Science.gov

Sample records for activation marker c-fos

  1. Activation of immediate-early response gene c-Fos protein in the rat paralimbic cortices after myocardial infarction

    PubMed Central

    Ahn, Ji Yun; Tae, Hyun-Jin; Cho, Jeong-Hwi; Kim, In Hye; Ahn, Ji Hyeon; Park, Joon Ha; Kim, Dong Won; Cho, Jun Hwi; Won, Moo-Ho; Hong, Seongkweon; Lee, Jae-Chul; Seo, Jeong Yeol

    2015-01-01

    c-Fos is a good biological marker for detecting the pathogenesis of central nervous system disorders. Few studies are reported on the change in myocardial infarction-induced c-Fos expression in the paralimbic regions. Thus, in this study, we investigated the changes in c-Fos expression in the rat cingulate and piriform cortices after myocardial infarction. Neuronal degeneration in cingulate and piriform cortices after myocardial infarction was detected using cresyl violet staining, NeuN immunohistochemistry and Fluoro-Jade B histofluorescence staining. c-Fos-immunoreactive cells were observed in cingulate and piriform cortices at 3 days after myocardial infarction and peaked at 7 and 14 days after myocardial infarction. But they were hardly observed at 56 days after myocardial infarction. The chronological change of c-Fos expression determined by western blot analysis was basically the same as that of c-Fos immunoreactivity. These results indicate that myocardial infarction can cause the chronological change of immediate-early response gene c-Fos protein expression, which might be associated with the neural activity induced by myocardial infarction. PMID:26487852

  2. The kinase c-Src and the phosphatase TC45 coordinately regulate c-Fos tyrosine phosphorylation and c-Fos phospholipid synthesis activation capacity.

    PubMed

    Ferrero, G O; Velazquez, F N; Caputto, B L

    2012-07-12

    Our previous work showed that in T98G cells, a human glioblastoma multiforme-derived cell line, the association of c-Fos to the endoplasmic reticulum (ER) and consequently, the capacity of c-Fos to activate phospholipid synthesis, is regulated by the phosphorylation state of tyrosine (tyr) residues #10 and #30 of c-Fos. The small amount of c-Fos present in quiescent cells is tyr-phosphorylated, is dissociated from the ER membranes and does not activate phospholipid synthesis. However, on induction of the cell to re-enter growth, c-Fos expression is rapidly induced, it is found dephosphorylated, associated to ER membranes and activating phospholipid synthesis (Portal et al., 2007). Herein, using in vivo and in vitro experimental strategies, we show that the kinase c-Src is capable of phosphorylating tyr residues of c-Fos whereas the phosphatase TC45 T-cell protein-tyr phosphatase (TC-PTP) dephosphorylates them, thus enabling c-Fos/ER association and activation of phospholipid synthesis. Results also suggest that the regulation of the phosphorylation/dephosphorylation cycle of c-Fos occurs at the TC-PTP level: induction of cells to re-enter growth promotes the translocation of TC45 from a nuclear to a cytoplasmic location concomitant with its activation. Activated TC45 in its turn promotes dephosphorylation of pre-formed c-Fos, enabling cells to rapidly activate phospholipid synthesis to respond to its growth demands. PMID:22105363

  3. C-fos expression in the pons and medulla of the cat during carbachol-induced active sleep.

    PubMed

    Yamuy, J; Mancillas, J R; Morales, F R; Chase, M H

    1993-06-01

    Microinjection of carbachol into the rostral pontine tegmentum of the cat induces a state that is comparable to naturally occurring active (REM, rapid eye movement) sleep. We sought to determine, during this pharmacologically induced behavioral state, which we refer to as active sleep-carbachol, the distribution of activated neuron within the pons and medulla using c-fos immunocytochemistry as a functional marker. Compared with control cats, which were injected with saline, active sleep-carbachol cats exhibited higher numbers of c-fos-expressing neurons in (1) the medial and portions of the lateral reticular formation of the pons and medulla, (2) nuclei in the dorsolateral rostral pons, (3) various raphe nuclei, including the dorsal, central superior, magnus, pallidus, and obscurus, (4) the medial and lateral vestibular, prepositus hypoglossi, and intercalatus nuclei, and (5) the abducens nuclei. On the other hand, the mean number of c-fos-expressing neurons found in the masseter, facial, and hypoglossal nuclei was lower in carbachol-injected than in control cats. The data indicate that c-fos expression can be employed as a marker of state-dependent neuronal activity. The specific sites in which there were greater numbers of c-fos-expressing neurons during active sleep-carbachol are discussed in relation to the state of active sleep, as well as the functional role that these sites play in generating the various physiological patterns of activity that occur during this state. PMID:8501533

  4. MSG-Evoked c-Fos Activity in the Nucleus of the Solitary Tract Is Dependent upon Fluid Delivery and Stimulation Parameters.

    PubMed

    Stratford, Jennifer M; Thompson, John A

    2016-03-01

    The marker of neuronal activation, c-Fos, can be used to visualize spatial patterns of neural activity in response to taste stimulation. Because animals will not voluntarily consume aversive tastes, these stimuli are infused directly into the oral cavity via intraoral cannulae, whereas appetitive stimuli are given in drinking bottles. Differences in these 2 methods make comparison of taste-evoked brain activity between results that utilize these methods problematic. Surprisingly, the intraoral cannulae experimental conditions that produce a similar pattern of c-Fos activity in response to taste stimulation remain unexplored. Stimulation pattern (e.g., constant/intermittent) and hydration state (e.g., water-restricted/hydrated) are the 2 primary differences between delivering tastes via bottles versus intraoral cannulae. Thus, we quantified monosodium glutamate (MSG)-evoked brain activity, as measured by c-Fos, in the nucleus of the solitary tract (nTS; primary taste nucleus) across several conditions. The number and pattern of c-Fos neurons in the nTS of animals that were water-restricted and received a constant infusion of MSG via intraoral cannula most closely mimicked animals that consumed MSG from a bottle. Therefore, in order to compare c-Fos activity between cannulae-stimulated and bottle-stimulated animals, cannulated animals should be water restricted prior to stimulation, and receive taste stimuli at a constant flow. PMID:26762887

  5. Blockade of ENaCs by Amiloride Induces c-Fos Activation of the Area Postrema

    PubMed Central

    Miller, Rebecca L.; Denny, George O.; Knuepfer, Mark M.; Kleyman, Thomas R.; Jackson, Edwin K.; Salkoff, Lawrence B.; Loewy, Arthur D.

    2015-01-01

    Epithelial sodium channels (ENaCs) are strongly expressed in the circumventricular organs (CVOs), and these structures may play an important role in sensing plasma sodium levels. Here, the potent ENaC blocker amiloride was injected intraperitoneally in rats and 2 hours later, the c-Fos activation pattern in the CVOs was studied. Amiloride elicited dose-related activation in the area postrema (AP) but only ~10% of the rats showed c-Fos activity in the organum vasculosum of the lamina terminalis (OVLT) and subfornical organ (SFO). Tyrosine hydroxylase-immunoreactive (catecholamine) AP neurons were activated, but tryptophan hydroxylase-immunoreactive (serotonin) neurons were unaffected. The AP projects to FoxP2-expressing neurons in the dorsolateral pons which include the pre-locus coeruleus nucleus and external lateral part of the parabrachial nucleus; both cell groups were c-Fos activated following systemic injections of amiloride. In contrast, another AP projection target - the aldosterone-sensitive neurons of the nucleus tractus solitarius which express the enzyme 11-β-hydroxysteriod dehydrogenase type 2 (HSD2) were not activated. As shown here, plasma concentrations of amiloride used in these experiments were near or below the IC50 level for ENaCs. Amiloride did not induce changes in blood pressure, heart rate, or regional vascular resistance, so sensory feedback from the cardiovascular system was probably not a causal factor for the c-Fos activity seen in the CVOs. In summary, amiloride may have a dual effect on sodium homeostasis causing a loss of sodium via the kidney and inhibiting sodium appetite by activating the central satiety pathway arising from the AP. PMID:25557402

  6. Neuronal activity (c-Fos) delineating interactions of the cerebral cortex and basal ganglia

    PubMed Central

    Qiu, Mei-Hong; Chen, Michael C.; Huang, Zhi-Li; Lu, Jun

    2014-01-01

    The cerebral cortex and basal ganglia (BG) form a neural circuit that is disrupted in disorders such as Parkinson’s disease. We found that neuronal activity (c-Fos) in the BG followed cortical activity, i.e., high in arousal state and low in sleep state. To determine if cortical activity is necessary for BG activity, we administered atropine to rats to induce a dissociative state resulting in slow-wave electroencephalography but hyperactive motor behaviors. Atropine blocked c-Fos expression in the cortex and BG, despite high c-Fos expression in the sub-cortical arousal neuronal groups and thalamus, indicating that cortical activity is required for BG activation. To identify which glutamate receptors in the BG that mediate cortical inputs, we injected ketamine [N-methyl-d-aspartate (NMDA) receptor antagonist] and 6-cyano-nitroquinoxaline-2, 3-dione (CNQX, a non-NMDA receptor antagonist). Systemic ketamine and CNQX administration revealed that NMDA receptors mediated subthalamic nucleus (STN) input to internal globus pallidus (GPi) and substantia nigra pars reticulata (SNr), while non-NMDA receptor mediated cortical input to the STN. Both types of glutamate receptors were involved in mediating cortical input to the striatum. Dorsal striatal (caudoputamen, CPu) dopamine depletion by 6-hydroxydopamine resulted in reduced activity of the CPu, globus pallidus externa (GPe), and STN but increased activity of the GPi, SNr, and putative layer V neurons in the motor cortex. Our results reveal that the cortical activity is necessary for BG activity and clarifies the pathways and properties of the BG-cortical network and their putative role in the pathophysiology of BG disorders. PMID:24723855

  7. Expression and purification of recombinant human c-Fos/c-Jun that is highly active in DNA binding and transcriptional activation in vitro

    PubMed Central

    Ferguson, Heather A.; Goodrich, James A.

    2001-01-01

    c-Fos and c-Jun are members of the AP-1 family of transcriptional activators that regulate the expression of genes during cell proliferation. To facilitate in vitro studies of mechanisms of transcriptional activation by c-Jun and c-Fos we developed a method for obtaining recombinant c-Fos/c-Jun that is highly active in DNA binding and transcriptional activation in vitro. Full-length human c-Fos and c-Jun were expressed in Escherichia coli. The expression of c-Fos was dependent on a helper plasmid that encodes rare ArgtRNAs. Both over-expressed c-Fos and c-Jun were recovered from inclusion bodies. A c-Fos/c-Jun complex was generated by co-renaturation and purified via a His-tag on the full-length human c-Fos. The resulting c-Fos/c-Jun bound DNA with high affinity and specificity, and activated transcription in a reconstituted human RNA polymerase II transcription system. The availability of active recombinant human c-Fos/c-Jun will allow future biochemical studies of these important transcriptional activators. PMID:11600717

  8. Activation of c-fos gene expression by a kinase-deficient epidermal growth factor receptor.

    PubMed Central

    Eldredge, E R; Korf, G M; Christensen, T A; Connolly, D C; Getz, M J; Maihle, N J

    1994-01-01

    The intrinsic tyrosine kinase activity of the epidermal growth factor receptor (EGFR) has been shown to be responsible for many of the pleiotropic intracellular effects resulting from ligand stimulation [W.S. Chen, C.S. Lazar, M. Poenie, R.Y. Tsien, G.N. Gill, and M.G. Rosenfeld, Nature (London) 328:820-823, 1987; A.M. Honegger, D. Szapary, A. Schmidt, R. Lyall, E. Van Obberghen, T.J. Dull, A. Ulrich, and J. Schlessinger, Mol. Cell. Biol. 7:4568-4571, 1987]. Recently, however, it has been shown that addition of ligand to cells expressing kinase-defective EGFR mutants can result in the phosphorylation of mitogen-activated protein kinase (R. Campos-González and J.R. Glenney, Jr., J. Biol. Chem. 267:14535-14538, 1992; E. Selva, D.L. Raden, and R.J. Davis, J. Biol. Chem. 268:2250-2254, 1993), as well as stimulation of DNA synthesis (K.J. Coker, J.V. Staros, and C.A. Guyer, Proc. Natl. Acad. Sci. USA 91:6967-6971, 1994). Moreover, mitogen-activated protein kinase has been shown to phosphorylate the transcription factor p62TCF in vitro, leading to enhanced ternary complex formation between p62TCF, p67SRF, and the c-fos serum response element (SRE) [H. Gille, A.D. Sharrocks, and P.E. Shaw, Nature (London) 358:414-417, 1992]. On the basis of these observations, we have investigated the possibility that the intrinsic tyrosine kinase activity of the EGFR may not be necessary for transcriptional activation mediated via p62TCF. Here, we demonstrate that a kinase-defective EGFR mutant can signal ligand-induced expression of c-fos protein and that a significant component of this induction appears to be mediated at the transcriptional level. Investigation of transcriptional activation mediated by the c-fos SRE shows that this response is impaired by mutations in the SRE which eliminate binding of p62(TCF). These data indicate that information inherent in the structure of the EGFR can be accessed by ligand stimulation independent of the receptor's catalytic kinase function

  9. Methyl Supplementation Attenuates Cocaine-Seeking Behaviors and Cocaine-Induced c-Fos Activation in a DNA Methylation-Dependent Manner

    PubMed Central

    Wright, Katherine N.; Hollis, Fiona; Duclot, Florian; Dossat, Amanda M.; Strong, Caroline E.; Francis, T. Chase; Mercer, Roger; Feng, Jian; Dietz, David M.; Lobo, Mary Kay; Nestler, Eric J.

    2015-01-01

    Epigenetic mechanisms, such as histone modifications, regulate responsiveness to drugs of abuse, such as cocaine, but relatively little is known about the regulation of addictive-like behaviors by DNA methylation. To investigate the influence of DNA methylation on the locomotor-activating effects of cocaine and on drug-seeking behavior, rats receiving methyl supplementation via chronic l-methionine (MET) underwent either a sensitization regimen of intermittent cocaine injections or intravenous self-administration of cocaine, followed by cue-induced and drug-primed reinstatement. MET blocked sensitization to the locomotor-activating effects of cocaine and attenuated drug-primed reinstatement, with no effect on cue-induced reinstatement or sucrose self-administration and reinstatement. Furthermore, upregulation of DNA methyltransferase 3a and 3b and global DNA hypomethylation were observed in the nucleus accumbens core (NAc), but not in the medial prefrontal cortex (mPFC), of cocaine-pretreated rats. Glutamatergic projections from the mPFC to the NAc are critically involved in the regulation of cocaine-primed reinstatement, and activation of both brain regions is seen in human addicts when reexposed to the drug. When compared with vehicle-pretreated rats, the immediate early gene c-Fos (a marker of neuronal activation) was upregulated in the NAc and mPFC of cocaine-pretreated rats after cocaine-primed reinstatement, and chronic MET treatment blocked its induction in both regions. Cocaine-induced c-Fos expression in the NAc was associated with reduced methylation at CpG dinucleotides in the c-Fos gene promoter, effects reversed by MET treatment. Overall, these data suggest that drug-seeking behaviors are, in part, attributable to a DNA methylation-dependent process, likely occurring at specific gene loci (e.g., c-Fos) in the reward pathway. PMID:26063926

  10. Methyl supplementation attenuates cocaine-seeking behaviors and cocaine-induced c-Fos activation in a DNA methylation-dependent manner.

    PubMed

    Wright, Katherine N; Hollis, Fiona; Duclot, Florian; Dossat, Amanda M; Strong, Caroline E; Francis, T Chase; Mercer, Roger; Feng, Jian; Dietz, David M; Lobo, Mary Kay; Nestler, Eric J; Kabbaj, Mohamed

    2015-06-10

    Epigenetic mechanisms, such as histone modifications, regulate responsiveness to drugs of abuse, such as cocaine, but relatively little is known about the regulation of addictive-like behaviors by DNA methylation. To investigate the influence of DNA methylation on the locomotor-activating effects of cocaine and on drug-seeking behavior, rats receiving methyl supplementation via chronic l-methionine (MET) underwent either a sensitization regimen of intermittent cocaine injections or intravenous self-administration of cocaine, followed by cue-induced and drug-primed reinstatement. MET blocked sensitization to the locomotor-activating effects of cocaine and attenuated drug-primed reinstatement, with no effect on cue-induced reinstatement or sucrose self-administration and reinstatement. Furthermore, upregulation of DNA methyltransferase 3a and 3b and global DNA hypomethylation were observed in the nucleus accumbens core (NAc), but not in the medial prefrontal cortex (mPFC), of cocaine-pretreated rats. Glutamatergic projections from the mPFC to the NAc are critically involved in the regulation of cocaine-primed reinstatement, and activation of both brain regions is seen in human addicts when reexposed to the drug. When compared with vehicle-pretreated rats, the immediate early gene c-Fos (a marker of neuronal activation) was upregulated in the NAc and mPFC of cocaine-pretreated rats after cocaine-primed reinstatement, and chronic MET treatment blocked its induction in both regions. Cocaine-induced c-Fos expression in the NAc was associated with reduced methylation at CpG dinucleotides in the c-Fos gene promoter, effects reversed by MET treatment. Overall, these data suggest that drug-seeking behaviors are, in part, attributable to a DNA methylation-dependent process, likely occurring at specific gene loci (e.g., c-Fos) in the reward pathway. PMID:26063926

  11. c-fos expression in brainstem premotor interneurons during cholinergically induced active sleep in the cat.

    PubMed

    Morales, F R; Sampogna, S; Yamuy, J; Chase, M H

    1999-11-01

    The present study was undertaken to identify trigeminal premotor interneurons that become activated during carbachol-induced active sleep (c-AS). Their identification is a critical step in determining the neural circuits responsible for the atonia of active sleep. Accordingly, the retrograde tracer cholera toxin subunit B (CTb) was injected into the trigeminal motor nuclei complex to label trigeminal interneurons. To identify retrograde-labeled activated neurons, immunocytochemical techniques, designed to label the Fos protein, were used. Double-labeled (i.e., CTb(+), Fos(+)) neurons were found exclusively in the ventral portion of the medullary reticular formation, medial to the facial motor nucleus and lateral to the inferior olive. This region, which encompasses the ventral portion of the nucleus reticularis gigantocellularis and the nucleus magnocellularis, corresponds to the rostral portion of the classic inhibitory region of. This region contained a mean of 606 +/- 41.5 ipsilateral and 90 +/- 32.0 contralateral, CTb-labeled neurons. These cells were of medium-size with an average soma diameter of 20-35 micrometer. Approximately 55% of the retrogradely labeled cells expressed c-fos during a prolonged episode of c-AS. We propose that these neurons are the interneurons responsible for the nonreciprocal postsynaptic inhibition of trigeminal motoneurons that occurs during active sleep. PMID:10531453

  12. Activation of the c-fos gene in prodynorphin- and proenkephalin-expressing cells of nucleus tractus solitarius after seizures.

    PubMed

    Kanter, R K; Erickson, J T; Millhorn, D E

    1994-10-01

    We performed studies to determine the anatomical regions and chemical phenotypes of neurons within the rat medulla oblongata activated by pentylenetetrazole-induced seizures. Activated cells were identified by their expression of the c-fos gene, detected by in situ hybridization for c-fos mRNA and immunocytochemistry for Fos protein. Activated cells were located predominantly in nucleus tractus solitarius (NTS), with c-fos mRNA appearing within 20 min after seizures (peak at 1-2 h), followed by Fos immunoreactivity visible at 1 h (peak at 2-4 h). Neither nonspecific noxious stimulation by intraperitoneal injection of saline nor brief exposure to hypoxic or hypercapnic gas mixtures to stimulate chemoreceptors reproduced this pattern of labeling. Prodynorphin or proenkephalin mRNA, detected by in situ hybridization, was colocalized with Fos immunoreactivity in many NTS cells. Thus, seizures activate neuronal pathways in the medulla oblongata which express genes for endogenous opioids. Potential long-term effects of seizures are suggested by the in situ hybridization finding that NTS prodynorphin mRNA increased 24 h after seizures compared to control levels. PMID:7957742

  13. Intracranial self-stimulation facilitates active-avoidance retention and induces expression of c-Fos and Nurr1 in rat brain memory systems.

    PubMed

    Aldavert-Vera, Laura; Huguet, Gemma; Costa-Miserachs, David; Ortiz, Sandra Pena de; Kádár, Elisabeth; Morgado-Bernal, Ignacio; Segura-Torres, Pilar

    2013-08-01

    Intracranial self-stimulation (ICSS), a special form of deep brain stimulation in which subjects self-administered electrical stimulation in brain reward areas as the lateral hypothalamus, facilitates learning and memory in a wide variety of tasks. Assuming that ICSS improves learning and memory increasing the activation of memory-related brain areas, the present work examined whether rats receiving an ICSS treatment immediately after the acquisition session of a two-way active avoidance conditioning (TWAA) show both an improved retention and a pattern of increased c-Fos and Nurr1 protein expression in the amygdala, hippocampus, dorsal striatum and/or lateral hypothalamus. The response of both activity-induced IEGs to ICSS was examined not only as markers of neural activation, but because of their reported role in the neural plasticity occurring during learning and memory formation. Results showed that the TWAA conditioning alone increased the expression of the two analysed IEGs in several hippocampal areas, and TWAA retention increased Nurr1 expression in amygdala. ICSS treatment increased the number of c-Fos and Nurr1 positive cells in almost all the brain regions studied when it was measured 70min, but not 48h, after the stimulation. Post-training ICSS treatment, as expected, facilitated the 48h retention of the conditioning. It is noteworthy that in CA3 conditioning and ICSS separately increased c-Fos expression, but this increasing was greater when both, conditioning and ICSS, were combined. Present results suggest that rapid and transient increased expression of these two synaptic plasticity and memory related IEGs in some hippocampal areas, such as CA3, could mediate the facilitative effects of ICSS on learning and memory consolidation. PMID:23624190

  14. Physical interaction of the activator protein-1 factors c-Fos and c-Jun with Cbfa1 for collagenase-3 promoter activation

    NASA Technical Reports Server (NTRS)

    D'Alonzo, Richard C.; Selvamurugan, Nagarajan; Karsenty, Gerard; Partridge, Nicola C.

    2002-01-01

    Previously, we determined that the activator protein-1 (AP-1)-binding site and the runt domain (RD)-binding site and their binding proteins, c-Fos.c-Jun and Cbfa, regulate the collagenase-3 promoter in parathyroid hormone-treated and differentiating osteoblasts. Here we show that Cbfa1 and c-Fos.c-Jun appear to cooperatively bind the RD- and AP-1-binding sites and form ternary structures in vitro. Both in vitro and in vivo co-immunoprecipitation and yeast two-hybrid studies further demonstrate interaction between Cbfa1 with c-Fos and c-Jun in the absence of phosphorylation and without binding to DNA. Additionally, only the runt domain of Cbfa1 was required for interaction with c-Jun and c-Fos. In mammalian cells, overexpression of Cbfa1 enhanced c-Jun activation of AP-1-binding site promoter activity, demonstrating functional interaction. Finally, insertion of base pairs that disrupted the helical phasing between the AP-1- and RD-binding sites also inhibited collagenase-3 promoter activation. Thus, we provide direct evidence that Cbfa1 and c-Fos.c-Jun physically interact and cooperatively bind the AP-1- and RD-binding sites in the collagenase-3 promoter. Moreover, the AP-1- and RD-binding sites appear to be organized in a specific required helical arrangement that facilitates transcription factor interaction and enables promoter activation.

  15. The Role of JNK and p38 MAPK Activities in UVA-Induced Signaling Pathways Leading to AP-1 Activation and c-Fos Expression1

    PubMed Central

    Silvers, Amy L; Bachelor, Michael A; Bowden, G Timothy

    2003-01-01

    Abstract To further delineate ultraviolet A (UVA) signaling pathways in the human keratinocyte cell line HaCaT, we examined the potential role of mitogen-activated protein kinases (MAPKs) in UVA-induced activator protein-1 (AP-1) transactivation and c-Fos expression. UVA-induced phosphorylation of p38 and c-Jun N-terminal kinase (JNK) proteins was detected immediately after irradiation and disappeared after approximately 2 hours. Conversely, phosphorylation of extracellular signal-regulated kinase was significantly inhibited for up to 1 hour post-UVA irradiation. To examine the role of p38 and JNK MAPKs in UVA-induced AP-1 and c-fos transactivations, the selective pharmacologic MAPK inhibitors, SB202190 (p38 inhibitor) and SP600125 (JNK inhibitor), were used to independently treat stably transfected HaCaT cells in luciferase reporter assays. Both SB202190 and SP600125 dose-dependently inhibited UVA-induced AP-1 and c-fos transactivations. SB202190 (0.25–0.5 µM) and SP600125 (62–125 nM) treatments also primarily inhibited UVA-induced c-Fos expression. These results demonstrated that activation of both JNK and p38 play critical role in UVA-mediated AP-1 transactivation and c-Fos expression in these human keratinocyte cells. Targeted inhibition of these MAPKs with their selective pharmacologic inhibitors may be effective chemopreventive strategies for UVA-induced nonmelanoma skin cancer. PMID:14511403

  16. Neurotoxic effects of nickel chloride in the rainbow trout brain: Assessment of c-Fos activity, antioxidant responses, acetylcholinesterase activity, and histopathological changes.

    PubMed

    Topal, Ahmet; Atamanalp, Muhammed; Oruç, Ertan; Halıcı, Mesut Bünyami; Şişecioğlu, Melda; Erol, Hüseyin Serkan; Gergit, Arzu; Yılmaz, Bahar

    2015-06-01

    The aim of this study was to determine the biochemical, immunohistochemical, and histopathological effects of nickel chloride (Ni) in the rainbow trout brain. Fish were exposed to Ni concentrations (1 mg/L and 2 mg/L) for 21 days. At the end of the experimental period, brain tissues were taken from all fish for c-Fos activity and histopathological examination and determination of acetylcholinesterase (AChE), superoxide dismutase (SOD), catalase (CAT) enzyme activities, lipid peroxidation (LPO), and glutathione (GSH) levels. Our results showed that Ni treatment caused a significant increase in the brain SOD activity and in LPO and GSH levels (p < 0.05), but it significantly decreased AChE and CAT enzyme activities (p < 0.05). Strong induction in c-Fos was observed in some cerebral and cerebellar regions of fish exposed to Ni concentrations when compared with the control group. However, c-Fos activity was decreased in necrotic Purkinje cells. Brain tissues were characterized by demyelination and necrotic changes. These results suggested that Ni treatment causes oxidative stress, changes in c-Fos activity, and histopathological damage in the fish brain. PMID:25666867

  17. Cathinone increases body temperature, enhances locomotor activity, and induces striatal c-fos expression in the Siberian hamster.

    PubMed

    Jones, S; Fileccia, E L; Murphy, M; Fowler, M J; King, M V; Shortall, S E; Wigmore, P M; Green, A R; Fone, K C F; Ebling, F J P

    2014-01-24

    Cathinone is a β-keto alkaloid that is the major active constituent of khat, the leaf of the Catha edulis plant that is chewed recreationally in East Africa and the Middle East. Related compounds, such as methcathinone and mephedrone have been increasing in popularity as recreational drugs, resulting in the recent proposal to classify khat as a Class C drug in the UK. There is still limited knowledge of the pharmacological effects of cathinone. This study examined the acute effects of cathinone on core body temperature, locomotor and other behaviors, and neuronal activity in Siberian hamsters. Adult male hamsters, previously implanted with radio telemetry devices, were treated with cathinone (2 or 5mg/kg i.p.), the behavioral profile scored and core body temperature and locomotor activity recorded by radio telemetry. At the end of the study, hamsters received vehicle or cathinone (5mg/kg) and neuronal activation in the brain was determined using immunohistochemical evaluation of c-fos expression. Cathinone dose-dependently induced significant (p<0.0001) increases in both temperature and locomotor activity lasting 60-90min. Cathinone (2mg/kg) increased rearing (p<0.02), and 5mg/kg increased both rearing (p<0.001) and lateral head twitches (p<0.02). Both cathinone doses decreased the time spent at rest (p<0.001). The number of c-fos immunopositive cells were significantly increased in the striatum (p<0.0001) and suprachiasmatic nucleus (p<0.05) following cathinone, indicating increased neuronal activity. There was no effect of cathinone on food intake or body weight. It is concluded that systemic administration of cathinone induces significant behavioral changes and CNS activation in the hamster. PMID:24287379

  18. c-Fos Protects Neurons Through a Noncanonical Mechanism Involving HDAC3 Interaction: Identification of a 21-Amino Acid Fragment with Neuroprotective Activity.

    PubMed

    Rawat, Varun; Goux, Warren; Piechaczyk, Marc; D'Mello, Santosh R

    2016-03-01

    Proteins belonging to the AP-1 family of transcription factors are known to be involved in the regulation of neuronal viability. While strides have been made to elucidate the mechanisms of how individual members regulate cell death, much remains unknown. We find that the expression of one AP-1 member, c-Fos, is reduced in cerebellar granule neurons (CGNs) induced to die by low potassium (LK) treatment. Restoration and increase of this expression protect CGNs against LK-induced death, whereas knockdown induces death of otherwise healthy neurons. Furthermore, forced expression can protect cortical neurons against homocysteic acid (HCA)-induced toxicity. Taken together, this suggests that c-Fos is necessary for neuronal survival and that elevating c-Fos expression has a neuroprotective effect. Consistent with this idea is the finding that c-Fos expression is reduced selectively in the striatum in two separate mouse models of Huntington's disease and forced expression protects against neuronal death resulting from mutant huntingtin (mut-Htt) expression. Interestingly, neuroprotection by c-Fos does not require its DNA-binding, transcriptional, or heteromerization domains. However, this protective activity can be inhibited by pharmacological inhibition of c-Abl, CK-I, and MEK-ERK signaling. Additionally, expression of point mutant forms of this protein has identified that mutation of a tyrosine residue, Tyr345, can convert c-Fos from neuroprotective to neurotoxic. We show that c-Fos interacts with histone deacetylase-3 (HDAC3), a protein that contributes to mut-Htt neurotoxicity and whose overexpression is sufficient to promote neuronal death. When co-expressed, c-Fos can protect against HDAC3 neurotoxicity. Finally, our study identifies a 21-amino acid region at the C-terminus of c-Fos that is sufficient to protect neurons against death induced by LK, HCA treatment, or mut-Htt expression when expressed via a plasmid transfection or as a cell-permeable peptide. This cell

  19. GABAergic neurons of the cat dorsal raphe nucleus express c-fos during carbachol-induced active sleep.

    PubMed

    Torterolo, P; Yamuy, J; Sampogna, S; Morales, F R; Chase, M H

    2000-11-24

    Serotonergic neurons of the dorsal raphe nucleus (DRN) cease firing during active sleep (AS, also called rapid-eye-movement sleep). This cessation of electrical activity is believed to play a 'permissive' role in the generation of AS. In the present study we explored the possibility that GABAergic cells in the DRN are involved in the suppression of serotonergic activity during AS. Accordingly, we examined whether immunocytochemically identified GABAergic neurons in the DRN were activated, as indicated by their expression of c-fos, during carbachol-induced AS (AS-carbachol). Three chronically-prepared cats were euthanized after prolonged episodes of AS that was induced by microinjections of carbachol into the nucleus pontis oralis. Another four cats (controls) were maintained 2 h in quiet wakefulness before being euthanized. Thereafter, immunocytochemical studies were performed on brainstem sections utilizing antibodies against Fos, GABA and serotonin. When compared with identically prepared tissue from awake cats, the number of Fos+ neurons was larger in the DRN during AS-carbachol (35.9+/-5.6 vs. 13.9+/-4.4, P<0.05). Furthermore, a larger number of GABA+ Fos+ neurons were observed during AS-carbachol than during wakefulness (24.8+/-3.3 vs. 4.0+/-1.0, P<0.001). These GABA+ Fos+ neurons were distributed asymmetrically with a larger number located ipsilaterally to the site of injection. There was no significant difference between control and experimental animals in the number of non-GABAergic neurons that expressed c-fos in the DRN. We therefore suggest that activated GABAergic neurons of the DRN are responsible for the inhibition of serotonergic neurons that occurs during natural AS. PMID:11082488

  20. Medial prefrontal cortex neuronal activation and synaptic alterations after stress-induced reinstatement of palatable food seeking: a study using c-fos-GFP transgenic female rats

    PubMed Central

    Cifani, Carlo; Koya, Eisuke; Navarre, Brittany M.; Calu, Donna J.; Baumann, Michael H.; Marchant, Nathan J.; Liu, Qing-Rong; Khuc, Thi; Pickel, James; Lupica, Carl R.; Shaham, Yavin; Hope, Bruce T.

    2012-01-01

    Relapse to maladaptive eating habits during dieting is often provoked by stress and there is evidence for a role of ovarian hormones in stress responses and feeding. We studied the role of these hormones in stress-induced reinstatement of food seeking and medial prefrontal cortex (mPFC) neuronal activation in c-fos-GFP transgenic female rats, which express green fluorescent protein (GFP) in strongly activated neurons. Food-restricted ovariectomized or sham-operated c-fos-GFP rats were trained to lever-press for palatable food pellets. Subsequently, lever-pressing was extinguished and reinstatement of food seeking and mPFC neuronal activation was assessed after injections of the pharmacological stressor yohimbine (0.5–2 mg/kg) or pellet priming (1–4 non-contingent pellets). Estrous cycle effects on reinstatement were also assessed in wild-type rats. Yohimbine- and pellet-priming-induced reinstatement was associated with Fos and GFP induction in mPFC; both reinstatement and neuronal activation were minimally affected by ovarian hormones in both c-fos-GFP and wild-type rats. c-fos-GFP transgenic rats were then used to assess glutamatergic synaptic alterations within activated GFP-positive and non-activated GFP-negative mPFC neurons following yohimbine-induced reinstatement of food seeking. This reinstatement was associated with reduced AMPAR/NMDAR current ratios and increased paired-pulse facilitation in activated GFP-positive but not GFP-negative neurons. Together, while ovarian hormones do not appear to play a role in stress-induced relapse of food seeking in our rat model, this reinstatement was associated with unique synaptic alterations in strongly activated mPFC neurons. Our paper introduces the c-fos-GFP transgenic rat as a new tool to study unique synaptic changes in activated neurons during behavior. PMID:22723688

  1. Contact with infants modulates anxiety-generated c-fos activity in the brains of postpartum rats

    PubMed Central

    Smith, Carl D.; Lonstein, Joseph S.

    2010-01-01

    The postpartum period is associated with many behavioral changes, including a reduction in anxiety, which is thought to be necessary for mothers’ ability to appropriately care for infants. In laboratory rats, this reduction in anxiety requires recent contact with pups, but areas of the brain where infant contact influences neural activity to reduce anxiety are mostly unknown. We examined c-fos expression in lactating rats whose pups were removed for 4 hours to increase mothers’ anxiety, or not removed to maintain low anxiety in mothers, followed by exposure to the anxiogenic stimuli of either brief handling or handling followed by exposure to an elevated plus maze. Control animals had their litters removed or not, but no further stimulation. A large number of neural sites traditionally implicated in regulating anxiety in male rats were examined, and similar to what is found in male rats, most showed increased Fos expression after handling and/or elevated plus-maze exposure. Litter presence before testing affected Fos expression due to handling or elevated plus-maze exposure only in the ventral bed nucleus of the stria terminalis, dorsal and ventral preoptic area, ventromedial hypothalamus, lateral habenula, and supramammillary nucleus. Contrary to expectations, prior litter presence was associated with more Fos expression in most of these sites after handling and/or elevated plus maze stimulation, and only after such stimulation. These sites may be of particular importance for how sensory inputs from infants modulate anxiety and other mood states during the postpartum period. PMID:18374995

  2. The changes of c-Fos expression by motor cortex stimulation in the deafferentation pain model.

    PubMed

    Kudo, Kanae; Takahashi, Toshio; Suzuki, Shigeharu

    2014-01-01

    The effect of motor cortex stimulation (MCS) therapy for deafferentation pain was evaluated based on c-Fos, a known pain marker. Nineteen mature cats weighing 1.5-3.5 kg were used. Cats were divided into three groups: a deafferentation pain group in which the left trigeminal ganglion was destroyed, an MCS group in which MCS was used following destruction of the trigeminal ganglion, and a control group. Sites and levels of c-Fos expression were examined immunohistochemically. The percentage of c-Fos-positive cells in the left spinal nucleus of the trigeminus, the bilateral insula, and the bilateral operculum increased in both the deafferentation pain and the MCS groups. There were no statistically significant differences between these groups. In the cingulate gyrus, the percentage of c-Fos-positive cells increased bilaterally in the deafferentation pain group and the MCS group, but the increase was greater in the MCS group. The increase in c-Fos-positive cells in the left spinal nucleus of the trigeminus in the deafferentation group may reflect reported electrical hyperactivity. The cingulate gyrus, insula, and parietal operculum were activated after deafferentation. This change (increase in c-Fos positive cells) is related to the development of deafferentation pain. Pain relief due to MCS is not dependent on the suppression of the activated left spinal nucleus of the trigeminus or the descending analgesic mechanism of the brain stem. Activation of the cingulate gyrus appears to be a factor in the analgesic mechanism of MCS. PMID:24965534

  3. c-fos Expression in mesopontine noradrenergic and cholinergic neurons of the cat during carbachol-induced active sleep: a double-labeling study.

    PubMed

    Yamuy, J; Sampogna, S; Morales, F R; Chase, M H

    1998-01-01

    The interaction of cholinergic and catecholaminergic mechanisms in the mesopontine region has been hypothesized as being critical for the generation and maintenance of active (REM) sleep. To further examine this hypothesis, we sought to determine the pattern of neuronal activation (via c-fos expression) of catecholaminergic and cholinergic neurons in this region during active sleep induced by the pontine microapplication of carbachol (designated as active sleep-carbachol). Accordingly, we used two sets of double-labeling techniques; the first to identify tyrosine hydroxylase-containing neurons (putative catecholaminergic cells) which also express the c-fos protein product Fos, and the second to reveal choline acetyltransferase-containing neurons (putative cholinergic cells) which also express Fos. Compared to control cats, active sleep-carbachol cats exhibited a significantly greater number of Fos-expressing neurons in the dorsolateral region of the pons, which encompasses the locus coeruleus, the lateral pontine reticular formation, the peribrachial nuclei and the latero-dorsal and pedunculo-pontine tegmental nuclei. However, both control and active sleep-carbachol cats exhibited a similar number of catecholaminergic and cholinergic neurons in those regions that expressed Fos (i.e., double-labeled cells). A large number of c-fos-expressing neurons in the active sleep-carbachol cats whose neurotransmitter phenotype was not identified suggests that non-catecholaminergic, non-cholinergic neuronal populations in mesopontine regions are involved in the generation and maintenance of active sleep. The lack of increased c-fos expression in catecholaminergic neurons during active sleep-carbachol confirms and extends previous data that indicate that these cells are silent during active sleep-carbachol and naturally-occurring active sleep. The finding that cholinergic neurons of the dorsolateral pons were not activated either during wakefulness or active sleep

  4. Spatial and Temporal Activation of Brain Regions in Hibernation: c-fos Expression during the Hibernation Bout in Thirteen-Lined Ground Squirrel

    PubMed Central

    BRATINCSÁK, ANDRÁS; McMULLEN, DAVID; MIYAKE, SHINICHI; TÓTH, ZSUZSANNA E.; HALLENBECK, JOHN M.; PALKOVITS, MIKLÓS

    2009-01-01

    Hibernation results in dramatic changes in body temperature and metabolism; however, the central nervous system remains active during deep torpor. By cloning c-fos cDNA from the 13-lined ground squirrel (Spermophilus tridecemlineatus) and using squirrel c-fos mRNA probe for in situ hybridization histochemistry, we systematically analyzed and identified specific brain regions that were activated during six different phases of the hibernation bout. During entrance into torpor, we detected activation of the ventrolateral subdivision of the medial preoptic area (‘thermoregulatory center’), and the reticular thalamic nucleus, which is known to inhibit the somatomotor cortex. During torpor, c-fos expression in the cortex was suppressed while the reticular thalamic nucleus remained uniformly active. Throughout torpor the suprachiasmatic nucleus (‘biological clock’) showed increasing activity, likely participating in phase-change regulation of the hibernation bout. Interestingly, during torpor very strong c-fos activation was seen in the epithelial cells of the choroid plexus and in tanycytes at the third ventricle, both peaking near the beginning of arousal. In arousal, activity of the suprachiasmatic and reticular thalamic nuclei and choroid epithelial cells diminished, while ependymal cells in the lateral and fourth ventricles showed stronger activity. Increasing body temperature during arousal was driven by the activation of neurons in the medial part of the preoptic area. In interbout awake animals, we demonstrated the activation of hypothalamic neurons located in the arcuate nucleus and the dorsolateral hypothalamus, areas involved in food intake. Our observations indicate that the hibernation bout is closely regulated and orchestrated by specific regions of the central nervous system. PMID:17912746

  5. GABAergic neurons of the laterodorsal and pedunculopontine tegmental nuclei of the cat express c-fos during carbachol-induced active sleep.

    PubMed

    Torterolo, P; Yamuy, J; Sampogna, S; Morales, F R; Chase, M H

    2001-02-23

    The laterodorsal and pedunculopontine tegmental nuclei (LDT-PPT) are involved in the generation of active sleep (AS; also called REM or rapid eye movement sleep). Although the LDT-PPT are composed principally of cholinergic neurons that participate in the control of sleep and waking states, the function of the large number of GABAergic neurons that are also located in the LDT-PPT is unknown. Consequently, we sought to determine if these neurons are activated (as indicated by their c-fos expression) during active sleep induced by the microinjection of carbachol into the rostro-dorsal pons (AS-carbachol). Accordingly, immunocytochemical double-labeling techniques were used to identify GABA and Fos protein, as well as choline acetyltransferase (ChAT), in histological sections of the LDT-PPT. Compared to control awake cats, there was a larger number of GABAergic neurons that expressed c-fos during AS-carbachol (31.5+/-6.1 vs. 112+/-15.2, P<0.005). This increase in the number of GABA+Fos+ neurons occurred on the ipsilateral side relative to the injection site; there was a small decrease in GABA+Fos+ cells in the contralateral LDT-PPT. However, the LDT-PPT neurons that exhibited the largest increase in c-fos expression during AS-carbachol were neither GABA+ nor ChAT+ (47+/-22.5 vs. 228.7+/-14.0, P<0.0005). The number of cholinergic neurons that expressed c-fos during AS-carbachol was not significantly different compared to wakefulness. These data demonstrate that, during AS-carbachol, GABAergic as well as an unidentified population of neurons are activated in the LDT-PPT. We propose that these non-cholinergic LDT-PPT neurons may participate in the regulation of active sleep. PMID:11172778

  6. Expression of c-fos gene in central nervous system of adult medaka (Oryzias latipes) after hypergravity stimulation

    NASA Astrophysics Data System (ADS)

    Shimomura, S.; Ijiri, K.

    The immediate-early genes serve as useful neurobiological tools for mapping brain activity induced by a sensory stimulation. In this study, we have examined brain activity related to gravity perception of medaka (Oryzias latipes) by use of c-fos. The gene, which is homologous to the c-fos genes of other vertebrates, was identified in medaka. Functionally important domains are highly conserved among all the vertebrate species analyzed. Intraperitoneal administration of kainic acid transiently induced the c-fos mRNAs in medaka brain. The results indicate that the expression of c-fos can be utilized as a suitable anatomical marker for the increased neural activities in the central nervous system of medaka. Fish were continuously exposed to 3G hypergravity by centrifugation. Investigation of c-fos mRNA expression showed that c-fos mRNA significantly increased 30 minutes after a start of 3G exposure. The distribution of its transcripts within brains was analyzed by an in situ hybridization method. The 3G-treated medakas displayed c-fos positive cells in their brainstem regions, which are related to vestibular function, such as torus semicircularis, posterior octavu nucleus, nucleus tangentialis and inferior olive. Our results established the method to trace the activated area in the fish brain following gravity stimulation. The method will be a useful tool for understanding gravity perception in the brain.

  7. Insulin-stimulated expression of c-fos, fra1 and c-jun accompanies the activation of the activator protein-1 (AP-1) transcriptional complex.

    PubMed Central

    Griffiths, M R; Black, E J; Culbert, A A; Dickens, M; Shaw, P E; Gillespie, D A; Tavaré, J M

    1998-01-01

    The activator protein-1 (AP-1) transcriptional complex is made up of members of the Fos (c-Fos, FosB, Fra1, Fra2) and Jun (c-Jun, JunB, JunD) families and is stimulated by insulin in several cell types. The mechanism by which insulin activates this complex is not well understood but it is dependent on the activation of the Erk1 and Erk2 isoforms of mitogen-activated protein kinases. In the current study we show that the AP-1 complex isolated from insulin-stimulated cells contained c-Fos, Fra1, c-Jun and JunB. The activation of the AP-1 complex by insulin was accompanied by (i) a transient increase in c-fos expression, and the transactivation of the ternary complex factors Elk1 and Sap1a, in an Erk1/Erk2-dependent fashion; (ii) a substantial increase in the expression of Fra1 protein and mRNA, which was preceded by a transient decrease in its electrophoretic mobility upon SDS/PAGE, indicative of phosphorylation; and (iii) a sustained increase in c-jun expression without increasing c-Jun phosphorylation on serines 63 and 73 or activation of the stress-activated kinase JNK/SAPK. In conclusion, insulin appears to stimulate the activity of the AP-1 complex primarily through a change in the abundance of the components of this complex, although there may be an additional role for Fra1 phosphorylation. PMID:9742208

  8. Parthenolide inhibits osteoclast differentiation and bone resorbing activity by down-regulation of NFATc1 induction and c-Fos stability, during RANKL-mediated osteoclastogenesis

    PubMed Central

    Kim, Ju-Young; Cheon, Yoon-Hee; Yoon, Kwon-Ha; Lee, Myeung Su; Oh, Jaemin

    2014-01-01

    Parthenolide, a natural product derived from Feverfew, prevents septic shock and inflammation. We aimed to identify the effects of parthenolide on the RANKL (receptor activator of NF-κB ligand)-induced differentiation and bone resorbing activity of osteoclasts. In this study, parthenolide dose-dependently inhibited RANKL-mediated osteoclast differentiation in BMMs, without any evidence of cytotoxicity and the phosphorylation of p38, ERK, and IκB, as well as IκB degradation by RANKL treatment. Parthenolide suppressed the expression of NFATc1, OSCAR, TRAP, DC-STAMP, and cathepsin K in RANKL-treated BMMs. Furthermore, parthenolide down-regulated the stability of c-Fos protein, but could not suppress the expression of c-Fos. Overexpression of NFATc1 and c-Fos in BMMs reversed the inhibitory effect of parthenolide on RANKL-mediated osteoclast differentiation. Parthenolide also inhibited the bone resorbing activity of mature osteoclasts. Parthenolide inhibits the differentiation and bone-resolving activity of osteoclast by RANKL, suggesting its potential therapeutic value for bone destructive disorders associated with osteoclast-mediated bone resorption. [BMB Reports 2014; 47(8): 451-456] PMID:24314143

  9. LukS-PV induces differentiation by activating the ERK signaling pathway and c-JUN/c-FOS in human acute myeloid leukemia cells.

    PubMed

    Dai, Chunyang; Zhang, Chengfang; Sun, Xiaoxi; Pan, Qing; Peng, Jing; Shen, Jilong; Ma, Xiaoling

    2016-07-01

    LukS-PV, a component of Panton-Valentine leukocidin, is a pore-forming cytotoxin secreted by Staphylococcus aureus. Here we examined the potential effect of LukS-PV in differentiation of human leukemia cells and the underlying mechanism. We found that LukS-PV could induce differentiation of human acute myeloid leukemia (AML) cells, including AML cell lines and primary AML blasts, as determined by morphological changes, phagocytosis assay and expression of CD14 and CD11b surface antigens. In addition, LukS-PV activated the extracellular signal-regulated kinase (ERK) pathway and significantly upregulated the phosphorylation of c-JUN and c-FOS transcriptional factors in the process of differentiation. Inhibiting ERK pathway activation with U0126 (a MEK1/2 inhibitor) markedly blocked LukS-PV-induced differentiation and decreased the phosphorylation of c-JUN and c-FOS. These findings demonstrate an essential role for the ERK pathway together with c-JUN and c-FOS in the differentiation activity of LukS-PV. Taken together, our data suggest that LukS-PV could be a potential candidate as a differentiation-inducing agent for the therapeutic treatment of AML. PMID:27102414

  10. Housing condition-related changes involved in reversal learning and its c-Fos associated activity in the prefrontal cortex.

    PubMed

    Sampedro-Piquero, P; Zancada-Menendez, C; Begega, A

    2015-10-29

    Our study examined how different housing conditions modulated the acquisition of a spatial reference memory task and also, a reversal task in the 4-radial arm water maze (4-RAWM). The animals were randomly assigned to standard or enriched cages, and, as a type of complementary stimulation along with the environmental enrichment (EE), a group of rats also ran 15 min/day in a Rotarod. Elevated-zero maze results allowed us to discard that our exercise training increased anxiety-related behaviors. 4-RAWM results revealed that the non-enriched group had a worse performance during the acquisition and also, during the first trial of each session with respect to the enriched groups. Regarding the reversal task, this group made more perseverative errors in the previous platform position. Interestingly, we hardly found differences between the two enriched groups (with and without exercise). We also analyzed how the reversal learning, depending on the previous housing condition, modulated the expression of c-Fos-positive nuclei in different subdivisions of the medial prefrontal cortex (cingulate (Cg), prelimbic (PL) and infralimbic (IL) cortices) and in the orbitofrontal (OF) cortex. The enriched groups had higher c-Fos expression in the Cg and OF cortices and lower in the IL cortex respect to the non-enriched animals. In the PL cortex, we did not find significant differences between the groups that performed the reversal task. Therefore, our short EE protocol improved the performance in a spatial memory and a reversal task, whereas the exercise training, combined with the EE, did not produce a greater benefit. This better performance seemed to be related with the specific pattern of c-Fos expression in brain regions involved in cognitive flexibility. PMID:26314630

  11. Simultaneous Detection of c-Fos Activation from Mesolimbic and Mesocortical Dopamine Reward Sites Following Naive Sugar and Fat Ingestion in Rats.

    PubMed

    Dela Cruz, Julie A D; Coke, Tricia; Bodnar, Richard J

    2016-01-01

    This study uses cellular c-fos activation to assess effects of novel ingestion of fat and sugar on brain dopamine (DA) pathways in rats. Intakes of sugars and fats are mediated by their innate attractions as well as learned preferences. Brain dopamine, especially meso-limbic and meso-cortical projections from the ventral tegmental area (VTA), has been implicated in both of these unlearned and learned responses. The concept of distributed brain networks, wherein several sites and transmitter/peptide systems interact, has been proposed to mediate palatable food intake, but there is limited evidence empirically demonstrating such actions. Thus, sugar intake elicits DA release and increases c-fos-like immunoreactivity (FLI) from individual VTA DA projection zones including the nucleus accumbens (NAC), amygdala (AMY) and medial prefrontal cortex (mPFC) as well as the dorsal striatum. Further, central administration of selective DA receptor antagonists into these sites differentially reduce acquisition and expression of conditioned flavor preferences elicited by sugars or fats. One approach by which to determine whether these sites interacted as a distributed brain network in response to sugar or fat intake would be to simultaneous evaluate whether the VTA and its major mesotelencephalic DA projection zones (prelimbic and infralimbic mPFC, core and shell of the NAc, basolateral and central-cortico-medial AMY) as well as the dorsal striatum would display coordinated and simultaneous FLI activation after oral, unconditioned intake of corn oil (3.5%), glucose (8%), fructose (8%) and saccharin (0.2%) solutions. This approach is a successful first step in identifying the feasibility of using cellular c-fos activation simultaneously across relevant brain sites to study reward-related learning in ingestion of palatable food in rodents. PMID:27583636

  12. Brain c-Fos immunocytochemistry and cytochrome oxidase histochemistry after a fear conditioning task.

    PubMed

    Conejo, Nélida M; González Pardo, Héctor; López, Matías; Cantora, Raúl; Arias, Jorge L

    2007-05-01

    The involvement of the basolateral and the medial amygdala in fear conditioning was evaluated using different markers of neuronal activation. The method described here is a combination of cytochrome oxidase (CO) histochemistry and c-Fos immunocytochemistry on fresh frozen brain sections. Freezing behavior was used as an index of auditory and contextual fear conditioning. As expected, freezing scores were significantly higher in rats exposed to tone-shock pairings in a distinctive environment (conditioned; COND), as compared to rats that did not receive any shocks (UNCD). CO labeling was increased in the basolateral and medial amygdala of the COND group. Conversely, c-Fos expression in the basolateral and medial amygdala was lower in the COND group as compared to the UNCD group. Furthermore, c-Fos expression was particularly high in the medial amygdala of the UNCD group. The data provided by both techniques indicate that these amygdalar nuclei could play different roles on auditory and contextual fear conditioning. PMID:17425902

  13. Regional brain c-fos activation associated with penile erection and other symptoms induced by the spider toxin Tx2-6.

    PubMed

    Troncone, Lanfranco R P; Ravelli, Katherine G; Magnoli, Fabio C; Lebrun, Ivo; Hipolide, Debora C; Raymond, Roger; Nobrega, José N

    2011-08-01

    Brain areas expressing c-fos messenger RNA were mapped by quantitative in situ hybridization after 1-2 h of intoxication with 10 μg/kg Tx2-6, a toxin obtained from the venom of the spider Phoneutria nigriventer. Relative to saline-treated controls, brains from toxin-treated animals showed pronounced c-fos activation in many brain areas, including the supraoptic nucleus, the paraventricular nucleus of the hypothalamus, the motor nucleus of the vagus, area postrema, paraventricular and paratenial nuclei of the thalamus, locus coeruleus, central amydaloid nucleus and the bed nucleus of the stria terminalis. The paraventricular hypothalamus and the bed nucleus of the stria terminalis have been implicated in erectile function in other studies. A possible role for central NO is considered. Acute stress also activates many brain areas activated by Tx2-6 as well as with NOstimulated Fos transcription. Brain areas that appear to be selectively activated by Tx2-6, include the paratenial and paraventricular thalamic nuclei, the bed nucleus of the stria terminalis and the area postrema and the dorsal motor n. of vagus in the medulla. However, direct injections of different doses of the toxin into the paraventricular hypothalamic n. failed to induce penile erection, arguing against CNS involvement in this particular effect. PMID:21684302

  14. The Changes of c-Fos Expression by Motor Cortex Stimulation in the Deafferentation Pain Model

    PubMed Central

    KUDO, Kanae; TAKAHASHI, Toshio; SUZUKI, Shigeharu

    2014-01-01

    The effect of motor cortex stimulation (MCS) therapy for deafferentation pain was evaluated based on c-Fos, a known pain marker. Nineteen mature cats weighing 1.5–3.5 kg were used. Cats were divided into three groups: a deafferentation pain group in which the left trigeminal ganglion was destroyed, an MCS group in which MCS was used following destruction of the trigeminal ganglion, and a control group. Sites and levels of c-Fos expression were examined immunohistochemically. The percentage of c-Fos-positive cells in the left spinal nucleus of the trigeminus, the bilateral insula, and the bilateral operculum increased in both the deafferentation pain and the MCS groups. There were no statistically significant differences between these groups. In the cingulate gyrus, the percentage of c-Fos-positive cells increased bilaterally in the deafferentation pain group and the MCS group, but the increase was greater in the MCS group. The increase in c-Fos-positive cells in the left spinal nucleus of the trigeminus in the deafferentation group may reflect reported electrical hyperactivity. The cingulate gyrus, insula, and parietal operculum were activated after deafferentation. This change (increase in c-Fos positive cells) is related to the development of deafferentation pain. Pain relief due to MCS is not dependent on the suppression of the activated left spinal nucleus of the trigeminus or the descending analgesic mechanism of the brain stem. Activation of the cingulate gyrus appears to be a factor in the analgesic mechanism of MCS. PMID:24965534

  15. Effect of hypergravity on expression of the immediate early gene, c-fos, in central nervous system of medaka (Oryzias latipes)

    NASA Astrophysics Data System (ADS)

    Sayaka, Shimomura-Umemura; Ijiri, Kenichi

    2006-01-01

    Immediate-early genes serve as useful neurobiological tools for mapping brain activity induced by a sensory stimulation. In this study, we have examined brain activity related to gravity perception of medaka (Oryzias latipes) by use of c-fos. The gene, which is homologous to the c-fos genes of other vertebrates, was identified in medaka. Functionally important domains are highly conserved among all the vertebrate species analyzed. Intraperitoneal administration of kainic acid transiently induced the c-fos mRNAs in medaka brains. The results indicate that the expression of c-fos can be utilized as a suitable anatomical marker for the increased neural activities in the central nervous system of medaka. Fish were continuously exposed to 3 g hypergravity by centrifugation. Investigation of c-fos mRNA expression indicated that c-fos mRNA significantly increased 30 min after a start of 3 g exposure. The distribution of its transcripts within the brains was analyzed by an in situ hybridization method. The 3-g treated medakas displayed c-fos positive cells in their brainstem regions, which are related to vestibular function, such as torus semicircularis, nucleus tangentialis, posterior octavu nucleus, and inferior olive. Our results established a method to follow the effect of gravity stimulation, which can be used to investigate gravity perception.

  16. Maternal neglect with reduced depressive-like behavior and blunted c-fos activation in Brattleboro mothers, the role of central vasopressin.

    PubMed

    Fodor, Anna; Klausz, Barbara; Pintér, Ottó; Daviu, Nuria; Rabasa, Cristina; Rotllant, David; Balazsfi, Diana; Kovacs, Krisztina B; Nadal, Roser; Zelena, Dóra

    2012-09-01

    Early mother-infant relationships exert important long-term effects in offspring and are disturbed by factors such as postpartum depression. We aimed to clarify if lack of vasopressin influences maternal behavior paralleled by the development of a depressive-like phenotype. We compared vasopressin-deficient Brattleboro mothers with heterozygous and homozygous normal ones. The following parameters were measured: maternal behavior (undisturbed and separation-induced); anxiety by the elevated plus maze; sucrose and saccharin preference and forced swim behavior. Underlying brain areas were examined by c-fos immunocytochemistry among rest and after swim-stress. In another group of rats, vasopressin 2 receptor agonist was used peripherally to exclude secondary changes due to diabetes insipidus. Results showed that vasopressin-deficient rats spend less time licking-grooming their pups through a centrally driven mechanism. There was no difference between genotypes during the pup retrieval test. Vasopressin-deficient mothers tended to explore more the open arms of the plus maze, showed more preference for sucrose and saccharin and struggled more in the forced swim test, suggesting that they act as less depressive. Under basal conditions, vasopressin-deficient mothers had more c-fos expression in the medial preoptic area, shell of nucleus accumbens, paraventricular nucleus of the hypothalamus and amygdala, but not in other structures. In these areas the swim-stress-induced activation was smaller. In conclusion, vasopressin-deficiency resulted in maternal neglect due to a central effect and was protective against depressive-like behavior probably as a consequence of reduced activation of some stress-related brain structures. The conflicting behavioral data underscores the need for more sex specific studies. PMID:23006866

  17. Disruption of parathyroid hormone and parathyroid hormone-related peptide receptor phosphorylation prolongs ERK1/2 MAPK activation and enhances c-fos expression

    PubMed Central

    Abou-Samra, Abdul B.

    2012-01-01

    Previous studies have demonstrated that parathyroid hormone (PTH) binding to the PTH/PTH-related peptide receptor (PPR) stimulates G protein coupling, receptor phosphorylation, β-arrestin translocation, and internalization of the ligand/receptor complex. The extracellular signal-regulated mitogen-activated protein kinases 1/2 (ERK1/2 MAPK) are downstream effectors of PPR. In the current study, we investigated the role of PPR phosphorylation in the PTH regulation of the ERK1/2 MAPK pathway. Short treatment with PTH (0–40 min) of LLCP-K1 cells stably expressing a wild-type (WT) or a phosphorylation-deficient (PD) PPR (WT-PPR or PD-PPR cells, respectively) results in similar activation of ERK1/2. Interestingly, PTH stimulation of ERK1/2 in the WT-PPR cells then decreases as a result of longer PTH (60 min) treatment, and inhibition of ERK1/2 by PTH is observed at 90 min. Strikingly, the PD-PPR cells exhibit prolonged ERK1/2 activation up to 90 min of PTH treatment. An ERK1/2-dependent increase in c-fos expression is observed in the PD-PPR cells. Subsequently, c-fos expression in the WT-PPR and PD-PPR cells was markedly attenuated by a specific ERK1/2 pathway inhibitor. Further investigations revealed that PTH treatment causes a robust recruitment of a green fluorescent protein-tagged β-arrestin2 (β-arrestin2-GFP) in the WT-PPR cells. In contrast, β-arrestin2 recruitment was reduced in the PD-PPR cells. Importantly, expression of a receptor phosphorylation-independent β-arrestin2 (R169E) in the PD-PPR cells restored the biphasic effect of PTH on ERK1/2 as in the WT-PPR cells. The study reports a novel role for receptor phosphorylation and β-arrestin2 in the subsequent inhibition of the ERK1/2 pathway and in control of gene expression. PMID:22414806

  18. Fangchinoline inhibits rat aortic vascular smooth muscle cell proliferation and cell cycle progression through inhibition of ERK1/2 activation and c-fos expression.

    PubMed

    Zhang, Yong-He; Fang, Lian-Hua; Ku, Bao-Shan

    2003-11-01

    Fangchinoline (FAN; a plant alkaloid isolated from Stephania tetrandrae) is a nonspecific Ca(2+) channel blocker. The objective of the present study was to investigate the effect of FAN on the growth factor-induced proliferation of primary cultured rat aortic smooth muscle cells (RASMCs). FAN significantly inhibited both 5% fetal bovine serum (FBS)- and 50ng/mL platelet-derived growth factor (PDGF)-BB-induced proliferation, [3H]thymidine incorporation into DNA and phosphorylation of extracellular signal-regulated kinase 1/2. In accordance with these findings, FAN revealed blocking of the FBS-inducible progression through G(0)/G(1) to S phase of the cell cycle in synchronized cells and caused a 62% decrease in the early elevation of c-fos expression induced after 5% FBS addition. Furthermore, significant antiproliferative activity of FAN is observed at concentrations below those required to achieve significant inhibition of Ca(2+) channels by FAN. These results suggest that FAN reduced both FBS- and PDGF-BB-induced RASMCs proliferation by perturbing cell cycle progression. This antiproliferative effect of FAN is dependent on the MAP kinase pathway, but cannot be limited to its Ca(2+) modulation. PMID:14563495

  19. Brain development is impaired in c-fos −/− mice

    PubMed Central

    Velazquez, Fabiola N.; Prucca, César G.; Etienne, Olivier; D'Astolfo, Diego S.; Silvestre, David C.; Boussin, François D.; Caputto, Beatriz L.

    2015-01-01

    c-Fos is a proto-oncogene involved in diverse cellular functions. Its deregulation has been associated to abnormal development and oncogenic progression. c-fos−/− mice are viable but present a reduction in their body weight and brain size. We examined the importance of c-Fos during neocortex development at 13.5, 14.5 and 16.5 days of gestation. At E14.5, neocortex thickness, apoptosis, mitosis and expression of markers along the different stages of Neural Stem Progenitor Cells (NSPCs) differentiation in c-fos−/− and wild-type mice were analyzed. A ∼15% reduction in the neocortex thickness of c-fos−/− embryos was observed which correlates with a decrease in the number of differentiated cells and an increase in apoptosis at the ventricular zone. No difference in mitosis rate was observed, although the mitotic angle was predominantly vertical in c-fos−/− embryos, suggesting a reduced trend of NSPCs to differentiate. At E13.5, changes in differentiation markers start to be apparent and are still clearly observed at E16.5. A tendency of more AP-1/DNA complexes present in nuclear extracts of cerebral cortex from c-fos−/− embryos with no differences in the lipid synthesis activity was found. These results suggest that c-Fos is involved in the normal development of NSPCs by means of its AP-1 activity. PMID:26143639

  20. Ginkgo biloba Extract (EGb 761®) Inhibits Glutamate-induced Up-regulation of Tissue Plasminogen Activator Through Inhibition of c-Fos Translocation in Rat Primary Cortical Neurons.

    PubMed

    Cho, Kyu Suk; Lee, Ian Myungwon; Sim, Seobo; Lee, Eun Joo; Gonzales, Edson Luck; Ryu, Jong Hoon; Cheong, Jae Hoon; Shin, Chan Young; Kwon, Kyoung Ja; Han, Seol-Heui

    2016-01-01

    EGb 761(®) , a standardized extract of Ginkgo biloba leaves, has antioxidant and antiinflammatory properties in experimental models of neurodegenerative disorders such as stroke and Alzheimer's disease. Tissue plasminogen activator (tPA) acts a neuromodulator and plays a crucial role in the manifestation of neurotoxicity leading to exaggerated neuronal cell death in neurological insult conditions. In this study, we investigated the effects of EGb 761 on the basal and glutamate-induced activity and expression of tPA in rat primary cortical neurons. Under basal condition, EGb 761 inhibited both secreted and cellular tPA activities, without altering tPA mRNA level, as modulated by the activation of p38. Compared with basal condition, EGb 761 inhibited the glutamate-induced up-regulation of tPA mRNA resulting in the normalization of overt tPA activity and expression. c-Fos is a component of AP-1, which plays a critical role in the modulation of tPA expression. Interestingly, EGb 761 inhibited c-Fos nuclear translocation without affecting c-Fos expression in glutamate-induced rat primary cortical neurons. These results demonstrated that EGb 761 can modulate tPA activity under basal and glutamate-stimulated conditions by both translational and transcriptional mechanisms. Thus, EGb 761 could be a potential and effective therapeutic strategy in tPA-excessive neurotoxic conditions. PMID:26478151

  1. Differential regulation of early response genes and cell proliferation through the human granulocyte macrophage colony-stimulating factor receptor: selective activation of the c-fos promoter by genistein.

    PubMed Central

    Watanabe, S; Muto, A; Yokota, T; Miyajima, A; Arai, K

    1993-01-01

    Granulocyte macrophage colony-stimulating factor (GM-CSF) binds to the high-affinity GM-CSF receptor (GMR) consisting of alpha and beta subunits and induces rapid tyrosine phosphorylation, activation of early response genes, and proliferation of hematopoietic cells. The alpha subunit is the primary cytokine binding component and the beta subunit is required for high-affinity binding as well as for signal transduction. Using tyrosine kinase inhibitors and cytoplasmic deletion mutants of the beta subunit, we obtained evidence that there are at least two distinct pathways downstream of the GMR in BA/F3 cell, one which is essential for proliferation, leads to the c-myc gene activation, and is sensitive to herbimycin and genistein. Activation of this pathway depends on the cytoplasmic region between amino acid positions 455 and 517 of the beta subunit. The second pathway, which leads to activation of c-fos and c-jun genes, is only partially sensitive to herbimycin, is resistant to genistein and depends on the region between amino acid positions 626 and 763 of the beta subunit. Unexpectedly, the c-fos mRNA induction was augmented by genistein. The enhanced expression of c-fos mRNA by genistein also occurred with stimulation with cAMP, PMA, or EGF in NIH3T3 cells. It thus seems likely that genistein affects a common pathway downstream of these signals. Images PMID:8298195

  2. Esculetin attenuates receptor activator of nuclear factor kappa-B ligand-mediated osteoclast differentiation through c-Fos/nuclear factor of activated T-cells c1 signaling pathway

    SciTech Connect

    Baek, Jong Min; Park, Sun-Hyang; Cheon, Yoon-Hee; Ahn, Sung-Jun; Lee, Myeung Su; Oh, Jaemin; Kim, Ju-Young

    2015-05-29

    Esculetin exerts various biological effects on anti-oxidation, anti-tumors, and anti-inflammation. However, the involvement of esculetin in the bone metabolism process, particularly osteoclast differentiation has not yet been investigated. In the present study, we first confirmed the inhibitory effect of esculetin on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation. We then revealed the relationship between esculetin and the expression of osteoclast-specific molecules to elucidate its underlying mechanisms. Esculetin interfered with the expression of c-Fos and nuclear factor of activated T cell c1 (NFATc1) both at the mRNA and protein level with no involvement in osteoclast-associated early signaling pathways, suppressing the expression of various transcription factors exclusively expressed in osteoclasts such as tartrate-resistant acid phosphatase (Trap), osteoclast-associated receptor (Oscar), dendritic cell-specific transmembrane protein (Dcstamp), osteoclast stimulatory transmembrane protein (Ocstamp), cathepsin K, αvβ3 integrin, and calcitonin receptor (Ctr). Additionally, esculetin inhibited the formation of filamentous actin (F-actin) ring-positive osteoclasts during osteoclast differentiation. However, the development of F-actin structures and subsequent bone resorbing activity of mature osteoclasts, which are observed in osteoclast/osteoblast co-culture systems were not affected by esculetin. Taken together, our results indicate for the first time that esculetin inhibits RANKL-mediated osteoclastogenesis via direct suppression of c-Fos and NFATc1 expression and exerts an inhibitory effect on actin ring formation during osteoclastogenesis. - Highlights: • We first investigated the effects of esculetin on osteoclast differentiation and function. • Our data demonstrate for the first time that esculetin can suppress osteoclastogenesis in vitro. • Esculetin acts as an inhibitor of c-Fos and NFATc1 activation.

  3. High-frequency electrical stimulation of the subthalamic nucleus excites target structures in a model using c-fos immunohistochemistry.

    PubMed

    Shehab, S; D'souza, C; Ljubisavljevic, M; Redgrave, P

    2014-06-13

    Deep-brain stimulation at high frequencies (HFS) directed to the subthalamic nucleus (STN) is used increasingly to treat patients with Parkinson's disease. However, the mechanism of action by which HFS of the STN achieves its therapeutic effects remains unresolved. Insofar as lesions of the STN have similar therapeutic benefit, a favored hypothesis is that HFS acts by suppressing neural activity in the STN. The purpose of the present study was to exploit prior observations that exposure to ether anesthesia in a rodent model evokes c-fos expression (a marker of neural activation) in the STN and its efferent structures, the globus pallidus, entopeduncular nucleus and substantia nigra. We showed first that exposure to ether induced a profound oscillatory pattern of neural activity in the STN and SNr, which could explain the marked induction of c-fos immunoreactivity in these structures. Secondly, inhibition of the STN by local injections of the GABA agonist, muscimol, suppressed ether-evoked c-fos expression in all target structures. This showed that excitation of target structures in the ether model originated, at least in part, from the STN. Thirdly, and contrary to expectation, HFS of the STN increased further the expression of c-fos in the STN target structures of animals treated with ether. Finally, we demonstrated, in the absence of ether treatment, that HFS and chemical stimulation of the STN with local injections of kainic acid both induced c-fos expression in the globus pallidus, entopeduncular nucleus and substantia nigra. Together these results suggest that the principal action of STN stimulation at high frequencies is to excite rather than inhibit its efferent targets. Given that Parkinsonism has been associated with increased levels of inhibitory output activity from the basal ganglia, it is unlikely that excitation of output structures revealed in this study provides a basis for deep-brain stimulation's therapeutic action. PMID:24755486

  4. Increase in c-Fos and Arc protein in retrosplenial cortex after memory-improving lateral hypothalamic electrical stimulation treatment.

    PubMed

    Kádár, Elisabeth; Vico-Varela, Eva; Aldavert-Vera, Laura; Huguet, Gemma; Morgado-Bernal, Ignacio; Segura-Torres, Pilar

    2016-02-01

    Post-training Intracranial self-stimulation (ICSS) of the lateral hypothalamus (LH), a kind of rewarding deep-brain stimulation, potentiates learning and memory and increases c-Fos protein expression in specific memory-related brain regions. In a previous study, Aldavert-Vera et al. (2013) reported that post-acquisition LH-ICSS improved 48 h retention of a delay two-way active avoidance conditioning (TWAA) and induced c-Fos expression increase in CA3 at 90 min after administration. Nevertheless, this c-Fos induction was only observed after the acquisition session and not after the retention test at 48 h, when the ICSS improving effect was observed on memory. This current study aims to examine the hypothesis that post-training ICSS treatment may stimulate c-Fos expression at the time of the TWAA retention test in retrosplenial cortex (RSC), a hippocampus-related brain region more closely related with long-lasting memory storage. Effects of ICSS on Arc protein, a marker of memory-associated synaptic plasticity, were also measured by immunohistochemistry in granular and agranular RSC. The most innovative results are that the ICSS treatment potentiates the c-Fos induction across TWAA conditions (no conditioning, acquisition and retention), specifically in layer V of the granular RSC, along with increases of Arc protein levels in the granular but not in agranular areas of RSC ipsilaterally few hours after ICSS. This leads us to suggest that plasticity-related protein activation in the granular RSC could be involved in the positive modulatory effects of ICSS on TWAA memory consolidation, opening a new approach for future research in ICSS memory facilitation. PMID:26774022

  5. Role of heterodimerization of c-Fos and Fra1 proteins in osteoclast differentiation.

    PubMed

    Bakiri, Latifa; Takada, Yasunari; Radolf, Martin; Eferl, Robert; Yaniv, Moshe; Wagner, Erwin F; Matsuo, Koichi

    2007-04-01

    Bone resorbing osteoclasts are specialized macrophages that cannot differentiate in the absence of c-Fos, a member of the dimeric transcription factor AP-1 (activator protein-1). However, osteoclast differentiation in the absence of c-Fos can be rescued in vitro and in vivo by Fra1, a Fos-like protein and transcriptional target of c-Fos. To enable AP-1 proteins binding to DNA, c-Fos or Fra1 must heterodimerize with a partner such as c-Jun, JunB and JunD. In this study, we investigated the dimerization partners of c-Fos and Fra1 required for osteoclast differentiation using synthetic "single-chain" AP-1 dimers in which c-Fos or Fra1 is tethered via a linker to Jun proteins. When c-Fos was analyzed in combination with any Jun protein, including a c-Jun mutant lacking major phosphorylation sites for c-Jun amino-terminal kinase (JNK), osteoclasts were efficiently formed from c-Fos-deficient hematopoietic precursors. However, Fra1 in combination with any Jun protein could not rescue osteoclastogenesis. The ability to rescue was compared to transcriptional activity measured in transient transfection assays using promoters driven by consensus AP-1 sites or a composite AP-1/NFAT binding site. These data show that a single Jun/c-Fos dimer is sufficient for osteoclast differentiation, likely due to its transactivation ability for a broader range of promoters, in particular consensus AP-1 sites. We propose that Fra1 together with a dimerization partner different from Jun proteins can rescue osteoclast differentiation in c-Fos-deficient precursors. PMID:17189721

  6. c-Fos immunoreactivity in prefrontal, basal ganglia and limbic areas of the rat brain after central and peripheral administration of ethanol and its metabolite acetaldehyde

    PubMed Central

    Segovia, Kristen N.; Vontell, Regina; López-Cruz, Laura; Salamone, John D.; Correa, Mercè

    2013-01-01

    Considerable evidence indicates that the metabolite of ethanol (EtOH), acetaldehyde, is biologically active. Acetaldehyde can be formed from EtOH peripherally mainly by alcohol dehydrogenase (ADH), and also centrally by catalase. EtOH and acetaldehyde show differences in their behavioral effects depending upon the route of administration. In terms of their effects on motor activity and motivated behaviors, when administered peripherally acetaldehyde tends to be more potent than EtOH but shows very similar potency administered centrally. Since dopamine (DA) rich areas have an important role in regulating both motor activity and motivation, the present studies were undertaken to compare the effects of central (intraventricular, ICV) and peripheral (intraperitoneal, IP) administration of EtOH and acetaldehyde on a cellular marker of brain activity, c-Fos immunoreactivity, in DA innervated areas. Male Sprague-Dawley rats received an IP injection of vehicle, EtOH (0.5 or 2.5 g/kg) or acetaldehyde (0.1 or 0.5 g/kg) or an ICV injection of vehicle, EtOH or acetaldehyde (2.8 or 14.0 μmoles). IP administration of EtOH minimally induced c-Fos in some regions of the prefrontal cortex and basal ganglia, mainly at the low dose (0.5 g/kg), while IP acetaldehyde induced c-Fos in virtually all the structures studied at both doses. Acetaldehyde administered centrally increased c-Fos in all areas studied, a pattern that was very similar to EtOH. Thus, IP administered acetaldehyde was more efficacious than EtOH at inducing c-Fos expression. However, the general pattern of c-Fos induction promoted by ICV EtOH and acetaldehyde was similar. These results are consistent with the pattern observed in behavioral studies in which both substances produced the same magnitude of effect when injected centrally, and produced differences in potency after peripheral administration. PMID:23745109

  7. Mechanically induced c-fos expression is mediated by cAMP in MC3T3-E1 osteoblasts

    NASA Technical Reports Server (NTRS)

    Fitzgerald, J.; Hughes-Fulford, M.

    1999-01-01

    In serum-deprived MC3T3-E1 osteoblasts, mechanical stimulation caused by mild (287 x g) centrifugation induced a 10-fold increase in mRNA levels of the proto-oncogene, c-fos. Induction of c-fos was abolished by the cAMP-dependent protein kinase inhibitor H-89, suggesting that the transient c-fos mRNA increase is mediated by cAMP. Down-regulation of protein kinase C (PKC) activity by chronic TPA treatment failed to significantly reduce c-fos induction, suggesting that TPA-sensitive isoforms of PKC are not responsible for c-fos up-regulation. In addition, 287 x g centrifugation increased intracellular prostaglandin E2 (PGE2) levels 2.8-fold (P<0. 005). Since we have previously shown that prostaglandin E2 (PGE2) can induce c-fos expression via a cAMP-mediated mechanism, we asked whether the increase in c-fos mRNA was due to centrifugation-induced PGE2 release. Pretreatment with the cyclooxygenase inhibitors indomethacin and flurbiprofen did not hinder the early induction of c-fos by mechanical stimulation. We conclude that c-fos expression induced by mild mechanical loading is dependent primarily on cAMP, not PKC, and initial induction of c-fos is not necessarily dependent on the action of newly synthesized PGE2.

  8. Induction of c-Fos expression in the mammillary bodies, anterior thalamus and dorsal hippocampus after fear conditioning.

    PubMed

    Conejo, Nélida M; González-Pardo, Héctor; López, Matías; Cantora, Raúl; Arias, Jorge L

    2007-09-14

    The aim of the present study was to provide further evidence on the role of particular subdivisions of the mammillary bodies, anterior thalamus and dorsal hippocampus to contextual and auditory fear conditioning. We used c-Fos expression as a marker of neuronal activation to compare rats that received tone-footshock pairings in a distinctive context (conditioned group) to rats being exposed to both the context and the auditory CS without receiving footshocks (unconditioned group), and naïve rats that were only handled. Fos immunoreactivity was significantly increased only in the anterodorsal thalamic nucleus and the lateral mammillary nucleus of the conditioned group. However, the dorsal hippocampus showed the highest density of c-Fos positive nuclei in the naïve group as compared to the other groups. Together, our data support previous studies indicating a particular involvement of the mammillary bodies and anterior thalamus in fear conditioning. PMID:17683804

  9. Immediate and prolonged patterns of Agouti-related peptide-(83--132)-induced c-Fos activation in hypothalamic and extrahypothalamic sites.

    PubMed

    Hagan, M M; Benoit, S C; Rushing, P A; Pritchard, L M; Woods, S C; Seeley, R J

    2001-03-01

    Several lines of evidence substantiate the important role of the central nervous system melanocortin 3- and 4-receptor (MC3/4-R) system in the control of food intake and energy balance. Agouti-related peptide (AgRP), an endogenous antagonist of these receptors, produces a robust and unique pattern of increased food intake that lasts up to 7 days after a single injection. Little is known about brain regions that may mediate this powerful effect of AgRP on food intake. To this end we compared c-Fos-like immunoreactivity (c-FLI) in several brain sites of rats injected intracerebroventricularly with 1 nmol AgRP-(83--132) 2 and 24 h before death and compared c-FLI patterns to those induced by another potent orexigenic peptide, neuropeptide Y (NPY). Although both NPY and AgRP induced c-FLI in hypothalamic areas, AgRP also produced increased c-FLI in the accumbens shell and lateral septum. Although NPY elicited no changes in c-FLI 24 h after administration, AgRP induced c-FLI in the accumbens shell, nucleus of the solitary tract, central amygdala, and lateral hypothalamus. These results indicate that an NPY-like hypothalamic circuit mediates the short-term effects of AgRP, but that the unique sustained effect of AgRP on food intake involves a complex circuit of key extrahypothalamic reward and feeding regulatory nuclei. PMID:11181518

  10. Evidence for Homodimerization of the c-Fos Transcription Factor in Live Cells Revealed by Fluorescence Microscopy and Computer Modeling.

    PubMed

    Szalóki, Nikoletta; Krieger, Jan Wolfgang; Komáromi, István; Tóth, Katalin; Vámosi, György

    2015-11-01

    The c-Fos and c-Jun transcription factors, members of the activator protein 1 (AP-1) complex, form heterodimers and bind to DNA via a basic leucine zipper and regulate the cell cycle, apoptosis, differentiation, etc. Purified c-Jun leucine zipper fragments could also form stable homodimers, whereas c-Fos leucine zipper homodimers were found to be much less stable in earlier in vitro studies. The importance of c-Fos overexpression in tumors and the controversy in the literature concerning c-Fos homodimerization prompted us to investigate Fos homodimerization. Förster resonance energy transfer (FRET) and molecular brightness analysis of fluorescence correlation spectroscopy data from live HeLa cells transfected with fluorescent-protein-tagged c-Fos indicated that c-Fos formed homodimers. We developed a method to determine the absolute concentrations of transfected and endogenous c-Fos and c-Jun, which allowed us to determine dissociation constants of c-Fos homodimers (Kd = 6.7 ± 1.7 μM) and c-Fos-c-Jun heterodimers (on the order of 10 to 100 nM) from FRET titrations. Imaging fluorescence cross-correlation spectroscopy (SPIM-FCCS) and molecular dynamics modeling confirmed that c-Fos homodimers were stably associated and could bind to the chromatin. Our results establish c-Fos homodimers as a novel form of the AP-1 complex that may be an autonomous transcription factor in c-Fos-overexpressing tissues and could contribute to tumor development. PMID:26303532

  11. Dimerumic Acid Inhibits SW620 Cell Invasion by Attenuating H2O2-Mediated MMP-7 Expression via JNK/C-Jun and ERK/C-Fos Activation in an AP-1-Dependent Manner

    PubMed Central

    Ho, Bing-Ying; Wu, Yao-Ming; Chang, King-Jen; Pan, Tzu-Ming

    2011-01-01

    Reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) in the tumor microenvironment play important roles in tumor invasion and metastasis. Recently, ROS have been reported to cause a significant increase in the production and expression of matrix metalloproteinase (MMP)-7, which is closely correlated with metastatic colorectal cancer. The present study was undertaken to evaluate the scavenging activity of dimerumic acid (DMA) for H2O2 isolated from Monascus-fermented rice to investigate the inhibitory effects of DMA on the invasive potential of SW620 human colon cancer cells, and to explore the mechanisms underlying both these phenomena. Our results showed that increased MMP-7 expression due to H2O2 exposure was mediated by activation of mitogen-activated protein kinases (MAPKs) such as Jun N-terminal kinase (JNK), extracellular-regulated kinase (ERK), and p38 kinase. DMA pretreatment suppressed activation of H2O2-mediated MAPK pathways and cell invasion. Moreover, H2O2-triggered MMP-7 production was demonstrated via JNK/c-Jun and ERK/c-Fos activation in an activating protein 1 (AP-1)-dependent manner. Taken together, these results suggest that DMA suppresses H2O2-induced cell invasion by inhibiting AP-1-mediated MMP-7 gene transcription via the JNK/c-Jun and ERK/c-Fos signaling pathways in SW620 human colon cancer cells. Our data suggest that DMA may be useful in minimizing the development of colorectal metastasis. In the future, DMA supplementation may be a beneficial antioxidant to enhance surgical outcomes. PMID:21814482

  12. Evidence for Homodimerization of the c-Fos Transcription Factor in Live Cells Revealed by Fluorescence Microscopy and Computer Modeling

    PubMed Central

    Szalóki, Nikoletta; Krieger, Jan Wolfgang; Komáromi, István; Tóth, Katalin

    2015-01-01

    The c-Fos and c-Jun transcription factors, members of the activator protein 1 (AP-1) complex, form heterodimers and bind to DNA via a basic leucine zipper and regulate the cell cycle, apoptosis, differentiation, etc. Purified c-Jun leucine zipper fragments could also form stable homodimers, whereas c-Fos leucine zipper homodimers were found to be much less stable in earlier in vitro studies. The importance of c-Fos overexpression in tumors and the controversy in the literature concerning c-Fos homodimerization prompted us to investigate Fos homodimerization. Förster resonance energy transfer (FRET) and molecular brightness analysis of fluorescence correlation spectroscopy data from live HeLa cells transfected with fluorescent-protein-tagged c-Fos indicated that c-Fos formed homodimers. We developed a method to determine the absolute concentrations of transfected and endogenous c-Fos and c-Jun, which allowed us to determine dissociation constants of c-Fos homodimers (Kd = 6.7 ± 1.7 μM) and c-Fos–c-Jun heterodimers (on the order of 10 to 100 nM) from FRET titrations. Imaging fluorescence cross-correlation spectroscopy (SPIM-FCCS) and molecular dynamics modeling confirmed that c-Fos homodimers were stably associated and could bind to the chromatin. Our results establish c-Fos homodimers as a novel form of the AP-1 complex that may be an autonomous transcription factor in c-Fos-overexpressing tissues and could contribute to tumor development. PMID:26303532

  13. Persistent induction of c-fos and c-jun expression by asbestos

    SciTech Connect

    Heintz, N.H.; Mossman, B.T. ); Janssen, Y.M. Univ. of Limburg, Maastricht )

    1993-04-15

    To investigate the mechanisms of asbestos-induced carcinogenesis, expression of c-fos and c-jun protooncogenes was examined in rat pleural mesothelial cells and hamster tracheal epithelial cells after exposure to crocidolite or chrysotile asbestos. In contrast to phorbol 12-myristate 13-acetate, which induces rapid and transient increases in c-fos and c-jun mRNA, asbestos causes 2- to 5-fold increases in c-fos and c-jun mRNA that persist for at least 24 hr in mesothelial cells. The induction of c-fos and c-jun mRNA by asbestos in mesothelial cells is dose-dependent and is most pronounced with crocidolite, the type of asbestos most pathogenic in the causation of pleural mesothelioma. Induction of c-jun gene expression by asbestos occurs in tracheal epithelial cells but is not accompanied by a corresponding induction of c-fos gene expression. In both cell types, asbestos induces increases in protein factors that bind specifically to the DNA sites that mediate gene expression by the AP-1 family of transcription factors. The persistent induction of AP-1 transcription factors by asbestos suggests a model of asbestos-induced carcinogenesis involving chronic stimulation of cell proliferation through activation of the early response gene pathway that includes c-jun and/or c-fos. 30 refs., 5 figs.

