Science.gov

Sample records for activation marker c-fos

  1. Using c-fos as a neural marker of pain.

    PubMed

    Harris, J A

    1998-01-01

    Just over a decade has past since Hunt et al. reported that the gene c-fos and its protein product Fos are expressed in the spinal cord of rats subjected to peripheral noxious stimulation. These authors showed that noxious stimulation (application of radiant heat or mustard oil) to the hind paw resulted in a massive increase in the expression of Fos in neurons in the dorsal horn of the lumbar spinal cord. Since then, there has been an explosion of studies in which c-fos has been used to study nociception (pain), and the number of such studies increases each year. The net result has been to establish c-fos expression as a valuable tool in pain research. Moreover, recent studies have provided evidence identifying the role of c-fos expression in spinal nociceptive processes. However, there are several important limitations to the practice of using c-fos to study nociception, and these limitations can be easily overlooked as the practice graduates to the status of an established technique. The increasing use of c-fos to study nociception necessitates a critical review of the practice, identifying the shortcomings as well as the strengths of this tool.

  2. Activation of immediate-early response gene c-Fos protein in the rat paralimbic cortices after myocardial infarction

    PubMed Central

    Ahn, Ji Yun; Tae, Hyun-Jin; Cho, Jeong-Hwi; Kim, In Hye; Ahn, Ji Hyeon; Park, Joon Ha; Kim, Dong Won; Cho, Jun Hwi; Won, Moo-Ho; Hong, Seongkweon; Lee, Jae-Chul; Seo, Jeong Yeol

    2015-01-01

    c-Fos is a good biological marker for detecting the pathogenesis of central nervous system disorders. Few studies are reported on the change in myocardial infarction-induced c-Fos expression in the paralimbic regions. Thus, in this study, we investigated the changes in c-Fos expression in the rat cingulate and piriform cortices after myocardial infarction. Neuronal degeneration in cingulate and piriform cortices after myocardial infarction was detected using cresyl violet staining, NeuN immunohistochemistry and Fluoro-Jade B histofluorescence staining. c-Fos-immunoreactive cells were observed in cingulate and piriform cortices at 3 days after myocardial infarction and peaked at 7 and 14 days after myocardial infarction. But they were hardly observed at 56 days after myocardial infarction. The chronological change of c-Fos expression determined by western blot analysis was basically the same as that of c-Fos immunoreactivity. These results indicate that myocardial infarction can cause the chronological change of immediate-early response gene c-Fos protein expression, which might be associated with the neural activity induced by myocardial infarction. PMID:26487852

  3. C-fos expression in the pons and medulla of the cat during carbachol-induced active sleep.

    PubMed

    Yamuy, J; Mancillas, J R; Morales, F R; Chase, M H

    1993-06-01

    Microinjection of carbachol into the rostral pontine tegmentum of the cat induces a state that is comparable to naturally occurring active (REM, rapid eye movement) sleep. We sought to determine, during this pharmacologically induced behavioral state, which we refer to as active sleep-carbachol, the distribution of activated neuron within the pons and medulla using c-fos immunocytochemistry as a functional marker. Compared with control cats, which were injected with saline, active sleep-carbachol cats exhibited higher numbers of c-fos-expressing neurons in (1) the medial and portions of the lateral reticular formation of the pons and medulla, (2) nuclei in the dorsolateral rostral pons, (3) various raphe nuclei, including the dorsal, central superior, magnus, pallidus, and obscurus, (4) the medial and lateral vestibular, prepositus hypoglossi, and intercalatus nuclei, and (5) the abducens nuclei. On the other hand, the mean number of c-fos-expressing neurons found in the masseter, facial, and hypoglossal nuclei was lower in carbachol-injected than in control cats. The data indicate that c-fos expression can be employed as a marker of state-dependent neuronal activity. The specific sites in which there were greater numbers of c-fos-expressing neurons during active sleep-carbachol are discussed in relation to the state of active sleep, as well as the functional role that these sites play in generating the various physiological patterns of activity that occur during this state. PMID:8501533

  4. Tracing functional circuits using c-Fos regulated expression of marker genes targeted to neuronal projections.

    PubMed

    Murphy, Mark; Greferath, Ursula; Nag, Nupur; Nithianantharajah, Jess; Wilson, Yvette M

    2004-01-01

    We have developed novel techniques to trace functionally activated circuits and synaptic plasticity within the brain. We have generated transgenic mice, FTL, which contain a tau-lacZ fusion gene regulated by the promoter for c-fos. Following a particular nervous system stimulation in these mice, only neurons, which are functionally activated, will express LacZ, which is targeted to neuronal processes by the tau protein. In the FTL mice, we found highly inducible expression of lacZ by a range of different stimuli, and successful targeting of expression to neuronal cell bodies, axons and dendrites. To test if a functionally activated circuit could be visualized, the mice were deprived of water, which activates nuclei involved in body fluid homeostasis. LacZ was induced in these nuclei and their projections, allowing the mapping of a neuroendocrine circuit. Further studies have employed these mice in the analysis of neurons and circuits activated in vision, and learning and memory. We have also developed methods to measure markers of synaptic plasticity in the brain, and found significant experience dependent changes in the levels of these markers in different parts of the brain. We believe these techniques will aid in the identification of circuits for many different brain functions, and within those circuits, the locations of synaptic plasticity.

  5. Activation of c-fos expression in the rat inferior olivary nucleus by ghrelin.

    PubMed

    Zhang, Weizhen; Lin, Theodore R; Hu, Yuexian; Fan, Yongyi; Zhao, Lili; Mulholland, Michael W

    2003-12-26

    Ghrelin, a novel 28-amino-acid hormone secreted by gastric oxyntic glands, stimulates food intake and induces adiposity. We examined whether ghrelin activates the inferior olivary nucleus. Systemic administration of ghrelin (37 nmol/kg) induced the expression of c-fos immunoreactivity in inferior olive neurons (n=6 rats). The number of neurons containing c-fos staining was significantly increased in the ghrelin-treated rats (65+/-14 vs.11+/-6 positive neurons, n=5). No significant difference in c-fos-positive neurons was observed between left (32+/-5) and right (33+/-6) inferior olivary nuclei. The number of c-fos-positive neurons in rats with bilateral vagotomy was not significantly different from those with intact vagal nerves. The present study demonstrates that ghrelin induces c-fos expression in inferior olivary nucleus via a central mechanism.

  6. c-Fos activated phospholipid synthesis is required for neurite elongation in differentiating PC12 cells.

    PubMed

    Gil, Germán A; Bussolino, Daniela F; Portal, Maximiliano M; Alfonso Pecchio, Adolfo; Renner, Marianne L; Borioli, Graciela A; Guido, Mario E; Caputto, Beatriz L

    2004-04-01

    We have previously shown that c-Fos activates phospholipid synthesis through a mechanism independent of its genomic AP-1 activity. Herein, using PC12 cells induced to differentiate by nerve growth factor, the genomic effect of c-Fos in initiating neurite outgrowth is shown as distinct from its nongenomic effect of activating phospholipid synthesis and sustaining neurite elongation. Blocking c-Fos expression inhibited differentiation, phospholipid synthesis activation, and neuritogenesis. In cells primed to grow, blocking c-Fos expression determined neurite retraction. However, transfected cells expressing c-Fos or c-Fos deletion mutants with capacity to activate phospholipid synthesis sustain neurite outgrowth and elongation in the absence of nerve growth factor. Results disclose a dual function of c-Fos: it first releases the genomic program for differentiation and then associates to the endoplasmic reticulum and activates phospholipid synthesis. Because phospholipids are key membrane components, we hypothesize this latter phenomenon as crucial to support membrane genesis demands required for cell growth and neurite elongation. PMID:14767061

  7. Intracellular pathways linking hypoxia to activation of c-fos and AP-1.

    PubMed

    Premkumar, D R; Adhikary, G; Overholt, J L; Simonson, M S; Cherniack, N S; Prabhakar, N R

    2000-01-01

    Organisms respond to hypoxia through detection of blood oxygen levels by sensors at peripheral chemoreceptors and by receptors in certain key cells of the body. The pathways over which peripheral chemoreceptor signals are transmitted to respiratory muscles are well established. However, the intracellular pathways that transmit hypoxic stimulus to gene activation are just being identified. Using anti-sense c-fos strategy, we have shown that c-fos is essential for the activation of activator protein-1 transcription factor complex (AP-1) and subsequent stimulation of downstream genes such as tyrosine hydroxylase (TH; Mishra et al. 1998). The purpose of the present study was to identify intracellular pathways that link hypoxia to activation of c-fos. The results of the present study show that hypoxia causes Ca2+ influx through L-type voltage gated Ca2+ channels and that hypoxia-induced c-fos gene expression is Ca2+/calmodulin dependent. We also demonstrate that hypoxia activates the extracellular-regulated kinase (ERK) and p38, but not JNK. Further, phosphorylation of ERK is essential for c-fos activation via SRE cis-element. Further characterization of nuclear signalling pathways provides evidence for the involvement of Src, a non receptor protein tyrosine kinase, and Ras, a small G protein, in the hypoxia-induced c-fos gene expression. These results suggest a possible role for non-receptor protein tyrosine kinases in propagating signals from G-protein coupled receptors to the activation of immediate early genes such as c-fos during hypoxia.

  8. Measurement of immediate-early gene activation- c-fos and beyond.

    PubMed

    Kovács, K J

    2008-06-01

    Immediate-early genes (IEG) are powerful tools for identifying activated neurosecretory neurones and extended circuits that affect neuroendocrine functions. The generally acknowledged scenario is when cells became activated, IEGs expressed and IEG-encoded transcription factors affect target gene expression. However, there are several examples in which: (i) neuronal activation occurs without induction of IEGs; (ii) IEG induction is not related to challenge-induced neuropeptide expression; and (iii) markers of neuronal activation are not expressed in chronically activated neurones. In spite of these limitations, the use of c-Fos and other regulatory- or effector transcription factors as markers of neuronal activation will continue to be an extremely powerful technique. Recently-developed models, including transgenic mice expressing different marker genes under the regulation of IEG promoters, will help to monitor neuronal activity in vivo or ex vivo and to reveal connection between activated neurones. Furthermore, combinations between novel imaging techniques, such as magnetic resonance and IEG-based mapping strategies, will open new means with which to study functional activity in the neurosecretory systems.

  9. Spinal distribution of c-Fos activated neurons expressing enkephalin in acute and chronic pain models.

    PubMed

    Hossaini, Mehdi; Duraku, Liron S; Kohli, Somesh K; Jongen, Joost L M; Holstege, Jan C

    2014-01-16

    The endogenous opioid enkephalin is known to inhibit spinal nociceptive transmission. Here we investigated activation of spinal enkephalinergic neurons by determining the proportions of c-Fos expressing (activated) spinal neurons that were enkephalinergic after different acute and chronic peripheral nociceptive stimuli. The number of c-Fos-activated neurons in the dorsal horn was increased after hind paw injection of capsaicin, formalin or complete Freund's adjuvant (CFA, 1.5 hrs - 4 days). The numbers of these neurons that were enkephalinergic increased after paraformaldehyde, and at 20 hrs, but not 1.5 hrs or 4 days post-CFA as compared to saline. In the spared nerve injury (SNI) model of neuropathic pain, c-Fos expression was increased acutely (2 hrs) and chronically (2 weeks), and a greater number of these were enkephalinergic in the nerve-injured animals acutely compared to controls (sham-SNI). Combining all acute (=2 hrs) versus chronic (≥20 hrs) treatment groups, there was a significant decrease in the percentage of activated neurons that were enkephalinergic in superficial layers, but a significant increase in the deeper layers of the dorsal horn in the chronic treatment group. It is concluded that the overall percentage of c-Fos activated neurons that contained enkephalin was not significantly different between acute and chronic pain phases. However, the shift in localization of these neurons within the spinal dorsal horn indicates a noxious stimulus directed activation pattern.

  10. Blockade of ENaCs by amiloride induces c-Fos activation of the area postrema.

    PubMed

    Miller, Rebecca L; Denny, George O; Knuepfer, Mark M; Kleyman, Thomas R; Jackson, Edwin K; Salkoff, Lawrence B; Loewy, Arthur D

    2015-03-19

    Epithelial sodium channels (ENaCs) are strongly expressed in the circumventricular organs (CVOs), and these structures may play an important role in sensing plasma sodium levels. Here, the potent ENaC blocker amiloride was injected intraperitoneally in rats and 2h later, the c-Fos activation pattern in the CVOs was studied. Amiloride elicited dose-related activation in the area postrema (AP) but only ~10% of the rats showed c-Fos activity in the organum vasculosum of the lamina terminalis (OVLT) and subfornical organ (SFO). Tyrosine hydroxylase-immunoreactive (catecholamine) AP neurons were activated, but tryptophan hydroxylase-immunoreactive (serotonin) neurons were unaffected. The AP projects to FoxP2-expressing neurons in the dorsolateral pons which include the pre-locus coeruleus nucleus and external lateral part of the parabrachial nucleus; both cell groups were c-Fos activated following systemic injections of amiloride. In contrast, another AP projection target--the aldosterone-sensitive neurons of the nucleus tractus solitarius which express the enzyme 11-β-hydroxysteriod dehydrogenase type 2 (HSD2) were not activated. As shown here, plasma concentrations of amiloride used in these experiments were near or below the IC50 level for ENaCs. Amiloride did not induce changes in blood pressure, heart rate, or regional vascular resistance, so sensory feedback from the cardiovascular system was probably not a causal factor for the c-Fos activity seen in the CVOs. In summary, amiloride may have a dual effect on sodium homeostasis causing a loss of sodium via the kidney and inhibiting sodium appetite by activating the central satiety pathway arising from the AP. PMID:25557402

  11. Novel spinal pathways identified by neuronal c-Fos expression after urethrogenital reflex activation in female guinea pigs.

    PubMed

    Yuan, S Y; Vilimas, P I; Zagorodnyuk, V P; Gibbins, I L

    2015-03-12

    Pudendal nerve-spinal pathways are involved in urethrogenital sensation, pain and sexual activity. However, details of these pathways and their modulation are unclear. We examined spinal pathways activated by the urethrogenital reflex (UGR) and visualized by c-Fos immunoreactivity in reflexly activated neurons within spinal cord. In anesthetized female guinea pigs, a balloon was inserted into the urethra and inflated with short-repeat or long-continuous distension to activate the UGR. A second balloon recorded reflex contractions of the vagina and uterus. Two control groups had either no balloon or a vaginal balloon (VB) only. Ninety minutes after UGR activation, c-Fos immunoreactivity in L3 and S2 spinal segments was examined. Reflex activated c-Fos immunoreactivity also was investigated in some animals with acute spinal transections at either L4 or T12 levels. There was no significant difference in spinal c-Fos expression between the control groups. Short-repeat distension reliably induced a UGR and a two- to threefold increase in c-Fos-expressing neurons throughout dorsal, intermediate and lateral spinal gray matter at S2 and about twofold increase in superficial dorsal horn at L3. T12 transection had little effect on c-Fos expression at either spinal level. However, after L4 transection, UGR generation was associated with a four- to sixfold increase in c-Fos-expressing neurons in lateral horn (LH) and central canal areas at S2, and but only 20-30% increase at L3. Thus, UGR activates preganglionic neurons projecting to pelvic viscera in both sacral and lumbar spinal cord. The reflex also must activate ascending and descending spinal inhibitory circuits that suppress c-Fos-expression in neurons at both sacral and lumbar spinal levels.

  12. Neuronal activity (c-Fos) delineating interactions of the cerebral cortex and basal ganglia

    PubMed Central

    Qiu, Mei-Hong; Chen, Michael C.; Huang, Zhi-Li; Lu, Jun

    2014-01-01

    The cerebral cortex and basal ganglia (BG) form a neural circuit that is disrupted in disorders such as Parkinson’s disease. We found that neuronal activity (c-Fos) in the BG followed cortical activity, i.e., high in arousal state and low in sleep state. To determine if cortical activity is necessary for BG activity, we administered atropine to rats to induce a dissociative state resulting in slow-wave electroencephalography but hyperactive motor behaviors. Atropine blocked c-Fos expression in the cortex and BG, despite high c-Fos expression in the sub-cortical arousal neuronal groups and thalamus, indicating that cortical activity is required for BG activation. To identify which glutamate receptors in the BG that mediate cortical inputs, we injected ketamine [N-methyl-d-aspartate (NMDA) receptor antagonist] and 6-cyano-nitroquinoxaline-2, 3-dione (CNQX, a non-NMDA receptor antagonist). Systemic ketamine and CNQX administration revealed that NMDA receptors mediated subthalamic nucleus (STN) input to internal globus pallidus (GPi) and substantia nigra pars reticulata (SNr), while non-NMDA receptor mediated cortical input to the STN. Both types of glutamate receptors were involved in mediating cortical input to the striatum. Dorsal striatal (caudoputamen, CPu) dopamine depletion by 6-hydroxydopamine resulted in reduced activity of the CPu, globus pallidus externa (GPe), and STN but increased activity of the GPi, SNr, and putative layer V neurons in the motor cortex. Our results reveal that the cortical activity is necessary for BG activity and clarifies the pathways and properties of the BG-cortical network and their putative role in the pathophysiology of BG disorders. PMID:24723855

  13. AMPA-receptor involvement in c-fos expression in the medial prefrontal cortex and amygdala dissociates neural substrates of conditioned activity and conditioned reward.

    PubMed

    Mead, A N; Vasilaki, A; Spyraki, C; Duka, T; Stephens, D N

    1999-11-01

    Exposure to an environment, previously conditioned to amphetamine (1 mg/kg, i.p.), induced locomotor activity and c-fos expression (a marker for neuronal activation) in the mouse medial prefrontal cortex (mPFC) and amygdala; acute or repeated amphetamine (1 mg/kg, i.p.) administration induced c-fos expression additionally in the nucleus accumbens. An alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)-receptor antagonist, 2, 3-dihydroxy-6-nitro-7-sulphamoyl-benzo(f)quinoxaline (NBQX), blocked expression of conditioned activity, and prevented the increase in c-fos expression in mPFC, implicating mPFC AMPAergic transmission in the conditioned component of behavioural sensitization to amphetamine. NBQX failed to block the expression of amphetamine-conditioned place preference, a measure of conditioned reward, or conditioned c-fos expression in the amygdala, an area implicated in the expression of conditioned place preference. These findings indicate that the conditioned components of behavioural sensitization depend on AMPA-receptor-mediated activation in mPFC, but that conditioned reward does not.

  14. Brain development is impaired in c-fos -/- mice.

    PubMed

    Velazquez, Fabiola N; Prucca, César G; Etienne, Olivier; D'Astolfo, Diego S; Silvestre, David C; Boussin, François D; Caputto, Beatriz L

    2015-07-10

    c-Fos is a proto-oncogene involved in diverse cellular functions. Its deregulation has been associated to abnormal development and oncogenic progression. c-fos-/- mice are viable but present a reduction in their body weight and brain size. We examined the importance of c-Fos during neocortex development at 13.5, 14.5 and 16.5 days of gestation. At E14.5, neocortex thickness, apoptosis, mitosis and expression of markers along the different stages of Neural Stem Progenitor Cells (NSPCs) differentiation in c-fos-/- and wild-type mice were analyzed. A ~15% reduction in the neocortex thickness of c-fos-/- embryos was observed which correlates with a decrease in the number of differentiated cells and an increase in apoptosis at the ventricular zone. No difference in mitosis rate was observed, although the mitotic angle was predominantly vertical in c-fos-/- embryos, suggesting a reduced trend of NSPCs to differentiate. At E13.5, changes in differentiation markers start to be apparent and are still clearly observed at E16.5. A tendency of more AP-1/DNA complexes present in nuclear extracts of cerebral cortex from c-fos-/- embryos with no differences in the lipid synthesis activity was found. These results suggest that c-Fos is involved in the normal development of NSPCs by means of its AP-1 activity.

  15. ENaC-expressing neurons in the sensory circumventricular organs become c-Fos activated following systemic sodium changes.

    PubMed

    Miller, Rebecca L; Wang, Michelle H; Gray, Paul A; Salkoff, Lawrence B; Loewy, Arthur D

    2013-11-15

    The sensory circumventricular organs (CVOs) are specialized collections of neurons and glia that lie in the midline of the third and fourth ventricles of the brain, lack a blood-brain barrier, and function as chemosensors, sampling both the cerebrospinal fluid and plasma. These structures, which include the organum vasculosum of the lamina terminalis (OVLT), subfornical organ (SFO), and area postrema (AP), are sensitive to changes in sodium concentration but the cellular mechanisms involved remain unknown. Epithelial sodium channel (ENaC)-expressing neurons of the CVOs may be involved in this process. Here we demonstrate with immunohistochemical and in situ hybridization methods that ENaC-expressing neurons are densely concentrated in the sensory CVOs. These neurons become c-Fos activated, a marker for neuronal activity, after various manipulations of peripheral levels of sodium including systemic injections with hypertonic saline, dietary sodium deprivation, and sodium repletion after prolonged sodium deprivation. The increases seen c-Fos activity in the CVOs were correlated with parallel increases in plasma sodium levels. Since ENaCs play a central role in sodium reabsorption in kidney and other epithelia, we present a hypothesis here suggesting that these channels may also serve a related function in the CVOs. ENaCs could be a significant factor in modulating CVO neuronal activity by controlling the magnitude of sodium permeability in neurons. Hence, some of the same circulating hormones controlling ENaC expression in kidney, such as angiotensin II and atrial natriuretic peptide, may coordinate ENaC expression in sensory CVO neurons and could potentially orchestrate sodium appetite, osmoregulation, and vasomotor sympathetic drive. PMID:24049115

  16. Anxiolytic activity of the MGLU2/3 receptor agonist LY354740 on the elevated plus maze is associated with the suppression of stress-induced c-Fos in the hippocampus and increases in c-Fos induction in several other stress-sensitive brain regions.

    PubMed

    Linden, A-M; Greene, S J; Bergeron, M; Schoepp, D D

    2004-03-01

    LY354740 is a potent and selective agonist for group II metabotropic glutamate (mGlu) receptors, mGlu2 and mGlu3 receptors, with anxiolytic activity in several animal models of anxiety, including the elevated plus maze (EPM) test. Here, we studied neuronal activation in mouse brain after EPM exposure in saline- and LY354740-treated mice using c-Fos immunoreactivity as a marker. The effect of LY354740 on c-Fos expression was also studied in cage control (no EPM) mice. Pretreatment with LY354740 (20 mg/kg, s.c.) produced robust anxiolytic behavior on the EPM. LY354740 administration decreased EPM-induced increases in c-Fos expression in the CA3 of the hippocampus, while having no significant effects on basal c-Fos expression in the hippocampus. LY354740 administration significantly increased c-Fos expression in specific limbic regions, including the lateral division of the central nucleus of the amygdala (CeL), lateral parabrachial nucleus, locus coeruleus, and Edinger-Westphal nucleus, whether or not animals were exposed to the EPM. Moreover, LY354740 administration per se significantly increased c-Fos expression in regions processing sensory information, including the paraventricular and lateral geniculate nucleus of the thalamus as well as the nucleus of the optic tract and superior colliculus. In particular, the suppression of fear-evoked neuronal activity in the hippocampus and drug-induced increases in neuronal activation in the CeL have been previously linked to the anxiolytic effects of clinically effective drugs such as benzodiazepines, and thus may contribute to anxiolytic actions of LY354740 in animal models and human anxiety patients. PMID:14694349

  17. c-Fos: an AP-1 transcription factor with an additional cytoplasmic, non-genomic lipid synthesis activation capacity.

    PubMed

    Caputto, Beatriz L; Cardozo Gizzi, Andrés M; Gil, Germán A

    2014-09-01

    The mechanisms that co-ordinately activate lipid synthesis when high rates of membrane biogenesis are needed to support cell growth are largely unknown. c-Fos, a well known AP-1 transcription factor, has emerged as a unique protein with the capacity to associate to specific enzymes of the pathway of synthesis of phospholipids at the endoplasmic reticulum and activate their synthesis to accompany genomic decisions of growth. Herein, we discuss this cytoplasmic, non-genomic effect of c-Fos in the context of other mechanisms that have been proposed to regulate lipid synthesis.

  18. Methyl Supplementation Attenuates Cocaine-Seeking Behaviors and Cocaine-Induced c-Fos Activation in a DNA Methylation-Dependent Manner

    PubMed Central

    Wright, Katherine N.; Hollis, Fiona; Duclot, Florian; Dossat, Amanda M.; Strong, Caroline E.; Francis, T. Chase; Mercer, Roger; Feng, Jian; Dietz, David M.; Lobo, Mary Kay; Nestler, Eric J.

    2015-01-01

    Epigenetic mechanisms, such as histone modifications, regulate responsiveness to drugs of abuse, such as cocaine, but relatively little is known about the regulation of addictive-like behaviors by DNA methylation. To investigate the influence of DNA methylation on the locomotor-activating effects of cocaine and on drug-seeking behavior, rats receiving methyl supplementation via chronic l-methionine (MET) underwent either a sensitization regimen of intermittent cocaine injections or intravenous self-administration of cocaine, followed by cue-induced and drug-primed reinstatement. MET blocked sensitization to the locomotor-activating effects of cocaine and attenuated drug-primed reinstatement, with no effect on cue-induced reinstatement or sucrose self-administration and reinstatement. Furthermore, upregulation of DNA methyltransferase 3a and 3b and global DNA hypomethylation were observed in the nucleus accumbens core (NAc), but not in the medial prefrontal cortex (mPFC), of cocaine-pretreated rats. Glutamatergic projections from the mPFC to the NAc are critically involved in the regulation of cocaine-primed reinstatement, and activation of both brain regions is seen in human addicts when reexposed to the drug. When compared with vehicle-pretreated rats, the immediate early gene c-Fos (a marker of neuronal activation) was upregulated in the NAc and mPFC of cocaine-pretreated rats after cocaine-primed reinstatement, and chronic MET treatment blocked its induction in both regions. Cocaine-induced c-Fos expression in the NAc was associated with reduced methylation at CpG dinucleotides in the c-Fos gene promoter, effects reversed by MET treatment. Overall, these data suggest that drug-seeking behaviors are, in part, attributable to a DNA methylation-dependent process, likely occurring at specific gene loci (e.g., c-Fos) in the reward pathway. PMID:26063926

  19. Methyl supplementation attenuates cocaine-seeking behaviors and cocaine-induced c-Fos activation in a DNA methylation-dependent manner.

    PubMed

    Wright, Katherine N; Hollis, Fiona; Duclot, Florian; Dossat, Amanda M; Strong, Caroline E; Francis, T Chase; Mercer, Roger; Feng, Jian; Dietz, David M; Lobo, Mary Kay; Nestler, Eric J; Kabbaj, Mohamed

    2015-06-10

    Epigenetic mechanisms, such as histone modifications, regulate responsiveness to drugs of abuse, such as cocaine, but relatively little is known about the regulation of addictive-like behaviors by DNA methylation. To investigate the influence of DNA methylation on the locomotor-activating effects of cocaine and on drug-seeking behavior, rats receiving methyl supplementation via chronic l-methionine (MET) underwent either a sensitization regimen of intermittent cocaine injections or intravenous self-administration of cocaine, followed by cue-induced and drug-primed reinstatement. MET blocked sensitization to the locomotor-activating effects of cocaine and attenuated drug-primed reinstatement, with no effect on cue-induced reinstatement or sucrose self-administration and reinstatement. Furthermore, upregulation of DNA methyltransferase 3a and 3b and global DNA hypomethylation were observed in the nucleus accumbens core (NAc), but not in the medial prefrontal cortex (mPFC), of cocaine-pretreated rats. Glutamatergic projections from the mPFC to the NAc are critically involved in the regulation of cocaine-primed reinstatement, and activation of both brain regions is seen in human addicts when reexposed to the drug. When compared with vehicle-pretreated rats, the immediate early gene c-Fos (a marker of neuronal activation) was upregulated in the NAc and mPFC of cocaine-pretreated rats after cocaine-primed reinstatement, and chronic MET treatment blocked its induction in both regions. Cocaine-induced c-Fos expression in the NAc was associated with reduced methylation at CpG dinucleotides in the c-Fos gene promoter, effects reversed by MET treatment. Overall, these data suggest that drug-seeking behaviors are, in part, attributable to a DNA methylation-dependent process, likely occurring at specific gene loci (e.g., c-Fos) in the reward pathway.

  20. c-fos expression in brainstem premotor interneurons during cholinergically induced active sleep in the cat.

    PubMed

    Morales, F R; Sampogna, S; Yamuy, J; Chase, M H

    1999-11-01

    The present study was undertaken to identify trigeminal premotor interneurons that become activated during carbachol-induced active sleep (c-AS). Their identification is a critical step in determining the neural circuits responsible for the atonia of active sleep. Accordingly, the retrograde tracer cholera toxin subunit B (CTb) was injected into the trigeminal motor nuclei complex to label trigeminal interneurons. To identify retrograde-labeled activated neurons, immunocytochemical techniques, designed to label the Fos protein, were used. Double-labeled (i.e., CTb(+), Fos(+)) neurons were found exclusively in the ventral portion of the medullary reticular formation, medial to the facial motor nucleus and lateral to the inferior olive. This region, which encompasses the ventral portion of the nucleus reticularis gigantocellularis and the nucleus magnocellularis, corresponds to the rostral portion of the classic inhibitory region of. This region contained a mean of 606 +/- 41.5 ipsilateral and 90 +/- 32.0 contralateral, CTb-labeled neurons. These cells were of medium-size with an average soma diameter of 20-35 micrometer. Approximately 55% of the retrogradely labeled cells expressed c-fos during a prolonged episode of c-AS. We propose that these neurons are the interneurons responsible for the nonreciprocal postsynaptic inhibition of trigeminal motoneurons that occurs during active sleep. PMID:10531453

  1. c-Fos-activated synthesis of nuclear phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P₂] promotes global transcriptional changes.

    PubMed

    Ferrero, Gabriel O; Renner, Marianne L; Gil, Germán A; Rodríguez-Berdini, Lucia; Caputto, Beatriz L

    2014-08-01

    c-Fos is a well-recognized member of the AP-1 (activator protein-1) family of transcription factors. In addition to this canonical activity, we previously showed that cytoplasmic c-Fos activates phospholipid synthesis through a mechanism independent of its genomic AP-1 activity. c-Fos associates with particular enzymes of the lipid synthesis pathway at the endoplasmic reticulum and increases the Vmax of the reactions without modifying the Km values. This lipid synthesis activation is associated with events of differentiation and proliferation that require high rates of membrane biogenesis. Since lipid synthesis also occurs in the nucleus, and different phospholipids have been assigned transcription regulatory functions, in the present study we examine if c-Fos also acts as a regulator of phospholipid synthesis in the nucleus. Furthermore, we examine if c-Fos modulates transcription through its phospholipid synthesis activator capacity. We show that nuclear-localized c-Fos associates with and activates PI4P5K (phosphatidylinositol-4-monophosphate 5-kinase), but not with PI4KIIIβ (type IIIβ phosphatidylinositol 4-kinase) thus promoting PtdIns(4,5)P₂ (phosphatidylinositol 4,5-bisphosphate) formation, which, in turn, promotes transcriptional changes. We propose c-Fos as a key regulator of nuclear PtdIns(4,5)P₂ synthesis in response to growth signals that results in c-Fos-dependent transcriptional changes promoted by the newly synthesized lipids.

  2. Basic Calcium Phosphate Crystals Activate c-fos Expression Through a Ras/ERK Dependent Signaling Mechanism

    PubMed Central

    Major, Michael L.; Cheung, Herman S.; Misra, Ravi P.

    2007-01-01

    Diseases caused by calcium pyrophosphate dihydrate (CPPD) and basic calcium phosphate (BCP) crystals occur frequently in osteoarthritic joints. Both crystals induce mitogenesis, metalloproteinase synthesis and secretion by fibroblasts and chondrocytes, promoting degradation of articular tissue. We investigated the mechanism by which BCP activates the c-fos proto-oncogene, which has been shown to activate various matrix metalloproteinases (MMPs). We demonstrate that BCP crystals induce c-fos expression primarily through a Ras/ERK dependent signaling mechanism targeting two highly conserved regulatory binding sites, the serum response element (SRE) and the cAMP response element (CRE). These results establish a calcium crystal induced, calcium/Calmodulin independent, signaling pathway in which BCP crystals activate Ras/MAPK, which can directly target an SRF-containing transcription factor complex, to induce fibroblasts to secrete metalloproteinases. PMID:17307136

  3. Activation of the c-fos gene in prodynorphin- and proenkephalin-expressing cells of nucleus tractus solitarius after seizures.

    PubMed

    Kanter, R K; Erickson, J T; Millhorn, D E

    1994-10-01

    We performed studies to determine the anatomical regions and chemical phenotypes of neurons within the rat medulla oblongata activated by pentylenetetrazole-induced seizures. Activated cells were identified by their expression of the c-fos gene, detected by in situ hybridization for c-fos mRNA and immunocytochemistry for Fos protein. Activated cells were located predominantly in nucleus tractus solitarius (NTS), with c-fos mRNA appearing within 20 min after seizures (peak at 1-2 h), followed by Fos immunoreactivity visible at 1 h (peak at 2-4 h). Neither nonspecific noxious stimulation by intraperitoneal injection of saline nor brief exposure to hypoxic or hypercapnic gas mixtures to stimulate chemoreceptors reproduced this pattern of labeling. Prodynorphin or proenkephalin mRNA, detected by in situ hybridization, was colocalized with Fos immunoreactivity in many NTS cells. Thus, seizures activate neuronal pathways in the medulla oblongata which express genes for endogenous opioids. Potential long-term effects of seizures are suggested by the in situ hybridization finding that NTS prodynorphin mRNA increased 24 h after seizures compared to control levels. PMID:7957742

  4. c-Fos as a transcription factor: a stressful (re)view from a functional map.

    PubMed

    Kovács, K J

    1998-10-01

    This article summarizes the achievements that have been accumulated about the role of c-Fos as a transcription factor and as a functional marker of activated neurons. Since its discovery, more than a decade ago, as an inducible immediate-early gene encoding a transcription factor, or third messenger, involved in stimulus-transcription coupling and mediation of extracellular signals to long-term changes in cellular phenotype, c-fos became the most widely used powerful tool to delineate individual neurons as well as extended circuitries that are responsive to wide variety of external stimuli. There still remain uncertainties as to how general is the c-fos induction in the central neurons, and whether the threshold of c-fos induction is comparable along a certain neuronal circuit. The major limitation of this technology is that c-fos does not mark cells with a net inhibitory synaptic or transcriptional drive, and c-fos induction, as a generic marker of trans-synaptic activation, does not provide evidence for transcriptional activation of specific target genes in a certain cell type of interest. The first part of the review focuses on recent functional data on c-fos as transcription factor, while the second part discusses c-fos as a cellular marker of transcriptional activity in the stress-related circuitry.

  5. SUMOylation of the inducible (c-Fos:c-Jun)/AP-1 transcription complex occurs on target promoters to limit transcriptional activation.

    PubMed

    Tempé, D; Vives, E; Brockly, F; Brooks, H; De Rossi, S; Piechaczyk, M; Bossis, G

    2014-02-13

    The inducible proto-oncogenic (c-Fos:c-Jun)/AP-1 transcription complex binds 12-O-tetradecanoylphorbol 13-acetate (TPA)-responsive elements (TRE) in its target genes. It is tightly controlled at multiple levels to avoid the deleterious effects of its inappropriate activation. In particular, SUMOylation represses its transactivation capacity in transient reporter assays using constitutively expressed proteins. This led to the presumption that (c-Fos:c-Jun)/AP-1 SUMOylation would be required to turn-off transcription of its target genes, as proposed for various transcription factors. Instead, thanks to the generation of an antibody specific for SUMO-modified c-Fos, we provide here direct evidence that SUMOylated c-Fos is present on a stably integrated reporter TPA-inducible promoter at the onset of transcriptional activation and colocalizes with RNA polymerase II within chromatin. Interestingly, (c-Fos:c-Jun)/AP-1 SUMOylation limits reporter gene induction, as well as the appearance of active transcription-specific histone marks on its promoter. Moreover, non-SUMOylatable mutant (c-Fos:c-Jun)/AP-1 dimers accumulate to higher levels on their target promoter, suggesting that SUMOylation might facilitate the release of (c-Fos:c-Jun)/AP-1 from promoters. Finally, activation of GADD153, an AP-1 target gene, is also associated with a rapid increase in SUMOylation at the level of its TRE and c-Fos SUMOylation dampens its induction by TPA. Taken together, our data suggest that SUMOylation could serve to buffer transcriptional activation of AP-1 target genes.

  6. Physical interaction of the activator protein-1 factors c-Fos and c-Jun with Cbfa1 for collagenase-3 promoter activation

    NASA Technical Reports Server (NTRS)

    D'Alonzo, Richard C.; Selvamurugan, Nagarajan; Karsenty, Gerard; Partridge, Nicola C.

    2002-01-01

    Previously, we determined that the activator protein-1 (AP-1)-binding site and the runt domain (RD)-binding site and their binding proteins, c-Fos.c-Jun and Cbfa, regulate the collagenase-3 promoter in parathyroid hormone-treated and differentiating osteoblasts. Here we show that Cbfa1 and c-Fos.c-Jun appear to cooperatively bind the RD- and AP-1-binding sites and form ternary structures in vitro. Both in vitro and in vivo co-immunoprecipitation and yeast two-hybrid studies further demonstrate interaction between Cbfa1 with c-Fos and c-Jun in the absence of phosphorylation and without binding to DNA. Additionally, only the runt domain of Cbfa1 was required for interaction with c-Jun and c-Fos. In mammalian cells, overexpression of Cbfa1 enhanced c-Jun activation of AP-1-binding site promoter activity, demonstrating functional interaction. Finally, insertion of base pairs that disrupted the helical phasing between the AP-1- and RD-binding sites also inhibited collagenase-3 promoter activation. Thus, we provide direct evidence that Cbfa1 and c-Fos.c-Jun physically interact and cooperatively bind the AP-1- and RD-binding sites in the collagenase-3 promoter. Moreover, the AP-1- and RD-binding sites appear to be organized in a specific required helical arrangement that facilitates transcription factor interaction and enables promoter activation.

  7. c-fos/c-jun expression and AP-1 activation in skin fibroblasts from centenarians.

    PubMed

    Grassilli, E; Bellesia, E; Salomoni, P; Croce, M A; Sikora, E; Radziszewska, E; Tesco, G; Vergelli, M; Latorraca, S; Barbieri, D; Fagiolo, U; Santacaterina, S; Amaducci, L; Tiozzo, R; Sorbi, S; Franceschi, C

    1996-09-13

    In vitro replicative senescence is characterized by an irreversible growth arrest due to the inability of the cell to induce some key regulators of cell cycle progression, such as c-fos and AP-1, in response to mitogenic stimuli. In vitro replicative senescence and in vivo aging have been assumed to be two related phenomena, likely controlled by overlapping or interacting genes. As a corollary, fibroblasts from centenarians, which have undergone a long process of senescence in vivo should have very limited proliferative capability. On the contrary, in a previous work we found that fibroblasts from centenarians exhibited the same capacity to respond to different mitogenic stimuli as fibroblasts from young donors. Here we provide evidences that the well preserved proliferative response is likely due to the fact that some pivotal regulators- c-fos, c-jun and AP-1-are still fully inducible, despite a long process of in vivo senescence. Our data therefore suggest that in vivo and in vitro aging are separate phenomena whose possible relationships, if any, have to be ascertained very carefully. PMID:8806666

  8. Differential activation of c-Fos in the paraventricular nuclei of the hypothalamus and thalamus following myocardial infarction in rats

    PubMed Central

    Tae, Hyun-Jin; Park, Seung Min; Cho, Jeong Hwi; Kim, In Hye; Ahn, Ji Hyeon; Park, Joon Ha; Won, Moo-Ho; Chen, Bai Hui; Shin, Bich-Na; Shin, Myoung Cheol; Lee, Choong Hyun; Hong, Seongkweon; Lee, Jae-Chul; Cho, Jun Hwi

    2016-01-01

    Proto-oncogene c-Fos (c-Fos) is frequently used to detect a pathogenesis in central nervous system disorders. The present study examined changes in the immunoreactivity of c-Fos in the paraventricular nucleus of the hypothalamus (PVNH) and paraventricular nucleus of the thalamus (PVNT) following myocardial infarction (MI) in rats. Infarction in the left ventricle was examined by Masson's trichrome staining. Neuronal degeneration was monitored for 56 days after MI using crystal violet and Fluoro-Jade B histofluorescence staining. Changes in the immunoreactivity of c-Fos were determined using immunohistochemistry for c-Fos. The average infarct size of the left ventricle circumference was ~44% subsequent to MI. Neuronal degeneration was not detected in PVNH and PVNT following MI. c-Fos immunoreactive (+) cells were infrequently observed in the nuclei of the sham-group. However, the number of c-Fos+ cells was increased in the nuclei following MI and peaked in the PVNH and PVNT at 3 and 14 days, respectively. The number of c-Fos+ cells were comparable with the sham group at 56 days after MI. Therefore, MI may induce c-Fos immunoreactivity in PVNH and PVNT, this increase of c-Fos expression levels may be associated with the stress that occurs in the brain following MI. PMID:27601012

  9. The neurotrophic activity of PACAP on rat cerebellar granule cells is associated with activation of the protein kinase A pathway and c-fos gene expression.

    PubMed

    Vaudry, D; Basille, M; Anouar, Y; Fournier, A; Vaudry, H; Gonzalez, B J

    1998-12-11

    In vitro studies have shown that PACAP promotes cell survival and neurite outgrowth in immature cerebellar granule cells. In the present study, we have examined the transduction pathways involved in the neurotrophic activity of PACAP. Incubation of cultured granule cells with graded concentrations of PACAP produced a dose-dependent increase in c-fos mRNA level. The effects of PACAP on c-fos gene expression and granule cell survival were both mimicked by dbcAMP but not by PMA. The maximum effect of PACAP on c-fos gene expression was observed after 1 h of treatment. Similar effects of the peptide on granule cell survival were observed whether the cells were continuously incubated with PACAP for 48 h or only exposed to PACAP during 1 h. The PKA inhibitor H89 significantly reduced the effect of PACAP on c-fos mRNA level, whereas the specific PKC inhibitor chelerytrine had no effect. These data indicate that the action of PACAP on cerebellar granule cell survival and c-fos gene expression are both mediated through the adenylyl cyclase/PKA pathway.

  10. Activation of c-fos in GABAergic neurones in the preoptic area during sleep and in response to sleep deprivation.

    PubMed

    Gong, Hui; McGinty, Dennis; Guzman-Marin, Ruben; Chew, Keng-Tee; Stewart, Darya; Szymusiak, Ronald

    2004-05-01

    Neurones in the median preoptic nucleus (MnPN) and the ventrolateral preoptic area (vlPOA) express immunoreactivity for c-Fos protein following sustained sleep, and display elevated discharge rates during both non-REM and REM sleep compared to waking. We evaluated the hypothesis that MnPN and vlPOA sleep-active neurones are GABAergic by combining staining for c-Fos protein with staining for glutamic acid decarboxylase (GAD). In a group of six rats exhibiting spontaneous total sleep times averaging 82.2 +/- 5.1% of the 2 h immediately prior to death, >75% of MnPN neurones that were Fos-immunoreactive (IR) were also GAD-IR. Similar results were obtained in the vlPOA. In a group of 11 rats exhibiting spontaneous sleep times ranging from 20 to 92%, the number of Fos + GAD-IR neurones in MnPN and vlPOA was positively correlated with total sleep time. Compared to control animals, Fos + GAD-IR cell counts in the MnPN were significantly elevated in rats that were sleep deprived for 24 h and permitted 2 h of recovery sleep. These findings demonstrate that a majority of MnPN and vlPOA neurones that express Fos-IR during sustained spontaneous sleep are GABAergic. They also demonstrate that sleep deprivation is associated with increased activation of GABAergic neurones in the MnPN and vlPOA.

  11. LPS-induced c-Fos activation in NTS neurons and plasmatic cortisol increases in septic rats are suppressed by bilateral carotid chemodenervation.

    PubMed

    Reyes, Edison-Pablo; Abarzúa, Sebastián; Martin, Aldo; Rodríguez, Jorge; Cortés, Paula P; Fernández, Ricardo

    2012-01-01

    Lipopolysaccharide (LPS) administered I.P. increases significantly the activation of c-Fos in neurons of the nucleus of the solitary tract (NTS), which in turn activates hypothalamus-pituitary-adrenal axis. The vagus nerve appears to play a role in conveying cytokines signals to the central nervous system (CNS), since -in rodent models of sepsis- bilateral vagotomy abolishes increases in plasmatic glucocorticoid levels, but does not suppress c-Fos NTS activation. Considering that NTS also receives sensory inputs from carotid body chemoreceptors, we evaluated c-Fos activation and plasmatic cortisol levels 90 min after I.P. administration of 15 mg/kg LPS. Experiments were performed in male Sprague-Dawley rats, in control conditions and after bilateral carotid neurotomy (BCN). LPS administration significantly increases the number of c-Fos positive NTS neurons and plasmatic cortisol levels in animals with intact carotid/sinus nerves. When LPS was injected after BCN, the number of c-Fos positive NTS neurons, and plasmatic cortisol levels were not significantly modified. Our data suggest that carotid body chemoreceptors might mediate CNS activation during sepsis.

  12. Amorphigenin inhibits Osteoclast differentiation by suppressing c-Fos and nuclear factor of activated T cells

    PubMed Central

    Kim, Bong Gyu; Kwak, Han Bok; Choi, Eun-Yong; Kim, Hun Soo; Kim, Myung Hee; Kim, Seong Hwan; Choi, Min-Kyu; Chun, Churl Hong; Oh, Jaemin

    2010-01-01

    Among the several rotenoids, amorphigenin is isolated from the leaves of Amopha Fruticosa and it is known that has anti-proliferative effects and anti-cnacer effects in many cell types. The main aim of this study was to investigate the effects of amorphigenin on osteoclast differentiation in vitro and on LPS treated inflammatory bone loss model in vivo. We show here that amorphigenin inhibited RANKL-induced osteoclast differentiation from bone marrow macrophages in a dose dependent manner without cellular toxicity. Anti-osteoclastogenic properties of amorphigenin were based on a down-regulation of c-fos and NFATc1. Amorphigenin markedly inhibited RANKL-induced p38 and NF-κB pathways, but other pathways were not affected. Micro-CT analysis of the femurs showed that amorphigenin protected the LPS-induced bone loss. We concluded that amorphigenin can prevent inflammation-induced bone loss. Thus we expect that amorphigenin could be a treatment option for bone erosion caused by inflammation. PMID:21267405

  13. Neurotoxic effects of nickel chloride in the rainbow trout brain: Assessment of c-Fos activity, antioxidant responses, acetylcholinesterase activity, and histopathological changes.

    PubMed

    Topal, Ahmet; Atamanalp, Muhammed; Oruç, Ertan; Halıcı, Mesut Bünyami; Şişecioğlu, Melda; Erol, Hüseyin Serkan; Gergit, Arzu; Yılmaz, Bahar

    2015-06-01

    The aim of this study was to determine the biochemical, immunohistochemical, and histopathological effects of nickel chloride (Ni) in the rainbow trout brain. Fish were exposed to Ni concentrations (1 mg/L and 2 mg/L) for 21 days. At the end of the experimental period, brain tissues were taken from all fish for c-Fos activity and histopathological examination and determination of acetylcholinesterase (AChE), superoxide dismutase (SOD), catalase (CAT) enzyme activities, lipid peroxidation (LPO), and glutathione (GSH) levels. Our results showed that Ni treatment caused a significant increase in the brain SOD activity and in LPO and GSH levels (p < 0.05), but it significantly decreased AChE and CAT enzyme activities (p < 0.05). Strong induction in c-Fos was observed in some cerebral and cerebellar regions of fish exposed to Ni concentrations when compared with the control group. However, c-Fos activity was decreased in necrotic Purkinje cells. Brain tissues were characterized by demyelination and necrotic changes. These results suggested that Ni treatment causes oxidative stress, changes in c-Fos activity, and histopathological damage in the fish brain.

  14. Cathinone increases body temperature, enhances locomotor activity, and induces striatal c-fos expression in the Siberian hamster.

    PubMed

    Jones, S; Fileccia, E L; Murphy, M; Fowler, M J; King, M V; Shortall, S E; Wigmore, P M; Green, A R; Fone, K C F; Ebling, F J P

    2014-01-24

    Cathinone is a β-keto alkaloid that is the major active constituent of khat, the leaf of the Catha edulis plant that is chewed recreationally in East Africa and the Middle East. Related compounds, such as methcathinone and mephedrone have been increasing in popularity as recreational drugs, resulting in the recent proposal to classify khat as a Class C drug in the UK. There is still limited knowledge of the pharmacological effects of cathinone. This study examined the acute effects of cathinone on core body temperature, locomotor and other behaviors, and neuronal activity in Siberian hamsters. Adult male hamsters, previously implanted with radio telemetry devices, were treated with cathinone (2 or 5mg/kg i.p.), the behavioral profile scored and core body temperature and locomotor activity recorded by radio telemetry. At the end of the study, hamsters received vehicle or cathinone (5mg/kg) and neuronal activation in the brain was determined using immunohistochemical evaluation of c-fos expression. Cathinone dose-dependently induced significant (p<0.0001) increases in both temperature and locomotor activity lasting 60-90min. Cathinone (2mg/kg) increased rearing (p<0.02), and 5mg/kg increased both rearing (p<0.001) and lateral head twitches (p<0.02). Both cathinone doses decreased the time spent at rest (p<0.001). The number of c-fos immunopositive cells were significantly increased in the striatum (p<0.0001) and suprachiasmatic nucleus (p<0.05) following cathinone, indicating increased neuronal activity. There was no effect of cathinone on food intake or body weight. It is concluded that systemic administration of cathinone induces significant behavioral changes and CNS activation in the hamster.

  15. c-Fos Protects Neurons Through a Noncanonical Mechanism Involving HDAC3 Interaction: Identification of a 21-Amino Acid Fragment with Neuroprotective Activity

    PubMed Central

    Rawat, Varun; Goux, Warren; Piechaczyk, Marc

    2016-01-01

    Proteins belonging to the AP-1 family of transcription factors are known to be involved in the regulation of neuronal viability. While strides have been made to elucidate the mechanisms of how individual members regulate cell death, much remains unknown. We find that the expression of one AP-1 member, c-Fos, is reduced in cerebellar granule neurons (CGNs) induced to die by low potassium (LK) treatment. Restoration and increase of this expression protect CGNs against LK-induced death, whereas knockdown induces death of otherwise healthy neurons. Furthermore, forced expression can protect cortical neurons against homocysteic acid (HCA)-induced toxicity. Taken together, this suggests that c-Fos is necessary for neuronal survival and that elevating c-Fos expression has a neuroprotective effect. Consistent with this idea is the finding that c-Fos expression is reduced selectively in the striatum in two separate mouse models of Huntington’s disease and forced expression protects against neuronal death resulting from mutant huntingtin (mut-Htt) expression. Interestingly, neuroprotection by c-Fos does not require its DNA-binding, transcriptional, or heteromerization domains. However, this protective activity can be inhibited by pharmacological inhibition of c-Abl, CK-I, and MEK-ERK signaling. Additionally, expression of point mutant forms of this protein has identified that mutation of a tyrosine residue, Tyr345, can convert c-Fos from neuroprotective to neurotoxic. We show that c-Fos interacts with histone deacetylase-3 (HDAC3), a protein that contributes to mut-Htt neurotoxicity and whose overexpression is sufficient to promote neuronal death. When co-expressed, c-Fos can protect against HDAC3 neurotoxicity. Finally, our study identifies a 21-amino acid region at the C-terminus of c-Fos that is sufficient to protect neurons against death induced by LK, HCA treatment, or mut-Htt expression when expressed via a plasmid transfection or as a cell-permeable peptide. This

  16. GABAergic neurons of the cat dorsal raphe nucleus express c-fos during carbachol-induced active sleep.

    PubMed

    Torterolo, P; Yamuy, J; Sampogna, S; Morales, F R; Chase, M H

    2000-11-24

    Serotonergic neurons of the dorsal raphe nucleus (DRN) cease firing during active sleep (AS, also called rapid-eye-movement sleep). This cessation of electrical activity is believed to play a 'permissive' role in the generation of AS. In the present study we explored the possibility that GABAergic cells in the DRN are involved in the suppression of serotonergic activity during AS. Accordingly, we examined whether immunocytochemically identified GABAergic neurons in the DRN were activated, as indicated by their expression of c-fos, during carbachol-induced AS (AS-carbachol). Three chronically-prepared cats were euthanized after prolonged episodes of AS that was induced by microinjections of carbachol into the nucleus pontis oralis. Another four cats (controls) were maintained 2 h in quiet wakefulness before being euthanized. Thereafter, immunocytochemical studies were performed on brainstem sections utilizing antibodies against Fos, GABA and serotonin. When compared with identically prepared tissue from awake cats, the number of Fos+ neurons was larger in the DRN during AS-carbachol (35.9+/-5.6 vs. 13.9+/-4.4, P<0.05). Furthermore, a larger number of GABA+ Fos+ neurons were observed during AS-carbachol than during wakefulness (24.8+/-3.3 vs. 4.0+/-1.0, P<0.001). These GABA+ Fos+ neurons were distributed asymmetrically with a larger number located ipsilaterally to the site of injection. There was no significant difference between control and experimental animals in the number of non-GABAergic neurons that expressed c-fos in the DRN. We therefore suggest that activated GABAergic neurons of the DRN are responsible for the inhibition of serotonergic neurons that occurs during natural AS. PMID:11082488

  17. A Simple Method for Immunohistochemical Staining of Zebrafish Brain Sections for c-fos Protein Expression.

    PubMed

    Chatterjee, Diptendu; Tran, Steven; Shams, Soaleha; Gerlai, Robert

    2015-12-01

    Immediate early genes (IEGs) are transcription factors whose own transcription is initiated rapidly, for example, in the brain in response to environmental stimuli. c-fos is an IEG often used as a marker of neuronal activation. c-fos mRNA expression has started to be quantified and localized in the zebrafish brain following environmental manipulations but analysis of the expression of c-fos protein in the zebrafish brain has rarely been attempted. Here, we describe an immunofluorescence staining method for quantifying c-fos protein expression in different regions of the zebrafish brain. In addition, we expose zebrafish to caffeine, a positive control for c-fos activation in the brain. To confirm cell nucleus specific binding of the c-fos antibody, we counterstained brain sections with the nuclear fluorescent stain DAPI. Furthermore, we describe a method for reducing background autofluorescence often observed in zebrafish brain tissue. Our analysis showed that exposure to caffeine increased the number of c-fos protein-positive cells in specific zebrafish brain regions detected by the immunofluorescence method. Our results demonstrate the feasibility of immunofluorescence-based methods in the analysis of neuronal activation in the zebrafish brain, and reinforce the utility of the zebrafish in behavioral neuroscience research. PMID:26492550

  18. A Simple Method for Immunohistochemical Staining of Zebrafish Brain Sections for c-fos Protein Expression.

    PubMed

    Chatterjee, Diptendu; Tran, Steven; Shams, Soaleha; Gerlai, Robert

    2015-12-01

    Immediate early genes (IEGs) are transcription factors whose own transcription is initiated rapidly, for example, in the brain in response to environmental stimuli. c-fos is an IEG often used as a marker of neuronal activation. c-fos mRNA expression has started to be quantified and localized in the zebrafish brain following environmental manipulations but analysis of the expression of c-fos protein in the zebrafish brain has rarely been attempted. Here, we describe an immunofluorescence staining method for quantifying c-fos protein expression in different regions of the zebrafish brain. In addition, we expose zebrafish to caffeine, a positive control for c-fos activation in the brain. To confirm cell nucleus specific binding of the c-fos antibody, we counterstained brain sections with the nuclear fluorescent stain DAPI. Furthermore, we describe a method for reducing background autofluorescence often observed in zebrafish brain tissue. Our analysis showed that exposure to caffeine increased the number of c-fos protein-positive cells in specific zebrafish brain regions detected by the immunofluorescence method. Our results demonstrate the feasibility of immunofluorescence-based methods in the analysis of neuronal activation in the zebrafish brain, and reinforce the utility of the zebrafish in behavioral neuroscience research.

  19. Actions of Agonists and Antagonists of the ghrelin/GHS-R Pathway on GH Secretion, Appetite, and cFos Activity.

    PubMed

    Hassouna, Rim; Labarthe, Alexandra; Zizzari, Philippe; Videau, Catherine; Culler, Michael; Epelbaum, Jacques; Tolle, Virginie

    2013-01-01

    The stimulatory effects of ghrelin, a 28-AA acylated peptide originally isolated from stomach, on growth hormone (GH) secretion and feeding are exclusively mediated through the growth hormone secretagogue 1a receptor (GHS-R1a), the only ghrelin receptor described so far. Several GHS-R1a agonists and antagonists have been developed to treat metabolic or nutritional disorders but their mechanisms of action in the central nervous system remain poorly understood. In the present study, we compared the activity of BIM-28163, a GHS-R1a antagonist, and of several agonists, including native ghrelin and the potent synthetic agonist, BIM-28131, to modulate food intake, GH secretion, and cFos activity in arcuate nucleus (ArcN), nucleus tractus solitarius (NTS), and area postrema (AP) in wild-type and NPY-GFP mice. BIM-28131 was as effective as ghrelin in stimulating GH secretion, but more active than ghrelin in inducing feeding. It stimulated cFos activity similarly to ghrelin in the NTS and AP but was more powerful in the ArcN, suggesting that the super-agonist activity of BIM-28131 is mostly mediated in the ArcN. BIM-28163 antagonized ghrelin-induced GH secretion but not ghrelin-induced food consumption and cFos activation, rather it stimulated food intake and cFos activity without affecting GH secretion. The level of cFos activation was dependent on the region considered: BIM-28163 was as active as ghrelin in the NTS, but less active in the ArcN and AP. All compounds also induced cFos immunoreactivity in ArcN NPY neurons but BIM-28131 was the most active. In conclusion, these data demonstrate that two peptide analogs of ghrelin, BIM-28163, and BIM-28131, are powerful stimulators of appetite in mice, acting through pathways and key brain regions involved in the control of appetite that are only partially superimposable from those activated by ghrelin. A better understanding of the molecular pathways activated by these compounds could be useful in devising future therapeutic

  20. Actions of Agonists and Antagonists of the ghrelin/GHS-R Pathway on GH Secretion, Appetite, and cFos Activity

    PubMed Central

    Hassouna, Rim; Labarthe, Alexandra; Zizzari, Philippe; Videau, Catherine; Culler, Michael; Epelbaum, Jacques; Tolle, Virginie

    2012-01-01

    The stimulatory effects of ghrelin, a 28-AA acylated peptide originally isolated from stomach, on growth hormone (GH) secretion and feeding are exclusively mediated through the growth hormone secretagogue 1a receptor (GHS-R1a), the only ghrelin receptor described so far. Several GHS-R1a agonists and antagonists have been developed to treat metabolic or nutritional disorders but their mechanisms of action in the central nervous system remain poorly understood. In the present study, we compared the activity of BIM-28163, a GHS-R1a antagonist, and of several agonists, including native ghrelin and the potent synthetic agonist, BIM-28131, to modulate food intake, GH secretion, and cFos activity in arcuate nucleus (ArcN), nucleus tractus solitarius (NTS), and area postrema (AP) in wild-type and NPY-GFP mice. BIM-28131 was as effective as ghrelin in stimulating GH secretion, but more active than ghrelin in inducing feeding. It stimulated cFos activity similarly to ghrelin in the NTS and AP but was more powerful in the ArcN, suggesting that the super-agonist activity of BIM-28131 is mostly mediated in the ArcN. BIM-28163 antagonized ghrelin-induced GH secretion but not ghrelin-induced food consumption and cFos activation, rather it stimulated food intake and cFos activity without affecting GH secretion. The level of cFos activation was dependent on the region considered: BIM-28163 was as active as ghrelin in the NTS, but less active in the ArcN and AP. All compounds also induced cFos immunoreactivity in ArcN NPY neurons but BIM-28131 was the most active. In conclusion, these data demonstrate that two peptide analogs of ghrelin, BIM-28163, and BIM-28131, are powerful stimulators of appetite in mice, acting through pathways and key brain regions involved in the control of appetite that are only partially superimposable from those activated by ghrelin. A better understanding of the molecular pathways activated by these compounds could be useful in devising future therapeutic

  1. c-fos Expression in mesopontine noradrenergic and cholinergic neurons of the cat during carbachol-induced active sleep: a double-labeling study.

    PubMed

    Yamuy, J; Sampogna, S; Morales, F R; Chase, M H

    1998-01-01

    The interaction of cholinergic and catecholaminergic mechanisms in the mesopontine region has been hypothesized as being critical for the generation and maintenance of active (REM) sleep. To further examine this hypothesis, we sought to determine the pattern of neuronal activation (via c-fos expression) of catecholaminergic and cholinergic neurons in this region during active sleep induced by the pontine microapplication of carbachol (designated as active sleep-carbachol). Accordingly, we used two sets of double-labeling techniques; the first to identify tyrosine hydroxylase-containing neurons (putative catecholaminergic cells) which also express the c-fos protein product Fos, and the second to reveal choline acetyltransferase-containing neurons (putative cholinergic cells) which also express Fos. Compared to control cats, active sleep-carbachol cats exhibited a significantly greater number of Fos-expressing neurons in the dorsolateral region of the pons, which encompasses the locus coeruleus, the lateral pontine reticular formation, the peribrachial nuclei and the latero-dorsal and pedunculo-pontine tegmental nuclei. However, both control and active sleep-carbachol cats exhibited a similar number of catecholaminergic and cholinergic neurons in those regions that expressed Fos (i.e., double-labeled cells). A large number of c-fos-expressing neurons in the active sleep-carbachol cats whose neurotransmitter phenotype was not identified suggests that non-catecholaminergic, non-cholinergic neuronal populations in mesopontine regions are involved in the generation and maintenance of active sleep. The lack of increased c-fos expression in catecholaminergic neurons during active sleep-carbachol confirms and extends previous data that indicate that these cells are silent during active sleep-carbachol and naturally-occurring active sleep. The finding that cholinergic neurons of the dorsolateral pons were not activated either during wakefulness or active sleep

  2. c-fos Expression in mesopontine noradrenergic and cholinergic neurons of the cat during carbachol-induced active sleep: a double-labeling study.

    PubMed

    Yamuy, J; Sampogna, S; Morales, F R; Chase, M H

    1998-01-01

    The interaction of cholinergic and catecholaminergic mechanisms in the mesopontine region has been hypothesized as being critical for the generation and maintenance of active (REM) sleep. To further examine this hypothesis, we sought to determine the pattern of neuronal activation (via c-fos expression) of catecholaminergic and cholinergic neurons in this region during active sleep induced by the pontine microapplication of carbachol (designated as active sleep-carbachol). Accordingly, we used two sets of double-labeling techniques; the first to identify tyrosine hydroxylase-containing neurons (putative catecholaminergic cells) which also express the c-fos protein product Fos, and the second to reveal choline acetyltransferase-containing neurons (putative cholinergic cells) which also express Fos. Compared to control cats, active sleep-carbachol cats exhibited a significantly greater number of Fos-expressing neurons in the dorsolateral region of the pons, which encompasses the locus coeruleus, the lateral pontine reticular formation, the peribrachial nuclei and the latero-dorsal and pedunculo-pontine tegmental nuclei. However, both control and active sleep-carbachol cats exhibited a similar number of catecholaminergic and cholinergic neurons in those regions that expressed Fos (i.e., double-labeled cells). A large number of c-fos-expressing neurons in the active sleep-carbachol cats whose neurotransmitter phenotype was not identified suggests that non-catecholaminergic, non-cholinergic neuronal populations in mesopontine regions are involved in the generation and maintenance of active sleep. The lack of increased c-fos expression in catecholaminergic neurons during active sleep-carbachol confirms and extends previous data that indicate that these cells are silent during active sleep-carbachol and naturally-occurring active sleep. The finding that cholinergic neurons of the dorsolateral pons were not activated either during wakefulness or active sleep

  3. Spatial and temporal activation of brain regions in hibernation: c-fos expression during the hibernation bout in thirteen-lined ground squirrel.

    PubMed

    Bratincsák, András; McMullen, David; Miyake, Shinichi; Tóth, Zsuzsanna E; Hallenbeck, John M; Palkovits, Miklós

    2007-12-01

    Hibernation results in dramatic changes in body temperature and metabolism; however, the central nervous system remains active during deep torpor. By cloning c-fos cDNA from the 13-lined ground squirrel (Spermophilus tridecemlineatus) and using squirrel c-fos mRNA probe for in situ hybridization histochemistry, we systematically analyzed and identified specific brain regions that were activated during six different phases of the hibernation bout. During entrance into torpor, we detected activation of the ventrolateral subdivision of the medial preoptic area ('thermoregulatory center'), and the reticular thalamic nucleus, which is known to inhibit the somatomotor cortex. During torpor, c-fos expression in the cortex was suppressed while the reticular thalamic nucleus remained uniformly active. Throughout torpor the suprachiasmatic nucleus ('biological clock') showed increasing activity, likely participating in phase-change regulation of the hibernation bout. Interestingly, during torpor very strong c-fos activation was seen in the epithelial cells of the choroid plexus and in tanycytes at the third ventricle, both peaking near the beginning of arousal. In arousal, activity of the suprachiasmatic and reticular thalamic nuclei and choroid epithelial cells diminished, while ependymal cells in the lateral and fourth ventricles showed stronger activity. Increasing body temperature during arousal was driven by the activation of neurons in the medial part of the preoptic area. In interbout awake animals, we demonstrated the activation of hypothalamic neurons located in the arcuate nucleus and the dorsolateral hypothalamus, areas involved in food intake. Our observations indicate that the hibernation bout is closely regulated and orchestrated by specific regions of the central nervous system. J. Comp. Neurol. 505:443-458, 2007. (c) 2007 Wiley-Liss, Inc.

  4. The effect of MK-801 on motor activity and c-Fos protein expression in the brain of adolescent Wistar rats.

    PubMed

    Pesić, Vesna; Popić, Jelena; Milanović, Desanka; Loncarević-Vasiljković, Natasa; Rakić, Ljubisa; Kanazir, Selma; Ruzdijić, Sabera

    2010-03-19

    The changes that occur during adolescence have a profound impact on the brain and behavior later in life. In this work we examined changes in motor activity during habituation to a novel environment and after treatment with MK-801 (0.025, 0.05, 0.1mg/kg) in peripubertal, pubertal and adult Wistar rats. The involvement of the motor cortex and striatum in motor activity was assessed by analyzing changes in c-Fos protein levels that served as an indicator of neuronal activity. During the habituation period, locomotor activity in peripubertal rats was higher during the first 10 min than in other groups. The same amount of stereotypy-like movements was detected in all three groups. MK-801 induced dose- and age-dependent changes in motor activity. Peripubertal rats were the most sensitive to treatment with MK-801. We also report a surprising finding that systemic application of MK-801 induced a similar age-related profile of changes in motor activity and c-Fos protein expression in the motor cortex but no c-Fos induction in the striatum. Our results demonstrate that, depending on the phase of adolescence the same dose of MK-801 affected behavioral functions in a different manner and that activity of the motor cortex rather than striatal activity was linked to drug-motor activity interactions.

  5. Melanocortin 4 receptor activates ERK-cFos pathway to increase brain-derived neurotrophic factor expression in rat astrocytes and hypothalamus.

    PubMed

    Ramírez, D; Saba, J; Carniglia, L; Durand, D; Lasaga, M; Caruso, C

    2015-08-15

    Melanocortins are neuropeptides with well recognized anti-inflammatory and anti-apoptotic effects in the brain. Of the five melanocortin receptors (MCR), MC4R is abundantly expressed in the brain and is the only MCR present in astrocytes. We have previously shown that MC4R activation by the α-melanocyte stimulating hormone (α-MSH) analog, NDP-MSH, increased brain-derived neurotrophic factor (BDNF) expression through the classic cAMP-Protein kinase A-cAMP responsive element binding protein pathway in rat astrocytes. Now, we examined the participation of the mitogen activated protein kinases pathway in MC4R signaling. Rat cultured astrocytes treated with NDP-MSH 1 µM for 1 h showed increased BDNF expression. Inhibition of extracellular signal-regulated kinase (ERK) and ribosomal p90 S6 kinase (RSK), an ERK substrate, but not of p38 or JNK, prevented the increase in BDNF expression induced by NDP-MSH. Activation of MC4R increased cFos expression, a target of both ERK and RSK. ERK activation by MC4R involves cAMP, phosphoinositide-3 kinase (PI3K) and the non receptor tyrosine kinase, Src. Both PI3K and Src inhibition abolished NDP-MSH-induced BDNF expression. Moreover, we found that intraperitoneal injection of α-MSH induces BDNF and MC4R expression and activates ERK and cFos in male rat hypothalamus. Our results show for the first time that MC4R-induced BDNF expression in astrocytes involves ERK-RSK-cFos pathway which is dependent on PI3K and Src, and that melanocortins induce BDNF expression and ERK-cFos activation in rat hypothalamus.

  6. GABAergic neurons of the laterodorsal and pedunculopontine tegmental nuclei of the cat express c-fos during carbachol-induced active sleep.

    PubMed

    Torterolo, P; Yamuy, J; Sampogna, S; Morales, F R; Chase, M H

    2001-02-23

    The laterodorsal and pedunculopontine tegmental nuclei (LDT-PPT) are involved in the generation of active sleep (AS; also called REM or rapid eye movement sleep). Although the LDT-PPT are composed principally of cholinergic neurons that participate in the control of sleep and waking states, the function of the large number of GABAergic neurons that are also located in the LDT-PPT is unknown. Consequently, we sought to determine if these neurons are activated (as indicated by their c-fos expression) during active sleep induced by the microinjection of carbachol into the rostro-dorsal pons (AS-carbachol). Accordingly, immunocytochemical double-labeling techniques were used to identify GABA and Fos protein, as well as choline acetyltransferase (ChAT), in histological sections of the LDT-PPT. Compared to control awake cats, there was a larger number of GABAergic neurons that expressed c-fos during AS-carbachol (31.5+/-6.1 vs. 112+/-15.2, P<0.005). This increase in the number of GABA+Fos+ neurons occurred on the ipsilateral side relative to the injection site; there was a small decrease in GABA+Fos+ cells in the contralateral LDT-PPT. However, the LDT-PPT neurons that exhibited the largest increase in c-fos expression during AS-carbachol were neither GABA+ nor ChAT+ (47+/-22.5 vs. 228.7+/-14.0, P<0.0005). The number of cholinergic neurons that expressed c-fos during AS-carbachol was not significantly different compared to wakefulness. These data demonstrate that, during AS-carbachol, GABAergic as well as an unidentified population of neurons are activated in the LDT-PPT. We propose that these non-cholinergic LDT-PPT neurons may participate in the regulation of active sleep. PMID:11172778

  7. GABAergic neurons of the laterodorsal and pedunculopontine tegmental nuclei of the cat express c-fos during carbachol-induced active sleep.

    PubMed

    Torterolo, P; Yamuy, J; Sampogna, S; Morales, F R; Chase, M H

    2001-02-23

    The laterodorsal and pedunculopontine tegmental nuclei (LDT-PPT) are involved in the generation of active sleep (AS; also called REM or rapid eye movement sleep). Although the LDT-PPT are composed principally of cholinergic neurons that participate in the control of sleep and waking states, the function of the large number of GABAergic neurons that are also located in the LDT-PPT is unknown. Consequently, we sought to determine if these neurons are activated (as indicated by their c-fos expression) during active sleep induced by the microinjection of carbachol into the rostro-dorsal pons (AS-carbachol). Accordingly, immunocytochemical double-labeling techniques were used to identify GABA and Fos protein, as well as choline acetyltransferase (ChAT), in histological sections of the LDT-PPT. Compared to control awake cats, there was a larger number of GABAergic neurons that expressed c-fos during AS-carbachol (31.5+/-6.1 vs. 112+/-15.2, P<0.005). This increase in the number of GABA+Fos+ neurons occurred on the ipsilateral side relative to the injection site; there was a small decrease in GABA+Fos+ cells in the contralateral LDT-PPT. However, the LDT-PPT neurons that exhibited the largest increase in c-fos expression during AS-carbachol were neither GABA+ nor ChAT+ (47+/-22.5 vs. 228.7+/-14.0, P<0.0005). The number of cholinergic neurons that expressed c-fos during AS-carbachol was not significantly different compared to wakefulness. These data demonstrate that, during AS-carbachol, GABAergic as well as an unidentified population of neurons are activated in the LDT-PPT. We propose that these non-cholinergic LDT-PPT neurons may participate in the regulation of active sleep.

  8. Expression of c-fos gene in central nervous system of adult medaka (Oryzias latipes) after hypergravity stimulation

    NASA Astrophysics Data System (ADS)

    Shimomura, S.; Ijiri, K.

    The immediate-early genes serve as useful neurobiological tools for mapping brain activity induced by a sensory stimulation. In this study, we have examined brain activity related to gravity perception of medaka (Oryzias latipes) by use of c-fos. The gene, which is homologous to the c-fos genes of other vertebrates, was identified in medaka. Functionally important domains are highly conserved among all the vertebrate species analyzed. Intraperitoneal administration of kainic acid transiently induced the c-fos mRNAs in medaka brain. The results indicate that the expression of c-fos can be utilized as a suitable anatomical marker for the increased neural activities in the central nervous system of medaka. Fish were continuously exposed to 3G hypergravity by centrifugation. Investigation of c-fos mRNA expression showed that c-fos mRNA significantly increased 30 minutes after a start of 3G exposure. The distribution of its transcripts within brains was analyzed by an in situ hybridization method. The 3G-treated medakas displayed c-fos positive cells in their brainstem regions, which are related to vestibular function, such as torus semicircularis, posterior octavu nucleus, nucleus tangentialis and inferior olive. Our results established the method to trace the activated area in the fish brain following gravity stimulation. The method will be a useful tool for understanding gravity perception in the brain.

  9. Parthenolide inhibits osteoclast differentiation and bone resorbing activity by down-regulation of NFATc1 induction and c-Fos stability, during RANKL-mediated osteoclastogenesis.

    PubMed

    Kim, Ju-Young; Cheon, Yoon-Hee; Yoon, Kwon-Ha; Lee, Myeung Su; Oh, Jaemin

    2014-08-01

    Parthenolide, a natural product derived from Feverfew, prevents septic shock and inflammation. We aimed to identify the effects of parthenolide on the RANKL (receptor activator of NF-κB ligand)-induced differentiation and bone resorbing activity of osteoclasts. In this study, parthenolide dose-dependently inhibited RANKL-mediated osteoclast differentiation in BMMs, without any evidence of cytotoxicity and the phosphorylation of p38, ERK, and IκB, as well as IκB degradation by RANKL treatment. Parthenolide suppressed the expression of NFATc1, OSCAR, TRAP, DC-STAMP, and cathepsin K in RANKL-treated BMMs. Furthermore, parthenolide down-regulated the stability of c-Fos protein, but could not suppress the expression of c-Fos. Overexpression of NFATc1 and c-Fos in BMMs reversed the inhibitory effect of parthenolide on RANKL-mediated osteoclast differentiation. Parthenolide also inhibited the bone resorbing activity of mature osteoclasts. Parthenolide inhibits the differentiation and bone-resolving activity of osteoclast by RANKL, suggesting its potential therapeutic value for bone destructive disorders associated with osteoclast-mediated bone resorption.

  10. Two immunocytochemical protocols for immunofluorescent detection of c-Fos positive neurons in the rat brain.

    PubMed

    Kobelt, Peter; Tebbe, Johannes J; Tjandra, Ines; Bae, Hi-Gung; Rüter, Jens; Klapp, Burghard F; Wiedenmann, Bertram; Mönnikes, Hubert

    2004-04-01

    The immediate-early-gene product c-Fos is a well known marker of neuronal activation in the central nervous system. Thus, immunocytochemical methods to detect c-Fos in the brain are important tools in experimental studies that aim to map activated brain areas on a cellular level. Accordingly, we describe here two alternative protocols for c-Fos detection which are based on an indirect immunofluorescence technique. In fact, both methods allow an excellent and specific visualisation of c-Fos immunoreactive neurons in brain areas, e.g. the hypothalamus. The first protocol is more economical and faster in its execution and useful for observing brain sections using a confocal laser scanning microscope with the intention to perform doublestaining, since in all optical magnification steps (10x-63x) only a low unspecific background staining is visible. Furthermore, this method yields even fluorescent signals which are not detectable with a conventional fluorescence-microscope at lower magnification (10x). The second protocol contains an additional signal amplification step and allows signal detection also with a conventional fluorescence-microscope at lower magnification (10x); it is useful for rapid quantification of c-Fos immunoreactive neurons in the rat brain, but because of moderate unspecific background staining at higher magnification it is less suitable for doublestaining.

  11. Simultaneous Detection of c-Fos Activation from Mesolimbic and Mesocortical Dopamine Reward Sites Following Naive Sugar and Fat Ingestion in Rats.

    PubMed

    Dela Cruz, Julie A D; Coke, Tricia; Bodnar, Richard J

    2016-01-01

    This study uses cellular c-fos activation to assess effects of novel ingestion of fat and sugar on brain dopamine (DA) pathways in rats. Intakes of sugars and fats are mediated by their innate attractions as well as learned preferences. Brain dopamine, especially meso-limbic and meso-cortical projections from the ventral tegmental area (VTA), has been implicated in both of these unlearned and learned responses. The concept of distributed brain networks, wherein several sites and transmitter/peptide systems interact, has been proposed to mediate palatable food intake, but there is limited evidence empirically demonstrating such actions. Thus, sugar intake elicits DA release and increases c-fos-like immunoreactivity (FLI) from individual VTA DA projection zones including the nucleus accumbens (NAC), amygdala (AMY) and medial prefrontal cortex (mPFC) as well as the dorsal striatum. Further, central administration of selective DA receptor antagonists into these sites differentially reduce acquisition and expression of conditioned flavor preferences elicited by sugars or fats. One approach by which to determine whether these sites interacted as a distributed brain network in response to sugar or fat intake would be to simultaneous evaluate whether the VTA and its major mesotelencephalic DA projection zones (prelimbic and infralimbic mPFC, core and shell of the NAc, basolateral and central-cortico-medial AMY) as well as the dorsal striatum would display coordinated and simultaneous FLI activation after oral, unconditioned intake of corn oil (3.5%), glucose (8%), fructose (8%) and saccharin (0.2%) solutions. This approach is a successful first step in identifying the feasibility of using cellular c-fos activation simultaneously across relevant brain sites to study reward-related learning in ingestion of palatable food in rodents. PMID:27583636

  12. Brain c-Fos immunocytochemistry and cytochrome oxidase histochemistry after a fear conditioning task.

    PubMed

    Conejo, Nélida M; González Pardo, Héctor; López, Matías; Cantora, Raúl; Arias, Jorge L

    2007-05-01

    The involvement of the basolateral and the medial amygdala in fear conditioning was evaluated using different markers of neuronal activation. The method described here is a combination of cytochrome oxidase (CO) histochemistry and c-Fos immunocytochemistry on fresh frozen brain sections. Freezing behavior was used as an index of auditory and contextual fear conditioning. As expected, freezing scores were significantly higher in rats exposed to tone-shock pairings in a distinctive environment (conditioned; COND), as compared to rats that did not receive any shocks (UNCD). CO labeling was increased in the basolateral and medial amygdala of the COND group. Conversely, c-Fos expression in the basolateral and medial amygdala was lower in the COND group as compared to the UNCD group. Furthermore, c-Fos expression was particularly high in the medial amygdala of the UNCD group. The data provided by both techniques indicate that these amygdalar nuclei could play different roles on auditory and contextual fear conditioning. PMID:17425902

  13. Induction of apoptosis by c-Fos protein.

    PubMed Central

    Preston, G A; Lyon, T T; Yin, Y; Lang, J E; Solomon, G; Annab, L; Srinivasan, D G; Alcorta, D A; Barrett, J C

    1996-01-01

    The role of c-Fos in apoptosis was examined in two Syrian hamster embryo cell lines (sup+I and sup-II) and a human colorectal carcinoma cell line (RKO), using the chimeric Fos-estrogen receptor fusion protein c-FosER. As previously reported, contrasting responses were observed when these two cell lines were placed under growth factor deprivation conditions; sup+I cells were highly susceptible to apoptosis, whereas sup-II cells were resistant. In this report, we show that the activated c-FosER protein induces apoptosis in sup-II preneoplastic cells in serum-free medium, indicating that c-Fos protein can induce apoptotic cell death in these cells. c-Fos-induced apoptosis was not blocked by the protein synthesis inhibitor cycloheximide, suggesting that the c-Fos transcriptional activation activity is not involved. This conclusion was further supported by the observation that overexpression of v-Fos, which is highly proficient in transcriptional activation but deficient in the transcriptional repression activity associated with c-Fos, did not induce apoptosis. Constitutively expressed Bcl-2 delayed the onset of low-serum-induced apoptosis in sup+I cells and enhanced survival in sup-II cells. Further, coexpression of Bcl-2 and c-FosER in sup+I or sup-II cells protected the cells from c-FosER-induced apoptosis. The possibility that c-FosER-induced apoptosis requires a p53 function was examined. Colorectal carcinoma RKOp53+/+ cells, which do not normally undergo apoptosis in serum-free medium, showed apoptotic DNA fragmentation upon expression and activation of c-FosER. Further, when the wild-type p53 protein was diminished in the RKO cells by infection with the papillomavirus E6 gene, subsequent c-FosER-induced apoptosis was blocked. The data suggest that c-Fos protein plays a causal role in the activation of apoptosis in a p53-dependent manner. This activity does not require new protein synthesis and is blocked by overexpression of Bcl-2 protein. PMID:8524298

  14. Effect of hypergravity on expression of the immediate early gene, c-fos, in central nervous system of medaka (Oryzias latipes)

    NASA Astrophysics Data System (ADS)

    Sayaka, Shimomura-Umemura; Ijiri, Kenichi

    2006-01-01

    Immediate-early genes serve as useful neurobiological tools for mapping brain activity induced by a sensory stimulation. In this study, we have examined brain activity related to gravity perception of medaka (Oryzias latipes) by use of c-fos. The gene, which is homologous to the c-fos genes of other vertebrates, was identified in medaka. Functionally important domains are highly conserved among all the vertebrate species analyzed. Intraperitoneal administration of kainic acid transiently induced the c-fos mRNAs in medaka brains. The results indicate that the expression of c-fos can be utilized as a suitable anatomical marker for the increased neural activities in the central nervous system of medaka. Fish were continuously exposed to 3 g hypergravity by centrifugation. Investigation of c-fos mRNA expression indicated that c-fos mRNA significantly increased 30 min after a start of 3 g exposure. The distribution of its transcripts within the brains was analyzed by an in situ hybridization method. The 3-g treated medakas displayed c-fos positive cells in their brainstem regions, which are related to vestibular function, such as torus semicircularis, nucleus tangentialis, posterior octavu nucleus, and inferior olive. Our results established a method to follow the effect of gravity stimulation, which can be used to investigate gravity perception.

  15. Receptor systems mediating c-fos expression within trigeminal nucleus caudalis in animal models of migraine.

    PubMed

    Mitsikostas, D D; Sanchez del Rio, M

    2001-03-01

    In intracranial structures unmyelinated C- and Adelta-fibers of the trigeminal nerve transmit pain stimuli from meninges to the trigeminal nucleus caudalis (Sp5C). Peripheral nerve endings surround meningeal vessels (the so-called trigeminovascular system) and contain vasoactive neuropeptides (calcitonin gene-related peptide, substance P and neurokinin A). Activation of the trigeminovascular system promotes a meningeal sterile inflammatory response through the release of neuropeptides by peripheral endings. Orthodromic conduction along trigeminovascular fibers transmits information centrally with induction of immediate early c-fos gene within post-synaptic Sp5C neurons, as a marker of neuronal activity within central nociceptive pathways. In laboratory animals the system is activated by either electrical stimulation of the TG, chemical stimulation of the meninges, electrical or mechanical stimulation of the superior sagittal sinus or by induction of cortical spreading depression. All these techniques induce c-fos within Sp5C and are used as a rodent/feline model of vascular headache in humans. Up-to-date there is evidence that at least ten receptors (5-HT(1B), 5-HT(1D), 5-HT(lF), 5-HT(2B), NK-1, GABA(A), NMDA, AMPA, class III metabotropic glutamate receptors, and opioids mu receptors) modulate c-fos expression within Sp5C. These receptors represent potential targets for anti-migraine drugs as shown by triptans (5-HT(1B/1D/1F)) and ergot alkaloids (5-HT(1A1B/1D/1F)). This review discusses the importance of c-fos expression within Sp5C as a marker of cephalic nociception, the different cephalic pain models that induce c-fos within Sp5C, the receptors involved and their potential role as targets for anti-migraine drugs.

  16. Disruption of parathyroid hormone and parathyroid hormone-related peptide receptor phosphorylation prolongs ERK1/2 MAPK activation and enhances c-fos expression

    PubMed Central

    Abou-Samra, Abdul B.

    2012-01-01

    Previous studies have demonstrated that parathyroid hormone (PTH) binding to the PTH/PTH-related peptide receptor (PPR) stimulates G protein coupling, receptor phosphorylation, β-arrestin translocation, and internalization of the ligand/receptor complex. The extracellular signal-regulated mitogen-activated protein kinases 1/2 (ERK1/2 MAPK) are downstream effectors of PPR. In the current study, we investigated the role of PPR phosphorylation in the PTH regulation of the ERK1/2 MAPK pathway. Short treatment with PTH (0–40 min) of LLCP-K1 cells stably expressing a wild-type (WT) or a phosphorylation-deficient (PD) PPR (WT-PPR or PD-PPR cells, respectively) results in similar activation of ERK1/2. Interestingly, PTH stimulation of ERK1/2 in the WT-PPR cells then decreases as a result of longer PTH (60 min) treatment, and inhibition of ERK1/2 by PTH is observed at 90 min. Strikingly, the PD-PPR cells exhibit prolonged ERK1/2 activation up to 90 min of PTH treatment. An ERK1/2-dependent increase in c-fos expression is observed in the PD-PPR cells. Subsequently, c-fos expression in the WT-PPR and PD-PPR cells was markedly attenuated by a specific ERK1/2 pathway inhibitor. Further investigations revealed that PTH treatment causes a robust recruitment of a green fluorescent protein-tagged β-arrestin2 (β-arrestin2-GFP) in the WT-PPR cells. In contrast, β-arrestin2 recruitment was reduced in the PD-PPR cells. Importantly, expression of a receptor phosphorylation-independent β-arrestin2 (R169E) in the PD-PPR cells restored the biphasic effect of PTH on ERK1/2 as in the WT-PPR cells. The study reports a novel role for receptor phosphorylation and β-arrestin2 in the subsequent inhibition of the ERK1/2 pathway and in control of gene expression. PMID:22414806

  17. Treatment with neuropeptides attenuates c-fos expression in a mouse model of fetal alcohol syndrome.

    PubMed

    Incerti, Maddalena; Vink, Joy; Roberson, Robin; Abebe, Daniel; Spong, Catherine Y

    2010-10-01

    Fetal alcohol syndrome (FAS) is the most common nongenetic cause of mental retardation and is characterized by neurodevelopmental anomalies. C-FOS is a cellular marker of transcriptional activity in the stress-signal pathway. Previously, we showed the treatment with NAP (NAPVSIPQ) + SAL (SALLRSIPA) reversed the learning deficit after prenatal alcohol exposure in FAS. Our objective was to evaluate if the mechanism of actions of NAP + SAL involves the stress-signal pathway differentiating C-FOS expression in mouse brains after prenatal alcohol exposure. C57Bl6/J mice were treated with alcohol (0.03 mL/g) or placebo on gestational day 8. On postnatal day 40, in utero alcohol-exposed males were treated via gavage with 40 μg D-NAP and 40 μg D-SAL ( N = 6) or placebo ( N = 4); controls were gavaged with placebo daily ( N = 12). After learning evaluation, hippocampus, cerebellum, and cortex were isolated. Calibrator-normalized relative real-time polymerase chain reaction and Western blot analysis were performed. Statistics included analysis of variance and post hoc Fisher analysis. Adult treatment with NAP + SAL restored the down-regulation of C-FOS in the hippocampus after prenatal alcohol exposure ( P < 0.05), but not in the cerebellum. There was no difference in C-FOS expression in the cortex. Adult treatment with NAP + SAL restored the down-regulation of C-FOS expression in hippocampus attenuating the alcohol-induced alteration of the stress-signal pathway.

  18. Fangchinoline inhibits rat aortic vascular smooth muscle cell proliferation and cell cycle progression through inhibition of ERK1/2 activation and c-fos expression.

    PubMed

    Zhang, Yong-He; Fang, Lian-Hua; Ku, Bao-Shan

    2003-11-01

    Fangchinoline (FAN; a plant alkaloid isolated from Stephania tetrandrae) is a nonspecific Ca(2+) channel blocker. The objective of the present study was to investigate the effect of FAN on the growth factor-induced proliferation of primary cultured rat aortic smooth muscle cells (RASMCs). FAN significantly inhibited both 5% fetal bovine serum (FBS)- and 50ng/mL platelet-derived growth factor (PDGF)-BB-induced proliferation, [3H]thymidine incorporation into DNA and phosphorylation of extracellular signal-regulated kinase 1/2. In accordance with these findings, FAN revealed blocking of the FBS-inducible progression through G(0)/G(1) to S phase of the cell cycle in synchronized cells and caused a 62% decrease in the early elevation of c-fos expression induced after 5% FBS addition. Furthermore, significant antiproliferative activity of FAN is observed at concentrations below those required to achieve significant inhibition of Ca(2+) channels by FAN. These results suggest that FAN reduced both FBS- and PDGF-BB-induced RASMCs proliferation by perturbing cell cycle progression. This antiproliferative effect of FAN is dependent on the MAP kinase pathway, but cannot be limited to its Ca(2+) modulation. PMID:14563495

  19. Light-induced c-Fos expression in the SCN and behavioural phase shifts of Djungarian hamsters with a delayed activity onset.

    PubMed

    Schöttner, Konrad; Vuillez, Patrick; Challet, Etienne; Pévet, Paul; Weinert, Dietmar

    2015-06-01

    C-Fos expression in the suprachiasmatic nucleus (SCN) and phase shifts of the activity rhythm following photic stimulation were investigated in Djungarian hamsters (Phodopus sungorus) of two different circadian phenotypes. Wild-type (WT) hamsters display robust daily patterns of locomotor activity according to the light/dark conditions. Hamsters of the DAO (delayed activity onset) phenotype, however, progressively delay the activity onset, whereas activity offset remains coupled to "light-on". Although the exact reason for the delayed activity onset is not yet clarified, it is connected with a disturbed interaction between the light/dark cycle and the circadian clock. The aim was to test the link between photoreception and the behavioral output of the circadian system in hamsters of both phenotypes, to get further insight in the underlying mechanism of the DAO phenomenon. Animals were exposed to short light pulses at different times during the dark period to analyze phase shifts of the activity rhythm and expression of Fos protein in the SCN. The results indicate that the photosensitive phase in DAO hamsters is shifted like the activity onset. Also, phase shifts were significantly smaller in DAO hamsters. At the same time, levels of Fos expression did not differ between phenotypes regarding the circadian phase. The results provide evidence that the shifted photosensitivity of the circadian system in DAO hamsters does not differ from that of WT animals, and lead us to conclude that processes within the SCN that enable light information to reset the circadian pacemaker might offer an explanation for the DAO phenomenon.

  20. The tetramethoxyflavone zapotin selectively activates protein kinase C epsilon, leading to its down-modulation accompanied by Bcl-2, c-Jun and c-Fos decrease.

    PubMed

    Toton, Ewa; Lisiak, Natalia; Rubis, Blazej; Budzianowski, Jaromir; Gruber, Peter; Hofmann, Johann; Rybczynska, Maria

    2012-05-01

    Zapotin, a tetramethoxyflavone, is a natural compound with a wide spectrum of activities in neoplastic cells. Protein kinase C epsilon (PKCε) has been shown to be oncogenic, with the ability to increase cell migration, invasion and survival of tumor cells. Here we report that zapotin inhibits cell proliferation. In wild-type HeLa cells with basal endogenous expression of PKCε, the IC(50) was found to be 17.9 ± 1.6 μM. In HeLa cells overexpressing doxycycline-inducible constitutively active PKCε (HeLaPKCεA/E), the IC(50) was 7.6 ± 1.3 μM, suggesting that PKCε enhances the anti-proliferative effect of zapotin. Moreover, we found that zapotin selectively activated PKCε in comparison with other PKC family members, but attenuated doxycycline-induced PKCε expression. As a result of zapotin treatment for 6, 12 and 24h, the doxycycline-induced levels of the two differently phosphorylated PKCε forms (87 kDa and 95 kDa) were decreased. Migration assays revealed that increasing concentrations of zapotin (from 3.5 to 15 μM) decreased migration of HeLaPKCεA/E cells. Furthermore, zapotin significantly increased the fraction of apoptotic cells in doxycycline-induced (HeLaPKCεA/E) cells after 24h and decreased the levels of Bcl-2, c-Jun, c-Fos. This was accompanied by a degradation of PARP-1. In summary, activation of PKCε and down-modulation of the induced PKCε level by zapotin were associated with decreased migration and increased apoptosis. These observations are consistent with the previously reported chemopreventive and chemotherapeutic action of zapotin.

  1. The tetramethoxyflavone zapotin selectively activates protein kinase C epsilon, leading to its down-modulation accompanied by Bcl-2, c-Jun and c-Fos decrease

    PubMed Central

    Toton, Ewa; Lisiak, Natalia; Rubis, Blazej; Budzianowski, Jaromir; Gruber, Peter; Hofmann, Johann; Rybczynska, Maria

    2012-01-01

    Zapotin, a tetramethoxyflavone, is a natural compound with a wide spectrum of activities in neoplastic cells. Protein kinase C epsilon (PKCε) has been shown to be oncogenic, with the ability to increase cell migration, invasion and survival of tumor cells. Here we report that zapotin inhibits cell proliferation. In wild-type HeLa cells with basal endogenous expression of PKCε, the IC50 was found to be 17.9 ± 1.6 μM. In HeLa cells overexpressing doxycycline-inducible constitutively active PKCε (HeLaPKCεA/E), the IC50 was 7.6 ± 1.3 μM, suggesting that PKCε enhances the anti-proliferative effect of zapotin. Moreover, we found that zapotin selectively activated PKCε in comparison with other PKC family members, but attenuated doxycycline-induced PKCε expression. As a result of zapotin treatment for 6, 12 and 24 h, the doxycycline-induced levels of the two differently phosphorylated PKCε forms (87 kDa and 95 kDa) were decreased. Migration assays revealed that increasing concentrations of zapotin (from 3.5 to 15 μM) decreased migration of HeLaPKCεA/E cells. Furthermore, zapotin significantly increased the fraction of apoptotic cells in doxycycline-induced (HeLaPKCεA/E) cells after 24 h and decreased the levels of Bcl-2, c-Jun, c-Fos. This was accompanied by a degradation of PARP-1. In summary, activation of PKCε and down-modulation of the induced PKCε level by zapotin were associated with decreased migration and increased apoptosis. These observations are consistent with the previously reported chemopreventive and chemotherapeutic action of zapotin. PMID:22381066

  2. Ginkgo biloba Extract (EGb 761®) Inhibits Glutamate-induced Up-regulation of Tissue Plasminogen Activator Through Inhibition of c-Fos Translocation in Rat Primary Cortical Neurons.

    PubMed

    Cho, Kyu Suk; Lee, Ian Myungwon; Sim, Seobo; Lee, Eun Joo; Gonzales, Edson Luck; Ryu, Jong Hoon; Cheong, Jae Hoon; Shin, Chan Young; Kwon, Kyoung Ja; Han, Seol-Heui

    2016-01-01

    EGb 761(®) , a standardized extract of Ginkgo biloba leaves, has antioxidant and antiinflammatory properties in experimental models of neurodegenerative disorders such as stroke and Alzheimer's disease. Tissue plasminogen activator (tPA) acts a neuromodulator and plays a crucial role in the manifestation of neurotoxicity leading to exaggerated neuronal cell death in neurological insult conditions. In this study, we investigated the effects of EGb 761 on the basal and glutamate-induced activity and expression of tPA in rat primary cortical neurons. Under basal condition, EGb 761 inhibited both secreted and cellular tPA activities, without altering tPA mRNA level, as modulated by the activation of p38. Compared with basal condition, EGb 761 inhibited the glutamate-induced up-regulation of tPA mRNA resulting in the normalization of overt tPA activity and expression. c-Fos is a component of AP-1, which plays a critical role in the modulation of tPA expression. Interestingly, EGb 761 inhibited c-Fos nuclear translocation without affecting c-Fos expression in glutamate-induced rat primary cortical neurons. These results demonstrated that EGb 761 can modulate tPA activity under basal and glutamate-stimulated conditions by both translational and transcriptional mechanisms. Thus, EGb 761 could be a potential and effective therapeutic strategy in tPA-excessive neurotoxic conditions.

  3. On the functional significance of c-fos induction during the sleep-waking cycle.

    PubMed

    Cirelli, C; Tononi, G

    2000-06-15

    A striking finding in recent years has been that the transition from sleep to waking is accompanied in many brain regions by a widespread activation of c-fos and other immediate-early genes (IEGs). IEGs are induced by various electrical or chemical signals to which neural cells are exposed and their protein products act as transcription factors to regulate the expression of other genes. After a few hours of sleep, the expression of these transcription factors in the brain is absent or restricted to very few cells. However, after a few hours of spontaneous waking or sleep deprivation, the expression of c-fos and other IEGs is high in cerebral cortex, hypothalamus, septum, and several thalamic and brainstem nuclei. While cells expressing c-fos during waking are widely distributed, they represent only a subset of all neurons in any given area. These observations raise several questions: Why is c-fos expressed during waking and not during sleep? Is waking always accompanied by c-fos induction? Which subset of cells express c-fos during waking and why only a subset? Once c-fos has been induced, what are the functional consequences of its activation? In this review, we summarize our current understanding of the meaning of c-fos activation in the brain in relation to the sleep-waking cycle and suggest that c-fos induction in the cerebral cortex during waking might be related to the occurrence of plastic phenomena.

  4. Amitriptyline up-regulates connexin43-gap junction in rat cultured cortical astrocytes via activation of the p38 and c-Fos/AP-1 signalling pathway

    PubMed Central

    Morioka, N; Suekama, K; Zhang, F F; Kajitani, N; Hisaoka-Nakashima, K; Takebayashi, M; Nakata, Y

    2014-01-01

    Background and Purpose Intercellular communication via gap junctions, comprised of connexin (Cx) proteins, allow for communication between astrocytes, which in turn is crucial for maintaining CNS homeostasis. The expression of Cx43 is decreased in post-mortem brains from patients with major depression. A potentially novel mechanism of tricyclic antidepressants is to increase the expression and functioning of gap junctions in astrocytes. Experimental Approach The effect of amitriptyline on the expression of Cx43 and gap junction intercellular communication (GJIC) in rat primary cultured cortical astrocytes was investigated. We also investigated the role of p38 MAPK intracellular signalling pathway in the amitriptyline-induced expression of Cx43 and GJIC. Key Results Treatment with amitriptyline for 48 h significantly up-regulated Cx43 mRNA, protein and GJIC. The up-regulation of Cx43 was not monoamine-related since noradrenaline, 5-HT and dopamine did not induce Cx43 expression and pretreatment with α- and β-adrenoceptor antagonists had no effect. Intracellular signalling involved p38 MAPK, as amitriptyline significantly increased p38 MAPK phosphorylation and Cx43 expression and GJIC were significantly blocked by the p38 inhibitor SB 202190. Furthermore, amitriptyline-induced Cx43 expression and GJIC were markedly reduced by transcription factor AP-1 inhibitors (curcumin and tanshinone IIA). The translocation of c-Fos from the cytosol and the nucleus of cortical astrocytes was increased by amitriptyline, and this response was dependent on p38 activity. Conclusion and Implication These findings indicate a novel mechanism of action of amitriptyline through cortical astrocytes, and further suggest that targeting this mechanism could lead to the development of a new class of antidepressants. PMID:24641259

  5. Bi-directional effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on fear-related behavior and c-Fos expression after fear conditioning in rats.

    PubMed

    Meloni, Edward G; Venkataraman, Archana; Donahue, Rachel J; Carlezon, William A

    2016-02-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is implicated in stress regulation and learning and memory. PACAP has neuromodulatory actions on brain structures within the limbic system that could contribute to its acute and persistent effects in animal models of stress and anxiety-like behavior. Here, male Sprague-Dawley rats were implanted with intracerebroventricular (ICV) cannula for infusion of PACAP-38 (0.5, 1, or 1.5 μg) or vehicle followed 30 min later by fear conditioning. Freezing was measured early (1, 4, and 7 days) or following a delay (7, 10, and 13 days) after conditioning. PACAP (1.5 μg) produced a bi-phasic response in freezing behavior across test days: relative to controls, PACAP-treated rats showed a reduction in freezing when tested 1 or 7 days after fear conditioning that evolved into a significant elevation in freezing by the third test session in the early, but not delayed, group. Corticosterone (CORT) levels were significantly elevated in PACAP-treated rats following fear conditioning, but not at the time of testing (Day 1). Brain c-Fos expression revealed PACAP-dependent alterations within, as well as outside of, areas typically implicated in fear conditioning. Our findings raise the possibility that PACAP disrupts fear memory consolidation by altering synaptic plasticity within neurocircuits normally responsible for encoding fear-related cues, producing a type of dissociation or peritraumatic amnesia often seen in people early after exposure to a traumatic event. However, fear memories are retained such that repeated testing and memory reactivation (e.g., re-experiencing) causes the freezing response to emerge and persist at elevated levels. PACAP systems may represent an axis on which stress and exposure to trauma converge to promote maladaptive behavioral responses characteristic of psychiatric illnesses such as post-traumatic stress disorder (PTSD). PMID:26590791

  6. Differential regulation of early response genes and cell proliferation through the human granulocyte macrophage colony-stimulating factor receptor: selective activation of the c-fos promoter by genistein.

    PubMed Central

    Watanabe, S; Muto, A; Yokota, T; Miyajima, A; Arai, K

    1993-01-01

    Granulocyte macrophage colony-stimulating factor (GM-CSF) binds to the high-affinity GM-CSF receptor (GMR) consisting of alpha and beta subunits and induces rapid tyrosine phosphorylation, activation of early response genes, and proliferation of hematopoietic cells. The alpha subunit is the primary cytokine binding component and the beta subunit is required for high-affinity binding as well as for signal transduction. Using tyrosine kinase inhibitors and cytoplasmic deletion mutants of the beta subunit, we obtained evidence that there are at least two distinct pathways downstream of the GMR in BA/F3 cell, one which is essential for proliferation, leads to the c-myc gene activation, and is sensitive to herbimycin and genistein. Activation of this pathway depends on the cytoplasmic region between amino acid positions 455 and 517 of the beta subunit. The second pathway, which leads to activation of c-fos and c-jun genes, is only partially sensitive to herbimycin, is resistant to genistein and depends on the region between amino acid positions 626 and 763 of the beta subunit. Unexpectedly, the c-fos mRNA induction was augmented by genistein. The enhanced expression of c-fos mRNA by genistein also occurred with stimulation with cAMP, PMA, or EGF in NIH3T3 cells. It thus seems likely that genistein affects a common pathway downstream of these signals. Images PMID:8298195

  7. Attenuation by butalbital of capsaicin-induced c-fos-like immunoreactivity in trigeminal nucleus caudalis.

    PubMed

    Cutrer, F M; Mitsikostas, D D; Ayata, G; Sanchez del Rio, M

    1999-01-01

    We examined the effects of butalbital (30, 100, and 1000 micrograms/kg) on the number of cells expressing c-fos-like immunoreactivity (c-fos-LI), a marker of neuronal activation, within lamina I, IIo of the trigeminal nucleus caudalis and the nucleus of the solitary tract 2 hours after the intracisternal injection of capsaicin (0.1 mL; 15.25 mg/mL) or vehicle in urethane-anesthetized guinea pigs (N = 45). Robust c-fos-LI was observed within nuclei of cells in the trigeminal nucleus caudalis after capsaicin (329 +/- 35). Butalbital dose-dependently reduced the number of labeled cells to a maximum of 66% (1000 micrograms/kg intraperitoneally [i.p.], P < .01) in lamina I, IIo but not within area postrema, medial reticular nucleus, or the nucleus of the solitary tract. Pretreatment with bicuculline (30 micrograms/kg i.p.) blocked the effect of butalbital, thereby suggesting the importance of the GABAA receptor to activation involved in the transmission of nociceptive information. Our studies suggest the possibility that GABAA receptors might provide an important therapeutic target in migraine and related headache disorders.

  8. Esculetin attenuates receptor activator of nuclear factor kappa-B ligand-mediated osteoclast differentiation through c-Fos/nuclear factor of activated T-cells c1 signaling pathway

    SciTech Connect

    Baek, Jong Min; Park, Sun-Hyang; Cheon, Yoon-Hee; Ahn, Sung-Jun; Lee, Myeung Su; Oh, Jaemin; Kim, Ju-Young

    2015-05-29

    Esculetin exerts various biological effects on anti-oxidation, anti-tumors, and anti-inflammation. However, the involvement of esculetin in the bone metabolism process, particularly osteoclast differentiation has not yet been investigated. In the present study, we first confirmed the inhibitory effect of esculetin on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation. We then revealed the relationship between esculetin and the expression of osteoclast-specific molecules to elucidate its underlying mechanisms. Esculetin interfered with the expression of c-Fos and nuclear factor of activated T cell c1 (NFATc1) both at the mRNA and protein level with no involvement in osteoclast-associated early signaling pathways, suppressing the expression of various transcription factors exclusively expressed in osteoclasts such as tartrate-resistant acid phosphatase (Trap), osteoclast-associated receptor (Oscar), dendritic cell-specific transmembrane protein (Dcstamp), osteoclast stimulatory transmembrane protein (Ocstamp), cathepsin K, αvβ3 integrin, and calcitonin receptor (Ctr). Additionally, esculetin inhibited the formation of filamentous actin (F-actin) ring-positive osteoclasts during osteoclast differentiation. However, the development of F-actin structures and subsequent bone resorbing activity of mature osteoclasts, which are observed in osteoclast/osteoblast co-culture systems were not affected by esculetin. Taken together, our results indicate for the first time that esculetin inhibits RANKL-mediated osteoclastogenesis via direct suppression of c-Fos and NFATc1 expression and exerts an inhibitory effect on actin ring formation during osteoclastogenesis. - Highlights: • We first investigated the effects of esculetin on osteoclast differentiation and function. • Our data demonstrate for the first time that esculetin can suppress osteoclastogenesis in vitro. • Esculetin acts as an inhibitor of c-Fos and NFATc1 activation.

  9. Environmental enrichment and gut inflammation modify stress-induced c-Fos expression in the mouse corticolimbic system.

    PubMed

    Reichmann, Florian; Painsipp, Evelin; Holzer, Peter

    2013-01-01

    Environmental enrichment (EE) has a beneficial effect on rodent behaviour, neuronal plasticity and brain function. Although it may also improve stress coping, it is not known whether EE influences the brain response to an external (psychological) stressor such as water avoidance stress (WAS) or an internal (systemic) stressor such as gastrointestinal inflammation. This study hence explored whether EE modifies WAS-induced activation of the mouse corticolimbic system and whether this stress response is altered by gastritis or colitis. Male C67BL/6N mice were housed under standard or enriched environment for 9 weeks, after which they were subjected to a 1-week treatment with oral iodoacetamide to induce gastritis or oral dextran sulfate sodium to induce colitis. Following exposure to WAS the expression of c-Fos, a marker of neuronal activation, was measured by immunocytochemistry. EE aggravated experimentally induced colitis, but not gastritis, as shown by an increase in the disease activity score and the colonic myeloperoxidase content. In the brain, EE enhanced the WAS-induced activation of the dentate gyrus and unmasked an inhibitory effect of gastritis and colitis on WAS-evoked c-Fos expression within this part of the hippocampus. Conversely, EE inhibited the WAS-evoked activation of the central amygdala and prevented the inhibitory effect of gastritis and colitis on WAS-evoked c-Fos expression in this region. EE, in addition, blunted the WAS-induced activation of the infralimbic cortex and attenuated the inhibitory effect of gastritis and colitis on WAS-evoked c-Fos expression in this area. These data reveal that EE has a region-specific effect on stress-induced c-Fos expression in the corticolimbic system, which is likely to improve stress resilience. The response of the prefrontal cortex - amygdala - hippocampus circuitry to psychological stress is also modified by the systemic stress of gut inflammation, and this interaction between external and internal

  10. Esculetin attenuates receptor activator of nuclear factor kappa-B ligand-mediated osteoclast differentiation through c-Fos/nuclear factor of activated T-cells c1 signaling pathway.

    PubMed

    Baek, Jong Min; Park, Sun-Hyang; Cheon, Yoon-Hee; Ahn, Sung-Jun; Lee, Myeung Su; Oh, Jaemin; Kim, Ju-Young

    2015-05-29

    Esculetin exerts various biological effects on anti-oxidation, anti-tumors, and anti-inflammation. However, the involvement of esculetin in the bone metabolism process, particularly osteoclast differentiation has not yet been investigated. In the present study, we first confirmed the inhibitory effect of esculetin on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation. We then revealed the relationship between esculetin and the expression of osteoclast-specific molecules to elucidate its underlying mechanisms. Esculetin interfered with the expression of c-Fos and nuclear factor of activated T cell c1 (NFATc1) both at the mRNA and protein level with no involvement in osteoclast-associated early signaling pathways, suppressing the expression of various transcription factors exclusively expressed in osteoclasts such as tartrate-resistant acid phosphatase (Trap), osteoclast-associated receptor (Oscar), dendritic cell-specific transmembrane protein (Dcstamp), osteoclast stimulatory transmembrane protein (Ocstamp), cathepsin K, αvβ3 integrin, and calcitonin receptor (Ctr). Additionally, esculetin inhibited the formation of filamentous actin (F-actin) ring-positive osteoclasts during osteoclast differentiation. However, the development of F-actin structures and subsequent bone resorbing activity of mature osteoclasts, which are observed in osteoclast/osteoblast co-culture systems were not affected by esculetin. Taken together, our results indicate for the first time that esculetin inhibits RANKL-mediated osteoclastogenesis via direct suppression of c-Fos and NFATc1 expression and exerts an inhibitory effect on actin ring formation during osteoclastogenesis.

  11. Pathogenesis of rheumatoid arthritis and c-Fos/AP-1.

    PubMed

    Shiozawa, Shunichi; Tsumiyama, Ken

    2009-05-15

    c-Fos/AP-1 controls the expression of inflammatory cytokines and matrix-degrading matrix metalloproteinases (MMPs) important in arthritis via promoter AP-1 binding motif. Among inflammatory cytokines, IL-1beta is the most important inducer of a variety of MMPs, and mainly responsible for cartilage breakdown and osteoclastogenesis. IL-1beta and c-Fos/AP-1 influence each other's gene expression and activity, resulting in an orchestrated cross-talk that is crucial to arthritic joint destruction, where TNFalpha can act synergistically with them. While how to stop the degradation of bone and cartilage, i.e., to control MMP, has long been the central issue in the research of rheumatoid arthritis (RA), selective inhibition of c-Fos/AP-1 does resolve arthritic joint destruction. Thus, the blockade of IL-1beta and/or c-Fos/AP-1 can be promising as an effective therapy for rheumatoid joint destruction in addition to the currently available TNFalpha blocking agents that act mainly on arthritis.

  12. Increase in c-Fos and Arc protein in retrosplenial cortex after memory-improving lateral hypothalamic electrical stimulation treatment.

    PubMed

    Kádár, Elisabeth; Vico-Varela, Eva; Aldavert-Vera, Laura; Huguet, Gemma; Morgado-Bernal, Ignacio; Segura-Torres, Pilar

    2016-02-01

    Post-training Intracranial self-stimulation (ICSS) of the lateral hypothalamus (LH), a kind of rewarding deep-brain stimulation, potentiates learning and memory and increases c-Fos protein expression in specific memory-related brain regions. In a previous study, Aldavert-Vera et al. (2013) reported that post-acquisition LH-ICSS improved 48 h retention of a delay two-way active avoidance conditioning (TWAA) and induced c-Fos expression increase in CA3 at 90 min after administration. Nevertheless, this c-Fos induction was only observed after the acquisition session and not after the retention test at 48 h, when the ICSS improving effect was observed on memory. This current study aims to examine the hypothesis that post-training ICSS treatment may stimulate c-Fos expression at the time of the TWAA retention test in retrosplenial cortex (RSC), a hippocampus-related brain region more closely related with long-lasting memory storage. Effects of ICSS on Arc protein, a marker of memory-associated synaptic plasticity, were also measured by immunohistochemistry in granular and agranular RSC. The most innovative results are that the ICSS treatment potentiates the c-Fos induction across TWAA conditions (no conditioning, acquisition and retention), specifically in layer V of the granular RSC, along with increases of Arc protein levels in the granular but not in agranular areas of RSC ipsilaterally few hours after ICSS. This leads us to suggest that plasticity-related protein activation in the granular RSC could be involved in the positive modulatory effects of ICSS on TWAA memory consolidation, opening a new approach for future research in ICSS memory facilitation.

  13. Increase in c-Fos and Arc protein in retrosplenial cortex after memory-improving lateral hypothalamic electrical stimulation treatment.

    PubMed

    Kádár, Elisabeth; Vico-Varela, Eva; Aldavert-Vera, Laura; Huguet, Gemma; Morgado-Bernal, Ignacio; Segura-Torres, Pilar

    2016-02-01

    Post-training Intracranial self-stimulation (ICSS) of the lateral hypothalamus (LH), a kind of rewarding deep-brain stimulation, potentiates learning and memory and increases c-Fos protein expression in specific memory-related brain regions. In a previous study, Aldavert-Vera et al. (2013) reported that post-acquisition LH-ICSS improved 48 h retention of a delay two-way active avoidance conditioning (TWAA) and induced c-Fos expression increase in CA3 at 90 min after administration. Nevertheless, this c-Fos induction was only observed after the acquisition session and not after the retention test at 48 h, when the ICSS improving effect was observed on memory. This current study aims to examine the hypothesis that post-training ICSS treatment may stimulate c-Fos expression at the time of the TWAA retention test in retrosplenial cortex (RSC), a hippocampus-related brain region more closely related with long-lasting memory storage. Effects of ICSS on Arc protein, a marker of memory-associated synaptic plasticity, were also measured by immunohistochemistry in granular and agranular RSC. The most innovative results are that the ICSS treatment potentiates the c-Fos induction across TWAA conditions (no conditioning, acquisition and retention), specifically in layer V of the granular RSC, along with increases of Arc protein levels in the granular but not in agranular areas of RSC ipsilaterally few hours after ICSS. This leads us to suggest that plasticity-related protein activation in the granular RSC could be involved in the positive modulatory effects of ICSS on TWAA memory consolidation, opening a new approach for future research in ICSS memory facilitation. PMID:26774022

  14. Deprivation of anticipated food under scheduled feeding induces c-Fos expression in the caudal part of the arcuate nucleus of hypothalamus through histamine H₁ receptors in rats: potential involvement of E3 subgroup of histaminergic neurons in tuberomammillary nucleus.

    PubMed

    Umehara, Hayato; Mizuguchi, Hiroyuki; Mizukawa, Nami; Matsumoto, Mai; Takeda, Noriaki; Senba, Emiko; Fukui, Hiroyuki

    2011-04-28

    It is well established that histaminergic neurons densely innervate the anterior hypothalamus and regulate several functions through histamine H(1) receptor (H1R). However, functional innervations of histaminergic neurons in the caudal hypothalamus have been poorly investigated. Recently, we have demonstrated that c-Fos, a marker of neuronal activation, was significantly induced by food deprivation under scheduled feeding in H1R-expressing cells in the caudal part of the arcuate nucleus of hypothalamus (cARC) of rats and histaminergic neurons innervating this area. In this study, we have examined the functional involvement of histaminergic neurons in the food deprivation-induced c-Fos expression in the cARC under scheduled feeding. The c-Fos expression in the cARC by food deprivation was significantly suppressed by pretreatment with antihistamines. After food deprivation, the number of c-Fos-histidine decarboxylase (HDC) double-positive neurons was mostly increased in the E3 subdivision of the tuberomammillary nucleus (TM). Under the restricted feeding schedule, significant expressions of c-Fos were detected in the TM and cARC only when rats strongly anticipated feeding, compared with a slight c-Fos induction in both nuclei when they were satiated. These findings suggest that the histaminergic neurons in the E3 subdivision of the TM are selectively activated by deprivation of an anticipated food under scheduled feeding and functionally innervate the H1R-expressing neurons in the cARC.

  15. Mechanically induced c-fos expression is mediated by cAMP in MC3T3-E1 osteoblasts

    NASA Technical Reports Server (NTRS)

    Fitzgerald, J.; Hughes-Fulford, M.

    1999-01-01

    In serum-deprived MC3T3-E1 osteoblasts, mechanical stimulation caused by mild (287 x g) centrifugation induced a 10-fold increase in mRNA levels of the proto-oncogene, c-fos. Induction of c-fos was abolished by the cAMP-dependent protein kinase inhibitor H-89, suggesting that the transient c-fos mRNA increase is mediated by cAMP. Down-regulation of protein kinase C (PKC) activity by chronic TPA treatment failed to significantly reduce c-fos induction, suggesting that TPA-sensitive isoforms of PKC are not responsible for c-fos up-regulation. In addition, 287 x g centrifugation increased intracellular prostaglandin E2 (PGE2) levels 2.8-fold (P<0. 005). Since we have previously shown that prostaglandin E2 (PGE2) can induce c-fos expression via a cAMP-mediated mechanism, we asked whether the increase in c-fos mRNA was due to centrifugation-induced PGE2 release. Pretreatment with the cyclooxygenase inhibitors indomethacin and flurbiprofen did not hinder the early induction of c-fos by mechanical stimulation. We conclude that c-fos expression induced by mild mechanical loading is dependent primarily on cAMP, not PKC, and initial induction of c-fos is not necessarily dependent on the action of newly synthesized PGE2.

  16. Controlling cytoplasmic c-Fos controls tumor growth in the peripheral and central nervous system.

    PubMed

    Gil, Germán A; Silvestre, David C; Tomasini, Nicolás; Bussolino, Daniela F; Caputto, Beatriz L

    2012-06-01

    Some 20 years ago c-Fos was identified as a member of the AP-1 family of inducible transcription factors (Angel and Karin in Biochim Biophys Acta 1072:129-157, 1991). More recently, an additional activity was described for this protein: it associates to the endoplasmic reticulum and activates the biosynthesis of phospholipids (Bussolino et al. in FASEB J 15:556-558, 2001), (Gil et al. in Mol Biol Cell 15:1881-1894, 2004), the quantitatively most important components of cellular membranes. This latter activity of c-Fos determines the rate of membrane genesis and consequently of growth in differentiating PC12 cells (Gil et al. in Mol Biol Cell 15:1881-1894, 2004). In addition, it has been shown that c-Fos is over-expressed both in PNS and CNS tumors (Silvestre et al. in PLoS One 5(3):e9544, 2010). Herein, it is shown that c-Fos-activated phospholipid synthesis is required to support membrane genesis during the exacerbated growth characteristic of brain tumor cells. Specifically blocking c-Fos-activated phospholipid synthesis significantly reduces proliferation of tumor cells in culture. Blocking c-Fos expression also prevents tumor progression in mice intra-cranially xeno-grafted human brain tumor cells. In NPcis mice, an animal model of the human disease Neurofibromatosis Type I (Cichowski and Jacks in Cell 104:593-604, 2001), animals spontaneously develop tumors of the PNS and the CNS, provided they express c-Fos (Silvestre et al. in PLoS One 5(3):e9544, 2010). Treatment of PNS tumors with an antisense oligonucleotide that specifically blocks c-Fos expression also blocks tumor growth in vivo. These results disclose cytoplasmic c-Fos as a new target for effectively controlling brain tumor growth.

  17. Induction of c-Fos expression in the mammillary bodies, anterior thalamus and dorsal hippocampus after fear conditioning.

    PubMed

    Conejo, Nélida M; González-Pardo, Héctor; López, Matías; Cantora, Raúl; Arias, Jorge L

    2007-09-14

    The aim of the present study was to provide further evidence on the role of particular subdivisions of the mammillary bodies, anterior thalamus and dorsal hippocampus to contextual and auditory fear conditioning. We used c-Fos expression as a marker of neuronal activation to compare rats that received tone-footshock pairings in a distinctive context (conditioned group) to rats being exposed to both the context and the auditory CS without receiving footshocks (unconditioned group), and naïve rats that were only handled. Fos immunoreactivity was significantly increased only in the anterodorsal thalamic nucleus and the lateral mammillary nucleus of the conditioned group. However, the dorsal hippocampus showed the highest density of c-Fos positive nuclei in the naïve group as compared to the other groups. Together, our data support previous studies indicating a particular involvement of the mammillary bodies and anterior thalamus in fear conditioning. PMID:17683804

  18. An Indirect Action Contributes to C-Fos Induction in Paraventricular Hypothalamic Nucleus by Neuropeptide Y

    PubMed Central

    Fan, Shengjie; Dakshinamoorthy, Janani; Kim, Eun Ran; Xu, Yong; Huang, Cheng; Tong, Qingchun

    2016-01-01

    Neuropeptide Y (NPY) is a well-established orexigenic peptide and hypothalamic paraventricular nucleus (PVH) is one major brain site that mediates the orexigenic action of NPY. NPY induces abundant expression of C-Fos, an indicator for neuronal activation, in the PVH, which has been used extensively to examine the underlying NPY orexigenic neural pathways. However, PVH C-Fos induction is in discordance with the abundant expression of NPY receptors, a group of inhibitory Gi protein coupled receptors in the PVH, and with the overall role of PVH neurons in feeding inhibition, suggesting a mechanism of indirect action. Here we showed that the ability of NPY on C-Fos induction in the PVH was blunted in conditions of insulin deficiency and fasting, a condition associated with a high level of NPY and a low level of insulin. Moreover, insulin insufficiency blunted C-Fos induction in the PVH by fasting-induced re-feeding, and insulin and NPY induced c-Fos induction in the same group of PVH neurons. Finally, NPY produced normal C-Fos induction in the PVH with disruption of GABA-A receptors. Thus, our results revealed that PVH C-Fos induction by NPY is mediated by an indirect action, which is at least partially mediated by insulin action, but not GABA-A receptors. PMID:26813148

  19. Spatiotemporal differences in the c-fos pathway between C57BL/6J and DBA/2J mice following flurothyl-induced seizures: a dissociation of hippocampal Fos from seizure activity

    PubMed Central

    Kadiyala, Sridhar B.; Papandrea, Dominick; Tuz, Karina; Anderson, Tara M.; Jayakumar, Sachidhanand; Herron, Bruce J.; Ferland, Russell J.

    2014-01-01

    Significant differences in seizure characteristics between inbred mouse strains highlight the importance of genetic predisposition to epilepsy. Here, we examined the genetic differences between the seizure-resistant C57BL/6J (B6) mouse strain and the seizure-susceptible DBA/2J (D2) strain in the phospho-Erk and Fos pathways to examine seizure-induced neuronal activity to uncover potential mechanistic correlates to these disparate seizure responsivities. Expression of neural activity markers was examined following 1, 5, or 8 seizures, or after 8 seizures, a 28 day rest period, and a final flurothyl rechallenge. Two brain regions, the hippocampus and ventromedial nucleus of the hypothalamus (VMH), had significantly different Fos expression profiles following seizures. Fos expression was highly robust in B6 hippocampus following one seizure and remained elevated following multiple seizures. Conversely, there was an absence of Fos (and phospho-Erk) expression in D2 hippocampus following one generalized seizure that increased with multiple seizures. This lack of Fos expression occurred despite intracranial electroencephalographic recordings indicating that the D2 hippocampus propagated ictal discharge during the first flurothyl seizure suggesting a dissociation of seizure discharge from Fos and phospho-Erk expression. Global transcriptional analysis confirmed a dysregulation of the c-fos pathway in D2 mice following 1 seizure. Moreover, global analysis of RNA expression differences between B6 and D2 hippocampus revealed a unique pattern of transcripts that were co-regulated with Fos in D2 hippocampus following 1 seizure. These expression differences could, in part, account for D2’s seizure susceptibility phenotype. Following 8 seizures, a 28 day rest period, and a final flurothyl rechallenge, ~85% of B6 mice develop a more complex seizure phenotype consisting of a clonic-forebrain seizure that uninterruptedly progresses into a brainstem seizure. This seizure phenotype

  20. Cadmium induces phosphorylation and stabilization of c-Fos in HK-2 renal proximal tubular cells

    SciTech Connect

    Iwatsuki, Mamiko; Inageda, Kiyoshi; Matsuoka, Masato

    2011-03-15

    We examined the effects of cadmium chloride (CdCl{sub 2}) exposure on the expression and phosphorylation status of members of the Fos family, components of the activator protein-1 transcription factor, in HK-2 human renal proximal tubular cells. Following the exposure to CdCl{sub 2}, the expression of c-fos, fosB, fra-1, and fra-2 increased markedly, with different magnitudes and time courses. The levels of Fos family proteins (c-Fos, FosB, Fra-1, and Fra-2) also increased in response to CdCl{sub 2} exposure. Although the elevation of c-fos transcripts was transient, c-Fos protein levels increased progressively with lower electrophoretic mobility, suggesting stabilization of c-Fos through post-translational modifications. Consistently, we observed phosphorylation of c-Fos at Ser362 and Ser374 in HK-2 cells treated with CdCl{sub 2}. Phosphorylated forms of mitogen-activated protein kinases (MAPKs)-including extracellular signal-regulated protein kinase (ERK), c-Jun NH{sub 2}-terminal kinase, and p38-increased after CdCl{sub 2} exposure, whereas treatment with the MAPK/ERK kinase inhibitor U0126 and the p38 inhibitor SB203580 suppressed the accumulation and phosphorylation of c-Fos. We mutated Ser362 to alanine (S362A), Ser374 to alanine (S374A), and both residues to alanines (S362A/S374A) to inhibit potential phosphorylation of c-Fos at these sites. S374A or double S362A/S374A mutations reduced c-Fos level markedly, but S362A mutation did not. On the other hand, S362A/S374A mutations induced a more pronounced reduction in c-Fos DNA-binding activity than S374A mutation. These results suggest that while Ser374 phosphorylation seems to play a role in c-Fos stabilization, phosphorylation at two C-terminal serine residues is required for the transcriptional activation of c-Fos in HK-2 cells treated with CdCl{sub 2}.

  1. d-LSD-induced c-Fos expression occurs in a population of oligodendrocytes in rat prefrontal cortex.

    PubMed

    Reissig, Chad J; Rabin, Richard A; Winter, Jerrold C; Dlugos, Cynthia A

    2008-03-31

    Induction of mRNA or protein for immediate-early genes, such as c-fos, is used to identify brain areas, specific cell types, and neuronal circuits that become activated in response to various stimuli including psychoactive drugs. The objective of the present study was to identify the cell types in the prefrontal cortex in which lysergic acid diethylamide (d-LSD) induces c-Fos expression. Systemic administration of d-LSD resulted in a dose-dependent increase in c-Fos immunoreactivity. Although c-Fos-positive cells were found in all cortical layers, they were most numerous in layers III, IV, and V. d-LSD-induced c-Fos immunoreactivity was found in cells co-labeled with anti-neuron-specific enolase or anti-oligodendrocyte Oligo1. The Oligo1-labeled cells had small, round bodies and nuclear diameters characteristic of oligodendrocytes. Studies using confocal microscopy confirmed colocalization of c-Fos-labeled nuclei in NeuN-labeled neurons. Astrocytes and microglia labeled with glial fibrillary acidic protein antibody and OX-42 antibody, respectively, did not display LSD-induced c-Fos expression. Pyramidal neurons labeled with anti-neurofilament antibody also did not show induction of c-Fos immunoreactivity after systemic d-LSD administration. The present study demonstrates that d-LSD induced expression of c-Fos in the prefrontal cortex occurs in subpopulations of neurons and in oligodendrocytes, but not in pyramidal neurons, astrocytes, and microglia.

  2. c-fos and its Consequences in Pain.

    PubMed

    Ahmad, Asma Hayati; Ismail, Zalina

    2002-01-01

    The discovery that c-fos, a proto-oncogene, has a role in pain, has triggered extensive research on the consequences of c-fos expression. It has been shown that c-fos, through its protein form, FOS, leads to expression of dynorphin gene and subsequently dynorphin protein which is implicated in the development of a pain state. This mini review looks at the properties of c-fos and the consequences of its expression following noxious (painful) stimulation.

  3. Osteoclasts, mononuclear phagocytes, and c-Fos: new insight into osteoimmunology.

    PubMed

    Matsuo, Koichi; Ray, Neelanjan

    2004-06-01

    Osteoimmunology is the emerging concept that certain molecules link the skeletal and immune systems. The transcription factor c-Fos, a component of activator protein-1 (AP-1), is essential for osteoclast differentiation. Mice lacking c-Fos are osteopetrotic owing to impaired osteoclast development. Recent studies suggest that in contrast to this positive role in osteoclastogenesis, c-Fos expression inhibits differentiation and activation of mononuclear phagocytes. Here, we focus on the contrasting roles of c-Fos in the bone and immune lineages. Both osteoclasts and mononuclear phagocytes are derived from common myeloid precursors. Osteoclasts resorb bone, whereas macrophages and myeloid dendritic cells phagocytose microbial pathogens, initiating innate and adaptive immunity. Differentiation of the common precursors into either bone or immune lineage is determined by ligand binding to cell-surface receptors, particularly receptor activator of NF-kappa B (RANK) for osteoclasts, or Toll-like receptors (TLRs) for mononuclear phagocytes. Both RANK and TLRs activate the dimeric transcription factors NF-kappa B and AP-1. Yet, c-Fos/AP-1 plays a positive role in osteoclasts but a negative role in macrophages and dendritic cells. Further study is necessary to clarify this dual role of c-Fos.

  4. Linoleic acid and its metabolites, hydroperoxyoctadecadienoic acids, stimulate c-Fos, c-Jun, and c-Myc mRNA expression, mitogen-activated protein kinase activation, and growth in rat aortic smooth muscle cells.

    PubMed Central

    Rao, G N; Alexander, R W; Runge, M S

    1995-01-01

    Previous studies from other laboratories suggest that linoleic acid and its metabolites, hydroperoxyoctadecadienoic acids, play an important role in modulating the growth of some cells. A correlation has been demonstrated between hydroperoxyoctadecadienoic acids and conditions characterized by abnormal cell growth such as atherosclerosis and psoriasis. To determine if linoleic acid and its metabolites modulate cell growth in atherosclerosis, we measured DNA synthesis, protooncogene mRNA expression, and mitogen-activated protein kinase (MAPK) activation in vascular smooth muscle cells (VSMC). Linoleic acid induces DNA synthesis, c-fos, c-jun, and c-myc mRNA expression and MAPK activation in VSMC. Furthermore, nordihydroguaiaretic acid, a potent inhibitor of the lipoxygenase system, significantly reduced the growth-response effects of linoleic acid in VSMC, suggesting that conversion of linoleic acid to hydroperoxyoctadecadienoic acids (HPODEs) is required for these effects. HPODEs also caused significant induction of DNA synthesis, protooncogene mRNA expression, and MAPK activation in growth-arrested VSMC, suggesting that linoleic acid and its metabolic products, HPODEs, are potential mitogens in VSMC, and that conditions such as oxidative stress and lipid peroxidation which provoke the production of these substances may alter VSMC growth. Images PMID:7635978

  5. Evidence for Homodimerization of the c-Fos Transcription Factor in Live Cells Revealed by Fluorescence Microscopy and Computer Modeling

    PubMed Central

    Szalóki, Nikoletta; Krieger, Jan Wolfgang; Komáromi, István; Tóth, Katalin

    2015-01-01

    The c-Fos and c-Jun transcription factors, members of the activator protein 1 (AP-1) complex, form heterodimers and bind to DNA via a basic leucine zipper and regulate the cell cycle, apoptosis, differentiation, etc. Purified c-Jun leucine zipper fragments could also form stable homodimers, whereas c-Fos leucine zipper homodimers were found to be much less stable in earlier in vitro studies. The importance of c-Fos overexpression in tumors and the controversy in the literature concerning c-Fos homodimerization prompted us to investigate Fos homodimerization. Förster resonance energy transfer (FRET) and molecular brightness analysis of fluorescence correlation spectroscopy data from live HeLa cells transfected with fluorescent-protein-tagged c-Fos indicated that c-Fos formed homodimers. We developed a method to determine the absolute concentrations of transfected and endogenous c-Fos and c-Jun, which allowed us to determine dissociation constants of c-Fos homodimers (Kd = 6.7 ± 1.7 μM) and c-Fos–c-Jun heterodimers (on the order of 10 to 100 nM) from FRET titrations. Imaging fluorescence cross-correlation spectroscopy (SPIM-FCCS) and molecular dynamics modeling confirmed that c-Fos homodimers were stably associated and could bind to the chromatin. Our results establish c-Fos homodimers as a novel form of the AP-1 complex that may be an autonomous transcription factor in c-Fos-overexpressing tissues and could contribute to tumor development. PMID:26303532

  6. Persistent induction of c-fos and c-jun expression by asbestos

    SciTech Connect

    Heintz, N.H.; Mossman, B.T. ); Janssen, Y.M. Univ. of Limburg, Maastricht )

    1993-04-15

    To investigate the mechanisms of asbestos-induced carcinogenesis, expression of c-fos and c-jun protooncogenes was examined in rat pleural mesothelial cells and hamster tracheal epithelial cells after exposure to crocidolite or chrysotile asbestos. In contrast to phorbol 12-myristate 13-acetate, which induces rapid and transient increases in c-fos and c-jun mRNA, asbestos causes 2- to 5-fold increases in c-fos and c-jun mRNA that persist for at least 24 hr in mesothelial cells. The induction of c-fos and c-jun mRNA by asbestos in mesothelial cells is dose-dependent and is most pronounced with crocidolite, the type of asbestos most pathogenic in the causation of pleural mesothelioma. Induction of c-jun gene expression by asbestos occurs in tracheal epithelial cells but is not accompanied by a corresponding induction of c-fos gene expression. In both cell types, asbestos induces increases in protein factors that bind specifically to the DNA sites that mediate gene expression by the AP-1 family of transcription factors. The persistent induction of AP-1 transcription factors by asbestos suggests a model of asbestos-induced carcinogenesis involving chronic stimulation of cell proliferation through activation of the early response gene pathway that includes c-jun and/or c-fos. 30 refs., 5 figs.

  7. [The Role of c-fos in the Production of Follicle-Stimulating Hormone and the Related Signal Transduction Pathways].

    PubMed

    Chen, De-Quan; Huang, Jun-Qin; Yi, Xue-Jie; Zhang, Dong-Jun

    2015-12-01

    As an immediate early gene, c-fos plays a critical role in stimulating the synthesis and release of pituitary FSH via GnRH. To better understanding the mechanism how c-fos works in the transcription of FSHbeta under different frequency of pulsatile GnRH stimulation, this paper reviewed the signal trans- ductions initiated by c-fos in pituitary, which include cAMP pathway, MAPK pathway, Ca2+ /calmodulin-dependent kinases pathway and nuclear factor of activated T-cells (NFAT) pathway. It will be helpful for research in molecular targeted immunotherapy and eventually effective treatment to the infertility which resulted from defection or mutation of c-fos and c-fos related signal pathway elements.

  8. Activation of GPR30 inhibits the growth of prostate cancer cells through sustained activation of Erk1/2, c-jun/c-fos-dependent upregulation of p21, and induction of G(2) cell-cycle arrest.

    PubMed

    Chan, Q K Y; Lam, H-M; Ng, C-F; Lee, A Y Y; Chan, E S Y; Ng, H-K; Ho, S-M; Lau, K-M

    2010-09-01

    G-protein-coupled receptor-30 (GPR30) shows estrogen-binding affinity and mediates non-genomic signaling of estrogen to regulate cell growth. We here showed for the first time, in contrast to the reported promoting action of GPR30 on the growth of breast and ovarian cancer cells, that activation of GPR30 by the receptor-specific, non-estrogenic ligand G-1 inhibited the growth of androgen-dependent and androgen-independent prostate cancer (PCa) cells in vitro and PC-3 xenografts in vivo. However, G-1 elicited no growth or histological changes in the prostates of intact mice and did not inhibit growth in quiescent BPH-1, an immortalized benign prostatic epithelial cell line. Treatment of PC-3 cells with G-1 induced cell-cycle arrest at the G(2) phase and reduced the expression of G(2)-checkpoint regulators (cyclin-A2, cyclin-B1, cdc25c, and cdc2) and phosphorylation of their common transcriptional regulator NF-YA in PC-3 cells. With extensive use of siRNA-knockdown experiments and the MEK inhibitor PD98059 in this study, we dissected the mechanism underlying G-1-induced inhibition of PC-3 cell growth, which was mediated through GPR30, followed by sustained activation of Erk1/2 and a c-jun/c-fos-dependent upregulation of p21, resulting in the arrest of PC-3 growth at the G(2) phase. The discovery of this signaling pathway lays the foundation for future development of GPR30-based therapies for PCa.

  9. Activations of c-fos/c-jun signaling are involved in the modulation of hypothalamic superoxide dismutase (SOD) and neuropeptide Y (NPY) gene expression in amphetamine-mediated appetite suppression

    SciTech Connect

    Hsieh, Y.-S.; Yang, S.-F.; Chiou, H.-L.; Kuo, D.-Y. . E-mail: dykuo@csmu.edu.tw

    2006-04-15

    Amphetamine (AMPH) is known as an anorectic agent. The mechanism underlying the anorectic action of AMPH has been attributed to its inhibitory action on hypothalamic neuropeptide Y (NPY), an appetite stimulant in the brain. This study was aimed to examine the molecular mechanisms behind the anorectic effect of AMPH. Results showed that AMPH treatment decreased food intake, which was correlated with changes of NPY mRNA level, but increased c-fos, c-jun and superoxide dismutase (SOD) mRNA levels in hypothalamus. To determine if c-fos or c-jun was involved in the anorectic response of AMPH, infusions of antisense oligonucleotide into the brain were performed at 1 h before daily AMPH treatment in freely moving rats, and the results showed that c-fos or c-jun knockdown could block this anorectic response and restore NPY mRNA level. Moreover, c-fos or c-jun knockdown could partially block SOD mRNA level that might involve in the modulation of NPY gene expression. It was suggested that c-fos/c-jun signaling might involve in the central regulation of AMPH-mediated feeding suppression via the modulation of NPY gene expression.

  10. Cadmium-induced cell transformation and tumorigenesis are associated with transcriptional activation of c-fos, c-jun, and c-myc proto-oncogenes: role of cellular calcium and reactive oxygen species.

    PubMed

    Joseph, P; Muchnok, T K; Klishis, M L; Roberts, J R; Antonini, J M; Whong, W Z; Ong, T

    2001-06-01

    The molecular mechanisms of carcinogenesis by cadmium were studied using BALB/c-3T3 cell transformation and nude mouse tumorigenesis models. BALB/c-3T3 cells transformed with cadmium chloride were subcutaneously injected into nude mice to develop tumors and the cell lines derived from these tumors were used in the present study. The proto-oncogenes c-fos and c-jun were overexpressed in 100% (10 out of 10) of the cell lines, while a statistically significant overexpression of c-myc was observed in 40% (4 out of 10) of the cell lines. Analysis of tumor cells stained with fluorescent dyes specific for reactive oxygen species revealed that these cells possessed markedly higher levels of superoxide anion and hydrogen peroxide compared with the nontransformed cells. Similarly, the intracellular calcium level was higher in the tumor cells compared with the nontransformed cells. Overexpression of the proto-oncogenes in these cells was blocked by treating the cells with superoxide dismutase, catalase, and 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetra acetoxy methyl ester (BAPTA/AM), which are scavengers of superoxide anion, hydrogen peroxide, and calcium, respectively. This confirmed that the overexpression of the proto-oncogenes in the tumor cells required elevated intracellular levels of reactive oxygen species and calcium. In addition to the scavengers of reactive oxygen species and calcium, inhibitors specific for transcription (actinomycin D), protein kinase C (RO-31-8220), and MAP kinase (PD 98059) also blocked the cadmium-induced overexpression of the proto-oncogenes in the tumor cells. Exposure of the nontransformed BALB/c-3T3 cells to 20 microM cadmium chloride for 1 h caused elevated intracellular levels of superoxide anion, hydrogen peroxide, and calcium, with corresponding increases in the expression levels of c-fos, c-jun, and c-myc. As in the case of the tumor cells, treating the nontransformed cells with the various modulators prior to their exposure to

  11. Effects of isoflurane and ethanol administration on c-Fos immunoreactivity in mice.

    PubMed

    Smith, M L; Li, J; Cote, D M; Ryabinin, A E

    2016-03-01

    Noninvasive functional imaging holds great promise for the future of translational research, due to the ability to directly compare between preclinical and clinical models of psychiatric disorders. Despite this potential, concerns have been raised regarding the necessity to anesthetize rodent and monkey subjects during these procedures, because anesthetics may alter neuronal activity. For example, in studies on drugs of abuse and alcohol, it is not clear to what extent anesthesia can interfere with drug-induced neural activity. Therefore, the current study investigated whole-brain c-Fos activation following isoflurane anesthesia as well as ethanol-induced activation of c-Fos in anesthetized mice. In the first experiment, we examined effects of one or three sessions of gaseous isoflurane on c-Fos activation across the brain in male C57BL/6J mice. Isoflurane administration led to c-Fos activation in several areas, including the piriform cortex and lateral septum. Lower or similar levels of activation in these areas were detected after three sessions of isoflurane, suggesting that multiple exposures may eliminate some of the enhanced neuronal activation caused by acute isoflurane. In the second experiment, we investigated the ability of ethanol injection (1.5 or 2.5g/kgi.p.) to induce c-Fos activation under anesthesia. Following three sessions of isoflurane, 1.5g/kg of ethanol induced c-Fos in the central nucleus of amygdala and the centrally-projecting Edinger-Westphal nucleus (EWcp). This induction was lower after 2.5g/kg of ethanol. These results demonstrate that ethanol-induced neural activation can be detected in the presence of isoflurane anesthesia. They also suggest, that while habituation to isoflurane helps reduce neuronal activation, interaction between effects of anesthesia and alcohol can occur. Studies using fMRI imaging could benefit from using habituated animals and dose-response analyses.

  12. Effects of isoflurane and ethanol administration on c-Fos immunoreactivity in mice.

    PubMed

    Smith, M L; Li, J; Cote, D M; Ryabinin, A E

    2016-03-01

    Noninvasive functional imaging holds great promise for the future of translational research, due to the ability to directly compare between preclinical and clinical models of psychiatric disorders. Despite this potential, concerns have been raised regarding the necessity to anesthetize rodent and monkey subjects during these procedures, because anesthetics may alter neuronal activity. For example, in studies on drugs of abuse and alcohol, it is not clear to what extent anesthesia can interfere with drug-induced neural activity. Therefore, the current study investigated whole-brain c-Fos activation following isoflurane anesthesia as well as ethanol-induced activation of c-Fos in anesthetized mice. In the first experiment, we examined effects of one or three sessions of gaseous isoflurane on c-Fos activation across the brain in male C57BL/6J mice. Isoflurane administration led to c-Fos activation in several areas, including the piriform cortex and lateral septum. Lower or similar levels of activation in these areas were detected after three sessions of isoflurane, suggesting that multiple exposures may eliminate some of the enhanced neuronal activation caused by acute isoflurane. In the second experiment, we investigated the ability of ethanol injection (1.5 or 2.5g/kgi.p.) to induce c-Fos activation under anesthesia. Following three sessions of isoflurane, 1.5g/kg of ethanol induced c-Fos in the central nucleus of amygdala and the centrally-projecting Edinger-Westphal nucleus (EWcp). This induction was lower after 2.5g/kg of ethanol. These results demonstrate that ethanol-induced neural activation can be detected in the presence of isoflurane anesthesia. They also suggest, that while habituation to isoflurane helps reduce neuronal activation, interaction between effects of anesthesia and alcohol can occur. Studies using fMRI imaging could benefit from using habituated animals and dose-response analyses. PMID:26742790

  13. High frequency stimulation of the subthalamic nucleus increases c-fos immunoreactivity in the dorsal raphe nucleus and afferent brain regions.

    PubMed

    Tan, Sonny K H; Janssen, Marcus L F; Jahanshahi, Ali; Chouliaras, Leonidas; Visser-Vandewalle, Veerle; Lim, Lee Wei; Steinbusch, Harry W M; Sharp, Trevor; Temel, Yasin

    2011-10-01

    High frequency stimulation (HFS) of the subthalamic nucleus (STN) is the neurosurgical therapy of choice for the management of motor deficits in patients with advanced Parkinson's disease, but this treatment can elicit disabling mood changes. Our recent experiments show that in rats, HFS of the STN both inhibits the firing of 5-HT (5-hydroxytryptamine; serotonin) neurons in the dorsal raphe nucleus (DRN) and elicits 5-HT-dependent behavioral effects. The neural circuitry underpinning these effects is unknown. Here we investigated in the dopamine-denervated rat the effect of bilateral HFS of the STN on markers of neuronal activity in the DRN as well as DRN input regions. Controls were sham-stimulated rats. HFS of the STN elicited changes in two 5-HT-sensitive behavioral tests. Specifically, HFS increased immobility in the forced swim test and increased interaction in a social interaction task. HFS of the STN at the same stimulation parameters, increased c-fos immunoreactivity in the DRN, and decreased cytochrome C oxidase activity in this region. The increase in c-fos immunoreactivity occurred in DRN neurons immunopositive for the GABA marker parvalbumin. HFS of the STN also increased the number of c-fos immunoreactive cells in the lateral habenula nucleus, medial prefrontal cortex but not significantly in the substantia nigra. Collectively, these findings support a role for circuitry involving DRN GABA neurons, as well as DRN afferents from the lateral habenula nucleus and medial prefrontal cortex, in the mood effects of HFS of the STN.

  14. c-Fos immunoreactivity in the pig brain following deoxynivalenol intoxication: focus on NUCB2/nesfatin-1 expressing neurons.

    PubMed

    Gaigé, Stéphanie; Bonnet, Marion S; Tardivel, Catherine; Pinton, Philippe; Trouslard, Jérôme; Jean, André; Guzylack, Laurence; Troadec, Jean-Denis; Dallaporta, Michel

    2013-01-01

    Deoxynivalenol (DON), produced by the cereal-contaminating Fusarium fungi, is a major trichothecene responsible for mycotoxicoses in farm animals, including swine. The main effect of DON-intoxication is food intake reduction and the consequent body weight loss. The present study aimed to identify brain structures activated during DON intoxication in pigs. To this goal, we used c-Fos staining which constitutes a useful approach to identify activated neurons. We showed that per os administration of Fusarium graminearum extracts (containing the equivalent of 1mg DON per kg of body weight) induced an increase in c-Fos immunoreactivity in several central structures, including the ventrolateral medulla (VLM), dorsal vagal complex (DVC), paraventricular nucleus of the hypothalamus (PVN), arcuate nucleus (Arc), supraoptic nucleus (SON) and amygdala (CeA). Moreover, we coupled c-Fos staining with phenotypic markers detection in order to specify the neuronal populations activated during DON intoxication. This phenotypic characterization revealed the activation of catecholaminergic but not of serotoninergic neurons in response to the toxin. In this context, we also paid a particular attention to NUCB2/nesfatin-1 positive cells, since nesfatin-1 is known to exert a satiety effect. We report here, for the first time in the pig brain, the presence of NUCB2/nesfatin-1 neurons in the VLM, DVC, PVN, Arc and SON, and their activation during DON intoxication. Taken together, these data show that DON stimulates the main structures involved in food intake in pigs and suggest that catecholaminergic and NUCB2/nesfatin-1 neurons could contribute in the anorexigenic effects of the mycotoxin.

  15. Combined Expression of c-jun, c-fos, and p53 Improves Estimation of Prognosis in Oral Squamous Cell Carcinoma.

    PubMed

    Wang, Shan; Xu, Xin; Xu, Fei; Meng, Yan; Sun, Changsheng; Shi, Lei; Zhao, Eryang

    2016-09-13

    To identify the prognostic value of c-jun, c-fos, and p53 in oral cancer, we examined the impact of immunohistochemical expression of these markers on tumor progression in 157 oral squamous cell carcinoma (OSCC). We found that c-jun or c-fos was significantly associated with lymph node metastasis, and coexpression of c-jun/c-fos, or c-jun/c-fos/p53 were significantly associated with lymph node metastasis, poor differentiation and clinical stage. The coexpression of c-jun/c-fos/p53 was identified as independent prognostic factors for overall survival. Simultaneous coexpression of these markers in OSCCs might prove to be a useful indicator for differentiation of low and high-risk patients.

  16. Active vs. Reactive Threat Responding is Associated with Differential c-Fos Expression in Specific Regions of Amygdala and Prefrontal Cortex

    ERIC Educational Resources Information Center

    Martinez, Raquel C. R.; Gupta, Nikita; Lazaro-Munoz, Gabriel; Sears, Robert M.; Kim, Soojeong; Moscarello, Justin M.; LeDoux, Joseph E.; Cain, Christopher K.

    2013-01-01

    Active avoidance (AA) is an important paradigm for studying mechanisms of aversive instrumental learning, pathological anxiety, and active coping. Unfortunately, AA neurocircuits are poorly understood, partly because behavior is highly variable and reflects a competition between Pavlovian reactions and instrumental actions. Here we exploited the…

  17. Forced expression of stabilized c-Fos in dendritic cells reduces cytokine production and immune responses in vivo

    SciTech Connect

    Yoshida, Ryoko; Suzuki, Mayu; Sakaguchi, Ryota; Hasegawa, Eiichi; Kimura, Akihiro; Shichita, Takashi; Sekiya, Takashi; Shiraishi, Hiroshi; Shimoda, Kouji; Yoshimura, Akihiko

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer Dendritic cells expressing stabilized c-Fos produced less inflammatory cytokines. Black-Right-Pointing-Pointer Dendritic cells expressing stabilized c-Fos activated T cells less efficiently. Black-Right-Pointing-Pointer Transgenic mice expressing stabilized c-Fos were resistant to EAE model. -- Abstract: Intracellular cyclic adenosine monophosphate (cAMP) suppresses innate immunity by inhibiting proinflammatory cytokine production by monocytic cells. We have shown that the transcription factor c-Fos is responsible for cAMP-mediated suppression of inflammatory cytokine production, and that c-Fos protein is stabilized by IKK{beta}-mediated phosphorylation. We found that S308 is one of the major phosphorylation sites, and that the S308D mutation prolongs c-Fos halflife. To investigate the role of stabilized c-Fos protein in dendritic cells (DCs) in vivo, we generated CD11c-promoter-deriven c-FosS308D transgenic mice. As expected, bone marrow-derived DCs (BMDCs) from these Tg mice produced smaller amounts of inflammatory cytokines, including TNF-{alpha}, IL-12, and IL-23, but higher levels of IL-10, in response to LPS, than those from wild-type (Wt) mice. When T cells were co-cultured with BMDCs from Tg mice, production of Th1 and Th17 cytokines was reduced, although T cell proliferation was not affected. Tg mice demonstrated more resistance to experimental autoimmune encephalomyelitis (EAE) than did Wt mice. These data suggest that c-Fos in DCs plays a suppressive role in certain innate and adaptive immune responses.

  18. The time course of systems consolidation of spatial memory from recent to remote retention: A comparison of the Immediate Early Genes Zif268, c-Fos and Arc.

    PubMed

    Barry, Daniel N; Coogan, Andrew N; Commins, Sean

    2016-02-01

    Systems consolidation is a process involving the stabilisation of memory traces in the neocortex over time. The medial prefrontal cortex becomes increasingly important during the retrieval of older memories, however the timescale of its involvement is unclear, and the contribution of other neocortical brain regions to remote memory have received little attention. The Immediate Early Genes (IEGs) Zif268, c-Fos and Arc have been utilised as markers of neural activity during spatial memory retrieval, however the lack of a direct comparison between them hinders the interpretation of results. To address these questions, we examined the expression of Zif268, Arc and c-Fos protein in the medial prefrontal cortex, as well as the hippocampus, and the entorhinal, perirhinal, retrosplenial and parietal cortices of male Wistar rats following a probe trial of the Morris water maze either one day, seven days, 14 days or 30 days after acquisition. Activity of the medial prefrontal cortex during retrieval, as measured by all three IEGs, increased in correspondence with the age of the memory, reaching significance between 14 and 30 days. Similar increases in c-Fos and Arc were observed over the course of consolidation in other neocortical and parahippocampal areas, however this pattern was not observed with Zif268. Activity of the hippocampus remained largely unchanged across retention intervals. These findings suggest that systems consolidation of spatial memory takes at least two weeks, are consistent with an ongoing role for the hippocampus in the retrieval of spatial memory, and suggest that c-Fos and Arc may be a more sensitive measure of neural activity in response to behavioural tasks than Zif268. PMID:26748021

  19. "Fluorescent Cell Chip" for immunotoxicity testing: development of the c-fos expression reporter cell lines.

    PubMed

    Trzaska, Dominika; Zembek, Patrycja; Olszewski, Maciej; Adamczewska, Violetta; Ullerås, Erik; Dastych, Jarosław

    2005-09-01

    The Fluorescent Cell Chip for in vitro immunotoxicity testing employs cell lines derived from lymphocytes, mast cells, and monocytes-macrophages transfected with various EGFP cytokine reporter gene constructs. While cytokine expression is a valid endpoint for in vitro immunotoxicity screening, additional marker for the immediate-early response gene expression level could be of interest for further development and refinement of the Fluorescent Cell Chip. We have used BW.5147.3 murine thymoma transfected with c-fos reporter constructs to obtain reporter cell lines expressing ECFP under the control of murine c-fos promoter. These cells upon serum withdrawal and readdition and incubation with heavy metal compounds showed paralleled induction of c-Fos expression as evidenced by Real-Time PCR and ECFP fluorescence as evidenced by computer-supported fluorescence microscopy. In conclusion, we developed fluorescent reporter cell lines that could be employed in a simple and time-efficient screening assay for possible action of chemicals on c-Fos expression in lymphocytes. The evaluation of usefulness of these cells for the Fluorescent Cell Chip-based detection of immunotoxicity will require additional testing with a larger number of chemicals.

  20. Are there multiple proteolytic pathways contributing to c-Fos, c-Jun and p53 protein degradation in vivo?

    PubMed

    Salvat, C; Aquaviva, C; Jariel-Encontre, I; Ferrara, P; Pariat, M; Steff, A M; Carillo, S; Piechaczyk, M

    1999-04-01

    The c-Fos and c-Jun oncoproteins and the p53 tumor suppressor protein are short-lived transcription factors. Several catabolic pathways contribute to their degradation in vivo. c-Fos and c-Jun are thus mostly degraded by the proteasome, but there is indirect evidence that, under certain experimental/physiological conditions, calpains participate in their destruction, at least to a limited extent. Lysosomes have also been reported to participate in the destruction of c-Fos. Along the same lines, p53 is mostly degraded following the ubiquitin/proteasome pathway and calpains also seem to participate in its degradation. Moreover, c-Fos, c-Jun and p53 turnovers are regulated upon activation of intracellular signalling cascades. All taken together, these observations underline the complexity of the mechanisms responsible for the selective destruction of proteins within cells.

  1. An indirect action contributes to c-fos induction in paraventricular hypothalamic nucleus by neuropeptide Y

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neuropeptide Y (NPY) is a well-established orexigenic peptide and hypothalamic paraventricular nucleus (PVH) is one major brain site that mediates the orexigenic action of NPY. NPY induces abundant expression of C-Fos, an indicator for neuronal activation, in the PVH, which has been used extensively...

  2. Chronic light deprivation inhibits appetitive associative learning induced by ethanol and its respective c-Fos and pCREB expression.

    PubMed

    Varela, Patrícia; Escosteguy-Neto, João Carlos; Coelho, Carolina Tesone; Mello, Luiz Eugênio; da Silveira, Dartiu Xavier; Santos-Junior, Jair Guilherme

    2014-11-01

    To address the role of mixed anxiety/mood disorder on appetitive associative learning, we verify whether previous chronic light deprivation changes ethanol-induced conditioned place preference and its respective expression of c-Fos and pCREB, markers of neuronal activity and plasticity. The experimental group was maintained in light deprivation for 24 h for a period of 4 wk. Subsequently, it was adapted to a standard light-dark cycle for 1 wk. As a control, some mice were maintained in standard cycle for a period of 4 wk (Naïve group). Then, all animals were submitted to behavioral tests to assess emotionality: elevated plus maze; open field; and forced swim. After that, they were submitted to ethanol-induced conditioned place preference. Ninety minutes after the place preference test, they were perfused, and their brains processed for c-Fos and pCREB immunohistochemistry. Light deprivation induced anxiety-like trait (elevated plus maze), despair (forced swim), and hyperlocomotion (open field), common features seen in other animal models of depression. Ethanol-induced conditioned place preference was accompanied by increases on c-Fos and pCREB in the hippocampus, prefrontal cortex and striatum. Interestingly, mice previously submitted to light deprivation did not develop either acquisition and/or expression of ethanol-induced conditioned place preference or increases in c-Fos and pCREB. Therefore, chronic light deprivation mimics several behavioral aspects of other animal models of depression. Furthermore, it could be useful to study the neurochemical mechanisms involved in the dual diagnosis. However, given its likely deleterious effects on appetitive associative memory, it should be used with caution to investigate the cognitive aspects related to the dual diagnosis. PMID:24905237

  3. Anxiogenic-like activity of 3,4-methylenedioxy-methamphetamine ("Ecstasy") in the social interaction test is accompanied by an increase of c-fos expression in mice amygdala.

    PubMed

    Navarro, José Francisco; Rivera, Alicia; Maldonado, Enrique; Cavas, María; de la Calle, Adelaida

    2004-03-01

    3,4-Methylenedioxymethamphetamine (MDMA) is a synthetic amphetamine popularly known as "Ecstasy." Animal studies examining acute effects of MDMA on anxiety are unclear because although an anxiolytic-like action of MDMA in different animal models of anxiety has been described, there is also substantial evidence supporting an anxiogenic-like effect of this drug. To date, several studies have examined c-fos expression following MDMA administration in rats. However, there is no information about the MDMA-induced c-fos expression in mice previously tested in an animal model of anxiety. In this study, male mice were injected with MDMA (1, 8 and 15 mg/kg ip) and assessed for changes on anxiety and for the expression of the immediate early gene c-fos in the amygdala (central, basolateral and basomedial). Anxiety was evaluated by the "social interaction test." Ten behavioral categories were recorded: body care, digging, nonsocial exploration, exploration from a distance, social investigation, threat, attack, avoidance/flee, defense/submission and immobility. As compared with the control group, mice treated with MDMA (all doses) showed a decrease in mean duration and total time spent in social investigation behaviors, whereas avoidance/flee behaviors were significantly increased after treatment with this compound (8 and 15 mg/kg). Likewise, a significant increase in c-fos expression was found in the basolateral (all doses) and central (15 mg/kg) amygdala after MDMA administration. Overall, these findings indicate that MDMA exhibits an anxiogenic-like profile in the social interaction test in mice, and that central and basolateral amygdala might be involved in these anxiogenic-like effects of the drug.

  4. Diacylglycerol Kinase ζ (DGKζ) Is a Critical Regulator of Bone Homeostasis Via Modulation of c-Fos Levels in Osteoclasts.

    PubMed

    Zamani, Ali; Decker, Corinne; Cremasco, Viviana; Hughes, Lindsey; Novack, Deborah V; Faccio, Roberta

    2015-10-01

    Increased diacylglycerol (DAG) levels are observed in numerous pathologies, including conditions associated with bone loss. However, the effects of DAG accumulation on the skeleton have never been directly examined. Because DAG is strictly controlled by tissue-specific diacylglycerol kinases (DGKs), we sought to examine the biological consequences of DAG accumulation on bone homeostasis by genetic deletion of DGKζ, a highly expressed DGK isoform in osteoclasts (OCs). Strikingly, DGKζ(-/-) mice are osteoporotic because of a marked increase in OC numbers. In vitro, DGKζ(-/-) bone marrow macrophages (BMMs) form more numerous, larger, and highly resorptive OCs. Surprisingly, although increased DAG levels do not alter receptor activator of NF-κB (RANK)/RANK ligand (RANKL) osteoclastogenic pathway, DGKζ deficiency increases responsiveness to the proliferative and pro-survival cytokine macrophage colony-stimulating factor (M-CSF). We find that M-CSF is responsible for increased DGKζ(-/-) OC differentiation by promoting higher expression of the transcription factor c-Fos, and c-Fos knockdown in DGKζ(-/-) cultures dose-dependently reduces OC differentiation. Using a c-Fos luciferase reporter assay lacking the TRE responsive element, we also demonstrate that M-CSF induces optimal c-Fos expression through DAG production. Finally, to demonstrate the importance of the M-CSF/DGKζ/DAG axis on regulation of c-Fos during osteoclastogenesis, we turned to PLCγ2(+/-) BMMs, which have reduced DAG levels and form fewer OCs because of impaired expression of the master regulator of osteoclastogenesis NFATc1 and c-Fos. Strikingly, genetic deletion of DGKζ in PLCγ2(+/-) mice rescues OC formation and normalizes c-Fos levels without altering NFATc1 expression. To our knowledge, this is the first report implicating M-CSF/DGKζ/DAG axis as a critical regulator of bone homeostasis via its actions on OC differentiation and c-Fos expression.

  5. Characterization of E-cadherin-dependent and -independent events in a new model of c-Fos-mediated epithelial-mesenchymal transition

    SciTech Connect

    Mejlvang, Jakob; Kriajevska, Marina; Berditchevski, Fedor; Bronstein, Igor; Lukanidin, Eugene M.; Pringle, J. Howard; Mellon, J. Kilian; Tulchinsky, Eugene M. . E-mail: et32@le.ac.uk

    2007-01-15

    Fos proteins have been implicated in control of tumorigenesis-related genetic programs including invasion, angiogenesis, cell proliferation and apoptosis. In this study, we demonstrate that c-Fos is able to induce mesenchymal transition in murine tumorigenic epithelial cell lines. Expression of c-Fos in MT1TC1 cells led to prominent alterations in cell morphology, increased expression of mesenchymal markers, vimentin and S100A4, DNA methylation-dependent down-regulation of E-cadherin and abrogation of cell-cell adhesion. In addition, c-Fos induced a strong {beta}-catenin-independent proliferative response in MT1TC1 cells and stimulated cell motility, invasion and adhesion to different extracellular matrix proteins. To explore whether loss of E-cadherin plays a role in c-Fos-mediated mesenchymal transition, we expressed wild-type E-cadherin and two different E-cadherin mutants in MT1TC1/c-fos cells. Expression of wild-type E-cadherin restored epithelioid morphology and enhanced cellular levels of catenins. However, exogenous E-cadherin did not influence expression of c-Fos-dependent genes, only partly suppressed growth of MT1TC1/c-fos cells and produced no effect on c-Fos-stimulated cell motility and invasion in matrigel. On the other hand, re-expression of E-cadherin specifically negated c-Fos-induced adhesion to collagen type I, but not to laminin or fibronectin. Of interest, mutant E-cadherin which lacks the ability to form functional adhesive complexes had an opposite, potentiating effect on cell adhesion to collagen I. These data suggest that cell adhesion to collagen I is regulated by the functional state of E-cadherin. Overall, our data demonstrate that, with the exception of adhesion to collagen I, c-Fos is dominant over E-cadherin in relation to the aspects of mesenchymal transition assayed in this study.

  6. Interactions among LRF-1, JunB, c-Jun, and c-Fos define a regulatory program in the G1 phase of liver regeneration.

    PubMed Central

    Hsu, J C; Bravo, R; Taub, R

    1992-01-01

    In regenerating liver, a physiologically normal model of cell growth, LRF-1, JunB, c-Jun, and c-Fos among Jun/Fos/LRF-1 family members are induced posthepatectomy. In liver cells, high levels of c-Fos/c-Jun, c-Fos/JunB, LRF-1/c-Jun, and LRF-1/JunB complexes are present for several hours after the G0/G1 transition, and the relative level of LRF-1/JunB complexes increases during G1. We provide evidence for dramatic differences in promoter-specific activation by LRF-1- and c-Fos-containing complexes. LRF-1 in combination with either Jun protein strongly activates a cyclic AMP response element-containing promoter which c-Fos/Jun does not activate. LRF-1/c-Jun, c-Fos/c-Jun, and c-Fos/JunB activate specific AP-1 and ATF site-containing promoters, and in contrast, LRF-1/JunB potently represses c-Fos- and c-Jun-mediated activation of these promoters. Repression is dependent on a region in LRF-1 that includes amino acids 40 to 84 (domain R) and the basic/leucine zipper domain. As the relative level of LRF-1/JunB complexes increases posthepatectomy, c-Fos/Jun-mediated ATF and AP-1 site activation is likely to decrease with simultaneous transcriptional activation of the many liver-specific genes whose promoters contain cyclic AMP response element sites. Thus, through complex interactions among LRF-1, JunB, c-Jun, and c-Fos, control of delayed gene expression may be established for extended times during the G1 phase of hepatic growth. Images PMID:1406655

  7. Mapping brain response to social stress in rodents with c-fos expression: a review.

    PubMed

    Martinez, M; Calvo-Torrent, A; Herbert, J

    2002-02-01

    Social defeat is an important event in the life of many animals, and forms part of the process of social control. Adapting to social defeat is thus an intrinsic part of social "homeostasis", and mal-adaptation may have pathological sequelae. Experimental models of social defeat (e.g. inter-male aggression) have existed for many years. However, very few studies have investigated the changes in brain activity in male animals exposed to the social stress of being defeated by another conspecific male, and in all these studies the expression of the immediate-early gene c-fos has been used as the marker of neuronal activity. In general, the results obtained inform that many areas of the brain, especially those involved in the general stress response, increase their activity when animals are exposed to an acute defeat. However, when animals are defeated repeatedly over many consecutive days, the level of activation of the brain shows different patterns of adaptation depending on the brain areas (varying from complete habituation to persistent activation). Discrepancies between studies may be due to differences in the experimental procedure. On the other hand, further research has to be conducted in order to understand what these changes in the brain activity mean in relation to the other stress responses to social defeat. Furthermore, knowing that the corresponding protein products of many immediate-early genes are transcription factors that can promote or inhibit the expression of target genes, research following this approach is also necessary.

  8. Apolipoprotein E inhibits osteoclast differentiation via regulation of c-Fos, NFATc1 and NF-κB

    SciTech Connect

    Kim, Woo-Shin; Kim, Hyung Joon; Lee, Zang Hee; Lee, Youngkyun; Kim, Hong-Hee

    2013-02-15

    Apolipoprotein E (ApoE) plays a major role in the transport and metabolism of lipid. Other functions of ApoE include modulation of innate and adaptive immune responses. The expression of ApoE in osteoblasts and its relevance with bone formation have also been reported. However, the effect of ApoE on osteoclasts has not yet been examined. Here, we investigated the role of ApoE in osteoclast differentiation using bone marrow-derived macrophages (BMMs) and RAW264.7 cells. We found a down-regulation of ApoE gene expression during osteoclastic differentiation of those cells. Overexpression of ApoE in BMMs and RAW264.7 cells significantly blocked the induction of c-Fos and nuclear factor of activated T cell c1 (NFATc1), transcription factors critical for expression of osteoclast marker genes, by receptor activator of nuclear factor κB ligand (RANKL), the osteoclast differentiation factor. ApoE inhibited osteoclast differentiation, as measured by decreased number of tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells (MNCs). In addition, ApoE reduced the expression of dendritic cell-specific transmembrane protein (DC-STAMP) and ATPase, H{sup +} transporting, lysosomal 38 kDa, V0 subunit d2 (ATP6v0d2), genes involved in cell–cell fusion during osteoclastogenesis. Knock-down of ApoE using a specific siRNA promoted the RANKL-mediated induction of osteoclast differentiation. While ApoE did not affect the activation of ERK, JNK, and p38 MAPK signaling pathways by RANKL, the phosphorylation of p65 trans-activation domain on serine 536 and transcription activity of NF-κB were reduced by ApoE overexpression. These findings suggest that ApoE plays an inhibitory role in osteoclast differentiation via the suppression of RANKL-dependent activation of NF-κB and induction of c-Fos and NFATc1. - Highlights: ► Apolipoprotein E (ApoE) significantly inhibited osteoclast differentiation and activation of NF-κB. ► ApoE decreased the induction of osteoclast marker

  9. Morphine-conditioned cue alters c-Fos protein expression in the brain of crayfish.

    PubMed

    Dziopa, Leah; Imeh-Nathaniel, Adebobola; Baier, Dana; Kiel, Michael; Sameera, Sayeed; Brager, Adam; Beatriz, Vega; Nathaniel, Thomas I

    2011-07-15

    With a highly organized stereotypic behavior and a simplified neuronal system that is characterized by cellular modularity, crayfish (Orconectes rusticus) represents an excellent model that we used in this study to explore how a drug-conditioned-cue alters c-Fos protein expression in the brain of an invertebrate species. The first set of experiments revealed that a single injection of different doses of morphine (3.0 μg/g, 6.0 μg/g and 12.0 μg/g) into the circulatory system of crayfish significantly increased locomotor activity. Repeated injections of morphine increased locomotion at lower doses (3.0 μg/g and 6.0 μg/g), and decreased locomotion at a higher dose of 12.0 μg/g. The second experiment revealed that a repeated or single injection of morphine serves as reward when paired with a distinct visual environment. In the third experiment, we found that the c-Fos profile of morphine treated crayfish in an unconditioned environment did not show a significant increase from the basal level comparable to saline treated crayfish. The brains of crayfish were more active during exposure to the cue-elicited drug conditioned environment than the unconditioned environment. These results indicate that chronic morphine treatment alone is not sufficient to induce changes in the expression of c-Fos; instead, morphine-environment pairing in a specific context contributes to the expression of alterations in c-Fos regulation. The enhancement of c-Fos expression in the brain of crayfish seems to reflect the sensory or anticipatory facets of conditioning that suggests that potential and even unanticipated hypotheses in drug addiction can emerge from studies of addiction in crayfish.

  10. Changes in hypothalamic staining for c-Fos following 2G exposure in rats

    NASA Technical Reports Server (NTRS)

    Fuller, C. A.; Murakami, D. M.; Hoban-Higgins, T. M.; Tang, I. H.

    1994-01-01

    The static gravitational field of the earth has been an important selective pressure that has shaped the evolution of biological organisms. This is illustrated by the evolution of tetrapods from a water environment where gravitational force was partially negated to a terrestrial environment where gravity is of greater consequence. Terrestrial invasion resulted in a series of new structural, physiological, and behavioral features. Therefore, it is not surprising that alterations in the gravitational field can cause widespread effects in many physiological systems and behaviors. Our previous studies have demonstrated that both exposure to hyperdynamic fields and the microgravity condition of space flight have significant effects on body temperature, heartrate, activity, feeding, drinking, and circadian rhythms. However, it has not been determined whether these physiological adaptations are associated with changes in neural activity within the hypothalamic nuclei that regulate these functions. This study examined the changes in body temperature, activity, body weight and food and water intake in rats caused by exposure to a hyperdynamic field. In addition, the immediate early gene activation marker, c-Fos, was used to examine potential protein synthesis changes in the hypothalamic nuclei that regulate these functions.

  11. Dynamics of c-fos and ICER mRNA expression in rat forebrain following lithium chloride injection.

    PubMed

    Spencer, C M; Houpt, T A

    2001-09-30

    Lithium is commonly used as a treatment for affective disorders in humans and as a toxin to produce conditioned taste aversions in rats. LiCl administration in rats has been correlated with activation of c-fos and cAMP-mediated gene transcription in many brain regions; however, little is known about the timing or duration of gene activation. We hypothesized that c-fos gene transcription is rapidly stimulated by LiCl, followed later by the expression of the inducible cAMP early repressor (ICER) transcription factor, a negative modulator of cAMP-mediated gene transcription. By in situ hybridization, we analyzed the timecourse of c-fos and ICER mRNA expression in the central nucleus of the amygdala (CeA), the paraventricular nucleus of the hypothalamus (PVN) and the supraoptic nucleus (SON) at seven time points (0, 0.3, 1, 3, 6, 9 and 12 h) after intraperitoneal LiCl injection (0.15 M, 12 ml/kg, 76 mg/kg). Expression of c-fos mRNA peaked between 20 min and 1 h and returned to baseline by 3 h in the CeA, PVN and SON. ICER mRNA was detected in these regions at 20 min, peaked at 1-3 h and returned to nearly baseline 9 h following LiCl injection. The time lag between c-fos mRNA expression and ICER mRNA expression within the same regions is consistent with ICER terminating c-fos gene transcription. However, no refractory period was detected for restimulation of c-fos transcription by a second injection of LiCl during the period of peak ICER mRNA expression, suggesting the involvement of other transcriptional modulators. PMID:11589989

  12. Prostaglandin E2-induced up-regulation of c-fos messenger ribonucleic acid is primarily mediated by 3',5'-cyclic adenosine monophosphate in MC3T3-E1 osteoblasts

    NASA Technical Reports Server (NTRS)

    Fitzgerald, J.; Dietz, T. J.; Hughes-Fulford, M.

    2000-01-01

    The mechanism by which the proto-oncogene, c-fos, is up-regulated in response to PGE2 in the mouse osteoblastic (MC3T3-E1) cell line was investigated using RT-PCR. c-fos messenger RNA up-regulation by dmPGE2 is rapid, starting 10 min post stimulation, and transient. The specific protein kinase A (PKA) inhibitor, H89, inhibited c-fos induction. Moreover, down-regulation of protein kinase C (PKC) activity by chronic TPA treatment had no effect on the induction of c-fos by dmPGE2. We conclude that up-regulation of c-fos by dmPGE2 is primarily dependent on PKA in MC3T3-E1 osteoblasts. In S49 lymphoma wild-type but not S49 cyc- cells, which are deficient in cAMP signaling, dmPGE2 up-regulates c-fos and increases cell growth compared with unstimulated cells. Thus in S49 lymphoma cells, c-fos induction by PGE2 is also dependent on cAMP signaling. The minimal c-fos promoter region required for dmPGE2-induced expression was identified by transfecting c-fos promoter deletion constructs coupled to the chloramphenicol acetyltransferase (CAT) reporter gene into Vero cells. Transfection of a plasmid containing 99 bp c-fos proximal promoter was sufficient to direct c-fos/CAT expression following stimulation with dmPGE2. Because induction of c-fos is mediated by cAMP, these data are consistent with activation of c-fos via the CRE/ATF cis element.

  13. Much excitement about antidepressants, DBI and c-FOS.

    PubMed

    Barbaccia, Maria Luisa

    2011-10-01

    This article briefly outlines the background and major findings of the research projects in which, together with a number of skilled and enthusiastic collaborators, I was involved at FGIN under the mentorship of the late Dr. Erminio Costa.The topics covered are (ì) our search for an endogenous ligand of the [3H]-imipramine binding site, as an approach to shed light on the still today elusive mechanisms underlying the therapeutic action of antidepressant drugs; (ìì) our attempt to correlate psychopathological states, characterized by dysfunctions of the GABAergic neurotransmission, with an altered brain content of Diazepam binding inhibitor (DBI), a peptide that exerts a direct negative modulation of GABAA receptor function and also, by binding to the mitochondrial benzodiazepine receptor, increases the brain content of GABAA receptor-active neurosteroids; (ììì) our demonstration that the activation of the glutamate/NMDA receptor, throughstimulation of several intracellular signaling pathways, induces the expression of the early inducible gene c-fos, a mechanism proposed to underlie glutamate-mediated neuronal plasticity.

  14. Prostaglandin E2 and the protein kinase A pathway mediate arachidonic acid induction of c-fos in human prostate cancer cells

    NASA Technical Reports Server (NTRS)

    Chen, Y.; Hughes-Fulford, M.

    2000-01-01

    Arachidonic acid (AA) is the precursor for prostaglandin E2 (PGE2) synthesis and increases growth of prostate cancer cells. To further elucidate the mechanisms involved in AA-induced prostate cell growth, induction of c-fos expression by AA was investigated in a human prostate cancer cell line, PC-3. c-fos mRNA was induced shortly after addition of AA, along with a remarkable increase in PGE2 production. c-fos expression and PGE2 production induced by AA was blocked by a cyclo-oxygenase inhibitor, flurbiprofen, suggesting that PGE2 mediated c-fos induction. Protein kinase A (PKA) inhibitor H-89 abolished induction of c-fos expression by AA, and partially inhibited PGE2 production. Protein kinase C (PKC) inhibitor GF109203X had no significant effect on c-fos expression or PGE2 production. Expression of prostaglandin (EP) receptors, which mediate signal transduction from PGE2 to the cells, was examined by reverse transcription polymerase chain reaction in several human prostate cell lines. EP4 and EP2, which are coupled to the PKA signalling pathway, were expressed in all cells tested. Expression of EP1, which activates the PKC pathway, was not detected. The current study showed that induction of the immediate early gene c-fos by AA is mediated by PGE2, which activates the PKA pathway via the EP2/4 receptor in the PC-3 cells.

  15. Induction of c-fos gene expression by the selective sigma receptor ligand EMD 57445 in rat brain.

    PubMed

    Dahmen, N; Fischer, V; Hödl, P; Rujescu, D; Reuss, S; Bartoszyk, G D; Hiemke, C

    1996-08-01

    Based on animal studies it has been reasoned that ligands to sigma binding sites might be effective in the treatment of schizophrenic disorders and may also be used to investigate this largely elusive disorder on a molecular level. Expression patterns of c-fos in rat brain were studied following treatment with single doses of the sigma ligand EMD 57445 (0.3, 1, 3, 30 mg/kg s.c.). Specific c-fos gene expression was detected at all concentrations tested in various cortical areas. The signals observed were dose-dependent with the highest intensities in the piriform cortex. Strong signals were also detected in hippocampal areas CA 1,2,3 and the gyrus dentatus, as well as in the medial habenula nuclei. In the caudate putamen, nucleus accumbens and lateral septal nucleus signals were detectable after administration of doses > or = 1 mg/kg. Furthermore, c-fos hybridization was visible in the amygdala, in the mammillary bodies, the islands of Calleja and in the olfactory tubercle. In the hypothalamus, c-fos expression was seen in the median eminence area after 30 mg/kg EMD 57445. No hybridization signals were obtained in brainstem or cerebellum. Since c-fos expression induced by EMD 57445 resembled the pattern obtained with atypical neuroleptics and studies on animal behavior point to antipsychotic activity, it is concluded that the drug might be suitable in the treatment of schizophrenia.

  16. The Expression Patterns of c-Fos and c-Jun Induced by Different Frequencies of Electroacupuncture in the Brain

    PubMed Central

    Qiu, Zheng-Ying; Ding, Yi; Cui, Lu-ying; Hu, Man-Li; Ding, Ming-Xing

    2015-01-01

    To investigate patterns of c-Fos and c-Jun expression induced by different frequencies of electroacupuncture (EA) in the brain, goats were stimulated by EA of 0, 2, 60, or 100 Hz at a set of “Baihui, Santai, Ergen, and Sanyangluo” points for 30 min. The pain threshold was measured using the potassium iontophoresis method. The levels of c-Fos and c-Jun were determined with Streptavidin-Biotin Complex immunohistochemistry. The results showed that the pain threshold induced by 60 Hz was 82.2% higher (P < 0.01) than that by 0, 2, or 100 Hz (6.5%, 35.2%, or 40.9%). EA induced increased c-Fos and c-Jun expression in most analgesia-related nuclei and areas in the brain. Sixty Hz EA increased more c-Fos or c-Jun expression than 2 Hz or 100 Hz EA in all the measured nuclei and areas except for the nucleus accumbens, the area septalis lateralis, the caudate nucleus, the nucleus amygdala basalis, and the locus coeruleus, in which c-Fos or c-Jun expressions induced by 60 Hz EA did not differ from those by 2 Hz or 100 Hz EA. It was suggested that 60 Hz EA activated more extensive neural circuits in goats, which may contribute to optimal analgesic effects. PMID:26491460

  17. Wedelolactone enhances osteoblastogenesis by regulating Wnt/β-catenin signaling pathway but suppresses osteoclastogenesis by NF-κB/c-fos/NFATc1 pathway

    PubMed Central

    Liu, Yan-Qiu; Hong, Zhi-Lai; Zhan, Li-Bin; Chu, Hui-Ying; Zhang, Xiao-Zhe; Li, Guo-Hui

    2016-01-01

    Bone homeostasis is maintained by formation and destruction of bone, which are two processes tightly coupled and controlled. Targeting both stimulation on bone formation and suppression on bone resorption becomes a promising strategy for treating osteoporosis. In this study, we examined the effect of wedelolactone, a natural product from Ecliptae herba, on osteoblastogenesis as well as osteoclastogenesis. In mouse bone marrow mesenchymal stem cells (BMSC), wedelolactone stimulated osteoblast differentiation and bone mineralization. At the molecular level, wedelolactone directly inhibited GSK3β activity and enhanced the phosphorylation of GSK3β, thereafter stimulated the nuclear translocation of β-catenin and runx2. The expression of osteoblastogenesis-related marker gene including osteorix, osteocalcin and runx2 increased. At the same concentration range, wedelolactone inhibited RANKL-induced preosteoclastic RAW264.7 actin-ring formation and bone resorption pits. Further, wedelolactone blocked NF-kB/p65 phosphorylation and abrogated the NFATc1 nuclear translocation. As a result, osteoclastogenesis-related marker gene expression decreased, including c-src, c-fos, and cathepsin K. In ovariectomized mice, administration of wedelolactone prevented ovariectomy-induced bone loss by enhancing osteoblast activity and inhibiting osteoclast activity. Together, these data demonstrated that wedelolactone facilitated osteoblastogenesis through Wnt/GSK3β/β-catenin signaling pathway and suppressed RANKL-induced osteoclastogenesis through NF-κB/c-fos/NFATc1 pathway. These results suggested that wedelolacone could be a novel dual functional therapeutic agent for osteoporosis. PMID:27558652

  18. Neural Correlates of Birth: Labor Contractions Induce C-Fos Expression In Newborn Rat Brain

    NASA Technical Reports Server (NTRS)

    Ronca, A. E.; Daly, M. E.; Baer, L. A.; Hills, E. M.; Conway, G.; Dalton, Bonnie (Technical Monitor)

    2002-01-01

    At birth, the newborn mammal must make rapid adaptations to the extrauterine environment to survive. We have previously shown that labor contractions augment the appearance of adaptive responses at birth, viz., postpartum breathing and the onset of suckling. Since neuronal activity has been shown to upregulate the activity of immediate early genes (IEGs) in the brain, we analyzed the neural distribution of c-Fos protein expression in newborn rats using immunohistochemistry. Previous studies have reported a burst of c-Fos mRNA expression in mouse and rat brain at birth however relationships to labor and delivery have not been examined. In the present study, we exposed near-term rat fetuses to elements of the vaginal birth process: 1) Simulated labor contractions. 2) Postpartum cooling (22 deg C). 3) Umbilical cord occlusion. and 4) Stroking to mimic postpartum licking by the dam. Cardinally delivered newborns (VG) were compared with those delivered by cesarean section following either prenatal exposure to compressions (C) [simulated labor contractions], or no compressions (NC) [no labor contractions]. Similar patterns of c-fos activation were observed throughout hypothalamic and thalamic nuclei, hippocampus and cerebral cortex in VG and C newborns that were not apparent in NC newborns. Our results indicate that labor contractions play a role in the induction of widespread neural activation in the newborn brain.

  19. Using c-fos to study neuronal ensembles in corticostriatal circuitry of addiction.

    PubMed

    Cruz, Fabio C; Javier Rubio, F; Hope, Bruce T

    2015-12-01

    Learned associations between drugs and environment play an important role in addiction and are thought to be encoded within specific patterns of sparsely distributed neurons called neuronal ensembles. This hypothesis is supported by correlational data from in vivo electrophysiology and cellular imaging studies in relapse models in rodents. In particular, cellular imaging with the immediate early gene c-fos and its protein product Fos has been used to identify sparsely distributed neurons that were strongly activated during conditioned drug behaviors such as drug self-administration and context- and cue-induced reinstatement of drug seeking. Here we review how Fos and the c-fos promoter have been employed to demonstrate causal roles for Fos-expressing neuronal ensembles in prefrontal cortex and nucleus accumbens in conditioned drug behaviors. This work has allowed identification of unique molecular and electrophysiological alterations within Fos-expressing neuronal ensembles that may contribute to the development and expression of learned associations in addiction.

  20. Regulation of osteosarcoma cell lung metastasis by the c-Fos/AP-1 target FGFR1

    PubMed Central

    Weekes, Daniel; Zandueta, Carolina; Perurena, Naiara; Thomas, David P; Sunters, Andrew; Vuillier, Céline; Bozec, Aline; El-Emir, Ethaar; Miletich, Isabelle; Patiño-Garcia, Ana; Lecanda, Fernando; Grigoriadis, Agamemnon E

    2015-01-01

    Osteosarcoma is the most common primary malignancy of the skeleton and is prevalent in children and adolescents. Survival rates are poor and have remained stagnant due to chemoresistance and the high propensity to form lung metastases. In this study, we used in vivo transgenic models of c-fos oncogene-induced osteosarcoma and chondrosarcoma in addition to c-Fos-inducible systems in vitro to investigate downstream signaling pathways that regulate osteosarcoma growth and metastasis. Fgfr1 was identified as a novel c-Fos/AP-1 regulated gene. Induction of c-Fos in vitro in osteoblasts and chondroblasts caused an increase in Fgfr1 RNA and FGFR1 protein expression levels that resulted in increased and sustained activation of MAPKs, morphological transformation and increased anchorage-independent growth in response to FGF2 ligand treatment. High levels of FGFR1 protein and activated pFRS2α signalling were observed in murine and human osteosarcomas. Pharmacological inhibition of FGFR1 signalling blocked MAPK activation and colony growth of osteosarcoma cells in vitro. Orthotopic injection in vivo of FGFR1 silenced osteosarcoma cells caused a marked 2- to 5-fold decrease in spontaneous lung metastases. Similarly, inhibition of FGFR signalling in vivo with the small molecule inhibitor AZD4547 markedly reduced the number and size of metastatic nodules. Thus, deregulated FGFR signalling plays an important role in osteoblast transformation and osteosarcoma formation and regulates the development of lung metastases. Our findings support the development of anti-FGFR inhibitors as potential antimetastatic therapy. PMID:26387545

  1. Prenatal valproic acid exposure disrupts tonotopic c-Fos expression in the rat brainstem.

    PubMed

    Dubiel, A; Kulesza, R J

    2016-06-01

    Autism spectrum disorder (ASD) is a group of neurodevelopmental conditions characterized by difficulties in communication and social interactions, restricted, repetitive behaviors and sensory abnormalities. Notably, the vast majority of individuals with ASD experience some degree of auditory dysfunction and we have recently reported consistent hypoplasia and dysmorphology in auditory brainstem centers in individuals with ASD. Prenatal exposure to the antiepileptic drug valproic acid (VPA) is associated with an increased risk of ASD. In rodents, prenatal exposure to VPA is employed as an animal model of ASD and is associated with a number of anatomical, physiological and behavioral deficits, including hypoplasia and dysmorphology of auditory brainstem centers. Based on these observations, we hypothesized that such dysmorphology in VPA-exposed animals would translate into abnormal neuronal activity in brainstem circuits and irregular tonotopic maps. Herein, we have subjected control and VPA-exposed animals to 4- or 16-kHz tones and examined neuronal activation with immunohistochemistry for c-Fos. After these exposures, we identified significantly more c-Fos-positive neurons in the auditory brainstem of VPA-exposed animals. Additionally, we observed a larger dispersion of c-Fos-positive neurons and shifted tonotopic bands in VPA-exposed rats. We interpret these findings to suggest hyper-responsiveness to sounds and disrupted mapping of sound frequencies after prenatal VPA exposure. Based on these findings, we suggest that such abnormal patterns of activation may play a role in auditory processing deficits in ASD. PMID:27094734

  2. c-Fos expression associated with reinstatement of cocaine-seeking behavior by response-contingent conditioned cues

    PubMed Central

    Kufahl, Peter R.; Zavala, Arturo R.; Singh, Akanksha; Thiel, Kenneth J.; Dickey, Erin D.; Joyce, Jeffrey N.; Neisewander, Janet L.

    2009-01-01

    Summary The capability of cocaine cues to generate craving in cocaine-dependent humans, even after extended abstinence, is modeled in rats using cue reinstatement of extinguished cocaine-seeking behavior. We investigated neural activity associated with incentive motivational effects of cocaine cues using c-fos mRNA and Fos protein expression as markers. Unlike preceding studies, we used response-contingent presentation of discrete cues to elicit cocaine seeking. Rats were first trained to press a lever, resulting in cocaine reinforcement and light and tone cues. Rats then underwent extinction training, during which lever presses decreased. On the test day, rats either received response-contingent cocaine cues or received no cues. The cues reinstated extinguished cocaine-seeking behavior on the test day. In general, cue-elicited c-fos mRNA and protein expression were similar and both were enhanced in the prefrontal cortex, ventral tegmental area (VTA), dorsal striatum and nucleus accumbens. Cues elicited more widespread Fos protein expression relative to our previous research in which cues were presented non-contingently without prior extinction training, including increases in the VTA, substantia nigra, ventral subiculum, and lateral entorhinal cortex. We also observed a correlation between cocaine-seeking behavior and Fos in the agranular insula (AgI) and basolateral amygdala (BLA). The findings suggest that connections between BLA and AgI play a role in cue-elicited incentive motivation for cocaine and that reinstatement of cocaine seeking by response-contingent cues activates a similar corticolimbic circuit as that observed with other modes of cue presentation; however, activation of midbrain and ventral hippocampal regions may be unique to reinstatement by response-contingent cues. PMID:19533625

  3. Arsenic trioxide phosphorylates c-Fos to transactivate p21{sup WAF1/CIP1} expression

    SciTech Connect

    Liu Zimiao; Huang, H.-S.

    2008-12-01

    An infamous poison, arsenic also has been used as a drug for nearly 2400 years; in recently years, arsenic has been effective in the treatment of acute promyelocytic leukemia. Increasing evidence suggests that opposite effects of arsenic trioxide (ATO) on tumors depend on its concentrations. For this reason, the mechanisms of action of the drug should be elucidated, and it should be used therapeutically only with extreme caution. Previously, we demonstrated the opposing effects of ERK1/2 and JNK on p21{sup WAF1/CIP1} (p21) expression in response to ATO in A431 cells. In addition, JNK phosphorylates c-Jun (Ser{sup 63/73}) to recruit TGIF/HDAC1 to suppress p21 gene expression. Presently, we demonstrated that a high concentration of ATO sustains ERK1/2 phosphorylation, and increases c-Fos biosynthesis and stability, which enhances p21 gene expression. Using site-directed mutagenesis, a DNA affinity precipitation assay, and functional assays, we demonstrated that phosphorylation of the C-terminus of c-Fos (Thr{sup 232}, Thr{sup 325}, Thr{sup 331}, and Ser{sup 374}) plays an important role in its binding to the p21 promoter, and in conjunction with N-terminus phosphorylation of c-Fos (Ser{sup 70}) to transactivate p21 promoter expression. In conclusion, a high concentration of ATO can sustain ERK1/2 activation to enhance c-Fos expression, then dimerize with dephosphorylated c-Jun (Ser{sup 63/73}) and recruit p300/CBP to the Sp1 sites (- 84/- 64) to activate p21 gene expression in A431 cells.

  4. Area postrema lesions attenuate LiCl-induced c-Fos expression correlated with conditioned taste aversion learning

    PubMed Central

    Spencer, Corinne M.; Eckel, Lisa A.; Nardos, Rahel; Houpt, Thomas A.

    2011-01-01

    Lesions of the area postrema (AP) block many of the behavioral and physiological effects of lithium chloride (LiCl) in rats, including formation of conditioned taste aversions (CTAs). Systemic administration of LiCl induces c-Fos immunoreactivity in several brain regions, including the AP, nucleus of the solitary tract (NTS), lateral parabrachial nucleus (latPBN), supraoptic nucleus (SON), paraventricular nucleus (PVN), and central nucleus of the amygdala (CeA). To determine which of these brain regions may be activated in parallel with the acquisition of LiCl-induced CTAs, we disrupted CTA learning in rats by ablating the AP and then quantified c-Fos-positive cells in these brain regions in sham- and AP-lesioned rats 1 h following LiCl or saline injection. Significant c-Fos induction after LiCl was observed in the CeA and SON of AP-lesioned rats, demonstrating activation independent of an intact AP. LiCl-induced c-Fos was significantly attenuated in the NTS, latPBN, PVN and CeA of AP-lesioned rats, suggesting that these regions are dependent on AP activation. Almost all of the lesioned rats showed some damage to the subpostremal NTS, and some rats also had damage to the dorsal motor nucleus of the vagus; this collateral damage in the brainstem may have contributed to the deficits in c-Fos response. Because c-Fos induction in several regions was correlated with magnitude of CTA acquisition, these regions are implicated in the central mediation of lithium effects during CTA learning. PMID:21889521

  5. 2-AG into the lateral hypothalamus increases REM sleep and cFos expression in melanin concentrating hormone neurons in rats.

    PubMed

    Pérez-Morales, Marcel; De La Herrán-Arita, Alberto K; Méndez-Díaz, Mónica; Ruiz-Contreras, Alejandra E; Drucker-Colín, René; Prospéro-García, Oscar

    2013-07-01

    Orexins/hypocretins (OX) and melanin-concentrating hormone (MCH) neurons located in the lateral hypothalamus seem to modulate different stages of the sleep-wake cycle. OX are necessary for wakefulness and MCH appears to regulate rapid eye movement sleep (REMS). Likewise, endocannabinoids, the endogenous ligands for cannabinoid receptors 1 and 2 (CB1R, CB2R), also modulate REMS in rats. Moreover, it has been shown that the activation of the CB1R in the lateral hypothalamus of rats excites MCH neurons while inhibiting OX neurons in in vitro preparations. Hence, we assessed the effects of 2-arachidonoylglicerol (2-AG, an endocannabinoid) in the lateral hypothalamus on the sleep-wake cycle of rats. We also utilized the CB1R inverse agonist AM251 to further support the involvement of this receptor, and we performed double immunofluorescence experiments to detect c-Fos, as a marker of neural activation, in OX and in MCH neurons to determine which neurons were activated. Our results indicate that 2-AG increases REMS through CB1R activation, and increases c-Fos expression in MCH neurons. These results suggest that endocannabinoid activation of the CB1R in the lateral hypothalamus, which activates MCH neurons, is one mechanism by which REMS is triggered.

  6. Anxiety-like behaviour and c-fos expression in rats that inhaled vetiver essential oil.

    PubMed

    Saiyudthong, Somrudee; Pongmayteegul, Sirinun; Marsden, Charles A; Phansuwan-Pujito, Pansiri

    2015-01-01

    Vetiver essential oil (VEO) has been used in aromatherapy for relaxation. This study aimed to investigate the effects of VEO on an anxiety-related behavioural model (the elevated plus-maze, EPM) and immediate-early gene c-fos in amygdala, known to be involved in anxiety. Male Wistar rats were administered diazepam (1 mg/kg i.p.) for 30 min or inhalated with VEO (1%, 2.5% or 5% w/w) for 7 min prior to exposure to the EPM. Then, the effects of 2.5% VEO, the anxiolytic dose, on c-fos expression in amygdala were investigated. The rats given either 2.5% VEO or diazepam exhibited an anxiolytic-like profile in the EPM. VEO and diazepam significantly increased c-fos expression in the lateral division of the central amygdaloid nucleus (CeL). Therefore, the anxiolytic properties of VEO might be associated with altering neuronal activation in CeL. However, future studies are needed to investigate the precise mechanism of action of VEO. PMID:25553641

  7. Neonatal alcohol exposure and the hippocampus in developing male rats: effects on behaviorally induced CA1 c-Fos expression, CA1 pyramidal cell number, and contextual fear conditioning

    PubMed Central

    Murawski, Nathen J.; Klintsova, Anna Y.; Stanton, Mark E.

    2012-01-01

    Rats exposed to a high binge-like dose of alcohol over postnatal days (PD) 4-9 show reductions in CA1 pyramidal cells and impairments on behavioral tasks that depend on the hippocampus. We first examined hippocampal c-Fos expression as a marker of neuronal activity in normally developing rats following different phases of the context preexposure facilitation effect (CPFE) paradigm (Exp. 1). During the CPFE, preexposure to the training context facilitates contextual conditioning to an immediate shock given on a subsequent occasion. We then examined the relationship between CPFE impairment, hippocampal cell loss and c-Fos expression in rats exposed to alcohol over PD 4-9 (Exp. 2). Normally developing (Exp. 1), sham-intubated control (SI), and PD 4-9 alcohol-exposed (4.00g and 5.25g/kg/day; Exp. 2) juvenile male rats were trained on the CPFE. The CPFE occurs over three phases separated by 24h. Starting on PD 31, rats were preexposed to Context A or Context B for five minutes. 24h later, all rats received an immediate, 1.5 mA foot shock in Context A. Finally, rats were tested for contextual conditioning in Context A on PD 33. Normally developing and SI rats preexposed to Context A showed enhanced contextual fear compared to those preexposed to Context B (Exp. 1) or alcohol-exposed rats preexposed to Context A (Exp. 2). Rats were sacrificed 2h following different phases of the CPFE and processed for c-Fos immunohistochemistry (Exp. 1 and 2) and CA1 pyramidal cell quantification (Exp. 2). In Exp. 1, c-Fos+ cells in the DG were consistently high among rats preexposed to Context A (Pre), Context B (No Pre), or sacrificed directly from their home cage (Home) and did not differ across CPFE phases. CA3 and CA1 c-Fos+ cells were highest during preexposure and decreased across training phases, with Group No Pre showing greater numbers of c-Fos+ cells during training than Group Pre and Controls. In Exp. 2, SI rats had greater numbers of CA1 c-Fos+ cells compared alcohol

  8. Spatial memory formation differentially affects c-Fos expression in retrosplenial areas during place avoidance training in rats.

    PubMed

    Malinowska, Monika; Niewiadomska, Monika; Wesierska, Malgorzata

    2016-01-01

    The retrosplenial cortex is involved in spatial memory function, but the contribution of its individual areas is not well known. To elucidate the involvement of retrosplenial cortical areas 29c and 30 in spatial memory, we analyzed the expression of c-Fos in these areas in the experimental group of rats that were trained in a spatial place avoidance task, i.e. to avoid shocks presented in an unmarked sector of a stable arena under light conditions. Control rats were trained in the same context as the experimental rats either without (Control-noUS) or with shocks (Control-US) that were delivered in a random, noncontingent manner for three days. On the first day of place avoidance learning, the experimental group exhibited c-Fos induction in area 29c, similar to both control groups. In area 30, similarly high levels of c-Fos expression were observed in the experimental and Control-US groups. On the third day of training, when the experimental group efficiently avoided c-Fos expression in areas 29c and 30 was lower compared with the first day of training. In area 29c c-Fos level was also lower in the experimental than in comparison to the Control-US group. In area 30, c-Fos expression in the experimental group was lower than in both control groups. In conclusion, areas 29c and 30 appear to be activated during spatial memory acquisition on the first day of training, whereas area 30 seems suppressed during long-term memory functioning on the third day of training when rats effectively avoid. PMID:27685777

  9. Reversal of novelty-induced hippocampal c-Fos expression in GluA1 subunit-deficient mice by chronic treatment targeting glutamatergic transmission.

    PubMed

    Maksimovic, Milica; Aitta-aho, Teemu; Korpi, Esa R

    2014-12-15

    Malfunction of glutamate transmission is implicated in several neuropsychiatric disorders. Gria1-/- mouse line with knocked-out GluA1 subunits of ionotropic AMPA glutamate receptor displays several behavioural features of schizoaffective disorder. Typically, these mice show hyperactivity provoked by environmental novelty, which is attenuated after 4-week treatment with the standard mood-stabilisers lithium and valproate and the mood-stabilising anticonvulsants topiramate and lamotrigine (Maksimovic, M., Vekovischeva, O.Y., Aitta-Aho, T., Korpi, E.R., 2014. Chronic treatment with mood-stabilizers attenuates abnormal hyperlocomotion of GluA1-subunit deficient mice. PloS One. 9, e100188). Here, we complement our study by treating these mice chronically with perampanel, a novel non-competitive antagonist of AMPA receptors, for 4 weeks at the dose of 60 mg/kg diet, and found reduced locomotor hyperactivity in the Gria1-/- animals, while not affecting the wild-type littermates. To study the cellular mechanism by which chronic treatments with glutamate-modulating mood-stabilizing drugs alleviate this hyperactivity, we used the immediate early gene c-Fos protein expression as a marker of neuronal activity in the brain. Chronic lithium, valproate and topiramate blunted the c-Fos expression especially in the dorsal hippocampus of the Gria1-/- mice, with all of them reducing the number of c-Fos-positive cells in the CA3 region and valproate and topiramate also in the dentate gyrus (DG). Lamotrigine and perampanel treatments had the same effect in the all CA1, CA3 and DG subfields of the dorsal hippocampus of Gria1-/- mice. The results suggest that abnormal (hippocampal) glutamatergic transmission underlies the hyperactive phenotype of the Gria1-/- mice in a novel environment, and based on the efficacies of the present chronic drug treatments, this mouse model may serve as a predictive tool for studying novel mood-stabilisers. PMID:25446922

  10. Phosphodiesterase 10A inhibitor, MP-10 (PF-2545920), produces greater induction of c-Fos in dopamine D2 neurons than in D1 neurons in the neostriatum.

    PubMed

    Wilson, Jonathan M; Ogden, Ann Marie L; Loomis, Sally; Gilmour, Gary; Baucum, Anthony J; Belecky-Adams, Teri L; Merchant, Kalpana M

    2015-12-01

    Studies described here tested the hypothesis that phosphodiesterase 10A inhibition by a selective antagonist, MP-10, activates the dopamine D2 receptor expressing medium spiny neurons to a greater extent than the D1 receptor expressing neurons. We used regional pattern of c-Fos induction in the neostriatal subregions of rodents and direct assessment of D1-positive and -negative neurons in the DRd1a-tdTomato mice for the purpose. MP-10 (1, 3, 10 or 30 mg/kg, PO) dose-dependently increased c-Fos immunopositive nuclei in all regions of neostriatum. However, the effect was statistically greater in the dorsolateral striatum, a region known to be activated preferentially by the D2 antagonism, than the D1-activated dorsomedial striatum. The D2 antagonist, haloperidol (0.3, 1, or 3 mg/kg, PO) produced an identical, regional pattern of c-Fos induction favoring the dorsolateral striatum of the rat. In contrast, the D1 agonist, SKF82958 (0.5, 1, or 2 mg/kg, PO), induced greater expression of c-Fos in the dorsomedial striatum. The C57Bl/6 mouse also showed regionally preferential c-Fos activation by haloperidol (2 mg/kg, IP) and SKF82858 (3 mg/kg, IP). In the Drd1a-tdTomato mice, MP-10 (3 or 10 mg/kg, IP) increased c-Fos immunoreactivity in both types of neurons, the induction was greater in the D1-negative neurons. Taken together, both the regional pattern of c-Fos induction in the striatal sub-regions and the greater induction of c-Fos in the D1-negative neurons indicate that PDE10A inhibition produces a small but significantly greater activation of the D2-containing striatopallidal pathway.

  11. Papillomavirus-Associated Tumor Formation Critically Depends on c-Fos Expression Induced by Viral Protein E2 and Bromodomain Protein Brd4

    PubMed Central

    Schneider, Markus; Schuetz, Johanna; Leiprecht, Natalie; Hudjetz, Benjamin; Brodbeck, Stephan; Corall, Silke; Dreer, Marcel; Schwab, Roxana Michaela; Grimm, Martin; Wu, Shwu-Yuan; Stubenrauch, Frank; Chiang, Cheng-Ming; Iftner, Thomas

    2016-01-01

    We investigated the mechanism of how the papillomavirus E2 transcription factor can activate promoters through activator protein (AP)1 binding sites. Using an unbiased approach with an inducible cell line expressing the viral transcription factor E2 and transcriptome analysis, we found that E2 induces the expression of the two AP1 components c-Fos and FosB in a Brd4-dependent manner. In vitro RNA interference confirmed that c-Fos is one of the AP1 members driving the expression of viral oncogenes E6/E7. Mutation analysis and in vivo RNA interference identified an essential role for c-Fos/AP1 and also for the bromodomain protein Brd4 for papillomavirus-induced tumorigenesis. Lastly, chromatin immunoprecipitation analysis demonstrated that E2 binds together with Brd4 to a canonical E2 binding site (E2BS) in the promoter of c-Fos, thus activating c-Fos expression. Thus, we identified a novel way how E2 activates the viral oncogene promoter and show that E2 may act as a viral oncogene by direct activation of c-Fos involved in skin tumorigenesis. PMID:26727473

  12. Papillomavirus-Associated Tumor Formation Critically Depends on c-Fos Expression Induced by Viral Protein E2 and Bromodomain Protein Brd4.

    PubMed

    Delcuratolo, Maria; Fertey, Jasmin; Schneider, Markus; Schuetz, Johanna; Leiprecht, Natalie; Hudjetz, Benjamin; Brodbeck, Stephan; Corall, Silke; Dreer, Marcel; Schwab, Roxana Michaela; Grimm, Martin; Wu, Shwu-Yuan; Stubenrauch, Frank; Chiang, Cheng-Ming; Iftner, Thomas

    2016-01-01

    We investigated the mechanism of how the papillomavirus E2 transcription factor can activate promoters through activator protein (AP)1 binding sites. Using an unbiased approach with an inducible cell line expressing the viral transcription factor E2 and transcriptome analysis, we found that E2 induces the expression of the two AP1 components c-Fos and FosB in a Brd4-dependent manner. In vitro RNA interference confirmed that c-Fos is one of the AP1 members driving the expression of viral oncogenes E6/E7. Mutation analysis and in vivo RNA interference identified an essential role for c-Fos/AP1 and also for the bromodomain protein Brd4 for papillomavirus-induced tumorigenesis. Lastly, chromatin immunoprecipitation analysis demonstrated that E2 binds together with Brd4 to a canonical E2 binding site (E2BS) in the promoter of c-Fos, thus activating c-Fos expression. Thus, we identified a novel way how E2 activates the viral oncogene promoter and show that E2 may act as a viral oncogene by direct activation of c-Fos involved in skin tumorigenesis. PMID:26727473

  13. The effect of daily caffeine exposure on lever-pressing for sucrose and c-Fos expression in the nucleus accumbens in the rat.

    PubMed

    Retzbach, Edward P; Dholakia, Paulomi H; Duncan-Vaidya, Elizabeth A

    2014-08-01

    Recent reports suggest that caffeine exposure increases the motivation to consume drugs of abuse. As such, it may also enhance the motivation to consume palatable food. Because caffeine is a common constituent in over-the-counter weight-loss supplements, it is important to better understand the relationship between caffeine and food intake. The purpose of this study was to measure the effects of daily intermittent caffeine exposure on lever pressing for sucrose in rats and to assess the impact of caffeine on neuronal activation in the nucleus accumbens (NAc). Male Sprague-Dawley rats that received either saline or caffeine (1, 5, 20mg/kgi.p.) daily were tested on a fixed ratio 4 schedule for sucrose in operant chambers for 10days and then again following a 5-day treatment withdrawal period. After behavioral testing, a subset of the animals was sacrificed to measure the impact of caffeine on neuronal activation in the NAc using c-Fos as a marker. There was a significant increase in active lever presses for sucrose in the rats that had received 5mg/kg of caffeine when compared with the saline group. This treatment effect was no longer present after the withdrawal period. Acute, but not chronic, caffeine exposure elevated c-Fos expression in the NAc. These data suggest that intermittent daily caffeine exposure increases lever pressing for sucrose in rats, but leaves no lasting effect.

  14. The forced swimming-induced behavioural immobility response involves histone H3 phospho-acetylation and c-Fos induction in dentate gyrus granule neurons via activation of the N-methyl-D-aspartate/extracellular signal-regulated kinase/mitogen- and stress-activated kinase signalling pathway.

    PubMed

    Chandramohan, Yalini; Droste, Susanne K; Arthur, J Simon C; Reul, Johannes M H M

    2008-05-01

    The hippocampus is involved in learning and memory. Previously, we have shown that the acquisition of the behavioural immobility response after a forced swim experience is associated with chromatin modifications and transcriptional induction in dentate gyrus granule neurons. Given that both N-methyl-D-aspartate (NMDA) receptors and the extracellular signal-regulated kinases (ERK) 1/2 signalling pathway are involved in neuroplasticity processes underlying learning and memory, we investigated in rats and mice whether these signalling pathways regulate chromatin modifications and transcriptional events participating in the acquisition of the immobility response. We found that: (i) forced swimming evoked a transient increase in the number of phospho-acetylated histone H3-positive [P(Ser10)-Ac(Lys14)-H3(+)] neurons specifically in the middle and superficial aspects of the dentate gyrus granule cell layer; (ii) antagonism of NMDA receptors and inhibition of ERK1/2 signalling blocked forced swimming-induced histone H3 phospho-acetylation and the acquisition of the behavioural immobility response; (iii) double knockout (DKO) of the histone H3 kinase mitogen- and stress-activated kinases (MSK) 1/2 in mice completely abolished the forced swimming-induced increases in histone H3 phospho-acetylation and c-Fos induction in dentate granule neurons and the behavioural immobility response; (iv) blocking mineralocorticoid receptors, known not to be involved in behavioural immobility in the forced swim test, did not affect forced swimming-evoked histone H3 phospho-acetylation in dentate neurons; and (v) the pharmacological manipulations and gene deletions did not affect behaviour in the initial forced swim test. We conclude that the forced swimming-induced behavioural immobility response requires histone H3 phospho-acetylation and c-Fos induction in distinct dentate granule neurons through recruitment of the NMDA/ERK/MSK 1/2 pathway.

  15. Spatial memory extinction: a c-Fos protein mapping study.

    PubMed

    Méndez-Couz, M; Conejo, N M; Vallejo, G; Arias, J L

    2014-03-01

    While the neuronal basis of spatial memory consolidation has been thoroughly studied, the substrates mediating the process of extinction remain largely unknown. This study aimed to evaluate the functional contribution of selected brain regions during the extinction of a previously acquired spatial memory task in the Morris water maze. For that purpose, we used adult male Wistar rats trained in a spatial reference memory task. Learning-related changes in c-Fos inmunoreactive cells after training were evaluated in cortical and subcortical regions. Results show that removal of the hidden platform in the water maze induced extinction of the previously reinforced escape behavior after 16 trials, without spontaneous recovery 24h later. Extinction was related with significantly higher numbers of c-Fos positive nuclei in amygdala nuclei and prefrontal cortex. On the other hand, the lateral mammillary bodies showed higher number of c-Fos positive cells than the control group. Therefore, in contrast with the results obtained in studies of classical conditioning, we show the involvement of diencephalic structures mediating this kind of learning. In summary, our findings suggest that medial prefrontal cortex, the amygdala complex and diencephalic structures like the lateral mammillary nuclei are relevant for the extinction of spatial memory. PMID:24315832

  16. Chronic wheel running affects cocaine-induced c-Fos expression in brain reward areas in rats.

    PubMed

    Zlebnik, Natalie E; Hedges, Valerie L; Carroll, Marilyn E; Meisel, Robert L

    2014-03-15

    Emerging evidence from human and animal studies suggests that exercise is a highly effective treatment for drug addiction. However, most work has been done in behavioral models, and the effects of exercise on the neurobiological substrates of addiction have not been identified. Specifically, it is unknown whether prior exercise exposure alters neuronal activation of brain reward circuitry in response to drugs of abuse. To investigate this hypothesis, rats were given 21 days of daily access to voluntary wheel running in a locked or unlocked running wheel. Subsequently, they were challenged with a saline or cocaine (15 mg/kg, i.p.) injection and sacrificed for c-Fos immunohistochemistry. The c-Fos transcription factor is a measure of cellular activity and was used to quantify cocaine-induced activation of reward-processing areas of the brain: nucleus accumbens (NAc), caudate putamen (CPu), medial prefrontal cortex (mPFC), and orbitofrontal cortex (OFC). The mean fold change in cocaine-induced c-Fos cell counts relative to saline-induced c-Fos cell counts was significantly higher in exercising compared to control rats in the NAc core, dorsomedial and dorsolateral CPu, the prelimbic area, and the OFC, indicating differential cocaine-specific cellular activation of brain reward circuitry between exercising and control animals. These results suggest neurobiological mechanisms by which voluntary wheel running attenuates cocaine-motivated behaviors and provide support for exercise as a novel treatment for drug addiction. PMID:24342748

  17. Chronic wheel running affects cocaine-induced c-Fos expression in brain reward areas in rats

    PubMed Central

    Zlebnik, Natalie E.; Hedges, Valerie L.; Carroll, Marilyn E.; Meisel, Robert L.

    2014-01-01

    Emerging evidence from human and animal studies suggests that exercise is a highly effective treatment for drug addiction. However, most work has been done in behavioral models, and the effects of exercise on the neurobiological substrates of addiction have not been identified. Specifically, it is unknown whether prior exercise exposure alters neuronal activation of brain reward circuitry in response to drugs of abuse. To investigate this hypothesis, rats were given 21 days of daily access to voluntary wheel running in a locked or unlocked running wheel. Subsequently, they were challenged with a saline or cocaine (15 mg/kg, ip) injection and sacrificed for c-Fos immunohistochemistry. The c-Fos transcription factor is a measure of cellular activity and was used to quantify cocaine-induced activation of reward-processing areas of the brain: nucleus accumbens (NAc), caudate putamen (CPu), medial prefrontal cortex (mPFC), and orbitofrontal cortex (OFC). The mean fold change in cocaine-induced c-Fos cell counts relative to saline-induced c-Fos cell counts was significantly higher in exercising compared to control rats in the NAc core, dorsomedial and dorsolateral CPu, the prelimbic area, and the OFC, indicating differential cocaine-specific cellular activation of brain reward circuitry between exercising and control animals. These results suggest neurobiological mechanisms by which voluntary wheel running attenuates cocaine-motivated behaviors and provide support for exercise as a novel treatment for drug addiction. PMID:24342748

  18. Tumor promoter arsenite stimulates histone H3 phosphoacetylation of proto-oncogenes c-fos and c-jun chromatin in human diploid fibroblasts.

    PubMed

    Li, Ji; Gorospe, Myriam; Barnes, Janice; Liu, Yusen

    2003-04-11

    Although epidemiological studies have long established that inorganic arsenic is a potent human carcinogen, the underlying mechanisms are still poorly understood. Recent studies suggest that inorganic arsenic may act as a tumor promoter by perturbing key signaling transduction pathways. We have shown previously that arsenite can potently activate the mitogen-activated protein kinase cascades and induce the expression of proliferation-associated genes, including proto-oncogenes c-jun and c-fos. In order to elucidate further the molecular mechanisms underlying its tumor-promoting properties, we investigated the signaling events involved in arsenite-mediated induction of c-fos and c-jun. We found that induction of both c-fos and c-jun by arsenite can be substantially inhibited by the MEK- selective inhibitor U0126, suggesting that the ERK pathway is critically involved in their up-regulation. Interestingly, arsenite dramatically induced the phosphorylation and acetylation of histone H3 preceding the induction of mRNAs encoding c-fos and c-jun. Finally, chromatin immunoprecipitation assays revealed that arsenite treatment markedly induced the phosphorylation/acetylation of histone H3 associated with the c-fos and c-jun genes through an ERK-dependent pathway. Our results strongly suggest that arsenic-triggered alterations in chromatin structure perturb specific gene transcription, including that of proto-oncogenes c-jun and c-fos, and may thereby contribute to the carcinogenic process.

  19. Brainstem Regions Involved in the Expiration Reflex. A c-fos Study in Anesthetized Cats

    PubMed Central

    Poliacek, Ivan; Halasova, Erika; Jakus, Jan; Murin, Peter; Barani, Helena; Stransky, Albert; Bolser, Donald C

    2009-01-01

    Expression of the immediate-early gene c-fos, a marker of neuronal activation, was employed to localize brainstem neuronal populations functionally related to the expiration reflex (ER). Twelve spontaneously breathing, non-decerebrate, pentobarbital anesthetized cats were used. The level of Fos-like immunoreactivity (FLI) in 6 animals with repetitive ERs mechanically induced from the glottis (296±9 ERs) was compared to FLI in 6 control non-stimulated cats. Respiratory rate, arterial blood pressure, and end tidal CO2 concentration remained stable during the experiment. In the medulla, increased FLI was found in the region of nucleus tractus solitarii (p<0.001), in the ventrolateral medulla along with the lateral tegmental field (p<0.01), and in the vestibular nuclei (p<0.01). In the pons, increased FLI was detected in the caudal extensions of the lateral parabrachial and Kölliker-Fuse nuclei (p<0.05). Within the rostral mesencephalon FLI was enhanced in the midline area (p<0.05). A lower level of ER-related FLI compared to control animals was detected in the pontine raphe region (p<0.05) and the lateral division of mesencephalic periaqueductal gray (p<0.05). The results suggest that the ER is coordinated by a complex long loop of medullary-pontine-mesencephalic neuronal circuits, some of which may differ from those of other respiratory reflexes. The FLI related to the expulsive behavior ER differs from that induced by laryngeal stimulation and laryngeal adductor responses, particularly in ventrolateral medulla and mesencephalon. PMID:17964550

  20. AP-1 Transcription Factors c-FOS and c-JUN Mediate GnRH-Induced Cadherin-11 Expression and Trophoblast Cell Invasion.

    PubMed

    Peng, Bo; Zhu, Hua; Ma, Liyang; Wang, Yan-Ling; Klausen, Christian; Leung, Peter C K

    2015-06-01

    GnRH is expressed in first-trimester human placenta and increases cell invasion in extravillous cytotrophoblasts (EVTs). Invasive phenotypes have been reported to be regulated by transcription factor activator protein 1 (AP-1) and mesenchymal cadherin-11. The aim of our study was to investigate the roles of AP-1 components (c-FOS/c-JUN) and cadherin-11 in GnRH-induced cell invasion in human EVT cells. Phosphorylated c-FOS and phosphorylated c-JUN were detected in the cell column regions of human first-trimester placental villi by immunohistochemistry. GnRH treatment increased c-FOS, c-JUN, and cadherin-11 mRNA and protein levels in immortalized EVT (HTR-8/SVneo) cells. Moreover, GnRH treatment induced c-FOS and c-JUN protein phosphorylation and nuclear accumulation. Pretreatment with antide, a GnRH antagonist, attenuated GnRH-induced cadherin-11 expression. Importantly, basal and GnRH-induced cadherin-11 expression and cell invasion were reduced by small interfering RNA-mediated knockdown of c-FOS, c-JUN, and cadherin-11 in HTR-8/SVneo cells. Our results suggest that GnRH induces the expression and phosphorylation of the AP-1 transcription factors c-FOS and c-JUN in trophoblast cells, which contributes to GnRH-induced elevation of cadherin-11 expression and cell invasion. PMID:25794160

  1. Repeated administration of propofol upregulated the expression of c-Fos and cleaved-caspase-3 proteins in the developing mouse brain

    PubMed Central

    Cui, Yin; Ling-Shan, Gou; Yi, Liu; Xing-Qi, Wang; Xue-Mei, Zhuang; Xiao-Xing, Yin

    2011-01-01

    Objectives and Aim: This study was designed to analyze the relationship between the expression of c-Fos protein and apoptosis in the hippocampus following propofol administration in infant mice. There are reports that certain drugs, including the general anesthetics applied in pediatrics and obstetrics, could block N-methyl-D-aspartate glutamate receptors and activate γ-aminobutyric acid type A receptors. Furthermore, some anesthetics could trigger neuroapoptosis and the expression of c-Fos in the developing rodent brain. Propofol is a general anesthetic increasingly used in pediatrics and obstetrics, and is reported to be able to interact with both γ-aminobutyric acid type A and N-methyl-D-aspartate glutamate receptors. No adequate evaluations have been available as to whether the dosage of propofol to maintain anaesthesia could trigger the expression of c-Fos and apoptosis. Materials and Methods: Intraperitoneal injections of propofol (50, 100 and 150 mg/kg) or vehicle were administered every 90 minutes (4 times) in infant mice (5–7 days old). 30 minutes after the final administration, the protein expressions of c-Fos and cleaved-caspase-3 in the hippocampus were determined by immunohistochemistry and Western blotting. Results: It was demonstrated that the expressions of cleaved-caspase-3 and c-Fos were upregulated in the hippocampal CA3 region in this study. Conclusions: The upregulated c-Fos expression induced by repeated injections of propofol might evoke neuroapoptosis. PMID:22144767

  2. Effect of acute imipramine administration on the pattern of forced swim-induced c-Fos expression in the mouse brain.

    PubMed

    Yanagida, Satoru; Motomura, Keisuke; Ohashi, Ayako; Hiraoka, Kentaro; Miura, Tomofumi; Kanba, Shigenobu

    2016-08-26

    The forced swim test (FST) has been widely used for the preclinical evaluation of antidepressant drugs. Despite considerable differences in the protocol, equivalence of the FST for rats and mice has been rarely questioned. Previous research on the FST for rats revealed that repeated administration of antidepressant drugs attenuates the c-Fos response to swim stress in the hypothalamus and limbic regions. However, few studies have made similar investigations using the FST for mice. In the present study, we explored the mouse brain through immunohistochemistry staining for c-Fos after acute administration of imipramine or saline with or without a subsequent swim session. Imipramine enhanced the c-Fos density in regions of the central extended amygdala, while forced swim stress increased c-Fos expression in some hypothalamic (the ventrolateral preoptic nucleus and dorsomedial nucleus) and brain stem regions, which is consistent with previous reports. In contrast to previous literature with rats, swim stress brought a significant increase in c-Fos expression in the lateral septal nucleus and some other regions in the hypothalamus (the intermediate hypothalamic area, the paraventricular and arcuate nucleus) only in the imipramine-pretreated group, which has not been observed previously. In the arcuate nucleus, double immunostaining revealed that c-Fos was rarely co-expressed with proopiomelanocortin or tyrosine hydroxylase regardless of imipramine treatment. The present results suggest that the activation of several regions in the lateral septum and the hypothalamus underlies antidepressant-like effect in the mouse FST. PMID:27373591

  3. The cellular protooncogenes c-fos and egr-1 are regulated by prostacyclin in rodent osteoblasts and fibroblasts.

    PubMed

    Glantschnig, H; Varga, F; Klaushofer, K

    1996-11-01

    PGs are local regulators of various cellular functions. They exert their effects via specific PG receptor subtypes. Induction of c-fos gene expression has been described for arachidonic acid and its metabolite PGE2. We demonstrate that another very short half-lifed prostanoid metabolite, namely prostacyclin (PGI2), is a regulator of immediate-early genes. PGI2 transiently induced the growth-associated immediate-early genes c-fos and egr-1 in osteoblastic as well as fibroblastic cell lines. Furthermore, we showed that PGI2 dose dependently stimulated new DNA synthesis in the osteoblastic cell line MC3T3-E1. Although PGI2 is known to be a potent inducer of cyclooxygenases, we showed that this pathway is not necessary for protooncogene induction by PGI2. Our data indicate a direct effect of PGI2 on immediate-early gene expression, which does not depend on the synthesis of other prostanoids. Intracellular signal transduction mechanisms were studied with the protein kinase inhibitor H-7, a potent inhibitor of PGI2-induced c-fos expression. Experiments with phorbol esters revealed that protein kinase C activity is not obligatory for the effect of PGI2 on c-fos expression. We conclude from these results that PGI2, a rapidly inactivated prostanoid, has a major impact on cellular oncogene expression and growth in mesenchymally derived cells.

  4. Peripheral injection of bombesin induces c-Fos in NUCB2/nesfatin-1 neurons.

    PubMed

    Engster, Kim-Marie; Kroczek, Arthur L; Rose, Matthias; Stengel, Andreas; Kobelt, Peter

    2016-10-01

    As anorexigenic hormones bombesin and nucleobindin2 (NUCB2)/nesfatin-1 decrease food intake in rodents. Both hormones have been described in brain nuclei that play a role in the modulation of hunger and satiety, like the paraventricular nucleus of the hypothalamus (PVN) and the nucleus of the solitary tract (NTS). However, the direct interaction of the two hormones is unknown so far. The aim of study was to elucidate whether bombesin directly interacts with NUCB2/nesfatin-1 neurons in the PVN and NTS. Therefore, we injected bombesin intraperitoneally (ip) at two doses (26 and 32nmol/kg body weight) and assessed c-Fos activation in the PVN, arcuate nucleus (ARC) and NTS compared to vehicle treated rats (0.15M NaCl). We also performed co-localization studies with oxytocin or tyrosine hydroxylase. Bombesin at both doses increased the number of c-Fos positive neurons in the PVN (p<0.05) and NTS (p<0.05) compared to vehicle, while in the ARC no modulation was observed (p>0.05). In the PVN and NTS the number of c-Fos positive neurons colocalized with NUCB2/nesfatin-1 increased after bombesin injection compared to vehicle treatment (p<0.05). Moreover, an increase of activated NUCB2/nesfatin-1 immunoreactive neurons that co-expressed oxytocin in the PVN (p<0.05) or tyrosine hydroxylase in the NTS (p<0.05) was observed compared to vehicle. Our results show that peripherally injected bombesin activates NUCB2/nesfatin-1 neurons in the PVN and NTS giving rise to a possible interaction between bombesin and NUCB2/nesfatin-1 in the modulation of food intake. PMID:27396908

  5. Peripheral injection of bombesin induces c-Fos in NUCB2/nesfatin-1 neurons.

    PubMed

    Engster, Kim-Marie; Kroczek, Arthur L; Rose, Matthias; Stengel, Andreas; Kobelt, Peter

    2016-10-01

    As anorexigenic hormones bombesin and nucleobindin2 (NUCB2)/nesfatin-1 decrease food intake in rodents. Both hormones have been described in brain nuclei that play a role in the modulation of hunger and satiety, like the paraventricular nucleus of the hypothalamus (PVN) and the nucleus of the solitary tract (NTS). However, the direct interaction of the two hormones is unknown so far. The aim of study was to elucidate whether bombesin directly interacts with NUCB2/nesfatin-1 neurons in the PVN and NTS. Therefore, we injected bombesin intraperitoneally (ip) at two doses (26 and 32nmol/kg body weight) and assessed c-Fos activation in the PVN, arcuate nucleus (ARC) and NTS compared to vehicle treated rats (0.15M NaCl). We also performed co-localization studies with oxytocin or tyrosine hydroxylase. Bombesin at both doses increased the number of c-Fos positive neurons in the PVN (p<0.05) and NTS (p<0.05) compared to vehicle, while in the ARC no modulation was observed (p>0.05). In the PVN and NTS the number of c-Fos positive neurons colocalized with NUCB2/nesfatin-1 increased after bombesin injection compared to vehicle treatment (p<0.05). Moreover, an increase of activated NUCB2/nesfatin-1 immunoreactive neurons that co-expressed oxytocin in the PVN (p<0.05) or tyrosine hydroxylase in the NTS (p<0.05) was observed compared to vehicle. Our results show that peripherally injected bombesin activates NUCB2/nesfatin-1 neurons in the PVN and NTS giving rise to a possible interaction between bombesin and NUCB2/nesfatin-1 in the modulation of food intake.

  6. Piperine alleviates osteoclast formation through the p38/c-Fos/NFATc1 signaling axis.

    PubMed

    Deepak, Vishwa; Kruger, Marlena C; Joubert, Annie; Coetzee, Magdalena

    2015-01-01

    Increased bone fracture is one of the health risk factors in patients with bone loss related disorders such as osteoporosis and breast cancer metastasis to bone. Over activity of osteoclasts leads to uncoupling of bone remodeling favoring bone loss over bone formation. Receptor activator of nuclear factor-κβ ligand (RANKL) triggers the differentiation pathway leading to multinucleated osteoclast formation. Modulation of RANKL or its downstream signaling pathways involved in osteoclast formation is of significant interest in the development of anti-resorptive agents. In this study, the effects of piperine, an alkaloid present in Piper nigrum L. on osteoclast formation was investigated. Piperine inhibited tartrate-resistant acid phosphatase-positive multinucleated osteoclast formation in murine RAW264.7 macrophages and human CD14+ monocytes induced by RANKL and breast cancer cells. Piperine attenuated the p38-mitogen activated protein kinase pathway activation, while the extracellular-signal-regulated kinase, c-Jun N-terminal kinase, or NF-κβ pathways downstream of RANKL remained unaffected. Concomitantly, expression of c-Fos and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), the key transcription factors involved in osteoclastogenesis were remarkably inhibited by piperine. Furthermore, piperine disrupted the actin ring structure and bone resorption, a characteristic hallmark of osteoclasts. Collectively, these results suggested that piperine inhibited osteoclast differentiation by suppressing the p38/NFATc1/c-Fos signaling axis.. PMID:26627060

  7. c-Fos Repression by Piwi Regulates Drosophila Ovarian Germline Formation and Tissue Morphogenesis

    PubMed Central

    Klein, Jonathon D.; Qu, Chunxu; Yang, Xiaoyang; Fan, Yiping; Tang, Chunlao; Peng, Jamy C.

    2016-01-01

    Drosophila melanogaster Piwi functions within the germline stem cells (GSCs) and the somatic niche to regulate GSC self-renewal and differentiation. How Piwi influences GSCs is largely unknown. We uncovered a genetic interaction between Piwi and c-Fos in the somatic niche that influences GSCs. c-Fos is a proto-oncogene that influences many cell and developmental processes. In wild-type ovarian cells, c-Fos is post-transcriptionally repressed by Piwi, which destabilized the c-Fos mRNA by promoting the processing of its 3′ untranslated region (UTR) into Piwi-interacting RNAs (piRNAs). The c-Fos 3′ UTR was sufficient to trigger Piwi-dependent destabilization of a GFP reporter. Piwi represses c-Fos in the somatic niche to regulate GSC maintenance and differentiation and in the somatic follicle cells to affect somatic cell disorganization, tissue dysmorphogenesis, oocyte maturation arrest, and infertility. PMID:27622269

  8. c-Fos Repression by Piwi Regulates Drosophila Ovarian Germline Formation and Tissue Morphogenesis.

    PubMed

    Klein, Jonathon D; Qu, Chunxu; Yang, Xiaoyang; Fan, Yiping; Tang, Chunlao; Peng, Jamy C

    2016-09-01

    Drosophila melanogaster Piwi functions within the germline stem cells (GSCs) and the somatic niche to regulate GSC self-renewal and differentiation. How Piwi influences GSCs is largely unknown. We uncovered a genetic interaction between Piwi and c-Fos in the somatic niche that influences GSCs. c-Fos is a proto-oncogene that influences many cell and developmental processes. In wild-type ovarian cells, c-Fos is post-transcriptionally repressed by Piwi, which destabilized the c-Fos mRNA by promoting the processing of its 3' untranslated region (UTR) into Piwi-interacting RNAs (piRNAs). The c-Fos 3' UTR was sufficient to trigger Piwi-dependent destabilization of a GFP reporter. Piwi represses c-Fos in the somatic niche to regulate GSC maintenance and differentiation and in the somatic follicle cells to affect somatic cell disorganization, tissue dysmorphogenesis, oocyte maturation arrest, and infertility. PMID:27622269

  9. Inducibility of c-Fos protein in visuo-motor system and limbic structures after acute and repeated administration of nicotine in the rat.

    PubMed

    Mathieu-Kia, A M; Pages, C; Besson, M J

    1998-08-01

    To identify neuroanatomical substrates affected by nicotine, we have studied its effects after acute and repeated administration through the c-Fos protein inducibility in various brain structures. Ninety minutes after acute nicotine (0.35 mg/kg, s.c.) the number of c-Fos-like immunoreactive nuclei was consistently increased in visuo-motor structures such as the superior colliculus, the medial terminal nucleus of accessory optic tract, and the nucleus of the optic tract. The anteroventral and lateroposterior thalamic nuclei, connected with the retina and involved in limbic processing, showed a c-Fos induction. c-Fos was preferentially induced in terminal fields of neurons of the ventral tegmental area such as the nucleus accumbens, the central amygdala, the lateral habenula, the lateral septum, as well as the cingulate, medial prefrontal, orbital and piriform cortices. In chronically treated rats (0.35 mg/kg s.c., 3 x day for 14 days), the last nicotine injection given on the 15th day was still able to induce 90 minutes later c-Fos protein in visuo-motor, retino-limbic, subcortical, and cortical limbic structures. Moreover, this chronic treatment produced an additional recruitment of c-Fos-positive nuclei in the cingulate cortex, the core and the ventral shell of the nucleus accumbens. c-Fos induction after nicotine differs from that reported after other addictive drugs in terms of pattern and chronic inducibility, indicating that different mechanisms are involved for maintaining this transcription factor. In addition to a preferential sensitivity of mesolimbic dopaminergic neurons to nicotine, activation of visuo-limbic and limbic regions could be relevant for understanding some context-dependent and addictive behaviors produced by nicotine.

  10. Brain distribution of c-fos expression as a result of prolonged rapid eye movement (REM) sleep period duration.

    PubMed

    Merchant-Nancy, H; Vázquez, J; García, F; Drucker-Colín, R

    1995-05-29

    Auditory stimulation (AS) or recovery from sleep deprivation (SD) has been shown to increase REM sleep periods in rats, cats and humans. This increment in REM has been credited to an amplified level of excitability in a widely distributed neuronal network throughout the brain. Fos-like immunostaining (FLI) has been useful in constructing maps of post-synaptic neuronal activity with single cell resolution, and has been proposed to be tightly related with progressing neuronal activation. This study utilized FLI as a marker to determine the number of neurons and structures which express c-fos in broadly distributed areas of the brain in animals with REM periods prolonged by either AS or SD. The results indicated that the brain stem and diencephalon present FLI increases in a variety of structures that possibly share various functional aspects of the REM sleep mechanism. These results are discussed in terms of the possibility that REM maintenance is related to an increase in the recruitment of REM-on neurons.

  11. c-Fos expression predicts long-term social memory retrieval in mice.

    PubMed

    Lüscher Dias, Thomaz; Fernandes Golino, Hudson; Moura de Oliveira, Vinícius Elias; Dutra Moraes, Márcio Flávio; Schenatto Pereira, Grace

    2016-10-15

    The way the rodent brain generally processes socially relevant information is rather well understood. How social information is stored into long-term social memory, however, is still under debate. Here, brain c-Fos expression was measured after adult mice were exposed to familiar or novel juveniles and expression was compared in several memory and socially relevant brain areas. Machine Learning algorithm Random Forest was then used to predict the social interaction category of adult mice based on c-Fos expression in these areas. Interaction with a familiar co-specific altered brain activation in the olfactory bulb, amygdala, hippocampus, lateral septum and medial prefrontal cortex. Remarkably, Random Forest was able to predict interaction with a familiar juvenile with 100% accuracy. Activity in the olfactory bulb, amygdala, hippocampus and the medial prefrontal cortex were crucial to this prediction. From our results, we suggest long-term social memory depends on initial social olfactory processing in the medial amygdala and its output connections synergistically with non-social contextual integration by the hippocampus and medial prefrontal cortex top-down modulation of primary olfactory structures.

  12. Roles for NF-kappaB and c-Fos in osteoclasts.

    PubMed

    Boyce, Brendan F; Yamashita, Teruhito; Yao, Zhenqiang; Zhang, Qian; Li, Fang; Xing, Lianping

    2005-01-01

    NF-kappaB and c-Fos are transcription factors that are activated in immune cells and in most other cell types following stimulation by a variety of factors, including cytokines, growth factors, and hormones. They regulate the expression of a large number of genes, and both are activated in osteoclast precursors after RANKL, IL-1, or TNF bind to their respective receptors. However, of these cytokines, only RANKL is required for the induction of osteoclast formation in vivo. Nevertheless, it is likely that IL-1, TNF, and other cytokines participate in the upregulation of osteoclast formation seen in a variety of conditions that affect the skeleton in which cytokine production is increased, including estrogen deficiency and inflammatory bone diseases. In this review, the RANKL/ OPG/RANK system and roles for NF-kappaB and c-Fos in osteoclasts are reviewed along with our current understanding of how this system may be disrupted in common bone diseases, such as postmenopausal osteoporosis, inflammatory arthritis, and Paget's disease.

  13. Male song quality modulates c-Fos expression in the auditory forebrain of the female canary

    PubMed Central

    Monbureau, Marie; Barker, Jennifer M.; Leboucher, Gérard; Balthazart, Jacques

    2015-01-01

    In canaries, specific phrases of male song (sexy songs, SS) that are difficult to produce are especially attractive for females. Females exposed to SS produce more copulation displays and deposit more testosterone into their eggs than females exposed to non-sexy songs (NS). Increased expression of the immediate early genes c-Fos or zenk (a.k.a. egr-1) has been observed in the auditory forebrain of female songbirds hearing attractive songs. C-Fos immunoreactive (Fos-ir) cell numbers were quantified here in the brain of female canaries that had been collected 30 min after they had been exposed for 60 min to the playback of SS or NS or control white noise. Fos-ir cell numbers increased in the caudomedial mesopallium (CMM) and caudomedial nidopallium (NCM) of SS birds as compared to controls. Song playback (pooled SS and NS) also tended to increase average Fos-ir cell numbers in the mediobasal hypothalamus (MBH) but this effect did not reach full statistical significance. At the individual level, Fos expression in CMM was correlated with its expression in NCM and in MBH but also with the frequency of calls that females produced in response to the playbacks. These data thus indicate that male songs of different qualities induce a differential metabolic activation of NCM and CMM. The correlation between activation of auditory regions and of the MBH might reflect the link between auditory stimulation and changes in behavior and reproductive physiology. PMID:25846435

  14. Male song quality modulates c-Fos expression in the auditory forebrain of the female canary.

    PubMed

    Monbureau, Marie; Barker, Jennifer M; Leboucher, Gérard; Balthazart, Jacques

    2015-08-01

    In canaries, specific phrases of male song (sexy songs, SS) that are difficult to produce are especially attractive for females. Females exposed to SS produce more copulation displays and deposit more testosterone into their eggs than females exposed to non-sexy songs (NS). Increased expression of the immediate early genes c-Fos or zenk (a.k.a. egr-1) has been observed in the auditory forebrain of female songbirds hearing attractive songs. C-Fos immunoreactive (Fos-ir) cell numbers were quantified here in the brain of female canaries that had been collected 30min after they had been exposed for 60min to the playback of SS or NS or control white noise. Fos-ir cell numbers increased in the caudomedial mesopallium (CMM) and caudomedial nidopallium (NCM) of SS birds as compared to controls. Song playback (pooled SS and NS) also tended to increase average Fos-ir cell numbers in the mediobasal hypothalamus (MBH) but this effect did not reach full statistical significance. At the individual level, Fos expression in CMM was correlated with its expression in NCM and in MBH but also with the frequency of calls that females produced in response to the playbacks. These data thus indicate that male songs of different qualities induce a differential metabolic activation of NCM and CMM. The correlation between activation of auditory regions and of the MBH might reflect the link between auditory stimulation and changes in behavior and reproductive physiology. PMID:25846435

  15. c-Fos expression predicts long-term social memory retrieval in mice.

    PubMed

    Lüscher Dias, Thomaz; Fernandes Golino, Hudson; Moura de Oliveira, Vinícius Elias; Dutra Moraes, Márcio Flávio; Schenatto Pereira, Grace

    2016-10-15

    The way the rodent brain generally processes socially relevant information is rather well understood. How social information is stored into long-term social memory, however, is still under debate. Here, brain c-Fos expression was measured after adult mice were exposed to familiar or novel juveniles and expression was compared in several memory and socially relevant brain areas. Machine Learning algorithm Random Forest was then used to predict the social interaction category of adult mice based on c-Fos expression in these areas. Interaction with a familiar co-specific altered brain activation in the olfactory bulb, amygdala, hippocampus, lateral septum and medial prefrontal cortex. Remarkably, Random Forest was able to predict interaction with a familiar juvenile with 100% accuracy. Activity in the olfactory bulb, amygdala, hippocampus and the medial prefrontal cortex were crucial to this prediction. From our results, we suggest long-term social memory depends on initial social olfactory processing in the medial amygdala and its output connections synergistically with non-social contextual integration by the hippocampus and medial prefrontal cortex top-down modulation of primary olfactory structures. PMID:27449201

  16. c-Fos expression in rat brainstem following intake of sucrose or saccharin.

    PubMed

    Chen, Ke; Yan, Jianqun; Li, Jinrong; Lv, Bo; Zhao, Xiaolin

    2011-09-01

    To examine whether the activation of brainstem neurons during intake of a sweet tastant is due to orosensory signals or post-ingestive factors, we compared the distribution of c-Fos-like immunoreactivity (c-FLI) in the nucleus of the solitary tract (NST) and parabrachial nucleus (PBN) of brainstem following ingestion of 0.25 Msucrose or 0.005 M saccharin solutions. Immunopositive neurons were localized mainly in the middle zone of the PBN and four rostral-caudal subregions of the NST. Intake of sucrose increased the number of FLI neurons in almost every subnucleus of the PBN (F((2,13)) = 7.610, P = 0.023), in addition to the caudal NST at the level of the area postrema (F((2,13)) = 10.777, P = 0.003) and the NST intermediate zone (F((2,13)) = 7.193, P = 0.014). No significant increase in the number of c-Fos positive neurons was detected in response to saccharin ingestion, although there was a trend towards a modest increase in a few select NST and PBN nuclei. These results suggest that the PBN and NST may be involved in sweet taste perception and modulation of sweet tastant intake, but the significantly enhanced intensity of Fos expression induced by sucrose indicates that PBN/NST neuronal activity is driven by the integrated effects of sweet taste sensation and post-ingestive signals.

  17. miR-144 and targets, c-fos and cyclooxygenase-2 (COX2), modulate synthesis of PGE2 in the amnion during pregnancy and labor

    PubMed Central

    Li, Huanan; Zhou, Jiawei; Wei, Xiajie; Chen, Ran; Geng, Junnan; Zheng, Rong; Chai, Jin; Li, Fenge; Jiang, Siwen

    2016-01-01

    Labor is initiated as a result of hormonal changes that are induced by the activation of the inflammatory response and a series of biochemical events. The amnion, which is the primary source of prostaglandin E2 (PGE2), plays an important role in the process of labor. In the present study, we uncovered a pathway in which c-fos, cyclooxygenase-2 (COX2) and miR-144 function as hormonal modulators in the amnions of pregnant mice and humans. miR-144 down-regulated the synthesis of PGE2 during pregnancy by directly and indirectly inhibiting COX2 expression and by directly inhibiting the expression of c-fos, a transcriptional activator of COX2 and miR-144. Estrogen (E2) activated c-fos, thus promoting the expression of miR-144 and COX2 during labor. However, the increase in COX2 resulted in the partial inhibition of COX2 expression by miR-144, thereby slightly reducing the secretion of PGE2. These observations suggest that miR-144 inhibits PGE2 secretion by section to prevent the initiation of premature labor. Up-regulated expression of miR-144, c-fos and COX2 was also observed both in preterm mice and in mice undergoing normal labor. In summary, miR-144, c-fos and COX2 play important roles in regulating PGE2 secretion in the amnion during pregnancy and labor. PMID:27297132

  18. The hallucinogen d-lysergic acid diethylamide (d-LSD) induces the immediate-early gene c-Fos in rat forebrain.

    PubMed

    Frankel, Paul S; Cunningham, Kathryn A

    2002-12-27

    The hallucinogen d-lysergic acid diethylamide (d-LSD) evokes dramatic somatic and psychological effects. In order to analyze the neural activation induced by this unique psychoactive drug, we tested the hypothesis that expression of the immediate-early gene product c-Fos is induced in specific regions of the rat forebrain by a relatively low, behaviorally active, dose of d-LSD (0.16 mg/kg, i.p.); c-Fos protein expression was assessed at 30 min, and 1, 2 and 4 h following d-LSD injection. A time- and region-dependent expression of c-Fos was observed with a significant increase (P<0.05) in the number of c-Fos-positive cells detected in the anterior cingulate cortex at 1 h, the shell of the nucleus accumbens at 1 and 2 h, the bed nucleus of stria terminalis lateral at 2 h and the paraventricular hypothalamic nucleus at 1, 2 and 4 h following systemic d-LSD administration. These data demonstrate a unique pattern of c-Fos expression in the rat forebrain following a relatively low dose of d-LSD and suggest that activation of these forebrain regions contributes to the unique behavioral effects of d-LSD.

  19. Periaqueductal gray c-Fos expression varies relative to the method of conditioned taste aversion extinction employed

    PubMed Central

    Mickley, G. Andrew; Wilson, Gina N.; Remus, Jennifer L.; Ramos, Linnet; Ketchesin, Kyle D.; Biesan, Orion R.; Luchsinger, Joseph R.; Prodan, Suzanna

    2011-01-01

    columns of the PAG. The number of c-Fos-labeled cells in the PAG was generally low but there was a reliable increase in c-Fos expression in dorsolateral PAG (dlPAG) following the SR test in the brains of rats that went through the EU-EXT procedure as compared with those that either went through the more-traditional CSO extinction procedure or experienced no extinction at all. The number of c-Fos-labeled neurons in the dlPAG was significantly correlated with the amount of SAC consumed at the SR test. Surprisingly, the brains of EU-extinguished rats and CSO extinguished rats did not differ in the number of c-Fos-labeled neurons in gustatory neocortex, medial prefrontal cortex, basolateral amygdala, or the central nucleus of the amygdala. Thus, behavioral differences in SR between the EU and CSO extinction animals were not represented by corresponding changes in the neural activity of several brain nuclei classically associated with extinction learning. However a detailed analysis of PAG c-Fos expression provided hints about some of the physiological changes evoked by these 2 extinction paradigms that produce very different behavioral outcomes. The findings are clinically relevant as we seek the development of treatments for deficits in fear extinction (e.g. PTSD, phobias). PMID:22000083

  20. C-fos expression in rat brain nuclei following incisor tooth movement.

    PubMed

    Magdalena, C M; Navarro, V P; Park, D M; Stuani, M B S; Rocha, M J A

    2004-01-01

    In the rat experimental model, molar tooth movement induced by Waldo's method is known to cause a temporally and spatially defined pattern of brain neuronal activation. Since orthodontic correction usually involves the entire dental arch, we used a spring-activated appliance to extend the investigation to incisors, and we included brain regions related to antinociception. Adjustment of the non-activated appliance on incisors resulted in c-fos expression in the dorsal raphe, peri-aqueductal gray matter, and the locus coeruleus, in addition to trigeminal sensory subnuclei and the parabrachial nucleus, where neuronal activation has already been detected in previous studies on molar tooth movement. Appliance activation with a 70-g force resulted in a further increase in Fos-immunoreactive neurons in the trigeminal sensory subnucleus caudalis and in the dorsal raphe. This result suggests that there is a recruitment of neurons related to nociception and to antinociception when tooth movement is increased.

  1. Degradation of the proto-oncogene product c-Fos by the ubiquitin proteolytic system in vivo and in vitro: identification and characterization of the conjugating enzymes.

    PubMed Central

    Stancovski, I; Gonen, H; Orian, A; Schwartz, A L; Ciechanover, A

    1995-01-01

    The transcription factor c-Fos is a short-lived cellular protein. The levels of the protein fluctuate significantly and abruptly during changing pathophysiological conditions. Thus, it is clear that degradation of the protein plays an important role in its tightly regulated activity. We examined the involvement of the ubiquitin pathway in c-Fos breakdown. Using a mutant cell line, ts20, that harbors a thermolabile ubiquitin-activating enzyme, E1, we demonstrate that impaired function of the ubiquitin system stabilizes c-Fos in vivo. In vitro, we reconstituted a cell-free system and demonstrated that the protein is multiply ubiquitinated. The adducts serve as essential intermediates for degradation by the 26S proteasome. We show that both conjugation and degradation are significantly stimulated by c-Jun, with which c-Fos forms the active heterodimeric transcriptional activator AP-1. Analysis of the enzymatic cascade involved in the conjugation process reveals that the ubiquitin-carrier protein E2-F1 and its human homolog UbcH5, which target the tumor suppressor p53 for degradation, are also involved in c-Fos recognition. The E2 enzyme acts along with a novel species of ubiquitin-protein ligase, E3. This enzyme is distinct from other known E3s, including E3 alpha/UBR1, E3 beta, and E6-AP. We have purified the novel enzyme approximately 350-fold and demonstrated that it is a homodimer with an apparent molecular mass of approximately 280 kDa. It contains a sulfhydryl group that is essential for its activity, presumably for anchoring activated ubiquitin as an intermediate thioester prior to its transfer to the substrate. Taken together, our in vivo and in vitro studies strongly suggest that c-Fos is degraded in the cell by the ubiquitin-proteasome proteolytic pathway in a process that requires a novel recognition enzyme. PMID:8524278

  2. Long-term methylphenidate treatment down-regulates c-fos in the striatum of male CD-1 mice.

    PubMed

    Hawken, Christianne M; Brown, Richard E; Carrey, Normand; Wilkinson, Michael

    2004-04-29

    Methylphenidate (Ritalin) is routinely prescribed to children with attention deficit hyperactivity disorder, but little is known about its long-term consequences on brain development. We treated pre- and peri-pubertal male CD-1 mice with repeated injections of methylphenidate hydrochloride (MPH) and quantified the expression of the immediate early gene c-fos in the striatum. A single injection of MPH (5 or 40 mg/kg) significantly elevated FOS immunoreactivity in the striatum in a dose-dependent manner, compared with saline. Repeated MPH treatment attenuated the effect of a single challenge dose of MPH on striatal c-fos expression. These results replicate those observed with rats and indicate that long-term use of MPH may alter neural activity by down-regulation of gene expression in the striatum.

  3. Effects of food deprivation on goal-directed behavior, spontaneous locomotion, and c-Fos immunoreactivity in the amygdala.

    PubMed

    Moscarello, J M; Ben-Shahar, O; Ettenberg, A

    2009-01-30

    Previous work in our laboratory has shown that food deprivation and food presentation produce different patterns of neuronal activity (as measured by c-Fos immunoreactivity) in the medial prefrontal cortex and nucleus accumbens of rats. Since the amygdala has been implicated in both motivational and reinforcement processes and has neuronal connections to both the prefrontal cortex and nucleus accumbens, it was of interest to assess amygdaloid c-Fos immunoreactivity during similar manipulations of food deprivation and presentation. In the current study, c-Fos counts in both basolateral and central amygdalar nuclei were observed to increase in rats 12- and 36-h food deprived (relative to 0-h controls)-an effect reversed by the presentation of either a small or large meal (2.5 or 20g of food). In another experiment, rats working on a progressive ratio schedule of reinforcement exhibited elevated break-points as a function of food deprivation, a result consistent with the view that the feeding manipulations increased the subjects' level of motivation. In contrast, food deprivation reduced the spontaneous locomotor activity of rats, presumably as a result of an inherent energy-conservation strategy when no food is readily available. These data suggest that the state of food deprivation is associated with: (a) enhanced behavioral output only when food is attainable (increased goal-directed behavior, but decreased spontaneous activity), and (b) increased synaptic engagement in neuronal circuits involved in affective valuation and related decision-making (increased c-Fos counts in the amygdala). PMID:18706934

  4. Fisetin Inhibits Osteoclast Differentiation via Downregulation of p38 and c-Fos-NFATc1 Signaling Pathways

    PubMed Central

    Choi, Sik-Won; Son, Young-Jin; Yun, Jung-Mi; Kim, Seong Hwan

    2012-01-01

    The prevention or therapeutic treatment of loss of bone mass is an important means of improving the quality of life for patients with disorders related to osteoclast-mediated bone loss. Fisetin, a flavonoid dietary ingredient found in the smoke tree (Continus coggygria), exhibits various biological activities, but its effect on osteoclast differentiation is unknown. In this study, fisetin dose-dependently inhibited the RANKL-induced osteoclast differentiation with downregulation of the activity or expression of p38, c-Fos, and NFATc1 signaling molecules. The p38/c-Fos/NFATc1-regulated expression of genes required for cell fusion and bone resorption, such as DC-STAMP and cathepsin K, was also inhibited by fisetin. Considering the rescue of fisetin's inhibitory action by NFATc1 over-expression, the cascade of p38-c-Fos-NFATc1 could be strongly involved in the inhibitory effect of fisetin on osteoclast differentiation. Furthermore, fisetin inhibited the bone-resorbing activity of mature osteoclasts. In conclusion, fisetin may be of use in the treatment of osteoclast-related disorders, including osteoporosis. PMID:23008743

  5. Damage to the central amygdala produces differential encephalic c-fos expression in the water deprivation-partial rehydration protocol.

    PubMed

    Vendramini, Regina C; Pereira, Daniela T B; Borella, Thais L; Menani, José V; De Luca, Laurival A

    2009-12-22

    We investigated the effects of electrolytic damage to the central nucleus of the amygdala on brain c-fos expression and 0.3 M NaCl intake of adult male rats (n = 6-12/group) submitted to a cycle of 36 h of water deprivation (WD) followed by 2 h water intake until satiety or partial rehydration (PR). The groups were divided into sham lesion (CEAs), bilateral lesion of the CEA (CEAX) and misplaced lesion with intact CEA (CEAm). The WD-PR produced a marked increase in c-fos expression in the medial parabrachial nucleus (MPBN) and some increase in the parvocelullar portion of the hypothalamic paraventricular nucleus (PVNp), compared to respective hydrated control (no water deprivation) state in CEAX, but not in CEAs or CEAm. The WD-PR induced similar c-fos expression in the lamina terminalis, supraoptic nucleus, magnocellular PVN and lateral parabrachial nucleus in both CEAX and CEAs. The CEAX showed the typical reduced daily need-free 0.3 M NaCl intake compared to CEAs. However, the 0.3 M NaCl intake of CEAX, unexpectedly, was not significantly different from CEAs or intact rats in the sodium appetite test that followed a cycle of WD-PR. The results do not allow associating the alterations in c-fos expression to the typical inhibition of sodium appetite well known in the literature to be produced by damage to the CEA. Nevertheless, the enhanced cell activation in the MPBN and PVNp suggests an inhibitory role for the CEA on the activity of these nuclei when water-deprived rats have quenched their thirst.

  6. Differential effects of central and peripheral injection of interleukin-1 beta on brain c-fos expression and neuroendocrine functions.

    PubMed

    Rivest, S; Torres, G; Rivier, C

    1992-07-31

    Cytokines such as interleukin-1 beta (IL-1 beta) alter the activity of the hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes in the rat. However, the brain sites at which IL-1 beta exerts these effects have not been well identified. The present study sought to identify some of these sites, using c-fos protein expression as an index of cellular activation. We also attempted to determine possible differences between the effects of peripheral and central injection of IL-1 beta on the activation of specific brain areas. Castrated male rats received intravenous (i.v.) or intracerebroventricular (i.c.v.) injections of IL-1 beta through a jugular catheter or a permanent cannula implanted in the right lateral ventricle, respectively. Blood samples were taken before, as well as 30 and 120 min after i.v. or i.c.v. IL-1 beta infusion in order to measure plasma ACTH and LH levels. Immediately thereafter, the rats were anesthetized with pentobarbital, then perfused. Their brains were removed and postfixed for one hour. Thirty-microns frozen sections were cut and approximately every fourth tissue section was processed for c-fos expression by an avidin-biotin-peroxidase method. Both i.v. (1 microgram) and i.c.v. (100 ng) injection of IL-1 beta significantly increased plasma ACTH levels, but only i.c.v. treatment measurably inhibited LH secretion. I.c.v. infusion of the cytokine markedly augmented c-fos expression in the paraventricular nucleus (PVN) and the arcuate nucleus (ARC) of the hypothalamus. A large amount of CRF cells in the PVN contained labelled c-fos protein (as measured by a double labelling technique), which indicates that CRF perikarya in this hypothalamic region are activated by the central administration of IL-1 beta. In contrast, i.v. injection of IL-1 beta did not significantly alter c-fos expression in the PVN or the ARC of the hypothalamus. These results suggest that the increased HPA axis activity which follows the peripheral

  7. Further evidence for the interaction of mu- and delta-opioid receptors in the antinociceptive effects of the dual inhibitor of enkephalin catabolism, RB101(S). A spinal c-Fos protein study in the rat under carrageenin inflammation.

    PubMed

    Le Guen, Stéphanie; Catheline, Gwénaëlle; Fournié-Zaluski, Marie Claude; Roques, Bernard Pierre; Besson, Jean Marie; Buritova, Jaroslava

    2003-03-28

    We have previously shown that RB101, a dual inhibitor of enkephalin-degrading enzymes, decreased carrageenin-evoked c-Fos protein expression at the spinal cord level in awake rats. Moreover, we have also shown that c-Fos expression is a useful marker of the possible direct or indirect interactions between neural pathways, such as opioid and cholecystokinin systems. We now investigated the respective roles of the three main types of opioid receptors (mu, delta, or kappa) and their possible interactions, in the depressive effects of RB101 in inflammatory nociceptive conditions induced by intraplantar carrageenin (6 mg/150 microl of saline). We used beta-funaltrexamine (beta-FNA), naltrindole (NTI), and nor-binaltorphimine (BNI) as specific antagonists for mu, delta- and kappa-opioid receptors, respectively. c-Fos protein-immunoreactivity (c-Fos-IR) was evaluated as the number of c-Fos-IR nuclei in the lumbar spinal cord 90 min after carrageenin. c-Fos-IR nuclei were preferentially located in the superficial (I-II) and deep (V-VI) laminae of segments L4-L5 (areas containing numerous neurons responding exclusively, or not, to nociceptive stimuli). RB101(S) (30 mg/kg, i.v.) significantly reduced the total number of carrageenin-evoked c-Fos-IR nuclei (30% reduction, P<0.01). This effect was completely blocked by beta-FNA (10 mg/kg, i.v.), or NTI (1 mg/kg, i.v.). In contrast, BNI (2.5 mg/kg, i.v.) did not reverse the reducing effects of RB101(S) on carrageenin-evoked c-Fos protein expression. These results suggest that functional interactions occur between mu- and delta-opioid receptors in enkephalin-induced antinociceptive effects.

  8. Extinction of conditioned taste aversion is related to the aversion strength and associated with c-fos expression in the insular cortex.

    PubMed

    Hadamitzky, M; Bösche, K; Engler, A; Schedlowski, M; Engler, H

    2015-09-10

    Taste aversion learning is a type of conditioning where animals learn to associate a novel taste (conditioned stimulus; CS) with a stimulus inducing symptoms of poisoning or illness (unconditioned stimulus; US). As a consequence animals later avoid this taste, a reaction known as conditioned taste aversion (CTA). An established CTA extinguishes over time when the CS is repeatedly presented in the absence of the US. However, inter-individual differences in CTA extinction do exist. Using a model of behavioral conditioning with saccharin as CS and the immunosuppressant cyclosporine A as US, the present study aimed at further elucidating the factors underlying individual differences in extinction learning by investigating whether extinction of an established CTA is related to the strength of the initially acquired CS-US association. In addition, we analyzed the expression of the neuronal activation marker c-fos in brain structures relevant for acquisition and retrieval of the CTA, such as the insular cortex and the amygdala. We here show that animals, displaying a strong CS-US association during acquisition, maintained a strong CTA during unreinforced CS re-exposures, in contrast to animals with moderate CS-US association. Moreover, the latter animals showed increased c-fos mRNA expression in the insular cortex. Our data indicate that CTA extinction apparently depends on the strength of the initially learned CS-US association. In addition, these findings provide further evidence that the memory for the initial excitatory conditioning and its subsequent extinction is probably stored in those structures that participate in the processing of the CS and the US.

  9. Blockade of NK3R signaling in the PVN decreases vasopressin and oxytocin release and c-Fos expression in the magnocellular neurons in response to hypotension.

    PubMed

    Haley, Gwendolen E; Flynn, Francis W

    2008-10-01

    Tachykinin neurokinin 3 receptor (NK3R) signaling has a broad role in vasopressin (VP) and oxytocin (OT) release. Hydralazine (HDZ)-induced hypotension activates NK3R expressed by magnocellular neurons, increases plasma VP and OT levels, and induces c-Fos expression in VP and OT neurons. Intraventricular pretreatment with the specific NK3R antagonist, SB-222200, eliminates the HDZ-stimulated VP and OT release. NK3R are distributed in the central pathways conveying hypotension information to the magnocellular neurons, and the NK3R antagonist could act anywhere in the pathways. Alternatively, the antagonist could act at the NK3R expressed by the magnocellular neurons. To determine whether blockade of NK3R on magnocellular neurons impairs VP and OT release to HDZ, rats were pretreated with a unilateral PVN injection of 0.15 M NaCl or SB-222200 prior to an intravenous injection of 0.15 M NaCl or HDZ. Blood samples were taken, and brains were processed for VP/c-Fos and OT/c-Fos immunohistochemistry. Intravenous injection of 0.15 M NaCl did not alter plasma hormone levels, and little c-Fos immunoreactivity was present in the PVN. Conversely, intravenous injection of HDZ increased plasma VP and OT levels and c-Fos expression in VP and OT magnocellular neurons. Intra-PVN injection of SB-222200 prior to an intravenous injection of HDZ significantly decreased c-Fos expression in both VP and OT neurons by approximately 70% and attenuated plasma VP and OT levels by 33% and 35%, respectively. Therefore, NK3R signaling in magnocellular neurons has a critical role for the release of VP and OT in response to hypotension.

  10. Cocaine-induced c-Fos expression in rats selectively bred for high or low saccharin intake and in rats selected for high or low impulsivity.

    PubMed

    Regier, Paul S; Carroll, Marilyn E; Meisel, Robert L

    2012-08-01

    Sweet preference and impulsivity are predictors of cocaine self-administration; however, no research has been conducted to investigate neuronal activation in key brain reward areas after first time exposure to cocaine in rats that differ in their propensity for cocaine-seeking and -taking behavior. In this study we used rats that had been selectively bred for high vs. low saccharin intake and rats selected for high vs. low impulsivity for food. The goal of this study was to investigate whether there are differences of c-Fos reactivity between high and low phenotypes and determine whether these differences are similar between the two animal models. A group of rats was bred for high or low saccharin intake. Another group of rats was selected as high or low impulsive based on performance in a delay-discounting task. Subsequently, rats were given an acute injection of cocaine or saline and then c-Fos expression was observed and analyzed in several brain regions. The low reward-seeking phenotypes showed higher cocaine-induced c-Fos expression in several of these regions. Low saccharin preferring rats showed higher cocaine-induced c-Fos expression in the nucleus accumbens shell, and low impulsive rats showed higher cocaine-induced c-Fos expression in the orbitofrontal cortex and cingulate gyrus 1 area. In addition, both low impulsive and low saccharin rats had higher cocaine-induced c-Fos in the dorsal medial and dorsal lateral caudate putamen. The results indicate that individual differences in neuronal reactivity exist prior to chronic exposure to drugs of abuse. Furthermore, similar differences between the two animal models may be indicative of a common mechanism underlying vulnerability to drugs of abuse.

  11. Induction of c-Fos and NFATc1 during RANKL-stimulated osteoclast differentiation is mediated by the p38 signaling pathway

    SciTech Connect

    Huang, Hao; Chang, Eun-Ju; Ryu, Jiyoon; Lee, Zang Hee; Lee, Youngkyun . E-mail: yklee@snu.ac.kr; Kim, Hong-Hee . E-mail: hhbkim@snu.ac.kr

    2006-12-08

    The crucial role of p38 mitogen-activated protein kinase for osteoclast differentiation has been suggested from studies with specific pharmacological inhibitors and dominant-negative forms of p38. However, the targets through which p38 regulates osteoclast differentiation have not been clearly revealed. Here, we show that inhibition of p38 activity with SB203580 reduced osteoclastogenesis from primary precursor cells, with concomitant suppression in the induction of both c-Fos and nuclear factor of activated T cells (NFAT) c1 by receptor activator of nuclear factor {kappa}B ligand (RANKL), the key osteoclast differentiation factor. Overexpression of dominant-negative forms of p38 upstream kinases MKK3 and MKK6 elicited similar reduction in RANKL-stimulated elevation of c-Fos and NFATc1. Interestingly, overexpression of c-Fos restored RANKL-induced osteoclast differentiation from and NFATc1 expression in SB203580-treated precursor cells. Our results demonstrate a previously unknown function of the p38 pathway in up-regulating c-Fos and NFATc1 expression during RANKL-induced osteoclastogenesis.

  12. Effect of postnatal treadmill exercise on c-Fos expression in the hippocampus of rat pups born from the alcohol-intoxicated mothers.

    PubMed

    Sim, Young-Je; Kim, Hong; Shin, Mal-Soon; Chang, Hyun-Kyung; Shin, Min-Chul; Ko, Il-Gyu; Kim, Ki-Jeong; Kim, Tea-Soo; Kim, Bo-Kyun; Rhim, Yong-Taek; Kim, Sangho; Park, Ho-Yoon; Yi, Jae-Woo; Lee, Sam-Jun; Kim, Chang-Ju

    2008-02-01

    Maternal alcohol-intoxication during pregnancy exerts detrimental effects on fetal development and is known to influence learning ability and memory capability by altering neuronal activity in the hippocampus. c-Fos expression represents neuronal activity and plays a crucial role in the brain development. Physical exercise is known to enhance neuronal plasticity and activity. In the present study, we investigated the influence of postnatal treadmill running on the c-Fos expression in the hippocampus of rat pups born from the alcohol-intoxicated mothers. The results obtained show that maternal alcohol-intoxication suppressed c-Fos expression in the hippocampus of rat pups and that postnatal treadmill exercise enhanced c-Fos expression in the hippocampus of these rat pups. The present study suggests that exercise should be considered as a therapeutic means of countering the effects of maternal alcohol-intoxication, and that it may provide a useful strategy for enhancing the neuronal activity of children born from the mothers who abuse alcohol during pregnancy.

  13. Phosphorylation of c-Fos by members of the p38 MAPK family. Role in the AP-1 response to UV light.

    PubMed

    Tanos, Tamara; Marinissen, Maria Julia; Leskow, Federico Coluccio; Hochbaum, Daniel; Martinetto, Horacio; Gutkind, J Silvio; Coso, Omar A

    2005-05-13

    Exposure to sources of UV radiation, such as sunlight, induces a number of cellular alterations that are highly dependent on its ability to affect gene expression. Among them, the rapid activation of genes coding for two subfamilies of proto-oncoproteins, Fos and Jun, which constitute the AP-1 transcription factor, plays a key role in the subsequent regulation of expression of genes involved in DNA repair, cell proliferation, cell cycle arrest, death by apoptosis, and tissue and extracellular matrix remodeling proteases. Besides being regulated at the transcriptional level, Jun and Fos transcriptional activities are also regulated by phosphorylation as a result of the activation of intracellular signaling cascades. In this regard, the phosphorylation of c-Jun by UV-induced JNK has been readily documented, whereas a role for Fos proteins in UV-mediated responses and the identification of Fos-activating kinases has remained elusive. Here we identify p38 MAPKs as proteins that can associate with c-Fos and phosphorylate its transactivation domain both in vitro and in vivo. This phosphorylation is transduced into changes in its transcriptional ability as p38-activated c-Fos enhances AP1-driven gene expression. Our findings indicate that as a consequence of the activation of stress pathways induced by UV light, endogenous c-Fos becomes a substrate of p38 MAPKs and, for the first time, provide evidence that support a critical role for p38 MAPKs in mediating stress-induced c-Fos phosphorylation and gene transcription activation. Using a specific pharmacological inhibitor for p38alpha and -beta, we found that most likely these two isoforms mediate UV-induced c-Fos phosphorylation in vivo. Thus, these newly described pathways act concomitantly with the activation of c-Jun by JNK/MAPKs, thereby contributing to the complexity of AP1-driven gene transcription regulation.

  14. The orexin-1 receptor antagonist SB-334867 decreases anxiety-like behavior and c-Fos expression in the hypothalamus of rats exposed to cat odor.

    PubMed

    Vanderhaven, M W; Cornish, J L; Staples, L G

    2015-02-01

    Increasing evidence suggests that the orexin system is involved in modulating anxiety, and we have recently shown that cat odor-induced anxiety in rats is attenuated by the orexin receptor antagonist SB-334867. In the current experiment, c-Fos expression was used to map changes in neuronal activation following SB-334867 administration in the cat odor anxiety model. Male Wistar rats were exposed to cat odor with or without SB-334867 pre-treatment (10 mg/kg, i.p.). A naïve control group not exposed to cat odor was also used. Following cat odor exposure, brains were processed for c-Fos expression. Vehicle-treated rats showed an increase in anxiety-like behaviors (increased hiding and decreased approach toward the cat odor), and increased c-Fos expression in the posteroventral medial amygdala (MePV), paraventricular hypothalamus (PVN) and dorsal premammillary nucleus (PMd). In rats pretreated with SB-334867, approach scores increased and c-Fos expression decreased in the PVN and PMd. These results provide both behavioral and neuroanatomical evidence for the attenuation of cat odor-induced anxiety in rats via the orexin system.

  15. Inescapable but not escapable stress leads to increased struggling behavior and basolateral amygdala c-fos gene expression in response to subsequent novel stress challenge

    PubMed Central

    Weinberg, Marc S.; Grissom, Nicola; Paul, Evan; Bhatnagar, Seema; Maier, Steven F.; Spencer, Robert L.

    2010-01-01

    Control over an aversive experience can greatly impact the organism’s response to subsequent stressors. We compared the effects of escapable (ES) and yoked inescapable (IS) electric tail shocks on the hypothalamic-pituitary-adrenal (HPA) axis hormonal (corticosterone and ACTH), neural (c-fos mRNA) and behavioral (struggling) response to subsequent restraint. We found that although the HPA axis response during restraint of both previously stressed groups were higher than stress-naïve rats and not different from each other, lack of control over the tailshock experience led to an increase in restraint-induced struggling behavior of the IS rats compared to both stress-naïve and ES rats. Additionally, c-fos expression in the basolateral amygdala was increased selectively in the IS group, and relative c-fos mRNA expression in the basolateral amygdala positively correlated with struggling behavior. Restraint-induced c-fos expression in the medial prefrontal cortex, a brain area critical for mediating some of the differential neurochemical and behavioral effects of ES and IS, was surprisingly similar in both ES and IS groups, lower than that of stress-naïve rats, and did not correlate with struggling behavior. Our findings indicate that basolateral amygdala activity may be connected with the differential effects of ES and IS on subsequent behavioral responses to restraint, without contributing to the concurrent HPA axis hormone response. PMID:20600641

  16. Peripheral therapeutic ultrasound stimulation alters the distribution of spinal C-fos immunoreactivity induced by early or late phase of inflammation.

    PubMed

    Hsieh, Yueh-Ling

    2008-03-01

    The purpose of this investigation was to examine the central modulated effects of therapeutic ultrasound (US) on neuronal activity in the spinal cord on early and late phases of inflammation. In this study, induction of c-Fos protein, which reflects neuronal activation (particularly inflammatory nociception), was investigated in the lumbar spinal cord with immunohistochemistry. Inflammatory monoarthritis was induced in 20 male Wistar rats (weighing 250-300 g) via intra-articular injection of complete Freund's adjuvant (CFA) into the tibiotarsal joint. Two phases of arthritis, early phase (18 h after adjuvant injection) and late phase (7 d after adjuvant injection), were studied in the rats. Pulsed-mode US (1 MHz, the spatial average temporal average intensity [I(SATA)] = 0.5 W/cm(2), 50% duty cycle) was applied for 5 min. The effects of US and sham treatments against these phases of arthritis were demonstrated by spinal c-Fos-like immunoreactivity (c-Fos-LI). All data were evaluated statistically with the paired t-test or analysis of variance with Bonferroni corrections. c-Fos-LI neurons were abundant (average 264.2 +/- 11.9) in the L3 and L4 neurons of the spinal cord in areas ipsilateral to the CFA-induced arthritic leg in the early phase, but few were present (average 40.4 +/- 4.5) in the late phase in sham-treated animals. Bonferroni corrections to the alpha level were used to check the group differences in spinal c-Fos expression, and significance was reached when p < 0.025. In the early inflammatory phase, US treatment significantly suppressed the increased number of c-Fos-LI neurons associated with CFA-induced arthritis in superficial laminae, nucleus proprius, deep laminae and ventral horn of the spinal cord. However, during the late inflammatory phase, US significantly triggered c-Fos expression in most laminae, particularly in the nucleus proprius, deep laminae and ventral horn of the spinal cord. The results of our study suggest that administration of US

  17. Morphine withdrawal precipitated by specific mu, delta or kappa opioid receptor antagonists: a c-Fos protein study in the rat central nervous system.

    PubMed

    Le Guen, Stéphanie; Gestreau, Christian; Besson, Jean-Marie

    2003-06-01

    We have recently shown concurrent changes in behavioural responses and c-Fos protein expression in the central nervous system in both naive and morphine-dependent rats after systemic administration of the opioid antagonist naloxone. However, because naloxone acts on the three major types of opioid receptors, the present study aimed at determining, in the same animals, both changes in behaviour and c-Fos-like immunoreactivity after intravenous injection of selective opioid antagonists, such as mu (beta-funaltrexamine, 10 mg/kg), delta (naltrindole, 4 mg/kg) or kappa (nor-binaltorphimine, 5 mg/kg) opioid receptor antagonists, in naive or morphine-dependent rats. In a first experimental series, only beta-funaltrexamine increased c-Fos expression in the eight central nervous system structures examined, whereas no effect was seen after naltrindole or nor-binaltorphimine administration in naive rats. These results suggest a tonic activity in the endogenous opioid peptides acting on mu opioid receptors in normal rats. A second experimental series in morphine-dependent rats showed that beta-funaltrexamine had the highest potency in the induction of classical signs of morphine withdrawal syndrome, as well as the increase in c-Fos expression in the 22 central nervous system structures studied, suggesting a major role of mu opioid receptors in opioid dependence. However, our results also demonstrated that naltrindole and, to a lesser extent, nor-binaltorphimine were able to induce moderate signs of morphine withdrawal and relatively weak c-Fos protein expression in restricted central nervous system structures. Therefore, delta and kappa opioid receptors may also contribute slightly to opioid dependence.

  18. Sensitivity to naloxone of the behavioral signs of morphine withdrawal and c-Fos expression in the rat CNS: a quantitative dose-response analysis.

    PubMed

    Le Guen, S; Gestreau, C; Besson, J M

    2001-04-30

    Several studies have used c-Fos expression to delineate the neural substrate underlying naloxone-precipitated morphine withdrawal (MW). However, because behavioral manifestations of MW depend on both the degree of dependence and the doses of naloxone (NAL), a comprehensive study would require examining c-Fos expression in relation with the degree of MW. Here, changes in behavior and in c-Fos-like immunoreactivity (FLI) were studied in the same rats after injection of three doses of NAL to precipitate various degrees of MW. Fifteen established signs of MW were examined for 1 hour after NAL injection, and FLI was quantified in 52 regions of the brain and in the lumbosacral spinal cord. Linear regression analyses were used to examine changes in numbers of signs and FLI neurons with the doses of NAL, and data were considered dose-related for a statistical level of significance of P < 0.05. In summary, autonomic signs of MW increased in a dose-related manner, whereas somatomotor signs did not. After MW, 33 central nervous system regions exhibited significant increases in FLI and were, thus, considered as important neural correlates of MW. Twenty of them displayed dose-related increases in c-Fos expression and correspond to regions related to autonomic functions. Low c-Fos expression was detected in some regions involved in motor control or in reward, suggesting either their minor role in MW or a limitation of the technique. This dose-response analysis suggests that the increase in the severity of autonomic manifestations of MW is associated with a gradual activation of major structures of the autonomic nervous system.

  19. Strong and prolonged induction of c-jun and c-fos proto-oncogenes by photodynamic therapy.

    PubMed Central

    Kick, G.; Messer, G.; Plewig, G.; Kind, P.; Goetz, A. E.

    1996-01-01

    Photodynamic therapy (PDT) is currently under investigation in phase II and III clinical studies for the treatment of tumours in superficial localisations. Thus far, the underlying mechanisms of PDT regarding cellular responses and gene regulation are poorly understood. Photochemically generated singlet oxygen (1O2) is mainly responsible for cytotoxicity induced by PDT. If targeted cells are not disintegrated, photo-oxidative stress leads to transcription and translation of various stress response and cytokine genes. Tumour necrosis factor (TNF) alpha, interleukin (IL) 1 and IL-6 are strongly induced by photodynamic treatment, supporting inflammatory action and immunological anti-tumour responses. To investigate the first steps of gene activation, this study focused on the proto-oncogenes c-jun and c-fos, both coding for the transcription factor activator protein 1 (AP-1), which was found to mediate IL-6 gene expression. We here determine the effects of photodynamic treatment on transcriptional regulation and DNA binding of transcription factor AP-1 in order to understand the modulation of subsequent regulatory steps. Photodynamic treatment of epithelial HeLa cells was performed by incubation with Photofrin and illumination with 630 nm laser light in vitro. Expression of the c-jun and c-fos genes was determined by way of Northern blot analysis, and DNA-binding activity of the transcription factor AP-1 was evaluated by electrophoretic mobility shift assay (EMSA). Photofrin-mediated photosensitisation of HeLa cells resulted in a rapid and dose-dependent induction of both genes but preferential expression of c-jun. Compared with the transient expression of c-jun and c-fos by phorbol ester stimulation, photodynamic treatment led to a prolonged activation pattern of both immediate early genes. Furthermore, mRNA stability studies revealed an increased half-life of c-jun and c-fos transcripts resulting from photosensitisation. Although mRNA accumulation after PDT was

  20. Effect of blonanserin on methamphetamine-induced disruption of latent inhibition and c-Fos expression in rats.

    PubMed

    Kuramashi, Aki; Abe, Hiroshi; Koganemaru, Go; Matsuo, Hisae; Ikeda, Tetsuya; Ebihara, Kosuke; Funahashi, Hideki; Takeda, Ryuichiro; Nishimori, Toshikazu; Ishida, Yasushi

    2013-08-01

    To clarify the psychopharmacological profile of blonanserin, a novel antipsychotic, we examined its effect on the methamphetamine-induced disruption of latent inhibition (LI) and the neural activation related to this effect in rats. To evaluate the LI, we used a conditioned emotional response in which a tone (conditioned stimulus) was paired with a mild foot shock (unconditioned stimulus). This paradigm was presented to rats licking water. Methamphetamine-induced (1.0mg/kg, i.p.) disruption of LI was significantly improved by the administration of a higher dose (3.0mg/kg, i.p.) of blonanserin and tended to be improved by 1.0-mg/kg blonanserin and 0.2-mg/kg haloperidol but not by a lower dose (0.3mg/kg) of blonanserin. Immunohistochemical examination showed blonanserin (3.0mg/kg, i.p.) increased c-Fos expression in the shell area but not in the core area of the nucleus accumbens while methamphetamine (3.0mg/kg, i.p.) produced the opposite expression pattern. Blonanserin also increased the number of c-Fos expressions in the central amygdala nucleus but not in the basolateral amygdala nucleus or the prefrontal cortex. Blonanserin ameliorates the methamphetamine-induced disruption of LI, as other antipsychotics do, and a neuronal activation and/or modulation of neurotransmission in the nucleus accumbens is related to the disruption of LI by methamphetamine and to its amelioration by blonanserin.

  1. Parathyroid hormone induces c-fos and c-jun messenger RNA in rat osteoblastic cells

    NASA Technical Reports Server (NTRS)

    Clohisy, J. C.; Scott, D. K.; Brakenhoff, K. D.; Quinn, C. O.; Partridge, N. C.

    1992-01-01

    PTH is a potent regulator of osteoblast gene expression, yet the nuclear events that mediate PTH action are poorly understood. We were interested in identifying immediate early genes which may regulate PTH-altered gene expression in the osteoblast. Therefore, we examined the effects of PTH on c-fos and c-jun gene expression in a rat osteoblastic cell line (UMR 106-01). Under control conditions, c-fos and c-jun mRNAs were present at low basal levels. After PTH treatment, c-fos mRNA abundance dramatically increased, with a maximal and transient response at 30 min. PTH also stimulated an increase in c-jun mRNA, but in a biphasic manner, with maximal levels at 30 min and 2 h. These responses were dose dependent, not altered by cotreatment with the protein synthesis inhibitor cycloheximide, and preceded PTH-induced expression of matrix metallo-proteinase-1 mRNA. Nuclear run-on assays demonstrated an increased rate of c-fos and c-jun transcription after PTH exposure. To determine the signal transduction pathways involved, second messenger analogs were tested for their ability to mimic the effects of PTH. 8-Bromo-cAMP and phorbol 12-myristate 13-acetate (PMA) caused increases in the abundance of c-fos and c-jun transcripts. Ionomycin had no effect on the expression of these genes. Pretreatment of the cells with PMA resulted in a decrease in basal c-jun expression, but did not alter the PTH-mediated increase in c-fos, c-jun, or matrix metalloproteinase-1 mRNAs.(ABSTRACT TRUNCATED AT 250 WORDS).

  2. Functional organisation of central cardiovascular pathways: studies using c-fos gene expression.

    PubMed

    Dampney, R A L; Horiuchi, J

    2003-12-01

    Until about 10 years ago, knowledge of the functional organisation of the central pathways that subserve cardiovascular responses to homeostatic challenges and other stressors was based almost entirely on studies in anaesthetised animals. More recently, however, many studies have used the method of the expression of immediate early genes, particularly the c-fos gene, to identify populations of central neurons that are activated by such challenges in conscious animals. In this review we first consider the advantages and limitations of this method. Then, we discuss how the application of the method of immediate early gene expression, when used alone or in combination with other methods, has contributed to our understanding of the central mechanisms that regulate the autonomic and neuroendocrine response to various cardiovascular challenges (e.g., hypotension, hypoxia, hypovolemia, and other stressors) as they operate in the conscious state. In general, the results of studies of central cardiovascular pathways using immediate early gene expression are consistent with previous studies in anaesthetised animals, but in addition have revealed other previously unrecognised pathways that also contribute to cardiovascular regulation. Finally, we briefly consider recent evidence indicating that immediate early gene expression can modify the functional properties of central cardiovascular neurons, and the possible significance of this in producing long-term changes in the regulation of the cardiovascular system both in normal and pathological conditions.

  3. Localization and regulation of c-fos and c-jun protooncogene induction by systolic wall stress in normal and hypertrophied rat hearts.

    PubMed Central

    Schunkert, H; Jahn, L; Izumo, S; Apstein, C S; Lorell, B H

    1991-01-01

    The effect of changes in left ventricular (LV) systolic force generation on cardiac c-fos and c-jun protooncogene expression was studied by using isolated beating hearts from male Wistar rats. An isovolumic buffer-perfused heart preparation was utilized in which coronary flow and heart rate were held constant and increments in LV balloon volume were used to generate defined levels of LV systolic wall stress. Using Northern and slot-blot analyses, we found that LV tissue from control hearts that generated high levels of LV systolic wall stress expressed 3- to 4.4-fold higher c-fos and c-jun mRNA levels in comparison with tissue from the respective flaccid right ventricles, and in comparison with LV tissue from hearts that generated minimal LV systolic wall stress. To distinguish the role of passive LV diastolic wall stretch from active LV force generation, we found that distension of the LV balloon per se did not have a significant effect on protooncogene induction in hearts perfused with 2,3-butanedione monoxime, which prevents systolic cross-bridge cycling and force generation. In additional hearts studied at a constant LV balloon volume to generate an LV end-diastolic pressure of 10 mm Hg, c-fos mRNA levels were proportional to the magnitude of peak LV systolic wall stress (r = 0.823, P less than 0.05). In these protocols, Fos protein was localized by immunohistochemistry in myocyte nuclei with minimal staining in fibroblasts and vascular smooth muscle. When c-fos and c-jun mRNA expression was compared in hearts with chronic LV hypertrophy due to ascending aortic banding and age-matched control hearts that generated similar incremental levels of LV systolic wall stress, significantly lower levels of c-fos and c-jun mRNA were measured in the hypertrophied hearts. However, there was no difference in protooncogene mRNA expression in response to stimulation by the Ca2+ ionophore A23187. These data suggest that, in this isolated isovolumic beating heart preparation

  4. Changing the general factor of personality and the c-fos gene expression with methylphenidate and self-regulation therapy.

    PubMed

    Micó, Joan C; Amigó, Salvador; Caselles, Antonio

    2012-07-01

    A deepening in the biological nature of the general factor of personality (GFP) is suggested: the activation level of the stress system is here represented by the gene expression of c-fos. The results of a single case experimental design are reported. A model of four coupled differential equations that explains the human personality dynamics as a consequence of a single stimulant drug intake has been fitted to psychological and biological experimental data. The stimulant-drug conditioning and its adaptation to the considered mathematical model is also studied for both kinds of measures. The dynamics of the c-fos expression presents a similar pattern to the dynamics of the psychological measures of personality assessed by the GFP-FAS (Five-Adjective Scale of the General Factor of Personality) as a consequence of a single dose of stimulant drug (methylphenidate). The model predicts similar dynamic patterns for both psychological and biological measures. This study proves that describing mathematically the dynamics of the effects of a stimulant drug as well as the effects of a conditioning method on psychological or subjective variables and on gene expression is possible. It verifies the existence of biological mechanisms underlying the dynamics of the General Factor of Personality (GFP).

  5. Dimeric combinations of MafB, cFos and cJun control the apoptosis-survival balance in limb morphogenesis.

    PubMed

    Suda, Natsuno; Itoh, Takehiko; Nakato, Ryuichiro; Shirakawa, Daisuke; Bando, Masashige; Katou, Yuki; Kataoka, Kohsuke; Shirahige, Katsuhiko; Tickle, Cheryll; Tanaka, Mikiko

    2014-07-01

    Apoptosis is an important mechanism for sculpting morphology. However, the molecular cascades that control apoptosis in developing limb buds remain largely unclear. Here, we show that MafB was specifically expressed in apoptotic regions of chick limb buds, and MafB/cFos heterodimers repressed apoptosis, whereas MafB/cJun heterodimers promoted apoptosis for sculpting the shape of the limbs. Chromatin immunoprecipitation sequencing in chick limb buds identified potential target genes and regulatory elements controlled by Maf and Jun. Functional analyses revealed that expression of p63 and p73, key components known to arrest the cell cycle, was directly activated by MafB and cJun. Our data suggest that dimeric combinations of MafB, cFos and cJun in developing chick limb buds control the number of apoptotic cells, and that MafB/cJun heterodimers lead to apoptosis via activation of p63 and p73.

  6. NF-Y Binding Site Architecture Defines a C-Fos Targeted Promoter Class

    PubMed Central

    Haubrock, Martin; Hartmann, Fabian; Wingender, Edgar

    2016-01-01

    ChIP-seq experiments detect the chromatin occupancy of known transcription factors in a genome-wide fashion. The comparisons of several species-specific ChIP-seq libraries done for different transcription factors have revealed a complex combinatorial and context-specific co-localization behavior for the identified binding regions. In this study we have investigated human derived ChIP-seq data to identify common cis-regulatory principles for the human transcription factor c-Fos. We found that in four different cell lines, c-Fos targeted proximal and distal genomic intervals show prevalences for either AP-1 motifs or CCAAT boxes as known binding motifs for the transcription factor NF-Y, and thereby act in a mutually exclusive manner. For proximal regions of co-localized c-Fos and NF-YB binding, we gathered evidence that a characteristic configuration of repeating CCAAT motifs may be responsible for attracting c-Fos, probably provided by a nearby AP-1 bound enhancer. Our results suggest a novel regulatory function of NF-Y in gene-proximal regions. Specific CCAAT dimer repeats bound by the transcription factor NF-Y define this novel cis-regulatory module. Based on this behavior we propose a new enhancer promoter interaction model based on AP-1 motif defined enhancers which interact with CCAAT-box characterized promoter regions. PMID:27517874

  7. Inflammation-mediated skin tumorigenesis induced by epidermal c-Fos

    PubMed Central

    Briso, Eva M.; Guinea-Viniegra, Juan; Bakiri, Latifa; Rogon, Zbigniew; Petzelbauer, Peter; Eils, Roland; Wolf, Ronald; Rincón, Mercedes; Angel, Peter; Wagner, Erwin F.

    2013-01-01

    Skin squamous cell carcinomas (SCCs) are the second most prevalent skin cancers. Chronic skin inflammation has been associated with the development of SCCs, but the contribution of skin inflammation to SCC development remains largely unknown. In this study, we demonstrate that inducible expression of c-fos in the epidermis of adult mice is sufficient to promote inflammation-mediated epidermal hyperplasia, leading to the development of preneoplastic lesions. Interestingly, c-Fos transcriptionally controls mmp10 and s100a7a15 expression in keratinocytes, subsequently leading to CD4 T-cell recruitment to the skin, thereby promoting epidermal hyperplasia that is likely induced by CD4 T-cell-derived IL-22. Combining inducible c-fos expression in the epidermis with a single dose of the carcinogen 7,12-dimethylbenz(a)anthracene (DMBA) leads to the development of highly invasive SCCs, which are prevented by using the anti-inflammatory drug sulindac. Moreover, human SCCs display a correlation between c-FOS expression and elevated levels of MMP10 and S100A15 proteins as well as CD4 T-cell infiltration. Our studies demonstrate a bidirectional cross-talk between premalignant keratinocytes and infiltrating CD4 T cells in SCC development. Therefore, targeting inflammation along with the newly identified targets, such as MMP10 and S100A15, represents promising therapeutic strategies to treat SCCs. PMID:24029918

  8. [Experience of the first "whisker-dependent" task influenced c-Fos induction in rat barrel cortex neurons during acquisition of the second "whisker-independent" task].

    PubMed

    Svarnik, O E; Anokhin, K V; Aleksandrov, Iu I

    2014-01-01

    In this work we aimed to create a controlled history of two sequential trainings in order to find out activation patterns of "the first task" neurons during the second task learning. Rats were first trained to perform instrumental water rewarded behavior that required using left or right whiskers (a conditioned "whisking" task), and then to perform food-acquisition task of pedal pressing (not a conditioned "whisking" task). We found that food-acquisition task learning is accompanied by c-Fos induction in the barrel cortex neurons in animals that learned previously a conditioned "whisking" task. These data suggest that c-Fos induction during the second training took place in neurons that were specialized in relation to the first, "whisking" task. PMID:25710066

  9. Repeated forced swim stress enhances CFA-evoked thermal hyperalgesia and affects the expressions of pCREB and c-Fos in the insular cortex.

    PubMed

    Imbe, H; Kimura, A; Donishi, T; Kaneoke, Y

    2014-02-14

    Stress affects brain activity and promotes long-term changes in multiple neural systems. Exposure to stressors causes substantial effects on the perception and response to pain. In several animal models, chronic stress produces lasting hyperalgesia. The insular (IC) and anterior cingulate cortices (ACC) are the regions exhibiting most reliable pain-related activity. And the IC and ACC play an important role in pain modulation via the descending pain modulatory system. In the present study we examined the expression of phospho-cAMP response element-binding protein (pCREB) and c-Fos in the IC and ACC after forced swim stress (FS) and complete Freund's adjuvant (CFA) injection to clarify changes in the cerebral cortices that affect the activity of the descending pain modulatory system in the rats with stress-induced hyperalgesia. FS (day 1, 10min; days 2-3, 20min) induced an increase in the expression of pCREB and c-Fos in the anterior IC (AIC). CFA injection into the hindpaw after the FS shows significantly enhanced thermal hyperalgesia and induced a decrease in the expression of c-Fos in the AIC and the posterior IC (PIC). Quantitative image analysis showed that the numbers of c-Fos-immunoreactive neurons in the left AIC and PIC were significantly lower in the FS+CFA group (L AIC, 95.9±6.8; L PIC, 181.9±23.1) than those in the naive group (L AIC, 151.1±19.3, p<0.05; L PIC, 274.2±37.3, p<0.05). These findings suggest a neuroplastic change in the IC after FS, which may be involved in the enhancement of CFA-induced thermal hyperalgesia through dysfunction of the descending pain modulatory system.

  10. Gonadotropin and kisspeptin gene expression, but not GnRH, are impaired in cFOS deficient mice.

    PubMed

    Xie, Changchuan; Jonak, Carrie R; Kauffman, Alexander S; Coss, Djurdjica

    2015-08-15

    cFOS is a pleiotropic transcription factor, which binds to the AP1 site in the promoter of target genes. In the pituitary gonadotropes, cFOS mediates induction of FSHβ and GnRH receptor genes. Herein, we analyzed reproductive function in the cFOS-deficient mice to determine its role in vivo. In the pituitary cFOS is necessary for gonadotropin subunit expression, while TSHβ is unaffected. Additionally, cFOS null animals have the same sex-steroid levels, although gametogenesis is impeded. In the brain, cFOS is not necessary for GnRH neuronal migration, axon targeting, cell number, or mRNA levels. Conversely, cFOS nulls, particularly females, have decreased Kiss1 neuron numbers and lower Kiss1 mRNA levels. Collectively, our novel findings suggest that cFOS plays a cell-specific role at multiple levels of the hypothalamic-pituitary-gonadal axis, affecting gonadotropes but not thyrotropes in the pituitary, and kisspeptin neurons but not GnRH neurons in the hypothalamus, thereby contributing to the overall control of reproduction.

  11. Qualitatively different modes of perirhinal - hippocampal engagement when rats explore novel versus familiar objects as revealed by c-Fos imaging

    PubMed Central

    Albasser, Mathieu M.; Poirier, Guillaume L.; Aggleton, John P.

    2014-01-01

    SUMMARY Expression of the immediate-early gene c-fos was used to test for different patterns of temporal lobe interactions when rats explore either novel or familiar objects. A new behavioural test of recognition memory was first devised to generate robust levels of novelty discrimination and to provide a matched control condition using familiar objects. Increased c-Fos activity was found in caudal, but not rostral portions, of perirhinal cortex (areas 35/36) and in area Te2 in rats showing object recognition i.e. preferential exploration of novel versus familiar objects. The findings are presented at a higher anatomical resolution than previous studies of immediate-early gene expression and object novelty and, crucially, provide the first analyses when animals are actively discriminating the novel objects. Novel versus familiar object comparisons also revealed altered c-Fos patterns in hippocampal subfields, with relative increases in CA3 and CA1 and decreases in the dentate gyrus. These hippocampal changes match those previously reported for the automatic coding of object-spatial associations. Additional analyses of the c-Fos data using structural equation modelling indicated the presence of pathways starting in the caudal perirhinal cortex that display a direction of effects from the entorhinal cortex to the CA1 field (temporo-ammonic) when presented with familiar objects, but switch to the engagement of the direct entorhinal cortex pathway to the dentate gyrus (perforant) with novel object discrimination. This entorhinal switch provides a potential route by which the rhinal cortex can moderate hippocampal processing, with a dynamic change from temporo-ammonic (familiar stimuli) to perforant pathway (novel stimuli) influences. PMID:20092559

  12. The restructuring of muscarinic receptor subtype gene transcripts in c-fos knock-out mice.

    PubMed

    Benes, Jan; Mravec, Boris; Kvetnansky, Richard; Myslivecek, Jaromir

    2013-05-01

    Although c-Fos plays a key role in intracellular signalling, the disruption of the c-fos gene has only minor consequences on the central nervous system (CNS) function. As muscarinic receptors (MR) play important roles in many CNS functions (attention, arousal, and cognition), the c-fos knock-out might be compensated through MR changes. The aim of this study was to evaluate changes in the M1-M5 MR mRNA in selected CNS areas: frontal, parietal, temporal and occipital cortex, striatum, hippocampus, hypothalamus and cerebellum (FC, PC, TC, OC, stria, hip, hypo, and crbl, respectively). Knocking out the c-fos gene changed the expression of MR in FC (reduced M1R, M4R and M5R expression), TC (increased M4R expression), OC (decreased M2R and M3R expression) and hippocampus (reduced M3R expression). Moreover, gender differences were observed in WT mice: increased expression of all M1-M5R in the FC in males and M1-M4R in the striatum in females. A detailed analysis of MR transcripts showed pre-existing correlations in the amount of MR-mRNA between specific regions. WT mice showed three major types of cortico-cortical correlations: fronto-occipital, temporo-parietal and parieto-occipital. The cortico-subcortical correlations involved associations between the FC, PC, TC and striatum. In KO mice, a substantial rearrangement of the correlation pattern was observed: only a temporo-parietal correlation and correlations between the FC and striatum remained, and a new correlation between the hypothalamus and cerebellum appeared. Thus, in addition to the previously described dopamine receptor restructuring, the restructuring of MR mRNA correlations reveals an additional mechanism for adaptation to the c-fos gene knockout.

  13. Schizophrenia-associated Risk and Protective Variants of c-Fos Encoding Gene.

    PubMed

    Boyajyan, Anna; Zakharyan, Roksana; Atshemyan, Sofi; Chavushyan, Andranik; Mkrtchyan, Gohar

    2015-01-01

    Defects in synaptic plasticity play a key role in pathophysiology of schizophrenia. Pathomechanisms responsible for synaptic plasticity alterations in schizophrenia are very complicated and not well defined. Transcription factor c-Fos plays an important role in regulation of synaptic plasticity. In the present study we evaluated the association of rs7101 and rs1063169 single nucleotide polymorphisms (SNPs) of c-Fos encoding gene (FOS) with schizophrenia. A total of 604 DNA samples of schizophrenia-affected and healthy subjects of Armenian ancestry were genotyped using polymerase chain reaction with sequence-specific primers. Also, comparative determination of the blood levels of c-Fos protein in schizophrenia patients and controls was performed using the enzyme-linked immunosorbent assay. Potential interaction between protein level and genotypes as well as relationships between genotypes/protein level and clinical-demographic characteristics of schizophrenia patients were assessed. The results obtained demonstrated that mutant allele of FOS rs1063169 SNP is negatively associated with schizophrenia and may be nominated as a protective factor for this disorder. On the other hand, according to our results, the FOS rs7101T mutant allele is positively associated with schizophrenia and, therefore, may be considered as a risk factor for this disorder. In addition, decreased c-Fos plasma levels in schizophrenia patients compared to controls were found. In conclusion, the results of this study suggest that FOS is among the candidate genes of schizophrenia and that changes in the expression of c-Fos protein may contribute to molecular pathomechanisms of schizophrenia-related alterations in synaptic plasticity.

  14. Ropinirole regulates emotionality and neuronal activity markers in the limbic forebrain.

    PubMed

    Mavrikaki, Maria; Schintu, Nicoletta; Nomikos, George G; Panagis, George; Svenningsson, Per

    2014-12-01

    Restless legs syndrome (RLS) and Parkinson's disease (PD) are movement disorders usually accompanied by emotional and cognitive deficits. Although D3/D2 receptor agonists are effective against motor and non-motor deficits in RLS and PD, the exact behavioral and neurochemical effects of these drugs are not clearly defined. This study aimed to evaluate the effects of acute ropinirole (0, 0.1, 1 or 10 mg/kg, i.p.), a preferential D3/D2 receptor agonist, on intracranial self-stimulation (ICSS), spontaneous motor activity, anxiety- and depression-like behaviors, spatial reference and working memory in rats as well as on certain markers of neuronal activity, i.e. induction of immediate early genes, such as c-fos and arc, and crucial phosphorylations on GluA1 subunit of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and NA1, NA2A and NA2B subunits of N-methyl-D-aspartate (NMDA) receptors. Ropinirole decreased ICSS thresholds and induced anxiolytic- and antidepressive-like effects without affecting motor activity or spatial memory. The effects on emotionality were associated with a decrease in p-Ser897-NA1 and an increase in p-Tyr1472-NA2B in the ventral striatum as well as an increased induction of c-fos messenger RNA (mRNA) in the prefrontal cortex (PFC) and decreased expression of arc mRNA in the striatum and the shell of the nucleus accumbens. Our data indicate that ropinirole significantly affects emotionality at doses (1-10 mg/kg, i.p.) that exert no robust effects on locomotion or cognition. The data reinforce the use of D3/D2 receptor agonists in the treatment of RLS and PD patients characterized by emotional deficits and suggest that altered NMDA-mediated neurotransmission in the limbic forebrain may underlie some of ropinirole's therapeutic actions.

  15. Structure, chromosome location, and expression of the mouse zinc finger gene Krox-20: multiple gene products and coregulation with the proto-oncogene c-fos.

    PubMed Central

    Chavrier, P; Janssen-Timmen, U; Mattéi, M G; Zerial, M; Bravo, R; Charnay, P

    1989-01-01

    We have analyzed the structure and the regulation of Krox-20, a mouse zinc finger-encoding gene which is transiently activated following serum stimulation of quiescent fibroblast cells in culture. The gene is localized on chromosome 10, band B5, in the mouse, and the homologous human gene also maps to chromosome 10 (region q21.1 to q22.1). Alternative splicing of the 5'-most intron of the Krox-20 gene gives rise to mRNAs encoding putative zinc finger proteins with different N termini. The first exon contains a sequence element with strong similarity to the c-fos proto-oncogene serum response element (SRE). This element can functionally substitute for the c-fos SRE, and it binds the same nuclear protein. It is probably responsible for the serum induction of Krox-20, possibly in combination with a weaker SRE located in the 5'-flanking region of the gene. Our findings suggest that c-fos, Krox-20, and a number of immediate-early serum response genes are coregulated and that the SRE and its cognate protein are essential components of this regulatory pathway. Images PMID:2496302

  16. Selective participation of c-Jun with Fra-2/c-Fos promotes aggressive tumor phenotypes and poor prognosis in tongue cancer

    PubMed Central

    Gupta, Shilpi; Kumar, Prabhat; Kaur, Harsimrut; Sharma, Nishi; Saluja, Daman; Bharti, Alok C.; Das, Bhudev C.

    2015-01-01

    Tongue squamous cell carcinoma (TSCC) is most aggressive head and neck cancer often associated with HR-HPV infection. The role of AP-1 which is an essential regulator of HPV oncogene expression and tumorigenesis is not reported in tongue cancer. One hundred tongue tissue biopsies comprising precancer, cancer and adjacent controls including two tongue cancer cell lines were employed to study the role of HPV infection and AP-1 family proteins. An exclusive prevalence (28%) of HR-HPV type 16 was observed mainly in well differentiated tongue carcinomas (78.5%). A higher expression and DNA binding activity of AP-1 was observed in tongue tumors and cancer cell lines with c-Fos and Fra-2 as the major binding partners forming the functional AP-1 complex but c-Jun participated only in HPV negative and poorly differentiated carcinoma. Knocking down of Fra-2 responsible for aggressive tongue tumorigenesis led to significant reduction in c-Fos, c-Jun, MMP-9 and HPVE6/E7 expression but Fra-1 and p53 were upregulated. The binding and expression of c-Fos/Fra-2 increased as a function of severity of tongue lesions, yet selective participation of c-Jun appears to promote poor differentiation and aggressive tumorigenesis only in HPV negative cases while HPV infection leads to well differentiation and better prognosis preferably in nonsmokers. PMID:26581505

  17. C-fos expression during vocal mobbing in the new world monkey Saguinus fuscicollis.

    PubMed

    Jürgens, U; Lu, C L; Quondamatteo, F

    1996-01-01

    In order to find brain areas involved in the vocal expression of emotion, we compared c-fos expression in three groups of saddle-back tamarins (Saguinus fuscicollis). One group, consisting of three animals, was made to utter more than 800 mobbing calls by electrical stimulation of the periaqueductal grey of the midbrain (PAG). A second group, consisting of two animals, was stimulated in the PAG with the same intensity and for the same duration as the first group but at sites that did not produce vocalization. These sites lay somewhat medial to the vocalization-eliciting sites. A third group, consisting of two animals, was stimulated at vocalization-eliciting sites in the PAG but with an intensity below vocalization threshold. Fos-like immunoreactivity that was found in the vocalizing but not in the non-vocalizing animals was located in the dorsomedial and ventrolateral prefrontal cortex, anterior cingulate cortex, ventrolateral premotor cortex, sensorimotor face cortex, insula, inferior parietal cortex, superior temporal cortex, claustrum, entorhinal and parahippocampal cortex, basal amygdaloid nucleus, anterior and dorsomedial hypothalamus, nucleus reuniens, lateral habenula, Edinger-Westphal nucleus, ventral and dorsolateral midbrain tegmentum, nucleus cuneiformis, sagulum, pedunculopontine and laterodorsal tegmental nuclei, ventral raphe, periambigual reticular formation and solitary tract nucleus. For some of these structures (e.g. anterior cingulate cortex and periambigual reticular formation), there is evidence also from electrical stimulation, lesioning and single-unit recording studies that they are involved in vocal control. For other structures (e.g. lateral habenula, Edinger-Westphal nucleus), the available evidence speaks against such a role. Fos activation in these cases is probably related to non-vocal reactions accompanying the electrically elicited vocalizations. A third group of structures consists of areas for which a role in vocal control cannot

  18. The antagonism of aluminum against fluoride-induced oxidative stress and c-Fos overexpression in rat testes.

    PubMed

    Wang, Junling; Zhang, Haojun; Xu, Feixue; Xu, Feihua; Zhang, Ke; Zhang, Yingmei

    2014-02-01

    Sodium fluoride (NaF) has been found to interfere with the reproductive system of animals. However, the cellular mechanisms underlying the reproductive toxicity of fluoride are unclear. The present study aims to define a possible mechanism of NaF-induced reproductive toxicity with respect to mineral, oxidative stress and c-Fos expression and the role of aluminum (Al) in intervening the toxic effect of NaF on rat testes. Fifty-six male Wistar rats were treated with normal saline, 1.0, 2.0, and 3.0 mg NaF/kg body weight (bw)/day, and each NaF concentration plus Al ion (0.1 mg Al(3+)/kg bw/day). After 90 days, no significant changes in the contents of Fe and Cu were observed in any of the NaF-treated groups compared with those of the control group. There were, however, significant decreases in the contents of Ca in the 1.0 mg NaF group, Zn in all NaF-treated groups and Mg in the 3.0 mg NaF group. The levels of malondialdehyde (MDA) in the 1.0 mg NaF group and hydrogen peroxide (H2O2) in the 2.0 mg NaF group significantly increased, whereas the activity of nitric oxide synthase (NOS) significantly decreased in the 1.0 mg NaF group. Meanwhile, the protein expression of c-Fos increased significantly in the 1.0 and 2.0 mg NaF groups compared with the control group. Conversely, these changes were partially attenuated in rats simultaneously administered Al. The present study suggested that NaF could decrease the contents of Ca, Fe and Mg and enhance oxidative stress leading to c-Fos overexpression, and some deleterious effects were more prominent at lower NaF intake. Furthermore, Al within the research concentration could minimize reproductive toxicity caused by fluoride.

  19. IP{sub 3}-dependent intracellular Ca{sup 2+} release is required for cAMP-induced c-fos expression in hippocampal neurons

    SciTech Connect

    Zhang, Wenting; Tingare, Asmita; Ng, David Chi-Heng; Johnson, Hong W.; Schell, Michael J.; Lord, Rebecca L.; Chawla, Sangeeta

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer cAMP-induced c-fos expression in hippocampal neurons requires a submembraneous Ca{sup 2+} pool. Black-Right-Pointing-Pointer The submembraneous Ca{sup 2+} pool derives from intracellular ER stores. Black-Right-Pointing-Pointer Expression of IP{sub 3}-metabolizing enzymes inhibits cAMP-induced c-fos expression. Black-Right-Pointing-Pointer SRE-mediated and CRE-mediated gene expression is sensitive to IP{sub 3}-metabolizing enzymes. Black-Right-Pointing-Pointer Intracellular Ca{sup 2+} release is required for cAMP-induced nuclear translocation of TORC1. -- Abstract: Ca{sup 2+} and cAMP are widely used in concert by neurons to relay signals from the synapse to the nucleus, where synaptic activity modulates gene expression required for synaptic plasticity. Neurons utilize different transcriptional regulators to integrate information encoded in the spatiotemporal dynamics and magnitude of Ca{sup 2+} and cAMP signals, including some that are Ca{sup 2+}-responsive, some that are cAMP-responsive and some that detect coincident Ca{sup 2+} and cAMP signals. Because Ca{sup 2+} and cAMP can influence each other's amplitude and spatiotemporal characteristics, we investigated how cAMP acts to regulate gene expression when increases in intracellular Ca{sup 2+} are buffered. We show here that cAMP-mobilizing stimuli are unable to induce expression of the immediate early gene c-fos in hippocampal neurons in the presence of the intracellular Ca{sup 2+} buffer BAPTA-AM. Expression of enzymes that attenuate intracellular IP{sub 3} levels also inhibited cAMP-dependent c-fos induction. Synaptic activity induces c-fos transcription through two cis regulatory DNA elements - the CRE and the SRE. We show here that in response to cAMP both CRE-mediated and SRE-mediated induction of a luciferase reporter gene is attenuated by IP{sub 3} metabolizing enzymes. Furthermore, cAMP-induced nuclear translocation of the CREB coactivator TORC1 was inhibited by

  20. Ubiquitin-independent- versus ubiquitin-dependent proteasomal degradation of the c-Fos and Fra-1 transcription factors: is there a unique answer?

    PubMed

    Basbous, Jihane; Jariel-Encontre, Isabelle; Gomard, Tiphanie; Bossis, Guillaume; Piechaczyk, Marc

    2008-02-01

    The Fos family of transcription factors comprises c-Fos, Fra-1, Fra-2 and FosB, which are all intrinsically unstable proteins. Fos proteins heterodimerize with a variety of other transcription factors to control genes encoding key cell regulators. Their best known partners are the Jun family proteins (c-Jun, JunB, and JunD). At the cellular level, Fos-involving dimers control proliferation, differentiation, apoptosis and responses to environmental cues. At the organism level, they play paramount parts in organogenesis, immune responses and cognitive functions, among others. fos family genes are subjected to exquisite, complex and intermingled transcriptional and post-transcriptional regulations, which are necessary to avoid pathological effects. In particular, the Fos proteins undergo to numerous post-translational modifications, such as phosphorylations and sumoylation, regulating their transcriptional activity, their subcellular localization and their turnover. The mechanisms whereby c-Fos and Fra-1 are degraded have been studied in detail. Contrasting with the classical scenario, according to which most unstable key cell regulators are hydrolyzed by the proteasome after conjugation of polyubiquitin chains, the bulk of c-Fos and Fra-1 can be hydrolyzed independently of any prior ubiquitylation in different situations. c-Fos and Fra-1 share a common destabilizing domain whose primary sequence is conserved in Fra-2 and FosB, suggesting that similar breakdown mechanisms might be at play in the latter two proteins. However, a database search indicates that this domain is not found in any other protein, suggesting that the mechanisms underlying Fos protein destruction may be specific to this family. Interestingly, under particular conditions, a fraction of cytoplasmic c-Fos is ubiquitylated, leading to faster turnover. This poses the question of the multiplicity of degradation pathways that can target the same substrate depending on its activation state, its protein

  1. Proto-oncogene c-fos expression in growth regions of fetal bone and mesodermal web tissue.

    PubMed

    Dony, C; Gruss, P

    The phylogenic conservation of the proto-oncogene c-fos suggests that this gene product is required for normal metabolic processes. Investigations into the transcription pattern of c-fos in normal tissues and cells have revealed expression during development, differentiation and growth which is dependent to a large extent on external signals transferred by growth factors. The complex pattern of stage and tissue-specific expression has raised the hypothesis that the c-fos gene product might function in the control of either proliferation or differentiation. However, no detailed analysis is yet available concerning the normal expression of c-fos during embryonic and fetal development. Interestingly, recent data derived from studies in transgenic mice reveal that the biological effect of overexpression of exogenous fos is restricted to the developing bone tissue and T-cell development of the mice, perhaps signifying that these cells represent a physiological target tissue of the proto-oncogene fos. Thus, to gain deeper insight into the functional role of the c-fos gene product during physiological processes, it is a requirement to carry out a detailed analysis of the localization and cell-type specificity of c-fos expression in normal mouse embryos. Using the technique of in situ hybridization, we demonstrate here that stage-specific expression of the proto-oncogene c-fos in mouse embryos is restricted to the perichondrial growth regions of the cartilaginous skeleton. Moreover, we found strong c-fos transcription in web-forming mesodermal cells, which are also characterized by a stage-specific high growth capacity. Our results suggest a tissue-specific regulatory role of c-fos during differentiation-dependent growth processes of fetal bone and mesodermal web tissue.

  2. Inhibition of carcinogen induced c-Ha-ras and c-fos proto-oncogenes expression by dietary curcumin

    PubMed Central

    Limtrakul, Porn-ngarm; Anuchapreeda, Songyot; Lipigorngoson, Suwiwek; Dunn, Floyd W

    2001-01-01

    Background We investigated the chemopreventive action of dietary curcumin on 7,12-dimethylbenz(a)anthracene (DMBA)-initiated and 12,0-tetradecanoylphorbol-13-acetate (TPA)-promoted skin tumor formation in Swiss albino mice. Curcumin, a yellow coloring matter isolated from roots of Curcuma longa Linn, is a phenolic compound possessing antioxidant, free radical scavenger, and antiinflammatory properties. It has been shown by previously reported work that TPA-induced skin tumors were inhibited by topical application of curcumin, and curcumin has been shown to inhibit a variety of biological activities of TPA. Topical application of curcumin was reported to inhibit TPA-induced c-fos, c-jun and c-myc gene expression in mouse skin. This paper reports the effects of orally administered curcumin, which was consumed as a dietary component at concentrations of 0.2 % or 1 %, in ad libitum feeding. Results Animals in which tumors had been initiated with DMBA and promoted with TPA experienced significantly fewer tumors and less tumor volume if they ingested either 0.2% or 1% curcumin diets. Also, the dietary consumption of curcumin resulted in a significantly decreased expression of ras and fos proto-oncogenes in the tumorous skin, as measured by enhanced chemiluminesence Western blotting detection system (Amersham). Conclusions Whereas earlier work demonstrated that topical application of curcumin to mouse skin inhibited TPA-induced expression of c-fos, c-jun and c-myc oncogenes, our results are the first to show that orally consumed curcumin significantly inhibited DMBA- and TPA-induced ras and fos gene expression in mouse skin. PMID:11231886

  3. Growth hormone induces expression of c-jun and jun B oncogenes and employs a protein kinase C signal transduction pathway for the induction of c-fos oncogene expression.

    PubMed

    Slootweg, M C; de Groot, R P; Herrmann-Erlee, M P; Koornneef, I; Kruijer, W; Kramer, Y M

    1991-04-01

    Although the structure of several members of the GH receptor family has been defined, signal transduction following GH binding to its receptor has not been elucidated. Mouse osteoblasts were used to study the effect of GH on immediate early gene expression and, subsequently, the cellular signal(s) mediating this expression were analysed. GH rapidly and transiently induced the expression of c-jun and jun B in concert with the already reported expression of c-fos. The GH-induced expression of c-fos was completely blocked by the protein kinase inhibitors staurosporine and H7, indicating that the action of GH is mediated by one or several protein kinases. We next analysed the identity of the putative protein kinases in more detail by using a more specific protein kinase inhibitor, namely the ether-lipid 1-O-alkyl-2-O-methylglycerol, understood to be an inhibitor of protein kinase C (PKC). Data obtained from these studies revealed that GH-induced expression of c-fos is mediated by PKC. In addition, we observed a profound increase in formation of the PKC activator diacyglycerol upon addition of GH, a natural activator of PKC. In conclusion, upon binding of GH to mouse osteoblasts, the receptor-mediated cellular signal involves diacyglycerol formation and activation of PKC, leading to the induction of oncogene expression. Finally, the expression of c-fos, c-jun and jun B results in an increased binding of protein complexes to AP-1 binding sites.

  4. Diacylglycerol kinase ζ (DGKζ) is a critical regulator of bone homeostasis via modulation of c-Fos levels in osteoclasts†

    PubMed Central

    Zamani, Ali; Decker, Corinne; Cremasco, Viviana; Hughes, Lindsey; Novack, Deborah V.; Faccio, Roberta

    2015-01-01

    Increased diacylglycerol (DAG) levels are observed in numerous pathologies, including conditions associated with bone loss. However, the effects of DAG accumulation on the skeleton have never been directly examined. Because DAG is strictly controlled by tissue specific diacylglycerol kinases (DGKs), we sought to examine the biological consequences of DAG accumulation on bone homeostasis by genetic deletion of DGKζ, a highly expressed DGK isoform in osteoclasts (OCs). Strikingly, DGKζ−/− mice are osteoporotic due to a marked increase in OC numbers. In vitro, DGKζ−/− bone marrow macrophages (BMMs) form more numerous, larger and highly resorptive OCs. Surprisingly, while increased DAG levels do not alter RANK/RANKL osteoclastogenic pathway, DGKζ deficiency increases responsiveness to the proliferative and pro-survival cytokine M-CSF. We find that M-CSF is responsible for increased DGKζ−/− OC differentiation by promoting higher expression of the transcription factor c-Fos, and c-Fos knockdown in DGKζ−/− cultures dose-dependently reduces OC differentiation. Using a c-Fos luciferase reporter assay lacking the TRE responsive element, we also demonstrate that M-CSF induces optimal c-Fos expression through DAG production. Finally, to demonstrate the importance of the M-CSF/DGKζ/DAG axis on regulation of c-Fos during osteoclastogenesis, we turned to PLCγ2+/− BMMs, which have reduced DAG levels and form fewer OCs due to impaired expression of the master regulator of osteoclastogenesis NFATc1 and c-Fos. Strikingly, genetic deletion of DGKζ in PLCγ2+/− mice rescues OC formation and normalizes c-Fos levels without altering NFATc1 expression. To our knowledge, this is the first report implicating M-CSF/DGKζ/DAG axis as a critical regulator of bone homeostasis via its actions on OC differentiation and c-Fos expression. PMID:25891971

  5. Mice with a fra-1 knock-in into the c-fos locus show impaired spatial but regular contextual learning and normal LTP.

    PubMed

    Gass, Peter; Fleischmann, Alexander; Hvalby, Oivind; Jensen, Vidar; Zacher, Christiane; Strekalova, Tatyana; Kvello, Ane; Wagner, Erwin F; Sprengel, Rolf

    2004-11-01

    The immediate early gene c-fos is part of the AP-1 transcription factor complex, which is involved in molecular mechanisms underlying learning and memory. Mice that lack c-Fos in the brain show impairments in spatial reference and contextual learning, and also exhibit a reduced long-term potentiation of synaptic transmission (LTP) at CA3-to-CA1 synapses. In the present study, we investigated mice in which c-fos was deleted and replaced by fra-1 (c-fos(fra-1) mice) to determine whether other members of the c-fos gene family can substitute for the functions of the c-fos gene. In c-fos(fra-1) mice, both CA3-to-CA1 LTP and contextual learning in a Pavlovian fear conditioning task were similar to wild-type littermates, indicating that Fra-1 expression restored the impairments caused by brain-specific c-Fos depletion. However, c-Fos-mediated learning deficits in a reference memory task of the Morris watermaze were also present in c-fos(fra-1) mice. These findings suggest that different c-Fos target genes are involved in LTP, contextual learning, and spatial reference memory formation.

  6. Changing and shielded magnetic fields suppress c-Fos expression in the navigation circuit: input from the magnetosensory system contributes to the internal representation of space in a subterranean rodent

    PubMed Central

    Burger, Tomáš; Lucová, Marcela; Moritz, Regina E.; Oelschläger, Helmut H. A.; Druga, Rastislav; Burda, Hynek; Wiltschko, Wolfgang; Wiltschko, Roswitha; Němec, Pavel

    2010-01-01

    The neural substrate subserving magnetoreception and magnetic orientation in mammals is largely unknown. Previous experiments have demonstrated that the processing of magnetic sensory information takes place in the superior colliculus. Here, the effects of magnetic field conditions on neuronal activity in the rodent navigation circuit were assessed by quantifying c-Fos expression. Ansell's mole-rats (Fukomys anselli), a mammalian model to study the mechanisms of magnetic compass orientation, were subjected to natural, periodically changing, and shielded magnetic fields while exploring an unfamiliar circular arena. In the undisturbed local geomagnetic field, the exploration of the novel environment and/or nesting behaviour induced c-Fos expression throughout the head direction system and the entorhinal–hippocampal spatial representation system. This induction was significantly suppressed by exposure to periodically changing and/or shielded magnetic fields; discrete decreases in c-Fos were seen in the dorsal tegmental nucleus, the anterodorsal and the laterodorsal thalamic nuclei, the postsubiculum, the retrosplenial and entorhinal cortices, and the hippocampus. Moreover, in inactive animals, magnetic field intensity manipulation suppressed c-Fos expression in the CA1 and CA3 fields of the hippocampus and the dorsal subiculum, but induced expression in the polymorph layer of the dentate gyrus. These findings suggest that key constituents of the rodent navigation circuit contain populations of neurons responsive to magnetic stimuli. Thus, magnetic information may be integrated with multimodal sensory and motor information into a common spatial representation of allocentric space within this circuit. PMID:20219838

  7. H-ras transfection of the rat kidney cell line NRK-52E results in increased induction of c-fos, c-jun and hsp70 following sulofenur treatment.

    PubMed

    Gu, H; Smith, M W; Phelps, P C; Berezesky, I K; Merriman, R L; Boder, G B; Trump, B F

    1996-09-10

    The effect of the antineoplastic drug sulofenur on the induction of the immediate-early genes (IEG) c-fos and c-jun and the stress gene hsp70 was compared in the rat kidney epithelial-like cell line NRK-52E and a derivative H-ras-transfected (H/1.2NRK-52E) cell line. Fold induction for each gene after sulofenur (500 microM) treatment was greater in H/1.2NRK-52E. The maximum increases for NRK-2E and H/1.2NRK-52E were as follows: c-fos, approximately 10-fold and approximately 18-fold; c-jun, approximately 2.5-fold and approximately 3.6-fold; hsp70, approximately 13-fold and approximately 30-fold. In cells loaded with EGTA/AM or treated in low or no Ca2+ HBSS, c-fos induction was reduced similarly in both cell types. However, inhibition of protein kinases with staurosporin and calphostin C reduced c-fos by 80% in NRK-52E but by only 10-20% in H/1.2NRK.52E. These results indicate that sulofenur-induced IEG elevation is Ca(2+)-dependent and that the requirement for protein kinase C activation is bypassed in H-ras-transfected cells.

  8. Systemic L-Kynurenine sulfate administration disrupts object recognition memory, alters open field behavior and decreases c-Fos immunopositivity in C57Bl/6 mice

    PubMed Central

    Varga, Dániel; Herédi, Judit; Kánvási, Zita; Ruszka, Marian; Kis, Zsolt; Ono, Etsuro; Iwamori, Naoki; Iwamori, Tokuko; Takakuwa, Hiroki; Vécsei, László; Toldi, József; Gellért, Levente

    2015-01-01

    L-Kynurenine (L-KYN) is a central metabolite of tryptophan degradation through the kynurenine pathway (KP). The systemic administration of L-KYN sulfate (L-KYNs) leads to a rapid elevation of the neuroactive KP metabolite kynurenic acid (KYNA). An elevated level of KYNA may have multiple effects on the synaptic transmission, resulting in complex behavioral changes, such as hypoactivity or spatial working memory deficits. These results emerged from studies that focused on rats, after low-dose L-KYNs treatment. However, in several studies neuroprotection was achieved through the administration of high-dose L-KYNs. In the present study, our aim was to investigate whether the systemic administration of a high dose of L-KYNs (300 mg/bwkg; i.p.) would produce alterations in behavioral tasks (open field or object recognition) in C57Bl/6j mice. To evaluate the changes in neuronal activity after L-KYNs treatment, in a separate group of animals we estimated c-Fos expression levels in the corresponding subcortical brain areas. The L-KYNs treatment did not affect the general ambulatory activity of C57Bl/6j mice, whereas it altered their moving patterns, elevating the movement velocity and resting time. Additionally, it seemed to increase anxiety-like behavior, as peripheral zone preference of the open field arena emerged and the rearing activity was attenuated. The treatment also completely abolished the formation of object recognition memory and resulted in decreases in the number of c-Fos-immunopositive-cells in the dorsal part of the striatum and in the CA1 pyramidal cell layer of the hippocampus. We conclude that a single exposure to L-KYNs leads to behavioral disturbances, which might be related to the altered basal c-Fos protein expression in C57Bl/6j mice. PMID:26136670

  9. Chemical divisions in the medial geniculate body and surrounding paralaminar nuclei of the rat: quantitative comparison of cell density, NADPH diaphorase, acetyl cholin esterase and basal expression of c-fos.

    PubMed

    Olucha-Bordonau, Francisco E; Pérez-Villalba, Ana; Teruel-Martí, Vicent; Ruiz-Torner, Amparo

    2004-11-01

    Quantitative methods of cell density, the intensities of both acetyl cholinesterase (AChE) and NADPH diaphorase (NADPHd), as well as the basal expression of c-fos, have been carried out in order to study the anatomical divisions of the medial geniculate body (MGB) and the group of nuclei located ventromedially to the MGB called the paralaminar complex (PL). The MGB was composed of the dorsal (MGd), and the ventral (MGv) divisions. We included the medial, or the magnocellular division (MGm), in the PL complex. MGd was composed of a dorsolateral (DL) core and a belt. The belt was composed of the suprageniculate (SG), the deep dorsal (DD), the caudo-medial (CM) and the caudo-dorsal (CD) nuclei. In the MGv, the basal expression of c-fos was the only way to trace a clear boundary between the ovoid (Ov) and the ventrolateral (VL) divisions. However, the marginal zone (MZ) was clearly and contrastingly different. The PL was considered to be composed of: the MGm, the posterior intralaminar nucleus (PIN), the peripeduncular nucleus (PP) and the nucleus subparafascicularis lateralis (SPFL). The MGm and the PIN share most of the chemical features, meanwhile both SPFL and PP displayed different patterns of NADPHd reactivity. The study of cell density on Giemsa stained sections confirmed main divisions of the area. AChE and NADPHd methods allowed the main MGB divisions to be discriminated. The differences between subdivisions were emphasized when cell density and c-fos activity were quantified in each nucleus. Each MGB division displayed a different pattern of c-fos activity under basal conditions. Thus, c-fos basal expression was a particular feature in each MGB or PL nucleus.

  10. Differential Cortical c-Fos and Zif-268 Expression after Object and Spatial Memory Processing in a Standard or Episodic-Like Object Recognition Task

    PubMed Central

    Barbosa, Flávio Freitas; Santos, José Ronaldo; Meurer, Ywlliane S. Rodrigues; Macêdo, Priscila Tavares; Ferreira, Luane M. Stamatto; Pontes, Isabella M. Oliveira; Ribeiro, Alessandra Mussi; Silva, Regina Helena

    2013-01-01

    Episodic memory reflects the capacity to recollect what, where, and when a specific event happened in an integrative manner. Animal studies have suggested that the medial temporal lobe and the medial pre-frontal cortex are important for episodic-like memory (ELM) formation. The goal of present study was to evaluate whether there are different patterns of expression of the immediate early genes c-Fos and Zif-268 in these cortical areas after rats are exposed to object recognition (OR) tasks with different cognitive demands. Male rats were randomly assigned to five groups: home cage control, empty open field (CTR-OF), open field with one object (CTR-OF + Obj), novel OR task, and ELM task and were killed 1 h after the last behavioral procedure. Rats were able to discriminate the objects in the OR task. In the ELM task, rats showed spatial (but not temporal) discrimination of the objects. We found an increase in the c-Fos expression in the dorsal dentate gyrus (DG) and in the perirhinal cortex (PRh) in the OR and ELM groups. The OR group also presented an increase of c-Fos expression in the medial prefrontal cortex (mPFC). Additionally, the OR and ELM groups had increased expression of Zif-268 in the mPFC. Moreover, Zif-268 was increased in the dorsal CA1 and PRh only in the ELM group. In conclusion, the pattern of activation was different in tasks with different cognitive demands. Accordingly, correlation tests suggest the engagement of different neural networks in the tasks used. Specifically, perirhinal-DG co-activation was detected after the what-where memory retrieval, but not after the novel OR task. Both regions correlated with the respective behavioral outcome. These findings can be helpful in the understanding of the neural networks underlying memory tasks with different cognitive demands. PMID:23986669

  11. Lesion-induced increase in nerve growth factor mRNA is mediated by c-fos

    SciTech Connect

    Hengerer, B.; Lindholm, D.; Heumann, R.; Thoenen, H. ); Ruether, U. ); Wagner, E.F. )

    1990-05-01

    Lesion of the sciatic nerve caused a rapid increase in c-fos and c-jun mRNA that was followed about 2 hr later by an increase in nerve growth factor (NGF) mRNA. To evaluate whether the initial increase in c-fos mRNA is casually related to the subsequent increase in NGF mRNA, the authors performed experiments with fibroblasts of transgenic mice carrying an exogenous c-fos gene under the control of a metallothionein promoter. In primary cultures of these fibroblasts, CdCl{sub 2} evoked a rapid increase in exogenous c-fos mRNA, followed immediately by an increase in endogenous c-jun mRNA and with a slight delay by an increase in NGF mRNA. In fibroblasts of C3H control mice, CdCl{sub 2} had no effect on the mRNA levels of the protooncogenes c-fos and c-jun or of NGF. Additional evidence for a casual relationship between c-fos induction and the subsequent increase in NGF mRNA was obtained in cotransfection experiments. DNase I footprint experiments demonstrated that a binding site for transcription factor AP-1 in the first intron of the NGF gene was protected following c-fos induction. That this protected AP-1 site indeed was functional in the regulation of NGF expression was verified by deletion experiments and by a point mutation in the corresponding AP-1 binding region in the NGF promoter-chloramphenicol acetyltransferase reporter construct.

  12. Asymmetric c-fos expression in the ventral orbital cortex is associated with impaired reversal learning in a right-sided neuropathy

    PubMed Central

    2014-01-01

    Background Recently we showed that unilateral peripheral neuropathic lesions impacted differentially on rat’s emotional/cognitive behavior depending on its left/right location; importantly, this observation recapitulates clinical reports. The prefrontal cortex (PFC), a brain region morphofunctionally affected in chronic pain conditions, is involved in the modulation of both emotion and executive function and displays functional lateralization. To test whether the PFC is involved in the lateralization bias associated with left/right pain, c-fos expression in medial and orbital areas was analyzed in rats with an unilateral spared nerve injury neuropathy installed in the left or in the right side after performing an attentional set-shifting, a strongly PFC-dependent task. Results SNI-R animals required more trials to successfully terminate the reversal steps of the attentional set-shifting task. A generalized increase of c-fos density in medial and orbital PFC (mPFC/OFC), irrespectively of the hemisphere, was observed in both SNI-L and SNI-R. However, individual laterality indexes revealed that contrary to controls and SNI-L, SNI-R animals presented a leftward shift in c-fos density in the ventral OFC (VO). None of these effects were observed in the neighboring primary motor area. Conclusions Our results demonstrate that chronic neuropathic pain is associated with a bilateral mPFC and OFC hyperactivation. We hypothesize that the impaired performance of SNI-R animals is associated with a left/right activity inversion in the VO, whose functional integrity is critical for reversal learning. PMID:24958202

  13. Injections of urocortin 1 into the basolateral amygdala induce anxiety-like behavior and c-Fos expression in brainstem serotonergic neurons.

    PubMed

    Spiga, F; Lightman, S L; Shekhar, A; Lowry, C A

    2006-01-01

    The amygdala plays a key role in emotional processing and anxiety-related physiological and behavioral responses. Previous studies have shown that injections of the anxiety-related neuropeptide corticotropin-releasing factor or the related neuropeptide urocortin 1 into the region of the basolateral amygdaloid nucleus induce anxiety-like behavior in several behavioral paradigms. Brainstem serotonergic systems in the dorsal raphe nucleus and median raphe nucleus may be part of a distributed neural system that, together with the basolateral amygdala, regulates acute and chronic anxiety states. We therefore investigated the effect of an acute bilateral injection of urocortin 1 into the basolateral amygdala on behavior in the social interaction test and on c-Fos expression within serotonergic neurons in the dorsal raphe nucleus and median raphe nucleus. Male rats were implanted with bilateral cannulae directed at the region of the basolateral amygdala; 72 h after surgery, rats were injected with urocortin 1 (50 fmol/100 nl) or vehicle (100 nl of 1% bovine serum albumin in distilled water). Thirty minutes after injection, a subgroup of rats from each experimental group was exposed to the social interaction test; remaining animals were left in the home cage. Two hours after injection rats were perfused with paraformaldehyde and brains were removed and processed for immunohistochemistry. Acute injection of urocortin 1 had anxiogenic effects in the social interaction test, reducing total interaction time without affecting locomotor activity or exploratory behavior. These behavioral effects were associated with increases in c-Fos expression within brainstem serotonergic neurons. In home cage rats and rats exposed to the social interaction test, urocortin 1 treatment increased the number of c-Fos-immunoreactive serotonergic neurons within subdivisions of both the dorsal raphe nucleus and median raphe nucleus. These results are consistent with the hypothesis that the

  14. Effects of mGlu2 or mGlu3 receptor deletions on mGlu2/3 receptor agonist (LY354740)-induced brain c-Fos expression: specific roles for mGlu2 in the amygdala and subcortical nuclei, and mGlu3 in the hippocampus.

    PubMed

    Linden, Anni-Maija; Baez, Melvin; Bergeron, Marcelle; Schoepp, Darryle D

    2006-08-01

    LY354740 is a potent and selective mGlu2/3 receptor agonist with activity in models of psychiatric disorders (anxiety, psychosis), and early clinical studies in anxiety patients. However, the specific receptor subtypes and brain regions which mediate mGlu2/3 receptor agonist pharmacology/efficacy are not well understood. Here we investigate the effects of deleting mGlu2 or mGlu3 receptors on basal and LY354740-regulated c-Fos expression in mouse brain using mGlu2 or mGlu3 knockout mice. Consistent with our earlier findings, LY354740 administration (20 mg/kg, i.p.) to wild-type mice increased c-Fos expression in specific limbic (central amygdala, bed nucleus of the stria terminalis, midline thalamic nuclei) and non-limbic (thalamic dorsolateral geniculate nucleus, superior colliculus, Edinger-Westphal) structures, while modestly suppressing hippocampal c-Fos expression. The LY354740-induced increases in c-Fos expression in all the above regions were abolished by mGlu2, but not mGlu3, receptor deletion. Interestingly, basal c-Fos expression was significantly increased in the hippocampus of mGlu3, but not mGlu2, receptor knockouts compared to wild-type mice. Moreover, this increase was not suppressed by LY354740, such that in the CA3 region LY354740 now increased c-Fos expression in the mGlu3 knockouts. These results demonstrate that the LY354740-induced increases of c-Fos expression in specific brain regions, including the central and extended amygdala are specifically linked to mGlu2 receptors, and LY354740 suppressions of neuronal activity in the hippocampus are linked to mGlu3 receptors. PMID:16733060

  15. Sequence-specific photoinduced c-fos gene damage mediated by triple stranded-forming oligonucleotide conjugated to psoralen

    NASA Astrophysics Data System (ADS)

    Cao, En-Hua; Wang, Ju-jun; Ma, Wenjian; Qin, Jingfen

    1999-09-01

    A psoralen-oligonucleotide conjugate was designed to photoinduce a cross-link at a specific sequence of c-fos oncogene. Psoralen was attached to its C-3 position of a 20-base mer oligonucleotide, which binds to a synthetic 49 bp duplex containing the c-fos gene polypurine site, where it forms a triple stranded DNA. Upon near-UV-irradiation, the two strand of DNA are crosslinked at the TpA step present at the triple-duplex junction. Results show that the yield of the photoinduce cross- linking reaction is quite high. We treated HeLa cells with above 2-mer oligonucleotide conjugated to psoralen. The expression of c-fos oncogene was significant reduced, no significant effect on the level of c-myc mRNA. These data indicate that such psoralen- oligonucleotide conjugates could be used to selectively control gene expression or to induce sequence-specific damages.

  16. Expression of c-fos and c-jun protooncogenes in the uteri of immature mice neonatally exposed to diethylstilbestrol.

    PubMed

    Yamashita, S; Takayanagi, A; Shimizu, N

    2003-01-01

    We studied the cell-type-specific and temporal expression of c-fos and c-jun protooncogenes after 17beta-estradiol (E2) stimulation in the uteri of immature 3-week-old mice neonatally exposed to diethylstilbestrol (DES), DES-mice, and the ontogenic expression of these genes in the uteri of DES-mice using immunohistochemistry and in situ hybridization. A single E2 injection induced the transient and rapid expression of c-fos mRNA and c-Fos protein in the endometrial epithelium and endothelial cells of the blood vessels in both 3-week-old vehicle-treated controls and DES-mice; a peak of mRNA expression was 2 hours after E2 injection and that of protein expression was 2 to 3 hours after the injection. The expression of c-fos mRNA and protein after E2 stimulation was lower in the DES-mice than in the control animals. There were no significant differences in the c-jun expression patterns in both experimental groups before and after the E2 injection. The E2 injection transiently down-regulated the c-jun expression in the epithelium and up-regulated it in the stroma and myometrium. The uterine epithelium of DES-mice showed much stronger c-Jun immunostaining on days 4 and 10, compared with those of controls. Neonatal DES treatment reduced c-Jun immunoreactivity in the uterine epithelium on days 4 and 10, and increased the reaction in the stroma on day 4. These results suggested that the neonatal DES treatment induces permanent changes in the c-fos expression pattern independent of the postpuberal secretion of ovarian steroids. The changes in the expression of c-fos and c-jun protooncogenes, particularly during postnatal development, are likely to play important roles in the production of uterine abnormalities in the DES-mice.

  17. Cells in the female retrotrapezoid region upregulate c-fos in response to 10%, but not 5%, carbon dioxide.

    PubMed

    Niblock, Mary M; Lohr, Kelly M; Nixon, Melissa; Barnes, Caitlin; Schaudies, Meredith; Murphy, Mark

    2012-01-18

    The retrotrapezoid nucleus (RTN) is thought to regulate breathing in response to changes in blood carbon dioxide (CO(2)), and to make a vital contribution to respiratory drive, especially during sleep. However, cells in the female RTN fail to upregulate c-fos in response to low level CO(2) exposure, while cells in the male RTN have a robust upregulation of c-fos in response to low level CO(2) exposure. In this study, we examined the possibility that the female RTN has a higher threshold for c-fos upregulation in response to CO(2). Following exposure of Fos-Tau-LacZ (FTL) transgenic mice to 10% CO(2), c-fos was upregulated in just as many cells in the female as in the male RTN. In addition, the male RTN responded equivalently to 5% and 10% CO(2), consistent with a lack of a dose response to CO(2) in the male RTN. Cells in the nearby facial nucleus upregulated c-fos in the same number of cells regardless of sex or gas exposure, confirming that the sex difference in the RTN is unique to that nucleus. We propose that the male and female RTN upregulate c-fos differently in response to CO(2) due to differences in the transcriptional regulation by estrogens of genes that encode proteins related to neuronal excitability or specifically related to central chemoreception, such as potassium channels. These findings could have clinical relevance to sleep related breathing disorders that disproportionately affect males, including the sudden infant death syndrome and sleep apnea.

  18. Nerve Growth Factor is Required for Induction of c-Fos Immunoreactivity by Serum, Depolarization, Cyclic AMP or Trauma in Cultured Rat Sympathetic Neurons.

    PubMed

    Buckmaster, A; Nobes, C D; Edwards, S N; Tolkovsky, A M

    1991-01-01

    Nerve growth factor (NGF) induces transient Fos-immunoreactivity (Fos-IR) independently of any other factor, both in newly isolated rat sympathetic neurons and in established cultures after NGF deprivation. The same proportion of neurons that express Fos-IR in response to NGF also survive. In addition to direct stimulation of Fos-IR expression, the presence or recent exposure to NGF is required to obtain Fos-IR expression by other stimuli. In newly isolated neurons no Fos-IR is detected in response to stimulation by serum alone and a response to depolarization or cyclic AMP is obtained only if neurons are stimulated within a short period after ganglion excision. In established cultures none of these stimuli, nor the trauma of cutting neurites or spiking cell bodies with a microinjection needle induce Fos-IR unless NGF is present or had been removed for <8 - 16 h. The lack of response is not due to a general decrease in the rate of protein or RNA synthesis. These findings show that in regenerating sympathetic neurons NGF induces c-Fos and suggest that NGF may activate a master trigger that is required for c-Fos expression to be induced by other stimuli.

  19. Induction of interleukin 6 and interleukin 8 expression by Broncho-Vaxom (OM-85 BV) via C-Fos/serum responsive element.

    PubMed Central

    Keul, R.; Roth, M.; Papakonstantinou, E.; Nauck, M.; Perruchoud, A. P.; Block, L. H.

    1996-01-01

    BACKGROUND: Broncho-Vaxom (OM-85 BV) increases the resistance of the respiratory tract to bacterial infections by modulating host immune responses. The compound increases serum IgG levels but decreases IgE levels in patients suffering from chronic bronchitis or chronic obstructive pulmonary disease. It increases concentrations of gamma-interferon (IFN-gamma), IgA, and interleukin (IL)-2 in bronchoalveolar lavage fluid of patients with bronchitis. Treatment with OM-85 BV increases the number of T helper and natural killer cells. In this study the effects of OM-85 BV on transcription of cytokines is investigated in human lung fibroblasts. METHODS: Transcription and synthesis of IL-6 and IL-8 were assessed in cultured primary human lung fibroblasts using standard methods of Northern blot analysis for the level of mRNAs and enzyme linked immunosorbent assay for proteins. RESULTS: Broncho-Vaxom (OM-85 BV) at different concentrations induced transcription of IL-6 and IL-8. The effect of the drug on transcription of IL-6 and IL-8 genes correlated with secretion of the proteins into cell supernatants. OM-85 BV-dependent expression of the interleukin genes involved C-Fos/serum responsive element (C-Fos/SRE). CONCLUSIONS: The data suggest that the various immunopharmacological activities of OM-85 BV that have been described in clinical studies may be explained by its ability to induce expression of IL-6 and IL-8. Images PMID:8711646

  20. Acute nicotine enhances spontaneous recovery of contextual fear and changes c-fos early gene expression in infralimbic cortex, hippocampus, and amygdala.

    PubMed

    Kutlu, Munir G; Tumolo, Jessica M; Holliday, Erica; Garrett, Brendan; Gould, Thomas J

    2016-08-01

    Exposure therapy, which focuses on extinguishing fear-triggering cues and contexts, is widely used to treat post-traumatic stress disorder (PTSD). Yet, PTSD patients who received successful exposure therapy are vulnerable to relapse of fear response after a period of time, a phenomenon known as spontaneous recovery (SR). Increasing evidence suggests ventral hippocampus, basolateral amygdala, and infralimbic cortex may be involved in SR. PTSD patients also show high rates of comorbidity with nicotine dependence. While the comorbidity between smoking and PTSD might suggest nicotine may alter SR, the effects of nicotine on SR of contextual fear are unknown. In the present study, we tested the effects of acute nicotine administration on SR of extinguished contextual fear memories and c-fos immediate early gene immunohistochemistry in mice. Our results demonstrated that acute nicotine enhanced SR of extinguished fear whereas acute nicotine did not affect retrieval of unextinguished contextual memories. This suggests that the effect of acute nicotine on SR is specific for memories that have undergone extinction treatment. C-fos immunoreactive (IR) cells in the ventral hippocampus and basolateral amygdala were increased in the nicotine-treated mice following testing for SR, whereas the number of IR cells in the infralimbic cortex was decreased in the same group. Overall, this study suggests that nicotine may adversely affect context-specific relapse of fear memories and this effect is potentially mediated by the suppression of cortical regions and increased activity in the ventral hippocampus and amygdala. PMID:27421892

  1. Fos Expression in Neurons of the Rat Vestibulo-Autonomic Pathway Activated by Sinusoidal Galvanic Vestibular Stimulation

    PubMed Central

    Holstein, Gay R.; Friedrich Jr., Victor L.; Martinelli, Giorgio P.; Ogorodnikov, Dmitri; Yakushin, Sergei B.; Cohen, Bernard

    2012-01-01

    The vestibular system sends projections to brainstem autonomic nuclei that modulate heart rate and blood pressure in response to changes in head and body position with regard to gravity. Consistent with this, binaural sinusoidally modulated galvanic vestibular stimulation (sGVS) in humans causes vasoconstriction in the legs, while low frequency (0.02–0.04 Hz) sGVS causes a rapid drop in heart rate and blood pressure in anesthetized rats. We have hypothesized that these responses occur through activation of vestibulo-sympathetic pathways. In the present study, c-Fos protein expression was examined in neurons of the vestibular nuclei and rostral ventrolateral medullary region (RVLM) that were activated by low frequency sGVS. We found c-Fos-labeled neurons in the spinal, medial, and superior vestibular nuclei (SpVN, MVN, and SVN, respectively) and the parasolitary nucleus. The highest density of c-Fos-positive vestibular nuclear neurons was observed in MVN, where immunolabeled cells were present throughout the rostro-caudal extent of the nucleus. c-Fos expression was concentrated in the parvocellular region and largely absent from magnocellular MVN. c-Fos-labeled cells were scattered throughout caudal SpVN, and the immunostained neurons in SVN were restricted to a discrete wedge-shaped area immediately lateral to the IVth ventricle. Immunofluorescence localization of c-Fos and glutamate revealed that approximately one third of the c-Fos-labeled vestibular neurons showed intense glutamate-like immunofluorescence, far in excess of the stain reflecting the metabolic pool of cytoplasmic glutamate. In the RVLM, which receives a direct projection from the vestibular nuclei and sends efferents to preganglionic sympathetic neurons in the spinal cord, we observed an approximately threefold increase in c-Fos labeling in the sGVS-activated rats. We conclude that localization of c-Fos protein following sGVS is a reliable marker for sGVS-activated neurons of the vestibulo

  2. Fos expression in neurons of the rat vestibulo-autonomic pathway activated by sinusoidal galvanic vestibular stimulation.

    PubMed

    Holstein, Gay R; Friedrich, Victor L; Martinelli, Giorgio P; Ogorodnikov, Dmitri; Yakushin, Sergei B; Cohen, Bernard

    2012-01-01

    The vestibular system sends projections to brainstem autonomic nuclei that modulate heart rate and blood pressure in response to changes in head and body position with regard to gravity. Consistent with this, binaural sinusoidally modulated galvanic vestibular stimulation (sGVS) in humans causes vasoconstriction in the legs, while low frequency (0.02-0.04 Hz) sGVS causes a rapid drop in heart rate and blood pressure in anesthetized rats. We have hypothesized that these responses occur through activation of vestibulo-sympathetic pathways. In the present study, c-Fos protein expression was examined in neurons of the vestibular nuclei and rostral ventrolateral medullary region (RVLM) that were activated by low frequency sGVS. We found c-Fos-labeled neurons in the spinal, medial, and superior vestibular nuclei (SpVN, MVN, and SVN, respectively) and the parasolitary nucleus. The highest density of c-Fos-positive vestibular nuclear neurons was observed in MVN, where immunolabeled cells were present throughout the rostro-caudal extent of the nucleus. c-Fos expression was concentrated in the parvocellular region and largely absent from magnocellular MVN. c-Fos-labeled cells were scattered throughout caudal SpVN, and the immunostained neurons in SVN were restricted to a discrete wedge-shaped area immediately lateral to the IVth ventricle. Immunofluorescence localization of c-Fos and glutamate revealed that approximately one third of the c-Fos-labeled vestibular neurons showed intense glutamate-like immunofluorescence, far in excess of the stain reflecting the metabolic pool of cytoplasmic glutamate. In the RVLM, which receives a direct projection from the vestibular nuclei and sends efferents to preganglionic sympathetic neurons in the spinal cord, we observed an approximately threefold increase in c-Fos labeling in the sGVS-activated rats. We conclude that localization of c-Fos protein following sGVS is a reliable marker for sGVS-activated neurons of the vestibulo

  3. Dentin bonding agents induce c-fos and c-jun protooncogenes expression in human gingival fibroblasts.

    PubMed

    Huang, Fu-Mei; Chou, Ming-Yung; Chang, Yu-Chao

    2003-01-01

    An important requirement for a dentin bonding agent is biologic compatibility; the bonding agent usually remains in close contact with living dental tissues over a long period of time. Information on the genotoxicity/mutagenicity and cacinogenicity potentials of dentin bonding agents is rare. It has been shown that c-fos and c-jun are induced rapidly by a variety of chemical and physical stimuli. Little is known about the induction of cellular signaling events and specific gene expression after cell exposure to dentin bonding agents. Therefore, we used primary human gingival fibroblasts to examine the effect of six dentin bonding agents on the expression of c-fos and c-jun protooncogenes to evaluate the genotoxicity/mutagenicity and cacinogenicity potential of the dentin bonding agents. The levels of mRNA were measured by the quantitative RT-PCR analysis. c-fos and c-jun mRNA expression in dentin bonding agents-treated cells revealed a rapid accumulation of the transcript, a significant signal first was detectable after 1h of exposure. Persistent induction of c-jun and c-fos protooncogenes by dentine bonding agents may distribute systemically to cause some unexpected adverse effects on human beings. It would be necessary to identify the severely toxic compounds and replace these substances by better biocompatible components. Otherwise, leaching of those genotoxicity/mutagenicity and cacinogenicity components must be minimized or prevented.

  4. MicroRNA-490-5p inhibits proliferation of bladder cancer by targeting c-Fos

    SciTech Connect

    Li, Shiqi; Xu, Xianglai; Xu, Xin; Hu, Zhenghui; Wu, Jian; Zhu, Yi; Chen, Hong; Mao, Yeqing; Lin, Yiwei; Luo, Jindan; Zheng, Xiangyi; Xie, Liping

    2013-11-29

    Highlights: •We examined the level of miR-490-5p in bladder cancer tissues and three cancer cell lines. •We are the first to show the function of miR-490-5p in bladder cancer. •We demonstrate c-Fos may be a target of miR-490-5p. -- Abstract: MicroRNAs (miRNAs) are non-protein-coding sequences that play a crucial role in tumorigenesis by negatively regulating gene expression. Here, we found that miR-490-5p is down-regulated in human bladder cancer tissue and cell lines compared to normal adjacent tissue and a non-malignant cell line. To better characterize the function of miR-490-5p in bladder cancer, we over-expressed miR-490-5p in bladder cancer cell lines with chemically synthesized mimics. Enforced expression of miR-490-5p in bladder cancer cells significantly inhibited the cell proliferation via G1-phase arrest. Further studies found the decreased c-Fos expression at both mRNA and protein levels and Luciferase reporter assays demonstrated that c-Fos is a direct target of miR-490-5p in bladder cancer. These findings indicate miR-490-5p to be a novel tumor suppressor of bladder cancer cell proliferation through targeting c-Fos.

  5. PRENATAL ETHANOL EXPOSURE INCREASES ETHANOL INTAKE AND REDUCES C-FOS EXPRESSION IN INFRALIMBIC CORTEX OF ADOLESCENT RATS

    PubMed Central

    Fabio, Maria Carolina; March, Samanta M.; Molina, Juan Carlos; Nizhnikov, Michael E; Spear, Norman E; Pautassi, Ricardo Marcos

    2013-01-01

    Prenatal ethanol exposure significantly increases later predisposition for alcohol intake, but the mechanisms associated with this phenomenon remain hypothetical. This study analyzed (Exp. 1) ethanol intake in adolescent inbred WKAH/Hok Wistar rats prenatally exposed to ethanol (2.0 g/kg) or vehicle, on gestational days 17–20. Subsequent Experiments (2, 3 and 4) tested several variables likely to underlie the effect of gestational ethanol on adolescent ethanol preference, including ethanol-induced locomotor activation (LMA), ethanol-induced emission of ultrasonic vocalizations (USVs) after exposure to a rough exteroceptive stimulus, and induction of the immediate early gene C-fos in brain areas associated with processing of reward stimuli and with the retrieval and extinction of associative learning. Prenatal ethanol induced a two-fold increase in ethanol intake. Adolescents exhibited significant ethanol-induced LMA, emitted more aversive than appetitive USVs, and postnatal ethanol administration significantly exacerbated the emission of USVs. These effects, however, were not affected by prenatal ethanol. Adolescents prenatally exposed to ethanol as fetuses exhibited reduced neural activity in infralimbic cortex (but not in prelimbic cortex or nucleus accumbens core or shell), an area that has been implicated in the extinction of drug-mediated associative memories. Ethanol metabolism was not affected by prenatal ethanol. Late gestational exposure to ethanol significantly heightened drinking in the adolescent offspring of an inbred rat strain. Ethanol-induced LMA and USVs were not associated with differential ethanol intake due to prenatal ethanol exposure. Prenatal ethanol, however, altered basal neural activity in the infralimbic prefrontal cortex. Future studies should analyze the functionality of medial prefrontal cortex after prenatal ethanol and its potential association with predisposition for heightened ethanol intake. PMID:23266368

  6. Water deprivation-induced sodium appetite and differential expression of encephalic c-Fos immunoreactivity in the spontaneously hypertensive rat.

    PubMed

    Pereira-Derderian, Daniela T B; Vendramini, Regina C; Menani, José V; De Luca, Laurival A

    2010-05-01

    The spontaneously hypertensive rat (SHR) has an intense consumption of NaCl solution. Water deprivation (WD) followed by water intake to satiety induces partial rehydration (PR)-the WD-PR protocol-and sodium appetite. In the present work, WD produced similar water intake and no alterations in arterial pressure among spontaneously hypertensive rat (SHR), Wistar-Kyoto, and Holtzman strains. It also increased the number of cells with positive c-Fos immunoreactivity (Fos-IR) in the lamina terminalis and in the hypothalamic supraoptic (SON) and paraventricular (parvocellular, PVNp) nucleus in these strains. The WD and WD-PR produced similar alterations in all strains in serum osmolality and protein, plasma renin activity, and sodium balance. The SHR ingested about 10 times more 0.3 M NaCl than normotensives strains in the sodium appetite test that follows WD-PR. After WD-PR, the Fos-IR persisted, elevated in the lamina terminalis of all strains but notably in the subfornical organ of the SHR. The WD-PR reversed Fos-IR in the SON of all strains and in the PVNp of SHR. It induced Fos-IR in the area postrema and in the nucleus of the solitary tract (NTS), dorsal raphe, parabrachial (PBN), pre-locus coeruleus (pre-LC), suprachiasmatic, and central amygdalar nucleus of all strains. This effect was bigger in the caudal-NTS, pre-LC, and medial-PBN of SHRs. The results indicate that WD-PR increases cell activity in the forebrain and hindbrain areas that control sodium appetite in the rat. They also suggest that increased cell activity in facilitatory brain areas precedes the intense 0.3 M NaCl intake of the SHR in the sodium appetite test.

  7. Anatomical markers of activity in neuroendocrine systems: are we all 'fos-ed out'?

    PubMed

    Hoffman, G E; Lyo, D

    2002-04-01

    It has now been nearly 15 years since the immediate early gene, c-fos, and its protein product, Fos, were introduced as tools for determining activity changes within neurones of the nervous system. In the ensuing years, this approach was applied to neuroendocrine study with success. With it have come advances in our understanding of which neuroendocrine neurones respond to various stimuli and how other central nervous system components interact with neuroendocrine neurones. Use of combined tract-tracing approaches, as well as double-labelling for Fos and transmitter markers, have added to characterization of neuroendocrine circuits. The delineation of the signal transduction cascades that induce Fos expression has led to establishment of the relationship between neurone firing and Fos expression. Importantly, we can now appreciate that Fos expression is often, but not always, associated with increased neuronal firing and vice versa. There are remaining gaps in our understanding of Fos in the nervous system. To date, knowledge of what Fos does after it is expressed is still limited. The transience of Fos expression after stimulation (especially if the stimulus is persistent) complicates design of experiments to assess the function of Fos and makes Fos of little value as a marker for long-term changes in neurone activity. In this regard, alternative approaches must be sought. Useful alternative approaches employed to date to monitor neuronal changes in activity include examination of (i) signal transduction intermediates (e.g. phosphorylated CREB); (ii) transcriptional/translational intermediates (e.g. heteronuclear RNA, messenger RNA (mRNA), prohormones); and (iii) receptor translocation. Another capitalizes on the fact that many neuroendocrine systems show striking stimulus-transcription coupling in the regulation of their transmitter or its synthetic enzymes. Together, as we move into the 21st Century, the use of multiple approach to study activity within

  8. Upregulation of N-methyl-D-aspartate receptor subunits and c-Fos expressing genes in PC12D cells by nobiletin.

    PubMed

    Kimura, Junko; Nemoto, Kiyomitsu; Degawa, Masakuni; Yokosuka, Akihito; Mimaki, Yoshihiro; Shimizu, Kosuke; Oku, Naoto; Ohizumi, Yasushi

    2014-01-01

    The N-methyl-D-aspartate (NMDA) receptor plays a key role in learning and memory. Our recent studies have shown that nobiletin from citrus peels activates the cAMP response element-binding protein (CREB) signaling pathway and ameliorates NMDA receptor antagonist-induced learning impairment by activating extracellular signal-regulated kinase. For the first time, we have shown that nobiletin significantly upregulated mRNA expression of the NMDA receptor subunits NR1, NR2A, and NR2B in PC12D cells. Furthermore, c-Fos mRNA expression also increased due to the action of nobiletin. Our results indicate that nobiletin modulates the expression of essential genes for learning and memory by activating the CREB signaling pathway, and suggest that this action mechanism of nobiletin plays a crucial role in improving NMDA receptor antagonist-induced learning impairment in model animals with dementia.

  9. The NR2B antagonist, ifenprodil, corrects the l-DOPA-induced deficit of bilateral movement and reduces c-Fos expression in the subthalamic nucleus of hemiparkinsonian rats.

    PubMed

    Igarashi, Masakazu; Habata, Toshiya; Akita, Hisanao; Noda, Kazuko; Ogata, Masanori; Saji, Makoto

    2015-07-01

    The use of NR2B antagonists in Parkinsonism is still controversial. To examine their anti-parkinsonian effects, the NR2B antagonist, ifenprodil, and L-DOPA were administered together and separately in hemiparkinsonian rats (hemi-PD) that were subjected to a cylinder test. Recovery from hypoactivity was achieved by single administration of 3-7 mg/kg of L-DOPA; however, improvement in the deficit of bilateral forelimb use was not observed. When administered alone, ifenprodil had no anti-parkinsonian effects; however, combined administration of ifenprodil and 7 mg/kg of L-DOPA significantly reversed the deficit of bilateral forelimb use without adversely affecting the L-DOPA-induced improvement in motor activity. Next, in order to identify the brain area influenced by L-DOPA and ifenprodil, quantitative analysis of L-DOPA-induced c-Fos immunoreactivity was performed in various brain areas of hemi-PD following administration of L-dopa with and without ifenprodil. Among brain areas with robust c-Fos expression within the motor loop circuit in dopamine-depleted hemispheres, co-administered ifenprodil markedly attenuated L-DOPA-induced c-Fos expression in only the subthalamic nucleus (STN), suggesting that the STN is the primary target for the anti-parkinsonian action of NR2B antagonists.

  10. Phytoestrogens directly inhibit TNF-α-induced bone resorption in RAW264.7 cells by suppressing c-fos-induced NFATc1 expression.

    PubMed

    Karieb, Sahar; Fox, Simon W

    2011-02-01

    TNF-α-induced osteoclastogenesis is central to post-menopausal and inflammatory bone loss, however, the effect of phytoestrogens on TNF-α-induced bone resorption has not been studied. The phytoestrogens genistein, daidzein, and coumestrol directly suppressed TNF-α-induced osteoclastogenesis and bone resorption. TRAP positive osteoclast formation and resorption area were significantly reduced by genistein (10(-7)  M), daidzein (10(-5)  M), and coumestrol (10(-7)  M), which was prevented by the estrogen antagonist ICI 182,780. TRAP expression in mature TNF-α-induced osteoclasts was also significantly reduced by these phytoestrogen concentrations. In addition, in the presence of ICI 182,780 genistein and coumestrol (10(-5) -10(-6)  M) augmented TNF-α-induced osteoclast formation and resorption. However, this effect was not observed in the absence of estrogen antagonist indicating that genistein's and coumestrol's ER-dependent anti-osteoclastic action normally negates this pro-osteoclastic effect. To determine the mechanism mediating the anti-osteoclastic action we examined the effect of genistein, coumestrol, and daidzein on caspase 3/7 activity, cell viability and expression of key genes regulating osteoclast differentiation and fusion. While anti-osteoclastic phytoestrogen concentrations had no effect on caspase 3/7 activity or cell viability they did significantly reduce TNF-α-induced c-fos and NFATc1 expression in an ER dependent manner and also inhibited NFATc1 nuclear translocation. Significant decreases in NFκB and DC-STAMP levels were also noted. Interestingly, constitutive c-fos expression prevented the anti-osteoclastic action of phytoestrogens on differentiation, resorption and NFATc1. This suggests that phytoestrogens suppress TNF-α-induced osteoclastogenesis via inhibition of c-fos-dependent NFATc1 expression. Our data provides further evidence that phytoestrogens have a potential role in the treatment of post-menopausal and inflammatory

  11. Brainstem Circuitry of Tracheal-bronchial Cough: c-fos Study in Anesthetized Cats

    PubMed Central

    Jakus, Jan; Poliacek, Ivan; Halasova, Erika; Murin, Peter; Knocikova, Juliana; Tomori, Zoltan; Bolser, Donald C

    2008-01-01

    The c-fos gene expression method was used to localize brainstem neurons functionally related to the tracheal-bronchial cough on 13 spontaneously breathing, pentobarbitone anesthetized cats. The level of Fos-like immunoreactivity (FLI) in 6 animals with repetitive coughs (170±12) induced by mechanical stimulation of the tracheobronchial mucosa was compared to FLI in 7 control non-stimulated cats. Thirty-four nuclei were compared for the number of labeled cells. Enhanced cough FLI was found bilaterally at following brainstem structures, as compared to controls: In the medulla, FLI was increased in the medial, interstitial and ventrolateral subnuclei of the solitary tract (p<0.02), in the retroambigual nucleus of the caudal medulla (p<0.05), in the ambigual, paraambigual and retrofacial nuclei of the rostral medulla along with the lateral reticular nuclei, the ventrolateral reticular tegmental field (p<0.05), and the raphe nuclei (p<0.05). In pons, increased FLI was detected in the lateral parabrachial and Kölliker-Fuse nuclei (p<0.01), in the posteroventral cochlear nuclei (p<0.01), and the raphe midline (p<0.05). Within the mesencephalon cough-related FLI was enhanced at the rostral midline area (p<0.05), but a decrease was found at its caudal part in the periaqueductal gray (p<0.02). Results of this study suggest a large medullary - pontine - mesencephalic neuronal circuit involved in the control of the tracheal-bronchial cough in cats. PMID:18055277

  12. Curcumin inhibits osteoclastogenic potential in PBMCs from rheumatoid arthritis patients via the suppression of MAPK/RANK/c-Fos/NFATc1 signaling pathways

    PubMed Central

    Shang, Wei; Zhao, Ling-Jie; Dong, Xiao-Lei; Zhao, Zhi-Ming; Li, Jing; Zhang, Bei-Bei; Cai, Hui

    2016-01-01

    The aim of the present study was to determine the effects of curcumin on the osteoclastogenic potential of peripheral blood mononuclear cells (PBMCs) obtained from patients with rheumatoid arthritis (RA), and to investigate the underlying molecular mechanisms. PBMCs from patients with RA (n=12) and healthy controls (n=10) were cultured to assess osteoclastogenic potential. The number of tartrate-resistant acid phosphatase-positive osteoclasts differentiated from PBMCs isolated from patients with RA was significantly increased compared with that of the healthy controls. In addition, the osteoclast number in patients with RA was correlated with the clinical indicators, Sharp score (r=0.810; P=0.001) and lumbar T-score (r=−0.685; P=0.014). Furthermore, the resorption area was increased in the RA group compared with the healthy controls. The mRNA and protein expression levels in PBMC-derived osteoclasts treated with curcumin were measured by reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. Curcumin inhibited the osteoclastogenic potential of PBMCs, potentially by suppressing activation of extracellular signal-regulated kinases 1 and 2, p38 and c-Jun N-terminal kinase, and inhibiting receptor activator of nuclear factor κB (RANK), c-Fos and nuclear factor of activated T cells (NFATc1) expression. The results of the present study demonstrated that curcumin may inhibit the osteoclastogenic potential of PBMCs from patients with RA through the suppression of the mitogen-activated protein kinase/RANK/c-Fos/NFATc1 signaling pathways, and that curcumin may be a potential novel therapeutic agent for the treatment of bone deterioration in inflammatory diseases such as RA. PMID:27572279

  13. From synapse to gene product: Prolonged expression of c-fos induced by a single microinjection of carbachol in the pontomesencephalic tegmentum

    PubMed Central

    Quattrochi, James J.; Bazalakova, Mihaela; Hobson, J. Allan

    2006-01-01

    It is not known how the brain modifies its regulatory systems in response to the application of a drug, especially over the long term of weeks and months. We have developed a model system approach to this question by manipulating cholinergic cell groups of the laterodorsal and pedunculopontine tegmental (LDT/PPT) nuclei in the pontomesencephalic tegmentum (PMT), which are known to be actively involved in the timing and quantity of rapid eye movement (REM) sleep. In a freely moving feline model, a single microinjection of the cholinergic agonist carbachol conjugated to a latex nanosphere delivery system into the caudolateral PMT elicits a long-term enhancement of one distinguishing phasic event of REM sleep, ponto-geniculo-occipital (PGO) waves, lasting 5 days but without any significant change in REM sleep or other behavioral state. Here, we test the hypothesis that cholinergic activation within the caudolateral PMT alters the postsynaptic excitability of the PGO network, stimulating the prolonged expression of c-fos that underlies this long-term PGO enhancement (LTPE) effect. Using quantitative Fos immunohistochemistry, we found that the number of Fos-immunoreactive (Fos-IR) neurons surrounding the caudolateral PMT injection site decreased sharply by postcarbachol day 03, while the number of Fos-IR neurons in the more rostral LDT/PPT increased >30-fold and remained at a high level following the course of LTPE. These results demonstrate a sustained c-fos expression in response to pharmacological stimulation of the brain and suggest that carbachol's acute effects induce LTPE via cholinergic receptors, with subsequent transsynaptic activation of the LDT/PPT maintaining the LTPE effect. PMID:15893601

  14. From synapse to gene product: prolonged expression of c-fos induced by a single microinjection of carbachol in the pontomesencephalic tegmentum.

    PubMed

    Quattrochi, James J; Bazalakova, Mihaela; Hobson, J Allan

    2005-05-20

    It is not known how the brain modifies its regulatory systems in response to the application of a drug, especially over the long term of weeks and months. We have developed a model system approach to this question by manipulating cholinergic cell groups of the laterodorsal and pedunculopontine tegmental (LDT/PPT) nuclei in the pontomesencephalic tegmentum (PMT), which are known to be actively involved in the timing and quantity of rapid eye movement (REM) sleep. In a freely moving feline model, a single microinjection of the cholinergic agonist carbachol conjugated to a latex nanosphere delivery system into the caudolateral PMT elicits a long-term enhancement of one distinguishing phasic event of REM sleep, ponto-geniculo-occipital (PGO) waves, lasting 5 days but without any significant change in REM sleep or other behavioral state. Here, we test the hypothesis that cholinergic activation within the caudolateral PMT alters the postsynaptic excitability of the PGO network, stimulating the prolonged expression of c-fos that underlies this long-term PGO enhancement (LTPE) effect. Using quantitative Fos immunohistochemistry, we found that the number of Fos-immunoreactive (Fos-IR) neurons surrounding the caudolateral PMT injection site decreased sharply by postcarbachol day 03, while the number of Fos-IR neurons in the more rostral LDT/PPT increased >30-fold and remained at a high level following the course of LTPE. These results demonstrate a sustained c-fos expression in response to pharmacological stimulation of the brain and suggest that carbachol's acute effects induce LTPE via cholinergic receptors, with subsequent transsynaptic activation of the LDT/PPT maintaining the LTPE effect.

  15. Facilitated c-Fos Induction in Mice Deficient for the AMPA Receptor-Associated Protein Ckamp44.

    PubMed

    Yang, Boyi; Dormann, Christof; Vogt, Miriam A; Sprengel, Rolf; Gass, Peter; Inta, Dragos

    2016-10-01

    The recently identified Cystine-knot containing AMPAR-associated protein (Ckamp44) represents a novel AMPAR-related protein that critically controls AMPAR-mediated currents and short-term plasticity. However, the effects of the lack of this protein at network level are not entirely understood. Here we used c-Fos brain mapping to analyse whether the excitatory/inhibitory balance is altered in the absence of the Ckamp44. We found that Ckamp44(-/-) mice treated with an NMDAR antagonist exhibited a very robust c-Fos expression pattern, similar with that seen in mice lacking the GluN2A subunit of NMDAR treated with the same compound. This finding is unexpected, in particular, since Ckamp44 expression is strongest in dentate gyrus granule cells and less abundant in the rest of the brain. PMID:26645823

  16. c-FOS-like immunoreactivity in rat brainstem neurons following noxious chemical stimulation of the nasal mucosa.

    PubMed

    Anton, F; Herdegen, T; Peppel, P; Leah, J D

    1991-01-01

    It has previously been shown that noxious and non-noxious peripheral stimuli induce c-fos expression in spinal dorsal horn neurons. In the present study we have examined the expression of c-fos in brainstem neurons following noxious chemical stimulation of the respiratory region of the nasal mucosa. In urethane-anaesthetized rats we injected mustard oil or applied CO2 pulses to the right nasal cavity. In control animals we applied paraffin oil or a continuous flow of air. A further group of control animals was anaesthetized and not subjected to any experimental treatment. Two hours after the first stimulus the rats were perfused with 4% phosphate-buffered paraformaldehyde. Brainstem sections were incubated with primary antiserum against the FOS protein and processed according to the ABC method. Only the mustard oil-treated rats had obvious signs of rhinitis and displayed FOS-positive cells in laminae I and II of the subnucleus caudalis and in the subnucleus interpolaris of the trigeminal brainstem nuclear complex as well as in the medullary lateral reticular nucleus. These areas are known to be involved in the processing of nociceptive information. Although CO2 pulses applied to the nasal mucosa are known to evoke pain sensations in man we did not observe any FOS-positive neurons in trigeminal and reticular brainstem areas of CO2-treated rats. This lack of c-fos expression probably results from the fact that unlike mustard oil, CO2 did not induce any apparent inflammatory reactions. In all animals c-fos expression was found in the nucleus of the solitary tract and in the area postrema. Staining in these areas might partly result from factors related to anaesthesia, changed respiration parameters and stress. Since the mustard oil-treated rats displayed the highest levels of immunoreactivity in the nucleus of the solitary tract and in the area postrema, additional effects specifically related to nociceptive input are very likely.

  17. Orientation within a high magnetic field determines swimming direction and laterality of c-Fos induction in mice

    PubMed Central

    Kwon, Bumsup; Houpt, Charles E.; Neth, Bryan; Smith, James C.

    2013-01-01

    High-strength static magnetic fields (>7 tesla) perturb the vestibular system causing dizziness, nystagmus, and nausea in humans; and head motion, locomotor circling, conditioned taste aversion, and c-Fos induction in brain stem vestibular nuclei in rodents. To determine the role of head orientation, mice were exposed for 15 min within a 14.1-tesla magnet at six different angles (mice oriented parallel to the field with the head toward B+ at 0°; or pitched rostrally down at 45°, 90°, 90° sideways, 135°, and 180°), followed by a 2-min swimming test. Additional mice were exposed at 0°, 90°, and 180° and processed for c-Fos immunohistochemistry. Magnetic field exposure induced circular swimming that was maximal at 0° and 180° but attenuated at 45° and 135°. Mice exposed at 0° and 45° swam counterclockwise, whereas mice exposed at 135° and 180° swam clockwise. Mice exposed at 90° (with their rostral-caudal axis perpendicular to the magnetic field) did not swim differently than controls. In parallel, exposure at 0° and 180° induced c-Fos in vestibular nuclei with left-right asymmetries that were reversed at 0° vs. 180°. No significant c-Fos was induced after 90° exposure. Thus, the optimal orientation for magnetic field effects is the rostral-caudal axis parallel to the field, such that the horizontal canal and utricle are also parallel to the field. These results have mechanistic implications for modeling magnetic field interactions with the vestibular apparatus of the inner ear (e.g., the model of Roberts et al. of an induced Lorenz force causing horizontal canal cupula deflection). PMID:23720133

  18. Emergence of spatial behavioral function and associated mossy fiber connectivity and c-Fos labeling patterns in the hippocampus of rats.

    PubMed

    Comba, Rachel; Gervais, Nicole; Mumby, Dave; Holahan, Matthew

    2015-01-01

    Improvement on spatial tasks is observed during a late, postnatal developmental period (PND18 - PND24).  The purpose of the current work was 1) to determine whether the emergence of spatial-behavioral function was based on the ability to generate appropriate behavioral output; 2) to assess whether mossy fiber connectivity patterns preceded the emergence of spatial-behavioral function; 3) to explore functional changes in the hippocampus to determine whether activity in hippocampal networks occurred in a training-dependent or developmentally-dependent fashion.  To these ends, male, Long Evans rats were trained on a spatial water or dry maze task for one day (PND16, PND18 or PND20) then euthanized.  Training on these 2 tasks with opposing behavioral demands (swimming versus exploration) was hypothesized to control for behavioral topology.  Only at PND20 was there evidence of spatial-behavioral function for both tasks.  Examination of synaptophysin staining in the CA3 region (i.e., mossy fiber projections) revealed enhanced connectivity patterns that preceded the emergence of spatial behavior.  Analysis of c-Fos labeling (functional changes) revealed developmentally-dependent increases in c-Fos positive cells in the dentate gyrus, CA3 and CA1 regions whereas training-dependent increases were noted in the CA3 and CA1 regions for the water-maze trained groups.  Results suggest that changes in mossy fiber connectivity in association with enhanced hippocampal functioning precede the emergence of spatial behavior observed at PND20.  The combination of neuroanatomical and behavioural results confirms the hypothesis that this time represents a sensitive period for hippocampal development and modification and the emergence of spatial/ cognitive function. PMID:26925223

  19. Emergence of spatial behavioral function and associated mossy fiber connectivity and c-Fos labeling patterns in the hippocampus of rats

    PubMed Central

    Comba, Rachel; Gervais, Nicole; Mumby, Dave; Holahan, Matthew

    2015-01-01

    Improvement on spatial tasks is observed during a late, postnatal developmental period (PND18 – PND24).  The purpose of the current work was 1) to determine whether the emergence of spatial-behavioral function was based on the ability to generate appropriate behavioral output; 2) to assess whether mossy fiber connectivity patterns preceded the emergence of spatial-behavioral function; 3) to explore functional changes in the hippocampus to determine whether activity in hippocampal networks occurred in a training-dependent or developmentally-dependent fashion.  To these ends, male, Long Evans rats were trained on a spatial water or dry maze task for one day (PND16, PND18 or PND20) then euthanized.  Training on these 2 tasks with opposing behavioral demands (swimming versus exploration) was hypothesized to control for behavioral topology.  Only at PND20 was there evidence of spatial-behavioral function for both tasks.  Examination of synaptophysin staining in the CA3 region (i.e., mossy fiber projections) revealed enhanced connectivity patterns that preceded the emergence of spatial behavior.  Analysis of c-Fos labeling (functional changes) revealed developmentally-dependent increases in c-Fos positive cells in the dentate gyrus, CA3 and CA1 regions whereas training-dependent increases were noted in the CA3 and CA1 regions for the water-maze trained groups.  Results suggest that changes in mossy fiber connectivity in association with enhanced hippocampal functioning precede the emergence of spatial behavior observed at PND20.  The combination of neuroanatomical and behavioural results confirms the hypothesis that this time represents a sensitive period for hippocampal development and modification and the emergence of spatial/ cognitive function. PMID:26925223

  20. Lemon Odor Reduces Stress-induced Neuronal Activation in the Emotion Expression System: An Animal Model Study

    NASA Astrophysics Data System (ADS)

    Sanada, Kazue; Sugimoto, Koji; Shutoh, Fumihiro; Hisano, Setsuji

    Perception of particular sensory stimuli from the surroundings can influence emotion in individuals. In an uncomfortable situation, humans protect themselves from some aversive stimulus by acutely evoking a stress response. Animal model studies have contributed to an understanding of neuronal mechanisms underlying the stress response in humans. To study a possible anti-stressful effect of lemon odor, an excitation of neurons secreting corticotropin-releasing hormone (CRH) as a primary factor of the hypothalamic-pituitary-adrenal axis (HPA) was analyzed in animal model experiments, in which rats are restrained in the presence or absence of the odor. The effect was evaluated by measuring expression of c-Fos (an excited neuron marker) in the hypothalamic paraventricular nucleus (PVN), a key structure of the HPA in the brain. We prepared 3 animal groups: Groups S, L and I. Groups S and L were restrained for 30 minutes while being blown by air and being exposed to the lemon odor, respectively. Group I was intact without any treatment. Two hours later of the onset of experiments, brains of all groups were sampled and processed for microscopic examination. Brain sections were processed for c-Fos immunostaining and/or in situ hybridization for CRH. In Group S but not in Group I, c-Fos expression was found in the PVN. A combined in situ hybridization-immunohistochemical dual labeling revealed that CRH mRNA-expressing neurons express c-Fos. In computer-assisted automatic counting, the incidence of c-Fos-expressing neurons in the entire PVN was statistically lower in Group L than in Group S. Detailed analysis of PVN subregions demonstrated that c-Fos-expressing neurons are fewer in Group L than in Group S in the dorsal part of the medial parvocellular subregion. These results may suggest that lemon odor attenuates the restraint stress-induced neuronal activation including CRH neurons, presumably mimicking an aspect of stress responses in humans.

  1. Multiple doses of diacylglycerol and calcium ionophore are necessary to activate AP-1 enhancer activity and induce markers of macrophage differentiation.

    PubMed

    William, F; Wagner, F; Karin, M; Kraft, A S

    1990-10-25

    In contrast to phorbol esters, multiple doses of diacylgycerols are needed to differentiate U937 human monoblastic leukemic cells to a macrophage-like phenotype. Although both of these agents similarly activate protein kinase C in vitro, it is not known why these agents appear to have differing biologic effects. One possibility is that they regulate gene transcription in slightly different ways. Regulation of gene transcription by phorbol esters is complex and involves the stimulation of the transactivating proteins Jun and Fos which form dimers and bind to the AP-1 enhancer elements (5'-TGAGTCA-3'). To understand whether diacylglycerols regulate gene transcription similarly to phorbol esters and to examine whether activation of AP-1 enhancer activity is correlated with differentiation, we have treated U937 human monoblastic leukemic cells with these agents and examined activation of transcription from AP-1 enhancer elements. We find that, although a single dose of diacylglycerol, like phorbol esters, is sufficient to elevate mRNA levels of both the c-jun and c-fos protooncogenes, in contrast to phorbol esters there is no increase in either Jun protein or activation of AP-1 enhancer activity. However, multiple doses of this agent given over 24 h stimulate repeated elevations in c-jun and c-fos mRNA, increases in Jun protein, and enhancer activation. Treatment of U937 cells with ionomycin, a calcium ionophore, also stimulates an increase in c-jun mRNA, but neither activates AP-1 enhancer activity nor stimulates differentiation of these cells. However ionomycin functions to enhance the effects of diacylglycerols both on transcriptional activation and U937 differentiation. These results suggest a complex regulation of AP-1 enhancer activity in U937 cells by diacylglycerols involving both transcriptional and post-transcriptional regulatory mechanisms. Maximal activation of AP-1 enhancer elements, and not changes in jun and fos mRNA, is correlated with increases in

  2. Regional induction of c-fos and heat shock protein-72 mRNA following fluid-percussion brain injury in the rat

    SciTech Connect

    Raghupathi, R.; Welsh, F.A.; Gennarelli, T.A.

    1995-05-01

    To evaluate the cellular response to traumatic brain injury, the expression of mRNA for c-fos and the 72-kDa heat shock protein (hsp72) was determined using in situ hybridization following lateral fluid-percussion injury (2.2-2.4 atm) in rat brain. At 2 h after injury, induction of c-fos mRNA was restricted to regions of the cortex surrounding the contusion area. An increase in c-fos mRNA, but not hsp72 mRNA, was observed bilaterally in the CA{sub 3} subfield of the hippocampus and the granule cells of the dentate gyrus and in the thalamus ipsilateral to the impact site. By 6 h, increased expression of c-fos mRNA was observed only in the corpus callosum on the impact side; hsp72 mRNA persisted in the deep cortical layers and upper layers of the subcortical white matter below the site of maximal injury. By 24 h, both c-fos and hsp72 mRNA had returned to control levels in all regions of the brain. These results demonstrate that lateral fluid-percussion brain injury triggers regionally and temporally specific expression of c-fos and hsp72 mRNA, which may be suggestive of differential neurochemical alterations in neurons and glia following experimental brain injury. 33 refs., 3 figs., 1 tab.

  3. Enhanced effects of co-administered dexamethasone and diclofenac on inflammatory pain processing and associated spinal c-Fos expression in the rat.

    PubMed

    Buritova, J; Honoré, P; Chapman, V; Besson, J M

    1996-03-01

    This study determines the effects of dexamethasone versus co-administered dexamethasone and diclofenac, on carrageenan-evoked spinal c-Fos expression and peripheral oedema in the freely moving rat. Drugs were administered intravenously 25 min before intraplantar injection of carrageenan (6 mg/150 microliters of saline). Three hours later the number of spinal c-Fos-LI neurones and peripheral oedema were assessed. The total number of control carrageenan-evoked c-Fos-LI neurones in the lumbar spinal cord was 121 +/- 5 labelled neurones per section, segments L4-L5, which were predominantly located in the superficial and deep laminae (41 +/- 3% and 40 +/- 2% of the total number of c-Fos-LI neurones per section, respectively) of the dorsal horn of the spinal cord. Pre-administered dexamethasone (0.05, 0.10 and 0.50 mg/kg i.v.) dose-dependently reduced the total number of c-Fos-LI neurones (30 +/- 4%, 52 +/- 3% and 58 +/- 2% reduction, respectively), with effects of the higher doses being strongest on the deep laminae c-Fos-LI neurones. The effects of dexamethasone on the total number of c-Fos-LI neurones and the peripheral oedema were positively correlated. Co-administration of low doses of dexamethasone and diclofenac (0.025 + 1.5 mg/kg i.v. respectively), which had negligible effects when administered separately, greatly reduced both the total number of carrageenan-evoked c-Fos-LI neurones (61 +/- 5% reduction as compared to control value) and the peripheral oedema (80 +/- 8% and 60 +/- 5% reduction for ankle and paw oedema, respectively). The attenuation by co-administered dexamethasone and diclofenac, of both c-Fos expression and the peripheral oedema, was significantly greater than the effect of dexamethasone alone (P < 0.001 for both) and diclofenac alone (P < 0.001 for both). Our study illustrates enhanced attenuating effects of co-administered dexamethasone and diclofenac on both inflammatory oedema and the associated spinal expression of c-Fos, an indicator of

  4. Tyrosine Hydroxylase Phosphorylation in Catecholaminergic Brain Regions: A Marker of Activation following Acute Hypotension and Glucoprivation

    PubMed Central

    Damanhuri, Hanafi A.; Burke, Peter G. R.; Ong, Lin K.; Bobrovskaya, Larisa; Dickson, Phillip W.; Dunkley, Peter R.; Goodchild, Ann K.

    2012-01-01

    The expression of c-Fos defines brain regions activated by the stressors hypotension and glucoprivation however, whether this identifies all brain sites involved is unknown. Furthermore, the neurochemicals that delineate these regions, or are utilized in them when responding to these stressors remain undefined. Conscious rats were subjected to hypotension, glucoprivation or vehicle for 30, 60 or 120 min and changes in the phosphorylation of serine residues 19, 31 and 40 in the biosynthetic enzyme, tyrosine hydroxylase (TH), the activity of TH and/or, the expression of c-Fos were determined, in up to ten brain regions simultaneously that contain catecholaminergic cell bodies and/or terminals: A1, A2, caudal C1, rostral C1, A6, A8/9, A10, nucleus accumbens, dorsal striatum and medial prefrontal cortex. Glucoprivation evoked phosphorylation changes in A1, caudal C1, rostral C1 and nucleus accumbens whereas hypotension evoked changes A1, caudal C1, rostral C1, A6, A8/9, A10 and medial prefrontal cortex 30 min post stimulus whereas few changes were evident at 60 min. Although increases in pSer19, indicative of depolarization, were seen in sites where c-Fos was evoked, phosphorylation changes were a sensitive measure of activation in A8/9 and A10 regions that did not express c-Fos and in the prefrontal cortex that contains only catecholaminergic terminals. Specific patterns of serine residue phosphorylation were detected, dependent upon the stimulus and brain region, suggesting activation of distinct signaling cascades. Hypotension evoked a reduction in phosphorylation in A1 suggestive of reduced kinase activity. TH activity was increased, indicating synthesis of TH, in regions where pSer31 alone was increased (prefrontal cortex) or in conjunction with pSer40 (caudal C1). Thus, changes in phosphorylation of serine residues in TH provide a highly sensitive measure of activity, cellular signaling and catecholamine utilization in catecholaminergic brain regions, in the

  5. C-fos expression in the rat nucleus basalis upon excitotoxic lesion with quisqualic acid: a study in adult and aged animals.

    PubMed

    Giovannelli, L; Casamenti, F; Pepeu, G

    1998-01-01

    A unilateral quisqualic acid lesion was placed in the nucleus basalis magnocellularis of 3- and 24-month-old rats, and the animals were sacrificed at different times post-surgery. The morphology and the number of the cholinergic neurons of the nucleus basalis were analyzed by means of immunohistochemistry for cholineacetyltransferase, in order to evaluate the size and severity of the lesion. Immunohistochemistry for the immediate early gene c-fos was also performed in order to clarify its role in the process of neurodegeneration following the excitotoxin injection. The DNA laddering and TUNEL techniques were used to define the type of cell death involved. At short times (4 hr) the lesion induced alterations in the morphology of cholinergic neurons of the nucleus basalis. Subsequently, a significant decrease in the number of neurons was found in comparison to the contralateral unlesioned side. In the older animals the loss of cholineacetyltransferase immunoreactivity had an earlier onset (4 hr) than in the young (24 hr). C-fos expression was induced by the lesion and not by saline injection in the nucleus basalis and in neighbouring areas of the brain as early as 4 hr after surgery. The c-fos protein was no longer present by 24 hr. Furthermore, the c-fos gene product was consistently absent from the nuclei of cholinergic cells. The aged animals exhibited a slower and smaller increase in c-fos as measured by counting the labelled nuclei in the injected area. Analysis of DNA fragmentation did not provide any evidence for apoptosis as the type of cell death involved in the cholinergic degeneration. These results indicate that the c-fos protein might have a protective role in the response to excitotoxic lesions. Furthermore, we have shown that the aged brain displays a reduced ability to produce a c-fos-mediated plastic response to the lesion.

  6. Reduction of c-Fos via Overexpression of miR-34a Results in Enhancement of TNF- Production by LPS in Neutrophils from Myelodysplastic Syndrome Patients

    PubMed Central

    Shikama, Yayoi; Cao, Meiwan; Ono, Tomoyuki; Feng, Xiaomin; Noji, Hideyoshi; Kimura, Hideo; Ogawa, Kazuei; Suzuki, Yuko; Ikeda, Kazuhiko; Takeishi, Yasuchika; Kimura, Junko

    2016-01-01

    Although increased TNF-α has been considered to cause ineffective hematopoiesis in myelodysplastic syndromes (MDS), the mechanisms of TNF-α elevation are not known. We recently found that c-Fos mRNA stabilization under translation-inhibiting stimuli was impaired in MDS-derived neutrophilic granulocytes. In the current study, we identified overexpression of c-Fos-targeting miR-34a and miR-155 as the cause of impairment. Expression levels of miR-34a but not miR-155 inversely correlated with ratios of c-Fos-positive cells in MDS-derived CD16+ neutrophils (r = -0.618, P<0.05), which were analyzed by flow cytometry. Among the seventeen patients, c-Fos was detectable in less than 60% of CD16+ cells in eight patients (Group A), while five (Group B) expressed c-Fos in more than 80% of CD16+ cells, which was consistent with the controls (88.6 ± 7.8%). Group A-derived granulocytes secreted more TNF-α in response to 1 μM LPS for 3 hours (735.4 ± 237.5 pg/mL) than Group B (143.5 ± 65.7 pg/mL, P<0.05) and healthy controls (150.8 ± 91.5 pg/mL, P<0.05). Knockdown of c-Fos in neutrophil-like differentiated HL60 increased the binding of NF-κB p65 to the promoter region of TNF-α DNA. Thus, c-Fos reduction via overexpression of miR-34a contributes to TNF-α overproduction under inflammatory stimuli in MDS. PMID:27513856

  7. Age-dependent alterations of c-fos and growth regulation in human fibroblasts expressing the HPV16 E6 protein.

    PubMed Central

    Yan, Y; Ouellette, M M; Shay, J W; Wright, W E

    1996-01-01

    Normal human cells in culture become senescent after a limited number of population doublings. Senescent cells display characteristic changes in gene expression, among which is a repression of the ability to induce the c-fos gene. We have proposed a two-stage model for cellular senescence in which the mortality stage 1 (M1) mechanism can be overcome by agents that bind both the product of the retinoblastoma susceptibility gene (pRB)-like pocket proteins and p53. In this study we determined whether the repression of c-fos at M1 was downstream of the p53 or pRB-like "arms" of the M1 mechanism. We examined c-fos expression during the entire lifespan of normal human fibroblasts carrying E6 (which binds p53), E7 (which binds pRB), or both E6 and E7 of human papilloma virus type 16. The results indicate a dramatic change in cellular physiology at M1. Before M1, c-fos inducibility is controlled by an E6-independent mechanism that is blocked by E7. After M1, c-fos inducibility becomes dependent on E6 whereas E7 has no effect. In addition, a novel oscillation of c-fos expression with an approximately 2-h periodicity appears in E6-expressing fibroblasts post-M1. Accompanying this shift at M1 is a dramatic change in the ability to divide in low serum. Before M1, E6-expressing fibroblasts growth arrest in 0.3% serum, although they continue dividing under those conditions post-M1. These results demonstrate the unique physiology of fibroblasts during the extended lifespan between M1 and M2 and suggest that p53 might participate in the process that represses the c-fos gene at the onset of cellular senescence. Images PMID:8817002

  8. Effects of A-CREB, a dominant negative inhibitor of CREB, on the expression of c-fos and other immediate early genes in the rat SON during hyperosmotic stimulation in vivo

    PubMed Central

    Lubelski, Daniel; Ponzio, Todd A.; Gainer, Harold

    2016-01-01

    Intraperitoneal administration of hypertonic saline to the rat supraoptic nucleus (SON) increases the expression of several immediate early genes (IEG) and the vasopressin gene. These increases have usually been attributed to action of the cyclic-AMP Response Element Binding Protein (CREB). In this paper, we study the role of CREB in these events in vivo by delivering a potent dominant-negative form of CREB, known as A-CREB, to the rat SON through the use of an adeno-associated viral (AAV) vector. Preliminary experiments on HEK 293 cells in vitro showed that the A-CREB vector that we used completely eliminated CREB-induced c-fos expression. We stereotaxically injected this AAV-A-CREB into one SON and a control AAV into the contralateral SON of the same rat. Two weeks following these injections we injected hypertonic saline intraperitoneally into the rat. Using this paradigm, we could measure the relative effects of inhibiting CREB on the induced expression of c-fos, ngfi-a, ngfi-b, and vasopressin genes in the A-CREB AAV injected SON versus the control AAV injected SON in the same rat. We found only a small (20%) decrease of c-fos expression and a 30% decrease of ngfi-b expression in the presence of the A-CREB. There were no significant changes in expression found in the other IEGs nor in vasopressin that were produced by the A-CREB. This suggests that CREB may play only a minor role in the expression of IEGs and vasopressin in the osmotically activated SON in vivo. PMID:22079318

  9. TRPV4 mediates afferent pathways in the urinary bladder. A spinal c-fos study showing TRPV1 related adaptations in the TRPV4 knockout mouse.

    PubMed

    Janssen, Dick A W; Hoenderop, Joost G; Heesakkers, John P F A; Schalken, Jack A

    2016-10-01

    The role of transient receptor potential vanilloid subtype 4 (TRPV4) channels in urinary bladder afferent neural pathways was investigated using spinal c-fos measurements in mice. Anesthetized wild type and TRPV4 knockout (-/-) mice underwent noxious bladder distention and treatment with either intravesical instillation with lipopolysaccharide (LPS), or the TRPV1 agonist resiniferatoxin (RTX), vehicle or an intraperitoneal injected TRPV4 antagonist (HC067047). Mice underwent paraformaldehyde perfusion for rapid fixation and L6-S1 spinal cord sections were removed followed by immunohistochemical staining for c-fos. A number of c-fos expressing neurons in the dorsal horns of L6-S1 spinal cord transections were quantified. Groups were compared using univariate ANOVA. Even with the absence of bladder inflammation on H&E, the TRPV4 -/- mice still have a significant twofold higher c-fos expression (n = 39, SD 2) after noxious bladder distention compared to wild type mice (n = 20, SD 3). A twofold increase in c-fos expression was observed after LPS treatment in wild types (n = 42, SD 5), but no increase was seen in TRPV4 -/- mice (n = 42, SD 2). After desensitization of primary afferent C-nerve fibers with RTX, c-fos expression in TRPV4-/- mice decreased significantly (threefold) (n = 12, SD 4). Results imply that TRPV4 channels are important for bladder afferent signaling. TRPV4 -/- mice bladders generate more noxious sensory output, which is predominantly mediated through TRPV1 expressing high threshold nerve fibers. This study reveals TRPV1 related adaptive changes in afferent pathways of the TRPV4 -/- mouse. We propose that this effect is caused by a congenital impairment of low threshold nerves that mediate normal bladder filling sensations. PMID:27491796

  10. Induction of c-fos and c-jun protooncogenes expression by formaldehyde-releasing and epoxy resin-based root-canal sealers in human osteoblastic cells.

    PubMed

    Huang, Fu-Mei; Hsieh, Yih-Shou; Tai, Kuo-Wei; Chou, Ming-Yung; Chang, Yu-Chao

    2002-03-01

    An important requirement for a root-canal sealer is biologic compatibility; most evaluations have focused on general toxicological and local tissue irritating properties. There is only scant information about mutagenicity or carcinogenicity testing for root-canal sealer. It has been shown that c-fos and c-jun are induced rapidly by a variety of chemical and physical stimuli. Numerous works have extensively investigated the induction mechanisms of c-fos and c-jun protooncogenes by these agents; however, little is known about the induction of cellular signaling events and specific gene expression after cell exposure to root-canal sealers. Therefore, we used osteoblastic cell line U2-OS to examine the effect of zinc-oxide eugenol-based (N2 and Endomethasome), epoxy resin-based (AH Plus), and calcium hydroxide-based (Sealapex) root-canal sealers on the expression of c-fos and c-jun protooncogenes to understand in more detail the molecular mechanisms of root-canal sealer-induced genotoxicity. The cytotoxicity decreased in an order of N2 > Endomethasome > AH Plus > Sealapex. In addition, N2, Endomethasome, and AH Plus rapidly induced c-jun and c-fos mRNA levels in cells. However, Sealapex did not induce c-jun and c-fos mRNA expression at detectable levels all time points. Taken together, persistent induction of c-jun and c-fos protooncogenes by formaldehyde-releasing and epoxy resin-based root-canal sealers may be distributed systemically via apex to cause some unexpected adverse effects on human beings. These data should be taken into consideration when choosing a root-canal sealer.

  11. TRPV4 mediates afferent pathways in the urinary bladder. A spinal c-fos study showing TRPV1 related adaptations in the TRPV4 knockout mouse.

    PubMed

    Janssen, Dick A W; Hoenderop, Joost G; Heesakkers, John P F A; Schalken, Jack A

    2016-10-01

    The role of transient receptor potential vanilloid subtype 4 (TRPV4) channels in urinary bladder afferent neural pathways was investigated using spinal c-fos measurements in mice. Anesthetized wild type and TRPV4 knockout (-/-) mice underwent noxious bladder distention and treatment with either intravesical instillation with lipopolysaccharide (LPS), or the TRPV1 agonist resiniferatoxin (RTX), vehicle or an intraperitoneal injected TRPV4 antagonist (HC067047). Mice underwent paraformaldehyde perfusion for rapid fixation and L6-S1 spinal cord sections were removed followed by immunohistochemical staining for c-fos. A number of c-fos expressing neurons in the dorsal horns of L6-S1 spinal cord transections were quantified. Groups were compared using univariate ANOVA. Even with the absence of bladder inflammation on H&E, the TRPV4 -/- mice still have a significant twofold higher c-fos expression (n = 39, SD 2) after noxious bladder distention compared to wild type mice (n = 20, SD 3). A twofold increase in c-fos expression was observed after LPS treatment in wild types (n = 42, SD 5), but no increase was seen in TRPV4 -/- mice (n = 42, SD 2). After desensitization of primary afferent C-nerve fibers with RTX, c-fos expression in TRPV4-/- mice decreased significantly (threefold) (n = 12, SD 4). Results imply that TRPV4 channels are important for bladder afferent signaling. TRPV4 -/- mice bladders generate more noxious sensory output, which is predominantly mediated through TRPV1 expressing high threshold nerve fibers. This study reveals TRPV1 related adaptive changes in afferent pathways of the TRPV4 -/- mouse. We propose that this effect is caused by a congenital impairment of low threshold nerves that mediate normal bladder filling sensations.

  12. Topography of methylphenidate (ritalin)-induced gene regulation in the striatum: differential effects on c-fos, substance P and opioid peptides.

    PubMed

    Yano, Motoyo; Steiner, Heinz

    2005-05-01

    Dopamine action alters gene regulation in striatal neurons. Methylphenidate increases extracellular levels of dopamine. We investigated the effects of acute methylphenidate treatment on gene expression in the striatum of adult rats. Molecular changes were mapped in 23 striatal sectors mostly defined by their predominant cortical inputs in order to determine the functional domains affected. Acute administration of 5 and 10 mg/kg (i.p.) of methylphenidate produced robust increases in the expression of the transcription factor c-fos and the neuropeptide substance P. Borderline effects were found with 2 mg/kg, but not with 0.5 mg/kg. For 5 mg/kg, c-fos mRNA levels peaked at 40 min and returned to baseline by 3 h after injection, while substance P mRNA levels peaked at 40-60 min and were back near control levels by 24 h. These molecular changes occurred in most sectors of the caudate-putamen, but were maximal in dorsal sectors that receive sensorimotor and medial agranular cortical inputs, on middle to caudal levels. In rostral and ventral striatal sectors, changes in c-fos and substance P expression were weaker or absent. No effects were seen in the nucleus accumbens, with the exception of c-fos induction in the lateral part of the shell. In contrast to c-fos and substance P, acute methylphenidate treatment had minimal effects on the opioid peptides dynorphin and enkephalin. These results demonstrate that acute methylphenidate alters the expression of c-fos and substance P preferentially in the sensorimotor striatum. These molecular changes are similar, but not identical, to those produced by other psychostimulants.

  13. c-Fos induction by a 14 T magnetic field in visceral and vestibular relays of the female rat brainstem is modulated by estradiol.

    PubMed

    Cason, Angie M; Kwon, Bumsup; Smith, James C; Houpt, Thomas A

    2010-08-01

    There is increasing evidence that high magnetic fields interact with the vestibular system of humans and rodents. In rats, exposure to high magnetic fields of 7 T or above induces locomotor circling and leads to a conditioned taste aversion if paired with a novel taste. Sex differences in the behavioral responses to magnetic field exposure have been found, such that female rats show more locomotor circling and enhanced conditioned taste aversion compared to male rats. To determine if estrogen modulates the neural response to high magnetic fields, c-Fos expression after 14 T magnetic field exposure was compared in ovariectomized rats and ovariectomized rats with estradiol replacement. Compared to sham exposure, magnetic field exposure induced significantly more c-Fos positive cells in the nucleus of the solitary tract and the parabrachial, medial vestibular, prepositus, and supragenualis nuclei. Furthermore, there was a significant asymmetry in c-Fos induction between sides of the brainstem in several regions. In ovariectomized rats, there was more c-Fos expressed in the right side compared to left side in the locus coeruleus and parabrachial, superior vestibular, and supragenualis nuclei; less expression in the right compared to left side of the medial vestibular; and no asymmetry in the prepositus nucleus and the nucleus of the solitary tract. Chronic estradiol treatment modulated the neural response in some regions: less c-Fos was induced in the superior vestibular nucleus and locus coeruleus after estradiol replacement; estradiol treatment eliminated the asymmetry of c-Fos expression in the locus coeruleus and supragenualis nucleus, created an asymmetry in the prepositus nucleus and reversed the asymmetry in the parabrachial nucleus. These results suggest that ovarian steroids may mediate sex differences in the behavioral responses to magnetic field exposure at the level of visceral and vestibular nuclei of the brainstem.

  14. Pyrroloquinoline quinine inhibits RANKL-mediated expression of NFATc1 in part via suppression of c-Fos in mouse bone marrow cells and inhibits wear particle-induced osteolysis in mice.

    PubMed

    Kong, Lingbo; Yang, Chongfei; Yu, Lifeng; Smith, Wanli; Zhu, Shu; Zhu, Jinyu; Zhu, Qingsheng

    2013-01-01

    The effects of pyrroloquinoline quinine (PQQ) on RANKL-induced osteoclast differentiation and on wear particle-induced osteolysis were examined in this study. PQQ inhibited RANKL-mediated osteoclast differentiation in bone marrow macrophages (BMMs) in a dose-dependent manner without any evidence of cytotoxicity. The mRNA expression of c-Fos, NFATc1, and TRAP in RANKL-treated BMMs was inhibited by PQQ treatment. Moreover, RANKL-induced c-Fos and NFATc1 protein expression was suppressed by PQQ. PQQ additionally inhibited the bone resorptive activity of differentiated osteoclasts. Further a UHMWPE-induced murine calvaria erosion model study was performed to assess the effects of PQQ on wear particle-induced osteolysis in vivo. Mice treated with PQQ demonstrated marked attenuation of bone erosion based on Micro-CT and histologic analysis of calvaria. These results collectively suggested that PQQ demonstrated inhibitory effects on osteoclast differentiation in vitro and may suppress wear particle-induced osteolysis in vivo, indicating that PQQ may therefore serve as a useful drug in the prevention of bone loss.

  15. An integrated study of heart pain and behavior in freely moving rats (using fos as a marker for neuronal activation).

    PubMed

    Albutaihi, Ibrahim A M; DeJongste, Mike J L; Ter Horst, Gert J

    2004-01-01

    The awareness in specific brain centers of angina pectoris most often results from ischemic episodes in the heart. These ischemic episodes induce the release of a collage of chemicals that activate chemosensitive and mechanoreceptive receptors in the heart, which in turn excite receptors of the sympathetic afferent pathways. Ascending pain signals from these fibers result in the activation of the brain centers which are involved in the perception and integration of cardiac pain. Cytochemical studies of the nervous system provide the opportunity to identify these areas at the cellular level. In the present investigation, cardiac nociception was studied in the brains and the spinal cords of rats, using Fos protein as a marker of neuronal activation, following the application of pain-inducing chemicals to the heart. Induction of myocardial pain in conscious rats was achieved by infusion of bradykinin (0.5 microg) or capsaicin (5 microg) into the pericardial sac. During pain stimulation, the rats demonstrated pain behavior, in conjunction with alterations in heart rate and blood pressure. The cerebral Fos expression pattern was studied 2 h after pain stimulation. In contrast to the control group, increased Fos expression was found following the use of both capsaicin and bradykinin in a variety of areas of the brain. Bradykinin, but not capsaicin, induced Fos expression in the upper thoracic and upper cervical spinal cord; these segments are the sites where cardiac sympathetic fibers terminate. This finding suggests that these two chemicals use two different pathways, and provides extra evidence for the role of the vagus nerve in the transmission of cardiac nociception. Different cerebral areas showed an increase in the c-fos activity following pericardial application of pain-inducing chemicals. The role of these cerebral areas in the integration of cardiac pain is discussed in relation to the identified pathways which transmit cardiac pain. PMID:15305089

  16. In vivo study on the effects of microcystin extracts on the expression profiles of proto-oncogenes (c-fos, c-jun and c-myc) in liver, kidney and testis of male Wistar rats injected i.v. with toxins.

    PubMed

    Li, Huiying; Xie, Ping; Li, Guangyu; Hao, Le; Xiong, