced by the glutamate release inhibitor, riluzole, through GSK3 activation in melanoma.

    PubMed

    Abushahba, Walid; Olabisi, Oyenike O; Jeong, Byeong-Seon; Boregowda, Rajeev K; Wen, Yu; Liu, Fang; Goydos, James S; Lasfar, Ahmed; Cohen-Solal, Karine A

    2012-01-01

    Riluzole, an inhibitor of glutamate release, has shown the ability to inhibit melanoma cell xenograft growth. A phase 0 clinical trial of riluzole as a single agent in patients with melanoma resulted in involution of tumors associated with inhibition of both the mitogen-activated protein kinase (MAPK) and phophoinositide-3-kinase/AKT (PI3K/AKT) pathways in 34% of patients. In the present study, we demonstrate that riluzole inhibits AKT-mediated glycogen synthase kinase 3 (GSK3) phosphorylation in melanoma cell lines. Because we have demonstrated that GSK3 is involved in the phosphorylation of two downstream effectors of transforming growth factor beta (TGFβ), Smad2 and Smad3, at their linker domain, our aim was to determine whether riluzole could induce GSK3β-mediated linker phosphorylation of Smad2 and Smad3. We present evidence that riluzole increases Smad2 and Smad3 linker phosphorylation at the cluster of serines 245/250/255 and serine 204 respectively. Using GSK3 inhibitors and siRNA knock-down, we demonstrate that the mechanism of riluzole-induced Smad phosphorylation involved GSK3β. In addition, GSK3β could phosphorylate the same linker sites in vitro. The riluzole-induced Smad linker phosphorylation is mechanistically different from the Smad linker phosphorylation induced by TGFβ. We also demonstrate that riluzole-induced Smad linker phosphorylation is independent of the expression of the metabotropic glutamate receptor 1 (GRM1), which is one of the glutamate receptors whose involvement in human melanoma has been documented. We further show that riluzole upregulates the expression of INHBB and PLAU, two genes associated with the TGFβ signaling pathway. The non-canonical increase in Smad linker phosphorylation induced by riluzole could contribute to the modulation of the pro-oncogenic functions of Smads in late stage melanomas.

  1. Non-Canonical Smads Phosphorylation Induced by the Glutamate Release Inhibitor, Riluzole, through GSK3 Activation in Melanoma

    PubMed Central

    Jeong, Byeong-Seon; Boregowda, Rajeev K.; Wen, Yu; Liu, Fang; Goydos, James S.; Lasfar, Ahmed; Cohen-Solal, Karine A.

    2012-01-01

    Riluzole, an inhibitor of glutamate release, has shown the ability to inhibit melanoma cell xenograft growth. A phase 0 clinical trial of riluzole as a single agent in patients with melanoma resulted in involution of tumors associated with inhibition of both the mitogen-activated protein kinase (MAPK) and phophoinositide-3-kinase/AKT (PI3K/AKT) pathways in 34% of patients. In the present study, we demonstrate that riluzole inhibits AKT-mediated glycogen synthase kinase 3 (GSK3) phosphorylation in melanoma cell lines. Because we have demonstrated that GSK3 is involved in the phosphorylation of two downstream effectors of transforming growth factor beta (TGFβ), Smad2 and Smad3, at their linker domain, our aim was to determine whether riluzole could induce GSK3β-mediated linker phosphorylation of Smad2 and Smad3. We present evidence that riluzole increases Smad2 and Smad3 linker phosphorylation at the cluster of serines 245/250/255 and serine 204 respectively. Using GSK3 inhibitors and siRNA knock-down, we demonstrate that the mechanism of riluzole-induced Smad phosphorylation involved GSK3β. In addition, GSK3β could phosphorylate the same linker sites in vitro. The riluzole-induced Smad linker phosphorylation is mechanistically different from the Smad linker phosphorylation induced by TGFβ. We also demonstrate that riluzole-induced Smad linker phosphorylation is independent of the expression of the metabotropic glutamate receptor 1 (GRM1), which is one of the glutamate receptors whose involvement in human melanoma has been documented. We further show that riluzole upregulates the expression of INHBB and PLAU, two genes associated with the TGFβ signaling pathway. The non-canonical increase in Smad linker phosphorylation induced by riluzole could contribute to the modulation of the pro-oncogenic functions of Smads in late stage melanomas. PMID:23077590

  2. Molecular mechanism of pharmacological activation of BK channels

    PubMed Central

    Gessner, Guido; Cui, Yong-Mei; Otani, Yuko; Ohwada, Tomohiko; Soom, Malle; Hoshi, Toshinori; Heinemann, Stefan H.

    2012-01-01

    Large-conductance voltage- and Ca2+-activated K+ (Slo1 BK) channels serve numerous cellular functions, and their dysregulation is implicated in various diseases. Drugs activating BK channels therefore bear substantial therapeutic potential, but their deployment has been hindered in part because the mode of action remains obscure. Here we provide mechanistic insight into how the dehydroabietic acid derivative Cym04 activates BK channels. As a representative of NS1619-like BK openers, Cym04 reversibly left-shifts the half-activation voltage of Slo1 BK channels. Using an established allosteric BK gating model, the Cym04 effect can be simulated by a shift of the voltage sensor and the ion conduction gate equilibria toward the activated and open state, respectively. BK activation by Cym04 occurs in a splice variant-specific manner; it does not occur in such Slo1 BK channels using an alternative neuronal exon 9, which codes for the linker connecting the transmembrane segment S6 and the cytosolic RCK1 domain—the S6/RCK linker. In addition, Cym04 does not affect Slo1 BK channels with a two-residue deletion within this linker. Mutagenesis and model-based gating analysis revealed that BK openers, such as Cym04 and NS1619 but not mallotoxin, activate BK channels by functionally interacting with the S6/RCK linker, mimicking site-specific shortening of this purported passive spring, which transmits force from the cytosolic gating ring structure to open the channel's gate. PMID:22331907

  3. Integrating patterning signals: Wnt/GSK3 regulates the duration of the BMP/Smad1 signal.

    PubMed

    Fuentealba, Luis C; Eivers, Edward; Ikeda, Atsushi; Hurtado, Cecilia; Kuroda, Hiroki; Pera, Edgar M; De Robertis, Edward M

    2007-11-30

    BMP receptors determine the intensity of BMP signals via Smad1 C-terminal phosphorylations. Here we show that a finely controlled cell biological pathway terminates this activity. The duration of the activated pSmad1(Cter) signal was regulated by sequential Smad1 linker region phosphorylations at conserved MAPK and GSK3 sites required for its polyubiquitinylation and transport to the centrosome. Proteasomal degradation of activated Smad1 and total polyubiquitinated proteins took place in the centrosome. Inhibitors of the Erk, p38, and JNK MAPKs, as well as GSK3 inhibitors, prolonged the duration of a pulse of BMP7. Wnt signaling decreased pSmad1(GSK3) antigen levels and redistributed it from the centrosome to cytoplasmic LRP6 signalosomes. In Xenopus embryos, it was found that Wnts induce epidermis and that this required an active BMP-Smad pathway. Epistatic experiments suggested that the dorsoventral (BMP) and anteroposterior (Wnt/GSK3) patterning gradients are integrated at the level of Smad1 phosphorylations during embryonic pattern formation.

  4. Allosteric auto-inhibition and activation of the Nedd4 family E3 ligase Itch.

    PubMed

    Zhu, Kang; Shan, Zelin; Chen, Xing; Cai, Yuqun; Cui, Lei; Yao, Weiyi; Wang, Zhen; Shi, Pan; Tian, Changlin; Lou, Jizhong; Xie, Yunli; Wen, Wenyu

    2017-09-01

    The Nedd4 family E3 ligases are key regulators of cell growth and proliferation and are often misregulated in human cancers and other diseases. The ligase activities of Nedd4 E3s are tightly controlled via auto-inhibition. However, the molecular mechanism underlying Nedd4 E3 auto-inhibition and activation is poorly understood. Here, we show that the WW domains proceeding the catalytic HECT domain play an inhibitory role by binding directly to HECT in the Nedd4 E3 family member Itch. Our structural and biochemical analyses of Itch reveal that the WW2 domain and a following linker allosterically lock HECT in an inactive state inhibiting E2-E3 transthiolation. Binding of the Ndfip1 adaptor or JNK1-mediated phosphorylation relieves the auto-inhibition of Itch in a WW2-dependent manner. Aberrant activation of Itch leads to migration defects of cortical neurons during development. Our study provides a new mechanism governing the regulation of Itch. © 2017 The Authors.

  5. p38 MAPK mediates fibrogenic signal through Smad3 phosphorylation in rat myofibroblasts.

    PubMed

    Furukawa, Fukiko; Matsuzaki, Koichi; Mori, Shigeo; Tahashi, Yoshiya; Yoshida, Katsunori; Sugano, Yasushi; Yamagata, Hideo; Matsushita, Masanori; Seki, Toshihito; Inagaki, Yutaka; Nishizawa, Mikio; Fujisawa, Junichi; Inoue, Kyoichi

    2003-10-01

    Hepatic stellate cells (HSCs) spontaneously transdifferentiate into myofibroblast (MFB)-phenotype on plastic dishes. This response recapitulates the features of activation in vivo. Transforming growth factor beta (TGF-beta) plays a prominent role in stimulating liver fibrogenesis by MFBs. In quiescent HSCs, TGF-beta signaling involves TGF-beta type I receptor (TbetaRI)-mediated phosphorylation of serine residues within the conserved SSXS motif at the C-terminus of Smad2 and Smad3. The middle linker regions of Smad2 and Smad3 also are phosphorylated by mitogen-activated protein kinase (MAPK). This study elucidates the change of Smad3-mediated signals during the transdifferentiation process. By using antibodies highly specific to the phosphorylated C-terminal region and the phosphorylated linker region of Smad3, we found that TGF-beta-dependent Smad3 phosphorylation at the C-terminal region decreased, but that the phosphorylation at the linker region increased in the process of transdifferentiation. TGF-beta activated the p38 MAPK pathway, further leading to Smad3 phosphorylation at the linker region in the cultured MFBs, irrespective of Smad2. The phosphorylation promoted hetero-complex formation and nuclear translocation of Smad3 and Smad4. Once combined with TbetaRI-phosphorylated Smad2, the Smad3 and Smad4 complex bound to plasminogen activator inhibitor-type I promoter could enhance the transcription. In addition, Smad3 phosphorylation mediated by the activated TbetaRI was impaired severely in MFBs during chronic liver injury, whereas Smad3 phosphorylation at the linker region was remarkably induced by p38 MAPK pathway. In conclusion, p38 MAPK-dependent Smad3 phosphorylation promoted extracellular matrix production in MFBs both in vitro and in vivo.

  6. Role of Rho/ROCK and p38 MAP kinase pathways in transforming growth factor-beta-mediated Smad-dependent growth inhibition of human breast carcinoma cells in vivo.

    PubMed

    Kamaraju, Anil K; Roberts, Anita B

    2005-01-14

    TGF-beta is a multifunctional cytokine known to exert its biological effects through a variety of signaling pathways of which Smad signaling is considered to be the main mediator. At present, the Smad-independent pathways, their interactions with each other, and their roles in TGF-beta-mediated growth inhibitory effects are not well understood. To address these questions, we have utilized a human breast cancer cell line MCF10CA1h and demonstrate that p38 MAP kinase and Rho/ROCK pathways together with Smad2 and Smad3 are necessary for TGF-beta-mediated growth inhibition of this cell line. We show that Smad2/3 are indispensable for TGF-beta-mediated growth inhibition, and that both p38 and Rho/ROCK pathways affect the linker region phosphorylation of Smad2/3. Further, by using Smad3 mutated at the putative phosphorylation sites in the linker region, we demonstrate that phosphorylation at Ser203 and Ser207 residues is required for the full transactivation potential of Smad3, and that these residues are targets of the p38 and Rho/ROCK pathways. We demonstrate that activation of the p38 MAP kinase pathway is necessary for the full transcriptional activation potential of Smad2/Smad3 by TGF-beta, whereas activity of Rho/ROCK is necessary for both down-regulation of c-Myc protein and up-regulation of p21waf1 protein, directly interfering with p21waf1 transcription. Our results not only implicate Rho/ROCK and p38 MAPK pathways as necessary for TGF-beta-mediated growth inhibition, but also demonstrate their individual contributions and the basis for their cooperation with each other.

  7. ROCC, a conserved region in cohesin's Mcd1 subunit, is essential for the proper regulation of the maintenance of cohesion and establishment of condensation

    PubMed Central

    Eng, Thomas; Guacci, Vincent; Koshland, Doug

    2014-01-01

    Cohesin helps orchestrate higher-order chromosome structure, thereby promoting sister chromatid cohesion, chromosome condensation, DNA repair, and transcriptional regulation. To elucidate how cohesin facilitates these diverse processes, we mutagenized Mcd1p, the kleisin regulatory subunit of budding yeast cohesin. In the linker region of Mcd1p, we identified a novel evolutionarily conserved 10–amino acid cluster, termed the regulation of cohesion and condensation (ROCC) box. We show that ROCC promotes cohesion maintenance by protecting a second activity of cohesin that is distinct from its stable binding to chromosomes. The existence of this second activity is incompatible with the simple embrace mechanism of cohesion. In addition, we show that the ROCC box is required for the establishment of condensation. We provide evidence that ROCC controls cohesion maintenance and condensation establishment through differential functional interactions with Pds5p and Wpl1p. PMID:24966169

  8. Design and synthesis of small molecule agonists of EphA2 receptor.

    PubMed

    Petty, Aaron; Idippily, Nethrie; Bobba, Viharika; Geldenhuys, Werner J; Zhong, Bo; Su, Bin; Wang, Bingcheng

    2018-01-01

    Ligand-independent activation of EphA2 receptor kinase promotes cancer metastasis and invasion. Activating EphA2 receptor tyrosine kinase with small molecule agonist is a novel strategy to treat EphA2 overexpressing cancer. In this study, we performed a lead optimization of a small molecule Doxazosin that was identified as an EphA2 receptor agonist. 33 new analogs were developed and evaluated; a structure-activity relationship was summarized based on the EphA2 activation of these derivatives. Two new derivative compounds 24 and 27 showed much improved activity compared to Doxazosin. Compound 24 possesses a bulky amide moiety, and compound 27 has a dimeric structure that is very different to the parental compound. Compound 27 with a twelve-carbon linker of the dimer activated the kinase and induced receptor internalization and cell death with the best potency. Another dimer with a six-carbon linker has significantly reduced potency compared to the dimer with a longer linker, suggesting that the length of the linker is critical for the activity of the dimeric agonist. To explore the receptor binding characteristics of the new molecules, we applied a docking study to examine how the small molecule binds to the EphA2 receptor. The results reveal that compounds 24 and 27 form more hydrogen bonds to EphA2 than Doxazosin, suggesting that they may have higher binding affinity to the receptor. Published by Elsevier Masson SAS.

  9. Postassembly Transformation of a Catalytically Active Composite Material, Pt@ZIF-8, via Solvent-Assisted Linker Exchange.

    PubMed

    Stephenson, Casey J; Hupp, Joseph T; Farha, Omar K

    2016-02-15

    2-Methylimidazolate linkers of Pt@ZIF-8 are exchanged with imidazolate using solvent-assisted linker exchange (SALE) to expand the apertures of the parent material and create Pt@SALEM-2. Characterization of the material before and after SALE was performed. Both materials are active as catalysts for the hydrogenation of 1-octene, whereas the hydrogenation of cis-cyclohexene occurred only with Pt@SALEM-2, consistent with larger apertures for the daughter material. The largest substrate, β-pinene, proved to be unreactive with H2 when either material was employed as a candidate catalyst, supporting the contention that substrate molecules, for both composites, must traverse the metal-organic framework component in order to reach the catalytic nanoparticles.

  10. Bisquaternary pyridinium oximes: Comparison of in-vitro reactivation potency of compounds bearing aliphatic linkers and heteroaromatic linkers for paraoxon-inhibited electric eel and recombinant human acetylcholinesterase

    PubMed Central

    Bharate, Sandip B.; Guo, Lilu; Reeves, Tony E.; Cerasoli, Douglas M.; Thompson, Charles M.

    2009-01-01

    Oxime reactivators are the drugs of choice for the post-treatment of OP (organophosphorus) intoxication and used widely for mechanistic and kinetic studies of OP-inhibited cholinesterases. The purpose of the present study was to evaluate new oxime compounds to reactivate acetylcholinesterase (AChE) inhibited by the OP paraoxon. Several new bisquaternary pyridinium oximes with heterocyclic linkers along with some known bisquaternary pyridinium oximes bearing aliphatic linkers were synthesized and evaluated for their in vitro reactivation potency against paraoxon-inhibited electric eel acetylcholinesterase (EeAChE) and recombinant human acetylcholinesterase (rHuAChE). Results herein indicate that most of the compounds are better reactivators of EeAChE than of rHuAChE. The reactivation potency of two different classes of compounds with varying linker chains was compared and observed that the structure of the connecting chain is an important factor for the activity of the reactivators. At a higher concentration (10−3 M), compounds bearing aliphatic linker showed better reactivation than compounds with heterocyclic linkers. Interestingly, oximes with a heterocyclic linker inhibited AChE at higher concentration (10−3 M), whereas their ability to reactivate was increased at lower concentrations (10−4 M and 10−5 M). Compounds bearing either a thiophene linker 26, 46 or a furan linker 31 showed 59%, 49% and 52% reactivation of EeAChE, respectively, at 10−5 M. These compounds showed 14%, 6% and 15% reactivation of rHuAChE at 10−4 M. Amongst newly synthesized analogs with heterocyclic linkers (26–35 and 45–46), compound 31, bearing furan linker chain, was found to be the most effective reactivator with a kr 0.042 min−1, which is better than obidoxime (3) for paraoxon-inhibited EeAChE. Compound 31 showed a kr 0.0041 min−1 that is near equal to pralidoxime (1) for paraoxon-inhibited rHuAChE. PMID:20005727

  11. Conformational changes of an ion-channel during gating and emerging electrophysiologic properties: Application of a computational approach to cardiac Kv7.1.

    PubMed

    Nekouzadeh, Ali; Rudy, Yoram

    2016-01-01

    Ion channels are the "building blocks" of the excitation process in excitable tissues. Despite advances in determining their molecular structure, understanding the relationship between channel protein structure and electrical excitation remains a challenge. The Kv7.1 potassium channel is an important determinant of the cardiac action potential and its adaptation to rate changes. It is subject to beta adrenergic regulation, and many mutations in the channel protein are associated with the arrhythmic long QT syndrome. In this theoretical study, we use a novel computational approach to simulate the conformational changes that Kv7.1 undergoes during activation gating and compute the resulting electrophysiologic function in terms of single-channel and macroscopic currents. We generated all possible conformations of the S4-S5 linker that couples the S3-S4 complex (voltage sensor domain, VSD) to the pore, and all associated conformations of VSD and the pore (S6). Analysis of these conformations revealed that VSD-to-pore mechanical coupling during activation gating involves outward translation of the voltage sensor, accompanied by a translation away from the pore and clockwise twist. These motions cause pore opening by moving the S4-S5 linker upward and away from the pore, providing space for the S6 tails to move away from each other. Single channel records, computed from the simulated motion trajectories during gating, have stochastic properties similar to experimentally recorded traces. Macroscopic current through an ensemble of channels displays two key properties of Kv7.1: an initial delay of activation and fast inactivation. The simulations suggest a molecular mechanism for fast inactivation; a large twist of the VSD following its outward translation results in movement of the base of the S4-S5 linker toward the pore, eliminating open pore conformations to cause inactivation. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. The unstructured linker arms of Mlh1-Pms1 are important for interactions with DNA during mismatch repair

    PubMed Central

    Plys, Aaron J.; Rogacheva, Maria V.; Greene, Eric C.; Alani, Eric

    2012-01-01

    DNA mismatch repair (MMR) models have proposed that MSH proteins identify DNA polymerase errors while interacting with the DNA replication fork. MLH proteins (primarily Mlh1-Pms1 in baker’s yeast) then survey the genome for lesion-bound MSH proteins. The resulting MSH-MLH complex formed at a DNA lesion initiates downstream steps in repair. MLH proteins act as dimers and contain long (20 – 30 nanometers) unstructured arms that connect two terminal globular domains. These arms can vary between 100 to 300 amino acids in length, are highly divergent between organisms, and are resistant to amino acid substitutions. To test the roles of the linker arms in MMR, we engineered a protease cleavage site into the Mlh1 linker arm domain of baker’s yeast Mlh1-Pms1. Cleavage of the Mlh1 linker arm in vitro resulted in a defect in Mlh1-Pms1 DNA binding activity, and in vivo proteolytic cleavage resulted in a complete defect in MMR. We then generated a series of truncation mutants bearing Mlh1 and Pms1 linker arms of varying lengths. This work revealed that MMR is greatly compromised when portions of the Mlh1 linker are removed, whereas repair is less sensitive to truncation of the Pms1 linker arm. Purified complexes containing truncations in Mlh1 and Pms1 linker arms were analyzed and found to have differential defects in DNA binding that also correlated with the ability to form a ternary complex with Msh2-Msh6 and mismatch DNA. These observations are consistent with the unstructured linker domains of MLH proteins providing distinct interactions with DNA during MMR. PMID:22659005

  13. Stability and function of interdomain linker variants of glucoamylase 1 from Aspergillus niger.

    PubMed

    Sauer, J; Christensen, T; Frandsen, T P; Mirgorodskaya, E; McGuire, K A; Driguez, H; Roepstorff, P; Sigurskjold, B W; Svensson, B

    2001-08-07

    Several variants of glucoamylase 1 (GA1) from Aspergillus niger were created in which the highly O-glycosylated peptide (aa 468--508) connecting the (alpha/alpha)(6)-barrel catalytic domain and the starch binding domain was substituted at the gene level by equivalent segments of glucoamylases from Hormoconis resinae, Humicola grisea, and Rhizopus oryzae encoding 5, 19, and 36 amino acid residues. Variants were constructed in which the H. resinae linker was elongated by proline-rich sequences as this linker itself apparently was too short to allow formation of the corresponding protein variant. Size and isoelectric point of GA1 variants reflected differences in linker length, posttranslational modification, and net charge. While calculated polypeptide chain molecular masses for wild-type GA1, a nonnatural proline-rich linker variant, H. grisea, and R. oryzae linker variants were 65,784, 63,777, 63,912, and 65,614 Da, respectively, MALDI-TOF-MS gave values of 82,042, 73,800, 73,413, and 90,793 Da, respectively, where the latter value could partly be explained by an N-glycosylation site introduced near the linker C-terminus. The k(cat) and K(m) for hydrolysis of maltooligodextrins and soluble starch, and the rate of hydrolysis of barley starch granules were essentially the same for the variants as for wild-type GA1. beta-Cyclodextrin, acarbose, and two heterobidentate inhibitors were found by isothermal titration calorimetry to bind to the catalytic and starch binding domains of the linker variants, indicating that the function of the active site and the starch binding site was maintained. The stability of GA1 linker variants toward GdnHCl and heat, however, was reduced compared to wild-type.

  14. The C. elegans tailless/Tlx homolog nhr-67 regulates a stage-specific program of linker cell migration in male gonadogenesis.

    PubMed

    Kato, Mihoko; Sternberg, Paul W

    2009-12-01

    Cell migration is a common event during organogenesis, yet little is known about how migration is temporally coordinated with organ development. We are investigating stage-specific programs of cell migration using the linker cell (LC), a migratory cell crucial for male gonadogenesis of C. elegans. During the L3 and L4 larval stages of wild-type males, the LC undergoes changes in its position along the migratory route, in transcriptional regulation of the unc-5 netrin receptor and zmp-1 zinc matrix metalloprotease, and in cell morphology. We have identified the tailless homolog nhr-67 as a cell-autonomous, stage-specific regulator of timing in LC migration programs. In nhr-67-deficient animals, each of the L3 and L4 stage changes is either severely delayed or never occurs, yet LC development before the early L3 stage or after the mid-L4 stage occurs with normal timing. We propose that there is a basal migration program utilized throughout LC migration that is modified by stage-specific regulators such as nhr-67.

  15. Detection of protease activity by fluorescent protein FRET sensors: from computer simulation to live cells

    NASA Astrophysics Data System (ADS)

    Goryashchenko, Alexander S.; Khrenova, Maria G.; Savitsky, Alexander P.

    2018-04-01

    Förster resonance energy transfer (FRET) sensors are widely used for the detection of protease activity in vitro and in vivo. Usually they consist of a FRET pair connected with a polypeptide linker containing a specific cleavage site for the relevant protease. Use of the fluorescent proteins as components of the FRET pair allows genetic encoding of such sensors and solves the problem of their delivery into live cells and animals. There are several ways to improve the properties of such sensors, mainly to increase FRET efficiency and therefore the dynamic range. One of the ways to achieve this is to use a non-fluorescent chromoprotein as an acceptor. Molecular dynamic simulations may assist in the construction of linker structures connecting donor and acceptor molecules. Estimation of the orientation factor κ 2 can be obtained by methods based on quantum theory and combined quantum mechanics/molecular mechanics approaches. The linker can be structured by hydrophobic interactions, bringing it into a closed conformation that shortens the distance between donor and acceptor and, consequently, increases FRET efficiency. We analyzed the effects of different linker structures on the detection of caspase-3 activity using a non-fluorescent acceptor. Also we have constructed the Tb3+- TagRFP sensor in which a complex of the terbium ion and terbium-binding peptide is used as a donor. This allowed us to use the unique property of lanthanide ions—fluorescence lifetime up to milliseconds—to perform measurements with time delay and exclude the nanosecond-order fluorescence. Using our systems as a starting point, by changing the recognition site in the linker it is possible to perform imaging of different protease activity in vitro or in vivo.

  16. BAR domain proteins regulate Rho GTPase signaling.

    PubMed

    Aspenström, Pontus

    2014-01-01

    BAR proteins comprise a heterogeneous group of multi-domain proteins with diverse biological functions. The common denominator is the Bin-Amphiphysin-Rvs (BAR) domain that not only confers targeting to lipid bilayers, but also provides scaffolding to mold lipid membranes into concave or convex surfaces. This function of BAR proteins is an important determinant in the dynamic reconstruction of membrane vesicles, as well as of the plasma membrane. Several BAR proteins function as linkers between cytoskeletal regulation and membrane dynamics. These links are provided by direct interactions between BAR proteins and actin-nucleation-promoting factors of the Wiskott-Aldrich syndrome protein family and the Diaphanous-related formins. The Rho GTPases are key factors for orchestration of this intricate interplay. This review describes how BAR proteins regulate the activity of Rho GTPases, as well as how Rho GTPases regulate the function of BAR proteins. This mutual collaboration is a central factor in the regulation of vital cellular processes, such as cell migration, cytokinesis, intracellular transport, endocytosis, and exocytosis.

  17. Molecular dynamics-based model of VEGF-A and its heparin interactions.

    PubMed

    Uciechowska-Kaczmarzyk, Urszula; Babik, Sándor; Zsila, Ferenc; Bojarski, Krzysztof Kamil; Beke-Somfai, Tamás; Samsonov, Sergey A

    2018-06-01

    We present a computational model of the Vascular Endothelial Growth Factor (VEGF), an important regulator of blood vessels formation, which function is affected by its heparin interactions. Although structures of a receptor binding (RBD) and a heparin binding domain (HBD) of VEGF are known, there are structural data neither on the 12 amino acids interdomain linker nor on its complexes with heparin. We apply molecular docking and molecular dynamics techniques combined with circular dichroism spectroscopy to model the full structure of the dimeric VEGF and to propose putative molecular mechanisms underlying the function of VEGF/VEGF receptors/heparin system. We show that both the conformational flexibility of the linker and the formation of HBD-heparin-HBD sandwich-like structures regulate the mutual disposition of HBDs and so affect the VEGF-mediated signalling. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Identification of a missing link in the evolution of an enzyme into a transcriptional regulator.

    PubMed

    Durante-Rodríguez, Gonzalo; Mancheño, José Miguel; Rivas, Germán; Alfonso, Carlos; García, José Luis; Díaz, Eduardo; Carmona, Manuel

    2013-01-01

    The evolution of transcriptional regulators through the recruitment of DNA-binding domains by enzymes is a widely held notion. However, few experimental approaches have directly addressed this hypothesis. Here we report the reconstruction of a plausible pathway for the evolution of an enzyme into a transcriptional regulator. The BzdR protein is the prototype of a subfamily of prokaryotic transcriptional regulators that controls the expression of genes involved in the anaerobic degradation of benzoate. We have shown that BzdR consists of an N-terminal DNA-binding domain connected through a linker to a C-terminal effector-binding domain that shows significant identity to the shikimate kinase (SK). The construction of active synthetic BzdR-like regulators by fusing the DNA-binding domain of BzdR to the Escherichia coli SKI protein strongly supports the notion that an ancestral SK domain could have been involved in the evolutionary origin of BzdR. The loss of the enzymatic activity of the ancestral SK domain was essential for it to evolve as a regulatory domain in the current BzdR protein. This work also supports the view that enzymes precede the emergence of the regulatory systems that may control their expression.

  19. Architectural plasticity of AMPK revealed by electron microscopy and X-ray crystallography

    PubMed Central

    Ouyang, Yan; Zhu, Li; Li, Yifang; Guo, Miaomiao; Liu, Yang; Cheng, Jin; Zhao, Jing; Wu, Yi

    2016-01-01

    Mammalian AMP-activated protein kinase (AMPK) acts as an important sensor of cellular energy homeostasis related with AMP/ADP to ATP ratio. The overall architecture of AMPK has been determined in either homotrimer or monomer form by electron microscopy (EM) and X-ray crystallography successively. Accordingly proposed models have consistently revealed a key role of the α subunit linker in sensing adenosine nucleoside binding on the γ subunit and mediating allosteric regulation of kinase domain (KD) activity, whereas there are vital differences in orienting N-terminus of α subunit and locating carbohydrate-binding module (CBM) of β subunit. Given that Mg2+, an indispensable cofactor of AMPK was present in the EM sample preparation buffer however absent when forming crystals, here we carried out further reconstructions without Mg2+ to expectably inspect if this ion may contribute to this difference. However, no essential alteration has been found in this study compared to our early work. Further analyses indicate that the intra-molecular movement of the KD and CBM are most likely due to the flexible linkage of the disordered linkers with the rest portion as well as a contribution from the plasticity in the inter-molecular assembly mode, which might ulteriorly reveal an architectural complication of AMPK. PMID:27063142

  20. Targeting Prostate Cancer with Bifunctional Modulators of the Androgen Receptor

    DTIC Science & Technology

    2013-10-01

    linker lengths were prepared and assessed to determine the impact of linker length on the activity of the molecules. HEK293T cells were transfected as...M. Determination of...15 derivatives were determined experimentally by radiolabeled competition binding assays using an extract 16 from Hi5 insect cells expressing an N

  1. Synthesis and structure-activity relationships of varied ether linker analogues of the antitubercular drug (6S)-2-nitro-6-{[4-(trifluoromethoxy)benzyl]oxy}-6,7-dihydro-5h-imidazo[2,1-b][1,3]oxazine (PA-824).

    PubMed

    Thompson, Andrew M; Sutherland, Hamish S; Palmer, Brian D; Kmentova, Iveta; Blaser, Adrian; Franzblau, Scott G; Wan, Baojie; Wang, Yuehong; Ma, Zhenkun; Denny, William A

    2011-10-13

    New analogues of antitubercular drug PA-824 were synthesized, featuring alternative side chain ether linkers of varying size and flexibility, seeking drug candidates with enhanced metabolic stability and high efficacy. Both α-methyl substitution and removal of the benzylic methylene were broadly tolerated in vitro, with a biaryl example of the latter class exhibiting an 8-fold better efficacy than the parent drug in a mouse model of acute Mycobacterium tuberculosis infection and negligible fragmentation to an alcohol metabolite in liver microsomes. Extended linkers (notably propenyloxy, propynyloxy, and pentynyloxy) provided greater potencies against replicating M. tb (monoaryl analogues), with propynyl ethers being most effective under anaerobic (nonreplicating) conditions (mono/biaryl analogues). For benzyloxybenzyl and biaryl derivatives, aerobic activity was maximal with the original (OCH(2)) linker. One propynyloxy-linked compound displayed an 89-fold higher efficacy than the parent drug in the acute model, and it was slightly superior to antitubercular drug OPC-67683 in a chronic infection model.

  2. Tyrosine Residues from the S4-S5 Linker of Kv11.1 Channels Are Critical for Slow Deactivation.

    PubMed

    Ng, Chai-Ann; Gravel, Andrée E; Perry, Matthew D; Arnold, Alexandre A; Marcotte, Isabelle; Vandenberg, Jamie I

    2016-08-12

    Slow deactivation of Kv11.1 channels is critical for its function in the heart. The S4-S5 linker, which joins the voltage sensor and pore domains, plays a critical role in this slow deactivation gating. Here, we use NMR spectroscopy to identify the membrane-bound surface of the S4S5 linker, and we show that two highly conserved tyrosine residues within the KCNH subfamily of channels are membrane-associated. Site-directed mutagenesis and electrophysiological analysis indicates that Tyr-542 interacts with both the pore domain and voltage sensor residues to stabilize activated conformations of the channel, whereas Tyr-545 contributes to the slow kinetics of deactivation by primarily stabilizing the transition state between the activated and closed states. Thus, the two tyrosine residues in the Kv11.1 S4S5 linker play critical but distinct roles in the slow deactivation phenotype, which is a hallmark of Kv11.1 channels. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. A Histidine pH sensor regulates activation of the Ras-specific guanine nucleotide exchange factor RasGRP1.

    PubMed

    Vercoulen, Yvonne; Kondo, Yasushi; Iwig, Jeffrey S; Janssen, Axel B; White, Katharine A; Amini, Mojtaba; Barber, Diane L; Kuriyan, John; Roose, Jeroen P

    2017-09-27

    RasGRPs are guanine nucleotide exchange factors that are specific for Ras or Rap, and are important regulators of cellular signaling. Aberrant expression or mutation of RasGRPs results in disease. An analysis of RasGRP1 SNP variants led to the conclusion that the charge of His 212 in RasGRP1 alters signaling activity and plasma membrane recruitment, indicating that His 212 is a pH sensor that alters the balance between the inactive and active forms of RasGRP1. To understand the structural basis for this effect we compared the structure of autoinhibited RasGRP1, determined previously, to those of active RasGRP4:H-Ras and RasGRP2:Rap1b complexes. The transition from the autoinhibited to the active form of RasGRP1 involves the rearrangement of an inter-domain linker that displaces inhibitory inter-domain interactions. His 212 is located at the fulcrum of these conformational changes, and structural features in its vicinity are consistent with its function as a pH-dependent switch.

  4. Cross-talk between ERK MAP kinase and Smad signaling pathways enhances TGF-beta-dependent responses in human mesangial cells.

    PubMed

    Hayashida, Tomoko; Decaestecker, Mark; Schnaper, H William

    2003-08-01

    Transforming growth factor beta (TGF-beta) stimulates renal cell fibrogenesis by a poorly understood mechanism. Previously, we suggested a synergy between TGF-beta1 activated extracellular signal-regulated kinase (ERK) and Smad signaling in collagen production by human glomerular mesangial cells. In a heterologous DNA binding transcription assay, biochemical or dominant-negative ERK blockade reduced TGF-beta1 induced Smad3 activity. Total serine phosphorylation of Smad2/3, but not phosphorylation of the C-terminal SS(P)XS(P) motif, was decreased by pretreatment with the MEK/ERK inhibitors, PD98059 (10 microM) or U0126 (25 microM). This effect was not seen in the mouse mammary epithelial NMuMG cell line, indicating that ERK-dependent activation of Smad2/3 occurs only in certain cell types. TGF-beta stimulated phosphorylation of an expressed Smad3A construct, with a mutated C-terminal SS(P)XS(P) motif, was reduced by a MEK/ERK inhibitor. In contrast, MEK/ERK inhibition did not affect phosphorylation of a Smad3 construct mutated at consensus phosphorylation sites in the linker region (Smad3EPSM). Constitutively active MEK (caMEK) induced alpha2(I) collagen promoter activity, an effect blocked by co-transfected Smad3EPSM, but not Smad3A. The effects of caMEK and TGF-beta1 on collagen promoter activity were additive. These results indicate that ERK-dependent R-Smad linker region phosphorylation enhances collagen I synthesis and imply positive cross talk between the ERK and Smad pathways in human mesangial cells.

  5. Family-specific Kinesin Structures Reveal Neck-linker Length Based on Initiation of the Coiled-coil*

    PubMed Central

    Phillips, Rebecca K.; Peter, Logan G.; Gilbert, Susan P.

    2016-01-01

    Kinesin-1, -2, -5, and -7 generate processive hand-over-hand 8-nm steps to transport intracellular cargoes toward the microtubule plus end. This processive motility requires gating mechanisms to coordinate the mechanochemical cycles of the two motor heads to sustain the processive run. A key structural element believed to regulate the degree of processivity is the neck-linker, a short peptide of 12–18 residues, which connects the motor domain to its coiled-coil stalk. Although a shorter neck-linker has been correlated with longer run lengths, the structural data to support this hypothesis have been lacking. To test this hypothesis, seven kinesin structures were determined by x-ray crystallography. Each included the neck-linker motif, followed by helix α7 that constitutes the start of the coiled-coil stalk. In the majority of the structures, the neck-linker length differed from predictions because helix α7, which initiates the coiled-coil, started earlier in the sequence than predicted. A further examination of structures in the Protein Data Bank reveals that there is a great disparity between the predicted and observed starting residues. This suggests that an accurate prediction of the start of a coiled-coil is currently difficult to achieve. These results are significant because they now exclude simple comparisons between members of the kinesin superfamily and add a further layer of complexity when interpreting the results of mutagenesis or protein fusion. They also re-emphasize the need to consider factors beyond the kinesin neck-linker motif when attempting to understand how inter-head communication is tuned to achieve the degree of processivity required for cellular function. PMID:27462072

  6. A Series of Robust Copper-Based Triazolyl Isophthalate MOFs: Impact of Linker Functionalization on Gas Sorption and Catalytic Activity †

    PubMed Central

    Junghans, Ulrike; Kobalz, Merten; Erhart, Oliver; Preißler, Hannes; Lincke, Jörg; Möllmer, Jens; Krautscheid, Harald; Gläser, Roger

    2017-01-01

    The synthesis and characterization of an isomorphous series of copper-containing microporous metal-organic frameworks (MOFs) based on triazolyl isophthalate linkers with the general formula ∞3[Cu4(μ3-OH)2(R1-R2-trz-ia)3(H2O)x] are presented. Through size adjustment of the alkyl substituents R1 and/or R2 at the linker, the impact of linker functionalization on structure-property relationships was studied. Due to the arrangement of the substituents towards the cavities, the porosity (pore fraction 28%–39%), as well as the pore size can be adjusted by the size of the substituents of the triazole ring. Thermal analysis and temperature-dependent PXRD studies reveal a thermal stability of the MOFs up to 230 °C due to increasing framework stability through fine-tuning of the linker substitution pattern. Adsorption of CO2 (298 K) shows a decreasing maximum loading with increasing steric demand of the substituents of the triazole ring. Furthermore, the selective oxidation of cyclohexene with tert-butyl hydroperoxide (TBHP) is studied over the MOFs at 323 K in liquid chloroform. The catalytic activity increases with the steric demand of the substituents. Additionally, these isomorphous MOFs exhibit considerable robustness under oxidizing conditions confirmed by CO2 adsorption studies, as well as by the catalytic selective oxidation experiments. PMID:28772698

  7. A double tyrosine motif in the cardiac sodium channel domain III-IV linker couples calcium-dependent calmodulin binding to inactivation gating.

    PubMed

    Sarhan, Maen F; Van Petegem, Filip; Ahern, Christopher A

    2009-11-27

    Voltage-gated sodium channels maintain the electrical cadence and stability of neurons and muscle cells by selectively controlling the transmembrane passage of their namesake ion. The degree to which these channels contribute to cellular excitability can be managed therapeutically or fine-tuned by endogenous ligands. Intracellular calcium, for instance, modulates sodium channel inactivation, the process by which sodium conductance is negatively regulated. We explored the molecular basis for this effect by investigating the interaction between the ubiquitous calcium binding protein calmodulin (CaM) and the putative sodium channel inactivation gate composed of the cytosolic linker between homologous channel domains III and IV (DIII-IV). Experiments using isothermal titration calorimetry show that CaM binds to a novel double tyrosine motif in the center of the DIII-IV linker in a calcium-dependent manner, N-terminal to a region previously reported to be a CaM binding site. An alanine scan of aromatic residues in recombinant DIII-DIV linker peptides shows that whereas multiple side chains contribute to CaM binding, two tyrosines (Tyr(1494) and Tyr(1495)) play a crucial role in binding the CaM C-lobe. The functional relevance of these observations was then ascertained through electrophysiological measurement of sodium channel inactivation gating in the presence and absence of calcium. Experiments on patch-clamped transfected tsA201 cells show that only the Y1494A mutation of the five sites tested renders sodium channel steady-state inactivation insensitive to cytosolic calcium. The results demonstrate that calcium-dependent calmodulin binding to the sodium channel inactivation gate double tyrosine motif is required for calcium regulation of the cardiac sodium channel.

  8. The Hinge Region as a Key Regulatory Element of Androgen Receptor Dimerization, DNA Binding, and Transactivation

    DTIC Science & Technology

    2005-05-01

    an impaired activity (see report of 2003). We obtained an EGFP fusion from Dr. Karen Knudsen (Ohio University, Cincinatti) in which a Gly-Ala linker ... Smad3 after its acetylation. The mutation of this lysine to glutamine or threonine (mimics acetylation), when expressed in DU145 cells promoted cell...forms. A Gly-Ala linker between the two proteins is necessary, since a direct fusion protein was largely impaired in its activity (not shown). 6. The

  9. Hydrogen peroxide inhibits transforming growth factor-β1-induced cell cycle arrest by promoting Smad3 linker phosphorylation through activation of Akt-ERK1/2-linked signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jiyeon; Park, Seong Ji; Jo, Eun Ji

    2013-06-14

    Highlights: •H{sub 2}O{sub 2} inhibits TGF-β1-induced cell cycle arrest. •H{sub 2}O{sub 2} induces Smad3 linker phosphorylation through Akt-ERK1/2 pathway. •H{sub 2}O{sub 2}-mediated suppression of TGF-β signal requires Smad3 linker phosphorylation. •This is a first report about interplay between H{sub 2}O{sub 2} and growth inhibition pathway. -- Abstract: Hydrogen peroxide (H{sub 2}O{sub 2}) functions as a second messenger in growth factor receptor-mediated intracellular signaling cascade and is tumorigenic by virtue of its ability to promote cell proliferation; however, the mechanisms underlying the growth stimulatory action of H{sub 2}O{sub 2} are less understood. Here we report an important mechanism for antagonistic effectsmore » of H{sub 2}O{sub 2} on growth inhibitory response to transforming growth factor-β1 (TGF-β1). In Mv1Lu and HepG2 cells, pretreatment of H{sub 2}O{sub 2} (0.05–0.2 mM) completely blocked TGF-β1-mediated induction of p15{sup INK4B} expression and increase of its promoter activity. Interestingly, H{sub 2}O{sub 2} selectively suppressed the transcriptional activation potential of Smad3, not Smad2, in the absence of effects on TGF-β1-induced phosphorylation of the COOH-tail SSXS motif of Smad3 and its nuclear translocation. Mechanism studies showed that H{sub 2}O{sub 2} increases the phosphorylation of Smad3 at the middle linker region in a concentration- and time-dependent manner and this effect is mediated by activation of extracellular signal-activated kinase 1/2 through Akt. Furthermore, expression of a mutant Smad3 in which linker phosphorylation sites were ablated significantly abrogated the inhibitory effects of H{sub 2}O{sub 2} on TGF-β1-induced increase of p15{sup INK4B}-Luc reporter activity and blockade of cell cycle progression from G1 to S phase. These findings for the first time define H{sub 2}O{sub 2} as a signaling molecule that modulate Smad3 linker phosphorylation and its transcriptional activity, thus providing a potential mechanism whereby H{sub 2}O{sub 2} antagonizes the cytostatic function of TGF-β1.« less

  10. The measles virus phosphoprotein interacts with the linker domain of STAT1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devaux, Patricia, E-mail: devaux.patricia@mayo.edu; Priniski, Lauren; Cattaneo, Roberto

    2013-09-15

    The measles virus (MV) phosphoprotein (P) and V proteins block the interferon (IFN) response by impeding phosphorylation of the signal transducer and activator of transcription 1 (STAT1) by the Janus kinase 1 (JAK1). We characterized how STAT1 mutants interact with P and JAK1 phosphorylation. Certain mutants of the linker, the Src-homology 2 domain (SH2), or the transactivation domain had reduced or abolished phosphorylation through JAK1 after IFN treatment. Other mutants, mainly localized in the linker, failed to interact with P as documented by the lack of interference with nuclear translocation. Thus the functional footprint of P on STAT1 localizes mainlymore » to the linker domain; there is also some overlap with the STAT1 phosphorylation functional footprint on the SH2 domain. Based on these observations, we discuss how the MV-P might operate to inhibit the JAK/STAT pathway. - Highlights: • Residue in the linker and SH2 domains of STAT1 are important for MV-P interaction. • Residue in the linker and SH2 domains of STAT1 are important for STAT1 phosphorylation. • Residues interferring with both functions have similar location on STAT1. • The viral P and V proteins may operate in concert to inhibit the JAK/STAT pathway.« less

  11. Dynamically Coupled Residues within the SH2 Domain of FYN Are Key to Unlocking Its Activity.

    PubMed

    Huculeci, Radu; Cilia, Elisa; Lyczek, Agatha; Buts, Lieven; Houben, Klaartje; Seeliger, Markus A; van Nuland, Nico; Lenaerts, Tom

    2016-11-01

    Src kinase activity is controlled by various mechanisms involving a coordinated movement of kinase and regulatory domains. Notwithstanding the extensive knowledge related to the backbone dynamics, little is known about the more subtle side-chain dynamics within the regulatory domains and their role in the activation process. Here, we show through experimental methyl dynamic results and predicted changes in side-chain conformational couplings that the SH2 structure of Fyn contains a dynamic network capable of propagating binding information. We reveal that binding the phosphorylated tail of Fyn perturbs a residue cluster near the linker connecting the SH2 and SH3 domains of Fyn, which is known to be relevant in the regulation of the activity of Fyn. Biochemical perturbation experiments validate that those residues are essential for inhibition of Fyn, leading to a gain of function upon mutation. These findings reveal how side-chain dynamics may facilitate the allosteric regulation of the different members of the Src kinase family. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Locked and proteolysis-based transcription activator-like effector (TALE) regulation.

    PubMed

    Lonzarić, Jan; Lebar, Tina; Majerle, Andreja; Manček-Keber, Mateja; Jerala, Roman

    2016-02-18

    Development of orthogonal, designable and adjustable transcriptional regulators is an important goal of synthetic biology. Their activity has been typically modulated through stimulus-induced oligomerization or interaction between the DNA-binding and activation/repression domain. We exploited a feature of the designable Transcription activator-like effector (TALE) DNA-binding domain that it winds around the DNA which allows to topologically prevent it from binding by intramolecular cyclization. This new approach was investigated through noncovalent ligand-induced cyclization or through a covalent split intein cyclization strategy, where the topological inhibition of DNA binding by cyclization and its restoration by a proteolytic release of the topologic constraint was expected. We show that locked TALEs indeed have diminished DNA binding and regain full transcriptional activity by stimulation with the rapamycin ligand or site-specific proteolysis of the peptide linker, with much higher level of activation than rapamycin-induced heterodimerization. Additionally, we demonstrated reversibility, activation of genomic targets and implemented logic gates based on combinations of protein cyclization, proteolytic cleavage and ligand-induced dimerization, where the strongest fold induction was achieved by the proteolytic cleavage of a repression domain from a linear TALE. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Lis1 regulates dynein by sterically blocking its mechanochemical cycle

    PubMed Central

    Toropova, Katerina; Zou, Sirui; Roberts, Anthony J; Redwine, William B; Goodman, Brian S; Reck-Peterson, Samara L; Leschziner, Andres E

    2014-01-01

    Regulation of cytoplasmic dynein's motor activity is essential for diverse eukaryotic functions, including cell division, intracellular transport, and brain development. The dynein regulator Lis1 is known to keep dynein bound to microtubules; however, how this is accomplished mechanistically remains unknown. We have used three-dimensional electron microscopy, single-molecule imaging, biochemistry, and in vivo assays to help establish this mechanism. The three-dimensional structure of the dynein–Lis1 complex shows that binding of Lis1 to dynein's AAA+ ring sterically prevents dynein's main mechanical element, the ‘linker’, from completing its normal conformational cycle. Single-molecule experiments show that eliminating this block by shortening the linker to a point where it can physically bypass Lis1 renders single dynein motors insensitive to regulation by Lis1. Our data reveal that Lis1 keeps dynein in a persistent microtubule-bound state by directly blocking the progression of its mechanochemical cycle. DOI: http://dx.doi.org/10.7554/eLife.03372.001 PMID:25380312

  14. Dual delivery systems based on polyamine analog BENSpm as prodrug and gene delivery vectors

    NASA Astrophysics Data System (ADS)

    Zhu, Yu

    Combination drug and gene therapy shows promise in cancer treatment. However, the success of such strategy requires careful selection of the therapeutic agents, as well as development of efficient delivery vectors. BENSpm (N 1, N11-bisethylnorspermine), a polyamine analogue targeting the intracellular polyamine pathway, draws our special attention because of the following reasons: (1) polyamine pathway is frequently dysregulated in cancer; (2) BENSpm exhibits multiple functions to interfere with the polyamine pathway, such as to up-regulate polyamine metabolism enzymes and down-regulate polyamine biosynthesis enzymes. Therefore BENSpm depletes all natural polyamines and leads to apoptosis and cell growth inhibition in a wide range of cancers; (3) preclinical studies proved that BENSpm can act synergistically with various chemotherapy agents, making it a promising candidate in combination therapy; (4) multiple positive charges in BENSpm enable it as a suitable building block for cationic polymers, which can be further applied to gene delivery. In this dissertation, our goal was to design dual-function delivery vector based on BENSpm that can function as a gene delivery vector and, after intracellular degradation, as an active anticancer agent targeting dysregulated polyamine metabolism. We first demonstrated strong synergism between BENSpm and a potential therapeutic gene product TRAIL. Strong synergism was obtained in both estrogen-dependent MCF-7 breast cancer cells and triple-negative MDA-MB-231 breast cancer cells. Significant dose reduction of TRAIL in combination with BENSpm in MDA-MB-231 cells, together with the fact that BENSpm rendered MCF-7 cells more sensitive to TRAIL treatment verified our rationale of designing BENSpm-based delivery platform. This was expected to be beneficial for overcoming drug resistance in chemotherapy, as well as boosting the therapeutic effect of therapeutic genes. We first designed a lipid-based BENSpm dual vector (Lipo-SS-BEN) capable of intracellular release of BENSpm using thiolytically sensitive dithiobenzyl carbamate linker. Similar activity on SSAT enzyme induction by Lipo-SS-BEN compared with BENSpm free drug verified the success of this prodrug design. Biodegradability of Lipo-SS-BEN contributed to decreased toxicity compared with nondegradable control LipoBEN. However, decreased enhancement of TRAIL activity was observed for Lipo-SS-BEN when compared with BENSpm, indicating that the lipid-related toxicity diminished the synergism. In addition, compared with LipoBEN and DOTAP, decreased transfection efficiency of Lipo-SS-BEN demonstrated instability of Lipo-SS-BEN in extracellular environment. In order to design a dual delivery vector with reduced vector toxicity and improved linker stability, we employed dendritic polyglycerol (PG) as a safe carrier backbone, onto which BENSpm was conjugated through carbamate linkage (PG-BEN). Polymers with norspermine (PG-Nor) shell and amine-terminated PG (PG-NH2) were synthesized as controls. The BENSpm dual vector PG-BEN demonstrated superior gene delivery function, and showed decreased toxicity compared with the control polymers. However, compared with BENSpm, which depleted all natural polyamines, PG-BEN only down-regulated intracellular putrescine levels. In addition, no free BENSpm was detected in PG-BEN treated cells. These results suggested that in order to take full advantage of BENSpm anticancer activity, alternative linker chemistry needs to be further explored. We then incorporated bis(2-hydroxyethyl) disulfide as a self-immolative linker to synthesize polymer prodrugs of BENSpm (DSS-BEN). The proposed mechanism of BENSpm release from DSS-BEN contains two steps: disulfide bond is first cleaved in the reducing intracellular space, then the intermediate further undergoes slow intramolecular cyclization to release free BENSpm. Cell line-dependent BENSpm release after DSS-BEN treatment was observed using HPLC analysis, demonstrating the success of our linker strategy. DSS-BEN showed comparable transfection efficiency as polyethylenimine and showed decreased toxicity in several cell lines compared with the nondegradable control DCC-BEN. We further demonstrated that DSS-BEN could act synergistically with several therapeutic agents, making it a promising delivery platform for combination therapy in cancer. In all, we have successfully developed a dual delivery vector based on BENSpm, which fulfills its function as a gene delivery vector as well as a prodrug of BENSpm, and possesses synergistic potential to augment the effect of the co-delivered agents.

  15. The roles of RIIbeta linker and N-terminal cyclic nucleotide-binding domain in determining the unique structures of Type IIbeta Protein Kinase A. A small angle X-ray and neutron scattering study

    DOE PAGES

    Blumenthal, Donald K.; Copps, Jeffrey; Smith-Nguyen, Eric V.; ...

    2014-08-11

    Protein kinase A (PKA) is ubiquitously expressed and is responsible for regulating many important cellular functions in response to changes in intracellular cAMP concentrations. Moreover, the PKA holoenzyme is a tetramer (R 2:C 2), with a regulatory subunit homodimer (R 2) that binds and inhibits two catalytic (C) subunits; binding of cAMP to the regulatory subunit homodimer causes activation of the catalytic subunits. Four different R subunit isoforms exist in mammalian cells, and these confer different structural features, subcellular localization, and biochemical properties upon the PKA holoenzymes they form. The holoenzyme containing RIIβ is structurally unique in that the typemore » IIβ holoenzyme is much more compact than the free RIIβ homodimer. We have used small angle x-ray scattering and small angle neutron scattering to study the solution structure and subunit organization of a holoenzyme containing an RIIβ C-terminal deletion mutant (RIIβ(1–280)), which is missing the C-terminal cAMP-binding domain to better understand the structural organization of the type IIβ holoenzyme and the RIIβ domains that contribute to stabilizing the holoenzyme conformation. These results demonstrate that compaction of the type IIβ holoenzyme does not require the C-terminal cAMP-binding domain but rather involves large structural rearrangements within the linker and N-terminal cyclic nucleotide-binding domain of the RIIβ homodimer. The structural rearrangements are significantly greater than seen previously with RIIα and are likely to be important in mediating short range and long range interdomain and intersubunit interactions that uniquely regulate the activity of the type IIβ isoform of PKA.« less

  16. The roles of the RIIβ linker and N-terminal cyclic nucleotide-binding domain in determining the unique structures of the type IIβ protein kinase A: a small angle x-ray and neutron scattering study.

    PubMed

    Blumenthal, Donald K; Copps, Jeffrey; Smith-Nguyen, Eric V; Zhang, Ping; Heller, William T; Taylor, Susan S

    2014-10-10

    Protein kinase A (PKA) is ubiquitously expressed and is responsible for regulating many important cellular functions in response to changes in intracellular cAMP concentrations. The PKA holoenzyme is a tetramer (R2:C2), with a regulatory subunit homodimer (R2) that binds and inhibits two catalytic (C) subunits; binding of cAMP to the regulatory subunit homodimer causes activation of the catalytic subunits. Four different R subunit isoforms exist in mammalian cells, and these confer different structural features, subcellular localization, and biochemical properties upon the PKA holoenzymes they form. The holoenzyme containing RIIβ is structurally unique in that the type IIβ holoenzyme is much more compact than the free RIIβ homodimer. We have used small angle x-ray scattering and small angle neutron scattering to study the solution structure and subunit organization of a holoenzyme containing an RIIβ C-terminal deletion mutant (RIIβ(1-280)), which is missing the C-terminal cAMP-binding domain to better understand the structural organization of the type IIβ holoenzyme and the RIIβ domains that contribute to stabilizing the holoenzyme conformation. Our results demonstrate that compaction of the type IIβ holoenzyme does not require the C-terminal cAMP-binding domain but rather involves large structural rearrangements within the linker and N-terminal cyclic nucleotide-binding domain of the RIIβ homodimer. The structural rearrangements are significantly greater than seen previously with RIIα and are likely to be important in mediating short range and long range interdomain and intersubunit interactions that uniquely regulate the activity of the type IIβ isoform of PKA. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Lamins at the crossroads of mechanosignaling

    PubMed Central

    Osmanagic-Myers, Selma; Dechat, Thomas

    2015-01-01

    The intermediate filament proteins, A- and B-type lamins, form the nuclear lamina scaffold adjacent to the inner nuclear membrane. B-type lamins confer elasticity, while A-type lamins lend viscosity and stiffness to nuclei. Lamins also contribute to chromatin regulation and various signaling pathways affecting gene expression. The mechanical roles of lamins and their functions in gene regulation are often viewed as independent activities, but recent findings suggest a highly cross-linked and interdependent regulation of these different functions, particularly in mechanosignaling. In this newly emerging concept, lamins act as a “mechanostat” that senses forces from outside and responds to tension by reinforcing the cytoskeleton and the extracellular matrix. A-type lamins, emerin, and the linker of the nucleoskeleton and cytoskeleton (LINC) complex directly transmit forces from the extracellular matrix into the nucleus. These mechanical forces lead to changes in the molecular structure, modification, and assembly state of A-type lamins. This in turn activates a tension-induced “inside-out signaling” through which the nucleus feeds back to the cytoskeleton and the extracellular matrix to balance outside and inside forces. These functions regulate differentiation and may be impaired in lamin-linked diseases, leading to cellular phenotypes, particularly in mechanical load-bearing tissues. PMID:25644599

  18. Liquid droplets of cross-linked actin filaments

    NASA Astrophysics Data System (ADS)

    Weirich, Kimberly; Banerjee, Shiladitya; Dasbiswas, Kinjal; Vaikuntanathan, Suriyanarayan; Gardel, Margaret

    Soft materials constructed from biomolecules self-assemble into a myriad of structures that work in concert to support cell physiology. One critical soft material is the actin cytoskeleton, a viscoelastic gel composed of cross-linked actin filaments. Although actin networks are primarily known for their elastic properties, which are crucial to regulating cell mechanics, the viscous behavior has been theorized to enable shape changes and flows. We experimentally demonstrate a fluid phase of cross-linked actin, where cross-linker condenses dilute short actin filaments into spindle-shaped droplets, or tactoids. Tactoids have shape dynamics consistent with a continuum model of liquid crystal droplets. The cross-linker, which acts as a long range attractive interaction, analogous to molecular cohesion, controls the tactoid shape and dynamics, which reports on the liquid's interfacial tension and viscosity. We investigate how the cross-linker properties and filament length influence the liquid properties. These results demonstrate a novel mechanism to control organization of the actin cytoskeleton and provide insight into design principles for complex, macromolecular liquid phases.

  19. Diverse functions of myosin VI elucidated by an isoform-specific α-helix domain

    PubMed Central

    Magistrati, Elisa; Molteni, Erika; Lupia, Michela; Soffientini, Paolo; Rottner, Klemens; Cavallaro, Ugo; Pozzoli, Uberto; Mapelli, Marina; Walters, Kylie J.; Polo, Simona

    2016-01-01

    Myosin VI functions in endocytosis and cell motility. Alternative splicing of myosin VI mRNA generates two distinct isoform types, myosin VIshort and myosin VIlong, which differ in the C-terminal region. Their physiological and pathological role remains unknown. Here we identified an isoform-specific regulatory helix, named α2-linker that defines specific conformations and hence determines the target selectivity of human myosin VI. The presence of the α2-linker structurally defines a novel clathrin-binding domain that is unique to myosin VIlong and masks the known RRL interaction motif. This finding is relevant to ovarian cancer, where alternative myosin VI splicing is aberrantly regulated, and exon skipping dictates cell addiction to myosin VIshort for tumor cell migration. The RRL interactor optineurin contributes to this process by selectively binding myosin VIshort. Thus the α2-linker acts like a molecular switch that assigns myosin VI to distinct endocytic (myosin VIlong) or migratory (myosin VIshort) functional roles. PMID:26950368

  20. Diverse functions of myosin VI elucidated by an isoform-specific α-helix domain.

    PubMed

    Wollscheid, Hans-Peter; Biancospino, Matteo; He, Fahu; Magistrati, Elisa; Molteni, Erika; Lupia, Michela; Soffientini, Paolo; Rottner, Klemens; Cavallaro, Ugo; Pozzoli, Uberto; Mapelli, Marina; Walters, Kylie J; Polo, Simona

    2016-04-01

    Myosin VI functions in endocytosis and cell motility. Alternative splicing of myosin VI mRNA generates two distinct isoform types, myosin VI(short) and myosin VI(long), which differ in the C-terminal region. Their physiological and pathological roles remain unknown. Here we identified an isoform-specific regulatory helix, named the α2-linker, that defines specific conformations and hence determines the target selectivity of human myosin VI. The presence of the α2-linker structurally defines a new clathrin-binding domain that is unique to myosin VI(long) and masks the known RRL interaction motif. This finding is relevant to ovarian cancer, in which alternative myosin VI splicing is aberrantly regulated, and exon skipping dictates cell addiction to myosin VI(short) in tumor-cell migration. The RRL interactor optineurin contributes to this process by selectively binding myosin VI(short). Thus, the α2-linker acts like a molecular switch that assigns myosin VI to distinct endocytic (myosin VI(long)) or migratory (myosin VI(short)) functional roles.

  1. TGF-β induces fascin expression in gastric cancer via phosphorylation of smad3 linker area.

    PubMed

    Li, Liling; Cao, Fang; Liu, Baoan; Luo, Xiaojuan; Ma, Xin; Hu, Zhongliang

    2015-01-01

    Fascin is an actin-bundling protein critical for tumor invasion. TGF-β could induce fascin expression in gastric cancer cells. In this study, we attempted to explore the role of p-smad3L in the expression of fascin induced by TGF-β in gastric cancer cells. Pseudopodia were evaluated by immunofluorescence. Fascin expression was detected by RT-PCR and western blot. Smad3 siRNA was used to repress the endogenous smad3. The phosphorylations of smad3 linker region at sites s204, s208 and s213 were detected by western blot. The fascin promoter reporter activity was measured by dual luciferase assay. TGF-β could increase the formation of pseudopodia and the expression of fascin in gastric cancer cells. Smad3 depletion abrogated the expression of fascin induced by TGF-β. The phosphorylation of smad3 linker region at serine 204, 208 and 213 was enhanced in gastric cancer cells after TGF-β treatment. The fascin promoter reporter activity was significantly enhanced with TGF-β treatment in both wild-type Smad3 group and Smad3EPSM group (P<0.05). Furthermore, the fascin promoter reporter activity in the wild-type Smad3 transfectant cells was significantly higher than that in Smad3EPSM cells (P<0.05). fascin expression induced by TGF-β depends on smad3, at least in part, depends on smad3 linker phosphorylation.

  2. Dynamics differentiate between active and inactive inteins

    PubMed Central

    Cronin, Melissa; Coolbaugh, Michael J; Nellis, David; Zhu, Jianwei; Wood, David W.; Nussinov, Ruth; Ma, Buyong

    2014-01-01

    The balance between stability and dynamics for active enzymes can be somewhat quantified by studies of intein splicing and cleaving reactions. Inteins catalyze the ligation of flanking host exteins while excising themselves. The potential for applications led to engineering of a mini-intein splicing domain, where the homing endonuclease domain of the Mycobacterium tuberculosis RecA (Mtu recA) intein was removed. The remaining domains were linked by several short peptides, but splicing activity in all was substantially lower than the full-length intein. Native splicing activity was restored in some cases by a V67L mutation. Using computations and experiments, we examine the impact of this mutation on the stability and conformational dynamics of the mini-intein splicing domain. Molecular dynamics simulations were used to delineate the factors that determine the active state, including the V67L mini-intein mutant, and peptide linker. We found that (1) the V67L mutation lowers the global fluctuations in all modeled mini-inteins, stabilizing the mini-intein constructs; (2) the connecting linker length affects intein dynamics; and (3) the flexibilities of the linker and intein core are higher in the active structure. We have observed that the interaction of the linker region and a turn region around residues 35-41 provides the pathway for the allostery interaction. Our experiments reveal that intein catalysis is characterized by non-linear Arrhenius plot, confirming the significant contribution of protein conformational dynamics to intein function. We conclude that while the V67L mutation stabilizes the global structure, cooperative dynamics of all intein regions appear more important for intein function than high stability. Our studies suggest that effectively quenching the conformational dynamics of an intein through engineered allosteric interactions could deactivate intein splicing or cleaving. PMID:25087201

  3. Two-state dynamics of the SH3-SH2 tandem of Abl kinase and the allosteric role of the N-cap.

    PubMed

    Corbi-Verge, Carles; Marinelli, Fabrizio; Zafra-Ruano, Ana; Ruiz-Sanz, Javier; Luque, Irene; Faraldo-Gómez, José D

    2013-09-03

    The regulation and localization of signaling enzymes is often mediated by accessory modular domains, which frequently function in tandems. The ability of these tandems to adopt multiple conformations is as important for proper regulation as the individual domain specificity. A paradigmatic example is Abl, a ubiquitous tyrosine kinase of significant pharmacological interest. SH3 and SH2 domains inhibit Abl by assembling onto the catalytic domain, allosterically clamping it in an inactive state. We investigate the dynamics of this SH3-SH2 tandem, using microsecond all-atom simulations and differential scanning calorimetry. Our results indicate that the Abl tandem is a two-state switch, alternating between the conformation observed in the structure of the autoinhibited enzyme and another configuration that is consistent with existing scattering data for an activated form. Intriguingly, we find that the latter is the most probable when the tandem is disengaged from the catalytic domain. Nevertheless, an amino acid stretch preceding the SH3 domain, the so-called N-cap, reshapes the free-energy landscape of the tandem and favors the interaction of this domain with the SH2-kinase linker, an intermediate step necessary for assembly of the autoinhibited complex. This allosteric effect arises from interactions between N-cap and the SH2 domain and SH3-SH2 connector, which involve a phosphorylation site. We also show that the SH3-SH2 connector plays a determinant role in the assembly equilibrium of Abl, because mutations thereof hinder the engagement of the SH2-kinase linker. These results provide a thermodynamic rationale for the involvement of N-cap and SH3-SH2 connector in Abl regulation and expand our understanding of the principles of modular domain organization.

  4. A novel bio-orthogonal cross-linker for improved protein/protein interaction analysis.

    PubMed

    Nury, Catherine; Redeker, Virginie; Dautrey, Sébastien; Romieu, Anthony; van der Rest, Guillaume; Renard, Pierre-Yves; Melki, Ronald; Chamot-Rooke, Julia

    2015-02-03

    The variety of protein cross-linkers developed in recent years illustrates the current requirement for efficient reagents optimized for mass spectrometry (MS) analysis. To date, the most widely used strategy relies on commercial cross-linkers that bear an isotopically labeled tag and N-hydroxysuccinimid-ester (NHS-ester) moieties. Moreover, an enrichment step using liquid chromatography is usually performed after enzymatic digestion of the cross-linked proteins. Unfortunately, this approach suffers from several limitations. First, it requires large amounts of proteins. Second, NHS-ester cross-linkers are poorly efficient because of their fast hydrolysis in water. Finally, data analysis is complicated because of uneven fragmentation of complex isotopic cross-linked peptide mixtures. We therefore synthesized a new type of trifunctional cross-linker to overrule these limitations. This reagent, named NNP9, comprises a rigid core and bears two activated carbamate moieties and an azido group. NNP9 was used to establish intra- and intermolecular cross-links within creatine kinase, then to map the interaction surfaces between α-Synuclein (α-Syn), the aggregation of which leads to Parkinson's disease, and the molecular chaperone Hsc70. We show that NNP9 cross-linking efficiency is significantly higher than that of NHS-ester commercial cross-linkers. The number of cross-linked peptides identified was increased, and a high quality of MS/MS spectra leading to high sequence coverage was observed. Our data demonstrate the potential of NNP9 for an efficient and straightforward characterization of protein-protein interfaces and illustrate the power of using different cross-linkers to map thoroughly the surface interfaces within protein complexes.

  5. Auto-inhibition and phosphorylation-induced activation of PLC-γ isozymes

    PubMed Central

    Hajicek, Nicole; Charpentier, Thomas H.; Rush, Jeremy R.; Harden, T. Kendall; Sondek, John

    2013-01-01

    Multiple extracellular stimuli, such as growth factors and antigens, initiate signaling cascades through tyrosine phosphorylation and activation of phospholipase C (PLC)-γ isozymes. Like most other PLCs, PLC-γ1 is basally auto-inhibited by its X-Y linker, which separates the X-and Y-boxes of the catalytic core. The C-terminal SH2 (cSH2) domain within the X-Y linker is the critical determinant for auto-inhibition of phospholipase activity. Release of auto-inhibition requires an intramolecular interaction between the cSH2 domain and a phosphorylated tyrosine, Tyr783, also located within the X-Y linker. The molecular mechanisms that mediate auto-inhibition and phosphorylation-induced activation have not been defined. Here, we describe structures of the cSH2 domain both alone and bound to a PLC-γ1 peptide encompassing phosphorylated Tyr783. The cSH2 domain remains largely unaltered by peptide engagement. Point mutations in the cSH2 domain located at the interface with the peptide were sufficient to constitutively activate PLC-γ1 suggesting that peptide engagement directly interferes with the capacity of the cSH2 domain to block the lipase active site. This idea is supported by mutations in a complimentary surface of the catalytic core that also enhanced phospholipase activity. PMID:23777354

  6. ε-Poly-l-Lysine Peptide Chain Length Regulated by the Linkers Connecting the Transmembrane Domains of ε-Poly-l-Lysine Synthetase

    PubMed Central

    Kito, Naoko; Kita, Akihiro; Imokawa, Yuuki; Yamanaka, Kazuya; Maruyama, Chitose; Katano, Hajime

    2014-01-01

    ε-Poly-l-lysine (ε-PL), consisting of 25 to 35 l-lysine residues with linkages between the α-carboxyl groups and ε-amino groups, is produced by Streptomyces albulus NBRC14147. ε-PL synthetase (Pls) is a membrane protein with six transmembrane domains (TM1 to TM6) as well as both an adenylation domain and a thiolation domain, characteristic of the nonribosomal peptide synthetases. Pls directly generates ε-PL chain length diversity (25- to 35-mer), but the processes that control the chain length of ε-PL during the polymerization reaction are still not fully understood. Here, we report on the identification of Pls amino acid residues involved in the regulation of the ε-PL chain length. From approximately 12,000 variants generated by random mutagenesis, we found 8 Pls variants that produced shorter chains of ε-PL. These variants have one or more mutations in two linker regions connecting the TM1 and TM2 domains and the TM3 and TM4 domains. In the Pls catalytic mechanism, the growing chain of ε-PL is not tethered to the enzyme, implying that the enzyme must hold the growing chain until the polymerization reaction is complete. Our findings reveal that the linker regions are important contributors to grasp the growing chain of ε-PL. PMID:24907331

  7. Carrier-free cellular uptake and the gene-silencing activity of the lipophilic siRNAs is strongly affected by the length of the linker between siRNA and lipophilic group.

    PubMed

    Petrova, Natalya S; Chernikov, Ivan V; Meschaninova, Mariya I; Dovydenko, Iiya S; Venyaminova, Aliya G; Zenkova, Marina A; Vlassov, Valentin V; Chernolovskaya, Elena L

    2012-03-01

    The conjugation of siRNA to molecules, which can be internalized into the cell via natural transport mechanisms, can result in the enhancement of siRNA cellular uptake. Herein, the carrier-free cellular uptake of nuclease-resistant anti-MDR1 siRNA equipped with lipophilic residues (cholesterol, lithocholic acid, oleyl alcohol and litocholic acid oleylamide) attached to the 5'-end of the sense strand via oligomethylene linker of various length was investigated. A convenient combination of H-phosphonate and phosphoramidite methods was developed for the synthesis of 5'-lipophilic conjugates of siRNAs. It was found that lipophilic siRNA are able to effectively penetrate into HEK293, HepG2 and KB-8-5 cancer cells when used in a micromolar concentration range. The efficiency of the uptake is dependent upon the type of lipophilic moiety, the length of the linker between the moiety and the siRNA and cell type. Among all the conjugates tested, the cholesterol-conjugated siRNAs with linkers containing from 6 to 10 carbon atoms demonstrate the optimal uptake and gene silencing properties: the shortening of the linker reduces the efficiency of the cellular uptake of siRNA conjugates, whereas the lengthening of the linker facilitates the uptake but retards the gene silencing effect and decreases the efficiency of the silencing.

  8. Phosphorylation status determines the opposing functions of Smad2/Smad3 as STAT3 cofactors in TH17 differentiation

    PubMed Central

    Yoon, Jeong-Hwan; Sudo, Katsuko; Kuroda, Masahiko; Kato, Mitsuyasu; Lee, In-Kyu; Han, Jin Soo; Nakae, Susumu; Imamura, Takeshi; Kim, Juryun; Ju, Ji Hyeon; Kim, Dae-Kee; Matsuzaki, Koichi; Weinstein, Michael; Matsumoto, Isao; Sumida, Takayuki; Mamura, Mizuko

    2015-01-01

    Transforming growth factor-β (TGF-β) and interleukin-6 (IL-6) are the pivotal cytokines to induce IL-17-producing CD4+ T helper cells (TH17); yet their signalling network remains largely unknown. Here we show that the highly homologous TGF-β receptor-regulated Smads (R-Smads): Smad2 and Smad3 oppositely modify STAT3-induced transcription of IL-17A and retinoic acid receptor-related orphan nuclear receptor, RORγt encoded by Rorc, by acting as a co-activator and co-repressor of STAT3, respectively. Smad2 linker phosphorylated by extracellular signal-regulated kinase (ERK) at the serine 255 residue interacts with STAT3 and p300 to transactivate, whereas carboxy-terminal unphosphorylated Smad3 interacts with STAT3 and protein inhibitor of activated STAT3 (PIAS3) to repress the Rorc and Il17a genes. Our work uncovers carboxy-terminal phosphorylation-independent noncanonical R-Smad–STAT3 signalling network in TH17 differentiation. PMID:26194464

  9. Phosphorylation status determines the opposing functions of Smad2/Smad3 as STAT3 cofactors in TH17 differentiation.

    PubMed

    Yoon, Jeong-Hwan; Sudo, Katsuko; Kuroda, Masahiko; Kato, Mitsuyasu; Lee, In-Kyu; Han, Jin Soo; Nakae, Susumu; Imamura, Takeshi; Kim, Juryun; Ju, Ji Hyeon; Kim, Dae-Kee; Matsuzaki, Koichi; Weinstein, Michael; Matsumoto, Isao; Sumida, Takayuki; Mamura, Mizuko

    2015-07-21

    Transforming growth factor-β (TGF-β) and interleukin-6 (IL-6) are the pivotal cytokines to induce IL-17-producing CD4(+) T helper cells (TH17); yet their signalling network remains largely unknown. Here we show that the highly homologous TGF-β receptor-regulated Smads (R-Smads): Smad2 and Smad3 oppositely modify STAT3-induced transcription of IL-17A and retinoic acid receptor-related orphan nuclear receptor, RORγt encoded by Rorc, by acting as a co-activator and co-repressor of STAT3, respectively. Smad2 linker phosphorylated by extracellular signal-regulated kinase (ERK) at the serine 255 residue interacts with STAT3 and p300 to transactivate, whereas carboxy-terminal unphosphorylated Smad3 interacts with STAT3 and protein inhibitor of activated STAT3 (PIAS3) to repress the Rorc and Il17a genes. Our work uncovers carboxy-terminal phosphorylation-independent noncanonical R-Smad-STAT3 signalling network in TH17 differentiation.

  10. Molecular networks linked by Moesin drive remodeling of the cell cortex during mitosis

    PubMed Central

    Roubinet, Chantal; Decelle, Barbara; Chicanne, Gaëtan; Dorn, Jonas F.; Payrastre, Bernard; Payre, François; Carreno, Sébastien

    2011-01-01

    The cortical mechanisms that drive the series of mitotic cell shape transformations remain elusive. In this paper, we identify two novel networks that collectively control the dynamic reorganization of the mitotic cortex. We demonstrate that Moesin, an actin/membrane linker, integrates these two networks to synergize the cortical forces that drive mitotic cell shape transformations. We find that the Pp1-87B phosphatase restricts high Moesin activity to early mitosis and down-regulates Moesin at the polar cortex, after anaphase onset. Overactivation of Moesin at the polar cortex impairs cell elongation and thus cytokinesis, whereas a transient recruitment of Moesin is required to retract polar blebs that allow cortical relaxation and dissipation of intracellular pressure. This fine balance of Moesin activity is further adjusted by Skittles and Pten, two enzymes that locally produce phosphoinositol 4,5-bisphosphate and thereby, regulate Moesin cortical association. These complementary pathways provide a spatiotemporal framework to explain how the cell cortex is remodeled throughout cell division. PMID:21969469

  11. Demonstrating In-Cell Target Engagement Using a Pirin Protein Degradation Probe (CCT367766)

    PubMed Central

    2017-01-01

    Demonstrating intracellular protein target engagement is an essential step in the development and progression of new chemical probes and potential small molecule therapeutics. However, this can be particularly challenging for poorly studied and noncatalytic proteins, as robust proximal biomarkers are rarely known. To confirm that our recently discovered chemical probe 1 (CCT251236) binds the putative transcription factor regulator pirin in living cells, we developed a heterobifunctional protein degradation probe. Focusing on linker design and physicochemical properties, we generated a highly active probe 16 (CCT367766) in only three iterations, validating our efficient strategy for degradation probe design against nonvalidated protein targets. PMID:29240418

  12. Matrix Metalloproteinase Responsive Delivery of Myostatin Inhibitors.

    PubMed

    Braun, Alexandra C; Gutmann, Marcus; Ebert, Regina; Jakob, Franz; Gieseler, Henning; Lühmann, Tessa; Meinel, Lorenz

    2017-01-01

    The inhibition of myostatin - a member of the transforming growth factor (TGF-β) family - drives regeneration of functional skeletal muscle tissue. We developed a bioresponsive drug delivery system (DDS) linking release of a myostatin inhibitor (MI) to inflammatory flares of myositis to provide self-regulated MI concentration gradients within tissues of need. A protease cleavable linker (PCL) - responding to MMP upregulation - is attached to the MI and site-specifically immobilized on microparticle surfaces. The PCL disintegrated in a matrix metalloproteinase (MMP) 1, 8, and particularly MMP-9 concentration dependent manner, with MMP-9 being an effective surrogate biomarker correlating with the activity of myositis. The bioactivity of particle-surface bound as well as released MI was confirmed by luciferase suppression in stably transfected HEK293 cells responding to myostatin induced SMAD phosphorylation. We developed a MMP-responsive DDS for MI delivery responding to inflammatory flare of a diseased muscle matching the kinetics of MMP-9 upregulation, with MMP-9 kinetics matching (patho-) physiological myostatin levels. ᅟ: Graphical Abstract Schematic illustration of the matrix metalloproteinase responsive delivery system responding to inflammatory flares of muscle disease. The protease cleavable linker readily disintegrates upon entry into the diseased tissue, therby releasing the mystatin inhibitor.

  13. Versatile synthesis and rational design of caged morpholinos.

    PubMed

    Ouyang, Xiaohu; Shestopalov, Ilya A; Sinha, Surajit; Zheng, Genhua; Pitt, Cameron L W; Li, Wen-Hong; Olson, Andrew J; Chen, James K

    2009-09-23

    Embryogenesis is regulated by genetic programs that are dynamically executed in a stereotypic manner, and deciphering these molecular mechanisms requires the ability to control embryonic gene function with similar spatial and temporal precision. Chemical technologies can enable such genetic manipulations, as exemplified by the use of caged morpholino (cMO) oligonucleotides to inactivate genes in zebrafish and other optically transparent organisms with spatiotemporal control. Here we report optimized methods for the design and synthesis of hairpin cMOs incorporating a dimethoxynitrobenzyl (DMNB)-based bifunctional linker that permits cMO assembly in only three steps from commercially available reagents. Using this simplified procedure, we have systematically prepared cMOs with differing structural configurations and investigated how the in vitro thermodynamic properties of these reagents correlate with their in vivo activities. Through these studies, we have established general principles for cMO design and successfully applied them to several developmental genes. Our optimized synthetic and design methodologies have also enabled us to prepare a next-generation cMO that contains a bromohydroxyquinoline (BHQ)-based linker for two-photon uncaging. Collectively, these advances establish the generality of cMO technologies and will facilitate the application of these chemical probes in vivo for functional genomic studies.

  14. Versatile Synthesis and Rational Design of Caged Morpholinos

    PubMed Central

    2009-01-01

    Embryogenesis is regulated by genetic programs that are dynamically executed in a stereotypic manner, and deciphering these molecular mechanisms requires the ability to control embryonic gene function with similar spatial and temporal precision. Chemical technologies can enable such genetic manipulations, as exemplified by the use of caged morpholino (cMO) oligonucleotides to inactivate genes in zebrafish and other optically transparent organisms with spatiotemporal control. Here we report optimized methods for the design and synthesis of hairpin cMOs incorporating a dimethoxynitrobenzyl (DMNB)-based bifunctional linker that permits cMO assembly in only three steps from commercially available reagents. Using this simplified procedure, we have systematically prepared cMOs with differing structural configurations and investigated how the in vitro thermodynamic properties of these reagents correlate with their in vivo activities. Through these studies, we have established general principles for cMO design and successfully applied them to several developmental genes. Our optimized synthetic and design methodologies have also enabled us to prepare a next-generation cMO that contains a bromohydroxyquinoline (BHQ)-based linker for two-photon uncaging. Collectively, these advances establish the generality of cMO technologies and will facilitate the application of these chemical probes in vivo for functional genomic studies. PMID:19708646

  15. The Phospholipase C Isozymes and Their Regulation

    PubMed Central

    Gresset, Aurelie; Sondek, John

    2013-01-01

    The physiological effects of many extracellular neurotransmitters, hormones, growth factors, and other stimuli are mediated by receptor-promoted activation of phospholipase C (PLC) and consequential activation of inositol lipid signaling pathways. These signaling responses include the classically described conversion of phosphatidylinositol(4,5)P2 to the Ca2+-mobilizing second messenger inositol(1,4,5)P3 and the protein kinase C-activating second messenger diacylglycerol as well as alterations in membrane association or activity of many proteins that harbor phosphoinositide binding domains. The 13 mammalian PLCs elaborate a minimal catalytic core typified by PLC-δ to confer multiple modes of regulation of lipase activity. PLC-β isozymes are activated by Gαq- and Gβγ-subunits of heterotrimeric G proteins, and activation of PLC-γ isozymes occurs through phosphorylation promoted by receptor and non-receptor tyrosine kinases. PLC-ε and certain members of the PLC-β and PLC-γ subclasses of isozymes are activated by direct binding of small G proteins of the Ras, Rho, and Rac subfamilies of GTPases. Recent high resolution three dimensional structures together with biochemical studies have illustrated that the X/Y linker region of the catalytic core mediates autoinhibition of most if not all PLC isozymes. Activation occurs as a consequence of removal of this autoinhibition. PMID:22403074

  16. Discovery of aliphatic-chain hydroxamates containing indole derivatives with potent class I histone deacetylase inhibitory activities.

    PubMed

    Chao, Shi-Wei; Chen, Liang-Chieh; Yu, Chia-Chun; Liu, Chang-Yi; Lin, Tony Eight; Guh, Jih-Hwa; Wang, Chen-Yu; Chen, Chun-Yung; Hsu, Kai-Cheng; Huang, Wei-Jan

    2018-01-01

    Histone deacetylase (HDAC) is a validated drug target for various diseases. This study combined indole recognition cap with SAHA, an FDA-approved HDAC inhibitor used to treat cutaneous T-cell lymphoma (CTCL). The structure activity relationship of the resulting compounds that inhibited HDAC was disclosed as well. Some compounds exhibited much stronger inhibitory activities than SAHA. We identified two meta-series compounds 6j and 6k with a two-carbon linker had IC 50 values of 3.9 and 4.5 nM for HDAC1, respectively. In contrast, the same oriented compounds with longer carbon chain linkers showed weaker inhibition. The result suggests that the linker chain length greatly contributed to enzyme inhibitory potency. In addition, comparison of enzyme-inhibiting activity between the compounds and SAHA showed that compounds 6j and 6k displayed higher inhibiting activity for class I (HDAC1, -2, -3 and -8). The molecular docking and structure analysis revealed structural differences with the inhibitor cap and metal-binding regions between the HDAC isozymes that affect interactions with the inhibitors and play a key role for selectivity. Further biological evaluation showed multiple cellular effects associated with compounds 6j- and 6k-induced HDAC inhibitory activity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. A mechanism for acetylcholine receptor gating based on structure, coupling, phi, and flip.

    PubMed

    Gupta, Shaweta; Chakraborty, Srirupa; Vij, Ridhima; Auerbach, Anthony

    2017-01-01

    Nicotinic acetylcholine receptors are allosteric proteins that generate membrane currents by isomerizing ("gating") between resting and active conformations under the influence of neurotransmitters. Here, to explore the mechanisms that link the transmitter-binding sites (TBSs) with the distant gate, we use mutant cycle analyses to measure coupling between residue pairs, phi value analyses to sequence domain rearrangements, and current simulations to reproduce a microsecond shut component ("flip") apparent in single-channel recordings. Significant interactions between amino acids separated by >15 Å are rare; an exception is between the αM2-M3 linkers and the TBSs that are ∼30 Å apart. Linker residues also make significant, local interactions within and between subunits. Phi value analyses indicate that without agonists, the linker is the first region in the protein to reach the gating transition state. Together, the phi pattern and flip component suggest that a complete, resting↔active allosteric transition involves passage through four brief intermediate states, with brief shut events arising from sojourns in all or a subset. We derive energy landscapes for gating with and without agonists, and propose a structure-based model in which resting→active starts with spontaneous rearrangements of the M2-M3 linkers and TBSs. These conformational changes stabilize a twisted extracellular domain to promote transmembrane helix tilting, gate dilation, and the formation of a "bubble" that collapses to initiate ion conduction. The energy landscapes suggest that twisting is the most energetically unfavorable step in the resting→active conformational change and that the rate-limiting step in the reverse process is bubble formation. © 2017 Gupta et al.

  18. Structure-function analysis of Sua5 protein reveals novel functional motifs required for the biosynthesis of the universal t6A tRNA modification.

    PubMed

    Pichard-Kostuch, Adeline; Zhang, Wenhua; Liger, Dominique; Daugeron, Marie-Claire; Letoquart, Juliette; Li de la Sierra-Gallay, Ines; Forterre, Patrick; Collinet, Bruno; van Tilbeurgh, Herman; Basta, Tamara

    2018-04-12

    N6-threonyl-carbamoyl adenosine (t6A) is a universal tRNA modification found at position 37, next to the anticodon, in almost all tRNAs decoding ANN codons (where N = A, U, G or C). t6A stabilizes the codon-anticodon interaction and hence promotes translation fidelity. The first step of the biosynthesis of t6A, the production of threonyl-carbamoyl adenylate (TC-AMP), is catalyzed by the Sua5/TsaC family of enzymes. While TsaC is a single domain protein, Sua5 enzymes are composed of the TsaC-like domain, a linker and an extra domain called SUA5 of unknown function. In the present study, we report structure-function analysis of Pyrococcus abyssi Sua5 (Pa-Sua5). Crystallographic data revealed binding sites for bicarbonate substrate and pyrophosphate product. The linker of Pa-Sua5 forms a loop structure that folds into the active site gorge and closes it. Using structure-guided mutational analysis we established that the conserved sequence motifs in the linker and the domain-domain interface are essential for the function of Pa-Sua5. We propose that the linker participates actively in the biosynthesis of TC-AMP by binding to ATP/PPi and by stabilizing the N-carboxy-L-threonine intermediate. Hence, TsaC orthologs which lack such a linker and SUA5 domain use different mechanism for TC-AMP synthesis. Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  19. Bipyridine- and phenanthroline-based metal-organic frameworks for highly efficient and tandem catalytic organic transformations via directed C-H activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manna, Kuntal; Zhang, Teng; Greene, Francis X.

    2015-02-16

    We report here the synthesis of a series of robust and porous bipyridyl- and phenanthryl-based metal–organic frameworks (MOFs) of UiO topology (BPV-MOF, mBPV-MOF, and mPT-MOF) and their postsynthetic metalation to afford highly active single-site solid catalysts. While BPV-MOF was constructed from only bipyridyl-functionalized dicarboxylate linker, both mBPV- and mPT-MOF were built with a mixture of bipyridyl- or phenanthryl-functionalized and unfunctionalized dicarboxylate linkers. The postsynthetic metalation of these MOFs with [Ir(COD)(OMe)] 2 provided Ir-functionalized MOFs (BPV-MOF-Ir, mBPV-MOF-Ir, and mPT-MOF-Ir), which are highly active catalysts for tandem hydrosilylation of aryl ketones and aldehydes followed by dehydrogenative ortho-silylation of benzylicsilyl ethers as wellmore » as C–H borylation of arenes using B₂pin₂. Both mBPV-MOF-Ir and mPT-MOF-Ir catalysts displayed superior activities compared to BPV-MOF-Ir due to the presence of larger open channels in the mixed-linker MOFs. Impressively, mBPV-MOF-Ir exhibited high TONs of up to 17000 for C–H borylation reactions and was recycled more than 15 times. The mPT-MOF-Ir system is also active in catalyzing tandem dehydrosilylation/dehydrogenative cyclization of N-methylbenzyl amines to azasilolanes in the absence of a hydrogen acceptor. Importantly, MOF-Ir catalysts are significantly more active (up to 95 times) and stable than their homogeneous counterparts for all three reactions, strongly supporting the beneficial effects of active site isolation within MOFs. This work illustrates the ability to increase MOF open channel sizes by using the mixed linker approach and shows the enormous potential of developing highly active and robust single-site solid catalysts based on MOFs containing nitrogen-donor ligands for important organic transformations.« less

  20. Self-assembling complexes between binary mixtures of lipids with different linkers and nucleic acids promote universal mRNA, DNA and siRNA delivery.

    PubMed

    Colombani, Thibault; Peuziat, Pauline; Dallet, Laurence; Haudebourg, Thomas; Mével, Mathieu; Berchel, Mathieu; Lambert, Olivier; Habrant, Damien; Pitard, Bruno

    2017-03-10

    Protein expression and RNA interference require efficient delivery of DNA or mRNA and small double stranded RNA into cells, respectively. Although cationic lipids are the most commonly used synthetic delivery vectors, a clear need still exists for a better delivery of various types of nucleic acids molecules to improve their biological activity. To optimize the transfection efficiency, a molecular approach consisting in modifying the chemical structure of a given cationic lipid is usually performed, but an alternative strategy could rely on modulating the supramolecular assembly of lipidic lamellar phases sandwiching the nucleic acids molecules. To validate this new concept, we synthesized on one hand two paromomycin-based cationic lipids, with either an amide or a phosphoramide linker, and on the other hand two imidazole-based neutral lipids, having as well either an amide or a phosphoramide function as linker. Combinations of cationic and helper lipids containing the same amide or phosphoramide linkers led to the formation of homogeneous lamellar phases, while hybrid lamellar phases were obtained when the linkers on the cationic and helper lipids were different. Cryo-transmission electron microscopy and fluorescence experiments showed that liposomes/nucleic acids complexes resulting from the association of nucleic acids with hybrid lamellar phases led to complexes that were more stable in the extracellular compartment compared to those obtained with homogeneous systems. In addition, we observed that the most active supramolecular assemblies for the delivery of DNA, mRNA and siRNA were obtained when the cationic and helper lipids possess linkers of different natures. The results clearly show that this supramolecular strategy modulating the property of the lipidic lamellar phase constitutes a new approach for increasing the delivery of various types of nucleic acid molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Investigating the role of chain and linker length on the catalytic activity of an H 2 production catalyst containing a β-hairpin peptide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reback, Matthew L.; Ginovska, Bojana; Buchko, Garry W.

    Building on our recent report of an active H2 production catalyst [Ni(PPh2NProp-peptide)2]2+ (Prop=para-phenylpropionic acid, peptide (R10)=WIpPRWTGPR-NH2, p=D-proline, and P2N=1-aza-3,6-diphosphacycloheptane) that contains structured -hairpin peptides, here we investigate how H2 production is effected by: (1) the length of the hairpin (eight or ten residues) and (2) limiting the flexibility between the peptide and the core complex by altering the length of the linker: para-phenylpropionic acid (three carbons) or para-benzoic acid (one carbon). Reduction of the peptide chain length from ten to eight residues increases or maintains the catalytic current for H2 production for all complexes, suggesting a non-productive steric interaction atmore » longer peptide lengths. While the structure of the hairpin appears largely intact for the complexes, NMR data are consistent with differences in dynamic behavior which may contribute to the observed differences in catalytic activity. Molecular dynamics simulations demonstrate that complexes with a one-carbon linker have the desired effect of restricting the motion of the hairpin relative to the complex; however, the catalytic currents are significantly reduced compared to complexes containing a three-carbon linker as a result of the electron withdrawing nature of the -COOH group. These results demonstrate the complexity and interrelated nature of the outer coordination sphere on catalysis.« less

  2. TGF-β induces fascin expression in gastric cancer via phosphorylation of smad3 linker area

    PubMed Central

    Li, Liling; Cao, Fang; Liu, Baoan; Luo, Xiaojuan; Ma, Xin; Hu, Zhongliang

    2015-01-01

    Background: Fascin is an actin-bundling protein critical for tumor invasion. TGF-β could induce fascin expression in gastric cancer cells. In this study, we attempted to explore the role of p-smad3L in the expression of fascin induced by TGF-β in gastric cancer cells. Methods: Pseudopodia were evaluated by immunofluorescence. Fascin expression was detected by RT-PCR and western blot. Smad3 siRNA was used to repress the endogenous smad3. The phosphorylations of smad3 linker region at sites s204, s208 and s213 were detected by western blot. The fascin promoter reporter activity was measured by dual luciferase assay. Results: TGF-β could increase the formation of pseudopodia and the expression of fascin in gastric cancer cells. Smad3 depletion abrogated the expression of fascin induced by TGF-β. The phosphorylation of smad3 linker region at serine 204, 208 and 213 was enhanced in gastric cancer cells after TGF-β treatment. The fascin promoter reporter activity was significantly enhanced with TGF-β treatment in both wild-type Smad3 group and Smad3EPSM group (P<0.05). Furthermore, the fascin promoter reporter activity in the wild-type Smad3 transfectant cells was significantly higher than that in Smad3EPSM cells (P<0.05). Conclusions: fascin expression induced by TGF-β depends on smad3, at least in part, depends on smad3 linker phosphorylation. PMID:26269751

  3. Recognition of the bacterial alarmone ZMP through long-distance association of two RNA subdomains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Christopher P.; Ferré-D'Amaré, Adrian R.

    The bacterial alarmone 5-aminoimidazole-4-carboxamide riboside 5'-triphosphate (AICAR triphosphate or ZTP), derived from the monophosphorylated purine precursor ZMP, accumulates during folate starvation. ZTP regulates genes involved in purine and folate metabolism through a cognate riboswitch. The linker connecting this riboswitch's two subdomains varies in length by over 100 nucleotides. In this paper, we report the cocrystal structure of the Fusobacterium ulcerans riboswitch bound to ZMP, which spans the two subdomains whose interface also comprises a pseudoknot and ribose zipper. The riboswitch recognizes the carboxamide oxygen of ZMP through an unprecedented inner-sphere coordination with a Mg 2+ ion. We show that themore » affinity of the riboswitch for ZMP is modulated by the linker length. Notably, ZMP can simultaneously bind to the two subdomains even when they are synthesized as separate RNAs. Finally, the ZTP riboswitch demonstrates how specific small-molecule binding can drive association of distant noncoding-RNA domains to regulate gene expression.« less

  4. Recognition of the bacterial alarmone ZMP through long-distance association of two RNA subdomains

    DOE PAGES

    Jones, Christopher P.; Ferré-D'Amaré, Adrian R.

    2015-08-17

    The bacterial alarmone 5-aminoimidazole-4-carboxamide riboside 5'-triphosphate (AICAR triphosphate or ZTP), derived from the monophosphorylated purine precursor ZMP, accumulates during folate starvation. ZTP regulates genes involved in purine and folate metabolism through a cognate riboswitch. The linker connecting this riboswitch's two subdomains varies in length by over 100 nucleotides. In this paper, we report the cocrystal structure of the Fusobacterium ulcerans riboswitch bound to ZMP, which spans the two subdomains whose interface also comprises a pseudoknot and ribose zipper. The riboswitch recognizes the carboxamide oxygen of ZMP through an unprecedented inner-sphere coordination with a Mg 2+ ion. We show that themore » affinity of the riboswitch for ZMP is modulated by the linker length. Notably, ZMP can simultaneously bind to the two subdomains even when they are synthesized as separate RNAs. Finally, the ZTP riboswitch demonstrates how specific small-molecule binding can drive association of distant noncoding-RNA domains to regulate gene expression.« less

  5. Distinct mechanisms of a phosphotyrosyl peptide binding to two SH2 domains.

    PubMed

    Pang, Xiaodong; Zhou, Huan-Xiang

    2014-05-01

    Protein phosphorylation is very common post-translational modification, catalyzed by kinases, for signaling and regulation. Phosphotyrosines frequently target SH2 domains. The spleen tyrosine kinase (Syk) is critical for tyrosine phosphorylation of multiple proteins and for regulation of important pathways. Phosphorylation of both Y342 and Y346 in Syk linker B is required for optimal signaling. The SH2 domains of Vav1 and PLC-γ both bind this doubly phosphorylated motif. Here we used a recently developed method to calculate the effects of Y342 and Y346 phosphorylation on the rate constants of a peptide from Syk linker B binding to the SH2 domains of Vav1 and PLC-γ. The predicted effects agree well with experimental observations. Moreover, we found that the same doubly phosphorylated peptide binds the two SH2 domains via distinct mechanisms, with apparent rigid docking for Vav1 SH2 and dock-and-coalesce for PLC-γ SH2.

  6. Molecular mechanism for USP7-mediated DNMT1 stabilization by acetylation

    NASA Astrophysics Data System (ADS)

    Cheng, Jingdong; Yang, Huirong; Fang, Jian; Ma, Lixiang; Gong, Rui; Wang, Ping; Li, Ze; Xu, Yanhui

    2015-05-01

    DNMT1 is an important epigenetic regulator that plays a key role in the maintenance of DNA methylation. Here we determined the crystal structure of DNMT1 in complex with USP7 at 2.9 Å resolution. The interaction between the two proteins is primarily mediated by an acidic pocket in USP7 and Lysine residues within DNMT1's KG linker. This intermolecular interaction is required for USP7-mediated stabilization of DNMT1. Acetylation of the KG linker Lysine residues impair DNMT1-USP7 interaction and promote the degradation of DNMT1. Treatment with HDAC inhibitors results in an increase in acetylated DNMT1 and decreased total DNMT1 protein. This negative correlation is observed in differentiated neuronal cells and pancreatic cancer cells. Our studies reveal that USP7-mediated stabilization of DNMT1 is regulated by acetylation and provide a structural basis for the design of inhibitors, targeting the DNMT1-USP7 interaction surface for therapeutic applications.

  7. The mitosis-regulating and protein-protein interaction activities of astrin are controlled by aurora-A-induced phosphorylation.

    PubMed

    Chiu, Shao-Chih; Chen, Jo-Mei Maureen; Wei, Tong-You Wade; Cheng, Tai-Shan; Wang, Ya-Hui Candice; Ku, Chia-Feng; Lian, Chiao-Hsuan; Liu, Chun-Chih Jared; Kuo, Yi-Chun; Yu, Chang-Tze Ricky

    2014-09-01

    Cells display dramatic morphological changes in mitosis, where numerous factors form regulatory networks to orchestrate the complicated process, resulting in extreme fidelity of the segregation of duplicated chromosomes into two daughter cells. Astrin regulates several aspects of mitosis, such as maintaining the cohesion of sister chromatids by inactivating Separase and stabilizing spindle, aligning and segregating chromosomes, and silencing spindle assembly checkpoint by interacting with Src kinase-associated phosphoprotein (SKAP) and cytoplasmic linker-associated protein-1α (CLASP-1α). To understand how Astrin is regulated in mitosis, we report here that Astrin acts as a mitotic phosphoprotein, and Aurora-A phosphorylates Astrin at Ser(115). The phosphorylation-deficient mutant Astrin S115A abnormally activates spindle assembly checkpoint and delays mitosis progression, decreases spindle stability, and induces chromosome misalignment. Mechanistic analyses reveal that Astrin phosphorylation mimicking mutant S115D, instead of S115A, binds and induces ubiquitination and degradation of securin, which sequentially activates Separase, an enzyme required for the separation of sister chromatids. Moreover, S115A fails to bind mitosis regulators, including SKAP and CLASP-1α, which results in the mitotic defects observed in Astrin S115A-transfected cells. In conclusion, Aurora-A phosphorylates Astrin and guides the binding of Astrin to its cellular partners, which ensures proper progression of mitosis. Copyright © 2014 the American Physiological Society.

  8. Synthesis, structure and in vitro cytostatic activity of ferrocene-Cinchona hybrids.

    PubMed

    Kocsis, László; Szabó, Ildikó; Bősze, Szilvia; Jernei, Tamás; Hudecz, Ferenc; Csámpai, Antal

    2016-02-01

    Exploring copper(I)- and ruthenium(II)-catalyzed azide-alkyne cycloadditions and a Sonogashira protocol, novel cytostatic ferrocene-cinchona hybrids were synthetized displaying significant in vitro activity on HepG-2 and HT-29 cells. Preliminary SAR studies disclosed that compounds incorporating linkers with 1,2,3-triazole and chalchone residues can be considered as promising lead structures. According to the best of our knowledge this is the first letter on the incorporation of ferrocene nucleus in the reputed cinchona family via triazole and chalcone linkers with established pharmaceutical profile. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Hydrogen peroxide inhibits transforming growth factor-β1-induced cell cycle arrest by promoting Smad3 linker phosphorylation through activation of Akt-ERK1/2-linked signaling pathway.

    PubMed

    Choi, Jiyeon; Park, Seong Ji; Jo, Eun Ji; Lee, Hui-Young; Hong, Suntaek; Kim, Seong-Jin; Kim, Byung-Chul

    2013-06-14

    Hydrogen peroxide (H2O2) functions as a second messenger in growth factor receptor-mediated intracellular signaling cascade and is tumorigenic by virtue of its ability to promote cell proliferation; however, the mechanisms underlying the growth stimulatory action of H2O2 are less understood. Here we report an important mechanism for antagonistic effects of H2O2 on growth inhibitory response to transforming growth factor-β1 (TGF-β1). In Mv1Lu and HepG2 cells, pretreatment of H2O2 (0.05-0.2 mM) completely blocked TGF-β1-mediated induction of p15(INK4B) expression and increase of its promoter activity. Interestingly, H2O2 selectively suppressed the transcriptional activation potential of Smad3, not Smad2, in the absence of effects on TGF-β1-induced phosphorylation of the COOH-tail SSXS motif of Smad3 and its nuclear translocation. Mechanism studies showed that H2O2 increases the phosphorylation of Smad3 at the middle linker region in a concentration- and time-dependent manner and this effect is mediated by activation of extracellular signal-activated kinase 1/2 through Akt. Furthermore, expression of a mutant Smad3 in which linker phosphorylation sites were ablated significantly abrogated the inhibitory effects of H2O2 on TGF-β1-induced increase of p15(INK4B)-Luc reporter activity and blockade of cell cycle progression from G1 to S phase. These findings for the first time define H2O2 as a signaling molecule that modulate Smad3 linker phosphorylation and its transcriptional activity, thus providing a potential mechanism whereby H2O2 antagonizes the cytostatic function of TGF-β1. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. A histidine-rich linker region in peptidylglycine α-amidating monooxygenase has the properties of a pH sensor.

    PubMed

    Vishwanatha, Kurutihalli; Bäck, Nils; Mains, Richard E; Eipper, Betty A

    2014-05-02

    Decreasing luminal pH is thought to play a role in the entry of newly synthesized and endocytosed membrane proteins into secretory granules. The two catalytic domains of peptidylglycine α-amidating monooxygenase (PAM), a type I integral membrane protein, catalyze the sequential reactions that convert peptidyl-Gly substrates into amidated products. We explored the hypothesis that a conserved His-rich cluster (His-Gly-His-His) in the linker region connecting its two catalytic domains senses pH and affects PAM trafficking by mutating these His residues to Ala (Ala-Gly-Ala-Ala; H3A). Purified recombinant wild-type and H3A linker peptides were examined using circular dichroism and tryptophan fluorescence; mutation of the His cluster largely eliminated its pH sensitivity. An enzymatically active PAM protein with the same mutations (PAM-1/H3A) was expressed in HEK293 cells and AtT-20 corticotrope tumor cells. Metabolic labeling followed by immunoprecipitation revealed more rapid loss of newly synthesized PAM-1/H3A than PAM-1; although release of newly synthesized monofunctional PHM/H3A was increased, release of soluble bifunctional PAM/H3A, a product of the endocytic pathway, was decreased. Surface biotinylation revealed rapid loss of PAM-1/H3A, with no detectable return of the mutant protein to secretory granules. Consistent with its altered endocytic trafficking, little PAM-1/H3A was subjected to regulated intramembrane proteolysis followed by release of a small nuclear-targeted cytosolic fragment. AtT-20 cells expressing PAM-1/H3A adopted the morphology of wild-type AtT-20 cells; secretory products no longer accumulated in the trans-Golgi network and secretory granule exocytosis was more responsive to secretagogue.

  11. Dynamics of a DNA Gel

    NASA Astrophysics Data System (ADS)

    Adhikari, Ramesh; Bhattacharya, Aniket; Dogariu, Aristide

    We study in silico the properties of a gel consisting of DNA strands (modeled as semi-flexible chains) and linkers of varying flexibility, length, and topology. These linkers are envisioned and modeled as active components with additional attributes so as to mimic properties of a synthetic DNA gel containing motor proteins. We use Brownian dynamics to directly obtain frequency dependent complex shear moduli of the gel. We further carry out force spectroscopy on these computer generated gels and study the relaxation properties as a function of the important parameters of the model, e.g., densities and relative ratios of the DNAs and the linkers, the average life time of a link, etc. Our studies are relevant for designing synthetic bio-materials for both materials and medical applications.

  12. Regulation of Cre recombinase by ligand-induced complementation of inactive fragments.

    PubMed

    Jullien, Nicolas; Sampieri, François; Enjalbert, Alain; Herman, Jean-Paul

    2003-11-01

    Cre recombinase is extensively used to engineer the genome of experimental animals. However, its usefulness is still limited by the lack of an efficient temporal control over its activity. To overcome this, we have developed DiCre, a regulatable fragment complementation system for Cre. The enzyme was split into two moieties that were fused to FKBP12 (FK506-binding protein) and FRB (binding domain of the FKBP12-rapamycin-associated protein), respectively. These can be efficiently heterodimerized by rapamycin. Several variants, based on splitting Cre at different sites and using different linker peptides, were tested in an indicator cell line. The fusion proteins, taken separately, had no recombinase activity. Stable transformants, co-expressing complementing fragments based on splitting Cre between Asn59 and Asn60, displayed low background activity affecting 0.05-0.4% of the cells. Rapamycin induced a rapid recombination, reaching 100% by 48-72 h, with an EC50 of 0.02 nM. Thus, ligand-induced dimerization can efficiently regulate Cre, and should be useful to achieve a tight temporal control of its activity, such as in the case of the creation of conditional knock-out animals.

  13. Computational engineering of cellulase Cel9A-68 functional motions through mutations in its linker region.

    PubMed

    Costa, M G S; Silva, Y F; Batista, P R

    2018-03-14

    Microbial cellulosic degradation by cellulases has become a complementary approach for biofuel production. However, its efficiency is hindered by the recalcitrance of cellulose fibres. In this context, computational protein design methods may offer an efficient way to obtain variants with improved enzymatic activity. Cel9A-68 is a cellulase from Thermobifida fusca that is still active at high temperatures. In a previous work, we described a collective bending motion, which governs the overall cellulase dynamics. This movement promotes the approximation of its CBM and CD structural domains (that are connected by a flexible linker). We have identified two residues (G460 and P461) located at the linker that act as a hinge point. Herein, we applied a new level of protein design, focusing on the modulation of this collective motion to obtain cellulase variants with enhanced functional dynamics. We probed whether specific linker mutations would affect Cel9A-68 dynamics through computational simulations. We assumed that P461G and G460+ (with an extra glycine) constructs would present enhanced interdomain motions, while the G460P mutant would be rigid. From our results, the P461G mutation resulted in a broader exploration of the conformational space, as confirmed by clustering and free energy analyses. The WT enzyme was the most rigid system. However, G460P and P460+ explored distinct conformational states described by opposite directions of low-frequency normal modes; they sampled preferentially closed and open conformations, respectively. Overall, we highlight two significant findings: (i) all mutants explored larger conformational spaces than the WT; (ii) the selection of distinct conformational populations was intimately associated with the mutation considered. Thus, the engineering of Cel9A-68 motions through linker mutations may constitute an efficient way to improve cellulase activity, facilitating the disruption of cellulose fibres.

  14. Non-equilibrium fluctuations of a semi-flexible filament driven by active cross-linkers

    NASA Astrophysics Data System (ADS)

    Weber, I.; Appert-Rolland, C.; Schehr, G.; Santen, L.

    2017-11-01

    The cytoskeleton is an inhomogeneous network of semi-flexible filaments, which are involved in a wide variety of active biological processes. Although the cytoskeletal filaments can be very stiff and embedded in a dense and cross-linked network, it has been shown that, in cells, they typically exhibit significant bending on all length scales. In this work we propose a model of a semi-flexible filament deformed by different types of cross-linkers for which one can compute and investigate the bending spectrum. Our model allows to couple the evolution of the deformation of the semi-flexible polymer with the stochastic dynamics of linkers which exert transversal forces onto the filament. We observe a q-2 dependence of the bending spectrum for some biologically relevant parameters and in a certain range of wave numbers q, as observed in some experiments. However, generically, the spatially localized forcing and the non-thermal dynamics both introduce deviations from the thermal-like q-2 spectrum.

  15. Protein unfolding as a switch from self-recognition to high-affinity client binding

    PubMed Central

    Groitl, Bastian; Horowitz, Scott; Makepeace, Karl A. T.; Petrotchenko, Evgeniy V.; Borchers, Christoph H.; Reichmann, Dana; Bardwell, James C. A.; Jakob, Ursula

    2016-01-01

    Stress-specific activation of the chaperone Hsp33 requires the unfolding of a central linker region. This activation mechanism suggests an intriguing functional relationship between the chaperone's own partial unfolding and its ability to bind other partially folded client proteins. However, identifying where Hsp33 binds its clients has remained a major gap in our understanding of Hsp33's working mechanism. By using site-specific Fluorine-19 nuclear magnetic resonance experiments guided by in vivo crosslinking studies, we now reveal that the partial unfolding of Hsp33's linker region facilitates client binding to an amphipathic docking surface on Hsp33. Furthermore, our results provide experimental evidence for the direct involvement of conditionally disordered regions in unfolded protein binding. The observed structural similarities between Hsp33's own metastable linker region and client proteins present a possible model for how Hsp33 uses protein unfolding as a switch from self-recognition to high-affinity client binding. PMID:26787517

  16. Alkyne- and 1,6-elimination- succinimidyl carbonate - terminated heterobifunctional poly(ethylene glycol) for reversible "Click" PEGylation.

    PubMed

    Xie, Yumei; Duan, Shaofeng; Forrest, M Laird

    2010-01-01

    A new heterobifunctional (succinimidyl carbonate, SC)-activated poly(ethylene glycol) (PEG) with a reversible 1,6-elimination linker and a terminal alkyne for "click" chemistry was synthesized with high efficiency and low polydispersity. The α-alkyne-ω-hydroxyl PEG was first prepared using trimethylsilyl-2-propargyl alcohol as an initiator for ring-opening polymerization of ethylene oxide followed by mild deprotection with tetrabutylammonium fluoride. The hydroxy end was then modified with diglycolic anhydride to generate α-alkyne-ω-carboxylic acid PEG. The reversible 1, 6-elimination linker was introduced by conjugation of a hydroxymethyl phenol followed by activation with N,N'-disuccinimidyl carbonate to generate the heterobifunctional α-alkyne-ω-SC PEG. The terminal alkyne is available for "click" conjugation to azido ligands via 1,3-dipolar cycloaddition, and the succinimidyl carbonate will form a reversible conjugate to amines (e.g. in proteins) that can release the unaltered amine after base or enzyme catalyzed cleavage of the 1,6-linker.

  17. Synthesis of an immunoconjugate of camptothecin.

    PubMed

    Walker, Michael A; Dubowchik, Gene M; Hofstead, Sandra J; Trail, Pamela A; Firestone, Raymond A

    2002-01-21

    The first immunoconjugate of camptothecin has been synthesized wherein the drug is attached to the tumor-recognizing antibody BR96 via a Cathepsin B cleavable linker. Endocytosis of the immunoconjugate upon binding to the tumor cell followed by enzymatic cleavage of the linker inside the endosome ensures tumor-specific release of the drug. In this way, it is hoped that the dose-limiting side effects associated with camptothecin can be eliminated while the antitumor activity is preserved.

  18. Activation of acid-sensing ion channels by localized proton transient reveals their role in proton signaling.

    PubMed

    Zeng, Wei-Zheng; Liu, Di-Shi; Liu, Lu; She, Liang; Wu, Long-Jun; Xu, Tian-Le

    2015-09-15

    Extracellular transients of pH alterations likely mediate signal transduction in the nervous system. Neuronal acid-sensing ion channels (ASICs) act as sensors for extracellular protons, but the mechanism underlying ASIC activation remains largely unknown. Here, we show that, following activation of a light-activated proton pump, Archaerhodopsin-3 (Arch), proton transients induced ASIC currents in both neurons and HEK293T cells co-expressing ASIC1a channels. Using chimera proteins that bridge Arch and ASIC1a by a glycine/serine linker, we found that successful coupling occurred within 15 nm distance. Furthermore, two-cell sniffer patch recording revealed that regulated release of protons through either Arch or voltage-gated proton channel Hv1 activated neighbouring cells expressing ASIC1a channels. Finally, computational modelling predicted the peak proton concentration at the intercellular interface to be at pH 6.7, which is acidic enough to activate ASICs in vivo. Our results highlight the pathophysiological role of proton signalling in the nervous system.

  19. Structural Basis of Vta1 Function in the Multivesicular Body Sorting Pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Junyu; Xia, Hengchuan; Zhou, Jiahai

    The MVB pathway plays essential roles in several eukaryotic cellular processes. Proper function of the MVB pathway requires reversible membrane association of the ESCRTs, a process catalyzed by Vps4 ATPase. Vta1 regulates the Vps4 activity, but its mechanism of action was poorly understood. We report the high-resolution crystal structures of the Did2- and Vps60-binding N-terminal domain and the Vps4-binding C-terminal domain of S. cerevisiae Vta1. The C-terminal domain also mediates Vta1 dimerization and both subunits are required for its function as a Vps4 regulator. Emerging from our analysis is a mechanism of regulation by Vta1 in which the C-terminal domainmore » stabilizes the ATP-dependent double ring assembly of Vps4. In addition, the MIT motif-containing N-terminal domain, projected by a long disordered linker, allows contact between the Vps4 disassembly machinery and the accessory ESCRT-III proteins. This provides an additional level of regulation and coordination for ESCRT-III assembly and disassembly.« less

  20. Structural basis of Vta1 function in the multi-vesicular body sorting pathway

    PubMed Central

    Xiao, Junyu; Xia, Hengchuan; Zhou, Jiahai; Azmi, Ishara; Davies, Brian A.; Katzmann, David J.; Xu, Zhaohui

    2009-01-01

    Summary The MVB pathway plays essential roles in several eukaryotic cellular processes. Proper function of the MVB pathway requires reversible membrane association of the ESCRTs, a process catalyzed by Vps4 ATPase. Vta1 regulates the Vps4 activity but its mechanism of action was poorly understood. We report the high-resolution crystal structures of the Did2- and Vps60-binding N-terminal domain and the Vps4-binding C-terminal domain of S. cerevisiae Vta1. The C-terminal domain also mediates Vta1 dimerization and both subunits are required for its function as a Vps4 regulator. Emerging from our analysis is a mechanism of regulation by Vta1 in which the C-terminal domain stabilizes the ATP-dependent double ring assembly of Vps4. In addition, the MIT motif containing N-terminal domain, projected by a long disordered linker, allows contact between the Vps4 disassembly machinery and the accessory ESCRT-III proteins. This provides an additional level of regulation and coordination for ESCRT-III assembly and disassembly. PMID:18194651

  1. ε-Poly-L-lysine peptide chain length regulated by the linkers connecting the transmembrane domains of ε-Poly-L-lysine synthetase.

    PubMed

    Hamano, Yoshimitsu; Kito, Naoko; Kita, Akihiro; Imokawa, Yuuki; Yamanaka, Kazuya; Maruyama, Chitose; Katano, Hajime

    2014-08-01

    ε-Poly-l-lysine (ε-PL), consisting of 25 to 35 l-lysine residues with linkages between the α-carboxyl groups and ε-amino groups, is produced by Streptomyces albulus NBRC14147. ε-PL synthetase (Pls) is a membrane protein with six transmembrane domains (TM1 to TM6) as well as both an adenylation domain and a thiolation domain, characteristic of the nonribosomal peptide synthetases. Pls directly generates ε-PL chain length diversity (25- to 35-mer), but the processes that control the chain length of ε-PL during the polymerization reaction are still not fully understood. Here, we report on the identification of Pls amino acid residues involved in the regulation of the ε-PL chain length. From approximately 12,000 variants generated by random mutagenesis, we found 8 Pls variants that produced shorter chains of ε-PL. These variants have one or more mutations in two linker regions connecting the TM1 and TM2 domains and the TM3 and TM4 domains. In the Pls catalytic mechanism, the growing chain of ε-PL is not tethered to the enzyme, implying that the enzyme must hold the growing chain until the polymerization reaction is complete. Our findings reveal that the linker regions are important contributors to grasp the growing chain of ε-PL. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  2. Solution conformation of a cohesin module and its scaffoldin linker from a prototypical cellulosome.

    PubMed

    Galera-Prat, Albert; Pantoja-Uceda, David; Laurents, Douglas V; Carrión-Vázquez, Mariano

    2018-04-15

    Bacterial cellulases are drawing increased attention as a means to obtain plentiful chemical feedstocks and fuels from renewable lignocellulosic biomass sources. Certain bacteria deploy a large extracellular multi-protein complex, called the cellulosome, to degrade cellulose. Scaffoldin, a key non-catalytic cellulosome component, is a large protein containing a cellulose-specific carbohydrate-binding module and several cohesin modules which bind and organize the hydrolytic enzymes. Despite the importance of the structure and protein/protein interactions of the cohesin module in the cellulosome, its structure in solution has remained unknown to date. Here, we report the backbone 1 H, 13 C and 15 N NMR assignments of the Cohesin module 5 from the highly stable and active cellulosome from Clostridium thermocellum. These data reveal that this module adopts a tightly packed, well folded and rigid structure in solution. Furthermore, since in scaffoldin, the cohesin modules are connected by linkers we have also characterized the conformation of a representative linker segment using NMR spectroscopy. Analysis of its chemical shift values revealed that this linker is rather stiff and tends to adopt extended conformations. This suggests that the scaffoldin linkers act to minimize interactions between cohesin modules. These results pave the way towards solution studies on cohesin/dockerin's fascinating dual-binding mode. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Synthetic procedure for N-Fmoc amino acyl-N-sulfanylethylaniline linker as crypto-peptide thioester precursor with application to native chemical ligation.

    PubMed

    Sakamoto, Ken; Sato, Kohei; Shigenaga, Akira; Tsuji, Kohei; Tsuda, Shugo; Hibino, Hajime; Nishiuchi, Yuji; Otaka, Akira

    2012-08-17

    N-sulfanylethylanilide (SEAlide) peptides 1, obtainable using Fmoc-based solid-phase peptide synthesis (Fmoc SPPS), function as crypto-thioesters in native chemical ligation (NCL), yielding a wide variety of peptides/proteins. Their acylating potential with N-terminal cysteinyl peptides 2 can be tuned by the presence or absence of phosphate salts, leading to one-pot/multifragment ligation, operating under kinetically controlled conditions. SEAlide peptides have already been shown to be promising for use in protein synthesis; however, a widely applicable method for the synthesis of N-Fmoc amino acyl-N-sulfanylethylaniline linkers 4, required for the preparation of SEAlide peptides, is unavailable. The present study addresses the development of efficient condensation protocols of 20 naturally occurring amino acid derivatives to the N-sulfanylethylaniline linker 5. N-Fmoc amino acyl aniline linkers 4 of practical use in NCL chemistry, except in the case of the proline- or aspartic acid-containing linker, were successfully synthesized by coupling of POCl(3)- or SOCl(2)-activated Fmoc amino acid derivatives with sodium anilide species 6, without accompanying racemization and loss of side-chain protection. Furthermore, SEAlide peptides 7 possessing various C-terminal amino acids (Gly, His, Phe, Ala, Asn, Ser, Glu, and Val) were shown to be of practical use in NCL chemistry.

  4. A Helix-Stabilizing Linker Improves Subcutaneous Bioavailability of a Helical Peptide Independent of Linker Lipophilicity.

    PubMed

    Zhang, Liang; Navaratna, Tejas; Thurber, Greg M

    2016-07-20

    Stabilized peptides address several limitations to peptide-based imaging agents and therapeutics such as poor stability and low affinity due to conformational flexibility. There is also active research in developing these compounds for intracellular drug targeting, and significant efforts have been invested to determine the effects of helix stabilization on intracellular delivery. However, much less is known about the impact on other pharmacokinetic parameters such as plasma clearance and bioavailability. We investigated the effect of different fluorescent helix-stabilizing linkers with varying lipophilicity on subcutaneous (sc) bioavailability using the glucagon-like peptide-1 (GLP-1) receptor ligand exendin as a model system. The stabilized peptides showed significantly higher protease resistance and increased bioavailability independent of linker hydrophilicity, and all subcutaneously delivered conjugates were able to successfully target the islets of Langerhans with high specificity. The lipophilic peptide variants had slower absorption and plasma clearance than their respective hydrophilic conjugates, and the absolute bioavailability was also lower likely due to the longer residence times in the skin. Their ease and efficiency make double-click helix stabilization chemistries a useful tool for increasing the bioavailability of peptide therapeutics, many of which suffer from rapid in vivo protease degradation. Helix stabilization using linkers of varying lipophilicity can further control sc absorption and clearance rates to customize plasma pharmacokinetics.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hood, Iris V.; Berger, James M.

    Replisome assembly requires the loading of replicative hexameric helicases onto origins by AAA+ ATPases. How loader activity is appropriately controlled remains unclear. Here, we use structural and biochemical analyses to establish how an antimicrobial phage protein interferes with the function of theStaphylococcus aureusreplicative helicase loader, DnaI. The viral protein binds to the loader’s AAA+ ATPase domain, allowing binding of the host replicative helicase but impeding loader self-assembly and ATPase activity. Close inspection of the complex highlights an unexpected locus for the binding of an interdomain linker element in DnaI/DnaC-family proteins. We find that the inhibitor protein is genetically coupled tomore » a phage-encoded homolog of the bacterial helicase loader, which we show binds to the host helicase but not to the inhibitor itself. These findings establish a new approach by which viruses can hijack host replication processes and explain how loader activity is internally regulated to prevent aberrant auto-association.« less

  6. Distinct roles of N- and O-glycans in cellulase activity and stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amore, Antonella; Knott, Brandon C.; Supekar, Nitin T.

    In nature, many microbes secrete mixtures of glycoside hydrolases, oxidoreductases, and accessory enzymes to deconstruct polysaccharides and lignin in plants. These enzymes are often decorated with N- and O-glycosylation, the roles of which have been broadly attributed to protection from proteolysis, as the extracellular milieu is an aggressive environment. Glycosylation has been shown to sometimes affect activity, but these effects are not fully understood. In this paper, we examine N- and O-glycosylation on a model, multimodular glycoside hydrolase family 7 cellobiohydrolase (Cel7A), which exhibits an O-glycosylated carbohydrate-binding module (CBM) and an O-glycosylated linker connected to an N- and O-glycosylated catalyticmore » domain (CD) - a domain architecture common to many biomass-degrading enzymes. We report consensus maps for Cel7A glycosylation that include glycan sites and motifs. Additionally, we examine the roles of glycans on activity, substrate binding, and thermal and proteolytic stability. N-glycan knockouts on the CD demonstrate that N-glycosylation has little impact on cellulose conversion or binding, but does have major stability impacts. O-glycans on the CBM have little impact on binding, proteolysis, or activity in the whole-enzyme context. However, linker O-glycans greatly impact cellulose conversion via their contribution to proteolysis resistance. Molecular simulations predict an additional role for linker O-glycans, namely that they are responsible for maintaining separation between ordered domains when Cel7A is engaged on cellulose, as models predict a-helix formation and decreased cellulose interaction for the nonglycosylated linker. In conclusion, this study reveals key roles for N- and O-glycosylation that are likely broadly applicable to other plant cell-wall-degrading enzymes.« less

  7. A mechanism for acetylcholine receptor gating based on structure, coupling, phi, and flip

    PubMed Central

    Gupta, Shaweta; Chakraborty, Srirupa; Vij, Ridhima

    2017-01-01

    Nicotinic acetylcholine receptors are allosteric proteins that generate membrane currents by isomerizing (“gating”) between resting and active conformations under the influence of neurotransmitters. Here, to explore the mechanisms that link the transmitter-binding sites (TBSs) with the distant gate, we use mutant cycle analyses to measure coupling between residue pairs, phi value analyses to sequence domain rearrangements, and current simulations to reproduce a microsecond shut component (“flip”) apparent in single-channel recordings. Significant interactions between amino acids separated by >15 Å are rare; an exception is between the αM2–M3 linkers and the TBSs that are ∼30 Å apart. Linker residues also make significant, local interactions within and between subunits. Phi value analyses indicate that without agonists, the linker is the first region in the protein to reach the gating transition state. Together, the phi pattern and flip component suggest that a complete, resting↔active allosteric transition involves passage through four brief intermediate states, with brief shut events arising from sojourns in all or a subset. We derive energy landscapes for gating with and without agonists, and propose a structure-based model in which resting→active starts with spontaneous rearrangements of the M2–M3 linkers and TBSs. These conformational changes stabilize a twisted extracellular domain to promote transmembrane helix tilting, gate dilation, and the formation of a “bubble” that collapses to initiate ion conduction. The energy landscapes suggest that twisting is the most energetically unfavorable step in the resting→active conformational change and that the rate-limiting step in the reverse process is bubble formation. PMID:27932572

  8. Robust, Chiral, and Porous BINAP-Based Metal–Organic Frameworks for Highly Enantioselective Cyclization Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawano, Takahiro; Thacker, Nathan C.; Lin, Zekai

    2016-05-06

    We report here the design of BINAP-based metal–organic frameworks and their postsynthetic metalation with Rh complexes to afford highly active and enantioselective single-site solid catalysts for the asymmetric cyclization reactions of 1,6-enynes. Robust, chiral, and porous Zr-MOFs of UiO topology, BINAP-MOF (I) or BINAP-dMOF (II), were prepared using purely BINAP-derived dicarboxylate linkers or by mixing BINAP-derived linkers with unfunctionalized dicarboxylate linkers, respectively. Upon metalation with Rh(nbd)2BF4 and [Rh(nbd)Cl]2/AgSbF6, the MOF precatalysts I·Rh(BF4) and I·Rh(SbF6) efficiently catalyzed highly enantioselective (up to 99% ee) reductive cyclization and Alder-ene cycloisomerization of 1,6-enynes, respectively. I·Rh catalysts afforded cyclization products at comparable enantiomeric excesses (ee’s)more » and 4–7 times higher catalytic activity than the homogeneous controls, likely a result of catalytic site isolation in the MOF which prevents bimolecular catalyst deactivation pathways. However, I·Rh is inactive in the more sterically encumbered Pauson–Khand reactions between 1,6-enynes and carbon monoxide. In contrast, with a more open structure, Rh-functionalized BINAP-dMOF, II·Rh, effectively catalyzed Pauson–Khand cyclization reactions between 1,6-enynes and carbon monoxide at 10 times higher activity than the homogeneous control. II·Rh was readily recovered and used three times in Pauson–Khand cyclization reactions without deterioration of yields or ee’s. Our work has expanded the scope of MOF-catalyzed asymmetric reactions and showed that the mixed linker strategy can effectively enlarge the open space around the catalytic active site to accommodate highly sterically demanding polycyclic metallocycle transition states/intermediates in asymmetric intramolecular cyclization reactions.« less

  9. Distinct roles of N- and O-glycans in cellulase activity and stability

    DOE PAGES

    Amore, Antonella; Knott, Brandon C.; Supekar, Nitin T.; ...

    2017-12-11

    In nature, many microbes secrete mixtures of glycoside hydrolases, oxidoreductases, and accessory enzymes to deconstruct polysaccharides and lignin in plants. These enzymes are often decorated with N- and O-glycosylation, the roles of which have been broadly attributed to protection from proteolysis, as the extracellular milieu is an aggressive environment. Glycosylation has been shown to sometimes affect activity, but these effects are not fully understood. In this paper, we examine N- and O-glycosylation on a model, multimodular glycoside hydrolase family 7 cellobiohydrolase (Cel7A), which exhibits an O-glycosylated carbohydrate-binding module (CBM) and an O-glycosylated linker connected to an N- and O-glycosylated catalyticmore » domain (CD) - a domain architecture common to many biomass-degrading enzymes. We report consensus maps for Cel7A glycosylation that include glycan sites and motifs. Additionally, we examine the roles of glycans on activity, substrate binding, and thermal and proteolytic stability. N-glycan knockouts on the CD demonstrate that N-glycosylation has little impact on cellulose conversion or binding, but does have major stability impacts. O-glycans on the CBM have little impact on binding, proteolysis, or activity in the whole-enzyme context. However, linker O-glycans greatly impact cellulose conversion via their contribution to proteolysis resistance. Molecular simulations predict an additional role for linker O-glycans, namely that they are responsible for maintaining separation between ordered domains when Cel7A is engaged on cellulose, as models predict a-helix formation and decreased cellulose interaction for the nonglycosylated linker. In conclusion, this study reveals key roles for N- and O-glycosylation that are likely broadly applicable to other plant cell-wall-degrading enzymes.« less

  10. A mechanism for histone chaperoning activity of nucleoplasmin: thermodynamic and structural models.

    PubMed

    Taneva, Stefka G; Bañuelos, Sonia; Falces, Jorge; Arregi, Igor; Muga, Arturo; Konarev, Petr V; Svergun, Dmitri I; Velázquez-Campoy, Adrián; Urbaneja, María A

    2009-10-23

    Nucleoplasmin (NP), a histone chaperone, acts as a reservoir for histones H2A-H2B in Xenopus laevis eggs and can displace sperm nuclear basic proteins and linker histones from the chromatin fiber of sperm and quiescent somatic nuclei. NP has been proposed to mediate the dynamic exchange of histones during the expression of certain genes and assists the assembly of nucleosomes by modulating the interaction between histones and DNA. Here, solution structural models of full-length NP and NP complexes with the functionally distinct nucleosomal core and linker histones are presented for the first time, providing a picture of the physical interactions between the nucleosomal and linker histones with NP core and tail domains. Small-angle X-ray scattering and isothermal titration calorimetry reveal that NP pentamer can accommodate five histones, either H2A-H2B dimers or H5, and that NP core and tail domains are intimately involved in the association with histones. The analysis of the binding events, employing a site-specific cooperative model, reveals a negative cooperativity-based regulatory mechanism for the linker histone/nucleosomal histone exchange. The two histone types bind with drastically different intrinsic affinity, and the strongest affinity is observed for the NP variant that mimicks the hyperphosphorylated active protein. The different "affinity windows" for H5 and H2A-H2B might allow NP to fulfill its histone chaperone role, simultaneously acting as a reservoir for the core histones and a chromatin decondensing factor. Our data are compatible with the previously proposed model where NP facilitates nucleosome assembly by removing the linker histones and depositing H2A-H2B dimers onto DNA.

  11. Bis-Acridines as Lead Antiparasitic Agents: Structure-Activity Analysis of a Discrete Compound Library In Vitro▿

    PubMed Central

    Caffrey, Conor R.; Steverding, Dietmar; Swenerton, Ryan K.; Kelly, Ben; Walshe, Deirdre; Debnath, Anjan; Zhou, Yuan-Min; Doyle, Patricia S.; Fafarman, Aaron T.; Zorn, Julie A.; Land, Kirkwood M.; Beauchene, Jessica; Schreiber, Kimberly; Moll, Heidrun; Ponte-Sucre, Alicia; Schirmeister, Tanja; Saravanamuthu, Ahilan; Fairlamb, Alan H.; Cohen, Fred E.; McKerrow, James H.; Weisman, Jennifer L.; May, Barnaby C. H.

    2007-01-01

    Parasitic diseases are of enormous public health significance in developing countries—a situation compounded by the toxicity of and resistance to many current chemotherapeutics. We investigated a focused library of 18 structurally diverse bis-acridine compounds for in vitro bioactivity against seven protozoan and one helminth parasite species and compared the bioactivities and the cytotoxicities of these compounds toward various mammalian cell lines. Structure-activity relationships demonstrated the influence of both the bis-acridine linker structure and the terminal acridine heterocycle on potency and cytotoxicity. The bioactivity of polyamine-linked acridines required a minimum linker length of approximately 10 Å. Increasing linker length resulted in bioactivity against most parasites but also cytotoxicity toward mammalian cells. N alkylation, but less so N acylation, of the polyamine linker ameliorated cytotoxicity while retaining bioactivity with 50% effective concentration (EC50) values similar to or better than those measured for standard drugs. Substitution of the polyamine for either an alkyl or a polyether linker maintained bioactivity and further alleviated cytotoxicity. Polyamine-linked compounds in which the terminal acridine heterocycle had been replaced with an aza-acridine also maintained acceptable therapeutic indices. The most potent compounds recorded low- to mid-nanomolar EC50 values against Plasmodium falciparum and Trypanosoma brucei; otherwise, low-micromolar potencies were measured. Importantly, the bioactivity of the library was independent of P. falciparum resistance to chloroquine. Compound bioactivity was a function of neither the potential to bis-intercalate DNA nor the inhibition of trypanothione reductase, an important drug target in trypanosomatid parasites. Our approach illustrates the usefulness of screening focused compound libraries against multiple parasite targets. Some of the bis-acridines identified here may represent useful starting points for further lead optimization. PMID:17371810

  12. Structural Basis for Activation of ZAP-70 by Phosphorylation of the SH2-Kinase Linker

    PubMed Central

    Yan, Qingrong; Barros, Tiago; Visperas, Patrick R.; Deindl, Sebastian; Kadlecek, Theresa A.; Weiss, Arthur

    2013-01-01

    Serial activation of the tyrosine kinases Lck and ZAP-70 initiates signaling downstream of the T cell receptor. We previously reported the structure of an autoinhibited ZAP-70 variant in which two regulatory tyrosine residues (315 and 319) in the SH2-kinase linker were replaced by phenylalanine. We now present a crystal structure of ZAP-70 in which Tyr 315 and Tyr 319 are not mutated, leading to the recognition of a five-residue sequence register error in the SH2-kinase linker of the original crystallographic model. The revised model identifies distinct roles for these two tyrosines. As seen in a recently reported structure of the related tyrosine kinase Syk, Tyr 315 of ZAP-70 is part of a hydrophobic interface between the regulatory apparatus and the kinase domain, and the integrity of this interface would be lost upon engagement of doubly phosphorylated peptides by the SH2 domains. Tyr 319 is not necessarily dislodged by SH2 engagement, which activates ZAP-70 only ∼5-fold in vitro. In contrast, phosphorylation by Lck activates ZAP-70 ∼100-fold. This difference is due to the ability of Tyr 319 to suppress ZAP-70 activity even when the SH2 domains are dislodged from the kinase domain, providing stringent control of ZAP-70 activity downstream of Lck. PMID:23530057

  13. Structural basis for activation of ZAP-70 by phosphorylation of the SH2-kinase linker.

    PubMed

    Yan, Qingrong; Barros, Tiago; Visperas, Patrick R; Deindl, Sebastian; Kadlecek, Theresa A; Weiss, Arthur; Kuriyan, John

    2013-06-01

    Serial activation of the tyrosine kinases Lck and ZAP-70 initiates signaling downstream of the T cell receptor. We previously reported the structure of an autoinhibited ZAP-70 variant in which two regulatory tyrosine residues (315 and 319) in the SH2-kinase linker were replaced by phenylalanine. We now present a crystal structure of ZAP-70 in which Tyr 315 and Tyr 319 are not mutated, leading to the recognition of a five-residue sequence register error in the SH2-kinase linker of the original crystallographic model. The revised model identifies distinct roles for these two tyrosines. As seen in a recently reported structure of the related tyrosine kinase Syk, Tyr 315 of ZAP-70 is part of a hydrophobic interface between the regulatory apparatus and the kinase domain, and the integrity of this interface would be lost upon engagement of doubly phosphorylated peptides by the SH2 domains. Tyr 319 is not necessarily dislodged by SH2 engagement, which activates ZAP-70 only ∼5-fold in vitro. In contrast, phosphorylation by Lck activates ZAP-70 ∼100-fold. This difference is due to the ability of Tyr 319 to suppress ZAP-70 activity even when the SH2 domains are dislodged from the kinase domain, providing stringent control of ZAP-70 activity downstream of Lck.

  14. Imaging of activated caspase-3 in living cell by fluorescence resonance energy transfer during photosensitization-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Wu, Yunxia; Xing, Da; Chen, Qun; Tang, Yonghong

    2005-01-01

    Photodynamic therapy (PDT) is a novel and promising cancer treatment that employs a combination of a photosensitizing chemical and visible light, induces apoptosis in cell, and activation of caspase-3 is considered to be the final step in many apoptosis pathways. The changes of caspase-3 activation in cell during TNFα- and photodynamic therapy-induced apoptosis was measured by fluorescence resonance energy transfer (FRET) analysis. FRET probe consisting of fusions of an enhanced cyan fluorescent protein (ECFP), Venus and a linker peptide containing the caspase-3 cleavage sequence DEVD was utilized. Therefore, activated caspase-3 cleaved the linker peptide of FRET probe and disrupted the FRET signal. Human lung adenocarcinoma cell line (ASTC-a-1) were stably transfected with the plasmid (ECFP-DEVD-Venus) and then were treated by TNF-α and PDT, respectively. Experimental results indicated that caspase-3 activation resulted in cleavage of linker peptide and subsequent disruption of the FRET signal during TNFα- and photodynamic therapy-induced apoptosis, and that the activation of caspase-3 induced by photodynamic therapy was faster than that induce by TNF-α. The study supports that using FRET technique and different recombinant substrates as FRET probes could be used to detect the process of PDT-induced apoptosis and provide a new means to investigate apoptotic mechanism of PDT.

  15. Breaking the ties that bind: new advances in centrosome biology.

    PubMed

    Mardin, Balca R; Schiebel, Elmar

    2012-04-02

    The centrosome, which consists of two centrioles and the surrounding pericentriolar material, is the primary microtubule-organizing center (MTOC) in animal cells. Like chromosomes, centrosomes duplicate once per cell cycle and defects that lead to abnormalities in the number of centrosomes result in genomic instability, a hallmark of most cancer cells. Increasing evidence suggests that the separation of the two centrioles (disengagement) is required for centrosome duplication. After centriole disengagement, a proteinaceous linker is established that still connects the two centrioles. In G2, this linker is resolved (centrosome separation), thereby allowing the centrosomes to separate and form the poles of the bipolar spindle. Recent work has identified new players that regulate these two processes and revealed unexpected mechanisms controlling the centrosome cycle.

  16. Structural basis for methylesterase CheB regulation by a phosphorylation-activated domain

    PubMed Central

    Djordjevic, Snezana; Goudreau, Paul N.; Xu, Qingping; Stock, Ann M.; West, Ann H.

    1998-01-01

    We report the x-ray crystal structure of the methylesterase CheB, a phosphorylation-activated response regulator involved in reversible modification of bacterial chemotaxis receptors. Methylesterase CheB and methyltransferase CheR modulate signaling output of the chemotaxis receptors by controlling the level of receptor methylation. The structure of CheB, which consists of an N-terminal regulatory domain and a C-terminal catalytic domain joined by a linker, was solved by molecular replacement methods using independent search models for the two domains. In unphosphorylated CheB, the N-terminal domain packs against the active site of the C-terminal domain and thus inhibits methylesterase activity by directly restricting access to the active site. We propose that phosphorylation of CheB induces a conformational change in the regulatory domain that disrupts the domain interface, resulting in a repositioning of the domains and allowing access to the active site. Structural similarity between the two companion receptor modification enzymes, CheB and CheR, suggests an evolutionary and/or functional relationship. Specifically, the phosphorylated N-terminal domain of CheB may facilitate interaction with the receptors, similar to the postulated role of the N-terminal domain of CheR. Examination of surfaces in the N-terminal regulatory domain of CheB suggests that despite a common fold throughout the response regulator family, surfaces used for protein–protein interactions differ significantly. Comparison between CheB and other response regulators indicates that analogous surfaces are used for different functions and conversely, similar functions are mediated by different molecular surfaces. PMID:9465023

  17. Quercetin-glutamic acid conjugate with a non-hydrolysable linker; a novel scaffold for multidrug resistance reversal agents through inhibition of P-glycoprotein.

    PubMed

    Kim, Mi Kyoung; Kim, Yunyoung; Choo, Hyunah; Chong, Youhoon

    2017-02-01

    Previously, we have reported remarkable effect of a quercetin-glutamic acid conjugate to reverse multidrug resistance (MDR) of cancer cells to a broad spectrum of anticancer agents through inhibition of P-glycoprotein (Pgp)-mediated drug efflux. Due to the hydrolysable nature, MDR-reversal activity of the quercetin conjugate was attributed to its hydrolysis product, quercetin. However, several lines of evidence demonstrated that the intact quercetin-glutamic acid conjugate has stronger MDR-reversal activity than quercetin. In order to evaluate this hypothesis and to identify a novel scaffold for MDR-reversal agents, we prepared quercetin conjugates with a glutamic acid attached at the 7-O position via a non-hydrolysable linker. Pgp inhibition assay, Pgp ATPase assay, and MDR-reversal activity assay were performed, and the non-hydrolysable quercetin conjugates showed significantly higher activities compared with those of quercetin. Unfortunately, the quercetin conjugates were not as effective as verapamil in Pgp-inhibition and thereby reversing MDR, but it is worth to note that the structurally modified quercetin conjugates with a non-cleavable linker showed significantly improved MDR-reversal activity compared with quercetin. Taken together, the quercetin conjugates with appropriate structural modifications were shown to have a potential to serve as a scaffold for the design of novel MDR-reversal agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Non-T cell activation linker (NTAL): a transmembrane adaptor protein involved in immunoreceptor signaling.

    PubMed

    Brdicka, Tomás; Imrich, Martin; Angelisová, Pavla; Brdicková, Nadezda; Horváth, Ondrej; Spicka, Jirí; Hilgert, Ivan; Lusková, Petra; Dráber, Petr; Novák, Petr; Engels, Niklas; Wienands, Jürgen; Simeoni, Luca; Osterreicher, Jan; Aguado, Enrique; Malissen, Marie; Schraven, Burkhart; Horejsí, Václav

    2002-12-16

    A key molecule necessary for activation of T lymphocytes through their antigen-specific T cell receptor (TCR) is the transmembrane adaptor protein LAT (linker for activation of T cells). Upon TCR engagement, LAT becomes rapidly tyrosine phosphorylated and then serves as a scaffold organizing a multicomponent complex that is indispensable for induction of further downstream steps of the signaling cascade. Here we describe the identification and preliminary characterization of a novel transmembrane adaptor protein that is structurally and evolutionarily related to LAT and is expressed in B lymphocytes, natural killer (NK) cells, monocytes, and mast cells but not in resting T lymphocytes. This novel transmembrane adaptor protein, termed NTAL (non-T cell activation linker) is the product of a previously identified WBSCR5 gene of so far unknown function. NTAL becomes rapidly tyrosine-phosphorylated upon cross-linking of the B cell receptor (BCR) or of high-affinity Fcgamma- and Fc epsilon -receptors of myeloid cells and then associates with the cytoplasmic signaling molecules Grb2, Sos1, Gab1, and c-Cbl. NTAL expressed in the LAT-deficient T cell line J.CaM2.5 becomes tyrosine phosphorylated and rescues activation of Erk1/2 and minimal transient elevation of cytoplasmic calcium level upon TCR/CD3 cross-linking. Thus, NTAL appears to be a structural and possibly also functional homologue of LAT in non-T cells.

  19. Synthesis, activity, and structure--activity relationship studies of novel cationic lipids for DNA transfer.

    PubMed

    Byk, G; Dubertret, C; Escriou, V; Frederic, M; Jaslin, G; Rangara, R; Pitard, B; Crouzet, J; Wils, P; Schwartz, B; Scherman, D

    1998-01-15

    We have designed and synthesized original cationic lipids for gene delivery. A synthetic method on solid support allowed easy access to unsymmetrically monofunctionalized polyamine building blocks of variable geometries. These polyamine building blocks were introduced into cationic lipids. To optimize the transfection efficiency in the novel series, we have carried out structure-activity relationship studies by introduction of variable-length lipids, of variable-length linkers between lipid and cationic moiety, and of substituted linkers. We introduce the concept of using the linkers within cationic lipids molecules as carriers of side groups harboring various functionalities (side chain entity), as assessed by the introduction of a library composed of cationic entities, additional lipid chains, targeting groups, and finally the molecular probes rhodamine and biotin for cellular traffic studies. The transfection activity of the products was assayed in vitro on Hela carcinoma, on NIH3T3, and on CV1 fibroblasts and in vivo on the Lewis Lung carcinoma model. Products from the series displayed high transfection activities. Results indicated that the introduction of a targeting side chain moiety into the cationic lipid is permitted. A primary physicochemical characterization of the DNA/lipid complexes was demonstrated with this leading compound. Selected products from the series are currently being developed for preclinical studies, and the labeled lipopolyamines can be used to study the intracellular traffic of DNA/cationic lipid complexes.

  20. Knockdown of microtubule actin crosslinking factor 1 inhibits cell proliferation in MC3T3-E1 osteoblastic cells

    PubMed Central

    Hu, Lifang; Su, Peihong; Li, Runzhi; Yan, Kun; Chen, Zhihao; Shang, Peng; Qian, Airong

    2015-01-01

    Microtubule actin crosslinking factor 1 (MACF1), a widely expressed cytoskeletal linker, plays important roles in various cells by regulating cytoskeleton dynamics. However, its role in osteoblastic cells is not well understood. Based on our previous findings that the association of MACF1 with F-actin and microtubules in osteoblast-like cells was altered under magnetic force conditions, here, by adopting a stable MACF1-knockdown MC3T3-E1 osteoblastic cell line, we found that MACF1 knockdown induced large cells with a binuclear/multinuclear structure. Further, immunofluorescence staining showed disorganization of F-actin and microtubules in MACF1-knockdown cells. Cell counting revealed significant decrease of cell proliferation and cell cycle analysis showed an S phase cell cycle arrest in MACF1-knockdown cells. Moreover and interestingly, MACF1 knockdown showed a potential effect on cellular MTT reduction activity and mitochondrial content, suggesting an impact on cellular metabolic activity. These results together indicate an important role of MACF1 in regulating osteoblastic cell morphology and function. [BMB Reports 2015; 48(10): 583-588] PMID:26277981

  1. Knockdown of microtubule actin crosslinking factor 1 inhibits cell proliferation in MC3T3-E1 osteoblastic cells.

    PubMed

    Hu, Lifang; Su, Peihong; Li, Runzhi; Yan, Kun; Chen, Zhihao; Shang, Peng; Qian, Airong

    2015-10-01

    Microtubule actin crosslinking factor 1 (MACF1), a widely expressed cytoskeletal linker, plays important roles in various cells by regulating cytoskeleton dynamics. However, its role in osteoblastic cells is not well understood. Based on our previous findings that the association of MACF1 with F-actin and microtubules in osteoblast-like cells was altered under magnetic force conditions, here, by adopting a stable MACF1-knockdown MC3T3-E1 osteoblastic cell line, we found that MACF1 knockdown induced large cells with a binuclear/multinuclear structure. Further, immunofluorescence staining showed disorganization of F-actin and microtubules in MACF1-knockdown cells. Cell counting revealed significant decrease of cell proliferation and cell cycle analysis showed an S phase cell cycle arrest in MACF1-knockdown cells. Moreover and interestingly, MACF1 knockdown showed a potential effect on cellular MTT reduction activity and mitochondrial content, suggesting an impact on cellular metabolic activity. These results together indicate an important role of MACF1 in regulating osteoblastic cell morphology and function.

  2. Differential Phosphorylation of Smad1 Integrates BMP and Neurotrophin Pathways through Erk/Dusp in Axon Development

    PubMed Central

    Finelli, Mattéa J.; Murphy, Kevin J.; Chen, Lei; Zou, Hongyan

    2013-01-01

    SUMMARY Sensory axon development requires concerted actions of growth factors for the precise control of axonal outgrowth and target innervation. How developing sensory neurons integrate different cues is poorly understood. We demonstrate here that Smad1 activation is required for neurotrophin-mediated sensory axon growth in vitro and in vivo. Through differential phosphorylation, Smad1 exerts transcriptional selectivity to regulate the expression and activity of Erk1 and Erk2—two key neurotrophin effectors. Specifically, BMPs signal through carboxy-terminal phosphorylation of Smad1 (pSmad1C) to induce Erk1/2 transcription for enhanced neurotrophin responsiveness. Meanwhile, neurotrophin signaling results in linker phosphorylation of Smad1 (pSmad1L), which in turn upregulates an Erk-specific dual-specificity phosphatase, Dusp6, leading to reduced pErk1/2, and constituting a negative feedback loop to prevent axon overgrowth. Together, BMP and neurotrophin pathways are integrated in a tightly regulated signaling network with balanced ratio of Erk1/2 and pErk1/2 to direct the precise connections between sensory neurons and peripheral targets. PMID:23665221

  3. Monomer–dimer dynamics and distribution of GPI-anchored uPAR are determined by cell surface protein assemblies

    PubMed Central

    Caiolfa, Valeria R.; Zamai, Moreno; Malengo, Gabriele; Andolfo, Annapaola; Madsen, Chris D.; Sutin, Jason; Digman, Michelle A.; Gratton, Enrico; Blasi, Francesco; Sidenius, Nicolai

    2007-01-01

    To search for functional links between glycosylphosphatidylinositol (GPI) protein monomer–oligomer exchange and membrane dynamics and confinement, we studied urokinase plasminogen activator (uPA) receptor (uPAR), a GPI receptor involved in the regulation of cell adhesion, migration, and proliferation. Using a functionally active fluorescent protein–uPAR in live cells, we analyzed the effect that extracellular matrix proteins and uPAR ligands have on uPAR dynamics and dimerization at the cell membrane. Vitronectin directs the recruitment of dimers and slows down the diffusion of the receptors at the basal membrane. The commitment to uPA–plasminogen activator inhibitor type 1–mediated endocytosis and recycling modifies uPAR diffusion and induces an exchange between uPAR monomers and dimers. This exchange is fully reversible. The data demonstrate that cell surface protein assemblies are important in regulating the dynamics and localization of uPAR at the cell membrane and the exchange of monomers and dimers. These results also provide a strong rationale for dynamic studies of GPI-anchored molecules in live cells at steady state and in the absence of cross-linker/clustering agents. PMID:18056417

  4. Insights into the Impact of Linker Flexibility and Fragment Ionization on the Design of CK2 Allosteric Inhibitors: Comparative Molecular Dynamics Simulation Studies.

    PubMed

    Zhou, Yue; Zhang, Na; Qi, Xiaoqian; Tang, Shan; Sun, Guohui; Zhao, Lijiao; Zhong, Rugang; Peng, Yongzhen

    2018-01-01

    Protein kinase is a novel therapeutic target for human diseases. The off-target and side effects of ATP-competitive inhibitors preclude them from the clinically relevant drugs. The compounds targeting the druggable allosteric sites outside the highly conversed ATP binding pocket have been identified as promising alternatives to overcome current barriers of ATP-competitive inhibitors. By simultaneously interacting with the αD region (new allosteric site) and sub-ATP binding pocket, the attractive compound CAM4066 was named as allosteric inhibitor of CK2α. It has been demonstrated that the rigid linker and non-ionizable substituted fragment resulted in significant decreased inhibitory activities of compounds. The molecular dynamics simulations and energy analysis revealed that the appropriate coupling between the linker and pharmacophore fragments were essential for binding of CAM4066 with CK2α. The lower flexible linker of compound 21 lost the capability of coupling fragments A and B to αD region and positive area, respectively, whereas the methyl benzoate of fragment B induced the re-orientated Pre-CAM4066 with the inappropriate polar interactions. Most importantly, the match between the optimized linker and pharmacophore fragments is the challenging work of fragment-linking based drug design. These results provide rational clues to further structural modification and development of highly potent allosteric inhibitors of CK2.

  5. Insights into the Impact of Linker Flexibility and Fragment Ionization on the Design of CK2 Allosteric Inhibitors: Comparative Molecular Dynamics Simulation Studies

    PubMed Central

    Zhou, Yue; Zhang, Na; Qi, Xiaoqian; Tang, Shan; Zhao, Lijiao; Zhong, Rugang; Peng, Yongzhen

    2018-01-01

    Protein kinase is a novel therapeutic target for human diseases. The off-target and side effects of ATP-competitive inhibitors preclude them from the clinically relevant drugs. The compounds targeting the druggable allosteric sites outside the highly conversed ATP binding pocket have been identified as promising alternatives to overcome current barriers of ATP-competitive inhibitors. By simultaneously interacting with the αD region (new allosteric site) and sub-ATP binding pocket, the attractive compound CAM4066 was named as allosteric inhibitor of CK2α. It has been demonstrated that the rigid linker and non-ionizable substituted fragment resulted in significant decreased inhibitory activities of compounds. The molecular dynamics simulations and energy analysis revealed that the appropriate coupling between the linker and pharmacophore fragments were essential for binding of CAM4066 with CK2α. The lower flexible linker of compound 21 lost the capability of coupling fragments A and B to αD region and positive area, respectively, whereas the methyl benzoate of fragment B induced the re-orientated Pre-CAM4066 with the inappropriate polar interactions. Most importantly, the match between the optimized linker and pharmacophore fragments is the challenging work of fragment-linking based drug design. These results provide rational clues to further structural modification and development of highly potent allosteric inhibitors of CK2. PMID:29301250

  6. A Helix-Stabilizing Linker Improves Subcutaneous Bioavailability of a Helical Peptide Independent of Linker Lipophilicity

    PubMed Central

    Zhang, Liang; Navaratna, Tejas; Thurber, Greg M.

    2016-01-01

    Stabilized peptides address several limitations to peptide-based imaging agents and therapeutics such as poor stability and low affinity due to conformational flexibility. There is also active research in developing these compounds for intracellular drug targeting, and significant efforts have been invested to determine the effects of helix stabilization on intracellular delivery. However, much less is known about the impact on other pharmacokinetic parameters such as plasma clearance and bioavailability. We investigated the effect of different fluorescent helix-stabilizing linkers with varying lipophilicity on subcutaneous (SC) bioavailability using the glucagon-like peptide-1 (GLP-1) receptor ligand exendin as a model system. The stabilized peptides showed significantly higher protease resistance and increased bioavailability independent of linker hydrophilicity, and all subcutaneously delivered conjugates were able to successfully target the islets of Langerhans with high specificity. The lipophilic peptide variants had slower absorption and plasma clearance than their respective hydrophilic conjugates, and the absolute bioavailability was also lower likely due to the longer residence times in the skin. The ease and efficiency of double-click helix stabilization chemistries is a useful tool for increasing the bioavailability of peptide therapeutics, many of which suffer from rapid in vivo protease degradation. Helix stabilization using linkers of varying lipophilicity can further control SC absorption and clearance rates to customize plasma pharmacokinetics. PMID:27327034

  7. A structural comparison of 'real' and 'model' calmodulin clarified allosteric interactions regulating domain motion.

    PubMed

    Shimoyama, Hiromitsu

    2018-05-07

    Calmodulin (CaM) is a multifunctional calcium-binding protein, which regulates various biochemical processes. CaM acts via structural changes and complex forming with its target enzymes. CaM has two globular domains (N-lobe and C-lobe) connected by a long linker region. Upon calcium binding, the N-lobe and C-lobe undergo local conformational changes, after that, entire CaM wraps the target enzyme through a large conformational change. However, the regulation mechanism, such as allosteric interactions regulating the conformational changes, is still unclear. In order to clarify the allosteric interactions, in this study, experimentally obtained 'real' structures are compared to 'model' structures lacking the allosteric interactions. As the allosteric interactions would be absent in calcium-free CaM (apo-CaM), allostery-eliminated calcium-bound CaM (holo-CaM) models were constructed by combining the apo-CaM's linker and the holo-CaM's N- and C-lobe. Before the comparison, the 'real' and 'model' structures were clustered and cluster-cluster relationship was determined by a principal component analysis. The structures were compared based on the relationship, then, a distance map and a contact probability analysis clarified that the inter-domain motion is regulated by several groups of inter-domain contacting residue pairs. The analyses suggested that these residues cause inter-domain translation and rotation, and as a consequence, the motion encourage structural diversity. The resultant diversity would contribute to the functional versatility of CaM.

  8. Structure, function, and tethering of DNA-binding domains in σ 54 transcriptional activators

    DOE PAGES

    Vidangos, Natasha; Maris, Ann E.; Young, Anisa; ...

    2013-07-02

    In this paper, we compare the structure, activity, and linkage of DNA-binding domains (DBDs) from σ 54 transcriptional activators and discuss how the properties of the DBDs and the linker to the neighboring domain are affected by the overall properties and requirements of the full proteins. These transcriptional activators bind upstream of specific promoters that utilize σ 54-polymerase. Upon receiving a signal the activators assemble into hexamers, which then, through adenosine triphosphate (ATP) hydrolysis, drive a conformational change in polymerase that enables transcription initiation. We present structures of the DBDs of activators nitrogen regulatory protein C 1 (NtrC1) and Nif-likemore » homolog 2 (Nlh2) from the thermophile Aquifex aeolicus. The structures of these domains and their relationship to other parts of the activators are discussed. These structures are compared with previously determined structures of the DBDs of NtrC4, NtrC, ZraR, and factor for inversion stimulation. The N-terminal linkers that connect the DBDs to the central domains in NtrC1 and Nlh2 were studied and found to be unstructured. Additionally, a crystal structure of full-length NtrC1 was solved, but density of the DBDs was extremely weak, further indicating that the linker between ATPase and DBDs functions as a flexible tether. Flexible linking of ATPase and DBDs is likely necessary to allow assembly of the active hexameric ATPase ring. Finally, the comparison of this set of activators also shows clearly that strong dimerization of the DBD only occurs when other domains do not dimerize strongly.« less

  9. Discovery of Aminopiperidine Indoles That Activate the Guanine Nucleotide Exchange Factor SOS1 and Modulate RAS Signaling.

    PubMed

    Abbott, Jason R; Hodges, Timothy R; Daniels, R Nathan; Patel, Pratiq A; Kennedy, Jack Phillip; Howes, Jennifer E; Akan, Denis T; Burns, Michael C; Sai, Jiqing; Sobolik, Tammy; Beesetty, Yugandhar; Lee, Taekyu; Rossanese, Olivia W; Phan, Jason; Waterson, Alex G; Fesik, Stephen W

    2018-06-01

    Deregulated RAS activity, often the result of mutation, is implicated in approximately 30% of all human cancers. Despite this statistic, no clinically successful treatment for RAS-driven tumors has yet been developed. One approach for modulating RAS activity is to target and affect the activity of proteins that interact with RAS, such as the guanine nucleotide exchange factor (GEF) son of sevenless homologue 1 (SOS1). Here, we report on structure-activity relationships (SAR) in an indole series of compounds. Using structure-based design, we systematically explored substitution patterns on the indole nucleus, the pendant amino acid moiety, and the linker unit that connects these two fragments. Best-in-class compounds activate the nucleotide exchange process at sub-micromolar concentrations in vitro, increase levels of active RAS-GTP in HeLa cells, and elicit signaling changes in the mitogen-activated protein kinase/extracellular regulated kinase (MAPK/ERK) pathway, resulting in a decrease in pERK1/2 T202/Y204 protein levels at higher compound concentrations.

  10. Engineered Recombinant Single-Chain Fragment Variable Antibody for Immunosensors

    PubMed Central

    Shen, Zhihong; Mernaugh, Raymond L.; Yan, Heping; Yu, Lei; Zhang, Ying; Zeng, Xiangqun

    2008-01-01

    A recombinant single-chain fragment variable (scFv) antibody (designated A10B) was engineered to contain two histidines within the linker peptide used to join the scFv heavy and light chains. A piezoimmunosensor using the scFv was successfully developed. A10B scFv bound to the gold piezoimmunosensor surface were correctly oriented, retained antigen-binding activity, and coupled at high surface concentration. These results, and results obtained from an earlier study using an scFv containing a linker cysteine, suggest that the location on the linker sequence in which the amino acids were incorporated was well tolerated by the scFv and did not interfere with scFv antigen-binding activity. The scFv-modified QCM sensor was thoroughly characterized and used to specifically detect antigen in crude serum sample and had a sensitivity of 2.3 ± 0.15 nM (n = 4) with a linear range over 2.3 × 10−9–3.3 × 10−8 M. The piezoimmunosensor was also used to study the kinetics and thermodynamics of antigen/scFv antibody binding. PMID:16255580

  11. A strategy to identify linker-based modules for the allosteric regulation of antibody-antigen binding affinities of different scFvs

    PubMed Central

    Thie, Holger

    2017-01-01

    ABSTRACT Antibody single-chain variable fragments (scFvs) are used in a variety of applications, such as for research, diagnosis and therapy. Essential for these applications is the extraordinary specificity, selectivity and affinity of antibody paratopes, which can also be used for efficient protein purification. However, this use is hampered by the high affinity for the protein to be purified because harsh elution conditions, which may impair folding, integrity or viability of the eluted biomaterials, are typically required. In this study, we developed a strategy to obtain structural elements that provide allosteric modulation of the affinities of different antibody scFvs for their antigen. To identify suitable allosteric modules, a complete set of cyclic permutations of calmodulin variants was generated and tested for modulation of the affinity when substituting the linker between VH and VL. Modulation of affinity induced by addition of different calmodulin-binding peptides at physiologic conditions was demonstrated for 5 of 6 tested scFvs of different specificities and antigens ranging from cell surface proteins to haptens. In addition, a variety of different modulator peptides were tested. Different structural solutions were found in respect of the optimal calmodulin permutation, the optimal peptide and the allosteric effect for scFvs binding to different antigen structures. Significantly, effective linker modules were identified for scFvs with both VH-VL and VL-VH architecture. The results suggest that this approach may offer a rapid, paratope-independent strategy to provide allosteric regulation of affinity for many other antibody scFvs. PMID:28055297

  12. Roles of the SH2 and SH3 domains in the regulation of neuronal Src kinase functions.

    PubMed

    Groveman, Bradley R; Xue, Sheng; Marin, Vedrana; Xu, Jindong; Ali, Mohammad K; Bienkiewicz, Ewa A; Yu, Xian-Min

    2011-02-01

    Previous studies demonstrated that intra-domain interactions between Src family kinases (SFKs), stabilized by binding of the phosphorylated C-terminus to the SH2 domain and/or binding of the SH2 kinase linker to the SH3 domain, lock the molecules in a closed conformation, disrupt the kinase active site, and inactivate SFKs. Here we report that the up-regulation of N-methyl-D-aspartate receptors (NMDARs) induced by expression of constitutively active neuronal Src (n-Src), in which the C-terminus tyrosine is mutated to phenylalanine (n-Src/Y535F), is significantly reduced by dysfunctions of the SH2 and/or SH3 domains of the protein. Furthermore, we found that dysfunctions of SH2 and/or SH3 domains reduce auto-phosphorylation of the kinase activation loop, depress kinase activity, and decrease NMDAR phosphorylation. The SH2 domain plays a greater regulatory role than the SH3 domain. Our data also show that n-Src binds directly to the C-terminus of the NMDAR NR2A subunit in vitro, with a K(D) of 108.2 ± 13.3 nM. This binding is not Src kinase activity-dependent, and dysfunctions of the SH2 and/or SH3 domains do not significantly affect the binding. These data indicate that the SH2 and SH3 domains may function to promote the catalytic activity of active n-Src, which is important in the regulation of NMDAR functions. © 2010 The Authors Journal compilation © 2010 FEBS.

  13. Development of nanoscale structure in LAT-based signaling complexes

    PubMed Central

    2016-01-01

    ABSTRACT The adapter molecule linker for activation of T cells (LAT) plays a crucial role in forming signaling complexes induced by stimulation of the T cell receptor (TCR). These multi-molecular complexes are dynamic structures that activate highly regulated signaling pathways. Previously, we have demonstrated nanoscale structure in LAT-based complexes where the adapter SLP-76 (also known as LCP2) localizes to the periphery of LAT clusters. In this study, we show that initially LAT and SLP-76 are randomly dispersed throughout the clusters that form upon TCR engagement. The segregation of LAT and SLP-76 develops near the end of the spreading process. The local concentration of LAT also increases at the same time. Both changes require TCR activation and an intact actin cytoskeleton. These results demonstrate that the nanoscale organization of LAT-based signaling complexes is dynamic and indicates that different kinds of LAT-based complexes appear at different times during T cell activation. PMID:27875277

  14. Interactions between Kar2p and Its Nucleotide Exchange Factors Sil1p and Lhs1p Are Mechanistically Distinct*

    PubMed Central

    Hale, Sarah J.; Lovell, Simon C.; de Keyzer, Jeanine; Stirling, Colin J.

    2010-01-01

    Kar2p, an essential Hsp70 chaperone in the endoplasmic reticulum of Saccharomyces cerevisiae, facilitates the transport and folding of nascent polypeptides within the endoplasmic reticulum lumen. The chaperone activity of Kar2p is regulated by its intrinsic ATPase activity that can be stimulated by two different nucleotide exchange factors, namely Sil1p and Lhs1p. Here, we demonstrate that the binding requirements for Lhs1p are complex, requiring both the nucleotide binding domain plus the linker domain of Kar2p. In contrast, the IIB domain of Kar2p is sufficient for binding of Sil1p, and point mutations within IIB specifically blocked Sil1p-dependent activation while remaining competent for activation by Lhs1p. Taken together, these results demonstrate that the interactions between Kar2p and its two nucleotide exchange factors can be functionally resolved and are thus mechanistically distinct. PMID:20430899

  15. Liquid behavior of cross-linked actin bundles.

    PubMed

    Weirich, Kimberly L; Banerjee, Shiladitya; Dasbiswas, Kinjal; Witten, Thomas A; Vaikuntanathan, Suriyanarayanan; Gardel, Margaret L

    2017-02-28

    The actin cytoskeleton is a critical regulator of cytoplasmic architecture and mechanics, essential in a myriad of physiological processes. Here we demonstrate a liquid phase of actin filaments in the presence of the physiological cross-linker, filamin. Filamin condenses short actin filaments into spindle-shaped droplets, or tactoids, with shape dynamics consistent with a continuum model of anisotropic liquids. We find that cross-linker density controls the droplet shape and deformation timescales, consistent with a variable interfacial tension and viscosity. Near the liquid-solid transition, cross-linked actin bundles show behaviors reminiscent of fluid threads, including capillary instabilities and contraction. These data reveal a liquid droplet phase of actin, demixed from the surrounding solution and dominated by interfacial tension. These results suggest a mechanism to control organization, morphology, and dynamics of the actin cytoskeleton.

  16. Effect of the linkers between the zinc fingers in zinc finger protein 809 on gene silencing and nuclear localization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ichida, Yu, E-mail: ichida-y@ncchd.go.jp; Utsunomiya, Yuko; Onodera, Masafumi

    2016-03-18

    Zinc finger protein 809 (ZFP809) belongs to the Kruppel-associated box-containing zinc finger protein (KRAB-ZFP) family and functions in repressing the expression of Moloney murine leukemia virus (MoMLV). ZFP809 binds to the primer-binding site (PBS)located downstream of the MoMLV-long terminal repeat (LTR) and induces epigenetic modifications at integration sites, such as repressive histone modifications and de novo DNA methylation. KRAB-ZFPs contain consensus TGEKP linkers between C2H2 zinc fingers. The phosphorylation of threonine residues within linkers leads to the inactivation of zinc finger binding to target sequences. ZFP809 also contains consensus linkers between zinc fingers. However, the function of ZFP809 linkers remainsmore » unknown. In the present study, we constructed ZFP809 proteins containing mutated linkers and examined their ability to silence transgene expression driven by MLV, binding ability to MLV PBS, and cellular localization. The results of the present study revealed that the linkers affected the ability of ZFP809 to silence transgene expression. Furthermore, this effect could be partly attributed to changes in the localization of ZFP809 proteins containing mutated linkers. Further characterization of ZFP809 linkers is required for understanding the functions and features of KRAB-ZFP-containing linkers. - Highlights: • ZFP809 has three consensus linkers between the zinc fingers. • Linkers are required for ZFP809 to silence transgene expression driven by MLV-LTR. • Linkers affect the precise nuclear localization of ZFP809.« less

  17. Prescreening of Nicotine Hapten Linkers in Vitro To Select Hapten-Conjugate Vaccine Candidates for Pharmacokinetic Evaluation in Vivo.

    PubMed

    Arutla, Viswanath; Leal, Joseph; Liu, Xiaowei; Sokalingam, Sriram; Raleigh, Michael; Adaralegbe, Adejimi; Liu, Li; Pentel, Paul R; Hecht, Sidney M; Chang, Yung

    2017-05-08

    Since the demonstration of nicotine vaccines as a possible therapeutic intervention for the effects of tobacco smoke, extensive effort has been made to enhance nicotine specific immunity. Linker modifications of nicotine haptens have been a focal point for improving the immunogenicity of nicotine, in which the evaluation of these modifications usually relies on in vivo animal models, such as mice, rats or nonhuman primates. Here, we present two in vitro screening strategies to estimate and predict the immunogenic potential of our newly designed nicotine haptens. One utilizes a competition enzyme-linked immunoabsorbent assay (ELISA) to profile the interactions of nicotine haptens or hapten-protein conjugates with nicotine specific antibodies, both polyclonal and monoclonal. Another relies on computational modeling of the interactions between haptens and amino acid residues near the conjugation site of the carrier protein to infer linker-carrier protein conjugation effect on antinicotine antibody response. Using these two in vitro methods, we ranked the haptens with different linkers for their potential as viable vaccine candidates. The ELISA-based hapten ranking was in an agreement with the results obtained by in vivo nicotine pharmacokinetic analysis. A correlation was found between the average binding affinity (IC 50 ) of the haptens to an anti-Nic monoclonal antibody and the average brain nicotine concentration in the immunized mice. The computational modeling of hapten and carrier protein interactions helps exclude conjugates with strong linker-carrier conjugation effects and low in vivo efficacy. The simplicity of these in vitro screening strategies should facilitate the selection and development of more effective nicotine conjugate vaccines. In addition, these data highlight a previously under-appreciated contribution of linkers and hapten-protein conjugations to conjugate vaccine immunogenicity by virtue of their inclusion in the epitope that binds and activates B cells.

  18. A new mechanism of voltage-dependent gating exposed by KV10.1 channels interrupted between voltage sensor and pore.

    PubMed

    Tomczak, Adam P; Fernández-Trillo, Jorge; Bharill, Shashank; Papp, Ferenc; Panyi, Gyorgy; Stühmer, Walter; Isacoff, Ehud Y; Pardo, Luis A

    2017-05-01

    Voltage-gated ion channels couple transmembrane potential changes to ion flow. Conformational changes in the voltage-sensing domain (VSD) of the channel are thought to be transmitted to the pore domain (PD) through an α-helical linker between them (S4-S5 linker). However, our recent work on channels disrupted in the S4-S5 linker has challenged this interpretation for the KCNH family. Furthermore, a recent single-particle cryo-electron microscopy structure of K V 10.1 revealed that the S4-S5 linker is a short loop in this KCNH family member, confirming the need for an alternative gating model. Here we use "split" channels made by expression of VSD and PD as separate fragments to investigate the mechanism of gating in K V 10.1. We find that disruption of the covalent connection within the S4 helix compromises the ability of channels to close at negative voltage, whereas disconnecting the S4-S5 linker from S5 slows down activation and deactivation kinetics. Surprisingly, voltage-clamp fluorometry and MTS accessibility assays show that the motion of the S4 voltage sensor is virtually unaffected when VSD and PD are not covalently bound. Finally, experiments using constitutively open PD mutants suggest that the presence of the VSD is structurally important for the conducting conformation of the pore. Collectively, our observations offer partial support to the gating model that assumes that an inward motion of the C-terminal S4 helix, rather than the S4-S5 linker, closes the channel gate, while also suggesting that control of the pore by the voltage sensor involves more than one mechanism. © 2017 Tomczak et al.

  19. A new mechanism of voltage-dependent gating exposed by KV10.1 channels interrupted between voltage sensor and pore

    PubMed Central

    Fernández-Trillo, Jorge; Bharill, Shashank; Panyi, Gyorgy; Stühmer, Walter; Isacoff, Ehud Y.

    2017-01-01

    Voltage-gated ion channels couple transmembrane potential changes to ion flow. Conformational changes in the voltage-sensing domain (VSD) of the channel are thought to be transmitted to the pore domain (PD) through an α-helical linker between them (S4–S5 linker). However, our recent work on channels disrupted in the S4–S5 linker has challenged this interpretation for the KCNH family. Furthermore, a recent single-particle cryo-electron microscopy structure of KV10.1 revealed that the S4–S5 linker is a short loop in this KCNH family member, confirming the need for an alternative gating model. Here we use “split” channels made by expression of VSD and PD as separate fragments to investigate the mechanism of gating in KV10.1. We find that disruption of the covalent connection within the S4 helix compromises the ability of channels to close at negative voltage, whereas disconnecting the S4–S5 linker from S5 slows down activation and deactivation kinetics. Surprisingly, voltage-clamp fluorometry and MTS accessibility assays show that the motion of the S4 voltage sensor is virtually unaffected when VSD and PD are not covalently bound. Finally, experiments using constitutively open PD mutants suggest that the presence of the VSD is structurally important for the conducting conformation of the pore. Collectively, our observations offer partial support to the gating model that assumes that an inward motion of the C-terminal S4 helix, rather than the S4–S5 linker, closes the channel gate, while also suggesting that control of the pore by the voltage sensor involves more than one mechanism. PMID:28360219

  20. Regulation of renal fibrosis by Smad3 Thr388 phosphorylation.

    PubMed

    Qu, Xinli; Li, Xueling; Zheng, Yaowu; Ren, Yi; Puelles, Victor G; Caruana, Georgina; Nikolic-Paterson, David J; Li, Jinhua

    2014-04-01

    Transforming growth factor-β (TGF-β) promotes tissue fibrosis via receptor-mediated phosphorylation of the receptor-activated Smad2/3, together with Smad4. Of these, Smad3 plays a major profibrotic role in mouse models of tissue fibrosis. Transcriptional activity of the Smad3 protein is regulated by phosphorylation of residues in the C-terminal domain and the linker region. Herein, we examined the role of a novel phosphorylation site within the MH2 domain (T388) in the regulation of Smad3 activity. Confocal microscopy using an Smad3 phosphorylated T388-specific antibody identified phosphorylation of Smad3 T388 in myofibroblasts and tubular epithelial cells in human focal and segmental glomerulosclerosis and mouse models of unilateral ureteric obstruction and diabetic nephropathy, whereas phosphorylated T388 was largely absent in normal kidney. In vitro, TGF-β1 induced phosphorylation of Smad3 T388 in a biphasic pattern. A point mutation of T388/V in an Smad3 construct demonstrated that phosphorylation of T388 promotes Smad3 binding to Smad4 and CDK8, but was not necessary for nuclear translocation. Furthermore, T388 phosphorylation was required for TGF-β-induced collagen I gene promoter activity and extracellular matrix production in cultured fibroblasts. In conclusion, our study identifies phosphorylation of T388 in the Smad3 MH2 domain as an important mechanism that regulates the profibrotic TGF-β/Smad3 signaling pathway, which has direct relevance to human and experimental fibrotic kidney disease. Copyright © 2014. Published by Elsevier Inc.

  1. Two-state dynamics of the SH3–SH2 tandem of Abl kinase and the allosteric role of the N-cap

    PubMed Central

    Corbi-Verge, Carles; Marinelli, Fabrizio; Zafra-Ruano, Ana; Ruiz-Sanz, Javier; Luque, Irene; Faraldo-Gómez, José D.

    2013-01-01

    The regulation and localization of signaling enzymes is often mediated by accessory modular domains, which frequently function in tandems. The ability of these tandems to adopt multiple conformations is as important for proper regulation as the individual domain specificity. A paradigmatic example is Abl, a ubiquitous tyrosine kinase of significant pharmacological interest. SH3 and SH2 domains inhibit Abl by assembling onto the catalytic domain, allosterically clamping it in an inactive state. We investigate the dynamics of this SH3–SH2 tandem, using microsecond all-atom simulations and differential scanning calorimetry. Our results indicate that the Abl tandem is a two-state switch, alternating between the conformation observed in the structure of the autoinhibited enzyme and another configuration that is consistent with existing scattering data for an activated form. Intriguingly, we find that the latter is the most probable when the tandem is disengaged from the catalytic domain. Nevertheless, an amino acid stretch preceding the SH3 domain, the so-called N-cap, reshapes the free-energy landscape of the tandem and favors the interaction of this domain with the SH2-kinase linker, an intermediate step necessary for assembly of the autoinhibited complex. This allosteric effect arises from interactions between N-cap and the SH2 domain and SH3–SH2 connector, which involve a phosphorylation site. We also show that the SH3–SH2 connector plays a determinant role in the assembly equilibrium of Abl, because mutations thereof hinder the engagement of the SH2-kinase linker. These results provide a thermodynamic rationale for the involvement of N-cap and SH3–SH2 connector in Abl regulation and expand our understanding of the principles of modular domain organization. PMID:23959873

  2. Design of an Active Ultrastable Single-chain Insulin Analog

    PubMed Central

    Hua, Qing-xin; Nakagawa, Satoe H.; Jia, Wenhua; Huang, Kun; Phillips, Nelson B.; Hu, Shi-quan; Weiss, Michael A.

    2008-01-01

    Single-chain insulin (SCI) analogs provide insight into the inter-relation of hormone structure, function, and dynamics. Although compatible with wild-type structure, short connecting segments (<3 residues) prevent induced fit upon receptor binding and so are essentially without biological activity. Substantial but incomplete activity can be regained with increasing linker length. Here, we describe the design, structure, and function of a single-chain insulin analog (SCI-57) containing a 6-residue linker (GGGPRR). Native receptor-binding affinity (130 ± 8% relative to the wild type) is achieved as hindrance by the linker is offset by favorable substitutions in the insulin moiety. The thermodynamic stability of SCI-57 is markedly increased (ΔΔGu = 0.7 ± 0.1 kcal/mol relative to the corresponding two-chain analog and 1.9 ± 0.1 kcal/mol relative to wild-type insulin). Analysis of inter-residue nuclear Overhauser effects demonstrates that a native-like fold is maintained in solution. Surprisingly, the glycine-rich connecting segment folds against the insulin moiety: its central Pro contacts ValA3 at the edge of the hydrophobic core, whereas the final Arg extends the A1-A8 α-helix. Comparison between SCI-57 and its parent two-chain analog reveals striking enhancement of multiple native-like nuclear Overhauser effects within the tethered protein. These contacts are consistent with wild-type crystal structures but are ordinarily attenuated in NMR spectra of two-chain analogs, presumably due to conformational fluctuations. Linker-specific damping of fluctuations provides evidence for the intrinsic flexibility of an insulin monomer. In addition to their biophysical interest, ultrastable SCIs may enhance the safety and efficacy of insulin replacement therapy in the developing world. PMID:18332129

  3. Spontaneous nucleotide exchange in low molecular weight GTPases by fluorescently labeled γ-phosphate-linked GTP analogs

    PubMed Central

    Korlach, Jonas; Baird, Daniel W.; Heikal, Ahmed A.; Gee, Kyle R.; Hoffman, Gregory R.; Webb, Watt W.

    2004-01-01

    Regulated guanosine nucleotide exchange and hydrolysis constitute the fundamental activities of low molecular weight GTPases. We show that three guanosine 5′-triphosphate analogs with BODIPY fluorophores coupled via the gamma phosphate bind to the GTPases Cdc42, Rac1, RhoA, and Ras and displace guanosine 5′-diphosphate with high intrinsic exchange rates in the presence of Mg2+ ions, thereby acting as synthetic, low molecular weight guanine nucleotide exchange factors. The accompanying large fluorescence enhancements (as high as 12-fold), caused by a reduction in guanine quenching of the environmentally sensitive BODIPY dye fluorescence on protein binding, allow for real-time monitoring of this spontaneous nucleotide exchange in the visible spectrum with high signal-to-noise ratios. Binding affinities increased with longer aliphatic linkers connecting the nucleotide and BODIPY fluorophore and were in the 10–100 nM range. Steady-state and time-resolved fluorescence spectroscopy showed an inverse relationship between linker length and fluorescence enhancement factors and differences in protein-bound fluorophore mobilities, providing optimization criteria for future applications of such compounds as efficient elicitors and reporters of nucleotide exchange. EDTA markedly enhanced nucleotide exchange, enabling rapid loading of GTPases with these probes. Differences in active site geometries, in the absence of Mg2+, caused qualitatively different reporting of the bound state by the different analogs. The BODIPY analogs also prevented the interaction of Cdc42 with p21 activated kinase. Together, these results validate the use of these analogs as valuable tools for studying GTPase functions and for developing potent synthetic nucleotide exchange factors for this important class of signaling molecules. PMID:14973186

  4. Hydrophobic interactions between the voltage sensor and pore mediate inactivation in Kv11.1 channels

    PubMed Central

    Perry, Matthew D.; Wong, Sophia; Ng, Chai Ann

    2013-01-01

    Kv11.1 channels are critical for the maintenance of a normal heart rhythm. The flow of potassium ions through these channels is controlled by two voltage-regulated gates, termed “activation” and “inactivation,” located at opposite ends of the pore. Crucially in Kv11.1 channels, inactivation gating occurs much more rapidly, and over a distinct range of voltages, compared with activation gating. Although it is clear that the fourth transmembrane segments (S4), within each subunit of the tetrameric channel, are important for controlling the opening and closing of the activation gate, their role during inactivation gating is much less clear. Here, we use rate equilibrium free energy relationship (REFER) analysis to probe the contribution of the S4 “voltage-sensor” helix during inactivation of Kv11.1 channels. Contrary to the important role that charged residues play during activation gating, it is the hydrophobic residues (Leu529, Leu530, Leu532, and Val535) that are the key molecular determinants of inactivation gating. Within the context of an interconnected multi-domain model of Kv11.1 inactivation gating, our REFER analysis indicates that the S4 helix and the S4–S5 linker undergo a conformational rearrangement shortly after that of the S5 helix and S5P linker, but before the S6 helix. Combining REFER analysis with double mutant cycle analysis, we provide evidence for a hydrophobic interaction between residues on the S4 and S5 helices. Based on a Kv11.1 channel homology model, we propose that this hydrophobic interaction forms the basis of an intersubunit coupling between the voltage sensor and pore domain that is an important mediator of inactivation gating. PMID:23980196

  5. Intra-molecular cross-linking of acidic residues for protein structure studies.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruppa, Gary Hermann; Young, Malin M.; Novak, Petr

    2005-03-01

    Intra-molecular cross-linking has been suggested as a method of obtaining distance constraints that would be useful in developing structural models of proteins. Recent work published on intra-molecular cross-linking for protein structural studies has employed commercially available primary amine selective reagents that can cross-link lysine residues to other lysine residues or the amino terminus. Previous work using these cross-linkers has shown that for several proteins of known structure, the number of cross-links that can be obtained experimentally may be small compared to what would be expected from the known structure, due to the relative reactivity, distribution, and solvent accessibility of themore » lysines in the protein sequence. To overcome these limitations we have investigated the use of cross-linking reagents that can react with other reactive sidechains in proteins. We used 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) to activate the carboxylic acid containing residues, aspartic acid (D), glutamic acid (E), and the carboxy terminus (O), for cross-linking reactions. Once activated, the DEO sidechains can react to form 'zero-length' cross-links with nearby primary amine containing resides, lysines (K) and the amino terminus (X), via the formation of a new amide bond. We also show that the EDC-activated DEO sidechains can be cross-linked to each other using dihydrazides, two hydrazide moieties connected by an alkyl cross-linker ann of variable length. Using these reagents, we have found three new 'zero-length' cross-links in ubiquitin consistent with its known structure (M1-E16, M1-E18, and K63-E64). Using the dihydrazide cross-linkers, we have identified 2 new cross-links (D21-D32 and E24-D32) unambiguously. Using a library of dihydrazide cross-linkers with varying arm length, we have shown that there is a minimum arm length required for the DEO-DEO cross-links of 5.8 angstroms. These results show that additional structural information can be obtained by exploiting new cross-linker chemistry, increasing the probability that the protein target of choice will yield sufficient distance constraints to develop a structural model.« less

  6. The spectraplakin Short stop is an essential microtubule regulator involved in epithelial closure in Drosophila

    PubMed Central

    Takács, Zsanett; Vilmos, Péter; Lénárt, Péter; Röper, Katja; Erdélyi, Miklós

    2017-01-01

    ABSTRACT Dorsal closure of the Drosophila embryonic epithelium provides an excellent model system for the in vivo analysis of molecular mechanisms regulating cytoskeletal rearrangements. In this study, we investigated the function of the Drosophila spectraplakin Short stop (Shot), a conserved cytoskeletal structural protein, during closure of the dorsal embryonic epithelium. We show that Shot is essential for the efficient final zippering of the opposing epithelial margins. By using isoform-specific mutant alleles and genetic rescue experiments with truncated Shot variants, we demonstrate that Shot functions as an actin–microtubule cross-linker in mediating zippering. At the leading edge of epithelial cells, Shot regulates protrusion dynamics by promoting filopodia formation. Fluorescence recovery after photobleaching (FRAP) analysis and in vivo imaging of microtubule growth revealed that Shot stabilizes dynamic microtubules. The actin- and microtubule-binding activities of Shot are simultaneously required in the same molecule, indicating that Shot is engaged as a physical crosslinker in this process. We propose that Shot-mediated interactions between microtubules and actin filaments facilitate filopodia formation, which promotes zippering by initiating contact between opposing epithelial cells. PMID:28062848

  7. Cdc42 regulates junctional actin but not cell polarization in the Caenorhabditis elegans epidermis

    PubMed Central

    Zilberman, Yuliya; Abrams, Joshua; Anderson, Dorian C.

    2017-01-01

    During morphogenesis, adherens junctions (AJs) remodel to allow changes in cell shape and position while preserving adhesion. Here, we examine the function of Rho guanosine triphosphatase CDC-42 in AJ formation and regulation during Caenorhabditis elegans embryo elongation, a process driven by asymmetric epidermal cell shape changes. cdc-42 mutant embryos arrest during elongation with epidermal ruptures. Unexpectedly, we find using time-lapse fluorescence imaging that cdc-42 is not required for epidermal cell polarization or junction assembly, but rather is needed for proper junctional actin regulation during elongation. We show that the RhoGAP PAC-1/ARHGAP21 inhibits CDC-42 activity at AJs, and loss of PAC-1 or the interacting linker protein PICC-1/CCDC85A-C blocks elongation in embryos with compromised AJ function. pac-1 embryos exhibit dynamic accumulations of junctional F-actin and an increase in AJ protein levels. Our findings identify a previously unrecognized molecular mechanism for inhibiting junctional CDC-42 to control actin organization and AJ protein levels during epithelial morphogenesis. PMID:28903999

  8. Site specific replacements of a single loop nucleoside with a dibenzyl linker may switch the activity of TBA from anticoagulant to antiproliferative.

    PubMed

    Scuotto, Maria; Rivieccio, Elisa; Varone, Alessia; Corda, Daniela; Bucci, Mariarosaria; Vellecco, Valentina; Cirino, Giuseppe; Virgilio, Antonella; Esposito, Veronica; Galeone, Aldo; Borbone, Nicola; Varra, Michela; Mayol, Luciano

    2015-09-18

    Many antiproliferative G-quadruplexes (G4s) arise from the folding of GT-rich strands. Among these, the Thrombin Binding Aptamer (TBA), as a rare example, adopts a monomolecular well-defined G4 structure. Nevertheless, the potential anticancer properties of TBA are severely hampered by its anticoagulant action and, consequently, no related studies have appeared so far in the literature. We wish to report here that suitable chemical modifications in the TBA sequence can preserve its antiproliferative over anticoagulant activity. Particularly, we replaced one residue of the TT or TGT loops with a dibenzyl linker to develop seven new quadruplex-forming TBA based sequences (TBA-bs), which were studied for their structural (CD, CD melting, 1D NMR) and biological (fibrinogen, PT and MTT assays) properties. The three-dimensional structures of the TBA-bs modified at T13 (TBA-bs13) or T12 (TBA-bs12), the former endowed with selective antiproliferative activity, and the latter acting as potently as TBA in both coagulation and MTT assays, were further studied by 2D NMR restrained molecular mechanics. The comparative structural analyses indicated that neither the stability, nor the topology of the G4s, but the different localization of the two benzene rings of the linker was responsible for the loss of the antithrombin activity for TBA-bs13. © Crown copyright 2015.

  9. Site specific replacements of a single loop nucleoside with a dibenzyl linker may switch the activity of TBA from anticoagulant to antiproliferative

    PubMed Central

    Scuotto, Maria; Rivieccio, Elisa; Varone, Alessia; Corda, Daniela; Bucci, Mariarosaria; Vellecco, Valentina; Cirino, Giuseppe; Virgilio, Antonella; Esposito, Veronica; Galeone, Aldo; Borbone, Nicola; Varra, Michela; Mayol, Luciano

    2015-01-01

    Many antiproliferative G-quadruplexes (G4s) arise from the folding of GT-rich strands. Among these, the Thrombin Binding Aptamer (TBA), as a rare example, adopts a monomolecular well-defined G4 structure. Nevertheless, the potential anticancer properties of TBA are severely hampered by its anticoagulant action and, consequently, no related studies have appeared so far in the literature. We wish to report here that suitable chemical modifications in the TBA sequence can preserve its antiproliferative over anticoagulant activity. Particularly, we replaced one residue of the TT or TGT loops with a dibenzyl linker to develop seven new quadruplex-forming TBA based sequences (TBA-bs), which were studied for their structural (CD, CD melting, 1D NMR) and biological (fibrinogen, PT and MTT assays) properties. The three-dimensional structures of the TBA-bs modified at T13 (TBA-bs13) or T12 (TBA-bs12), the former endowed with selective antiproliferative activity, and the latter acting as potently as TBA in both coagulation and MTT assays, were further studied by 2D NMR restrained molecular mechanics. The comparative structural analyses indicated that neither the stability, nor the topology of the G4s, but the different localization of the two benzene rings of the linker was responsible for the loss of the antithrombin activity for TBA-bs13. PMID:26250112

  10. Calmodulin regulates Cav3 T-type channels at their gating brake

    PubMed Central

    Taiakina, Valentina; Monteil, Arnaud; Piazza, Michael; Guan, Wendy; Stephens, Robert F.; Dieckmann, Thorsten; Guillemette, Joseph Guy; Spafford, J. David

    2017-01-01

    Calcium (Cav1 and Cav2) and sodium channels possess homologous CaM-binding motifs, known as IQ motifs in their C termini, which associate with calmodulin (CaM), a universal calcium sensor. Cav3 T-type channels, which serve as pacemakers of the mammalian brain and heart, lack a C-terminal IQ motif. We illustrate that T-type channels associate with CaM using co-immunoprecipitation experiments and single particle cryo-electron microscopy. We demonstrate that protostome invertebrate (LCav3) and human Cav3.1, Cav3.2, and Cav3.3 T-type channels specifically associate with CaM at helix 2 of the gating brake in the I–II linker of the channels. Isothermal titration calorimetry results revealed that the gating brake and CaM bind each other with high-nanomolar affinity. We show that the gating brake assumes a helical conformation upon binding CaM, with associated conformational changes to both CaM lobes as indicated by amide chemical shifts of the amino acids of CaM in 1H-15N HSQC NMR spectra. Intact Ca2+-binding sites on CaM and an intact gating brake sequence (first 39 amino acids of the I–II linker) were required in Cav3.2 channels to prevent the runaway gating phenotype, a hyperpolarizing shift in voltage sensitivities and faster gating kinetics. We conclude that the presence of high-nanomolar affinity binding sites for CaM at its universal gating brake and its unique form of regulation via the tuning of the voltage range of activity could influence the participation of Cav3 T-type channels in heart and brain rhythms. Our findings may have implications for arrhythmia disorders arising from mutations in the gating brake or CaM. PMID:28972185

  11. Structure of the Response Regulator PhoP from Mycobacterium tuberculosis Reveals a Dimer Through the Receiver Domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S Menon; S Wang

    The PhoP protein from Mycobacterium tuberculosis is a response regulator of the OmpR/PhoB subfamily, whose structure consists of an N-terminal receiver domain and a C-terminal DNA-binding domain. How the DNA-binding activities are regulated by phosphorylation of the receiver domain remains unclear due to a lack of structural information on the full-length proteins. Here we report the crystal structure of the full-length PhoP of M. tuberculosis. Unlike other known structures of full-length proteins of the same subfamily, PhoP forms a dimer through its receiver domain with the dimer interface involving {alpha}4-{beta}5-{alpha}5, a common interface for activated receiver domain dimers. However, themore » switch residues, Thr99 and Tyr118, are in a conformation resembling those of nonactivated receiver domains. The Tyr118 side chain is involved in the dimer interface interactions. The receiver domain is tethered to the DNA-binding domain through a flexible linker and does not impose structural constraints on the DNA-binding domain. This structure suggests that phosphorylation likely facilitates/stabilizes receiver domain dimerization, bringing the DNA-binding domains to close proximity, thereby increasing their binding affinity for direct repeat DNA sequences.« less

  12. Design and development of novel linker for PbS quantum dots/TiO₂ mesoscopic solar cell.

    PubMed

    Etgar, Lioz; Park, Jinhyung; Barolo, Claudia; Nazeeruddin, Md K; Viscardi, Guido; Graetzel, Michael

    2011-09-01

    A novel bifunctional linker molecule, bis(4-mercaptophenyl)phosphinic acid, is designed to be used in a QDs solar cells. The linker anchors to TiO(2) mesoporous film through the phosphinic acid functional group and to the PbS QDs through the two thiol groups. The way of attachment of this new linker molecule in a photovoltaic PbS QDs/TiO(2) mesoporous device was studied by FTIR measurements. The photovoltaic performance of this new linker in a heterojunction PbS QDs solar cell show high V(oc) relative to QDs based solar cells, which will allow to receive high power conversion efficiency using this novel designed linker. This novel bifunctional linker molecule should pave the way for enhancing binding strength, and efficiency of QDs solar cells compared to the state-of-the-art linkers.

  13. Organophosphonate biofunctionalization of diamond electrodes.

    PubMed

    Caterino, R; Csiki, R; Wiesinger, M; Sachsenhauser, M; Stutzmann, M; Garrido, J A; Cattani-Scholz, A; Speranza, Giorgio; Janssens, S D; Haenen, K

    2014-08-27

    The modification of the diamond surface with organic molecules is a crucial aspect to be considered for any bioapplication of this material. There is great interest in broadening the range of linker molecules that can be covalently bound to the diamond surface. In the case of protein immobilization, the hydropathicity of the surface has a major influence on the protein conformation and, thus, on the functionality of proteins immobilized at surfaces. For electrochemical applications, particular attention has to be devoted to avoid that the charge transfer between the electrode and the redox center embedded in the protein is hindered by a thick insulating linker layer. This paper reports on the grafting of 6-phosphonohexanoic acid on OH-terminated diamond surfaces, serving as linkers to tether electroactive proteins onto diamond surfaces. X-ray photoelectron spectroscopy (XPS) confirms the formation of a stable layer on the surface. The charge transfer between electroactive molecules and the substrate is studied by electrochemical characterization of the redox activity of aminomethylferrocene and cytochrome c covalently bound to the substrate through this linker. Our work demonstrates that OH-terminated diamond functionalized with 6-phosphonohexanoic acid is a suitable platform to interface redox-proteins, which are fundamental building blocks for many bioelectronics applications.

  14. Structure Elucidation of Mixed-Linker Zeolitic Imidazolate Frameworks by Solid-State (1)H CRAMPS NMR Spectroscopy and Computational Modeling.

    PubMed

    Jayachandrababu, Krishna C; Verploegh, Ross J; Leisen, Johannes; Nieuwendaal, Ryan C; Sholl, David S; Nair, Sankar

    2016-06-15

    Mixed-linker zeolitic imidazolate frameworks (ZIFs) are nanoporous materials that exhibit continuous and controllable tunability of properties like effective pore size, hydrophobicity, and organophilicity. The structure of mixed-linker ZIFs has been studied on macroscopic scales using gravimetric and spectroscopic techniques. However, it has so far not been possible to obtain information on unit-cell-level linker distribution, an understanding of which is key to predicting and controlling their adsorption and diffusion properties. We demonstrate the use of (1)H combined rotation and multiple pulse spectroscopy (CRAMPS) NMR spin exchange measurements in combination with computational modeling to elucidate potential structures of mixed-linker ZIFs, particularly the ZIF 8-90 series. All of the compositions studied have structures that have linkers mixed at a unit-cell-level as opposed to separated or highly clustered phases within the same crystal. Direct experimental observations of linker mixing were accomplished by measuring the proton spin exchange behavior between functional groups on the linkers. The data were then fitted to a kinetic spin exchange model using proton positions from candidate mixed-linker ZIF structures that were generated computationally using the short-range order (SRO) parameter as a measure of the ordering, clustering, or randomization of the linkers. The present method offers the advantages of sensitivity without requiring isotope enrichment, a straightforward NMR pulse sequence, and an analysis framework that allows one to relate spin diffusion behavior to proposed atomic positions. We find that structures close to equimolar composition of the two linkers show a greater tendency for linker clustering than what would be predicted based on random models. Using computational modeling we have also shown how the window-type distribution in experimentally synthesized mixed-linker ZIF-8-90 materials varies as a function of their composition. The structural information thus obtained can be further used for predicting, screening, or understanding the tunable adsorption and diffusion behavior of mixed-linker ZIFs, for which the knowledge of linker distributions in the framework is expected to be important.

  15. Activation of acid-sensing ion channels by localized proton transient reveals their role in proton signaling

    PubMed Central

    Zeng, Wei-Zheng; Liu, Di-Shi; Liu, Lu; She, Liang; Wu, Long-Jun; Xu, Tian-Le

    2015-01-01

    Extracellular transients of pH alterations likely mediate signal transduction in the nervous system. Neuronal acid-sensing ion channels (ASICs) act as sensors for extracellular protons, but the mechanism underlying ASIC activation remains largely unknown. Here, we show that, following activation of a light-activated proton pump, Archaerhodopsin-3 (Arch), proton transients induced ASIC currents in both neurons and HEK293T cells co-expressing ASIC1a channels. Using chimera proteins that bridge Arch and ASIC1a by a glycine/serine linker, we found that successful coupling occurred within 15 nm distance. Furthermore, two-cell sniffer patch recording revealed that regulated release of protons through either Arch or voltage-gated proton channel Hv1 activated neighbouring cells expressing ASIC1a channels. Finally, computational modelling predicted the peak proton concentration at the intercellular interface to be at pH 6.7, which is acidic enough to activate ASICs in vivo. Our results highlight the pathophysiological role of proton signalling in the nervous system. PMID:26370138

  16. Transforming growth factor beta-independent shuttling of Smad4 between the cytoplasm and nucleus.

    PubMed

    Pierreux, C E; Nicolás, F J; Hill, C S

    2000-12-01

    Smad4 plays a pivotal role in all transforming growth factor beta (TGF-beta) signaling pathways. Here we describe six widely expressed alternatively spliced variants of human Smad4 with deletions of different exons in the linker, the region of Smad4 that separates the two well-conserved MH1 and MH2 domains. All these Smad4 variants form complexes with activated Smad2 and Smad3 and are incorporated into DNA-binding complexes with the transcription factor Fast-1, regardless of the amount of linker they contain. However, sequences encoded by exons 5 to 7 in the linker are essential for transcriptional activation. Most importantly, our observation that different Smad4 isoforms have different subcellular localizations has led us to the identification of a functional CRM1-dependent nuclear export signal in the Smad4 linker and a constitutively active nuclear localization signal in the N-terminal MH1 domain. In the absence of TGF-beta signaling, we conclude that Smad4 is rapidly and continuously shuttling between the nucleus and the cytoplasm, the distribution of Smad4 between the nucleus and the cytoplasm being dictated by the relative strengths of the nuclear import and export signals. We demonstrate that inhibition of CRM1-mediated nuclear export by treatment of cells with leptomycin B results in endogenous Smad4 accumulating very rapidly in the nucleus. Endogenous Smad2 and Smad3 are completely unaffected by leptomycin B treatment, indicating that the nucleocytoplasmic shuttling is specific for Smad4. We propose that, upon TGF-beta signaling, complex formation between Smad4 and activated Smad2 or -3 leads to nuclear accumulation of Smad4 through inhibition of its nuclear export. We demonstrate that after prolonged TGF-beta signaling Smad2 becomes dephosphorylated and Smad2 and Smad4 accumulate back in the cytoplasm.

  17. Transforming Growth Factor β-Independent Shuttling of Smad4 between the Cytoplasm and Nucleus

    PubMed Central

    Pierreux, Christophe E.; Nicolás, Francisco J.; Hill, Caroline S.

    2000-01-01

    Smad4 plays a pivotal role in all transforming growth factor β (TGF-β) signaling pathways. Here we describe six widely expressed alternatively spliced variants of human Smad4 with deletions of different exons in the linker, the region of Smad4 that separates the two well-conserved MH1 and MH2 domains. All these Smad4 variants form complexes with activated Smad2 and Smad3 and are incorporated into DNA-binding complexes with the transcription factor Fast-1, regardless of the amount of linker they contain. However, sequences encoded by exons 5 to 7 in the linker are essential for transcriptional activation. Most importantly, our observation that different Smad4 isoforms have different subcellular localizations has led us to the identification of a functional CRM1-dependent nuclear export signal in the Smad4 linker and a constitutively active nuclear localization signal in the N-terminal MH1 domain. In the absence of TGF-β signaling, we conclude that Smad4 is rapidly and continuously shuttling between the nucleus and the cytoplasm, the distribution of Smad4 between the nucleus and the cytoplasm being dictated by the relative strengths of the nuclear import and export signals. We demonstrate that inhibition of CRM1-mediated nuclear export by treatment of cells with leptomycin B results in endogenous Smad4 accumulating very rapidly in the nucleus. Endogenous Smad2 and Smad3 are completely unaffected by leptomycin B treatment, indicating that the nucleocytoplasmic shuttling is specific for Smad4. We propose that, upon TGF-β signaling, complex formation between Smad4 and activated Smad2 or -3 leads to nuclear accumulation of Smad4 through inhibition of its nuclear export. We demonstrate that after prolonged TGF-β signaling Smad2 becomes dephosphorylated and Smad2 and Smad4 accumulate back in the cytoplasm. PMID:11074002

  18. Theoretical Investigation of Charge Transfer in Metal Organic Frameworks for Electrochemical Device Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patwardhan, Sameer; Schatz, George C.

    For electrochemical device applications metal organic frameworks (MOFs) must exhibit suitable conduction properties. To this end, we have performed computational studies of intermolecular charge transfer in MOFs consisting of hexa-ZrIV nodes and tetratopic carboxylate linkers. This includes an examination of the electronic structure of linkers that are derived from tetraphenyl benzene 1, tetraphenyl pyrene 2, and tetraphenyl porphyrin 3 molecules. These results are used to determine charge transfer propensities in MOFs, within the framework of Marcus theory, including an analysis of the key parameters (charge transfer integral t, reorganization energy λ, and free energy change ΔG0) and evaluation of figuresmore » of merit for charge transfer based on the chemical structures of the linkers. This qualitative analysis indicates that delocalization of the HOMO/LUMO on terminal substituents increases t and decreases λ, while weaker binding to counterions decreases ΔG0, leading to better charge transfer propensity. Subsequently, we study hole transfer in the linker 2 containing MOFs, NU-901 and NU-1000, in detail and describe mechanisms (hopping and superexchange) that may be operative under different electrochemical conditions. Comparisons with experiment are provided where available. On the basis of the redox and catalytic activity of nodes and linkers, we propose three possible schemes for constructing electrochemical devices for catalysis. We believe that the results of this study will lay the foundation for future experimental work on this topic.« less

  19. Topological diversity of chromatin fibers: Interplay between nucleosome repeat length, DNA linking number and the level of transcription

    PubMed Central

    Norouzi, Davood; Katebi, Ataur; Cui, Feng; Zhurkin, Victor B.

    2016-01-01

    The spatial organization of nucleosomes in 30-nm fibers remains unknown in detail. To tackle this problem, we analyzed all stereochemically possible configurations of two-start chromatin fibers with DNA linkers L = 10–70 bp (nucleosome repeat length NRL = 157–217 bp). In our model, the energy of a fiber is a sum of the elastic energy of the linker DNA, steric repulsion, electrostatics, and the H4 tail-acidic patch interaction between two stacked nucleosomes. We found two families of energetically feasible conformations of the fibers—one observed earlier, and the other novel. The fibers from the two families are characterized by different DNA linking numbers—that is, they are topologically different. Remarkably, the optimal geometry of a fiber and its topology depend on the linker length: the fibers with linkers L = 10n and 10n + 5 bp have DNA linking numbers per nucleosome ΔLk ≈ −1.5 and −1.0, respectively. In other words, the level of DNA supercoiling is directly related to the length of the inter-nucleosome linker in the chromatin fiber (and therefore, to NRL). We hypothesize that this topological polymorphism of chromatin fibers may play a role in the process of transcription, which is known to generate different levels of DNA supercoiling upstream and downstream from RNA polymerase. A genome-wide analysis of the NRL distribution in active and silent yeast genes yielded results consistent with this assumption. PMID:28133628

  20. Hsp27 regulates Akt activation and polymorphonuclear leukocyte apoptosis by scaffolding MK2 to Akt signal complex.

    PubMed

    Wu, Rui; Kausar, Hina; Johnson, Paul; Montoya-Durango, Diego E; Merchant, Michael; Rane, Madhavi J

    2007-07-27

    We have shown previously that Akt exists in a signal complex with p38 MAPK, MAPK-activated protein kinase-2 (MK2), and heat shock protein 27 (Hsp27) and MK2 phosphorylates Akt on Ser-473. Additionally, dissociation of Hsp27 from Akt, prior to Akt activation, induced polymorphonuclear leukocyte (PMN) apoptosis. However, the role of Hsp27 in regulating Akt activation was not examined. This study tested the hypothesis that Hsp27 regulates Akt activation and promotes cell survival by scaffolding MK2 to the Akt signal complex. Here we show that loss of Akt/Hsp27 interaction by anti-Hsp27 antibody treatment resulted in loss of Akt/MK2 interaction, loss of Akt-Ser-473 phosphorylation, and induced PMN apoptosis. Transfection of myristoylated Akt (AktCA) in HK-11 cells induced Akt-Ser-473 phosphorylation, activation, and Hsp27-Ser-82 phosphorylation. Cotransfection of AktCA with Hsp27 short interfering RNA, but not scrambled short interfering RNA, silenced Hsp27 expression, without altering Akt expression in HK-11 cells. Silencing Hsp27 expression inhibited Akt/MK2 interaction, inhibited Akt phosphorylation and Akt activation, and induced HK-11 cell death. Deletion mutagenesis studies identified acidic linker region (amino acids 117-128) on Akt as an Hsp27 binding region. Deletion of amino acids 117-128 on Akt resulted in loss of its interaction with Hsp27 and MK2 but not with Hsp90 as demonstrated by immunoprecipitation and glutathione S-transferase pulldown studies. Co-transfection studies demonstrated that constitutively active MK2 (MK2EE) phosphorylated Aktwt (wild type) on Ser-473 but failed to phosphorylate Akt(Delta117-128) mutant in transfixed cells. These studies collectively define a novel role of Hsp27 in regulating Akt activation and cellular apoptosis by mediating interaction between Akt and its upstream activator MK2.

  1. The Us3 Protein of Herpes Simplex Virus 1 Inhibits T Cell Signaling by Confining Linker for Activation of T Cells (LAT) Activation via TRAF6 Protein*

    PubMed Central

    Yang, Yin; Wu, Songfang; Wang, Yu; Pan, Shuang; Lan, Bei; Liu, Yaohui; Zhang, Liming; Leng, Qianli; Chen, Da; Zhang, Cuizhu; He, Bin; Cao, Youjia

    2015-01-01

    Herpes simplex virus 1 (HSV-1) is the most prevalent human virus and causes global morbidity because the virus is able to infect multiple cell types. Remarkably, HSV infection switches between lytic and latent cycles, where T cells play a critical role. However, the precise way of virus-host interactions is incompletely understood. Here we report that HSV-1 productively infected Jurkat T-cells and inhibited antigen-induced T cell receptor activation. We discovered that HSV-1-encoded Us3 protein interrupted TCR signaling and interleukin-2 production by inactivation of the linker for activation of T cells. This study unveils a mechanism by which HSV-1 intrudes into early events of TCR-mediated cell signaling and may provide novel insights into HSV infection, during which the virus escapes from host immune surveillance. PMID:25907557

  2. Metal-Organic Framework (MOF) Compounds: Photocatalysts for Redox Reactions and Solar Fuel Production.

    PubMed

    Dhakshinamoorthy, Amarajothi; Asiri, Abdullah M; García, Hermenegildo

    2016-04-25

    Metal-organic frameworks (MOFs) are crystalline porous materials formed from bi- or multipodal organic linkers and transition-metal nodes. Some MOFs have high structural stability, combined with large flexibility in design and post-synthetic modification. MOFs can be photoresponsive through light absorption by the organic linker or the metal oxide nodes. Photoexcitation of the light absorbing units in MOFs often generates a ligand-to-metal charge-separation state that can result in photocatalytic activity. In this Review we discuss the advantages and uniqueness that MOFs offer in photocatalysis. We present the best practices to determine photocatalytic activity in MOFs and for the deposition of co-catalysts. In particular we give examples showing the photocatalytic activity of MOFs in H2 evolution, CO2 reduction, photooxygenation, and photoreduction. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Potent and broad-spectrum antibacterial activity of indole-based bisamidine antibiotics: synthesis and SAR of novel analogs of MBX 1066 and MBX 1090

    PubMed Central

    Williams, John D.; Nguyen, Son T.; Gu, Shen; Ding, Xiaoyuan; Butler, Michelle M.; Tashjian, Tommy F.; Opperman, Timothy J.; Panchal, Rekha G.; Bavari, Sina; Peet, Norton P.; Moir, Donald T.; Bowlin, Terry L.

    2013-01-01

    The prevalence of drug-resistant bacteria in the clinic has propelled a concerted effort to find new classes of antibiotics that will circumvent current modes of resistance. We have previously described a set of bisamidine antibiotics that contains a core composed of two indoles and a central linker. The first compounds of the series, MBX 1066 and MBX 1090, have potent antibacterial properties against a wide range of Gram-positive and Gram-negative bacteria. We have conducted a systematic exploration of the amidine functionalities, the central linker, and substituents at the indole 3-position to determine the factors involved in potent antibacterial activity. Some of the newly synthesized compounds have even more potent and broad-spectrum activity than MBX 1066 and MBX 1090. PMID:24239389

  4. Coupled motions in the SH2 and kinase domains of Csk control Src phosphorylation.

    PubMed

    Wong, Lilly; Lieser, Scot A; Miyashita, Osamu; Miller, Meghan; Tasken, Kjetil; Onuchic, Josè N; Adams, Joseph A; Woods, Virgil L; Jennings, Patricia A

    2005-08-05

    The C-terminal Src kinase (Csk) phosphorylates and down-regulates Src family tyrosine kinases. The Csk-binding protein (Cbp) localizes Csk close to its substrates at the plasma membrane, and increases the specific activity of the kinase. To investigate this long-range catalytic effect, the phosphorylation of Src and the conformation of Csk were investigated in the presence of a high-affinity phosphopeptide derived from Cbp. This peptide binds tightly to the SH2 domain and enhances Src recognition (lowers K(m)) by increasing the apparent phosphoryl transfer rate in the Csk active site, a phenomenon detected in rapid quench flow experiments. Previous studies demonstrated that the regulation of Csk activity is linked to conformational changes in the enzyme that can be probed with hydrogen-deuterium exchange methods. We show that the Cbp peptide impacts deuterium incorporation into its binding partner (the SH2 domain), and into the SH2-kinase linker and several sequences in the kinase domain, including the glycine-rich loop in the active site. These findings, along with computational data from normal mode analyses, suggest that the SH2 domain moves in a cantilever fashion with respect to the small lobe of the kinase domain, ordering the active site for catalysis. The binding of a small Cbp-derived peptide to the SH2 domain of Csk modifies these motions, enhancing Src recognition.

  5. Photomodulating Gene Expression by Using Caged siRNAs with Single-Aptamer Modification.

    PubMed

    Zhang, Liangliang; Chen, Changmai; Fan, Xinli; Tang, Xinjing

    2018-06-18

    Caged siRNAs incorporating terminal modification were rationally designed for photochemical regulation of gene silencing induced by RNA interference (RNAi). Through the conjugation of a single oligonucleotide aptamer at the 5' terminus of the antisense RNA strand, enhancement of the blocking effect for RNA-induced silencing complex (RISC) formation/processing was expected, due both/either to the aptamers themselves and/or to their interaction with large binding proteins. Two oligonucleotide aptamers (AS1411 and MUC-1) were chosen for aptamer-siRNA conjugation through a photolabile linker. This caging strategy was successfully used to photoregulate gene expression both of firefly luciferase and of green fluorescent protein (GFP) in cells. Further patterning experiments revealed that spatial regulation of GFP expression was successfully achieved by using the aptamer-modified caged siRNA and light activation. We expect that further optimized caged siRNAs featuring aptamer conjugation will be promising for practical applications to spatiotemporal photoregulation of gene expression in the future. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Dynamic Palmitoylation and the Role of DHHC Proteins in T Cell Activation and Anergy

    PubMed Central

    Ladygina, Nadejda; Martin, Brent R.; Altman, Amnon

    2017-01-01

    Although protein S-palmitoylation was first characterized >30 years ago, and is implicated in the function, trafficking, and localization of many proteins, little is known about the regulation and physiological implications of this posttranslational modification. Palmitoylation of various signaling proteins required for TCR-induced T cell activation is also necessary for their proper function. LAT (linker for activation of T cells) is an essential scaffolding protein involved in T cell development and activation, and we found that its palmitoylation is selectively impaired in anergic T cells. The recent discovery of the DHHC family of palmitoyl acyl transferases (PATs) and the establishment of sensitive and quantitative proteomics-based methods for global analysis of the palmitoyl proteome led to significant progress in studying the biology and underlying mechanisms of cellular protein palmitoylation. We are using these approaches to explore the palmitoyl proteome in T lymphocytes and, specifically, the mechanistic basis for the impaired palmitoylation of LAT in anergic T cells. This chapter reviews the history of protein palmitoylation and its role in T cell activation, the DHHC family and new methodologies for global analysis of the palmitoyl proteome, and summarizes our recent work in this area. The new methodologies will accelerate the pace of research and provide a greatly improved mechanistic and molecular understanding of the complex process of protein palmitoylation and its regulation, and the substrate specificity of the novel DHHC family. Reversible protein palmitoylation will likely prove to be an important posttranslational mechanism that regulates cellular responses, similar to protein phosphorylation and ubiquitination. PMID:21569911

  7. Structure of Pseudoknot PK26 Shows 3D Domain Swapping in an RNA

    NASA Technical Reports Server (NTRS)

    Lietzke, Susan E; Barnes, Cindy L.

    1998-01-01

    3D domain swapping provides a facile pathway for the evolution of oligomeric proteins and allosteric mechanisms and a means for using monomer-oligomer equilibria to regulate biological activity. The term "3D domain swapping" describes the exchange of identical domains between two protein monomers to create an oligomer. 3D domain swapping has, so far, only been recognized in proteins. In this study, the structure of the pseudoknot PK26 is reported and it is a clear example of 3D domain swapping in RNA. PK26 was chosen for study because RNA pseudoknots are required structures in several biological processes and they arise frequently in in vitro selection experiments directed against protein targets. PK26 specifically inhibits HIV-1 reverse transcriptase with nanomolar affinity. We have now determined the 3.1 A resolution crystal structure of PK26 and find that it forms a 3D domain swapped dimer. PK26 shows extensive base pairing between and within strands. Formation of the dimer requires the linker region between the pseudoknot folds to adopt a unique conformation that allows a base within a helical stem to skip one base in the stacking register. Rearrangement of the linker would permit a monomeric pseudoknot to form. This structure shows how RNA can use 3D domain swapping to build large scale oligomers like the putative hexamer in the packaging RNA of bacteriophage Phi29.

  8. Synthesis and antibacterial evaluation of new, unsymmetrical triaryl bisamidine compounds

    PubMed Central

    Nguyen, Son T.; Williams, John D.; Butler, Michelle M.; Ding, Xiaoyuan; Mills, Debra M.; Tashjian, Tommy F.; Panchal, Rekha G.; Weir, Susan K.; Moon, Chaeho; Kim, Hwa-Ok; Marsden, Jeremiah; Peet, Norton P.; Bowlin, Terry L.

    2014-01-01

    Herein we describe the synthesis and antibacterial evaluation of a new, unsymmetrical triaryl bisamidine compound series, [Am]-[indole]-[linker]-[HetAr/Ar]-[Am], in which [Am] is an amidine or amino group, [linker] is a benzene, thiophene or pyridine ring, and [HetAr/Ar] is a benzimidazole, imidazopyridine, benzofuran, benzothiophene, pyrimidine or benzene ring. When the [HetAr/Ar] unit is a 5,6-bicyclic heterocycle, it is oriented such that the 5-membered ring portion is connected to the [linker] unit and the 6-membered ring portion is connected to the [Am] unit. Among the 34 compounds in this series, compounds with benzofuran as the [HetAr/Ar] unit showed the highest potencies. Introduction of a fluorine atom or a methyl group to the triaryl core led to the more potent analogs. Bisamidines are more active toward bacteria while the monoamidines are more active toward mammalian cells (as indicated by low CC50 values). Importantly, we identified compound P12a (MBX 1887) with a relatively narrow spectrum against bacteria and a very high CC50 value. Compound P12a has been scaled up and is currently undergoing further evaluations for therapeutic applications. PMID:24969013

  9. The First MS-Cleavable, Photo-Thiol-Reactive Cross-Linker for Protein Structural Studies

    NASA Astrophysics Data System (ADS)

    Iacobucci, Claudio; Piotrowski, Christine; Rehkamp, Anne; Ihling, Christian H.; Sinz, Andrea

    2018-04-01

    Cleavable cross-linkers are gaining increasing importance for chemical cross-linking/mass spectrometry (MS) as they permit a reliable and automated data analysis in structural studies of proteins and protein assemblies. Here, we introduce 1,3-diallylurea (DAU) as the first CID-MS/MS-cleavable, photo-thiol-reactive cross-linker. DAU is a commercially available, inexpensive reagent that efficiently undergoes an anti-Markovnikov hydrothiolation with cysteine residues in the presence of a radical initiator upon UV-A irradiation. Radical cysteine cross-linking proceeds via an orthogonal "click reaction" and yields stable alkyl sulfide products. DAU reacts at physiological pH and cross-linking reactions with peptides, and proteins can be performed at temperatures as low as 4 °C. The central urea bond is efficiently cleaved upon collisional activation during tandem MS experiments generating characteristic product ions. This improves the reliability of automated cross-link identification. Different radical initiators have been screened for the cross-linking reaction of DAU using the thiol-containing compounds cysteine and glutathione. Our concept has also been exemplified for the biologically relevant proteins bMunc13-2 and retinal guanylyl cyclase-activating protein-2. [Figure not available: see fulltext.

  10. Novel Aryl Substituted Pyrazoles as Small Molecule Inhibitors of Cytochrome P450 CYP121A1: Synthesis and Antimycobacterial Evaluation

    PubMed Central

    2017-01-01

    Three series of biarylpyrazole imidazole and triazoles are described, which vary in the linker between the biaryl pyrazole and imidazole/triazole group. The imidazole and triazole series with the short −CH2– linker displayed promising antimycobacterial activity, with the imidazole–CH2– series (7) showing low MIC values (6.25–25 μg/mL), which was also influenced by lipophilicity. Extending the linker to −C(O)NH(CH2)2– resulted in a loss of antimycobacterial activity. The binding affinity of the compounds with CYP121A1 was determined by UV–visible optical titrations with KD values of 2.63, 35.6, and 290 μM, respectively, for the tightest binding compounds 7e, 8b, and 13d from their respective series. Both binding affinity assays and docking studies of the CYP121A1 inhibitors suggest type II indirect binding through interstitial water molecules, with key binding residues Thr77, Val78, Val82, Val83, Met86, Ser237, Gln385, and Arg386, comparable with the binding interactions observed with fluconazole and the natural substrate dicyclotyrosine. PMID:29185746

  11. Dissociation Behavior of a TEMPO-Active Ester Cross-Linker for Peptide Structure Analysis by Free Radical Initiated Peptide Sequencing (FRIPS) in Negative ESI-MS.

    PubMed

    Hage, Christoph; Ihling, Christian H; Götze, Michael; Schäfer, Mathias; Sinz, Andrea

    2017-01-01

    We have synthesized a homobifunctional amine-reactive cross-linking reagent, containing a TEMPO (2,2,6,6-tetramethylpiperidine-1-oxy) and a benzyl group (Bz), termed TEMPO-Bz-linker, to derive three-dimensional structural information of proteins. The aim for designing this novel cross-linker was to facilitate the mass spectrometric analysis of cross-linked products by free radical initiated peptide sequencing (FRIPS). In an initial study, we had investigated the fragmentation behavior of TEMPO-Bz-derivatized peptides upon collision activation in (+)-electrospray ionization collision-induced dissociation tandem mass spectrometry (ESI-CID-MS/MS) experiments. In addition to the homolytic NO-C bond cleavage FRIPS pathway delivering the desired odd-electron product ions, an alternative heterolytic NO-C bond cleavage, resulting in even-electron product ions mechanism was found to be relevant. The latter fragmentation route clearly depends on the protonation of the TEMPO-Bz-moiety itself, which motivated us to conduct (-)-ESI-MS, CID-MS/MS, and MS 3 experiments of TEMPO-Bz-cross-linked peptides to further clarify the fragmentation behavior of TEMPO-Bz-peptide molecular ions. We show that the TEMPO-Bz-linker is highly beneficial for conducting FRIPS in negative ionization mode as the desired homolytic cleavage of the NO-C bond is the major fragmentation pathway. Based on characteristic fragments, the isomeric amino acids leucine and isoleucine could be discriminated. Interestingly, we observed pronounced amino acid side chain losses in cross-linked peptides if the cross-linked peptides contain a high number of acidic amino acids. Graphical Abstract ᅟ.

  12. Neck linker length determines the degree of processivity in kinesin-1 and kinesin-2 motors.

    PubMed

    Shastry, Shankar; Hancock, William O

    2010-05-25

    Defining the mechanical and biochemical determinates of kinesin processivity is important for understanding how diverse kinesins are tuned for specific cellular functions. Because transmission of mechanical forces through the 14-18 amino acid neck linker domain underlies coordinated stepping, we investigated the role of neck linker length, charge, and structure in kinesin-1 and kinesin-2 motor behavior. For optimum comparison with kinesin-1, the KIF3A head and neck linker of kinesin-2 were fused to the kinesin-1 neck coil and rod. Extending the 14-residue kinesin-1 neck linker reduced processivity, and shortening the 17-residue kinesin-2 neck linker enhanced processivity. When a proline in the kinesin-2 neck linker was replaced, kinesin-1 and kinesin-2 run lengths scaled identically with neck linker length, despite moving at different speeds. In low-ionic-strength buffer, charge had a dominant effect on motor processivity, which resolves ongoing controversy regarding the effect of neck linker length on kinesin processivity. From stochastic simulations, the results are best explained by neck linker extension slowing strain-dependent detachment of the rear head along with diminishing strain-dependent inhibition of ATP binding. These results help delineate how interhead strain maximizes stepping and suggest that less processive kinesins are tuned to coordinate with other motors differently than the maximally processive kinesin-1. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Desmosine-Inspired Cross-Linkers for Hyaluronan Hydrogels

    NASA Astrophysics Data System (ADS)

    Hagel, Valentin; Mateescu, Markus; Southan, Alexander; Wegner, Seraphine V.; Nuss, Isabell; Haraszti, Tamás; Kleinhans, Claudia; Schuh, Christian; Spatz, Joachim P.; Kluger, Petra J.; Bach, Monika; Tussetschläger, Stefan; Tovar, Günter E. M.; Laschat, Sabine; Boehm, Heike

    2013-06-01

    We designed bioinspired cross-linkers based on desmosine, the cross-linker in natural elastin, to prepare hydrogels with thiolated hyaluronic acid. These short, rigid cross-linkers are based on pyridinium salts (as in desmosine) and can connect two polymer backbones. Generally, the obtained semi-synthetic hydrogels are form-stable, can withstand repeated stress, have a large linear-elastic range, and show strain stiffening behavior typical for biopolymer networks. In addition, it is possible to introduce a positive charge to the core of the cross-linker without affecting the gelation efficiency, or consequently the network connectivity. However, the mechanical properties strongly depend on the charge of the cross-linker. The properties of the presented hydrogels can thus be tuned in a range important for engineering of soft tissues by controlling the cross-linking density and the charge of the cross-linker.

  14. Human polyhomeotic homolog 3 (PHC3) sterile alpha motif (SAM) linker allows open-ended polymerization of PHC3 SAM.

    PubMed

    Robinson, Angela K; Leal, Belinda Z; Nanyes, David R; Kaur, Yogeet; Ilangovan, Udayar; Schirf, Virgil; Hinck, Andrew P; Demeler, Borries; Kim, Chongwoo A

    2012-07-10

    Sterile alpha motifs (SAMs) are frequently found in eukaryotic genomes. An intriguing property of many SAMs is their ability to self-associate, forming an open-ended polymer structure whose formation has been shown to be essential for the function of the protein. What remains largely unresolved is how polymerization is controlled. Previously, we had determined that the stretch of unstructured residues N-terminal to the SAM of a Drosophila protein called polyhomeotic (Ph), a member of the polycomb group (PcG) of gene silencers, plays a key role in controlling Ph SAM polymerization. Ph SAM with its native linker created shorter polymers compared to Ph SAM attached to either a random linker or no linker. Here, we show that the SAM linker for the human Ph ortholog, polyhomeotic homolog 3 (PHC3), also controls PHC3 SAM polymerization but does so in the opposite fashion. PHC3 SAM with its native linker allows longer polymers to form compared to when attached to a random linker. Attaching the PHC3 SAM linker to Ph SAM also resulted in extending Ph SAM polymerization. Moreover, in the context of full-length Ph protein, replacing the SAM linker with PHC3 SAM linker, intended to create longer polymers, resulted in greater repressive ability for the chimera compared to wild-type Ph. These findings show that polymeric SAM linkers evolved to modulate a wide dynamic range of SAM polymerization abilities and suggest that rationally manipulating the function of SAM containing proteins through controlling their SAM polymerization may be possible.

  15. Stabilization of the Activated hERG Channel Voltage Sensor by Depolarization Involves the S4-S5 Linker.

    PubMed

    Thouta, Samrat; Hull, Christina M; Shi, Yu Patrick; Sergeev, Valentine; Young, James; Cheng, Yen M; Claydon, Thomas W

    2017-01-24

    Slow deactivation of hERG channels is critical for preventing cardiac arrhythmia yet the mechanistic basis for the slow gating transition is unclear. Here, we characterized the temporal sequence of events leading to voltage sensor stabilization upon membrane depolarization. Progressive increase in step depolarization duration slowed voltage-sensor return in a biphasic manner (τ fast = 34 ms, τ slow  = 2.5 s). The faster phase of voltage-sensor return slowing correlated with the kinetics of pore opening. The slower component occurred over durations that exceeded channel activation and was consistent with voltage sensor relaxation. The S4-S5 linker mutation, G546L, impeded the faster phase of voltage sensor stabilization without attenuating the slower phase, suggesting that the S4-S5 linker is important for communications between the pore gate and the voltage sensor during deactivation. These data also demonstrate that the mechanisms of pore gate-opening-induced and relaxation-induced voltage-sensor stabilization are separable. Deletion of the distal N-terminus (Δ2-135) accelerated off-gating current, but did not influence the relative contribution of either mechanism of stabilization of the voltage sensor. Lastly, we characterized mode-shift behavior in hERG channels, which results from stabilization of activated channel states. The apparent mode-shift depended greatly on recording conditions. By measuring slow activation and deactivation at steady state we found the "true" mode-shift to be ∼15 mV. Interestingly, the "true" mode-shift of gating currents was ∼40 mV, much greater than that of the pore gate. This demonstrates that voltage sensor return is less energetically favorable upon repolarization than pore gate closure. We interpret this to indicate that stabilization of the activated voltage sensor limits the return of hERG channels to rest. The data suggest that this stabilization occurs as a result of reconfiguration of the pore gate upon opening by a mechanism that is influenced by the S4-S5 linker, and by a separable voltage-sensor intrinsic relaxation mechanism. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Equilibrium & Nonequilibrium Fluctuation Effects in Biopolymer Networks

    NASA Astrophysics Data System (ADS)

    Kachan, Devin Michael

    Fluctuation-induced interactions are an important organizing principle in a variety of soft matter systems. In this dissertation, I explore the role of both thermal and active fluctuations within cross-linked polymer networks. The systems I study are in large part inspired by the amazing physics found within the cytoskeleton of eukaryotic cells. I first predict and verify the existence of a thermal Casimir force between cross-linkers bound to a semi-flexible polymer. The calculation is complicated by the appearance of second order derivatives in the bending Hamiltonian for such polymers, which requires a careful evaluation of the the path integral formulation of the partition function in order to arrive at the physically correct continuum limit and properly address ultraviolet divergences. I find that cross linkers interact along a filament with an attractive logarithmic potential proportional to thermal energy. The proportionality constant depends on whether and how the cross linkers constrain the relative angle between the two filaments to which they are bound. The interaction has important implications for the synthesis of biopolymer bundles within cells. I model the cross-linkers as existing in two phases: bound to the bundle and free in solution. When the cross-linkers are bound, they behave as a one-dimensional gas of particles interacting with the Casimir force, while the free phase is a simple ideal gas. Demanding equilibrium between the two phases, I find a discontinuous transition between a sparsely and a densely bound bundle. This discontinuous condensation transition induced by the long-ranged nature of the Casimir interaction allows for a similarly abrupt structural transition in semiflexible filament networks between a low cross linker density isotropic phase and a higher cross link density bundle network. This work is supported by the results of finite element Brownian dynamics simulations of semiflexible filaments and transient cross-linkers. I speculate that cells take advantage of this equilibrium effect by tuning near the transition point, where small changes in free cross-linker density will affect large structural rearrangements between free filament networks and networks of bundles. Cells are naturally found far from equilibrium, where the active influx of energy from ATP consumption controls the dynamics. Motor proteins actively generate forces within biopolymer networks, and one may ask how these differ from the random stresses characteristic of equilibrium fluctuations. Besides the trivial observation that the magnitude is independent of temperature, I find that the processive nature of the motors creates a temporally correlated, or colored, noise spectrum. I model the network with a nonlinear scalar elastic theory in the presence of active driving, and study the long distance and large scale properties of the system with renormalization group techniques. I find that there is a new critical point associated with diverging correlation time, and that the colored noise produces novel frequency dependence in the renormalized transport coefficients. Finally, I study marginally elastic solids which have vanishing shear modulus due to the presence of soft modes, modes with zero deformation cost. Although network coordination is a useful metric for determining the mechanical response of random spring networks in mechanical equilibrium, it is insufficient for describing networks under external stress. In particular, under-constrained networks which are fluid-like at zero load will dynamically stiffen at a critical strain, as observed in numerical simulations and experimentally in many biopolymer networks. Drawing upon analogies to the stress induced unjamming of emulsions, I develop a kinetic theory to explain the rigidity transition in spring and filament networks. Describing the dynamic evolution of non-affine deformation via a simple mechanistic picture, I recover the emergent nonlinear strain-stiffening behavior and compare this behavior to the yield stress flow seen in soft glassy fluids. I extend this theory to account for coordination number inhomogeneities and predict a breakdown of universal scaling near the critical point at sufficiently high disorder, and discuss the utility for this type of model in describing biopolymer networks.

  17. Acf7 (MACF) is an actin and microtubule linker protein whose expression predominates in neural, muscle, and lung development.

    PubMed

    Bernier, G; Pool, M; Kilcup, M; Alfoldi, J; De Repentigny, Y; Kothary, R

    2000-10-01

    Several proteins belonging to the plakin family of cytoskeletal linker proteins have recently been identified, including dystonin/Bpag1 and plectin. These proteins are unique in their abilities to form bridges between different cytoskeletal elements through specialized modular domains. We have previously reported the cloning and partial characterization of Acf7, a novel member of the plakin family. More recently, the full-length cDNA for mouse Acf7 has been reported. Acf7 has a hybrid composition, with extended homology to dystonin/Bpag1 and plectin in the N-terminal half, and to dystrophin in the central and C-terminal half. Recent studies have demonstrated that Acf7 has functional actin and microtubule binding domains. Here, we describe the developmental expression profile for mouse Acf7. RNA in situ hybridization experiments revealed Acf7 transcripts in the dermomyotome and neural fold of day 8.5 mouse embryos. Later in development, Acf7 expression was predominant in neural and muscle tissues and was strongly up-regulated just before birth in type II alveolar cells of the lung. Altogether, our results suggest that Acf7 functions as a versatile cytoskeletal linker protein and plays an important role in neural, muscle, and lung development. Copyright 2000 Wiley-Liss, Inc.

  18. An atomistic view of Hsp70 allosteric crosstalk: from the nucleotide to the substrate binding domain and back

    PubMed Central

    Chiappori, Federica; Merelli, Ivan; Milanesi, Luciano; Colombo, Giorgio; Morra, Giulia

    2016-01-01

    The Hsp70 is an allosterically regulated family of molecular chaperones. They consist of two structural domains, NBD and SBD, connected by a flexible linker. ATP hydrolysis at the NBD modulates substrate recognition at the SBD, while peptide binding at the SBD enhances ATP hydrolysis. In this study we apply Molecular Dynamics (MD) to elucidate the molecular determinants underlying the allosteric communication from the NBD to the SBD and back. We observe that local structural and dynamical modulation can be coupled to large-scale rearrangements, and that different combinations of ligands at NBD and SBD differently affect the SBD domain mobility. Substituting ADP with ATP in the NBD induces specific structural changes involving the linker and the two NBD lobes. Also, a SBD-bound peptide drives the linker docking by increasing the local dynamical coordination of its C-terminal end: a partially docked DnaK structure is achieved by combining ATP in the NBD and peptide in the SBD. We propose that the MD-based analysis of the inter domain dynamics and structure modulation could be used as a tool to computationally predict the allosteric behaviour and functional response of Hsp70 upon introducing mutations or binding small molecules, with potential applications for drug discovery. PMID:27025773

  19. Characterization of a novel transcriptionally active domain in the transforming growth factor beta-regulated Smad3 protein.

    PubMed

    Prokova, Vassiliki; Mavridou, Sofia; Papakosta, Paraskevi; Kardassis, Dimitris

    2005-01-01

    Transforming growth factor beta (TGFbeta) regulates transcriptional responses via activation of cytoplasmic effector proteins termed Smads. Following their phosphorylation by the type I TGFbeta receptor, Smads form oligomers and translocate to the nucleus where they activate the transcription of TGFbeta target genes in cooperation with nuclear cofactors and coactivators. In the present study, we have undertaken a deletion analysis of human Smad3 protein in order to characterize domains that are essential for transcriptional activation in mammalian cells. With this analysis, we showed that Smad3 contains two domains with transcriptional activation function: the MH2 domain and a second middle domain that includes the linker region and the first two beta strands of the MH2 domain. Using a protein-protein interaction assay based on biotinylation in vivo, we were able to show that a Smad3 protein bearing an internal deletion in the middle transactivation domain is characterized by normal oligomerization and receptor activation properties. However, this mutant has reduced transactivation capacity on synthetic or natural promoters and is unable to interact physically and functionally with the histone acetyltransferase p/CAF. The loss of interaction with p/CAF or other coactivators could account, at least in part, for the reduced transactivation capacity of this Smad3 mutant. Our data support an essential role of the previously uncharacterized middle region of Smad3 for nuclear functions, such as transcriptional activation and interaction with coactivators.

  20. Differential phosphorylation of Smad1 integrates BMP and neurotrophin pathways through Erk/Dusp in axon development.

    PubMed

    Finelli, Mattéa J; Murphy, Kevin J; Chen, Lei; Zou, Hongyan

    2013-05-30

    Sensory axon development requires concerted actions of growth factors for the precise control of axonal outgrowth and target innervation. How developing sensory neurons integrate different cues is poorly understood. We demonstrate here that Smad1 activation is required for neurotrophin-mediated sensory axon growth in vitro and in vivo. Through differential phosphorylation, Smad1 exerts transcriptional selectivity to regulate the expression and activity of Erk1 and Erk2-two key neurotrophin effectors. Specifically, bone morphogenetic proteins (BMPs) signal through carboxy-terminal phosphorylation of Smad1 (pSmad1C) to induce Erk1/2 transcription for enhanced neurotrophin responsiveness. Meanwhile, neurotrophin signaling results in linker phosphorylation of Smad1 (pSmad1L), which in turn upregulates an Erk-specific dual-specificity phosphatase, Dusp6, leading to reduced pErk1/2 and constituting a negative-feedback loop for the prevention of axon overgrowth. Together, the BMP and neurotrophin pathways form a tightly regulated signaling network with a balanced ratio of Erk1/2 and pErk1/2 to direct the precise connections between sensory neurons and peripheral targets. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  1. RitR is an archetype for a novel family of redox sensors in the streptococci that has evolved from two-component response regulators and is required for pneumococcal colonization

    PubMed Central

    Han, Lanlan; Morrissey, Julie A.; Clarke, Thomas B.; Yesilkaya, Hasan; Silvaggi, Nicholas R.

    2018-01-01

    To survive diverse host environments, the human pathogen Streptococcus pneumoniae must prevent its self-produced, extremely high levels of peroxide from reacting with intracellular iron. However, the regulatory mechanism(s) by which the pneumococcus accomplishes this balance remains largely enigmatic, as this pathogen and other related streptococci lack all known redox-sensing transcription factors. Here we describe a two-component-derived response regulator, RitR, as the archetype for a novel family of redox sensors in a subset of streptococcal species. We show that RitR works to both repress iron transport and enable nasopharyngeal colonization through a mechanism that exploits a single cysteine (Cys128) redox switch located within its linker domain. Biochemical experiments and phylogenetics reveal that RitR has diverged from the canonical two-component virulence regulator CovR to instead dimerize and bind DNA only upon Cys128 oxidation in air-rich environments. Atomic structures show that Cys128 oxidation initiates a “helical unravelling” of the RitR linker region, suggesting a mechanism by which the DNA-binding domain is then released to interact with its cognate regulatory DNA. Expanded computational studies indicate this mechanism could be shared by many microbial species outside the streptococcus genus. PMID:29750817

  2. Expression pattern and phosphorylation status of Smad2/3 in different subtypes of human first trimester trophoblast.

    PubMed

    Haider, S; Kunihs, V; Fiala, C; Pollheimer, J; Knöfler, M

    2017-09-01

    TGF-β superfamily members are thought to play a pivotal role in placental development and differentiation. However, their downstream effectors, the Smad transcription factors, have been poorly investigated in human trophoblasts. Expression and localisation of the canonical TGF-β targets Smad2/3 and their regulators (Smad4 and Smad7) were investigated in first trimester placenta and purified cytotrophoblast (CTB) subtypes using immunofluorescence, western blotting and qPCR. Canonical and non-canonical activation was analysed in nuclear/cytoplasmic extracts of trophoblast subtypes as well as in tissue sections using antibodies against Smad2/3, phosphorylated either at the C-terminus (pSmad2C/3C) or in their linker regions (pSmad2L/3L). Smad phosphorylation was also examined in differentiating extravillous trophoblasts (EVTs) in the absence or presence of decidual stromal cell (DSC)-conditioned medium. Smad2, Smad4 and Smad7 protein were uniformly expressed between 6th and 12th week placentae and the different isolated CTB subtypes. Activated pSmad2L was mainly detected in nuclei and cytoplasm of villous CTBs, whereas pSmad2C was absent from these cells. In contrast, pSmad2C could be detected in the cytoplasm of cell column trophoblasts and in the cytoplasm/nuclei of EVTs. Smad3 and its phosphorylated forms pSmad3C and pSmad3L specifically localised to EVT nuclei. During EVT differentiation autocrine activation of pSmad2C/3C and pSmad3L was observed. DSC-conditioned medium further increased Smad2/3 phosphorylation in EVTs. The lack of pSmad2C in villous CTBs suggests that other mitogens than TGF-β could promote Smad2 linker phosphorylation under homeostatic conditions. Whereas autocrine signalling activates Smad2/3 in differentiating EVTs, paracrine factors contribute to Smad phosphorylation in these cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Pore-Environment Engineering with Multiple Metal Sites in Rare-Earth Porphyrinic Metal-Organic Frameworks.

    PubMed

    Zhang, Liangliang; Yuan, Shuai; Feng, Liang; Guo, Bingbing; Qin, Jun-Sheng; Xu, Ben; Lollar, Christina; Sun, Daofeng; Zhou, Hong-Cai

    2018-04-23

    Multi-component metal-organic frameworks (MOFs) with precisely controlled pore environments are highly desired owing to their potential applications in gas adsorption, separation, cooperative catalysis, and biomimetics. A series of multi-component MOFs, namely PCN-900(RE), were constructed from a combination of tetratopic porphyrinic linkers, linear linkers, and rare-earth hexanuclear clusters (RE 6 ) under the guidance of thermodynamics. These MOFs exhibit high surface areas (up to 2523 cm 2  g -1 ) and unlimited tunability by modification of metal nodes and/or linker components. Post-synthetic exchange of linear linkers and metalation of two organic linkers were realized, allowing the incorporation of a wide range of functional moieties. Two different metal sites were sequentially placed on the linear linker and the tetratopic porphyrinic linker, respectively, giving rise to an ideal platform for heterogeneous catalysis. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Structure-based design of oxygen-linked macrocyclic kinase inhibitors: discovery of SB1518 and SB1578, potent inhibitors of Janus kinase 2 (JAK2) and Fms-like tyrosine kinase-3 (FLT3)

    NASA Astrophysics Data System (ADS)

    Poulsen, Anders; William, Anthony; Blanchard, Stéphanie; Lee, Angeline; Nagaraj, Harish; Wang, Haishan; Teo, Eeling; Tan, Evelyn; Goh, Kee Chuan; Dymock, Brian

    2012-04-01

    Macrocycles from our Aurora project were screened in a kinase panel and were found to be active on other kinase targets, mainly JAKs, FLT3 and CDKs. Subsequently these compounds became leads in our JAK2 project. Macrocycles with a basic nitrogen in the linker form a salt bridge with Asp86 in CDK2 and Asp698 in FLT3. This residue is conserved in most CDKs resulting in potent pan CDK inhibition. One of the main project objectives was to achieve JAK2 potency with 100-fold selectivity against CDKs. Macrocycles with an ether linker have potent JAK2 activity with the ether oxygen forming a hydrogen bond to Ser936. A hydrogen bond to the equivalent residues of JAK3 and most CDKs cannot be formed resulting in good selectivity for JAK2 over JAK3 and CDKs. Further optimization of the macrocyclic linker and side chain increased JAK2 and FLT3 activity as well as improving DMPK properties. The selective JAK2/FLT3 inhibitor 11 (Pacritinib, SB1518) has successfully finished phase 2 clinical trials for myelofibrosis and lymphoma. Another selective JAK2/FLT3 inhibitor, 33 (SB1578), has entered phase 1 clinical development for the non-oncology indication rheumatoid arthritis.

  5. Analysis of the linker region joining the adenylation and carrier protein domains of the modular nonribosomal peptide synthetases.

    PubMed

    Miller, Bradley R; Sundlov, Jesse A; Drake, Eric J; Makin, Thomas A; Gulick, Andrew M

    2014-10-01

    Nonribosomal peptide synthetases (NRPSs) are multimodular proteins capable of producing important peptide natural products. Using an assembly line process, the amino acid substrate and peptide intermediates are passed between the active sites of different catalytic domains of the NRPS while bound covalently to a peptidyl carrier protein (PCP) domain. Examination of the linker sequences that join the NRPS adenylation and PCP domains identified several conserved proline residues that are not found in standalone adenylation domains. We examined the roles of these proline residues and neighboring conserved sequences through mutagenesis and biochemical analysis of the reaction catalyzed by the adenylation domain and the fully reconstituted NRPS pathway. In particular, we identified a conserved LPxP motif at the start of the adenylation-PCP linker. The LPxP motif interacts with a region on the adenylation domain to stabilize a critical catalytic lysine residue belonging to the A10 motif that immediately precedes the linker. Further, this interaction with the C-terminal subdomain of the adenylation domain may coordinate movement of the PCP with the conformational change of the adenylation domain. Through this work, we extend the conserved A10 motif of the adenylation domain and identify residues that enable proper adenylation domain function. © 2014 Wiley Periodicals, Inc.

  6. Alkyl piperidine and piperazine hydroxamic acids as HDAC inhibitors.

    PubMed

    Rossi, Cristina; Porcelloni, Marina; D'Andrea, Piero; Fincham, Christopher I; Ettorre, Alessandro; Mauro, Sandro; Squarcia, Antonella; Bigioni, Mario; Parlani, Massimo; Nardelli, Federica; Binaschi, Monica; Maggi, Carlo A; Fattori, Daniela

    2011-04-15

    We report here the strategy used in our research group to find a new class of histone deacetylase (HDAC) inhibitors. A series of N-substituted 4-alkylpiperazine and 4-alkylpiperidine hydroxamic acids, corresponding to the basic structure of HDAC inhibitors (zinc binding moiety-linker-capping group) has been designed, prepared, and tested for HDAC inhibition. Linker length and aromatic capping group connection were systematically varied to find the optimal geometric parameters. A new series of submicromolar inhibitors was thus identified, which showed antiproliferative activity on HCT-116 colon carcinoma cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. The length but not the sequence of peptide linker modules exerts the primary influence on the conformations of protein domains in cellulosome multi-enzyme complexes.

    PubMed

    Różycki, Bartosz; Cazade, Pierre-André; O'Mahony, Shane; Thompson, Damien; Cieplak, Marek

    2017-08-16

    Cellulosomes are large multi-protein catalysts produced by various anaerobic microorganisms to efficiently degrade plant cell-wall polysaccharides down into simple sugars. X-ray and physicochemical structural characterisations show that cellulosomes are composed of numerous protein domains that are connected by unstructured polypeptide segments, yet the properties and possible roles of these 'linker' peptides are largely unknown. We have performed coarse-grained and all-atom molecular dynamics computer simulations of a number of cellulosomal linkers of different lengths and compositions. Our data demonstrates that the effective stiffness of the linker peptides, as quantified by the equilibrium fluctuations in the end-to-end distances, depends primarily on the length of the linker and less so on the specific amino acid sequence. The presence of excluded volume - provided by the domains that are connected - dampens the motion of the linker residues and reduces the effective stiffness of the linkers. Simultaneously, the presence of the linkers alters the conformations of the protein domains that are connected. We demonstrate that short, stiff linkers induce significant rearrangements in the folded domains of the mini-cellulosome composed of endoglucanase Cel8A in complex with scaffoldin ScafT (Cel8A-ScafT) of Clostridium thermocellum as well as in a two-cohesin system derived from the scaffoldin ScaB of Acetivibrio cellulolyticus. We give experimentally testable predictions on structural changes in protein domains that depend on the length of linkers.

  8. The Hsp70 interdomain linker is a dynamic switch that enables allosteric communication between two structured domains.

    PubMed

    English, Charles A; Sherman, Woody; Meng, Wenli; Gierasch, Lila M

    2017-09-08

    Hsp70 molecular chaperones play key roles in cellular protein homeostasis by binding to exposed hydrophobic regions of incompletely folded or aggregated proteins. This crucial Hsp70 function relies on allosteric communication between two well-structured domains: an N-terminal nucleotide-binding domain (NBD) and a C-terminal substrate-binding domain (SBD), which are tethered by an interdomain linker. ATP or ADP binding to the NBD alters the substrate-binding affinity of the SBD, triggering functionally essential cycles of substrate binding and release. The interdomain linker is a well-structured participant in the interdomain interface in ATP-bound Hsp70s. By contrast, in the ADP-bound state, exemplified by the Escherichia coli Hsp70 DnaK, the interdomain linker is flexible. Hsp70 interdomain linker sequences are highly conserved; moreover, mutations in this region compromise interdomain allostery. To better understand the role of this region in Hsp70 allostery, we used molecular dynamics simulations to explore the conformational landscape of the interdomain linker in ADP-bound DnaK and supported our simulations by strategic experimental data. We found that while the interdomain linker samples many conformations, it behaves as three relatively ordered segments connected by hinges. As a consequence, the distances and orientations between the NBD and SBD are limited. Additionally, the C-terminal region of the linker forms previously unreported, transient interactions with the SBD, and the predominant linker-docking site is available in only one allosteric state, that with high affinity for substrate. This preferential binding implicates the interdomain linker as a dynamic allosteric switch. The linker-binding site on the SBD is a potential target for small molecule modulators of the Hsp70 allosteric cycle. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Protein Kinase A Modulates Transforming Growth Factor-β Signaling through a Direct Interaction with Smad4 Protein*

    PubMed Central

    Yang, Huibin; Li, Gangyong; Wu, Jing-Jiang; Wang, Lidong; Uhler, Michael; Simeone, Diane M.

    2013-01-01

    Transforming growth factor β (TGFβ) signaling normally functions to regulate embryonic development and cellular homeostasis. It is increasingly recognized that TGFβ signaling is regulated by cross-talk with other signaling pathways. We previously reported that TGFβ activates protein kinase A (PKA) independent of cAMP through an interaction of an activated Smad3-Smad4 complex and the regulatory subunit of the PKA holoenzyme (PKA-R). Here we define the interaction domains of Smad4 and PKA-R and the functional consequences of this interaction. Using a series of Smad4 and PKA-R truncation mutants, we identified amino acids 290–300 of the Smad4 linker region as critical for the specific interaction of Smad4 and PKA-R. Co-immunoprecipitation assays showed that the B cAMP binding domain of PKA-R was sufficient for interaction with Smad4. Targeting of B domain regions conserved among all PKA-R isoforms and exposed on the molecular surface demonstrated that amino acids 281–285 and 320–329 were required for complex formation with Smad4. Interactions of these specific regions of Smad4 and PKA-R were necessary for TGFβ-mediated increases in PKA activity, CREB (cAMP-response element-binding protein) phosphorylation, induction of p21, and growth inhibition. Moreover, this Smad4-PKA interaction was required for TGFβ-induced epithelial mesenchymal transition, invasion of pancreatic tumor cells, and regulation of tumor growth in vivo. PMID:23362281

  10. Imidazolium-Functionalized Carbon Nanohorns for the Conversion of Carbon Dioxide: Unprecedented Increase of Catalytic Activity after Recycling.

    PubMed

    Calabrese, Carla; Liotta, Leonarda F; Carbonell, Esther; Giacalone, Francesco; Gruttadauria, Michelangelo; Aprile, Carmela

    2017-03-22

    Six new hybrid materials composed of carbon nanohorns (CNHs) and highly cross-linked imidazolium salts were easily synthesized using a one-step procedure based on the radical oligomerization of bis-vinylimidazolium salts (bVImiX) in the presence of pristine CNHs. The hybrid materials were characterized and employed as the sole catalysts for the conversion of carbon dioxide into cyclic carbonate by reaction with epoxides. The solids displayed excellent turnover number and productivity. Moreover, four catalysts were investigated in recycling experiments. Two catalysts containing an octyl linker between the imidazolium units and a bromide or an iodide anion showed no loss in activity after three cycles. The other two catalysts containing a p-xylyl linker and a bromide anion and different CNHs/bVImiX ratios showed an unprecedented increase of activity after recycling. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A universal pathway for kinesin stepping.

    PubMed

    Clancy, Bason E; Behnke-Parks, William M; Andreasson, Johan O L; Rosenfeld, Steven S; Block, Steven M

    2011-08-14

    Kinesin-1 is an ATP-driven, processive motor that transports cargo along microtubules in a tightly regulated stepping cycle. Efficient gating mechanisms ensure that the sequence of kinetic events proceeds in the proper order, generating a large number of successive reaction cycles. To study gating, we created two mutant constructs with extended neck-linkers and measured their properties using single-molecule optical trapping and ensemble fluorescence techniques. Owing to a reduction in the inter-head tension, the constructs access an otherwise rarely populated conformational state in which both motor heads remain bound to the microtubule. ATP-dependent, processive backstepping and futile hydrolysis were observed under moderate hindering loads. On the basis of measurements, we formulated a comprehensive model for kinesin motion that incorporates reaction pathways for both forward and backward stepping. In addition to inter-head tension, we found that neck-linker orientation is also responsible for ensuring gating in kinesin.

  12. The linker connecting the two kringles plays a key role in prothrombin activation

    PubMed Central

    Pozzi, Nicola; Chen, Zhiwei; Pelc, Leslie A.; Shropshire, Daniel B.; Di Cera, Enrico

    2014-01-01

    The zymogen prothrombin is proteolytically converted by factor Xa to the active protease thrombin in a reaction that is accelerated >3,000-fold by cofactor Va. This physiologically important effect is paradigmatic of analogous cofactor-dependent reactions in the coagulation and complement cascades, but its structural determinants remain poorly understood. Prothrombin has three linkers connecting the N-terminal Gla domain to kringle-1 (Lnk1), the two kringles (Lnk2), and kringle-2 to the C-terminal protease domain (Lnk3). Recent developments indicate that the linkers, and particularly Lnk2, confer on the zymogen significant flexibility in solution and enable prothrombin to sample alternative conformations. The role of this flexibility in the context of prothrombin activation was tested with several deletions. Removal of Lnk2 in almost its entirety (ProTΔ146–167) drastically reduces the enhancement of thrombin generation by cofactor Va from >3,000-fold to 60-fold because of a significant increase in the rate of activation in the absence of cofactor. Deletion of Lnk2 mimics the action of cofactor Va and offers insights into how prothrombin is activated at the molecular level. The crystal structure of ProTΔ146–167 reveals a contorted architecture where the domains are not vertically stacked, kringle-1 comes within 9 Å of the protease domain, and the Gla-domain primed for membrane binding comes in contact with kringle-2. These findings broaden our molecular understanding of a key reaction of the blood coagulation cascade where cofactor Va enhances activation of prothrombin by factor Xa by compressing Lnk2 and morphing prothrombin into a conformation similar to the structure of ProTΔ146–167. PMID:24821807

  13. Structure-guided design and functional characterization of an artificial red light-regulated guanylate/adenylate cyclase for optogenetic applications.

    PubMed

    Etzl, Stefan; Lindner, Robert; Nelson, Matthew D; Winkler, Andreas

    2018-06-08

    Genetically targeting biological systems to control cellular processes with light is the concept of optogenetics. Despite impressive developments in this field, underlying molecular mechanisms of signal transduction of the employed photoreceptor modules are frequently not sufficiently understood to rationally design new optogenetic tools. Here, we investigate the requirements for functional coupling of red light-sensing phytochromes with non-natural enzymatic effectors by creating a series of constructs featuring the Deinococcus radiodurans bacteriophytochrome linked to a Synechocystis guanylate/adenylate cyclase. Incorporating characteristic structural elements important for cyclase regulation in our designs, we identified several red light-regulated fusions with promising properties. We provide details of one light-activated construct with low dark-state activity and high dynamic range that outperforms previous optogenetic tools in vitro and expands our in vivo toolkit, as demonstrated by manipulation of Caenorhabditis elegans locomotor activity. The full-length crystal structure of this phytochrome-linked cyclase revealed molecular details of photoreceptor-effector coupling, highlighting the importance of the regulatory cyclase element. Analysis of conformational dynamics by hydrogen-deuterium exchange in different functional states enriched our understanding of phytochrome signaling and signal integration by effectors. We found that light-induced conformational changes in the phytochrome destabilize the coiled-coil sensor-effector linker, which releases the cyclase regulatory element from an inhibited conformation, increasing cyclase activity of this artificial system. Future designs of optogenetic functionalities may benefit from our work, indicating that rational considerations for the effector improve the rate of success of initial designs to obtain optogenetic tools with superior properties. © 2018 Etzl et al.

  14. (Z)3,4,5,4‧-trans-tetramethoxystilbene, a new analogue of resveratrol, inhibits gefitinb-resistant non-small cell lung cancer via selectively elevating intracellular calcium level

    NASA Astrophysics Data System (ADS)

    Fan, Xing-Xing; Yao, Xiao-Jun; Xu, Su Wei; Wong, Vincent Kam-Wai; He, Jian-Xing; Ding, Jian; Xue, Wei-Wei; Mujtaba, Tahira; Michelangeli, Francesco; Huang, Min; Huang, Jun; Xiao, Da-Kai; Jiang, Ze-Bo; Zhou, Yan-Ling; Kin-Ting Kam, Richard; Liu, Liang; Lai-Han Leung, Elaine

    2015-11-01

    Calcium is a second messenger which is required for regulation of many cellular processes. However, excessive elevation or prolonged activation of calcium signaling would lead to cell death. As such, selectively regulating calcium signaling could be an alternative approach for anti-cancer therapy. Recently, we have identified an effective analogue of resveratrol, (Z)3,4,5,4‧-trans-tetramethoxystilbene (TMS) which selectively elevated the intracellular calcium level in gefitinib-resistant (G-R) non-small-cell lung cancer (NSCLC) cells. TMS exhibited significant inhibitory effect on G-R NSCLC cells, but not other NSCLC cells and normal lung epithelial cells. The phosphorylation and activation of EGFR were inhibited by TMS in G-R cells. TMS induced caspase-independent apoptosis and autophagy by directly binding to SERCA and causing endoplasmic reticulum (ER) stress and AMPK activation. Proteomics analysis also further confirmed that mTOR pathway, which is the downstream of AMPK, was significantly suppressed by TMS. JNK, the cross-linker of ER stress and mTOR pathway was significantly activated by TMS. In addition, the inhibition of JNK activation can partially block the effect of TMS. Taken together, TMS showed promising anti-cancer activity by mediating calcium signaling pathway and inducing apoptosis as well as autophagy in G-R NSCLC cells, providing strategy in designing multi-targeting drug for treating G-R patients.

  15. Nanohashtag structures based on carbon nanotubes and molecular linkers

    NASA Astrophysics Data System (ADS)

    Frye, Connor W.; Rybolt, Thomas R.

    2018-03-01

    Molecular mechanics was used to study the noncovalent interactions between single-walled carbon nanotubes and molecular linkers. Groups of nanotubes have the tendency to form tight, parallel bundles (||||). Molecular linkers were introduced into our models to stabilize nanostructures with carbon nanotubes held in perpendicular orientations. Molecular mechanics makes it possible to estimate the strength of noncovalent interactions holding these structures together and to calculate the overall binding energy of the structures. A set of linkers were designed and built around a 1,3,5,7-cyclooctatetraene tether with two corannulene containing pincers that extend in opposite directions from the central cyclooctatetraene portion. Each pincer consists of a pairs of "arms." These molecular linkers were modified so that the "hand" portions of each pair of "arms" could close together to grab and hold two carbon nanotubes in a perpendicular arrangement. To illustrate the possibility of more complicated and open perpendicular CNTs structures, our primary goal was to create a model of a nanohashtag (#) CNT conformation that is more stable than any parallel CNT arrangements with bound linker molecules forming clumps of CNTs and linkers in non-hashtag arrangements. This goal was achieved using a molecular linker (C280H96) that utilizes van der Waals interactions to two perpendicular oriented CNTs. Hydrogen bonding was then added between linker molecules to augment the stability of the hashtag structure. In the hashtag structure with hydrogen bonding, four (5,5) CNTs of length 4.46 nm (18 rings) and four linkers (C276H92N8O8) stabilized the hashtag so that the average binding energy per pincer was 118 kcal/mol.

  16. Versatile bio-ink for covalent immobilization of chimeric avidin on sol-gel substrates.

    PubMed

    Heikkinen, Jarkko J; Kivimäki, Liisa; Määttä, Juha A E; Mäkelä, Inka; Hakalahti, Leena; Takkinen, Kristiina; Kulomaa, Markku S; Hytönen, Vesa P; Hormi, Osmo E O

    2011-10-15

    A bio-ink for covalent deposition of thermostable, high affinity biotin-binding chimeric avidin onto sol-gel substrates was developed. The bio-ink was prepared from heterobifunctional crosslinker 6-maleimidohexanoic acid N-hydroxysuccinimide which was first reacted either with 3-aminopropyltriethoxysilane or 3-aminopropyldimethylethoxysilane to form silane linkers 6-maleimide-N-(3-(triethoxysilyl)propyl)hexanamide or -(ethoxydimethylsilyl)propyl)-hexanamide. C-terminal cysteine genetically engineered to chimeric avidin was reacted with the maleimide group of silane linker in methanol/PBS solution to form a suspension, which was printed on sol-gel modified PMMA film. Different concentrations of chimeric avidin and ratios between silane linkers were tested to find the best properties for the bio-ink to enable gravure or inkjet printing. Bio-ink prepared from 3-aminopropyltriethoxysilane was found to provide the highest amount of active immobilized chimeric avidin. The developed bio-ink was shown to be valuable for automated fabrication of avidin-functionalized polymer films. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Synthesis, kinetic studies and molecular modeling of novel tacrine dimers as cholinesterase inhibitors.

    PubMed

    de Aquino, Roney Anderson Nascimento; Modolo, Luzia Valentina; Alves, Rosemeire Brondi; de Fátima, Ângelo

    2013-12-28

    This study presents the synthesis of 15 new tacrine dimers as well as the Ki and IC50 results, studies of the kinetic mechanism, and molecular docking analysis of the dimers in relation to the cholinesterases hAChE, hBChE, EeAChE and eqBChE. In addition to spectroscopic characterization, X-ray structure determination was performed for two of the new compounds. These new dimers were found to be mixed nanomolar inhibitors of the evaluated targets with a broad and significant selectivity profile, and these properties are dependent on both the type of the linker and the volume of the hydroacridine alicyclic ring. The results indicate that the aromatic linkers play a significant role in generating specific interactions with the half-gorge region of the catalytic center. Thus, these types of linkers can positively modulate the electronic properties of the tacrine dimers studied with an improvement of their cholinesterase inhibition activity.

  18. Expanding the Definition of the Classical Bipartite Nuclear Localization Signal

    PubMed Central

    Lange, Allison; McLane, Laura M.; Mills, Ryan E.; Devine, Scott E.; Corbett, Anita H.

    2010-01-01

    Nuclear localization signals (NLSs) are amino acid sequences that target cargo proteins into the nucleus. Rigorous characterization of NLS motifs is essential to understanding and predicting pathways for nuclear import. The best-characterized NLS is the classical NLS (cNLS), which is recognized by the cNLS receptor, importin-α. cNLSs are conventionally defined as having one (monopartite) or two clusters of basic amino acids separated by a 9-12 amino acid linker (bipartite). Motivated by the finding that Ty1 integrase, which contains an unconventional putative bipartite cNLS with a 29 amino acid linker, exploits the classical nuclear import machinery, we assessed the functional boundaries for linker length within a bipartite cNLS. We confirmed that the integrase cNLS is a bona fide bipartite cNLS, then carried out a systematic analysis of linker length in an obligate bipartite cNLS cargo, which revealed that some linkers longer than conventionally defined can function in nuclear import. Linker function is dependent on the sequence and likely the inherent flexibility of the linker. Subsequently, we interrogated the Saccharomyces cerevisiae proteome to identify cellular proteins containing putative long bipartite cNLSs. We experimentally confirmed that Rrp4 contains a bipartite cNLS with a 25 amino acid linker. Our studies reveal that the traditional definition of bipartite cNLSs is too restrictive and linker length can vary depending on amino acid composition PMID:20028483

  19. Cytochrome bc1-cy Fusion Complexes Reveal the Distance Constraints for Functional Electron Transfer Between Photosynthesis Components*

    PubMed Central

    Lee, Dong-Woo; Öztürk, Yavuz; Osyczka, Artur; Cooley, Jason W.; Daldal, Fevzi

    2008-01-01

    Photosynthetic (Ps) growth of purple non-sulfur bacteria such as Rhodobacter capsulatus depends on the cyclic electron transfer (ET) between the ubihydroquinone (QH2): cytochrome (cyt) c oxidoreductases (cyt bc1 complex), and the photochemical reaction centers (RC), mediated by either a membrane-bound (cyt cy) or a freely diffusible (cyt c2) electron carrier. Previously, we constructed a functional cyt bc1-cy fusion complex that supported Ps growth solely relying on membrane-confined ET (Lee, D.-W., Ozturk, Y., Mamedova, A., Osyczka, A., Cooley, J. W., and Daldal, F. (2006) Biochim. Biophys. Acta1757 ,346 -35216781662). In this work, we further characterized this cyt bc1-cy fusion complex, and used its derivatives with shorter cyt cy linkers as “molecular rulers” to probe the distances separating the Ps components. Comparison of the physicochemical properties of both membrane-embedded and purified cyt bc1-cy fusion complexes established that these enzymes were matured and assembled properly. Light-activated, time-resolved kinetic spectroscopy analyses revealed that their variants with shorter cyt cy linkers exhibited fast, native-like ET rates to the RC via the cyt bc1. However, shortening the length of the cyt cy linker decreased drastically this electronic coupling between the cyt bc1-cy fusion complexes and the RC, thereby limiting Ps growth. The shortest and still functional cyt cy linker was about 45 amino acids long, showing that the minimal distance allowed between the cyt bc1-cy fusion complexes and the RC and their surrounding light harvesting proteins was very short. These findings support the notion that membrane-bound Ps components form large, active structural complexes that are “hardwired” for cyclic ET. PMID:18343816

  20. Structural changes and cellular localization of resuscitation-promoting factor in environmental isolates of Micrococcus luteus.

    PubMed

    Koltunov, Viktoria; Greenblatt, Charles L; Goncharenko, Anna V; Demina, Galya R; Klein, Benjamin Y; Young, Michael; Kaprelyants, Arseny S

    2010-02-01

    Dormancy among nonsporulating actinobacteria is now a widely accepted phenomenon. In Micrococcus luteus, the resuscitation of dormant cells is caused by a small secreted protein (resuscitation-promoting factor, or Rpf) that is found in "spent culture medium." Rpf is encoded by a single essential gene in M. luteus. Homologs of Rpf are widespread among the high G + C Gram-positive bacteria, including mycobacteria and streptomycetes, and most organisms make several functionally redundant proteins. M. luteus Rpf comprises a lysozyme-like domain that is necessary and sufficient for activity connected through a short linker region to a LysM motif, which is present in a number of cell-wall-associated enzymes. Muralytic activity is responsible for resuscitation. In this report, we characterized a number of environmental isolates of M. luteus, including several recovered from amber. There was substantial variation in the predicted rpf gene product. While the lysozyme-like and LysM domains showed little variation, the linker region was elongated from ten amino acid residues in the laboratory strains to as many as 120 residues in one isolate. The genes encoding these Rpf proteins have been characterized, and a possible role for the Rpf linker in environmental adaptation is proposed. The environmental isolates show enhanced resistance to lysozyme as compared with the laboratory strains and this correlates with increased peptidoglycan acetylation. In strains that make a protein with an elongated linker, Rpf was bound to the cell wall, rather than being released to the growth medium, as occurs in reference strains. This rpf gene was introduced into a lysozyme-sensitive reference strain. Both rpf genes were expressed in transformants which showed a slight but statistically significant increase in lysozyme resistance.

  1. Membrane Localization is Critical for Activation of the PICK1 BAR Domain

    PubMed Central

    Madsen, Kenneth L.; Eriksen, Jacob; Milan-Lobo, Laura; Han, Daniel S.; Niv, Masha Y.; Ammendrup-Johnsen, Ina; Henriksen, Ulla; Bhatia, Vikram K.; Stamou, Dimitrios; Sitte, Harald H.; McMahon, Harvey T.; Weinstein, Harel; Gether, Ulrik

    2013-01-01

    The PSD-95/Discs-large/ZO-1 homology (PDZ) domain protein, protein interacting with C kinase 1 (PICK1) contains a C-terminal Bin/amphiphysin/Rvs (BAR) domain mediating recognition of curved membranes; however, the molecular mechanisms controlling the activity of this domain are poorly understood. In agreement with negative regulation of the BAR domain by the N-terminal PDZ domain, PICK1 distributed evenly in the cytoplasm, whereas truncation of the PDZ domain caused BAR domain-dependent redistribution to clusters colocalizing with markers of recycling endosomal compartments. A similar clustering was observed both upon truncation of a short putative α-helical segment in the linker between the PDZ and the BAR domains and upon coexpression of PICK1 with a transmembrane PDZ ligand, including the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor GluR2 subunit, the GluR2 C-terminus transferred to the single transmembrane protein Tac or the dopamine transporter C-terminus transferred to Tac. In contrast, transfer of the GluR2 C-terminus to cyan fluorescent protein, a cytosolic protein, did not elicit BAR domain-dependent clustering. Instead, localizing PICK1 to the membrane by introducing an N-terminal myristoylation site produced BAR domain-dependent, but ligand-independent, PICK1 clustering. The data support that in the absence of PDZ ligand, the PICK1 BAR domain is inhibited through a PDZ domain-dependent and linker-dependent mechanism. Moreover, they suggest that unmasking of the BAR domain’s membrane-binding capacity is not a consequence of ligand binding to the PDZ domain per se but results from, and coincides with, recruitment of PICK1 to a membrane compartment. PMID:18466293

  2. The Role of Linkers in the Excited-State Dynamic Planarization Processes of Macrocyclic Oligothiophene 12-Mers.

    PubMed

    Kim, Woojae; Sung, Jooyoung; Park, Kyu Hyung; Shimizu, Hideyuki; Imamura, Mika; Han, Minwoo; Sim, Eunji; Iyoda, Masahiko; Kim, Dongho

    2015-11-05

    Linkers adjoining chromophores play an important role in modulating the structure of conjugated systems, which is bound up with their photophysical properties. However, to date, the focus of works dealing with linker effects was limited only to linear π-conjugated materials, and there have been no detailed studies on cyclic counterparts. Herein we report the linker effects on the dynamic planarization processes of π-conjugated macrocyclic oligothiophene 12-mers, where the different ratio between ethynylene and vinylene linkers was chosen to control the backbone rigidity. By analyzing transient fluorescence spectra, we demonstrate that the connecting linkers play a crucial role in the excited-state dynamics of cyclic conjugated systems. Faster dynamic planarization, longer exciton delocalization length, and higher degree of planarity were observed in vinylene inserted cyclic oligothiophenes. Molecular dynamics simulations and density functional theory calculations also stress the importance of the role of linkers in modulating the structure of cyclic oligothiophenes.

  3. Pin1 down-regulates transforming growth factor-beta (TGF-beta) signaling by inducing degradation of Smad proteins.

    PubMed

    Nakano, Ayako; Koinuma, Daizo; Miyazawa, Keiji; Uchida, Takafumi; Saitoh, Masao; Kawabata, Masahiro; Hanai, Jun-ichi; Akiyama, Hirotada; Abe, Masahiro; Miyazono, Kohei; Matsumoto, Toshio; Imamura, Takeshi

    2009-03-06

    Transforming growth factor-beta (TGF-beta) is crucial in numerous cellular processes, such as proliferation, differentiation, migration, and apoptosis. TGF-beta signaling is transduced by intracellular Smad proteins that are regulated by the ubiquitin-proteasome system. Smad ubiquitin regulatory factor 2 (Smurf2) prevents TGF-beta and bone morphogenetic protein signaling by interacting with Smads and inducing their ubiquitin-mediated degradation. Here we identified Pin1, a peptidylprolyl cis-trans isomerase, as a novel protein binding Smads. Pin1 interacted with Smad2 and Smad3 but not Smad4; this interaction was enhanced by the phosphorylation of (S/T)P motifs in the Smad linker region. (S/T)P motif phosphorylation also enhanced the interaction of Smad2/3 with Smurf2. Pin1 reduced Smad2/3 protein levels in a manner dependent on its peptidyl-prolyl cis-trans isomerase activity. Knockdown of Pin1 increased the protein levels of endogenous Smad2/3. In addition, Pin1 both enhanced the interaction of Smurf2 with Smads and enhanced Smad ubiquitination. Pin1 inhibited TGF-beta-induced transcription and gene expression, suggesting that Pin1 negatively regulates TGF-beta signaling by down-regulating Smad2/3 protein levels via induction of Smurf2-mediated ubiquitin-proteasomal degradation.

  4. Smad2 and Smad3 have differential sensitivity in relaying TGFβ signaling and inversely regulate early lineage specification

    PubMed Central

    Liu, Ling; Liu, Xu; Ren, Xudong; Tian, Yue; Chen, Zhenyu; Xu, Xiangjie; Du, Yanhua; Jiang, Cizhong; Fang, Yujiang; Liu, Zhongliang; Fan, Beibei; Zhang, Quanbin; Jin, Guohua; Yang, Xiao; Zhang, Xiaoqing

    2016-01-01

    The transforming growth factor beta (TGFβ) related signaling is one of the most important signaling pathways regulating early developmental events. Smad2 and Smad3 are structurally similar and it is mostly considered that they are equally important in mediating TGFβ signals. Here, we show that Smad3 is an insensitive TGFβ transducer as compared with Smad2. Smad3 preferentially localizes within the nucleus and is thus sequestered from membrane signaling. The ability of Smad3 in oligomerization with Smad4 upon agonist stimulation is also impaired given its unique linker region. Smad2 mediated TGFβ signaling plays a crucial role in epiblast development and patterning of three germ layers. However, signaling unrelated nuclear localized Smad3 is dispensable for TGFβ signaling-mediated epiblast specification, but important for early neural development, an event blocked by TGFβ/Smad2 signaling. Both Smad2 and Smad3 bind to the conserved Smads binding element (SBE), but they show nonoverlapped target gene binding specificity and differential transcriptional activity. We conclude that Smad2 and Smad3 possess differential sensitivities in relaying TGFβ signaling and have distinct roles in regulating early developmental events. PMID:26905010

  5. Smad2 and Smad3 have differential sensitivity in relaying TGFβ signaling and inversely regulate early lineage specification.

    PubMed

    Liu, Ling; Liu, Xu; Ren, Xudong; Tian, Yue; Chen, Zhenyu; Xu, Xiangjie; Du, Yanhua; Jiang, Cizhong; Fang, Yujiang; Liu, Zhongliang; Fan, Beibei; Zhang, Quanbin; Jin, Guohua; Yang, Xiao; Zhang, Xiaoqing

    2016-02-24

    The transforming growth factor beta (TGFβ) related signaling is one of the most important signaling pathways regulating early developmental events. Smad2 and Smad3 are structurally similar and it is mostly considered that they are equally important in mediating TGFβ signals. Here, we show that Smad3 is an insensitive TGFβ transducer as compared with Smad2. Smad3 preferentially localizes within the nucleus and is thus sequestered from membrane signaling. The ability of Smad3 in oligomerization with Smad4 upon agonist stimulation is also impaired given its unique linker region. Smad2 mediated TGFβ signaling plays a crucial role in epiblast development and patterning of three germ layers. However, signaling unrelated nuclear localized Smad3 is dispensable for TGFβ signaling-mediated epiblast specification, but important for early neural development, an event blocked by TGFβ/Smad2 signaling. Both Smad2 and Smad3 bind to the conserved Smads binding element (SBE), but they show nonoverlapped target gene binding specificity and differential transcriptional activity. We conclude that Smad2 and Smad3 possess differential sensitivities in relaying TGFβ signaling and have distinct roles in regulating early developmental events.

  6. Investigating the role of radixin in modulation of stereocilia length and stiffness

    NASA Astrophysics Data System (ADS)

    Prasad, Sonal; Fridberger, Anders

    2018-05-01

    Mammalian hearing depends on deflection of stereocilia on the sensory outer hair cells of the inner ear. Previous data indicate that the stiffness of outer hair cell stereocilia are actively regulated. The molecular mechanism that regulate the deflection of stereocilia are presently less known. The aim of the study is to investigate the mechanistic pathway that underlie the stiffness modulation of outer hair cell stereocilia. Our hypothesis is that the membrane-cytoskeleton linker protein radixin, which is present at high concentration in stereocilia, could contribute to stiffness regulation. To test this hypothesis, we use the radixin blocker DX-52-1 which binds strongly and specifically to radixin. Time-resolved confocal imaging was used to visualize the sound-evoked motion of stereocilia in a semi-intact preparation of the guinea pig temporal bone. Cochlear microphonic potentials were also measured, using electrodes positioned in scala media. We found that the DX-52-1 inhibitor leads to an increase in stereocilia movements and decline in the amplitude of the cochlear microphonic potential. However, DX-52-1 caused a paradoxical increase in electromotility. These results suggest that radixin has a functionally important regulatory role in the mature inner ear.

  7. Rational assembly of nanoparticle superlattices with designed lattice symmetries

    DOEpatents

    Gang, Oleg; Lu, Fang; Tagawa, Miho

    2017-09-05

    A method for lattice design via multivalent linkers (LDML) is disclosed that introduces a rationally designed symmetry of connections between particles in order to achieve control over the morphology of their assembly. The method affords the inclusion of different programmable interactions within one linker that allow an assembly of different types of particles. The designed symmetry of connections is preferably provided utilizing DNA encoding. The linkers may include fabricated "patchy" particles, DNA scaffold constructs and Y-shaped DNA linkers, anisotropic particles, which are preferably functionalized with DNA, multimeric protein-DNA complexes, and particles with finite numbers of DNA linkers.

  8. Enhanced Biological Response of AVS-Functionalized Ti-6Al-4V Alloy through Covalent Immobilization of Collagen.

    PubMed

    Rezvanian, Parsa; Daza, Rafael; López, Patricia A; Ramos, Milagros; González-Nieto, Daniel; Elices, Manuel; Guinea, Gustavo V; Pérez-Rigueiro, José

    2018-02-20

    This study presents the development of an efficient procedure for covalently immobilizing collagen molecules on AVS-functionalized Ti-6Al-4V samples, and the assessment of the survival and proliferation of cells cultured on these substrates. Activated Vapor Silanization (AVS) is a versatile functionalization technique that allows obtaining a high density of active amine groups on the surface. A procedure is presented to covalently bind collagen to the functional layer using EDC/NHS as cross-linker. The covalently bound collagen proteins are characterized by fluorescence microscopy and atomic force microscopy and their stability is tested. The effect of the cross-linker concentration on the process is assessed. The concentration of the cross-linker is optimized and a reliable cleaning protocol is developed for the removal of the excess of carbodiimide from the samples. The results demonstrate that the covalent immobilization of collagen type I on Ti-6Al-4V substrates, using the optimized protocol, increases the number of viable cells present on the material. Consequently, AVS in combination with the carbodiimide chemistry appears as a robust method for the immobilization of proteins and, for the first time, it is shown that it can be used to enhance the biological response to the material.

  9. Multivalent Nanoparticle Networks Enable Point of Care Detection of Human Phospholipase-A2 in Serum

    PubMed Central

    Burnapp, Mark; Bentham, Andrew; Hillier, David; Zabron, Abigail; Khan, Shahid; Tyreman, Matthew; Stevens, Molly M.

    2017-01-01

    A rapid and highly sensitive point of care (PoC) lateral flow assay for phospholipase-A2 (PLA2) is demonstrated in serum through the enzyme-triggered release of a new class of biotinylated multi-armed polymers from a liposome substrate. Signal from the enzyme activity is generated by the adhesion of polystreptavidin coated gold nanoparticle networks to the lateral flow device, which leads to the appearance of a red test line due to the localised surface plasmon resonance (LSPR) effect of the gold. The use of a liposome as the enzyme substrate and multivalent linkers to link the nanoparticles leads to amplification of the signal as the cleavage of a small amount of lipids is able to release a large amount of polymer linker and adhesion of an even larger amount of gold nanoparticles. By optimising the molecular weight and multivalency of these biotinylated polymer linkers the sensitivity of the device can be tuned to enable naked-eye detection of 1 nM human-PLA2 in serum within 10 minutes. This high sensitivity enabled the correct diagnosis of pancreatitis in diseased clinical samples against a set of healthy controls using PLA2 activity in a point of care device for the first time. PMID:25756526

  10. Metal Ion Dependence, Thermodynamics, and Kinetics for Intramolecular Docking of a GAAA Tetraloop and Receptor Connected by a Flexible Linker†

    PubMed Central

    Downey, Christopher D.; Fiore, Julie L.; Stoddard, Colby D.; Hodak, Jose H.; Nesbitt, David J.; Pardi, Arthur

    2008-01-01

    The GAAA tetraloop-receptor is a commonly occurring tertiary interaction motif in RNA. This motif usually occurs in combination with other tertiary interactions in complex RNA structures. Thus, it is difficult to measure directly the contribution that a single GAAA tetraloop-receptor interaction makes to the folding properties of an RNA. To investigate the kinetics and thermodynamics for the isolated interaction, a GAAA tetraloop domain and receptor domain were connected by a single-stranded A7 linker. Fluorescence resonance energy transfer (FRET) experiments were used to probe intramolecular docking of the GAAA tetraloop and receptor. Docking was induced using a variety of metal ions, where the charge of the ion was the most important factor in determining the concentration of the ion required to promote docking ([Co(NH3)63+] ≪ [Ca2+], [Mg2+], [Mn2+] ≪ [Na+], [K+]). Analysis of metal ion cooperativity yielded Hill coefficients of ≈ 2 for Na+- or K+-dependent docking versus ≈ 1 for the divalent ions and Co(NH3)63+. Ensemble stopped-flow FRET kinetic measurements yielded an apparent activation energy of 12.7 kcal/mol for GAAA tetraloop-receptor docking. RNA constructs with U7 and A14 single-stranded linkers were investigated by single-molecule and ensemble FRET techniques to determine how linker length and composition affect docking. These studies showed that the single-stranded region functions primarily as a flexible tether. Inhibition of docking by oligonucleotides complementary to the linker was also investigated. The influence of flexible versus rigid linkers on GAAA tetraloop-receptor docking is discussed. PMID:16533049

  11. Identification of unique interactions between the flexible linker and the RecA-like domains of DEAD-box helicase Mss116

    NASA Astrophysics Data System (ADS)

    Zhang, Yuan; Palla, Mirkó; Sun, Andrew; Liao, Jung-Chi

    2013-09-01

    DEAD-box RNA helicases are ATP-dependent proteins implicated in nearly all aspects of RNA metabolism. The yeast DEAD-box helicase Mss116 is unique in its functions of splicing group I and group II introns and activating mRNA translation, but the structural understanding of why it performs these unique functions remains unclear. Here we used sequence analysis and molecular dynamics simulation to identify residues in the flexible linker specific for yeast Mss116, potentially associated with its unique functions. We first identified residues that are 100% conserved in Mss116 of different species of the Saccharomycetaceae family. The amino acids of these conserved residues were then compared with the amino acids of the corresponding residue positions of other RNA helicases to identify residues that have distinct amino acids from other DEAD-box proteins. Four residues in the flexible linker, i.e. N334, E335, P336 and H339, are conserved and Mss116-specific. Molecular dynamics simulation was conducted for the wild-type Mss116 structure and mutant models to examine mutational effects of the linker on the conformational equilibrium. Relatively short MD simulation runs (within 20 ns) were enough for us to observe mutational effects, suggesting serious structural perturbations by these mutations. The mutation of E335 depletes the interactions between E335 and K95 in domain 1. The interactions between N334/P336 and N496/I497 of domain 2 are also abolished by mutation. Our results suggest that tight interactions between the Mss116-specific flexible linker and the two RecA-like domains may be mechanically required to crimp RNA for the unique RNA processes of yeast Mss116.

  12. A Prodomain Fragment from the Proteolytic Activation of Growth Differentiation Factor 11 Remains Associated with the Mature Growth Factor and Keeps It Soluble.

    PubMed

    Pepinsky, Blake; Gong, Bang-Jian; Gao, Yan; Lehmann, Andreas; Ferrant, Janine; Amatucci, Joseph; Sun, Yaping; Bush, Martin; Walz, Thomas; Pederson, Nels; Cameron, Thomas; Wen, Dingyi

    2017-08-22

    Growth differentiation factor 11 (GDF11), a member of the transforming growth factor β (TGF-β) family, plays diverse roles in mammalian development. It is synthesized as a large, inactive precursor protein containing a prodomain, pro-GDF11, and exists as a homodimer. Activation requires two proteolytic processing steps that release the prodomains and transform latent pro-GDF11 into active mature GDF11. In studying proteolytic activation in vitro, we discovered that a 6-kDa prodomain peptide containing residues 60-114, PDP 60-114 , remained associated with the mature growth factor. Whereas the full-length prodomain of GDF11 is a functional antagonist, PDP 60-114 had no impact on activity. The specific activity of the GDF11/PDP 60-114 complex (EC 50 = 1 nM) in a SMAD2/3 reporter assay was identical to that of mature GDF11 alone. PDP 60-114 improved the solubility of mature GDF11 at neutral pH. As the growth factor normally aggregates/precipitates at neutral pH, PDP 60-114 can be used as a solubility-enhancing formulation. Expression of two engineered constructs with PDP 60-114 genetically fused to the mature domain of GDF11 through a 2x or 3x G4S linker produced soluble monomeric products that could be dimerized through redox reactions. The construct with a 3x G4S linker retained 10% activity (EC 50 = 10 nM), whereas the construct connected with a 2x G4S linker could only be activated (EC 50 = 2 nM) by protease treatment. Complex formation with PDP 60-114 represents a new strategy for stabilizing GDF11 in an active state that may translate to other members of the TGF-β family that form latent pro/mature domain complexes.

  13. The Activation of c-Src Tyrosine Kinase: Conformational Transition Pathway and Free Energy Landscape.

    PubMed

    Fajer, Mikolai; Meng, Yilin; Roux, Benoît

    2017-04-20

    Tyrosine kinases are important cellular signaling allosteric enzymes that regulate cell growth, proliferation, metabolism, differentiation, and migration. Their activity must be tightly controlled, and malfunction can lead to a variety of diseases, particularly cancer. The nonreceptor tyrosine kinase c-Src, a prototypical model system and a representative member of the Src-family, functions as complex multidomain allosteric molecular switches comprising SH2 and SH3 domains modulating the activity of the catalytic domain. The broad picture of self-inhibition of c-Src via the SH2 and SH3 regulatory domains is well characterized from a structural point of view, but a detailed molecular mechanism understanding is nonetheless still lacking. Here, we use advanced computational methods based on all-atom molecular dynamics simulations with explicit solvent to advance our understanding of kinase activation. To elucidate the mechanism of regulation and self-inhibition, we have computed the pathway and the free energy landscapes for the "inactive-to-active" conformational transition of c-Src for different configurations of the SH2 and SH3 domains. Using the isolated c-Src catalytic domain as a baseline for comparison, it is observed that the SH2 and SH3 domains, depending upon their bound orientation, promote either the inactive or active state of the catalytic domain. The regulatory structural information from the SH2-SH3 tandem is allosterically transmitted via the N-terminal linker of the catalytic domain. Analysis of the conformational transition pathways also illustrates the importance of the conserved tryptophan 260 in activating c-Src, and reveals a series of concerted events during the activation process.

  14. Voltage-Dependent Gating of hERG Potassium Channels

    PubMed Central

    Cheng, Yen May; Claydon, Tom W.

    2012-01-01

    The mechanisms by which voltage-gated channels sense changes in membrane voltage and energetically couple this with opening of the ion conducting pore has been the source of significant interest. In voltage-gated potassium (Kv) channels, much of our knowledge in this area comes from Shaker-type channels, for which voltage-dependent gating is quite rapid. In these channels, activation and deactivation are associated with rapid reconfiguration of the voltage-sensing domain unit that is electromechanically coupled, via the S4–S5 linker helix, to the rate-limiting opening of an intracellular pore gate. However, fast voltage-dependent gating kinetics are not typical of all Kv channels, such as Kv11.1 (human ether-à-go-go related gene, hERG), which activates and deactivates very slowly. Compared to Shaker channels, our understanding of the mechanisms underlying slow hERG gating is much poorer. Here, we present a comparative review of the structure–function relationships underlying activation and deactivation gating in Shaker and hERG channels, with a focus on the roles of the voltage-sensing domain and the S4–S5 linker that couples voltage sensor movements to the pore. Measurements of gating current kinetics and fluorimetric analysis of voltage sensor movement are consistent with models suggesting that the hERG activation pathway contains a voltage independent step, which limits voltage sensor transitions. Constraints upon hERG voltage sensor movement may result from loose packing of the S4 helices and additional intra-voltage sensor counter-charge interactions. More recent data suggest that key amino acid differences in the hERG voltage-sensing unit and S4–S5 linker, relative to fast activating Shaker-type Kv channels, may also contribute to the increased stability of the resting state of the voltage sensor. PMID:22586397

  15. A dimethyl ketal-protected benzoin-based linker suitable for photolytic release of unprotected peptides.

    PubMed

    Chumachenko, Nataliya; Novikov, Yehor; Shoemaker, Richard K; Copley, Shelley D

    2011-11-18

    Photolabile 3',5'-dimethoxybenzoin-based linkers are advantageous for a variety of solid-phase synthetic procedures and manipulations of biomolecules because UV irradiation in aqueous media provides fast and essentially quantitative release of tethered molecules, while generating unreactive side products. Practical applications of previously reported linkers are compromised to some extent by the 1,3-dithiane protection of the benzoin carbonyl group and the lengthy synthesis. We have extended the group of photocleavable 3',5'-dimethoxybenzoin-based linkers by designing and synthesizing a linker in which the carbonyl group is protected as a dimethyl ketal. This protection is compatible with commonly used esterification and amide bond formation techniques, including the Fmoc/tBu strategy for solid phase peptide synthesis, is stable under mild acidic conditions, and can be quantitatively removed in <5 min by 3% TFA in dichloromethane. Irradiation of beads carrying peptides attached to the linker at 350 nm in aqueous or partially aqueous media affords >90% release after 30 min. The linker was synthesized from commercially available starting materials in five steps with an overall yield of 40% and without any column chromatography purification. Additionally, we developed a route to a dithiane-protected linker that requires only two steps and proceeds in 65% yield, a significant improvement over previous synthetic routes.

  16. Orphan nuclear receptor small heterodimer partner inhibits transforming growth factor-beta signaling by repressing SMAD3 transactivation.

    PubMed

    Suh, Ji Ho; Huang, Jiansheng; Park, Yun-Yong; Seong, Hyun-A; Kim, Dongwook; Shong, Minho; Ha, Hyunjung; Lee, In-Kyu; Lee, Keesook; Wang, Li; Choi, Hueng-Sik

    2006-12-22

    Orphan nuclear receptor small heterodimer partner (SHP) is an atypical member of the nuclear receptor superfamily; SHP regulates the nuclear receptor-mediated transcription of target genes but lacks a conventional DNA binding domain. In this study, we demonstrate that SHP represses transforming growth factor-beta (TGF-beta)-induced gene expression through a direct interaction with Smad, a transducer of TGF-beta signaling. Transient transfection studies demonstrate that SHP represses Smad3-induced transcription. In vivo and in vitro protein interaction assays revealed that SHP directly interacts with Smad2 and Smad3 but not with Smad4. Mapping of domains mediating the interaction between SHP and Smad3 showed that the entire N-terminal domain (1-159 amino acids) of SHP and the linker domain of Smad3 are involved in this interaction. In vitro glutathione S-transferase pulldown competition experiments revealed the SHP-mediated repression of Smad3 transactivation through competition with its co-activator p300. SHP also inhibits the activation of endogenous TGF-beta-responsive gene promoters, the p21, Smad7, and plasminogen activator inhibitor-1 (PAI-1) promoters. Moreover, adenovirus-mediated overexpression of SHP decreases PAI-1 mRNA levels, and down-regulation of SHP by a small interfering RNA increases both the transactivation of Smad3 and the PAI-1 mRNA levels. Finally, the PAI-1 gene is expressed in SHP(-/-) mouse hepatocytes at a higher level than in normal hepatocytes. Taken together, these data indicate that SHP is a novel co-regulator of Smad3, and this study provides new insights into regulation of TGF-beta signaling.

  17. Biphalin analogs containing β(3)-homo-amino acids at the 4,4' positions: Synthesis and opioid activity profiles.

    PubMed

    Frączak, Oliwia; Lasota, Anika; Kosson, Piotr; Leśniak, Anna; Muchowska, Adriana; Lipkowski, Andrzej W; Olma, Aleksandra

    2015-04-01

    Biphalin, a synthetic opioid octapeptide with a palindromic sequence has high analgesic activity. Biphalin displays a strong affinity for μ and δ-opioid receptors, and a significant to κ-receptor. The paper reports the synthesis of novel analogs of biphalin containing β(3)-homo-amino acid residues at the 4,4' positions and a hydrazine or 1,2-phenylenediamine linker. The potency and selectivity of the peptides were evaluated by a competitive receptor-binding assay in rat brain homogenate using [(3)H]DAMGO (a μ ligand) and [(3)H]DELT (a δ ligand). Analogs with β(3)-h-p-NO2Phe in positions 4 and 4' are the most active compounds. Selectivity depends on the degree of freedom between the two pharmacophore moieties. Analogs with a hydrazine linker show noticeable binding selectivity to μ receptors (IC50(μ)=0.72nM; IC50(δ)=4.66nM), while the peptides with a 1,2-phenylenediamine linker show slight δ selectivity (IC50(μ)=10.97nM; IC50(δ)=1.99nM). Tyr-d-Ala-Gly-β(3)-h-p-NO2PheNHNH-β(3)-h-p-NO2Phe (1) and (Tyr-d-Ala-Gly-β(3)-h-p-NO2PheNH)2 (2) produced greater antinociceptive effect compared to morphine after i.t. administration. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Preparation, structural analysis and bioactivity of ribonuclease A-albumin conjugate: tetra-conjugation or PEG as the linker.

    PubMed

    Li, Chunju; Lin, Qixun; Wang, Jun; Shen, Lijuan; Ma, Guanghui; Su, Zhiguo; Hu, Tao

    2012-12-31

    Ribonuclease A (RNase A) is a therapeutic enzyme with cytotoxic action against tumor cells. Its clinical application is limited by the short half-life and insufficient stability. Conjugation of albumin can overcome the limitation, whereas dramatically decrease the enzymatic activity of RNase A. Here, three strategies were proposed to prepare the RNase A-bovine serum albumin (BSA) conjugates. R-SMCC-B (a conjugate of four RNase A attached with one BSA) and R-PEG-B (a mono-conjugate) were prepared using Sulfo-SMCC (a short bifunctional linker) and mal-PEG-NHS (a bifunctional PEG), respectively. Mal-PEG-NHS and hexadecylamine (HDA) were used to prepare the mono-conjugate, R-HDA-B, where HDA was adopted to bind BSA. The PEG linker can elongate the proximity between RNase A and BSA. In contrast, four RNase A were closely located on BSA in R-SMCC-B. R-SMCC-B showed the lowest K(m) and the highest relative enzymatic activity and k(cat)/K(m) in the three conjugates. Presumably, the tetravalent interaction of RNase A in R-SMCC-B can increase the binding affinity to its substrate. In addition, the slow release of BSA from R-HDA-B may increase the enzymatic activity of R-HDA-B. Our study is expected to provide strategies to develop protein-albumin conjugate with high therapeutic potential. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. A structured interdomain linker directs self-polymerization of human uromodulin

    PubMed Central

    Bokhove, Marcel; Nishimura, Kaoru; Brunati, Martina; Han, Ling; de Sanctis, Daniele; Rampoldi, Luca

    2016-01-01

    Uromodulin (UMOD)/Tamm–Horsfall protein, the most abundant human urinary protein, plays a key role in chronic kidney diseases and is a promising therapeutic target for hypertension. Via its bipartite zona pellucida module (ZP-N/ZP-C), UMOD forms extracellular filaments that regulate kidney electrolyte balance and innate immunity, as well as protect against renal stones. Moreover, salt-dependent aggregation of UMOD filaments in the urine generates a soluble molecular net that captures uropathogenic bacteria and facilitates their clearance. Despite the functional importance of its homopolymers, no structural information is available on UMOD and how it self-assembles into filaments. Here, we report the crystal structures of polymerization regions of human UMOD and mouse ZP2, an essential sperm receptor protein that is structurally related to UMOD but forms heteropolymers. The structure of UMOD reveals that an extensive hydrophobic interface mediates ZP-N domain homodimerization. This arrangement is required for filament formation and is directed by an ordered ZP-N/ZP-C linker that is not observed in ZP2 but is conserved in the sequence of deafness/Crohn’s disease-associated homopolymeric glycoproteins α-tectorin (TECTA) and glycoprotein 2 (GP2). Our data provide an example of how interdomain linker plasticity can modulate the function of structurally similar multidomain proteins. Moreover, the architecture of UMOD rationalizes numerous pathogenic mutations in both UMOD and TECTA genes. PMID:26811476

  20. Loss of Activity-Induced Phosphorylation of MeCP2 Enhances Synaptogenesis, LTP, and Spatial Memory

    PubMed Central

    Li, Hongda; Zhong, Xiaofen; Chau, Kevin Fongching; Williams, Emily Cunningham; Chang, Qiang

    2012-01-01

    DNA methylation-dependent epigenetic mechanisms underlie the development and function of the mammalian brain. MeCP2 expresses highly in neurons, and functions as a molecular linker between DNA methylation, chromatin remodeling and transcription regulation. Previous in vitro studies showed neuronal activity-induced phosphorylation (NAIP) of MeCP2 precedes its release from the Bdnf promoter and the ensuing Bdnf transcription. However, the in vivo function of this phosphorylation event remains elusive. We generated knockin mice that lack NAIP of MeCP2, and show here the Mecp2 phospho-mutant mice perform better in hippocampus-dependent memory tests, present enhanced LTP at two synapses in the hippocampus, and show increased excitatory synaptogenesis. At the molecular level, the phospho-mutant MeCP2 protein binds more tightly to several MeCP2 target gene promoters and alters the expression of these genes. Our results supply the first genetic evidence that NAIP of MeCP2 is required in modulating dynamic functions of the adult mouse brain. PMID:21765426

  1. Smart activatable and traceable dual-prodrug for image-guided combination photodynamic and chemo-therapy.

    PubMed

    Hu, Fang; Yuan, Youyong; Mao, Duo; Wu, Wenbo; Liu, Bin

    2017-11-01

    Activatable photosensitizers (PSs) and chemo-prodrugs are highly desirable for anti-cancer therapy to reduce systemic toxicity. However, it is difficult to integrate both together into a molecular probe for combination therapy due to the complexity of introducing PS, singlet oxygen quencher, chemo-drug, chemo-drug inhibitor and active linker at the same time. To realize activatable PS and chemo-prodrug combination therapy, we develop a smart therapeutic platform in which the chemo-prodrug serves as the singlet oxygen quencher for the PS. Specifically, the photosensitizing activity and fluorescence of the PS (TPEPY-SH) are blocked by the chemo-prodrug (Mitomycin C, MMC) in the probe. Meanwhile, the cytotoxicity of MMC is also inhibited by the electron-withdrawing acyl at the nitrogen position next to the linker. Upon glutathione activation, TPEPY-S-MMC can simultaneously release active PS and MMC for combination therapy. The restored fluorescence of TPEPY-SH is also used to report the activation for both PS and MMC as well as to guide the photodynamic therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Structural Dynamics Control Allosteric Activation of Cytohesin Family Arf GTPase Exchange Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malaby, Andrew W.; Das, Sanchaita; Chakravarthy, Srinivas

    Membrane dynamic processes including vesicle biogenesis depend on Arf guanosine triphosphatase (GTPase) activation by guanine nucleotide exchange factors (GEFs) containing a catalytic Sec7 domain and a membrane-targeting module such as a pleckstrin homology (PH) domain. The catalytic output of cytohesin family Arf GEFs is controlled by autoinhibitory interactions that impede accessibility of the exchange site in the Sec7 domain. These restraints can be relieved through activator Arf-GTP binding to an allosteric site comprising the PH domain and proximal autoinhibitory elements (Sec7-PH linker and C-terminal helix). Small-angle X-ray scattering and negative-stain electron microscopy were used to investigate the structural organization andmore » conformational dynamics of cytohesin-3 (Grp1) in autoinhibited and active states. The results support a model in which hinge dynamics in the autoinhibited state expose the activator site for Arf-GTP binding, while subsequent C-terminal helix unlatching and repositioning unleash conformational entropy in the Sec7-PH linker to drive exposure of the exchange site.« less

  3. Trimodal Control of Ion-Transport Activity on Cyclo-oligo-(1→6)-β-D-glucosamine-Based Artificial Ion-Transport Systems.

    PubMed

    Roy, Arundhati; Saha, Tanmoy; Gening, Marina L; Titov, Denis V; Gerbst, Alexey G; Tsvetkov, Yury E; Nifantiev, Nikolay E; Talukdar, Pinaki

    2015-11-23

    Cyclo-oligo-(1→6)-β-D-glucosamines functionalized with hydrophobic tails are reported as a new class of transmembrane ion-transport system. These macrocycles with hydrophilic cavities were introduced as an alternative to cyclodextrins, which are supramolecular systems with hydrophobic cavities. The transport activities of these glycoconjugates were manipulated by altering the oligomericity of the macrocycles, as well as the length and number of attached tails. Hydrophobic tails of 3 different sizes were synthesized and coupled with each glucosamine scaffold through the amide linkage to obtain 18 derivatives. The ion-transport activity increased from di- to tetrameric glucosamine macrocycles, but decreased further when flexible pentameric glucosamine was introduced. The ion-transport activity also increased with increasing length of attached linkers. For a fixed length of linkers, the transport activity decreased when the number of such tails was reduced. All glycoconjugates displayed a uniform anion-selectivity sequence: Cl(-) >Br(-) >I(-) . From theoretical studies, hydrogen bonding between the macrocycle backbone and the anion bridged through water molecules was observed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Fusion proteins useful for producing pinene

    DOEpatents

    Peralta-Yahya, Pamela P.; Keasling, Jay D

    2016-06-28

    The present invention provides for a modified host cell comprising a heterologous pinene synthase (PS), or enzymatically active fragment or variant thereof, and optionally a geranyl pyrophosphate synthase (GPPS), or enzymatically active fragment or variant thereof, or a fusion protein comprising: (a) a PS and (b) a GPPS linked by a linker.

  5. Gel-forming reagents and uses thereof for preparing microarrays

    DOEpatents

    Golova, Julia; Chernov, Boris; Perov, Alexander

    2010-11-09

    New gel-forming reagents including monomers and cross-linkers, which can be applied to gel-drop microarray manufacturing by using co-polymerization approaches are disclosed. Compositions for the preparation of co-polymerization mixtures with new gel-forming monomers and cross-linker reagents are described herein. New co-polymerization compositions and cross-linkers with variable length linker groups between unsaturated C.dbd.C bonds that participate in the formation of gel networks are disclosed.

  6. Construction of hierarchically porous metal–organic frameworks through linker labilization

    DOE PAGES

    Yuan, Shuai; Zou, Lanfang; Qin, Jun-Sheng; ...

    2017-05-25

    One major goal of metal–organic framework (MOF) research is the expansion of pore size and volume. Although many approaches have been attempted to increase the pore size of MOF materials, it is still a challenge to construct MOFs with precisely customized pore apertures for specific applications. W present a new method, namely linker labilization, to increase the MOF porosity and pore size, giving rise to hierarchical-pore architectures. Microporous MOFs with robust metal nodes and pro-labile linkers were initially synthesized. The mesopores were subsequently created as crystal defects through the splitting of a pro-labile-linker and the removal of the linker fragmentsmore » by acid treatment. We also demonstrate that linker labilization method can create controllable hierarchical porous structures in stable MOFs, which facilitates the diffusion and adsorption process of guest molecules to improve the performances of MOFs in adsorption and catalysis.« less

  7. Improved sensitivity of a graphene FET biosensor using porphyrin linkers

    NASA Astrophysics Data System (ADS)

    Kawata, Takuya; Ono, Takao; Kanai, Yasushi; Ohno, Yasuhide; Maehashi, Kenzo; Inoue, Koichi; Matsumoto, Kazuhiko

    2018-06-01

    Graphene FET (G-FET) biosensors have considerable potential due to the superior characteristics of graphene. Realizing this potential requires judicious choice of the linker molecule connecting the target-specific receptor molecule to the graphene surface, yet there are few reports comparing linker molecules for G-FET biosensors. In this study, tetrakis(4-carboxyphenyl)porphyrin (TCPP) was used as a linker for surface modification of a G-FET and the properties of the device were compared to those of a G-FET device modified with the conventional linker 1-pyrenebutanoic acid succinimidyl ester (PBASE). TCPP modification resulted in a higher density of receptor immunoglobulin E (IgE) aptamer molecules on the G-FET. The detection limit of the target IgE was enhanced from 13 nM for the PBASE-modified G-FET to 2.2 nM for the TCPP-modified G-FET, suggesting that the TCPP linker is a powerful candidate for G-FET modification.

  8. Construction of hierarchically porous metal-organic frameworks through linker labilization

    NASA Astrophysics Data System (ADS)

    Yuan, Shuai; Zou, Lanfang; Qin, Jun-Sheng; Li, Jialuo; Huang, Lan; Feng, Liang; Wang, Xuan; Bosch, Mathieu; Alsalme, Ali; Cagin, Tahir; Zhou, Hong-Cai

    2017-05-01

    A major goal of metal-organic framework (MOF) research is the expansion of pore size and volume. Although many approaches have been attempted to increase the pore size of MOF materials, it is still a challenge to construct MOFs with precisely customized pore apertures for specific applications. Herein, we present a new method, namely linker labilization, to increase the MOF porosity and pore size, giving rise to hierarchical-pore architectures. Microporous MOFs with robust metal nodes and pro-labile linkers were initially synthesized. The mesopores were subsequently created as crystal defects through the splitting of a pro-labile-linker and the removal of the linker fragments by acid treatment. We demonstrate that linker labilization method can create controllable hierarchical porous structures in stable MOFs, which facilitates the diffusion and adsorption process of guest molecules to improve the performances of MOFs in adsorption and catalysis.

  9. Construction of hierarchically porous metal–organic frameworks through linker labilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Shuai; Zou, Lanfang; Qin, Jun-Sheng

    One major goal of metal–organic framework (MOF) research is the expansion of pore size and volume. Although many approaches have been attempted to increase the pore size of MOF materials, it is still a challenge to construct MOFs with precisely customized pore apertures for specific applications. W present a new method, namely linker labilization, to increase the MOF porosity and pore size, giving rise to hierarchical-pore architectures. Microporous MOFs with robust metal nodes and pro-labile linkers were initially synthesized. The mesopores were subsequently created as crystal defects through the splitting of a pro-labile-linker and the removal of the linker fragmentsmore » by acid treatment. We also demonstrate that linker labilization method can create controllable hierarchical porous structures in stable MOFs, which facilitates the diffusion and adsorption process of guest molecules to improve the performances of MOFs in adsorption and catalysis.« less

  10. Role of CBS and Bateman Domains in Phosphorylation-Dependent Regulation of a CLC Anion Channel.

    PubMed

    Yamada, Toshiki; Krzeminski, Mickael; Bozoky, Zoltan; Forman-Kay, Julie D; Strange, Kevin

    2016-11-01

    Eukaryotic CLC anion channels and transporters are homodimeric proteins composed of multiple α-helical membrane domains and large cytoplasmic C-termini containing two cystathionine-β-synthase domains (CBS1 and CBS2) that dimerize to form a Bateman domain. The Bateman domains of adjacent CLC subunits interact to form a Bateman domain dimer. The functions of CLC CBS and Bateman domains are poorly understood. We utilized the Caenorhabditis elegans CLC-1/2/Ka/Kb anion channel homolog CLH-3b to characterize the regulatory roles of CLC cytoplasmic domains. CLH-3b activity is reduced by phosphorylation or deletion of a 14-amino-acid activation domain (AD) located on the linker connecting CBS1 and CBS2. We demonstrate here that phosphorylation-dependent reductions in channel activity require an intact Bateman domain dimer and concomitant phosphorylation or deletion of both ADs. Regulation of a CLH-3b AD deletion mutant is reconstituted by intracellular perfusion with recombinant 14-amino-acid AD peptides. The sulfhydryl reactive reagent 2-(trimethylammonium)ethyl methanethiosulfonate bromide (MTSET) alters in a phosphorylation-dependent manner the activity of channels containing single cysteine residues that are engineered into the short intracellular loop connecting membrane α-helices H and I (H-I loop), the AD, CBS1, and CBS2. In contrast, MTSET has no effect on channels in which cysteine residues are engineered into intracellular regions that are dispensable for regulation. These studies together with our previous work suggest that binding and unbinding of the AD to the Bateman domain dimer induces conformational changes that are transduced to channel membrane domains via the H-I loop. Our findings provide new, to our knowledge, insights into the roles of CLC Bateman domains and the structure-function relationships that govern the regulation of CLC protein activity by diverse ligands and signaling pathways. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Activatable Fluorescence Probe via Self-Immolative Intramolecular Cyclization for Histone Deacetylase Imaging in Live Cells and Tissues.

    PubMed

    Liu, Xianjun; Xiang, Meihao; Tong, Zongxuan; Luo, Fengyan; Chen, Wen; Liu, Feng; Wang, Fenglin; Yu, Ru-Qin; Jiang, Jian-Hui

    2018-05-01

    Histone deacetylases (HDACs) play essential roles in transcription regulation and are valuable theranostic targets. However, there are no activatable fluorescent probes for imaging of HDAC activity in live cells. Here, we develop for the first time a novel activatable two-photon fluorescence probe that enables in situ imaging of HDAC activity in living cells and tissues. The probe is designed by conjugating an acetyl-lysine mimic substrate to a masked aldehyde-containing fluorophore via a cyanoester linker. Upon deacetylation by HDAC, the probe undergoes a rapid self-immolative intramolecular cyclization reaction, producing a cyanohydrin intermediate that is spontaneously rapidly decomposed into the highly fluorescent aldehyde-containing two-photon fluorophore. The probe is shown to exhibit high sensitivity, high specificity, and fast response for HDAC detection in vitro. Imaging studies reveal that the probe is able to directly visualize and monitor HDAC activity in living cells. Moreover, the probe is demonstrated to have the capability of two-photon imaging of HDAC activity in deep tissue slices up to 130 μm. This activatable fluorescent probe affords a useful tool for evaluating HDAC activity and screening HDAC-targeting drugs in both live cell and tissue assays.

  12. Calcium-controlled conformational choreography in the N-terminal half of adseverin

    NASA Astrophysics Data System (ADS)

    Chumnarnsilpa, Sakesit; Robinson, Robert C.; Grimes, Jonathan M.; Leyrat, Cedric

    2015-09-01

    Adseverin is a member of the calcium-regulated gelsolin superfamily of actin-binding proteins. Here we report the crystal structure of the calcium-free N-terminal half of adseverin (iA1-A3) and the Ca2+-bound structure of A3, which reveal structural similarities and differences with gelsolin. Solution small-angle X-ray scattering combined with ensemble optimization revealed a dynamic Ca2+-dependent equilibrium between inactive, intermediate and active conformations. Increasing calcium concentrations progressively shift this equilibrium from a main population of inactive conformation to the active form. Molecular dynamics simulations of iA1-A3 provided insights into Ca2+-induced destabilization, implicating a critical role for the A2 type II calcium-binding site and the A2A3 linker in the activation process. Finally, mutations that disrupt the A1/A3 interface increase Ca2+-independent F-actin severing by A1-A3, albeit at a lower efficiency than observed for gelsolin domains G1-G3. Together, these data address the calcium dependency of A1-A3 activity in relation to the calcium-independent activity of G1-G3.

  13. HSF-1 activates the ubiquitin proteasome system to promote non-apoptotic developmental cell death in C. elegans.

    PubMed

    Kinet, Maxime J; Malin, Jennifer A; Abraham, Mary C; Blum, Elyse S; Silverman, Melanie R; Lu, Yun; Shaham, Shai

    2016-03-08

    Apoptosis is a prominent metazoan cell death form. Yet, mutations in apoptosis regulators cause only minor defects in vertebrate development, suggesting that another developmental cell death mechanism exists. While some non-apoptotic programs have been molecularly characterized, none appear to control developmental cell culling. Linker-cell-type death (LCD) is a morphologically conserved non-apoptotic cell death process operating in Caenorhabditis elegans and vertebrate development, and is therefore a compelling candidate process complementing apoptosis. However, the details of LCD execution are not known. Here we delineate a molecular-genetic pathway governing LCD in C. elegans. Redundant activities of antagonistic Wnt signals, a temporal control pathway, and mitogen-activated protein kinase kinase signaling control heat shock factor 1 (HSF-1), a conserved stress-activated transcription factor. Rather than protecting cells, HSF-1 promotes their demise by activating components of the ubiquitin proteasome system, including the E2 ligase LET-70/UBE2D2 functioning with E3 components CUL-3, RBX-1, BTBD-2, and SIAH-1. Our studies uncover design similarities between LCD and developmental apoptosis, and provide testable predictions for analyzing LCD in vertebrates.

  14. Regulation of synaptic vesicle recycling by complex formation between intersectin 1 and the clathrin adaptor complex AP2

    PubMed Central

    Pechstein, Arndt; Bacetic, Jelena; Vahedi-Faridi, Ardeschir; Gromova, Kira; Sundborger, Anna; Tomlin, Nikolay; Krainer, Georg; Vorontsova, Olga; Schäfer, Johannes G.; Owe, Simen G.; Cousin, Michael A.; Saenger, Wolfram; Shupliakov, Oleg; Haucke, Volker

    2010-01-01

    Clathrin-mediated synaptic vesicle (SV) recycling involves the spatiotemporally controlled assembly of clathrin coat components at phosphatidylinositiol (4, 5)-bisphosphate [PI(4,5)P2]-enriched membrane sites within the periactive zone. Such spatiotemporal control is needed to coordinate SV cargo sorting with clathrin/AP2 recruitment and to restrain membrane fission and synaptojanin-mediated uncoating until membrane deformation and clathrin coat assembly are completed. The molecular events underlying these control mechanisms are unknown. Here we show that the endocytic SH3 domain-containing accessory protein intersectin 1 scaffolds the endocytic process by directly associating with the clathrin adaptor AP2. Acute perturbation of the intersectin 1-AP2 interaction in lamprey synapses in situ inhibits the onset of SV recycling. Structurally, complex formation can be attributed to the direct association of hydrophobic peptides within the intersectin 1 SH3A-B linker region with the “side sites” of the AP2 α- and β-appendage domains. AP2 appendage association of the SH3A-B linker region inhibits binding of the inositol phosphatase synaptojanin 1 to intersectin 1. These data identify the intersectin-AP2 complex as an important regulator of clathrin-mediated SV recycling in synapses. PMID:20160082

  15. Lecithin-linker formulations for self-emulsifying delivery of nutraceuticals.

    PubMed

    Chu, Jacquelene; Cheng, Yu-Ling; Rao, A Venketeshwer; Nouraei, Mehdi; Zarate-Muñoz, Silvia; Acosta, Edgar J

    2014-08-25

    Lecithin-linker microemulsions are formulations produced with soybean lecithin in combination with a highly lipophilic (lipophilic linker) and highly hydrophilic (hydrophilic linkers) surfactant-like additives. In this work, lecithin-linker systems were formulated to produce self-emulsifying delivery systems for β-carotene and β-sitosterol. The concentration of the lipophilic linker, sorbitan monooleate, was adjusted to minimize the formation of liquid crystals. The concentration of hydrophilic linkers, decaglyceryl caprylate/caprate and PEG-6-caprylic/capric glycerides, was gradually increased (scanned) until single phase clear microemulsions were obtained. For these scans, the oil (ethyl caprate) to water ratio was set to 1. The single phase, clear microemulsions were diluted with fed-state simulated intestinal fluid (FeSSIF) and produced stable emulsions, with drop sizes close to 200 nm. Using pseudo-ternary phase diagrams to evaluate the process of dilution of microemulsion preconcentrates (mixtures of oil, lecithin and linkers with little or no water) with FeSSIF, it was determined that self-emulsifying systems are obtained when the early stages of the dilution produce single phase microemulsions. If liquid crystals or multiple phase systems are obtained during those early stages, then the emulsification yields unstable emulsions with large drop sizes. An in vitro permeability study conducted using a Flow-Thru Dialyzer revealed that stable emulsions with drop sizes of 150-300 nm produce large and irreversible permeation of β-carotene to sheep intestine. On the other hand, unstable emulsions produced without the linker combination separated in the dialyzer chamber. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Rational design of molecularly imprinted polymer: the choice of cross-linker.

    PubMed

    Muhammad, Turghun; Nur, Zohre; Piletska, Elena V; Yimit, Osmanjan; Piletsky, Sergey A

    2012-06-07

    The paper describes a rational approach for the selection of cross-linkers during the development of molecularly imprinted polymers (MIPs). As a model system for this research MIPs specific for the drug zidovudine (AZT) were designed and tested. Three cross-linkers trimethylolpropane trimethacrylate (TRIM), ethylene glycol dimethacrylate (EGDMA) and divinylbenzene (DVB) were studied. The analogue of zidovudine (AZT) ester (AZT-ES) was used as a dummy template. The imprinting factors for all of the polymers in the static adsorption experiments were calculated. The data on the AZT adsorption by control polymers (CP), which were prepared with different cross-linkers without a functional monomer, was also analyzed. DVB was found to be more inert towards zidovudine than EGDMA and TRIM, which was confirmed by both molecular modelling and adsorption experiments. It was demonstrated that DVB-based polymers had a higher imprinting factor (I = 1.85) compared with other tested cross-linked polymers. It was suggested that the selection of the cross-linker should be based on the strength of the interaction with the template: the cross-linker which displays lower binding of the template should be preferential because it generates MIPs with lower non-specific binding and a higher imprinting factor, and therefore specificity. Which cross-linker to use for the preparation of any particular MIP can be determined by analysis of the interactions between the cross-linker and template. This could be done either virtually using computational modelling or by template adsorption using a small library of polymers prepared using different cross-linkers.

  17. Galectin-1 suppresses alpha2(I) collagen through Smad3 in renal epithelial cells.

    PubMed

    Okano, K; Uchida, K; Nitta, K; Hayashida, T

    2008-10-01

    Transforming growth factor (TGF-beta1) promotes renal fibrogenesis through activation of Smads. Galectin-1 is reported to prevent experimental glomerulonephritis. Here we investigated the fact that transfected galectin-1 significantly suppressed the transcription of alpha2(I) collagen (COL1A2) in TGF-beta1- activated human renal epithelial cells. Conversely, galectin-1 silencing RNA reduced secretion of type I collagen by HKC cells. Galectin-1 significantly decreased activation of a TGF-beta1-responsive reporter construct and of a minimal reporter construct that contains four repeats of the Smad binding element (SBE). Galectin-1 had no effect on phosphorylation of Smad3 at the linker region and C-terminus, whereas it decreased affinity of Smad3 to the SBE. Additionally, the inhibitory effect of galectin-1 disappeared using a mutated reporter construct, 376 m-LUC, in which a potential Smad recognition site within the promoter is mutated. Taken together, the results suggest that galectin-1 decreases Smad3-complex from binding to the SBE, down-regulating transcription of COL1A2 in TGF-beta1-stimulated renal epithelial cells.

  18. Differential role of glycolipid-enriched membrane domains in glycoprotein VI- and integrin-mediated phospholipase Cgamma2 regulation in platelets.

    PubMed Central

    Wonerow, Peter; Obergfell, Achim; Wilde, Jonathan I; Bobe, Régis; Asazuma, Naoki; Brdicka, Tomás; Leo, Albrecht; Schraven, Burkhart; Horejsí, Václav; Shattil, Sanford J; Watson, Steve P

    2002-01-01

    The platelet collagen receptor glycoprotein VI (GPVI) and the fibrinogen receptor integrin alphaIIbbeta3 trigger intracellular signalling cascades involving the tyrosine kinase Syk, the adapter SLP-76 and phospholipase Cgamma2 (PLCgamma2). Similar pathways are activated downstream of immune receptors in lymphocytes, where they have been localized in part to glycolipid-enriched membrane domains (GEMs). Here we provide several lines of evidence that GPVI-mediated tyrosine phosphorylation of PLCgamma2 in platelets is dependent on GEM-organized signalling and utilizes the GEM resident adapter protein LAT (linker for activation of T cells). In sharp contrast, although fibrinogen binding to platelets stimulates alphaIIbbeta3-dependent activation of Syk and tyrosine phosphorylation of SLP-76 and PLCgamma2, it does not utilize GEMs to promote these responses or to support platelet aggregation. These results establish that GPVI and alphaIIbbeta3 trigger distinct patterns of receptor signalling in platelets, leading to tyrosine phosphorylation of PLCgamma2, and they highlight the role of GEMs in compartmentalizing signalling reactions involved in haemostasis. PMID:12049640

  19. One ligand, two regulators and three binding sites: How KDPG controls primary carbon metabolism in Pseudomonas

    PubMed Central

    Fung, Rowena K. Y.; Grenga, Lucia; Trampari, Eleftheria; Pepe, Simona

    2017-01-01

    Effective regulation of primary carbon metabolism is critically important for bacteria to successfully adapt to different environments. We have identified an uncharacterised transcriptional regulator; RccR, that controls this process in response to carbon source availability. Disruption of rccR in the plant-associated microbe Pseudomonas fluorescens inhibits growth in defined media, and compromises its ability to colonise the wheat rhizosphere. Structurally, RccR is almost identical to the Entner-Doudoroff (ED) pathway regulator HexR, and both proteins are controlled by the same ED-intermediate; 2-keto-3-deoxy-6-phosphogluconate (KDPG). Despite these similarities, HexR and RccR control entirely different aspects of primary metabolism, with RccR regulating pyruvate metabolism (aceEF), the glyoxylate shunt (aceA, glcB, pntAA) and gluconeogenesis (pckA, gap). RccR displays complex and unusual regulatory behaviour; switching repression between the pyruvate metabolism and glyoxylate shunt/gluconeogenesis loci depending on the available carbon source. This regulatory complexity is enabled by two distinct pseudo-palindromic binding sites, differing only in the length of their linker regions, with KDPG binding increasing affinity for the 28 bp aceA binding site but decreasing affinity for the 15 bp aceE site. Thus, RccR is able to simultaneously suppress and activate gene expression in response to carbon source availability. Together, the RccR and HexR regulators enable the rapid coordination of multiple aspects of primary carbon metabolism, in response to levels of a single key intermediate. PMID:28658302

  20. Macrocyclic bifunctional chelating agents

    DOEpatents

    Meares, Claude F.; DeNardo, Sally J.; Cole, William C.; Mol, Min K.

    1987-01-01

    A copper chelate conjugate which is stable in human serum. The conjugate includes the copper chelate of a cyclic tetraaza di-, tri-, or tetra-acetic acid, a linker attached at one linker end to a ring carbon of the chelate, and a biomolecule joined at the other end of the linker. The conjugate, or the linker-copper chelate compound used in forming the conjugate, are designed for use in diagnostic and therapeutic applications which involve Cu(II) localization via the systemic route.

  1. Pharmaceutical differences between block copolymer self-assembled and cross-linked nanoassemblies as carriers for tunable drug release.

    PubMed

    Lee, Hyun Jin; Bae, Younsoo

    2013-02-01

    To identify the effects of cross-linkers and drug-binding linkers on physicochemical and biological properties of polymer nanoassembly drug carriers. Four types of polymer nanoassemblies were synthesized from poly(ethylene glycol)-poly(aspartate) [PEG-p(Asp)] block copolymers: self-assembled nanoassemblies (SNAs) and cross-linked nanoassemblies (CNAs) to each of which an anticancer drug doxorubicin (DOX) was loaded by either physical entrapment or chemical conjugation (through acid-sensitive hydrazone linkers). Drug loading in nanoassemblies was 27 ~ 56% by weight. The particle size of SNA changed after drug and drug-binding linker entrapment (20 ~ 100 nm), whereas CNAs remained 30 ~ 40 nm. Drug release rates were fine-tunable by using amide cross-linkers and hydrazone drug-binding linkers in combination. In vitro cytotoxicity assays using a human lung cancer A549 cell line revealed that DOX-loaded nanoassemblies were equally potent as free DOX with a wide range of drug release half-life (t(1/2) = 3.24 ~ 18.48 h, at pH 5.0), but 5 times less effective when t(1/2) = 44.52 h. Nanoassemblies that incorporate cross-linkers and drug-binding linkers in combination have pharmaceutical advantages such as uniform particle size, physicochemical stability, fine-tunable drug release rates, and maximum cytotoxicity of entrapped drug payloads.

  2. CD6 and Linker of Activated T Cells are Potential Interaction Partners for T Cell-Specific Adaptor Protein.

    PubMed

    Hem, C D; Ekornhol, M; Granum, S; Sundvold-Gjerstad, V; Spurkland, A

    2017-02-01

    The T cell-specific adaptor protein (TSAd) contains several protein interaction domains, and is merging as a modulator of T cell activation. Several interaction partners for the TSAd proline-rich region and phosphotyrosines have been identified, including the Src and Tec family kinases lymphocyte-specific protein tyrosine kinase and interleukin 2-inducible T cell kinase. Via its Src homology 2 (SH2) domain, TSAd may thus function as a link between these enzymes and other signalling molecules. However, few binding partners to the TSAd SH2 domain in T cells are hitherto known. Through the use of in silico ligand prediction, peptide spot arrays, pull-down and immunoprecipitation experiments, we here report novel interactions between the TSAd SH2 domain and CD6 phosphotyrosine (pTyr) 629 and linker of activated T cells (LAT) pTyr 171 , pTyr 191 and pTyr 226 . © 2016 The Foundation for the Scandinavian Journal of Immunology.

  3. Diels Alder-mediated release of gemcitabine from hybrid nanoparticles for enhanced pancreatic cancer therapy.

    PubMed

    Oluwasanmi, Adeolu; Al-Shakarchi, Wejdan; Manzur, Ayesha; Aldebasi, Mohammed H; Elsini, Rayan S; Albusair, Malek K; Haxton, Katherine J; Curtis, Anthony D M; Hoskins, Clare

    2017-11-28

    Hybrid nanoparticles (HNPs) have shown huge potential as drug delivery vehicles for pancreatic cancer. Currently, the first line treatment, gemcitabine, is only effective in 23.8% of patients. To improve this, a thermally activated system was developed by introducing a linker between HNPs and gemcitabine. Whereby, heat generation resulting from laser irradiation of the HNPs promoted linker breakdown resulting in prodrug liberation. In vitro evaluation in pancreatic adenocarcinoma cells, showed the prodrug was 4.3 times less cytotoxic than gemcitabine, but exhibited 11-fold improvement in cellular uptake. Heat activation of the formulation led to a 56% rise in cytotoxicity causing it to outperform gemcitabine by 26%. In vivo the formulation outperformed free gemcitabine with a 62% reduction in tumor weight in pancreatic xenografts. This HNP formulation is the first of its kind and has displayed superior anti-cancer activity as compared to the current first line drug gemcitabine after heat mediated controlled release. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Synthesis of Novel Caspase Inhibitors for Characterization of the Active Caspase Proteome in Vitro and in Vivo

    PubMed Central

    Henzing, Alexander J.; Dodson, Helen; Reid, Joel M.; Kaufmann, Scott H.; Baxter, Robert L.; Earnshaw, William C.

    2008-01-01

    Caspases are cysteine proteases that are essential for cytokine maturation and apoptosis. To facilitate the dissection of caspase function in vitro and in vivo, we have synthesized irreversible caspase inhibitors with biotin attached via linker arms of various lengths (12a–d) and a 2,4-dinitrophenyl labeled inhibitor (13). Affinity labeling of apoptotic extracts followed by blotting reveals that these affinity probes detect active caspases. Using the strong affinity of avidin for biotin, we have isolated affinity-labeled caspase-6 from apoptotic cytosolic extracts of cells overexpressing procaspase 6 by treatment with 12c, which contains biotin attached to the Nε-lysine of the inhibitor by a 22.5 Å linker arm, followed by affinity purification on monomeric avidin-Sepharose beads. 13 has proven sufficiently cell permeable to rescue cells from apoptotic execution. These novel caspase inhibitors should provide powerful probes for the study of the active caspase proteome during apoptosis both in vitro and in vivo. PMID:17181147

  5. Internal Associations of the Acidic Region of Upstream Binding Factor Control Its Nucleolar Localization.

    PubMed

    Ueshima, Shuhei; Nagata, Kyosuke; Okuwaki, Mitsuru

    2017-11-15

    Upstream binding factor (UBF) is a member of the high-mobility group (HMG) box protein family, characterized by multiple HMG boxes and a C-terminal acidic region (AR). UBF is an essential transcription factor for rRNA genes and mediates the formation of transcriptionally active chromatin in the nucleolus. However, it remains unknown how UBF is specifically localized to the nucleolus. Here, we examined the molecular mechanisms that localize UBF to the nucleolus. We found that the first HMG box (HMG box 1), the linker region (LR), and the AR cooperatively regulate the nucleolar localization of UBF1. We demonstrated that the AR intramolecularly associates with and attenuates the DNA binding activity of HMG boxes and confers the structured DNA preference to HMG box 1. In contrast, the LR was found to serve as a nuclear localization signal and compete with HMG boxes to bind the AR, permitting nucleolar localization of UBF1. The LR sequence binds DNA and assists the stable chromatin binding of UBF. We also showed that the phosphorylation status of the AR does not clearly affect the localization of UBF1. Our results strongly suggest that associations of the AR with HMG boxes and the LR regulate UBF nucleolar localization. Copyright © 2017 American Society for Microbiology.

  6. A truncated, activin-induced Smad3 isoform acts as a transcriptional repressor of FSHβ expression in mouse pituitary

    PubMed Central

    Kim, So-Youn; Zhu, Jie; Woodruff, Teresa K.

    2011-01-01

    The receptor-regulated protein Smad3 is key player in the signaling cascade stimulated by the binding of activin to its cell surface receptor. Upon phosphorylation, Smad3 forms a heterocomplex with Smad2 and Smad4, translocates to the nucleus and acts as a transcriptional co-activator. We have identified a unique isoform of Smad3 that is expressed in mature pituitary gonadotropes. 5' RACE revealed that this truncated Smad3 isoform is transcribed from an ATG site within exon 4 and consists of 7 exons encoding half of the linker region and the MH2 region. In pituitary cells, the truncated Smad3 isoform was phosphorylated upon activin treatment, in a manner that was temporally distinct from the phosphorylation of full-length Smad3. Activin-induced phosphorylation of Smad3 and the truncated Smad3 isoform was blocked by both follistatin and siRNA-mediated knockdown of Smad3. The truncated Smad3 isoform antagonized Smad3-mediated, activin-responsive promoter activity. We propose that the pituitary gonadotrope contains an ultra-short, activin-responsive feedback loop utilizing two different isoforms of Smad3, one which acts as an agonist (Smad3) and another that acts as an intracrine antagonist (truncated Smad3 isoform) to regulate FSHβ production. PMID:21664424

  7. Crystal Structure of PhnF, a GntR-Family Transcriptional Regulator of Phosphate Transport in Mycobacterium smegmatis

    PubMed Central

    Busby, Jason N.; Fritz, Georg; Moreland, Nicole J.; Cook, Gregory M.; Lott, J. Shaun; Baker, Edward N.

    2014-01-01

    Bacterial uptake of phosphate is usually accomplished via high-affinity transporters that are commonly regulated by two-component systems, which are activated when the concentration of phosphate is low. Mycobacterium smegmatis possesses two such transporters, the widely distributed PstSCAB system and PhnDCE, a transporter that in other bacteria mediates the uptake of alternative phosphorus sources. We previously reported that the transcriptional regulator PhnF controls the production of the Phn system, acting as a repressor under high-phosphate conditions. Here we show that the phnDCE genes are common among environmental mycobacteria, where they are often associated with phnF-like genes. In contrast, pathogenic mycobacteria were not found to encode Phn-like systems but instead were found to possess multiple copies of the pst genes. A detailed biochemical analysis of PhnF binding to its identified binding sites in the phnD-phnF intergenic region of M. smegmatis has allowed us to propose a quantitative model for repressor binding, which shows that a PhnF dimer binds independently to each site. We present the crystal structure of M. smegmatis PhnF at 1.8-Å resolution, showing a homodimer with a helix-turn-helix N-terminal domain and a C-terminal domain with a UbiC transcription regulator-associated fold. The C-terminal domain crystallized with a bound sulfate ion instead of the so far unidentified physiological ligand, allowing the identification of residues involved in effector binding. Comparison of the positioning of the DNA binding domains in PhnF with that in homologous proteins suggests that its DNA binding activity is regulated via a conformational change in the linker region, triggering a movement of the N-terminal domains. PMID:25049090

  8. Regulation of Son of sevenless by the membrane-actin linker protein ezrin

    PubMed Central

    Geißler, Katja J.; Jung, M. Juliane; Riecken, Lars Björn; Sperka, Tobias; Cui, Yan; Schacke, Stephan; Merkel, Ulrike; Markwart, Robby; Rubio, Ignacio; Than, Manuel E.; Breithaupt, Constanze; Peuker, Sebastian; Seifert, Reinhard; Kaupp, Ulrich Benjamin; Herrlich, Peter; Morrison, Helen

    2013-01-01

    Receptor tyrosine kinases participate in several signaling pathways through small G proteins such as Ras (rat sarcoma). An important component in the activation of these G proteins is Son of sevenless (SOS), which catalyzes the nucleotide exchange on Ras. For optimal activity, a second Ras molecule acts as an allosteric activator by binding to a second Ras-binding site within SOS. This allosteric Ras-binding site is blocked by autoinhibitory domains of SOS. We have reported recently that Ras activation also requires the actin-binding proteins ezrin, radixin, and moesin. Here we report the mechanism by which ezrin modulates SOS activity and thereby Ras activation. Active ezrin enhances Ras/MAPK signaling and interacts with both SOS and Ras in vivo and in vitro. Moreover, in vitro kinetic assays with recombinant proteins show that ezrin also is important for the activity of SOS itself. Ezrin interacts with GDP-Ras and with the Dbl homology (DH)/pleckstrin homology (PH) domains of SOS, bringing GDP-Ras to the proximity of the allosteric site of SOS. These actions of ezrin are antagonized by the neurofibromatosis type 2 tumor-suppressor protein merlin. We propose an additional essential step in SOS/Ras control that is relevant for human cancer as well as all physiological processes involving Ras. PMID:24297905

  9. Tunable gas adsorption in graphene oxide framework

    NASA Astrophysics Data System (ADS)

    Razmkhah, Mohammad; Moosavi, Fatemeh; Taghi Hamed Mosavian, Mohammad; Ahmadpour, Ali

    2018-06-01

    Effect of length of linker inter-space was studied on the adsorption capacity of CO2 by graphene oxide framework (GOF). Effect of linker inter-space of 14, 11, and 8 Å was studied here. The linker inter-space of 11 Å showed the highest CO2 adsorption capacity. A dual-site Langmuir model was observed for adsorption of CO2 and CH4 into the GOF. According to radial distribution function (RDF), facial and central atoms of linker are the dual-site predicted by Langmuir model. Two distinguishable sites of adsorption and parallel orientation of CO2 are the main reasons of high adsorption capacity in 11 Å linker inter-space. Gas-adsorbent affinity obtains the orientation of CO2 near the linker. The affinity in the 11 Å linker inter-space is the highest. Thus, it forces the CO2 to lay parallel and orient more localized than the other GOFs. In addition, CH4 resulted higher working capacity than CO2 in 14 Å. This occurs because of the change in gas-adsorbent affinity by changing pressure. An entrance adsorption occurs out of the pore of the GOF. This adsorption is not as stable as deep adsorption.

  10. Mechanically tunable actin networks using programmable DNA based cross-linkers

    NASA Astrophysics Data System (ADS)

    Schnauss, Joerg; Lorenz, Jessica; Schuldt, Carsten; Kaes, Josef; Smith, David

    Cells employ multiple cross-linkers with very different properties. Studies of the entire phase space, however, were infeasible since they were restricted to naturally occurring cross-linkers. These components cannot be controllably varied and differ in many parameters. We resolve this limitation by forming artificial actin cross-linkers, which can be controllably varied. The basic building block is DNA enabling a well-defined length variation. DNA can be attached to actin binding peptides with known binding affinities. We used bulk rheology to investigate mechanical properties of these networks. We were able to reproduce mechanical features of actin networks cross-linked by fascin by using a short version of our artificial complex with a high binding affinity. Additionally, we were able to resemble findings for the cross-linker alpha-actinin by employing a long cross-linker with a low binding affinity. Between these natural limits we investigated three different cross-linker lengths each with two different binding affinities. With these controlled variations we are able to precisely screen the phase space of cross-linked actin networks by changing only one specific parameter and not the entire set of properties as in the case of naturally occurring cross-linking complexes.

  11. Effect of linkers on the αvβ3 integrin targeting efficiency of cyclic RGD-conjugates

    NASA Astrophysics Data System (ADS)

    Karmakar, Partha; Grabowska, Dorota; Sudlow, Gail; Ziabrev, Kostiantyn; Sanyal, Nibedita; Achilefu, Samuel

    2018-02-01

    Cyclic arginine-glycine-aspartic acid (cRGD) peptides are well known to target ανβ3 integrin expressed on cancer cells and neovasculature. Conjugation of these peptides with dyes, drugs, antibodies and other biomolecules through covalent linkers provides a facile way to deliver these products to tumor cells for targeted cancer therapy and diagnosis. Click chemistry and acid-amine couplings are widely used conjugation strategies. However, the effects of different linkers and the distance between the cRGD and the conjugates on the binding of cRGD ligand with ανβ3 has been underexplored. In this present study, we prepared cRGD-conjugates using different linkers and determined how they altered the tumor targeting efficiency in vitro and in vivo. The results demonstrate that different linkers significantly altered the pharmacokinetics of the cRGD conjugates and the tumor uptake kinetics. Unlike large antibodies, this preliminary finding shows that linkers used to attach drugs and fluorescent molecular probes to small peptides play a major role in the accuracy of tumor targeting and treatment outcomes. As a result, considerable attention should be paid to the nature of linkers used in the design of molecular probes and targeted therapeutics.

  12. Mixed-linker strategy for the construction of multifunctional metal–organic frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Jun-Sheng; Yuan, Shuai; Wang, Qi

    2017-01-01

    Mixed-linker strategy is a promising way to construct multifunctional metal–organic frameworks (MOFs). In this review, we demonstrate the recent developments, discussions and challenges related to the preparation and applications of four types of mixed-linker MOF materials.

  13. Degradable cationic nanohydrogel particles for stimuli-responsive release of siRNA.

    PubMed

    Nuhn, Lutz; Braun, Lydia; Overhoff, Iris; Kelsch, Annette; Schaeffel, David; Koynov, Kaloian; Zentel, Rudolf

    2014-12-01

    Well-defined nanogels have become quite attractive as safe and stable carriers for siRNA delivery. However, to avoid nanoparticle accumulation, they need to provide a stimuli-responsive degradation mechanism that can be activated at the payload's site of action. In this work, the synthetic concept for generating well-defined nanohydrogel particles is extended to incorporate disulfide cross-linkers into a cationic nanonetwork for redox-triggered release of oligonucleotide payload as well as nanoparticle degradation under reductive conditions of the cytoplasm. Therefore, a novel disulfide-modified spermine cross-linker is designed that both allows disassembly of the nanogel as well as removal of cationic charge from residual polymer fragments. The degradation process is monitored by scanning electron microscopy (SEM) and fluorescence correlation spectroscopy (FCS). Moreover, siRNA release is analyzed by agarose gel electrophoresis and a fluorescent RNA detection assay. The results exemplify the versatility of the applied nanogel manufacturing process, which allows alternative stimuli-responsive core cross-linkers to be integrated for triggered oligonucleotide release as well as effective biodegradation for reduced nanotoxicity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Tea Derived Galloylated Polyphenols Cross-Link Purified Gastrointestinal Mucins

    PubMed Central

    Georgiades, Pantelis; Pudney, Paul D. A.; Rogers, Sarah; Thornton, David J.; Waigh, Thomas A.

    2014-01-01

    Polyphenols derived from tea are thought to be important for human health. We show using a combination of particle tracking microrheology and small-angle neutron scattering that polyphenols acts as cross-linkers for purified gastrointestinal mucin, derived from the stomach and the duodenum. Both naturally derived purified polyphenols, and green and black tea extracts are shown to act as cross-linkers. The main active cross-linking component is found to be the galloylated forms of catechins. The viscosity, elasticity and relaxation time of the mucin solutions experience an order of magnitude change in value upon addition of the polyphenol cross-linkers. Similarly small-angle neutron scattering experiments demonstrate a sol-gel transition with the addition of polyphenols, with a large increase in the scattering at low angles, which is attributed to the formation of large scale (>10 nm) heterogeneities during gelation. Cross-linking of mucins by polyphenols is thus expected to have an impact on the physicochemical environment of both the stomach and duodenum; polyphenols are expected to modulate the barrier properties of mucus, nutrient absorption through mucus and the viscoelastic microenvironments of intestinal bacteria. PMID:25162539

  15. The length of glycine-rich linker in DNA-binding domain is critical for optimal functioning of quorum-sensing master regulatory protein HapR.

    PubMed

    Singh, Naorem Santa; Kachhap, Sangita; Singh, Richa; Mishra, Rahul Chandra; Singh, Balvinder; Raychaudhuri, Saumya

    2014-12-01

    HapR is a quorum-sensing master regulatory protein in Vibrio cholerae. Though many facts are known regarding its structural and functional aspects, much still can be learnt from natural variants of this wild-type protein. While unraveling the underlying cause of functional inertness of a natural variant (HapRV2), the significance of a conserved glycine residue at position 39 in a glycine-rich linker in DNA-binding domain comes into light. This work aims at investigating how the length of glycine-rich linker (R(33)GIGRGG(39)) bridging helices α1 and α2 modulates the functionality of HapR. In pursuit of our interest, glycine residues were inserted after terminal glycine (G39) of the linker in a sequential manner. To evaluate functionality, all the glycine linker variants were subjected to a battery of performance tests under various conditions. Combined in vitro and in vivo results clearly demonstrated a gradual functional impairment of HapR linker variants coupled with increasing length of glycine-rich linker and finally, linker variant harboring four glycine residues resulted in a functionally compromised protein with significant loss of communication with cognate DNAs. Molecular dynamics studies of modeled HapR linker variants in complex with cognate promoter region show that residues namely Ser50, Thr53 and Asn56 are involved in varying degree of interactions with different nucleotides of HapR-DNA complex. The diminished functionality between variants and DNA appears to result from reduced or no interactions between Phe55 and nucleotides of cognate DNA as observed during simulations.

  16. Preparation of Conjugates of Cytotoxic Lupane Triterpenes with Biotin.

    PubMed

    Soural, Miroslav; Hodon, Jiri; Dickinson, Niall J; Sidova, Veronika; Gurska, Sona; Dzubak, Petr; Hajduch, Marian; Sarek, Jan; Urban, Milan

    2015-12-16

    To better understand the mechanism of action of antitumor triterpenes, we are developing methods to identify their molecular targets. A promising method is based on combination of quantitative proteomics with SILAC and uses active compounds anchored to magnetic beads via biotin-streptavidin interaction. We developed a simple and fast solid-phase synthetic technique to connect terpenes to biotin through a linker. Betulinic acid was biotinylated from three different conjugation sites for use as a standard validation tool since many molecular targets of this triterpene are already known. Then, a set of four other cytotoxic triterpenoids was biotinylated. Biotinylated terpenes were similarly cytotoxic to their nonbiotinylated parents, which suggests that the target identification should not be influenced by linker or biotin. The developed solid-phase synthetic approach is the first attempt to use solid-phase synthesis to connect active triterpenes to biotin and is applicable as a general procedure for routine conjugation of triterpenes with other molecules of choice.

  17. Design, synthesis, and biological evaluation of the first podophyllotoxin analogues as potential vascular-disrupting agents.

    PubMed

    Labruère, Raphaël; Gautier, Benoît; Testud, Marlène; Seguin, Johanne; Lenoir, Christine; Desbène-Finck, Stéphanie; Helissey, Philippe; Garbay, Christiane; Chabot, Guy G; Vidal, Michel; Giorgi-Renault, Sylviane

    2010-12-03

    We designed and synthesized two novel series of azapodophyllotoxin analogues as potential antivascular agents. A linker was inserted between the trimethoxyphenyl ring E and the tetracyclic ABCD moiety of the 4-aza-1,2-didehydropodophyllotoxins. In the first series, the linker enables free rotation between the two moieties; in the second series, conformational restriction of the E nucleus was considered. We have identified several new compounds with inhibitory activity toward tubulin polymerization similar to that of CA-4 and colchicine, while displaying low cytotoxic activity against normal and/or cancer cells. An aminologue and a methylenic analogue were shown to disrupt endothelial cell cords on Matrigel at subtoxic concentrations, and an original assay of drug washout allowed us to demonstrate the rapid reversibility of this effect. These two new analogues are promising leads for the development of vascular-disrupting agents in the podophyllotoxin series.

  18. The ability of multimerized cyclophilin A to restrict retrovirus infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Javanbakht, Hassan; Diaz-Griffero, Felipe; Yuan Wen

    2007-10-10

    In owl monkeys, the typical retroviral restriction factor of primates, TRIM5{alpha}, is replaced by TRIMCyp. TRIMCyp consists of the TRIM5 RING, B-box 2 and coiled-coil domains, as well as the intervening linker regions, fused with cyclophilin A. TRIMCyp restricts infection of retroviruses, such as human immunodeficiency virus (HIV-1) and feline immunodeficiency virus (FIV), with capsids that can bind cyclophilin A. The TRIM5 coiled coil promotes the trimerization of TRIMCyp. Here we show that cyclophilin A that is oligomeric as a result of fusion with a heterologous multimer exhibits substantial antiretroviral activity. The addition of the TRIM5 RING, B-box 2 andmore » Linker 2 to oligomeric cyclophilin A generated a protein with antiretroviral activity approaching that of wild-type TRIMCyp. Multimerization increased the binding of cyclophilin A to the HIV-1 capsid, promoting accelerated uncoating of the capsid and restriction of infection.« less

  19. Effects of antibody, drug and linker on the preclinical and clinical toxicities of antibody-drug conjugates

    PubMed Central

    Donaghy, Heather

    2016-01-01

    ABSTRACT Antibody-drug conjugates (ADCs) represent a new class of cancer therapeutics. Their design involves a tumor-specific antibody, a linker and a cytotoxic payload. They were designed to allow specific targeting of highly potent cytotoxic agents to tumor cells whilst sparing normal cells. Frequent toxicities that may be driven by any of the components of an ADC have been reported. There are currently more than 50 ADCs in active clinical development, and a further ∼20 that have been discontinued. For this review, the reported toxicities of ADCs were analysed, and the mechanisms for their effects are explored in detail. Methods to reduce toxicities, including dosing strategies and drug design, are discussed. The toxicities reported for active and discontinued drugs are important to drive the rational design and improve the therapeutic index of ADCs of the future. PMID:27045800

  20. Molecular simulations bring new insights into flavonoid/quercetinase interaction modes.

    PubMed

    Fiorucci, Sébastien; Golebiowski, Jérôme; Cabrol-Bass, Daniel; Antonczak, Serge

    2007-06-01

    Molecular dynamics simulations, using the AMBER force field, were performed to study Quercetin 2,3-Dioxygenase enzyme (Quercetinase or 2,3QD). We have analyzed the structural modifications of the active site and of the linker region between the native enzyme and the enzyme-substrate complex. New structural informations, such as an allosteric effect in the presence of the substrate, as well as description of the enzyme-substrate interactions and values of binding free energies were brought out. All these results confirm the idea that the linker encloses the substrate in the active site and also enlighten the recognition role of the substrate B-ring by the enzyme. Moreover, a specific interaction scheme has been proposed to explain the relative degradation rate of various flavonoid compounds under the oxygenolysis reaction catalyzed by the Quercetin 2,3-Dioxygenase enzyme. 2007 Wiley-Liss, Inc.

  1. Stabilization of penicillinase-hapten conjugate for enzyme immunoassay.

    PubMed

    Omidfar, K; Rasaee, Mohammad J; Zaraee, Ali B; Amir, M Pour; Rahbarizadeh, F

    2002-01-01

    The influence of various additives, such as organic solvents, polyhydric alcohols, salts, polymers, and cross-linker, on the stability and storage ability of penicillinase-morphine conjugate was studied in liquid and solid (freeze dried) states. The results of these experiments showed that using low concentrations of CaCl2 (0.1-0.2%) could stabilize enzyme activity in both states for more than seven months. The immunoreactivity of antigen toward the antibody did not change significantly. However, a cross-linker such as glutaraldehyde and various additives such as dimethylsulfoxide, glycerol, polyethylene glycol, gelatin, dextran, ammonium sulfate, lactose, and sucrose did not have any effect on stability. In addition, it was found that the presence of lactose and sucrose in the lyophilization procedure gives a significant amount of protection to the enzyme, which could last for a period of seven months and preserve almost 95% of the enzyme activity, as well as immunoreactivity of the tracer molecule.

  2. Functional synthetic Antennapedia genes and the dual roles of YPWM motif and linker size in transcriptional activation and repression

    PubMed Central

    Papadopoulos, Dimitrios K.; Reséndez-Pérez, Diana; Cárdenas-Chávez, Diana L.; Villanueva-Segura, Karina; Canales-del-Castillo, Ricardo; Felix, Daniel A.; Fünfschilling, Raphael; Gehring, Walter J.

    2011-01-01

    Segmental identity along the anteroposterior axis of bilateral animals is specified by Hox genes. These genes encode transcription factors, harboring the conserved homeodomain and, generally, a YPWM motif, which binds Hox cofactors and increases Hox transcriptional specificity in vivo. Here we derive synthetic Drosophila Antennapedia genes, consisting only of the YPWM motif and homeodomain, and investigate their functional role throughout development. Synthetic peptides and full-length Antennapedia proteins cause head-to-thorax transformations in the embryo, as well as antenna-to-tarsus and eye-to-wing transformations in the adult, thus converting the entire head to a mesothorax. This conversion is achieved by repression of genes required for head and antennal development and ectopic activation of genes promoting thoracic and tarsal fates, respectively. Synthetic Antennapedia peptides bind DNA specifically and interact with Extradenticle and Bric-à-brac interacting protein 2 cofactors in vitro and ex vivo. Substitution of the YPWM motif by alanines abolishes Antennapedia homeotic function, whereas substitution of YPWM by the WRPW repressor motif, which binds the transcriptional corepressor Groucho, allows all proteins to act as repressors only. Finally, naturally occurring variations in the size of the linker between the homeodomain and YPWM motif enhance Antennapedia repressive or activating efficiency, emphasizing the importance of linker size, rather than sequence, for specificity. Our results clearly show that synthetic Antennapedia genes are functional in vivo and therefore provide powerful tools for synthetic biology. Moreover, the YPWM motif is necessary—whereas the entire N terminus of the protein is dispensable—for Antennapedia homeotic function, indicating its dual role in transcriptional activation and repression by recruiting either coactivators or corepressors. PMID:21712439

  3. Linker-mediated assembly of gold nanoparticles into multimeric motifs

    NASA Astrophysics Data System (ADS)

    Sikora, Mateusz; Szymczak, Piotr; Thompson, Damien; Cieplak, Marek

    2011-11-01

    We present a theoretical description of linker-mediated self-assembly of gold nanoparticles (Au-NP). Using mesoscale simulations with a coarse-grained model for the Au NPs and dirhenium-based linker molecules, we investigate the conditions under which large clusters can grow and construct a phase diagram that identifies favorable growth conditions in terms of floating and bound linker concentrations. The findings can be considered as generic, as we expect other NP-linker systems to behave in a qualitatively similar way. In particular, we also discuss the case of antibody-functionalised Au NPs connected by the C-reactive proteins (CRPs). We extract some general rules for NP linking that may aid the production of size- and shape-specific NP clusters for technology applications.

  4. Composite materials with metal oxide attached to lead chalcogenide nanocrystal quantum dots with linkers

    DOEpatents

    Fuke, Nobuhiro; Koposov, Alexey Y; Sykora, Milan; Hoch, Laura

    2014-12-16

    Composite materials useful for devices such as photoelectrochemical solar cells include a substrate, a metal oxide film on the substrate, nanocrystalline quantum dots (NQDs) of lead sulfide, lead selenide, and lead telluride, and linkers that attach the NQDs to the metal oxide film. Suitable linkers preserve the 1s absorption peak of the NQDs. A suitable linker has a general structure A-B-C where A is a chemical group adapted for binding to a MO.sub.x and C is a chemical group adapted for binding to a NQD and B is a divalent, rigid, or semi-rigid organic spacer moiety. Other linkers that preserve the 1s absorption peak may also be used.

  5. The Use of Aryl Hydrazide Linkers for the Solid Phase Synthesis of Chemically Modified Peptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, Y; Mitchell, A R; Camarero, J A

    2006-11-03

    Since Merrifield introduced the concept of solid phase synthesis in 1963 for the rapid preparation of peptides, a large variety of different supports and resin-linkers have been developed that improve the efficiency of peptide assembly and expand the myriad of synthetically feasible peptides. The aryl hydrazide is one of the most useful resin-linkers for the synthesis of chemically modified peptides. This linker is completely stable during Boc- and Fmoc-based solid phase synthesis and yet it can be cleaved under very mild oxidative conditions. The present article reviews the use of this valuable linker for the rapid and efficient synthesis ofmore » C-terminal modified peptides, head-to-tail cyclic peptides and lipidated peptides.« less

  6. Synthesis of peptide .alpha.-thioesters

    DOEpatents

    Camarero, Julio A [Livermore, CA; Mitchell, Alexander R [Livermore, CA; De Yoreo, James J [Clayton, CA

    2008-08-19

    Disclosed herein is a new method for the solid phase peptide synthesis (SPPS) of C-terminal peptide .alpha. thioesters using Fmoc/t-Bu chemistry. This method is based on the use of an aryl hydrazine linker, which is totally stable to conditions required for Fmoc-SPPS. When the peptide synthesis has been completed, activation of the linker is achieved by mild oxidation. The oxidation step converts the acyl-hydrazine group into a highly reactive acyl-diazene intermediate which reacts with an .alpha.-amino acid alkylthioester (H-AA-SR) to yield the corresponding peptide .alpha.-thioester in good yield. A variety of peptide thioesters, cyclic peptides and a fully functional Src homology 3 (SH3) protein domain have been successfully prepared.

  7. Integrity of N- and C-termini is important for E. coli Hsp31 chaperone activity

    PubMed Central

    Sastry, M S R; Zhou, Weibin; Baneyx, François

    2009-01-01

    Hsp31 is a stress-inducible molecular chaperone involved in the management of protein misfolding at high temperatures and in the development of acid resistance in starved E. coli. Each subunit of the Hsp31 homodimer consists of two structural domains connected by a flexible linker that sits atop a continuous tract of nonpolar residues adjacent to a hydrophobic bowl defined by the dimerization interface. Previously, we proposed that while the bowl serves as a binding site for partially folded species at physiological temperatures, chaperone function under heat shock conditions requires that folding intermediates further anneal to high-affinity binding sites that become uncovered upon thermally induced motion of the linker. In support of a mechanism requiring that client proteins first bind to the bowl, we show here that fusion of a 20-residue-long hexahistidine tag to the N-termini of Hsp31 abolishes chaperone activity at all temperatures by inducing reversible structural changes that interfere with substrate binding. We further demonstrate that extending the C-termini of Hsp31 with short His tags selectively suppresses chaperone function at high temperatures by interfering with linker movement. The structural and functional sensitivity of Hsp31 to lengthening is consistent with the high degree of conservation of class I Hsp31 orthologs and will serve as a cautionary tale on the implications of affinity tagging. PMID:19517531

  8. Engineered hybrid spider silk particles as delivery system for peptide vaccines.

    PubMed

    Lucke, Matthias; Mottas, Inès; Herbst, Tina; Hotz, Christian; Römer, Lin; Schierling, Martina; Herold, Heike M; Slotta, Ute; Spinetti, Thibaud; Scheibel, Thomas; Winter, Gerhard; Bourquin, Carole; Engert, Julia

    2018-07-01

    The generation of strong T-cell immunity is one of the main challenges for the development of successful vaccines against cancer and major infectious diseases. Here we have engineered spider silk particles as delivery system for a peptide-based vaccination that leads to effective priming of cytotoxic T-cells. The recombinant spider silk protein eADF4(C16) was fused to the antigenic peptide from ovalbumin, either without linker or with a cathepsin cleavable peptide linker. Particles prepared from the hybrid proteins were taken up by dendritic cells, which are essential for T-cell priming, and successfully activated cytotoxic T-cells, without signs of immunotoxicity or unspecific immunostimulatory activity. Upon subcutaneous injection in mice, the particles were taken up by dendritic cells and accumulated in the lymph nodes, where immune responses are generated. Particles from hybrid proteins containing a cathepsin-cleavable linker induced a strong antigen-specific proliferation of cytotoxic T-cells in vivo, even in the absence of a vaccine adjuvant. We thus demonstrate the efficacy of a new vaccine strategy using a protein-based all-in-one vaccination system, where spider silk particles serve as carriers with an incorporated peptide antigen. Our study further suggests that engineered spider silk-based vaccines are extremely stable, easy to manufacture, and readily customizable. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Mode changes associated with oil droplet movement in solutions of gemini cationic surfactants.

    PubMed

    Banno, Taisuke; Miura, Shingo; Kuroha, Rie; Toyota, Taro

    2013-06-25

    Micrometer-sized self-propelled oil droplets in nonequilibrium systems have attracted much attention, since they form stable emulsions composed of oil, water, and surfactant which represent a primitive type of inanimate chemical machinery. In this work, we examined means of controlling the movement of oil droplets by studying the dynamics of n-heptyloxybenzaldehyde droplets in phosphate buffers containing alkanediyl-α,ω-bis(N-dodecyl-N,N-dimethylammonium bromide) (nG12) with either tetramethylene (4G12), octaethylene (8G12), or dodecamethylene (12G12) chains in the linker moiety. Significant differences in droplet dynamics were observed to be induced by changes in the linker structure of these gemini cationic surfactants. In a phosphate buffer containing 30 mM 4G12, self-propelled motion of droplets concurrent with the formation of molecular aggregates on their surfaces was observed, whereas the fusion of oil droplets was evident in both 8G12 and 12G12 solutions. We also determined that the surface activities and the extent of molecular self-assembly of the surfactants in phosphate buffer were strongly influenced by the alkyl chain length in the linker moiety. We therefore conclude that the surface activities of the gemini cationic surfactant have important effects on the oil-water interfacial tension of oil droplets and the formation of molecular aggregates and that both of these factors induce the unique movement of the droplets.

  10. Assembling high activity phosphotriesterase composites using hybrid nanoparticle peptide-DNA scaffolded architectures

    NASA Astrophysics Data System (ADS)

    Breger, Joyce C.; Buckhout-White, Susan; Walper, Scott A.; Oh, Eunkeu; Susumu, Kimihiro; Ancona, Mario G.; Medintz, Igor L.

    2017-06-01

    Nanoparticle (NP) display potentially offers a new way to both stabilize and, in many cases, enhance enzyme activity over that seen for native protein in solution. However, the large, globular and sometimes multimeric nature of many enzymes limits their ability to attach directly to the surface of NPs, especially when the latter are colloidally stabilized with bulky PEGylated ligands. Engineering extended protein linkers into the enzymes to achieve direct attachment through the PEG surface often detrimentally alters the enzymes catalytic ability. Here, we demonstrate an alternate, hybrid biomaterials-based approach to achieving directed enzyme assembly on PEGylated NPs. We self-assemble a unique architecture consisting of a central semiconductor quantum dot (QD) scaffold displaying controlled ratios of extended peptide-DNA linkers which penetrate through the PEG surface to directly couple enzymes to the QD surface. As a test case, we utilize phosphotriesterase (PTE), an enzyme of bio-defense interest due to its ability to hydrolyze organophosphate nerve agents. Moreover, this unique approach still allows PTE to maintain enhanced activity while also suggesting the ability of DNA to enhance enzyme activity in and of itself.

  11. Bioinformatic Analysis Reveals Conservation of Intrinsic Disorder in the Linker Sequences of Prokaryotic Dual-family Immunophilin Chaperones.

    PubMed

    Barik, Sailen

    2018-01-01

    The two classical immunophilin families, found essentially in all living cells, are: cyclophilin (CYN) and FK506-binding protein (FKBP). We previously reported a novel class of immunophilins that are natural chimera of these two, which we named dual-family immunophilin (DFI). The DFIs were found in either of two conformations: CYN-linker-FKBP (CFBP) or FKBP-3TPR-CYN (FCBP). While the 3TPR domain can serve as a flexible linker between the FKBP and CYN modules in the FCBP-type DFI, the linker sequences in the CFBP-type DFIs are relatively short, diverse in sequence, and contain no discernible motif or signature. Here, I present several lines of computational evidence that, regardless of their primary structure, these CFBP linkers are intrinsically disordered. This report provides the first molecular foundation for the model that the CFBP linker acts as an unstructured, flexible loop, allowing the two flanking chaperone modules function independently while linked in cis , likely to assist in the folding of multisubunit client complexes.

  12. Phase separation and the formation of the pyrenoid, a carbon-fixing organelle

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Freeman Rosenzweig, Elizabeth; Mackinder, Luke; Jonikas, Martin; Wingreen, Ned S.

    In the chloroplasts of most algae, the carbon-fixing enzyme Rubisco is concentrated in a non-membrane-bound structure called the pyrenoid, which enables more efficient carbon capture than that of most land plants. In contrast to the long-held assumptions of the field, the pyrenoid matrix is not a solid crystal, but behaves as a phase-separated, liquid-like organelle. In this system, the linker protein EPYC1 is thought to form multivalent specific bonds with Rubisco, and the formation of the pyrenoid occurs via the phase separation of these two associating proteins. Through analytical and numerical studies, we determine a phase diagram for this system. We also show how the length of the linker protein can affect the formation and dissolution of the pyrenoid in an unexpected manner. This new view of the pyrenoid matrix provides important insights into the structure, regulation, and inheritance of pyrenoid. More broadly, our findings give insights into fundamental principles of the architecture and inheritance of liquid-phase organelles.

  13. Functional anatomy of an allosteric protein

    NASA Astrophysics Data System (ADS)

    Purohit, Prasad; Gupta, Shaweta; Jadey, Snehal; Auerbach, Anthony

    2013-12-01

    Synaptic receptors are allosteric proteins that switch on and off to regulate cell signalling. Here, we use single-channel electrophysiology to measure and map energy changes in the gating conformational change of a nicotinic acetylcholine receptor. Two separated regions in the α-subunits—the transmitter-binding sites and αM2-αM3 linkers in the membrane domain—have the highest ϕ-values (change conformation the earliest), followed by the extracellular domain, most of the membrane domain and the gate. Large gating-energy changes occur at the transmitter-binding sites, α-subunit interfaces, the αM1 helix and the gate. We hypothesize that rearrangements of the linkers trigger the global allosteric transition, and that the hydrophobic gate unlocks in three steps. The mostly local character of side-chain energy changes and the similarly high ϕ-values of separated domains, both with and without ligands, suggest that gating is not strictly a mechanical process initiated by the affinity change for the agonist.

  14. Role of H1 Linker Histones in Mammalian Development and Stem Cell Differentiation

    PubMed Central

    Pan, Chenyi; Fan, Yuhong

    2016-01-01

    H1 linker histones are key chromatin architectural proteins facilitating the formation of higher order chromatin structures. The H1 family constitutes the most heterogeneous group of histone proteins, with eleven non-allelic H1 variants in mammals. H1 variants differ in their biochemical properties and exhibit significant sequence divergence from one another, yet most of them are highly conserved during evolution from mouse to human. H1 variants are differentially regulated during development and their cellular compositions undergo dramatic changes in embryogenesis, gametogenesis, tissue maturation and cellular differentiation. As a group, H1 histones are essential for mouse development and proper stem cell differentiation. Here we summarize our current knowledge on the expression and functions of H1 variants in mammalian development and stem cell differentiation. Their diversity, sequence conservation, complex expression and distinct functions suggest that H1s mediate chromatin reprogramming and contribute to the large variations and complexity of chromatin structure and gene expression in the mammalian genome. PMID:26689747

  15. A mechanism for tunable autoinhibition in the structure of a human Ca2+/calmodulin-dependent kinase II holoenzyme

    PubMed Central

    Chao, Luke H.; Stratton, Margaret M.; Lee, Il-Hyung; Rosenberg, Oren S.; Levitz, Joshua; Mandell, Daniel J.; Kortemme, Tanja; Groves, Jay T.; Schulman, Howard; Kuriyan, John

    2011-01-01

    Summary Calcium/calmodulin-dependent kinase II (CaMKII) forms a highly conserved dodecameric assembly that is sensitive to the frequency of calcium pulse trains. Neither the structure of the dodecameric assembly nor how it regulates CaMKII are known. We present the crystal structure of an autoinhibited full-length human CaMKII holoenzyme, revealing an unexpected compact arrangement of kinase domains docked against a central hub, with the calmodulin binding sites completely inaccessible. We show that this compact docking is important for the autoinhibition of the kinase domains and for setting the calcium response of the holoenzyme. Comparison of CaMKII isoforms, which differ in the length of the linker between the kinase domain and the hub, demonstrates that these interactions can be strengthened or weakened by changes in linker length. This equilibrium between autoinhibited states provides a simple mechanism for tuning the calcium response without changes in either the hub or the kinase domains. PMID:21884935

  16. MSX1 cooperates with histone H1b for inhibition of transcription and myogenesis.

    PubMed

    Lee, Hansol; Habas, Raymond; Abate-Shen, Cory

    2004-06-11

    During embryogenesis, differentiation of skeletal muscle is regulated by transcription factors that include members of the Msx homeoprotein family. By investigating Msx1 function in repression of myogenic gene expression, we identified a physical interaction between Msx1 and H1b, a specific isoform of mouse histone H1. We found that Msx1 and H1b bind to a key regulatory element of MyoD, a central regulator of skeletal muscle differentiation, where they induce repressed chromatin. Moreover, Msx1 and H1b cooperate to inhibit muscle differentiation in cell culture and in Xenopus animal caps. Our findings define a previously unknown function for "linker" histones in gene-specific transcriptional regulation.

  17. Distinct DNA-binding surfaces in the ATPase and linker domains of MutLγ determine its substrate specificities and exert separable functions in meiotic recombination and mismatch repair

    PubMed Central

    2017-01-01

    Mlh1-Mlh3 (MutLγ) is a mismatch repair factor with a central role in formation of meiotic crossovers, presumably through resolution of double Holliday junctions. MutLγ has DNA-binding, nuclease, and ATPase activities, but how these relate to one another and to in vivo functions are unclear. Here, we combine biochemical and genetic analyses to characterize Saccharomyces cerevisiae MutLγ. Limited proteolysis and atomic force microscopy showed that purified recombinant MutLγ undergoes ATP-driven conformational changes. In vitro, MutLγ displayed separable DNA-binding activities toward Holliday junctions (HJ) and, surprisingly, single-stranded DNA (ssDNA), which was not predicted from current models. MutLγ bound DNA cooperatively, could bind multiple substrates simultaneously, and formed higher-order complexes. FeBABE hydroxyl radical footprinting indicated that the DNA-binding interfaces of MutLγ for ssDNA and HJ substrates only partially overlap. Most contacts with HJ substrates were located in the linker regions of MutLγ, whereas ssDNA contacts mapped within linker regions as well as the N-terminal ATPase domains. Using yeast genetic assays for mismatch repair and meiotic recombination, we found that mutations within different DNA-binding surfaces exert separable effects in vivo. For example, mutations within the Mlh1 linker conferred little or no meiotic phenotype but led to mismatch repair deficiency. Interestingly, mutations in the N-terminal domain of Mlh1 caused a stronger meiotic defect than mlh1Δ, suggesting that the mutant proteins retain an activity that interferes with alternative recombination pathways. Furthermore, mlh3Δ caused more chromosome missegregation than mlh1Δ, whereas mlh1Δ but not mlh3Δ partially alleviated meiotic defects of msh5Δ mutants. These findings illustrate functional differences between Mlh1 and Mlh3 during meiosis and suggest that their absence impinges on chromosome segregation not only via reduced formation of crossovers. Taken together, our results offer insights into the structure-function relationships of the MutLγ complex and reveal unanticipated genetic relationships between components of the meiotic recombination machinery. PMID:28505149

  18. Cellobiohydrolase I enzymes

    DOEpatents

    Adney, William S; Himmel, Michael E; Decker, Stephen R; Knoshaug, Eric P; Nimlos, Mark R; Crowley, Michael F; Jeoh, Tina

    2014-01-28

    Provided herein is an isolated Cel7A polypeptide comprising mutations in the catalytic domain of the polypeptide relative to the catalytic domain of a wild type Cel7A polypeptide, wherein the mutations reduce N-linked glycosylation of the isolated polypeptide relative to the wild type polypeptide. Also provided herein is an isolated Cel7A polypeptide comprising increased O-linked glycosylation of the linker domain relative to a linker domain of a wild type Cel7A polypeptide. The increased O-linked glycosylation is a result of the addition of and/or substitution of one or more serine and/or threonine residues to the linker domain relative to the linker domain of the wild type polypeptide. In some embodiments, the isolated Cel7A polypeptide comprising mutations in the catalytic domain of the polypeptide relative to the catalytic domain of a wild type Cel7A polypeptide further comprises increased O-linked glycosylation of the linker domain relative to a linker domain of a wild type Cel7A polypeptide. The mutations in the catalytic domain reduce N-linked glycosylation of the isolated polypeptide relative to the wild type polypeptide. The addition of and/or substitution of one or more serine and/or threonine residues to the linker domain relative to the linker domain of the wild type polypeptide increases O-linked glycosylation of the isolated polypeptide. Further provided are compositions comprising such polypeptides and nucleic acids encoding such polypeptides. Still further provided are methods for making such polypeptides.

  19. Microtubule actin crosslinking factor 1 promotes osteoblast differentiation by promoting β-catenin/TCF1/Runx2 signaling axis.

    PubMed

    Hu, Lifang; Su, Peihong; Yin, Chong; Zhang, Yan; Li, Runzhi; Yan, Kun; Chen, Zhihao; Li, Dijie; Zhang, Ge; Wang, Liping; Miao, Zhiping; Qian, Airong; Xian, Cory J

    2018-02-01

    Osteoblast differentiation is a multistep process delicately regulated by many factors, including cytoskeletal dynamics and signaling pathways. Microtubule actin crosslinking factor 1 (MACF1), a key cytoskeletal linker, has been shown to play key roles in signal transduction and in diverse cellular processes; however, its role in regulating osteoblast differentiation is still needed to be elucidated. To further uncover the functions and mechanisms of action of MACF1 in osteoblast differentiation, we examined effects of MACF1 knockdown (MACF1-KD) in MC3T3-E1 osteoblastic cells on their osteoblast differentiation and associated molecular mechanisms. The results showed that knockdown of MACF1 significantly suppressed mineralization of MC3T3-E1 cells, down-regulated the expression of key osteogenic genes alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2) and type I collagen α1 (Col Iα1). Knockdown of MACF1 dramatically reduced the nuclear translocation of β-catenin, decreased the transcriptional activation of T cell factor 1 (TCF1), and down-regulated the expression of TCF1, lymphoid enhancer-binding factor 1 (LEF1), and Runx2, a target gene of β-catenin/TCF1. In addition, MACF1-KD increased the active level of glycogen synthase kinase-3β (GSK-3β), which is a key regulator for β-catenin signal transduction. Moreover, the reduction of nuclear β-catenin amount and decreased expression of TCF1 and Runx2 were significantly reversed in MACF1-KD cells when treated with lithium chloride, an agonist for β-catenin by inhibiting GSK-3β activity. Taken together, these findings suggest that knockdown of MACF1 in osteoblastic cells inhibits osteoblast differentiation through suppressing the β-catenin/TCF1-Runx2 axis. Thus, a novel role of MACF1 in and a new mechanistic insight of osteoblast differentiation are uncovered. © 2017 Wiley Periodicals, Inc.

  20. Dynamics simulations for engineering macromolecular interactions

    NASA Astrophysics Data System (ADS)

    Robinson-Mosher, Avi; Shinar, Tamar; Silver, Pamela A.; Way, Jeffrey

    2013-06-01

    The predictable engineering of well-behaved transcriptional circuits is a central goal of synthetic biology. The artificial attachment of promoters to transcription factor genes usually results in noisy or chaotic behaviors, and such systems are unlikely to be useful in practical applications. Natural transcriptional regulation relies extensively on protein-protein interactions to insure tightly controlled behavior, but such tight control has been elusive in engineered systems. To help engineer protein-protein interactions, we have developed a molecular dynamics simulation framework that simplifies features of proteins moving by constrained Brownian motion, with the goal of performing long simulations. The behavior of a simulated protein system is determined by summation of forces that include a Brownian force, a drag force, excluded volume constraints, relative position constraints, and binding constraints that relate to experimentally determined on-rates and off-rates for chosen protein elements in a system. Proteins are abstracted as spheres. Binding surfaces are defined radially within a protein. Peptide linkers are abstracted as small protein-like spheres with rigid connections. To address whether our framework could generate useful predictions, we simulated the behavior of an engineered fusion protein consisting of two 20 000 Da proteins attached by flexible glycine/serine-type linkers. The two protein elements remained closely associated, as if constrained by a random walk in three dimensions of the peptide linker, as opposed to showing a distribution of distances expected if movement were dominated by Brownian motion of the protein domains only. We also simulated the behavior of fluorescent proteins tethered by a linker of varying length, compared the predicted Förster resonance energy transfer with previous experimental observations, and obtained a good correspondence. Finally, we simulated the binding behavior of a fusion of two ligands that could simultaneously bind to distinct cell-surface receptors, and explored the landscape of linker lengths and stiffnesses that could enhance receptor binding of one ligand when the other ligand has already bound to its receptor, thus, addressing potential mechanisms for improving targeted signal transduction proteins. These specific results have implications for the design of targeted fusion proteins and artificial transcription factors involving fusion of natural domains. More broadly, the simulation framework described here could be extended to include more detailed system features such as non-spherical protein shapes and electrostatics, without requiring detailed, computationally expensive specifications. This framework should be useful in predicting behavior of engineered protein systems including binding and dissociation reactions.

  1. Dynamics simulations for engineering macromolecular interactions.

    PubMed

    Robinson-Mosher, Avi; Shinar, Tamar; Silver, Pamela A; Way, Jeffrey

    2013-06-01

    The predictable engineering of well-behaved transcriptional circuits is a central goal of synthetic biology. The artificial attachment of promoters to transcription factor genes usually results in noisy or chaotic behaviors, and such systems are unlikely to be useful in practical applications. Natural transcriptional regulation relies extensively on protein-protein interactions to insure tightly controlled behavior, but such tight control has been elusive in engineered systems. To help engineer protein-protein interactions, we have developed a molecular dynamics simulation framework that simplifies features of proteins moving by constrained Brownian motion, with the goal of performing long simulations. The behavior of a simulated protein system is determined by summation of forces that include a Brownian force, a drag force, excluded volume constraints, relative position constraints, and binding constraints that relate to experimentally determined on-rates and off-rates for chosen protein elements in a system. Proteins are abstracted as spheres. Binding surfaces are defined radially within a protein. Peptide linkers are abstracted as small protein-like spheres with rigid connections. To address whether our framework could generate useful predictions, we simulated the behavior of an engineered fusion protein consisting of two 20,000 Da proteins attached by flexible glycine/serine-type linkers. The two protein elements remained closely associated, as if constrained by a random walk in three dimensions of the peptide linker, as opposed to showing a distribution of distances expected if movement were dominated by Brownian motion of the protein domains only. We also simulated the behavior of fluorescent proteins tethered by a linker of varying length, compared the predicted Förster resonance energy transfer with previous experimental observations, and obtained a good correspondence. Finally, we simulated the binding behavior of a fusion of two ligands that could simultaneously bind to distinct cell-surface receptors, and explored the landscape of linker lengths and stiffnesses that could enhance receptor binding of one ligand when the other ligand has already bound to its receptor, thus, addressing potential mechanisms for improving targeted signal transduction proteins. These specific results have implications for the design of targeted fusion proteins and artificial transcription factors involving fusion of natural domains. More broadly, the simulation framework described here could be extended to include more detailed system features such as non-spherical protein shapes and electrostatics, without requiring detailed, computationally expensive specifications. This framework should be useful in predicting behavior of engineered protein systems including binding and dissociation reactions.

  2. The kinases MEKK2 and MEKK3 regulate transforming growth factor-β-mediated helper T cell differentiation.

    PubMed

    Chang, Xing; Liu, Fang; Wang, Xiaofang; Lin, Aiping; Zhao, Hongyu; Su, Bing

    2011-02-25

    Mitogen-activated protein kinases (MAPKs) are key mediators of the T cell receptor (TCR) signals but their roles in T helper (Th) cell differentiation are unclear. Here we showed that the MAPK kinase kinases MEKK2 (encoded by Map3k2) and MEKK3 (encoded by Map3k3) negatively regulated transforming growth factor-β (TGF-β)-mediated Th cell differentiation. Map3k2(-/-)Map3k3(Lck-Cre/-) mice showed an abnormal accumulation of regulatory T (Treg) and Th17 cells in the periphery, consistent with Map3k2(-/-)Map3k3(Lck-Cre/-) naive CD4(+) T cells' differentiation into Treg and Th17 cells with a higher frequency than wild-type (WT) cells after TGF-β stimulation in vitro. In addition, Map3k2(-/-)Map3k3(Lck-Cre/-) mice developed more severe experimental autoimmune encephalomyelitis. Map3k2(-/-)Map3k3(Lck-Cre/-) T cells exhibited impaired phosphorylation of SMAD2 and SMAD3 proteins at their linker regions, which negatively regulated the TGF-β responses in T cells. Thus, the crosstalk between TCR-induced MAPK and the TGF-β signaling pathways is important in regulating Th cell differentiation. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Molecular envelope and atomic model of an anti-terminated glyQS T-box regulator in complex with tRNAGly

    PubMed Central

    Chetnani, Bhaskar

    2017-01-01

    Abstract A T-box regulator or riboswitch actively monitors the levels of charged/uncharged tRNA and participates in amino acid homeostasis by regulating genes involved in their utilization or biosynthesis. It has an aptamer domain for cognate tRNA recognition and an expression platform to sense the charge state and modulate gene expression. These two conserved domains are connected by a variable linker that harbors additional secondary structural elements, such as Stem III. The structural basis for specific tRNA binding is known, but the structural basis for charge sensing and the role of other elements remains elusive. To gain new structural insights on the T-box mechanism, a molecular envelope was calculated from small angle X-ray scattering data for the Bacillus subtilis glyQS T-box riboswitch in complex with an uncharged tRNAGly. A structural model of an anti-terminated glyQS T-box in complex with its cognate tRNAGly was derived based on the molecular envelope. It shows the location and relative orientation of various secondary structural elements. The model was validated by comparing the envelopes of the wild-type complex and two variants. The structural model suggests that in addition to a possible regulatory role, Stem III could aid in preferential stabilization of the T-box anti-terminated state allowing read-through of regulated genes. PMID:28531275

  4. Enhancing the Prevention and Treatment of Orthopaedic Infections Associated with Traumatic Injury

    DTIC Science & Technology

    2017-10-01

    minipeg-2 derivative have antimicrobial activity in and of themselves (see previous progress report). This absence of antibacterial activity is not...necessarily desirable, as antibacterial activity of the targeting agent itself could prove useful. However, it does suggest that these agents are less...of the minipeg linker (BS-4-134 and BS-4-142). However, unlike our daptomycin conjugates, antibacterial activity was essentially abolished with all of

  5. Point mutations in the tumor suppressor Smad4/DPC4 enhance its phosphorylation by GSK3 and reversibly inactivate TGF-β signaling

    PubMed Central

    Demagny, Hadrien; De Robertis, Edward M

    2016-01-01

    The tumor suppressor Smad4/DPC4 is an essential transcription factor in the TGF-β pathway and is frequently mutated or deleted in prostate, colorectal, and pancreatic carcinomas. We recently discovered that Smad4 activity and stability are regulated by the FGF/EGF and Wnt signaling pathways through a series of MAPK and GSK3 phosphorylation sites located in its linker region. In the present study, we report that loss-of-function associated with 2 point mutations commonly found in colorectal and pancreatic cancers results from enhanced Smad4 phosphorylation by GSK3, generating a phosphodegron that leads to subsequent β-TrCP–mediated polyubiquitination and proteasomal degradation. Using chemical GSK3 inhibitors, we show that Smad4 point mutant proteins can be stabilized and TGF-β signaling restored in cancer cells harboring such mutations. PMID:27308538

  6. Substrate-Induced Conformational Changes Occur in All Cleaved Forms of Caspase-6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S Vaidya; E Velazquez-Delgado; G Abbruzzese

    2011-12-31

    Caspase-6 is an apoptotic cysteine protease that also governs disease progression in Huntington's and Alzheimer's diseases. Caspase-6 is of great interest as a target for treatment of these neurodegenerative diseases; however, the molecular basis of caspase-6 function and regulation remains poorly understood. In the recently reported structure of caspase-6, the 60's and 130's helices at the base of the substrate-binding groove extend upward, in a conformation entirely different from that of any other caspase. Presently, the central question about caspase-6 structure and function is whether the extended conformation is the catalytically competent conformation or whether the extended helices must undergomore » a large conformational rearrangement in order to bind substrate. We have generated a series of caspase-6 cleavage variants, including a novel constitutively two-chain form, and determined crystal structures of caspase-6 with and without the intersubunit linker. This series allows evaluation of the role of the prodomain and intersubunit linker on caspase-6 structure and function before and after substrate binding. Caspase-6 is inherently more stable than closely related caspases. Cleaved caspase-6 with both the prodomain and the linker present is the most stable, indicating that these two regions act in concert to increase stability, but maintain the extended conformation in the unliganded state. Moreover, these data suggest that caspase-6 undergoes a significant conformational change upon substrate binding, adopting a structure that is more like canonical caspases.« less

  7. Comparison of anti-EGFR-Fab’ conjugated immunoliposomes modified with two different conjugation linkers for siRNa delivery in SMMC-7721 cells

    PubMed Central

    Deng, Li; Zhang, Yingying; Ma, Lulu; Jing, Xiaolong; Ke, Xingfa; Lian, Jianhao; Zhao, Qiang; Yan, Bo; Zhang, Jinfeng; Yao, Jianzhong; Chen, Jianming

    2013-01-01

    Background Targeted liposome-polycation-DNA complex (LPD), mainly conjugated with antibodies using functionalized PEG derivatives, is an effective nanovector for systemic delivery of small interference RNA (siRNA). However, there are few studies reporting the effect of different conjugation linkers on LPD for gene silencing. To clarify the influence of antibody conjugation linkers on LPD, we prepared two different immunoliposomes to deliver siRNA in which DSPE-PEG-COOH and DSPE-PEG-MAL, the commonly used PEG derivative linkers, were used to conjugate anti-EGFR Fab’ with the liposome. Methods First, 600 μg of anti-EGFR Fab’ was conjugated with 28.35 μL of a micelle solution containing DSPE-PEG-MAL or DSPE-PEG-COOH, and then post inserted into the prepared LPD. Various liposome parameters, including particle size, zeta potential, stability, and encapsulation efficiency were evaluated, and the targeting ability and gene silencing activity of TLPD-FPC (DSPE-PEG-COOH conjugated with Fab’) was compared with that of TLPD-FPM (DSPE-PEG-MAL conjugated with Fab’) in SMMC-7721 hepatocellular carcinoma cells. Results There was no significant difference in particle size between the two TLPDs, but the zeta potential was significantly different. Further, although there was no significant difference in siRNA encapsulation efficiency, cell viability, or serum stability between TLPD-FPM and TLPD-FPC, cellular uptake of TLPD-FPM was significantly greater than that of TLPD-FPC in EGFR-overexpressing SMMC-7721 cells. The luciferase gene silencing efficiency of TLPD-FPM was approximately three-fold high than that of TLPD-FPC. Conclusion Different conjugation linkers whereby antibodies are conjugated with LPD can affect the physicochemical properties of LPD and antibody conjugation efficiency, thus directly affecting the gene silencing effect of TLPD. Immunoliposomes prepared by DSPE-PEG-MAL conjugation with anti-EGFR Fab’ are more effective than TLPD containing DSPE-PEG-COOH in targeting hepatocellular carcinoma cells for siRNA delivery. PMID:24023515

  8. Accurate distance determination of nucleic acids via Förster resonance energy transfer: implications of dye linker length and rigidity.

    PubMed

    Sindbert, Simon; Kalinin, Stanislav; Nguyen, Hien; Kienzler, Andrea; Clima, Lilia; Bannwarth, Willi; Appel, Bettina; Müller, Sabine; Seidel, Claus A M

    2011-03-02

    In Förster resonance energy transfer (FRET) experiments, the donor (D) and acceptor (A) fluorophores are usually attached to the macromolecule of interest via long flexible linkers of up to 15 Å in length. This causes significant uncertainties in quantitative distance measurements and prevents experiments with short distances between the attachment points of the dyes due to possible dye-dye interactions. We present two approaches to overcome the above problems as demonstrated by FRET measurements for a series of dsDNA and dsRNA internally labeled with Alexa488 and Cy5 as D and A dye, respectively. First, we characterize the influence of linker length and flexibility on FRET for different dye linker types (long, intermediate, short) by analyzing fluorescence lifetime and anisotropy decays. For long linkers, we describe a straightforward procedure that allows for very high accuracy of FRET-based structure determination through proper consideration of the position distribution of the dye and of linker dynamics. The position distribution can be quickly calculated with geometric accessible volume (AV) simulations, provided that the local structure of RNA or DNA in the proximity of the dye is known and that the dye diffuses freely in the sterically allowed space. The AV approach provides results similar to molecular dynamics simulations (MD) and is fully consistent with experimental FRET data. In a benchmark study for ds A-RNA, an rmsd value of 1.3 Å is achieved. Considering the case of undefined dye environments or very short DA distances, we introduce short linkers with a propargyl or alkenyl unit for internal labeling of nucleic acids to minimize position uncertainties. Studies by ensemble time correlated single photon counting and single-molecule detection show that the nature of the linker strongly affects the radius of the dye's accessible volume (6-16 Å). For short propargyl linkers, heterogeneous dye environments are observed on the millisecond time scale. A detailed analysis of possible orientation effects (κ(2) problem) indicates that, for short linkers and unknown local environments, additional κ(2)-related uncertainties are clearly outweighed by better defined dye positions.

  9. Isoxazole moiety in the linker region of HDAC inhibitors adjacent to the Zn-chelating group: effects on HDAC biology and antiproliferative activity.

    PubMed

    Tapadar, Subhasish; He, Rong; Luchini, Doris N; Billadeau, Daniel D; Kozikowski, Alan P

    2009-06-01

    A series of hydroxamic acid based histone deacetylase inhibitors 6-15, containing an isoxazole moiety adjacent to the Zn-chelating hydroxamic acid, is reported herein. Some of these compounds showed nanomolar activity in the HDAC isoform inhibitory assay and exhibited micro molar inhibitory activity against five pancreatic cancer cell lines.

  10. Improving TCO-Conjugated Antibody Reactivity for Bioorthogonal Pretargeting

    NASA Astrophysics Data System (ADS)

    Chu, Tina Tingyi

    Cancer remains a major cause of death because of its unpredictable progression. Utilizing bioorthogonal chemistry between trans-cyclooctene (TCO) and tetrazine to target imaging agents to tumors in two subsequent steps offers a more versatile platform for molecular imaging. This is accomplished by pretargeting TCO-modified primary antibody to cell surface biomarkers, followed by delivery of tetrazine-modified imaging probes. In previous work, it has been established that TCO-tetrazine chemistry can be applied to in vivo imaging, resulting in precise tumor detection. However, most TCO modifications on an antibody are not reactive because they are buried within hydrophobic domains. To expose and improve the reactivity, Rahim et al. incorporated a polyethylene glycol (PEG) linker through a two-step reaction with DBCO-azide, which successfully maintained 100% TCO functionality. In this project, various types of linkers were studied to improve the reactivity in a single step. Three primary types of linkers were studied: hydrophilic PEG chains, hydrophobic short linkers, and amphiphilic linkers. Our results show that PEG chain alone can only maintain 40% TCO reactivity. Unexpectedly, a short alkyl chain (valeric acid) provided superior results, with 60% TCO reactivity. Lengthening the alkyl chain did not improve results further. Finally, an amphiphilic linker containing valeric acid and PEG performed worse than either linker type alone, at ˜30% functionality. We conclude that our previous 100% functional TCO result obtained with the two-step coupling may have stemmed from generation of the DBCO/azide cycloaddition product. Future work will explore factors such as rigidity of linker structure, polarity, or charges.

  11. Pathogenic proline mutation in the linker between spectrin repeats: disease caused by spectrin unfolding

    PubMed Central

    Johnson, Colin P.; Gaetani, Massimiliano; Ortiz, Vanessa; Bhasin, Nishant; Harper, Sandy

    2007-01-01

    Pathogenic mutations in α and β spectrin result in a variety of syndromes, including hereditary elliptocytosis (HE), hereditary pyropoikilocytosis (HPP), and hereditary spherocytosis (HS). Although some mutations clearly lie at sites of interaction, such as the sites of spectrin α-βtetramer formation, a surprising number of HE-causing mutations have been identified within linker regions between distal spectrin repeats. Here we apply solution structural and single molecule methods to the folding and stability of recombinant proteins consisting of the first 5 spectrin repeats of α-spectrin, comparing normal spectrin with a pathogenic linker mutation, Q471P, between repeats R4 and R5. Results show that the linker mutation destabilizes a significant fraction of the 5-repeat construct at 37°C, whereas the WT remains fully folded well above body temperature. In WT protein, helical linkers propagate stability from one repeat to the next, but the mutation disrupts the stabilizing influence of adjacent repeats. The results suggest a molecular mechanism for the high frequency of disease caused by proline mutations in spectrin linkers. PMID:17192394

  12. Topography of the ISW2–nucleosome complex: insights into nucleosome spacing and chromatin remodeling

    PubMed Central

    Kagalwala, Mohamedi N; Glaus, Benjamin J; Dang, Weiwei; Zofall, Martin; Bartholomew, Blaine

    2004-01-01

    Linker DNA was found to be critical for the specific docking of ISW2 with nucleosomes as shown by mapping the physical contacts of ISW2 with nucleosomes at base-pair resolution. Hydroxyl radical footprinting revealed that ISW2 not only extensively interacts with the linker DNA, but also approaches the nucleosome from the side perpendicular to the axis of the DNA superhelix and contacts two disparate sites on the nucleosomal DNA from opposite sides of the superhelix. The topography of the ISW2–nucleosome was further delineated by finding which of the ISW2 subunits are proximal to specific sites within the linker and nucleosomal DNA regions by site-directed DNA photoaffinity labeling. Although ISW2 was shown to contact ∼63 bp of linker DNA, a minimum of 20 bp of linker DNA was required for stable binding of ISW2 to nucleosomes. The remaining ∼43 bp of flanking linker DNA promoted more efficient binding under competitive binding conditions and was functionally important for enhanced sliding of nucleosomes when ISW2 was significantly limiting. PMID:15131696

  13. The electron injection rate in CdSe quantum dot sensitized solar cells: from a bifunctional linker and zinc oxide morphology.

    PubMed

    Ding, Wei-Lu; Peng, Xing-Liang; Sun, Zhu-Zhu; Li, Ze-Sheng

    2017-11-09

    Herein, we have investigated the effect of both the bifunctional linker (L1, L2, L3, and L4) and ZnO morphology (porous nanoparticles (NPs), nanowires (NWs), and nanotubes (NTs-A and NTs-Z)) on the electron injection in CdSe QD sensitized solar cells by first-principles simulation. Via calculating the partitioned interfaces formed by different components (linker/QDs and ZnO/linker), we found that the electronic states of QDs and every ZnO substrate are insensitive to any linker, while the frontier orbitals of L1-L4 (with increased delocalization) manifest a systematical negative-shift. Because of the lowest unoccupied molecular orbital (LUMO) of L1 compared to its counterparts aligned in the region of the virtual states of QDs or the substrate with a high density of states, it always yields a stronger electronic coupling with QDs and varied substrates. After characterization of the complete ZnO/linker/QD system, we found that the electron injection time (τ) vastly depends on both the linker and substrate. On the one hand, L1 bridged QDs and every substrate always achieve the shortest τ compared to their counterpart associated cases. On the other hand, NW supported systems always yield the shortest τ no matter what the linker is. Overall, the NW/L1/QD system achieves the fastest injection by ∼160 fs. This essentially stems from the shortest molecular length of L1 decreasing the distance between QDs and the substrate, subsequently improving the interfacial coupling. Meanwhile, the NW supported cases generate the less sensitive virtual states for both the QDs and NWs, ensuring a less variable interfacial coupling. These facts combined can provide understanding of the effects contributed from the linker and the oxide semiconductor morphology on charge transfer with the aim of choosing an appropriate component with fast directional electron injection.

  14. cis-Apa: a practical linker for the microwave-assisted preparation of cyclic pseudopeptides via RCM cyclative cleavage.

    PubMed

    Baron, Alice; Verdié, Pascal; Martinez, Jean; Lamaty, Frédéric

    2011-02-04

    A new linker cis-5-aminopent-3-enoic acid (cis-Apa) was prepared for the synthesis of cyclic pseudopeptides by cyclization-cleavage by using ring-closing methatesis (RCM). We developed a new synthetic pathway for the preparation of the cis-Apa linker that was tested in the cyclization-cleavage process of different RGD peptide sequences. Different macrocyclic peptidomimetics were prepared by using this integrated microwave-assisted method, showing that the readily available cis-Apa amino acid is well adapted as a linker in the cyclization-cleavage process.

  15. Sensing of p53 and EGFR Biomarkers Using High Efficiency SERS Substrates

    PubMed Central

    Owens, Peter; Phillipson, Nigel; Perumal, Jayakumar; O’Connor, Gerard M.; Olivo, Malini

    2015-01-01

    In this paper we describe a method for the determination of protein concentration using Surface Enhanced Raman Resonance Scattering (SERRS) immunoassays. We use two different Raman active linkers, 4-aminothiophenol and 6-mercaptopurine, to bind to a high sensitivity SERS substrate and investigate the influence of varying concentrations of p53 and EGFR on the Raman spectra. Perturbations in the spectra are due to the influence of protein–antibody binding on Raman linker molecules and are attributed to small changes in localised mechanical stress, which are enhanced by SERRS. These influences are greatest for peaks due to the C-S functional group and the Full Width Half Maximum (FWHM) was found to be inversely proportional to protein concentration. PMID:26516922

  16. Characterization of the genuine type 2 chromatic acclimation in the two Geminocystis cyanobacteria.

    PubMed

    Hirose, Yuu; Misawa, Naomi; Yonekawa, Chinatsu; Nagao, Nobuyoshi; Watanabe, Mai; Ikeuchi, Masahiko; Eki, Toshihiko

    2017-08-01

    Certain cyanobacteria can adjust the wavelengths of light they absorb by remodeling their photosynthetic antenna complex phycobilisome via a process called chromatic acclimation (CA). Although several types of CA have been reported, the diversity of the molecular mechanisms of CA among the cyanobacteria phylum is not fully understood. Here, we characterized the molecular process of CA of Geminocystis sp. strains National Institute of Environmental Studies (NIES)-3708 and NIES-3709. Absorption and fluorescence spectroscopy revealed that both strains dramatically alter their phycoerythrin content in response to green and red light. Whole-genome comparison revealed that the two strains share the typical phycobilisome structure consisting of a central core and peripheral rods, but they differ in the number of rod linkers of phycoerythrin and thus have differing capacity for phycoerythrin accumulation. RNA sequencing analysis suggested that the length of phycoerythrin rods in each phycobilisome is strictly regulated by the green light and red light-sensing CcaS/R system, whereas the total number of phycobilisomes is governed by the excitation-balancing system between phycobilisomes and photosystems. We reclassify the conventional CA types based on the genome information and designate CA of the two strains as genuine type 2, where components of phycoerythrin, but not rod-membrane linker of phycocyanin, are regulated by the CcaS/R system. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  17. ATPase domain and interdomain linker play a key role in aggregation of mitochondrial Hsp70 chaperone Ssc1.

    PubMed

    Blamowska, Marta; Sichting, Martin; Mapa, Koyeli; Mokranjac, Dejana; Neupert, Walter; Hell, Kai

    2010-02-12

    The co-chaperone Hep1 is required to prevent the aggregation of mitochondrial Hsp70 proteins. We have analyzed the interaction of Hep1 with mitochondrial Hsp70 (Ssc1) and the determinants in Ssc1 that make it prone to aggregation. The ATPase and peptide binding domain (PBD) of Hsp70 proteins are connected by a linker segment that mediates interdomain communication between the domains. We show here that the minimal Hep1 binding entity of Ssc1 consists of the ATPase domain and the interdomain linker. In the absence of Hep1, the ATPase domain with the interdomain linker had the tendency to aggregate, in contrast to the ATPase domain with the mutated linker segment or without linker, and in contrast to the PBD. The closest homolog of Ssc1, bacterial DnaK, and a Ssc1 chimera, in which a segment of the ATPase domain of Ssc1 was replaced by the corresponding segment from DnaK, did not aggregate in Delta hep1 mitochondria. The propensity to aggregate appears to be a specific property of the mitochondrial Hsp70 proteins. The ATPase domain in combination with the interdomain linker is crucial for aggregation of Ssc1. In conclusion, our results suggest that interdomain communication makes Ssc1 prone to aggregation. Hep1 counteracts aggregation by binding to this aggregation-prone conformer.

  18. ATPase Domain and Interdomain Linker Play a Key Role in Aggregation of Mitochondrial Hsp70 Chaperone Ssc1*

    PubMed Central

    Blamowska, Marta; Sichting, Martin; Mapa, Koyeli; Mokranjac, Dejana; Neupert, Walter; Hell, Kai

    2010-01-01

    The co-chaperone Hep1 is required to prevent the aggregation of mitochondrial Hsp70 proteins. We have analyzed the interaction of Hep1 with mitochondrial Hsp70 (Ssc1) and the determinants in Ssc1 that make it prone to aggregation. The ATPase and peptide binding domain (PBD) of Hsp70 proteins are connected by a linker segment that mediates interdomain communication between the domains. We show here that the minimal Hep1 binding entity of Ssc1 consists of the ATPase domain and the interdomain linker. In the absence of Hep1, the ATPase domain with the interdomain linker had the tendency to aggregate, in contrast to the ATPase domain with the mutated linker segment or without linker, and in contrast to the PBD. The closest homolog of Ssc1, bacterial DnaK, and a Ssc1 chimera, in which a segment of the ATPase domain of Ssc1 was replaced by the corresponding segment from DnaK, did not aggregate in Δhep1 mitochondria. The propensity to aggregate appears to be a specific property of the mitochondrial Hsp70 proteins. The ATPase domain in combination with the interdomain linker is crucial for aggregation of Ssc1. In conclusion, our results suggest that interdomain communication makes Ssc1 prone to aggregation. Hep1 counteracts aggregation by binding to this aggregation-prone conformer. PMID:20007714

  19. Human Performance and Biosystems

    DTIC Science & Technology

    2013-03-08

    carbon nanotube binding peptides *A mutant laccase designed at UW self- assembles into active crystals Leucine βroll Linker (S) α-helix (H...cognitive functions, bio-molecular repair and bio- resiliency Bioenergy: • Portable H2 Fuel Generated from H2O or Cellulose : - Cheap, self

  20. Ligand-regulated peptide aptamers.

    PubMed

    Miller, Russell A

    2009-01-01

    The peptide aptamer approach employs high-throughput selection to identify members of a randomized peptide library displayed from a scaffold protein by virtue of their interaction with a target molecule. Extending this approach, we have developed a peptide aptamer scaffold protein that can impart small-molecule control over the aptamer-target interaction. This ligand-regulated peptide (LiRP) scaffold, consisting of the protein domains FKBP12, FRB, and GST, binds to the cell-permeable small-molecule rapamycin and the binding of this molecule can prevent the interaction of the randomizable linker region connecting FKBP12 with FRB. Here we present a detailed protocol for the creation of a peptide aptamer plasmid library, selection of peptide aptamers using the LiRP scaffold in a yeast two-hybrid system, and the screening of those peptide aptamers for a ligand-regulated interaction.

  1. Small angle x-ray scattering of chromatin. Radius and mass per unit length depend on linker length.

    PubMed Central

    Williams, S P; Langmore, J P

    1991-01-01

    Analyses of low angle x-ray scattering from chromatin, isolated by identical procedures but from different species, indicate that fiber diameter and number of nucleosomes per unit length increase with the amount of nucleosome linker DNA. Experiments were conducted at physiological ionic strength to obtain parameters reflecting the structure most likely present in living cells. Guinier analyses were performed on scattering from solutions of soluble chromatin from Necturus maculosus erythrocytes (linker length 48 bp), chicken erythrocytes (linker length 64 bp), and Thyone briareus sperm (linker length 87 bp). The results were extrapolated to infinite dilution to eliminate interparticle contributions to the scattering. Cross-sectional radii of gyration were found to be 10.9 +/- 0.5, 12.1 +/- 0.4, and 15.9 +/- 0.5 nm for Necturus, chicken, and Thyone chromatin, respectively, which are consistent with fiber diameters of 30.8, 34.2, and 45.0 nm. Mass per unit lengths were found to be 6.9 +/- 0.5, 8.3 +/- 0.6, and 11.8 +/- 1.4 nucleosomes per 10 nm for Necturus, chicken, and Thyone chromatin, respectively. The geometrical consequences of the experimental mass per unit lengths and radii of gyration are consistent with a conserved interaction among nucleosomes. Cross-linking agents were found to have little effect on fiber external geometry, but significant effect on internal structure. The absolute values of fiber diameter and mass per unit length, and their dependencies upon linker length agree with the predictions of the double-helical crossed-linker model. A compilation of all published x-ray scattering data from the last decade indicates that the relationship between chromatin structure and linker length is consistent with data obtained by other investigators. Images FIGURE 1 PMID:2049522

  2. Modification of Titanium Substrates with Chimeric Peptides Comprising Antimicrobial and Titanium-Binding Motifs Connected by Linkers To Inhibit Biofilm Formation.

    PubMed

    Liu, Zihao; Ma, Shiqing; Duan, Shun; Xuliang, Deng; Sun, Yingchun; Zhang, Xi; Xu, Xinhua; Guan, Binbin; Wang, Chao; Hu, Meilin; Qi, Xingying; Zhang, Xu; Gao, Ping

    2016-03-02

    Bacterial adhesion and biofilm formation are the primary causes of implant-associated infection, which is difficult to eliminate and may induce failure in dental implants. Chimeric peptides with both binding and antimicrobial motifs may provide a promising alternative to inhibit biofilm formation on titanium surfaces. In this study, chimeric peptides were designed by connecting an antimicrobial motif (JH8194: KRLFRRWQWRMKKY) with a binding motif (minTBP-1: RKLPDA) directly or via flexible/rigid linkers to modify Ti surfaces. We evaluated the binding behavior of peptides using quartz crystal microbalance (QCM) and atomic force microscopy (AFM) techniques and investigated the effect of the modification of titanium surfaces with these peptides on the bioactivity of Streptococcus gordonii (S. gordonii) and Streptococcus sanguis (S. sanguis). Compared with the flexible linker (GGGGS), the rigid linker (PAPAP) significantly increased the adsorption of the chimeric peptide on titanium surfaces (p < 0.05). Concentration-dependent adsorption is consistent with a single Langmuir model, whereas time-dependent adsorption is in line with a two-domain Langmuir model. Additionally, the chimeric peptide with the rigid linker exhibited more effective antimicrobial ability than the peptide with the flexible linker. This finding was ascribed to the ability of the rigid linker to separate functional domains and reduce their interference to the maximum extent. Consequently, the performance of chimeric peptides with specific titanium-binding motifs and antimicrobial motifs against bacteria can be optimized by the proper selection of linkers. This rational design of chimeric peptides provides a promising alternative to inhibit the formation of biofilms on titanium surfaces with the potential to prevent peri-implantitis and peri-implant mucositis.

  3. A Study into the Collision-induced Dissociation (CID) Behavior of Cross-Linked Peptides*

    PubMed Central

    Giese, Sven H.; Fischer, Lutz; Rappsilber, Juri

    2016-01-01

    Cross-linking/mass spectrometry resolves protein–protein interactions or protein folds by help of distance constraints. Cross-linkers with specific properties such as isotope-labeled or collision-induced dissociation (CID)-cleavable cross-linkers are in frequent use to simplify the identification of cross-linked peptides. Here, we analyzed the mass spectrometric behavior of 910 unique cross-linked peptides in high-resolution MS1 and MS2 from published data and validate the observation by a ninefold larger set from currently unpublished data to explore if detailed understanding of their fragmentation behavior would allow computational delivery of information that otherwise would be obtained via isotope labels or CID cleavage of cross-linkers. Isotope-labeled cross-linkers reveal cross-linked and linear fragments in fragmentation spectra. We show that fragment mass and charge alone provide this information, alleviating the need for isotope-labeling for this purpose. Isotope-labeled cross-linkers also indicate cross-linker-containing, albeit not specifically cross-linked, peptides in MS1. We observed that acquisition can be guided to better than twofold enrich cross-linked peptides with minimal losses based on peptide mass and charge alone. By help of CID-cleavable cross-linkers, individual spectra with only linear fragments can be recorded for each peptide in a cross-link. We show that cross-linked fragments of ordinary cross-linked peptides can be linearized computationally and that a simplified subspectrum can be extracted that is enriched in information on one of the two linked peptides. This allows identifying candidates for this peptide in a simplified database search as we propose in a search strategy here. We conclude that the specific behavior of cross-linked peptides in mass spectrometers can be exploited to relax the requirements on cross-linkers. PMID:26719564

  4. Synthesis and structure-activity relationships for extended side chain analogues of the antitubercular drug (6S)-2-nitro-6-{[4-(trifluoromethoxy)benzyl]oxy}-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine (PA-824).

    PubMed

    Palmer, Brian D; Sutherland, Hamish S; Blaser, Adrian; Kmentova, Iveta; Franzblau, Scott G; Wan, Baojie; Wang, Yuehong; Ma, Zhenkun; Denny, William A; Thompson, Andrew M

    2015-04-09

    Novel extended side chain nitroimidazooxazine analogues featuring diverse linker groups between two aryl rings were studied as a potential strategy to improve solubility and oral activity against chronic infection by Mycobacterium tuberculosis. Both lipophilic and highly polar functionalities (e.g., carboxamide, alkylamine, piperazine, piperidine, but not sulfonamide) were well tolerated in vitro, and the hydrophilic linkers provided some solubility improvements, particularly in combination with pyridine rings. Most of the 18 compounds further assessed showed high microsomal stabilities, although in the acute infection mouse model, just one stilbene (6-fold) and two pyridine-containing acetylene derivatives (5-fold and >933-fold) gave in vivo efficacies notably superior to the clinical stage compound pretomanid (PA-824). The most efficacious analogue also displayed outstanding in vivo activity in the stringent chronic model (up to 24-fold better than the drug delamanid and 4-fold greater than our previous best phenylpyridine candidate), with favorable pharmacokinetics, including good oral bioavailability in the rat.

  5. In vitro mutagenic, antimutagenic, and antioxidant activities evaluation and biotransformation of some bioactive 4-substituted 1-(2-methoxyphenyl)piperazine derivatives.

    PubMed

    Słoczyńska, Karolina; Pańczyk, Katarzyna; Waszkielewicz, Anna M; Marona, Henryk; Pękala, Elżbieta

    2016-12-01

    In vitro mutagenic, antimutagenic, and antioxidant potency evaluation and biotransformation of six novel 4-substituted 1-(2-methoxyphenyl)piperazine derivatives demonstrating antidepressant-like activity were investigated. Mutagenic and antimutagenic properties were assessed using the Ames test; free radical scavenging activity was evaluated with 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay and biotransformation was performed with liver microsomes. It was found that all tested compounds are not mutagenic in bacterial strains TA100 and TA1535 and exhibit antimutagenic effects in the Ames test. Noteworthy, compounds possessing propyl linker between phenoxyl and N-(2-methoxyphenyl)piperazine displayed more pronounced antimutagenic properties than derivatives with ethoxyethyl linker. Additionally, compounds 2 and 6 in vitro biotransformation showed that primarily their hydroxylated or O-dealkylated metabolites are formed. Some of the compounds exhibited intrinsic clearance values lower than those reported previously for antidepressant imipramine. To sum up, the results of the present study might represent a valuable step in designing and planning future studies with piperazine derivatives. © 2016 Wiley Periodicals, Inc.

  6. Citrullination regulates pluripotency and histone H1 binding to chromatin

    NASA Astrophysics Data System (ADS)

    Christophorou, Maria A.; Castelo-Branco, Gonçalo; Halley-Stott, Richard P.; Oliveira, Clara Slade; Loos, Remco; Radzisheuskaya, Aliaksandra; Mowen, Kerri A.; Bertone, Paul; Silva, José C. R.; Zernicka-Goetz, Magdalena; Nielsen, Michael L.; Gurdon, John B.; Kouzarides, Tony

    2014-03-01

    Citrullination is the post-translational conversion of an arginine residue within a protein to the non-coded amino acid citrulline. This modification leads to the loss of a positive charge and reduction in hydrogen-bonding ability. It is carried out by a small family of tissue-specific vertebrate enzymes called peptidylarginine deiminases (PADIs) and is associated with the development of diverse pathological states such as autoimmunity, cancer, neurodegenerative disorders, prion diseases and thrombosis. Nevertheless, the physiological functions of citrullination remain ill-defined, although citrullination of core histones has been linked to transcriptional regulation and the DNA damage response. PADI4 (also called PAD4 or PADV), the only PADI with a nuclear localization signal, was previously shown to act in myeloid cells where it mediates profound chromatin decondensation during the innate immune response to infection. Here we show that the expression and enzymatic activity of Padi4 are also induced under conditions of ground-state pluripotency and during reprogramming in mouse. Padi4 is part of the pluripotency transcriptional network, binding to regulatory elements of key stem-cell genes and activating their expression. Its inhibition lowers the percentage of pluripotent cells in the early mouse embryo and significantly reduces reprogramming efficiency. Using an unbiased proteomic approach we identify linker histone H1 variants, which are involved in the generation of compact chromatin, as novel PADI4 substrates. Citrullination of a single arginine residue within the DNA-binding site of H1 results in its displacement from chromatin and global chromatin decondensation. Together, these results uncover a role for citrullination in the regulation of pluripotency and provide new mechanistic insights into how citrullination regulates chromatin compaction.

  7. Protein-Protein Interactions in the Complex between the Enhancer Binding Protein NIFA and the Sensor NIFL from Azotobacter vinelandii

    PubMed Central

    Money, Tracy; Barrett, Jason; Dixon, Ray; Austin, Sara

    2001-01-01

    The enhancer binding protein NIFA and the sensor protein NIFL from Azotobacter vinelandii comprise an atypical two-component regulatory system in which signal transduction occurs via complex formation between the two proteins rather than by the phosphotransfer mechanism, which is characteristic of orthodox systems. The inhibitory activity of NIFL towards NIFA is stimulated by ADP binding to the C-terminal domain of NIFL, which bears significant homology to the histidine protein kinase transmitter domains. Adenosine nucleotides, particularly MgADP, also stimulate complex formation between NIFL and NIFA in vitro, allowing isolation of the complex by cochromatography. Using limited proteolysis of the purified proteins, we show here that changes in protease sensitivity of the Q linker regions of both NIFA and NIFL occurred when the complex was formed in the presence of MgADP. The N-terminal domain of NIFA adjacent to the Q linker was also protected by NIFL. Experiments with truncated versions of NIFA demonstrate that the central domain of NIFA is sufficient to cause protection of the Q linker of NIFL, although in this case, stable protein complexes are not detectable by cochromatography. PMID:11157949

  8. Crystal structure of the Mus81-Eme1 complex.

    PubMed

    Chang, Jeong Ho; Kim, Jeong Joo; Choi, Jung Min; Lee, Jung Hoon; Cho, Yunje

    2008-04-15

    The Mus81-Eme1 complex is a structure-specific endonuclease that plays an important role in rescuing stalled replication forks and resolving the meiotic recombination intermediates in eukaryotes. We have determined the crystal structure of the Mus81-Eme1 complex. Both Mus81 and Eme1 consist of a central nuclease domain, two repeats of the helix-hairpin-helix (HhH) motif at their C-terminal region, and a linker helix. While each domain structure resembles archaeal XPF homologs, the overall structure is significantly different from those due to the structure of a linker helix. We show that a flexible intradomain linker that formed with 36 residues in the nuclease domain of Eme1 is essential for the recognition of DNA. We identified several basic residues lining the outer surface of the active site cleft of Mus81 that are involved in the interaction with a flexible arm of a nicked Holliday junction (HJ). These interactions might contribute to the optimal positioning of the opposite junction across the nick into the catalytic site, which provided the basis for the "nick and counternick" mechanism of Mus81-Eme1 and for the nicked HJ to be the favored in vitro substrate of this enzyme.

  9. Structure of calmodulin complexed with an olfactory CNG channel fragment and role of the central linker: residual dipolar couplings to evaluate calmodulin binding modes outside the kinase family.

    PubMed

    Contessa, Gian Marco; Orsale, Maria; Melino, Sonia; Torre, Vincent; Paci, Maurizio; Desideri, Alessandro; Cicero, Daniel O

    2005-03-01

    The NMR high-resolution structure of calmodulin complexed with a fragment of the olfactory cyclic-nucleotide gated channel is described. This structure shows features that are unique for this complex, including an active role of the linker connecting the N- and C-lobes of calmodulin upon binding of the peptide. Such linker is not only involved in the formation of an hydrophobic pocket to accommodate a bulky peptide residue, but it also provides a positively charged region complementary to a negative charge of the target. This complex of calmodulin with a target not belonging to the kinase family was used to test the residual dipolar coupling (RDC) approach for the determination of calmodulin binding modes to peptides. Although the complex here characterized belongs to the (1--14) family, high Q values were obtained with all the 1:1 complexes for which crystalline structures are available. Reduction of the RDC data set used for the correlation analysis to structured regions of the complex allowed a clear identification of the binding mode. Excluded regions comprise calcium binding loops and loops connecting the EF-hand motifs.

  10. Sequential Linker Installation: Precise Placement of Functional Groups in Multivariate Metal-Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, S; Lu, WG; Chen, YP

    2015-03-11

    A unique strategy, sequential linker installation (SLI), has been developed to construct multivariate MOFs with functional groups precisely positioned. PCN-700, a Zr-MOF with eight-connected Zr6O4(OH)(8)(H2O)(4) clusters, has been judiciously designed; the Zr-6 clusters in this MOF are arranged in such a fashion that, by replacement of terminal OH-/H2O ligands, subsequent insertion of linear dicarboxylate linkers is achieved. We demonstrate that linkers with distinct lengths and functionalities can be sequentially installed into PCN-700. Single-crystal to single-crystal transformation is realized so that the positions of the subsequently installed linkers are pinpointed via single-crystal X-ray diffraction analyses. This methodology provides a powerful toolmore » to construct multivariate MOFs with precisely positioned functionalities in the desired proximity, which would otherwise be difficult to achieve.« less

  11. Mucin1 shifts Smad3 signaling from the tumor-suppressive pSmad3C/p21(WAF1) pathway to the oncogenic pSmad3L/c-Myc pathway by activating JNK in human hepatocellular carcinoma cells.

    PubMed

    Li, Qiongshu; Liu, Guomu; Yuan, Hongyan; Wang, Juan; Guo, Yingying; Chen, Tanxiu; Zhai, Ruiping; Shao, Dan; Ni, Weihua; Tai, Guixiang

    2015-02-28

    Mucin1 (MUC1) is a transmembrane glycoprotein that acts as an oncogene in human hepatic tumorigenesis. Hepatocellular carcinoma (HCC) cells often gain advantage by reducing the tumor-suppressive activity of transforming growth factor beta (TGF-β) together with stimulation of its oncogenic activity as in MUC1 expressing HCC cells; however, molecular mechanisms remain largely unknown. Type I TGF-β receptor (TβRI) and c-Jun NH2-terminal kinase (JNK) differentially phosphorylate Smad3 mediator to create 2 phosphorylated forms: COOH-terminally phosphorylated Smad3 (pSmad3C) and linker-phosphorylated Smad3 (pSmad3L). Here, we report that MUC1 overexpression in HCC cell lines suppresses TβRI-mediated pSmad3C signaling which involves growth inhibition by up-regulating p21(WAF1). Instead, MUC1 directly activates JNK to stimulate oncogenic pSmad3L signaling, which fosters cell proliferation by up-regulating c-Myc. Conversely, MUC1 gene silencing in MUC1 expressing HCC cells results in preserved tumor-suppressive function via pSmad3C, while eliminating pSmad3L-mediated oncogenic activity both in vitro and in vivo. In addition, high correlation between MUC1 and pSmad3L/c-Myc but not pSmad3C/p21(WAF1) expression was observed in HCC tissues from patients. Collectively, these results indicate that MUC1 shifts Smad3 signaling from a tumor-suppressive pSmad3C/p21(WAF1) to an oncogenic pSmad3L/c-Myc pathway by directly activating JNK in HCC cells, suggesting that MUC1 is an important target for HCC therapy.

  12. Molecular mechanism of the Syk activation switch.

    PubMed

    Tsang, Emily; Giannetti, Anthony M; Shaw, David; Dinh, Marie; Tse, Joyce K Y; Gandhi, Shaan; Ho, Hoangdung; Wang, Sandra; Papp, Eva; Bradshaw, J Michael

    2008-11-21

    Many immune signaling pathways require activation of the Syk tyrosine kinase to link ligation of surface receptors to changes in gene expression. Despite the central role of Syk in these pathways, the Syk activation process remains poorly understood. In this work we quantitatively characterized the molecular mechanism of Syk activation in vitro using a real time fluorescence kinase assay, mutagenesis, and other biochemical techniques. We found that dephosphorylated full-length Syk demonstrates a low initial rate of substrate phosphorylation that increases during the kinase reaction due to autophosphorylation. The initial rate of Syk activity was strongly increased by either pre-autophosphorylation or binding of phosphorylated immune tyrosine activation motif peptides, and each of these factors independently fully activated Syk. Deletion mutagenesis was used to identify regions of Syk important for regulation, and residues 340-356 of the SH2 kinase linker region were identified to be important for suppression of activity before activation. Comparison of the activation processes of Syk and Zap-70 revealed that Syk is more readily activated by autophosphorylation than Zap-70, although both kinases are rapidly activated by Src family kinases. We also studied Syk activity in B cell lysates and found endogenous Syk is also activated by phosphorylation and immune tyrosine activation motif binding. Together these experiments show that Syk functions as an "OR-gate" type of molecular switch. This mechanism of switch-like activation helps explain how Syk is both rapidly activated after receptor binding but also sustains activity over time to facilitate longer term changes in gene expression.

  13. Smad phosphoisoform signaling specificity: the right place at the right time.

    PubMed

    Matsuzaki, Koichi

    2011-11-01

    Transforming growth factor (TGF)-β antagonizes mitogenic Ras signaling during epithelial regeneration, but TGF-β and Ras act synergistically in driving tumor progression. Insights into these apparently contradictory effects have come from recent detailed analyses of the TGF-β signaling process. Here, we summarize the different modes of TGF-β/Ras signaling in normal epithelium and neoplasms and show how perturbation of TGF-β signaling by Ras may contribute to a shift from tumor-suppressive to protumorigenic TGF-β activity during tumor progression. Smad proteins, which convey signals from TGF-β receptors to the nucleus, have intermediate linker regions between conserved Mad homology (MH) 1 and MH2 domains. TGF-β Type I receptor and Ras-associated kinases differentially phosphorylate Smad2 and Smad3 to create C-terminally (C), linker (L) or dually (L/C) phosphorylated (p) isoforms. In epithelial homeostasis, TGF-β-mediated pSmad3C signaling opposes proliferative responses induced by mitogenic signals. During carcinogenesis, activation of cytoplasmic Ras-associated kinases including mitogen-activated protein kinase confers a selective advantage on benign tumors by shifting Smad3 signaling from a tumor-suppressive pSmad3C to an oncogenic pSmad3L pathway, leading to carcinoma in situ. Finally, at the edges of advanced carcinomas invading adjacent tissues, nuclear Ras-associated kinases such as cyclin-dependent kinases, together with cytoplasmic kinases, alter TGF-β signals to more invasive and proliferative pSmad2L/C and pSmad3L/C signaling. Taken together, TGF-β signaling specificity arises from spatiotemporal dynamics of Smad phosphoisoforms. Based on these findings, we have reason to hope that pharmacologic inhibition of linker phosphorylation might suppress progression to human advanced carcinomas by switching from protumorigenic to tumor-suppressive TGF-β signaling.

  14. Smad phosphoisoform signals in acute and chronic liver injury: similarities and differences between epithelial and mesenchymal cells.

    PubMed

    Matsuzaki, Koichi

    2012-01-01

    Hepatocellular carcinoma (HCC) usually arises from hepatic fibrosis caused by chronic inflammation. In chronic liver damage, hepatic stellate cells undergo progressive activation to myofibroblasts (MFB), which are important extracellular-matrix-producing mesenchymal cells. Concomitantly, perturbation of transforming growth factor (TGF)-β signaling by pro-inflammatory cytokines in the epithelial cells of the liver (hepatocytes) promotes both fibrogenesis and carcinogenesis (fibro-carcinogenesis). Insights into fibro-carcinogenic effects on chronically damaged hepatocytes have come from recent detailed analyses of the TGF-β signaling process. Smad proteins, which convey signals from TGF-β receptors to the nucleus, have intermediate linker regions between conserved Mad homology (MH) 1 and MH2 domains. TGF-β type I receptor and pro-inflammatory cytokine-activated kinases differentially phosphorylate Smad2 and Smad3 to create phosphoisoforms phosphorylated at the COOH-terminal, linker, or both (L/C) regions. After acute liver injury, TGF-β-mediated pSmad3C signaling terminates hepatocytic proliferation induced by the pro-inflammatory cytokine-mediated mitogenic pSmad3L pathway; TGF-β and pro-inflammatory cytokines synergistically enhance collagen synthesis by activated hepatic stellate cells via pSmad2L/C and pSmad3L/C pathways. During chronic liver disease progression, pre-neoplastic hepatocytes persistently affected by TGF-β together with pro-inflammatory cytokines come to exhibit the same carcinogenic (mitogenic) pSmad3L and fibrogenic pSmad2L/C signaling as do MFB, thereby accelerating liver fibrosis while increasing risk of HCC. This review of Smad phosphoisoform-mediated signals examines similarities and differences between epithelial and mesenchymal cells in acute and chronic liver injuries and considers Smad linker phosphorylation as a potential target for the chemoprevention of fibro-carcinogenesis.

  15. Pyrazolo[3,4-d]pyrimidines as novel inhibitors of O-acetyl-L-serine sulfhydrylase of Entamoeba histolytica: an in silico study.

    PubMed

    Yadava, Umesh; Shukla, Bindesh Kumar; Roychoudhury, Mihir; Kumar, Devesh

    2015-04-01

    Amoebiasis, a worldwide explosive epidemic, caused by the gastrointestinal anaerobic protozoan parasite Entamoeba histolytica, infects the large intestine and, in advance stages, liver, kidney, brain and lung. Metronidazole (MNZ)-the first line medicament against amoebiasis-is potentially carcinogenic to humans and shows significant side-effects. Pyrazolo[3,4-d]pyrimidine compounds have been reported to demonstrate antiamoebic activity. In silico molecular docking simulations on nine pyrazolo[3,4-d]pyrimidine molecules without linkers (molecules 1-9) and nine pyrazolo[3,4-d]pyrimidine molecules with a trimethylene linker (molecules 10-18) along with the reference drug metronidazole (MNZ) were conducted using the modules of the programs Glide-SP, Glide-XP and Autodock with O-acetyl-L-serine sulfhydrylase (OASS) enzyme-a promising target for inhibiting the growth of Entamoeba histolytica. Docking simulations using Glide-SP demonstrate good agreement with reported biological activities of molecules 1-9 and indicate that molecules 2 and 4 may act as potential high affinity inhibitors. Trimethylene linker molecules show improved binding affinities among which molecules 15 and 16 supersede. MD simulations on the best docked poses of molecules 2, 4, 15, 16 and MNZ were carried out for 20 ns using DESMOND. It was observed that the docking complexes of molecules 4, 15 and MNZ remain stable in aqueous conditions and do not undergo noticeable fluctuations during the course of the dynamics. Relative binding free energy calculations of the ligands with the enzyme were executed on the best docked poses using the molecular mechanics generalized Born surface area (MM-GBSA) approach, which show good agreement with the reported biological activities.

  16. Near-infrared light-controlled regulation of intracellular calcium to modulate macrophage polarization.

    PubMed

    Kang, Heemin; Zhang, Kunyu; Wong, Dexter Siu Hong; Han, Fengxuan; Li, Bin; Bian, Liming

    2018-04-21

    Macrophages are multifunctional immune cells with diverse physiological functions such as fighting against infection, influencing progression of pathologies, maintaining homeostasis, and regenerating tissues. Macrophages can be induced to adopt distinct polarized phenotypes, such as classically activated pro-inflammatory (M1) phenotypes or alternatively activated anti-inflammatory and pro-healing (M2), to execute diverse and dynamic immune functions. However, unbalanced polarizations of macrophage can lead to various pathologies, such as atherosclerosis, obesity, tumor, and asthma. Thus, the capability to remotely control macrophage phenotypes is important to the success of treating many pathological conditions involving macrophages. In this study, we developed an upconversion nanoparticle (UCNP)-based photoresponsive nanocarrier for near-infrared (NIR) light-mediated control of intracellular calcium levels to regulate macrophage polarization. UCNP was coated with mesoporous silica (UCNP@mSiO 2 ), into which loaded calcium regulators that can either supply or deplete calcium ions. UCNP@mSiO 2 was chemically modified through serial coupling of photocleavable linker and Arg-Gly-Asp (RGD) peptide-bearing molecular cap via cyclodextrin-adamantine host-guest complexation. The RGD-bearing cap functioned as the photolabile gating structure to control the release of calcium regulators and facilitated the cellular uptake of UCNP@mSiO 2 nanocarrier. The upconverted UV light emission from the UCNP@mSiO 2 under NIR light excitation triggered the cleavage of cap and intracellular release of calcium regulators, thereby allowing temporal regulation on the intracellular calcium levels. Application of NIR light through skin tissue promoted M1 or M2 polarization of macrophages, by elevating or depleting intracellular calcium levels, respectively. To the best of our knowledge, this is the first demonstration of NIR light-mediated remote control on macrophage polarization. This photoresponsive nanocarrier offers the potential to remotely manipulate in vivo immune functions, such as inflammation or tissue regeneration, via NIR light-controlled macrophage polarization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Proton-sensing G protein-coupled receptors as regulators of cell proliferation and migration during tumor growth and wound healing.

    PubMed

    Weiß, Katharina T; Fante, Matthias; Köhl, Gudrun; Schreml, Julia; Haubner, Frank; Kreutz, Marina; Haverkampf, Sonja; Berneburg, Mark; Schreml, Stephan

    2017-02-01

    Dysregulation of pH is a feature of both tumor growth and tissue repair. In tumors, microenvironmental changes, like in lactate metabolism, lead to altered intra- and extracellular pH (pH i , pH e ) and vice versa. In wounds, barrier disruption results in extensive variations in pH e on the wound surface. It is known that altered extracellular proton concentrations have a major impact on cell turnover and migration as well as on the metabolic activity of cells involved in tumor spread and wound closure. The proton-sensing G protein-coupled receptors (GPCRs) GPR4, GPR65 (TDAG8), GPR68 (OGR1) and GPR132 (G2A) are activated via a decrease in pH e and transduce this signal to molecular intracellular pathways. Based on the current knowledge, we speculate on the role of proton-sensing GPCRs in wound healing and on their potential as mechanistic linkers of tumor growth and tissue repair. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Polyester modification of the mammalian TRPM8 channel protein: Implications for structure and function

    PubMed Central

    Bikard, Yann; Chen, Wei; Liu, Tong; Li, Hong; Jendrossek, Dieter; Cohen, Alejandro; Pavlov, Evgeny; Rohacs, Tibor; Zakharian, Eleonora

    2013-01-01

    SUMMARY The TRPM8 ion channel is expressed in sensory neurons and is responsible for sensing environmental cues such as cold temperatures and chemical compounds, including menthol and icilin. The channel functional activity is regulated by various physical and chemical factors, and is likely to be pre-conditioned by its molecular composition. Our studies indicate that TRPM8 channel forms a structural-functional complex with the polyester, poly-(R)-3hydroxybutyrate (PHB). We identified by mass spectrometry a number of PHB-modified peptides in the N-terminus of the TRPM8 protein and in its extracellular S3–S4 linker. Removal of PHB by enzymatic hydrolysis, and site-directed mutagenesis of both the serine residues that serve as covalent anchors for PHB and adjacent hydrophobic residues that interact with the methyl groups of the polymer, resulted in significant inhibition of TRPM8 channel activity. We conclude that the TRPM8 channel undergoes post-translational modification by PHB and that this modification is required for its normal function. PMID:23850286

  19. Loss of activity-induced phosphorylation of MeCP2 enhances synaptogenesis, LTP and spatial memory.

    PubMed

    Li, Hongda; Zhong, Xiaofen; Chau, Kevin Fongching; Williams, Emily Cunningham; Chang, Qiang

    2011-07-17

    DNA methylation-dependent epigenetic mechanisms underlie the development and function of the mammalian brain. MeCP2 is highly expressed in neurons and functions as a molecular linker between DNA methylation, chromatin remodeling and transcription regulation. Previous in vitro studies have shown that neuronal activity-induced phosphorylation (NAIP) of methyl CpG-binding protein 2 (MeCP2) precedes its release from the Bdnf promoter and the ensuing Bdnf transcription. However, the in vivo function of this phosphorylation event remains elusive. We generated knock-in mice that lack NAIP of MeCP2 and found that they performed better in hippocampus-dependent memory tests, presented enhanced long-term potentiation at two synapses in the hippocampus and showed increased excitatory synaptogenesis. At the molecular level, the phospho-mutant MeCP2 protein bound more tightly to several MeCP2 target gene promoters and altered the expression of these genes. Our results suggest that NAIP of MeCP2 is required for modulating dynamic functions of the adult mouse brain.

  20. Domain-to-domain coupling in voltage-sensing phosphatase.

    PubMed

    Sakata, Souhei; Matsuda, Makoto; Kawanabe, Akira; Okamura, Yasushi

    2017-01-01

    Voltage-sensing phosphatase (VSP) consists of a transmembrane voltage sensor and a cytoplasmic enzyme region. The enzyme region contains the phosphatase and C2 domains, is structurally similar to the tumor suppressor phosphatase PTEN, and catalyzes the dephosphorylation of phosphoinositides. The transmembrane voltage sensor is connected to the phosphatase through a short linker region, and phosphatase activity is induced upon membrane depolarization. Although the detailed molecular characteristics of the voltage sensor domain and the enzyme region have been revealed, little is known how these two regions are coupled. In addition, it is important to know whether mechanism for coupling between the voltage sensor domain and downstream effector function is shared among other voltage sensor domain-containing proteins. Recent studies in which specific amino acid sites were genetically labeled using a fluorescent unnatural amino acid have enabled detection of the local structural changes in the cytoplasmic region of Ciona intestinalis VSP that occur with a change in membrane potential. The results of those studies provide novel insight into how the enzyme activity of the cytoplasmic region of VSP is regulated by the voltage sensor domain.

  1. Domain-to-domain coupling in voltage-sensing phosphatase

    PubMed Central

    Sakata, Souhei; Matsuda, Makoto; Kawanabe, Akira; Okamura, Yasushi

    2017-01-01

    Voltage-sensing phosphatase (VSP) consists of a transmembrane voltage sensor and a cytoplasmic enzyme region. The enzyme region contains the phosphatase and C2 domains, is structurally similar to the tumor suppressor phosphatase PTEN, and catalyzes the dephosphorylation of phosphoinositides. The transmembrane voltage sensor is connected to the phosphatase through a short linker region, and phosphatase activity is induced upon membrane depolarization. Although the detailed molecular characteristics of the voltage sensor domain and the enzyme region have been revealed, little is known how these two regions are coupled. In addition, it is important to know whether mechanism for coupling between the voltage sensor domain and downstream effector function is shared among other voltage sensor domain-containing proteins. Recent studies in which specific amino acid sites were genetically labeled using a fluorescent unnatural amino acid have enabled detection of the local structural changes in the cytoplasmic region of Ciona intestinalis VSP that occur with a change in membrane potential. The results of those studies provide novel insight into how the enzyme activity of the cytoplasmic region of VSP is regulated by the voltage sensor domain. PMID:28744425

  2. Thermally activated delayed fluorescence of a Zr-based metal–organic framework

    DOE PAGES

    Mieno, H.; Kabe, R.; Allendorf, M. D.; ...

    2017-12-22

    Here, the first metal–organic framework exhibiting thermally activated delayed fluorescence (TADF) was developed. The zirconium-based framework (UiO-68-dpa) uses a newly designed linker composed of a terphenyl backbone, an electron-accepting carboxyl group, and an electron-donating diphenylamine and exhibits green TADF emission with a photoluminescence quantum yield of 30% and high thermal stability.

  3. Catecholic amides as potential selective phosphodiesterase 4D inhibitors: Design, synthesis, pharmacological evaluation and structure-activity relationships.

    PubMed

    Zhou, Zhong-Zhen; Ge, Bing-Chen; Chen, Yu-Fang; Shi, Xiu-Dong; Yang, Xue-Mei; Xu, Jiang-Ping

    2015-11-15

    In this study, a series of catechol-based amides (8a-n) with different amide linkers linking the catecholic moiety to the terminal phenyl ring was designed and synthesized as potent phosphodiesterase (PDE) 4D inhibitors. The inhibitory activities of these compounds were evaluated against the core catalytic domains of human PDE4 (PDE4CAT), full-length PDE4B1 and PDE4D7 enzymes, and other PDE family members. The results indicated the majority of compounds 8a-n displayed moderate to good inhibitory activities against PDE4CAT. Among these compounds, compound 8 j with a short amide linker (-CONHCH2-) displayed comparable PDE4CAT inhibitory activity (IC50=410 nM) with rolipram. More interestingly, compound 8 g, a potent and selective PDE4D inhibitor (IC50=94 nM), exhibited a 10-fold selectivity over the PDE4B subtypes and an over 1000-fold selectivity against other PDE family members. Docking simulations suggested that 8 g forms three extra H-bonds with the N-H of residue Asn487 and two water molecules. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Studies on the chemical stability and functional group compatibility of the benzoin photolabile safety-catch linker using an analytical construct.

    PubMed

    Cano, Montserrat; Ladlow, Mark; Balasubramanian, Shankar

    2002-01-01

    A chemical stability study of the benzoin photolabile safety-catch linker (BPSC) has been carried out using a dual-linker analytical construct to establish its compatibility with a range of commonly employed solid-phase reaction conditions. As a result of this study, the dithiane-protected benzoin linker was shown to be reactive only toward strong acids and fluoride nucleophile. Furthermore, a scan of diverse functional groups thought to be unstable toward the safety-catch removal conditions has also been carried out. These data should provide assistance in future utilization of the BPSC for syntheses.

  5. Constitutive Smad linker phosphorylation in melanoma: a mechanism of resistance to transforming growth factor-β-mediated growth inhibition.

    PubMed

    Cohen-Solal, Karine A; Merrigan, Kim T; Chan, Joseph L-K; Goydos, James S; Chen, Wenjin; Foran, David J; Liu, Fang; Lasfar, Ahmed; Reiss, Michael

    2011-06-01

    Melanoma cells are resistant to transforming growth factor-β (TGFβ)-induced cell-cycle arrest. In this study, we investigated a mechanism of resistance involving a regulatory domain, called linker region, in Smad2 and Smad3, main downstream effectors of TGFβ. Melanoma cells in culture and tumor samples exhibited constitutive Smad2 and Smad3 linker phosphorylation. Treatment of melanoma cells with the MEK1/2 inhibitor, U0126, or the two pan-CDK and GSK3 inhibitors, Flavopiridol and R547, resulted in decreased linker phosphorylation of Smad2 and Smad3. Overexpression of the linker phosphorylation-resistant Smad3 EPSM mutant in melanoma cells resulted in an increase in expression of p15(INK4B) and p21(WAF1) , as compared with cells transfected with wild-type (WT) Smad3. In addition, the cell numbers of EPSM Smad3-expressing melanoma cells were significantly reduced compared with WT Smad3-expressing cells. These results suggest that the linker phosphorylation of Smad3 contributes to the resistance of melanoma cells to TGFβ-mediated growth inhibition. 2011 John Wiley & Sons A/S.

  6. Constitutive Smad linker phosphorylation in melanoma: A mechanism of resistance to Transforming Growth Factor-β-mediated growth inhibition

    PubMed Central

    Cohen-Solal, Karine A.; Merrigan, Kim T.; Chan, Joseph L.-K.; Goydos, James S.; Chen, Wenjin; Foran, David J.; Liu, Fang; Lasfar, Ahmed; Reiss, Michael

    2011-01-01

    SUMMARY Melanoma cells are resistant to Transforming Growth Factor-β (TGFβ)-induced cell cycle arrest. In this study, we investigated a mechanism of resistance involving a regulatory domain, called linker region, in Smad2 and Smad3, main downstream effectors of TGFβ. Melanoma cells in culture and in tumor samples exhibited constitutive Smad2 and Smad3 linker phosphorylation. Treatment of melanoma cells with the MEK1/2 inhibitor, U0126, or the two pan-CDK and GSK3 inhibitors, Flavopiridol and R547, resulted in decreased linker phosphorylation of Smad2 and Smad3. Overexpression of the linker phosphorylation-resistant Smad3 EPSM mutant in melanoma cells resulted in an increase in expression of p15INK4B and p21WAF1, as compared with cells transfected with wild-type Smad3. In addition, the cell numbers of EPSM Smad3-expressing melanoma cells were significantly reduced compared to wild-type Smad3-expressing cells. These results suggest that the linker phosphorylation of Smad3 contributes to the resistance of melanoma cells to TGFβ-mediated growth inhibition. PMID:21477078

  7. Chromatin Condensing Functions of the Linker Histone C-terminal Domain are mediated by Specific Amino Acid Composition and Intrinsic Protein Disorder†

    PubMed Central

    Lu, Xu; Hamkalo, Barbara; Parseghian, Missag H.; Hansen, Jeffrey C.

    2009-01-01

    Linker histones bind to the nucleosomes and linker DNA of chromatin fibers, causing changes in linker DNA structure and stabilization of higher order folded and oligomeric chromatin structures. Linker histones affect chromatin structure acting primarily through their ~100 residue C-terminal domain (CTD). We have previously shown that the ability of the linker histone H1° to alter chromatin structure was localized to two discontinuous 24-/25-residue CTD regions (Lu, X., and Hansen, J. C. (2004) J Biol Chem 279, 8701–8707). To determine the biochemical basis for these results, we have characterized chromatin model systems assembled with endogenous mouse somatic H1 isoforms, or recombinant H1° CTD mutants in which the primary sequence has been scrambled, the amino acid composition mutated, or the location of various CTD regions swapped. Our results indicate that specific amino acid composition plays a fundamental role in molecular recognition and function by the H1 CTD. Additionally, these experiments support a new molecular model for CTD function, and provide a biochemical basis for the redundancy observed in H1 isoform knockout experiments in vivo. PMID:19072710

  8. Phosphatidylinositol 3,4,5-trisphosphate activity probes for the labeling and proteomic characterization of protein binding partners.

    PubMed

    Rowland, Meng M; Bostic, Heidi E; Gong, Denghuang; Speers, Anna E; Lucas, Nathan; Cho, Wonhwa; Cravatt, Benjamin F; Best, Michael D

    2011-12-27

    Phosphatidylinositol polyphosphate lipids, such as phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P₃], regulate critical biological processes, many of which are aberrant in disease. These lipids often act as site-specific ligands in interactions that enforce membrane association of protein binding partners. Herein, we describe the development of bifunctional activity probes corresponding to the headgroup of PI(3,4,5)P₃ that are effective for identifying and characterizing protein binding partners from complex samples, namely cancer cell extracts. These probes contain both a photoaffinity tag for covalent labeling of target proteins and a secondary handle for subsequent detection or manipulation of labeled proteins. Probes bearing different secondary tags were exploited, either by direct attachment of a fluorescent dye for optical detection or by using an alkyne that can be derivatized after protein labeling via click chemistry. First, we describe the design and modular synthetic strategy used to generate multiple probes with different reporter tags of use for characterizing probe-labeled proteins. Next, we report initial labeling studies using purified protein, the PH domain of Akt, in which probes were found to label this target, as judged by in-gel detection. Furthermore, protein labeling was abrogated by controls including competition with an unlabeled PI(3,4,5)P₃ headgroup analogue as well as through protein denaturation, indicating specific labeling. In addition, probes featuring linkers of different lengths between the PI(3,4,5)P₃ headgroup and photoaffinity tag led to variations in protein labeling, indicating that a shorter linker was more effective in this case. Finally, proteomic labeling studies were performed using cell extracts; labeled proteins were observed by in-gel detection and characterized using postlabeling with biotin, affinity chromatography, and identification via tandem mass spectrometry. These studies yielded a total of 265 proteins, including both known and novel candidate PI(3,4,5)P₃-binding proteins.

  9. Phosphatidylinositol (3,4,5)-Trisphosphate Activity Probes for the Labeling and Proteomic Characterization of Protein Binding Partners

    PubMed Central

    Rowland, Meng M.; Bostic, Heidi E.; Gong, Denghuang; Speers, Anna E.; Lucas, Nathan; Cho, Wonhwa; Cravatt, Benjamin F.; Best, Michael D.

    2013-01-01

    Phosphatidylinositol polyphosphate lipids, such as phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3), regulate critical biological processes, many of which are aberrant in disease. These lipids often act as site-specific ligands in interactions that enforce membrane-association of protein binding partners. Herein, we describe the development of bifunctional activity probes corresponding to the headgroup of PI(3,4,5)P3 that are effective for identifying and characterizing protein binding partners from complex samples, namely cancer cell extracts. These probes contain both a photoaffinity tag for covalent labeling of target proteins as well as a secondary handle for subsequent detection or manipulation of labeled proteins. Probes bearing different secondary tags were exploited, either by direct attachment of a fluorescent dye for optical detection or by using an alkyne that can be derivatized after protein labeling via click chemistry. First, we describe the design and modular synthetic strategy used to generate multiple probes with different reporter tags of use for characterizing probe-labeled proteins. Next, we report initial labeling studies using purified protein, the PH domain of Akt, in which probes were found to label this target, as judged by on-gel detection. Furthermore, protein labeling was abrogated by controls including competition with an unlabeled PI(3,4,5)P3 headgroup analog as well as through protein denaturation, indicating specific labeling. In addition, probes featuring different linker lengths between the PI(3,4,5)P3 headgroup and photoaffinity tag led to variations in protein labeling, indicating that a shorter linker was more effective in this case. Finally, proteomic labeling studies were performed using cell extracts, labeled proteins were observed by in-gel detection and characterized using post-labeling with biotin, affinity chromatography and identification via tandem mass spectrometry. These studies yielded a total of 265 proteins, including both known and novel candidate PI(3,4,5)P3-binding proteins. PMID:22074223

  10. Conjugates of 18β-glycyrrhetinic acid derivatives with 3-(1H-benzo[d]imidazol-2-yl)propanoic acid as Pin1 inhibitors displaying anti-prostate cancer ability.

    PubMed

    Li, Kun; Ma, Tianyi; Cai, Jingjing; Huang, Min; Guo, Hongye; Zhou, Di; Luan, Shenglin; Yang, Jinyu; Liu, Dan; Jing, Yongkui; Zhao, Linxiang

    2017-10-15

    Twenty-six conjugates of 18β-glycyrrhetinic acid derivatives with 3-(1H-benzo[d]imidazol-2-yl)propanoic acid were designed and synthesized as Pin1 inhibitors. Most of these semi-synthetic compounds showed improved Pin1 inhibitory activity and anti-proliferative effects against prostate cancer cells as compared to 3-(1H-benzo[d]imidazol-2-yl)propanoic acid and GA. Compounds 10a and 12i were the most potent to inhibit growth of prostate cancer PC-3 with GI 50 values of 7.80μM and 3.52μM, respectively. The enzyme inhibition ratio of nine compounds at 10μM was over 90%. Structure-activity relationships indicated that both appropriate structure at ring C of GA and suitable length of linker between GA skeleton and benzimidazole moiety had significant impact on improving activity. Western blot assay revealed that 10a decreased the level of cell cycle regulating protein cyclin D1. Thus, these compounds might represent a novel anti-proliferative agent working through Pin1 inhibition. Copyright © 2017. Published by Elsevier Ltd.

  11. Molecular Dynamics Simulations of KirBac1.1 Mutants Reveal Global Gating Changes of Kir Channels.

    PubMed

    Linder, Tobias; Wang, Shizhen; Zangerl-Plessl, Eva-Maria; Nichols, Colin G; Stary-Weinzinger, Anna

    2015-04-27

    Prokaryotic inwardly rectifying (KirBac) potassium channels are homologous to mammalian Kir channels. Their activity is controlled by dynamical conformational changes that regulate ion flow through a central pore. Understanding the dynamical rearrangements of Kir channels during gating requires high-resolution structure information from channels crystallized in different conformations and insight into the transition steps, which are difficult to access experimentally. In this study, we use MD simulations on wild type KirBac1.1 and an activatory mutant to investigate activation gating of KirBac channels. Full atomistic MD simulations revealed that introducing glutamate in position 143 causes significant widening at the helix bundle crossing gate, enabling water flux into the cavity. Further, global rearrangements including a twisting motion as well as local rearrangements at the subunit interface in the cytoplasmic domain were observed. These structural rearrangements are similar to recently reported KirBac3.1 crystal structures in closed and open conformation, suggesting that our simulations capture major conformational changes during KirBac1.1 opening. In addition, an important role of protein-lipid interactions during gating was observed. Slide-helix and C-linker interactions with lipids were strengthened during activation gating.

  12. The structure of the regulatory domain of the adenylyl cyclase Rv1264 from Mycobacterium tuberculosis with bound oleic acid.

    PubMed

    Findeisen, Felix; Linder, Jürgen U; Schultz, Anita; Schultz, Joachim E; Brügger, Britta; Wieland, Felix; Sinning, Irmgard; Tews, Ivo

    2007-06-22

    The universal secondary messenger cAMP is produced by adenylyl cyclases (ACs). Most bacterial and all eukaryotic ACs belong to class III of six divergent classes. A class III characteristic is formation of the catalytic pocket at a dimer interface and the presence of additional regulatory domains. Mycobacterium tuberculosis possesses 15 class III ACs, including Rv1264, which is activated at acidic pH due to pH-dependent structural transitions of the Rv1264 dimer. It has been shown by X-ray crystallography that the N-terminal regulatory and C-terminal catalytic domains of Rv1264 interact in completely different ways in the active and inhibited states. Here, we report an in-depth structural and functional analysis of the regulatory domain of Rv1264. The 1.6 A resolution crystal structure shows the protein in a tight, disk-shaped dimer, formed around a helical bundle, and involving a protein chain crossover. To understand pH regulation, we determined structures at acidic and basic pH values and employed structure-based mutagenesis in the holoenzyme to elucidate regulation using an AC activity assay. It has been shown that regulatory and catalytic domains must be linked in a single protein chain. The new studies demonstrate that the length of the linker segment is decisive for regulation. Several amino acids on the surface of the regulatory domain, when exchanged, altered the pH-dependence of AC activity. However, these residues are not conserved amongst a number of related ACs. The closely related mycobacterial Rv2212, but not Rv1264, is strongly activated by the addition of fatty acids. The structure resolved the presence of a deeply embedded fatty acid, characterised as oleic acid by mass spectrometry, which may serve as a hinge. From these data, we conclude that the regulatory domain is a structural scaffold used for distinct regulatory purposes.

  13. Engineering Isoprene Synthase Expression and Activity in Cyanobacteria.

    PubMed

    Chaves, Julie E; Rueda-Romero, Paloma; Kirst, Henning; Melis, Anastasios

    2017-12-15

    Efforts to heterologously produce quantities of isoprene hydrocarbons (C 5 H 8 ) renewably from CO 2 and H 2 O through the photosynthesis of cyanobacteria face barriers, including low levels of recombinant enzyme accumulation compounded by their slow innate catalytic activity. The present work sought to alleviate the "expression level" barrier upon placing the isoprene synthase (IspS) enzyme in different fusion configurations with the cpcB protein, the highly expressed β-subunit of phycocyanin. Different cpcB*IspS fusion constructs were made, distinguished by the absence or presence of linker amino acids between the two proteins. Composition of linker amino acids was variable with lengths of 7, 10, 16, and 65 amino acids designed to test for optimal activity of the IspS through spatial positioning between the cpcB and IspS. Results showed that fusion constructs with the highly expressed cpcB gene, as the leader sequence, improved transgene expression in the range of 61 to 275-fold over what was measured with the unfused IspS control. However, the specific activity of the IspS enzyme was attenuated in all fusion transformants, possibly because of allosteric effects exerted by the leader cpcB fusion protein. This inhibition varied depending on the nature of the linker amino acids between the cpcB and IspS proteins. In terms of isoprene production, the results further showed a trade-off between specific activity and transgenic enzyme accumulation. For example, the cpcB*L7*IspS strain showed only about 10% the isoprene synthase specific-activity of the unfused cpcB-IspS control, but it accumulated 254-fold more IspS enzyme. The latter more than countered the slower specific activity and made the cpcB*L7*IspS transformant the best isoprene producing strain in this work. Isoprene to biomass yield ratios improved from 0.2 mg g -1 in the unfused cpcB-IspS control to 5.4 mg g -1 in the cpcB*L7*IspS strain, a 27-fold improvement.

  14. Myosin binding protein C positioned to play a key role in regulation of muscle contraction: structure and interactions of domain C1.

    PubMed

    Ababou, Abdessamad; Rostkova, Elena; Mistry, Shreena; Le Masurier, Clare; Gautel, Mathias; Pfuhl, Mark

    2008-12-19

    Myosin binding protein C (MyBP-C) is a thick filament protein involved in the regulation of muscle contraction. Mutations in the gene for MyBP-C are the second most frequent cause of hypertrophic cardiomyopathy. MyBP-C binds to myosin with two binding sites, one at its C-terminus and another at its N-terminus. The N-terminal binding site, consisting of immunoglobulin domains C1 and C2 connected by a flexible linker, interacts with the S2 segment of myosin in a phosphorylation-regulated manner. It is assumed that the function of MyBP-C is to act as a tether that fixes the S1 heads in a resting position and that phosphorylation releases the S1 heads into an active state. Here, we report the structure and binding properties of domain C1. Using a combination of site-directed mutagenesis and NMR interaction experiments, we identified the binding site of domain C1 in the immediate vicinity of the S1-S2 hinge, very close to the light chains. In addition, we identified a zinc binding site on domain C1 in close proximity to the S2 binding site. Its zinc binding affinity (K(d) of approximately 10-20 microM) might not be sufficient for a physiological effect. However, the familial hypertrophic cardiomyopathy-related mutation of one of the zinc ligands, glutamine 210 to histidine, will significantly increase the binding affinity, suggesting that this mutation may affect S2 binding. The close proximity of the C1 binding site to the hinge, the light chains and the S1 heads also provides an explanation for recent observations that (a) shorter fragments of MyBP-C unable to act as a tether still have an effect on the actomyosin ATPase and (b) as to why the myosin head positions in phosphorylated wild-type mice and MyBP-C knockout mice are so different: Domain C1 bound to the S1-S2 hinge is able to manipulate S1 head positions, thus influencing force generation without tether. The potentially extensive extra interactions of C1 are expected to keep it in place, while phosphorylation dislodges the C1-C2 linker and domain C2. As a result, the myosin heads would always be attached to a tether that has phosphorylation-dependent length regulation.

  15. Myosin Binding Protein C Positioned to Play a Key Role in Regulation of Muscle Contraction: Structure and Interactions of Domain C1

    PubMed Central

    Ababou, Abdessamad; Rostkova, Elena; Mistry, Shreena; Masurier, Clare Le; Gautel, Mathias; Pfuhl, Mark

    2008-01-01

    Myosin binding protein C (MyBP-C) is a thick filament protein involved in the regulation of muscle contraction. Mutations in the gene for MyBP-C are the second most frequent cause of hypertrophic cardiomyopathy. MyBP-C binds to myosin with two binding sites, one at its C-terminus and another at its N-terminus. The N-terminal binding site, consisting of immunoglobulin domains C1 and C2 connected by a flexible linker, interacts with the S2 segment of myosin in a phosphorylation-regulated manner. It is assumed that the function of MyBP-C is to act as a tether that fixes the S1 heads in a resting position and that phosphorylation releases the S1 heads into an active state. Here, we report the structure and binding properties of domain C1. Using a combination of site-directed mutagenesis and NMR interaction experiments, we identified the binding site of domain C1 in the immediate vicinity of the S1–S2 hinge, very close to the light chains. In addition, we identified a zinc binding site on domain C1 in close proximity to the S2 binding site. Its zinc binding affinity (Kd of approximately 10–20 μM) might not be sufficient for a physiological effect. However, the familial hypertrophic cardiomyopathy-related mutation of one of the zinc ligands, glutamine 210 to histidine, will significantly increase the binding affinity, suggesting that this mutation may affect S2 binding. The close proximity of the C1 binding site to the hinge, the light chains and the S1 heads also provides an explanation for recent observations that (a) shorter fragments of MyBP-C unable to act as a tether still have an effect on the actomyosin ATPase and (b) as to why the myosin head positions in phosphorylated wild-type mice and MyBP-C knockout mice are so different: Domain C1 bound to the S1–S2 hinge is able to manipulate S1 head positions, thus influencing force generation without tether. The potentially extensive extra interactions of C1 are expected to keep it in place, while phosphorylation dislodges the C1–C2 linker and domain C2. As a result, the myosin heads would always be attached to a tether that has phosphorylation-dependent length regulation. PMID:18926831

  16. A truncated, activin-induced Smad3 isoform acts as a transcriptional repressor of FSHβ expression in mouse pituitary.

    PubMed

    Kim, So-Youn; Zhu, Jie; Woodruff, Teresa K

    2011-08-06

    The receptor-regulated protein Smad3 is key player in the signaling cascade stimulated by the binding of activin to its cell surface receptor. Upon phosphorylation, Smad3 forms a heterocomplex with Smad2 and Smad4, translocates to the nucleus and acts as a transcriptional co-activator. We have identified a unique isoform of Smad3 that is expressed in mature pituitary gonadotropes. 5' RACE revealed that this truncated Smad3 isoform is transcribed from an ATG site within exon 4 and consists of 7 exons encoding half of the linker region and the MH2 region. In pituitary cells, the truncated Smad3 isoform was phosphorylated upon activin treatment, in a manner that was temporally distinct from the phosphorylation of full-length Smad3. Activin-induced phosphorylation of Smad3 and the truncated Smad3 isoform was blocked by both follistatin and siRNA-mediated knockdown of Smad3. The truncated Smad3 isoform antagonized Smad3-mediated, activin-responsive promoter activity. We propose that the pituitary gonadotrope contains an ultra-short, activin-responsive feedback loop utilizing two different isoforms of Smad3, one which acts as an agonist (Smad3) and another that acts as an intracrine antagonist (truncated Smad3 isoform) to regulate FSHβ production. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Identification and characterization of a human smad3 splicing variant lacking part of the linker region.

    PubMed

    Kjellman, Christian; Honeth, Gabriella; Järnum, Sofia; Lindvall, Magnus; Darabi, Anna; Nilsson, Ingar; Edvardsen, Klaus; Salford, Leif G; Widegren, Bengt

    2004-03-03

    Smad3 is one of the signal transducers that are activated in response to transforming growth factor-beta (TGF-beta). We have identified and characterized a splicing variant of smad3. The splicing variant (smad3-Delta3) lacks exon 3 resulting in a truncated linker region. We could detect mRNA expression of smad3-Delta3 in all investigated human tissues. Real-time PCR analyses demonstrated that the fraction of smad3-Delta3 mRNA compared to normal smad3 varies between tissues. The amount of spliced mRNA was estimated to represent 0.5-5% of the normal smad3 mRNA. When smad3-Delta3 is overexpressed in a fibrosarcoma cell line, the Smad3-Delta3 is translocated to the nucleus upon TGF-beta stimulation and binds the Smad responsive element. Using a CAGA luciferase reporter system, we demonstrate that Smad3-Delta3 has transcriptional activity and we conclude that Smad3-Delta3 possesses functional transactivating properties.

  18. A single-chain TALEN architecture for genome engineering.

    PubMed

    Sun, Ning; Zhao, Huimin

    2014-03-04

    Transcription-activator like effector nucleases (TALENs) are tailor-made DNA endonucleases and serve as a powerful tool for genome engineering. Site-specific DNA cleavage can be made by the dimerization of FokI nuclease domains at custom-targeted genomic loci, where a pair of TALENs must be positioned in close proximity with an appropriate orientation. However, the simultaneous delivery and coordinated expression of two bulky TALEN monomers (>100 kDa) in cells may be problematic to implement for certain applications. Here, we report the development of a single-chain TALEN (scTALEN) architecture, in which two FokI nuclease domains are fused on a single polypeptide. The scTALEN was created by connecting two FokI nuclease domains with a 95 amino acid polypeptide linker, which was isolated from a linker library by high-throughput screening. We demonstrated that scTALENs were catalytically active as monomers in yeast and human cells. The use of this novel scTALEN architecture should reduce protein payload, simplify design and decrease production cost.

  19. Molecular Motor-Induced Instabilities and Cross Linkers Determine Biopolymer Organization

    PubMed Central

    Smith, D.; Ziebert, F.; Humphrey, D.; Duggan, C.; Steinbeck, M.; Zimmermann, W.; Käs, J.

    2007-01-01

    All eukaryotic cells rely on the active self-organization of protein filaments to form a responsive intracellular cytoskeleton. The necessity of motility and reaction to stimuli additionally requires pathways that quickly and reversibly change cytoskeletal organization. While thermally driven order-disorder transitions are, from the viewpoint of physics, the most obvious method for controlling states of organization, the timescales necessary for effective cellular dynamics would require temperatures exceeding the physiologically viable temperature range. We report a mechanism whereby the molecular motor myosin II can cause near-instantaneous order-disorder transitions in reconstituted cytoskeletal actin solutions. When motor-induced filament sliding diminishes, the actin network structure rapidly and reversibly self-organizes into various assemblies. Addition of stable cross linkers was found to alter the architectures of ordered assemblies. These isothermal transitions between dynamic disorder and self-assembled ordered states illustrate that the interplay between passive crosslinking and molecular motor activity plays a substantial role in dynamic cellular organization. PMID:17604319

  20. Role of the external NH2 linker on the conformation of surface immobilized single strand DNA probes and their SERS detection

    NASA Astrophysics Data System (ADS)

    He, Lijie; Langlet, Michel; Stambouli, Valerie

    2017-03-01

    The conformation and topological properties of DNA single strand probe molecules attached on solid surfaces are important, notably for the performances of devices such as biosensors. Commonly, the DNA probes are tethered to the surface using external linkers such as NH2. In this study, the role and influence of this amino-linker on the immobilization way and conformation of DNA probes on Ag nanoparticle surface is emphasized using Surface Enhanced Raman Spectroscopy (SERS). We compare the SERS spectra and their reproducibility in the case of two groups of DNA polybase probes which are polyA, polyC, polyT, and polyG. In the first group, the polybases exhibit an external NH2 functional linker while in the second group the polybases are NH2-free. The results show that the reproducibility of SERS spectra is enhanced in the case of the first group. It leads us to propose two models of polybase conformation on Ag surface according to the presence or the absence of the external NH2 linker. In the presence of the NH2 external linker, the latter would act as a major anchoring point. As a result, the polybases are much ordered with a less random orientation than in the case of NH2-free polybases. Consequently, in view of further in situ hybridization for biosensing applications, it is strongly recommended to use NH2 linker functionalized DNA probes.

  1. Mechanical Coupling via the Membrane Fusion SNARE Protein Syntaxin 1A: A Molecular Dynamics Study

    PubMed Central

    Knecht, Volker; Grubmüller, Helmut

    2003-01-01

    SNARE trans complexes between membranes likely promote membrane fusion. For the t-SNARE syntaxin 1A involved in synaptic transmission, the secondary structure and bending stiffness of the five-residue juxtamembrane linker is assumed to determine the required mechanical energy transfer from the cytosolic core complex to the membrane. These properties have here been studied by molecular dynamics and annealing simulations for the wild-type and a C-terminal-prolongated mutant within a neutral and an acidic bilayer, suggesting linker stiffnesses above 1.7 but below 50 × 10−3 kcal mol−1 deg−2. The transmembrane helix was found to be tilted by 15° and tightly anchored within the membrane with a stiffness of 4–5 kcal mol−1 Å−2. The linker turned out to be marginally helical and strongly influenced by its lipid environment. Charged lipids increased the helicity and H3 helix tilt stiffness. For the wild type, the linker was seen embedded deeply within the polar region of the bilayer, whereas the prolongation shifted the linker outward. This reduced its helicity and increased its average tilt, thereby presumably reducing fusion efficiency. Our results suggest that partially unstructured linkers provide considerable mechanical coupling; the energy transduced cooperatively by the linkers in a native fusion event is thus estimated to be 3–8 kcal/mol, implying a two-to-five orders of magnitude fusion rate increase. PMID:12609859

  2. Negatively Charged Lipid Membranes Promote a Disorder-Order Transition in the Yersinia YscU Protein

    PubMed Central

    Weise, Christoph F.; Login, Frédéric H.; Ho, Oanh; Gröbner, Gerhard; Wolf-Watz, Hans; Wolf-Watz, Magnus

    2014-01-01

    The inner membrane of Gram-negative bacteria is negatively charged, rendering positively charged cytoplasmic proteins in close proximity likely candidates for protein-membrane interactions. YscU is a Yersinia pseudotuberculosis type III secretion system protein crucial for bacterial pathogenesis. The protein contains a highly conserved positively charged linker sequence that separates membrane-spanning and cytoplasmic (YscUC) domains. Although disordered in solution, inspection of the primary sequence of the linker reveals that positively charged residues are separated with a typical helical periodicity. Here, we demonstrate that the linker sequence of YscU undergoes a largely electrostatically driven coil-to-helix transition upon binding to negatively charged membrane interfaces. Using membrane-mimicking sodium dodecyl sulfate micelles, an NMR derived structural model reveals the induction of three helical segments in the linker. The overall linker placement in sodium dodecyl sulfate micelles was identified by NMR experiments including paramagnetic relaxation enhancements. Partitioning of individual residues agrees with their hydrophobicity and supports an interfacial positioning of the helices. Replacement of positively charged linker residues with alanine resulted in YscUC variants displaying attenuated membrane-binding affinities, suggesting that the membrane interaction depends on positive charges within the linker. In vivo experiments with bacteria expressing these YscU replacements resulted in phenotypes displaying significantly reduced effector protein secretion levels. Taken together, our data identify a previously unknown membrane-interacting surface of YscUC that, when perturbed by mutations, disrupts the function of the pathogenic machinery in Yersinia. PMID:25418176

  3. Negatively charged lipid membranes promote a disorder-order transition in the Yersinia YscU protein.

    PubMed

    Weise, Christoph F; Login, Frédéric H; Ho, Oanh; Gröbner, Gerhard; Wolf-Watz, Hans; Wolf-Watz, Magnus

    2014-10-21

    The inner membrane of Gram-negative bacteria is negatively charged, rendering positively charged cytoplasmic proteins in close proximity likely candidates for protein-membrane interactions. YscU is a Yersinia pseudotuberculosis type III secretion system protein crucial for bacterial pathogenesis. The protein contains a highly conserved positively charged linker sequence that separates membrane-spanning and cytoplasmic (YscUC) domains. Although disordered in solution, inspection of the primary sequence of the linker reveals that positively charged residues are separated with a typical helical periodicity. Here, we demonstrate that the linker sequence of YscU undergoes a largely electrostatically driven coil-to-helix transition upon binding to negatively charged membrane interfaces. Using membrane-mimicking sodium dodecyl sulfate micelles, an NMR derived structural model reveals the induction of three helical segments in the linker. The overall linker placement in sodium dodecyl sulfate micelles was identified by NMR experiments including paramagnetic relaxation enhancements. Partitioning of individual residues agrees with their hydrophobicity and supports an interfacial positioning of the helices. Replacement of positively charged linker residues with alanine resulted in YscUC variants displaying attenuated membrane-binding affinities, suggesting that the membrane interaction depends on positive charges within the linker. In vivo experiments with bacteria expressing these YscU replacements resulted in phenotypes displaying significantly reduced effector protein secretion levels. Taken together, our data identify a previously unknown membrane-interacting surface of YscUC that, when perturbed by mutations, disrupts the function of the pathogenic machinery in Yersinia.

  4. Electrostatic Interactions Govern "Odd/Even" Effects in Water-Induced Gemini Surfactant Self-Assembly.

    PubMed

    Mantha, Sriteja; McDaniel, Jesse G; Perroni, Dominic V; Mahanthappa, Mahesh K; Yethiraj, Arun

    2017-01-26

    Gemini surfactants comprise two single-tailed surfactants connected by a linker at or near the hydrophilic headgroup. They display a variety of water-concentration-dependent lyotropic liquid crystal morphologies that are sensitive to surfactant molecular structure and the nature of the headgroups and counterions. Recently, an interesting dependence of the aqueous-phase behavior on the length of the linker has been discovered; odd-numbered linker length surfactants exhibit characteristically different phase diagrams than even-numbered linker surfactants. In this work, we investigate this "odd/even effect" using computer simulations, focusing on experimentally studied gemini dicarboxylates with Na + counterions, seven nonterminal carbon atoms in the tails, and either three, four, five, or six carbon atoms in the linker (denoted Na-73, Na-74, Na-75, and Na-76, respectively). We find that the relative electrostatic repulsion between headgroups in the different morphologies is correlated with the qualitative features of the experimental phase diagrams, predicting destabilization of hexagonal phases as the cylinders pack close together at low water content. Significant differences in the relative headgroup orientations of Na-74 and Na-76 compared to those of Na-73 and Na-75 surfactants lead to differences in linker-linker packing and long-range headgroup-headgroup electrostatic repulsion, which affects the delicate electrostatic balance between the hexagonal and gyroid phases. Much of the fundamental insight presented in this work is enabled by the ability to computationally construct and analyze metastable phases that are not observable in experiments.

  5. Micronucleus-specific histone H1 is required for micronuclear chromosome integrity in Tetrahymena thermophila

    PubMed Central

    Qiao, Juxia; Xu, Jing; Bo, Tao

    2017-01-01

    Histone H1 molecules play a key role in establishing and maintaining higher order chromatin structures. They can bind to linker DNA entering and exiting the nucleosome and regulate transcriptional activity. Tetrahymena thermophila has two histone H1, namely, macronuclear histone H1 and micronuclear histone H1 (Mlh1). Mlh1 is specifically localized at micronuclei during growth and starvation stages. Moreover, Mlh1 is localized around micronuclei and forms a specific structure during the conjugation stage. It co-localizes partially with spindle apparatus during micronuclear meiosis. Analysis of MLH1 knock-out revealed that Mlh1 was required for the micronuclear integrity and development during conjugation stage. Overexpression of Mlh1 led to abnormal conjugation progression. RT-PCR analysis indicated that the expression level of HMGB3 increased in ΔMLH1 strains, while the expression level of MLH1 increased in ΔHMGB3 cells during conjugation. These results indicate that micronuclear integrity and sexual development require normal expression level of Mlh1 and that HmgB3 and Mlh1 may functionally compensate each other in regulating micronuclear structure in T. thermophila. PMID:29095884

  6. DLC1-dependent parathyroid hormone-like hormone inhibition suppresses breast cancer bone metastasis.

    PubMed

    Wang, Yufeng; Lei, Rong; Zhuang, Xueqian; Zhang, Ning; Pan, Hong; Li, Gang; Hu, Jing; Pan, Xiaoqi; Tao, Qian; Fu, Da; Xiao, Jianru; Chin, Y Eugene; Kang, Yibin; Yang, Qifeng; Hu, Guohong

    2014-04-01

    Bone metastasis is a frequent complication of breast cancer that is often accelerated by TGF-β signaling; however, little is known about how the TGF-β pathway is regulated during bone metastasis. Here we report that deleted in liver cancer 1 (DLC1) is an important regulator of TGF-β responses and osteolytic metastasis of breast cancer cells. In murine models, breast cancer cells lacking DLC1 expression exhibited enhanced capabilities of bone metastasis. Knockdown of DLC1 in cancer cells promoted bone metastasis, leading to manifested osteolysis and accelerated death in mice, while DLC1 overexpression suppressed bone metastasis. Activation of Rho-ROCK signaling in the absence of DLC1 mediated SMAD3 linker region phosphorylation and TGF-β-induced expression of parathyroid hormone-like hormone (PTHLH), leading to osteoclast maturation for osteolytic colonization. Furthermore, pharmacological inhibition of Rho-ROCK effectively reduced PTHLH production and breast cancer bone metastasis in vitro and in vivo. Evaluation of clinical breast tumor samples revealed that reduced DLC1 expression was linked to elevated PTHLH expression and organ-specific metastasis to bone. Overall, our findings define a stroma-dependent paradigm of Rho signaling in cancer and implicate Rho-TGF-β crosstalk in osteolytic bone metastasis.

  7. The axonal transport of mitochondria

    PubMed Central

    Saxton, William M.; Hollenbeck, Peter J.

    2012-01-01

    Vigorous transport of cytoplasmic components along axons over substantial distances is crucial for the maintenance of neuron structure and function. The transport of mitochondria, which serves to distribute mitochondrial functions in a dynamic and non-uniform fashion, has attracted special interest in recent years following the discovery of functional connections among microtubules, motor proteins and mitochondria, and their influences on neurodegenerative diseases. Although the motor proteins that drive mitochondrial movement are now well characterized, the mechanisms by which anterograde and retrograde movement are coordinated with one another and with stationary axonal mitochondria are not yet understood. In this Commentary, we review why mitochondria move and how they move, focusing particularly on recent studies of transport regulation, which implicate control of motor activity by specific cell-signaling pathways, regulation of motor access to transport tracks and static microtubule–mitochondrion linkers. A detailed mechanism for modulating anterograde mitochondrial transport has been identified that involves Miro, a mitochondrial Ca2+-binding GTPase, which with associated proteins, can bind and control kinesin-1. Elements of the Miro complex also have important roles in mitochondrial fission–fusion dynamics, highlighting questions about the interdependence of biogenesis, transport, dynamics, maintenance and degradation. PMID:22619228

  8. Molecular design of light-harvesting photosensitizers: effect of varied linker conjugation on interfacial electron transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Jianbing; Swierk, John R.; Hedstrom, Svante

    2016-06-30

    Here, interfacial electron transfer dynamics of a series of photosensitizers bound to TiO 2 via linkers of varying conjugation strength are explored by spectroscopic and computational techniques. Injection and recombination depend on the extent of conjugation in the linker, where the LUMO delocalization determines the injection dynamics but both the HOMO and HOMO–1 are involved in recombination.

  9. Abl N-terminal Cap stabilization of SH3 domain dynamics†

    PubMed Central

    Chen, Shugui; Dumitrescu, Teodora Pene; Smithgall, Thomas E.; Engen, John R.

    2008-01-01

    Crystal structures and other biochemical data indicate that the N-terminal cap (NCap) region of the Abelson tyrosine kinase (c-Abl) is important for maintaining the downregulated conformation of the kinase domain. The exact contributions that NCap makes in stabilizing the various intramolecular interactions within c-Abl are less clear. While the NCap appears important for locking the SH3/SH2 domains to the back of the kinase domain, there may be other more subtle elements of regulation. Hydrogen exchange (HX) and mass spectrometry (MS) were used to determine if the NCap contributes to intramolecular interactions involving the Abl SH3 domain. Under physiological conditions, the Abl SH3 domain underwent partial unfolding and its unfolding half-life was slowed during binding to the SH2-kinase linker, providing a unique assay to test NCap-induced stabilization of the SH3 domain in various constructs. The results showed that NCap stabilizes the dynamics of the SH3 domain in certain constructs but does not increase the relative affinity of the SH3 domain for the native SH2-kinase linker. The stabilization effect was absent in constructs of just NCap + SH3 but was obvious when the SH2 domain and the SH2-kinase linker were present. These results suggest that interactions between NCap and the SH3 domain can contribute to c-Abl stabilization in constructs that contain at least the SH2 domain, an effect that may partially compensate for the absence of the negative regulatory C-terminal tail found in the related Src family of kinases. PMID:18452309

  10. Abl N-terminal cap stabilization of SH3 domain dynamics.

    PubMed

    Chen, Shugui; Dumitrescu, Teodora Pene; Smithgall, Thomas E; Engen, John R

    2008-05-27

    Crystal structures and other biochemical data indicate that the N-terminal cap (NCap) region of the Abelson tyrosine kinase (c-Abl) is important for maintaining the downregulated conformation of the kinase domain. The exact contributions that the NCap makes in stabilizing the various intramolecular interactions within c-Abl are less clear. While the NCap appears to be important for locking the SH3 and SH2 domains to the back of the kinase domain, there may be other more subtle elements of regulation. Hydrogen exchange (HX) and mass spectrometry (MS) were used to determine if the NCap contributes to intramolecular interactions involving the Abl SH3 domain. Under physiological conditions, the Abl SH3 domain underwent partial unfolding and its unfolding half-life was slowed during binding to the SH2 kinase linker, providing a unique assay for testing NCap-induced stabilization of the SH3 domain in various constructs. The results showed that the NCap stabilizes the dynamics of the SH3 domain in certain constructs but does not increase the relative affinity of the SH3 domain for the native SH2 kinase linker. The stabilization effect was absent in constructs of just the NCap and SH3 but was obvious when the SH2 domain and the SH2 kinase linker were present. These results suggest that interactions between the NCap and the SH3 domain can contribute to c-Abl stabilization in constructs that contain at least the SH2 domain, an effect that may partially compensate for the absence of the negative regulatory C-terminal tail found in the related Src family of kinases.

  11. Crystal structure of the N domain of human somatic angiotensin I-converting enzyme provides a structural basis for domain-specific inhibitor design.

    PubMed

    Corradi, Hazel R; Schwager, Sylva L U; Nchinda, Aloysius T; Sturrock, Edward D; Acharya, K Ravi

    2006-03-31

    Human somatic angiotensin I-converting enzyme (sACE) is a key regulator of blood pressure and an important drug target for combating cardiovascular and renal disease. sACE comprises two homologous metallopeptidase domains, N and C, joined by an inter-domain linker. Both domains are capable of cleaving the two hemoregulatory peptides angiotensin I and bradykinin, but differ in their affinities for a range of other substrates and inhibitors. Previously we determined the structure of testis ACE (C domain); here we present the crystal structure of the N domain of sACE (both in the presence and absence of the antihypertensive drug lisinopril) in order to aid the understanding of how these two domains differ in specificity and function. In addition, the structure of most of the inter-domain linker allows us to propose relative domain positions for sACE that may contribute to the domain cooperativity. The structure now provides a platform for the design of "domain-specific" second-generation ACE inhibitors.

  12. Magnetic resonance beacon to detect intracellular microRNA during neurogenesis.

    PubMed

    Lee, Jonghwan; Jin, Yeon A; Ko, Hae Young; Lee, Yong Seung; Heo, Hyejung; Cho, Sujeong; Kim, Soonhag

    2015-02-01

    Magnetic resonance imaging (MRI) offers great spatial resolution for viewing deep tissues and anatomy. We developed a self-assembling signal-on magnetic fluorescence nanoparticle to visualize intracellular microRNAs (miRNAs or miRs) during neurogenesis using MRI. The self-assembling nanoparticle (miR124a MR beacon) was aggregated by the incubation of three different oligonucleotides: a 3' adaptor, a 5' adaptor, and a linker containing miR124a-binding sequences. The T2-weighted magnetic resonance (MR) signal of the self-assembled nanoparticle was quenched when miR124a was absent from test tubes or was minimally expressed in cells and tissues. When miR124a was present in test tubes or highly expressed in vitro and in vivo during P19 cell neurogenesis, it hybridized with the miR124a MR beacon, causing the linker to detach, resulting in increased signal-on MRI intensity. This MR beacon can be used as a new imaging probe to monitor the miRNA-mediated regulation of cellular processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Dose response characteristics of polymethacrylic acid gel (PMAAG) for a polymerization-based dosimeter using NMR.

    PubMed

    Iskandar, S M; Elias, S; Jumiah, H; Asri, M T M; Masrianis, A; Ab Rahman, M Z; Taiman, K; Abdul Rashid, M Y

    2004-05-01

    The radiation-response characteristics of polymetharylic acid gel dosimeter prepared with different concentrations of monomer and cross-linker is described in these studies. The dosimeters were prepared under the hypoxic condition in a glove box and were then irradiated with gamma-rays produced by Co-60 radionuclide that was generated at 1.25MeV energy. The irradiation took place at different doses ranged from 0Gy to 19Gy. Due to the radiation activities, chain-reaction polymerisation processes had taken place in the formation of polymethacrylic acid (PMAA) gel, which cause the dose response mechanism increased in the NMR relaxation rates of protons. It has been observed that for higher concentration of monomer and cross-linker, the polymerization rate was increased.

  14. Preferential 5-Methylcytosine Oxidation in the Linker Region of Reconstituted Positioned Nucleosomes by Tet1 Protein.

    PubMed

    Kizaki, Seiichiro; Zou, Tingting; Li, Yue; Han, Yong-Woon; Suzuki, Yuki; Harada, Yoshie; Sugiyama, Hiroshi

    2016-11-07

    Tet (ten-eleven translocation) family proteins oxidize 5-methylcytosine (mC) to 5-hydroxymethylcytosine (hmC), 5-formylcytosine (fC), and 5-carboxycytosine (caC), and are suggested to be involved in the active DNA demethylation pathway. In this study, we reconstituted positioned mononucleosomes using CpG-methylated 382 bp DNA containing the Widom 601 sequence and recombinant histone octamer, and subjected the nucleosome to treatment with Tet1 protein. The sites of oxidized methylcytosine were identified by bisulfite sequencing. We found that, for the oxidation reaction, Tet1 protein prefers mCs located in the linker region of the nucleosome compared with those located in the core region. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. 4-N-Hydroxy-4-[1-(sulfonyl)piperidin-4-yl]-butyramides as HDAC inhibitors.

    PubMed

    Rossi, Cristina; Fincham, Christopher I; D'Andrea, Piero; Porcelloni, Marina; Ettorre, Alessandro; Mauro, Sandro; Bigioni, Mario; Binaschi, Monica; Maggi, Carlo A; Nardelli, Federica; Parlani, Massimo; Fattori, Daniela

    2011-11-15

    A series of N-substituted 4-alkylpiperidine hydroxamic acids, corresponding to the basic structure of histone deacetylase (HDAC) inhibitors (zinc binding moiety-linker-capping group) has been previously reported by our group. Linker length and aromatic capping group connection were systematically varied to find the optimal geometric parameters. A new series of submicromolar inhibitors was thus identified, which showed antiproliferative activity on HCT-116 colon carcinoma cells. We report here the second part of the strategy used in our research group to find a new class of HDAC inhibitors, namely the SAR study for the compounds bearing a sulfonyl group on the piperidine nitrogen. In the present work, we have considered both sulfonamides and sulfonyl ureas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Engineering of a novel Ca{sup 2+}-regulated kinesin molecular motor using a calmodulin dimer linker

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shishido, Hideki; Maruta, Shinsaku, E-mail: maruta@soka.ac.jp

    Highlights: Black-Right-Pointing-Pointer Engineered kinesin-M13 and calmodulin involving single cysteine were prepared. Black-Right-Pointing-Pointer CaM mutant was cross-linked to dimer by bifunctional thiol reactive reagent. Black-Right-Pointing-Pointer Kinesin-M13 was dimerized via CaM dimer in the presence of calcium. Black-Right-Pointing-Pointer Function of the engineered kinesin was regulated by a Ca{sup 2+}-calmodulin dimer linker. -- Abstract: The kinesin-microtubule system holds great promise as a molecular shuttle device within biochips. However, one current barrier is that such shuttles do not have 'on-off' control of their movement. Here we report the development of a novel molecular motor powered by an accelerator and brake system, using a kinesinmore » monomer and a calmodulin (CaM) dimer. The kinesin monomer, K355, was fused with a CaM target peptide (M13 peptide) at the C-terminal part of the neck region (K355-M13). We also prepared CaM dimers using CaM mutants (Q3C), (R86C), or (A147C) and crosslinkers that react with cysteine residues. Following induction of K355-M13 dimerization with CaM dimers, we measured K355-M13 motility and found that it can be reversibly regulated in a Ca{sup 2+}-dependent manner. We also found that velocities of K355-M13 varied depending on the type and crosslink position of the CaM dimer used; crosslink length also had a moderate effect on motility. These results suggest Ca{sup 2+}-dependent dimerization of K355-M13 could be used as a novel molecular shuttle, equipped with an accelerator and brake system, for biochip applications.« less

  17. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin.

    PubMed

    Wang, Yupeng; Gao, Wenqing; Shi, Xuyan; Ding, Jingjin; Liu, Wang; He, Huabin; Wang, Kun; Shao, Feng

    2017-07-06

    Pyroptosis is a form of cell death that is critical for immunity. It can be induced by the canonical caspase-1 inflammasomes or by activation of caspase-4, -5 and -11 by cytosolic lipopolysaccharide. The caspases cleave gasdermin D (GSDMD) in its middle linker to release autoinhibition on its gasdermin-N domain, which executes pyroptosis via its pore-forming activity. GSDMD belongs to a gasdermin family that shares the pore-forming domain. The functions and mechanisms of activation of other gasdermins are unknown. Here we show that GSDME, which was originally identified as DFNA5 (deafness, autosomal dominant 5), can switch caspase-3-mediated apoptosis induced by TNF or chemotherapy drugs to pyroptosis. GSDME was specifically cleaved by caspase-3 in its linker, generating a GSDME-N fragment that perforates membranes and thereby induces pyroptosis. After chemotherapy, cleavage of GSDME by caspase-3 induced pyroptosis in certain GSDME-expressing cancer cells. GSDME was silenced in most cancer cells but expressed in many normal tissues. Human primary cells exhibited GSDME-dependent pyroptosis upon activation of caspase-3 by chemotherapy drugs. Gsdme -/- (also known as Dfna5 -/- ) mice were protected from chemotherapy-induced tissue damage and weight loss. These findings suggest that caspase-3 activation can trigger necrosis by cleaving GSDME and offer new insights into cancer chemotherapy.

  18. Synthesis and biological evaluation of Santacruzamate-A based analogues.

    PubMed

    Randino, Rosario; Gazzerro, Patrizia; Mazitschek, Ralph; Rodriquez, Manuela

    2017-12-15

    Several derivatives of Santacruzamate-A, a natural product that is structurally related to SAHA, were synthesized to explore the potential of carbamates and oxalylamides as novel biasing element for targeting the catalytic site of zinc-dependent histone deacetylases (HDACs). An additional class of Santacruzamate-A derivatives was synthesized to investigate the influence of the cap group and the linker element on HDAC inhibitory activity. All compounds were evaluated in dose response for their in vitro cytotoxic activity in MTT assay in HCT116 cells. HDAC inhibitory activity was evaluated in vitro by western blot analysis for histone hyperacetylation assay and biochemically for representative human HDACs isoforms. Two novel compounds were identified to exhibit potent time dependent anti proliferative activity. However, unlike hydroxamic acid analogues, the tested Santacruzamate-A derivatives showed no noticeable HDAC inhibitory activity. The ethylcarbamate moiety as unusual zinc-binding group displayed no ability to coordinate the zinc ion and thus, presumably, was not able to reproduce known inhibitor-substrate zinc-binding group interactions with the HDAC catalytic site. This study confirmed that the accommodation of the zinc-binding group is deeply critical of the positioning of the linker and the projection of the cap group toward the different surface pockets of the enzyme. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Endothelial Dysfunction Exacerbates Renal Interstitial Fibrosis through Enhancing Fibroblast Smad3 Linker Phosphorylation in the Mouse Obstructed Kidney

    PubMed Central

    Sun, Yu Bo Yang; Qu, Xinli; Li, Xueling; Nikolic-Paterson, David J.; Li, Jinhua

    2013-01-01

    Endothelial dysfunction and enhanced transforming growth factor-β (TGF-β)/Smad3 signalling are common features of progressive renal fibrosis. This study investigated a potential link between these mechanisms. In unilateral ureteric obstruction (UUO) we observed an acute (6 hr) down-regulation of nitric oxide synthase 3 (NOS3/eNOS) levels and increased phosphorylation of the linker region of Smad3 at T179 and S208 in Smad3/JNK complexes. These events preceded Smad3 C-terminal domain phosphorylation and the induction of myofibroblast proliferation at 48 hrs. Mice deficient in NOS3 showed enhanced myofibroblast proliferation and collagen accumulation compared to wild type mice in a 7 day UUO model. This was associated with enhanced phosphorylation of Smad3 T179 and S208 by 92% and 88%, respectively, whereas Smad3-C-terminal phosphorylation was not affected. Resolvin D1 (RvD1) can suppress renal fibrosis in the UUO model, and further analysis herein showed that RvD1 protected against endothelial dysfunction and suppressed Smad3/JNK complex formation with a consequent reduction in phosphorylation of Smad3 T179 and S208 by 78% and 65%, respectively, while Smad3 C-terminal phosphorylation was unaltered. In vitro, conditioned media from mouse microvascular endothelial cells (MMEC) treated with a general inhibitor of nitric oxide synthase (L-NAME) augmented the proliferation and collagen production of renal fibroblasts (NRK49F cells) compared to control MMEC media and this was associated with increased phosphorylation of JNK and Smad3 T179 and S208, whereas Smad3-C-terminal domain phosphorylation was unaffected. The addition of RvD1 to L-NAME treated MMEC abrogated these effects of the conditioned media on renal fibroblasts. Finally, Smad3 T179/V and S208/A mutations significantly inhibit TGF-β1 induced up-regulation collagen I promoter. In conclusion, these data suggest that endothelial dysfunction can exacerbate renal interstitial fibrosis through increased fibroblast proliferation and collagen production via enhanced Smad3 linker phosphorylation. PMID:24391884

  20. Endothelial dysfunction exacerbates renal interstitial fibrosis through enhancing fibroblast Smad3 linker phosphorylation in the mouse obstructed kidney.

    PubMed

    Sun, Yu Bo Yang; Qu, Xinli; Li, Xueling; Nikolic-Paterson, David J; Li, Jinhua

    2013-01-01

    Endothelial dysfunction and enhanced transforming growth factor-β (TGF-β)/Smad3 signalling are common features of progressive renal fibrosis. This study investigated a potential link between these mechanisms. In unilateral ureteric obstruction (UUO) we observed an acute (6 hr) down-regulation of nitric oxide synthase 3 (NOS3/eNOS) levels and increased phosphorylation of the linker region of Smad3 at T179 and S208 in Smad3/JNK complexes. These events preceded Smad3 C-terminal domain phosphorylation and the induction of myofibroblast proliferation at 48 hrs. Mice deficient in NOS3 showed enhanced myofibroblast proliferation and collagen accumulation compared to wild type mice in a 7 day UUO model. This was associated with enhanced phosphorylation of Smad3 T179 and S208 by 92% and 88%, respectively, whereas Smad3-C-terminal phosphorylation was not affected. Resolvin D1 (RvD1) can suppress renal fibrosis in the UUO model, and further analysis herein showed that RvD1 protected against endothelial dysfunction and suppressed Smad3/JNK complex formation with a consequent reduction in phosphorylation of Smad3 T179 and S208 by 78% and 65%, respectively, while Smad3 C-terminal phosphorylation was unaltered. In vitro, conditioned media from mouse microvascular endothelial cells (MMEC) treated with a general inhibitor of nitric oxide synthase (L-NAME) augmented the proliferation and collagen production of renal fibroblasts (NRK49F cells) compared to control MMEC media and this was associated with increased phosphorylation of JNK and Smad3 T179 and S208, whereas Smad3-C-terminal domain phosphorylation was unaffected. The addition of RvD1 to L-NAME treated MMEC abrogated these effects of the conditioned media on renal fibroblasts. Finally, Smad3 T179/V and S208/A mutations significantly inhibit TGF-β1 induced up-regulation collagen I promoter. In conclusion, these data suggest that endothelial dysfunction can exacerbate renal interstitial fibrosis through increased fibroblast proliferation and collagen production via enhanced Smad3 linker phosphorylation.

  1. Triptycene: A Nucleic Acid Three-Way Junction Binder Scaffold

    NASA Astrophysics Data System (ADS)

    Yoon, Ina

    Nucleic acids play a critical role in many biological processes such as gene regulation and replication. The development of small molecules that modulate nucleic acids with sequence or structure specificity would provide new strategies for regulating disease states at the nucleic acid level. However, this remains challenging mainly because of the nonspecific interactions between nucleic acids and small molecules. Three-way junctions are critical structural elements of nucleic acids. They are present in many important targets such as trinucleotide repeat junctions related to Huntington's disease, a temperature sensor sigma32 in E. coli, Dengue virus, and HIV. Triptycene-derived small molecules have been shown to bind to nucleic acid three-way junctions, resulting from their shape complementary. To develop a better understanding of designing molecules for targeting different junctions, a rapid screening of triptycene-based small molecules is needed. We envisioned that the installation of a linker at C9 position of the bicyclic core would allow for a rapid solid phase diversification. To achieve this aim, we synthesized 9-substituted triptycene scaffolds by using two different synthetic routes. The first synthetic route installed the linker from the amidation reaction between carboxylic acid at C9 position of the triptycene and an amine linker, beta-alanine ethyl ester. This new 9-substituted triptycene scaffold was then attached to a 2-chlorotrityl chloride resin for solid-phase diversification. This enabled a rapid diversification and an easy purification of mono-, di-, and tri-peptide triptycene derivatives. The binding affinities of these compounds were investigated towards a (CAG)˙(CTG) trinucleotide repeat junction. In the modified second synthetic route, we utilized a combined Heck coupling/benzyne Diels-Alder strategy. This improved synthetic strategy reduced the number of steps and total reaction times, increased the overall yield, improved solubilities of intermediates, and provided a new regioisomer that was not observed in the previous synthesis. Through this investigation, we discovered new high-affinity lead compounds towards a d(CAG)·(CTG) trinucleotide repeat junction. In addition, we turned our attention to sigma 32 mRNA, which contains a RNA three-way junction in E. coli. We demonstrated that triptycene-based small molecules can modulate the heat shock response in E. coli..

  2. Propagation of Spin Information at the Supramolecular Scale through Heteroaromatic Linkers

    NASA Astrophysics Data System (ADS)

    Bellini, V.; Lorusso, G.; Candini, A.; Wernsdorfer, W.; Faust, T. B.; Timco, G. A.; Winpenny, R. E. P.; Affronte, M.

    2011-06-01

    We report an in-depth study on how spin information propagates at supramolecular scale through a family of heteroaromatic linkers. By density-functional theory calculations, we rationalize the behavior of a series of Cr7Ni dimers for which we are able to systematically change the aromatic linker thus tuning the strength of the magnetic interaction, as experimentally shown by low temperature micro-SQUID and specific heat measurements. We also predict a cos⁡2 dependence of the magnetic coupling on the twisting angle between the aromatic cycles in bicyclic linkers, a mechanism parallel to charge transport on similar systems [L. Venkataraman , Nature (London)NATUAS0028-0836 442, 904 (2006)10.1038/nature05037].

  3. A "methyl extension" strategy for polyketide natural product linker site validation and its application to dictyostatin.

    PubMed

    Ho, Stephen; Sackett, Dan L; Leighton, James L

    2015-11-11

    An approach to the validation of linker strategies for polyketide natural products with few or no obvious handles for linker attachment, and its application to dictyostatin, are described. Analogues in which the C(6)- and C(12)-methyl groups were replaced by 4-azidobutyl groups were prepared and shown to retain the low nanomolar potency of dictyostatin. Further, conjugation of the C(6) analogue with a cyclooctyne resulted in only minor attenuations in potency. Together, these results shed light on the binding of dictyostatin to β-tubulin, establish a validated linker strategy for dictyostatin, and set the stage for the synthesis and study of dictyostatin conjugates.

  4. Molecular envelope and atomic model of an anti-terminated glyQS T-box regulator in complex with tRNAGly.

    PubMed

    Chetnani, Bhaskar; Mondragón, Alfonso

    2017-07-27

    A T-box regulator or riboswitch actively monitors the levels of charged/uncharged tRNA and participates in amino acid homeostasis by regulating genes involved in their utilization or biosynthesis. It has an aptamer domain for cognate tRNA recognition and an expression platform to sense the charge state and modulate gene expression. These two conserved domains are connected by a variable linker that harbors additional secondary structural elements, such as Stem III. The structural basis for specific tRNA binding is known, but the structural basis for charge sensing and the role of other elements remains elusive. To gain new structural insights on the T-box mechanism, a molecular envelope was calculated from small angle X-ray scattering data for the Bacillus subtilis glyQS T-box riboswitch in complex with an uncharged tRNAGly. A structural model of an anti-terminated glyQS T-box in complex with its cognate tRNAGly was derived based on the molecular envelope. It shows the location and relative orientation of various secondary structural elements. The model was validated by comparing the envelopes of the wild-type complex and two variants. The structural model suggests that in addition to a possible regulatory role, Stem III could aid in preferential stabilization of the T-box anti-terminated state allowing read-through of regulated genes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Recognition and cleavage of corn defense chitinases by fungal polyglycine hydrolases

    USDA-ARS?s Scientific Manuscript database

    Polyglycine hydrolases are secreted fungal endoproteases that cleave peptide bonds in the polyglycine interdomain linker of ChitA chitinase, an antifungal protein from domesticated corn. Polyglycine hydrolases are novel proteins in terms of activity and sequence. The objective of the study is to und...

  6. Dynamics simulations for engineering macromolecular interactions

    PubMed Central

    Robinson-Mosher, Avi; Shinar, Tamar; Silver, Pamela A.; Way, Jeffrey

    2013-01-01

    The predictable engineering of well-behaved transcriptional circuits is a central goal of synthetic biology. The artificial attachment of promoters to transcription factor genes usually results in noisy or chaotic behaviors, and such systems are unlikely to be useful in practical applications. Natural transcriptional regulation relies extensively on protein-protein interactions to insure tightly controlled behavior, but such tight control has been elusive in engineered systems. To help engineer protein-protein interactions, we have developed a molecular dynamics simulation framework that simplifies features of proteins moving by constrained Brownian motion, with the goal of performing long simulations. The behavior of a simulated protein system is determined by summation of forces that include a Brownian force, a drag force, excluded volume constraints, relative position constraints, and binding constraints that relate to experimentally determined on-rates and off-rates for chosen protein elements in a system. Proteins are abstracted as spheres. Binding surfaces are defined radially within a protein. Peptide linkers are abstracted as small protein-like spheres with rigid connections. To address whether our framework could generate useful predictions, we simulated the behavior of an engineered fusion protein consisting of two 20 000 Da proteins attached by flexible glycine/serine-type linkers. The two protein elements remained closely associated, as if constrained by a random walk in three dimensions of the peptide linker, as opposed to showing a distribution of distances expected if movement were dominated by Brownian motion of the protein domains only. We also simulated the behavior of fluorescent proteins tethered by a linker of varying length, compared the predicted Förster resonance energy transfer with previous experimental observations, and obtained a good correspondence. Finally, we simulated the binding behavior of a fusion of two ligands that could simultaneously bind to distinct cell-surface receptors, and explored the landscape of linker lengths and stiffnesses that could enhance receptor binding of one ligand when the other ligand has already bound to its receptor, thus, addressing potential mechanisms for improving targeted signal transduction proteins. These specific results have implications for the design of targeted fusion proteins and artificial transcription factors involving fusion of natural domains. More broadly, the simulation framework described here could be extended to include more detailed system features such as non-spherical protein shapes and electrostatics, without requiring detailed, computationally expensive specifications. This framework should be useful in predicting behavior of engineered protein systems including binding and dissociation reactions. PMID:23822508

  7. Acceleration of Smad2 and Smad3 phosphorylation via c-Jun NH(2)-terminal kinase during human colorectal carcinogenesis.

    PubMed

    Yamagata, Hideo; Matsuzaki, Koichi; Mori, Shigeo; Yoshida, Katsunori; Tahashi, Yoshiya; Furukawa, Fukiko; Sekimoto, Go; Watanabe, Toshihiko; Uemura, Yoshiko; Sakaida, Noriko; Yoshioka, Kazuhiko; Kamiyama, Yasuo; Seki, Toshihito; Okazaki, Kazuichi

    2005-01-01

    Conversion of normal epithelial cells to tumors is associated with a shift in transforming growth factor-beta (TGF-beta) function: reduction of tumor suppressor activity and increase of oncogenic activity. However, specific mechanisms of this functional alteration during human colorectal carcinogenesis remain to be elucidated. TGF-beta signaling involves Smad2/3 phosphorylated at linker regions (pSmad2/3L) and COOH-terminal regions (pSmad2/3C). Using antibodies specific to each phosphorylation site, we herein showed that Smad2 and Smad3 were phosphorylated at COOH-terminal regions but not at linker regions in normal colorectal epithelial cells and that pSmad2/3C were located predominantly in their nuclei. However, the linker regions of Smad2 and Smad3 were phosphorylated in 31 sporadic colorectal adenocarcinomas. In particular, late-stage invasive and metastatic cancers typically showed a high degree of phosphorylation of Smad2/3L. Their extent of phosphorylation in 11 adenomas was intermediate between those in normal epithelial cells and adenocarcinomas. Whereas pSmad2L remained in the cytoplasm, pSmad3L was located exclusively in the nuclei of Ki-67-immunoreactive adenocarcinomas. In contrast, pSmad3C gradually decreased as the tumor stage progressed. Activated c-Jun NH(2)-terminal kinase in cancers could directly phosphorylate Smad2/3L. Although Mad homology 2 region sequencing in the Smad4 gene revealed a G/A substitution at codon 361 in one adenocarcinoma, the mutation did not correlate with phosphorylation. No mutations in the type II TGF-beta receptor and Smad2 genes were observed in the tumors. In conclusion, pSmad3C, which favors tumor suppressor activity of TGF-beta, was found to decrease, whereas c-Jun NH(2)-terminal kinase tended to induce the phosphorylation of Smad2/3L in human colorectal adenoma-carcinoma sequence.

  8. Non-Natural Linker Configuration in 2,6-Dipeptidyl-Anthraquinones Enhances the Inhibition of TAR RNA Binding/Annealing Activities by HIV-1 NC and Tat Proteins.

    PubMed

    Sosic, Alice; Saccone, Irene; Carraro, Caterina; Kenderdine, Thomas; Gamba, Elia; Caliendo, Giuseppe; Corvino, Angela; Di Vaio, Paola; Fiorino, Ferdinando; Magli, Elisa; Perissutti, Elisa; Santagada, Vincenzo; Severino, Beatrice; Spada, Valentina; Fabris, Dan; Frecentese, Francesco; Gatto, Barbara

    2018-06-12

    The HIV-1 nucleocapsid (NC) protein represents an excellent molecular target for the development of anti-retrovirals by virtue of its well-characterized chaperone activities, which play pivotal roles in essential steps of the viral life cycle. Our ongoing search for candidates able to impair NC binding/annealing activities led to the identification of peptidyl-anthraquinones as a promising class of nucleic acid ligands. Seeking to elucidate the inhibition determinants and increase the potency of this class of compounds, we have now explored the effects of chirality in the linker connecting the planar nucleus to the basic side chains. We show here that the non-natural linker configuration imparted unexpected TAR RNA targeting properties to the 2,6-peptidyl-anthraquinones and significantly enhanced their potency. Even if the new compounds were able to interact directly with the NC protein, they manifested a consistently higher affinity for the TAR RNA substrate and their TAR-binding properties mirrored their ability to interfere with NC-TAR interactions. Based on these findings, we propose that the viral Tat protein, sharing the same RNA substrate but acting in distinct phases of the viral life cycle, constitutes an additional druggable target for this class of peptidyl-anthraquinones. The inhibition of Tat-TAR interaction for the test compounds correlated again with their TAR-binding properties, while simultaneously failing to demonstrate any direct Tat-binding capabilities. These considerations highlighted the importance of TAR RNA in the elucidation of their inhibition mechanism, rather than direct protein inhibition. We have therefore identified anti-TAR compounds with dual in vitro inhibitory activity on different viral proteins, demonstrating that it is possible to develop multitarget compounds capable of interfering with processes mediated by the interactions of this essential RNA domain of HIV-1 genome with NC and Tat proteins.

  9. Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane cross-linkers and ionic groups into the polymer network.

    PubMed

    Bin Imran, Abu; Esaki, Kenta; Gotoh, Hiroaki; Seki, Takahiro; Ito, Kohzo; Sakai, Yasuhiro; Takeoka, Yukikazu

    2014-10-08

    Stimuli-sensitive hydrogels changing their volumes and shapes in response to various stimulations have potential applications in multiple fields. However, these hydrogels have not yet been commercialized due to some problems that need to be overcome. One of the most significant problems is that conventional stimuli-sensitive hydrogels are usually brittle. Here we prepare extremely stretchable thermosensitive hydrogels with good toughness by using polyrotaxane derivatives composed of α-cyclodextrin and polyethylene glycol as cross-linkers and introducing ionic groups into the polymer network. The ionic groups help the polyrotaxane cross-linkers to become well extended in the polymer network. The resulting hydrogels are surprisingly stretchable and tough because the cross-linked α-cyclodextrin molecules can move along the polyethylene glycol chains. In addition, the polyrotaxane cross-linkers can be used with a variety of vinyl monomers; the mechanical properties of the wide variety of polymer gels can be improved by using these cross-linkers.

  10. Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane cross-linkers and ionic groups into the polymer network

    PubMed Central

    Bin Imran, Abu; Esaki, Kenta; Gotoh, Hiroaki; Seki, Takahiro; Ito, Kohzo; Sakai, Yasuhiro; Takeoka, Yukikazu

    2014-01-01

    Stimuli-sensitive hydrogels changing their volumes and shapes in response to various stimulations have potential applications in multiple fields. However, these hydrogels have not yet been commercialized due to some problems that need to be overcome. One of the most significant problems is that conventional stimuli-sensitive hydrogels are usually brittle. Here we prepare extremely stretchable thermosensitive hydrogels with good toughness by using polyrotaxane derivatives composed of α-cyclodextrin and polyethylene glycol as cross-linkers and introducing ionic groups into the polymer network. The ionic groups help the polyrotaxane cross-linkers to become well extended in the polymer network. The resulting hydrogels are surprisingly stretchable and tough because the cross-linked α-cyclodextrin molecules can move along the polyethylene glycol chains. In addition, the polyrotaxane cross-linkers can be used with a variety of vinyl monomers; the mechanical properties of the wide variety of polymer gels can be improved by using these cross-linkers. PMID:25296246

  11. One-pot preparation of mRNA/cDNA display by a novel and versatile puromycin-linker DNA.

    PubMed

    Mochizuki, Yuki; Biyani, Manish; Tsuji-Ueno, Sachika; Suzuki, Miho; Nishigaki, Koichi; Husimi, Yuzuru; Nemoto, Naoto

    2011-09-12

    A rapid, easy, and robust preparation method for mRNA/cDNA display using a newly designed puromycin-linker DNA is presented. The new linker is structurally simple, easy to synthesize, and cost-effective for use in "in vitro peptide and protein selection". An introduction of RNase T1 nuclease site to the new linker facilitates the easy recovery of mRNA/cDNA displayed protein by an improvement of the efficiency of ligating the linker to mRNAs and efficient release of mRNA/cDNA displayed protein from the solid-phase (magnetic bead). For application demonstration, affinity selections were successfully performed. Furthermore, we introduced a "one-pot" preparation protocol to perform mRNA display easy. Unlike conventional approaches that require tedious and downstream multistep process including purification, this protocol will make the mRNA/cDNA display methods more practical and convenient and also facilitate the development of next-generation, high-throughput mRNA/cDNA display systems amenable to automation.

  12. How to remain nonfolded and pliable: the linkers in modular α-amylases as a case study.

    PubMed

    Feller, Georges; Dehareng, Dominique; Lage, Jean-Luc Da

    2011-07-01

    The primary structure of linkers in a new class of modular α-amylases constitutes a paradigm of the structural basis that allows a polypeptide to remain nonfolded, extended and pliable. Unfolding is mediated through a depletion of hydrophobic residues and an enrichment of hydrophilic residues, amongst which Ser and Thr are over-represented. An extended and flexible conformation is promoted by the sequential arrangement of Pro and Gly, which are the most abundant residues in these linkers. This is complemented by charge repulsion, charge clustering and disulfide-bridged loops. Molecular dynamics simulations suggest the existence of conformational transitions resulting from a transient and localized hydrophobic collapse, arising from the peculiar composition of the linkers. Accordingly, these linkers should not be regarded as fully disordered, but rather as possessing various discrete structural patterns allowing them to fulfill their biological function as a free energy reservoir for concerted motions between structured domains. © 2011 The Authors Journal compilation © 2011 FEBS.

  13. Fabrication of zinc-dicarboxylate- and zinc-pyrazolate-carboxylate-framework thin films through vapour-solid deposition.

    PubMed

    Medishetty, Raghavender; Zhang, Zongji; Sadlo, Alexander; Cwik, Stefan; Peeters, Daniel; Henke, Sebastian; Mangayarkarasi, Nagarathinam; Devi, Anjana

    2018-05-17

    Fabrication of three-dimensional metal-organic framework (MOF) thin films has been investigated for the first time through the conversion of a ZnO layer via a pure vapour-solid deposition reaction at ambient pressure. The fabrication of MOF thin films with a dicarboxylate linker, (DMA)2[Zn3(bdc)4] (1) (bdc = 1,4-benzenedicarboxylate), and a carboxy-pyrazolate linker, [Zn4O(dmcapz)6] (2) (dmcapz = 3,5-dimethyl-4-carboxypyrazole), involves the deposition of the linker and/or the preparation of a composite film preliminarily and its subsequent conversion into a MOF film using closed cell thermal treatment. Furthermore, it was possible to isolate thin films with a MOF-5 isotype structure grown along the [110] direction, using a carboxy-pyrazolate linker. This was achieved just by the direct reaction of the ZnO film and the organic linker vapors, employing a simple route that demonstrates the feasibility of MOF thin film fabrication using inexpensive routes at ambient pressure.

  14. Zinc chelation with hydroxamate in histone deacetylases modulated by water access to the linker binding channel.

    PubMed

    Wu, Ruibo; Lu, Zhenyu; Cao, Zexing; Zhang, Yingkai

    2011-04-27

    It is of significant biological interest and medical importance to develop class- and isoform-selective histone deacetylase (HDAC) modulators. The impact of the linker component on HDAC inhibition specificity has been revealed but is not understood. Using Born-Oppenheimer ab initio QM/MM MD simulations, a state-of-the-art approach to simulating metallo-enzymes, we have found that the hydroxamic acid remains to be protonated upon its binding to HDAC8, and thus disproved the mechanistic hypothesis that the distinct zinc-hydroxamate chelation modes between two HDAC subclasses come from different protonation states of the hydroxamic acid. Instead, our simulations suggest a novel mechanism in which the chelation mode of hydroxamate with the zinc ion in HDACs is modulated by water access to the linker binding channel. This new insight into the interplay between the linker binding and the zinc chelation emphasizes its importance and gives guidance regarding linker design for the development of new class-IIa-specific HDAC inhibitors.

  15. Charged residues in the H-NS linker drive DNA binding and gene silencing in single cells.

    PubMed

    Gao, Yunfeng; Foo, Yong Hwee; Winardhi, Ricksen S; Tang, Qingnan; Yan, Jie; Kenney, Linda J

    2017-11-21

    Nucleoid-associated proteins (NAPs) facilitate chromosome organization in bacteria, but the precise mechanism remains elusive. H-NS is a NAP that also plays a major role in silencing pathogen genes. We used genetics, single-particle tracking in live cells, superresolution microscopy, atomic force microscopy, and molecular dynamics simulations to examine H-NS/DNA interactions in single cells. We discovered a role for the unstructured linker region connecting the N-terminal oligomerization and C-terminal DNA binding domains. In the present work we demonstrate that linker amino acids promote engagement with DNA. In the absence of linker contacts, H-NS binding is significantly reduced, although no change in chromosome compaction is observed. H-NS is not localized to two distinct foci; rather, it is scattered all around the nucleoid. The linker makes DNA contacts that are required for gene silencing, while chromosome compaction does not appear to be an important H-NS function.

  16. Vitamin E reverses impaired linker for activation of T cells activation in T cells from aged C57BL/6 mice

    USDA-ARS?s Scientific Manuscript database

    Supplemental vitamin E restores age-related defects in IL-2 production, T cell proliferation, and immune synapse formation. Here, we evaluated the effect of vitamin E on TCR-proximal signaling events. In aged murine CD4+ T cells stimulated via CD3 and CD28, tyrosine 191 of the adaptor protein LAT wa...

  17. Flexibility of the Head-Stalk Linker Domain of Paramyxovirus HN Glycoprotein Is Essential for Triggering Virus Fusion.

    PubMed

    Adu-Gyamfi, Emmanuel; Kim, Lori S; Jardetzky, Theodore S; Lamb, Robert A

    2016-10-15

    The Paramyxoviridae comprise a large family of enveloped, negative-sense, single-stranded RNA viruses with significant economic and public health implications. For nearly all paramyxoviruses, infection is initiated by fusion of the viral and host cell plasma membranes in a pH-independent fashion. Fusion is orchestrated by the receptor binding protein hemagglutinin-neuraminidase (HN; also called H or G depending on the virus type) protein and a fusion (F) protein, the latter undergoing a major refolding process to merge the two membranes. Mechanistic details regarding the coupling of receptor binding to F activation are not fully understood. Here, we have identified the flexible loop region connecting the bulky enzymatically active head and the four-helix bundle stalk to be essential for fusion promotion. Proline substitution in this region of HN of parainfluenza virus 5 (PIV5) and Newcastle disease virus HN abolishes cell-cell fusion, whereas HN retains receptor binding and neuraminidase activity. By using reverse genetics, we engineered recombinant PIV5-EGFP viruses with mutations in the head-stalk linker region of HN. Mutations in this region abolished virus recovery and infectivity. In sum, our data suggest that the loop region acts as a "hinge" around which the bulky head of HN swings to-and-fro to facilitate timely HN-mediate F-triggering, a notion consistent with the stalk-mediated activation model of paramyxovirus fusion. Paramyxovirus fusion with the host cell plasma membrane is essential for virus infection. Membrane fusion is orchestrated via interaction of the receptor binding protein (HN, H, or G) with the viral fusion glycoprotein (F). Two distinct models have been suggested to describe the mechanism of fusion: these include "the clamp" and the "provocateur" model of activation. By using biochemical and reverse genetics tools, we have obtained strong evidence in favor of the HN stalk-mediated activation of paramyxovirus fusion. Specifically, our data strongly support the notion that the short linker between the head and stalk plays a role in "conformational switching" of the head group to facilitate F-HN interaction and triggering. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Flexibility of the Head-Stalk Linker Domain of Paramyxovirus HN Glycoprotein Is Essential for Triggering Virus Fusion

    PubMed Central

    Adu-Gyamfi, Emmanuel; Kim, Lori S.; Jardetzky, Theodore S.

    2016-01-01

    ABSTRACT The Paramyxoviridae comprise a large family of enveloped, negative-sense, single-stranded RNA viruses with significant economic and public health implications. For nearly all paramyxoviruses, infection is initiated by fusion of the viral and host cell plasma membranes in a pH-independent fashion. Fusion is orchestrated by the receptor binding protein hemagglutinin-neuraminidase (HN; also called H or G depending on the virus type) protein and a fusion (F) protein, the latter undergoing a major refolding process to merge the two membranes. Mechanistic details regarding the coupling of receptor binding to F activation are not fully understood. Here, we have identified the flexible loop region connecting the bulky enzymatically active head and the four-helix bundle stalk to be essential for fusion promotion. Proline substitution in this region of HN of parainfluenza virus 5 (PIV5) and Newcastle disease virus HN abolishes cell-cell fusion, whereas HN retains receptor binding and neuraminidase activity. By using reverse genetics, we engineered recombinant PIV5-EGFP viruses with mutations in the head-stalk linker region of HN. Mutations in this region abolished virus recovery and infectivity. In sum, our data suggest that the loop region acts as a “hinge” around which the bulky head of HN swings to-and-fro to facilitate timely HN-mediate F-triggering, a notion consistent with the stalk-mediated activation model of paramyxovirus fusion. IMPORTANCE Paramyxovirus fusion with the host cell plasma membrane is essential for virus infection. Membrane fusion is orchestrated via interaction of the receptor binding protein (HN, H, or G) with the viral fusion glycoprotein (F). Two distinct models have been suggested to describe the mechanism of fusion: these include “the clamp” and the “provocateur” model of activation. By using biochemical and reverse genetics tools, we have obtained strong evidence in favor of the HN stalk-mediated activation of paramyxovirus fusion. Specifically, our data strongly support the notion that the short linker between the head and stalk plays a role in “conformational switching” of the head group to facilitate F-HN interaction and triggering. PMID:27489276

  19. On artifacts in single-molecule force spectroscopy

    PubMed Central

    Cossio, Pilar; Hummer, Gerhard; Szabo, Attila

    2015-01-01

    In typical force spectroscopy experiments, a small biomolecule is attached to a soft polymer linker that is pulled with a relatively large bead or cantilever. At constant force, the total extension stochastically changes between two (or more) values, indicating that the biomolecule undergoes transitions between two (or several) conformational states. In this paper, we consider the influence of the dynamics of the linker and mesoscopic pulling device on the force-dependent rate of the conformational transition extracted from the time dependence of the total extension, and the distribution of rupture forces in force-clamp and force-ramp experiments, respectively. For these different experiments, we derive analytic expressions for the observables that account for the mechanical response and dynamics of the pulling device and linker. Possible artifacts arise when the characteristic times of the pulling device and linker become comparable to, or slower than, the lifetimes of the metastable conformational states, and when the highly anharmonic regime of stretched linkers is probed at high forces. We also revisit the problem of relating force-clamp and force-ramp experiments, and identify a linker and loading rate-dependent correction to the rates extracted from the latter. The theory provides a framework for both the design and the quantitative analysis of force spectroscopy experiments by highlighting, and correcting for, factors that complicate their interpretation. PMID:26540730

  20. MUC1 (CD227) interacts with lck tyrosine kinase in Jurkat lymphoma cells and normal T cells.

    PubMed

    Mukherjee, P; Tinder, T L; Basu, G D; Gendler, S J

    2005-01-01

    MUC1 (CD227) is a large transmembrane epithelial mucin glycoprotein, which is aberrantly overexpressed in most adenocarcinomas and is a target for immune therapy for epithelial tumors. Recently, MUC1 has been detected in a variety of hematopoietic cell malignancies including T and B cell lymphomas and myelomas; however, its function in these cells is not clearly defined. Using the Jurkat T cell lymphoma cell line and normal human T cells, we demonstrate that MUC1 is not only expressed in these cells but is also phosphorylated upon T cell receptor (TCR) ligation and associates with the Src-related T cell tyrosine kinase, p56lck. Upon TCR-mediated activation of Jurkat cells, MUC1 is found in the low-density membrane fractions, where linker of T cell activation is contained. Abrogation of MUC1 expression in Jurkat cells by MUC1-specific small interfering RNA resulted in defects in TCR-mediated downstream signaling events associated with T cell activation. These include reduction in Ca2+ influx and extracellular signal-regulated kinase 1/2 phosphorylation, leading to a decrease in CD69 expression, proliferation, and interleukin-2 production. These results suggest a regulatory role of MUC1 in modulating proximal signal transduction events through its interaction with proteins of the activation complex.

Top