  14. A point mutation at tyrosine-809 in the human colony-stimulating factor 1 receptor impairs mitogenesis without abrogating tyrosine kinase activity, association with phosphatidylinositol 3-kinase, or induction of c-fos and junB genes

    SciTech Connect

    Roussel, M.F. ); Shurtleff, S.A.; Downing, J.R. ); Sherr, C.J. Saint Jude Children's Research Hospital, Memphis, TN )

    1990-09-01

    Substitution of phenylalanine for tyrosine-809 in the human colony-stimulating factor 1 receptor (CSF-1R) inhibited its ability to transduce ligand-dependent mitogenic signals in mouse NIH 3T3 cells. When combined with an activating mutation at codon 301 that induces constitutive CSF-1R tyrosine kinase activity, the codon 809 mutation suppressed ligand-independent cell transformation. Comparative mapping tryptic phosphopeptides from mutant and wild-type CSF-1R indicated that tyrosine-809 is a site of ligand-dependent receptor phosphorylation in vivo. The mutant receptor was active as a tyrosine kinase in vitro and in vivo, underwent CSF-1-dependent association with a phosphatidylinositol 3-kinase, and induced expression of the protooncogenes c-fos and junB, underscoring its ability to trigger some of the known cellular responses to CSF-1. The mutant receptor is likely to be impaired in its ability to interact with critical cellular effectors whose activity is required for mitogenesis.

  15. Activations of c-fos/c-jun signaling are involved in the modulation of hypothalamic superoxide dismutase (SOD) and neuropeptide Y (NPY) gene expression in amphetamine-mediated appetite suppression

    SciTech Connect

    Hsieh, Y.-S.; Yang, S.-F.; Chiou, H.-L.; Kuo, D.-Y. . E-mail: dykuo@csmu.edu.tw

    2006-04-15

    Amphetamine (AMPH) is known as an anorectic agent. The mechanism underlying the anorectic action of AMPH has been attributed to its inhibitory action on hypothalamic neuropeptide Y (NPY), an appetite stimulant in the brain. This study was aimed to examine the molecular mechanisms behind the anorectic effect of AMPH. Results showed that AMPH treatment decreased food intake, which was correlated with changes of NPY mRNA level, but increased c-fos, c-jun and superoxide dismutase (SOD) mRNA levels in hypothalamus. To determine if c-fos or c-jun was involved in the anorectic response of AMPH, infusions of antisense oligonucleotide into the brain were performed at 1 h before daily AMPH treatment in freely moving rats, and the results showed that c-fos or c-jun knockdown could block this anorectic response and restore NPY mRNA level. Moreover, c-fos or c-jun knockdown could partially block SOD mRNA level that might involve in the modulation of NPY gene expression. It was suggested that c-fos/c-jun signaling might involve in the central regulation of AMPH-mediated feeding suppression via the modulation of NPY gene expression.

  16. Effects of isoflurane and ethanol administration on c-Fos immunoreactivity in mice.

    PubMed

    Smith, M L; Li, J; Cote, D M; Ryabinin, A E

    2016-03-01

    Noninvasive functional imaging holds great promise for the future of translational research, due to the ability to directly compare between preclinical and clinical models of psychiatric disorders. Despite this potential, concerns have been raised regarding the necessity to anesthetize rodent and monkey subjects during these procedures, because anesthetics may alter neuronal activity. For example, in studies on drugs of abuse and alcohol, it is not clear to what extent anesthesia can interfere with drug-induced neural activity. Therefore, the current study investigated whole-brain c-Fos activation following isoflurane anesthesia as well as ethanol-induced activation of c-Fos in anesthetized mice. In the first experiment, we examined effects of one or three sessions of gaseous isoflurane on c-Fos activation across the brain in male C57BL/6J mice. Isoflurane administration led to c-Fos activation in several areas, including the piriform cortex and lateral septum. Lower or similar levels of activation in these areas were detected after three sessions of isoflurane, suggesting that multiple exposures may eliminate some of the enhanced neuronal activation caused by acute isoflurane. In the second experiment, we investigated the ability of ethanol injection (1.5 or 2.5g/kgi.p.) to induce c-Fos activation under anesthesia. Following three sessions of isoflurane, 1.5g/kg of ethanol induced c-Fos in the central nucleus of amygdala and the centrally-projecting Edinger-Westphal nucleus (EWcp). This induction was lower after 2.5g/kg of ethanol. These results demonstrate that ethanol-induced neural activation can be detected in the presence of isoflurane anesthesia. They also suggest, that while habituation to isoflurane helps reduce neuronal activation, interaction between effects of anesthesia and alcohol can occur. Studies using fMRI imaging could benefit from using habituated animals and dose-response analyses. PMID:26742790

  17. MAPK signaling triggers transcriptional induction of cFOS during amino acid limitation of HepG2 cells.

    PubMed

    Shan, Jixiu; Donelan, William; Hayner, Jaclyn N; Zhang, Fan; Dudenhausen, Elizabeth E; Kilberg, Michael S

    2015-03-01

    Amino acid (AA) deprivation in mammalian cells activates a collection of signaling cascades known as the AA response (AAR), which is characterized by transcriptional induction of stress-related genes, including FBJ murine osteosarcoma viral oncogene homolog (cFOS). The present study established that the signaling mechanism underlying the AA-dependent transcriptional regulation of the cFOS gene in HepG2 human hepatocellular carcinoma cells is independent of the classic GCN2-eIF2-ATF4 pathway. Instead, a RAS-RAF-MEK-ERK cascade mediates AAR signaling to the cFOS gene. Increased cFOS transcription is observed from 4-24 h after AAR-activation, exhibiting little or no overlap with the rapid and transient increase triggered by the well-known serum response. Furthermore, serum is not required for the AA-responsiveness of the cFOS gene and no phosphorylation of promoter-bound serum response factor (SRF) is observed. The ERK-phosphorylated transcription factor E-twenty six-like (p-ELK1) is increased in its association with the cFOS promoter after activation of the AAR. This research identified cFOS as a target of the AAR and further highlights the importance of AA-responsive MAPK signaling in HepG2 cells. PMID:25523140

  18. Protocatechuic Acid Attenuates Osteoclastogenesis by Downregulating JNK/c-Fos/NFATc1 Signaling and Prevents Inflammatory Bone Loss in Mice.

    PubMed

    Park, Sun-Hyang; Kim, Ju-Young; Cheon, Yoon-Hee; Baek, Jong Min; Ahn, Sung-Jun; Yoon, Kwon-Ha; Lee, Myeung Su; Oh, Jaemin

    2016-04-01

    Protocatechuic acid (PCA) plays a critical role in nutritional metabolism; it is a major metabolite of anthocyanins, which are flavonoids with a range of health benefits. PCA has a variety of biological activities including anti-oxidant, antiinflammatory, anti-apoptosis, and anti-microbial activities. However, the pharmacological effect of PCA, especially on osteoclastogenesis, remains unknown. We examined the effect of PCA on receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation and bone resorption. PCA dose-dependently inhibited RANKL-induced osteoclast differentiation in mouse bone marrow macrophages (BMMs) and suppressed the bone-resorbing activity of mature osteoclasts. At the molecular level, PCA suppressed RANKL-induced phosphorylation of JNK among MAPKs only, without significantly affecting the early signaling pathway. PCA also suppressed RANKL-stimulated expression of c-Fos and nuclear factor of activated T cells c1 (NFATc1) at the mRNA and protein levels, without altering c-Fos mRNA expression. Additionally, PCA down-regulated the expression of downstream osteoclastogenesis-related genes including β3-integrin, DC-STAMP, OC-STAMP, Atp6v0d2, CTR, and CtsK. Mice treated with PCA efficiently recovered from lipopolysaccharide-induced bone loss in vivo. Thus, PCA inhibits RANKL-induced osteoclast differentiation and function by suppressing JNK signaling, c-Fos stability, and expression of osteoclastic marker genes. These results suggest that PCA could be useful in treatment of inflammatory bone disorders. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26792397

  19. The pattern of c-Fos expression and its refractory period in the brain of rats and monkeys.

    PubMed

    Barros, Vanessa N; Mundim, Mayara; Galindo, Layla Testa; Bittencourt, Simone; Porcionatto, Marimelia; Mello, Luiz E

    2015-01-01

    Intense activation of neurons triggers the appearance of immediate expression genes, including c-Fos. This gene is related to various signal cascades involved in biochemical processes such as neuronal plasticity, cell growth and mitosis. Here we investigate the expression pattern and the refractory period of c-Fos in rats and monkey's brains after stimulation with pentylenetetrazol. Rats and monkeys were sacrificed at various times after PTZ-induced seizure. Here we show that rats and monkeys already showed c-Fos expression at 0.5 h after seizure. Yet, the pattern of protein expression was longer in monkeys than rats, and also was not uniform (relative intensity) across different brain regions in monkeys as opposed to rats. In addition monkeys had a regional brain variation with regard to the temporal profile of c-Fos expression, which was not seen in rats. The refractory period after a second PTZ stimulation was also markedly different between rats and monkeys with the latter even showing a summatory effect on c-Fos expression after a second stimulation. However, assessment of c-Fos mRNA in rats indicated a post-transcriptional control mechanism underlying the duration of the refractory period. The difference in the protein expression pattern in rodents and primates characterizes a functional aspect of brain biochemistry that differs between these mammalian orders and may contribute for the more developed primate cognitive complexity as compared to rodents given c-Fos involvement in cognitive and learning tasks. PMID:25814929

  20. Active vs. Reactive Threat Responding is Associated with Differential c-Fos Expression in Specific Regions of Amygdala and Prefrontal Cortex

    ERIC Educational Resources Information Center

    Martinez, Raquel C. R.; Gupta, Nikita; Lazaro-Munoz, Gabriel; Sears, Robert M.; Kim, Soojeong; Moscarello, Justin M.; LeDoux, Joseph E.; Cain, Christopher K.

    2013-01-01

    Active avoidance (AA) is an important paradigm for studying mechanisms of aversive instrumental learning, pathological anxiety, and active coping. Unfortunately, AA neurocircuits are poorly understood, partly because behavior is highly variable and reflects a competition between Pavlovian reactions and instrumental actions. Here we exploited the…

  1. Forced expression of stabilized c-Fos in dendritic cells reduces cytokine production and immune responses in vivo

    SciTech Connect

    Yoshida, Ryoko; Suzuki, Mayu; Sakaguchi, Ryota; Hasegawa, Eiichi; Kimura, Akihiro; Shichita, Takashi; Sekiya, Takashi; Shiraishi, Hiroshi; Shimoda, Kouji; Yoshimura, Akihiko

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer Dendritic cells expressing stabilized c-Fos produced less inflammatory cytokines. Black-Right-Pointing-Pointer Dendritic cells expressing stabilized c-Fos activated T cells less efficiently. Black-Right-Pointing-Pointer Transgenic mice expressing stabilized c-Fos were resistant to EAE model. -- Abstract: Intracellular cyclic adenosine monophosphate (cAMP) suppresses innate immunity by inhibiting proinflammatory cytokine production by monocytic cells. We have shown that the transcription factor c-Fos is responsible for cAMP-mediated suppression of inflammatory cytokine production, and that c-Fos protein is stabilized by IKK{beta}-mediated phosphorylation. We found that S308 is one of the major phosphorylation sites, and that the S308D mutation prolongs c-Fos halflife. To investigate the role of stabilized c-Fos protein in dendritic cells (DCs) in vivo, we generated CD11c-promoter-deriven c-FosS308D transgenic mice. As expected, bone marrow-derived DCs (BMDCs) from these Tg mice produced smaller amounts of inflammatory cytokines, including TNF-{alpha}, IL-12, and IL-23, but higher levels of IL-10, in response to LPS, than those from wild-type (Wt) mice. When T cells were co-cultured with BMDCs from Tg mice, production of Th1 and Th17 cytokines was reduced, although T cell proliferation was not affected. Tg mice demonstrated more resistance to experimental autoimmune encephalomyelitis (EAE) than did Wt mice. These data suggest that c-Fos in DCs plays a suppressive role in certain innate and adaptive immune responses.

  2. The time course of systems consolidation of spatial memory from recent to remote retention: A comparison of the Immediate Early Genes Zif268, c-Fos and Arc.

    PubMed

    Barry, Daniel N; Coogan, Andrew N; Commins, Sean

    2016-02-01

    Systems consolidation is a process involving the stabilisation of memory traces in the neocortex over time. The medial prefrontal cortex becomes increasingly important during the retrieval of older memories, however the timescale of its involvement is unclear, and the contribution of other neocortical brain regions to remote memory have received little attention. The Immediate Early Genes (IEGs) Zif268, c-Fos and Arc have been utilised as markers of neural activity during spatial memory retrieval, however the lack of a direct comparison between them hinders the interpretation of results. To address these questions, we examined the expression of Zif268, Arc and c-Fos protein in the medial prefrontal cortex, as well as the hippocampus, and the entorhinal, perirhinal, retrosplenial and parietal cortices of male Wistar rats following a probe trial of the Morris water maze either one day, seven days, 14 days or 30 days after acquisition. Activity of the medial prefrontal cortex during retrieval, as measured by all three IEGs, increased in correspondence with the age of the memory, reaching significance between 14 and 30 days. Similar increases in c-Fos and Arc were observed over the course of consolidation in other neocortical and parahippocampal areas, however this pattern was not observed with Zif268. Activity of the hippocampus remained largely unchanged across retention intervals. These findings suggest that systems consolidation of spatial memory takes at least two weeks, are consistent with an ongoing role for the hippocampus in the retrieval of spatial memory, and suggest that c-Fos and Arc may be a more sensitive measure of neural activity in response to behavioural tasks than Zif268. PMID:26748021

  3. 'Fluorescent Cell Chip' for immunotoxicity testing: Development of the c-fos expression reporter cell lines

    SciTech Connect

    Trzaska, Dominika; Zembek, Patrycja; Olszewski, Maciej; Adamczewska, Violetta; Ulleras, Erik; Dastych, JarosIaw . E-mail: jdastych@cbm.pan.pl

    2005-09-01

    The Fluorescent Cell Chip for in vitro immunotoxicity testing employs cell lines derived from lymphocytes, mast cells, and monocytes-macrophages transfected with various EGFP cytokine reporter gene constructs. While cytokine expression is a valid endpoint for in vitro immunotoxicity screening, additional marker for the immediate-early response gene expression level could be of interest for further development and refinement of the Fluorescent Cell Chip. We have used BW.5147.3 murine thymoma transfected with c-fos reporter constructs to obtain reporter cell lines expressing ECFP under the control of murine c-fos promoter. These cells upon serum withdrawal and readdition and incubation with heavy metal compounds showed paralleled induction of c-Fos expression as evidenced by Real-Time PCR and ECFP fluorescence as evidenced by computer-supported fluorescence microscopy. In conclusion, we developed fluorescent reporter cell lines that could be employed in a simple and time-efficient screening assay for possible action of chemicals on c-Fos expression in lymphocytes. The evaluation of usefulness of these cells for the Fluorescent Cell Chip-based detection of immunotoxicity will require additional testing with a larger number of chemicals.

  4. c-FOS suppresses ovarian cancer progression by changing adhesion

    PubMed Central

    Oliveira-Ferrer, L; Rößler, K; Haustein, V; Schröder, C; Wicklein, D; Maltseva, D; Khaustova, N; Samatov, T; Tonevitsky, A; Mahner, S; Jänicke, F; Schumacher, U; Milde-Langosch, K

    2014-01-01

    Background: C-Fos was initially described as oncogene, but was associated with favourable prognosis in ovarian cancer (OvCa) patients. The molecular and functional aspects underlying this effect are still unknown. Methods: Using stable transfectants of SKOV3 and OVCAR8 cells, proliferation, migration, invasion and apoptotic potential of c-FOS-overexpressing clones and controls were compared. Adherence to components of the extracellular matrix was analysed in static assays, and adhesion to E-selectin, endothelial and mesothelial cells in dynamic flow assays. The effect of c-FOS in vivo was studied after intraperitoneal injection of SKOV3 clones into SCID mice, and changes in gene expression were determined by microarray analysis. Results: Tumour growth after injection into SCID mice was strongly delayed by c-FOS overexpression, with reduction of lung metastases and circulating tumour cells. In vitro, c-FOS had only weak influence on proliferation and migration, but was strongly pro-apoptotic. Adhesion to components of the extracellular matrix (collagen I, IV) and to E-selectin, endothelial and mesothelial cells was significantly reduced in c-FOS-overexpressing OvCa cells. This corresponds to deregulation of adhesion proteins and glycosylation enzymes in microarray analysis. Conclusion: In addition to its known pro-apoptotic effect, c-FOS might influence OvCa progression by changing the adhesion of OvCa cells to peritoneal surfaces. PMID:24322891

  5. An indirect action contributes to c-fos induction in paraventricular hypothalamic nucleus by neuropeptide Y

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neuropeptide Y (NPY) is a well-established orexigenic peptide and hypothalamic paraventricular nucleus (PVH) is one major brain site that mediates the orexigenic action of NPY. NPY induces abundant expression of C-Fos, an indicator for neuronal activation, in the PVH, which has been used extensively...

  6. Human SWI-SNF Component BRG1 Represses Transcription of the c-fos Gene

    PubMed Central

    Murphy, Daniel J.; Hardy, Stephen; Engel, Daniel A.

    1999-01-01

    Yeast and mammalian SWI-SNF complexes regulate transcription through active modification of chromatin structure. Human SW-13 adenocarcinoma cells lack BRG1 protein, a component of SWI-SNF that has a DNA-dependent ATPase activity essential for SWI-SNF function. Expression of BRG1 in SW-13 cells potentiated transcriptional activation by the glucocorticoid receptor, which is known to require SWI-SNF function. BRG1 also specifically repressed transcription from a transfected c-fos promoter and correspondingly blocked transcriptional activation of the endogenous c-fos gene. Mutation of lysine residue 798 in the DNA-dependent ATPase domain of BRG1 significantly reduced its ability to repress c-fos transcription. Repression by BRG1 required the cyclic AMP response element of the c-fos promoter but not nearby binding sites for Sp1, YY1, or TFII-I. Using human C33A cervical carcinoma cells, which lack BRG1 and also express a nonfunctional Rb protein, transcriptional repression by BRG1 was weak unless wild-type Rb was also supplied. Interestingly, Rb-dependent repression by BRG1 was found to take place through a pathway that is independent of transcription factor E2F. PMID:10082538

  7. Cytosolic malate dehydrogenase regulates RANKL-mediated osteoclastogenesis via AMPK/c-Fos/NFATc1 signaling.

    PubMed

    Oh, Se Jeong; Gu, Dong Ryun; Jin, Su Hyun; Park, Keun Ha; Lee, Seoung Hoon

    2016-06-17

    Cytosolic malate dehydrogenase (malate dehydrogenase 1, MDH1) plays pivotal roles in the malate/aspartate shuttle that might modulate metabolism between the cytosol and mitochondria. In this study, we investigated the role of MDH1 in osteoclast differentiation and formation. MDH1 expression was induced by receptor activator of nuclear factor kappa-B ligand (RANKL) treatment. Knockdown of MDH1 by infection with retrovirus containing MDH1-specific shRNA (shMDH1) reduced mature osteoclast formation and bone resorption activity. Moreover, the expression of marker genes associated with osteoclast differentiation was downregulated by shMDH1 treatment, suggesting a role of MDH1 in osteoclast differentiation. In addition, intracellular ATP production was reduced following the activation of adenosine 5' monophosphate-activated protein kinase (AMPK), a cellular energy sensor and negative regulator of RANKL-induced osteoclast differentiation, in shMDH1-infected osteoclasts compared to control cells. In addition, the expression of c-Fos and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), a critical transcription factor of osteoclastogenesis, was decreased with MDH1 knockdown during RANKL-mediated osteoclast differentiation. These findings provide strong evidence that MDH1 plays a critical role in osteoclast differentiation and function via modulation of the intracellular energy status, which might affect AMPK activity and NFATc1 expression. PMID:27179783

  8. Apolipoprotein E inhibits osteoclast differentiation via regulation of c-Fos, NFATc1 and NF-κB

    SciTech Connect

    Kim, Woo-Shin; Kim, Hyung Joon; Lee, Zang Hee; Lee, Youngkyun; Kim, Hong-Hee

    2013-02-15

    Apolipoprotein E (ApoE) plays a major role in the transport and metabolism of lipid. Other functions of ApoE include modulation of innate and adaptive immune responses. The expression of ApoE in osteoblasts and its relevance with bone formation have also been reported. However, the effect of ApoE on osteoclasts has not yet been examined. Here, we investigated the role of ApoE in osteoclast differentiation using bone marrow-derived macrophages (BMMs) and RAW264.7 cells. We found a down-regulation of ApoE gene expression during osteoclastic differentiation of those cells. Overexpression of ApoE in BMMs and RAW264.7 cells significantly blocked the induction of c-Fos and nuclear factor of activated T cell c1 (NFATc1), transcription factors critical for expression of osteoclast marker genes, by receptor activator of nuclear factor κB ligand (RANKL), the osteoclast differentiation factor. ApoE inhibited osteoclast differentiation, as measured by decreased number of tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells (MNCs). In addition, ApoE reduced the expression of dendritic cell-specific transmembrane protein (DC-STAMP) and ATPase, H{sup +} transporting, lysosomal 38 kDa, V0 subunit d2 (ATP6v0d2), genes involved in cell–cell fusion during osteoclastogenesis. Knock-down of ApoE using a specific siRNA promoted the RANKL-mediated induction of osteoclast differentiation. While ApoE did not affect the activation of ERK, JNK, and p38 MAPK signaling pathways by RANKL, the phosphorylation of p65 trans-activation domain on serine 536 and transcription activity of NF-κB were reduced by ApoE overexpression. These findings suggest that ApoE plays an inhibitory role in osteoclast differentiation via the suppression of RANKL-dependent activation of NF-κB and induction of c-Fos and NFATc1. - Highlights: ► Apolipoprotein E (ApoE) significantly inhibited osteoclast differentiation and activation of NF-κB. ► ApoE decreased the induction of osteoclast marker

  9. Changes in hypothalamic staining for c-Fos following 2G exposure in rats

    NASA Technical Reports Server (NTRS)

    Fuller, C. A.; Murakami, D. M.; Hoban-Higgins, T. M.; Tang, I. H.

    1994-01-01

    The static gravitational field of the earth has been an important selective pressure that has shaped the evolution of biological organisms. This is illustrated by the evolution of tetrapods from a water environment where gravitational force was partially negated to a terrestrial environment where gravity is of greater consequence. Terrestrial invasion resulted in a series of new structural, physiological, and behavioral features. Therefore, it is not surprising that alterations in the gravitational field can cause widespread effects in many physiological systems and behaviors. Our previous studies have demonstrated that both exposure to hyperdynamic fields and the microgravity condition of space flight have significant effects on body temperature, heartrate, activity, feeding, drinking, and circadian rhythms. However, it has not been determined whether these physiological adaptations are associated with changes in neural activity within the hypothalamic nuclei that regulate these functions. This study examined the changes in body temperature, activity, body weight and food and water intake in rats caused by exposure to a hyperdynamic field. In addition, the immediate early gene activation marker, c-Fos, was used to examine potential protein synthesis changes in the hypothalamic nuclei that regulate these functions.

  10. Dynamics of c-fos and ICER mRNA expression in rat forebrain following lithium chloride injection.

    PubMed

    Spencer, C M; Houpt, T A

    2001-09-30

    Lithium is commonly used as a treatment for affective disorders in humans and as a toxin to produce conditioned taste aversions in rats. LiCl administration in rats has been correlated with activation of c-fos and cAMP-mediated gene transcription in many brain regions; however, little is known about the timing or duration of gene activation. We hypothesized that c-fos gene transcription is rapidly stimulated by LiCl, followed later by the expression of the inducible cAMP early repressor (ICER) transcription factor, a negative modulator of cAMP-mediated gene transcription. By in situ hybridization, we analyzed the timecourse of c-fos and ICER mRNA expression in the central nucleus of the amygdala (CeA), the paraventricular nucleus of the hypothalamus (PVN) and the supraoptic nucleus (SON) at seven time points (0, 0.3, 1, 3, 6, 9 and 12 h) after intraperitoneal LiCl injection (0.15 M, 12 ml/kg, 76 mg/kg). Expression of c-fos mRNA peaked between 20 min and 1 h and returned to baseline by 3 h in the CeA, PVN and SON. ICER mRNA was detected in these regions at 20 min, peaked at 1-3 h and returned to nearly baseline 9 h following LiCl injection. The time lag between c-fos mRNA expression and ICER mRNA expression within the same regions is consistent with ICER terminating c-fos gene transcription. However, no refractory period was detected for restimulation of c-fos transcription by a second injection of LiCl during the period of peak ICER mRNA expression, suggesting the involvement of other transcriptional modulators. PMID:11589989

  11. Effects of NMDA-receptor antagonist treatment on c-fos expression in rat brain areas implicated in schizophrenia.

    PubMed

    Väisänen, Jussi; Ihalainen, Jouni; Tanila, Heikki; Castrén, Eero

    2004-12-01

    1. The noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists produce behavioral responses that closely resemble both positive and negative symptoms of schizophrenia. These drugs also induce excitatory and neurotoxic effects in limbic cortical areas. 2. We have here mapped the brain areas which show increased activity in response to noncompetitive NMDA-receptor antagonist administration concentrating especially to those brain areas that have been suggested to be relevant in the pathophysiology of schizophrenia. 3. Rats were treated intraperitoneally with a NMDA-receptor antagonist MK801 and activation of brain areas was detected by monitoring the expression of c-fos mRNA by using in situ hybridization. 4. MK801 induced c-fos mRNA expression of in the retrosplenial, entorhinal, and prefrontal cortices. Lower c-fos expression was observed in the layer IV of the parietal and frontal cortex. In the thalamus, c-fos mRNA expression was detected in the midline nuclei and in the reticular nucleus but not in the dorsomedial nucleus. In addition, c-fos mRNA was expressed in the anterior olfactory nucleus, the ventral tegmental area, and in cerebellar granule neurons. 5. NMDA-receptor antagonist ketamine increased dopamine release in the parietal cortex, in the region where NMDA-receptor antagonist increased c-fos mRNA expression. 6. Thus, the psychotropic NMDA-receptor antagonist induced c-fos mRNA expression in most, but not all, brain areas implicated in the pathophysiology of schizophrenia. The high spatial resolution of in situ hybridization may help to define regions of interest for human imaging studies. PMID:15672679

  12. Prostaglandin E2-induced up-regulation of c-fos messenger ribonucleic acid is primarily mediated by 3',5'-cyclic adenosine monophosphate in MC3T3-E1 osteoblasts

    NASA Technical Reports Server (NTRS)

    Fitzgerald, J.; Dietz, T. J.; Hughes-Fulford, M.

    2000-01-01

    The mechanism by which the proto-oncogene, c-fos, is up-regulated in response to PGE2 in the mouse osteoblastic (MC3T3-E1) cell line was investigated using RT-PCR. c-fos messenger RNA up-regulation by dmPGE2 is rapid, starting 10 min post stimulation, and transient. The specific protein kinase A (PKA) inhibitor, H89, inhibited c-fos induction. Moreover, down-regulation of protein kinase C (PKC) activity by chronic TPA treatment had no effect on the induction of c-fos by dmPGE2. We conclude that up-regulation of c-fos by dmPGE2 is primarily dependent on PKA in MC3T3-E1 osteoblasts. In S49 lymphoma wild-type but not S49 cyc- cells, which are deficient in cAMP signaling, dmPGE2 up-regulates c-fos and increases cell growth compared with unstimulated cells. Thus in S49 lymphoma cells, c-fos induction by PGE2 is also dependent on cAMP signaling. The minimal c-fos promoter region required for dmPGE2-induced expression was identified by transfecting c-fos promoter deletion constructs coupled to the chloramphenicol acetyltransferase (CAT) reporter gene into Vero cells. Transfection of a plasmid containing 99 bp c-fos proximal promoter was sufficient to direct c-fos/CAT expression following stimulation with dmPGE2. Because induction of c-fos is mediated by cAMP, these data are consistent with activation of c-fos via the CRE/ATF cis element.

  13. Expression of c-Fos in rat auditory and limbic systems following 22-kHz calls.

    PubMed

    Ouda, Ladislav; Jílek, Milan; Syka, Josef

    2016-07-15

    In the present study, adult Long-Evans rats were exposed either to natural conspecific aversive 22-kHz vocalizations or to artificial call-like stimuli with comparable frequency-temporal features, followed by c-Fos immunohistochemistry. The natural 22-kHz vocalizations was either played from a recording or produced by a foot-shocked animal located nearby (live vocalizations). In comparison with controls (non-exposed animals), c-Fos immunoreactivity was significantly increased in the inferior colliculus (IC), auditory cortex (AC), periaqueductal grey (PAG), basolateral amygdala (BA), and hippocampus (Hip) of rats exposed to either live or recorded 22-kHz natural vocalizations. Exposure to live natural vocalizations of the foot-shocked animal resulted in a similar pattern of c-Fos activity, as did exposure to the playback of the natural vocalizations. In contrast to this, foot-shocked rats (emitting the 22-kHz vocalizations) had the c-Fos positivity increased markedly in the PAG and only slightly in the AC. The expression of c-Fos also increased in the IC, AC, and in the PAG in animals exposed to the artificial call-like stimuli, when compared to controls; however, the increase was much less pronounced. In this case, c-Fos expression was not increased in the hippocampus or basolateral amygdala. Interestingly, almost no c-Fos expression was found in the medial nucleus of the geniculate body in any of the experimental groups. These findings suggest that differences exist between the processing of important natural conspecific vocalizations and artificial call-like stimuli with similar frequency-temporal features, and moreover they suggest the specific role of individual brain structures in the processing of such calls. PMID:27102341

  14. 7beta-Hydroxycholesterol and 25-hydroxycholesterol-induced interleukin-8 secretion involves a calcium-dependent activation of c-fos via the ERK1/2 signaling pathway in THP-1 cells: oxysterols-induced IL-8 secretion is calcium-dependent.

    PubMed

    Lemaire-Ewing, Stéphanie; Berthier, Arnaud; Royer, Marie Charlotte; Logette, Emmanuelle; Corcos, Laurent; Bouchot, André; Monier, Serge; Prunet, Céline; Raveneau, Magalie; Rébé, Cédric; Desrumaux, Catherine; Lizard, Gérard; Néel, Dominique

    2009-04-01

    Oxysterols found in oxidized low-density lipoproteins are probably involved in the appearance of atheroma; some are cytotoxic and some able to induce cytokine secretion. An oxysterol-induced interleukin-8 (IL-8) secretion in human monocytes/macrophages has been previously noticed, but the mechanisms remained unclear. In this paper, we investigated the signaling pathways leading to the induction of IL-8 secretion in monocytic THP-1 cells treated with 7beta-hydroxycholesterol, a cytototoxic oxysterol, or with 25-hydroxycholesterol, an oxysterol non-cytotoxic toward this cell line. The oxysterol-induced IL-8 secretion appears to be a calcium-dependent phenomenon as shown by the use of calcium channel blockers, which strongly decreased IL-8 secretion and IL-8 messenger RNA (mRNA) levels. Fluo-3 staining used in flow cytometry and video microscopy revealed an oxysterol-induced Ca(2+) influx, varying according to the oxysterol studied, leading to the activation of the MEK/ERK1/2 pathway as demonstrated by Western blot analysis. ERK activation led to an increase of c-fos mRNA and/or an activation of c-fos. Luciferase reporter gene assay using constructs of the human IL-8 gene promoter and Transam assay revealed the involvement of the AP-1 transcription factor in oxysterol-dependent IL-8 secretion. These results demonstrate that oxysterol-induced IL-8 secretion is a calcium-dependent phenomenon involving the MEK/ERK1/2 pathway leading to the activation of IL-8 gene via AP-1 (c-fos). PMID:18317936

  15. Prostaglandin E2 and the protein kinase A pathway mediate arachidonic acid induction of c-fos in human prostate cancer cells

    NASA Technical Reports Server (NTRS)

    Chen, Y.; Hughes-Fulford, M.

    2000-01-01

    Arachidonic acid (AA) is the precursor for prostaglandin E2 (PGE2) synthesis and increases growth of prostate cancer cells. To further elucidate the mechanisms involved in AA-induced prostate cell growth, induction of c-fos expression by AA was investigated in a human prostate cancer cell line, PC-3. c-fos mRNA was induced shortly after addition of AA, along with a remarkable increase in PGE2 production. c-fos expression and PGE2 production induced by AA was blocked by a cyclo-oxygenase inhibitor, flurbiprofen, suggesting that PGE2 mediated c-fos induction. Protein kinase A (PKA) inhibitor H-89 abolished induction of c-fos expression by AA, and partially inhibited PGE2 production. Protein kinase C (PKC) inhibitor GF109203X had no significant effect on c-fos expression or PGE2 production. Expression of prostaglandin (EP) receptors, which mediate signal transduction from PGE2 to the cells, was examined by reverse transcription polymerase chain reaction in several human prostate cell lines. EP4 and EP2, which are coupled to the PKA signalling pathway, were expressed in all cells tested. Expression of EP1, which activates the PKC pathway, was not detected. The current study showed that induction of the immediate early gene c-fos by AA is mediated by PGE2, which activates the PKA pathway via the EP2/4 receptor in the PC-3 cells.

  16. Regulation of osteosarcoma cell lung metastasis by the c-Fos/AP-1 target FGFR1.

    PubMed

    Weekes, D; Kashima, T G; Zandueta, C; Perurena, N; Thomas, D P; Sunters, A; Vuillier, C; Bozec, A; El-Emir, E; Miletich, I; Patiño-Garcia, A; Lecanda, F; Grigoriadis, A E

    2016-06-01

    Osteosarcoma is the most common primary malignancy of the skeleton and is prevalent in children and adolescents. Survival rates are poor and have remained stagnant owing to chemoresistance and the high propensity to form lung metastases. In this study, we used in vivo transgenic models of c-fos oncogene-induced osteosarcoma and chondrosarcoma in addition to c-Fos-inducible systems in vitro to investigate downstream signalling pathways that regulate osteosarcoma growth and metastasis. Fgfr1 (fibroblast growth factor receptor 1) was identified as a novel c-Fos/activator protein-1(AP-1)-regulated gene. Induction of c-Fos in vitro in osteoblasts and chondroblasts caused an increase in Fgfr1 RNA and FGFR1 protein expression levels that resulted in increased and sustained activation of mitogen-activated protein kinases (MAPKs), morphological transformation and increased anchorage-independent growth in response to FGF2 ligand treatment. High levels of FGFR1 protein and activated pFRS2α signalling were observed in murine and human osteosarcomas. Pharmacological inhibition of FGFR1 signalling blocked MAPK activation and colony growth of osteosarcoma cells in vitro. Orthotopic injection in vivo of FGFR1-silenced osteosarcoma cells caused a marked twofold to fivefold decrease in spontaneous lung metastases. Similarly, inhibition of FGFR signalling in vivo with the small-molecule inhibitor AZD4547 markedly reduced the number and size of metastatic nodules. Thus deregulated FGFR signalling has an important role in osteoblast transformation and osteosarcoma formation and regulates the development of lung metastases. Our findings support the development of anti-FGFR inhibitors as potential antimetastatic therapy. PMID:26387545

  17. The Expression Patterns of c-Fos and c-Jun Induced by Different Frequencies of Electroacupuncture in the Brain

    PubMed Central

    Qiu, Zheng-Ying; Ding, Yi; Cui, Lu-ying; Hu, Man-Li; Ding, Ming-Xing

    2015-01-01

    To investigate patterns of c-Fos and c-Jun expression induced by different frequencies of electroacupuncture (EA) in the brain, goats were stimulated by EA of 0, 2, 60, or 100 Hz at a set of “Baihui, Santai, Ergen, and Sanyangluo” points for 30 min. The pain threshold was measured using the potassium iontophoresis method. The levels of c-Fos and c-Jun were determined with Streptavidin-Biotin Complex immunohistochemistry. The results showed that the pain threshold induced by 60 Hz was 82.2% higher (P < 0.01) than that by 0, 2, or 100 Hz (6.5%, 35.2%, or 40.9%). EA induced increased c-Fos and c-Jun expression in most analgesia-related nuclei and areas in the brain. Sixty Hz EA increased more c-Fos or c-Jun expression than 2 Hz or 100 Hz EA in all the measured nuclei and areas except for the nucleus accumbens, the area septalis lateralis, the caudate nucleus, the nucleus amygdala basalis, and the locus coeruleus, in which c-Fos or c-Jun expressions induced by 60 Hz EA did not differ from those by 2 Hz or 100 Hz EA. It was suggested that 60 Hz EA activated more extensive neural circuits in goats, which may contribute to optimal analgesic effects. PMID:26491460

  18. Wedelolactone enhances osteoblastogenesis by regulating Wnt/β-catenin signaling pathway but suppresses osteoclastogenesis by NF-κB/c-fos/NFATc1 pathway.

    PubMed

    Liu, Yan-Qiu; Hong, Zhi-Lai; Zhan, Li-Bin; Chu, Hui-Ying; Zhang, Xiao-Zhe; Li, Guo-Hui

    2016-01-01

    Bone homeostasis is maintained by formation and destruction of bone, which are two processes tightly coupled and controlled. Targeting both stimulation on bone formation and suppression on bone resorption becomes a promising strategy for treating osteoporosis. In this study, we examined the effect of wedelolactone, a natural product from Ecliptae herba, on osteoblastogenesis as well as osteoclastogenesis. In mouse bone marrow mesenchymal stem cells (BMSC), wedelolactone stimulated osteoblast differentiation and bone mineralization. At the molecular level, wedelolactone directly inhibited GSK3β activity and enhanced the phosphorylation of GSK3β, thereafter stimulated the nuclear translocation of β-catenin and runx2. The expression of osteoblastogenesis-related marker gene including osteorix, osteocalcin and runx2 increased. At the same concentration range, wedelolactone inhibited RANKL-induced preosteoclastic RAW264.7 actin-ring formation and bone resorption pits. Further, wedelolactone blocked NF-kB/p65 phosphorylation and abrogated the NFATc1 nuclear translocation. As a result, osteoclastogenesis-related marker gene expression decreased, including c-src, c-fos, and cathepsin K. In ovariectomized mice, administration of wedelolactone prevented ovariectomy-induced bone loss by enhancing osteoblast activity and inhibiting osteoclast activity. Together, these data demonstrated that wedelolactone facilitated osteoblastogenesis through Wnt/GSK3β/β-catenin signaling pathway and suppressed RANKL-induced osteoclastogenesis through NF-κB/c-fos/NFATc1 pathway. These results suggested that wedelolacone could be a novel dual functional therapeutic agent for osteoporosis. PMID:27558652

  19. Wedelolactone enhances osteoblastogenesis by regulating Wnt/β-catenin signaling pathway but suppresses osteoclastogenesis by NF-κB/c-fos/NFATc1 pathway

    PubMed Central

    Liu, Yan-Qiu; Hong, Zhi-Lai; Zhan, Li-Bin; Chu, Hui-Ying; Zhang, Xiao-Zhe; Li, Guo-Hui

    2016-01-01

    Bone homeostasis is maintained by formation and destruction of bone, which are two processes tightly coupled and controlled. Targeting both stimulation on bone formation and suppression on bone resorption becomes a promising strategy for treating osteoporosis. In this study, we examined the effect of wedelolactone, a natural product from Ecliptae herba, on osteoblastogenesis as well as osteoclastogenesis. In mouse bone marrow mesenchymal stem cells (BMSC), wedelolactone stimulated osteoblast differentiation and bone mineralization. At the molecular level, wedelolactone directly inhibited GSK3β activity and enhanced the phosphorylation of GSK3β, thereafter stimulated the nuclear translocation of β-catenin and runx2. The expression of osteoblastogenesis-related marker gene including osteorix, osteocalcin and runx2 increased. At the same concentration range, wedelolactone inhibited RANKL-induced preosteoclastic RAW264.7 actin-ring formation and bone resorption pits. Further, wedelolactone blocked NF-kB/p65 phosphorylation and abrogated the NFATc1 nuclear translocation. As a result, osteoclastogenesis-related marker gene expression decreased, including c-src, c-fos, and cathepsin K. In ovariectomized mice, administration of wedelolactone prevented ovariectomy-induced bone loss by enhancing osteoblast activity and inhibiting osteoclast activity. Together, these data demonstrated that wedelolactone facilitated osteoblastogenesis through Wnt/GSK3β/β-catenin signaling pathway and suppressed RANKL-induced osteoclastogenesis through NF-κB/c-fos/NFATc1 pathway. These results suggested that wedelolacone could be a novel dual functional therapeutic agent for osteoporosis. PMID:27558652

  20. Neural Correlates of Birth: Labor Contractions Induce C-Fos Expression In Newborn Rat Brain

    NASA Technical Reports Server (NTRS)

    Ronca, A. E.; Daly, M. E.; Baer, L. A.; Hills, E. M.; Conway, G.; Dalton, Bonnie (Technical Monitor)

    2002-01-01

    At birth, the newborn mammal must make rapid adaptations to the extrauterine environment to survive. We have previously shown that labor contractions augment the appearance of adaptive responses at birth, viz., postpartum breathing and the onset of suckling. Since neuronal activity has been shown to upregulate the activity of immediate early genes (IEGs) in the brain, we analyzed the neural distribution of c-Fos protein expression in newborn rats using immunohistochemistry. Previous studies have reported a burst of c-Fos mRNA expression in mouse and rat brain at birth however relationships to labor and delivery have not been examined. In the present study, we exposed near-term rat fetuses to elements of the vaginal birth process: 1) Simulated labor contractions. 2) Postpartum cooling (22 deg C). 3) Umbilical cord occlusion. and 4) Stroking to mimic postpartum licking by the dam. Cardinally delivered newborns (VG) were compared with those delivered by cesarean section following either prenatal exposure to compressions (C) [simulated labor contractions], or no compressions (NC) [no labor contractions]. Similar patterns of c-fos activation were observed throughout hypothalamic and thalamic nuclei, hippocampus and cerebral cortex in VG and C newborns that were not apparent in NC newborns. Our results indicate that labor contractions play a role in the induction of widespread neural activation in the newborn brain.

  1. Regulation of osteosarcoma cell lung metastasis by the c-Fos/AP-1 target FGFR1

    PubMed Central

    Weekes, Daniel; Zandueta, Carolina; Perurena, Naiara; Thomas, David P; Sunters, Andrew; Vuillier, Céline; Bozec, Aline; El-Emir, Ethaar; Miletich, Isabelle; Patiño-Garcia, Ana; Lecanda, Fernando; Grigoriadis, Agamemnon E

    2015-01-01

    Osteosarcoma is the most common primary malignancy of the skeleton and is prevalent in children and adolescents. Survival rates are poor and have remained stagnant due to chemoresistance and the high propensity to form lung metastases. In this study, we used in vivo transgenic models of c-fos oncogene-induced osteosarcoma and chondrosarcoma in addition to c-Fos-inducible systems in vitro to investigate downstream signaling pathways that regulate osteosarcoma growth and metastasis. Fgfr1 was identified as a novel c-Fos/AP-1 regulated gene. Induction of c-Fos in vitro in osteoblasts and chondroblasts caused an increase in Fgfr1 RNA and FGFR1 protein expression levels that resulted in increased and sustained activation of MAPKs, morphological transformation and increased anchorage-independent growth in response to FGF2 ligand treatment. High levels of FGFR1 protein and activated pFRS2α signalling were observed in murine and human osteosarcomas. Pharmacological inhibition of FGFR1 signalling blocked MAPK activation and colony growth of osteosarcoma cells in vitro. Orthotopic injection in vivo of FGFR1 silenced osteosarcoma cells caused a marked 2- to 5-fold decrease in spontaneous lung metastases. Similarly, inhibition of FGFR signalling in vivo with the small molecule inhibitor AZD4547 markedly reduced the number and size of metastatic nodules. Thus, deregulated FGFR signalling plays an important role in osteoblast transformation and osteosarcoma formation and regulates the development of lung metastases. Our findings support the development of anti-FGFR inhibitors as potential antimetastatic therapy. PMID:26387545

  2. c-Fos expression associated with reinstatement of cocaine-seeking behavior by response-contingent conditioned cues

    PubMed Central

    Kufahl, Peter R.; Zavala, Arturo R.; Singh, Akanksha; Thiel, Kenneth J.; Dickey, Erin D.; Joyce, Jeffrey N.; Neisewander, Janet L.

    2009-01-01

    Summary The capability of cocaine cues to generate craving in cocaine-dependent humans, even after extended abstinence, is modeled in rats using cue reinstatement of extinguished cocaine-seeking behavior. We investigated neural activity associated with incentive motivational effects of cocaine cues using c-fos mRNA and Fos protein expression as markers. Unlike preceding studies, we used response-contingent presentation of discrete cues to elicit cocaine seeking. Rats were first trained to press a lever, resulting in cocaine reinforcement and light and tone cues. Rats then underwent extinction training, during which lever presses decreased. On the test day, rats either received response-contingent cocaine cues or received no cues. The cues reinstated extinguished cocaine-seeking behavior on the test day. In general, cue-elicited c-fos mRNA and protein expression were similar and both were enhanced in the prefrontal cortex, ventral tegmental area (VTA), dorsal striatum and nucleus accumbens. Cues elicited more widespread Fos protein expression relative to our previous research in which cues were presented non-contingently without prior extinction training, including increases in the VTA, substantia nigra, ventral subiculum, and lateral entorhinal cortex. We also observed a correlation between cocaine-seeking behavior and Fos in the agranular insula (AgI) and basolateral amygdala (BLA). The findings suggest that connections between BLA and AgI play a role in cue-elicited incentive motivation for cocaine and that reinstatement of cocaine seeking by response-contingent cues activates a similar corticolimbic circuit as that observed with other modes of cue presentation; however, activation of midbrain and ventral hippocampal regions may be unique to reinstatement by response-contingent cues. PMID:19533625

  3. Prenatal valproic acid exposure disrupts tonotopic c-Fos expression in the rat brainstem.

    PubMed

    Dubiel, A; Kulesza, R J

    2016-06-01

    Autism spectrum disorder (ASD) is a group of neurodevelopmental conditions characterized by difficulties in communication and social interactions, restricted, repetitive behaviors and sensory abnormalities. Notably, the vast majority of individuals with ASD experience some degree of auditory dysfunction and we have recently reported consistent hypoplasia and dysmorphology in auditory brainstem centers in individuals with ASD. Prenatal exposure to the antiepileptic drug valproic acid (VPA) is associated with an increased risk of ASD. In rodents, prenatal exposure to VPA is employed as an animal model of ASD and is associated with a number of anatomical, physiological and behavioral deficits, including hypoplasia and dysmorphology of auditory brainstem centers. Based on these observations, we hypothesized that such dysmorphology in VPA-exposed animals would translate into abnormal neuronal activity in brainstem circuits and irregular tonotopic maps. Herein, we have subjected control and VPA-exposed animals to 4- or 16-kHz tones and examined neuronal activation with immunohistochemistry for c-Fos. After these exposures, we identified significantly more c-Fos-positive neurons in the auditory brainstem of VPA-exposed animals. Additionally, we observed a larger dispersion of c-Fos-positive neurons and shifted tonotopic bands in VPA-exposed rats. We interpret these findings to suggest hyper-responsiveness to sounds and disrupted mapping of sound frequencies after prenatal VPA exposure. Based on these findings, we suggest that such abnormal patterns of activation may play a role in auditory processing deficits in ASD. PMID:27094734

  4. Prenatal valproic acid exposure disrupts tonotopic c-Fos expression in the rat brainstem.

    PubMed

    Dubiel, A; Kulesza, R J

    2015-12-17

    Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by difficulties with communication and social interactions, restricted, repetitive behaviors and sensory abnormalities. Additionally, the vast majority of subjects with ASD suffer some degree of auditory dysfunction and we have previously identified significant hypoplasia and dysmorphology in auditory brainstem centers in individuals with ASD. Prenatal exposure to the antiepileptic drug valproic acid (VPA) is associated with an increased risk of ASD. In rodents, prenatal exposure to VPA is utilized as an animal model of ASD and is associated with a number of anatomical, physiological and behavioral deficits, including hypoplasia and dysmorphology in the auditory brainstem. Based on these observations, we hypothesized that such dysmorphology in VPA-exposed animals would translate into abnormal activity in brainstem circuits and irregular tonotopic maps. Herein, we have subjected control and VPA-exposed animals to 4 or 16 kHz tones and examined neuronal activation with immunohistochemistry for c-Fos. After these sound exposures, we found significantly more c-Fos-positive neurons in the auditory brainstem of VPA-exposed animals. Further, we found a larger dispersion of c-Fos-positive neurons and shifted tonotopic bands in VPA-exposed rats. We interpret these findings to suggest hyper-responsiveness to sounds and disrupted mapping of sound frequencies after prenatal VPA exposure. Based on these findings, we suggest that such abnormal patterns of activation may play a role in auditory processing deficits in ASD. PMID:26518464

  5. Arsenic trioxide phosphorylates c-Fos to transactivate p21{sup WAF1/CIP1} expression

    SciTech Connect

    Liu Zimiao; Huang, H.-S.

    2008-12-01

    An infamous poison, arsenic also has been used as a drug for nearly 2400 years; in recently years, arsenic has been effective in the treatment of acute promyelocytic leukemia. Increasing evidence suggests that opposite effects of arsenic trioxide (ATO) on tumors depend on its concentrations. For this reason, the mechanisms of action of the drug should be elucidated, and it should be used therapeutically only with extreme caution. Previously, we demonstrated the opposing effects of ERK1/2 and JNK on p21{sup WAF1/CIP1} (p21) expression in response to ATO in A431 cells. In addition, JNK phosphorylates c-Jun (Ser{sup 63/73}) to recruit TGIF/HDAC1 to suppress p21 gene expression. Presently, we demonstrated that a high concentration of ATO sustains ERK1/2 phosphorylation, and increases c-Fos biosynthesis and stability, which enhances p21 gene expression. Using site-directed mutagenesis, a DNA affinity precipitation assay, and functional assays, we demonstrated that phosphorylation of the C-terminus of c-Fos (Thr{sup 232}, Thr{sup 325}, Thr{sup 331}, and Ser{sup 374}) plays an important role in its binding to the p21 promoter, and in conjunction with N-terminus phosphorylation of c-Fos (Ser{sup 70}) to transactivate p21 promoter expression. In conclusion, a high concentration of ATO can sustain ERK1/2 activation to enhance c-Fos expression, then dimerize with dephosphorylated c-Jun (Ser{sup 63/73}) and recruit p300/CBP to the Sp1 sites (- 84/- 64) to activate p21 gene expression in A431 cells.

  6. Anxiety-like behaviour and c-fos expression in rats that inhaled vetiver essential oil.

    PubMed

    Saiyudthong, Somrudee; Pongmayteegul, Sirinun; Marsden, Charles A; Phansuwan-Pujito, Pansiri

    2015-01-01

    Vetiver essential oil (VEO) has been used in aromatherapy for relaxation. This study aimed to investigate the effects of VEO on an anxiety-related behavioural model (the elevated plus-maze, EPM) and immediate-early gene c-fos in amygdala, known to be involved in anxiety. Male Wistar rats were administered diazepam (1 mg/kg i.p.) for 30 min or inhalated with VEO (1%, 2.5% or 5% w/w) for 7 min prior to exposure to the EPM. Then, the effects of 2.5% VEO, the anxiolytic dose, on c-fos expression in amygdala were investigated. The rats given either 2.5% VEO or diazepam exhibited an anxiolytic-like profile in the EPM. VEO and diazepam significantly increased c-fos expression in the lateral division of the central amygdaloid nucleus (CeL). Therefore, the anxiolytic properties of VEO might be associated with altering neuronal activation in CeL. However, future studies are needed to investigate the precise mechanism of action of VEO. PMID:25553641

  7. Reversal of novelty-induced hippocampal c-Fos expression in GluA1 subunit-deficient mice by chronic treatment targeting glutamatergic transmission.

    PubMed

    Maksimovic, Milica; Aitta-aho, Teemu; Korpi, Esa R

    2014-12-15

    Malfunction of glutamate transmission is implicated in several neuropsychiatric disorders. Gria1-/- mouse line with knocked-out GluA1 subunits of ionotropic AMPA glutamate receptor displays several behavioural features of schizoaffective disorder. Typically, these mice show hyperactivity provoked by environmental novelty, which is attenuated after 4-week treatment with the standard mood-stabilisers lithium and valproate and the mood-stabilising anticonvulsants topiramate and lamotrigine (Maksimovic, M., Vekovischeva, O.Y., Aitta-Aho, T., Korpi, E.R., 2014. Chronic treatment with mood-stabilizers attenuates abnormal hyperlocomotion of GluA1-subunit deficient mice. PloS One. 9, e100188). Here, we complement our study by treating these mice chronically with perampanel, a novel non-competitive antagonist of AMPA receptors, for 4 weeks at the dose of 60 mg/kg diet, and found reduced locomotor hyperactivity in the Gria1-/- animals, while not affecting the wild-type littermates. To study the cellular mechanism by which chronic treatments with glutamate-modulating mood-stabilizing drugs alleviate this hyperactivity, we used the immediate early gene c-Fos protein expression as a marker of neuronal activity in the brain. Chronic lithium, valproate and topiramate blunted the c-Fos expression especially in the dorsal hippocampus of the Gria1-/- mice, with all of them reducing the number of c-Fos-positive cells in the CA3 region and valproate and topiramate also in the dentate gyrus (DG). Lamotrigine and perampanel treatments had the same effect in the all CA1, CA3 and DG subfields of the dorsal hippocampus of Gria1-/- mice. The results suggest that abnormal (hippocampal) glutamatergic transmission underlies the hyperactive phenotype of the Gria1-/- mice in a novel environment, and based on the efficacies of the present chronic drug treatments, this mouse model may serve as a predictive tool for studying novel mood-stabilisers. PMID:25446922

  8. Papillomavirus-Associated Tumor Formation Critically Depends on c-Fos Expression Induced by Viral Protein E2 and Bromodomain Protein Brd4

    PubMed Central

    Schneider, Markus; Schuetz, Johanna; Leiprecht, Natalie; Hudjetz, Benjamin; Brodbeck, Stephan; Corall, Silke; Dreer, Marcel; Schwab, Roxana Michaela; Grimm, Martin; Wu, Shwu-Yuan; Stubenrauch, Frank; Chiang, Cheng-Ming; Iftner, Thomas

    2016-01-01

    We investigated the mechanism of how the papillomavirus E2 transcription factor can activate promoters through activator protein (AP)1 binding sites. Using an unbiased approach with an inducible cell line expressing the viral transcription factor E2 and transcriptome analysis, we found that E2 induces the expression of the two AP1 components c-Fos and FosB in a Brd4-dependent manner. In vitro RNA interference confirmed that c-Fos is one of the AP1 members driving the expression of viral oncogenes E6/E7. Mutation analysis and in vivo RNA interference identified an essential role for c-Fos/AP1 and also for the bromodomain protein Brd4 for papillomavirus-induced tumorigenesis. Lastly, chromatin immunoprecipitation analysis demonstrated that E2 binds together with Brd4 to a canonical E2 binding site (E2BS) in the promoter of c-Fos, thus activating c-Fos expression. Thus, we identified a novel way how E2 activates the viral oncogene promoter and show that E2 may act as a viral oncogene by direct activation of c-Fos involved in skin tumorigenesis. PMID:26727473

  9. Papillomavirus-Associated Tumor Formation Critically Depends on c-Fos Expression Induced by Viral Protein E2 and Bromodomain Protein Brd4.

    PubMed

    Delcuratolo, Maria; Fertey, Jasmin; Schneider, Markus; Schuetz, Johanna; Leiprecht, Natalie; Hudjetz, Benjamin; Brodbeck, Stephan; Corall, Silke; Dreer, Marcel; Schwab, Roxana Michaela; Grimm, Martin; Wu, Shwu-Yuan; Stubenrauch, Frank; Chiang, Cheng-Ming; Iftner, Thomas

    2016-01-01

    We investigated the mechanism of how the papillomavirus E2 transcription factor can activate promoters through activator protein (AP)1 binding sites. Using an unbiased approach with an inducible cell line expressing the viral transcription factor E2 and transcriptome analysis, we found that E2 induces the expression of the two AP1 components c-Fos and FosB in a Brd4-dependent manner. In vitro RNA interference confirmed that c-Fos is one of the AP1 members driving the expression of viral oncogenes E6/E7. Mutation analysis and in vivo RNA interference identified an essential role for c-Fos/AP1 and also for the bromodomain protein Brd4 for papillomavirus-induced tumorigenesis. Lastly, chromatin immunoprecipitation analysis demonstrated that E2 binds together with Brd4 to a canonical E2 binding site (E2BS) in the promoter of c-Fos, thus activating c-Fos expression. Thus, we identified a novel way how E2 activates the viral oncogene promoter and show that E2 may act as a viral oncogene by direct activation of c-Fos involved in skin tumorigenesis. PMID:26727473

  10. c-Fos mediates repression of the apical sodium-dependent bile acid transporter by fibroblast growth factor-19 in mice

    PubMed Central

    Ghosh, Ayantika; Chen, Frank; Banerjee, Swati; Xu, Ming

    2013-01-01

    Fibroblast growth factor-19 (FGF-19), a bile acid-responsive enterokine, is secreted by the ileum and regulates a variety of metabolic processes. These studies examined the signal transduction pathways operant in FGF-19-mediated repression of the apical sodium-dependent bile acid transporter (ASBT). Responses to FGF-19 were assessed in Caco-2 and CT-26 cells and in mice where c-fos was conditionally silenced in the intestine by a cre-lox strategy. FGF-19 treatment of Caco-2 cells or wild-type mice led to a significant reduction in ASBT protein expression and enhanced phosphorylation of extracellular signaling kinase 1/2 (ERK1/2), c-Fos, and c-Jun. FGF-19 treatment of Caco-2 cells led to a reduction in activity of the human ASBT promoter and this repression could be blocked by treatment with a mitogen-activated protein kinase/ERK kinase (MEK1/2) inhibitor or by silencing jun kinase 1, jun kinase 2, c-fos, or c-jun. Site directed mutagenesis of a c-fos binding element in the ASBT promoter blocked FGF-19-mediated repression in luciferase reporter constructs. ASBT promoter activity was repressed by FGF-19 in CT-26 cells and this repression could be reduced by MEK1/2 inhibition or silencing c-fos. FGF-19-mediated repression of ASBT protein expression was abrogated in mice where c-fos was conditionally silenced in the intestine. In contrast, ASBT was repressed in the c-Fos expressing gallbladders of the same mice. The studies demonstrate that FGF-19 represses the expression of ASBT in the ileum and gallbladder via a signal transduction pathway involving MEK1/2, ERK1/2, JNK1, JNK2, and c-Fos. PMID:24309182

  11. Nonlinear development of the populations of neurons expressing c-Fos under sustained electrical intracochlear stimulation in the rat auditory brainstem.

    PubMed

    Rosskothen-Kuhl, Nicole; Illing, Robert-Benjamin

    2010-08-01

    The immediate-early-gene c-fos is among the first genes to be expressed following sensory-invoked neuronal activity. Its gene product c-Fos forms the limiting monomer of the heterodimeric activator protein-1 transcription factor that triggers various genes involved in neuroplastic remodeling. This study investigated the pattern of c-Fos expression in anteroventral (AVCN) and dorsal cochlear nucleus (DCN) and central inferior colliculus (CIC) after 45 min, 73 min, 2 h, 3:15 h and 5 h of unilateral electrical intracochlear stimulation (EIS) at 50 Hz in anaesthetized rats. Following EIS, tonotopic c-Fos expression was observed for each stimulation time in ipsilateral AVCN, DCN bilaterally, and contralateral CIC. By counting c-Fos positive nuclei, we discovered temporal non-linearities in the size of the respective population of c-Fos expressing neurons. In all regions investigated, the populations significantly increased from 73 min to 2 h but decreased towards 3:15 h. In AVCN, the number rose again by 5 h of EIS. Remarkably, the same was noted for neurons with large nuclei in deep DCN. In both regions, the population of responsive neurons shifted spatially: In central AVCN, the density of c-Fos positive cells increased significantly from 2 to 5h with medial and lateral regions remaining unchanged. In DCN, the density of large c-Fos positive nuclei fell in the upper and rose in the deep layers from 45 min to 5h of EIS. In conclusion, spatiotemporally varying recruitments of neuronal subpopulations into cellular networks responding to specific patterns of sensory activity take place in the auditory brainstem. PMID:20570662

  12. Spatial memory extinction: a c-Fos protein mapping study.

    PubMed

    Méndez-Couz, M; Conejo, N M; Vallejo, G; Arias, J L

    2014-03-01

    While the neuronal basis of spatial memory consolidation has been thoroughly studied, the substrates mediating the process of extinction remain largely unknown. This study aimed to evaluate the functional contribution of selected brain regions during the extinction of a previously acquired spatial memory task in the Morris water maze. For that purpose, we used adult male Wistar rats trained in a spatial reference memory task. Learning-related changes in c-Fos inmunoreactive cells after training were evaluated in cortical and subcortical regions. Results show that removal of the hidden platform in the water maze induced extinction of the previously reinforced escape behavior after 16 trials, without spontaneous recovery 24h later. Extinction was related with significantly higher numbers of c-Fos positive nuclei in amygdala nuclei and prefrontal cortex. On the other hand, the lateral mammillary bodies showed higher number of c-Fos positive cells than the control group. Therefore, in contrast with the results obtained in studies of classical conditioning, we show the involvement of diencephalic structures mediating this kind of learning. In summary, our findings suggest that medial prefrontal cortex, the amygdala complex and diencephalic structures like the lateral mammillary nuclei are relevant for the extinction of spatial memory. PMID:24315832

  13. Tatarinan O, a lignin-like compound from the roots of Acorus tatarinowii Schott inhibits osteoclast differentiation through suppressing the expression of c-Fos and NFATc1.

    PubMed

    Xu, Xiaohan; Liu, Ning; Wang, Yingjian; Pan, Lei-Chang; Wu, Donglin; Peng, Qisheng; Zhang, Maolin; Wang, Hong-Bing; Sun, Wan-Chun

    2016-05-01

    Osteoclasts (OC) are large multinucleated cells derived from monocyte/macrophage precursors. Suppressing osteoclastogenesis is considered as an effective therapeutic approach to erosive bone disease. The root of Acorus tatarinowii Schott, a well-known traditional Chinese medicine was used to treat rheumatosis and other inflammatory disease. However, the effects of tatarinan O (TO), one of the lignin-like compounds isolated from the roots of Acorus tatarinowii Schott during bone development are still unclear. In the present study, we explored the effect of TO on RANKL-induced osteoclastogenesis in vitro. TO was found to suppress osteoclast differentiation from RANKL-stimulated mouse bone marrow macrophages (BMMs) without significant cytotoxicity. TO also dose-dependently suppressed bone resorption activity of mature osteoclasts. Additionally, TO apparently inhibited the expression of osteoclastic marker genes, such as MMP-9, Cts K and TRAP. Furthermore, our results showed that TO decreased RANKL-induced expression of c-Fos and NFATc1 without influencing NF-κB activation and MAPK phosphorylation. Hence, for the first time we revealed that TO dose-dependently inhibited osteoclastogenesis from RANKL-stimulated mouse BMMs via decreasing the expression of NFATc1 and c-Fos. PMID:26971224

  14. [Effects of ketamine and urethane on stimulation-induced c-fos expression in neurons of cat visual cortex].

    PubMed

    Wang, Ke; Zhu, Hui; Chen, Cui-Yun; Li, Peng; Jin, Cai-Hong; Wang, Zi-Lu; Jiang, San; Hua, Tian-Miao

    2013-12-01

    The effects of ketamine and urethane on neuronal activities remain in debate. As a member of immediate early genes family, the expression of c-fos is stimulation dependent and could be treated as an index to evaluate the strength of neural activities. In this study, SABC immunohistochemical techniques were applied to compare the c-fos expression in neurons of the primary visual cortex (V1) of cats and therefore, to evaluate the effects of acute anesthesia with ketamine HCl and uethane on inhibiting neural activities. Our results showed that compared with control cats, there were no significant differences with the average densities of Nissl-stained V1 neurons in each cortical layers of either urethane or ketamine anesthetized cats. In urethane anesthetized cats, neither the average densities nor the immunoreactive intensities of c-fos positive V1 neurons showed significant difference with that of control ones. However, both the average densities and immunoreactive intensities of c-fos positive V1 neurons in ketamine anesthetized cats decreased significantly compared with that of control and urethane anesthetized cats. These results suggested that ketamine has strong inhibitory effects on the activities of visual cortical neurons, whereas urethane did not. PMID:24415690

  15. Effects of nucleus basalis magnocellularis stimulation on a socially transmitted food preference and c-Fos expression

    PubMed Central

    Boix-Trelis, Núria; Vale-Martínez, Anna; Guillazo-Blanch, Gemma; Costa-Miserachs, David; Martí-Nicolovius, Margarita

    2006-01-01

    Experiment 1 examined the effects of electrical stimulation of nucleus basalis magnocellularis (NBM) on a relational odor-association task—the social transmission of food preference (STFP). Rats were stimulated unilaterally in the NBM for 20 min (100 μA, 1 Hz) immediately before the social training. They were tested on their ability to remember preference for the trained food either immediately or following a 24-h delay. Stimulation of NBM improved retention regardless of delay, and additional behavioral measures (social interaction, motor activity, or exploration) did not account for such effects. Experiment 2 investigated brain regions activated after NBM electrical stimulation by examining the induction of c-Fos. This treatment led to bilateral increased c-Fos expression in prefrontal regions, such as orbitofrontal, prelimbic, and infralimbic cortices, and some hippocampal subregions (dorsal CA and ventral dentate gyrus). In contrast, no differences between groups in c-Fos expression were found in basolateral amygdala, dorsal dentate gyrus, ventral CA, or ventral subiculum. Present findings indicate that pretraining NBM electrical stimulation facilitates the acquisition of STFP, supporting a role of NBM in the early stages of memory formation, and suggest that the treatment might cause such effects by inducing neural changes, related to transcription factors such as c-Fos, in the prefrontal cortex or the hippocampal formation. PMID:17101878

  16. c-Fos expression mediated by N-methyl-D-aspartate receptors following anodal polarization in the rat brain.

    PubMed

    Islam, N; Moriwaki, A; Hattori, Y; Hayashi, Y; Lu, Y F; Hori, Y

    1995-05-01

    c-Fos protein-like immunoreactivity (IR) was investigated in the rat brain following an application of weak anodal direct current to the surface of the unilateral sensorimotor cortex in an attempt to elucidate the cellular and molecular bases of central plasticity. Anodal polarization resulted in a massive increase in c-Fos protein-like IR in neurons of the cingulate, piriform, frontoparietal cortices, and hippocampus ipsilateral to the polarization. The effects were dependent upon the duration and intensity of currents applied. The time-dependent induction of c-Fos protein-like IR was maximal at 1 h, became weaker by 6 h, and almost returned to the baseline within 24 h following polarization. When MK-801 [(+)-5-methyl-10,11-di-hydro-5H- dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate], a noncompetitive antagonist for N-methyl-D-aspartate (NMDA) receptors, was injected intraperitoneally, the induction of this nuclear protein was reduced or completely blocked in both hemispheres, except around the polarized point itself, as a function of the time and dosage. These results suggest that the proto-oncogene c-fos is rapidly and transiently activated in the brain following anodal polarization and this activation is mediated by NMDA receptors. PMID:7601260

  17. Repeated administration of propofol upregulated the expression of c-Fos and cleaved-caspase-3 proteins in the developing mouse brain

    PubMed Central

    Cui, Yin; Ling-Shan, Gou; Yi, Liu; Xing-Qi, Wang; Xue-Mei, Zhuang; Xiao-Xing, Yin

    2011-01-01

    Objectives and Aim: This study was designed to analyze the relationship between the expression of c-Fos protein and apoptosis in the hippocampus following propofol administration in infant mice. There are reports that certain drugs, including the general anesthetics applied in pediatrics and obstetrics, could block N-methyl-D-aspartate glutamate receptors and activate γ-aminobutyric acid type A receptors. Furthermore, some anesthetics could trigger neuroapoptosis and the expression of c-Fos in the developing rodent brain. Propofol is a general anesthetic increasingly used in pediatrics and obstetrics, and is reported to be able to interact with both γ-aminobutyric acid type A and N-methyl-D-aspartate glutamate receptors. No adequate evaluations have been available as to whether the dosage of propofol to maintain anaesthesia could trigger the expression of c-Fos and apoptosis. Materials and Methods: Intraperitoneal injections of propofol (50, 100 and 150 mg/kg) or vehicle were administered every 90 minutes (4 times) in infant mice (5–7 days old). 30 minutes after the final administration, the protein expressions of c-Fos and cleaved-caspase-3 in the hippocampus were determined by immunohistochemistry and Western blotting. Results: It was demonstrated that the expressions of cleaved-caspase-3 and c-Fos were upregulated in the hippocampal CA3 region in this study. Conclusions: The upregulated c-Fos expression induced by repeated injections of propofol might evoke neuroapoptosis. PMID:22144767

  18. AP-1 Transcription Factors c-FOS and c-JUN Mediate GnRH-Induced Cadherin-11 Expression and Trophoblast Cell Invasion.

    PubMed

    Peng, Bo; Zhu, Hua; Ma, Liyang; Wang, Yan-Ling; Klausen, Christian; Leung, Peter C K

    2015-06-01

    GnRH is expressed in first-trimester human placenta and increases cell invasion in extravillous cytotrophoblasts (EVTs). Invasive phenotypes have been reported to be regulated by transcription factor activator protein 1 (AP-1) and mesenchymal cadherin-11. The aim of our study was to investigate the roles of AP-1 components (c-FOS/c-JUN) and cadherin-11 in GnRH-induced cell invasion in human EVT cells. Phosphorylated c-FOS and phosphorylated c-JUN were detected in the cell column regions of human first-trimester placental villi by immunohistochemistry. GnRH treatment increased c-FOS, c-JUN, and cadherin-11 mRNA and protein levels in immortalized EVT (HTR-8/SVneo) cells. Moreover, GnRH treatment induced c-FOS and c-JUN protein phosphorylation and nuclear accumulation. Pretreatment with antide, a GnRH antagonist, attenuated GnRH-induced cadherin-11 expression. Importantly, basal and GnRH-induced cadherin-11 expression and cell invasion were reduced by small interfering RNA-mediated knockdown of c-FOS, c-JUN, and cadherin-11 in HTR-8/SVneo cells. Our results suggest that GnRH induces the expression and phosphorylation of the AP-1 transcription factors c-FOS and c-JUN in trophoblast cells, which contributes to GnRH-induced elevation of cadherin-11 expression and cell invasion. PMID:25794160

  19. Effect of acute imipramine administration on the pattern of forced swim-induced c-Fos expression in the mouse brain.

    PubMed

    Yanagida, Satoru; Motomura, Keisuke; Ohashi, Ayako; Hiraoka, Kentaro; Miura, Tomofumi; Kanba, Shigenobu

    2016-08-26

    The forced swim test (FST) has been widely used for the preclinical evaluation of antidepressant drugs. Despite considerable differences in the protocol, equivalence of the FST for rats and mice has been rarely questioned. Previous research on the FST for rats revealed that repeated administration of antidepressant drugs attenuates the c-Fos response to swim stress in the hypothalamus and limbic regions. However, few studies have made similar investigations using the FST for mice. In the present study, we explored the mouse brain through immunohistochemistry staining for c-Fos after acute administration of imipramine or saline with or without a subsequent swim session. Imipramine enhanced the c-Fos density in regions of the central extended amygdala, while forced swim stress increased c-Fos expression in some hypothalamic (the ventrolateral preoptic nucleus and dorsomedial nucleus) and brain stem regions, which is consistent with previous reports. In contrast to previous literature with rats, swim stress brought a significant increase in c-Fos expression in the lateral septal nucleus and some other regions in the hypothalamus (the intermediate hypothalamic area, the paraventricular and arcuate nucleus) only in the imipramine-pretreated group, which has not been observed previously. In the arcuate nucleus, double immunostaining revealed that c-Fos was rarely co-expressed with proopiomelanocortin or tyrosine hydroxylase regardless of imipramine treatment. The present results suggest that the activation of several regions in the lateral septum and the hypothalamus underlies antidepressant-like effect in the mouse FST. PMID:27373591

  20. Integration of growth factor signals at the c-fos serum response element.

    PubMed

    Price, M A; Hill, C; Treisman, R

    1996-04-29

    A transcription factor ternary complex composed of serum response factor (SRF) and a second factor, ternary complex factor (TCF), mediates the response of the c-fos Serum Response Element to growth factors and mitogens. In NIH3T3 fibroblasts, TCF binding is required for transcriptional activation by the SRE in response to activation of the Ras-Raf-ERK pathway. We compared the properties of three members of the TCF family, Elk-1, SAP-1 and SAP-2 (ERP/NET). Although all the proteins contain sequences required for ternary complex formation with SRF, only Elk-1 and SAP-1 appear to interact with the c-fos SRE efficiently in vivo. Each TCF contains a C-terminal activation domain capable of transcriptional activation in response to activation of the Ras-Raf-ERK pathway, and this is dependent on the integrity of S/T-P motifs conserved between all the TCF family members. In contrast, activation of the SRE by whole serum and the mitogenic phospholipid LPA requires SRF binding alone. Constitutively activated members of the Rho subfamily of Ras-like GTPases are also capable of inducing activation of the SRE in the absence of TCF; unlike activated Ras itself, these proteins do not activate the TCFs in NIH3T3 cells. At the SRE, SRF- and TCF-linked signalling pathways act synergistically to potentiate transcription. PMID:8735278

  1. Peripheral injection of bombesin induces c-Fos in NUCB2/nesfatin-1 neurons.

    PubMed

    Engster, Kim-Marie; Kroczek, Arthur L; Rose, Matthias; Stengel, Andreas; Kobelt, Peter

    2016-10-01

    As anorexigenic hormones bombesin and nucleobindin2 (NUCB2)/nesfatin-1 decrease food intake in rodents. Both hormones have been described in brain nuclei that play a role in the modulation of hunger and satiety, like the paraventricular nucleus of the hypothalamus (PVN) and the nucleus of the solitary tract (NTS). However, the direct interaction of the two hormones is unknown so far. The aim of study was to elucidate whether bombesin directly interacts with NUCB2/nesfatin-1 neurons in the PVN and NTS. Therefore, we injected bombesin intraperitoneally (ip) at two doses (26 and 32nmol/kg body weight) and assessed c-Fos activation in the PVN, arcuate nucleus (ARC) and NTS compared to vehicle treated rats (0.15M NaCl). We also performed co-localization studies with oxytocin or tyrosine hydroxylase. Bombesin at both doses increased the number of c-Fos positive neurons in the PVN (p<0.05) and NTS (p<0.05) compared to vehicle, while in the ARC no modulation was observed (p>0.05). In the PVN and NTS the number of c-Fos positive neurons colocalized with NUCB2/nesfatin-1 increased after bombesin injection compared to vehicle treatment (p<0.05). Moreover, an increase of activated NUCB2/nesfatin-1 immunoreactive neurons that co-expressed oxytocin in the PVN (p<0.05) or tyrosine hydroxylase in the NTS (p<0.05) was observed compared to vehicle. Our results show that peripherally injected bombesin activates NUCB2/nesfatin-1 neurons in the PVN and NTS giving rise to a possible interaction between bombesin and NUCB2/nesfatin-1 in the modulation of food intake. PMID:27396908

  2. Lactobacillus acidophilus stimulates intestinal P-glycoprotein expression via a c-Fos/c-Jun-dependent mechanism in intestinal epithelial cells.

    PubMed

    Priyamvada, Shubha; Anbazhagan, Arivarasu N; Kumar, Anoop; Soni, Vikas; Alrefai, Waddah A; Gill, Ravinder K; Dudeja, Pradeep K; Saksena, Seema

    2016-04-15

    Our previous studies showed that Lactobacillus acidophilus (LA) culture supernatant (CS) increased P-glycoprotein [Pgp/multidrug resistance 1 (MDR1)] function, expression, and promoter activity in Caco-2 cells. The current studies were designed to elucidate the molecular mechanisms mediating the stimulatory effects of LA CS on Pgp promoter activity. Deletion analysis indicated that the LA CS response element(s) is located in the -172/+428-bp region, and sequence analysis of this region revealed three potential binding sites for c-Fos or c-Jun: proximal activating protein (AP) 1a (-119/-98 bp), distal AP1b (-99/-78 bp), and AP1c (+175/+196 bp). LA CS (24 h) showed an approximately twofold increase in the protein expression of c-Fos and c-Jun in Caco-2 cells. Electrophoretic mobility shift assay showed that LA CS markedly increased the binding of Caco-2 nuclear proteins to AP1a and AP1b, but not AP1c. The DNA-protein complex was completely eliminated by c-Fos antibody, while c-Jun antibody partially eliminated the complex. Chromatin immunoprecipitation analysis also showed that LA CS enhanced the association of c-Fos and c-Jun (by ∼4- and 1.5-fold, respectively) with endogenous Pgp promoter in Caco-2 cells (p-172/+1). Interestingly, overexpression of c-Fos or c-Jun activated Pgp promoter by nearly twofold each. This increase was further enhanced (∼14-fold) when c-Fos and c-Jun were simultaneously overexpressed, suggesting that the presence of one of these transcription factors potentiates the effect of the other. These studies, for the first time, provide evidence for the involvement of c-Fos/c-Jun in stimulation of Pgp gene expression by LA CS in the human intestine. PMID:26867563

  3. The RNA binding complexes NF45-NF90 and NF45-NF110 associate dynamically with the c-fos gene and function as transcriptional coactivators.

    PubMed

    Nakadai, Tomoyoshi; Fukuda, Aya; Shimada, Miho; Nishimura, Ken; Hisatake, Koji

    2015-10-30

    The c-fos gene is rapidly induced to high levels by various extracellular stimuli. We used a defined in vitro transcription system that utilizes the c-fos promoter to purify a coactivator activity in an unbiased manner. We report here that NF45-NF90 and NF45-NF110, which possess archetypical double-stranded RNA binding motifs, have a direct function as transcriptional coactivators. The transcriptional activities of the nuclear factor (NF) complexes (NF45-NF90 and NF45-NF110) are mediated by both the upstream enhancer and core promoter regions of the c-fos gene and do not require their double-stranded RNA binding activities. The NF complexes cooperate with general coactivators, PC4 and Mediator, to elicit a high level of transcription and display multiple interactions with activators and the components of the general transcriptional machinery. Knockdown of the endogenous NF90/NF110 in mouse cells shows an important role for the NF complexes in inducing c-fos transcription. Chromatin immunoprecipitation assays demonstrate that the NF complexes occupy the c-fos enhancer/promoter region before and after serum induction and that their occupancies within the coding region of the c-fos gene increase in parallel to that of RNAPII upon serum induction. In light of their dynamic occupancy on the c-fos gene as well as direct functions in both transcription and posttranscriptional processes, the NF complexes appear to serve as multifunctional coactivators that coordinate different steps of gene expression to facilitate rapid response of inducible genes. PMID:26381409

  4. Changes in hypothalamic [correction of hypothalmic] staining for c-Fos following 2G exposure in rats.

    PubMed

    Fuller, C A; Murakami, D M; Hoban-Higgins, T M; Tang, I H

    1994-05-01

    The static gravitational field of the earth has been an important selective pressure that has shaped the evolution of biological organisms. This is illustrated by the evolution of tetrapods from a water environment where gravitational force was partially negated to a terrestrial environment where gravity is of greater consequence. Terrestrial invasion resulted in a series of new structural, physiological, and behavioral features. Therefore, it is not surprising that alterations in the gravitational field can cause widespread effects in many physiological systems and behaviors. Our previous studies have demonstrated that both exposure to hyperdynamic fields and the microgravity condition of space flight have significant effects on body temperature, heartrate, activity, feeding, drinking, and circadian rhythms. However, it has not been determined whether these physiological adaptations are associated with changes in neural activity within the hypothalamic nuclei that regulate these functions. This study examined the changes in body temperature, activity, body weight and food and water intake in rats caused by exposure to a hyperdynamic field. In addition, the immediate early gene activation marker, c-Fos, was used to examine potential protein synthesis changes in the hypothalamic nuclei that regulate these functions. PMID:11538768

  5. Piperine alleviates osteoclast formation through the p38/c-Fos/NFATc1 signaling axis.

    PubMed

    Deepak, Vishwa; Kruger, Marlena C; Joubert, Annie; Coetzee, Magdalena

    2015-01-01

    Increased bone fracture is one of the health risk factors in patients with bone loss related disorders such as osteoporosis and breast cancer metastasis to bone. Over activity of osteoclasts leads to uncoupling of bone remodeling favoring bone loss over bone formation. Receptor activator of nuclear factor-κβ ligand (RANKL) triggers the differentiation pathway leading to multinucleated osteoclast formation. Modulation of RANKL or its downstream signaling pathways involved in osteoclast formation is of significant interest in the development of anti-resorptive agents. In this study, the effects of piperine, an alkaloid present in Piper nigrum L. on osteoclast formation was investigated. Piperine inhibited tartrate-resistant acid phosphatase-positive multinucleated osteoclast formation in murine RAW264.7 macrophages and human CD14+ monocytes induced by RANKL and breast cancer cells. Piperine attenuated the p38-mitogen activated protein kinase pathway activation, while the extracellular-signal-regulated kinase, c-Jun N-terminal kinase, or NF-κβ pathways downstream of RANKL remained unaffected. Concomitantly, expression of c-Fos and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), the key transcription factors involved in osteoclastogenesis were remarkably inhibited by piperine. Furthermore, piperine disrupted the actin ring structure and bone resorption, a characteristic hallmark of osteoclasts. Collectively, these results suggested that piperine inhibited osteoclast differentiation by suppressing the p38/NFATc1/c-Fos signaling axis.. PMID:26627060

  6. c-Fos Repression by Piwi Regulates Drosophila Ovarian Germline Formation and Tissue Morphogenesis.

    PubMed

    Klein, Jonathon D; Qu, Chunxu; Yang, Xiaoyang; Fan, Yiping; Tang, Chunlao; Peng, Jamy C

    2016-09-01

    Drosophila melanogaster Piwi functions within the germline stem cells (GSCs) and the somatic niche to regulate GSC self-renewal and differentiation. How Piwi influences GSCs is largely unknown. We uncovered a genetic interaction between Piwi and c-Fos in the somatic niche that influences GSCs. c-Fos is a proto-oncogene that influences many cell and developmental processes. In wild-type ovarian cells, c-Fos is post-transcriptionally repressed by Piwi, which destabilized the c-Fos mRNA by promoting the processing of its 3' untranslated region (UTR) into Piwi-interacting RNAs (piRNAs). The c-Fos 3' UTR was sufficient to trigger Piwi-dependent destabilization of a GFP reporter. Piwi represses c-Fos in the somatic niche to regulate GSC maintenance and differentiation and in the somatic follicle cells to affect somatic cell disorganization, tissue dysmorphogenesis, oocyte maturation arrest, and infertility. PMID:27622269

  7. Male song quality modulates c-Fos expression in the auditory forebrain of the female canary.

    PubMed

    Monbureau, Marie; Barker, Jennifer M; Leboucher, Gérard; Balthazart, Jacques

    2015-08-01

    In canaries, specific phrases of male song (sexy songs, SS) that are difficult to produce are especially attractive for females. Females exposed to SS produce more copulation displays and deposit more testosterone into their eggs than females exposed to non-sexy songs (NS). Increased expression of the immediate early genes c-Fos or zenk (a.k.a. egr-1) has been observed in the auditory forebrain of female songbirds hearing attractive songs. C-Fos immunoreactive (Fos-ir) cell numbers were quantified here in the brain of female canaries that had been collected 30min after they had been exposed for 60min to the playback of SS or NS or control white noise. Fos-ir cell numbers increased in the caudomedial mesopallium (CMM) and caudomedial nidopallium (NCM) of SS birds as compared to controls. Song playback (pooled SS and NS) also tended to increase average Fos-ir cell numbers in the mediobasal hypothalamus (MBH) but this effect did not reach full statistical significance. At the individual level, Fos expression in CMM was correlated with its expression in NCM and in MBH but also with the frequency of calls that females produced in response to the playbacks. These data thus indicate that male songs of different qualities induce a differential metabolic activation of NCM and CMM. The correlation between activation of auditory regions and of the MBH might reflect the link between auditory stimulation and changes in behavior and reproductive physiology. PMID:25846435

  8. c-Fos expression predicts long-term social memory retrieval in mice.

    PubMed

    Lüscher Dias, Thomaz; Fernandes Golino, Hudson; Moura de Oliveira, Vinícius Elias; Dutra Moraes, Márcio Flávio; Schenatto Pereira, Grace

    2016-10-15

    The way the rodent brain generally processes socially relevant information is rather well understood. How social information is stored into long-term social memory, however, is still under debate. Here, brain c-Fos expression was measured after adult mice were exposed to familiar or novel juveniles and expression was compared in several memory and socially relevant brain areas. Machine Learning algorithm Random Forest was then used to predict the social interaction category of adult mice based on c-Fos expression in these areas. Interaction with a familiar co-specific altered brain activation in the olfactory bulb, amygdala, hippocampus, lateral septum and medial prefrontal cortex. Remarkably, Random Forest was able to predict interaction with a familiar juvenile with 100% accuracy. Activity in the olfactory bulb, amygdala, hippocampus and the medial prefrontal cortex were crucial to this prediction. From our results, we suggest long-term social memory depends on initial social olfactory processing in the medial amygdala and its output connections synergistically with non-social contextual integration by the hippocampus and medial prefrontal cortex top-down modulation of primary olfactory structures. PMID:27449201

  9. Identification of a protein-binding site that mediates transcriptional response of the c-fos gene to serum factors.

    PubMed

    Treisman, R

    1986-08-15

    Transient transcriptional activation of the c-fos gene following serum stimulation of susceptible cells requires a conserved DNA element located 300 bp 5' to the mRNA cap site. A DNA-binding gel electrophoresis assay was used to detect a protein(s) in HeLa cell nuclear extracts that specifically binds to the 5' activating element. The protein recognizes a region of dyad symmetry within the 5' activating element, defined by binding competition, dimethylsulphate (DMS) interference and DNAase I and DMS protection studies. A single 22 bp synthetic copy of the dyad symmetry element will both compete efficiently for protein binding and restore serum regulation to c-fosH genes that lack the 5' activating element. PMID:3524858

  10. miR-144 and targets, c-fos and cyclooxygenase-2 (COX2), modulate synthesis of PGE2 in the amnion during pregnancy and labor.

    PubMed

    Li, Huanan; Zhou, Jiawei; Wei, Xiajie; Chen, Ran; Geng, Junnan; Zheng, Rong; Chai, Jin; Li, Fenge; Jiang, Siwen

    2016-01-01

    Labor is initiated as a result of hormonal changes that are induced by the activation of the inflammatory response and a series of biochemical events. The amnion, which is the primary source of prostaglandin E2 (PGE2), plays an important role in the process of labor. In the present study, we uncovered a pathway in which c-fos, cyclooxygenase-2 (COX2) and miR-144 function as hormonal modulators in the amnions of pregnant mice and humans. miR-144 down-regulated the synthesis of PGE2 during pregnancy by directly and indirectly inhibiting COX2 expression and by directly inhibiting the expression of c-fos, a transcriptional activator of COX2 and miR-144. Estrogen (E2) activated c-fos, thus promoting the expression of miR-144 and COX2 during labor. However, the increase in COX2 resulted in the partial inhibition of COX2 expression by miR-144, thereby slightly reducing the secretion of PGE2. These observations suggest that miR-144 inhibits PGE2 secretion by section to prevent the initiation of premature labor. Up-regulated expression of miR-144, c-fos and COX2 was also observed both in preterm mice and in mice undergoing normal labor. In summary, miR-144, c-fos and COX2 play important roles in regulating PGE2 secretion in the amnion during pregnancy and labor. PMID:27297132

  11. miR-144 and targets, c-fos and cyclooxygenase-2 (COX2), modulate synthesis of PGE2 in the amnion during pregnancy and labor

    PubMed Central

    Li, Huanan; Zhou, Jiawei; Wei, Xiajie; Chen, Ran; Geng, Junnan; Zheng, Rong; Chai, Jin; Li, Fenge; Jiang, Siwen

    2016-01-01

    Labor is initiated as a result of hormonal changes that are induced by the activation of the inflammatory response and a series of biochemical events. The amnion, which is the primary source of prostaglandin E2 (PGE2), plays an important role in the process of labor. In the present study, we uncovered a pathway in which c-fos, cyclooxygenase-2 (COX2) and miR-144 function as hormonal modulators in the amnions of pregnant mice and humans. miR-144 down-regulated the synthesis of PGE2 during pregnancy by directly and indirectly inhibiting COX2 expression and by directly inhibiting the expression of c-fos, a transcriptional activator of COX2 and miR-144. Estrogen (E2) activated c-fos, thus promoting the expression of miR-144 and COX2 during labor. However, the increase in COX2 resulted in the partial inhibition of COX2 expression by miR-144, thereby slightly reducing the secretion of PGE2. These observations suggest that miR-144 inhibits PGE2 secretion by section to prevent the initiation of premature labor. Up-regulated expression of miR-144, c-fos and COX2 was also observed both in preterm mice and in mice undergoing normal labor. In summary, miR-144, c-fos and COX2 play important roles in regulating PGE2 secretion in the amnion during pregnancy and labor. PMID:27297132

  12. Effects of season, testosterone and female exposure on c-fos expression in the preoptic area and amygdala of male green anoles

    PubMed Central

    Neal, Jennifer K.; Wade, Juli

    2010-01-01

    Expression of the immediate early gene, c-fos, was used to investigate changes in neuronal activity in forebrain regions involved in male sexual behavior following social, hormonal and/or seasonal manipulations in the male green anole. These factors all influence behavior, yet it is unclear how they interact to modify neuronal activity in forebrain regions, including the preoptic area (POA) and ventromedial nucleus of the amygdala (AMY). These regions are involved in the display of sexual behaviors in male green anoles as in many other vertebrates. To determine the effects of seasonal, hormonal and social cues on these brain areas, we investigated c-fos under environmental conditions typical of the breeding or non-breeding season in adult male green anoles that were castrated and implanted with either testosterone (T) or blank (Bl) capsules. We also manipulated social cues by exposing only half of the animals in each group to females. T enhanced courtship and copulatory behaviors, but decreased c-fos expression in the AMY. A similar, although not statistically significant, pattern was observed in the POA, and the density of c-fos+ cells was negatively correlated in that region with the number of extensions of a throat fan (dewlap) used during courtship. Therefore, it appears that in the male green anole, T may diminish c-fos expression (likely in inhibitory neurons) in the POA and AMY to create a permissive environment in which the appropriate behavioral response can be displayed. PMID:17673187

  13. Xenopus cytoskeletal actin and human c-fos gene promoters share a conserved protein-binding site.

    PubMed

    Mohun, T; Garrett, N; Treisman, R

    1987-03-01

    Xenopus laevis cytoskeletal actin gene promoters contain a 20-bp sequence homologous to the serum response element (SRE) required for transient human c-fos gene transcription in response to serum factors. Both sequences bind the same factor in HeLa cell extracts, as shown by binding competition, DNase I and dimethylsulphate (DMS) protection and DMS interference assays. A similar protein is present in Xenopus laevis oocytes. Sequences containing the SRE homology are essential for constitutive activity of the actin promoter in both Xenopus and mouse cells, and a synthetic SRE functions as a promoter element in these cells. In mouse cells, transcription of both transfected Xenopus actin and actin/c-fos fusion genes is activated following serum stimulation. These data suggest that the SRE and its cognate protein form part of a regulatory pathway that has been highly conserved during evolution. PMID:3582369

  14. Xenopus cytoskeletal actin and human c-fos gene promoters share a conserved protein-binding site.

    PubMed Central

    Mohun, T; Garrett, N; Treisman, R

    1987-01-01

    Xenopus laevis cytoskeletal actin gene promoters contain a 20-bp sequence homologous to the serum response element (SRE) required for transient human c-fos gene transcription in response to serum factors. Both sequences bind the same factor in HeLa cell extracts, as shown by binding competition, DNase I and dimethylsulphate (DMS) protection and DMS interference assays. A similar protein is present in Xenopus laevis oocytes. Sequences containing the SRE homology are essential for constitutive activity of the actin promoter in both Xenopus and mouse cells, and a synthetic SRE functions as a promoter element in these cells. In mouse cells, transcription of both transfected Xenopus actin and actin/c-fos fusion genes is activated following serum stimulation. These data suggest that the SRE and its cognate protein form part of a regulatory pathway that has been highly conserved during evolution. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:3582369

  15. Effects of food deprivation on goal-directed behavior, spontaneous locomotion, and c-Fos immunoreactivity in the amygdala.

    PubMed

    Moscarello, J M; Ben-Shahar, O; Ettenberg, A

    2009-01-30

    Previous work in our laboratory has shown that food deprivation and food presentation produce different patterns of neuronal activity (as measured by c-Fos immunoreactivity) in the medial prefrontal cortex and nucleus accumbens of rats. Since the amygdala has been implicated in both motivational and reinforcement processes and has neuronal connections to both the prefrontal cortex and nucleus accumbens, it was of interest to assess amygdaloid c-Fos immunoreactivity during similar manipulations of food deprivation and presentation. In the current study, c-Fos counts in both basolateral and central amygdalar nuclei were observed to increase in rats 12- and 36-h food deprived (relative to 0-h controls)-an effect reversed by the presentation of either a small or large meal (2.5 or 20g of food). In another experiment, rats working on a progressive ratio schedule of reinforcement exhibited elevated break-points as a function of food deprivation, a result consistent with the view that the feeding manipulations increased the subjects' level of motivation. In contrast, food deprivation reduced the spontaneous locomotor activity of rats, presumably as a result of an inherent energy-conservation strategy when no food is readily available. These data suggest that the state of food deprivation is associated with: (a) enhanced behavioral output only when food is attainable (increased goal-directed behavior, but decreased spontaneous activity), and (b) increased synaptic engagement in neuronal circuits involved in affective valuation and related decision-making (increased c-Fos counts in the amygdala). PMID:18706934

  16. U-rich sequence-binding proteins (URBPs) interacting with a 20-nucleotide U-rich sequence in the 3' untranslated region of c-fos mRNA may be involved in the first step of c-fos mRNA degradation.

    PubMed Central

    You, Y; Chen, C Y; Shyu, A B

    1992-01-01

    Rapid decay of the c-fos transcript plays a critical role in controlling transforming potential of the c-fos proto-oncogene. One of the mRNA instability determinants is a 75-nucleotide AU-rich element (ARE) present in the 3' untranslated region of the c-fos transcript. It appears to control two steps in the process of c-fos mRNA degradation: removal of the poly(A) tail, which does not require the AUUUA motifs, and subsequent degradation of deadenylated mRNA, which appears to be dependent on the AUUUA motifs. In this study, we report the identification of four U-rich sequence binding proteins (URBPs) that specifically interact with a 20-nucleotide U-rich sequence within the c-fos ARE. Gel mobility shift assay and competition experiments showed that these protein factors form three specific band-shifted complexes with the c-fos ARE. Binding activity of one of the protein factors, a 37-kDa protein, is significantly affected by serum induction and by pretreatment of cells with drugs known to stabilize many of the immediate-early gene mRNAs. Combining UV cross-linking with a new approach, designated sequential RNase digestion, we were able to better determine the molecular masses of these cellular proteins. The binding sites for the four proteins were all mapped to a 20-nucleotide U-rich sequence located at the 3' half of the c-fos ARE, which contains no AUUUA pentanucleotides but stretches of uridylate residues. Single U-to-A point mutations in each of the three AUUUA motifs within the c-fos ARE have little effect on formation of the mobility-shifted complexes. Our data indicate c-fos ARE-protein interaction involves recognition of U stretches rather than recognition of the AUUUA motifs. We propose that UTBP binding may be involved in the first step, removal of the Poly(A) tail, in the c-fos ARE-mediated decay pathway. Images PMID:1620106

  17. Spatial behavior and seizure-induced changes in c-fos mRNA expression in young and old rats.

    PubMed

    Chawla, Monica K; Penner, Marsha R; Olson, Kathy M; Sutherland, Vicki L; Mittelman-Smith, Melinda A; Barnes, Carol A

    2013-04-01

    The subcellular processes of gene induction and expression in the hippocampus are likely to underlie some of the known age-related impairments in spatial learning and memory. It is well established that immediate-early genes are rapidly and transiently induced in response to neuronal activity and this expression is required for stabilization of durable memories. To examine whether age-related memory impairment might be caused, in part, by differences in the level of cellular activation or subcellular processing, c-fos expression in CA1 pyramidal and dentate gyrus granule cells in the dorsal hippocampus of young and old rats was determined using fluorescence in situ hybridization and reverse transcription polymerase chain reaction. No significant age differences were found in the numbers of pyramidal or granule cells that show c-fos expression; however, c-fos mRNA transcripts were altered in these 2 cell types in aged animals. These findings suggest that though the networks of cells that participate in behavior or seizure-induced activity are largely maintained in aged rats, their RNA transcript levels are altered. This might, in part, contribute to cognitive deficits frequently observed with advancing age. PMID:23158763

  18. Hippocampal expression of c-fos is not essential for spatial learning.

    PubMed

    Zhang, Jianhua; McQuade, Jill M Slane; Vorhees, Charles V; Xu, Ming

    2002-11-01

    The formation of long-term memory is thought to involve underlying changes in synaptic strength. Many studies have focused on the mechanisms of spatial learning behavior in mammals that is critically dependent on the proper function of the hippocampus. Because of the enduring nature of long-term memory, it is thought that gene expression is involved in this process. The immediate early gene (IEG) c-fos encodes a transcription factor. The c-Fos proteins form heterodimeric proteins with the c-Jun family proteins and the resulting AP-1 transcription complex plays a key role in coupling short-term events elicited by stimuli received at the cell membrane to long-term neuroplastic changes by regulating gene expression. c-fos is induced in the hippocampus after spatial learning. Despite this knowledge, the precise role of c-fos in memory formation and the underlying mechanisms remain unknown. To start investigating the role of c-fos in learning and memory and underlying mechanisms, we evaluated spatial learning capabilities using mice carrying a hippocampal region-specific mutation of c-fos. We found that the c-fos mutant mice exhibit normal spatial learning behaviors in both the Morris water maze and the Barnes maze tests compared to control mice. Our results suggest that hippocampal c-fos expression is not essential for spatial learning. PMID:12211087

  19. Comparison of c-fos-like immunoreactivity in the brainstem following intraoral and intragastric infusions of chemical solutions in rats.

    PubMed

    Yamamoto, T; Sawa, K

    2000-06-01

    To examine whether the activation of brainstem neurons during ingestion is due to orosensory afferents or post-ingestive factors, neuronal activation in response to intraoral and intragastric infusions of taste stimuli was compared in the area postrema (AP), nucleus tractus solitarius (NTS) and parabrachial nucleus (PBN) by the c-fos immunohistochemical method. An aliquot (7.5 ml) of 0.5 M sucrose, 5 mM sodium saccharin, 1 mM quinine hydrochloride and distilled water was delivered into the oral cavity or the stomach in each rat, which had been deprived of water and food overnight. Water induced little c-Fos-like immunoreactivity (c-FLI), but both intraoral and intragastric infusions of sucrose, but not non-caloric saccharin, induced strong c-FLI in the AP, caudal NTS and the external lateral subnucleus of the rostral PBN, suggesting that these areas receive general visceral inputs. Other areas in the NTS and PBN may receive gustatory inputs since more dominant c-FLI was detected by intraoral rather than intragastric infusions of the stimuli. Functional segregation of neurons reflecting qualitative and hedonic aspects of sweeteners (sucrose and saccharin) and bitter-tasting substance (quinine) was suggested in the PBN, but less evident in the NTS. These results indicate that c-fos induction in brainstem neurons during ingestion reflects gustatory inputs and postingestional factors depending on the kind of food ingested. PMID:10825490

  20. Waves of c-Fos and Arc Proteins Expression in Neuronal Populations of the Hippocampus in Response to a Single Episode of New Experience.

    PubMed

    Ivashkina, O I; Toropova, K A; Ivanov, A A; Chekhov, S A; Anokhin, K V

    2016-04-01

    Accumulation of c-Fos and Arc proteins in neurons in different regions of the hippocampus after single trial of contextual fear conditioning was studied by using immunohistochemical staining. We found that the dynamics of the c-Fos and Arc expression has a biphasic pattern: the first peak was observed in 15-30 min after learning and the second less pronounced peak in 1-3 h. Induction of Arc occurred earlier than c-Fos and the overall dynamics of the two waves slightly varied in the dentate gyrus and hippocampal CA1 and CA3 fields. The findings open the possibility of mapping the cognitive neural networks of the brain with higher temporal resolution and draw attention to fluctuations of hippocampal activity after a single brief episode of new experience. PMID:27160884

  1. IRIDIUM exposure increases c-fos expression in the mouse brain only at levels which likely result in tissue heating.

    PubMed

    Morrissey, J J; Raney, S; Heasley, E; Rathinavelu, P; Dauphinee, M; Fallon, J H

    1999-01-01

    With the rapid development of wireless communication technology over the last 20 years, there has been some public concern over possible health effects of long-term, low-level radiofrequency exposure from cellular telephones. As an initial step in compiling a database for risk analysis by government agencies, the effects of 1-h exposure of mice to a 1.6-GHz radiofrequency signal, given as either a continuous wave or pulse modulated at 11 Hz with a duty cycle of 4:1 and a pulse duration of 9.2 ms IRIDIUM), on c-fos gene expression in the brain was investigated. The IRIDIUM signal is the operating frequency for a ground-to-satellite-to-ground cellular communications web which has recently become fully operational, and was named as such due to the original designed employment of the same number of low orbiting satellites as there are electrons orbiting the nucleus of an iridium atom. The expression of c-fos was not significantly elevated in the brains of mice until exposure levels exceeded six times the peak dose and 30 times the whole body average dose as maximal cellular telephone exposure limits in humans. Higher level exposure using either continuous wave (analog) or IRIDIUM signals elevated c-fos to a similar extent, suggesting no obvious pulsed modulation-specific effects. The pattern of c-fos elevation in limbic cortex and subcortex areas at higher exposure levels is most consistent with a stress response due to thermal perception coupled with restraint and/or neuron activity near thermoregulatory regions, and not consistent with any direct interaction of IRIDIUM energy with brain tissue. PMID:10426505

  2. Blockade of NK3R signaling in the PVN decreases vasopressin and oxytocin release and c-Fos expression in the magnocellular neurons in response to hypotension.

    PubMed

    Haley, Gwendolen E; Flynn, Francis W

    2008-10-01

    Tachykinin neurokinin 3 receptor (NK3R) signaling has a broad role in vasopressin (VP) and oxytocin (OT) release. Hydralazine (HDZ)-induced hypotension activates NK3R expressed by magnocellular neurons, increases plasma VP and OT levels, and induces c-Fos expression in VP and OT neurons. Intraventricular pretreatment with the specific NK3R antagonist, SB-222200, eliminates the HDZ-stimulated VP and OT release. NK3R are distributed in the central pathways conveying hypotension information to the magnocellular neurons, and the NK3R antagonist could act anywhere in the pathways. Alternatively, the antagonist could act at the NK3R expressed by the magnocellular neurons. To determine whether blockade of NK3R on magnocellular neurons impairs VP and OT release to HDZ, rats were pretreated with a unilateral PVN injection of 0.15 M NaCl or SB-222200 prior to an intravenous injection of 0.15 M NaCl or HDZ. Blood samples were taken, and brains were processed for VP/c-Fos and OT/c-Fos immunohistochemistry. Intravenous injection of 0.15 M NaCl did not alter plasma hormone levels, and little c-Fos immunoreactivity was present in the PVN. Conversely, intravenous injection of HDZ increased plasma VP and OT levels and c-Fos expression in VP and OT magnocellular neurons. Intra-PVN injection of SB-222200 prior to an intravenous injection of HDZ significantly decreased c-Fos expression in both VP and OT neurons by approximately 70% and attenuated plasma VP and OT levels by 33% and 35%, respectively. Therefore, NK3R signaling in magnocellular neurons has a critical role for the release of VP and OT in response to hypotension. PMID:18650316

  3. Regional suppression by lesions in the anterior third ventricle of c-fos expression induced by either angiotensin II or hypertonic saline.

    PubMed

    Xu, Z; Herbert, J

    1995-07-01

    Angiotensin II (250 pmol) infused into the cerebral ventricles of male rats induces the expression of c-fos in the subfornical organ, supraoptic and paraventricular nuclei of the hypothalamus, as well as in the lateral parabrachial nucleus, locus coeruleus and the nucleus of the solitary tract in the brainstem. Electrolytic lesions of the anteroventral third ventricle, principally the subcommissural (ventral) median preoptic nucleus, inhibited the dipsogenic response to i.c.v. angiotensin II and also suppressed c-fos expression in supraoptic nucleus, paraventricular nucleus, lateral parabrachial nucleus, locus coeruleus and nucleus of the solitary tract but not in the subfornical organ or dorsal median preoptic nucleus. The stimulating effect of i.c.v. angiotensin II on corticosterone was also reduced. Median preoptic nucleus lesions also suppressed the expression of c-fos following i.v. infusions of 6 micrograms angiotensin II in supraoptic nucleus and paraventricular nucleus but not in subfornical organ, dorsal median preoptic nucleus, lateral parabrachial nucleus, locus coeruleus and nucleus of the solitary tract. Median preoptic nucleus lesions reduced the dipsogenic effects of an intragastric infusion of hypertonic (1.5 M) saline and suppressed c-fos expression in supraoptic nucleus and paraventricular nucleus compared to sham-lesioned rats. However, c-fos expression was unaltered in subfornical organ, dorsal median preoptic nucleus lesions had no effect on the increased corticosterone induced by hypertonic saline. Subfornical organ lesions did not alter dipsogenic responses to i.c.v. angiotensin II, nor was the i.c.v. angiotensin II-induced expression of c-fos suppressed in the basal forebrain. These experiments show that the ventral median preoptic nucleus (but not the subfornical organ), part of the anteroventral third ventricle, is critical for the expression of c-fos in more caudal areas of the brain following i.c.v. angiotensin II. c-fos expression in

  4. Beta-adrenergic stimulation of cFOS via protein kinase A is mediated by cAMP regulatory element binding protein (CREB)-dependent and tissue-specific CREB-independent mechanisms in corticotrope cells.

    PubMed

    Boutillier, A L; Barthel, F; Roberts, J L; Loeffler, J P

    1992-11-25

    Catecholamines stimulate proopiomelanocortin (POMC) gene expression in corticotrope cells, but the molecular mechanisms of these effects are not known. While beta-adrenergic receptors stimulate the protein kinase A (PKA) system, the POMC promoter does not have classical cAMP-response elements (CREs). Therefore, we investigated the induction of the c-fos protooncogen, previously shown to increase POMC transcription in AtT20 cells. In this corticotrope-derived cell line, we show that activation of beta-receptors with isoprenaline (Iso) induces a transient rise in c-fos mRNA levels. Gel mobility shift assays with a labeled AP1 consensus sequence (TGACTCA) showed induction of specific binding activity after Iso treatment. Cotransfection experiments with dominant inhibitory PKA mutants and reporter genes containing c-fos promoter sequences showed that c-fos induction by Iso is entirely dependent on a functional PKA activity. Furthermore, we show that beta-receptor induction of c-fos in corticotrophs is mediated by at least two distinct cAMP-responsive sequences. cAMP regulatory element binding (CREB)-dependent induction is observed on the CRE located at -60 bp on the c-fos promoter. A region located in the vicinity of the dyad symetry element (-290) is also found to mediate tissue-specific cAMP induction. Transcriptional activation by this site, although sensitive to PKA antagonism, is not blocked by CREB mutants. PMID:1331087

  5. Extinction of opiate reward reduces dendritic arborization and c-Fos expression in the nucleus accumbens core.

    PubMed

    Leite-Morris, Kimberly A; Kobrin, Kendra L; Guy, Marsha D; Young, Angela J; Heinrichs, Stephen C; Kaplan, Gary B

    2014-04-15

    Recurrent opiate use combined with environmental cues, in which the drug was administered, provokes cue-induced drug craving and conditioned drug reward. Drug abuse craving is frequently linked with stimuli from a prior drug-taking environment via classical conditioning and associative learning. We modeled the conditioned morphine reward process by using acquisition and extinction of conditioned place preference (CPP) in C57BL/6 mice. Mice were trained to associate a morphine injection with a drug context using a classical conditioning paradigm. In morphine conditioning (0, 0.25, 0.5, 1, 5, or 10 mg/kg) experimental mice acquired a morphine CPP dose response with 10mg/kg as most effective. During morphine CPP extinction experiments, mice were divided into three test groups: morphine CPP followed by extinction training, morphine CPP followed by sham extinction, and saline controls. Extinction of morphine CPP developed within one extinction experiment (4 days) that lasted over two more trials (another 8 days). However, the morphine CPP/sham extinction group retained a place preference that endured through all three extinction trials. Brains were harvested following CPP extinction and processed using Golgi-Cox impregnation. Changes in dendritic morphology and spine quantity were examined in the nucleus accumbens (NAc) Core and Shell neurons. In the NAcCore only, morphine CPP/extinguished mice produced less dendritic arborization, and a decrease in neuronal activity marker c-Fos compared to the morphine CPP/sham extinction group. Extinction of morphine CPP is associated with decreased structural complexity of dendrites in the NAcCore and may represent a substrate for learning induced structural plasticity relevant to addiction. PMID:24406724

  6. Induction of c-fos and c-myc mRNA by epidermal growth factor or calcium ionophore is cAMP dependent.

    PubMed Central

    Ran, W; Dean, M; Levine, R A; Henkle, C; Campisi, J

    1986-01-01

    Phorbol esters activate protein kinase C and induce expression of the c-fos and c-myc protooncogenes in density-arrested BALB/c 3T3 (A31) cells; in contrast, epidermal growth factor (EGF) does not activate protein kinase C and is a poor inducer of c-fos and c-myc in these confluent cells. We show that, when A31 cells were subconfluent and made quiescent by serum deprivation, the phorbol ester phorbol 12-myristate 13-acetate induced c-fos and c-myc mRNA poorly, whereas EGF was a better inducer. Another platelet-derived growth factor-inducible gene, JE, did not show this differential regulation by phorbol 12-myristate 13-acetate and EGF. The ability of EGF to induce protooncogene mRNA was associated with elevated levels of intracellular cAMP. First, serum-deprived cells maintained cAMP at about 2-fold higher level than density-arrested cells. Second, induction was greatly enhanced by cholera toxin and 3-isobutyl-1-methylxanthine, which increased intracellular cAMP 3- to 10-fold. The calcium ionophore A23187 mimicked EGF in that it elevated c-fos and c-myc mRNA when administered with cholera toxin and isobutylmethylxanthine. Neither cholera toxin and isobutyl-methylxanthine nor A23187 appreciably induced these mRNAs when used alone. Our results suggest that c-fos and c-myc expression can be regulated by an EGF-directed pathway that utilizes calcium and cAMP as cooperating cytoplasmic messengers. Images PMID:2430281

  7. Peripheral therapeutic ultrasound stimulation alters the distribution of spinal C-fos immunoreactivity induced by early or late phase of inflammation.

    PubMed

    Hsieh, Yueh-Ling

    2008-03-01

    The purpose of this investigation was to examine the central modulated effects of therapeutic ultrasound (US) on neuronal activity in the spinal cord on early and late phases of inflammation. In this study, induction of c-Fos protein, which reflects neuronal activation (particularly inflammatory nociception), was investigated in the lumbar spinal cord with immunohistochemistry. Inflammatory monoarthritis was induced in 20 male Wistar rats (weighing 250-300 g) via intra-articular injection of complete Freund's adjuvant (CFA) into the tibiotarsal joint. Two phases of arthritis, early phase (18 h after adjuvant injection) and late phase (7 d after adjuvant injection), were studied in the rats. Pulsed-mode US (1 MHz, the spatial average temporal average intensity [I(SATA)] = 0.5 W/cm(2), 50% duty cycle) was applied for 5 min. The effects of US and sham treatments against these phases of arthritis were demonstrated by spinal c-Fos-like immunoreactivity (c-Fos-LI). All data were evaluated statistically with the paired t-test or analysis of variance with Bonferroni corrections. c-Fos-LI neurons were abundant (average 264.2 +/- 11.9) in the L3 and L4 neurons of the spinal cord in areas ipsilateral to the CFA-induced arthritic leg in the early phase, but few were present (average 40.4 +/- 4.5) in the late phase in sham-treated animals. Bonferroni corrections to the alpha level were used to check the group differences in spinal c-Fos expression, and significance was reached when p < 0.025. In the early inflammatory phase, US treatment significantly suppressed the increased number of c-Fos-LI neurons associated with CFA-induced arthritis in superficial laminae, nucleus proprius, deep laminae and ventral horn of the spinal cord. However, during the late inflammatory phase, US significantly triggered c-Fos expression in most laminae, particularly in the nucleus proprius, deep laminae and ventral horn of the spinal cord. The results of our study suggest that administration of US

  8. Urocortin 2 increases c-Fos expression in serotonergic neurons projecting to the ventricular/periventricular system

    PubMed Central

    Hale, Matthew W.; Stamper, Christopher E.; Staub, Daniel R.; Lowry, Christopher A.

    2010-01-01

    Serotonin plays an important role in the regulation of anxiety states and physiological responses to aversive stimuli. Intracerebroventricular (i.c.v.) injection of the stress- and anxiety-related neuropeptide urocortin 2 (Ucn 2) increases c-Fos expression in serotonergic neurons in the dorsal (DRD) and caudal (DRC) parts of the dorsal raphe nucleus. These regions contain a subset of serotonergic neurons that projects via the dorsal raphe periventricular tract to periventricular structures, including the subfornical organ and ependymal layer, and to the ventricular system. To determine if Ucn 2 activates ventricle/periventricular-projecting serotonergic neurons in the midbrain raphe complex we made i.c.v. injections of the retrograde tracer Fluoro-Gold into the lateral ventricle, followed 7 days later by i.c.v. injection of Ucn 2. The DRD at −8.18 mm and the DRC at −8.54 mm and −9.16 mm bregma were analyzed using a combined brightfield and immunofluorescence technique. Approximately 40% of the ventricle/periventricular-projecting neurons in the subdivisions sampled were serotonergic. Urocortin 2 increased c-Fos expression in ventricle/periventricular-projecting serotonergic neurons in the DRC and in non-ventricle/periventricular-projecting serotonergic neurons in the DRD and DRC. Of the total population of ventricle/periventricular-projecting serotonergic neurons in the DRC at −8.54 and −9.16 mm bregma, 35% expressed c-Fos following Ucn 2 injections. These data are consistent with previous studies showing that i.c.v. injection of Ucn 2 activates subpopulations of serotonergic neurons restricted to the mid-rostrocaudal DRD and DRC, and further demonstrate that these include both subsets of serotonergic neurons that do and do not project to the ventricle/periventricular system. PMID:20382145

  9. Truncated and Helix-Constrained Peptides with High Affinity and Specificity for the cFos Coiled-Coil of AP-1

    PubMed Central

    Rao, Tara; Ruiz-Gómez, Gloria; Hill, Timothy A.; Hoang, Huy N.; Fairlie, David P.; Mason, Jody M.

    2013-01-01

    Protein-based therapeutics feature large interacting surfaces. Protein folding endows structural stability to localised surface epitopes, imparting high affinity and target specificity upon interactions with binding partners. However, short synthetic peptides with sequences corresponding to such protein epitopes are unstructured in water and promiscuously bind to proteins with low affinity and specificity. Here we combine structural stability and target specificity of proteins, with low cost and rapid synthesis of small molecules, towards meeting the significant challenge of binding coiled coil proteins in transcriptional regulation. By iteratively truncating a Jun-based peptide from 37 to 22 residues, strategically incorporating i→i+4 helix-inducing constraints, and positioning unnatural amino acids, we have produced short, water-stable, α-helical peptides that bind cFos. A three-dimensional NMR-derived structure for one peptide (24) confirmed a highly stable α-helix which was resistant to proteolytic degradation in serum. These short structured peptides are entropically pre-organized for binding with high affinity and specificity to cFos, a key component of the oncogenic transcriptional regulator Activator Protein-1 (AP-1). They competitively antagonized the cJun–cFos coiled-coil interaction. Truncating a Jun-based peptide from 37 to 22 residues decreased the binding enthalpy for cJun by ∼9 kcal/mol, but this was compensated by increased conformational entropy (TΔS ≤7.5 kcal/mol). This study demonstrates that rational design of short peptides constrained by α-helical cyclic pentapeptide modules is able to retain parental high helicity, as well as high affinity and specificity for cFos. These are important steps towards small antagonists of the cJun-cFos interaction that mediates gene transcription in cancer and inflammatory diseases. PMID:23544065

  10. Schisandra chinensis and Rhodiola rosea exert an anti-stress effect on the HPA axis and reduce hypothalamic c-Fos expression in rats subjected to repeated stress

    PubMed Central

    XIA, NAN; LI, JIE; WANG, HONGWEI; WANG, JIAN; WANG, YANGTIAN

    2016-01-01

    The aim of the present study was to investigate the effects of Schisandra chinensis (S. chinensis) and Rhodiola rosea (R. rosea) on rats subjected to 5 h of stress, induced by water-floating followed by treadmill exercise. Hypothalamus-pituitary-adrenal (HPA) activity and c-Fos and Fos-related antigen 2 (Fra-2) mRNA expression levels in the hypothalamus of the rats were evaluated. Rats were distributed into four groups: S. chinensis (n=12), R. rosea (n=10), stress control (n=10) and quiet control (n=8). Following a training period of 6 consecutive days, the S. chinensis, R. rosea and stress control groups underwent a 3-h water-floating session in the presence of feline predators immediately followed by 2 h treadmill running to induce psychological and physical stress. Following compound stress induction, the serum levels of corticosterone (CORT), adrenocorticotropic hormone and interleukin-1β and the mRNA expression levels of hypothalamic corticotropin-releasing hormone (CRH), neuropeptide-Y, c-Fos and Fra-2 were evaluated using enzyme-linked immunosorbent assay, radioimmunoassay and quantitative polymerase chain reaction, respectively. The results indicated that S. chinensis and R. rosea markedly decreased the stress-induced elevation of CRH and peripheral CORT levels. The mRNA expression levels of c-Fos and Fra-2 in the hypothalamus were significantly increased after 5 h compound stress, and reduced levels of c-Fos expression were detected in rats treated with R. rosea. Thus, S. chinensis and R. rosea exert an anti-stress effect in rats subjected to stress by balancing the HPA axis, and possibly by reducing the expression of c-Fos in the hypothalamus. PMID:26889268

  11. Blunted Behavioral and C Fos Responses to Acidic Fumes in the African Naked Mole-Rat

    PubMed Central

    LaVinka, Pamela Colleen; Park, Thomas J.

    2012-01-01

    Acidosis in the skin triggers activation of pain pathways and behaviors indicative of pain in vertebrates. The exception is the naked mole-rat, the only known vertebrate to show physiological and behavioral insensitivity to acid pain in the skin. The goal of the present study was to determine behavioral and physiological responses of this species to airborne acidic fumes, which would be expected to affect the trigeminal pain pathway in other species. Behaviorally, naked mole-rats did not avoid fumes from moderately high concentrations of acetic acid (10 and 20%), and c Fos labeling showed no increase in activity in the trigeminal nuclei and nucleus tractus solitarius. In contrast, these concentrations triggered behavioral aversion and increased Fos activity in other laboratory rodents. For a very high concentration of acetic acid (50%), naked mole-rats showed significant avoidance behavior and increased Fos labeling in the nucleus tractus solitarius caudal region, which receives vagal chemosensory information. However, there was no increase in trigeminal labeling, and in fact, activity significantly decreased. This pattern is opposite of that associated with another irritant, ammonia fumes, which elicited an increase in trigeminal but not nucleus tractus solitarius Fos labeling, and no behavioral avoidance. Behavioral avoidance of acidic fumes, but no increased labeling in the trigeminal pain nucleus is consistent with the notion of adaptations to blunt acid pain, which would be advantageous for naked mole-rats as they normally live under chronically high levels of acidosis-inducing CO2. PMID:23028761

  12. Preemptive Analgesia with Acupuncture Monitored by c-Fos Expression in Rats.

    PubMed

    Gonçalves de Freitas, André T A; Lemonica, Lino; De Faveri, Julio; Pereira, Sergio; Bedoya Henao, Maria D

    2016-02-01

    Pain behavior and awareness are characterized by heightened alertness and anxiety, which begin to disappear as soon as the curative process starts. The present study aimed to quantify c-fos expression in rat spinal cords and brains after a surgical stimulus and with preoperative or postoperative acupuncture. Animals were randomly divided into preoperative and postoperative groups and were then further divided into control, manual acupuncture (MA), or electroacupuncture (EA) groups. Expression of c-fos was quantified using immunohistochemistry. The collected data were analyzed using the t test at a 5% probability level. Presurgery and postsurgery spinal cord c-fos expressions were similar in all of the treatment groups. In the control rats, c-fos expression was higher before surgery than after surgery, contradicting the expected outcome of acupuncture and preemptive analgesia. After treatment, the expression of c-fos in the brains of the rats in the MA and the EA groups was reduced compared with that of the rats in the control group. These findings suggest that acupuncture used as preemptive analgesia in rats is a useful model for studying its application in human treatment. PMID:26896072

  13. Effects of alcohol exposure during development on play behavior and c-Fos expression in response to play behavior.

    PubMed

    Charles Lawrence, R; Cale Bonner, H; Newsom, Ryan J; Kelly, Sandra J

    2008-03-17

    Developmental exposure to alcohol can produce characteristic physiological and cognitive deficits, often termed Fetal Alcohol Spectrum Disorder (FASD). More recently, social deficits have been shown to occur both in FASD and animal models of FASD; the behavioral and neural bases of these deficits remain to be determined. It was hypothesized that changes in sensory processing may in part underlie the social deficits seen in FASD. This study used a rat model of FASD and social play, a behavior critical to adult social functioning, to begin to examine this hypothesis. Somatosensory cues from dorsal contact to the nape of the neck, critical to the initiation of pinning, were systematically degraded by administration of different doses of xylocaine, a topical anesthetic. Neuronal activity after 1h of play was assessed by measurement of c-Fos immunoreactivity (IR) in different brain regions. Ethanol-exposed rats showed an increased frequency of pinning during social play and were more sensitive to the degradation of somatosensory cues compared to the control groups, suggesting difficulties in processing somatosensory cues. Neuronal activity in the somatosensory cortex induced by play was significantly decreased in the ethanol-exposed group compared to the non-treated group. The c-Fos IR in the nucleus accumbens was altered in a sexually dimorphic manner in the ethanol-exposed group. Thus, the behavioral and brain measures are consistent with the hypothesis that ethanol exposure during development induces alterations in social play via deficits in processing somatosensory cues that are important to social play. PMID:18160143

  14. Blockade of arginine vasotocin signaling reduces aggressive behavior and c-Fos expression in the preoptic area and periventricular nucleus of the posterior tuberculum in male Amphiprion ocellaris.

    PubMed

    Yaeger, C; Ros, A M; Cross, V; Deangelis, R S; Stobaugh, D J; Rhodes, J S

    2014-05-16

    Many marine fishes change sex in response to social cues when the dominance hierarchy is perturbed. Arginine-vasotocin (AVT) and the mammalian homolog arginine vasopressin are neuropeptides involved in social and reproductive behaviors across vertebrate taxa. The goal of this study was to determine whether AVT signaling influences aggression and expression of c-Fos, a marker of neuroplasticity, in key brain regions of the social decision circuit in Amphiprion ocellaris clownfish, a species where behavioral dominance precedes gonadal sex change from male to female. In experiment 1, juvenile clownfish (average mass 2.5g) were paired together in a tank (a total of 24 pairs), matched approximately for size with one fish randomly receiving either an intraperitoneal injection of the arginine vasopressin V1a receptor antagonist (Manning compound) or saline vehicle, and evaluated for aggressive and submissive behaviors over a 10-min period. The second experiment was a repeat of the first using five pairs of mature, reproductive males, except the animals interacted for 90-min immediately followed by euthanasia for immunohistochemical detection of c-Fos protein. Numbers of c-Fos-positive cells were quantified in the preoptic area of the hypothalamus (POA), the anterior tuberal nucleus (aTn), and periventricular nucleus of the posterior tuberculum (TPp). Manning compound significantly reduced aggression and the probability of winning the contest relative to saline (vehicle) controls. In experiment 2, saline-treated fish displayed approximately twice as many c-Fos-positive cells in the POA and 25% more in the TPp than the Manning-treated fish, no differences were observed in the aTn. Taken together, results suggest AVT signaling is necessary for aggressive behavior and expression of neuroplasticity in the POA and TPp that likely contributes to behavioral dominance and hence, sex change in A. ocellaris. PMID:24631675

  15. Parathyroid hormone induces c-fos and c-jun messenger RNA in rat osteoblastic cells

    NASA Technical Reports Server (NTRS)

    Clohisy, J. C.; Scott, D. K.; Brakenhoff, K. D.; Quinn, C. O.; Partridge, N. C.

    1992-01-01

    PTH is a potent regulator of osteoblast gene expression, yet the nuclear events that mediate PTH action are poorly understood. We were interested in identifying immediate early genes which may regulate PTH-altered gene expression in the osteoblast. Therefore, we examined the effects of PTH on c-fos and c-jun gene expression in a rat osteoblastic cell line (UMR 106-01). Under control conditions, c-fos and c-jun mRNAs were present at low basal levels. After PTH treatment, c-fos mRNA abundance dramatically increased, with a maximal and transient response at 30 min. PTH also stimulated an increase in c-jun mRNA, but in a biphasic manner, with maximal levels at 30 min and 2 h. These responses were dose dependent, not altered by cotreatment with the protein synthesis inhibitor cycloheximide, and preceded PTH-induced expression of matrix metallo-proteinase-1 mRNA. Nuclear run-on assays demonstrated an increased rate of c-fos and c-jun transcription after PTH exposure. To determine the signal transduction pathways involved, second messenger analogs were tested for their ability to mimic the effects of PTH. 8-Bromo-cAMP and phorbol 12-myristate 13-acetate (PMA) caused increases in the abundance of c-fos and c-jun transcripts. Ionomycin had no effect on the expression of these genes. Pretreatment of the cells with PMA resulted in a decrease in basal c-jun expression, but did not alter the PTH-mediated increase in c-fos, c-jun, or matrix metalloproteinase-1 mRNAs.(ABSTRACT TRUNCATED AT 250 WORDS).

  16. Localization and regulation of c-fos and c-jun protooncogene induction by systolic wall stress in normal and hypertrophied rat hearts.

    PubMed Central

    Schunkert, H; Jahn, L; Izumo, S; Apstein, C S; Lorell, B H

    1991-01-01

    The effect of changes in left ventricular (LV) systolic force generation on cardiac c-fos and c-jun protooncogene expression was studied by using isolated beating hearts from male Wistar rats. An isovolumic buffer-perfused heart preparation was utilized in which coronary flow and heart rate were held constant and increments in LV balloon volume were used to generate defined levels of LV systolic wall stress. Using Northern and slot-blot analyses, we found that LV tissue from control hearts that generated high levels of LV systolic wall stress expressed 3- to 4.4-fold higher c-fos and c-jun mRNA levels in comparison with tissue from the respective flaccid right ventricles, and in comparison with LV tissue from hearts that generated minimal LV systolic wall stress. To distinguish the role of passive LV diastolic wall stretch from active LV force generation, we found that distension of the LV balloon per se did not have a significant effect on protooncogene induction in hearts perfused with 2,3-butanedione monoxime, which prevents systolic cross-bridge cycling and force generation. In additional hearts studied at a constant LV balloon volume to generate an LV end-diastolic pressure of 10 mm Hg, c-fos mRNA levels were proportional to the magnitude of peak LV systolic wall stress (r = 0.823, P less than 0.05). In these protocols, Fos protein was localized by immunohistochemistry in myocyte nuclei with minimal staining in fibroblasts and vascular smooth muscle. When c-fos and c-jun mRNA expression was compared in hearts with chronic LV hypertrophy due to ascending aortic banding and age-matched control hearts that generated similar incremental levels of LV systolic wall stress, significantly lower levels of c-fos and c-jun mRNA were measured in the hypertrophied hearts. However, there was no difference in protooncogene mRNA expression in response to stimulation by the Ca2+ ionophore A23187. These data suggest that, in this isolated isovolumic beating heart preparation

  17. Decline in c-myc mRNA expression but not the induction of c-fos mRNA expression is associated with differentiation of SH-SY5Y human neuroblastoma cells

    SciTech Connect

    Jalava, A.M.; Heikkilae, J.E.; Akerman, K.E.O. )

    1988-11-01

    The induction of differentiation in SH-SY5Y human neuroblastoma cells with 12-O-tetradecanoylphorbol-13-acetate (TPA) is accompanied by a rapid and a transient expression of c-fos mRNA and a down-regulation of c-myc RNA. The TPA-induced expression of c-fos mRNA was inhibited by H-7, a specific inhibitor of protein kinase C (PK-C). Dioctanoylglycerol (DiC{sub 8}) failed to induce differentiation of SH-SY5Y cells or to down-regulate c-myc mRNA but it did induce the expression of c-fos mRNA. Treatment of IMR-32 human neuroblastoma cells with TPA did not cause differentiation although c-fos mRNA was induced. Since PK-C in SH-SY5Y cells was activated by both TPA and DiC{sub 8} it is suggested that the activation of PK-C alone is not sufficient to induce differentiation in SH-SY5Y cells. The down-regulation of c-myc mRNA rather than the induction of c-fos mRNA seems to be associated with differentiation process in SH-SY5Y cells.

  18. c-fos oncogene underexpression in salivary gland tumors as measured by in situ hybridization.

    PubMed Central

    Birek, C.; Lui, E.; Dardick, I.

    1993-01-01

    Tissue from 35 salivary gland tumors and 14 normal salivary glands was analyzed by in situ hybridization and computer-assisted morphometry for the expression of the c-fos oncogene. The normal salivary gland tissues were found to express c-fos focally, mainly in the acinar secretory cells. The majority of the cells in the normal tissues showed a high level of expression (47.74 +/- 5.31% of cells had 46 to 60 grains per cell and another 45.79 +/- 2.18% showed > 60 grains per cell). All the tumors examined exhibited a relatively low, uniform distribution of c-fos expression. For example, in the poorly differentiated adenocarcinomas, 96.83 +/- 04% of the cells were found to have < 15 grains per cell. A general linear model for multivariate analysis showed a significant difference between the various tumor types and the normal salivary gland tissues (P = 0.0001). These data support the hypothesis that salivary gland tumors belong to a group of epithelial neoplasias in which the loss of cellular differentiation is linked with underexpression of the c-fos oncogene. Images Figure 1 Figure 2 Figure 3 PMID:8456948

  19. Inflammation-mediated skin tumorigenesis induced by epidermal c-Fos

    PubMed Central

    Briso, Eva M.; Guinea-Viniegra, Juan; Bakiri, Latifa; Rogon, Zbigniew; Petzelbauer, Peter; Eils, Roland; Wolf, Ronald; Rincón, Mercedes; Angel, Peter; Wagner, Erwin F.

    2013-01-01

    Skin squamous cell carcinomas (SCCs) are the second most prevalent skin cancers. Chronic skin inflammation has been associated with the development of SCCs, but the contribution of skin inflammation to SCC development remains largely unknown. In this study, we demonstrate that inducible expression of c-fos in the epidermis of adult mice is sufficient to promote inflammation-mediated epidermal hyperplasia, leading to the development of preneoplastic lesions. Interestingly, c-Fos transcriptionally controls mmp10 and s100a7a15 expression in keratinocytes, subsequently leading to CD4 T-cell recruitment to the skin, thereby promoting epidermal hyperplasia that is likely induced by CD4 T-cell-derived IL-22. Combining inducible c-fos expression in the epidermis with a single dose of the carcinogen 7,12-dimethylbenz(a)anthracene (DMBA) leads to the development of highly invasive SCCs, which are prevented by using the anti-inflammatory drug sulindac. Moreover, human SCCs display a correlation between c-FOS expression and elevated levels of MMP10 and S100A15 proteins as well as CD4 T-cell infiltration. Our studies demonstrate a bidirectional cross-talk between premalignant keratinocytes and infiltrating CD4 T cells in SCC development. Therefore, targeting inflammation along with the newly identified targets, such as MMP10 and S100A15, represents promising therapeutic strategies to treat SCCs. PMID:24029918

  20. Inflammation-mediated skin tumorigenesis induced by epidermal c-Fos.

    PubMed

    Briso, Eva M; Guinea-Viniegra, Juan; Bakiri, Latifa; Rogon, Zbigniew; Petzelbauer, Peter; Eils, Roland; Wolf, Ronald; Rincón, Mercedes; Angel, Peter; Wagner, Erwin F

    2013-09-15

    Skin squamous cell carcinomas (SCCs) are the second most prevalent skin cancers. Chronic skin inflammation has been associated with the development of SCCs, but the contribution of skin inflammation to SCC development remains largely unknown. In this study, we demonstrate that inducible expression of c-fos in the epidermis of adult mice is sufficient to promote inflammation-mediated epidermal hyperplasia, leading to the development of preneoplastic lesions. Interestingly, c-Fos transcriptionally controls mmp10 and s100a7a15 expression in keratinocytes, subsequently leading to CD4 T-cell recruitment to the skin, thereby promoting epidermal hyperplasia that is likely induced by CD4 T-cell-derived IL-22. Combining inducible c-fos expression in the epidermis with a single dose of the carcinogen 7,12-dimethylbenz(a)anthracene (DMBA) leads to the development of highly invasive SCCs, which are prevented by using the anti-inflammatory drug sulindac. Moreover, human SCCs display a correlation between c-FOS expression and elevated levels of MMP10 and S100A15 proteins as well as CD4 T-cell infiltration. Our studies demonstrate a bidirectional cross-talk between premalignant keratinocytes and infiltrating CD4 T cells in SCC development. Therefore, targeting inflammation along with the newly identified targets, such as MMP10 and S100A15, represents promising therapeutic strategies to treat SCCs. PMID:24029918

  1. NF-Y Binding Site Architecture Defines a C-Fos Targeted Promoter Class

    PubMed Central

    Haubrock, Martin; Hartmann, Fabian; Wingender, Edgar

    2016-01-01

    ChIP-seq experiments detect the chromatin occupancy of known transcription factors in a genome-wide fashion. The comparisons of several species-specific ChIP-seq libraries done for different transcription factors have revealed a complex combinatorial and context-specific co-localization behavior for the identified binding regions. In this study we have investigated human derived ChIP-seq data to identify common cis-regulatory principles for the human transcription factor c-Fos. We found that in four different cell lines, c-Fos targeted proximal and distal genomic intervals show prevalences for either AP-1 motifs or CCAAT boxes as known binding motifs for the transcription factor NF-Y, and thereby act in a mutually exclusive manner. For proximal regions of co-localized c-Fos and NF-YB binding, we gathered evidence that a characteristic configuration of repeating CCAAT motifs may be responsible for attracting c-Fos, probably provided by a nearby AP-1 bound enhancer. Our results suggest a novel regulatory function of NF-Y in gene-proximal regions. Specific CCAAT dimer repeats bound by the transcription factor NF-Y define this novel cis-regulatory module. Based on this behavior we propose a new enhancer promoter interaction model based on AP-1 motif defined enhancers which interact with CCAAT-box characterized promoter regions. PMID:27517874

  2. KDM2B/FBXL10 targets c-Fos for ubiquitylation and degradation in response to mitogenic stimulation

    PubMed Central

    Han, Xiao-Ran; Zha, Zhengyu; Yuan, Hai-Xin; Feng, Xu; Xia, Yu-Kun; Lei, Qun-Ying; Guan, Kun-Liang; Xiong, Yue

    2015-01-01

    SUMMARY KDM2B (also known as FBXL10) controls stem cell self-renewal, somatic cell reprogramming and senescence, and tumorigenesis. KDM2B contains multiple functional domains, including a JmjC domain that catalyzes H3K36 demethylation and a CxxC zing finger that recognizes CpG islands and recruits the polycomb repressive complex 1 (PRC1). Here, we report that KDM2B, via its F-box domain, functions as a subunit of the CUL1-RING ubiquitin ligase (CRL1/SCFKDM2B) complex. KDM2B targets c-Fos for polyubiquitylation and regulates c-Fos protein levels. Unlike the phosphorylation of other SCF/CRL1 substrates that promotes substrates binding to F-box, EGF-induced c-Fos S374 phosphorylation dissociates c-Fos from KDM2B and stabilizes c-Fos protein. Non-phosphorylatable and phosphomimetic mutations at S374 result in c-Fos protein which cannot be induced by EGF and accumulates constitutively and lead to decreased or increased cell proliferation, respectively. Multiple tumor-derived KDM2B mutations impaired the function of KDM2B to target c-Fos degradation and to suppress cell proliferation. These results reveal a novel function of KDM2B in the negative regulation of cell proliferation by assembling an E3 ligase to targeting c-Fos protein degradation that is antagonized by mitogenic stimulations. PMID:26725323

  3. Ropinirole regulates emotionality and neuronal activity markers in the limbic forebrain.

    PubMed

    Mavrikaki, Maria; Schintu, Nicoletta; Nomikos, George G; Panagis, George; Svenningsson, Per

    2014-12-01

    Restless legs syndrome (RLS) and Parkinson's disease (PD) are movement disorders usually accompanied by emotional and cognitive deficits. Although D3/D2 receptor agonists are effective against motor and non-motor deficits in RLS and PD, the exact behavioral and neurochemical effects of these drugs are not clearly defined. This study aimed to evaluate the effects of acute ropinirole (0, 0.1, 1 or 10 mg/kg, i.p.), a preferential D3/D2 receptor agonist, on intracranial self-stimulation (ICSS), spontaneous motor activity, anxiety- and depression-like behaviors, spatial reference and working memory in rats as well as on certain markers of neuronal activity, i.e. induction of immediate early genes, such as c-fos and arc, and crucial phosphorylations on GluA1 subunit of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and NA1, NA2A and NA2B subunits of N-methyl-D-aspartate (NMDA) receptors. Ropinirole decreased ICSS thresholds and induced anxiolytic- and antidepressive-like effects without affecting motor activity or spatial memory. The effects on emotionality were associated with a decrease in p-Ser897-NA1 and an increase in p-Tyr1472-NA2B in the ventral striatum as well as an increased induction of c-fos messenger RNA (mRNA) in the prefrontal cortex (PFC) and decreased expression of arc mRNA in the striatum and the shell of the nucleus accumbens. Our data indicate that ropinirole significantly affects emotionality at doses (1-10 mg/kg, i.p.) that exert no robust effects on locomotion or cognition. The data reinforce the use of D3/D2 receptor agonists in the treatment of RLS and PD patients characterized by emotional deficits and suggest that altered NMDA-mediated neurotransmission in the limbic forebrain may underlie some of ropinirole's therapeutic actions. PMID:24852388

  4. Differential expression of c-myc gene and c-fos gene in premalignant and malignant tissues from patients with familial polyposis coli.

    PubMed

    Sugio, K; Kurata, S; Sasaki, M; Soejima, J; Sasazuki, T

    1988-09-01

    The expression of 8 oncogenes and the structures of 19 oncogenes were analyzed in 15 adenocarcinomas (12 primary and 3 metastatic), 18 adenomatous polyps, and 18 normal colonic mucosae derived from 19 patients with familial polyposis coli. The expression of c-myc gene was most elevated in carcinoma, and moderately elevated in adenoma, compared with corresponding normal colonic mucosa. In contrast, the expression of c-fos gene was markedly decreased in all samples of adenoma and carcinoma, compared with that of normal colonic mucosa. These characteristic expression patterns of c-myc and c-fos genes were revealed not only in familial polyposis coli but also in cases of nonhereditary colon carcinoma. Structures of the 19 oncogenes were not modified in either adenoma or carcinoma, except for amplification of the c-myc gene detected in one carcinoma, but not in adenoma, from the same patient. Analyses of the amplified c-myc gene suggest that gene duplication may relate to the mechanism of gene amplification. Thus, the enhanced expression of c-myc gene in adenoma and carcinoma may reflect the proliferative activity, while the c-fos gene may be a prerequisite to stabilize the state of terminal differentiation of colonic epithelial cells. PMID:2842040

  5. Selective participation of c-Jun with Fra-2/c-Fos promotes aggressive tumor phenotypes and poor prognosis in tongue cancer

    PubMed Central

    Gupta, Shilpi; Kumar, Prabhat; Kaur, Harsimrut; Sharma, Nishi; Saluja, Daman; Bharti, Alok C.; Das, Bhudev C.

    2015-01-01

    Tongue squamous cell carcinoma (TSCC) is most aggressive head and neck cancer often associated with HR-HPV infection. The role of AP-1 which is an essential regulator of HPV oncogene expression and tumorigenesis is not reported in tongue cancer. One hundred tongue tissue biopsies comprising precancer, cancer and adjacent controls including two tongue cancer cell lines were employed to study the role of HPV infection and AP-1 family proteins. An exclusive prevalence (28%) of HR-HPV type 16 was observed mainly in well differentiated tongue carcinomas (78.5%). A higher expression and DNA binding activity of AP-1 was observed in tongue tumors and cancer cell lines with c-Fos and Fra-2 as the major binding partners forming the functional AP-1 complex but c-Jun participated only in HPV negative and poorly differentiated carcinoma. Knocking down of Fra-2 responsible for aggressive tongue tumorigenesis led to significant reduction in c-Fos, c-Jun, MMP-9 and HPVE6/E7 expression but Fra-1 and p53 were upregulated. The binding and expression of c-Fos/Fra-2 increased as a function of severity of tongue lesions, yet selective participation of c-Jun appears to promote poor differentiation and aggressive tumorigenesis only in HPV negative cases while HPV infection leads to well differentiation and better prognosis preferably in nonsmokers. PMID:26581505

  6. IP{sub 3}-dependent intracellular Ca{sup 2+} release is required for cAMP-induced c-fos expression in hippocampal neurons

    SciTech Connect

    Zhang, Wenting; Tingare, Asmita; Ng, David Chi-Heng; Johnson, Hong W.; Schell, Michael J.; Lord, Rebecca L.; Chawla, Sangeeta

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer cAMP-induced c-fos expression in hippocampal neurons requires a submembraneous Ca{sup 2+} pool. Black-Right-Pointing-Pointer The submembraneous Ca{sup 2+} pool derives from intracellular ER stores. Black-Right-Pointing-Pointer Expression of IP{sub 3}-metabolizing enzymes inhibits cAMP-induced c-fos expression. Black-Right-Pointing-Pointer SRE-mediated and CRE-mediated gene expression is sensitive to IP{sub 3}-metabolizing enzymes. Black-Right-Pointing-Pointer Intracellular Ca{sup 2+} release is required for cAMP-induced nuclear translocation of TORC1. -- Abstract: Ca{sup 2+} and cAMP are widely used in concert by neurons to relay signals from the synapse to the nucleus, where synaptic activity modulates gene expression required for synaptic plasticity. Neurons utilize different transcriptional regulators to integrate information encoded in the spatiotemporal dynamics and magnitude of Ca{sup 2+} and cAMP signals, including some that are Ca{sup 2+}-responsive, some that are cAMP-responsive and some that detect coincident Ca{sup 2+} and cAMP signals. Because Ca{sup 2+} and cAMP can influence each other's amplitude and spatiotemporal characteristics, we investigated how cAMP acts to regulate gene expression when increases in intracellular Ca{sup 2+} are buffered. We show here that cAMP-mobilizing stimuli are unable to induce expression of the immediate early gene c-fos in hippocampal neurons in the presence of the intracellular Ca{sup 2+} buffer BAPTA-AM. Expression of enzymes that attenuate intracellular IP{sub 3} levels also inhibited cAMP-dependent c-fos induction. Synaptic activity induces c-fos transcription through two cis regulatory DNA elements - the CRE and the SRE. We show here that in response to cAMP both CRE-mediated and SRE-mediated induction of a luciferase reporter gene is attenuated by IP{sub 3} metabolizing enzymes. Furthermore, cAMP-induced nuclear translocation of the CREB coactivator TORC1 was inhibited by

  7. Phosphorylation-dependent formation of a quaternary complex at the c-fos SRE.

    PubMed Central

    Gille, H; Kortenjann, M; Strahl, T; Shaw, P E

    1996-01-01

    The rapid and transient induction of the human proto-oncogene c-fos in response to a variety of stimuli depends on the serum responses element (SRE). In vivo footprinting experiments show that this promoter element is bound by a multicomponent complex including the serum response factor (SRF) and a ternary complex factor such as Elk-1. SRF is thought to recruit a ternary complex factor monomer into an asymmetric complex. In this report, we describe a quaternary complex over the SRE which, in addition to an SRF dimer, contains two Elk-1 molecules. Its formation at the SRE is strictly dependent on phosphorylation of S-383 in the Elk-1 regulatory domain and appears to involve a weak intermolecular association between the two Elk-1 molecules. The influence of mutations in Elk-1 on quaternary complex formation in vitro correlates with their effect on the induction of c-fos reporter expression in response to mitogenic stimuli in vivo. PMID:8622654

  8. Effects of Ca2+ channel blockers on cortical hypoperfusion and expression of c-Fos-like immunoreactivity after cortical spreading depression in rats.

    PubMed Central

    Shimazawa, M.; Hara, H.; Watano, T.; Sukamoto, T.

    1995-01-01

    1. We examined the effects of two Ca2+ channel blockers, lomerizine (KB-2796) and flunarizine, on the cortical hypoperfusion (measured by hydrogen clearance and laser Doppler flowmetry methods) and cortical c-Fos-like immunoreactivity that follow KCl-induced cortical spreading depression in anaesthetized rats. Cortical spreading depression was induced by application of 1 M KCl for 30 s to the cortical surface, 3.0 mm posterior to the area of cerebral blood flow measurement. 2. In control rats, KB-2796 (0.3 and 1 mg kg-1, i.v.) dose-dependently increased cerebral blood flow significantly at 30 min and 15 min, respectively, after its administration. Flunarizine (1 mg kg-1, i.v.) significantly increased cerebral blood flow 15 min after its administration. In contrast, dimetotiazine (3 mg kg-1, i.v.), a 5-HT2 and histamine H1 antagonist, failed to affect cerebral blood flow significantly. 3. After KCl application to the cortex, cerebral blood flow monitored by the laser Doppler flowmetry method increased transiently, for a few minutes, then fell and remained approximately 20 to 30% below control for at least 60 min. Cerebral blood flow monitored by the hydrogen clearance method was also approximately 20 to 30% below baseline for at least 60 min after KCl application. KB-2796 (0.3 and 1 mg kg-1, i.v.) and flunarizine (1 and 3 mg kg-1, i.v.) administered 5 min before KCl application inhibited the cortical hypoperfusion that followed KCl application, but dimetotiazine (1 and 3 mg kg-1, i.v.) did not. 4. An indicator of neuronal activation, c-Fos-like immunoreactivity, was detected in the ipsilateral, but not in the contralateral frontoparietal cortex 2 h after KCl application. No c-Fos-like immunoreactivity was seen on either side of the brain in the hippocampus, thalamus, striatum or cerebellum. 5. KB-2796 (1 mg kg-1, i.v.) and flunarizine (3 mg kg-1, i.v.), but not dimetotiazine (3 mg kg-1, i.v.), significantly attenuated the expression of c-Fos-like immunoreactivity in

  9. Inhibition of carcinogen induced c-Ha-ras and c-fos proto-oncogenes expression by dietary curcumin

    PubMed Central

    Limtrakul, Porn-ngarm; Anuchapreeda, Songyot; Lipigorngoson, Suwiwek; Dunn, Floyd W

    2001-01-01

    Background We investigated the chemopreventive action of dietary curcumin on 7,12-dimethylbenz(a)anthracene (DMBA)-initiated and 12,0-tetradecanoylphorbol-13-acetate (TPA)-promoted skin tumor formation in Swiss albino mice. Curcumin, a yellow coloring matter isolated from roots of Curcuma longa Linn, is a phenolic compound possessing antioxidant, free radical scavenger, and antiinflammatory properties. It has been shown by previously reported work that TPA-induced skin tumors were inhibited by topical application of curcumin, and curcumin has been shown to inhibit a variety of biological activities of TPA. Topical application of curcumin was reported to inhibit TPA-induced c-fos, c-jun and c-myc gene expression in mouse skin. This paper reports the effects of orally administered curcumin, which was consumed as a dietary component at concentrations of 0.2 % or 1 %, in ad libitum feeding. Results Animals in which tumors had been initiated with DMBA and promoted with TPA experienced significantly fewer tumors and less tumor volume if they ingested either 0.2% or 1% curcumin diets. Also, the dietary consumption of curcumin resulted in a significantly decreased expression of ras and fos proto-oncogenes in the tumorous skin, as measured by enhanced chemiluminesence Western blotting detection system (Amersham). Conclusions Whereas earlier work demonstrated that topical application of curcumin to mouse skin inhibited TPA-induced expression of c-fos, c-jun and c-myc oncogenes, our results are the first to show that orally consumed curcumin significantly inhibited DMBA- and TPA-induced ras and fos gene expression in mouse skin. PMID:11231886

  10. Pattern of cerebrospinal immediate early gene c-fos expression in an ovine model of non-accidental head injury.

    PubMed

    Finnie, J W; Blumbergs, P C; Manavis, J; Vink, R

    2013-12-01

    Expression of the immediate early gene, c-fos, was examined in a large animal model of non-accidental head injury ("shaken baby syndrome"). Lambs were used because they have a relatively large gyrencephalic brain and weak neck muscles resembling a human infant. Neonatal lambs were manually shaken in a manner similar to that believed to occur with most abused human infants, but there was no head impact. The most striking c-fos expression was in meningothelial cells of the cranial cervical spinal cord and, to a lesser degree, in hemispheric, cerebellar, and brainstem meninges. Vascular endothelial cells also frequently showed c-fos immunopositivity in the meninges and hemispheric white matter. It was hypothesised that this c-fos immunoreactivity was due to mechanical stress induced by shaking, with differential movement of different craniospinal components. PMID:24035422

  11. KDM2B/FBXL10 targets c-Fos for ubiquitylation and degradation in response to mitogenic stimulation.

    PubMed

    Han, X-R; Zha, Z; Yuan, H-X; Feng, X; Xia, Y-K; Lei, Q-Y; Guan, K-L; Xiong, Y

    2016-08-11

    KDM2B (also known as FBXL10) controls stem cell self-renewal, somatic cell reprogramming and senescence, and tumorigenesis. KDM2B contains multiple functional domains, including a JmjC domain that catalyzes H3K36 demethylation and a CxxC zinc-finger that recognizes CpG islands and recruits the polycomb repressive complex 1. Here, we report that KDM2B, via its F-box domain, functions as a subunit of the CUL1-RING ubiquitin ligase (CRL1/SCF(KDM2B)) complex. KDM2B targets c-Fos for polyubiquitylation and regulates c-Fos protein levels. Unlike the phosphorylation of other SCF (SKP1-CUL1-F-box)/CRL1 substrates that promotes substrates binding to F-box, epidermal growth factor (EGF)-induced c-Fos S374 phosphorylation dissociates c-Fos from KDM2B and stabilizes c-Fos protein. Non-phosphorylatable and phosphomimetic mutations at S374 result in c-Fos protein which cannot be induced by EGF or accumulates constitutively and lead to decreased or increased cell proliferation, respectively. Multiple tumor-derived KDM2B mutations impaired the function of KDM2B to target c-Fos degradation and to suppress cell proliferation. These results reveal a novel function of KDM2B in the negative regulation of cell proliferation by assembling an E3 ligase to targeting c-Fos protein degradation that is antagonized by mitogenic stimulations. PMID:26725323

  12. Diacylglycerol kinase ζ (DGKζ) is a critical regulator of bone homeostasis via modulation of c-Fos levels in osteoclasts†

    PubMed Central

    Zamani, Ali; Decker, Corinne; Cremasco, Viviana; Hughes, Lindsey; Novack, Deborah V.; Faccio, Roberta

    2015-01-01

    Increased diacylglycerol (DAG) levels are observed in numerous pathologies, including conditions associated with bone loss. However, the effects of DAG accumulation on the skeleton have never been directly examined. Because DAG is strictly controlled by tissue specific diacylglycerol kinases (DGKs), we sought to examine the biological consequences of DAG accumulation on bone homeostasis by genetic deletion of DGKζ, a highly expressed DGK isoform in osteoclasts (OCs). Strikingly, DGKζ−/− mice are osteoporotic due to a marked increase in OC numbers. In vitro, DGKζ−/− bone marrow macrophages (BMMs) form more numerous, larger and highly resorptive OCs. Surprisingly, while increased DAG levels do not alter RANK/RANKL osteoclastogenic pathway, DGKζ deficiency increases responsiveness to the proliferative and pro-survival cytokine M-CSF. We find that M-CSF is responsible for increased DGKζ−/− OC differentiation by promoting higher expression of the transcription factor c-Fos, and c-Fos knockdown in DGKζ−/− cultures dose-dependently reduces OC differentiation. Using a c-Fos luciferase reporter assay lacking the TRE responsive element, we also demonstrate that M-CSF induces optimal c-Fos expression through DAG production. Finally, to demonstrate the importance of the M-CSF/DGKζ/DAG axis on regulation of c-Fos during osteoclastogenesis, we turned to PLCγ2+/− BMMs, which have reduced DAG levels and form fewer OCs due to impaired expression of the master regulator of osteoclastogenesis NFATc1 and c-Fos. Strikingly, genetic deletion of DGKζ in PLCγ2+/− mice rescues OC formation and normalizes c-Fos levels without altering NFATc1 expression. To our knowledge, this is the first report implicating M-CSF/DGKζ/DAG axis as a critical regulator of bone homeostasis via its actions on OC differentiation and c-Fos expression. PMID:25891971

  13. Changing and shielded magnetic fields suppress c-Fos expression in the navigation circuit: input from the magnetosensory system contributes to the internal representation of space in a subterranean rodent

    PubMed Central

    Burger, Tomáš; Lucová, Marcela; Moritz, Regina E.; Oelschläger, Helmut H. A.; Druga, Rastislav; Burda, Hynek; Wiltschko, Wolfgang; Wiltschko, Roswitha; Němec, Pavel

    2010-01-01

    The neural substrate subserving magnetoreception and magnetic orientation in mammals is largely unknown. Previous experiments have demonstrated that the processing of magnetic sensory information takes place in the superior colliculus. Here, the effects of magnetic field conditions on neuronal activity in the rodent navigation circuit were assessed by quantifying c-Fos expression. Ansell's mole-rats (Fukomys anselli), a mammalian model to study the mechanisms of magnetic compass orientation, were subjected to natural, periodically changing, and shielded magnetic fields while exploring an unfamiliar circular arena. In the undisturbed local geomagnetic field, the exploration of the novel environment and/or nesting behaviour induced c-Fos expression throughout the head direction system and the entorhinal–hippocampal spatial representation system. This induction was significantly suppressed by exposure to periodically changing and/or shielded magnetic fields; discrete decreases in c-Fos were seen in the dorsal tegmental nucleus, the anterodorsal and the laterodorsal thalamic nuclei, the postsubiculum, the retrosplenial and entorhinal cortices, and the hippocampus. Moreover, in inactive animals, magnetic field intensity manipulation suppressed c-Fos expression in the CA1 and CA3 fields of the hippocampus and the dorsal subiculum, but induced expression in the polymorph layer of the dentate gyrus. These findings suggest that key constituents of the rodent navigation circuit contain populations of neurons responsive to magnetic stimuli. Thus, magnetic information may be integrated with multimodal sensory and motor information into a common spatial representation of allocentric space within this circuit. PMID:20219838

  14. Systemic L-Kynurenine sulfate administration disrupts object recognition memory, alters open field behavior and decreases c-Fos immunopositivity in C57Bl/6 mice.

    PubMed

    Varga, Dániel; Herédi, Judit; Kánvási, Zita; Ruszka, Marian; Kis, Zsolt; Ono, Etsuro; Iwamori, Naoki; Iwamori, Tokuko; Takakuwa, Hiroki; Vécsei, László; Toldi, József; Gellért, Levente

    2015-01-01

    L-Kynurenine (L-KYN) is a central metabolite of tryptophan degradation through the kynurenine pathway (KP). The systemic administration of L-KYN sulfate (L-KYNs) leads to a rapid elevation of the neuroactive KP metabolite kynurenic acid (KYNA). An elevated level of KYNA may have multiple effects on the synaptic transmission, resulting in complex behavioral changes, such as hypoactivity or spatial working memory deficits. These results emerged from studies that focused on rats, after low-dose L-KYNs treatment. However, in several studies neuroprotection was achieved through the administration of high-dose L-KYNs. In the present study, our aim was to investigate whether the systemic administration of a high dose of L-KYNs (300 mg/bwkg; i.p.) would produce alterations in behavioral tasks (open field or object recognition) in C57Bl/6j mice. To evaluate the changes in neuronal activity after L-KYNs treatment, in a separate group of animals we estimated c-Fos expression levels in the corresponding subcortical brain areas. The L-KYNs treatment did not affect the general ambulatory activity of C57Bl/6j mice, whereas it altered their moving patterns, elevating the movement velocity and resting time. Additionally, it seemed to increase anxiety-like behavior, as peripheral zone preference of the open field arena emerged and the rearing activity was attenuated. The treatment also completely abolished the formation of object recognition memory and resulted in decreases in the number of c-Fos-immunopositive-cells in the dorsal part of the striatum and in the CA1 pyramidal cell layer of the hippocampus. We conclude that a single exposure to L-KYNs leads to behavioral disturbances, which might be related to the altered basal c-Fos protein expression in C57Bl/6j mice. PMID:26136670

  15. Inhibition of AP-1 by Sulforaphane Involves Interaction with Cysteine in the cFos DNA-Binding Domain; Implications for Chemoprevention of UVB-Induced Skin Cancer

    PubMed Central

    Dickinson, Sally E.; Melton, Tania F.; Olson, Erik R.; Zhang, Jian; Saboda, Kathylynn; Bowden, G. Timothy

    2009-01-01

    Sulforaphane (SFN) is an isothiocyanate derived from cruciferous vegetables which has been linked to decreased risk of certain cancers. Although the role of SFN in the induction of the transcription factor Nrf2 has been studied extensively, there is also evidence that inhibition of the transcription factor AP-1 may contribute to the chemopreventive properties of this compound. In this study, we show for the first time that SFN is effective at reducing the multiplicity and tumor burden of UVB-induced squamous cell carcinomas (SCCs) in a mouse model utilizing co-treatment with the compound and the carcinogen. We also show that SFN pretreatment is able to reduce the activity of AP-1 luciferase in the skin of transgenic mice after UVB. Chromatin immunoprecipitation analysis verified that a main constituent of the AP-1 dimer, cFos, is inhibited from binding to the AP-1 DNA binding site by SFN. EMSA analysis of nuclear proteins also show that SFN and diamide, both known to react with cysteine amino acids, are effective at inhibiting AP-1 from binding to its response element. Using truncated recombinant cFos and cJun we show that mutation of critical cysteines in the DNA binding domain of these proteins (Cys154 in cFos and Cys272 in cJun) results in loss of sensitivity to both SFN and diamide in EMSA analysis. Together, these data indicate that inhibition of AP-1 activity may be an important molecular mechanism in chemoprevention of SCC by SFN. PMID:19671797

  16. Differential Cortical c-Fos and Zif-268 Expression after Object and Spatial Memory Processing in a Standard or Episodic-Like Object Recognition Task

    PubMed Central

    Barbosa, Flávio Freitas; Santos, José Ronaldo; Meurer, Ywlliane S. Rodrigues; Macêdo, Priscila Tavares; Ferreira, Luane M. Stamatto; Pontes, Isabella M. Oliveira; Ribeiro, Alessandra Mussi; Silva, Regina Helena

    2013-01-01

    Episodic memory reflects the capacity to recollect what, where, and when a specific event happened in an integrative manner. Animal studies have suggested that the medial temporal lobe and the medial pre-frontal cortex are important for episodic-like memory (ELM) formation. The goal of present study was to evaluate whether there are different patterns of expression of the immediate early genes c-Fos and Zif-268 in these cortical areas after rats are exposed to object recognition (OR) tasks with different cognitive demands. Male rats were randomly assigned to five groups: home cage control, empty open field (CTR-OF), open field with one object (CTR-OF + Obj), novel OR task, and ELM task and were killed 1 h after the last behavioral procedure. Rats were able to discriminate the objects in the OR task. In the ELM task, rats showed spatial (but not temporal) discrimination of the objects. We found an increase in the c-Fos expression in the dorsal dentate gyrus (DG) and in the perirhinal cortex (PRh) in the OR and ELM groups. The OR group also presented an increase of c-Fos expression in the medial prefrontal cortex (mPFC). Additionally, the OR and ELM groups had increased expression of Zif-268 in the mPFC. Moreover, Zif-268 was increased in the dorsal CA1 and PRh only in the ELM group. In conclusion, the pattern of activation was different in tasks with different cognitive demands. Accordingly, correlation tests suggest the engagement of different neural networks in the tasks used. Specifically, perirhinal-DG co-activation was detected after the what-where memory retrieval, but not after the novel OR task. Both regions correlated with the respective behavioral outcome. These findings can be helpful in the understanding of the neural networks underlying memory tasks with different cognitive demands. PMID:23986669

  17. Amphetamine-induced c-fos mRNA expression is altered in rats with neonatal ventral hippocampal damage.

    PubMed

    Lillrank, S M; Lipska, B K; Bachus, S E; Wood, G K; Weinberger, D R

    1996-08-01

    To further characterize the mechanisms underlying enhanced dopamine-related behaviors expressed during adulthood in rats with neonatal excitotoxic ventral hippocampal (VH) damage, we studied the expression of c-fos mRNA in these rats after a single saline or amphetamine (AMPH) (10 mg/kg, i.p.) injection using in situ hybridization. The VH of rat pups was lesioned with ibotenic acid on postnatal day 7 (PD7). At the age of 90 days, rats were challenged with AMPH or saline, and the expression of c-fos mRNA using an oligonucleotide probe was assessed 30, 90, and 180 min later. AMPH significantly increased c-fos mRNA expression in medial prefrontal cortex, piriform cortex, cingulate cortex, septal region, and dorsolateral and ventromedial striatum in control and lesioned rats. However, this response to AMPH was attenuated 30 min after AMPH injection in all of these regions in the lesioned as compared to the sham-operated rats. No significant changes were seen at other time points. These results indicate that the neonatal VH lesion alters time-dependent intracellular signal transduction mechanisms measured by AMPH-induced c-fos mRNA expression in cortical and subcortical brain regions. Changes in c-fos mRNA expression in this putative animal model of schizophrenia may have implications for long-term alterations in cellular phenotype because of altered regulation of certain target genes. PMID:8855514

  18. Bombesin stimulation of c-fos and c-myc gene expression in cultured of Swiss 3T3 cells

    SciTech Connect

    Palumbo, A.P.; Rossino, P.; Comoglio, P.M.

    1986-11-01

    Bombesin has been show to be a potent mitogen for Swiss 3T3 cells. At nanomolar concentrations it stimulates DNA synthesis in quiescent cultures of 3T3 cells and also induces the expression of c-fos and c-myc mRNA. c-fos mRNA transcripts dramatically increase 15 min after the addition of bombesin, are still abundant after 30-60 min and then decrease. c-myc mRNA induction is detectable later, 1 h after bombesin treatment. Conversely, no changes in c-Ki-ras expression are observed after stimulation with bombesin. These results demonstrate that the increased expression of c-fos and c-myc mRNAs appears to be a common response to diverse agents that induce DNA synthesis and cell proliferation.

  19. C-fos and egr-1 immediate-early gene induction by cocaine and cocaethylene in rat brain: a comparative study.

    PubMed

    Thiriet, N; Aunis, D; Zwiller, J

    2000-09-01

    The induction of immediate-early genes can now be considered as a tool to study neuronal activation in different brain structures. These genes, which are rapidly and transiently induced in response to diverse extracellular stimulation, coordinate alterations in gene expression underlying neuronal plasticity. Using in situ hybridization, we found that acute i.p. cocaine (20 mg/kg) injection produced a strong expression of egr-1 and c-fos genes in the nucleus accumbens, caudate-putamen, and frontal cortex in the rat. Cocaethylene is an active metabolite of cocaine that is formed when cocaine is consumed together with ethyl alcohol. Injection of cocaethylene at a dose equivalent to cocaine induced the expression of the two immediate-early genes in the same brain structures, but to a lesser extent. A high dose of ethanol increased egr-1 and c-fos expression in the frontal cortex and in the lateral part of the caudate-putamen. Since cocaine is known to potently inhibit both dopamine and serotonin transporters, whereas cocaethylene only inhibits the dopamine transporter, our results strongly suggest that the serotonergic system participates in the mode of action of cocaine in its ability to trigger immediate-early gene transcription. PMID:11085307

  20. CA-074Me compound inhibits osteoclastogenesis via suppression of the NFATc1 and c-FOS signaling pathways.

    PubMed

    Patel, Neel; Nizami, Saqib; Song, Lee; Mikami, Maya; Hsu, Anny; Hickernell, Thomas; Chandhanayingyong, Chandhanarat; Rho, Shim; Compton, Jocelyn T; Caldwell, Jon-Michael; Kaiser, Philip B; Bai, Hanying; Lee, Heon Goo; Fischer, Charla R; Lee, Francis Y

    2015-10-01

    The osteoclast is an integral cell of bone resorption. Since osteolytic disorders hinge on the function and dysfunction of the osteoclast, understanding osteoclast biology is fundamental to designing new therapies that curb osteolytic disorders. The identification and study of lysosomal proteases, such as cathepsins, have shed light on mechanisms of bone resorption. For example, Cathepsin K has already been identified as a collagen degradation protease produced by mature osteoclasts with high activity in the acidic osteoclast resorption pits. Delving into the mechanisms of cathepsins and other osteoclast related compounds provides new targets to explore in osteoclast biology. Through our anti-osteoclastogenic compound screening experiments we encountered a modified version of the Cathepsin B inhibitor CA-074: the cell membrane-permeable CA-074Me (L-3-trans-(Propylcarbamoyl) oxirane-2-carbonyl]-L-isoleucyl-L-proline Methyl Ester). Here we confirm that CA-074Me inhibits osteoclastogenesis in vivo and in vitro in a dose-dependent manner. However, Cathepsin B knockout mice exhibited unaltered osteoclastogenesis, suggesting a more complicated mechanism of action than Cathepsin B inhibition. We found that CA-074Me exerts its osteoclastogenic effect within 24 h of osteoclastogenesis stimulation by suppression of c-FOS and NFATc1 pathways. PMID:25428830

  1. Cyclin dependent kinase 2 (CDK2) is a key mediator for EGF-induced cell transformation mediated through the ELK4/c-Fos signaling pathway

    PubMed Central

    Peng, Cong; Zeng, Weiqi; Su, Juan; Kuang, Yehong; He, Yijin; Zhao, Shuang; Zhang, Jianglin; Ma, Weiya; Bode, Ann M.; Dong, Zigang; Chen, Xiang

    2015-01-01

    Cyclin dependent kinase 2 (CDK2) is a known regulator in the cell cycle control of the G1/S and S/G2 transitions. However, the role of CDK2 in tumorigenesis is controversial. Evidence from knockout mice as well as colon cancer cell lines indicated that CDK2 is dispensable for cell proliferation. In this study, we found that ectopic CDK2 enhances Ras (G12V)-induced foci formation and knocking down CDK2 expression dramatically decreases EGF-induced cell transformation mediated through the down-regulation of c-fos expression. Interestingly, CDK2 directly phosphorylates ELK4 at Thr194 and Ser387 and regulates ELK4 transcriptional activity, which serves as a mechanism to regulate c-fos expression. In addition, ELK4 is over-expressed in melanoma and knocking down ELK4 or CDK2 expression significantly attenuated the malignant phenotype of melanoma cells. Taken together, our study reveals a novel function of CDK2 in EGF-induced cell transformation and the associated signal transduction pathways. This indicates that CDK2 is a useful molecular target for chemoprevention and therapy against skin cancer. PMID:26028036

  2. Acute nicotine enhances spontaneous recovery of contextual fear and changes c-fos early gene expression in infralimbic cortex, hippocampus, and amygdala.

    PubMed

    Kutlu, Munir G; Tumolo, Jessica M; Holliday, Erica; Garrett, Brendan; Gould, Thomas J

    2016-08-01

    Exposure therapy, which focuses on extinguishing fear-triggering cues and contexts, is widely used to treat post-traumatic stress disorder (PTSD). Yet, PTSD patients who received successful exposure therapy are vulnerable to relapse of fear response after a period of time, a phenomenon known as spontaneous recovery (SR). Increasing evidence suggests ventral hippocampus, basolateral amygdala, and infralimbic cortex may be involved in SR. PTSD patients also show high rates of comorbidity with nicotine dependence. While the comorbidity between smoking and PTSD might suggest nicotine may alter SR, the effects of nicotine on SR of contextual fear are unknown. In the present study, we tested the effects of acute nicotine administration on SR of extinguished contextual fear memories and c-fos immediate early gene immunohistochemistry in mice. Our results demonstrated that acute nicotine enhanced SR of extinguished fear whereas acute nicotine did not affect retrieval of unextinguished contextual memories. This suggests that the effect of acute nicotine on SR is specific for memories that have undergone extinction treatment. C-fos immunoreactive (IR) cells in the ventral hippocampus and basolateral amygdala were increased in the nicotine-treated mice following testing for SR, whereas the number of IR cells in the infralimbic cortex was decreased in the same group. Overall, this study suggests that nicotine may adversely affect context-specific relapse of fear memories and this effect is potentially mediated by the suppression of cortical regions and increased activity in the ventral hippocampus and amygdala. PMID:27421892

  3. Induction of interleukin 6 and interleukin 8 expression by Broncho-Vaxom (OM-85 BV) via C-Fos/serum responsive element.

    PubMed Central

    Keul, R.; Roth, M.; Papakonstantinou, E.; Nauck, M.; Perruchoud, A. P.; Block, L. H.

    1996-01-01

    BACKGROUND: Broncho-Vaxom (OM-85 BV) increases the resistance of the respiratory tract to bacterial infections by modulating host immune responses. The compound increases serum IgG levels but decreases IgE levels in patients suffering from chronic bronchitis or chronic obstructive pulmonary disease. It increases concentrations of gamma-interferon (IFN-gamma), IgA, and interleukin (IL)-2 in bronchoalveolar lavage fluid of patients with bronchitis. Treatment with OM-85 BV increases the number of T helper and natural killer cells. In this study the effects of OM-85 BV on transcription of cytokines is investigated in human lung fibroblasts. METHODS: Transcription and synthesis of IL-6 and IL-8 were assessed in cultured primary human lung fibroblasts using standard methods of Northern blot analysis for the level of mRNAs and enzyme linked immunosorbent assay for proteins. RESULTS: Broncho-Vaxom (OM-85 BV) at different concentrations induced transcription of IL-6 and IL-8. The effect of the drug on transcription of IL-6 and IL-8 genes correlated with secretion of the proteins into cell supernatants. OM-85 BV-dependent expression of the interleukin genes involved C-Fos/serum responsive element (C-Fos/SRE). CONCLUSIONS: The data suggest that the various immunopharmacological activities of OM-85 BV that have been described in clinical studies may be explained by its ability to induce expression of IL-6 and IL-8. Images PMID:8711646

  4. MicroRNA-490-5p inhibits proliferation of bladder cancer by targeting c-Fos

    SciTech Connect

    Li, Shiqi; Xu, Xianglai; Xu, Xin; Hu, Zhenghui; Wu, Jian; Zhu, Yi; Chen, Hong; Mao, Yeqing; Lin, Yiwei; Luo, Jindan; Zheng, Xiangyi; Xie, Liping

    2013-11-29

    Highlights: •We examined the level of miR-490-5p in bladder cancer tissues and three cancer cell lines. •We are the first to show the function of miR-490-5p in bladder cancer. •We demonstrate c-Fos may be a target of miR-490-5p. -- Abstract: MicroRNAs (miRNAs) are non-protein-coding sequences that play a crucial role in tumorigenesis by negatively regulating gene expression. Here, we found that miR-490-5p is down-regulated in human bladder cancer tissue and cell lines compared to normal adjacent tissue and a non-malignant cell line. To better characterize the function of miR-490-5p in bladder cancer, we over-expressed miR-490-5p in bladder cancer cell lines with chemically synthesized mimics. Enforced expression of miR-490-5p in bladder cancer cells significantly inhibited the cell proliferation via G1-phase arrest. Further studies found the decreased c-Fos expression at both mRNA and protein levels and Luciferase reporter assays demonstrated that c-Fos is a direct target of miR-490-5p in bladder cancer. These findings indicate miR-490-5p to be a novel tumor suppressor of bladder cancer cell proliferation through targeting c-Fos.

  5. The destabilizing elements in the coding region of c-fos mRNA are recognized as RNA.

    PubMed Central

    Wellington, C L; Greenberg, M E; Belasco, J G

    1993-01-01

    The protein-coding region of the c-fos proto-oncogene transcript contains elements that direct the rapid deadenylation and decay of this mRNA in mammalian cells. The function of these coding region instability determinants requires movement of ribosomes across mRNAs containing them. Three types of mechanisms could account for this translational requirement. Two of these possibilities, (i) that rapid mRNA decay might be mediated by the nascent polypeptide chain and (ii) that it might result from an unusual codon usage, have experimental precedent. Here, we present evidence that the destabilizing elements in the c-fos coding region are not recognized in either of these two ways. Instead, the ability of the c-fos coding region to function as a potent mRNA destabilizer when translated in the +1 reading frame indicates that the signals for rapid deadenylation and decay reside in the sequence or structure of the RNA comprising this c-fos domain. Images PMID:8336733

  6. Anisomycin and rapamycin define an area upstream of p70/85S6k containing a bifurcation to histone H3-HMG-like protein phosphorylation and c-fos-c-jun induction.

    PubMed Central

    Kardalinou, E; Zhelev, N; Hazzalin, C A; Mahadevan, L C

    1994-01-01

    Anisomycin, a translational inhibitor, synergizes with growth factors and phorbol esters to superinduce c-fos and c-jun by a number mechanisms, one of which is its ability to act as a potent signalling agonist, producing strong, prolonged activation of the same nuclear responses as epidermal growth factor or tetradecanoyl phorbol acetate. These responses include the phosphorylation of pp33, which exists in complexed and chromatin-associated forms, and of histone H3 and an HMG-like protein. By peptide mapping and microsequencing, we show here that pp33 is the phosphoprotein S6, present in ribosomes and in preribosomes in the nucleolus. Ablation of epidermal growth factor-, tetradecanoyl phorbol acetate-, or anisomycin-stimulated S6 phosphorylation by using the p70/85S6k inhibitor rapamycin has no effect on histone H3 and HMG-like protein phosphorylation or on the induction and superinduction of c-fos and c-jun. Further, [35S]methionine-labelling and immunoprecipitation studies show that the ablation of S6 phosphorylation has no discernible effect on translation in general or translation of newly induced c-fos transcripts. Finally, we show that anisomycin augments and prolongs S6 phosphorylation not by blocking S6 phosphatases but by sustained activation of p70/85S6k. These results suggest the possible use of anisomycin and rapamycin to define upstream and downstream boundaries of an area of signalling above p70/85S6k which contains a bifurcation that produces histone H3-HMG-like protein phosphorylation and c-fos-c-jun induction in the nucleus. Images PMID:8289787

  7. C-fos down-regulation inhibits testosterone-dependent male sexual behavior and the associated learning

    PubMed Central

    Niessen, Neville-Andrew; Balthazart, Jacques; Ball, Gregory F.; Charlier, Thierry D.

    2013-01-01

    Environmental stimulation results in an increased expression of transcription factors called immediate early genes (IEG) in specific neuronal populations. In male Japanese quail, copulation with a female increases the expression of the IEGs zenk and c-fos in the medial preoptic nucleus (POM), a key nucleus controlling male sexual behavior. The functional significance of this increased IEG expression that follows performance of copulatory behavior is unknown. We addressed this question by repeatedly quantifying the performance of appetitive (learned social proximity response) and consummatory (actual copulation) sexual behavior in castrated, testosterone-treated males that received daily intracerebroventricular injection of an antisense oligodeoxynucleotide targeting c-fos or control vehicle. Daily antisense injections significantly inhibited expression of copulatory behavior as well as acquisition of the learned social proximity response. A strong reduction of the proximity response was still observed in antisense-treated birds that copulated with a female, ruling out the indirect effect of the absence of interactions with females on the learning process. After a two-day interruption of behavioral testing but not of antisense injections, birds were submitted to a final copulatory test that confirmed the behavioral inhibition in antisense-injected birds. Brains were collected 90 min after the behavioral testing for quantification of c-fos immunoreactive cells. A significant reduction of the number of c-fos-positive cells in POM but not in other brain regions was observed following antisense injection. Together, data suggest that c-fos expression in POM modulates copulatory behavior and sexual learning in male quail. PMID:23895306

  8. Developmental Changes in Desensitisation of c-Fos Expression Induced by Repeated Maternal Separation in Pre-Weaned Mice

    PubMed Central

    Horii-Hayashi, N; Sasagawa, T; Matsunaga, W; Matsusue, Y; Azuma, C; Nishi, M

    2013-01-01

    Early-life stress has long-lasting effects on neuroendocrine and behaviour in adulthood. Maternal separation (MS) is used as a model of early-life stress and daily repeated MS (RMS) for 3 h during the first two postnatal weeks is widely used in rodent studies. However, it is not fully understood whether early-life animals desensitise/habituate to repeated stress. In the present study, we investigated the effects of daily RMS for 3 h and acute/single time MS (SMS) for 3 h on the plasma corticosterone level and c-Fos expression in the brain in mice at different postnatal ages. Mice were subjected to: (i) RMS from postnatal day (PND) 1 to 14 (RMS14); (ii) RMS from PND14 to 21 (RMS21); (iii) SMS on PND14 (SMS14); and (iv) SMS on PND21 (SMS21). Plasma corticosterone and c-Fos expression were examined on the final day in each experiment. The basal corticosterone levels in RMS14 and RMS21 were equal to those in respective age-matched controls. After the final separation, the levels were significantly increased and were comparable with those after SMS14 and SMS21, respectively. Histological analysis indicated that c-Fos expression significantly increased in many brain regions, including the paraventricular nucleus, prefrontal cortex, hippocampus, and basolateral and medial amygdale in both SMS14 and SMS21 mice. However, c-Fos expression in RMS14 mice significantly increased in many regions, whereas such increases were hardly seen in RMS21 mice. These results indicate that repeated early-life stress neither increases basal corticosterone, nor decreases the magnitude of the corticosterone response during the first three postnatal weeks, although desensitisation of c-Fos expression induced by repeated stress is changed during postnatal development. PMID:22913644

  9. Protective action of endogenously generated H₂S on hypoxia-induced respiratory suppression and its relation to antioxidation and down-regulation of c-fos mRNA in medullary slices of neonatal rats.

    PubMed

    Pan, Ji-Gang; Zhang, Jie; Zhou, Hua; Chen, Li; Tang, Yu-Hong; Zheng, Yu

    2011-09-15

    We previously reported that exogenous H(2)S played roles in protection of respiratory centers against hypoxic injury in medullary slices of neonatal rats. The protective action of endogenous H(2)S and its relation to antioxidation and down-regulation of c-fos mRNA were investigated in the present study. Perfusion of the slices with l-cysteine (Cys), substrate of cystathionine β-synthase (CBS, H(2)S synthase), could increase frequency of rhythmic respiratory discharge of the hypoglossal rootlets and prevent respiratory suppression induced by hypoxia, whereas perfusion with hydroxylamine (NH(2)OH, inhibitor of CBS) could postpone recovery of respiration from hypoxic inhibition. NH(2)OH also significantly enhanced hypoxia-induced increase in malondialdehyde (MDA) content of the slices. The hypoxia-induced up-regulation of c-fos mRNA could be markedly antagonized by S-adenosyl-l-methionine (SAM, activator of CBS), but greatly increased by NH(2)OH. Neither NH(2)OH, Cys nor SAM had any effect on expression of bcl-2 mRNA in hypoxic medullary slices. These results indicate that endogenously generated H(2)S was involved in protection of the medullary respiratory centers against hypoxic injury partly via antioxidation and down-regulation of c-fos. PMID:21723961

  10. Brainstem Circuitry of Tracheal-bronchial Cough: c-fos Study in Anesthetized Cats

    PubMed Central

    Jakus, Jan; Poliacek, Ivan; Halasova, Erika; Murin, Peter; Knocikova, Juliana; Tomori, Zoltan; Bolser, Donald C

    2008-01-01

    The c-fos gene expression method was used to localize brainstem neurons functionally related to the tracheal-bronchial cough on 13 spontaneously breathing, pentobarbitone anesthetized cats. The level of Fos-like immunoreactivity (FLI) in 6 animals with repetitive coughs (170±12) induced by mechanical stimulation of the tracheobronchial mucosa was compared to FLI in 7 control non-stimulated cats. Thirty-four nuclei were compared for the number of labeled cells. Enhanced cough FLI was found bilaterally at following brainstem structures, as compared to controls: In the medulla, FLI was increased in the medial, interstitial and ventrolateral subnuclei of the solitary tract (p<0.02), in the retroambigual nucleus of the caudal medulla (p<0.05), in the ambigual, paraambigual and retrofacial nuclei of the rostral medulla along with the lateral reticular nuclei, the ventrolateral reticular tegmental field (p<0.05), and the raphe nuclei (p<0.05). In pons, increased FLI was detected in the lateral parabrachial and Kölliker-Fuse nuclei (p<0.01), in the posteroventral cochlear nuclei (p<0.01), and the raphe midline (p<0.05). Within the mesencephalon cough-related FLI was enhanced at the rostral midline area (p<0.05), but a decrease was found at its caudal part in the periaqueductal gray (p<0.02). Results of this study suggest a large medullary - pontine - mesencephalic neuronal circuit involved in the control of the tracheal-bronchial cough in cats. PMID:18055277

  11. From synapse to gene product: Prolonged expression of c-fos induced by a single microinjection of carbachol in the pontomesencephalic tegmentum

    PubMed Central

    Quattrochi, James J.; Bazalakova, Mihaela; Hobson, J. Allan

    2006-01-01

    It is not known how the brain modifies its regulatory systems in response to the application of a drug, especially over the long term of weeks and months. We have developed a model system approach to this question by manipulating cholinergic cell groups of the laterodorsal and pedunculopontine tegmental (LDT/PPT) nuclei in the pontomesencephalic tegmentum (PMT), which are known to be actively involved in the timing and quantity of rapid eye movement (REM) sleep. In a freely moving feline model, a single microinjection of the cholinergic agonist carbachol conjugated to a latex nanosphere delivery system into the caudolateral PMT elicits a long-term enhancement of one distinguishing phasic event of REM sleep, ponto-geniculo-occipital (PGO) waves, lasting 5 days but without any significant change in REM sleep or other behavioral state. Here, we test the hypothesis that cholinergic activation within the caudolateral PMT alters the postsynaptic excitability of the PGO network, stimulating the prolonged expression of c-fos that underlies this long-term PGO enhancement (LTPE) effect. Using quantitative Fos immunohistochemistry, we found that the number of Fos-immunoreactive (Fos-IR) neurons surrounding the caudolateral PMT injection site decreased sharply by postcarbachol day 03, while the number of Fos-IR neurons in the more rostral LDT/PPT increased >30-fold and remained at a high level following the course of LTPE. These results demonstrate a sustained c-fos expression in response to pharmacological stimulation of the brain and suggest that carbachol's acute effects induce LTPE via cholinergic receptors, with subsequent transsynaptic activation of the LDT/PPT maintaining the LTPE effect. PMID:15893601

  12. A non-peptide oxytocin receptor agonist, WAY-267,464, alleviates novelty-induced hypophagia in mice: insights into changes in c-Fos immunoreactivity.

    PubMed

    Olszewski, Pawel K; Ulrich, Christine; Ling, Nicholas; Allen, Kerry; Levine, Allen S

    2014-09-01

    Anxiety caused by the novelty of food or of the environment where the food is presented leads to suppression of consumption (hyponeophagia) reflected by an increased latency to begin feeding and decreased food intake. Studies suggest that some anxiolytics, mainly benzodiazepines and SSRIs, resolve hyponeophagia. Though the neurohormone oxytocin (OT) affects both anxiety responsiveness and feeding-related homeostasis, the link between OT and hyponeophagia has not been established. The current experiments examined the effect of OT receptor stimulation on hyponeophagia in mice and associated changes in brain activity. We found that the OT receptor agonist, WAY-267,464, at 10 and 30 mg/kg b. wt. IP, reduced the latency to approach food and increased the amount of food eaten in hyponeophagia tests differing in animals' motivation to eat (hunger, reward) and the anxiogenic context of environmental novelty (illumination and type of the cage). This effect was abolished by the pretreatment with the OT receptor antagonist, L-368,899, at 10mg/kg b. wt. The antagonist also suppressed social transmission of preference for novel food. Mice subjected to novelty conditions causing hypophagia showed significant changes in c-Fos immunoreactivity in the hippocampus, lateral septum, cingulate and piriform cortex and in the bed nucleus of the stria terminalis, lateral division, posterolateral part (STLP). The pretreatment with WAY-267,464 restored c-Fos levels in the STLP to values detected in control animals subjected to non-anxiogenic conditions. We conclude that OT plays a role in shaping the magnitude of the novelty stress-provoked hypophagia and the activity of the relevant neural networks. PMID:25038444

  13. Facilitated c-Fos Induction in Mice Deficient for the AMPA Receptor-Associated Protein Ckamp44.

    PubMed

    Yang, Boyi; Dormann, Christof; Vogt, Miriam A; Sprengel, Rolf; Gass, Peter; Inta, Dragos

    2016-10-01

    The recently identified Cystine-knot containing AMPAR-associated protein (Ckamp44) represents a novel AMPAR-related protein that critically controls AMPAR-mediated currents and short-term plasticity. However, the effects of the lack of this protein at network level are not entirely understood. Here we used c-Fos brain mapping to analyse whether the excitatory/inhibitory balance is altered in the absence of the Ckamp44. We found that Ckamp44(-/-) mice treated with an NMDAR antagonist exhibited a very robust c-Fos expression pattern, similar with that seen in mice lacking the GluN2A subunit of NMDAR treated with the same compound. This finding is unexpected, in particular, since Ckamp44 expression is strongest in dentate gyrus granule cells and less abundant in the rest of the brain. PMID:26645823

  14. The Nonpeptide Oxytocin Receptor Agonist WAY 267,464: Receptor-Binding Profile, Prosocial Effects and Distribution of c-Fos Expression in Adolescent Rats

    PubMed Central

    Hicks, C.; Jorgensen, W.; Brown, C.; Fardell, J.; Koehbach, J.; Gruber, C. W.; Kassiou, M.; Hunt, G. E.; McGregor, I. S.

    2012-01-01

    Previous research suggests that the nonpeptide oxytocin receptor (OTR) agonist WAY 267,464 may only partly mimic the effects of oxytocin in rodents. The present study further explored these differences and related them to OTR and vasopressin 1a receptor (V1aR) pharmacology and regional patterns of c-Fos expression. Binding data for WAY 267,464 and oxytocin were obtained by displacement binding assays on cellular membranes, while functional receptor data were generated by luciferase reporter assays. For behavioural testing, adolescent rats were tested in a social preference paradigm, the elevated plus-maze (EPM) and for locomotor activity changes following WAY 267,464 (10 and 100 mg/kg, i.p.) or oxytocin (0.1 and 1 mg/kg, i.p.). The higher doses were also examined for their effects on regional c-Fos expression. Results showed that WAY 267,464 had higher affinity (Ki) at the V1aR than the OTR (113 versus 978 nm). However, it had no functional response at the V1aR and only a weak functional effect (EC50) at the OTR (881 nm). This suggests WAY 267,464 is an OTR agonist with weak affinity and a possible V1aR antagonist. Oxytocin showed high binding at the OTR (1.0 nm) and V1aR (503 nm), with a functional EC50 of 9.0 and 59.7 nm, respectively, indicating it is a potent OTR agonist and full V1aR agonist. WAY 267,464 (100 mg/kg), but not oxytocin, significantly increased the proportion of time spent with a live rat, over a dummy rat, in the social preference test. Neither compound affected EPM behaviour, whereas the higher doses of WAY 267,464 and oxytocin suppressed locomotor activity. WAY 267,464 and oxytocin produced similar c-Fos expression in the paraventricular hypothalamic nucleus, central amygdala, lateral parabrachial nucleus and nucleus of the solitary tract, suggesting a commonality of action at the OTR with the differential doses employed. However, WAY 267,464 caused greater c-Fos expression in the medial amygdala and the supraoptic nucleus than oxytocin, and

  15. Intrathecal Amylin and Salmon Calcitonin Affect Formalin Induced c-Fos Expression in the Spinal Cord of Rats

    PubMed Central

    Khoshdel, Zahra; Takhshid, Mohammad Ali; Owji, Ali Akbar

    2014-01-01

    Background: Amylin and Salmon Calcitonin belong to the calcitonin family of peptides and have high affinity binding sites in the rat spinal cord. The aim of this study was to characterize receptors for Amylin and Salmon Calcitonin functionally in the spinal cord of rats. We assessed the expression of c-Fos in response to intraplantar formalin in the lumbar regions of the spinal cord in conscious rats. Methods: Amylin (0.05 nmoles) or Salmon Calcitonin (0.005 nmoles) was administered intrathecally (i.t.) 10 minutes before the start of the formalin test. Antagonists were injected intrathecally 10 minutes before the administration of either of the peptides. Results: Two hours after formalin stimulation, rats pretreated intrathecally by either Amylin or Salmon Calcitonin, showed lower numbers of c-Fos immunoreactive nuclei in their lumbar spinal cord as compared to rats pretreated with saline. These effects were reversed upon co-administration of either of the Amylin antagonists AC187 or rat amylin8-37, but not rat α-CGRP8-37. A few cells with c-Fos immunoreactivity were found in the lumbar spinal cord of rats two hours after i.t. injection of saline, Amylin and/or Salmon Calcitonin. However, Fos-like immunoreactivity was increased in the lumbar spinal cord two hours after i.t. treatment of either of the antagonists AC187 and rat amylin8-37,when compared to saline treated rats. Conclusion: Both Amylin and Salmon Calcitonin inhibit formalin induced c-Fos expression in the rat lumbar spinal cord when administered intrathecally. Effects of the two peptides were possibly produced by undefined receptors. PMID:25429177

  16. Orientation within a high magnetic field determines swimming direction and laterality of c-Fos induction in mice

    PubMed Central

    Kwon, Bumsup; Houpt, Charles E.; Neth, Bryan; Smith, James C.

    2013-01-01

    High-strength static magnetic fields (>7 tesla) perturb the vestibular system causing dizziness, nystagmus, and nausea in humans; and head motion, locomotor circling, conditioned taste aversion, and c-Fos induction in brain stem vestibular nuclei in rodents. To determine the role of head orientation, mice were exposed for 15 min within a 14.1-tesla magnet at six different angles (mice oriented parallel to the field with the head toward B+ at 0°; or pitched rostrally down at 45°, 90°, 90° sideways, 135°, and 180°), followed by a 2-min swimming test. Additional mice were exposed at 0°, 90°, and 180° and processed for c-Fos immunohistochemistry. Magnetic field exposure induced circular swimming that was maximal at 0° and 180° but attenuated at 45° and 135°. Mice exposed at 0° and 45° swam counterclockwise, whereas mice exposed at 135° and 180° swam clockwise. Mice exposed at 90° (with their rostral-caudal axis perpendicular to the magnetic field) did not swim differently than controls. In parallel, exposure at 0° and 180° induced c-Fos in vestibular nuclei with left-right asymmetries that were reversed at 0° vs. 180°. No significant c-Fos was induced after 90° exposure. Thus, the optimal orientation for magnetic field effects is the rostral-caudal axis parallel to the field, such that the horizontal canal and utricle are also parallel to the field. These results have mechanistic implications for modeling magnetic field interactions with the vestibular apparatus of the inner ear (e.g., the model of Roberts et al. of an induced Lorenz force causing horizontal canal cupula deflection). PMID:23720133

  17. Differential expression of immediate early genes Zif268 and c-Fos in the hippocampus and prefrontal cortex following spatial learning and glutamate receptor antagonism.

    PubMed

    Farina, Francesca R; Commins, Sean

    2016-07-01

    The objective of this study was to examine the effects of NMDAR and AMPAR antagonism on the expression of Zif268 and c-Fos in the hippocampus and medial prefrontal cortex during spatial memory encoding in rats trained in the Morris water maze. NMDAR inhibition impaired navigation and significantly attenuated expression of Zif268, but not c-Fos, in area CA1. AMPAR channel blockade had little effect on learning or IEG expression. Overall, Zif268 and c-Fos displayed markedly different patterns of hippocampal and prefrontal expression, with Zif268 being more closely linked to spatial learning. PMID:27071329

  18. Emergence of spatial behavioral function and associated mossy fiber connectivity and c-Fos labeling patterns in the hippocampus of rats

    PubMed Central

    Comba, Rachel; Gervais, Nicole; Mumby, Dave; Holahan, Matthew

    2015-01-01

    Improvement on spatial tasks is observed during a late, postnatal developmental period (PND18 – PND24).  The purpose of the current work was 1) to determine whether the emergence of spatial-behavioral function was based on the ability to generate appropriate behavioral output; 2) to assess whether mossy fiber connectivity patterns preceded the emergence of spatial-behavioral function; 3) to explore functional changes in the hippocampus to determine whether activity in hippocampal networks occurred in a training-dependent or developmentally-dependent fashion.  To these ends, male, Long Evans rats were trained on a spatial water or dry maze task for one day (PND16, PND18 or PND20) then euthanized.  Training on these 2 tasks with opposing behavioral demands (swimming versus exploration) was hypothesized to control for behavioral topology.  Only at PND20 was there evidence of spatial-behavioral function for both tasks.  Examination of synaptophysin staining in the CA3 region (i.e., mossy fiber projections) revealed enhanced connectivity patterns that preceded the emergence of spatial behavior.  Analysis of c-Fos labeling (functional changes) revealed developmentally-dependent increases in c-Fos positive cells in the dentate gyrus, CA3 and CA1 regions whereas training-dependent increases were noted in the CA3 and CA1 regions for the water-maze trained groups.  Results suggest that changes in mossy fiber connectivity in association with enhanced hippocampal functioning precede the emergence of spatial behavior observed at PND20.  The combination of neuroanatomical and behavioural results confirms the hypothesis that this time represents a sensitive period for hippocampal development and modification and the emergence of spatial/ cognitive function. PMID:26925223

  19. Neurobehavioral effects, c-Fos/Jun expression and tissue distribution in rat offspring prenatally co-exposed to MeHg and PFOA: PFOA impairs Hg retention.

    PubMed

    Cheng, Jinping; Fujimura, Masatake; Zhao, Wenchang; Wang, Wenhua

    2013-05-01

    Exposure to methylmercury (MeHg) and perfluorooctanoic acid (PFOA) can occur simultaneously as both contaminants are found in the same food sources, especially fish, seafood, marine mammals and milk. The aim of this study was to assess the effects of exposure to MeHg (10 μg mL(-1) in drinking water) and PFOA (10 μg mL(-1) in drinking water) from gestational day 1 to postnatal day (PND) 21, alone and in combination, on neurobehavioral development and the expression of c-Fos/Jun in different brain regions in the offspring. Our findings showed that exposure to MeHg alone, and exposure to MeHg combined with PFOA significantly induced cliff avoidance reflexes and negative geotaxis reflexes. And these effects appeared to be greater following exposure to MeHg alone. MeHg and/or PFOA exposure did not significantly impair motor coordination functions, or cause significant changes in c-Fos expression in the hippocampus and cerebellum, and spatial learning tests were similar to those in the controls, thus it was impossible to determine whether combined exposure to MeHg and PFOA had any additional effects on both hippocampus and cerebellum regions. However, a significant increase in the frequency of line crossing was observed in rats treated with MeHg or PFOA alone, and there were no significant differences between the MeHg+PFOA-treated group and the controls, suggesting that PFOA was antagonistic to MeHg toxicity in the locomotor activity test. Co-exposure to MeHg and PFOA decreased all tissue Hg concentrations in pups compared to the group exposed to MeHg only, suggesting that PFOA impaired Hg retention in different tissues. PMID:23490179

  20. Emergence of spatial behavioral function and associated mossy fiber connectivity and c-Fos labeling patterns in the hippocampus of rats.

    PubMed

    Comba, Rachel; Gervais, Nicole; Mumby, Dave; Holahan, Matthew

    2015-01-01

    Improvement on spatial tasks is observed during a late, postnatal developmental period (PND18 - PND24).  The purpose of the current work was 1) to determine whether the emergence of spatial-behavioral function was based on the ability to generate appropriate behavioral output; 2) to assess whether mossy fiber connectivity patterns preceded the emergence of spatial-behavioral function; 3) to explore functional changes in the hippocampus to determine whether activity in hippocampal networks occurred in a training-dependent or developmentally-dependent fashion.  To these ends, male, Long Evans rats were trained on a spatial water or dry maze task for one day (PND16, PND18 or PND20) then euthanized.  Training on these 2 tasks with opposing behavioral demands (swimming versus exploration) was hypothesized to control for behavioral topology.  Only at PND20 was there evidence of spatial-behavioral function for both tasks.  Examination of synaptophysin staining in the CA3 region (i.e., mossy fiber projections) revealed enhanced connectivity patterns that preceded the emergence of spatial behavior.  Analysis of c-Fos labeling (functional changes) revealed developmentally-dependent increases in c-Fos positive cells in the dentate gyrus, CA3 and CA1 regions whereas training-dependent increases were noted in the CA3 and CA1 regions for the water-maze trained groups.  Results suggest that changes in mossy fiber connectivity in association with enhanced hippocampal functioning precede the emergence of spatial behavior observed at PND20.  The combination of neuroanatomical and behavioural results confirms the hypothesis that this time represents a sensitive period for hippocampal development and modification and the emergence of spatial/ cognitive function. PMID:26925223

  1. Correlation of c-fos protein expression with neuropeptide content in the lung of bronchial asthmatic rat

    PubMed Central

    Liu, Haiyan; Yang, Xudong; Hou, Wei

    2014-01-01

    Objective: To investigate and analyze the correlation between the c-fos protein expression and neuropeptide content in the lung of bronchial asthmatic rats. Methods: Thirty-two (32) SD rats were randomly allocated into 4 groups of the normal control, the non-acute asthma, the acute asthma and the dexamethasone intervention. Immunohistochemistry was performed for histological observation, and substance P (SP) and vasoactive intestinal peptide (VIP) concentrations in the bronchoalveolar lavage fluid were measured by enzyme-linked immunosorbent assay (ELISA). Results: SP concentration in the alveolar lavage of asthmatic rat was significantly higher than that in the normal control group (P < 0.0001), whereas VIP concentration was significantly lower (P < 0.0001). The optical density of c-fos protein in the lung tissues of groups of the non-acute asthma, the acute asthma and the dexamethasone intervention was positively correlated with SP concentration in the bronchoalveolar lavage fluid (r = 0.908, r = 0.967, r = 0.865), and negatively correlated with the VIP concentration in the alveolar lavage (r = -0.974, r = -0.949, r = -0.962). Conclusion: The c-fos protein expression and neuropeptide content in the lungs of asthmatic rats are related with asthma attacks. PMID:25674230

  2. DC electrical field-induced c-fos expression and growth stimulation in multicellular prostate cancer spheroids.

    PubMed Central

    Sauer, H.; Hescheler, J.; Reis, D.; Diedershagen, H.; Niedermeier, W.; Wartenberg, M.

    1997-01-01

    The effects of electrical direct current (DC) field pulses on c-fos expression, growth kinetics and vitality patterns of multicellular tumour spheroids (MCSs) were studied. Monitoring the membrane potential of MCSs by di-8-ANNEPS staining and confocal microscopy during DC electrical field treatment revealed a hyperpolarization at the anode-facing side and a depolarization at the cathode-facing side. When a single 500 V m(-1) electrical field pulse with a duration of 60 s was applied to MCSs (150-350 microm in diameter) an enhancement of the growth kinetics within a period of 6 days post pulse was observed. Whereas the volume doubling time amounted to 4-5 days in control samples, it was reduced to 1-2 days in electropulsed MCSs. At day 6 post pulse the diameter of the necrotic core was significantly smaller than the control. The critical diameter for the first appearance of central necrosis amounted to 350 +/- 50 microm in the control and 450 +/- 50 microm in the electropulsed MCSs. Coincidentally, the proliferating rim was increased to 107 +/- 11 microm in electropulsed MCSs as compared with 60 +/- 6 microm in the control. The growth stimulation may be mediated by the proto-oncogene c-fos as its expression increased by a factor of 2.5 within 2 h post pulse. c-fos expression declined towards control values within 8 h post pulse. Images Figure 2 Figure 3 Figure 7 PMID:9166941

  3. Lemon Odor Reduces Stress-induced Neuronal Activation in the Emotion Expression System: An Animal Model Study

    NASA Astrophysics Data System (ADS)

    Sanada, Kazue; Sugimoto, Koji; Shutoh, Fumihiro; Hisano, Setsuji

    Perception of particular sensory stimuli from the surroundings can influence emotion in individuals. In an uncomfortable situation, humans protect themselves from some aversive stimulus by acutely evoking a stress response. Animal model studies have contributed to an understanding of neuronal mechanisms underlying the stress response in humans. To study a possible anti-stressful effect of lemon odor, an excitation of neurons secreting corticotropin-releasing hormone (CRH) as a primary factor of the hypothalamic-pituitary-adrenal axis (HPA) was analyzed in animal model experiments, in which rats are restrained in the presence or absence of the odor. The effect was evaluated by measuring expression of c-Fos (an excited neuron marker) in the hypothalamic paraventricular nucleus (PVN), a key structure of the HPA in the brain. We prepared 3 animal groups: Groups S, L and I. Groups S and L were restrained for 30 minutes while being blown by air and being exposed to the lemon odor, respectively. Group I was intact without any treatment. Two hours later of the onset of experiments, brains of all groups were sampled and processed for microscopic examination. Brain sections were processed for c-Fos immunostaining and/or in situ hybridization for CRH. In Group S but not in Group I, c-Fos expression was found in the PVN. A combined in situ hybridization-immunohistochemical dual labeling revealed that CRH mRNA-expressing neurons express c-Fos. In computer-assisted automatic counting, the incidence of c-Fos-expressing neurons in the entire PVN was statistically lower in Group L than in Group S. Detailed analysis of PVN subregions demonstrated that c-Fos-expressing neurons are fewer in Group L than in Group S in the dorsal part of the medial parvocellular subregion. These results may suggest that lemon odor attenuates the restraint stress-induced neuronal activation including CRH neurons, presumably mimicking an aspect of stress responses in humans.

  4. Brain activation patterns at exhaustion in rats that differ in inherent exercise capacity.

    PubMed

    Foley, Teresa E; Brooks, Leah R; Gilligan, Lori J; Burghardt, Paul R; Koch, Lauren G; Britton, Steven L; Fleshner, Monika

    2012-01-01

    In order to further understand the genetic basis for variation in inherent (untrained) exercise capacity, we examined the brains of 32 male rats selectively bred for high or low running capacity (HCR and LCR, respectively). The aim was to characterize the activation patterns of brain regions potentially involved in differences in inherent running capacity between HCR and LCR. Using quantitative in situ hybridization techniques, we measured messenger ribonuclease (mRNA) levels of c-Fos, a marker of neuronal activation, in the brains of HCR and LCR rats after a single bout of acute treadmill running (7.5-15 minutes, 15° slope, 10 m/min) or after treadmill running to exhaustion (15-51 minutes, 15° slope, initial velocity 10 m/min). During verification of trait differences, HCR rats ran six times farther and three times longer prior to exhaustion than LCR rats. Running to exhaustion significantly increased c-Fos mRNA activation of several brain areas in HCR, but LCR failed to show significant elevations of c-Fos mRNA at exhaustion in the majority of areas examined compared to acutely run controls. Results from these studies suggest that there are differences in central c-Fos mRNA expression, and potential brain activation patterns, between HCR and LCR rats during treadmill running to exhaustion and these differences could be involved in the variation in inherent running capacity between lines. PMID:23028992

  5. Altered perirhinal cortex activity patterns during taste neophobia and their habituation in aged rats.

    PubMed

    Gómez-Chacón, B; Morillas, E; Gallo, M

    2015-03-15

    Perirhinal cortex (PRh) pathology and chemosensory identification dysfunction are early signs of Alzheimer's disease. We have assessed the impact of normal aging on PRh activity during flavor recognition memory using c-Fos immunoreactivity as a marker for neuronal activity. Adult (5-month-old) and aged (24-month-old) Wistar male rats were exposed to a vinegar solution on a daily basis for a period of six days. Behavioral assessment indicated similar performance in both age groups but suggested slower attenuation of neophobia in aged rats. Regarding c-Fos immunoreactivity, an opposite pattern of PRh activity was found in adult and aged groups drinking the flavor solution during the first (Novel), second (Familiar I) or sixth (Familiar II) exposure as the flavor became familiar. While adult rats exhibited a higher number of PRh c-Fos-positive neurons during the presentation of the novel flavor than during the second and sixth presentation, in aged rats the number of PRh c-Fos-positive neurons was higher during the presentation of the familiar flavor in the last session than in the first and second. The results suggest that the role of the PRh changes during aging and can help to dissociate PRh dysfuntions induced by neurodegenerative diseases and normal aging. PMID:25532913

  6. Effects of intracerebroventricular dizocilpine (MK801) on dehydration-induced dipsogenic responses, plasma vasopressin and c-fos expression in the rat forebrain.

    PubMed

    Xu, Z; Herbert, J

    1998-02-16

    This study determines the interaction between glutamate receptors and dehydration-induced drinking, vasopressin (AVP) release, plasma osmolality and c-fos expression in the brain of conscious rats. The NMDA receptor antagonist dizocilpine (100 nmol infused into the cerebral ventricles) suppressed drinking following either 22 h water deprivation or intragastric injection of hypertonic saline (1.5 M), attenuated the increased plasma vasopressin induced by dehydration, but had no effects on peripheral hyperosmolality caused by either water deprivation or injections of hypertonic saline. Dizocilpine had no inhibitory effects on feeding after 24 h food deprivation. Dizocilpine also suppressed c-fos expression induced by dehydration in the median preoptic nucleus (MPN), the supraoptic and paraventricular nuclei (SON and PVN), but did not influence c-fos expression in the subfornical organ (SFO). The non-NMDA receptor antagonists CNQX (400 nmol) or DNQX (60 nmol) affected neither the animals' drinking nor c-fos expression induced by dehydration. Double staining showed that suppression of c-fos expression following dizocilpine occurred in the NMDA R1 receptor containing neurons in the hypothalamus. These results suggest that the NMDA-type glutamate receptors may be involved in dehydration induced dipsogenic and neuroendocrinological responses. They complement our earlier findings that dizocilpine also attenuates drinking and c-fos expression following intraventricular infusions of angiotensin II. PMID:9518565

  7. Regional induction of c-fos and heat shock protein-72 mRNA following fluid-percussion brain injury in the rat

    SciTech Connect

    Raghupathi, R.; Welsh, F.A.; Gennarelli, T.A.

    1995-05-01

    To evaluate the cellular response to traumatic brain injury, the expression of mRNA for c-fos and the 72-kDa heat shock protein (hsp72) was determined using in situ hybridization following lateral fluid-percussion injury (2.2-2.4 atm) in rat brain. At 2 h after injury, induction of c-fos mRNA was restricted to regions of the cortex surrounding the contusion area. An increase in c-fos mRNA, but not hsp72 mRNA, was observed bilaterally in the CA{sub 3} subfield of the hippocampus and the granule cells of the dentate gyrus and in the thalamus ipsilateral to the impact site. By 6 h, increased expression of c-fos mRNA was observed only in the corpus callosum on the impact side; hsp72 mRNA persisted in the deep cortical layers and upper layers of the subcortical white matter below the site of maximal injury. By 24 h, both c-fos and hsp72 mRNA had returned to control levels in all regions of the brain. These results demonstrate that lateral fluid-percussion brain injury triggers regionally and temporally specific expression of c-fos and hsp72 mRNA, which may be suggestive of differential neurochemical alterations in neurons and glia following experimental brain injury. 33 refs., 3 figs., 1 tab.

  8. Paradoxical widespread c-Fos expression induced by a GABA agonist in the forebrain of transgenic mice with ectopic expression of the GABA(A) α6 subunit.

    PubMed

    Hellsten, K S; Linden, A-M; Korpi, E R

    2015-05-01

    A GABA-site agonist gaboxadol (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) at 3 mg/kg induces strong anxiolytic response in a transgenic Thy1α6 mouse line ectopically expressing the GABA(A) receptor α6 subunit gene under the Thy-1.2 promoter. Now, we compared brain activation patterns between Thy1α6 and wild-type mice to identify brain structures potentially mediating this anxiolytic response. Acutely efficient anxiolytics such as benzodiazepines typically depress most brain regions while activating specifically neurons within the central extended amygdala. Gaboxadol treatment (3 mg/kg, i.p., 2 h) induced a significant increase in c-Fos expression selectively in many Thy1α6 brain regions including the limbic cortex, anterior olfactory nucleus, septal area and central and basolateral nuclei of amygdala. It failed to activate the lateral part of mediodorsal thalamic nucleus (MDL) in the Thy1α6 mice that was activated in the wild-type mice. Detailed mapping of the α6 subunit mRNA by in situ hybridization revealed expression in the middle layers of the isocortex, olfactory areas, hippocampal formation and basolateral nucleus of amygdala (BLA) in the Thy1α6 forebrain. The ligand autoradiographies (t-butylbicyclophosphoro[(35)S]thionate ([(35)S]TBPS) and [(3)H]Ro 15-4513) revealed high levels of pharmacologically active extrasynaptic α6β and α6βγ2 GABA(A) receptors in these same areas. However, c-Fos induction by gaboxadol treatment in Thy1α6 brain was not restricted to areas highly expressing the α6-containing GABA(A) receptors suggesting that indirect pathways lead to the paradoxically widespread activation. Interestingly, the activation pattern by gaboxadol at the dose that is anxiolytic in Thy1α6 mice resembled closely that observed after various fear- and stress-provoking challenges. However, our results are consistent with a recent observation that optogenetic activation of specific neuronal pathways in the extended amygdala mediates anxiolytic

  9. Food for Song: Expression of C-Fos and ZENK in the Zebra Finch Song Nuclei during Food Aversion Learning

    PubMed Central

    Tokarev, Kirill; Tiunova, Anna

    2011-01-01

    Background Specialized neural pathways, the song system, are required for acquiring, producing, and perceiving learned avian vocalizations. Birds that do not learn to produce their vocalizations lack telencephalic song system components. It is not known whether the song system forebrain regions are exclusively evolved for song or whether they also process information not related to song that might reflect their ‘evolutionary history’. Methodology/Principal Findings To address this question we monitored the induction of two immediate-early genes (IEGs) c-Fos and ZENK in various regions of the song system in zebra finches (Taeniopygia guttata) in response to an aversive food learning paradigm; this involves the association of a food item with a noxious stimulus that affects the oropharyngeal-esophageal cavity and tongue, causing subsequent avoidance of that food item. The motor response results in beak and head movements but not vocalizations. IEGs have been extensively used to map neuro-molecular correlates of song motor production and auditory processing. As previously reported, neurons in two pallial vocal motor regions, HVC and RA, expressed IEGs after singing. Surprisingly, c-Fos was induced equivalently also after food aversion learning in the absence of singing. The density of c-Fos positive neurons was significantly higher than that of birds in control conditions. This was not the case in two other pallial song nuclei important for vocal plasticity, LMAN and Area X, although singing did induce IEGs in these structures, as reported previously. Conclusions/Significance Our results are consistent with the possibility that some of the song nuclei may participate in non-vocal learning and the populations of neurons involved in the two tasks show partial overlap. These findings underscore the previously advanced notion that the specialized forebrain pre-motor nuclei controlling song evolved from circuits involved in behaviors related to feeding. PMID:21695176

  10. Age-dependent alterations of c-fos and growth regulation in human fibroblasts expressing the HPV16 E6 protein.

    PubMed Central

    Yan, Y; Ouellette, M M; Shay, J W; Wright, W E

    1996-01-01

    Normal human cells in culture become senescent after a limited number of population doublings. Senescent cells display characteristic changes in gene expression, among which is a repression of the ability to induce the c-fos gene. We have proposed a two-stage model for cellular senescence in which the mortality stage 1 (M1) mechanism can be overcome by agents that bind both the product of the retinoblastoma susceptibility gene (pRB)-like pocket proteins and p53. In this study we determined whether the repression of c-fos at M1 was downstream of the p53 or pRB-like "arms" of the M1 mechanism. We examined c-fos expression during the entire lifespan of normal human fibroblasts carrying E6 (which binds p53), E7 (which binds pRB), or both E6 and E7 of human papilloma virus type 16. The results indicate a dramatic change in cellular physiology at M1. Before M1, c-fos inducibility is controlled by an E6-independent mechanism that is blocked by E7. After M1, c-fos inducibility becomes dependent on E6 whereas E7 has no effect. In addition, a novel oscillation of c-fos expression with an approximately 2-h periodicity appears in E6-expressing fibroblasts post-M1. Accompanying this shift at M1 is a dramatic change in the ability to divide in low serum. Before M1, E6-expressing fibroblasts growth arrest in 0.3% serum, although they continue dividing under those conditions post-M1. These results demonstrate the unique physiology of fibroblasts during the extended lifespan between M1 and M2 and suggest that p53 might participate in the process that represses the c-fos gene at the onset of cellular senescence. Images PMID:8817002

  11. Reduction of c-Fos via Overexpression of miR-34a Results in Enhancement of TNF- Production by LPS in Neutrophils from Myelodysplastic Syndrome Patients

    PubMed Central

    Shikama, Yayoi; Cao, Meiwan; Ono, Tomoyuki; Feng, Xiaomin; Noji, Hideyoshi; Kimura, Hideo; Ogawa, Kazuei; Suzuki, Yuko; Ikeda, Kazuhiko; Takeishi, Yasuchika; Kimura, Junko

    2016-01-01

    Although increased TNF-α has been considered to cause ineffective hematopoiesis in myelodysplastic syndromes (MDS), the mechanisms of TNF-α elevation are not known. We recently found that c-Fos mRNA stabilization under translation-inhibiting stimuli was impaired in MDS-derived neutrophilic granulocytes. In the current study, we identified overexpression of c-Fos-targeting miR-34a and miR-155 as the cause of impairment. Expression levels of miR-34a but not miR-155 inversely correlated with ratios of c-Fos-positive cells in MDS-derived CD16+ neutrophils (r = -0.618, P<0.05), which were analyzed by flow cytometry. Among the seventeen patients, c-Fos was detectable in less than 60% of CD16+ cells in eight patients (Group A), while five (Group B) expressed c-Fos in more than 80% of CD16+ cells, which was consistent with the controls (88.6 ± 7.8%). Group A-derived granulocytes secreted more TNF-α in response to 1 μM LPS for 3 hours (735.4 ± 237.5 pg/mL) than Group B (143.5 ± 65.7 pg/mL, P<0.05) and healthy controls (150.8 ± 91.5 pg/mL, P<0.05). Knockdown of c-Fos in neutrophil-like differentiated HL60 increased the binding of NF-κB p65 to the promoter region of TNF-α DNA. Thus, c-Fos reduction via overexpression of miR-34a contributes to TNF-α overproduction under inflammatory stimuli in MDS. PMID:27513856

  12. mTOR regulates TLR-induced c-fos and Th1 responses to HBV and HCV vaccines.

    PubMed

    He, Li; Zang, Aiping; Du, Min; Ma, Dapeng; Yuan, Chuanping; Zhou, Chun; Mu, Jing; Shi, Huanjing; Li, Dapeng; Huang, Xulin; Deng, Qiang; Xiao, Jianhua; Yan, Huimin; Hui, Lijian; Lan, Ke; Xiong, Sidong; Li, Xiaoxia; Huang, Zhong; Xiao, Hui

    2015-06-01

    Although IL-12 plays a critical role in priming Th1 and cytotoxic T lymphocyte (CTL) responses, Toll-like receptor (TLR) signaling only induces low amounts of IL-12 in dendritic cells and macrophages, implying the existence of stringent regulatory mechanisms. In this study, we sought to uncover the mechanisms underlying TLR-induced IL-12 expression and the Th1 response. By systemic screening, we identified a number of protein kinases involved in the regulation of TLRinduced IL-12 expression. In particular, PI3K, ERK, and mTOR play critical roles in the TLR-induced Th1 response by regulating IL-12 and IL-10 production in innate immune cells. Moreover, we identified c-fos as a key molecule that mediates mTOR-regulated IL-12 and IL-10 expression in TLR signaling. Mechanistically, mTOR plays a crucial role in c-fos expression, thereby modulating NFκB binding to promoters of IL-12 and IL-10. By controlling the expression of a special innate gene program, mTOR can specifically regulate the TLR-induced T cell response in vivo. Furthermore, blockade of mTOR by rapamycin efficiently boosted TLR-induced antigen-specific T and B cell responses to HBV and HCV vaccines. Taken together, these results reveal a novel mechanism through which mTOR regulates TLR-induced IL-12 and IL-10 production, contributing new insights for strategies to improve vaccine efficacy. PMID:26122641

  13. Effects of treadmill running on brain activation and the corticotropin-releasing hormone system.

    PubMed

    Timofeeva, Elena; Huang, Qingling; Richard, Denis

    2003-06-01

    The present study was conducted to investigate the effects of treadmill running on the corticotropin-releasing hormone (CRH), CRH receptor type 1 (CRH-R1) and CRH-binding protein (CRH-BP) in the brain of rats that were killed either at rest, immediately after 60 min of treadmill running, or 180 min following a 60-min session of intensive exercise. The expression of the neuronal activity marker c-FOS was also determined in the three conditions of this study. The levels of c-FOS mRNA immediately following running were high in the cortex, caudate-putamen, lateral septum, bed nucleus of the stria terminalis, dorsal and medial thalamus, hypothalamus, pontine nuclei, locus coeruleus and hypoglossal nucleus. In most brain regions investigated, excluding the locus coeruleus and the cingulate cortex, c-FOS mRNA expression returned to control levels after 2 h of recovery. The highest concentration of cells co-expressing the protein Fos and CRH mRNA neurons was found in the parvocellular part of the paraventricular nucleus, which also expressed CRH heteronuclear RNA and CRH-R1 mRNA. The medial preoptic area (MPOA), the medial mammillary nucleus and the posterior hypothalamic as well as the somatosensory cortex, the medial geniculate nucleus, the reticulotegmental nucleus, and Barrington's nucleus also co-expressed Fos and CRH mRNA. The expression of CRH-BP gene was induced in the MPOA following running. In summary, the present study demonstrates that treadmill running leads to a strong expression of c-FOS mRNA that is widely distributed throughout the brain. c-FOS mRNA was found in structures of the somatosensory and somatomotor systems, indicating that these regions were activated during exercise. The pattern of distribution of c-FOS mRNA showed similarities with that triggered by neurogenic and systemic stresses. The present results also indicate that treadmill running can strongly activate the hypophysiotropic CRH system, which suggests, in agreement with the pattern of c-FOS

  14. Control of c-fos and c-myc proto-oncogene induction in rat thyroid cells in culture

    SciTech Connect

    Isozaki, O.; Kohn, L.D. )

    1987-11-01

    Removal of TSH, insulin, and cortisol from the medium, and decreasing the serum content to 0.2%, abolishes both the proliferate and differentiated state of FRTL-5 rat thyroid cells in culture. In these basal conditions, the individual addition of TSH, insulin, insulin-like growth factor-I (IGF-I), phorbol 12-myristate 13-acetate (TPA), alpha 1-adrenergic agents, or A23187, increase c-myc and/or c-fos proto-oncogene expression. Under the same conditions, only the addition of TSH increased cAMP levels; 8-bromo-cAMP can increase c-myc or c-fos mRNA levels. Pretreatment of cells with phorbol 12,13-dibutyrate, an agent which down regulates the C-kinase, completely inhibits the effect of TPA on proto-oncogene expression but has no affect on the A23187 induced-increase. The sum of these results indicate that at least four separate signal systems independently increase c-myc or c-fos gene expression in FRTL-5 cells cAMP (TSH), C-kinase (TPA), Ca++/phosphoinositide (A23187), and that influenced by insulin/IGF-I. None of the ligands, when individually returned to cells in basal medium (no TSH, insulin, or cortisol and only 0.2% serum), increases cell number; norepinephrine, and A23187 do not increase (3H)thymidine incorporation into DNA under these conditions; and combinations of the ligands can be more than additive in effecting (3H)thymidine incorporation into DNA but are only additive in effecting proto-oncogene expression. Insulin/IGF-I plus TSH or insulin/IGF-I plus norepinephrine can increase both proto-oncogene expression and (3H)thymidine incorporation into DNA to the same extent; however, the former combination can increase cell number whereas the latter cannot. There is therefore no simple correlation between the ability of the above ligands to increase proto-oncogene expression and their ability to increase cell number or induce DNA synthesis.

  15. In vitro interaction of uterine estrogen receptor with the estrogen response element present in the 3'-flanking region of the murine c-fos protooncogene.

    PubMed

    Hyder, S M; Stancel, G M

    1994-01-01

    Estradiol treatment rapidly stimulates transcription of the c-fos protooncogene in the rodent uterus, and transfection analysis previously identified an estrogen response element (ERE) in the 3'-flanking region of the murine gene with the sequence GGTCAnnnCAGCC. We now report that endogenous estrogen receptor (ER) obtained from either mouse or rat uterus binds to this 3'-ERE. Unoccupied receptor, receptor occupied with estradiol and receptor occupied with the antiestrogen tamoxifen all bind to this element, and the binding of receptor exhibits strict sequence specificity. By using a competition binding assay, the affinity of the ER for the c-fos-ERE is estimated to be approximately an order of magnitude less than the affinity for the consensus ERE (GGTCAnnnTGACC) found in the Xenopus and chicken vitellogenin genes. Differences in the electrophoretic mobilities of the c-fos and vitellogenin EREs bound to the ER in band-shift assays also suggest subtle structural differences in the two complexes. Mutations in either half-site of the c-fos-ERE destroy ER binding, suggesting that the receptor binds to this sequence as either a homo- or heterodimer. The 3'-fos-ERE region exhibits some homologies to both AP1 and AP2 consensus sites, but neither AP1-like proteins present in uterine extracts nor recombinant AP2 bind this protooncogene sequence. The finding that the ERE present in the 3'-region of the murine c-fos gene interacts with receptors present in the mouse and rat uterus supports a role for this element in the physiological regulation of c-fos expression in the uterus by estrogens. PMID:8136308

  16. BMI1 reprogrammes histone acetylation and enhances c-fos pathway via directly binding to Zmym3 in malignant myeloid progression.

    PubMed

    Shen, Hongjie; Chen, Zixing; Ding, Xin; Qi, Xiaofei; Cen, Jiannong; Wang, Yuanyuan; Yao, Li; Chen, Yan

    2014-06-01

    The polycomb group BMI1 is proved to be crucial in malignant myeloid progression. However, the underlying mechanism of the action of BMI1 in myeloid malignant progression was not well characterized. In this study, we found that the patients of both myelodysplastic syndromes and chronic myeloid leukaemia with BMI1 overexpression had a higher risk in malignant myeloid progression. In vitro gene transfection studies showed that BMI1 inhibited cell myeloid and erythroid differentiation induced by 12-O-tetradecanoyl phorbol-13-acetate (TPA) and histone deacetylase inhibitor sodium butyrate respectively. BMI1 also resisted apoptosis induced by arsenic trioxide. Moreover, the transcript levels of Runx1 and Pten were down-regulated in Bmi1-transfected cells in company with histone deacetylation modification. By using chromatin immunoprecipitation (ChIP) collaborated with secondary generation sequencing and verified by ChIP-PCR, we found that BMI1 directly bound to the promoter region of Zmym3, which encodes a component of histone deacetylase-containing complexes. In addition, as one of the downstream target genes of this complex, c-fos was activated with increasing histone acetylation when ZMYM3 was suppressed in the Bmi1-transfected cells. These results suggested that BMI1 may reprogramme the histone acetylation profile in multiple genes through either indirect or direct binding effects which probably contributes to the malignant progression of myeloid progenitor cells. PMID:24571310

  17. Regional expression of c-fos antigen in the basal forebrain following intraventricular infusions of angiotensin and its modulation by drinking either water or saline.

    PubMed

    Herbert, J; Forsling, M L; Howes, S R; Stacey, P M; Shiers, H M

    1992-12-01

    The expression of c-fos protein was examined in the basal forebrains of male rats 60 min following intracerebroventricular infusions of 250 pmol angiotensin II. Levels of corticosterone and vasopressin were also measured at the same time point. In animals not allowed access to water after infusion, angiotensin II induced intense c-fos expression in a band of neurons extending throughout the anterior region of the third ventricle region, including the organum vasculosum of the lamina terminalis, the median preoptic nucleus (nucleus medianus) and the subfornical organ. There were also high levels of expression in the hypothalamic supraoptic nucleus and the paraventricular nucleus, particularly its lateral (magnocellular) region, though other, parvicellular areas were also affected. No other area of the hypothalamus was altered. There was increased c-fos expression in the central nucleus of the amygdala and the bed nucleus of the stria terminalis. Allowing rats to drink during the 60-min survival period modified this pattern of response. c-fos was markedly reduced in the supraoptic nucleus and the paraventricular nucleus but not in the other areas examined, including the anterior region of the third ventricle and the amygdala. When water was withheld for 15 min, but then allowed, rats drank the same total volume but c-fos expression was no longer inhibited in either the supraoptic nucleus or paraventricular nucleus. When rats were given 0.9% saline to drink, they ingested about three times as much as water, but angiotensin II-induced c-fos expression was similar to that in rats denied access to water. The pattern was similar following access to 1.8% saline, though levels in the organum vasculosum of the lamina terminalis were reduced. There was a marked correlation between the number of c-fos-positive neurons in the supraoptic nucleus or paraventricular nucleus and plasma levels of corticosterone 60 min after infusion, but not with arginine-vasopressin levels. These

  18. Human X-box-binding protein 1 is required for the transcription of a subset of human class II major histocompatibility genes and forms a heterodimer with c-fos

    SciTech Connect

    Ono, S.J.; Strominger, J.L. ); Hsiouchi Liou; Davidon, R.; Glimcher, L.H. )

    1991-05-15

    A complementary DNA encoding a member of the leucine-zipper class of proteins (human X-box-binding protein, hXBP-1) that binds to the 3{prime} end of the conserved X box (X2) of the HLA-DRA major histocompatibility complex gene was recently described. Further gel-retardation analysis has demonstrated that hXBP-1 also binds to HLA-DPB X2 but not to other X2 sequences. Transient transfection of a mammalian expression vector with the hXBP-1 cDNA inserted in the antisense orientation represses the surface expression of HLA-DR and HLA-DP in Raji cells. Cotransfection of the antisense hXBP-1 vector with a HLA-DRA/chloramphenicol acetyltransferase (but not a HLA-DQB/chloramphenicol acetyltransferase) reporter plasmid decreases chloramphenicol acetyltransferase activity in Raji cells and in {gamma}-interferon-treated HeLa cells relative to cells cotransfected with a control antisense vector. Moreover, hXBP-1 is shown to form a stable heterodimer with the product of the c-fos protooncogene. These data suggest that the hXBP-1 c-fos heterodimer is critical for the transcription of a subset of the human class II major histocompatibility complex genes and that the regulatory mechanisms for the different class II genes are distinct.

  19. An integrated study of heart pain and behavior in freely moving rats (using fos as a marker for neuronal activation).

    PubMed

    Albutaihi, Ibrahim A M; DeJongste, Mike J L; Ter Horst, Gert J

    2004-01-01

    The awareness in specific brain centers of angina pectoris most often results from ischemic episodes in the heart. These ischemic episodes induce the release of a collage of chemicals that activate chemosensitive and mechanoreceptive receptors in the heart, which in turn excite receptors of the sympathetic afferent pathways. Ascending pain signals from these fibers result in the activation of the brain centers which are involved in the perception and integration of cardiac pain. Cytochemical studies of the nervous system provide the opportunity to identify these areas at the cellular level. In the present investigation, cardiac nociception was studied in the brains and the spinal cords of rats, using Fos protein as a marker of neuronal activation, following the application of pain-inducing chemicals to the heart. Induction of myocardial pain in conscious rats was achieved by infusion of bradykinin (0.5 microg) or capsaicin (5 microg) into the pericardial sac. During pain stimulation, the rats demonstrated pain behavior, in conjunction with alterations in heart rate and blood pressure. The cerebral Fos expression pattern was studied 2 h after pain stimulation. In contrast to the control group, increased Fos expression was found following the use of both capsaicin and bradykinin in a variety of areas of the brain. Bradykinin, but not capsaicin, induced Fos expression in the upper thoracic and upper cervical spinal cord; these segments are the sites where cardiac sympathetic fibers terminate. This finding suggests that these two chemicals use two different pathways, and provides extra evidence for the role of the vagus nerve in the transmission of cardiac nociception. Different cerebral areas showed an increase in the c-fos activity following pericardial application of pain-inducing chemicals. The role of these cerebral areas in the integration of cardiac pain is discussed in relation to the identified pathways which transmit cardiac pain. PMID:15305089

  20. Reciprocal Patterns of c-Fos Expression in the Medial Prefrontal Cortex and Amygdala after Extinction and Renewal of Conditioned Fear

    ERIC Educational Resources Information Center

    Knapska, Ewelina; Maren, Stephen

    2009-01-01

    After extinction of conditioned fear, memory for the conditioning and extinction experiences becomes context dependent. Fear is suppressed in the extinction context, but renews in other contexts. This study characterizes the neural circuitry underlying the context-dependent retrieval of extinguished fear memories using c-Fos immunohistochemistry.…

  1. Predicting Virulence of Aeromonas Isolates Based-on Changes in Transcription of c-jun and c-fos in Human Tissue Culture Cells

    EPA Science Inventory

    Aims: To assess virulence of Aeromonas isolates based on the change in regulation of c-jun and c-fos in the human intestinal tissue culture cell line Caco-2. Methods and Results: Aeromonas cells were added to Caco-2 cells at approximately a one to one ratio. After 1, 2 and 3 ...

  2. Masculinization induced by neonatal exposure to PGE2 or estradiol alters c-fos induction by estrous odors in adult rats

    PubMed Central

    Nugent, Bridget M.; Wright, Christopher L.; Zup, Susan L.; McCarthy, Margaret M.

    2009-01-01

    Processing of relevant olfactory and pheromonal cues has long been known as an important process necessary for social and sexual behavior in rodents. Several nuclei that receive input from the vomeronasal projection pathway are involved in sexual behavior and show changes in immediate early gene expression after stimulation with a variety of sex-related stimuli. The nuclei in this pathway are sexually dimorphic due to the early patterning events induced by estradiol derived from testicular androgens, which developmentally defeminize and masculinize the brain and adult sexual behavior. Masculinization can be induced independently of estradiol via prostaglandin-E2.(PGE2), and therefore assessed separately from defeminization. Here we examined the effects of brain defeminization and masculinization on neuronal response to sex-related odors using Fos, the protein product of the immediate early gene c-fos, as an indicator of activity. Female rat pups treated with a cyclooxygenase-2 inhibitor, to reduce PGE2, plus estradiol, estradiol alone, and PGE2 alone were exposed to estrous female odor as adults and the resulting Fos expression was examined in the medial amygdala, preoptic area, and ventromedial nucleus of the hypothalamus. Defeminized and/or masculinized females all showed patterns of Fos activity similar to control males and significantly different from control females. These results suggest that early exposure to estradiol and PGE2 do not affect olfaction in females, but switch the activity pattern of sex-related nuclei in females to resemble that of males following exposure to sexually-relevant cues. PMID:18976678

  3. Immunohistochemical analysis of the expression of cellular transcription NFκB (p65), AP-1 (c-Fos and c-Jun), and JAK/STAT in leprosy.

    PubMed

    Silva, Luciana Mota; Hirai, Kelly Emi; de Sousa, Jorge Rodrigues; de Souza, Juarez; Fuzii, Hellen Thais; Dias, Leonidas Braga; Carneiro, Francisca Regina Oliveira; de Souza Aarão, Tinara Leila; Quaresma, Juarez Antonio Simões

    2015-05-01

    Leprosy is a disease whose clinical spectrum depends on the cytokine patterns produced during the early stages of the immune response. The main objective of this study was to describe the activation pattern of cellular transcription factors and to correlate these factors with the clinical forms of leprosy. Skin samples were obtained from 16 patients with the tuberculoid (TT) form and 14 with the lepromatous (LL) form. The histologic sections were immunostained with anti-c-Fos and anti-c-Jun monoclonal antibodies for investigation of AP-1, anti-NFκB p65 for the study of NFκB, and anti-JAK2, STAT1, STAT3, and STAT4 for investigation of the JAK/STAT pathway. Cells expressing STAT1 were more frequent in the TT form than in LL lesions (P = .0096), in agreement with the protective immunity provided by IFN-γ. STAT4 was also more highly expressed in the TT form than in the LL form (P = .0098). This transcription factor is essential for the development of a Th1 response because it is associated with interleukin-12. NFκB (p65) and STAT4 expression in the TT form showed a strong and significant correlation (r = 0.7556 and P = .0007). A moderate and significant correlation was observed between JAK2 and STAT4 in the TT form (r = 0.6637 and P = .0051), with these factors responding to interleukin-12 in Th1 profiles. The results suggest that STAT1, JAK2, and NFκB, together with STAT4, contribute to the development of cell-mediated immunity, which is able to contain the proliferation of Mycobacterium leprae. PMID:25771902

  4. Expression of c-Fos protein in medial septum/diagonal band of Broca and CA3 region, associated with the temporary inactivation of the supramammillary area.

    PubMed

    Aranda, Lourdes

    2016-07-01

    The supramammillary (SuM) area is part of the diencephalic nuclei comprising the mammillary bodies, and is a key structure in the memory and spatial learning processes. It is a critical region in the modulation/generation of hippocampal theta rhythm. In addition, many papers have recently shown a clear involvement of this structure in the processes of spatial learning and memory in animal models, although it is still not known how it modulates spatial navigation and response emotional. The aim of the present research was to study the effect of the temporary inactivation of the SuM area on synaptic plasticity of crucial structures in the formation of spatial memory and emotional response. Sprague-Dawley rats were asigned in three groups: a control group where the animals were not subjected to any treatment, and two groups where the rats received microinjections of tetrodotoxin (TTX) in the SuM area (5ng diluted in 0.5μl of saline) or saline (0.5μl). The microinjections were administered 90min before the perfusion. Later, cellular activity in medial septum/diagonal band of Broca (MS/DBB) and CA3 region of the dorsal hippocampus was assessed, by measuring the immediate early gene c-fos. The results show a clear hiperactivity cellular in medial septum/diagonal band of Broca and a clear hypoactivity cellular in the CA3 region of the hippocampus when there was a functional inactivation of the SuM area. It suggests that the SuM area seems to be part of the connection and information input pathways to CA3 region of the hippocampal formation, key for proper functioning in spatial memory and emotional response. PMID:26802745

  5. Interleukin-1 Receptor Type 2 Acts with c-Fos to Enhance the Expression of Interleukin-6 and Vascular Endothelial Growth Factor A in Colon Cancer Cells and Induce Angiogenesis.

    PubMed

    Mar, Ai-Chung; Chu, Chun-Ho; Lee, Hui-Ju; Chien, Chia-Wen; Cheng, Jing-Jy; Yang, Shung-Haur; Jiang, Jeng-Kai; Lee, Te-Chang

    2015-09-01

    Interleukin-1 receptor type 2 (IL1R2) acts as a decoy receptor of exogenous IL-1; however, its intracellular activity is poorly understood. We previously demonstrated that IL1R2 intracellularly activates the expression of several proinflammatory cytokines and affects cell migration. In this study, we found that intracellular IL1R2 expression was increased in human colorectal cancer cells (CRCs) compared with normal colon cells. We also observed that the mRNA levels of IL1R2 were highly correlated with IL-6 in tumor tissues of CRC patients. By modulating its expression in CRC cells, we verified that enhanced IL1R2 expression transcriptionally activated the expression of IL-6 and VEGF-A. Conditioned medium harvested from IL1R2-overexpressing CRC cells contained higher levels of IL-6 and VEGF-A than that from vector control cells and significantly enhanced the proliferation, migration, and tube formation of cultured endothelial cells. We further demonstrated a positive association of intracellular IL1R2 levels with tumor growth and microvessel density in xenograft mouse models. These results revealed that IL1R2 activates the expression of angiogenic factors. Mechanistically, we revealed that IL1R2 complexes with c-Fos and binds to the AP-1 site at the IL-6 and VEGF-A promoters. Together, these results reveal a novel function of intracellular IL1R2 that acts with c-Fos to enhance the transcription of IL-6 and VEGF-A, which promotes angiogenesis in CRC. PMID:26209639

  6. Experience-dependent effects of context and restraint stress on corticolimbic c-Fos expression

    PubMed Central

    Hoffman, Ann N.; Anouti, Danya P.; Lacagnina, Michael J.; Nikulina, Ella M.; Hammer, Ronald P.; Conrad, Cheryl D.

    2014-01-01

    Stressors are typically multidimensional, comprised of multiple physical and sensory components that rarely occur as single isolated events. In this study, the functional activation patterns of key corticolimbic structures in response to context exposure alone, its combination with restraint, and how prior experience with either of these modulates subsequent activation was measured using Fos expression. On day 1, rats were transported to a novel context and either restrained for 6 hours or left undisturbed. On day 2, these two groups were either restrained or not in the same context, then processed for Fos immunohistochemistry. Regardless of previous experience, rats in context and not restrained expressed more Fos-like immunoreactive (IR) labeling in CA1 and CA3 of dorsal hippocampus, and basolateral and central amygdala, while this pattern was reversed in the dentate gyrus infrapyramidal blade. Conversely for the infralimbic region of the medial prefrontal cortex (mPFC), the previous day's experience with restraint or immediate experience with restraint elevated Fos-like IR compared to rats placed in context on both days. These data show that exposure to context produces robust Fos induction in the hippocampus and amygdala, regardless of prior experience with restraint and compared to the immediate experience to restraint, with prior experience modulating Fos expression within the mPFC. PMID:23662914

  7. β-glucan reduces exercise-induced stress through downregulation of c-Fos and c-Jun expression in the brains of exhausted rats.

    PubMed

    Hong, Heeok; Kim, Chang-Ju; Kim, Jae-Deung; Seo, Jin-Hee

    2014-05-01

    Immediate-early genes are involved in acute stress responses in the central nervous system. β-glucan stimulates innate immune defenses, exerts an anti-tumor response and increases resistance to a wide variety of types of infection. To date, the effect of β-glucan on the expression of immediate-early genes under stressful conditions has not been elucidated. In the present study, the effects of β-glucan on the expression of the oncogenes c-Fos and c-Jun in the hypothalamus, dentate gyrus and dorsal raphe in rats following exhaustive treadmill running were investigated. Male Sprague Dawley rats were randomly divided into five groups (n=10 in each group) as follows: Control, exercise, exercise and 50 mg/kg β-glucan treatment, exercise and 100 mg/kg β-glucan treatment, and exercise and 200 mg/kg β-glucan treatment. Rats in the β-glucan‑treated groups were administered β-glucan at the respective dose once per day for seven days. Rats in the exercise groups performed treadmill running once per day for six days. On the seventh day of the experiment, the time to exhaustion in response to treadmill running was determined for the exercise groups. The expression of c-Fos and c-Jun in the hypothalamus, dorsal raphe and hippocampus was enhanced by exhaustive treadmill running. Administration of β-glucan resulted in an increase in the time to exhaustion and the suppression of the exercise-induced increment in c-Fos and c-Jun expression. In conclusion, β-glucan may exert an alleviating effect on exercise-induced stress through the suppression of c-Fos and c-Jun expression in the brains of exhausted rats. PMID:24604295

  8. Intrathecal P/Q- and R-type calcium channel blockades on spinal substance P release and c-Fos expression

    PubMed Central

    Terashima, Tetsuji; Xu, Qinghao; Yamaguchi, Shigeki; Yaksh, Tony L.

    2013-01-01

    Intrathecal (IT) studies have shown that several voltage sensitive calcium channels (VSCCs), such as the L-, N- and T-type may play roles in nociception and that of these only the N-type regulates primary afferent substance P (SP) release. However, the actions of other VSCCs at the spinal level are not well known. We investigated the roles of spinal P/Q- and R-type VSCCs, by IT administration of R-type (SNX-482) and P/Q-type (ω-agatoxin IVA) VSCC blockers on intraplantar formalin-evoked flinching, SP release from primary afferents and c-Fos expression in spinal dorsal horn. Intraplantar injection of formalin (2.5%, 50 µL) produced an intense, characteristic biphasic paw flinching response. In rats with IT catheters, IT SNX-482 (0.5 µg) reduced formalin-evoked paw flinching in both phase 1 and 2 compared with vehicle. Intraplantar formalin caused robust neurokinin 1 receptor (NK1r) internalization (indicating SP release) and c-Fos expression in the ipsilateral dorsal horn, which were blocked by IT SNX-482. IT ω-agatoxin IVA (0.03, 0.125 and 0.5 µg) did not reduce formalin-evoked paw flinching or c-Fos expression at any doses, with higher doses resulting in motor dysfunction. Thus, we demonstrated that blockade of spinal R-type, but not P/Q type VSCCs attenuated formalin-induced pain behavior, NK1r internalization and c-Fos expression in the superficial dorsal horn. This study supports a role for Cav2.3 in presynaptic neurotransmitter release from peptidergic nociceptive afferents and pain behaviors. PMID:23810829

  9. Intrathecal P/Q- and R-type calcium channel blockade of spinal substance P release and c-Fos expression.

    PubMed

    Terashima, Tetsuji; Xu, Qinghao; Yamaguchi, Shigeki; Yaksh, Tony L

    2013-12-01

    Intrathecal (IT) studies have shown that several voltage sensitive calcium channels (VSCCs), such as the L-, N- and T-type may play roles in nociception and that of these only the N-type regulates primary afferent substance P (SP) release. However, the actions of other VSCCs at the spinal level are not well known. We investigated the roles of spinal P/Q- and R-type VSCCs, by IT administration of R-type (SNX-482) and P/Q-type (ω-agatoxin IVA) VSCC blockers on intraplantar formalin-evoked flinching, SP release from primary afferents and c-Fos expression in spinal dorsal horn. Intraplantar injection of formalin (2.5%, 50 μL) produced an intense, characteristic biphasic paw flinching response. In rats with IT catheters, IT SNX-482 (0.5 μg) reduced formalin-evoked paw flinching in both phase 1 and 2 compared with vehicle. Intraplantar formalin caused robust neurokinin 1 receptor (NK1r) internalization (indicating SP release) and c-Fos expression in the ipsilateral dorsal horn, which were blocked by IT SNX-482. IT ω-agatoxin IVA (0.03, 0.125 and 0.5 μg) did not reduce formalin-evoked paw flinching or c-Fos expression at any doses, with higher doses resulting in motor dysfunction. Thus, we demonstrated that blockade of spinal R-type, but not P/Q type VSCCs attenuated formalin-induced pain behavior, NK1r internalization and c-Fos expression in the superficial dorsal horn. This study supports a role for Cav2.3 in presynaptic neurotransmitter release from peptidergic nociceptive afferents and pain behaviors. PMID:23810829

  10. Developmental methylation of the coding region of c-fos occurs perinatally, stepwise and sequentially in the liver of laboratory mouse.

    PubMed

    Sachan, Manisha; Raman, Rajiva

    2008-06-15

    We have studied the dynamics of de novo DNA methylation of 16 contiguous CpGs in the non-CpG island-coding region of the proto-oncogene c-fos during mouse development by Na-bisulfite sequencing. Methylation commences from 16.5 dpc and occurs in stepwise-manner. In liver 7 sites are methylated between 16.5 dpc and day 5 after birth, but all the sites are completely methylated on 20 dpp and remain so in the adult liver. The present study provides evidence that (1) pattern of methylation of c-fos is distinct from those DNA sequences which methylate pre- and post-implantation, both in terms of the timing and spreading, and (2) spacing of CpGs is an important factor in determining the course of methylation. We suggest that there could be other isoforms of Dnmtases for the c-fos like embryonic genes, not only because they methylate later in development but also because of the difference in kinetics of the reaction, and that the nucleation of certain methylated sites facilitate methylation of neighbouring sites and their maintenance in subsequent cell generations. PMID:18442886

  11. Cellular activation in limbic brain systems during social play behaviour in rats

    PubMed Central

    van Kerkhof, Linda W.M.; Trezza, Viviana; Mulder, Tessa; Gao, Ping; Voorn, Pieter; Vanderschuren, Louk J.M.J.

    2013-01-01

    Positive social interactions during the juvenile and adolescent phases of life are essential for proper social and cognitive development in mammals, including humans. During this developmental period, there is a marked increase in peer-peer interactions, signified by the abundance of social play behaviour. Despite its importance for behavioural development, our knowledge of the neural underpinnings of social play behaviour is limited. Therefore, the purpose of this study was to map the neural circuits involved in social play behaviour in rats. This was achieved by examining cellular activity after social play using the immediate early gene c-fos as a marker. After a session of social play behaviour, pronounced increases in c-fos expression were observed in the medial prefrontal cortex, medial and ventral orbitofrontal cortex, dorsal striatum, nucleus accumbens core and shell, lateral amygdala, several thalamic nuclei, dorsal raphe and the pedunculopontine tegmental nucleus. Importantly, the cellular activity patterns after social play were topographically organised in this network, as indicated by play-specific correlations in c-fos activity between regions with known direct connections. These correlations suggest involvement in social play behaviour of the projections from the medial prefrontal cortex to the striatum, and of amygdala and monoaminergic inputs to frontal cortex and striatum. The analyses presented here outline a topographically organised neural network implicated in processes such as reward, motivation and cognitive control over behaviour, which mediates social play behaviour in rats. PMID:23670540

  12. Striatal regulation of ΔFosB, FosB, and cFos during cocaine self-administration and withdrawal.

    PubMed

    Larson, Erin B; Akkentli, Fatih; Edwards, Scott; Graham, Danielle L; Simmons, Diana L; Alibhai, Imran N; Nestler, Eric J; Self, David W

    2010-10-01

    Chronic drug exposure induces alterations in gene expression profiles that are thought to underlie the development of drug addiction. The present study examined regulation of the Fos-family of transcription factors, specifically cFos, FosB, and ΔFosB, in striatal subregions during and after chronic intravenous cocaine administration in self-administering and yoked rats. We found that cFos, FosB, and ΔFosB exhibit regionally and temporally distinct expression patterns, with greater accumulation of ΔFosB protein in the nucleus accumbens (NAc) shell and core after chronic cocaine administration, whereas ΔFosB increases in the caudate-putamen (CPu) remained similar with either acute or chronic administration. In contrast, tolerance developed to cocaine-induced mRNA for ΔFosB in all three striatal subregions with chronic administration. Tolerance also developed to FosB expression, most notably in the NAc shell and CPu. Interestingly, tolerance to cocaine-induced cFos induction was dependent on volitional control of cocaine intake in ventral but not dorsal striatal regions, whereas regulation of FosB and ΔFosB was similar in cocaine self-administering and yoked animals. Thus, ΔFosB-mediated neuroadaptations in the CPu may occur earlier than previously thought with the initiation of intravenous cocaine use and, together with greater accumulation of ΔFosB in the NAc, could contribute to addiction-related increases in cocaine-seeking behavior. PMID:20633205

  13. Cannabidiol attenuates haloperidol-induced catalepsy and c-Fos protein expression in the dorsolateral striatum via 5-HT1A receptors in mice.

    PubMed

    Sonego, Andreza B; Gomes, Felipe V; Del Bel, Elaine A; Guimaraes, Francisco S

    2016-08-01

    Cannabidiol (CBD) is a major non-psychoactive compound from Cannabis sativa plant. Given that CBD reduces psychotic symptoms without inducing extrapyramidal motor side-effects in animal models and schizophrenia patients, it has been proposed to act as an atypical antipsychotic. In addition, CBD reduced catalepsy induced by drugs with distinct pharmacological mechanisms, including the typical antipsychotic haloperidol. To further investigate this latter effect, we tested whether CBD (15-60mg/kg) would attenuate the catalepsy and c-Fos protein expression in the dorsal striatum induced by haloperidol (0.6mg/kg). We also evaluated if these effects occur through the facilitation of 5-HT1A receptor-mediated neurotransmission. For this, male Swiss mice were treated with CBD and haloperidol systemically and then subjected to the catalepsy test. Independent groups of animals were also treated with the 5-HT1A receptor antagonist WAY100635 (0.1mg/kg). As expected, haloperidol induced catalepsy throughout the experiments, an effect that was prevented by systemic CBD treatment 30min before haloperidol administration. Also, CBD, administered 2.5h after haloperidol, reversed haloperidol-induced catalepsy. Haloperidol also increased c-Fos protein expression in the dorsolateral striatum, an effect attenuated by previous CBD administration. CBD effects on catalepsy and c-Fos protein expression induced by haloperidol were blocked by the 5-HT1A receptor antagonist. We also evaluated the effects of CBD (60nmol) injection into the dorsal striatum on haloperidol-induced catalepsy. Similar to systemic administration, this treatment reduced catalepsy induced by haloperidol. Altogether, these results suggest that CBD acts in the dorsal striatum to improve haloperidol-induced catalepsy via postsynaptic 5-HT1A receptors. PMID:27131780

  14. Interplay of two functionally and structurally distinct domains of the c-fos AU-rich element specifies its mRNA-destabilizing function.

    PubMed Central

    Chen, C Y; Chen, T M; Shyu, A B

    1994-01-01

    AU-rich elements (ARE) in the 3' untranslated region of many highly labile mRNAs for proto-oncogenes, lymphokines, and cytokines can act as an RNA-destabilizing element. The absence of a clear understanding of the key sequence and structural features of the ARE that are required for its destabilizing function has precluded the further elucidation of its mode of action and the basis of its specificity. Combining extensive mutagenesis of the c-fos ARE with in vivo analysis of mRNA stability, we were able to identify mutations that exhibited kinetic phenotypes consistent with the biphasic decay characteristic of a two-step mechanism: accelerated poly(A) shortening and subsequent decay of the transcribed portion of the mRNA. These mutations, which affected either an individual step or both steps, all changed the mRNA stability. Our experiments further revealed the existence of two structurally distinct and functionally interdependent domains that constitute the c-fos ARE. Domain I, which is located within the 5' 49-nucleotide segment of the ARE and contains the three AUUUA motifs, can function as an RNA destabilizer by itself. It forms the essential core unit necessary for the ARE-destabilizing function. Domain II is a 20-nucleotide U-rich sequence which is located within the 3' part of the c-fos ARE. Although it alone can not act as an RNA destabilizer, this domain serves two critical roles: (i) its presence enhances the destabilizing ability of domain I by accelerating the deadenylation step, and (ii) it has a novel capacity of buffering decay-impeding effects exerted by mutations introduced within domain I. A model is proposed to explain how these critical structural features may be involved in the c-fos ARE-directed mRNA decay pathway. These findings have important implications for furthering our understanding of the molecular basis of differential mRNA decay mediated by different AREs. Images PMID:7903419

  15. Subcaste differences in neural activation suggest a prosocial role for oxytocin in eusocial naked mole-rats.

    PubMed

    Hathaway, Georgia A; Faykoo-Martinez, Mariela; Peragine, Deane E; Mooney, Skyler J; Holmes, Melissa M

    2016-03-01

    The neuropeptide oxytocin (OT) influences prosocial behavior(s), aggression, and stress responsiveness, and these diverse effects are regulated in a species- and context-specific manner. The naked mole-rat (Heterocephalus glaber) is a unique species with which to study context-dependent effects of OT, exhibiting a strict social hierarchy with behavioral specialization within the subordinate caste: soldiers are aggressive and defend colonies against unfamiliar conspecifics while workers are prosocial and contribute to in-colony behaviors such as pup care. To determine if OT is involved in subcaste-specific behaviors, we compared behavioral responses between workers and soldiers of both sexes during a modified resident/intruder paradigm, and quantified activation of OT neurons in the hypothalamic paraventricular nucleus (PVN) and supraoptic nucleus (SON) using the immediate-early-gene marker c-fos co-localized with OT neurons. Resident workers and soldiers were age-matched with unfamiliar worker stimulus animals as intruders, and encounters were videorecorded and scored for aggressive behaviors. Colony-matched controls were left in their home colony for the duration of the encounters. Brains were extracted and cell counts were conducted for OT immunoreactive (ir), c-fos-ir, and percentage of OT-c-fos double-labeled cells. Results indicate that resident workers were less aggressive but showed greater OT neural activity than soldiers. Furthermore, a linear model including social treatment, cortisol, and subcaste revealed that subcaste was the only significant predictor of OT-c-fos double-labeled cells in the PVN. These data suggest that in naked mole-rats OT promotes prosocial behaviors rather than aggression and that even within subordinates status exerts robust effects on brain and behavior. PMID:26718226

  16. Contusive spinal cord injury evokes localized changes in NADPH-d activity but extensive changes in Fos-like immunoreactivity in the rat.

    PubMed

    Allbutt, Haydn N; Siddall, Phillip J; Keay, Kevin A

    2007-09-01

    The histological detection of nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d), a marker for nitric oxide-producing cells, was used to evaluate ongoing changes in the neural biochemistry of the rat spinal cord 1 week following contusive spinal cord injury (SCI). In addition, the immunohistochemical detection of the immediate-early gene c-fos was used to identify basal patterns of neural activity at this time. The numbers and laminar locations of NADPH-d- and c-fos-positive cells were examined in spinal segments adjacent to the site of injury (T12-S3) as well as those distant from the injury (C3-C5) in both SCI and un-injured rats. Our data show that contusive SCI results in a significant reduction in NADPH-d labelling in the superficial dorsal horn, and a significant increase in NADPH-d expression in small bipolar neurons and large motoneurons in the ventral horn at the site of the injury. In spinal segments distant to the injury site (C3-C5), NADPH-d activity did not differ from that of uninjured controls. Furthermore, significant reductions in the levels of c-fos expression were observed in SCI rats, in spinal segments both at and distant to the site of injury for all spinal laminae. The only exception was a dramatic increase observed in the sacral parasympathetic nucleus. These data suggest that increased NADPH-d expression is related to conditions specific to the site of injury, whereas the changes in c-fos expression probably indicate more global changes in neuronal activity following SCI. PMID:17584182

  17. Persistent c-fos expression and NADPH-d reactivity in the medulla and the lumbar spinal cord in rat with short-term peripheral anosmia.

    PubMed

    Kalueff, A V; Maisky, V A; Pilyavskii, A I; Makarchuk, N E

    2001-03-30

    Here we examine hypothesis that short-term peripheral ZnSO(4)-induced anosmia can produce effects on c-fos expression within spinal cord and caudal medulla in male Wistar rats (n=4). Fos-like-immunoreactive cells revealed by avidin-biotin-peroxidase method show a significant bilateral increase in the nucleus proprius (layers 3 and 4) and medial part of layers 5 and 6. In substantia gelatinosa (layer 2(i)) and area 10 Fos-positive neurons were intermixed together with nicotin-amide adenine dineucleotide phosphate-diaphorase (NADPH-d)-reactive cells. Short-term anosmia enhanced c-fos expression in ventral horn (layers 7 and 8), ventrolateral segment and dorsal part of the spinal trigeminal nuclei. In anosmic rats varicose fibres and numerous NADPH-d-stained neurons were present in the gelatinous layer of the spinal trigeminal nucleus caudalis, and a separate population of Fos-positive cells was detected within this layer. Nucleus tractus solitaris also contained a few NADPH-d-reactive, medium sized neurons intermixed with Fos-immunoreactive cells. PMID:11248440

  18. DNA bending is induced by a transcription factor that interacts with the human c-FOS and alpha-actin promoters.

    PubMed Central

    Gustafson, T A; Taylor, A; Kedes, L

    1989-01-01

    Conserved sequence elements in the human cardiac and skeletal alpha-actin promoters that contain the CC(A + T-rich)6GG motif have been shown to regulate transcription of these genes. A similar sequence is found in the serum response element of the human c-FOS gene. In this study, we demonstrate that indistinguishable proteins bind to each of five CC(A + T-rich)6GG elements examined in the human cardiac and skeletal alpha-actin promoters and the c-FOS serum response element. Using electrophoretic techniques, we show that these factors induce a stable bend in the DNA upon binding, and the bend center is shown to coincide with the CC(A + T-rich)6GG element. In addition, the ability to bend DNA is retained by a small proteolytic fragment of the protein, suggesting that the DNA-binding domain of the protein is resistant to proteases and is sufficient to bend DNA. Images PMID:2494661

  19. Differential time courses of c-fos mRNA expression in hippocampal subfields following acquisition and recall testing in mice.

    PubMed

    Bertaina, V; Destrade, C

    1995-10-01

    Spatio-temporal patterns of c-fos mRNA expression were studied in the mouse brain following the partial acquisition of an appetitive conditioning task in a Skinner box. We used two experimental situations: during the initial acquisition of the task (acquisition paradigm) and during the retention test (recall paradigm). In both paradigms the in situ hybridization signal was exclusively located in the hippocampal formation and the posterior cingulate cortex. However, the time-dependent pattern of expression was quite different according to the experimental situation: mRNA levels peaked at 90 min post-test in both paradigms but returned to basal (control) level by 180 min in the acquisition group, while in CA3 and DG subfields, high levels of mRNA expression were maintained at 180 min in the recall group. Taken together these results suggest that the IEG c-fos is implicated in the different phases of post-acquisition memory processes and involve a differential spatio-temporal regulation of its expression in hippocampal subfields. PMID:8580740

  20. Markers

    ERIC Educational Resources Information Center

    Healthy Schools Network, Inc., 2011

    2011-01-01

    Dry erase whiteboards come with toxic dry erase markers and toxic cleaning products. Dry erase markers labeled "nontoxic" are not free of toxic chemicals and can cause health problems. Children are especially vulnerable to environmental health hazards; moreover, schools commonly have problems with indoor air pollution, as they are more densely…

  1. Laguerre Filter Analysis with Partial Least Square Regression Reveals a Priming Effect of ERK and CREB on c-FOS Induction

    PubMed Central

    Kudo, Takamasa; Uda, Shinsuke; Tsuchiya, Takaho; Wada, Takumi; Karasawa, Yasuaki; Fujii, Masashi; Saito, Takeshi H.; Kuroda, Shinya

    2016-01-01

    Signaling networks are made up of limited numbers of molecules and yet can code information that controls different cellular states through temporal patterns and a combination of signaling molecules. In this study, we used a data-driven modeling approach, the Laguerre filter with partial least square regression, to describe how temporal and combinatorial patterns of signaling molecules are decoded by their downstream targets. The Laguerre filter is a time series model used to represent a nonlinear system based on Volterra series expansion. Furthermore, with this approach, each component of the Volterra series expansion is expanded by Laguerre basis functions. We combined two approaches, application of a Laguerre filter and partial least squares (PLS) regression, and applied the combined approach to analysis of a signal transduction network. We applied the Laguerre filter with PLS regression to identify input and output (IO) relationships between MAP kinases and the products of immediate early genes (IEGs). We found that Laguerre filter with PLS regression performs better than Laguerre filter with ordinary regression for the reproduction of a time series of IEGs. Analysis of the nonlinear characteristics extracted using the Laguerre filter revealed a priming effect of ERK and CREB on c-FOS induction. Specifically, we found that the effects of a first pulse of ERK enhance the subsequent effects on c-FOS induction of treatment with a second pulse of ERK, a finding consistent with prior molecular biological knowledge. The variable importance of projections and output loadings in PLS regression predicted the upstream dependency of each IEG. Thus, a Laguerre filter with partial least square regression approach appears to be a powerful method to find the processing mechanism of temporal patterns and combination of signaling molecules by their downstream gene expression. PMID:27513954

  2. Laguerre Filter Analysis with Partial Least Square Regression Reveals a Priming Effect of ERK and CREB on c-FOS Induction.

    PubMed

    Kudo, Takamasa; Uda, Shinsuke; Tsuchiya, Takaho; Wada, Takumi; Karasawa, Yasuaki; Fujii, Masashi; Saito, Takeshi H; Kuroda, Shinya

    2016-01-01

    Signaling networks are made up of limited numbers of molecules and yet can code information that controls different cellular states through temporal patterns and a combination of signaling molecules. In this study, we used a data-driven modeling approach, the Laguerre filter with partial least square regression, to describe how temporal and combinatorial patterns of signaling molecules are decoded by their downstream targets. The Laguerre filter is a time series model used to represent a nonlinear system based on Volterra series expansion. Furthermore, with this approach, each component of the Volterra series expansion is expanded by Laguerre basis functions. We combined two approaches, application of a Laguerre filter and partial least squares (PLS) regression, and applied the combined approach to analysis of a signal transduction network. We applied the Laguerre filter with PLS regression to identify input and output (IO) relationships between MAP kinases and the products of immediate early genes (IEGs). We found that Laguerre filter with PLS regression performs better than Laguerre filter with ordinary regression for the reproduction of a time series of IEGs. Analysis of the nonlinear characteristics extracted using the Laguerre filter revealed a priming effect of ERK and CREB on c-FOS induction. Specifically, we found that the effects of a first pulse of ERK enhance the subsequent effects on c-FOS induction of treatment with a second pulse of ERK, a finding consistent with prior molecular biological knowledge. The variable importance of projections and output loadings in PLS regression predicted the upstream dependency of each IEG. Thus, a Laguerre filter with partial least square regression approach appears to be a powerful method to find the processing mechanism of temporal patterns and combination of signaling molecules by their downstream gene expression. PMID:27513954

  3. The activation of supraspinal GPR40/FFA1 receptor signalling regulates the descending pain control system

    PubMed Central

    Nakamoto, K; Nishinaka, T; Sato, N; Aizawa, F; Yamashita, T; Mankura, M; Koyama, Y; Kasuya, F; Tokuyama, S

    2015-01-01

    Background and Purpose The ω-3 polyunsaturated fatty acids exert antinociceptive effects in inflammatory and neuropathic pain; however, the underlying mechanisms remain unclear. Docosahexaenoic acid-induced antinociception may be mediated by the orphan GPR40, now identified as the free fatty acid receptor 1 (FFA1 receptor). Here, we examined the involvement of supraspinal FFA1 receptor signalling in the regulation of inhibitory pain control systems consisting of serotonergic and noradrenergic neurons. Experimental Approach Formalin-induced pain behaviours were measured in mice. Antinociception induced by FFA1 receptor agonists was examined by intrathecal injections of a catecholaminergic toxin, 5-HT lowering drug or these antagonists. The expression of FFA1 receptor protein and c-Fos was estimated by immunohistochemistry, and the levels of noradrenaline and 5-HT in the spinal cord were measured by LC-MS/MS. Key Results FFA1 receptors colocalized with NeuN (a neuron marker) in the medulla oblongata and with tryptophan hydroxylase (TPH; a serotonergic neuron marker) and dopamine β-hydroxylase (DBH; a noradrenergic neuron marker). A single i.c.v. injection of GW9508, a FFA1 receptor agonist, increased the number of c-Fos-positive cells and the number of neurons double-labelled for c-Fos and TPH and/or DBH. It decreased formalin-induced pain behaviour. This effect was inhibited by pretreatment with 6-hydroxydopamine, DL-p-chlorophenylalanine, yohimbine or WAY100635. Furthermore, GW9508 facilitated the release of noradrenaline and 5-HT in the spinal cord. In addition, GW1100, a FFA1 receptor antagonist, significantly increased formalin-induced pain-related behaviour. Conclusion and Implications Activation of the FFA1 receptor signalling pathway may play an important role in the regulation of the descending pain control system. PMID:25362997

  4. COMPARISON OF THE D1-DOPAMINE AGONIST SKF-38393 AND A-68930 IN NEONATAL 6-OHDA-LESIONED RATS: BEHAVIORAL EFFECTS AND INDUCTION OF C-FOS-LIKE IMMUNOREACTIVITY

    EPA Science Inventory

    Previous studies from this laboratory and others have found that neonatal 6-OHDA-lesioned rats exhibit profound behavioral manifestations, and significant induction of striatal c-fos-like immunoreactivity (FLI), when administered the selective D1-dopamine agonist SKF-38393. ith t...

  5. Retinoic acid and sodium butyrate suppress the cardiac expression of hypertrophic markers and proinflammatory mediators in Npr1 gene-disrupted haplotype mice.

    PubMed

    Subramanian, Umadevi; Kumar, Prerna; Mani, Indra; Chen, David; Kessler, Isaac; Periyasamy, Ramu; Raghavaraju, Giri; Pandey, Kailash N

    2016-07-01

    The objective of the present study was to examine the genetically determined differences in the natriuretic peptide receptor-A (NPRA) gene (Npr1) copies affecting the expression of cardiac hypertrophic markers, proinflammatory mediators, and matrix metalloproteinases (MMPs) in a gene-dose-dependent manner. We determined whether stimulation of Npr1 by all-trans retinoic acid (RA) and histone deacetylase (HDAC) inhibitor sodium butyric acid (SB) suppress the expression of cardiac disease markers. In the present study, we utilized Npr1 gene-disrupted heterozygous (Npr1(+/-), 1-copy), wild-type (Npr1(+/+), 2-copy), gene-duplicated (Npr1(++/+), 3-copy) mice, which were treated intraperitoneally with RA, SB, and a combination of RA/SB, a hybrid drug (HB) for 2 wk. Untreated 1-copy mice showed significantly increased heart weight-body weight (HW/BW) ratio, blood pressure, hypertrophic markers, including beta-myosin heavy chain (β-MHC) and proto-oncogenes (c-fos and c-jun), proinflammatory mediator nuclear factor kappa B (NF-κB), and MMPs (MMP-2, MMP-9) compared with 2-copy and 3-copy mice. The heterozygous (haplotype) 1-copy mice treated with RA, SB, or HB, exhibited significant reduction in the expression of β-MHC, c-fos, c-jun, NF-κB, MMP-2, and MMP-9. In drug-treated animals, the activity and expression levels of HDAC were significantly reduced and histone acetyltransferase activity and expression levels were increased. The drug treatments significantly increased the fractional shortening and reduced the systolic and diastolic parameters of the Npr1(+/-) mice hearts. Together, the present results demonstrate that a decreased Npr1 copy number enhanced the expression of hypertrophic markers, proinflammatory mediators, and MMPs, whereas an increased Npr1 repressed the cardiac disease markers in a gene-dose-dependent manner. PMID:27199456

  6. Biological markers of macrophage activation: applications for fish phagocytes.

    PubMed Central

    Enane, N A; Frenkel, K; O'Connor, J M; Squibb, K S; Zelikoff, J T

    1993-01-01

    The immune defence mechanisms of fish seem to be related and similarly competent to those of mammals. Because of this, there is an increased interest in the immune responses of fish as models for higher vertebrates in immunological/immunotoxicological studies. Macrophages (M phi), phagocytic cells of the mammalian and teleost immune system which reside in tissues, represent a quiescent population of cells. However, upon stimulation, alterations in the physiology of these resident M phi occur which can be defined in terms of activation. This study was undertaken to determine whether biological markers used to assess mammalian M phi activation are applicable for use with fish M phi. Cells were recovered from the peritoneal cavity of non-injected and Aeromonas salmonicida-injected fish, and differences between resident and elicited M phi were evaluated with respect to protein content, phagocytic competence, enzyme activities and hydrogen peroxide production. Results demonstrate that biological markers used to assess mammalian M phi activation, with the exception of acid phosphatase activity, can be used to characterize the activation state of trout M phi, and that the activation process in both fish and mammals may occur by similar mechanism(s). PMID:8244466

  7. Gastric preloads of corn oil and mineral oil produce different patterns of increases of c-Fos-like immunoreacitve cells in the brain of 9-12 day-old rats.

    PubMed

    Blumberg, Sara; Schroeder, Mariana; Malkesman, Oz; Torregrossa, Ann Marie; Smith, Gerard P; Weller, Aron

    2007-02-23

    Equivolumetric gastric preloads of corn oil and mineral oil administered to rats on postnatal day 12 (P12) inhibited intake equally during a 30-min test of independent ingestion (II), but preloads of corn oil inhibited intake significantly more than preloads of mineral oil on P15 and P18 [Weller, A., Gispan, I.H., Armony-Sivan, R., Ritter, R.C., Smith, G.P., 1997. Preloads of corn oil inhibit independent ingestion on postnatal day 15 in rats. Physiol. Behav. 62, 871-874]. It is possible that the equivalent inhibition of intake by the oil preloads on P12 resulted from the failure of the preabsorptive sensory properties of the preloads to be discriminated by peripheral or central sensory mechanisms. To investigate this possibility, we administered equivolumetric gastric preloads of 25% corn oil and 25% mineral oil to pups on P9-12 and counted the number of c-Fos-like immunoreactive (CFLI) cells in central sites that are activated by food intake and postingestive preabsortive mechanisms in adult rats and in pups on P10-11. The major result was that preloads of 25% corn oil and 25% mineral oil that produced equivalent inhibition of II intake produced differential increases of CFLI cells in the forebrain and hindbrain. Specifically, preloads of corn oil increased the number of CFLI cells in the caudal Nucleus Tractus Solitarius significantly more than preloads of mineral oil. Furthermore, preloads of corn oil increased the number of CFLI cells in the Paraventricular and Supraoptic nuclei, but preloads of mineral oil did not. This differential pattern of increases of CFLI cells is evidence that the brain discriminates the preabsorptive sensory properties of preloads of corn oil and mineral oil on P9-12. PMID:17196183

  8. Patterns of social-experience-related c-fos and Arc expression in the frontal cortices of rats exposed to saccharin or moderate levels of ethanol during prenatal brain development

    PubMed Central

    Hamilton, Derek A.; Candelaria-Cook, Felicha T.; Akers, Katherine G.; Rice, James P.; Maes, Levi I.; Rosenberg, Martina; Valenzuela, C. Fernando; Savage, Daniel D.

    2010-01-01

    Recent findings from our laboratory indicate that alterations in frontal cortex function, structural plasticity, and related social behaviors are persistent consequences of exposure to moderate levels of ethanol during prenatal brain development [24]. Fetal-ethanol-related reductions in the expression of the immediate early genes (IEGs) c-fos and Arc and alterations in dendritic spine density in ventrolateral and medial aspects of frontal cortex suggest a dissociation reminiscent of that described by Kolb et al. [38] in which these aspects of frontal cortex undergo reciprocal experience-dependent changes. In addition to providing a brief review of the available data on social behavior and frontal cortex function in fetal-ethanol-exposed rats, the present paper presents novel data on social-experience-related IEG expression in four regions of frontal cortex (Zilles LO, VLO, Fr1, Fr2) that are evaluated alongside our prior data from AID and Cg3. Social experience in normal rats was related to a distinct pattern of IEG expression in ventrolateral and medial aspects of frontal cortex, with generally greater expression observed in ventrolateral frontal cortex. In contrast, weaker expression was observed in all aspects of frontal cortex in ethanol-exposed rats, with the exception of an experience-related increase in the medial agranular cortex. Behaviors related to social investigation and wrestling/boxing were differentially correlated with patterns of activity-related IEG expression in the regions under investigation for saccharin- and ethanol-exposed rats. These observations suggest that recruitment and expression of IEGs in frontal cortex following social experience are potentially important for understanding the long-term consequences of moderate prenatal ethanol exposure on frontal cortex function, synaptic plasticity, and related behaviors. PMID:20570698

  9. Macrophage Activation Syndrome-Associated Markers in Severe Dengue.

    PubMed

    Ab-Rahman, Hasliana Azrah; Rahim, Hafiz; AbuBakar, Sazaly; Wong, Pooi-Fong

    2016-01-01

    Hemophagocytosis, a phenomenon of which activated macrophages phagocytosed hematopoietic elements was reportedly observed in severe dengue patients. In the present study, we investigated whether markers of macrophage activation syndrome (MAS) can be used as differential diagnostic markers of severe dengue. Two hundred and eight confirmed dengue patients were recruited for the study. Sandwich ELISA was used to determine serum ferritin, soluble CD163 (sCD163), and soluble CD25 (sCD25) levels. The population of circulating CD163 (mCD163) monocytes was determined using flow cytometry. Receiver operating characteristic (ROC) analysis was plotted to determine the predictive validity of the biomarkers. Serum ferritin and sCD163 were found significantly increased in severe dengue patients compared to dengue fever patients (P = 0.003). A fair area under ROC curves (AUC) at 0.72 with a significant P value of 0.004 was observed for sCD163. sCD25 and mCD163 levels were not significantly different between severe dengue and dengue fever patients. Our findings suggest that in addition to serum ferritin, sCD163 can differentiate severe dengue from that of dengue fever patients. Hence, sCD163 level can be considered for use as a predictive marker for impending severe dengue. PMID:26941578

  10. Macrophage Activation Syndrome-Associated Markers in Severe Dengue

    PubMed Central

    Ab-Rahman, Hasliana Azrah; Rahim, Hafiz; AbuBakar, Sazaly; Wong, Pooi-Fong

    2016-01-01

    Hemophagocytosis, a phenomenon of which activated macrophages phagocytosed hematopoietic elements was reportedly observed in severe dengue patients. In the present study, we investigated whether markers of macrophage activation syndrome (MAS) can be used as differential diagnostic markers of severe dengue. Two hundred and eight confirmed dengue patients were recruited for the study. Sandwich ELISA was used to determine serum ferritin, soluble CD163 (sCD163), and soluble CD25 (sCD25) levels. The population of circulating CD163 (mCD163) monocytes was determined using flow cytometry. Receiver operating characteristic (ROC) analysis was plotted to determine the predictive validity of the biomarkers. Serum ferritin and sCD163 were found significantly increased in severe dengue patients compared to dengue fever patients (P = 0.003). A fair area under ROC curves (AUC) at 0.72 with a significant P value of 0.004 was observed for sCD163. sCD25 and mCD163 levels were not significantly different between severe dengue and dengue fever patients. Our findings suggest that in addition to serum ferritin, sCD163 can differentiate severe dengue from that of dengue fever patients. Hence, sCD163 level can be considered for use as a predictive marker for impending severe dengue. PMID:26941578

  11. Whole-Brain Mapping of Neuronal Activity in the Learned Helplessness Model of Depression

    PubMed Central

    Kim, Yongsoo; Perova, Zinaida; Mirrione, Martine M.; Pradhan, Kith; Henn, Fritz A.; Shea, Stephen; Osten, Pavel; Li, Bo

    2016-01-01

    Some individuals are resilient, whereas others succumb to despair in repeated stressful situations. The neurobiological mechanisms underlying such divergent behavioral responses remain unclear. Here, we employed an automated method for mapping neuronal activity in search of signatures of stress responses in the entire mouse brain. We used serial two-photon tomography to detect expression of c-FosGFP – a marker of neuronal activation – in c-fosGFP transgenic mice subjected to the learned helplessness (LH) procedure, a widely used model of stress-induced depression-like phenotype in laboratory animals. We found that mice showing “helpless” behavior had an overall brain-wide reduction in the level of neuronal activation compared with mice showing “resilient” behavior, with the exception of a few brain areas, including the locus coeruleus, that were more activated in the helpless mice. In addition, the helpless mice showed a strong trend of having higher similarity in whole-brain activity profile among individuals, suggesting that helplessness is represented by a more stereotypic brain-wide activation pattern. This latter effect was confirmed in rats subjected to the LH procedure, using 2-deoxy-2[18F]fluoro-D-glucose positron emission tomography to assess neural activity. Our findings reveal distinct brain activity markings that correlate with adaptive and maladaptive behavioral responses to stress, and provide a framework for further studies investigating the contribution of specific brain regions to maladaptive stress responses. PMID:26869888

  12. Whole-Brain Mapping of Neuronal Activity in the Learned Helplessness Model of Depression.

    PubMed

    Kim, Yongsoo; Perova, Zinaida; Mirrione, Martine M; Pradhan, Kith; Henn, Fritz A; Shea, Stephen; Osten, Pavel; Li, Bo

    2016-01-01

    Some individuals are resilient, whereas others succumb to despair in repeated stressful situations. The neurobiological mechanisms underlying such divergent behavioral responses remain unclear. Here, we employed an automated method for mapping neuronal activity in search of signatures of stress responses in the entire mouse brain. We used serial two-photon tomography to detect expression of c-FosGFP - a marker of neuronal activation - in c-fosGFP transgenic mice subjected to the learned helplessness (LH) procedure, a widely used model of stress-induced depression-like phenotype in laboratory animals. We found that mice showing "helpless" behavior had an overall brain-wide reduction in the level of neuronal activation compared with mice showing "resilient" behavior, with the exception of a few brain areas, including the locus coeruleus, that were more activated in the helpless mice. In addition, the helpless mice showed a strong trend of having higher similarity in whole-brain activity profile among individuals, suggesting that helplessness is represented by a more stereotypic brain-wide activation pattern. This latter effect was confirmed in rats subjected to the LH procedure, using 2-deoxy-2[18F]fluoro-D-glucose positron emission tomography to assess neural activity. Our findings reveal distinct brain activity markings that correlate with adaptive and maladaptive behavioral responses to stress, and provide a framework for further studies investigating the contribution of specific brain regions to maladaptive stress responses. PMID:26869888

  13. Interplay among Drosophila transcription factors Ets21c, Fos and Ftz-F1 drives JNK-mediated tumor malignancy.

    PubMed

    Külshammer, Eva; Mundorf, Juliane; Kilinc, Merve; Frommolt, Peter; Wagle, Prerana; Uhlirova, Mirka

    2015-10-01

    Cancer initiation and maintenance of the transformed cell state depend on altered cellular signaling and aberrant activities of transcription factors (TFs) that drive pathological gene expression in response to cooperating genetic lesions. Deciphering the roles of interacting TFs is therefore central to understanding carcinogenesis and for designing cancer therapies. Here, we use an unbiased genomic approach to define a TF network that triggers an abnormal gene expression program promoting malignancy of clonal tumors, generated in Drosophila imaginal disc epithelium by gain of oncogenic Ras (Ras(V12)) and loss of the tumor suppressor Scribble (scrib(1)). We show that malignant transformation of the ras(V12)scrib(1) tumors requires TFs of distinct families, namely the bZIP protein Fos, the ETS-domain factor Ets21c and the nuclear receptor Ftz-F1, all acting downstream of Jun-N-terminal kinase (JNK). Depleting any of the three TFs improves viability of tumor-bearing larvae, and this positive effect can be enhanced further by their combined removal. Although both Fos and Ftz-F1 synergistically contribute to ras(V12)scrib(1) tumor invasiveness, only Fos is required for JNK-induced differentiation defects and Matrix metalloprotease (MMP1) upregulation. In contrast, the Fos-dimerizing partner Jun is dispensable for JNK to exert its effects in ras(V12)scrib(1) tumors. Interestingly, Ets21c and Ftz-F1 are transcriptionally induced in these tumors in a JNK- and Fos-dependent manner, thereby demonstrating a hierarchy within the tripartite TF network, with Fos acting as the most upstream JNK effector. Of the three TFs, only Ets21c can efficiently substitute for loss of polarity and cooperate with Ras(V12) in inducing malignant clones that, like ras(V12)scrib(1) tumors, invade other tissues and overexpress MMP1 and the Drosophila insulin-like peptide 8 (Dilp8). While ras(V12)ets21c tumors require JNK for invasiveness, the JNK activity is dispensable for their growth. In

  14. Interplay among Drosophila transcription factors Ets21c, Fos and Ftz-F1 drives JNK-mediated tumor malignancy

    PubMed Central

    Külshammer, Eva; Mundorf, Juliane; Kilinc, Merve; Frommolt, Peter; Wagle, Prerana; Uhlirova, Mirka

    2015-01-01

    ABSTRACT Cancer initiation and maintenance of the transformed cell state depend on altered cellular signaling and aberrant activities of transcription factors (TFs) that drive pathological gene expression in response to cooperating genetic lesions. Deciphering the roles of interacting TFs is therefore central to understanding carcinogenesis and for designing cancer therapies. Here, we use an unbiased genomic approach to define a TF network that triggers an abnormal gene expression program promoting malignancy of clonal tumors, generated in Drosophila imaginal disc epithelium by gain of oncogenic Ras (RasV12) and loss of the tumor suppressor Scribble (scrib1). We show that malignant transformation of the rasV12scrib1 tumors requires TFs of distinct families, namely the bZIP protein Fos, the ETS-domain factor Ets21c and the nuclear receptor Ftz-F1, all acting downstream of Jun-N-terminal kinase (JNK). Depleting any of the three TFs improves viability of tumor-bearing larvae, and this positive effect can be enhanced further by their combined removal. Although both Fos and Ftz-F1 synergistically contribute to rasV12scrib1 tumor invasiveness, only Fos is required for JNK-induced differentiation defects and Matrix metalloprotease (MMP1) upregulation. In contrast, the Fos-dimerizing partner Jun is dispensable for JNK to exert its effects in rasV12scrib1 tumors. Interestingly, Ets21c and Ftz-F1 are transcriptionally induced in these tumors in a JNK- and Fos-dependent manner, thereby demonstrating a hierarchy within the tripartite TF network, with Fos acting as the most upstream JNK effector. Of the three TFs, only Ets21c can efficiently substitute for loss of polarity and cooperate with RasV12 in inducing malignant clones that, like rasV12scrib1 tumors, invade other tissues and overexpress MMP1 and the Drosophila insulin-like peptide 8 (Dilp8). While rasV12ets21c tumors require JNK for invasiveness, the JNK activity is dispensable for their growth. In conclusion, our study

  15. Conformation of the c-Fos/c-Jun Complex In Vivo: A Combined FRET, FCCS, and MD-Modeling Study

    PubMed Central

    Vámosi, György; Baudendistel, Nina; von der Lieth, Claus-Wilhelm; Szalóki, Nikoletta; Mocsár, Gábor; Müller, Gabriele; Brázda, Péter; Waldeck, Waldemar; Damjanovich, Sándor; Langowski, Jörg; Tóth, Katalin

    2008-01-01

    The activator protein-1 transcription factor is a heterodimer containing one of each of the Fos and Jun subfamilies of basic-region leucine-zipper proteins. We have previously shown by fluorescence cross-correlation spectroscopy (FCCS) that the fluorescent fusion proteins Fos-EGFP and Jun-mRFP1, cotransfected in HeLa cells, formed stable complexes in situ. Here we studied the relative position of the C-terminal domains via fluorescence resonance energy transfer (FRET) measured by flow cytometry and confocal microscopy. To get a more detailed insight into the conformation of the C-terminal domains of the complex we constructed C-terminal labeled full-length and truncated forms of Fos. We developed a novel iterative evaluation method to determine accurate FRET efficiencies regardless of relative protein expression levels, using a spectral- or intensity-based approach. The full-length C-terminal-labeled Jun and Fos proteins displayed a FRET-measured average distance of 8 ± 1 nm. Deletion of the last 164 amino acids at the C-terminus of Fos resulted in a distance of 6.1 ± 1 nm between the labels. FCCS shows that Jun-mRFP1 and the truncated Fos-EGFP also interact stably in the nucleus, although they bind to nuclear components with lower affinity. Thus, the C-terminal end of Fos may play a role in the stabilization of the interaction between activator protein-1 and DNA. Molecular dynamics simulations predict a dye-to-dye distance of 6.7 ± 0.1 nm for the dimer between Jun-mRFP1 and the truncated Fos-EGFP, in good agreement with our FRET data. A wide variety of models could be developed for the full-length dimer, with possible dye-to-dye distances varying largely between 6 and 20 nm. However, from our FRET results we can conclude that more than half of the occurring dye-to-dye distances are between 6 and 10 nm. PMID:18065450

  16. Mapping social behavior-induced brain activation at cellular resolution in the mouse

    PubMed Central

    Kim, Yongsoo; Venkataraju, Kannan Umadevi; Pradhan, Kith; Mende, Carolin; Taranda, Julian; Turaga, Srinivas C.; Arganda-Carreras, Ignacio; Ng, Lydia; Hawrylycz, Michael J.; Rockland, Kathleen; Seung, H. Sebastian; Osten, Pavel

    2014-01-01

    Understanding how brain activation mediates behaviors is a central goal of systems neuroscience. Here we apply an automated method for mapping brain activation in the mouse in order to probe how sex-specific social behaviors are represented in the male brain. Our method uses the immediate early gene c-fos, a marker of neuronal activation, visualized by serial two-photon tomography: the c-fos-GFP-positive neurons are computationally detected, their distribution is registered to a reference brain and a brain atlas, and their numbers are analyzed by statistical tests. Our results reveal distinct and shared female and male interaction-evoked patterns of male brain activation representing sex discrimination and social recognition. We also identify brain regions whose degree of activity correlates to specific features of social behaviors and estimate the total numbers and the densities of activated neurons per brain areas. Our study opens the door to automated screening of behavior-evoked brain activation in the mouse. PMID:25558063

  17. Exposure of nerve growth factor-treated PC12 rat pheochromocytoma cells to a modulated radiofrequency field at 836.55 MHz: effects on c-jun and c-fos expression.

    PubMed

    Ivaschuk, O I; Jones, R A; Ishida-Jones, T; Haggren, W; Adey, W R; Phillips, J L

    1997-01-01

    Rat PC12 pheochromocytoma cells have been treated with nerve growth factor and then exposed to athermal levels of a packet-modulated radiofrequency field at 836.55 MHz. This signal was produced by a prototype time-domain multiple-access (TDMA) transmitter that conforms to the North American digital cellular telephone standard. Three slot average power densities were used: 0.09, 0.9, and 9 mW/cm2. Exposures were for 20, 40, and 60 min and included an intermittent exposure regimen (20 min on/20 min off), resulting in total incubation times of 20, 60, and 100 min, respectively. Concurrent controls were sham exposed. After extracting total cellular RNA, Northern blot analysis was used to assess the expression of the immediate early genes, c-fos and c-jun, in all cell populations. No change in c-fos transcript levels were detected after 20 min exposure at each field intensity (20 min was the only time period at which c-fos message could be detected consistently). Transcript levels for c-jun were altered only after 20 min exposure to 9 mW/cm2 (average 38% decrease). PMID:9096840

  18. Early systemic sclerosis: marker autoantibodies and videocapillaroscopy patterns are each associated with distinct clinical, functional and cellular activation markers

    PubMed Central

    2013-01-01

    Introduction Early systemic sclerosis (SSc) is characterized by Raynaud's phenomenon together with scleroderma marker autoantibodies and/or a scleroderma pattern at capillaroscopy and no other distinctive feature of SSc. Patients presenting with marker autoantibodies plus a capillaroscopic scleroderma pattern seem to evolve into definite SSc more frequently than patients with either feature. Whether early SSc patients with only marker autoantibodies or capillaroscopic positivity differ in any aspect at presentation is unclear. Methods Seventy-one consecutive early SSc patients were investigated for preclinical cardiopulmonary alterations. Out of these, 44 patients and 25 controls affected by osteoarthritis or primary fibromyalgia syndrome were also investigated for serum markers of fibroblast (carboxyterminal propeptide of collagen I), endothelial (soluble E-selectin) and T-cell (soluble IL-2 receptor alpha) activation. Results Thirty-two of the 71 patients (45.1%) had both a marker autoantibody and a capillaroscopic scleroderma pattern (subset 1), 16 patients (22.5%) had only a marker autoantibody (subset 2), and 23 patients (32.4%) had only a capillaroscopic scleroderma pattern (subset 3). Patients with marker autoantibodies (n = 48, 67.6%) had a higher prevalence of impaired diffusing lung capacity for carbon monoxide (P = 0.0217) and increased serum levels of carboxyterminal propeptide of collagen I (P = 0.0037), regardless of capillaroscopic alterations. Patients with a capillaroscopic scleroderma pattern (n = 55, 77.5%) had a higher prevalence of puffy fingers (P = 0.0001) and increased serum levels of soluble E-selectin (P = 0.0003) regardless of marker autoantibodies. Conclusion These results suggest that the autoantibody and microvascular patterns in early SSc may each be related to different clinical-preclinical features and circulating activation markers at presentation. Longitudinal studies are warranted to investigate whether these subsets undergo a

  19. Exposure to Advertisement Calls of Reproductive Competitors Activates Vocal-Acoustic and Catecholaminergic Neurons in the Plainfin Midshipman Fish, Porichthys notatus

    PubMed Central

    Petersen, Christopher L.; Timothy, Miky; Kim, D. Spencer; Bhandiwad, Ashwin A.; Mohr, Robert A.; Sisneros, Joseph A.; Forlano, Paul M.

    2013-01-01

    While the neural circuitry and physiology of the auditory system is well studied among vertebrates, far less is known about how the auditory system interacts with other neural substrates to mediate behavioral responses to social acoustic signals. One species that has been the subject of intensive neuroethological investigation with regard to the production and perception of social acoustic signals is the plainfin midshipman fish, Porichthys notatus, in part because acoustic communication is essential to their reproductive behavior. Nesting male midshipman vocally court females by producing a long duration advertisement call. Females localize males by their advertisement call, spawn and deposit all their eggs in their mate’s nest. As multiple courting males establish nests in close proximity to one another, the perception of another male’s call may modulate individual calling behavior in competition for females. We tested the hypothesis that nesting males exposed to advertisement calls of other males would show elevated neural activity in auditory and vocal-acoustic brain centers as well as differential activation of catecholaminergic neurons compared to males exposed only to ambient noise. Experimental brains were then double labeled by immunofluorescence (-ir) for tyrosine hydroxylase (TH), an enzyme necessary for catecholamine synthesis, and cFos, an immediate-early gene product used as a marker for neural activation. Males exposed to other advertisement calls showed a significantly greater percentage of TH-ir cells colocalized with cFos-ir in the noradrenergic locus coeruleus and the dopaminergic periventricular posterior tuberculum, as well as increased numbers of cFos-ir neurons in several levels of the auditory and vocal-acoustic pathway. Increased activation of catecholaminergic neurons may serve to coordinate appropriate behavioral responses to male competitors. Additionally, these results implicate a role for specific catecholaminergic neuronal groups

  20. Exposure to advertisement calls of reproductive competitors activates vocal-acoustic and catecholaminergic neurons in the plainfin midshipman fish, Porichthys notatus.

    PubMed

    Petersen, Christopher L; Timothy, Miky; Kim, D Spencer; Bhandiwad, Ashwin A; Mohr, Robert A; Sisneros, Joseph A; Forlano, Paul M

    2013-01-01

    While the neural circuitry and physiology of the auditory system is well studied among vertebrates, far less is known about how the auditory system interacts with other neural substrates to mediate behavioral responses to social acoustic signals. One species that has been the subject of intensive neuroethological investigation with regard to the production and perception of social acoustic signals is the plainfin midshipman fish, Porichthys notatus, in part because acoustic communication is essential to their reproductive behavior. Nesting male midshipman vocally court females by producing a long duration advertisement call. Females localize males by their advertisement call, spawn and deposit all their eggs in their mate's nest. As multiple courting males establish nests in close proximity to one another, the perception of another male's call may modulate individual calling behavior in competition for females. We tested the hypothesis that nesting males exposed to advertisement calls of other males would show elevated neural activity in auditory and vocal-acoustic brain centers as well as differential activation of catecholaminergic neurons compared to males exposed only to ambient noise. Experimental brains were then double labeled by immunofluorescence (-ir) for tyrosine hydroxylase (TH), an enzyme necessary for catecholamine synthesis, and cFos, an immediate-early gene product used as a marker for neural activation. Males exposed to other advertisement calls showed a significantly greater percentage of TH-ir cells colocalized with cFos-ir in the noradrenergic locus coeruleus and the dopaminergic periventricular posterior tuberculum, as well as increased numbers of cFos-ir neurons in several levels of the auditory and vocal-acoustic pathway. Increased activation of catecholaminergic neurons may serve to coordinate appropriate behavioral responses to male competitors. Additionally, these results implicate a role for specific catecholaminergic neuronal groups in

  1. Comparable reduction in Zif268 levels and cytochrome oxidase activity in the retrosplenial cortex following mammillothalamic tract lesions.

    PubMed

    Frizzati, Aura; Milczarek, Michal M; Sengpiel, Frank; Thomas, Kerrie L; Dillingham, Christopher M; Vann, Seralynne D

    2016-08-25

    Damage to the mammillothalamic tract (MTT) produces memory impairments in both humans and rats, yet it is still not clear why this diencephalic pathway is vital for memory. One suggestion is that it is an important route for midbrain inputs to reach a wider cortical and subcortical network that supports memory. Consistent with this idea, MTT lesions produce widespread hypoactivity in distal brain regions as measured by the immediate-early gene, c-fos. To determine whether these findings were selective to c-fos or reflected more general changes in neuronal function, we assessed the effects of MTT lesions on the expression of the immediate-early gene protein, Zif268 and the metabolic marker, cytochrome oxidase, in the retrosplenial cortex and hippocampus. The lesions decreased levels of both activity markers in the superficial and deep layers of the retrosplenial cortex in both its granular and dysgranular subregions. In contrast, no significant changes were observed in the hippocampus, despite the MTT-lesioned animals showing marked impairments on T-maze alternation. These findings are consistent with MTT lesions providing important, indirect inputs for normal retrosplenial cortex functioning. These distal functional changes may contribute to the memory impairments observed after MTT lesions. PMID:27233617

  2. IL-2 Expression in Activated Human Memory FOXP3+ Cells Critically Depends on the Cellular Levels of FOXP3 as Well as of Four Transcription Factors of  T Cell Activation

    PubMed Central

    Bendfeldt, Hanna; Benary, Manuela; Scheel, Tobias; Steinbrink, Kerstin; Radbruch, Andreas; Herzel, Hanspeter; Baumgrass, Ria

    2012-01-01

    The human CD4+FOXP3+ T cell population is heterogeneous and consists of various subpopulations which remain poorly defined. Anergy and suppression are two main functional characteristics of FOXP3+Treg cells. We used the anergic behavior of FOXP3+Treg cells for a better discrimination and characterization of such subpopulations. We compared IL-2-expressing with IL-2-non-expressing cells within the memory FOXP3+ T cell population. In contrast to IL-2-non-expressing FOXP3+ cells, IL-2-expressing FOXP3+ cells exhibit intermediate characteristics of Treg and Th cells concerning the Treg cell markers CD25, GITR, and Helios. Besides lower levels of FOXP3, they also have higher levels of the transcription factors NFATc2, c-Fos, NF-κBp65, and c-Jun. An approach combining flow cytometric measurements with statistical interpretation for quantitative transcription factor analysis suggests that the physiological expression levels not only of FOXP3 but also of NFATc2, c-Jun, c-Fos, and NF-κBp65 are limiting for the decision whether IL-2 is expressed or not in activated peripheral human memory FOXP3+ cells. These findings demonstrate that concomitant high levels of NFATc2, c-Jun, c-Fos, and NF-κBp65 lead in addition to potential IL-2 expression in those FOXP3+ cells with low levels of FOXP3. We hypothesize that not only the level of FOXP3 expression but also the amounts of the four transcription factors studied represent determining factors for the anergic phenotype of FOXP3+ Treg cells. PMID:22969764

  3. The association of thirst, sodium appetite and vasopressin release with c-fos expression in the forebrain of the rat after intracerebroventricular injection of angiotensin II, angiotensin-(1-7) or carbachol.

    PubMed

    Mahon, J M; Allen, M; Herbert, J; Fitzsimons, J T

    1995-11-01

    The effect intracerebroventricular injections of angiotensin II (0.1 nm), angiotensin-(1-7) (1 or 100 nm) and carbachol (500 ng) on c-fos expression was examined in the forebrain of Lister hooded rats. Intense staining of the c-Fos protein was found in the median preoptic nucleus, organum vasculosum of the lamina terminalis, subfornical organ, paraventricular nucleus and supraoptic nucleus after angiotensin II and carbachol Angiotensin II caused significantly more c-fos expression in the ventral median preoptic nucleus and organum vasculosum of the lamina terminalis than carbachol, whereas in the paraventricular and supraoptic nuclei this was reversed, with carbachol having a greater effect on c-fos expression in these areas. Angiotensin-(1-7), however, only induced c-Fos protein in the organum vasculosum of the lamina terminalis and median preoptic nucleus with the number and the intensity of staining of the nuclei significantly less in both areas than after angiotensin II or carbachol. Separate groups of Lister rats were given i.c.v. injections of the same substances at the same doses, but excluding the lower dose of angiotensin-(1-7), and the intakes of water and 1.8% NaCl over 60 min were measured. Angiotensin II stimulated intakes of both water and NaCl. The effect on water intake was almost immediate (<1 min), whereas NaCl intake did not usually start until at least 5 min after injection. Over 60 min, water (12.4 +/- 1.0 ml) and NaCl (4.2 +/- 0.9 ml) intakes were significantly greater than water (1.1 +/- 0.2 ml) and NaCl (0.6 +/- 0.5 ml) intakes of the controls. Carbachol caused less drinking than angiotensin II, the water intake over 60 min being significantly less (4.8 +/- 0.7 ml) and the latency of response greater (>5 min). Carbachol, unlike angiotensin II, had little effect on NaCl intake (0.7 +/- 0.4 ml). Angiotensin-(1-7) had no effect on water (1.1 +/- 0.3 ml) or NaCl (0.3 +/- 0.3 ml) intakes. The plasma levels of vasopressin were measured after i

  4. Topical application of preparations containing DNA repair enzymes prevents ultraviolet-induced telomere shortening and c-FOS proto-oncogene hyperexpression in human skin: an experimental pilot study.

    PubMed

    Emanuele, Enzo; Altabas, Velimir; Altabas, Karmela; Berardesca, Enzo

    2013-09-01

    The exposure to ultraviolet radiation (UVR) is one of the most important risk factors for skin aging and increases the risk of malignant transformation. Telomere shortening and an altered expression of the proto-oncogene c-FOS are among the key molecular mechanisms associated with photoaging and tumorigenesis. Photolyase from A. nidulans and endonuclease from M. luteus are xenogenic DNA repair enzymes which can reverse the molecular events associated with skin aging and carcinogenosis caused by UVR exposure. Therefore, the purpose of this study was to investigate whether the topical application of preparations containing DNA repair enzymes may prevent UVR-induced acute telomere shortening and FOS gene hyperexpression in human skin biopsies. Twelve volunteers (Fitzpatrick skin types I and II) were enrolled for this experimental study, and six circular areas (10 mm diameter) were marked out on the nonexposed lower back of each participant. One site was left untreated (site 1: negative control), whereas the remaining five sites (designated sites 2-6) were exposed to solar-simulated UVR at 3 times the MED on four consecutive days. Site 2 received UVR only (site 2: positive control), whereas the following products were applied to sites 3-6, respectively: vehicle (moisturizer base cream; applied both 30 minutes before and immediately after each irradiation; site 3); a traditional sunscreen (SS, SPF 50) 30 minutes before irradiation and a vehicle immediately after irradiation (site 4); a SS 30 minutes before irradiation and an endonuclease preparation immediately after irradiation (site 5); a SS plus photolyase 30 minutes before irradiation and an endonuclease preparation immediately after irradiation (site 6). Skin biopsies were taken 24 h after the last irradiation. The degree of telomere shortening and c-FOS gene expression were measured in all specimens. Strikingly, the combined use of a SS plus photolyase 30 minutes before irradiation and an endonuclease preparation

  5. Sex Differences in Activation of the Hypothalamic-Pituitary-Adrenal Axis by Methamphetamine

    PubMed Central

    Zuloaga, Damian G; Johnson, Lance A; Agam, Maayan; Raber, Jacob

    2014-01-01

    Dysregulation of hypothalamic-pituitary-adrenal (HPA) axis activation is associated with changes in addiction-related behaviors. In this study we tested whether sex differences in the acute effects of methamphetamine (MA) exposure involve differential activation of the HPA axis. Male and female mice were injected with MA (1mg/kg) or saline for comparison of plasma corticosterone and analysis of the immediate early gene c-Fos in brain. There was a prolonged elevation in corticosterone levels in female compared to male mice. C-Fos was elevated in both sexes following MA in HPA axis-associated regions, including the hypothalamic paraventricular nucleus (PVN), central amygdala, cingulate, and CA3 hippocampal region. MA increased the number of c-Fos and c-Fos/glucocorticoid receptor (GR) dual-labeled cells to a greater extent in males than females in the cingulate and CA3 regions. MA also increased the number of c-fos/vasopressin dual-labeled cells in the PVN as well as the number and percentage of c-Fos/GR dual-labeled cells in the PVN and central amygdala, although no sex differences in dual-labeling were found in these regions. Thus, sex differences in MA-induced plasma corticosterone levels and activation of distinct brain regions and proteins involved in HPA axis regulation may contribute to sex differences in acute effects of MA on the brain. PMID:24400874

  6. Brainstem metabotropic glutamate receptors reduce food intake and activate dorsal pontine and medullar structures after peripheral bacterial lipopolysaccharide administration.

    PubMed

    Chaskiel, Léa; Paul, Flora; Gerstberger, Rüdiger; Hübschle, Thomas; Konsman, Jan Pieter

    2016-08-01

    During infection-induced inflammation food intake is reduced. Vagal and brainstem pathways are important both in feeding regulation and immune-to-brain communication. Glutamate is released by vagal afferent terminals in the nucleus of the solitary tract and by its neurons projecting to the parabrachial nuclei. We therefore studied the role of brainstem glutamate receptors in spontaneous food intake of healthy animals and during sickness-associated hypophagia after peripheral administration of bacterial lipopolysaccharides or interleukin-1beta. Brainstem group I and II metabotropic, but not ionotropic, glutamate receptor antagonism increased food intake both in saline- and lipopolysaccharide-treated rats. In these animals, expression of the cellular activation marker c-Fos in the lateral parabrachial nuclei and lipopolysaccharide-induced activation of the nucleus of the solitary tract rostral to the area postrema were suppressed. Group I metabotropic glutamate receptors did not colocalize with c-Fos or neurons regulating gastric function in these structures. Group I metabotropic glutamate receptors were, however, found on raphé magnus neurons that were part of the brainstem circuit innervating the stomach and on trigeminal and hypoglossal motor neurons. In conclusion, our findings show that brainstem metabotropic glutamate receptors reduce food intake and activate the lateral parabrachial nuclei as well as the rostral nucleus of the solitary tract after peripheral bacterial lipopolysaccharide administration. They also provide insight into potential group I metabotropic glutamate receptor-dependent brainstem circuits mediating these effects. PMID:27016016

  7. Exposure of nerve growth factor-treated PC12 rat pheochromocytoma cells to a modulated radiofrequency field at 836.55 MHz: Effects on c-jun and c-fos expression

    SciTech Connect

    Ivaschuk, O.I.; Jones, R.A.; Ishida-Jones, T.; Haggren, W.; Adey, W.R.; Phillips, J.L.

    1997-05-01

    Rat PC12 pheochromocytoma cells have been treated with nerve growth factor and then exposed to athermal levels of a packet-modulated radiofrequency field at 836.55 MHz. This signal was produced by a prototype time-domain multiple-access (TDMA) transmitter that conforms to the North American digital cellular telephone standard. Three slot average power densities were used: 0.09, 0.9, and 9 mW/cm{sup 2}. Exposures were for 20, 40, and 60 min and included an intermittent exposure regime, resulting in total incubation times of 20, 60, and 100 min, respectively. Concurrent controls were sham exposed. After extracting total cellular RNA, Northern blot analysis was used to assess the expression of the immediate early genes, c-fos and c-jun, in all cell populations. No change in c-fos transcript levels were detected after 20 min exposure at each field intensity. Transcript levels for c-jun were altered only after 20 min exposure to 9 mW/cm{sup 2}. 51 refs., 2 tabs.

  8. The distribution of C-Fos protein immunolabeled cells in the spinal cord of the rat after electrical and noxious thermal stimulation following sciatic nerve crush, or transection and repair.

    PubMed

    Hongpaisan, J; Molander, C

    1993-01-01

    The distribution of stimulus evoked Fos protein-like immunoreactivity in spinal cord neurons was studied in adult rats at different survival times after sciatic nerve crush or transection and epineural repair. Fos protein-like immunoreactivity was induced either by electrical stimulation of the sciatic nerve central to the injury, at C-fiber strength, at 21, 39, and 92 days post-lesion, or by noxious heat applied to the skin of the hind paw 92 days post-lesion. The contralateral uninjured side served as control. The results with electrical stimulation showed, with some exceptions, that the distribution of c-fos expressing cells in the spinal cord on the normal and on the previously injured side were similar after both crush and transection with repair. The main finding was an up-regulation of the number of Fos protein immunoreactive neurons in the inner portion of Rexed's lamina II. The results following heat stimulation 92 days post-lesion showed a decrease in the number of labeled neurons in most laminae after both types of injury. This was more pronounced in cases with sciatic nerve transection with repair compared to cases with crush. The results indicate time-dependent alterations in the distribution of stimulus evoked c-fos expression in spinal cord neurons during regeneration after nerve injury. Furthermore, the results from heat stimulation may indicate a slower and perhaps more incomplete restoration process after transection with repair than after crush. PMID:21551711

  9. Fos and serotonin immunoreactivity in the raphe nuclei of the cat during carbachol-induced active sleep: a double-labeling study.

    PubMed

    Yamuy, J; Sampogna, S; López-Rodríguez, F; Luppi, P H; Morales, F R; Chase, M H

    1995-07-01

    The microinjection of carbachol into the nucleus pontis oralis produces a state which is polygraphically and behaviorally similar to active sleep (rapid eye movement sleep). In the present study, using double-labeling techniques for serotonin and the protein product of c-fos (Fos), we sought to examine whether immunocytochemically identified serotonergic neurons of the raphe nuclei of the cat were activated, as indicated by their expression of c-fos, during this pharmacologically-induced behavioral state (active sleep-carbachol). Compared with control cats, which were injected with saline, active sleep-carbachol cats exhibited a significantly greater number of c-fos-expressing neurons in the raphe dorsalis, magnus and pallidus. Whereas most of the c-fos-expressing neurons in the raphe dorsalis were small, those in the raphe magnus were medium-sized and in the raphe pallidus they were small and medium-sized. The mean number of serotonergic neurons that expressed c-fos (i.e. double-labeled cells) was similar in control and active sleep-carbachol cats. These data indicate that there is an increased number of non-serotonergic, c-fos-expressing neurons in the raphe dorsalis, magnus and pallidus during the carbachol-induced state.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7477901

  10. Cuneiform neurons activated during cholinergically induced active sleep in the cat.

    PubMed

    Pose, I; Sampogna, S; Chase, M H; Morales, F R

    2000-05-01

    In the present study, we report that the cuneiform (Cun) nucleus, a brainstem structure that before now has not been implicated in sleep processes, exhibits a large number of neurons that express c-fos during carbachol-induced active sleep (AS-carbachol). Compared with control (awake) cats, during AS-carbachol, there was a 671% increase in the number of neurons that expressed c-fos in this structure. Within the Cun nucleus, three immunocytochemically distinct populations of neurons were observed. One group consisted of GABAergic neurons, which predominantly did not express c-fos during AS-carbachol. Two other different populations expressed c-fos during this state. One of the Fos-positive (Fos(+)) populations consisted of a distinct group of nitric oxide synthase (NOS)-NADPH-diaphorase (NADPH-d)-containing neurons; the neurotransmitter of the other Fos(+) population remains unknown. The Cun nucleus did not contain cholinergic, catecholaminergic, serotonergic, or glycinergic neurons. On the basis of neuronal activation during AS-carbachol, as indicated by c-fos expression, we suggest that the Cun nucleus is involved, in an as yet unknown manner, in the physiological expression of active sleep. The finding of a population of NOS-NADPH-d containing neurons, which were activated during AS-carbachol, suggests that nitrergic modulation of their target cell groups is likely to play a role in active sleep-related physiological processes. PMID:10777795

  11. Identification of Neutrophil Activation Markers as Novel Surrogate Markers of CF Lung Disease

    PubMed Central

    Hage, Lisa; Kügler, Marion; Menendez, Katrin; Naehrlich, Lutz; Schulz, Richard; Roderfeld, Martin; Roeb, Elke

    2014-01-01

    Background and aims Cystic Fibrosis (CF) lung disease is characterized by progressively declining lung function and represents a major factor contributing to the high morbidity and mortality associated with CF. However, apart from spirometry, respiratory disease surrogate markers reliably indicating CF lung disease and the occurrence of pulmonary exacerbations (PEx) are still lacking. Within this study, we aimed to identify new experimental biomarkers for the detection of CF lung disease. Methods 54 adult and 26 pediatric CF patients were included in the study and serum concentrations of MMP-1, -2, -8, -9, -13, TIMP-1, TIMP-2, YKL-40, hyaluronic acid, procollagen III peptide were quantified by ELISA. CF lung disease was diagnosed by lung function test, PEx was defined based on a clinical scoring established by Rosenfeld in 2001. Results Adults and children with moderate to severe CF lung disease exhibited significantly increased serum expression of MMP-8, MMP-9, YKL-40 and TIMP-1. Further, MMP-8, MMP-9 and YKL-40 were significantly increased in adult CF patients suffering from PEx compared to those without clinical signs of respiratory exacerbation. MMP-8, MMP-9, YKL-40, and TIMP-1 serum levels were unaffected by the presence or absence of CF liver disease or pancreatic insufficiency. Conclusions MMP-8, MMP-9, and YKL-40 might serve as novel non-invasive biomarkers of CF lung disease and PEx. PMID:25545245

  12. Hepatocyte growth factor-stimulated renal tubular mitogenesis: effects on expression of c-myc, c-fos, c-met, VEGF and the VHL tumour-suppressor and related genes.

    PubMed Central

    Clifford, S. C.; Czapla, K.; Richards, F. M.; O'Donoghue, D. J.; Maher, E. R.

    1998-01-01

    Hepatocyte growth factor (HGF/SF) is a potent renal proximal tubular cell (PTEC) mitogen involved in renal development. HGF/SF is the functional ligand for the c-met proto-oncogene, and germline c-met mutations are associated with familial papillary renal cell carcinoma. Somatic von Hippel-Lindau disease tumour-suppressor gene (VHL) mutations are frequently detected in sporadic clear cell renal cell carcinomas (RCC), and germline VHL mutations are the commonest cause of familial clear cell RCC. pVHL binds to the positive regulatory components of the trimeric elongin (SIII) complex (elongins B and C) and has been observed to deregulate expression of the vascular endothelial growth factor (VEGF) gene. HGF/SF has similarly been reported to up-regulate expression of the VEGF gene in non-renal experimental systems. To investigate the mechanism of HGF/SF action in PTECs and, specifically, to examine potential interactions between the HGF/c-met and the VHL-mediated pathways for renal tubular growth control, we have isolated untransformed PTECs from normal kidneys, developed conditions for their culture in vitro and used these cells to investigate changes in mRNA levels of the VHL, elongin A, B and C, VEGF, c-myc, c-fos and c-met genes after HGF/SF exposure. Significant elevations in the mRNA levels of VEGF, c-myc, c-fos, c-met and elongins A, B and C, but not VHL, were detected after HGF/SF stimulation of human PTECs (P < 0.02), with a consistent order of peak levels observed over successive replicates (c-fos at 1 h, VEGF at 2-4 h, c-myc, at 4 h, followed by c-met and all three elongin subunits at 8 h). This study highlights the spectrum of changes in gene expression observed in PTECs after HGF/SF stimulation and has identified possible candidate mediators of the HGF/SF-induced mitogenic response. Our evidence would suggest that the changes in PTEC VEGF expression induced by HGF/SF are mediated by a VHL-independent pathway. Images Figure 1 PMID:9652757

  13. Disruption of the CREBBP gene and decreased expression of CREB, NFκB p65, c-JUN, c-FOS, BCL2 and c-MYC suggest immune dysregulation.

    PubMed

    Torres, Leuridan Cavalcante; Kulikowski, Leslie Domenici; Ramos, Patrícia Locosque; Sugayama, Sofia Mizuko Miura; Moreira-Filho, Carlos Alberto; Carneiro-Sampaio, Magda

    2013-08-01

    Genomic aberrations in the CREBBP (CREB-binding protein - CREBBP or CBP) gene such as point mutations, small insertions or exonic copy number changes are usually associated with Rubinstein-Taybi syndrome (RTs). In this study, the disruption of the CREBBP gene on chromosome 16p13.3, as revealed by CGH-array and FISH, suggests immune dysregulation in a patient with the Rubinstein Taybi syndrome (RTs) phenotype. Further investigation with Western blot techniques demonstrated decreased expression of CREB, NFκB, c-Jun, c-Fos, BCL2 and cMyc in peripheral blood mononuclear cells, thus indicating that the CREBBP gene is essential for the normal expression of these proteins and the regulation of immune responses. PMID:23643710

  14. 78 FR 21008 - Proposed Information Collection (NCA Customer Satisfaction Surveys (Headstone/Marker) Activity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... AFFAIRS Proposed Information Collection (NCA Customer Satisfaction Surveys (Headstone/Marker) Activity... solicits comments on the burden estimates relating to customer satisfaction surveys involving the National... information technology. Title: Generic Clearance for NCA, and IG Customer Satisfaction Surveys. OMB...

  15. 78 FR 38809 - Agency Information Collection (NCA Customer Satisfaction Surveys (Headstone/Marker)) Activity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ... AFFAIRS Agency Information Collection (NCA Customer Satisfaction Surveys (Headstone/Marker)) Activity....'' SUPPLEMENTARY INFORMATION: Title: Generic Clearance for NCA, and IG Customer Satisfaction Surveys. OMB Control... 12862, Setting Customer Service Standards, requires Federal agencies and Departments to identify...

  16. EEG markers for characterizing anomalous activities of cerebral neurons in NAT (neuronal activity topography) method.

    PubMed

    Musha, Toshimitsu; Matsuzaki, Haruyasu; Kobayashi, Yohei; Okamoto, Yoshiwo; Tanaka, Mieko; Asada, Takashi

    2013-08-01

    A pair of markers, sNAT and vNAT, is derived from the electroencephalogram (EEG) power spectra (PS) recorded for 5 min with 21 electrodes (4-20 Hz) arranged according to the 10-20 standard. These markers form a new diagnosis tool "NAT" aiming at characterizing various brain disorders. Each signal sequence is divided into segments of 0.64 s and its discrete PS consists of eleven frequency components from 4.68 (3 × 1.56) Hz through 20.34 (13 × 1.56) Hz. PS is normalized to its mean and the bias of PS components on each frequency component across the 21 signal channels is reset to zero. The marker sNAT consists of ten frequency components on 21 channels, characterizing neuronal hyperactivity or hypoactivity as compared with NLc (normal controls). The marker vNAT consists of ten ratios between adjacent PS components denoting the over- or undersynchrony of collective neuronal activities as compared with NLc. The likelihood of a test subject to a specified brain disease is defined in terms of the normalized distance to the template NAT state of the disease in the NAT space. Separation of MCI-AD patients (developing AD in 12-18 months) from NLc is made with a false alarm rate of 15%. Locations with neuronal hypoactivity and undersynchrony of AD patients agree with locations of rCBF reduction measured by SPECT. The 2-D diagram composed of the binary likelihoods between ADc and NLc in the two representations of sNAT and vNAT enables tracing the NAT state of a test subject approaching the AD area, and the follow-up of the treatment effects. PMID:23559020

  17. Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase1 gene.

    PubMed

    Venugopal, R; Jaiswal, A K

    1996-12-10

    Twenty-four base pairs of the human antioxidant response element (hARE) are required for high basal transcription of the NAD(P)H:quinone oxidoreductase1 (NQO1) gene and its induction in response to xenobiotics and antioxidants. hARE is a unique cis-element that contains one perfect and one imperfect AP1 element arranged as inverse repeats separated by 3 bp, followed by a "GC" box. We report here that Jun, Fos, Fra, and Nrf nuclear transcription factors bind to the hARE. Overexpression of cDNA derived combinations of the nuclear proteins Jun and Fos or Jun and Fra1 repressed hARE-mediated chloramphenicol acetyltransferase (CAT) gene expression in transfected human hepatoblastoma (Hep-G2) cells. Further experiments suggested that this repression was due to overexpression of c-Fos and Fra1, but not due to Jun proteins. The Jun (c-Jun, Jun-B, and Jun-D) proteins in all the possible combinations were more or less ineffective in repression or upregulation of hARE-mediated gene expression. Interestingly, overexpression of Nrf1 and Nrf2 individually in Hep-G2 and monkey kidney (COS1) cells significantly increased CAT gene expression from reporter plasmid hARE-thymidine kinase-CAT in transfected cells that were inducible by beta-naphthoflavone and teri-butyl hydroquinone. These results indicated that hARE-mediated expression of the NQO1 gene and its induction by xenobiotics and antioxidants are mediated by Nrf1 and Nrf2. The hARE-mediated basal expression, however, is repressed by overexpression of c-Fos and Fra1. PMID:8962164

  18. Response of salivary markers of autonomic activity to elite competition.

    PubMed

    Diaz, M M; Bocanegra, O L; Teixeira, R R; Soares, S S; Espindola, F S

    2012-09-01

    We investigated the response of salivary total protein (TP), alpha-amylase (sAA) and chromogranin A (CgA) to sporting competition and their relation with positive and negative affect. 11 professional swimmers were examined during the first day of a national contest and on a recreated event that matched time-of-the-day and day-of-the-week assessments 2 weeks later. Total protein was determined by the Bradford method and sAA and CgA by Western blotting upon awakening, 30 and 60 min post awakening, immediately before warming up for competition and 5, 20 and 60 min after competition. Psychometric instruments included the Positive Affect and Negative Affect Schedule-X. The concentrations of TP, sAA and CgA differed from controls only prior to and 5 min after the event. We observed positive correlations between higher negative affect scores with higher levels of TP, sAA and CgA prior to the event on the competition day. All 3 markers showed a similar reactivity to sporting competition, which may be attributed to the mechanisms responsible for protein secretion into saliva when collection is performed with no exogenous stimulation. TP is an attractive marker in sports psychology since its determination is faster and cheaper than traditional kinetic or immune assays. PMID:22581684

  19. Selectively active markers for solving of the partial occlusion problem in matchmoving and chromakeying workflow

    NASA Astrophysics Data System (ADS)

    Mazurek, Przemysław

    2013-09-01

    Matchmoving (Match Moving) is the process used for the estimation of camera movements for further integration of acquired video image with computer graphics. The estimation of movements is possible using pattern recognition, 2D and 3D tracking algorithms. The main problem for the workflow is the partial occlusion of markers by the actor, because manual rotoscoping is necessary for fixing of the chroma-keyed footage. In the paper, the partial occlusion problem is solved using the invented, selectively active electronic markers. The sensor network with multiple infrared links detects occlusion state (no-occlusion, partial, full) and switch LED's based markers.

  20. Intervention Markers of Physical Activity Maintenance in Older Adults

    PubMed Central

    Floegel, Theresa A.; Giacobbi, Peter R.; Dzierzewski, Joseph M.; Aiken-Morgan, Adrienne T.; Roberts, Beverly; McCrae, Christina S.; Marsiske, Michael; Buman, Matthew P.

    2015-01-01

    Objectives To identify intervention components that may promote long-term changes of physical activity among older adults in a behavioral theory-based physical activity trial. Methods Participants (N = 24; aged 65±8.79 years) shared perceptions of intervention components at the end of the intervention and physical activity was assessed at 18 months. Mixed-methods analyses using a pragmatic content analysis of interview data were conducted. Results Active study participants (25%) cited more specific goals/actions to achieve goals and more social support from family/friends, and had significantly higher self-determined motivation mean scores at 18 months than insufficiently active study participants (75%). Conclusions Specific goal-setting behaviors and social support from family/friends may be key elements of physical activity maintenance in older adults. PMID:26018097

  1. Mechanism of Plasminogen Activator Inhibitor-1 regulation by Oncostatin M and Interleukin-1 in human astrocytes

    PubMed Central

    Kasza, Aneta; Kiss, Daniel L.; Gopalan, Sunita; Xu, Weili; Rydel, Russell E.; Koj, Aleksander; Kordula, Tomasz

    2015-01-01

    Glial cells that produce and respond to various cytokines mediate inflammatory processes in the brain. Here, we show that oncostatin M (OSM) and interleukin-1 (IL-1) regulate the expression of plasminogen activator inhibitor-1 (PAI-1) and urokinase-type plasminogen activator (uPA) in human astrocytes. Using the PAI-1 reporter constructs we show that the −58 to −51 proximal element mediates activation by both cytokines. This element is already bound by c-fos/c-jun heterodimers in unstimulated astrocytes, and treatment with cytokine strongly stimulates both expression of c-fos and binding of c-fos/c-jun heterodimers. In addition, IL-1 activates an inhibitory mechanism that downregulates PAI-1 expression after longer exposure to this cytokine. Overexpression of dominant-negative signal transducer and activator of transcription-1 (STAT1), STAT3, STAT5 and inhibitor of nuclear factor kB (IkB) suppressed OSM/IL-1-induced expression of the PAI-1 reporter construct. We conclude that OSM and IL-1 regulate the PAI-1 gene expression via up-regulating c-fos levels and subsequent binding of c-fos/c-jun heterodimers to the proximal element of the PAI-1 gene. PMID:12390531

  2. Left insula activation: A marker for language attainment in bilinguals

    PubMed Central

    Chee, Michael W. L.; Soon, Chun Siong; Lee, Hwee Ling; Pallier, Christophe

    2004-01-01

    Several lines of evidence suggest the importance of phonological working memory (PWM) in language acquisition. We investigated the neural correlates of PWM in young adults who were under compelling social pressure to be bilingual. Equal bilinguals had high proficiency in English and Chinese as measured by a standardized examination, whereas unequal bilinguals were proficient in English but not Chinese. Both groups were matched on several measures of nonverbal intelligence and working memory. In-scanner behavioral results did not show between-group differences. Of the regions showing load-dependent increments in activation, the left insula showed greater activation in equal bilinguals. Unequal bilinguals showed greater task-related deactivation in the anterior medial frontal region and greater anterior cingulate activation. Although unequal bilinguals kept apace with equal bilinguals in the simple PWM task, the differential cortical activations suggest that more optimal engagement of PWM in the latter may correlate with better second-language attainment. PMID:15469927

  3. Physical Activity, Physical Performance, and Biological Markers of Health among Sedentary Older Latinos.

    PubMed

    Moreno, Gerardo; Mangione, Carol M; Wang, Pin-Chieh; Trejo, Laura; Butch, Anthony; Tseng, Chi-Hong; Sarkisian, Catherine A

    2014-01-01

    Background. Physical activity is associated with better physical health, possibly by changing biological markers of health such as waist circumference and inflammation, but these relationships are unclear and even less understood among older Latinos-a group with high rates of sedentary lifestyle. Methods. Participants were 120 sedentary older Latino adults from senior centers. Community-partnered research methods were used to recruit participants. Inflammatory (C-reactive protein) and metabolic markers of health (waist circumference, HDL-cholesterol, triglycerides, insulin, and glucose), physical activity (Yale physical activity survey), and physical performance (short physical performance NIA battery) were measured at baseline and 6-month followup. Results. Eighty percent of the sample was female. In final adjusted cross-sectional models, better physical activity indices were associated with faster gait speed (P < 0.05). In adjusted longitudinal analyses, change in self-reported physical activity level correlated inversely with change in CRP (β = -0.05; P = 0.03) and change in waist circumference (β = -0.16; P = 0.02). Biological markers of health did not mediate the relationship between physical activity and physical performance. Conclusion. In this community-partnered study, higher physical activity was associated with better physical performance in cross-sectional analyses. In longitudinal analysis, increased physical activity was associated with improvements in some metabolic and inflammatory markers of health. PMID:25136359

  4. Phytochelatin synthase activity as a marker of metal pollution.

    PubMed

    Zitka, Ondrej; Krystofova, Olga; Sobrova, Pavlina; Adam, Vojtech; Zehnalek, Josef; Beklova, Miroslava; Kizek, Rene

    2011-08-30

    The synthesis of phytochelatins is catalyzed by γ-Glu-Cys dipeptidyl transpeptidase called phytochelatin synthase (PCS). Aim of this study was to suggest a new tool for determination of phytochelatin synthase activity in the tobacco BY-2 cells treated with different concentrations of the Cd(II). After the optimization steps, an experiment on BY-2 cells exposed to different concentrations of Cd(NO(3))(2) for 3 days was performed. At the end of the experiment, cells were harvested and homogenized. Reduced glutathione and cadmium (II) ions were added to the cell suspension supernatant. These mixtures were incubated at 35°C for 30min and analysed using high performance liquid chromatography coupled with electrochemical detector (HPLC-ED). The results revealed that PCS activity rises markedly with increasing concentration of cadmium (II) ions. The lowest concentration of the toxic metal ions caused almost three fold increase in PCS activity as compared to control samples. The activity of PCS (270fkat) in treated cells was more than seven times higher in comparison to control ones. K(m) for PCS was estimated as 2.3mM. PMID:21715087

  5. Nonexercise Physical Activity and Inflammatory and Oxidative Stress Markers in Women

    PubMed Central

    Wu, Sheng Hui; Shu, Xiao Ou; Chow, Wong-Ho; Xiang, Yong-Bing; Zhang, Xianglan; Li, Hong-Lan; Cai, Qiuyin; Milne, Ginger; Ji, Bu-Tian; Cai, Hui; Rothman, Nathaniel; Gao, Yu-Tang; Zheng, Wei

    2014-01-01

    Abstract Background: Leisure time exercise has been linked to lower circulating levels of inflammatory markers. Few studies have examined the association of nonexercise physical activity with markers of inflammation and oxidative stress. Methods: This cross-sectional analysis included 1005 Chinese women aged 40–70 years. Usual physical activity was assessed through in-person interviews using a validated physical activity questionnaire. Plasma proinflammatory cytokines and urinary F2-isoprostanes were measured. Multivariable linear models were used to evaluate the association of inflammatory and oxidative stress markers with nonexercise physical activity and its major components. Results: Nonexercise physical activity accounted for 93.8% of overall physical activity energy expenditure. Levels of nonexercise physical activity were inversely associated with circulating concentrations of interleukin (IL)-6 (Ptrend=0.004), IL-1β (Ptrend=0.03) and tumor necrosis factor-alpha (TNF-α) (Ptrend=0.01). Multivariable-adjusted concentrations of these cytokines were 28.2% for IL-6, 22.1% for IL-1β, and 15.9% for TNF-α lower in the highest quartile of nonexercise physical activity compared with the lowest quartile. Similar inverse associations were found for two major components of nonexercise physical activity, walking and biking for transportation, and household activity. No significant associations were observed between nonexercise physical activity and oxidative stress markers. Conclusion: Daily nonexercise physical activity is associated with lower levels of systemic inflammation. This finding may have important public health implications because this type of activity is the main contributor to overall physical activity among middle-aged and elderly women. PMID:24168102

  6. Sleep Loss Activates Cellular Markers of Inflammation: Sex Differences

    PubMed Central

    Irwin, Michael R.; Carrillo, Carmen; Olmstead, Richard

    2009-01-01

    Sleep disturbance is associated with inflammation and related disorders including cardiovascular disease, arthritis, and diabetes mellitus. Given sex differences in the prevalence of inflammatory disorders with stronger associations in females, this study was undertaken to test the effects of sleep loss on cellular mechanisms that contribute to proinflammatory cytokine activity. In 26 healthy adults (11 females; 15 males), monocyte intracellular proinflammatory cytokine production was repeatedly assessed at 08:00, 12:00, 16:00, 20:00, and 23:00 h during a baseline period and after partial sleep deprivation (awake from 11 PM to 3 AM). In the morning after a night of sleep loss, monocyte production of interleukin 6 and tumor necrosis factor- α differentially changed between the two sexes. Whereas both females and males showed a marked increase in the lipopolysaccharide (LPS) - stimulated production of IL-6 and TNF-α in the morning immediately after PSD, production of these cytokines during the early- and late evening was increased in the females as compared to decreases in the males. Sleep loss induces a functional alteration of monocyte proinflammatory cytokine responses with females showing greater cellular immune activation as compared to changes in males. These results have implications for understanding the role of sleep disturbance in the differential risk profile for inflammatory disorders between the sexes. PMID:19520155

  7. CENPA a Genomic Marker for Centromere Activity and Human Diseases

    PubMed Central

    M. Valdivia, Manuel; Hamdouch, Khaoula; Ortiz, Manuela; Astola, Antonio

    2009-01-01

    Inheritance of genetic material requires that chromosomes segregate faithfully during cell division. Failure in this process can drive to aneuploidy phenomenon. Kinetochores are unique centromere macromolecular protein structures that attach chromosomes to the spindle for a proper movement and segregation. A unique type of nucleosomes of centromeric chromatin provides the base for kinetochore formation. A specific histone H3 variant, CENPA, replaces conventional histone H3 and together with centromere-specific-DNA-binding factors directs the assembly of active kinetochores. Recent studies on CENPA nucleosomal structure, epigenetic inheritance of centromeric chromatin and transcription of pericentric heterochromatin provide new clues to our understanding of centromere structure and function. This review highlights the role and dynamics of CENPA assembly into centromeres and the potential contribution of this kinetochore protein to autoimmune and cancer diseases in humans. PMID:20119530

  8. Chemogenetic Activation of Melanopsin Retinal Ganglion Cells Induces Signatures of Arousal and/or Anxiety in Mice.

    PubMed

    Milosavljevic, Nina; Cehajic-Kapetanovic, Jasmina; Procyk, Christopher A; Lucas, Robert J

    2016-09-12

    Functional imaging and psychometric assessments indicate that bright light can enhance mood, attention, and cognitive performance in humans. Indirect evidence links these events to light detection by intrinsically photosensitive melanopsin-expressing retinal ganglion cells (mRGCs) [1-9]. However, there is currently no direct demonstration that mRGCs can have such an immediate effect on mood or behavioral state in any species. We addressed this deficit by using chemogenetics to selectively activate mRGCs, simulating the excitatory effects of bright light on this cell type in dark-housed mice. This specific manipulation evoked circadian phase resetting and pupil constriction (known consequences of mRGC activation). It also induced c-Fos (a marker of neuronal activation) in multiple nuclei in the hypothalamus (paraventricular, dorsomedial, and lateral hypothalamus), thalamus (paraventricular and centromedian thalamus), and limbic system (amygdala and nucleus accumbens). These regions influence numerous aspects of autonomic and neuroendocrine activity and are typically active during periods of wakefulness or arousal. By contrast, c-Fos was absent from the ventrolateral preoptic area (active during sleep). In standard behavioral tests (open field and elevated plus maze), mRGC activation induced behaviors commonly interpreted as anxiety like or as signs of increased alertness. Similar changes in behavior could be induced by bright light in wild-type and rodless and coneless mice, but not melanopsin knockout mice. These data demonstrate that mRGCs drive a light-dependent switch in behavioral motivation toward a more alert, risk-averse state. They also highlight the ability of this small fraction of retinal ganglion cells to realign activity in brain regions defining widespread aspects of physiology and behavior. PMID:27426512

  9. Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms

    PubMed Central

    Rőszer, Tamás

    2015-01-01

    The alternatively activated or M2 macrophages are immune cells with high phenotypic heterogeneity and are governing functions at the interface of immunity, tissue homeostasis, metabolism, and endocrine signaling. Today the M2 macrophages are identified based on the expression pattern of a set of M2 markers. These markers are transmembrane glycoproteins, scavenger receptors, enzymes, growth factors, hormones, cytokines, and cytokine receptors with diverse and often yet unexplored functions. This review discusses whether these M2 markers can be reliably used to identify M2 macrophages and define their functional subdivisions. Also, it provides an update on the novel signals of the tissue environment and the neuroendocrine system which shape the M2 activation. The possible evolutionary roots of the M2 macrophage functions are also discussed. PMID:26089604

  10. PDGFRβ Is a Novel Marker of Stromal Activation in Oral Squamous Cell Carcinomas

    PubMed Central

    Han, Rong; Haines, Paul; Gallagher, George; Noonan, Vikki; Kukuruzinska, Maria; Monti, Stefano; Trojanowska, Maria

    2016-01-01

    Carcinoma associated fibroblasts (CAFs) form the main constituents of tumor stroma and play an important role in tumor growth and invasion. The presence of CAFs is a strong predictor of poor prognosis of head and neck squamous cell carcinoma. Despite significant progress in determining the role of CAFs in tumor progression, the mechanisms contributing to their activation remain poorly characterized, in part due to fibroblast heterogeneity and the scarcity of reliable fibroblast surface markers. To search for such markers in oral squamous cell carcinoma (OSCC), we applied a novel approach that uses RNA-sequencing data derived from the cancer genome atlas (TCGA). Specifically, our strategy allowed for an unbiased identification of genes whose expression was closely associated with a set of bona fide stroma-specific transcripts, namely the interstitial collagens COL1A1, COL1A2, and COL3A1. Among the top hits were genes involved in cellular matrix remodeling and tumor invasion and migration, including platelet-derived growth factor receptor beta (PDGFRβ), which was found to be the highest-ranking receptor protein genome-wide. Similar analyses performed on ten additional TCGA cancer datasets revealed that other tumor types shared CAF markers with OSCC, including PDGFRβ, which was found to significantly correlate with the reference collagen expression in ten of the 11 cancer types tested. Subsequent immunostaining of OSCC specimens demonstrated that PDGFRβ was abundantly expressed in stromal fibroblasts of all tested cases (12/12), while it was absent in tumor cells, with greater specificity than other known markers such as alpha smooth muscle actin or podoplanin (3/11). Overall, this study identified PDGFRβ as a novel marker of stromal activation in OSCC, and further characterized a list of promising candidate CAF markers that may be relevant to other carcinomas. Our novel approach provides for a fast and accurate method to identify CAF markers without the need for

  11. PDGFRβ Is a Novel Marker of Stromal Activation in Oral Squamous Cell Carcinomas.

    PubMed

    Kartha, Vinay K; Stawski, Lukasz; Han, Rong; Haines, Paul; Gallagher, George; Noonan, Vikki; Kukuruzinska, Maria; Monti, Stefano; Trojanowska, Maria

    2016-01-01

    Carcinoma associated fibroblasts (CAFs) form the main constituents of tumor stroma and play an important role in tumor growth and invasion. The presence of CAFs is a strong predictor of poor prognosis of head and neck squamous cell carcinoma. Despite significant progress in determining the role of CAFs in tumor progression, the mechanisms contributing to their activation remain poorly characterized, in part due to fibroblast heterogeneity and the scarcity of reliable fibroblast surface markers. To search for such markers in oral squamous cell carcinoma (OSCC), we applied a novel approach that uses RNA-sequencing data derived from the cancer genome atlas (TCGA). Specifically, our strategy allowed for an unbiased identification of genes whose expression was closely associated with a set of bona fide stroma-specific transcripts, namely the interstitial collagens COL1A1, COL1A2, and COL3A1. Among the top hits were genes involved in cellular matrix remodeling and tumor invasion and migration, including platelet-derived growth factor receptor beta (PDGFRβ), which was found to be the highest-ranking receptor protein genome-wide. Similar analyses performed on ten additional TCGA cancer datasets revealed that other tumor types shared CAF markers with OSCC, including PDGFRβ, which was found to significantly correlate with the reference collagen expression in ten of the 11 cancer types tested. Subsequent immunostaining of OSCC specimens demonstrated that PDGFRβ was abundantly expressed in stromal fibroblasts of all tested cases (12/12), while it was absent in tumor cells, with greater specificity than other known markers such as alpha smooth muscle actin or podoplanin (3/11). Overall, this study identified PDGFRβ as a novel marker of stromal activation in OSCC, and further characterized a list of promising candidate CAF markers that may be relevant to other carcinomas. Our novel approach provides for a fast and accurate method to identify CAF markers without the need for

  12. Early Surrogate Markers of Treatment Activity: Where Are We Now?

    PubMed

    Klintman, Marie; Dowsett, Mitchell

    2015-05-01

    The assessment of new therapies in the adjuvant setting in early breast cancer requires large numbers of patients and many years of follow-up for results to be presented. Therefore, the neoadjuvant study setting, which allows for early prediction of treatment response in smaller patient sets, has become increasingly popular. Ki67 is the most commonly used and extensively studied intermediate biomarker of treatment activity and residual risk in neoadjuvant trials on endocrine therapy, new biological therapies, and chemotherapy. It is increasingly being used as a primary endpoint for new therapies particularly those added to endocrine therapy. The PeriOperative Endocrine Therapy for Individualizing Care (POETIC) trial, including more than 4000 postmenopausal, estrogen receptor (ER)-positive patients randomly assigned to receive 2 weeks of presurgical treatment with an aromatase inhibitor or no further treatment, is the largest window-of-opportunity trial conducted and is assessing the clinical utility of on-treatment Ki67 as a predictor of long-term outcome. For generalizability, Ki67 measurements in the POETIC and other trials need to use standard methodology. The International Working Group on Ki67 in Breast Cancer is conducting a series of studies to bring this to reality. PMID:26063881

  13. c-Fos induction in mesotelencephalic dopamine pathway projection targets and dorsal striatum following oral intake of sugars and fats in rats.

    PubMed

    Dela Cruz, J A D; Coke, T; Karagiorgis, T; Sampson, C; Icaza-Cukali, D; Kest, K; Ranaldi, R; Bodnar, R J

    2015-02-01

    Overconsumption of nutrients high in fats and sugars can lead to obesity. Previous studies indicate that sugar or fat consumption activate individual brain sites using Fos-like immunoreactivity (FLI). Sugars and fats also elicit conditioned flavor preferences (CFP) that are differentially mediated by flavor-flavor (orosensory: f/f) and flavor-nutrient (post-ingestive: f/n) processes. Dopamine (DA) signaling in the medial prefrontal cortex (mPFC), the amygdala (AMY) and the nucleus accumbens (NAc), has been implicated in acquisition and expression of fat- and sugar-CFP. The present study examined the effects of acute consumption of fat (corn oil: f/f and f/n), glucose (f/f and f/n), fructose, (f/f only), saccharin, xanthan gum or water upon simultaneous FLI activation of DA mesotelencephalic nuclei (ventral tegmental area (VTA)) and projections (infralimbic and prelimbic mPFC, basolateral and central-cortico-medial AMY, core and shell of NAc as well as the dorsal striatum). Consumption of corn oil solutions, isocaloric to glucose and fructose, significantly increased FLI in all sites except for the NAc shell. Glucose intake significantly increased FLI in both AMY areas, dorsal striatum and NAc core, but not in either mPFC area, VTA or Nac shell. Correspondingly, fructose intake significantly increased FLI in the both AMY areas, the infralimbic mPFC and dorsal striatum, but not the prelimbic mPFC, VTA or either NAc area. Saccharin and xanthan gum intake failed to activate FLI relative to water. When significant FLI activation occurred, highly positive relationships were observed among sites, supporting the idea of activation of a distributed brain network mediating sugar and fat intake. PMID:25460109

  14. 75 FR 3539 - Agency Information Collection (NCA Customer Satisfaction Surveys (Headstone/Marker)) Activity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-21

    ... AFFAIRS Agency Information Collection (NCA Customer Satisfaction Surveys (Headstone/Marker)) Activity.... National Cemetery Administration Mail Surveys a. Next of Kin National Customer Satisfaction Survey (Mail to... National Customer Satisfaction Survey (Mail to 5,000 respondents/30 minutes per survey) = 2,500 hours. ]...

  15. Markers of oxidative stress and erythrocyte antioxidant enzyme activity in older men and women with differing physical activity.

    PubMed

    Rowiński, Rafał; Kozakiewicz, Mariusz; Kędziora-Kornatowska, Kornelia; Hübner-Woźniak, Elżbieta; Kędziora, Józef

    2013-11-01

    The aim of the present study was to examine the relationship between markers of oxidative stress and erythrocyte antioxidant enzyme activity and physical activity in older men and women. The present study included 481 participants (233 men and 248 women) in the age group 65-69 years (127 men and 125 women) and in the age group 90 years and over (106 men and 123 women). The classification of respondents by physical activity was based on answers to the question if, in the past 12 months, they engaged in any pastimes which require physical activity. The systemic oxidative stress status was assessed by measuring plasma iso-PGF2α and protein carbonyl concentration as well as erythrocyte antioxidant enzymes activity, i.e., superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR). The concentration of plasma iso-PGF2α and protein carbonyls (CP) was lower in groups of younger men and women compared to the respective older groups. In all examined groups, physical activity resulted in decrease of these oxidative stress markers and simultaneously caused adaptive increase in the erythrocyte SOD activity. Additionally, in active younger men CAT, GPx, and GR activities were higher than in sedentary ones. In conclusion, oxidative stress increase is age-related, but physical activity can reduce oxidative stress markers and induce adaptive increase in the erythrocyte antioxidant enzyme activity, especially SOD, even in old and very old men and women. PMID:23911531

  16. Inhibition of RANKL-induced osteoclast differentiation through the downregulation of c-Fos and NFATc1 by Eremochloa ophiuroides (centipedegrass) extract.

    PubMed

    Choi, Bo-Yun; Park, Chul-Hong; Na, Yun Hee; Bai, Hyoung-Woo; Cho, Jae-Young; Chung, Byung Yeoup

    2016-05-01

    Osteoclasts, derived from hematopoietic stem cells, are specialized macrophages and have a homeostatic role in skeletal modeling and remodeling with bone-forming osteoblasts. However, excessive osteoclast activity induces bone diseases, including osteoporosis, periodontitis and rheumatoid arthritis. Natural substances have received attention as therapeutic drugs in human diseases. In the current study, cells isolated from mouse bone marrow, and a mouse model, were used to determine the effect of centipedegrass extract (CGE) on osteoclasts. Multiple concentrations of CGE were administered to bone marrow cells for 24‑72 hours and, for the in vivo study, mice were treated with CGE for 8 days. The effects of CGE on transcription and translation of osteoclast-associated molecules were then determined using reverse transcription-polymerase chain reaction and immunoblotting, respectively. In the present study it was shown that CGE extracted from Eremochloa ophiuroides (centipedegrass) inhibited receptor activator of nuclear factor κ‑B ligand (RANKL)‑mediated osteoclast differentiation in bone marrow macrophages, without cytotoxicity, in a dose‑dependent manner. CGE decreased the expression levels of osteoclast‑specific genes, including matrix metalloproteinase‑9, osteoclast‑associated immunoglobulin‑like receptor and cathepsin K, however, CGE had no inhibitory effect on the expression levels of mitogen‑activated protein kinases, nuclear factor‑κB and Akt. Furthermore, the protein and RNA levels of RANKL‑induced c‑Fos and nuclear factor of activated T-cell cytoplasmic 1 were suppressed by CGE. These results indicated that CGE may serve as a useful drug in the prevention of bone loss. PMID:27035226

  17. Markers of coagulation activation and acute kidney injury in patients after hematopoietic cell transplantation.

    PubMed

    Hingorani, S R; Seidel, K; Pao, E; Lawler, R; McDonald, G B

    2015-05-01

    Acute kidney injury (AKI) is common after hematopoietic cell transplant (HCT). The etiology of AKI is unknown because biopsies are rarely performed. The pathophysiology of injury is inferred from clinical data. Thrombotic microangiopathy (TMA) is often invoked as the cause of renal injury. Patients >2 years old undergoing their first HCT at Fred Hutchinson Cancer Research Center participated in this study. We prospectively measured plasma markers of coagulation activation, (PAI-1 and tPA) and fibrinolyis (D-dimer) weekly in 149 patients during the first 100 days post transplant. Cox proportional hazards modeling was used to determine associations between these markers and AKI (doubling of baseline serum creatinine). Kruskal-Wallis test was used to determine the associations between day 100 urinary albumin to creatinine ratios and these markers. Thirty one percent of patients developed AKI. Though elevations in these markers occurred frequently, neither PAI-1 nor tPA were associated with the development of AKI. D-dimer was associated with a slightly increased risk of AKI (relative risk=1.76; P-value 0.04). None of these markers were associated with micro- or macroalbuminuria at day 100. The lack of an association with AKI suggests that endothelial injury in the form of TMA is not a common cause of AKI early after transplant. PMID:25665045

  18. Markers of coagulation activation and acute kidney injury in patients after hematopoietic cell transplantation

    PubMed Central

    Hingorani, Sangeeta R; Seidel, Kristy; Pao, Emily; Lawler, Rick; McDonald, George B.

    2015-01-01

    Acute kidney injury (AKI) is common after hematopoietic cell transplant (HCT). The etiology of AKI is unknown because biopsies are rarely performed. The pathophysiology of injury is inferred from clinical data. Thrombotic microangiopathy (TMA) is often invoked as the cause of renal injury. Patients > 2 years undergoing their first HCT at Fred Hutchinson Cancer Research Center (FHCRC) participated in this study. We prospectively measured plasma markers of coagulation activation, (PAI-1 and tPA) and fibrinolyis (D-dimer) weekly in 149 patients during the first 100 days post-transplant. Cox proportional hazards modeling was used to determine associations between these markers and AKI (doubling of baseline serum creatinine). Kruskal-Wallis test was used to determine associations between day 100 urinary albumin to creatinine ratios (ACR) and these markers. Thirty one percent of patients developed AKI. Though elevations in these markers occurred frequently, neither PAI-1 nor tPA were associated with development of AKI. D-dimer was associated with a slightly increased risk of AKI (RR=1.76; p-value 0.04). None of these markers were associated with micro- or macroalbuminuria at day 100. The lack of an association with AKI suggests that endothelial injury in the form of TMA is not a common cause of AKI early after transplant. PMID:25665045

  19. Basophil Markers for Identification and Activation in the Indirect Basophil Activation Test by Flow Cytometry for Diagnosis of Autoimmune Urticaria

    PubMed Central

    Kim, Zehwan; Choi, Bong Seok; Kim, Jong Kun

    2016-01-01

    Background The indirect basophil activation test using flow cytometry is a promising tool for autoimmune urticaria diagnosis. We aimed to identify better donor basophils (from atopic vs. non-atopic donors and interleukin-3 primed vs. unprimed basophils) and improve basophil identification and activation markers (eotaxin CC chemokine receptor-3 [CCR3] vs. CD123 and CD63 vs. CD203c). Methods Donor basophils were obtained from non-atopic and atopic group O donors. Positive control sera were artificially prepared to simulate autoimmune urticaria patients' sera. Patient sera were obtained from nine children with chronic urticaria. Assay sensitivity was compared among each variation by using positive control sera (n=21), applying cutoff values defined from negative control sera (n=20). Results For basophil identification, a combination of CCR3 and CD123 markers revealed a higher correlation with automated complete blood count (r=0.530) compared with that observed using CD123 (r=0.498) or CCR3 alone (r=0.195). Three activation markers on the atopic donor basophils attained 100% assay sensitivity: CD203c on unprimed basophils, CD63+CD203+ or CD63 alone on primed basophils; however, these markers on the non-atopic donor basophils attained lower assay sensitivity. Conclusions For basophil identification markers, a combination of CD123 and CCR3 is recommended, while CD123 alone may be used as an alternative. Donor basophils should be obtained from an atopic donor. For basophil activation markers, either CD203c alone on unprimed basophils or CD203c and CD63 on primed basophils are recommended, while CD63 alone on primed basophils may be used as an alternative. PMID:26522756

  20. Sodium intake, brain c-Fos protein and gastric emptying in cell-dehydrated rats treated with methysergide into the lateral parabrachial nucleus.

    PubMed

    David, Richard B; Roncari, Camila F; Lauar, Mariana R; Vendramini, Regina C; Antunes-Rodrigues, José; Menani, José V; De Luca, Laurival A

    2015-11-01

    Previous studies from our laboratory have shown that methysergide, a serotonergic antagonist, injected into the lateral parabrachial nucleus (LPBN) combined with a pre-load of 2 M NaCl, given by gavage, induces 0.3 M NaCl intake. The mechanisms involved in this paradoxical behavior are still unknown. In the present work, we investigated the effect of serotonergic blockade into the LPBN on hindbrain and hypothalamic activity, gastric emptying and arterial blood pressure in cell-dehydrated rats. Methysergide plus 2 M NaCl infused intragastrically or intravenously promoted 0.3 M NaCl intake in two-bottle tests. In cell-dehydrated rats with no access to fluids, methysergide compared to vehicle increased Fos immunoreactivity in the medial nucleus of the solitary tract, area postrema and non-oxytocinergic cells of the ventral portion of the hypothalamic paraventricular nucleus (PVN). There was no alteration in the number of neurons double-labeled for Fos-ir and oxytocin in the PVN and supraoptic nuclei. There was also no alteration in plasma oxytocin and vasopressin, or arterial pressure. In rats cell-dehydrated by i.v. 2 M NaCl, methysergide also did not change the amount of an intragastric load of 0.3 M NaCl retained in the stomach or intestine. The results suggest that methysergide injected into the LPBN of cell-dehydrated rat does not alter primary inhibitory signals that control sodium intake. The inhibitory signals blocked by methysergide in the LPBN possibly originated from activation of brain osmoreceptors, second order visceral/hormonal signals or a combination of both. PMID:26171591

  1. Eculizumab reduces complement activation, inflammation, endothelial damage, thrombosis, and renal injury markers in aHUS

    PubMed Central

    Cofiell, Roxanne; Kukreja, Anjli; Bedard, Krystin; Yan, Yan; Mickle, Angela P.; Ogawa, Masayo; Bedrosian, Camille L.

    2015-01-01

    Atypical hemolytic uremic syndrome (aHUS) is a genetic, life-threatening disease characterized by uncontrolled complement activation, systemic thrombotic microangiopathy (TMA), and vital organ damage. We evaluated the effect of terminal complement blockade with the anti-C5 monoclonal antibody eculizumab on biomarkers of cellular processes involved in TMA in patients with aHUS longitudinally, during up to 1 year of treatment, compared with in healthy volunteers. Biomarker levels were elevated at baseline in most patients, regardless of mutational status, plasma exchange/infusion use, platelet count, or lactate dehydrogenase or haptoglobin levels. Eculizumab reduced terminal complement activation (C5a and sC5b-9) and renal injury markers (clusterin, cystatin-C, β2-microglobulin, and liver fatty acid binding protein-1) to healthy volunteer levels and reduced inflammation (soluble tumor necrosis factor receptor-1), coagulation (prothrombin fragment F1+2 and d-dimer), and endothelial damage (thrombomodulin) markers to near-normal levels. Alternative pathway activation (Ba) and endothelial activation markers (soluble vascular cell adhesion molecule-1) decreased but remained elevated, reflecting ongoing complement activation in aHUS despite complete terminal complement blockade. These results highlight links between terminal complement activation and inflammation, endothelial damage, thrombosis, and renal injury and underscore ongoing risk for systemic TMA and progression to organ damage. Further research regarding underlying complement dysregulation is warranted. This trial was registered at www.clinicaltrials.gov as #NCT01194973. PMID:25833956

  2. Neonatal propofol anesthesia modifies activity-dependent processes and induces transient hyperlocomotor response to d-amphetamine during adolescence in rats.

    PubMed

    Pešić, Vesna; Milanović, Desanka; Popić, Jelena; Smiljanić, Kosara; Tešić, Vesna; Kanazir, Selma; Jevtović-Todorović, Vesna; Ruždijić, Sabera

    2015-12-01

    This study examined the influence of propofol anesthesia on the expression of activity-regulated molecules (BDNF and c-Fos) and synaptic plasticity markers (synaptophysin, GAP-43, drebrin) in the frontal cortex and thalamus of 7-day-old (P7) rats. Although these brain regions are the main targets of anesthetic action, they are contained in the cortico-striato-thalamo-cortical feedback loops, involved in naturally occurring and drug-induced psychoses. Therefore, functional integrity of these loops was examined in adolescent and adult rats through d-amphetamine-induced hyperactivity. Propofol treatment (25mg/kg) decreased exon-specific and total BDNF mRNA expression in the frontal cortex and thalamus, in a time-dependent manner. BDNF protein level was increased in the frontal cortex and decreased in the thalamus, which was accompanied by the change of phospho-TrkB expression. Similarly to BDNF, the expression of c-Fos was decreased in the frontal cortex while it was changed only at the protein level in the thalamus. Synaptic plasticity markers changed in a time- and region-specific manner, indicating increased synaptogenesis in the frontal cortex and synapse elimination in the thalamus in P7 rats after the propofol anesthesia exposure. These early molecular changes were followed by time-related, increased motor reaction to d-amphetamine in adolescent, but not in adult rats. Our study revealed that exposure of immature brain to propofol anesthesia during the critical phase of development provoked immediate changes in activity-dependent processes and synaptic adjustment, influencing brain capacity to integrate later developmental events and resulting in temporary altered response to acute psychotropic stimulation during adolescence. PMID:26492981

  3. Objectively Measured Physical Activity and Its Association With Adiponectin and Other Novel Metabolic Markers

    PubMed Central

    Metcalf, Brad S.; Jeffery, Alison N.; Hosking, Joanne; Voss, Linda D.; Sattar, Naveed; Wilkin, Terence J.

    2009-01-01

    OBJECTIVE—Recent evidence suggests that, in children, traditional markers of metabolic disturbance are related only weakly to physical activity. We therefore sought to establish the corresponding relationships with newer metabolic markers. RESEARCH DESIGN AND METHODS—This was a nonintervention longitudinal study of 213 healthy children recruited from 54 schools in Plymouth, U.K. MTI accelerometers were used to make objective 7-day recordings of physical activity at ages 5 ± 0.3 (mean ± SD), 6, 7, and 8 years. Overall physical activity was taken as the average of the four annual time points. The metabolic markers at 8 years were adiponectin, leptin, high-sensitivity C-reactive protein (hsCRP), and insulin resistance (homeostasis model assessment). Potential confounders included percent body fat measured by dual-energy X-ray absorptiometry and diet measured by food frequency questionnaire. RESULTS—Whereas physical activity did not correlate with insulin resistance (r = −0.01), leptin (r = +0.04), or hsCRP (r = +0.01) independently of percent body fat, it did correlate with adiponectin, but inversely (r = −0.18, P = 0.02). This unexpected inverse relationship was strongest among the less active children (physical activity < median: r = −0.30, P = 0.01) but negligible in the more active children (physical activity > median: r = +0.04, P = 0.76). Adiponectin was significantly higher (0.52 SD, P < 0.01) in the least active tertile compared with the other two tertiles. Insulin resistance, however, did not differ across the physical activity tertiles (P = 0.62). CONCLUSIONS—Adiponectin levels in children are highest among those who are least active, but their insulin resistance is no different. Adiponectin has a known insulin-sensitizing effect, and our findings are consistent with a selective effect at low levels of physical activity. PMID:19033408

  4. Right atrial stretch alters fore- and hind-brain expression of c-fos and inhibits the rapid onset of salt appetite.

    PubMed

    De Gobbi, Juliana Irani Fratucci; Menani, Jose Vanderlei; Beltz, Terry G; Johnson, Ralph F; Thunhorst, Robert L; Johnson, Alan Kim

    2008-08-01

    The inflation of an intravascular balloon positioned at the superior vena cava and right atrial junction (SVC-RAJ) reduces sodium or water intake induced by various experimental procedures (e.g. sodium depletion; hypovolaemia). In the present study we investigated if the stretch induced by a balloon at this site inhibits a rapid onset salt appetite, and if this procedure modifies the pattern of immunohistochemical labelling for Fos protein (Fos-ir) in the brain. Male Sprague-Dawley rats with SVC-RAJ balloons received a combined treatment of furosemide (Furo; 10 mg (kg bw)(-1)) plus a low dose of the angiotensin-converting enzyme inhibitor captopril (Cap; 5 mg (kg bw)(-1)). Balloon inflation greatly decreased the intake of 0.3 m NaCl for as long as the balloon was inflated. Balloon inflation over a 3 h period following Furo-Cap treatment decreased Fos-ir in the organum vasculosum of the lamina terminalis and the subfornical organ and increased Fos-ir in the lateral parabrachial nucleus and caudal ventrolateral medulla. The effect of balloon inflation was specific for sodium intake because it did not affect the drinking of diluted sweetened condensed milk. Balloon inflation and deflation also did not acutely change mean arterial pressure. These results suggest that activity in forebrain circumventricular organs and in hindbrain putative body fluid/cardiovascular regulatory regions is affected by loading low pressure mechanoreceptors at the SVC-RAJ, a manipulation that also attenuates salt appetite. PMID:18556369

  5. Physical Activity and Adiposity Markers at Older Ages: Accelerometer Vs Questionnaire Data

    PubMed Central

    Sabia, Séverine; Cogranne, Pol; van Hees, Vincent T.; Bell, Joshua A.; Elbaz, Alexis; Kivimaki, Mika; Singh-Manoux, Archana

    2015-01-01

    Objective Physical activity is critically important for successful aging, but its effect on adiposity markers at older ages is unclear as much of the evidence comes from self-reported data on physical activity. We assessed the associations of questionnaire-assessed and accelerometer-assessed physical activity with adiposity markers in older adults. Design/Setting/Participants This was a cross-sectional study on 3940 participants (age range 60-83 years) of the Whitehall II study who completed a 20-item physical activity questionnaire and wore a wrist-mounted accelerometer for 9 days in 2012 and 2013. Measurements Total physical activity was estimated using metabolic equivalent hours/week for the questionnaire and mean acceleration for the accelerometer. Time spent in moderate-and-vigorous physical activity (MVPA) was also assessed by questionnaire and accelerometer. Adiposity assessment included body mass index, waist circumference, and fat mass index. Fat mass index was calculated as fat mass/height² (kg/m²), with fat mass estimated using bioimpedance. Results Greater total physical activity was associated with lower adiposity for all adiposity markers in a dose-response manner. In men, the strength of this association was 2.4 to 2.8 times stronger with the accelerometer than with questionnaire data. In women, it was 1.9 to 2.3 times stronger. For MVPA, questionnaire data in men suggested no further benefit for adiposity markers past 1 hour/week of activity. This was not the case for accelerometer-assessed MVPA where, for example, compared with men undertaking <1 hour/week of accelerometer-assessed MVPA, waist circumference was 3.06 (95% confidence interval 2.06–4.06) cm lower in those performing MVPA 1–2.5 hours/week, 4.69 (3.47–5.91) cm lower in those undertaking 2.5–4 hours/week, and 7.11 (5.93–8.29) cm lower in those performing ≥4 hours/week. Conclusions The association of physical activity with adiposity markers in older adults was

  6. Right atrial stretch alters fore- and hind-brain expression of c-fos and inhibits the rapid onset of salt appetite

    PubMed Central

    De Gobbi, Juliana Irani Fratucci; Menani, Jose Vanderlei; Beltz, Terry G; Johnson, Ralph F; Thunhorst, Robert L; Johnson, Alan Kim

    2008-01-01

    The inflation of an intravascular balloon positioned at the superior vena cava and right atrial junction (SVC-RAJ) reduces sodium or water intake induced by various experimental procedures (e.g. sodium depletion; hypovolaemia). In the present study we investigated if the stretch induced by a balloon at this site inhibits a rapid onset salt appetite, and if this procedure modifies the pattern of immunohistochemical labelling for Fos protein (Fos-ir) in the brain. Male Sprague–Dawley rats with SVC-RAJ balloons received a combined treatment of furosemide (Furo; 10 mg (kg bw)−1) plus a low dose of the angiotensin-converting enzyme inhibitor captopril (Cap; 5 mg (kg bw)−1). Balloon inflation greatly decreased the intake of 0.3 m NaCl for as long as the balloon was inflated. Balloon inflation over a 3 h period following Furo–Cap treatment decreased Fos-ir in the organum vasculosum of the lamina terminalis and the subfornical organ and increased Fos-ir in the lateral parabrachial nucleus and caudal ventrolateral medulla. The effect of balloon inflation was specific for sodium intake because it did not affect the drinking of diluted sweetened condensed milk. Balloon inflation and deflation also did not acutely change mean arterial pressure. These results suggest that activity in forebrain circumventricular organs and in hindbrain putative body fluid/cardiovascular regulatory regions is affected by loading low pressure mechanoreceptors at the SVC-RAJ, a manipulation that also attenuates salt appetite. PMID:18556369

  7. Imaging of moving fiducial markers during radiotherapy using a fast, efficient active pixel sensor based EPID

    SciTech Connect

    Osmond, John P. F.; Zin, Hafiz M.; Harris, Emma J.; Lupica, Giovanni; Allinson, Nigel M.; Evans, Philip M.

    2011-11-15

    Purpose: The purpose of this work was to investigate the use of an experimental complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) for tracking of moving fiducial markers during radiotherapy. Methods: The APS has an active area of 5.4 x 5.4 cm and maximum full frame read-out rate of 20 frame s{sup -1}, with the option to read out a region-of-interest (ROI) at an increased rate. It was coupled to a 4 mm thick ZnWO4 scintillator which provided a quantum efficiency (QE) of 8% for a 6 MV x-ray treatment beam. The APS was compared with a standard iViewGT flat panel amorphous Silicon (a-Si) electronic portal imaging device (EPID), with a QE of 0.34% and a frame-rate of 2.5 frame s{sup -1}. To investigate the ability of the two systems to image markers, four gold cylinders of length 8 mm and diameter 0.8, 1.2, 1.6, and 2 mm were placed on a motion-platform. Images of the stationary markers were acquired using the APS at a frame-rate of 20 frame s{sup -1}, and a dose-rate of 143 MU min{sup -1} to avoid saturation. EPID images were acquired at the maximum frame-rate of 2.5 frame s{sup -1}, and a reduced dose-rate of 19 MU min{sup -1} to provide a similar dose per frame to the APS. Signal-to-noise ratio (SNR) of the background signal and contrast-to-noise ratio (CNR) of the marker signal relative to the background were evaluated for both imagers at doses of 0.125 to 2 MU. Results: Image quality and marker visibility was found to be greater in the APS with SNR {approx}5 times greater than in the EPID and CNR up to an order of magnitude greater for all four markers. To investigate the ability to image and track moving markers the motion-platform was moved to simulate a breathing cycle with period 6 s, amplitude 20 mm and maximum speed 13.2 mm s{sup -1}. At the minimum integration time of 50 ms a tracking algorithm applied to the APS data found all four markers with a success rate of {>=}92% and positional error {<=}90 {mu}m. At an integration time of 400

  8. S100A9 is a Biliary Protein Marker of Disease Activity in Primary Sclerosing Cholangitis

    PubMed Central

    Ruppert, Thomas; Giese, Thomas; Flechtenmacher, Christa; Weiss, Karl Heinz; Kloeters-Plachky, Petra; Stremmel, Wolfgang; Schirmacher, Peter; Sauer, Peter; Gotthardt, Daniel Nils

    2012-01-01

    Background and Aims Bile analysis has the potential to serve as a surrogate marker for inflammatory and neoplastic disorders of the biliary epithelium and may provide insight into biliary pathophysiology and possible diagnostic markers. We aimed to identify biliary protein markers of patients with primary sclerosing cholangitis (PSC) by a proteomic approach. Methods Bile duct-derived bile samples were collected from PSC patients (n = 45) or patients with choledocholithiasis (n = 24, the control group). Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was performed to analyse the proteins, 2-D-gel patterns were compared by densitometry, and brush cytology specimens were analysed by RT-PCR. Results A reference bile-duct bile proteome was established in the control group without signs of inflammation or maligancy comprising a total of 379 non-redundant biliary proteins; 21% were of unknown function and 24% had been previously described in serum. In PSC patients, the biliary S100A9 expression was elevated 95-fold (p<0.005), serum protein expression was decreased, and pancreatic enzyme expression was unchanged compared to controls. The S100A9 expression was 2-fold higher in PSC patients with high disease activity than in those with low activity (p<0.05). The brush cytology specimens from the PSC patients with high disease activity showed marked inflammatory activity and leukocyte infiltration compared to the patients with low activity, which correlated with S100A9 mRNA expression (p<0.05). Conclusions The bile-duct bile proteome is complex and its analysis might enhance the understanding of cholestatic liver disease. Biliary S100A9 levels may be a useful marker for PSC activity, and its implication in inflammation and carcinogenesis warrants further investigation. PMID:22253789

  9. Ghrelin and adipokines as circulating markers of disease activity in patients with Takayasu arteritis

    PubMed Central

    2012-01-01

    Introduction The current markers of disease activity in Takayasu arteritis (TA) are insufficient for proper assessment. We investigated circulating levels of unacylated and acylated ghrelin, leptin and adiponectin and their relationships with disease activity in patients with TA. Methods This study included 31 patients with TA and 32 sex-, age- and body mass index-matched healthy controls. Disease activity was assessed in TA patients using various tools, including Kerr's criteria, disease extent index-Takayasu, physician's global assessment, radiological parameters, and laboratory markers. Plasma unacylated and acylated ghrelin, and serum leptin and adiponectin levels were measured using an enzyme-linked immunosorbent assay. Results Unacylated and acylated ghrelin levels were found to be significantly lower in TA patients than that in healthy controls. Patients with active disease had lower unacylated ghrelin levels than those with inactive disease and had lower acylated ghrelin levels than healthy controls. Ghrelin levels were negatively correlated with various parameters of disease activity. The leptin/ghrelin ratio was significantly higher in TA patients than controls. It was positively correlated with disease activity. There was a positive correlation between unacylated and acylated ghrelin and a negative correlation between leptin and ghrelin. There was no statistical difference in adiponectin levels between TA patients and controls. The radiological activity markers were positively correlated with other parameters of disease activity. Conclusions This study suggests that plasma unacylated and acylated ghrelin levels may be useful in monitoring disease activity and planning treatment strategies for patients with TA. The serum leptin level and leptin/ghrelin ratio may also be used to help assess the disease activity. PMID:23259466

  10. Anxiolytic Effects and Neuroanatomical Targets of Estrogen Receptor-β (ERβ) Activation by a Selective ERβ Agonist in Female Mice

    PubMed Central

    Oyola, Mario G.; Portillo, Wendy; Reyna, Andrea; Foradori, Chad D.; Kudwa, Andrea; Hinds, Laura; Handa, Robert J.

    2012-01-01

    The dichotomous anxiogenic and anxiolytic properties of estrogens have been reported to be mediated by two distinct neural estrogen receptors (ER), ERα and ERβ, respectively. Using a combination of pharmacological and genetic approaches, we confirmed that the anxiolytic actions of estradiol are mediated by ERβ and extended and these observations to demonstrate the neuroanatomical targets involved in ERβ activation in these behavioral responses. We examined the effects of the biologically active S-enantiomer of diarylpropionitrile (S-DPN) on anxiety-related behavioral measures, the corresponding stress hormonal response to hypothalamo-pituitary-adrenal axis reactivity, and potential sites of neuronal activation in mutant female mice carrying a null mutation for ERβ gene (βERKO). S-DPN administration significantly reduced anxiety-like behaviors in the open field, light-dark exploration, and the elevated plus maze (EPM) in ovariectomized wild-type (WT) mice, but not in their βERKO littermates. Stress-induced corticosterone (CORT) and ACTH were also attenuated by S-DPN in the WT mice but not in the βERKO mice. Using c-fos induction after elevated plus maze, as a marker of stress-induced neuronal activation, we identified the anterodorsal medial amygdala and bed nucleus of the stria terminalis as the neuronal targets of S-DPN action. Both areas showed elevated c-fos mRNA expression with S-DPN treatment in the WT but not βERKO females. These studies provide compelling evidence for anxiolytic effects mediated by ERβ, and its neuroanatomical targets, that send or receive projections to/from the paraventricular nucleus, providing potential indirect mode of action for the control of hypothalamo-pituitary-adrenal axis function and behaviors. PMID:22186418

  11. The Effects of Pre-emptive Administration of Ketamine and norBNI on Pain Behavior, c-Fos, and Prodynorphin Protein Expression in the Rat Spinal Cord after Formalin-induced Pain Is Modulated by the DREAM Protein

    PubMed Central

    Suppian, Rapeah; Ismail, Zalina

    2013-01-01

    Background We investigated the effects of pre-emptive administration of ketamine and norBNI on pain behavior and the expression of DREAM, c-Fos, and prodynorphin proteins on the ipsilateral side of the rat spinal cord at 2 and 4 hours after formalin injection. Methods Eighty-four male Sprague Dawley rats were divided into 4 major groups consisting of control rats (C) (n = 12), rats given only formalin injections (F) (n = 24), and rats treated with pre-emptive administration of either ketamine (K+F) (n = 24) or norBNI (N+F) (n = 24). The non-control groups were further divided into subgroups consisting of rats that were sacrificed at 2 and 4 hours (n = 12 for each group) after formalin injection. Pain behavior was recorded for 1 hour. After 2 and 4 hours, the rats were sacrificed and the spinal cords (L4-L5 sections) were removed for immunohistochemistry and Western blot analysis. Results The pain behavior response was reduced in the K+F group compared to the other groups during the second phase of the formalin pain response. We detected an increase in the nuclear DREAM protein level in the K+F group at 2 and 4 hours and a transient decrease in the N+F group at 2 hours; however, it increased at 4 hours after injection. Fos-like immunoreactivity (FLI) and Prodynorphin-like immunoreactivity (PLI) neurons decreased in the K+F group but increased in the N+F group at 2 hours after injection. While FLI decreased, PLI increased in all groups at 4 hours after injection. Conclusions We suggest that NMDA and kappa opioid receptors can modulate DREAM protein expression, which can affect pain behavior and protein transcriptional processes at 2 hours and bring about either harmful or protective effects at 4 hours after formalin injection. PMID:23861999

  12. Flow cytometric detection of some activation and proliferation markers in human hematopoietic cell lines.

    PubMed

    Glasová, M; Koníková, E; Kusenda, J; Babusíková, O

    1996-01-01

    Simultaneous surface marker/DNA, cytoplasmic/DNA or nuclear/DNA staining was used to study proliferation of hematopoietic cell lines (MOLT4, BJAB, P3HR1). Different fixation/permeabilization methods (paraformaldehyde with metanol or Tween 20 or saponin, buffered formaldehyde-acetone) were used providing optimal results of the double stainings. There was a significant increase of S phase and proliferation index (PI) of CD71+ and Ki67+ MOLT4 cells in comparison with their negative counterparts. This indicates their close connection with proliferation. Unlike that, the correlation between the expression of CD38 and S phase or PI was not significant either in MOLT4 or in P3HRI cells. For cytoplasmic markers CD3 (in MOLT4 cells) and CD22 (in BJAB cells) statistically significant (cCD3) and not significant (cCD22) correlation was demonstrated between their expression and S phase or PI. Molecular equivalents of soluble fluorescein values for CD71 were always higher than for CD38. The density of these cell surface markers in addition to the percentage of their expression is of considerable significance for their evaluation as activation or proliferation markers. PMID:8996562

  13. Markers of B-Cell Activation in Relation to Risk of Non-Hodgkin Lymphoma

    PubMed Central

    De Roos, Anneclaire J; Mirick, Dana K; Edlefsen, Kerstin L; LaCroix, Andrea Z; Kopecky, Kenneth J; Madeleine, Margaret; Magpantay, Larry; Martínez-Maza, Otoniel

    2012-01-01

    B-cell activation biomarkers have been associated with increased risk of non-Hodgkin lymphoma (NHL) in HIV-infected populations. However, whether a similar association may exist in general populations has not been established. We conducted a case-control study within the Women’s Health Initiative Observational Study cohort to measure the B-cell activation biomarkers sCD23, sCD27, sCD30, sCD44, and CXCL13 in serum samples collected an average of 6 years before NHL diagnosis, in 491 cases and 491 controls. Using logistic regression to estimate odds ratios, we observed strong associations between NHL and markers, for all B-cell NHL and for major subtypes. Women with marker levels in the highest-versus-lowest quartile categories of CD23, CD27, CD30, or CXCL13 were at 2.8 to 5.5-fold increased risk of B-NHL. Additionally, there were significant trends of risk with increasing levels of these markers present. Associations were strongest for cases with shortest lag times between blood draw and diagnosis (<3 years). However, there were also significant associations for cases with the longest prediagnostic lag (9–13 years). Taken together, our findings indicate a prominent role for B-cell activation among postmenopausal women in the etiology of B-cell NHL and/or in processes reflective of early disease development, as early as 9 years before diagnosis. PMID:22846913

  14. Platelet and monocyte activity markers and mediators of inflammation in Takotsubo cardiomyopathy.

    PubMed

    Pirzer, Rainer; Elmas, Elif; Haghi, Dariusch; Lippert, Christiane; Kralev, Stefan; Lang, Siegfried; Borggrefe, Martin; Kälsch, Thorsten

    2012-03-01

    Patients with Takotsubo cardiomyopathy (TC) often present with symptoms similar to those of myocardial infarction (MI). We analyzed blood concentrations of mediators of inflammation and platelet- and monocyte-activity markers in patients with TC and MI for significant differences. Clinical data of patients with TC (n = 16) and acute MI (n = 16) were obtained. Serial blood samples were taken at the time of hospital admission (t(0)), after 2-4 days (t(1)) and after 4-7 weeks (t(2)), respectively. Plasma concentrations of interleukin (IL)-6, IL-7, soluble CD40 ligand (sCD40L), and monocyte chemotactic protein 1 (MCP-1) were determined with an ELISA. Tissue factor binding on monocytes, platelet-activation marker CD62P, platelet CD40-ligand (CD40L), and platelet-monocyte aggregates were measured using flow cytometry. Expression of CD62P on platelets and IL-6 plasma levels were significantly lower in patients with TC compared to MI at the time of hospital admission. IL-7 plasma levels were significantly elevated in patients with TC compared to patients with MI at 2-4 days after hospital admission. No significant differences were observed concerning sCD40L and MCP-1 plasma levels, tissue factor binding on monocytes, CD40L expression on platelets, and platelet-monocyte aggregates at any point in time. Our results indicate that inflammatory mediators and platelet-activity markers contribute to the differences in the pathogenesis of MI and TC. PMID:21416113

  15. NP001 regulation of macrophage activation markers in ALS: a phase I clinical and biomarker study.

    PubMed

    Miller, Robert G; Zhang, Rongzhen; Block, Gilbert; Katz, Jonathan; Barohn, Richard; Kasarskis, Edward; Forshew, Dallas; Gopalakrishnan, Vidhya; McGrath, Michael S

    2014-12-01

    This is a phase I, placebo-controlled, single ascending dose safety and tolerability study of NP001 in patients with ALS. NP001 is a novel regulator of inflammatory macrophages and monocytes. As ALS progression is thought to be related to neuroinflammation, an additional objective of the study was to assess the effects of NP001 administration on monocyte activation markers. Thirty-two ALS patients were enrolled and received either placebo (eight) or one of four (six at each dose) ascending single i.v. doses (0.2, 0.8, 1.6 and 3.2 mg/kg NP001). Patients were monitored for safety, and blood monocyte immune activation markers CD16 and HLA-DR were assessed pre- and 24 h post-dosing. Changes from baseline were calculated. Results showed that NP001 was generally safe and well tolerated. Importantly, a single dose of NP001 caused a dose-dependent reduction in expression of monocyte CD16, a marker of monocyte activation/inflammation. Additionally, monocyte HLA-DR expression was also decreased in those patients with elevated values at baseline. In conclusion, these data indicate that NP001 has an acute effect on inflammatory monocytes in ALS patient blood. The potential for modulation of inflammation in the context of ALS disease progression will require further study with long-term follow-up. PMID:25192333

  16. Protein synthesis inhibitors reveal differential regulation of mitogen-activated protein kinase and stress-activated protein kinase pathways that converge on Elk-1.

    PubMed Central

    Zinck, R; Cahill, M A; Kracht, M; Sachsenmaier, C; Hipskind, R A; Nordheim, A

    1995-01-01

    Inhibitors of protein synthesis, such as anisomycin and cycloheximide, lead to superinduction of immediate-early genes. We demonstrate that these two drugs activate intracellular signaling pathways involving both the mitogen-activated protein kinase (MAPK) and stress-activated protein kinase (SAPK) cascades. The activation of either pathway correlates with phosphorylation of the c-fos regulatory transcription factor Elk-1. In HeLa cells, anisomycin stabilizes c-fos mRNA when protein synthesis is inhibited to only 50%. Under these conditions, anisomycin, in contrast to cycloheximide, rapidly induces kinase activation and efficient Elk-1 phosphorylation. However, full inhibition of translation by either drug leads to prolonged activation of SAPK activity, while MAPK induction is transient. This correlates with prolonged Elk-1 phosphorylation and c-fos transcription. Elk-1 induction and c-fos activation are also observed in KB cells, in which anisomycin strongly induces SAPKs but not MAPKs. Purified p54 SAPK alpha efficiently phosphorylates the Elk-1 C-terminal domain in vitro and comigrates with anisomycin-activated kinases in in-gel kinase assays. Thus, Elk-1 provides a potential convergence point for the MAPK and SAPK signaling pathways. The activation of signal cascades and control of transcription factor function therefore represent prominent processes in immediate-early gene superinduction. PMID:7651411

  17. Serological markers of hepatitis B and C in patients with HIV/AIDS and active tuberculosis.

    PubMed

    Araújo-Mariz, Carolline; Lopes, Edmundo Pessoa; Ximenes, Ricardo A A; Lacerda, Heloísa R; Miranda-Filho, Demócrito B; Montarroyos, Ulisses R; Barreto, Silvana; Salustiano, Daniela Medeiros; Albuquerque, Maria Fátima Pessoa Militão

    2016-06-01

    Infection with hepatitis B virus (HBV) and C virus (HCV) are common in patients with HIV/AIDS and tuberculosis (TB). This is a cross-sectional study with patients infected with HIV/AIDS and active TB in Recife, Brazil, aiming to verify the prevalence of markers for HBV: antibody to hepatitis B core antigen (anti-HBc); and HCV: antibody to hepatitis C virus (anti-HCV) by chemiluminescence, and to identify the frequency of associated factors. Data were collected through questionnaires, and blood was drawn from patients for analysis. We used the chi-square test and the Fisher exact test when necessary. We conducted a bivariate logistic regression analysis and the magnitude of the associations was expressed as odds ratio (OR) with a confidence interval of 95%. Among 166 patients studied with HIV/AIDS and active TB, anti-HBc was positive in 61 patients [36.7%; 95%CI (29.4-44.6%)] and anti-HCV in 11[6.6%; 95%CI (3.4-11.5%)]. In the logistic regression analysis, male sex, and age ≥40 years were independent factors associated with the occurrence of anti-HBc. In conclusion, we verified a high frequency of HBV contact marker and a low frequency of HCV markers in patients with HIV/AIDS and TB in Recife. J. Med. Virol. 88:996-1002, 2016. © 2015 Wiley Periodicals, Inc. PMID:26580855

  18. Selection and validation of enzymatic activities as functional markers in wood biotechnology and fungal ecology.

    PubMed

    Mathieu, Yann; Gelhaye, Eric; Dumarçay, Stéphane; Gérardin, Philippe; Harvengt, Luc; Buée, Marc

    2013-02-15

    The dead wood and forest soils are sources of diversity and under-explored fungal strains with biotechnological potential, which require to be studied. Numerous enzymatic tests have been proposed to investigate the functional potential of the soil microbial communities or to test the functional abilities of fungal strains. Nevertheless, the diversity of these functional markers and their relevance in environmental studies or biotechnological screening does still have not been demonstrated. In this work, we assessed ten different extracellular enzymatic activities involved in the wood decaying process including β-etherase that specifically cleaves the β-aryl ether linkages in the lignin polymer. For this purpose, a collection of 26 fungal strains, distributed within three ecological groups (white, brown and soft rot fungi), has been used. Among the ten potential functional markers, the combinatorial use of only six of them allowed separation between the group of white and soft rot fungi from the brown rot fungi. Moreover, our results suggest that extracellular β-etherase is a rare and dispensable activity among the wood decay fungi. Finally, we propose that this set of markers could be useful for the analysis of fungal communities in functional and environmental studies, and for the selection of strains with biotechnological interests. PMID:23206919

  19. Activity Markers of the Anti-Breast Carcinoma Cell Growth Fractions of Vernonia amygdalina Extracts

    PubMed Central

    Oyugi, Daniel A.; Luo, Xuan; Lee, Ken S.; Hill, Brandon; Izevbigie, Ernest B.

    2010-01-01

    Vernonia amygdalina (VA) is an edible plant of the Asteraceae family used in many herbal formulations prescribed by herbalists for many diseases. We have previously reported that aqueous VA extracts inhibit the growth of estrogen receptor-positive human breast cancerous cells in vitro. Activity markers of the VA extracts have not been previously identified or characterized. Hence, the objective of this study was to identify activity markers of the VA extracts associated with cell growth inhibition. Extraction of VA with multiple solvents of various polarity indexes yielded three fractions (A1-2, B-3) that significantly inhibited cell growth (p <0.05) at 0.1 mg/ml concentration. At a higher concentration of 1 mg/ml, six fractions of hexane, chloroform, butanol, and ethyl acetate (A1-3, B2-4) inhibited DNA synthesis by 76, 98, 94, 98, 98, and 96% respectively. These fractions were UV-detected from 250–730 nm; and all showed three distinct peaks around 410, 431, and 664 nm. Furthermore, HPLC analysis of the fractions revealed similar retention times of 2.213, 2.167, and 2.151 min respectively. Bioactivity assays showed that HPLC retention of approximately 2 min is required for cell growth-inhibitory activity of VA fractions. Interestingly, all active fractions exhibited HPLC peaks at approximately 2 min. Therefore, the UV and HPLC peaks may be used as predictive tools to determine VA extracts activities. PMID:19176872

  20. Markers of endothelial cell activation and injury in childhood haemolytic uraemic syndrome.

    PubMed

    Nevard, C H; Blann, A D; Jurd, K M; Haycock, G B; Hunt, B J

    1999-08-01

    Diarrhoea-associated haemolytic uraemic syndrome (D+ HUS) is usually caused by verotoxin-producing Escherichia coli. Histology shows endothelial swelling with localised thrombus. Activation of coagulation and fibrinolysis also occurs. These facts, combined with the knowledge that recovery usually follows within weeks, led us to hypothesise that verotoxin causes localised endothelial cell activation but not injury. Markers of endothelial cell activation and injury were measured serially in 30 children with acute D+ HUS, healthy children, and children receiving chronic dialysis. Interpretation of markers was complicated by the renal dysfunction characteristic of D+ HUS. Nevertheless there was no evidence for endothelial cell injury, as soluble tissue factor levels were not increased and soluble thrombomodulin levels were lower than dialysed controls (P<0.001). In the acute phase, soluble vascular cell adhesion molecule levels were raised above normal (P<0.001), but were lower than dialysed controls (P<0.001), and soluble E-selectin levels were not significantly increased compared with normal controls (P=0.2). Hence, there was no evidence for endothelial cell damage or endothelial cell activation by the time children reached hospital; but this study did not exclude the possibility that endothelial cell activation occurred prior to hospital admission. PMID:10452276

  1. Can red cell distribution width be a marker of disease activity in ulcerative colitis?

    PubMed Central

    Ipek, Serkan; Cekic, Cem; Alper, Emrah; Coban, Eyup; Eliacik, Eylem; Arabul, Mahmut; Aslan, Fatih; Vatansever, Sezgin; Yalcin, Hulya; Unsal, Belkis

    2015-01-01

    Aim: The current study aimed to investigate the association between disease activity and red cell distribution width (RDW) levels in ulcerative colitis and to determine whether RDW can be used as a marker of disease activity in non-anemic ulcerative colitis. Methods: The RDW levels of 310 ulcerative colitis patients who underwent colonoscopy were analyzed retrospectively. The patients were divided into two groups (active disease and remission) according to the endoscopic activity index. In addition, the accuracy of RDW in determining disease activity in non-anemic patients was assessed. The efficacy of RDW in determining disease activity was compared to that of white blood cell count, platelet count, C-reactive protein, and erythrocyte sedimentation rate. Results: Two hundred and six (66.5%) patients had active disease, and 104 (33.5%) were in remission. The mean RDW levels in patients with active ulcerative colitis and in those in remission were 16.8±2.9 and 15.5±1.4, respectively (P<0.001). Ninety-six (46.6%) patients in the active disease group and 89 (85.6%) in the remission group were non-anemic, and their respective RDW levels were 15.4±1.2 and 15.3±1.1 (P=0.267). The sensitivity and specificity of RDW in determining inflammation were 41% and 91%, respectively (AUC 0.65, P<0.001). Conclusions: This study demonstrated that RDW can be used as a marker for disease activity in ulcerative colitis, but it did not have the same efficacy in the non-anemic group. PMID:26550336

  2. Prospective Real-Time Correction for Arbitrary Head Motion Using Active Markers

    PubMed Central

    Ooi, Melvyn B.; Krueger, Sascha; Thomas, William J.; Swaminathan, Srirama V.; Brown, Truman R.

    2011-01-01

    Patient motion during an MRI exam can result in major degradation of image quality, and is of increasing concern due to the aging population and its associated diseases. This work presents a general strategy for real-time, intra-image compensation of rigid-body motion that is compatible with multiple imaging sequences. Image quality improvements are established for structural brain MRI acquired during volunteer motion. A headband integrated with three active markers is secured to the forehead. Prospective correction is achieved by interleaving a rapid track-and-update module into the imaging sequence. For every repetition of this module, a short tracking pulse-sequence re-measures the marker positions; during head motion, the rigid-body transformation that realigns the markers to their initial positions is fed back to adaptively update the image-plane – maintaining it at a fixed orientation relative to the head – before the next imaging segment of k-space is acquired. In cases of extreme motion, corrupted lines of k-space are rejected and re-acquired with the updated geometry. High precision tracking measurements (0.01 mm) and corrections are accomplished in a temporal resolution (37 ms) suitable for real-time application. The correction package requires minimal additional hardware and is fully integrated into the standard user interface, promoting transferability to clinical practice. PMID:19488989

  3. The mycotoxin deoxynivalenol inhibits the cell surface expression of activation markers in human macrophages.

    PubMed

    Waché, Yann J; Hbabi-Haddioui, Laila; Guzylack-Piriou, Laurence; Belkhelfa, Haouaria; Roques, Christine; Oswald, Isabelle P

    2009-08-21

    Deoxynivalenol (DON) is the most prevalent trichothecene mycotoxin in crops in Europe and North America. It exhibits several toxic effects including impaired growth and immune dysregulation. Macrophages play pivotal role in the host defense; upon activation, they express several specific cell surface receptors that are important in adhesion and cell signaling. Several studies have demonstrated that DON can affect macrophages, however, very few data are available concerning the effect of DON on human macrophages, and the effect on macrophage cell surface receptors is unknown. In the present study, human blood monocytes, differentiated in vitro into macrophages, were activated with IFN-gamma, in the presence or absence of low concentrations of DON. The expression of CD11c, CD13, CD14, CD18, CD33, CD35, CD54, CD119 and HLA-DP/DQ/DR was analyzed by flow cytometry. As expected, macrophage activation by IFN-gamma upregulated the expression of CD54, CD14, CD119 and HLA-DP/DQ/DR. Incubation with DON decrease the cell surface expression of these activation markers in a dose-dependent manner. When cells were treated with 5muM DON, the mean fluorescence intensity measured for the expression of these receptors was the same as that observed in non-activated macrophages. This inhibitory effect of DON was only observed when the mycotoxin was applied before the activation signal. Taken together, our results suggest that low concentration of DON alter macrophage activation as measured by the expression of cell surface markers. This may have implications for human health when consuming DON contaminated feed. PMID:19549553

  4. Markers of Inflammation, Endothelial Activation and Autoimmunity in Adolescent Female Gymnasts

    PubMed Central

    Alshammari, Eyad; Shafi, Shahida; Nurmi-Lawton, Jaana; Burut, Dayangku Fatiha Pengiran; Lanham-New, Susan; Ferns, Gordon

    2010-01-01

    High levels of physical activity have been linked to benefits in cardiovascular and bone health by affecting, in part, changes in proinflammatory profile. Therefore, we have aimed to assess the effects of intensive training on markers of inflammation, endothelial activation and auto-immunity in the absence of the potential confounding effects of incident atherosclerosis. The subjects comprised 25 competitive gymnasts and 19 healthy sedentary adolescent females, aged 8-17 years. Serum soluble intercellular adhesion molecule 1 (sICAM-1), high sensitivity C-reactive protein (hsCRP), heat shock protein 27 (Hsp27) and Hsp27 antibody titres were measured by ELISAs in a sample of adolescent girls who were either physically active (competitive gymnasts) or sedentary. The association between age, body mass index (BMI), dietary intake, serum hsCRP, sICAM-1 and Hsp27 antigen and antibody titres were determined. The mean serum sICAM-1 concentrations were significantly higher in the gymnasts compared to the sedentary females (0.29 ± 0.02 versus 0.23 ± 0.01 mg·L-1, p < 0.01). In contrast serum hsCRP concentrations were substantially lower in the gymnasts compared to the sedentary adolescent females (0.49 ± 0.03 versus 1.38 ± 0.19 mg·L-1, p < 0.001). Differences remained significant after adjustment for anthropometric factors. We also found that serum Hsp27 antigen concentrations were determined by dietary saturated fat intake (p < 0.001), and antibody titres to Hsp27 were determined by dietary PUFA (p < 0.001) after adjustment for BMI. Our findings show that young female gymnasts have an altered profile of inflammatory markers and endothelial activation compared to their less physically active peers. Key points Results showed that adolescent young female gymnasts have an altered serum inflammatory markers and endothelial activation, compared to their less physically active peers. Physical activities improved immune system. Differences in these biochemical data kept

  5. Effect of D-cycloserine in conjunction with fear extinction training on extracellular signal-regulated kinase activation in the medial prefrontal cortex and amygdala in rat.

    PubMed

    Gupta, Subhash C; Hillman, Brandon G; Prakash, Anand; Ugale, Rajesh R; Stairs, Dustin J; Dravid, Shashank M

    2013-06-01

    D-cycloserine (DCS) is currently under clinical trials for a number of neuropsychiatric conditions and has been found to augment fear extinction in rodents and exposure therapy in humans. However, the molecular mechanism of DCS action in these multiple modalities remains unclear. Here, we describe the effect of DCS administration, alone or in conjunction with extinction training, on neuronal activity (c-fos) and neuronal plasticity [phospho-extracellular signal-regulated kinase (pERK)] markers using immunohistochemistry. We found that intraperitoneal administration of DCS in untrained young rats (24-28 days old) increased c-fos- and pERK-stained neurons in both the prelimbic and infralimbic division of the medial prefrontal cortex (mPFC) and reduced pERK levels in the lateral nucleus of the central amygdala. Moreover, DCS administration significantly increased GluA1, GluN1, GluN2A, and GluN2B expression in the mPFC. In a separate set of animals, we found that DCS facilitated fear extinction and increased pERK levels in the infralimbic prefrontal cortex, prelimbic prefrontal cortex intercalated cells and lateral nucleus of the central amygdala, compared with saline control. In the synaptoneurosomal preparation, we found that extinction training increased iGluR protein expression in the mPFC, compared with context animals. No significant difference in protein expression was observed between extinction-saline and extinction-DCS groups in the mPFC. In contrast, in the amygdala DCS, the conjunction with extinction training led to an increase in iGluR subunit expression, compared with the extinction-saline group. Our data suggest that the efficacy of DCS in neuropsychiatric disorders may be partly due to its ability to affect neuronal activity and signaling in the mPFC and amygdala subnuclei. PMID:23551217

  6. The influence of statin therapy on platelet activity markers in hyperlipidemic patients after ischemic stroke

    PubMed Central

    Chmielewski, Henryk; Kaczorowska, Beata; Przybyła, Monika; Baj, Zbigniew

    2015-01-01

    Introduction Low-density lipoprotein cholesterol (LDL-C) has been reported to increase platelet activation. Reducing the level of LDL-C with statins induces important pleiotropic effects such as platelet inhibition. This association between platelet activity and statin therapy may be clinically important in reducing the risk of ischemic stroke. We investigated the effect of simvastatin therapy on platelet activation markers (platelet CD62P, sP-selectin, and platelet-derived microparticles (PDMPs)) in hyperlipidemic patients after ischemic stroke. Material and methods The study group consisted of 21 hyperlipidemic patients after ischemic stroke confirmed by CT, and 20 healthy subjects served as controls. We assessed the CD62P expression on resting and thrombin-activated blood platelets. CD62P and PDMPs were analyzed by the use of monoclonal antibodies anti-CD61 and anti-CD62 on a flow cytometer. The level of sP-selectin in serum was measured by the ELISA (enzyme-linked immunosorbent assay) method. All markers were re-analyzed after 6 months of treatment with simvastatin (20 mg/day). Results Hyperlipidemic patients presented a significantly higher percentage of CD62+ platelets and higher reactivity to thrombin compared to control subjects. After simvastatin therapy hyperlipidemic patients showed a reduction of the percentage of resting CD62P(+) platelets (p = 0.005) and a reduction of expression and percentage of CD62P(+) platelets after activation by thrombin (median p < 0.05; percentage: p = 0.001). A decrease of sP-selectin levels (p = 0.001) and percentage of PDMPs (p < 0.05) in this group was also observed. Conclusions HMG-CoA reductase inhibitor therapy in stroke patients with hyperlipidemia may be useful not only due to the lipid-lowering effect but also because of a significant role in reduction of platelet activation and reactivity. PMID:25861297

  7. Prospective active marker motion correction improves statistical power in BOLD fMRI

    PubMed Central

    Ooi, Melvyn B.; Goldman, Robin I.; Krueger, Sascha; Thomas, William J.; Sajda, Paul; Brown, Truman R.

    2013-01-01

    Group level statistical maps of blood oxygenation level dependent (BOLD) signals acquired using functional magnetic resonance imaging (fMRI) have become a basic measurement for much of systems, cognitive and social neuroscience. A challenge in making inferences from these statistical maps is the noise and potential confounds that arise from the head motion that occurs within and between acquisition volumes. This motion results in the scan plane being misaligned during acquisition, ultimately leading to reduced statistical power when maps are constructed at the group level. In most cases, an attempt is made to correct for this motion through the use of retrospective analysis methods. In this paper, we use a prospective active marker motion correction (PRAMMO) system that uses radio frequency markers for real-time tracking of motion, enabling on-line slice plane correction. We show that the statistical power of the activation maps is substantially increased using PRAMMO compared to conventional retrospective correction. Analysis of our results indicates that the PRAMMO acquisition reduces the variance without decreasing the signal component of the BOLD (beta). Using PRAMMO could thus improve the overall statistical power of fMRI based BOLD measurements, leading to stronger inferences of the nature of processing in the human brain. PMID:23220430

  8. Mast cell degranulation activates a pain pathway underlying migraine headache

    PubMed Central

    Levy, Dan; Burstein, Rami; Kainz, Vanessa; Jakubowski, Moshe; Strassman, Andrew M.

    2007-01-01

    Intracranial headaches such as that of migraine are generally accepted to be mediated by prolonged activation of meningeal nociceptors but the mechanisms responsible for such nociceptor activation are poorly understood. In this study, we examined the hypothesis that meningeal nociceptors can be activated locally through a neuroimmune interaction with resident mast cells, granulated immune cells that densely populate the dura mater. Using in vivo electrophysiological single unit recording of meningeal nociceptors in the rat we observed that degranulation of dural mast cells using intraperitoneal administration of the basic secretagogue agent compound 48/80 (2 mg/kg) induced a prolonged state of excitation in meningeal nociceptors. Such activation was accompanied by increased expression of the phosphorylated form of the extracellular signal-regulated kinase (pERK), an anatomical marker for nociceptor activation. Mast cell - induced nociceptor interaction was also associated with downstream activation of the spinal trigeminal nucleus as indicated by an increase in c-fos expression. Our findings provide evidence linking dural mast cell degranulation to prolonged activation of the trigeminal pain pathway believed to underlie intracranial headaches such as that of migraine. PMID:17459586

  9. Changes in urinary amino acids excretion in relationship with muscle activity markers over a professional cycling stage race: in search of fatigue markers.

    PubMed

    Corsetti, Roberto; Barassi, Alessandra; Perego, Silvia; Sansoni, Veronica; Rossi, Alessandra; Damele, Clara Anna Linda; Melzi D'Eril, Gianlodovico; Banfi, Giuseppe; Lombardi, Giovanni

    2016-01-01

    The aim of this study was to identify the relationship between metabolic effort, muscular damage/activity indices, and urinary amino acids profile over the course of a strenuous prolonged endurance activity, as a cycling stage race is, in order to identify possible fatigue markers. Nine professional cyclists belonging to a single team, competing in the Giro d'Italia cycling stage race, were anthropometrically characterized and sampled for blood and urine the day before the race started, and on days 12 and 23 of the race. Diet was kept the same over the race, and power output and energy expenditure were recorded. Sera were assayed for muscle markers (lactate dehydrogenase, aspartate aminotransferase, and creatine kinase activities, and blood urea nitrogen), and creatinine, all corrected for plasma volume changes. Urines were profiled for amino acid concentrations, normalized on creatinine excretion. Renal function, in terms of glomerular filtration rate, was monitored by MDRD equation corrected on body surface area. Creatine kinase activity and blood urea were increased during the race as did serum creatinine while kidney function remained stable. Among the amino acids, taurine, glycine, cysteine, leucine, carnosine, 1-methyl histidine, and 3-methyl histidine showed a net decreased, while homocysteine was increased. Taurine and the dipeptide carnosine (β-alanyl-L-histidine) were significantly correlated with the muscle activity markers and the indices of effort. In conclusion, the metabolic profile is modified strikingly due to the effort. Urinary taurine and carnosine seem useful tools to evaluate the muscle damage and possibly the fatigue status on a long-term basis. PMID:26306846

  10. Central and peripheral markers of neurodegeneration and monocyte activation in HIV-associated neurocognitive disorders.

    PubMed

    McGuire, Jennifer L; Gill, Alexander J; Douglas, Steven D; Kolson, Dennis L

    2015-08-01

    HIV-associated neurocognitive disorders (HAND) affect up to 50 % of HIV-infected adults, independently predict HIV morbidity/mortality, and are associated with neuronal damage and monocyte activation. Cerebrospinal fluid (CSF) neurofilament subunits (NFL, pNFH) are sensitive surrogate markers of neuronal damage in several neurodegenerative diseases. In HIV, CSF NFL is elevated in individuals with and without cognitive impairment, suggesting early/persistent neuronal injury during HIV infection. Although individuals with severe cognitive impairment (HIV-associated dementia (HAD)) express higher CSF NFL levels than cognitively normal HIV-infected individuals, the relationships between severity of cognitive impairment, monocyte activation, neurofilament expression, and systemic infection are unclear. We performed a retrospective cross-sectional study of 48 HIV-infected adults with varying levels of cognitive impairment, not receiving antiretroviral therapy (ART), enrolled in the CNS Anti-Retroviral Therapy Effects Research (CHARTER) study. We quantified NFL, pNFH, and monocyte activation markers (sCD14/sCD163) in paired CSF/plasma samples. By examining subjects off ART, these correlations are not confounded by possible effects of ART on inflammation and neurodegeneration. We found that CSF NFL levels were elevated in individuals with HAD compared to cognitively normal or mildly impaired individuals with CD4+ T-lymphocyte nadirs ≤200. In addition, CSF NFL levels were significantly positively correlated to plasma HIV-1 RNA viral load and negatively correlated to plasma CD4+ T-lymphocyte count, suggesting a link between neuronal injury and systemic HIV infection. Finally, CSF NFL was significantly positively correlated with CSF pNFH, sCD163, and sCD14, demonstrating that monocyte activation within the CNS compartment is directly associated with neuronal injury at all stages of HAND. PMID:25776526

  11. Long-term Exposure to Air Pollution and Markers of Inflammation, Coagulation, and Endothelial Activation

    PubMed Central

    Hajat, Anjum; Allison, Matthew; Diez-Roux, Ana V.; Jenny, Nancy Swords; Jorgensen, Neal W.; Szpiro, Adam A.; Vedal, Sverre; Kaufman, Joel D.

    2015-01-01

    Background Air pollution is associated with cardiovascular disease, and systemic inflammation may mediate this effect. We assessed associations between long- and short-term concentrations of air pollution and markers of inflammation, coagulation, and endothelial activation. Methods We studied participants from the Multi-Ethnic Study of Atherosclerosis from 2000 to 2012 with repeat measures of serum C-reactive protein (CRP), interleukin-6 (IL-6), fibrinogen, D-dimer, soluble E-selectin, and soluble Intercellular Adhesion Molecule-1. Annual average concentrations of ambient fine particulate matter (PM2.5), individual-level ambient PM2.5 (integrating indoor concentrations and time–location data), oxides of nitrogen (NOx), nitrogen dioxide (NO2), and black carbon were evaluated. Short-term concentrations of PM2.5 reflected the day of blood draw, day prior, and averages of prior 2-, 3-, 4-, and 5-day periods. Random-effects models were used for long-term exposures and fixed effects for short-term exposures. The sample size was between 9,000 and 10,000 observations for CRP, IL-6, fibrinogen, and D-dimer; approximately 2,100 for E-selectin; and 3,300 for soluble Intercellular Adhesion Molecule-1. Results After controlling for confounders, 5 µg/m3 increase in long-term ambient PM2.5 was associated with 6% higher IL-6 (95% confidence interval = 2%, 9%), and 40 parts per billion increase in long-term NOx was associated with 7% (95% confidence interval = 2%, 13%) higher level of D-dimer. PM2.5 measured at day of blood draw was associated with CRP, fibrinogen, and E-selectin. There were no other positive associations between blood markers and short- or long-term air pollution. Conclusions These data are consistent with the hypothesis that long-term exposure to air pollution is related to some markers of inflammation and fibrinolysis. PMID:25710246

  12. Topical treatment with Xiaozheng Zhitong Paste alleviates bone cancer pain by inhibiting proteinase-activated receptor 2 signaling pathway.

    PubMed

    Bao, Yanju; Wang, Gaimei; Gao, Yebo; Du, Maobo; Yang, Liping; Kong, Xiangying; Zheng, Honggang; Hou, Wei; Hua, Baojin

    2015-09-01

    Herbal analgesic Xiaozheng Zhitong Paste (XZP) and related modifications are often used in traditional Chinese medicine to manage cancer pain. However, its underlying mechanism remains unknown. To investigate the effects and mechanism of XZP on bone cancer pain in a rat model of breast cancer-induced bone pain, a bone cancer pain model was established by inoculating Walker 256 cells into Wistar rats. Bone cancer-bearing rats were topically treated with different doses of XZP or injected with 5 mg/kg of osteoprotegerin (OPG) as positive control. Bone destruction, bone mineral content (BMC) and bone mineral density (BMD) were analyzed by radiology. Paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) were examined to determine pain levels. Trypsin, TNF-α and IL-1β serum levels were determined using enzyme-linked immunosorbent assay (ELISA). Central sensitization markers such as c-Fos, GFAP, IBA1 and CGRP, as well as proteinase-activated receptor 2 (PAR2) signaling pathway mediators such as PAR2, PKC-γ, PKA and TRPV1, were determined by quantitative RT-PCR and western blotting assay. XZP treatment significantly mitigated bone cancer-related nociceptive behavior, bone damage, BMC and BMD; and decreased radiological scores in rats. XZP treatment significantly inhibited IBA1, GFAP, c-Fos and CGRP expressions in the spinal cord; and significantly mitigated trypsin, TNF-α and IL-1β serum levels. Furthermore, PAR2, PKC-γ, PKA and TRPV1 relative mRNA levels and protein expression in bone lesions were significantly reduced in rats treated with XZP. XZP significantly alleviates breast cancer-induced bone pain by inhibiting the PAR2 signaling pathway. PMID:26133236

  13. Context Fear Learning Specifically Activates Distinct Populations of Neurons in Amygdala and Hypothalamus

    ERIC Educational Resources Information Center

    Trogrlic, Lidia; Wilson, Yvette M.; Newman, Andrew G.; Murphy, Mark

    2011-01-01

    The identity and distribution of neurons that are involved in any learning or memory event is not known. In previous studies, we identified a discrete population of neurons in the lateral amygdala that show learning-specific activation of a c-"fos"-regulated transgene following context fear conditioning. Here, we have extended these studies to…

  14. High IL-23 level is a marker of disease activity in rheumatoid arthritis.

    PubMed

    Abu Al Fadl, Esam M; Fattouh, Mona; Allam, Ahmed A

    2013-01-01

    Rheumatoid arthritis (RA) is a chronic autoimmune systemic disorder characterized by inflammatory responses mainly affecting the synovial joints. Interleukin-23 (IL-23) is a heterodimeric pro-inflammatory cytokine secreted by activated dendritic cells and activated macrophages. IL-23 is the key cytokine controlling inflammation in peripheral tissues leading to the development of autoimmune diseases. The objective of our study was to determine the relationship between the IL-23 level and disease activity in RA patients. Sixty RA patients were included in the study with mean age of 40 years; they included 44 (73.3 %) females and 16 males (26.7 %). The clinical parameters of disease activity were determined, including the 28-joint disease activity score (DAS28), serum levels of C-reactive protein (CRP), Anti-citrullinated peptide antibody (ACPA), rheumatoid factor (RF), and TNF-alpha and the degree of bony erosions based on X-rays. Patients were subdivided into active disease group (n = 30) with DAS28 score higher than 5.1 (Group I); and remission group (n = 30) with DAS28 score less than 2.6 (Group II). Thirty healthy individuals in the same age group of RA patients including 22 (73.3%) females and 8 males (26.7%) were randomly selected as the control group (Group III). The levels of IL-23 were determined by enzyme-linked immunosorbent assay (ELISA) and the correlations between the serum levels of IL-23 and disease activity parameters of patients with RA were determined. Serum levels of IL-23 were significantly higher in RA patients during active stage of the disease in comparison to the patients in remission and the control group. There was a significant positive correlation between serum IL-23 levels in RA patients and individual disease activity parameters. It is concluded that elevated serum IL-23 level may be a useful marker to detect active RA and disease progression in patients with RA. PMID:24617049

  15. Evaluation of Potential Clinical Surrogate Markers of a Trauma Induced Alteration of Clotting Factor Activities

    PubMed Central

    Payas, Arzu; Schoeneberg, Carsten; Wegner, Alexander; Kauther, Max Daniel; Lendemans, Sven

    2016-01-01

    Objective. The aim of this study was to identify routinely available clinical surrogate markers for potential clotting factor alterations following multiple trauma. Methods. In 68 patients admitted directly from the scene of the accident, all soluble clotting factors were analyzed and clinical data was collected prospectively. Ten healthy subjects served as control group. Results. Patients showed reduced activities of clotting factors II, V, VII, and X and calcium levels (all P < 0.0001 to 0.01). Levels of hemoglobin and base deficit correlated moderately to highly with the activities of a number of clotting factors. Nonsurvivors and patients who needed preclinical intubation or hemostatic therapy showed significantly reduced factor activities at admission. In contrast, factor VIII activity was markedly elevated after injury in general (P < 0.0001), but reduced in nonsurvivors (P < 0.05). Conclusions. Multiple trauma causes an early reduction of the activities of nearly all soluble clotting factors in general. Initial hemoglobin and, with certain qualifications, base deficit levels demonstrated a potential value in detecting those underlying clotting factor deficiencies. Nevertheless, their role as triggers of a hemostatic therapy as well as the observed response of factor VIII to multiple trauma and also its potential prognostic value needs further evaluation. PMID:27433474

  16. Characterizing proton-activated materials to develop PET-mediated proton range verification markers

    NASA Astrophysics Data System (ADS)

    Cho, Jongmin; Ibbott, Geoffrey S.; Kerr, Matthew D.; Amos, Richard A.; Stingo, Francesco C.; Marom, Edith M.; Truong, Mylene T.; Palacio, Diana M.; Betancourt, Sonia L.; Erasmus, Jeremy J.; DeGroot, Patricia M.; Carter, Brett W.; Gladish, Gregory W.; Sabloff, Bradley S.; Benveniste, Marcelo F.; Godoy, Myrna C.; Patil, Shekhar; Sorensen, James; Mawlawi, Osama R.

    2016-06-01

    Conventional proton beam range verification using positron emission tomography (PET) relies on tissue activation alone and therefore requires particle therapy PET whose installation can represent a large financial burden for many centers. Previously, we showed the feasibility of developing patient implantable markers using high proton cross-section materials (18O, Cu, and 68Zn) for in vivo proton range verification using conventional PET scanners. In this technical note, we characterize those materials to test their usability in more clinically relevant conditions. Two phantoms made of low-density balsa wood (~0.1 g cm‑3) and beef (~1.0 g cm‑3) were embedded with Cu or 68Zn foils of several volumes (10–50 mm3). The metal foils were positioned at several depths in the dose fall-off region, which had been determined from our previous study. The phantoms were then irradiated with different proton doses (1–5 Gy). After irradiation, the phantoms with the embedded foils were moved to a diagnostic PET scanner and imaged. The acquired data were reconstructed with 20–40 min of scan time using various delay times (30–150 min) to determine the maximum contrast-to-noise ratio. The resultant PET/computed tomography (CT) fusion images of the activated foils were then examined and the foils’ PET signal strength/visibility was scored on a 5 point scale by 13 radiologists experienced in nuclear medicine. For both phantoms, the visibility of activated foils increased in proportion to the foil volume, dose, and PET scan time. A linear model was constructed with visibility scores as the response variable and all other factors (marker material, phantom material, dose, and PET scan time) as covariates. Using the linear model, volumes of foils that provided adequate visibility (score 3) were determined for each dose and PET scan time. The foil volumes that were determined will be used as a guideline in developing practical implantable markers.

  17. Characterizing proton-activated materials to develop PET-mediated proton range verification markers.

    PubMed

    Cho, Jongmin; Ibbott, Geoffrey S; Kerr, Matthew D; Amos, Richard A; Stingo, Francesco C; Marom, Edith M; Truong, Mylene T; Palacio, Diana M; Betancourt, Sonia L; Erasmus, Jeremy J; DeGroot, Patricia M; Carter, Brett W; Gladish, Gregory W; Sabloff, Bradley S; Benveniste, Marcelo F; Godoy, Myrna C; Patil, Shekhar; Sorensen, James; Mawlawi, Osama R

    2016-06-01

    Conventional proton beam range verification using positron emission tomography (PET) relies on tissue activation alone and therefore requires particle therapy PET whose installation can represent a large financial burden for many centers. Previously, we showed the feasibility of developing patient implantable markers using high proton cross-section materials ((18)O, Cu, and (68)Zn) for in vivo proton range verification using conventional PET scanners. In this technical note, we characterize those materials to test their usability in more clinically relevant conditions. Two phantoms made of low-density balsa wood (~0.1 g cm(-3)) and beef (~1.0 g cm(-3)) were embedded with Cu or (68)Zn foils of several volumes (10-50 mm(3)). The metal foils were positioned at several depths in the dose fall-off region, which had been determined from our previous study. The phantoms were then irradiated with different proton doses (1-5 Gy). After irradiation, the phantoms with the embedded foils were moved to a diagnostic PET scanner and imaged. The acquired data were reconstructed with 20-40 min of scan time using various delay times (30-150 min) to determine the maximum contrast-to-noise ratio. The resultant PET/computed tomography (CT) fusion images of the activated foils were then examined and the foils' PET signal strength/visibility was scored on a 5 point scale by 13 radiologists experienced in nuclear medicine. For both phantoms, the visibility of activated foils increased in proportion to the foil volume, dose, and PET scan time. A linear model was constructed with visibility scores as the response variable and all other factors (marker material, phantom material, dose, and PET scan time) as covariates. Using the linear model, volumes of foils that provided adequate visibility (score 3) were determined for each dose and PET scan time. The foil volumes that were determined will be used as a guideline in developing practical implantable markers. PMID:27203621

  18. Evaluation of ornithine decarboxylase activity as a marker for tumor growth rate in malignant tumors.

    PubMed

    Westin, T; Edström, S; Lundholm, K; Gustafsson, B

    1991-10-01

    Ornithine decarboxylase (ODC) is a rate-limiting enzyme in the synthesis of polyamines. Polyamines regulate DNA synthesis by a mechanism that is not fully understood. High levels of polyamines and ODC activity are associated with rapid cell growth, particularly in tumor tissues. The aim of this study was to determine whether ODC activity as a marker for rapid alterations in tumor growth could be used to investigate whether nutritional support in cancer patients stimulates tumor cell proliferation. Weight-losing head and neck cancer patients and tumor-bearing mice (MCG 101, C57/BL) were studied during different feeding regimens. The ODC activity in tumor tissue was investigated in relation to the following variables: (1) histopathologic differentiation; (2) DNA content; and (3) bromodeoxyuridine (BrdUrd) incorporation into DNA. After the animals were starved for 24 hours, a significant reduction of tumor growth was demonstrated in the experimental tumor along with a reduction of ODC activity, an accumulation of cells in the G0G1 phase, and a reduction of cells incorporating BrdUrd into DNA. Refeeding after 24 hours generated a response by all variables. Tumor biopsy specimens from patients with head and neck cancer malignancies demonstrated aneuploidy in the cells of 70% of the patients. High ODC activity in tumor tissue was demonstrated mainly among poorly differentiated tumors, and ODC activity was correlated with the compartment size of aneuploidic cells in the tumor. High ODC activity indicated a poor short-term survival (1 year). It was concluded that experimental tumor growth is highly dependent on host feeding. However, there was no evidence supporting the claim that nutritional support to cancer patients stimulates tumor cell proliferation. Determination of ODC activity may be used to monitor rapid changes in DNA synthesis and may have prognostic significance for survival. PMID:1951878

  19. Antimicrobial Activity of Euplotin C, the Sesquiterpene Taxonomic Marker from the Marine Ciliate Euplotes crassus

    PubMed Central

    Savoia, Dianella; Avanzini, Claudio; Allice, Tiziano; Callone, Emanuela; Guella, Graziano; Dini, Fernando

    2004-01-01

    Strains of the marine ciliate protist Euplotes crassus produce exclusive terpenoids called euplotins that play an ecological role. Among these derivatives, euplotin C is the main of four secondary metabolites isolated from cultures of this protozoon and represents the sesquiterpene taxonomic marker from E. crassus. Because different terpenoid metabolites of plant origin showed a certain antimicrobial activity, we assessed the compound euplotin C, purified by high-pressure liquid chromatography and solubilized in two solubility enhancers, against the protozoa Leishmania major and Leishmani infantum, the fungus Candida albicans, and nine strains of gram-positive and gram-negative microorganisms. An activity of euplotin C against Leishmania promastigotes was demonstrated (50% lethal doses were 4.6 or 8.1 μg/ml depending on the agent used to solubilize the compound), while the effect was less evident on Candida and nearly absent on bacteria. A nonsignificant cytotoxicity (50% lethal dose, >200 μg/ml) against the J774 cell line was observed. A leishmanicidal activity was also shown by the living, euplotin-producing cells of E. crassus cultured together with promastigotes; this activity increased with time from 10 min to 6 h of incubation. This study provides an initial rationale for the evaluation of euplotin C and other similar natural products as alternative or possibly synergistic compounds for current antiprotozoon chemotherapeutics. PMID:15388442

  20. Antimicrobial activity of euplotin C, the sesquiterpene taxonomic marker from the marine ciliate Euplotes crassus.

    PubMed

    Savoia, Dianella; Avanzini, Claudio; Allice, Tiziano; Callone, Emanuela; Guella, Graziano; Dini, Fernando

    2004-10-01

    Strains of the marine ciliate protist Euplotes crassus produce exclusive terpenoids called euplotins that play an ecological role. Among these derivatives, euplotin C is the main of four secondary metabolites isolated from cultures of this protozoon and represents the sesquiterpene taxonomic marker from E. crassus. Because different terpenoid metabolites of plant origin showed a certain antimicrobial activity, we assessed the compound euplotin C, purified by high-pressure liquid chromatography and solubilized in two solubility enhancers, against the protozoa Leishmania major and Leishmani infantum, the fungus Candida albicans, and nine strains of gram-positive and gram-negative microorganisms. An activity of euplotin C against Leishmania promastigotes was demonstrated (50% lethal doses were 4.6 or 8.1 microg/ml depending on the agent used to solubilize the compound), while the effect was less evident on Candida and nearly absent on bacteria. A nonsignificant cytotoxicity (50% lethal dose, >200 microg/ml) against the J774 cell line was observed. A leishmanicidal activity was also shown by the living, euplotin-producing cells of E. crassus cultured together with promastigotes; this activity increased with time from 10 min to 6 h of incubation. This study provides an initial rationale for the evaluation of euplotin C and other similar natural products as alternative or possibly synergistic compounds for current antiprotozoon chemotherapeutics. PMID:15388442

  1. Correlation Between Activation of the Prelimbic Cortex, Basolateral Amygdala, and Agranular Insular Cortex During Taste Memory Formation.

    PubMed

    Uematsu, Akira; Kitamura, Akihiko; Iwatsuki, Ken; Uneyama, Hisayuki; Tsurugizawa, Tomokazu

    2015-09-01

    Conditioned taste aversion (CTA) is a well-established learning paradigm, whereby animals associate tastes with subsequent visceral illness. The prelimbic cortex (PL) has been shown to be involved in the association of events separated by time. However, the nature of PL activity and its functional network in the whole brain during CTA learning remain unknown. Here, using awake functional magnetic resonance imaging and fiber tracking, we analyzed functional brain connectivity during the association of tastes and visceral illness. The blood oxygen level-dependent (BOLD) signal significantly increased in the PL after tastant and lithium chloride (LiCl) infusions. The BOLD signal in the PL significantly correlated with those in the amygdala and agranular insular cortex (IC), which we found were also structurally connected to the PL by fiber tracking. To precisely examine these data, we then performed double immunofluorescence with a neuronal activity marker (c-Fos) and an inhibitory neuron marker (GAD67) combined with a fluorescent retrograde tracer in the PL. During CTA learning, we found an increase in the activity of excitatory neurons in the basolateral amygdala (BLA) or agranular IC that project to the PL. Taken together, these findings clearly identify a role of synchronized PL, agranular IC, and BLA activity in CTA learning. PMID:24735672

  2. The effects of Lycii Radicis Cortex on RANKL-induced osteoclast differentiation and activation in RAW 264.7 cells

    PubMed Central

    KIM, JAE-HYUN; KIM, EUN-YOUNG; LEE, BINA; MIN, JU-HEE; SONG, DEA-UK; LIM, JEONG-MIN; EOM, JI WHAN; YEOM, MIJUNG; JUNG, HYUK-SANG; SOHN, YOUNGJOO

    2016-01-01

    Post-menopausal osteoporosis is a serious age-related disease. After the menopause, estrogen deficiency is common, and excessive osteoclast activity causes osteoporosis. Osteoclasts are multinucleated cells generated from the differentiation of monocyte/macrophage precursor cells such as RAW 264.7 cells. The water extract of Lycii Radicis Cortex (LRC) is made from the dried root bark of Lycium chinense Mill. and is termed 'Jigolpi' in Korea. Its effects on osteoclastogenesis and post-menopausal osteoporosis had not previously been tested. In the present study, the effect of LRC on receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclast differentiation was demonstrated using a tartrate-resistant acid phosphatase (TRAP) assay and pit formation assay. Moreover, in order to analyze molecular mechanisms, we studied osteoclastogenesis-related markers such as nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), c-Fos, receptor activator of NF-κB (RANK), TRAP, cathepsin K (CTK), matrix metallopeptidase-9 (MMP-9), calcitonin receptor (CTR) and carbonic anhydrase II (CAII) using RT-qPCR and western blot analysis. Additionally, we also determined the effect of LRC on an ovariectomized (OVX) rat model. We noted that LRC inhibited RANKL-induced osteoclast differentiation via suppressing osteoclastogenesis-related markers. It also inhibited osteoporosis in the OVX rat model by decreasing loss of bone density and trabecular area. These results suggest that LRC exerts a positive effect on menopausal osteoporosis. PMID:26848104

  3. ADOLESCENT INTERMITTENT ETHANOL EXPOSURE ENHANCES ETHANOL ACTIVATION OF THE NUCLEUS ACCUMBENS WHILE BLUNTING THE PREFRONTAL CORTEX RESPONSES IN ADULT RAT

    PubMed Central

    LIU, W.; CREWS, F. T.

    2016-01-01

    The brain continues to develop through adolescence when excessive alcohol consumption is prevalent in humans. We hypothesized that binge drinking doses of ethanol during adolescence will cause changes in brain ethanol responses that persist into adulthood. To test this hypothesis Wistar rats were treated with an adolescent intermittent ethanol (AIE; 5 g/kg, i.g. 2 days on–2 days off; P25–P54) model of underage drinking followed by 25 days of abstinence during maturation to young adulthood (P80). Using markers of neuronal activation c-Fos, EGR1, and phophorylated extracellar signal regulated kinase (pERK1/2), adult responses to a moderate and binge drinking ethanol challenge, e.g., 2 or 4 g/kg, were determined. Adult rats showed dose dependent increases in neuronal activation markers in multiple brain regions during ethanol challenge. Brain regional responses correlated are consistent with anatomical connections. AIE led to marked decreases in adult ethanol PFC (prefrontal cortex) and blunted responses in the amygdala. Binge drinking doses led to the nucleus accumbens (NAc) activation that correlated with the ventral tegmental area (VTA) activation. In contrast to other brain regions, AIE enhanced the adult NAc response to binge drinking doses. These studies suggest that adolescent alcohol exposure causes long-lasting changes in brain responses to alcohol that persist into adulthood. PMID:25727639

  4. The Role of Power Doppler Ultrasonography as Disease Activity Marker in Rheumatoid Arthritis

    PubMed Central

    Bhasin, Shaloo; Cheung, Peter P.

    2015-01-01

    Structural damage in rheumatoid arthritis (RA) occurs early if inflammation is not treated promptly. Treatment targeted to reduce inflammation, in particular, that of synovial inflammation in the joints (synovitis), has been recommended as standard treat-to-target recommendations by rheumatologists. The goal is to achieve disease remission (i.e., no disease activity). Several accepted remission criteria have not always equated to the complete absence of true inflammation. Over the last decade, musculoskeletal ultrasonography has been demonstrated to detect subclinical synovitis not appreciated by routine clinical or laboratory assessments, with the Power Doppler modality allowing clinicians to more readily appreciate true inflammation. Thus, targeting therapy to Power Doppler activity may provide superior outcomes compared with treating to clinical targets alone, making it an attractive marker of disease activity in RA. However, more validation on its true benefits such as its benefits to patients in regard to patient related outcomes and issues with standardized training in acquisition and interpretation of power Doppler findings are required. PMID:26063952

  5. Olfactory marker protein (OMP) gene deletion causes altered physiological activity of olfactory sensory neurons.

    PubMed Central

    Buiakova, O I; Baker, H; Scott, J W; Farbman, A; Kream, R; Grillo, M; Franzen, L; Richman, M; Davis, L M; Abbondanzo, S; Stewart, C L; Margolis, F L

    1996-01-01

    Olfactory marker protein (OMP) is an abundant, phylogentically conserved, cytoplasmic protein of unknown function expressed almost exclusively in mature olfactory sensory neurons. To address its function, we generated OMP-deficient mice by gene targeting in embryonic stem cells. We report that these OMP-null mice are compromised in their ability to respond to odor stimull, providing insight to OMP function. The maximal electroolfactogram response of the olfactory neuroepithelium to several odorants was 20-40% smaller in the mutants compared with controls. In addition, the onset and recovery kinetics following isoamyl acetate stimulation are prolonged in the null mice. Furthermore, the ability of the mutants to respond to the second odor pulse of a pair is impaired, over a range of concentrations, compared with controls. These results imply that neural activity directed toward the olfactory bulb is also reduced. The bulbar phenotype observed in the OMP-null mouse is consistent with this hypothesis. Bulbar activity of tyrosine hydroxylase, the rate limiting enzyme of catecholamine biosynthesis, and content of the neuropeptide cholecystokinin are reduced by 65% and 50%, respectively. This similarity to postsynaptic changes in gene expression induced by peripheral olfactory deafferentation or naris blockade confirms that functional neural activity is reduced in both the olfactory neuroepithelium and the olfactory nerve projection to the bulb in the OMP-null mouse. These observations provide strong support for the conclusion that OMP is a novel modulatory component of the odor detection/signal transduction cascade. Images Fig. 1 Fig. 2 PMID:8790421

  6. Olfactory marker protein (OMP) gene deletion causes altered physiological activity of olfactory sensory neurons.

    PubMed

    Buiakova, O I; Baker, H; Scott, J W; Farbman, A; Kream, R; Grillo, M; Franzen, L; Richman, M; Davis, L M; Abbondanzo, S; Stewart, C L; Margolis, F L

    1996-09-01

    Olfactory marker protein (OMP) is an abundant, phylogentically conserved, cytoplasmic protein of unknown function expressed almost exclusively in mature olfactory sensory neurons. To address its function, we generated OMP-deficient mice by gene targeting in embryonic stem cells. We report that these OMP-null mice are compromised in their ability to respond to odor stimull, providing insight to OMP function. The maximal electroolfactogram response of the olfactory neuroepithelium to several odorants was 20-40% smaller in the mutants compared with controls. In addition, the onset and recovery kinetics following isoamyl acetate stimulation are prolonged in the null mice. Furthermore, the ability of the mutants to respond to the second odor pulse of a pair is impaired, over a range of concentrations, compared with controls. These results imply that neural activity directed toward the olfactory bulb is also reduced. The bulbar phenotype observed in the OMP-null mouse is consistent with this hypothesis. Bulbar activity of tyrosine hydroxylase, the rate limiting enzyme of catecholamine biosynthesis, and content of the neuropeptide cholecystokinin are reduced by 65% and 50%, respectively. This similarity to postsynaptic changes in gene expression induced by peripheral olfactory deafferentation or naris blockade confirms that functional neural activity is reduced in both the olfactory neuroepithelium and the olfactory nerve projection to the bulb in the OMP-null mouse. These observations provide strong support for the conclusion that OMP is a novel modulatory component of the odor detection/signal transduction cascade. PMID:8790421

  7. Expression of markers of activity in cultured human osteoblasts: effects of interleukin-4 and interleukin-13.

    PubMed

    Silfverswärd, Carl-Johan; Penno, Hendrik; Frost, Anders; Nilsson, Olle; Ljunggren, Osten

    2010-09-01

    Cytokines regulate proliferation, differentiation and activation of osteoblasts. Interleukin-4 (IL-4) and interleukin-13 (IL-13) takes part in this regulation by inhibiting proliferation and by enhancement of interleukin-6 (IL-6) formation in cultured human osteoblasts (hOBs). In the present study we have investigated the effects of IL-4 and IL-13 on markers of osteoblastic activity in isolated hOBs. Treatment with either IL-4 or IL-13 (1-100 pM) stimulated the formation of alkaline phosphatase (ALP) dose-dependently, detected by enzyme reaction and histochemistry. IL-4 and IL-13 also induced an increase in the secretion of procollagen type I carboxypeptide (PICP) from cultured hOBs, measured by RIA. Osteocalcin secretion measured by ELISA-technique was unaffected. The rate of mineralization, assessed by von Kossa and Alizarin Red staining, was clearly enhanced in hOBs stimulated by IL-4 or IL-13. In conclusion IL-4 and IL-13 exert multiple effects on osteoblast activity in cultured hOBs. Stimulation of ALP secretion together with enhanced collagen secretion and mineralization suggests that IL-4 and IL-13 also have the capacity to maintain hOBs in a differentiated, productive phase. PMID:20509757

  8. Neuronal activity topography parameters as a marker for differentiating vascular cognitive impairment in carotid stenosis.

    PubMed

    Shibata, Takashi; Musha, Toshimitu; Kubo, Michiya; Horie, Yukio; Asahi, Takashi; Kuwayama, Naoya; Kuroda, Satoshi; Hayashi, Karin; Kobayashi, Yohei; Tanaka, Mieko; Matsuzaki, Haruyasu; Asada, Takashi

    2014-10-01

    Previously, we reported on the differentiation between patients with Alzheimer disease and normal controls using a quantitative electroencephalographic technique called neuronal activity topography (NAT). In this technique, cerebral neuronal activities are characterized by the signal intensity and coherence (sNAT and vNAT, respectively). In the present study, we examined 47 patients with vascular cognitive impairment in carotid stenosis and 52 normal controls. All subjects underwent electroencephalography in a resting state with closed eyes for 5 minutes. Electroencephalographic markers of the differential likelihood, that is, the sensitivity-versus-specificity characteristics, sL(x:VCI-NLc) and vL(x:VCI-NLc), were assessed with neuronal activity topography and were compared between the 2 groups. sL(x:VCI-NLc) and vL(x:VCI-NLc) crossed each other at a cutoff value of the differential likelihood. Separation of the patients and controls was made with a sensitivity of 92% and 88%, as well as a false-positive rate of 8% and 12% for sL(x:VCI-NLc) and vL(x:VCI-NLc), respectively. Using sNAT, we accurately differentiated 92% patients with vascular cognitive impairment. We recommend that sNAT, rather than vNAT, should be used in detecting vascular cognitive impaired patients. PMID:25174560

  9. Blood acylpeptide hydrolase activity is a sensitive marker for exposure to some organophosphate toxicants.

    PubMed

    Quistad, Gary B; Klintenberg, Rebecka; Casida, John E

    2005-08-01

    Acylpeptide hydrolase (APH) unblocks N-acetyl peptides. It is a major serine hydrolase in rat blood, brain, and liver detected by derivatization with (3)H-diisopropyl fluorophosphate (DFP) or a biotinylated fluorophosphonate. Although APH does not appear to be a primary target of acute poisoning by organophosphorus (OP) compounds, the inhibitor specificity of this secondary target is largely unknown. This study fills the gap and emphasizes blood APH as a potential marker of OP exposure. The most potent in vitro inhibitors for human erythrocyte and mouse brain APH are DFP (IC(50) 11-17 nM), chlorpyrifos oxon (IC(50) 21-71 nM), dichlorvos (IC(50) 230-560 nM), naled (IC(50) 370-870 nM), and their analogs with modified alkyl substituents. (3)H-diisopropyl fluorophosphate is a potent inhibitor of mouse blood and brain APH in vivo (ED(50) 0.09-0.2 mg/kg and 0.02-0.03 mg/l for ip and vapor exposure, respectively). Mouse blood and brain APH and blood butyrylcholinesterase (BChE) are of similar sensitivity to DFP in vitro and in vivo (ip and vapor exposure), but APH inhibition is much more persistent in vivo (still >80% inhibition after 4 days). The inhibitory potency of OP pesticides in vivo in mice varies from APH selective (dichlorvos, naled, and trichlorfon), to APH and BChE selective (profenofos and tribufos), to ChE selective or nonselective (many commercial insecticides). Sarin administered ip at a lethal dose to guinea pigs inhibits blood acetylcholinesterase and BChE completely but erythrocyte APH only partially. Blood APH activity is therefore a sensitive marker for exposure to some but not all OP pesticides and chemical warfare agents. PMID:15888665

  10. Specific marker of feigned memory impairment: The activation of left superior frontal gyrus.

    PubMed

    Chen, Zi-Xiang; Xue, Li; Liang, Chun-Yu; Wang, Li-Li; Mei, Wei; Zhang, Qiang; Zhao, Hu

    2015-11-01

    Faking memory impairment means normal people complain lots of memory problems without organic damage in forensic assessments. Using alternative forced-choice paradigm, containing digital or autobiographical information, previous neuroimaging studies have indicated that faking memory impairment could cause the activation in the prefrontal and parietal regions, and might involve a fronto-parietal-subcortical circuit. However, it is still unclear whether different memory types have influence on faking or not. Since different memory types, such as long-term memory (LTM) and short-term memory (STM), were found supported by different brain areas, we hypothesized that feigned STM or LTM impairment had distinct neural activation mapping. Besides that, some common neural correlates may act as the general characteristic of feigned memory impairment. To verify this hypothesis, the functional magnetic resonance imaging (fMRI) combined with an alternative word forced-choice paradigm were used in this study. A total of 10 right-handed participants, in this study, had to perform both STW and LTM tasks respectively under answering correctly, answering randomly and feigned memory impairment conditions. Our results indicated that the activation of the left superior frontal gyrus and the left medial frontal gyrus was associated with feigned LTM impairment, whereas the left superior frontal gyrus, the left precuneus and the right anterior cingulate cortex (ACC) were highly activated while feigning STM impairment. Furthermore, an overlapping was found in the left superior frontal gyrus, and it suggested that the activity of the left superior frontal gyrus might be acting as a specific marker of feigned memory impairment. PMID:26479324

  11. Molecular Network Analysis of Endometriosis Reveals a Novel Role for c-Jun Regulated Macrophage Activation

    PubMed Central

    Beste, Michael T.; Pfäffle-Doyle, Nicole; Prentice, Emily A.; Morris, Stephanie N.; Lauffenburger, Douglas A.; Isaacson, Keith B.; Griffith, Linda G.

    2014-01-01

    Clinical management of endometriosis is limited by the complex relationship between symptom severity, heterogeneous surgical presentations, and variability in clinical outcomes. As a complement to visual classification schemes, molecular profiles of disease activity may improve risk stratification to better inform treatment decisions and identify novel approaches to targeted treatment. Here, we employ a network analysis of information flow within and between inflammatory cells to discern consensus behaviors characterizing patient sub-populations. Unsupervised multivariate analysis of cytokine profiles quantified by multiplex immunoassays identified a subset of patients with a shared “consensus signature” of thirteen elevated cytokines that was associated with common clinical features, but was not observed among patient subpopulations defined by morphologic presentation alone. Enrichment analysis of consensus markers reinforced the primacy of peritoneal macrophage infiltration and activation, which was demonstrably elevated in ex vivo cultures. Although familiar targets of the NFκB family emerged among over-represented transcriptional binding sites for consensus markers, our analysis provides evidence for a previously unrecognized contribution from c-Jun, c-Fos, and AP-1 effectors of mitogen associated kinase signaling. Their crucial involvement in propagation of macrophage-driven inflammatory networks was confirmed via targeted inhibition of upstream kinases. Collectively, these analyses provide in vivo validation of a clinically relevant inflammatory network that may serve as an objective measure for guiding treatment decisions for endometriosis management, and in the future may provide a mechanistic endpoint for assessing efficacy of novel agents aimed at curtailing inflammatory mechanisms that drive disease progression. PMID:24500404

  12. Odours stimulate neuronal activity in the dorsolateral area of the hippocampal formation during path integration

    PubMed Central

    Jorge, P. E.; Phillips, J. B.; Gonçalves, A.; Marques, P. A. M.; Nĕmec, P.

    2014-01-01

    The dorsolateral area of the hippocampal formation of birds is commonly assumed to play a central role in processing information needed for geographical positioning and homing. Previous work has interpreted odour-induced activity in this region as evidence for an ‘olfactory map’. Here, we show, using c-Fos expression as a marker, that neuronal activation in the dorsolateral area of the hippocampal formation of pigeons is primarily a response to odour novelty, not to the spatial distribution of odour sources that would be necessary for an olfactory map. Pigeons exposed to odours had significantly more neurons activated in this area of the brain than pigeons exposed to filtered air with odours removed. This increased activity was observed only in response to unfamiliar odours. No change in activity was observed when pigeons were exposed to home odours. These findings are consistent with non-home odours activating non-olfactory components of the pigeon's navigation system. The pattern of neuronal activation in the triangular and dorsomedial areas of the hippocampal formation was, by contrast, consistent with the possibility that odours play a role in providing spatial information. PMID:24671977

  13. APOE genotype alters glial activation and loss of synaptic markers in mice

    PubMed Central

    Zhu, Yuangui; Nwabuisi-Heath, Evelyn; Dumanis, Sonya B.; Tai, Leon; Yu, Chunjiang; Rebeck, G. William; Jo LaDu, Mary

    2011-01-01

    The E4 allele of the Apolipoprotein E (APOE) gene is the strongest genetic risk factor for late-onset Alzheimer's disease (AD), and affects clinical outcomes of chronic and acute brain damages. The mechanisms by which apoE affect diverse diseases and disorders may involve modulation of the glial response to various types of brain damages. We examined glial activation in a mouse model where each of the human APOE alleles are expressed under the endogenous mouse APOE promoter, as well as in APOE knock-out mice. APOE4 mice displayed increased glial activation in response to intracerebroventricular lipopolysaccharide (LPS) compared to APOE2 and APOE3 mice by several measures. There were higher levels of microglia/macrophage, astrocytes, and invading T-cells after LPS injection in APOE4 mice. APOE4 mice also displayed greater and more prolonged increases of cytokines (IL-1β, IL-6, TNF-α) than APOE2 and APOE3 mice. We found that APOE4 mice had greater synaptic protein loss after LPS injection, as measured by three different markers: PSD-95, Drebin, and synaptophysin. In all assays, APOE knock-out mice responded similar to APOE4 mice, suggesting that the apoE4 protein may lack anti-inflammatory characteristics of apoE2 and apoE3. Together, these findings demonstrate that APOE4 predisposes to inflammation, which could contribute to its association with Alzheimer's disease and other disorders. PMID:22228589

  14. BACE1 activity in cerebrospinal fluid and its relation to markers of AD pathology.

    PubMed

    Mulder, Sandra D; van der Flier, Wiesje M; Verheijen, Jan H; Mulder, Cees; Scheltens, Philip; Blankenstein, Marinus A; Hack, C Erik; Veerhuis, Robert

    2010-01-01

    Several studies have shown that reduced amyloid-beta 1-42 (Abeta(42)) and increased tau levels in cerebrospinal fluid (CSF) reflect increased Alzheimer's disease (AD) pathology in the brain. beta-site APP cleaving enzyme (BACE1) is thought to be the major beta-secretase involved in Abeta production in the brain, and therefore we investigated the relation between BACE1 activity and CSF markers Abeta(40), Abeta(42), total tau (t-tau), and tau phosphorylated at threonine 181 (p-tau) in CSF of control (n=12), mild cognitive impairment (n=18), and AD (n=17) subjects. Patients were classified according to their Abeta(42), t-tau, and p-tau CSF biomarker levels, with either an AD-like biomarker profile (two or three biomarkers abnormal: Abeta(42) < 495 pg/ml in combination with t-tau > 356 pg/ml, and/or p-tau > 54 pg/ml) or a normal biomarker profile (activity levels, compared to patients with a normal biomarker profile (20 pg/ml and 16 pg/ml respectively; p=0.01), when controlled for age and gender. In the whole sample, BACE1 activity correlated with CSF levels of Abeta(40), t-tau, and p-tau (r=0.38, r=0.63, and r=0.65; all p< 0.05), but not with Abeta(42). These data suggest that increased BACE1 activity in CSF relates to AD pathology in the brain. PMID:20164582

  15. Tissue factor activity. A marker of alveolar macrophage maturation in rabbits. Effects of granulomatous pneumonitis.

    PubMed Central

    Rothberger, H; McGee, M P; Lee, T K

    1984-01-01

    amounts of tissue factor activity due to the presence of large numbers of mature alveolar macrophage forms that had high levels of the procoagulant. Thus, tissue factor activity in alveolar macrophages is a marker of cellular maturation in vivo and in vitro. Increased amounts of this initiator of the extrinsic clotting pathway, as found in alveolar macrophage populations from animals with granulomatous pneumonitis induced by BCG hypersensitivity, suggest that alveolar macrophage tissue factor may contribute to the pathology of immune lung diseases. PMID:6373826

  16. Feasibility of proton-activated implantable markers for proton range verification using PET

    PubMed Central

    Cho, Jongmin; Ibbott, Geoffrey; Gillin, Michael; Gonzalez-Lepera, Carlos; Titt, Uwe; Paganetti, Harald; Kerr, Matthew; Mawlawi, Osama

    2014-01-01

    Proton beam range verification using positron emission tomography (PET) currently relies on proton activation of tissue, the products of which decay with a short half-life and necessitate an on-site PET scanner. Tissue activation is, however, negligible near the distal dose fall-off region of the proton beam range due to their high interaction energy thresholds. Therefore Monte Carlo simulation is often supplemented for comparison with measurement; however, this also may be associated with systematic and statistical uncertainties. Therefore, we sought to test the feasibility of using long-lived proton-activated external materials that are inserted or infused into the target volume for more accurate proton beam range verification that could be performed at an off-site PET scanner. We irradiated samples of ≥98% 18O-enriched water, natural Cu foils, and ≥97% 68Zn-enriched foils as candidate materials, along with samples of tissue-equivalent materials including 16O water, heptane (C7H16), and polycarbonate (C16H14O3)n, at 4 depths (ranging from 100% to 3% of center of modulation (COM) dose) along the distal fall-off of a modulated 160-MeV proton beam. Samples were irradiated either directly or after being embedded in Plastic Water® or balsa wood. We then measured the activity of the samples using PET imaging for 20 or 30 min after various delay times. Measured activities of candidate materials were up to 100 times greater than those of the tissue-equivalent materials at the 4 distal dose fall-off depths. The differences between candidate materials and tissue-equivalent materials became more apparent after longer delays between irradiation and PET imaging, due to the longer half-lives of the candidate materials. Furthermore, the activation of the candidate materials closely mimicked the distal dose fall-off with offsets of 1 to 2 mm. Also, signals from the foils were clearly visible compared to the background from the activated Plastic Water® and balsa wood

  17. Feasibility of proton-activated implantable markers for proton range verification using PET

    NASA Astrophysics Data System (ADS)

    Cho, Jongmin; Ibbott, Geoffrey; Gillin, Michael; Gonzalez-Lepera, Carlos; Titt, Uwe; Paganetti, Harald; Kerr, Matthew; Mawlawi, Osama

    2013-11-01

    Proton beam range verification using positron emission tomography (PET) currently relies on proton activation of tissue, the products of which decay with a short half-life and necessitate an on-site PET scanner. Tissue activation is, however, negligible near the distal dose fall-off region of the proton beam range due to their high interaction energy thresholds. Therefore Monte Carlo simulation is often supplemented for comparison with measurement; however, this also may be associated with systematic and statistical uncertainties. Therefore, we sought to test the feasibility of using long-lived proton-activated external materials that are inserted or infused into the target volume for more accurate proton beam range verification that could be performed at an off-site PET scanner. We irradiated samples of ≥98% 18O-enriched water, natural Cu foils, and >97% 68Zn-enriched foils as candidate materials, along with samples of tissue-equivalent materials including 16O water, heptane (C7H16), and polycarbonate (C16H14O3)n, at four depths (ranging from 100% to 3% of center of modulation (COM) dose) along the distal fall-off of a modulated 160 MeV proton beam. Samples were irradiated either directly or after being embedded in Plastic Water® or balsa wood. We then measured the activity of the samples using PET imaging for 20 or 30 min after various delay times. Measured activities of candidate materials were up to 100 times greater than those of the tissue-equivalent materials at the four distal dose fall-off depths. The differences between candidate materials and tissue-equivalent materials became more apparent after longer delays between irradiation and PET imaging, due to the longer half-lives of the candidate materials. Furthermore, the activation of the candidate materials closely mimicked the distal dose fall-off with offsets of 1 to 2 mm. Also, signals from the foils were clearly visible compared to the background from the activated Plastic Water® and balsa wood

  18. Prostate-specific antigen as a marker of disease activity in prostate cancer.

    PubMed

    Partin, Alan W; Hanks, Gerald E; Klein, Eric A; Moul, Judd W; Nelson, William G; Scher, Howard I

    2002-09-01

    Despite the impact of prostate-specific antigen (PSA) testing on the detection and management of prostate cancer, controversy about its usefulness as a marker of disease activity continues. This review, based on a recent roundtable discussion, examines whether PSA measurements can be used rationally in several clinical settings. Following radical prostatectomy and radiation therapy, prediction of survival by PSA level is most reliable in high-risk patients. PSA doubling time after radiation therapy is the strongest predictor of biochemical failure. PSA measurements have been associated with inconsistent results following hormonal treatment; reduced PSA levels may result from antiandrogen treatment, which decreases expression of the PSA gene, and therefore, the level of PSA production. In the setting of primary and secondary cancer prevention, PSA is important in risk stratification when selecting patients for studies. Part 2 of this two-part article, which began in the August issue, discusses the role of PSA in hormonal and drug therapies and in primary and secondary chemoprevention. PMID:12380948

  19. ADENOSINE DEAMINASE ACTIVITY AND SERUM C-REACTIVE PROTEIN AS PROGNOSTIC MARKERS OF CHAGAS DISEASE SEVERITY

    PubMed Central

    BRAVO-TOBAR, Iván Darío; NELLO-PÉREZ, Carlota; FERNÁNDEZ, Alí; MOGOLLÓN, Nora; PÉREZ, Mary Carmen; VERDE, Juan; CONCEPCIÓN, Juan Luis; RODRIGUEZ-BONFANTE, Claudina; BONFANTE-CABARCAS, Rafael

    2015-01-01

    SUMMARY Chagas disease is a public health problem worldwide. The availability of diagnostic tools to predict the development of chronic Chagas cardiomyopathy is crucial to reduce morbidity and mortality. Here we analyze the prognostic value of adenosine deaminase serum activity (ADA) and C-reactive protein serum levels (CRP) in chagasic individuals. One hundred and ten individuals, 28 healthy and 82 chagasic patients were divided according to disease severity in phase I (n = 35), II (n = 29), and III (n = 18). A complete medical history, 12-lead electrocardiogram, chest X-ray, and M-mode echocardiogram were performed on each individual. Diagnosis of Chagas disease was confirmed by ELISA and MABA using recombinant antigens; ADA was determined spectrophotometrically and CRP by ELISA. The results have shown that CRP and ADA increased linearly in relation to disease phase, CRP being significantly higher in phase III and ADA at all phases. Also, CRP and ADA were positively correlated with echocardiographic parameters of cardiac remodeling and with electrocardiographic abnormalities, and negatively with ejection fraction. CRP and ADA were higher in patients with cardiothoracic index ≥ 50%, while ADA was higher in patients with ventricular repolarization disturbances. Finally, CRP was positively correlated with ADA. In conclusion, ADA and CRP are prognostic markers of cardiac dysfunction and remodeling in Chagas disease. PMID:26603224

  20. ADENOSINE DEAMINASE ACTIVITY AND SERUM C-REACTIVE PROTEIN AS PROGNOSTIC MARKERS OF CHAGAS DISEASE SEVERITY.

    PubMed

    Bravo-Tobar, Iván Darío; Nello-Pérez, Carlota; Fernández, Alí; Mogollón, Nora; Pérez, Mary Carmen; Verde, Juan; Concepción, Juan Luis; Rodriguez-Bonfante, Claudina; Bonfante-Cabarcas, Rafael

    2015-01-01

    Chagas disease is a public health problem worldwide. The availability of diagnostic tools to predict the development of chronic Chagas cardiomyopathy is crucial to reduce morbidity and mortality. Here we analyze the prognostic value of adenosine deaminase serum activity (ADA) and C-reactive protein serum levels (CRP) in chagasic individuals. One hundred and ten individuals, 28 healthy and 82 chagasic patients were divided according to disease severity in phase I (n = 35), II (n = 29), and III (n = 18). A complete medical history, 12-lead electrocardiogram, chest X-ray, and M-mode echocardiogram were performed on each individual. Diagnosis of Chagas disease was confirmed by ELISA and MABA using recombinant antigens; ADA was determined spectrophotometrically and CRP by ELISA. The results have shown that CRP and ADA increased linearly in relation to disease phase, CRP being significantly higher in phase III and ADA at all phases. Also, CRP and ADA were positively correlated with echocardiographic parameters of cardiac remodeling and with electrocardiographic abnormalities, and negatively with ejection fraction. CRP and ADA were higher in patients with cardiothoracic index ≥ 50%, while ADA was higher in patients with ventricular repolarization disturbances. Finally, CRP was positively correlated with ADA. In conclusion, ADA and CRP are prognostic markers of cardiac dysfunction and remodeling in Chagas disease. PMID:26603224

  1. Pattern of Forebrain Activation in High Novelty-Seeking Rats Following Aggressive Encounter

    PubMed Central

    Clinton, Sarah M.; Kerman, Ilan A.; Orr, Hailey R.; Bedrosian, Tracy A.; Abraham, Antony D.; Simpson, Danielle N.; Watson, Stanley J.; Akil, Huda

    2011-01-01

    We have previously demonstrated that selectively-bred High (bHR) and Low (bLR) novelty-seeking rats exhibit agonistic differences, with bHRs acting in a highly aggressive manner when facing homecage intrusion. In order to discover the specific neuronal pathways responsible for bHRs’ high levels of aggression, the present study compared c-fos mRNA expression in several forebrain regions of bHR/bLR males following this experience. bHR/bLR males were housed with female rats for two weeks, and then the females were replaced with a male intruder for 10 min. bHR/bLR residents were subsequently sacrificed by rapid decapitation, and their brains were removed and processed for c-fos in situ hybridization. Intrusion elicited robust c-fos mRNA expression in both phenotypes throughout the forebrain, including the septum, amygdala, hippocampus, cingulate cortex, and the hypothalamus. However, bHRs and bLRs exhibited distinct activation patterns in select areas. Compared to bHR rats, bLRs expressed greater c-fos in the lateral septum and within multiple hypothalamic nuclei, while bHRs showed greater activation in the arcuate hypothalamic nucleus and in the hippocampus. No bHR/bLR differences in c-fos expression were detected in the amygdala, cortical regions, and striatum. We also found divergent 5-HT1A receptor mRNA expression within some of these same areas, with bLRs having greater 5-HT1A, but not 5-HT1B, receptor mRNA levels in the septum, hippocampus and cingulate cortex. These findings, together with our earlier work, suggest that bHRs exhibit altered serotonergic functioning within select circuits during an aggressive encounter. PMID:21974861

  2. Caffeic acid 3,4-dihydroxy-phenethyl ester suppresses receptor activator of NF-κB ligand–induced osteoclastogenesis and prevents ovariectomy-induced bone loss through inhibition of mitogen-activated protein kinase/activator protein 1 and Ca2+–nuclear factor of activated T-cells cytoplasmic 1 signaling pathways.

    PubMed

    Wu, Xian; Li, Zhenxi; Yang, Zhengfang; Zheng, Chunbing; Jing, Ji; Chen, Yihua; Ye, Xiyun; Lian, Xiaoyuan; Qiu, Wenwei; Yang, Fan; Tang, Jie; Xiao, Jianru; Liu, Mingyao; Luo, Jian

    2012-06-01

    Receptor activator of NF-κB ligand (RANKL) stimulation leads to the activation of mitogen-activated protein kinase (MAPK)/AP-1 and Ca2+–nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) signaling pathways in osteoclastogenesis. Targeting these pathways has been an encouraging strategy for bone-related diseases, such as postmenopausal osteoporosis. In this study, we examined the effects of caffeic acid 3,4-dihydroxy-phenethyl ester (CADPE) on osteoclastogenesis. In mouse bone marrow monocytes (BMMs) and RAW264.7 cells, CADPE suppressed RANKL-induced osteoclast differentiation and actin-ring formation in a dose-dependent manner within non–growth inhibitory concentrations at the early stage, while CADPE had no effect on macrophage colony-stimulating factor (M-CSF)-induced proliferation and differentiation. At the molecular level, CADPE inhibited RANKL-induced phosphorylation of MAPKs, including extracellular signal-regulated kinases 1/2 (ERK1/2), p38, and c-Jun N-terminal kinase (JNK), without significantly affecting the NF-κB signaling pathway. CADPE abrogated RANKL-induced activator protein 1 (AP-1)/FBJ murine osteosarcoma viral oncogene homolog (c-Fos) nuclear translocation and activation. Overexpression of c-Fos prevented the inhibition by CADPE of osteoclast differentiation. Furthermore, CADPE suppressed RANKL-induced the tumor necrosis factor receptor associated factor 6 (TRAF6) interaction with c-src tyrosine kinase (c-Src), blocked RANKL-induced the phosphorylation of protein kinase B (AKT), and inhibited RANKL-induced Ca2+ oscillation. As a result, CADPE decreased osteoclastogenesis-related marker gene expression, including NFATc1, TRAP, cathepsin K, and c-Src. To test the effects of CADPE on osteoclast activity in vivo, we showed that CADPE prevented ovariectomy-induced bone loss by inhibiting osteoclast activity. Together, our data demonstrate that CADPE suppresses osteoclastogenesis and bone loss through inhibiting RANKL-induced MAPKs and Ca

  3. Activating Transcription Factor 3 Expression as a Marker of Response to the Histone Deacetylase Inhibitor Pracinostat.

    PubMed

    Sooraj, Dhanya; Xu, Dakang; Cain, Jason E; Gold, Daniel P; Williams, Bryan R G

    2016-07-01

    Improved treatment strategies are required for bladder cancer due to frequent recurrence of low-grade tumors and poor survival rate from high-grade tumors with current therapies. Histone deacetylase inhibitors (HDACi), approved as single agents for specific lymphomas, have shown promising preclinical results in solid tumors but could benefit from identification of biomarkers for response. Loss of activating transcription factor 3 (ATF3) expression is a feature of bladder tumor progression and correlates with poor survival. We investigated the utility of measuring ATF3 expression as a marker of response to the HDACi pracinostat in bladder cancer models. Pracinostat treatment of bladder cancer cell lines reactivated the expression of ATF3, correlating with significant alteration in proliferative, migratory, and anchorage-dependent growth capacities. Pracinostat also induced growth arrest at the G0-G1 cell-cycle phase, coincident with the activation of tumor suppressor genes. In mouse xenograft bladder cancer models, pracinostat treatment significantly reduced tumor volumes compared with controls, accompanied by reexpression of ATF3 in nonproliferating cells from early to late stage of therapy and in parallel induced antiangiogenesis and apoptosis. Importantly, cells in which ATF3 expression was depleted were less sensitive to pracinostat treatment in vitro, exhibiting significantly higher proliferative and migratory properties. In vivo, control xenograft tumors were significantly more responsive to treatment than ATF3 knockdown xenografts. Thus, reactivation of ATF3 is an important factor in determining sensitivity to pracinostat treatment, both in vitro and in vivo, and could serve as a potential biomarker of response and provide a rationale for therapeutic utility in HDACi-mediated treatments for bladder cancer. Mol Cancer Ther; 15(7); 1726-39. ©2016 AACR. PMID:27196751

  4. Association of platelet activation markers with cancer-associated venous thromboembolism.

    PubMed

    Riedl, Julia; Hell, Lena; Kaider, Alexandra; Koder, Silvia; Marosi, Christine; Zielinski, Christoph; Panzer, Simon; Pabinger, Ingrid; Ay, Cihan

    2016-01-01

    Venous thromboembolism (VTE) is a frequent complication in cancer patients. Platelet activation is thought to be involved in cancer-associated VTE. Here, we determined the association between evolving markers of platelet activation (soluble P-selectin [sP-selectin], soluble CD40 ligand [sCD40L], thrombospondin-1 [TSP-1] and platelet factor-4 [PF-4]) and the development of cancer-associated VTE. A nested matched case-control study was applied within a cohort of 1779 patients with different types of cancer that had been included in the Vienna Cancer and Thrombosis Study (CATS), a prospective, observational study on patients with newly diagnosed or progressive cancer after remission. Primary endpoint is symptomatic VTE during a maximum follow-up of 2 years. Cases (patients who developed VTE during follow-up) were matched in a 1:2 ratio to controls without VTE during follow-up with respect to tumor type, stage and time of observation in the study. In total, 131 VTE cases were compared to 262 controls. In logistic regression analysis, only sP-selectin was associated with risk of VTE. The odds ratios (OR) per double increase of sP-selectin, sCD40L, TSP-1 and PF-4 were 1.66 (95% confidence interval: 1.17-2.35, p = 0.005), 1.04 (0.89-1.21, p = 0.635), 1.09 (0.90-1.32, p = 0.360) and 1.03 (0.87-1.21, p = 0.737), respectively. In conclusion, sP-selectin, but not sCD40L, TSP-1 or PF-4 were associated with risk of VTE in cancer patients in this nested case-control study. PMID:25970326

  5. Effect of nor-trimebutine on neuronal activation induced by a noxious stimulus or an acute colonic inflammation in the rat.

    PubMed

    Sinniger, Valérie; Mouchet, Patrick; Bonaz, Bruno

    2005-10-21

    Nor-trimebutine is the main metabolite of trimebutine that is used in the treatment of patients with irritable bowel syndrome. Nor-trimebutine has a blocking activity on sodium channels and a potent local anesthetic effect. These properties were used to investigate the effect of nor-trimebutine on spinal neuronal activation induced by models of noxious somato-visceral stimulus and acute colonic inflammation. Nor-trimebutine was administered in rats either subcutaneously 30 min before intraperitoneal administration of acetic acid or intracolonically 30 min before intracolonic infusion of trinitrobenzenesulfonic acid. Abdominal contractions were counted for 1 h as a marker of abdominal pain. c-fos expression was used as a marker of neuronal activation and revealed by immunohistochemistry 1h after intraperitoneal acetic acid injection and 2 h after colonic inflammation. Nor-trimebutine decreased Fos expression in the thoraco-lumbar (peritoneal irritation) and lumbo-sacral (colonic inflammation) spinal cord in laminae I, IIo V, VII and X. This effect was also observed in the sacral parasympathetic nucleus after colonic inflammation. Nor-trimebutine induced a significant decrease of abdominal contractions following intraperitoneal acetic acid injection. These data may explain the effectiveness of trimebutine in the therapy of abdominal pain in the irritable bowel syndrome. PMID:15978629

  6. Transcriptional activation and repression by Fos are independent functions: the C terminus represses immediate-early gene expression via CArG elements.

    PubMed

    Gius, D; Cao, X M; Rauscher, F J; Cohen, D R; Curran, T; Sukhatme, V P

    1990-08-01

    The Fos-Jun complex has been shown to activate transcription through the regulatory element known as the AP-1 binding site. We show that Fos down regulates several immediate-early genes (c-fos, Egr-1, and Egr-2) after mitogenic stimulation. Specifically, we demonstrate that the target for this repression is a sequence of the form CC(A/T)6GG, also known as a CArG box. Whereas Fos bound to the AP-1 site through a domain rich in basic amino acids and associated with Jun via a leucine zipper interaction, mutant Fos proteins lacking these structures were still capable of causing repression. Furthermore, Jun neither enhanced nor inhibited down regulation by Fos. Critical residues required for repression are located within the C-terminal 27 amino acids of c-Fos, since v-Fos and C-terminal truncations of c-Fos did not down regulate. In addition, transfer of 180 c-Fos C-terminal amino acids to Jun conferred upon it the ability to repress. Finally, Fra-1, a Fos-related protein which has striking similarity to Fos in its C-terminal 40 amino acids, also down regulated Egr-1 expression. Thus, Fos is a transcriptional regulator that can activate or repress gene expression by way of two separate functional domains that act on distinct regulatory elements. PMID:2115122

  7. Exposure to inhaled particulate matter activates early markers of oxidative stress, inflammation and unfolded protein response in rat striatum.

    PubMed

    Guerra, R; Vera-Aguilar, E; Uribe-Ramirez, M; Gookin, G; Camacho, J; Osornio-Vargas, A R; Mugica-Alvarez, V; Angulo-Olais, R; Campbell, A; Froines, J; Kleinman, T M; De Vizcaya-Ruiz, A

    2013-10-24

    To study central nervous system airborne PM related subchronic toxicity, SD male rats were exposed for eight weeks to either coarse (32 μg/m³), fine (178 μg/m³) or ultrafine (107 μg/m³) concentrated PM or filtered air. Different brain regions (olfactory bulb, frontal cortex, striatum and hippocampus), were harvested from the rats following exposure to airborne PM. Subsequently, prooxidant (HO-1 and SOD-2), and inflammatory markers (IL-1β and TNFα), apoptotic (caspase 3), and unfolded protein response (UPR) markers (XBP-1S and BiP), were also measured using real-time PCR. Activation of nuclear transcription factors Nrf-2 and NF-κB, associated with antioxidant and inflammation processes, respectively, were also analyzed by GSMA. Ultrafine PM increased HO-1 and SOD-2 mRNA levels in the striatum and hippocampus, in the presence of Nrf-2 activation. Also, ultrafine PM activated NF-κB and increased IL-1β and TNFα in the striatum. Activation of UPR was observed after exposure to coarse PM through the increment of XBP-1S and BiP in the striatum, accompanied by an increase in antioxidant response markers HO-1 and SOD-2. Our results indicate that exposure to different size fractions of PM may induce physiological changes (in a neuroanatomical manner) in the central nervous system (CNS), specifically within the striatum, where inflammation, oxidative stress and UPR signals were effectively activated. PMID:23892126

  8. Exposure to inhaled particulate matter activates early markers of oxidative stress, inflammation and unfolded protein response in rat striatum

    PubMed Central

    Guerra, R.; Vera-Aguilar, E.; Uribe-Ramirez, M.; Gookin, G.; Camacho, J.; Osornio-Vargas, A.R.; Mugica-Alvarez, V.; Angulo-Olais, R.; Campbell, A.; Froines, J.; Kleinman, T.M.; De Vizcaya-Ruiz, A.

    2014-01-01

    To study central nervous system airborne PM related subchronic toxicity, SD male rats were exposed for eight weeks to either coarse (32 µg/m3), fine (178 µg/m3) or ultrafine (107 µg/m3) concentrated PM or filtered air. Different brain regions (olfactory bulb, frontal cortex, striatum and hippocampus), were harvested from the rats following exposure to airborne PM. Subsequently, prooxidant (HO-1 and SOD-2), and inflammatory markers (IL-1β and TNFα), apoptotic (caspase 3), and unfolded protein response (UPR) markers (XBP-1S and BiP), were also measured using real-time PCR. Activation of nuclear transcription factors Nrf-2 and NF-κB, associated with antioxidant and inflammation processes, respectively, were also analyzed by GSMA. Ultrafine PM increased HO-1 and SOD-2 mRNA levels in the striatum and hippocampus, in the presence of Nrf-2 activation. Also, ultrafine PM activated NF-κB and increased IL-1β and TNFα in the striatum. Activation of UPR was observed after exposure to coarse PM through the increment of XBP-1S and BiP in the striatum, accompanied by an increase in antioxidant response markers HO-1 and SOD-2. Our results indicate that exposure to different size fractions of PM may induce physiological changes (in a neuroanatomical manner) in the central nervous system (CNS), specifically within the striatum, where inflammation, oxidative stress and UPR signals were effectively activated. PMID:23892126

  9. Stability of cytokines, chemokines and soluble activation markers in unprocessed blood stored under different conditions

    PubMed Central

    Aziz, Najib; Detels, Roger; Quint, Joshua J.; Li, Qian; Gjertson, David; Butch, Anthony W.

    2016-01-01

    Background Biomarkers such as cytokines, chemokines, and soluble activation markers can be unstable when processing of blood is delayed. The stability of various biomarkers in serum and plasma was investigated when unprocessed blood samples were stored for up to 24 h at room and refrigerator temperature. Methods Blood was collected from 16 healthy volunteers. Unprocessed serum, EDTA and heparinized blood was stored at room (20–25 °C) and refrigerator temperature (4–8 °C) for 0.5, 2, 4, 6, 8, and 24 h after collection before centrifugation and separation of serum and plasma. Samples were batch tested for various biomarkers using commercially available immunoassays. Statistically significant changes were determined using the generalized estimating equation. Results IFN-γ, sIL-2Rα, sTNF-RII and β2-microglobulin were stable in unprocessed serum, EDTA and heparinized blood samples stored at either room or refrigerator temperature for up to 24 h. IL-6, TNF-α, MIP-1β and RANTES were unstable in heparinized blood at room temperature; TNF-α, and MIP-1β were unstable in unprocessed serum at room temperature; IL-12 was unstable in unprocessed serum at refrigerator temperature; and neopterin was unstable in unprocessed EDTA blood at room temperature. IL-1ra was stable only in unprocessed serum at room temperature. Conclusion All the biomarkers studied, with the exception of IL-1ra, were stable in unprocessed EDTA blood stored at refrigerator temperature for 24 h. This indicates that blood for these biomarkers should be collected in EDTA and if delays in processing are anticipated the unseparated blood should be stored at refrigerator temperature until processing. PMID:27208752

  10. CALHM1 deficiency impairs cerebral neuron activity and memory flexibility in mice

    PubMed Central

    Vingtdeux, Valérie; Chang, Eric H.; Frattini, Stephen A.; Zhao, Haitian; Chandakkar, Pallavi; Adrien, Leslie; Strohl, Joshua J.; Gibson, Elizabeth L.; Ohmoto, Makoto; Matsumoto, Ichiro; Huerta, Patricio T.; Marambaud, Philippe

    2016-01-01

    CALHM1 is a cell surface calcium channel expressed in cerebral neurons. CALHM1 function in the brain remains unknown, but recent results showed that neuronal CALHM1 controls intracellular calcium signaling and cell excitability, two mechanisms required for synaptic function. Here, we describe the generation of Calhm1 knockout (Calhm1−/−) mice and investigate CALHM1 role in neuronal and cognitive functions. Structural analysis revealed that Calhm1−/− brains had normal regional and cellular architecture, and showed no evidence of neuronal or synaptic loss, indicating that CALHM1 deficiency does not affect brain development or brain integrity in adulthood. However, Calhm1−/− mice showed a severe impairment in memory flexibility, assessed in the Morris water maze, and a significant disruption of long-term potentiation without alteration of long-term depression, measured in ex vivo hippocampal slices. Importantly, in primary neurons and hippocampal slices, CALHM1 activation facilitated the phosphorylation of NMDA and AMPA receptors by protein kinase A. Furthermore, neuronal CALHM1 activation potentiated the effect of glutamate on the expression of c-Fos and C/EBPβ, two immediate-early gene markers of neuronal activity. Thus, CALHM1 controls synaptic activity in cerebral neurons and is required for the flexible processing of memory in mice. These results shed light on CALHM1 physiology in the mammalian brain. PMID:27066908

  11. Osteoblast differentiation and migration are regulated by dynamin GTPase activity.

    PubMed

    Eleniste, Pierre P; Huang, Su; Wayakanon, Kornchanok; Largura, Heather W; Bruzzaniti, Angela

    2014-01-01

    Bone formation is controlled by osteoblasts, but the signaling proteins that control osteoblast differentiation and function are still unclear. We examined if the dynamin GTPase, which is associated with actin remodeling and migration in other cells, plays a role in osteoblast differentiation and migration. Dynamin mRNA was expressed in primary osteoblasts throughout differentiation (0-21 days). However, alkaline phosphatase (ALP) activity, a marker of osteoblast differentiation, was decreased in osteoblasts over-expressing dynamin. Conversely, ALP activity was increased following shRNA-mediated knockdown of dynamin and in osteoblasts treated with the dynamin inhibitor, dynasore. Dynasore also reduced c-fos and osterix expression, markers of early osteoblasts, suggesting a role for dynamin in pre-osteoblast to osteoblast differentiation. Since dynamin GTPase activity is regulated by tyrosine phosphorylation, we examined the mechanism of dynamin dephosphorylation in osteoblasts. Dynamin formed a protein complex with the tyrosine phosphatase PTP-PEST and inhibition of phosphatase activity increased the level of phosphorylated dynamin. Further, PTP-PEST blocked the Src-mediated increase in the phosphorylation and GTPase activity of wild-type dynamin but not the phosphorylation mutant dynY231F/Y597F. Although ALP activity was increased in osteoblasts expressing GTPase-defective dynK44A, and to a lesser extent dynY231F/Y597F, osteoblast migration was significantly inhibited by dynK44A and dynY231F/Y597F. These studies demonstrate a novel role for dynamin GTPase activity and phosphorylation in osteoblast differentiation and migration, which may be important for bone formation. PMID:24387844

  12. Osteoblast differentiation and migration are regulated by Dynamin GTPase activity

    PubMed Central

    Eleniste, Pierre P.; Huang, Su; Wayakanon, Kornchanok; Largura, Heather W.; Bruzzaniti, Angela

    2013-01-01

    Bone formation is controlled by osteoblasts but the signaling proteins that control osteoblast differentiation and function are still unclear. We examined if the dynamin GTPase, which is associated with actin remodeling and migration in other cells, plays a role in osteoblast differentiation and migration. Dynamin mRNA was expressed in primary osteoblasts throughout differentiation (0–21 days). However, alkaline phosphatase (ALP) activity, a marker of osteoblast differentiation, was decreased in osteoblasts over-expressing dynamin. Conversely, ALP activity was increased following shRNA-mediated knockdown of dynamin and in osteoblasts treated with the dynamin inhibitor, dynasore. Dynasore also reduced c-fos and osterix expression, markers of early osteoblasts, suggesting a role for dynamin in pre-osteoblast to osteoblast differentiation. Since dynamin GTPase activity is regulated by tyrosine phosphorylation, we examined the mechanism of dynamin dephosphorylation in osteoblasts. Dynamin formed a protein complex with the tyrosine phosphatase PTP-PEST and inhibition of phosphatase activity increased the level of phosphorylated dynamin. Further, PTP-PEST blocked the Src-mediated increase in the phosphorylation and GTPase activity of wild-type dynamin but not the phosphorylation mutant dynY231F/Y597F. Although ALP activity was increased in osteoblasts expressing GTPase-defective dynK44A, and to a lesser extent dynY231F/Y597F, osteoblast migration was significantly inhibited by dynK44A and dynY231F/Y597F. These studies demonstrate a novel role for dynamin GTPase activity and phosphorylation in osteoblast differentiation and migration, which may be important for bone formation. PMID:24387844

  13. Hypersensitivity to fluoroquinolones: The expression of basophil activation markers depends on the clinical entity and the culprit fluoroquinolone.

    PubMed

    Fernández, Tahia D; Ariza, Adriana; Palomares, Francisca; Montañez, María I; Salas, María; Martín-Serrano, Angela; Fernández, Rubén; Ruiz, Arturo; Blanca, Miguel; Mayorga, Cristobalina; Torres, María J

    2016-06-01

    Although fluoroquinolones (FQs) are generally well-tolerated antibiotics, increasing numbers of hypersensitivity reactions have been reported. These can be evaluated in vitro by basophil activation tests (BATs); however, sensitivity is not optimal. Many factors could influence sensitivity such as basophil activation markers. The objective of this study was to evaluate the influence of 2 different activations markers, CD63 and CD203c, on the sensitivity of BAT to FQ. We studied 17 patients with immediate allergic reactions to FQ. BAT was performed with moxifloxacin and ciprofloxacin using CD193 (CCR3) for basophil selection and CD203c or CD63 as activation markers. Stimulation with ciprofloxacin induced a significantly higher expression of CD63 in ciprofloxacin-allergic patients compared to moxifloxacin-allergic patients (P = 0.002). In patients allergic to moxifloxacin with anaphylactic shock, we have observed an increase in the percentage of cells that upregulate CD203c, whereas patients with anaphylaxis preferentially upregulate CD63. The best sensitivity-specificity was obtained using a cutoff of 3 and the culprit FQ, using CD203c for moxifloxacin-allergic patients (sensitivity = 36.4%; specificity = 94.4%), and CD63 for ciprofloxacin-allergic patients (sensitivity = 83.3%; specificity = 88.9%). A negative correlation was found between the upregulation of CD63 and CD203c and the time interval between the reaction occurrence and the performance of the test (Spearman r = -0.446; P < 0.001 for CD63 and Spearman r = -0.386; P < 0.001 for CD203c). The performance of BAT for FQ allergy must be optimized for each drug, taking into account possible differences in the stimulation mechanism that leads to the upregulation of different activation markers. PMID:27281069

  14. Human T-cell leukemia virus type 1 Tax activates transcription of the human fra-1 gene through multiple cis elements responsive to transmembrane signals.

    PubMed Central

    Tsuchiya, H; Fujii, M; Niki, T; Tokuhara, M; Matsui, M; Seiki, M

    1993-01-01

    We have shown that Tax1 of human T-cell leukemia virus type 1 stimulates the expression of several cellular immediate-early genes (M. Fujii, T. Niki, T. Mori, T. Matsuda, M. Matsui, N. Nomura, and M. Seiki, Oncogene 6:1023-1029, 1991). In this study, the 5'-flanking region of the human fra-1 gene, which is a Tax1-inducible fos-related gene, was isolated and Tax1 or serum-responsive cis elements were analyzed to obtain further insight into the mechanism of Tax1 action. The 62-bp sequence starting 46 nucleotides upstream from the translation initiation site showed 71% homology with the sequence surrounding the TATA box of the c-fos promoter. Regulatory motifs identified in the c-fos promoter, such as an Ets-binding site, E boxes, a CArG box, c-fos AP-1 sites, and two retinoblastoma control elements, were also found upstream of the c-fos homology region. A 502-bp fragment containing these motifs mediated transcriptional activation by Tax1 or by serum in a transient transfection assay. Three independent Tax1-responsive regions (TRRs) were identified, and mutations in each revealed that one of the retinoblastoma control elements in TRR1 and the c-fos AP-1 sites in TRR2 and TRR3 were essential for the activation. Although TRR2 contains a CArG box-like sequence, it was a weak binding site for p67SRF, if it bound at all, and was not required for activation. All three TRRs could also mediate the signals stimulated by serum. Thus, Tax1 appears to activate fra-1 gene expression by means of a part of the cellular machinery similar to that which mediates growth signals. Images PMID:8230424

  15. Immunohistochemical evaluation of stem cell markers and signal transducer and activator of transcription 6 (STAT6) in solitary fibrous tumors.

    PubMed

    Wang, Chengyan; Qi, Yan; Liu, Ruixue; Lan, Jiaojiao; Zhou, Yang; Ju, Xinxin; Chen, Dongdong; Zou, Hong; Li, Shugang; Hu, Jianming; Zhao, Jin; Shen, Yaoyuan; Sun, Zhenzhu; Pang, Lijuan; Li, Feng

    2015-01-01

    Solitary fibrous tumors (SFT) are fibroblastic, ubiquitous mesenchymal tumors. Although several SFT studies have been conducted, the cell of origin of SFT remains controversial and reliable diagnostic markers are needed for SFT identification for proper prognosis and therapeutics. To analyze the immunophenotype of SFT for the identification of specific diagnostic markers and the cell of origin of this tumor, we performed an immunohistochemical study of stem cell markers [aldehyde dehydrogenase 1 (ALDH1), CD29, CD44, CD133, and nestin] and signal transducer and activator of transcription 6 (STAT6) in 18 cases of SFT. The results demonstrated that ALDH1 was present in 16 cases (16/18), STAT6 in 13 cases (13/18), CD44 in 8 cases (8/18), and CD29 in 1 case (1/18), whereas CD133 and nestin were absent in all cases (0/18). Our results indicate that combination with ALDH1 and STAT6 can improve the diagnostic value of CD34 for SFT. The immunohistochemical findings for stem cell surface markers indicate that SFT may originate from stem cells and that ALDH1 plays an important role in the development of SFT. PMID:26617768

  16. Palmitic Acid Reduces Circulating Bone Formation Markers in Obese Animals and Impairs Osteoblast Activity via C16-Ceramide Accumulation.

    PubMed

    Alsahli, Ahmad; Kiefhaber, Kathryn; Gold, Tziporah; Muluke, Munira; Jiang, Hongfeng; Cremers, Serge; Schulze-Späte, Ulrike

    2016-05-01

    Obesity and impaired lipid metabolism increase circulating and local fatty acid (FA) levels. Our previous studies showed that a high high-saturated -fat diet induced greater bone loss in mice than a high high-unsaturated-fat diet due to increased osteoclast numbers and activity. The impact of elevated FA levels on osteoblasts is not yet clear. We induced obesity in 4 week old male mice using a palmitic acid (PA)- or oleic acid (OA)-enriched high fat high-fat diet (HFD) (20 % of calories from FA), and compared them to mice on a normal (R) caloric diet (10 % of calories from FA). We collected serum to determine FA and bone metabolism marker levels. Primary osteoblasts were isolated; cultured in PA, OA, or control (C) medium; and assessed for mineralization activity, gene expression, and ceramide levels. Obese animals in the PA and OA groups had significantly lower serum levels of bone formation markers P1NP and OC compared to normal weight animals (*p < 0.001), with the lowest marker levels in animals on an PA-enriched HFD (*p < 0.001). Accordingly, elevated levels of PA significantly reduced osteoblast mineralization activity in vitro (*p < 0.05). Elevated PA intake significantly increased C16 ceramide accumulation. This accumulation was preventable through inhibition of SPT2 (serine palmitoyl transferase 2) using myriocin. Elevated levels of PA reduce osteoblast function in vitro and bone formation markers in vivo. Our findings suggest that saturated PA can compromise bone health by affecting osteoblasts, and identify a potential mechanism through which obesity promotes bone loss. PMID:26758875

  17. Markers of Thrombogenesis and Fibrinolysis and Their Relation to Inflammation and Endothelial Activation in Patients with Idiopathic Pulmonary Arterial Hypertension

    PubMed Central

    Kopeć, Grzegorz; Moertl, Deddo; Steiner, Sabine; Stępień, Ewa; Mikołajczyk, Tomasz; Podolec, Jakub; Waligóra, Marcin; Stępniewski, Jakub; Tomkiewicz-Pająk, Lidia; Guzik, Tomasz; Podolec, Piotr

    2013-01-01

    Background Chronic anticoagulation is a standard of care in idiopathic pulmonary arterial hypertension (IPAH). However, hemostatic abnormalities in this disease remain poorly understood. Therefore, we aimed to study markers of thrombogenesis and fibrinolysis in patients with IPAH. Methods We studied 27 consecutive patients (67% female) with IPAH aged 50.0 years (IQR: 41.0 - 65.0) and 16 controls without pulmonary hypertension. Prothrombin fragment 1+2 (F1+2) and thrombin-antithrombin (TAT) complexes were measured to assess thrombogenesis; tissue-type plasminogen activator (tPA) antigen and plasmin-anti-plasmin complex to characterize activation of fibrinolysis; plasminogen activator inhibitor 1 (PAI-1) to measure inhibition of fibrinolysis; and endothelin-1 (ET-1) and interleukin-6 (IL-6) to assess endothelial activation and systemic inflammation, respectively. In addition, in treatment-naive IPAH patients these markers were assessed after 3 months of PAH-specific therapies. Results TPA (10.1[6.8-15.8] vs 5.2[3.3-7.3] ng/ml, p<0.001), plasmin-anti-plasmin (91.5[60.3-94.2] vs 55.8[51.1-64.9] ng/ml, p<0.001), IL-6 (4.9[2.5-7.9] vs 2.1[1.3-3.8] pg/ml, p=0.001) and ET-1 (3.7 [3.3-4.5] vs 3.4[3.1-3.5], p= 0.03) were higher in patients with IPAH than in controls. In IPAH patients plasmin-anti-plasmin and tPA correlated positively with IL-6 (r=0.39, p=0.04 and r=0.63, p<0.001, respectively) and ET-1 (r=0.55, p=0.003 and r=0.59, p=0.001, respectively). No correlation was found between tPA or plasmin-anti-plasmin and markers of thrombogenesis. Plasmin-anti-plasmin decreased after 3 months of PAH specific therapy while the other markers remained unchanged. Conclusions In the present study we showed that markers of fibrynolysis were elevated in patients with IPAH however we did not find a clear evidence for increased thrombogenesis in this group of patients. Fibrinolysis, inflammation, and endothelial activation were closely interrelated in IPAH. PMID:24312667

  18. Stimulation of cardiac sympathetic afferents activates glutamatergic neurons in the parabrachial nucleus: relation to neurons containing nNOS.

    PubMed

    Guo, Zhi-Ling; Moazzami, Ali R; Longhurst, John C

    2005-08-16

    Our previous studies have demonstrated that stimulation of cardiac sympathetic afferents activates neurons in the parabrachial nucleus (PBN), a region known to play a role in central integration of cardiovascular autonomic reflexes. However, phenotypes of these activated neurons have not been well identified. Glutamate, an important excitatory neurotransmitter in the brain, is involved in PBN-mediated cardiovascular responses. Recent identification of vesicular glutamate transporter 3 (VGLUT3) has provided a novel and unique marker to locate distinctive perikarya of neurons that use glutamate as a neurotransmitter. The action of glutamate in the brain is influenced by nitric oxide. Thus, using triple immunofluorescent labeling, the present study examined expression of c-Fos, an immediate early gene, in the neurons containing VGLUT3 and neuronal nitric oxide synthase (nNOS) in the PBN following stimulation of cardiac sympathetic afferents. In anesthetized cats with bilateral barodenervation and cervical vagotomy, topical application of bradykinin (BK, 1-10 microg/ml, 50 microl, n = 6) on the left ventricle was performed six times, every 20 min. Repeated administration of BK elicited consistent increases in blood pressure over a 100 min period while no changes were noted in the animals treated with the vehicle for BK (0.9% saline, n=5). Compared to control cats, c-Fos expression was increased significantly in the cell bodies containing VGLUT3 as well as both VGLUT3 and nNOS in the external lateral PBN (elPBN) in BK-treated animals (all P < 0.01). In addition, using similar triple-staining method, we noted that fibers of activated neurons containing nNOS in the elPBN co-localized with vesicular glutamate transporter 2 following BK stimulation. These data suggest that glutamatergic neurons represent a cell type in the PBN that is activated by stimulation of cardiac sympathetic afferents. Nitric oxide has the potential to influence the action of glutamatergic neurons in

  19. Mitochondrial activity and oxidative stress markers in peripheral blood mononuclear cells of patients with bipolar disorder, schizophrenia, and healthy subjects.

    PubMed

    Gubert, Carolina; Stertz, Laura; Pfaffenseller, Bianca; Panizzutti, Bruna Schilling; Rezin, Gislaine Tezza; Massuda, Raffael; Streck, Emilio Luiz; Gama, Clarissa Severino; Kapczinski, Flávio; Kunz, Maurício

    2013-10-01

    Evidence suggests that mitochondrial dysfunction is involved in the pathophysiology of psychiatric disorders such as schizophrenia (SZ) and bipolar disorder (BD). However, the exact mechanisms underlying this dysfunction are not well understood. Impaired activity of electron transport chain (ETC) complexes has been described in these disorders and may reflect changes in mitochondrial metabolism and oxidative stress markers. The objective of this study was to compare ETC complex activity and protein and lipid oxidation markers in 12 euthymic patients with BD type I, in 18 patients with stable chronic SZ, and in 30 matched healthy volunteers. Activity of complexes I, II, and III was determined by enzyme kinetics of mitochondria isolated from peripheral blood mononuclear cells (PBMCs). Protein oxidation was evaluated using the protein carbonyl content (PCC) method, and lipid peroxidation, the thiobarbituric acid reactive substances (TBARS) assay kit. A significant decrease in complex I activity was observed (p = 0.02), as well as an increase in plasma levels of TBARS (p = 0.00617) in patients with SZ when compared to matched controls. Conversely, no significant differences were found in complex I activity (p = 0.17) or in plasma TBARS levels (p = 0.26) in patients with BD vs. matched controls. Our results suggest that mitochondrial complex I dysfunction and oxidative stress play important roles in the pathophysiology of SZ and may be used in potential novel adjunctive therapy for SZ, focusing primarily on cognitive impairment and disorder progression. PMID:23870796

  20. Myristoleic acid inhibits osteoclast formation and bone resorption by suppressing the RANKL activation of Src and Pyk2.

    PubMed

    Kwon, Jun-Oh; Jin, Won Jong; Kim, Bongjun; Kim, Hong-Hee; Lee, Zang Hee

    2015-12-01

    Cytoskeletal changes in osteoclasts such as formation of actin ring is required for bone-resorbing activity. The tyrosine kinase Src is a key player in massive cytoskeletal change of osteoclasts, thereby in bone destruction. In order for Src to be activated, trafficking to the inner plasma membrane via myristoylation is of importance. A previous study reported that myristoleic acid derived from myristic acid, inhibited N-myristoyl-transferase, an essential enzyme for myristoylation process. This prompted us to investigate whether myristoleic acid could affect osteoclastogenesis. Indeed, we observed that myristoleic acid inhibited RANKL-induced osteoclast formation in vitro, especially, at later stages of differentiation. Myristoleic acid attenuated the tyrosine phosphorylation of c-Src and Pyk2, which associates with Src, by RANKL. When myristoleic acid was co-administered with soluble RANKL into mice, RANKL-induced bone loss was substantially prevented. Bone dissection clearly revealed that the number of multinucleated osteoclasts was significantly diminished by myristoleic acid. On the other hand, myristoleic acid treatment had little or no influence on early osteoclast differentiation markers, such as c-Fos and NFATc1, and proteins related to cytoskeletal rearrangement, including DC-STAMP, integrin αv and integrin β3 in vitro. Taken together, our data suggest that myristoleic acid is capable of blocking the formation of large multinucleated osteoclasts and bone resorption likely through suppressing activation of Src and Pyk2. PMID:26528796

  1. Effects of the contraceptive skin patch and subdermal contraceptive implant on markers of endothelial cell activation and inflammation.

    PubMed

    Hernandez-Juarez, Jesus; Sanchez-Serrano, Juan Carlos; Moreno-Hernandez, Manuel; Alvarado-Moreno, Jose Antonio; Hernandez-Lopez, Jose Rubicel; Isordia-Salas, Irma; Majluf-Cruz, Abraham

    2015-07-01

    Changes in blood coagulation factors may partially explain the association between hormonal contraceptives and thrombosis. Therefore, the likely effects of the contraceptive skin patch and subdermal contraceptive implant on levels of inflammatory markers and endothelial activation were analyzed. This was an observational, prospective, longitudinal, nonrandomized study composed of 80 women between 18 and 35 years of age who made the decision to use the contraceptive skin patch or subdermal contraceptive implant. vascular cell adhesion molecule-1 (VCAM-1), endothelial cell leukocyte adhesion molecule-1 (ELAM-1), von Willebrand factor (VWF), and plasminogen activator inhibitor type 1(PAI-1) as well as high-sensitivity C-reactive protein (hsCRP) were assayed before and after 4 months of use of the contraceptive method. VCAM-1, VWF, and PAI-1 remained unchanged in the contraceptive skin patch group; however, a significant increase in hsCRP (0.29-0.50 mg/dL; P =.012) and a significant decrease in ELAM-1 (44-25 ng/mL; P =.022) were observed. A significant diminution in VCAM-1 (463-362 ng/mL; P =.022) was also found in the subdermal contraceptive implant group. Our results strongly suggest that these contraceptive methods do not induce endothelial activation after 4 months of use. Increase in hsCRP levels was unrelated to changes in markers of endothelial activation. PMID:25655356

  2. Nondestructive testing of electron beam sterilization by means of an optically active marker material

    NASA Astrophysics Data System (ADS)

    Härtling, Thomas; Reitzig, Manuela; Mayer, Anton; Wetzel, Christiane; Röder, Olaf; Schreiber, Jürgen; Opitz, Jörg

    2012-02-01

    Secure proof of sterilization processes on packaging materials is an important issue in many economic sectors. In this context, electron beam sterilization is a highly effective low temperature technique. However, verifying the application of a sufficient electron dose is still difficult - especially on products with complex geometry. Here we report on an optical, hence fast and contactless approach which gives reliable evidence of a successful e-beam treatment. The technique is based on placing a suitable marker material (rare-earth based particles) inside or as a coating on the packaging material. By electron irradiation these particles change their optical properties and thus indicate the successful application of the electron beam.

  3. Marker development

    SciTech Connect

    Adams, M.R.

    1987-05-01

    This report is to discuss the marker development for radioactive waste disposal sites. The markers must be designed to last 10,000 years, and place no undue burdens on the future generations. Barriers cannot be constructed that preclude human intrusion. Design specifications for surface markers will be discussed, also marker pictograms will also be covered.

  4. Post-training gamma irradiation-enhanced contextual fear memory associated with reduced neuronal activation of the infralimbic cortex.

    PubMed

    Kugelman, Tara; Zuloaga, Damian G; Weber, Sydney; Raber, Jacob

    2016-02-01

    The brain might be exposed to irradiation under a variety of situations, including clinical treatments, nuclear accidents, dirty bomb scenarios, and military and space missions. Correctly recalling tasks learned prior to irradiation is important but little is known about post-learning effects of irradiation. It is not clear whether exposure to X-ray irradiation during memory consolidation, a few hours following training, is associated with altered contextual fear conditioning 24h after irradiation and which brain region(s) might be involved in these effects. Brain immunoreactivity patterns of the immediately early gene c-Fos, a marker of cellular activity was used to determine which brain areas might be altered in post-training irradiation memory retention tasks. In this study, we show that post-training gamma irradiation exposure (1 Gy) enhanced contextual fear memory 24h later and is associated with reduced cellular activation in the infralimbic cortex. Reduced GABA-ergic neurotransmission in parvalbumin-positive cells in the infralimbic cortex might play a role in this post-training radiation-enhanced contextual fear memory. PMID:26522840

  5. The active metabolite of prasugrel inhibits ADP-stimulated thrombo-inflammatory markers of platelet activation: Influence of other blood cells, calcium, and aspirin.

    PubMed

    Frelinger, Andrew L; Jakubowski, Joseph A; Li, Youfu; Barnard, Marc R; Fox, Marsha L; Linden, Matthew D; Sugidachi, Atsuhiro; Winters, Kenneth J; Furman, Mark I; Michelson, Alan D

    2007-07-01

    The novel thienopyridine prodrug prasugrel, a platelet P2Y(12) ADP receptor antagonist, requires in vivo metabolism for activity. Although pharmacological data have been collected on the effects of prasugrel on platelet aggregation, there are few data on the direct effects of the prasugrel's active metabolite, R-138727, on other aspects of platelet function. Here we examined the effects of R-138727 on thrombo-inflammatory markers of platelet activation, and the possible modulatory effects of other blood cells, calcium, and aspirin. Blood (PPACK or citrate anticoagulated) from healthy donors pre- and post-aspirin was incubated with R-138727 and the response to ADP assessed in whole blood or platelet-rich plasma (PRP) by aggregometry and flow cytometric analysis of leukocyte-platelet aggregates, platelet surface P-selectin, and GPIIb-IIIa activation. Low-micromolar concentrations of R-138727 resulted in a rapid and consistent inhibition of these ADP-stimulated thrombo-inflammatory markers. These rapid kinetics required physiological calcium levels, but were largely unaffected by aspirin. Lower IC(50) values in whole blood relative to PRP suggested that other blood cells affect ADP-induced platelet activation and hence the net inhibition by R-138727. R-138727 did not inhibit P2Y(12)-mediated ADP-induced shape change, even at concentrations that completely inhibited platelet aggregation, confirming the specificity of R-138727 for P2Y(12). In conclusion, R-138727, the active metabolite of prasugrel, results in rapid, potent, consistent, and selective inhibition of P2Y(12)-mediated up-regulation of thrombo-inflammatory markers of platelet activation. This inhibition is enhanced in the presence other blood cells and calcium, but not aspirin. PMID:17598013

  6. Mammographic parenchymal texture as an imaging marker of hormonal activity: a comparative study between pre- and post-menopausal women

    NASA Astrophysics Data System (ADS)

    Daye, Dania; Bobo, Ezra; Baumann, Bethany; Ioannou, Antonios; Conant, Emily F.; Maidment, Andrew D. A.; Kontos, Despina

    2011-03-01

    Mammographic parenchymal texture patterns have been shown to be related to breast cancer risk. Yet, little is known about the biological basis underlying this association. Here, we investigate the potential of mammographic parenchymal texture patterns as an inherent phenotypic imaging marker of endogenous hormonal exposure of the breast tissue. Digital mammographic (DM) images in the cranio-caudal (CC) view of the unaffected breast from 138 women diagnosed with unilateral breast cancer were retrospectively analyzed. Menopause status was used as a surrogate marker of endogenous hormonal activity. Retroareolar 2.5cm2 ROIs were segmented from the post-processed DM images using an automated algorithm. Parenchymal texture features of skewness, coarseness, contrast, energy, homogeneity, grey-level spatial correlation, and fractal dimension were computed. Receiver operating characteristic (ROC) curve analysis was performed to evaluate feature classification performance in distinguishing between 72 pre- and 66 post-menopausal women. Logistic regression was performed to assess the independent effect of each texture feature in predicting menopause status. ROC analysis showed that texture features have inherent capacity to distinguish between pre- and post-menopausal statuses (AUC>0.5, p<0.05). Logistic regression including all texture features yielded an ROC curve with an AUC of 0.76. Addition of age at menarche, ethnicity, contraception use and hormonal replacement therapy (HRT) use lead to a modest model improvement (AUC=0.78) while texture features maintained significant contribution (p<0.05). The observed differences in parenchymal texture features between pre- and post- menopausal women suggest that mammographic texture can potentially serve as a surrogate imaging marker of endogenous hormonal activity.

  7. Hypocretinergic neurons are activated in conjunction with goal-oriented survival-related motor behaviors.

    PubMed

    Torterolo, Pablo; Ramos, Oscar V; Sampogna, Sharon; Chase, Michael H

    2011-10-24

    Hypocretinergic neurons are located in the area of the lateral hypothalamus which is responsible for mediating goal-directed, survival-related behaviors. Consequently, we hypothesize that the hypocretinergic system functions to promote these behaviors including those patterns of somatomotor activation upon which they are based. Further, we hypothesize that the hypocretinergic system is not involved with repetitive motor activities unless they occur in conjunction with the goal-oriented behaviors that are governed by the lateral hypothalamus. In order to determine the veracity of these hypotheses, we examined Fos immunoreactivity (as a marker of neuronal activity) in hypocretinergic neurons in the cat during: a) Exploratory Motor Activity; b) Locomotion without Reward; c) Locomotion with Reward; and d) Wakefulness without Motor Activity. Significantly greater numbers of hypocretinergic neurons expressed c-fos when the animals were exploring an unknown environment during Exploratory Motor Activity compared with all other paradigms. In addition, a larger number of Hcrt+Fos+neurons were activated during Locomotion with Reward than during Wakefulness without Motor Activity. Finally, very few hypocretinergic neurons were activated during Locomotion without Reward and Wakefulness without Motor Activity, wherein there was an absence of goal-directed activities. We conclude that the hypocretinergic system does not promote wakefulness per se or motor activity per se but is responsible for mediating specific goal-oriented behaviors that take place during wakefulness. Accordingly, we suggest that the hypocretinergic system is responsible for controlling the somatomotor system and coordinating its activity with other systems in order to produce successful goal-oriented survival-related behaviors that are controlled by the lateral hypothalamus. PMID:21839102

  8. Rifaximin for preventing acute graft-versus-host disease: impact on plasma markers of inflammation and T-cell activation.

    PubMed

    Qayed, Muna; Langston, Amelia; Chiang, Kuang-Yueh; August, Keith; Hilinski, Joseph A; Cole, Conrad R; Rogatko, Andre; Bostick, Roberd M; Horan, John T

    2013-05-01

    In murine allogeneic hematopoietic cell transplantation models, inhibiting bacterial translocation stemming from conditioning-induced damage to the gut mucosa abrogates inflammatory stimulation of donor T cells, preventing acute graft-versus-host disease (AGVHD). We conducted a phase I trial to begin testing the hypothesis that rifaximin, a broadly acting oral antibiotic, would reduce systemic inflammation and T-cell activation. We administered rifaximin to 20 adolescents and younger adults (day -10 through day +30) receiving intensive conditioning. We measured the plasma level of interleukin-6, as a marker of conditioning-induced inflammation, and the levels of soluble tumor necrosis factor receptor-1 and soluble interleukin-2 receptor, as surrogate markers of AGVHD. We formed a historical control group (n=24), from a previous study of biomarkers in AGVHD. The increase in the treatment group's mean interleukin-6 level from baseline to day 0 was 73% less than that in the control group (P=0.006). The increase from baseline to day 15 in the treatment group's mean soluble tumor necrosis factor-1 and soluble interleukin-2 receptor levels was similar to the control group. Incidences of grade 2 to 4 AGVHD also did not differ. This suggests that rifaximin may abrogate bacterial translocation and resultant inflammation, but in alternative donor transplants this does not prevent downstream activation of donor T cells. PMID:23274384

  9. Identification of Gene Markers for Activation of the Nuclear Receptor Pregnane X Receptor

    EPA Science Inventory

    Many environmentally-relevant chemicals and drugs activate the nuclear receptor pregnane X receptor (PXR). Activation of PXR in the mouse liver can lead to increases in liver weight in part through increased hepatocyte replication similar to chemicals that activate other nuclear ...

  10. A Fragment of the LG3 Peptide of Endorepellin Is Present in the Urine of Physically Active Mining Workers: A Potential Marker of Physical Activity

    PubMed Central

    Parker, Tony J.; Sampson, Dayle L.; Broszczak, Daniel; Chng, Yee L.; Carter, Shea L.; Leavesley, David I.; Parker, Anthony W.; Upton, Zee

    2012-01-01

    Biomarker analysis has been implemented in sports research in an attempt to monitor the effects of exertion and fatigue in athletes. This study proposed that while such biomarkers may be useful for monitoring injury risk in workers, proteomic approaches might also be utilised to identify novel exertion or injury markers. We found that urinary urea and cortisol levels were significantly elevated in mining workers following a 12 hour overnight shift. These levels failed to return to baseline over 24 h in the more active maintenance crew compared to truck drivers (operators) suggesting a lack of recovery between shifts. Use of a SELDI-TOF MS approach to detect novel exertion or injury markers revealed a spectral feature which was associated with workers in both work categories who were engaged in higher levels of physical activity. This feature was identified as the LG3 peptide, a C-terminal fragment of the anti-angiogenic/anti-tumourigenic protein endorepellin. This finding suggests that urinary LG3 peptide may be a biomarker of physical activity. It is also possible that the activity mediated release of LG3/endorepellin into the circulation may represent a biological mechanism for the known inverse association between physical activity and cancer risk/survival. PMID:22457785

  11. Sulforhodamine 101, a widely used astrocyte marker, can induce cortical seizure-like activity at concentrations commonly used.

    PubMed

    Rasmussen, Rune; Nedergaard, Maiken; Petersen, Nicolas Caesar

    2016-01-01

    Sulforhodamine 101 (SR101) is a preferential astrocyte marker widely used in 2-photon microscopy experiments. Here we show, that topical loading of two commonly used SR101 concentrations, 100 μM and 250 μM when incubated for 10 min, can induce seizure-like local field potential (LFP) activity in both anaesthetized and awake mouse sensori-motor cortex. This cortical seizure-like activity develops in less than ten minutes following topical loading, and when applied longer, these neuronal discharges reliably evoke contra-lateral hindlimb muscle contractions. Short duration (<1 min) incubation of 100 μM and 250 μM SR101 or application of lower concentrations 25 μM and 50 μM of SR101, incubated for 30 and 20 min, respectively, did not induce abnormal LFP activity in sensori-motor cortex, but did label astrocytes, and may thus be considered more appropriate concentrations for in vivo astrocyte labeling. In addition to label astrocytes SR101 may, at 100 μM and 250 μM, induce abnormal neuronal activity and interfere with cortical circuit activity. SR101 concentration of 50 μM or lower did not induce abnormal neuronal activity. We advocate that, to label astrocytes with SR101, concentrations no higher than 50 μM should be used for in vivo experiments. PMID:27457281

  12. Sulforhodamine 101, a widely used astrocyte marker, can induce cortical seizure-like activity at concentrations commonly used

    PubMed Central

    Rasmussen, Rune; Nedergaard, Maiken; Petersen, Nicolas Caesar

    2016-01-01

    Sulforhodamine 101 (SR101) is a preferential astrocyte marker widely used in 2-photon microscopy experiments. Here we show, that topical loading of two commonly used SR101 concentrations, 100 μM and 250 μM when incubated for 10 min, can induce seizure-like local field potential (LFP) activity in both anaesthetized and awake mouse sensori-motor cortex. This cortical seizure-like activity develops in less than ten minutes following topical loading, and when applied longer, these neuronal discharges reliably evoke contra-lateral hindlimb muscle contractions. Short duration (<1 min) incubation of 100 μM and 250 μM SR101 or application of lower concentrations 25 μM and 50 μM of SR101, incubated for 30 and 20 min, respectively, did not induce abnormal LFP activity in sensori-motor cortex, but did label astrocytes, and may thus be considered more appropriate concentrations for in vivo astrocyte labeling. In addition to label astrocytes SR101 may, at 100 μM and 250 μM, induce abnormal neuronal activity and interfere with cortical circuit activity. SR101 concentration of 50 μM or lower did not induce abnormal neuronal activity. We advocate that, to label astrocytes with SR101, concentrations no higher than 50 μM should be used for in vivo experiments. PMID:27457281

  13. Physical Activity is Related to Fatty Liver Marker in Obese Youth, Independently of Central Obesity or Cardiorespiratory Fitness

    PubMed Central

    Martins, Clarice; Aires, Luisa; Júnior, Ismael Freitas; Silva, Gustavo; Silva, Alexandre; Lemos, Luís; Mota, Jorge

    2015-01-01

    Nonalcoholic fatty liver disease (NAFLD) is one of the most frequent complications associated with excess adiposity and has been identified as the leading cause of liver disease in pediatric populations worldwide. Because cardiorespiratory fitness (CRF) is related to physical activity (PA) levels, and increased PA plays a protective role against NAFLD risk factors, the aim of this study was to analyze the association between PA and a fatty liver marker (alanine aminotransferase - ALT) in obese children and adolescents, independently of central adiposity or CRF. 131 obese children (83 girls, 7-15 year-olds) involved in a PA promotion program comprised the sample. Measurements included anthropometric and body composition evaluations (DEXA), biological measurements (venipuncture), CRF (progressive treadmill test), PA (accelerometry), and maturational stage (Tanner criteria). The associations between ALT with PA intensities, central obesity, and CRF were calculated by three different models of linear regression, adjusted for potential confounders. Level of significance was set at 95%. RESULTS: ALT was negatively associated with MVPA (β = -0.305), and CRF (β = -0.426), and positively associated with central obesity (β=.468). After adjustment for central obesity the negative and statistically significant association between ALT with MVPA (β = -0.364) and CRF (β = -0.550) still persists while a positive and significantly correlation was shown between ALT and SB (β = 0.382). Additional adjustment for CRF (Model 3) showed significant associations for all the PA intensities analyzed including light activity. PA at different intensities is associated to a fatty liver marker in obese children and adolescents, independently of central adiposity or CRF. Key points In a previous study our group observed that there might be a potential protective effect of cardiorespiratory fitness (CRF) against abnormal ALT values; Considering that CRF is related to physical activity (PA

  14. Bone Markers

    MedlinePlus

    ... Alkaline Phosphatase; Osteocalcin; P1NP; Procollagen Type 1 N-Terminal Propeptide Formal name: Biochemical Markers of Bone Remodeling ... tests for evaluating bone turnover: C-telopeptide (C-terminal telopeptide of type 1 collagen (CTx)) – a marker ...

  15. Distinct structural domains of caveolin-1 independently regulate Ca2+ release-activated Ca2+ channels and Ca2+ microdomain-dependent gene expression.

    PubMed

    Yeh, Yi-Chun; Parekh, Anant B

    2015-04-01

    In eukaryotic cells, calcium entry across the cell surface activates nuclear gene expression, a process critically important for cell growth and differentiation, learning, and memory and immune cell functions. In immune cells, calcium entry occurs through store-operated Ca(2+) release-activated Ca(2+) (CRAC) channels, comprised of STIM1 and Orai1 proteins. Local calcium entry through CRAC channels activates expression of c-fos- and nuclear factor of activated T cells (NFAT)-dependent genes. Although c-fos and NFAT often interact to activate gene expression synergistically, they can be activated independently of one another to regulate distinct genes. This raises the question of how one transcription factor can be activated and not the other when both are stimulated by the same trigger. Here, we show that the lipid raft scaffolding protein caveolin-1 interacts with the STIM1-Orai1 complex to increase channel activity. Phosphorylation of tyrosine 14 on caveolin-1 regulates CRAC channel-evoked c-fos activation without impacting the NFAT pathway or Orai1 activity. Our results reveal that structurally distinct domains of caveolin-1 selectively regulate the ability of local calcium to activate distinct transcription factors. More generally, our findings reveal that modular regulation by a scaffolding protein provides a simple, yet effective, mechanism to tunnel a local signal down a specific pathway. PMID:25645930

  16. Deoxyribonuclease activity of polyclonal IgGs: a putative serological marker in patients with spondyloarthritides.

    PubMed

    Kundzer, Alena V; Volkova, Margarita V; Bogdanos, Dimitrios P; Rödiger, Stefan; Schierack, Peter; Generalov, I; Nevinsky, Georgy A; Roggenbuck, Dirk

    2013-07-01

    Antibodies executing catalytic activity are referred to as antibody enzymes or short "abzymes" and may have diagnostic relevance. Abzymes with deoxyribonuclease (DNase) activity have been demonstrated in patients with autoimmune and infectious diseases. Despite several reports on the occurrence of DNase abzymes in systemic autoimmune rheumatic diseases, conclusive data about DNase activity of antibodies in patients with spondyloarthritides (SpAs) are lacking. In recent cross-sectional studies evaluating levels of IgG DNase activity in patients with psoriatic arthritis (PsA), reactive arthritis (ReA), and ankylosing spondylitis (AS), DNase activity of IgG has been assessed by the rivanol clot method and confirmed by agarose gel electrophoresis. Remarkably, levels of IgG DNase activity were significantly higher in sera of SpA patients than those in control subjects. In patients with PsA, ReA, and AS, a positive correlation of DNase IgG activity with synovitis, disease activity, and stage of spondylitis was observed, respectively. Given the involvement of autoimmune reactions in cytolysis and connective tissue degradation in PsA, ReA, and to a lesser extent in AS, abzymes might have an impact on the pathophysiology of SpAs. Detection of IgG DNase activity in patients suffering from SpA represents an exciting new research field and may assist in the differential diagnosis of SpA. PMID:23592052

  17. Effects of negative air ions on activity of neural substrates involved in autonomic regulation in rats

    NASA Astrophysics Data System (ADS)

    Suzuki, Satoko; Yanagita, Shinya; Amemiya, Seiichiro; Kato, Yumi; Kubota, Natsuko; Ryushi, Tomoo; Kita, Ichiro

    2008-07-01

    The neural mechanism by which negative air ions (NAI) mediate the regulation of autonomic nervous system activity is still unknown. We examined the effects of NAI on physiological responses, such as blood pressure (BP), heart rate (HR), and heart rate variability (HRV) as well as neuronal activity, in the paraventricular nucleus of the hypothalamus (PVN), locus coeruleus (LC), nucleus ambiguus (NA), and nucleus of the solitary tract (NTS) with c-Fos immunohistochemistry in anesthetized, spontaneously breathing rats. In addition, we performed cervical vagotomy to reveal the afferent pathway involved in mediating the effects of NAI on autonomic regulation. NAI significantly decreased BP and HR, and increased HF power of the HRV spectrum. Significant decreases in c-Fos positive nuclei in the PVN and LC, and enhancement of c-Fos expression in the NA and NTS were induced by NAI. After vagotomy, these physiological and neuronal responses to NAI were not observed. These findings suggest that NAI can modulate autonomic regulation through inhibition of neuronal activity in PVN and LC as well as activation of NA neurons, and that these effects of NAI might be mediated via the vagus nerves.

  18. Expression of stemness markers in mouse parthenogenetic-diploid blastocysts is influenced by slight variation of activation protocol adopted.

    PubMed

    Bianchi, Enrica; Geremia, Raffaele; Sette, Claudio

    2010-07-01

    The importance of obtaining stem cells through alternative methods has increased progressively in the recent years due to the potential role that embryonic stem (ES) cells play in the field of regenerative medicine. In this regard, generation of parthenogenetic blastocysts allows the production of ethic-free ES cells without the need to manipulate normal embryos. Our work was aimed at clarifying whether variations in the method adopted to generate diploid parthenogenetic blastocysts could determine differences in the quality of blastocysts produced. In vitro development of mouse oocytes activated with three protocols, using Sr2+ and cytochalasin for different time, was compared with that of in vivo fertilized embryos. We have evaluated the efficiency of blastocyst formation and analysed the expression pattern of the stemness markers OCT4, CDX2, and NANOG. Our results indicate that the yield of diploid parthenogenotes and the segregation of the stemness marker OCT4 in the developing blastocyst are influenced by the parthenogenetic protocol adopted. Particularly, even if all methods tested allowed the production of blastocysts in vitro, the correct segregation of OCT4 occurred only in blastocysts developed from oocytes concomitantly treated for 4 h with Sr2+ and cytochalasin D. Our results indicate that the protocol employed to develop parthenogenetic blastocysts in vitro affects the quality of cells in the inner cell mass. PMID:20376706

  19. Heat shock inhibits. alpha. -amylase synthesis in barley aleurone without inhibiting the activity of endoplasmic reticulum marker enzymes

    SciTech Connect

    Sticher, L.; Biswas, A.K.; Bush, D.S.; Jones, R.L. )

    1990-02-01

    The effects of heat shock on the synthesis of {alpha}-amylase and on the membranes of the endoplasmic reticulum (ER) of barley (Hordeum vulgare) aleurone were studied. Heat shock, imposed by raising the temperature of incubation from 25{degree}C to 40{degree}C for 3 hours, inhibits the accumulation of {alpha}-amylase and other proteins in the incubation medium of barley aleurone layers treated with gibberellic acid and Ca{sup 2+}. When ER is isolated from heat-shocked aleurone layers, less newly synthesized {alpha}-amylase is found associated with this membrane system. ER membranes, as indicated by the activities of NADH cytochrome c reductase and ATP-dependent Ca{sup 2+} transport, are not destroyed by heat stress, however. Although heat shock did not reduce the activity of ER membrane marker enzymes, it altered the buoyant density of these membranes. Whereas ER from control tissue showed a peak of marker enzyme activity at 27% to 28% sucrose (1.113-1.120 grams per cubic centimeter), ER from heat-shocked tissue peaked at 30% to 32% sucrose (1.127-1.137 grams per cubic centimeter). The synthesis of a group of proteins designated as heat-shock proteins (HSPs) was stimulated by heat shock. These HSPs were localized to different compartments of the aleurone cell. Several proteins ranging from 15 to 30 kilodaltons were found in the ER and the mitochondrial/plasma membrane fractions of heat-shocked cells, but none of the HSPs accumulated in the incubation medium of heat-shocked aleurone layers.

  20. Immunoassay for tumor markers in human serum based on Si nanoparticles and SiC@Ag SERS-active substrate.

    PubMed

    Zhou, Lu; Zhou, Jun; Feng, Zhao; Wang, Fuyan; Xie, Shushen; Bu, Shizhong

    2016-04-21

    Based on a sandwich structure consisting of nano-Si immune probes and a SiC@Ag SERS-active immune substrate, a kind of ultra-sensitive immunoassay protocol is presented to detect tumor markers in human serum. The nano-Si immune probes were prepared by immobilizing the detecting antibodies onto the surfaces of SiO2-coated Si nanoparticles (NPs) which were modified with 3-(aminopropyl)trimethoxysilane, and the SiC@Ag SERS-active immune substrates were prepared by immobilizing the captured antibodies on Ag film sputtered on SiC sandpaper. To the best of our knowledge, it is the first time that Si NPs are directly used as Raman tags in an immunoassay strategy. And, the SiC@Ag SERS-active substrates exhibit excellent surface enhanced Raman scattering (SERS) performances with an enhancement factor of ∼10(5), owing to the plasmonic effect of the Ag film on the rough surface of the SiC sandpaper. In our experiments, the sandwich immunoassay structure has been successfully applied to detect prostate specific antigen (PSA), α-fetoprotein (AFP) and carbohydrate antigen 19-9 (CA19-9) in a human serum sample and the limit of detections are as low as 1.79 fg mL(-1), 0.46 fg mL(-1) and 1.3 × 10(-3) U mL(-1), respectively. It reveals that the proposed immunoassay protocol has demonstrated a high sensitivity for tumor markers in human serum and a potential practicability in biosensing and clinical diagnostics. PMID:27003871

  1. A comparative phenotypical analysis of rheumatoid nodules and rheumatoid synovium with special reference to adhesion molecules and activation markers

    PubMed Central

    Elewaut, D.; De Keyser, F.; De Wever, N.; Baeten, D.; Van Damme, N.; Verbruggen, G.; Cuvelier, C.; Veys, E.

    1998-01-01

    OBJECTIVES—(1)To analyse the in situ expression of adhesion molecules in rheumatoid nodules. (2) To compare the endothelial expression of adhesion molecules in synovial tissue and subcutaneous nodules obtained from the same patients. (3) To compare the expression of adhesion molecules and activation markers on T cell lines from nodules and synovium.
METHODS—(1) Immunohistochemical analysis by APAAP technique of E selectin, CD44, ICAM-1, PECAM-1, and VCAM-1 was performed on 10 rheumatoid nodules from seven patients with rheumatoid arthritis (RA); nodules and synovium were simultaneously analysed from three patients. (2) T cell lines were generated from RA nodules (n=7) and synovium (n=7) by interleukin 2 expansion, and subsequently characterised by flow cytometry for surface expression of αEβ7, α4β7, CD44, L selectin, LFA-1a, PECAM-1, and CD30.
RESULTS—(1) In rheumatoid nodules, the palisading layer strongly stains for ICAM-1 and PECAM-1, but less pronounced for CD44. VCAM-1 staining was usually negative. ICAM-1 is upregulated in the vessels surrounding the central zone of fibrinoid necrosis. The immunohistological picture in different nodules derived from the same patient was similar. (2) The endothelial expression of adhesion molecules is comparable in RA nodules and synovium on an individual level, except for E selectin, which is overexpressed in nodule endothelium. (3) T cell lines from nodules and synovium display similar adhesion molecule profiles. However, the expression of CD30, a T cell activation marker linked with Th2 subsets, is higher in nodules compared with synovium.
CONCLUSION—These data support a recirculation hypothesis of T cells between articular and extra-articular manifestations in RA, although the activation state of the T cells in each of these localisations may differ.

 Keywords: T cells; adhesion molecules; rheumatoid nodules; rheumatoid synovium PMID:9797554

  2. Salivary Acetylcholinesterase Activity Is Increased in Parkinson's Disease: A Potential Marker of Parasympathetic Dysfunction

    PubMed Central

    Fedorova, Tatyana; Knudsen, Cindy Soendersoe; Mouridsen, Kim; Nexo, Ebba; Borghammer, Per

    2015-01-01

    Introduction. Decreased salivary flow and xerostomia are frequent findings in Parkinson's disease (PD), possibly caused by alterations in the parasympathetic tonus. Here we explore salivary acetylcholinesterase (AChE) activity as a potential biomarker in PD. Methods. We measured salivary flow, AChE activity, and total protein concentration in 30 PD patients and 49 healthy controls. We also performed exploratory correlation analyses with disease duration, motor symptom severity, autonomic complaints, and other nonmotor symptoms. Results. PD patients displayed significantly decreased salivary flow rate, significantly increased salivary AChE activity, and total protein concentration. Importantly, the AChE activity/total protein ratio was significantly increased in PD patients, suggesting that increased AChE activity cannot be explained solely by upconcentration of saliva. The Unified PD Rating Scale (UPDRS) score displayed significant correlation with total salivary protein (P = 0.002) and near-significant correlation with salivary flow (P = 0.07). Color vision test scores were also significantly correlated with AChE activity (P = 0.04) and total protein levels (P = 0.002). Conclusion. Salivary AChE activity is increased in PD patients compared to healthy controls. Future studies are needed to elucidate whether this parameter reflects the extent of neuronal damage and parasympathetic denervation in the salivary glands of PD patients. PMID:25767737

  3. The association of intensity and overall level of physical activity energy expenditure with a marker of insulin resistance

    PubMed Central

    Assah, F. K.; Brage, S.; Wareham, N. J.

    2008-01-01

    Aims/hypothesis Physical activity is important in preventing insulin resistance, but it is unclear which dimension of activity confers this benefit. We examined the association of overall level and intensity of physical activity with fasting insulin level, a marker of insulin resistance. Methods This was a cross-sectional analysis of the Medical Research Council Ely population-based cohort study (2000–2002). Physical activity energy expenditure (PAEE) in kJ kg−1 min−1 was measured by heart rate monitoring with individual calibration over a period of 4 days. The percentage of time spent above 1.5, 1.75 and 2 times resting heart rate (RHR) represented all light-to-vigorous, moderate-to-vigorous and vigorous activity, respectively. Results Data from a total of 643 non-diabetic individuals (319 men, 324 women) aged 50 to 75 years were analysed. In multivariate linear regression analyses, adjusting for age, sex and body fat percentage, PAEE was significantly associated with fasting insulin (pmol/l) (β = −0.875, p = 0.006). Time (% of total) spent above 1.75 × RHR and also time spent above 2 × RHR were both significantly associated with fasting insulin (β = −0.0109, p = 0.007 and β = −0.0365, p = 0.001 respectively), after adjusting for PAEE, age, sex and body fat percentage. Time spent above 1.5 × RHR was not significantly associated with fasting insulin in a similar model (β = −0.0026, p = 0.137). Conclusions/interpretation The association between PAEE and fasting insulin level, a marker of insulin resistance, may be attributable to the time spent in moderate-to-vigorous and vigorous activity, but not to time spent in light-intensity physical activity. PMID:18488189

  4. Epstein-Barr virus (EBV) induces expression of B-cell activation markers on in vitro infection of EBV-negative B-lymphoma cells.

    PubMed Central

    Calender, A; Billaud, M; Aubry, J P; Banchereau, J; Vuillaume, M; Lenoir, G M

    1987-01-01

    A set of B-cell activation markers, including the EBV/C3d receptor [complement receptor type 2 (CR2) (CD21)], the 45-kDa lymphoblastoid cell-associated (Blast-2) antigen (CD23), and the B-cell restricted activation (Bac-1) antigen (which was recently identified as a potential B-cell growth factor receptor) can be turned on by infecting lymphoma cells that are genome negative for Epstein-Barr virus (EBV) with the B95-8 immortalizing strain of the virus. The nonimmortalizing EBV variant, strain P3HR-1, which possesses a deletion within the BamHI WYH region of the genome containing the coding sequence for the EBV-determined nuclear antigen 2, does not induce expression of these markers. Other lymphoblastoid cell-associated antigen markers can be activated by infection with either immortalizing or nonimmortalizing viruses. These results suggest that the immortalizing potential of EBV is correlated with its ability to induce expression of B-cell activation markers, which are suspected to play a major role in the physiological pathway leading to lymphoid cell proliferation. The viral genomic region deleted in the nonimmortalizing strain of EBV seems to be required for activation of some of these markers. Human lymphoma cell lines, such as those used in this study, can thus help identify the specific EBV genes involved in lymphoid B-cell proliferation and the mechanism of action of these genes. PMID:2825176

  5. Patterns of frontoparietal activation as a marker for unsuccessful visuospatial processing in healthy aging.

    PubMed

    Drag, Lauren L; Light, Sharee N; Langenecker, Scott A; Hazlett, Kathleen E; Wilde, Elisabeth A; Welsh, Robert; Steinberg, Brett A; Bieliauskas, Linas A

    2016-09-01

    Visuospatial abilities are sensitive to age-related decline, although the neural basis for this decline (and its everyday behavioral correlates) is as yet poorly understood. fMRI was employed to examine age-related differences in patterns of functional activation that underlie changes in visuospatial processing. All participants completed a brief neuropsychological battery and also a figure ground task (FGT) assessing visuospatial processing while fMRI was recorded. Participants included 16 healthy older adults (OA; aged 69-82 years) and 16 healthy younger adults (YA; aged 20-35 years). We examined age-related differences in behavioral performance on the FGT in relation to patterns of fMRI activation. OA demonstrated reduced performance on the FGT task and showed increased activation of supramarginal parietal cortex as well as increased activation of frontal and temporal regions compared to their younger counterparts. Performance on the FGT related to increased supramarginal gyrus activity and increased medial prefrontal activity in OAs, but not YAs. Our results are consistent with an anterior-posterior compensation model. Successful FGT performance requires the perception and integration of multiple stimuli and thus it is plausible that healthy aging may be accompanied by changes in visuospatial processing that mimic a subtle form of dorsal simultanagnosia. Overall, decreased visuospatial processing in OA relates to an altered frontoparietal neurobiological signature that may contribute to the general phenomenon of increasingly fragmented execution of behavior associated with normal aging. PMID:26195153

  6. Spinal neuronal activation during locomotor-like activity enabled by epidural stimulation and 5-HT agonists in spinal rats

    PubMed Central

    Duru, Paul O.; Tillakaratne, Niranjala J.K.; Kim, Jung A.; Zhong, Hui; Stauber, Stacey M.; Pham, Trinh T.; Xiao, Mei S.; Edgerton, V. Reggie; Roy, Roland R.

    2015-01-01

    The neural networks that generate stepping in complete spinal adult rats remain poorly defined. To address this problem we used c-fos (an activity-dependent marker) to identify active interneurons and motoneurons in the lumbar spinal cord of adult spinal rats during a 30-minute bout of bipedal stepping. Spinal rats were either step trained (30 min/day, 3 days/week for 7.5 weeks) or not step-trained. Stepping was enabled by epidural stimulation and the administration of the serotonergic agonists quipazine and 8-OHDPAT. A third group of spinal rats served as untreated (no stimulation, drugs, or stepping) controls. The number of activated cholinergic central canal cluster cells and partition neurons was higher in both step-trained and non-trained than untreated rats, and higher in non-trained than step-trained rats. The latter finding suggests that daily treatment with epidural stimulation plus serotonergic agonist treatment without step training enhanced the excitability of a broader cholinergic interneuronal population than step training. The number of activated interneurons in laminae II-VI of lumbar cross sections was higher in both step-trained and non-trained than untreated rats, and highest in step-trained rats. This finding suggests that this population of interneurons was responsive to epidural stimulation plus serotonergic treatment and that load-bearing induced when stepping had an additive effect. The number of activated motoneurons of all size categories was higher in the step-trained than the other two groups, reflecting a strong effect of loading on motoneuron recruitment. In general, these results indicate that the spinal networks for locomotion are similar with and without brain input. PMID:25789848

  7. Expression of Early Activation Marker CD69 on Peripheral Blood Lymphocytes from Pregnant Women after First Trimester Alloimmunization.

    PubMed

    Krechetova, L V; Vtorushina, V V; Nikolaeva, M A; Golubeva, E L; Van'ko, L V; Saribegova, V A; Tetruashvili, N K

    2016-08-01

    We studied the expression of an early activation marker CD69 in peripheral blood lymphocytes of pregnant women with a history of recurrent pregnancy loss after immunization with paternal lymphocytes. Spontaneous and phytohemagglutinin-stimulated expression of CD69 on the surface of T cells and NK cells isolated from the peripheral blood was analyzed. On gestation week 5-6, the number of T cells expressing CD69 spontaneously and after stimulation was significantly higher in women with miscarriage than in woman with prolonged pregnancy. However, the number of cells with CD56(+) phenotype expressing CD69 did not differ in these groups. No differences were found in the number of cells of all subpopulations expressing CD69 after stimulation on gestation week 12 in woman with full-term current pregnancy and in woman with physiological pregnancy. PMID:27591871

  8. Imaging Caspase-3 Activation as a Marker of Apoptosis-Targeted Treatment Response in Cancer

    PubMed Central

    Chen, Delphine L.; Engle, Jacquelyn T.; Griffin, Elizabeth A.; Miller, J. Philip; Chu, Wenhua; Zhou, Dong; Mach, Robert H.

    2016-01-01

    Purpose We tested whether positron emission tomography (PET) with the caspase-3 targeted isatin analog [18F]WC-4-116 could image caspase-3 activation in response to an apoptosis-inducing anticancer therapy. Procedures [18F]WC-4-116 uptake was determined in etoposide-treated EL4 cells. Biodistribution studies with [18F]WC-4-116 and [18F]ICMT-18, a non-caspase-3-targeted tracer, as well as [18F]WC-4-116 microPET imaging assessed responses in Colo205 tumor bearing mice treated with death receptor 5 (DR5) targeted agonist antibodies. Immunohistochemical staining and enzyme assays confirmed caspase-3 activation. Two-way analysis of variance or Student’s t-test assessed for treatment-related changes in tracer uptake. Results [18F]WC-4-116 increased 8 ± 2-fold in etoposide-treated cells. The [18F]WC-4-116 %ID/g also increased significantly in tumors with high caspase-3 enzyme activity (p < 0.05). [18F]ICMT-18 tumor uptake did not differ in tumors with high or low caspase-3 enzyme activity. Conclusions [18F]WC-4-116 uptake in vivo reflects increased caspase-3 activation and may be useful for detecting caspase-3 mediated apoptosis treatment responses in cancer. PMID:25344147

  9. Glucose enhances insulin promoter activity in MIN6 beta-cells independently of changes in intracellular Ca2+ concentration and insulin secretion.

    PubMed Central

    Kennedy, H J; Rafiq, I; Pouli, A E; Rutter, G A

    1999-01-01

    Recent studies have suggested that glucose may activate insulin gene transcription through increases in intracellular Ca(2+) concentration, possibly acting via the release of stored insulin. We have investigated this question by dynamic photon-counting imaging of insulin- and c-fos-promoter-firefly luciferase reporter construct activity. Normalized to constitutive viral promoter activity, insulin promoter activity in MIN6 beta-cells was increased 1.6-fold after incubation at 30 mM compared with 3 mM glucose, but was unaltered at either glucose concentration by the presence of insulin (100 nM) or the Ca(2+) channel inhibitor, verapamil (100 microM). Increases in intracellular [Ca(2+)] achieved by plasma membrane depolarization with KCl failed to enhance either insulin or c-fos promoter activity in MIN6 cells, but increased c-fos promoter activity 5-fold in AtT20 cells. Together, these results demonstrate that glucose can exert a direct effect on insulin promoter activity in islet beta-cells, via a signalling pathway which does not require increases in intracellular [Ca(2+)] nor insulin release and insulin receptor activation. PMID:10455011

  10. Measurement of Fractional Exhaled Nitric Oxide as a Marker of Disease Activity in Inflammatory Bowel Disease

    PubMed Central

    Ikonomi, Erkanda; Rothstein, Robin D.; Ehrlich, Adam C.; Friedenberg, Frank K.

    2016-01-01

    Background and Aims Definitive diagnosis of IBD requires endoscopic and pathologic confirmation. These tools are also used to classify disease activity. Our aim was to determine if the fractional exhaled nitric oxide (FeNO) could be utilized to screen for IBD and assess for disease activity. Methods We matched weighted IBD cases and controls from the 2009–2010 NHANES dataset. All subjects underwent measurement of FeNO using standardized techniques. We assessed for potential confounders for FeNO measurement including age, height, and asthma. For IBD subjects, we used the presence of diarrhea, fatigue, and weight loss as a proxy for IBD activity. Laboratory parameters examined to estimate disease activity included anemia (≤ 10 g/dl), iron deficiency (ferritin ≤ 20 ng/ml), hypoalbuminemia (≤ 3.2 g/dl), and CRP (≥ 1.1 mg/dl). Results The weighted sample represented 199,414,901 subjects. The weighted prevalence of IBD was 2,084,895 (1.0%). IBD subjects had nearly the same FeNO level as those without IBD (17.0 ± 16.2 vs. 16.7 ± 14.5 ppb). The odds of a FeNO > 25 ppb was half (OR=0.501; 95% CI 0.497–0.504) for subjects with IBD compared to those without IBD after controlling for confounders. The AUROC curve for FeNO was 0.47 (0.35–0.59). FeNO levels were not higher in patients with laboratory values suggestive of active disease. FeNO levels were higher in IBD patients with diarrhea, rectal urgency, and fatigue but were lower in those with unintentional weight loss. Conclusion Measurement of FeNO does not appear to be useful to screen for IBD or assess disease activity. PMID:27398403

  11. Platelet-rich plasma stimulated by pulse electric fields: Platelet activation, procoagulant markers, growth factor release and cell proliferation.

    PubMed

    Frelinger Iii, A L; Torres, A S; Caiafa, A; Morton, C A; Berny-Lang, M A; Gerrits, A J; Carmichael, S L; Neculaes, V B; Michelson, A D

    2016-03-01

    Therapeutic use of activated platelet-rich plasma (PRP) has been explored for wound healing, hemostasis and antimicrobial wound applications. Pulse electric field (PEF) stimulation may provide more consistent platelet activation and avoid complications associated with the addition of bovine thrombin, the current state of the art ex vivo activator of therapeutic PRP. The aim of this study was to compare the ability of PEF, bovine thrombin and thrombin receptor activating peptide (TRAP) to activate human PRP, release growth factors and induce cell proliferation in vitro. Human PRP was prepared in the Harvest SmartPreP2 System and treated with vehicle, PEF, bovine thrombin, TRAP or Triton X-100. Platelet activation and procoagulant markers and microparticle generation were measured by flow cytometry. Released growth factors were measured by ELISA. The releasates were tested for their ability to stimulate proliferation of human epithelial cells in culture. PEF produced more platelet-derived microparticles, P-selectin-positive particles and procoagulant annexin V-positive particles than bovine thrombin or TRAP. These differences were associated with higher levels of released epidermal growth factor after PEF than after bovine thrombin or TRAP but similar levels of platelet-derived, vascular-endothelial, and basic fibroblast growth factors, and platelet factor 4. Supernatant from PEF-treated platelets significantly increased cell proliferation compared to plasma. In conclusion, PEF treatment of fresh PRP results in generation of microparticles, exposure of prothrombotic platelet surfaces, differential release of growth factors compared to bovine thrombin and TRAP and significant cell proliferation. These results, together with PEF's inherent advantages, suggest that PEF may be a superior alternative to bovine thrombin activation of PRP for therapeutic applications. PMID:26030682

  12. Motion compensation for brain PET imaging using wireless MR active markers in simultaneous PET-MR: phantom and non-human primate studies

    PubMed Central

    Huang, Chuan; Ackerman, Jerome L.; Petibon, Yoann; Normandin, Marc D.; Brady, Thomas J.; El Fakhri, Georges; Ouyang, Jinsong

    2014-01-01

    Brain PET scanning plays an important role in the diagnosis, prognostication and monitoring of many brain diseases. Motion artifacts from head motion are one of the major hurdles in brain PET. In this work, we propose to use wireless MR active markers to track head motion in real time during a simultaneous PET-MR brain scan and incorporate the motion measured by the markers in the listmode PET reconstruction. Several wireless MR active markers and a dedicated fast MR tracking pulse sequence module were built. Data were acquired on an ACR Flangeless PET phantom with multiple spheres and a non-human primate with and without motion. Motions of the phantom and monkey’s head were measured with the wireless markers using a dedicated MR tracking sequence module. The motion PET data were reconstructed using list-mode reconstruction with and without motion correction. Static reference was used as gold standard for quantitative analysis. The motion artifacts, which were prominent on the images without motion correction, were eliminated by the wireless marker based motion correction in both the phantom and monkey experiments. Quantitative analysis was performed on the phantom motion data from 24 independent noise realizations. The reduction of bias of sphere-to-background PET contrast by active marker based motion correction ranges from 26% to 64% and 17% to 25% for hot (i.e., radioactive) and cold (i.e., non-radioactive) spheres, respectively. The motion correction improved the channelized Hotelling observer signal-to-noise ratio of the spheres by 1.2 to 6.9 depending on their locations and sizes. The proposed wireless MR active marker based motion correction technique removes the motion artifacts in the reconstructed PET images and yields accurate quantitative values. PMID:24418501

  13. Motion compensation for brain PET imaging using wireless MR active markers in simultaneous PET-MR: phantom and non-human primate studies.

    PubMed

    Huang, Chuan; Ackerman, Jerome L; Petibon, Yoann; Normandin, Marc D; Brady, Thomas J; El Fakhri, Georges; Ouyang, Jinsong

    2014-05-01

    Brain PET scanning plays an important role in the diagnosis, prognostication and monitoring of many brain diseases. Motion artifacts from head motion are one of the major hurdles in brain PET. In this work, we propose to use wireless MR active markers to track head motion in real time during a simultaneous PET-MR brain scan and incorporate the motion measured by the markers in the listmode PET reconstruction. Several wireless MR active markers and a dedicated fast MR tracking pulse sequence module were built. Data were acquired on an ACR Flangeless PET phantom with multiple spheres and a non-human primate with and without motion. Motions of the phantom and monkey's head were measured with the wireless markers using a dedicated MR tracking sequence module. The motion PET data were reconstructed using list-mode reconstruction with and without motion correction. Static reference was used as gold standard for quantitative analysis. The motion artifacts, which were prominent on the images without motion correction, were eliminated by the wireless marker based motion correction in both the phantom and monkey experiments. Quantitative analysis was performed on the phantom motion data from 24 independent noise realizations. The reduction of bias of sphere-to-background PET contrast by active marker based motion correction ranges from 26% to 64% and 17% to 25% for hot (i.e., radioactive) and cold (i.e., non-radioactive) spheres, respectively. The motion correction improved the channelized Hotelling observer signal-to-noise ratio of the spheres by 1.2 to 6.9 depending on their locations and sizes. The proposed wireless MR active marker based motion correction technique removes the motion artifacts in the reconstructed PET images and yields accurate quantitative values. PMID:24418501

  14. Hematological and Biochemical Markers of Iron Status in a Male, Young, Physically Active Population

    PubMed Central

    Nunes, Lázaro Alessandro Soares; Grotto, Helena Zerlotti W.; Brenzikofer, René; Macedo, Denise Vaz

    2014-01-01

    The aim of this study was to establish reference intervals (RIs) for the hemogram and iron status biomarkers in a physically active population. The study population included male volunteers (n = 150) with an average age of 19 ± 1 years who had participated in a regular and controlled exercise program for four months. Blood samples were collected to determine hematological parameters using a Sysmex XE-5000 analyzer (Sysmex, Kobe, Japan). Iron, total iron-binding capacity (TIBC), transferrin saturation and ferritin, and high-sensitivity C-reactive protein (CRP) concentrations in serum samples were measured using commercial kits (Roche Diagnostics, GmbH, Mannheim, Germany) and a Roche/Hitachi 902 analyzer. The RIs were established using the RefVal program 4.1b. The leucocyte count, TIBC, and CRP and ferritin concentrations exhibited higher RIs compared with those in a nonphysically active population. Thirty volunteers (outliers) were removed from the reference population due to blood abnormalities. Among the outliers, 46% exhibited higher CRP concentrations and lower concentrations of iron and reticulocyte hemoglobin compared with the nonphysically active population (P < 0.001). Our results showed that it is important to establish RIs for certain laboratory parameters in a physically active population, especially for tests related to the inflammatory response and iron metabolism. PMID:25045665

  15. Xeno‐oestrogenic activity in serum as marker of occupational pesticide exposure

    PubMed Central

    Andersen, Helle Raun; Nielsen, Flemming; Nielsen, Jesper Bo; Kjaerstad, Mia Birkhoej; Baelum, Jesper; Grandjean, Philippe

    2007-01-01

    Background An increasing number of currently used pesticides are reported to possess oestrogen‐like properties or to disturb the endocrine system in other ways. Objectives To investigate if xeno‐oestrogenic activity in serum can be used as a biomarker of the combined exposure to pesticides with oestrogen‐like properties in an occupational setting. Methods Serum samples were obtained from two separate cohorts representing non‐pregnant and pregnant female greenhouse workers in Denmark. Serum samples from 270 non‐pregnant women and 173 pregnant women were analysed for xeno‐oestrogenic activity. A fraction containing major xeno‐oestrogens but without pharmaceutical and endogenously produced oestrogens was isolated from each serum sample by solid‐phase extraction and tested for oestrogenic response in a MCF‐7 cell proliferation assay. The pesticide exposure for each woman was categorised as low, medium or high based on information collected by detailed interviews of the women and the employers. Results In both cohorts, an exposure‐associated increase in the xeno‐oestrogenic activity in serum was demonstrated. Among the pregnant women, the association between pesticide exposure and xeno‐oestrogenic activity in serum was statistically significant for women who had been at work within the last week, while no association was observed for women who had not been at work during the most recent week. Conclusions The study illustrates the usefulness of this biomarker for qualitative assessment of the combined exposure to mixtures of oestrogen‐like pesticides. Although the individual pesticides responsible for the xeno‐oestrogenic response were not identified, the study demonstrates that, even within highly‐controlled greenhouse operations, occupational exposure to oestrogen‐like pesticides can result in detectable impacts on hormonal activity in the blood. PMID:17478572

  16. Thrombin-Mediated Platelet Activation of Lysed Whole Blood and Platelet-Rich Plasma: A Comparison Between Platelet Activation Markers and Ultrastructural Alterations.

    PubMed

    Augustine, Tanya N; van der Spuy, Wendy J; Kaberry, Lindsay L; Shayi, Millicent

    2016-06-01

    Platelet ultrastructural alterations representing spurious activation have been identified in pathological conditions. A limitation of platelet studies is that sample preparation may lead to artifactual activation processes which may confound results, impacting the use of scanning electron microscopy as a supplemental diagnostic tool. We used scanning electron microscopy and flow cytometry to analyze platelet activation in platelet-rich plasma (PRP) and whole blood (WB) samples. PRP generated using a single high g force centrifugation, and WB samples treated with a red blood cell lysis buffer, were exposed to increasing concentrations of the agonist thrombin. Platelets in lysed WB samples responded to thrombin by elevating the activation marker CD62p definitively, with corresponding ultrastructural changes indicating activation. Conversely, CD62p expression in PRP preparations remained static. Ultrastructural analysis revealed fully activated platelets even under low concentration thrombin stimulation, with considerable fibrin deposition. It is proposed that the method for PRP production induced premature platelet activation, preventable by using an inhibitor of platelet aggregation and fibrin polymerization. Nevertheless, our results show a definitive correspondence between flow cytometry and scanning electron microscopy in platelet activation studies, highlighting the potential of the latter technique as a supplemental diagnostic tool. PMID:27329313

  17. Soluble ST2: A new and promising activity marker in ulcerative colitis

    PubMed Central

    Díaz-Jiménez, David; Núñez, Lucía E; Beltrán, Caroll J; Candia, Enzo; Suazo, Cristóbal; Álvarez-Lobos, Manuel; González, María-Julieta; Hermoso, Marcela A; Quera, Rodrigo

    2011-01-01

    AIM: To correlate circulating soluble ST2 (sST2) levels with the severity of ulcerative colitis (UC) and serum levels of pro-inflammatory cytokines, and to demonstrate the predictive power of sST2 levels for differentiation between active and inactive UC. METHODS: We recruited 153 patients: 82 with UC, 26 with Crohn’s disease (CD) and 43 disease controls [non-inflammatory bowel disease (IBD)]. Subjects were excluded if they had diagnosis of asthma, autoimmune diseases or hypertension. The serum levels of sST2 and pro-inflammatory cytokines [pg/mL; median (25th-75th)] as well as clinical features, endoscopic and histological features, were subjected to analyses. The sST2 performance for discrimination between active and inactive UC, non-IBD and healthy controls (HC) was determined with regard to sensitivity and specificity, and Spearman’s rank correlation coefficient (r). To validate the method, the area under the curve (AUC) of receiver-operator characteristic (ROC) was determined (AUC, 95% CI) and the total ST2 content of the colonic mucosa in UC patients was correlated with circulating levels of sST2. RESULTS: The serum sST2 value was significantly higher in patients with active [235.80 (90.65-367.90) pg/mL] rather than inactive UC [33.19 (20.04-65.32) pg/mL], based on clinical, endoscopic and histopathological characteristics, as well as compared with non-IBD and HC (P < 0.001). The median level of sST2 in CD patients was 54.17 (35.02-122.0) pg/mL, significantly higher than that of the HC group only (P < 0.01). The cutoff was set at 74.87 pg/mL to compare active with inactive UC in a multicenter cohort of patients. Values of sensitivity, specificity, and ability to correctly classify UC, according to activity, were 83.33%, 83.33% and 83.33%, respectively. The AUC of the ROC curve to assess the ability of this molecule to discriminate between active vs inactive UC was 0.92 (0.86-0.97, P < 0.0001). The serum levels of sST2 in patients with UC significantly

  18. Arginase activity - a marker of disease status in patients with visceral leishmaniasis in ethiopia.

    PubMed

    Abebe, Tamrat; Takele, Yegnasew; Weldegebreal, Teklu; Cloke, Tom; Closs, Ellen; Corset, Camille; Hailu, Asrat; Hailu, Workagegnehu; Sisay, Yifru; Corware, Karina; Corset, Margaux; Modolell, Manuel; Munder, Markus; Tacchini-Cottier, Fabienne; Müller, Ingrid; Kropf, Pascale

    2013-01-01

    The underlying mechanisms resulting in the profound immune suppression characteristic of human visceral leishmaniasis (VL) are not fully understood. Here, we tested the hypothesis that arginase, an enzyme associated with immunosuppression, is higher in patients with VL and contributes to impaired T cell responses. We recruited patients with VL before and after treatment and healthy controls and measured the arginase metabolism in the blood of these individuals. Our results show that arginase activity is significantly higher in the blood of patients with active VL as compared to controls. These high levels of arginase decline considerably once the patients are successfully treated. We identified the phenotype of arginase-expressing cells among PBMCs as neutrophils and show that their frequency was increased in PBMCs of patients before treatment; this coincides with reduced levels of L-arginine in the plasma and decreased expression levels of CD3ζ in T cells. PMID:23556019

  19. Telomerase Activity as a Potential Diagnostic Marker for Triage of Abnormal Pap Smears

    PubMed Central

    Ault, Kevin A.; Allen, Heather K.; Phillips, Stacia L.; Bridget Zimmerman, M.; Klingelhutz, Aloysius J.

    2008-01-01

    Objectives To determine whether there is an association between high levels of telomerase and premalignant cervical disease and to provide a preliminary analysis of telomerase activity as a potential triage strategy. Materials and Methods Premenopausal women were invited to participate in the study during routine gynecologic visits as well as visits where colposcopy was performed. Samples were taken from the cervix using a broom device and placed in cold phosphate-buffered saline. A total of 92 samples were evaluated. Cells were counted and lysed, and a semi-quantitative measure of telomerase activity was determined using a commercially available telomerase enzyme-linked immunosorbent assay kit. The presence of human papillomavirus (HPV) types 16 and 18 was assessed by polymerase chain reaction analysis. One-way analysis of variance was used to test for the association of telomerase activity with cytology, HPV type 16 or 18 status, and colposcopy and/or biopsy findings. Results When telomerase levels were analyzed according to Pap smear results, there were no differences among four groups of cytology findings (normal, atypical squamous cells of undetermined significance, low-grade squamous intraepithelial lesion, and high-grade squamous intraepithelial lesion). When colposcopy and/or biopsy results were considered, significantly higher levels of telomerase were detected in cervical intraepithelial neoplasia (CIN) 2,3 samples than in normal Pap smear samples and CIN 1 samples (p = .035). There was no significant difference in telomerase levels between samples that tested positive for HPV type 16 or 18 and those that did not (p = .111). Conclusions Telomerase levels were significantly higher in cytologic samples from women with biopsy-proven CIN 2,3 than in samples from women with normal cytology results or CIN 1. These results warrant larger studies to determine whether telomerase activity may be a useful triage tool for abnormal cytologic findings. PMID:15870530

  20. High dietary fat intake influences the activation of specific hindbrain and hypothalamic nuclei by the satiety factor oleoylethanolamide.

    PubMed

    Romano, A; Karimian Azari, E; Tempesta, B; Mansouri, A; Micioni Di Bonaventura, M V; Ramachandran, D; Lutz, T A; Bedse, G; Langhans, W; Gaetani, S

    2014-09-01

    Chronic exposure to a diet rich in fats changes the gastrointestinal milieu and alters responses to several signals involved in the control of food intake. Oleoylethanolamide (OEA) is a gut-derived satiety signal released from enterocytes upon the ingestion of dietary fats. The anorexigenic effect of OEA, which requires intestinal PPAR-alpha receptors and is supposedly mediated by vagal afferents, is associated with the induction of c-fos in several brain areas involved in the control of food intake, such as the nucleus of the solitary tract (NST) and the hypothalamic paraventricular (PVN) and supraoptic nuclei (SON). In the present study we investigated whether the exposure to a high fat diet (HFD) alters the hindbrain and hypothalamic responses to OEA. To this purpose we evaluated the effects of OEA at a dose that reliably inhibits eating (10mg/kg i.p.) on the induction of c-fos in the NST, area postrema (AP), PVN and SON in rats maintained either on standard chow or a HFD. We performed a detailed analysis of the different NST subnuclei activated by i.p. OEA and found that peripheral OEA strongly activates c-fos expression in the AP, NST and in the hypothalamus of both chow and HFD fed rats. The extent of c-fos expression was, however, markedly different between the two groups of rats, with a weaker activation of selected NST subnuclei and stronger activation of the PVN in HFD-fed than in chow-fed rats. HFD-fed rats were also more sensitive to the immediate hypophagic action of OEA than chow-fed rats. These effects may be due to a decreased sensitivity of vagal afferent fibers that might mediate OEA's actions on the brain and/or an altered sensitivity of brain structures to OEA. PMID:24802360

  1. Analgesic Neural Circuits Are Activated by Electroacupuncture at Two Sets of Acupoints

    PubMed Central

    Hu, Man-Li; Qiu, Zheng-Ying

    2016-01-01

    To investigate analgesic neural circuits activated by electroacupuncture (EA) at different sets of acupoints in the brain, goats were stimulated by EA at set of Baihui-Santai acupoints or set of Housanli acupoints for 30 min. The pain threshold was measured using the potassium iontophoresis method. The levels of c-Fos were determined with Streptavidin-Biotin Complex immunohistochemistry. The results showed pain threshold induced by EA at set of Baihui-Santai acupoints was 44.74% ± 4.56% higher than that by EA at set of Housanli acupoints (32.64% ± 5.04%). Compared with blank control, EA at two sets of acupoints increased c-Fos expression in the medial septal nucleus (MSN), the arcuate nucleus (ARC), the nucleus amygdala basalis (AB), the lateral habenula nucleus (HL), the ventrolateral periaqueductal grey (vlPAG), the locus coeruleus (LC), the nucleus raphe magnus (NRM), the pituitary gland, and spinal cord dorsal horn (SDH). Compared with EA at set of Housanli points, EA at set of Baihui-Santai points induced increased c-Fos expression in AB but decrease in MSN, the paraventricular nucleus of the hypothalamus, HL, and SDH. It suggests that ARC-PAG-NRM/LC-SDH and the hypothalamus-pituitary may be the common activated neural pathways taking part in EA-induced analgesia at the two sets of acupoints. PMID:27429635

  2. Reduced activity-dependent protein levels in a mouse model of the fragile X premutation.

    PubMed

    von Leden, Ramona E; Curley, Lindsey C; Greenberg, Gian D; Hunsaker, Michael R; Willemsen, Rob; Berman, Robert F

    2014-03-01

    Environmental enrichment results in increased levels of Fmrp in brain and increased dendritic complexity. The present experiment evaluated activity-dependent increases in Fmrp levels in the motor cortex in response to training on a skilled forelimb reaching task in the CGG KI mouse model of the fragile X premutation. Fmrp, Arc, and c-Fos protein levels were quantified by Western blot in the contralateral motor cortex of mice following training to reach for sucrose pellets with a non-preferred paw and compared to levels in the ipsilateral motor cortex. After training, all mice showed increases in Fmrp, Arc, and c-Fos protein levels in the contralateral compared to the ipsilateral hemisphere; however, the increase in CGG KI mice was less than wildtype mice. Increases in Fmrp and Arc proteins scaled with learning, whereas this relationship was not observed with the c-Fos levels. These data suggest the possibility that reduced levels of activity-dependent proteins associated with synaptic plasticity such as Fmrp and Arc may contribute to the neurocognitive phenotype reported in the CGG KI mice and the fragile X premutation. PMID:24462720

  3. The effects of Lycii Radicis Cortex on RANKL-induced osteoclast differentiation and activation in RAW 264.7 cells.

    PubMed

    Kim, Jae-Hyun; Kim, Eun-Young; Lee, Bina; Min, Ju-Hee; Song, Dea-Uk; Lim, Jeong-Min; Eom, Ji Whan; Yeom, Mijung; Jung, Hyuk-Sang; Sohn, Youngjoo

    2016-03-01

    Post-menopausal osteoporosis is a serious age-related disease. After the menopause, estrogen deficiency is common, and excessive osteoclast activity causes osteoporosis. Osteoclasts are multinucleated cells generated from the differentiation of monocyte/macrophage precursor cells such as RAW 264.7 cells. The water extract of Lycii Radicis Cortex (LRC) is made from the dried root bark of Lycium chinense Mill. and is termed 'Jigolpi' in Korea. Its effects on osteoclastogenesis and post‑menopausal osteoporosis had not previously been tested. In the present study, the effect of LRC on receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclast differentiation was demonstrated using a tartrate-resistant acid phosphatase (TRAP) assay and pit formation assay. Moreover, in order to analyze molecular mechanisms, we studied osteoclastogenesis-related markers such as nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), c-Fos, receptor activator of NF-κB (RANK), TRAP, cathepsin K (CTK), matrix metallopeptidase-9 (MMP-9), calcitonin receptor (CTR) and carbonic anhydrase Ⅱ (CAII) using RT-qPCR and western blot analysis. Additionally, we also determined the effect of LRC on an ovariectomized (OVX) rat model. We noted that LRC inhibited RANKL-induced osteoclast differentiation via suppressing osteoclastogenesis-related markers. It also inhibited osteoporosis in the OVX rat model by decreasing loss of bone density and trabecular area. These results suggest that LRC exerts a positive effect on menopausal osteoporosis. PMID:26848104

  4. Vitamin D status and effect of interferon-β1a treatment on MRI activity and serum inflammation markers in relapsing-remitting multiple sclerosis.

    PubMed

    Røsjø, Egil; Myhr, Kjell-Morten; Løken-Amsrud, Kristin I; Bakke, Søren J; Beiske, Antonie G; Bjerve, Kristian S; Hovdal, Harald; Lilleås, Finn; Midgard, Rune; Pedersen, Tom; Šaltytė Benth, Jūratė; Torkildsen, Øivind; Wergeland, Stig; Michelsen, Annika E; Aukrust, Pål; Ueland, Thor; Holmøy, Trygve

    2015-03-15

    To explore if vitamin D modulates interferon-β1a treatment effects in relapsing-remitting multiple sclerosis, we examined relationships between serum vitamin D and magnetic resonance imaging (MRI) activity and ten systemic inflammation markers in 88 patients, before and during treatment. Odds ratios for all MRI parameters were negatively associated with vitamin D levels before therapy, but converged to equally low values irrespective of vitamin D status during treatment. During therapy, similar alterations of MRI activity and inflammation markers were found across patients categorized by mean vitamin D values. This suggests that vitamin D status has no major influence on interferon-β1a treatment effects. PMID:25773151

  5. Elastic Scattering Spectroscopy as an Optical Marker of Inflammatory Bowel Disease Activity and Subtypes

    PubMed Central

    Rodriguez-Diaz, Eladio; Atkinson, Christopher; Jepeal, Lisa I.; Berg, Adam; Huang, Christopher S.; Cerda, Sandra R.; O’Brien, Michael J.; Bigio, Irving J.; Farraye, Francis A.; Singh, Satish K.

    2016-01-01

    Background In 10% to 15% of individuals, inflammatory bowel disease (IBD) is difficult to classify as ulcerative colitis (UC) or Crohn’s disease (CD). Previous work has demonstrated that probe-based elastic scattering spectroscopy (ESS) can produce spectra, informed by parameters like tissue ultrastructure and hemoglobin content, capable of differentiating pathologies. This study investigates whether ESS is an in vivo optical biomarker for the presence, activity, and type of IBD in the colon. Methods Pilot study, a retrospective data analysis. ESS spectra of endoscopically normal and inflamed colon were obtained from 48 patients with IBD and 46 non-IBD controls. Measurements from patients with IBD were categorized as CD or UC based on clinical diagnosis. Spectra were analyzed using high-dimensional methods. Leave-one-patient-out cross-validation was used to obtain diagnostic performance estimates. Results Patients with IBD were distinguishable from non-IBD controls with a sensitivity of 0.93 and specificity of 0.91 based on readings from endoscopically normal mucosa, and 0.94 and 0.93 from inflamed mucosa. In patients with IBD, histologically normal and inflamed colon were distinguishable with per-class accuracies of 0.83 and 0.89, respectively; histologically normal from inactive inflammation with accuracies of 0.73 and 0.89, respectively; and inactive from active colitis with accuracies of 0.87 and 0.84, respectively. The diagnosis of CD versus UC was made with per-class accuracies of 0.92 and 0.87 in normal and 0.87 and 0.85 in inflamed mucosa, respectively. Conclusions ESS, a simple, low-cost clinically friendly optical biopsy modality, has the potential to enhance the endoscopic assessment of IBD and its activity in real time and may help to distinguish CD from UC. PMID:24798637

  6. Myofibroblasts are distinguished from activated skin fibroblasts by the expression of AOC3 and other associated markers.

    PubMed

    Hsia, Lin-Ting; Ashley, Neil; Ouaret, Djamila; Wang, Lai Mun; Wilding, Jennifer; Bodmer, Walter F

    2016-04-12

    Pericryptal myofibroblasts in the colon and rectum play an important role in regulating the normal colorectal stem cell niche and facilitating tumor progression. Myofibroblasts previously have been distinguished from normal fibroblasts mostly by the expression of α smooth muscle actin (αSMA). We now have identified AOC3 (amine oxidase, copper containing 3), a surface monoamine oxidase, as a new marker of myofibroblasts by showing that it is the target protein of the myofibroblast-reacting mAb PR2D3. The normal and tumor tissue distribution and the cell line reactivity of AOC3 match that expected for myofibroblasts. We have shown that the surface expression of AOC3 is sensitive to digestion by trypsin and collagenase and that anti-AOC3 antibodies can be used for FACS sorting of myofibroblasts obtained by nonenzymatic procedures. Whole-genome microarray mRNA-expression profiles of myofibroblasts and skin fibroblasts revealed four additional genes that are significantly differentially expressed in these two cell types: NKX2-3 and LRRC17 in myofibroblasts and SHOX2 and TBX5 in skin fibroblasts. TGFβ substantially down-regulated AOC3 expression in myofibroblasts but in skin fibroblasts it dramatically increased the expression of αSMA. A knockdown of NKX2-3 in myofibroblasts caused a decrease of myofibroblast-related gene expression and increased expression of the fibroblast-associated gene SHOX2, suggesting that NKX2-3 is a key mediator for maintaining myofibroblast characteristics. Our results show that colorectal myofibroblasts, as defined by the expression of AOC3, NKX2-3, and other markers, are a distinctly different cell type from TGFβ-activated fibroblasts. PMID:27036009

  7. Markers of endothelial cell activation and immune activation are increased in patients with severe leptospirosis and associated with disease severity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objectives: Previous studies concluded that haemorrhage is one of the most accurate prognostic factors of mortality in leptospirosis. Therefore, endothelial cell activation was investigated in relation to disease severity in severe leptospirosis. Methods: Prospective cohort study of severe leptospi...

  8. Geomorphological markers of faulting and neotectonic activity along the western Andean margin, northern Chile

    NASA Astrophysics Data System (ADS)

    Audin, Laurence; Herail, Gérard; Riquelme, Rodrigo; Darrozes, José; Martinod, Joseph; Font, Eric

    2003-12-01

    In the Atacama Desert, northern Chile, some ephemeral channels are developed in the Plio-Quaternary alluvial sequence that caps the Neogene Atacama Gravels Formation. Geomorphological studies and high-resolution digital elevation data (GPS) along a structural transect in the Central Depression are used to document modern growth history of subtle folding and faulting in the fore-arc region. Outcrop data of the most recent deposits are combined with observations of warped and faulted late Quaternary pediments, alluvial fans and terrace surfaces to propose unsuspected neotectonic processes on the western flank of the Domeyko Cordillera. Neotectonic process recognition is here based largely upon the interpretation of alluvial landforms, drainage organisation and evolution as the intermittent river network shows systematic patterns of course deflections, successive incisions or deposition processes as it encounters the fault scarps or folds in the superficial deposits. This area presents both N-S-trending active vertical faults in the topographically higher pampas, and N-S-trending active folding in the lower pampas. These faults seem to accommodate E-W extension and compression that could be related to uplift of the western Andean margin within a compressive context. Uplift may have taken place unevenly over the past few million years after the deposition of the superficial alluvial surfaces that cap the Neogene Atacama Gravels. Copyright

  9. Transcriptional activity of interferon gamma and two subunits of its receptor as molecular markers of myocarditis.

    PubMed

    Smolik, Sławomir; Domal-Kwiatkowska, Dorota; Nowalany-Kozielska, Ewa; Wojnicz, Romuald; Swiatowska, Longina; Ludmiła, Weglarz

    2008-01-01

    Inflammatory cytokines have an important role in the pathogenesis of myocarditis, but still little is known about the importance of interferon gamma (IFNg) in this disease. The aim of the study was to evaluate the prognostic value of the initial transcriptional activity of IFNg and two subunits of its receptor as measured with the use of QRT-PCR and SYBRGreen chemistry in the group of 63 patients with clinically confirmed myocarditis who were treated with statin or immunosupressive therapy. The initial values of IFNg and the ratio of IFNgRb/IFNgRa were statistically different in the analyzed group of patients. The prognostic value of IFNg and IFNgRb/IFNgRa was determined by logistic regression analysis. PMID:19172849

  10. Urinary neopterin, a non-invasive marker of mammalian cellular immune activation, is highly stable under field conditions

    PubMed Central

    Heistermann, Michael; Higham, James P.

    2015-01-01

    Studying immunity and immune function in ecology and evolution requires field studies, but there has been a dearth of non-invasive markers of immune activation available for studying large wild mammals. Recently, we analytically and biologically validated the measurement of urinary neopterin (NEO), a biomarker of cellular immune activation, in captive macaques. However, applying this to free-ranging settings is complicated by issues involving sample collection, processing, storage, and transport. Here, we collected urine samples from captive macaques and undertook experiments simulating common field issues. We tested the effects on urinary NEO sample measurements following: dirt and faecal contamination; storage at room temperature; differences in processing and long-term storage methods (freezing, lyophilising, blotting onto filter paper); and freeze-thaw cycles. Our results show that concentrations of urinary NEO are highly stable – they are not affected by soil or faecal contamination, can be collected on filter paper and stored for many months frozen or lyophilised with minimal effect, and are resistant to multiple 24 hr freeze-thaws. With the addition of a biocidal preservative, concentrations are even stable at room temperature for long periods. Urinary NEO is remarkably resilient, and is highly suitable for non-invasive field studies of cellular immune responses in wild large mammals. PMID:26549509

  11. Comparison of hematological alterations and markers of B-cell activation in workers exposed to benzene, formaldehyde and trichloroethylene.

    PubMed

    Bassig, Bryan A; Zhang, Luoping; Vermeulen, Roel; Tang, Xiaojiang; Li, Guilan; Hu, Wei; Guo, Weihong; Purdue, Mark P; Yin, Songnian; Rappaport, Stephen M; Shen, Min; Ji, Zhiying; Qiu, Chuangyi; Ge, Yichen; Hosgood, H Dean; Reiss, Boris; Wu, Banghua; Xie, Yuxuan; Li, Laiyu; Yue, Fei; Freeman, Laura E Beane; Blair, Aaron; Hayes, Richard B; Huang, Hanlin; Smith, Martyn T; Rothman, Nathaniel; Lan, Qing

    2016-07-01

    Benzene, formaldehyde (FA) and trichloroethylene (TCE) are ubiquitous chemicals in workplaces and the general environment. Benzene is an established myeloid leukemogen and probable lymphomagen. FA is classified as a myeloid leukemogen but has not been associated with non-Hodgkin lymphoma (NHL), whereas TCE has been associated with NHL but not myeloid leukemia. Epidemiologic associations between FA and myeloid leukemia, and between benzene, TCE and NHL are, however, still debated. Previously, we showed that these chemicals are associated with hematotoxicity in cross-sectional studies of factory workers in China, which included extensive personal monitoring and biological sample collection. Here, we compare and contrast patterns of hematotoxicity, monosomy 7 in myeloid progenitor cells (MPCs), and B-cell activation biomarkers across these studies to further evaluate possible mechanisms of action and consistency of effects with observed hematologic cancer risks. Workers exposed to benzene or FA, but not TCE, showed declines in cell types derived from MPCs, including granulocytes and platelets. Alterations in lymphoid cell types, including B cells and CD4+ T cells, and B-cell activation markers were apparent in workers exposed to benzene or TCE. Given that alterations in myeloid and lymphoid cell types are associated with hematological malignancies, our data provide biologic insight into the epidemiological evidence linking benzene and FA exposure with myeloid leukemia risk, and TCE and benzene exposure with NHL risk. PMID:27207665

  12. Effect of major burns on early and late activating markers of peripheral blood T lymphocytes.

    PubMed

    Sayed, S; Bakry, R; El-Shazly, M; El-Oteify, M; Terzaki, S; Fekry, M

    2012-03-31

    It is known that lymphocytes immunophenotype is a reflection of the functional level of the immune system. The immunosuppressive effect of major burns is also known for many years. T lymphocytes of 50 major burn patients were analyzed in base line (BL) samples at 24 hours and at 1 week and 2 weeks after burn, using monoclonal antibodies of CD3, CD4, CD8, CD25 (IL2R) and HLA-DR by flow cytometry and β2-microglobulin (β2-m) by ELISA. Recorded values were compared with those of 50 healthy donors. There was statistically significant reduction in absolute number of CD3 positive cells (CD3+) (p<0.000) and CD4/CD8 ratio (p=0.01) in the first 24 hours in comparison with controls. CD25 (IL-2R) shows insignificant upregulation on T lymphocytes after burn with significant upregulation of HLA-DR. The absolute number of CD3+ cells began to increase after 2 weeks (p=0.03) but remained less than controls (p=0.08). CD4/CD8 ratio was more or less same as healthy controls after 2 weeks. Upregulation of CD25 was insignificantly increased and that of HLA-DR was markedly increased after 2 weeks (p=0.001). Significant negative correlations were detected between mean values of β2-m and both absolute numbers of CD3 and CD4 positive cells in BL and one week samples. In addition there was significant correlation between mean values of β2-m and values of CD25 expression in the BL samples. The obtained data is suggestive of persistent activation of T lymphocytes two weeks after major burns whereas early shedding of β2-m is related to activation of lymphocytes increasing their susceptibility to apoptosis, both indicative of altered immune response. Burn intensivists and surgeons should be keen to support the patients' immune system in the first hours following major burns. This support will ensure free-bacteremic blood with a consequent better prognosis. PMID:23012611

  13. Half-Sarcomere Dynamics in Myofibrils during Activation and Relaxation Studied by Tracking Fluorescent Markers

    PubMed Central

    Telley, Ivo A.; Denoth, Jachen; Stüssi, Edgar; Pfitzer, Gabriele; Stehle, Robert

    2006-01-01

    To study the dynamics of individual half-sarcomeres in striated muscle contraction, myofibrils prepared from rabbit psoas muscle and left ventricles of guinea pig were immunostained with two conjugated antibody complexes consisting of a primary antibody against either α-actinin or myomesin and a secondary fluorescently labeled Fab-fragment. We simultaneously measured force kinetics and determined the positions of the Z-line and M-band signals by fluorescence video microscopy and sophisticated computer vision (tracking) algorithms. Upon calcium activation, sarcomeres and half-sarcomeres shortened nonuniformly. Shortening occurred first rapidly and exponentially during the force rise and then slowly during the force plateau. In psoas myofibrils, time-resolved displacements of the A-band in sarcomeres were observed, i.e., the two halves of individual sarcomeres behaved nonuniformly. Nonuniformity in length changes between the two halves of sarcomeres was comparable to that between two adjacent half-sarcomeres of neighboring sarcomeres. Sequential lengthening of half-sarcomeres was observed in cardiac myofibrils during the rapid phase of force relaxation. The independent dynamics of the halves in a sarcomere reveals the half-sarcomere as the functional unit rather than the structural unit, the sarcomere. The technique will facilitate the study of filament sliding within individual half-sarcomeres and the mechanics of intersegmental chemomechanical coupling in multisegmental striated muscles. PMID:16239326

  14. Potential novel markers to discriminate between active and latent tuberculosis infection in Chinese individuals.

    PubMed

    Bai, Xue-juan; Liang, Yan; Yang, You-rong; Feng, Jin-dong; Luo, Zhan-peng; Zhang, Jun-Xian; Wu, Xue-qiong

    2016-02-01

    Latent tuberculosis infection (LTBI) constitutes the main reservoir for reactivation tuberculosis. The finding of potential biomarkers for differentiating between TB and LTBI is very necessary. In this study, the immunological characteristics and potential diagnostic utility of Rv2029c, Rv2628 and Rv1813c proteins were assessed. These three proteins stimulated PBMCs from ELISPOT-positive LTBI subjects produced higher levels of IFN-γ in comparison with TB patients and ELISPOT-negative healthy subjects (p<0.05). BCG vaccination and non-TB respiratory disease had little influence on the immunological responses of Rv2029c and Rv2628 proteins (p>0.05). The LTBI diagnostic performance of Rv2029c was higher than Rv2628 and Rv1813c by ROC evaluation. But Rv2628 had much higher specificity than Rv2029c in active TB patients and uninfected healthy subjects. The IgG level against Rv1813c was higher in the TB group than in LTBI and uninfected healthy subjects (p<0.05). These results suggest that T cell response to Rv2628 and antibody against Rv1813c might be applicable as biomarkers to distinguish TB from LTBI and uninfected individuals. PMID:26851588

  15. Markers of inflammation, activation of blood platelets and coagulation disorders in inflammatory bowel diseases.

    PubMed

    Matowicka-Karna, Joanna

    2016-01-01

    Inflammatory bowel disease (IBD) includes ulcerative colitis and Crohn's disease. It is a group of chronic disorders characterized by inflammation of the gastrointestinal track with unknown etiology. Currently applied biomarkers include CRP, ESR, pANCA, ASCA, and fecal calprotectin. The etiopathogenesis of IBD is multifactorial. In patients with IBD in inflamed alimentary tract mucosa the number of recruited monocytes and activated macrophages which are source of cytokines. In IBD, the exacerbation is accompanied by thrombocytosis. Platelets play a crucial role in the hemostasis and inflammatory response. Selectins, which regulates the hemostasis and inflammatory response, stimulates the secretion of many inflammatory mediators such as β-thromboglobuline, CD40L, fibrinogen, IL-1β, platelet factor-4. In the course of IBD the following changes are observed: an increase in the number of platelets (reactive thrombocytosis), PDW and PCT, reduction in MPV, increased production and excretion of granular content products (P-selectin, GP53, β-TG, PF-4, vWF, fibrinolytic inhibitors). PMID:27117106

  16. Comparative analysis of lymphocyte activation marker expression and cytokine secretion profile in stimulated human peripheral blood mononuclear cell cultures: an in vitro model to monitor cellular immune function.

    PubMed

    Reddy, Manjula; Eirikis, Edward; Davis, Cuc; Davis, Hugh M; Prabhakar, Uma

    2004-10-01

    Activation of lymphocytes is a complex, yet finely regulated cascade of events that results in the expression of cytokine receptors, production and secretion of cytokines and expression of several cell surface molecules that eventually lead to divergent immune responses. Assessing the qualitative and quantitative nature of lymphocyte function following immunotherapy provides valuable information about the immune responses mediated by a therapeutic agent. To facilitate evaluation of the immunomodulatory activity of therapeutic agents, we have established a platform of in vitro immunoassays with normal human peripheral blood mononuclear cells (PBMCs) treated with several polyclonal activators that are known to exhibit different modes of action. We evaluated the kinetics of cell surface marker expression and cytokine release from PBMCs stimulated in parallel with various activating agents over a time course. These stimulating agents induced early (CD69 and CD71) and late (CD25 and HLA-DR) activation markers to varying antigen densities, indicated different cytokine profiles, and showed differential inhibition with dexamethasone (DEX), an inhibitor of early signaling events. Based on the association or correlation of the kinetics of activation marker expression and secreted cytokines, the results of our study indicate the appropriate time points for the simultaneous measurement of both these activation products. This study defines the kinetics for both measures of T cell activation and provides a comprehensive review with various polyclonal activators that can serve as a reference for monitoring lymphocyte function in clinical study samples. PMID:15541283

  17. [MUSCULOSKELETAL MARKERS, ARTHROPATY, TRAUMAS].

    PubMed

    Caldarini, Carla; Zavaroni, Federica; Benassi, Valentina

    2015-01-01

    The bone tissue remodeling due to strong physical/working activity is defined as ergonomic markers or MSM (Muscoloskeletal Stress Markers) (Capasso et al. 1999) and MOS (Markers of Occupational Stress). Among them we can find: enthesopaties, arthropaties, non metrical stress and traumas markers. In the present study, the analysis of these traits has been used to clarify habitual activity patterns of four imperial populations from Suburbium: Castel Malnome, Casal Bertone area Q, Via Padre Semeria e Quarto Cappello del Prete. The very high prevalence of activity-induced stress lesions occurred among the individuals of Castel Malnome and Casal Bertone area Q suggests that these groups were involved in strenuous occupations such as, respectively: the processing and storage of salt and the dyeing of textiles and hides discernible from the archaeological context. For the individuals of Via Padre Semeria and Quarto Cappello del Prete the alterations, instead, could be compatibles with agricultural work. PMID:27348990

  18. Altered Markers of Cortical γ-Aminobutyric Acid Neuronal Activity in Schizophrenia

    PubMed Central

    Kimoto, Sohei; Zaki, Mark M.; Bazmi, H. Holly; Lewis, David A.

    2016-01-01

    controls: 40.1% lower [P = .003]) and microarray analyses (NARP; individuals with schizophrenia vs controls: 12.2%lower in layer 3 [P = .11] and 14.6%lower in layer 5 pyramidal cells [P = .001]). In schizophrenia specimens, NARP mRNA levels were positively correlated with GAD67 mRNA (r = 0.55; P < .001); the expression of GAD67 mRNA in parvalbumin interneurons is activity dependent. The NARP mRNA levels were also lower than healthy controls in bipolar disorder (−18.2%; F1,60 = 11.39; P = .001) and major depressive disorder (−21.7%; F1,30 = 5.36; P = .03) specimens, especially those from individuals with psychosis. In all 3 diagnostic groups, NARP mRNA levels were positively correlated (all r ≥ 0.53; all P ≤ .02) with somatostatin mRNA, the expression of which is activity dependent. CONCLUSIONS AND RELEVANCE Given the role of NARP in the formation of excitatory inputs to parvalbumin (and perhaps somatostatin) interneurons, our findings suggest that lower NARP mRNA expression contributes to lower excitatory drive onto parvalbumin interneurons in schizophrenia. This reduced excitatory drive may lead to lower synthesis of γ-aminobutyric acid in these interneurons, contributing to a reduced capacity to generate the gamma oscillations required for working memory. PMID:26038830

  19. Effects of a Physical Activity Program on Markers of Endothelial Dysfunction, Oxidative Stress, and Metabolic Status in Adolescents with Metabolic Syndrome

    PubMed Central

    Camarillo-Romero, Eneida; Dominguez-Garcia, Ma Victoria; Amaya-Chavez, Araceli; Camarillo-Romero, Maria del Socorro; Talavera-Piña, Juan; Huitron-Bravo, Gerardo; Majluf-Cruz, Abraham

    2012-01-01

    The metabolic syndrome (MetS) is a precursor of diabetes. Physical activity (PA) improves endothelial dysfunction and may benefit patients with MetS. Aims. To evaluate the effect of a physical activity (PA) program on markers of endothelial dysfunction and oxidative stress in adolescents with (MetS). Methods. We carried out a cohort study of 38 adolescents with and without MetS (18 females and 20 males). All participants completed a 3-month PA program. All variables of the MetS as well as markers of endothelial dysfunction and oxidative stress tests were evaluated. Results. Females with and without MetS showed significant differences for almost all components of the MetS, whereas males were significantly different in half of the components. After the PA program, components of the MetS were not different from baseline values except for HDL-C levels. Some baseline endothelial dysfunction markers were significantly different among adolescents with and without MetS; however, after the PA program, most of these markers significantly improved in subjects with and without MetS. Conclusion. PA improves the markers of endothelial dysfunction in adolescents with MetS although other changes in the components of the MetS were not observed. Perhaps the benefits of PA on all components of MetS would appear after a PA program with a longer duration. PMID:22888450

  20. The neuropeptide Y Y1 receptor knockdown modulates activator protein 1-involved feeding behavior in amphetamine-treated rats

    PubMed Central

    2013-01-01

    Background Hypothalamic neuropeptide Y (NPY) and two immediate early genes, c-fos and c-jun, have been found to be involved in regulating the appetite-suppressing effect of amphetamine (AMPH). The present study investigated whether cerebral catecholamine (CA) might regulate NPY and POMC expression and whether NPY Y1 receptor (Y1R) participated in activator protein-1 (AP-1)–mediated feeding. Methods Rats were given AMPH daily for 4 days. Changes in the expression of NPY, Y1R, c-Fos, c-Jun, and AP-1 were assessed and compared. Results Decreased CA could modulate NPY and melanocortin receptor 4 (MC4R) expressions. NPY and food intake decreased the most on Day 2, but Y1R, c-Fos, and c-Jun increased by approximately 350%, 280%, and 300%, respectively, on Day 2. Similarly, AP-1/DNA binding activity was increased by about 180% on Day 2. The expression patterns in Y1R, c-Fos, c-Jun, and AP-1/DNA binding were opposite to those in NPY during AMPH treatment. Y1R knockdown was found to modulate the opposite regulation between NPY and AP-1, revealing an involvement of Y1R in regulating NPY/AP-1–mediated feeding. Conclusions These results point to a molecular mechanism of CA/NPY/Y1R/AP-1 signaling in the control of AMPH-mediated anorexia and may advance the medical research of anorectic and anti-obesity drugs. PMID:24225225

  1. Studies on the Utility of B-Amylase1 IntronIII Sequences as Markers for B-Amylase Activity and Thermostability, Diastatic Power and Malt Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The third intron of barley (Hordeum vulgare L.) ß-amylase 1 (Bmy1) is extremely polymorphic. The use of specific insertion/deletions (indels) in the third intron as markers for cultivar development has been recommended based on associations with ß-amylase activity and thermostability. The third in...

  2. Studies on the Utility of ß-amylase1 IntronIII Sequences as Markers for ß-amylase Activity and Thermostability, Diastatic Power and Malt Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The third intron of barley (Hordeum vulgare L.) ß-amylase 1 (Bmy1) is extremely polymorphic. The use of specific insertion/deletions (indels) in the third intron as markers for cultivar development has been recommended based on associations with ß-amylase activity and thermostability. The third intr...

  3. The Effects of Pragmatic Consciousness-Raising Activities on the Development of Pragmatic Awareness and Use of Hearsay Evidential Markers for Learners of Japanese as a Foreign Language

    ERIC Educational Resources Information Center

    Narita, Ritsuko

    2009-01-01

    The present study investigates the effectiveness of pragmatic consciousness-raising (PCR) activities in the L2 pragmatic acquisition of hearsay evidential markers by learners of Japanese as a foreign language (JFL). PCR is essentially an inductive approach to facilitating awareness of how language forms are used appropriately in a given context.…

  4. Elevated Levels of Monocyte Activation Markers Are Associated With Subclinical Atherosclerosis in Men With and Those Without HIV Infection

    PubMed Central

    McKibben, Rebeccah A.; Margolick, Joseph B.; Grinspoon, Steven; Li, Xiuhong; Palella, Frank J.; Kingsley, Lawrence A.; Witt, Mallory D.; George, Richard T.; Jacobson, Lisa P.; Budoff, Matthew; Tracy, Russell P.; Brown, Todd T.; Post, Wendy S.

    2015-01-01

    Background. Heightened immune activation among human immunodeficiency virus (HIV)–infected persons may contribute to atherosclerosis. We assessed associations of serologic markers of monocyte activation, soluble CD163 (sCD163) and soluble CD14 (sCD14), and monocyte chemoattractant protein 1 (CCL2) with subclinical atherosclerosis among men with and those without HIV infection in the Multicenter AIDS Cohort Study. Methods. We performed noncontrast computed tomography on 906 men (566 HIV-infected men and 340 HIV-uninfected men), 709 of whom also underwent coronary computed tomographic angiography. Associations between each biomarker and the prevalence of coronary plaque, the prevalence of stenosis of ≥50%, and the extent of plaque were assessed by logistic and linear regression, adjusting for age, race, HIV serostatus, and cardiovascular risk factors. Results. Levels of all biomarkers were higher among HIV-infected men, of whom 81% had undetectable HIV RNA, and were associated with lower CD4+ T-cell counts. In the entire population and among HIV-infected men, higher biomarker levels were associated with a greater prevalence of coronary artery stenosis of ≥50%. Higher sCD163 levels were also associated with greater prevalences of coronary artery calcium, mixed plaque, and calcified plaque; higher CCL2 levels were associated with a greater extent of noncalcified plaque. Conclusions. sCD163, sCD14, and CCL2 levels were elevated in treated HIV-infected men and associated with atherosclerosis. Monocyte activation may increase the risk for cardiovascular disease in individuals with HIV infection. PMID:25362192

  5. ON and OFF retinal ganglion cells differentially regulate serotonergic and GABAergic activity in the dorsal raphe nucleus.

    PubMed

    Zhang, Ting; Huang, Lu; Zhang, Li; Tan, Minjie; Pu, Mingliang; Pickard, Gary E; So, Kwok-Fai; Ren, Chaoran

    2016-01-01

    The dorsal raphe nucleus (DRN), the major source of serotonergic input to the forebrain, receives excitatory input from the retina that can modulate serotonin levels and depressive-like behavior. In the Mongolian gerbil, retinal ganglion cells (RGCs) with alpha-like morphological and Y-like physiological properties innervate the DRN with ON DRN-projecting RGCs out numbering OFF DRN-projecting RGCs. The DRN neurons targeted by ON and OFF RGCs are unknown. To explore retino-raphe anatomical organization, retinal afferents labeled with Cholera toxin B were examined for association with the postsynaptic protein PSD-95. Synaptic associations between retinal afferents and DRN serotonergic and GABAergic neurons were observed. To explore retino-raphe functional organization, light-evoked c-fos expression was examined. Light significantly increased the number of DRN serotonergic and GABAergic cells expressing c-Fos. When ON RGCs were rendered silent while enhancing the firing rate of OFF RGCs, c-Fos expression was greatly increased in DRN serotonergic neurons suggesting that OFF DRN-projecting RGCs predominately activate serotonergic neurons whereas ON DRN-projecting RGCs mainly target GABAergic neurons. Direct glutamatergic retinal input to DRN 5-HT neurons contributes to the complex excitatory drive regulating these cells. Light, via the retinoraphe pathway can modify DRN 5-HT neuron activity which may play a role in modulating affective behavior. PMID:27181078

  6. ON and OFF retinal ganglion cells differentially regulate serotonergic and GABAergic activity in the dorsal raphe nucleus

    PubMed Central

    Zhang, Ting; Huang, Lu; Zhang, Li; Tan, Minjie; Pu, Mingliang; Pickard, Gary E.; So, Kwok-Fai; Ren, Chaoran

    2016-01-01

    The dorsal raphe nucleus (DRN), the major source of serotonergic input to the forebrain, receives excitatory input from the retina that can modulate serotonin levels and depressive-like behavior. In the Mongolian gerbil, retinal ganglion cells (RGCs) with alpha-like morphological and Y-like physiological properties innervate the DRN with ON DRN-projecting RGCs out numbering OFF DRN-projecting RGCs. The DRN neurons targeted by ON and OFF RGCs are unknown. To explore retino-raphe anatomical organization, retinal afferents labeled with Cholera toxin B were examined for association with the postsynaptic protein PSD-95. Synaptic associations between retinal afferents and DRN serotonergic and GABAergic neurons were observed. To explore retino-raphe functional organization, light-evoked c-fos expression was examined. Light significantly increased the number of DRN serotonergic and GABAergic cells expressing c-Fos. When ON RGCs were rendered silent while enhancing the firing rate of OFF RGCs, c-Fos expression was greatly increased in DRN serotonergic neurons suggesting that OFF DRN-projecting RGCs predominately activate serotonergic neurons whereas ON DRN-projecting RGCs mainly target GABAergic neurons. Direct glutamatergic retinal input to DRN 5-HT neurons contributes to the complex excitatory drive regulating these cells. Light, via the retinoraphe pathway can modify DRN 5-HT neuron activity which may play a role in modulating affective behavior. PMID:27181078

  7. Down-regulation of tumor endothelial marker 8 suppresses cell proliferation mediated by ERK1/2 activity

    PubMed Central

    Cao, Chuangjie; Wang, Zhuo; Huang, Leilei; Bai, Lihong; Wang, Yuefeng; Liang, Yingjie; Dou, Chengyun; Wang, Liantang

    2016-01-01

    Tumor endothelial marker 8 (TEM8) was recently suggested as a putative anti-tumor target in several types of human cancer based on its selective overexpression in tumor versus normal endothelial cells. The objective of this study was to detect the potential functions of TEM8 in osteosarcoma. Overall, TEM8 was mainly located in cytoplasm and was up-regulated in osteosarcoma compared to benign bone lesions and adjacent non tumor tissue (ANT). High TEM8 expression group had a significant lower overall survival rate than that in the low TEM8 expression group. TEM8 knock-down by siRNA or shRNA results in significant reduction of osteosarcoma cell growth and proliferation both in vitro and in vivo. Ablation of TEM8 led to increasing of p21 and p27 and suppression of cyclin D1 mediated by Erk1/2 activity. These findings suggest that down-regulation of TEM8 play an important role in the inhibition of tumorigenesis and development of osteosarcoma. PMID:26996335

  8. Floral markers of cornflower (Centaurea cyanus) honey and its peroxide antibacterial activity for an alternative treatment of digital dermatitis.

    PubMed

    Oelschlaegel, Stefanie; Pieper, Laura; Staufenbiel, Rudolf; Gruner, Margit; Zeippert, Linda; Pieper, Bernd; Koelling-Speer, Isabelle; Speer, Karl

    2012-11-28

    Cornflower (Centaurea cyanus) honey can be characterized by a greenish yellow color and an intense flavor with a bitter aftertaste. Because cornflower honey contains only a limited amount of pollen for the verification of its floral origin, one objective was the characterization of its polyphenol and norisoprenoid contents to assign floral markers. Here, lumichrome (18.8-43.5 mg/kg), 7-carboxylumichrome, (Z/E)-3-oxo-retro-α-ionol, and 3-oxo-α-ionol appeared to be quite suitable for distinguishing cornflower honey from other unifloral honeys. Additionally, due to its comparably high hydrogen peroxide content (0.5-0.9 mM/h) and the associated antibacterial activity, cornflower honey was used as an alternative treatment of digital dermatitis on an organic dairy farm. Cows affected by this hoof disease often show severe lameness and a subsequent decline in milk yield and loss of body condition. The cows' hooves treated with cornflower honey showed significantly faster healing than the control group without any treatment. PMID:23140532

  9. Xanthurenic Acid Activates mGlu2/3 Metabotropic Glutamate Receptors and is a Potential Trait Marker for Schizophrenia

    PubMed Central

    Fazio, Francesco; Lionetto, Luana; Curto, Martina; Iacovelli, Luisa; Cavallari, Michele; Zappulla, Cristina; Ulivieri, Martina; Napoletano, Flavia; Capi, Matilde; Corigliano, Valentina; Scaccianoce, Sergio; Caruso, Alessandra; Miele, Jessica; De Fusco, Antonio; Di Menna, Luisa; Comparelli, Anna; De Carolis, Antonella; Gradini, Roberto; Nisticò, Robert; De Blasi, Antonio; Girardi, Paolo; Bruno, Valeria; Battaglia, Giuseppe; Nicoletti, Ferdinando; Simmaco, Maurizio

    2015-01-01

    The kynurenine pathway of tryptophan metabolism has been implicated in the pathophysiology of psychiatric disorders, including schizophrenia. We report here that the kynurenine metabolite, xanturenic acid (XA), interacts with, and activates mGlu2 and mGlu3 metabotropic glutamate receptors in heterologous expression systems. However, the molecular nature of this interaction is unknown, and our data cannot exclude that XA acts primarily on other targets, such as the vesicular glutamate transporter, in the CNS. Systemic administration of XA in mice produced antipsychotic-like effects in the MK-801-induced model of hyperactivity. This effect required the presence of mGlu2 receptors and was abrogated by the preferential mGlu2/3 receptor antagonist, LY341495. Because the mGlu2 receptor is a potential drug target in the treatment of schizophrenia, we decided to measure serum levels of XA and other kynurenine metabolites in patients affected by schizophrenia. Serum XA levels were largely reduced in a large cohort of patients affected by schizophrenia, and, in patients with first-episode schizophrenia, levels remained low after 12 months of antipsychotic medication. As opposed to other kynurenine metabolites, XA levels were also significantly reduced in first-degree relatives of patients affected by schizophrenia. We suggest that lowered serum XA levels might represent a novel trait marker for schizophrenia. PMID:26643205

  10. Gli2 protein expression level is a feasible marker of ligand-dependent hedgehog activation in pancreatic neoplasms.

    PubMed

    Sugiyama, Y; Sasajima, J; Mizukami, Y; Koizumi, K; Kawamoto, T; Ono, Y; Karasaki, H; Tanabe, H; Fujiya, M; Kohgo, Y

    2016-06-01

    The hedgehog pathway is known to promote proliferation of pancreatic ductal adenocarcinoma (PDA) and has been shown to restrain tumor progression. To understand how hedgehog causes these effects, we sought to carefully examine protein expression of hedgehog signaling components during different tumor stages. Genetically engineered mice, Pdx1-Cre;LSL-KrasG12D and Pdx1-Cre;LSL-KrasG12D;p53lox/+, were utilized to model distinct phases of tumorigenesis, pancreatic intraepithelial neoplasm (PanIN) and PDA. Human pancreatic specimens of intraductal papillary mucinous neoplasm (IPMN) and PDA were also employed. PanIN and IPMN lesions highly express Sonic Hedgehog, at a level that is slightly higher than that observed in PDA. GLI2 protein is also expressed in both PanIN/IPMN and PDA. Although there was no difference in the nuclear staining, the cytoplasmic GLI2 level in PDA was modest in comparison to that in PanIN/IPMN. Hedgehog interacting protein was strongly expressed in the precursors, whereas the level in PDA was significantly attenuated. There were no differences in expression of Patched1 at early and late stages. Finally, a strong correlation between Sonic Hedgehog and GLI2 staining was found in both human and murine pancreatic tumors. The results indicate that the GLI2 protein level could serve as a feasible marker of ligand-dependent hedgehog activation in pancreatic neoplasms. PMID:27543868

  11. Radiation-induced inflammatory markers of brain injury are modulated by PPARdelta activation in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Schnegg, Caroline Isabel

    responses in microglia in vitro. To extend our in vitro findings in vivo, we investigated whether administration of the peroxisomal proliferator-activated receptor (PPAR)ä agonist, GW0742, prevented radiation-induced brain injury in C57Bl/6 WT mice. Our data demonstrate that GW0742 prevented the radiation-induced increase in the number of activated microglia (CD68+ cells) in wild-type (WT) mice 1 week following 10 Gy WBI. Furthermore, GW0742 inhibited the WBI-induced increase in IL-1β message levels and ERK phosphorylation observed 3 h post-irradiation. In contrast, GW0742 administration failed to modulate the radiation-induced decrease in hippocampal neurogenesis (NeuN+/BrdU+ cells) determined 2 months after irradiation, or mitigate hippocampal-dependent spatial memory impairment observed 3 months post-irradiation using the Barnes Maze task. We used PPARō knockout (KO) mice to examine if the effects of GW0742 are PPARō-dependent. Unexpectedly, PPARō KO mice exhibited a differential response following WBI compared to WT mice; therefore, we were unable to make mechanistic conclusions about GW0742. KO mice do not exhibit a WBI-induced increase in activated microglia; however, they appeared to display a pronounced astrocytic response. In particular, PPARō KO but not WT mice displayed increased GFAP message levels 2 months after WBI. Additionally, the number of GFAP+ cells was reduced significantly in the WT mice 2 months after WBI, but it was not in the PPARō KO mice. These results demonstrate that: i) GW0742 prevents the radiation-induced increase in microglial activation and inflammatory markers, and ii) WT and PPARō KO mice have a differential response to WBI.

  12. A functional marker centromere with no detectable alpha-satellite, satellite III, or CENP-B protein: activation of a latent centromere?

    PubMed Central

    Voullaire, L E; Slater, H R; Petrovic, V; Choo, K H

    1993-01-01

    We report the investigation of an unusual human supernumerary marker chromosome 10 designated "mar del(10)." This marker is present together with two other marker chromosomes in the karyotype of a boy with mild developmental delay. It has a functional centromere at a primary constriction and is mitotically stable. Fluorescence in situ hybridization (FISH) using alpha-satellite and satellite III DNA as probes failed to detect any signal at the primary constriction site. CENP-B protein could not be demonstrated, although the presence of at least some centromeric proteins was confirmed using a CREST antiserum. Consideration of these and other cytogenetic and FISH results supports a mechanism of formation of the mar del(10) chromosome involving the activation of a latent intercalary centromere at 10q25. Images Figure 5 Figure 1 Figure 2 Figure 3 Figure 4 Figure 6 PMID:7684888

  13. A functional marker centromere with no detectable alpha-satellite, satellite III, or CENP-B protein: Activation of a latent centromere

    SciTech Connect

    Voullaire, L.E.; Slater, H.R.; Petrovic, V.; Choo, K.H.A. )

    1993-06-01

    The authors report the investigation of an unusual human supernumerary marker chromosome 10 designated [open quotes]mar del(10)[close quotes]. This marker is present together with two other marker chromosomes in the karyotype of a boy with mild developmental delay. It has a functional centromere at a primary constriction and is mitotically stable. Fluorescence in situ hybridization (FISH) using alpha-satellite and satellite III DNA as probes failed to detect any signal at the primary constriction site. CENP-B protein could not be demonstrated, although the presence of at least some centromeric proteins was confirmed using a CREST antiserum. Consideration of these and other cytogenetic and Fish results supports a mechanism of formation of the mar del(10) chromosome involving the activation of a latent intercalary centromere at 10q25. 33 refs., 6 figs.

  14. The influence of leptin on the activity of lung lymphocytes under simulated microgravity.

    PubMed

    Li, Xu; Liu, Chang-Ting; Zhou, Hong

    2009-10-01

    Exposure to microgravity has been implicated in the compromised immune function in space travellers, resulting in opportunistic infections, poor wound healing, and cancer. Since recent studies have suggested that leptin was capable of modulating immune responses, the purpose of this study was to examine effects of microgravity on the activation and proliferation of rat lung lymphocytes and then to examine the effects of leptin-mediated signal transduction mechanisms of lymphocyte activation in these same conditions. In control conditions (T-flasks cultured cells) leptin was not able by itself to increase lymphocytes proliferation, or induce significant increase of either IL-2 production or expression of lymphocytes activation markers, such as CD25 and CD71, while it markedly enhanced the positive effects induced on these parameters by concanavalin A (ConA). Using clinostatic rotating wall vessel (RWV) bioreactors to simulate a microgravity environment, we found that ConA responsiveness was inhibited. Moreover, under these conditions, leptin was not able to reverse these impaired functions. Accordingly with the above cited inhibitory effects exerted by the simulated microgravity environment, evidence was also obtained of defects in lymphocyte intracellular signal transduction induced by the incubation in RWV bioreactors, namely concerning decreased ConA-mediated PKC activity, and reduced expression of NF-kappaB, c-fos, and ERK1/2. Again, leptin appeared to be unable in restoring a physiologic increase of these parameters, different from what could be observed after complementation of the ConA-mediated signalling with phorbol myristate acetate, which instead demonstrated to overcome the inhibition of lymphocytes activating functions, in the presence of simulated microgravity conditions. PMID:19626337

  15. Anti-ghrelin Spiegelmer inhibits exogenous ghrelin-induced increases in food intake, hoarding, and neural activation, but not food deprivation-induced increases

    PubMed Central

    Teubner, Brett J. W.

    2013-01-01

    Circulating concentrations of the stomach-derived “hunger-peptide” ghrelin increase in direct proportion to the time since the last meal. Exogenous ghrelin also increases food intake in rodents and humans, suggesting ghrelin may increase post-fast ingestive behaviors. Food intake after food deprivation is increased by laboratory rats and mice, but not by humans (despite dogma to the contrary) or by Siberian hamsters; instead, humans and Siberian hamsters increase food hoarding, suggesting the latter as a model of fasting-induced changes in human ingestive behavior. Exogenous ghrelin markedly increases food hoarding by ad libitum-fed Siberian hamsters similarly to that after food deprivation, indicating sufficiency. Here, we tested the necessity of ghrelin to increase food foraging, food hoarding, and food intake, and neural activation [c-Fos immunoreactivity (c-Fos-ir)] using anti-ghrelin Spiegelmer NOX-B11–2 (SPM), an l-oligonucleotide that specifically binds active ghrelin, inhibiting peptide-receptor interaction. SPM blocked exogenous ghrelin-induced increases in food hoarding the first 2 days after injection, and foraging and food intake at 1–2 h and 2–4 h, respectively, and inhibited hypothalamic c-Fos-ir. SPM given e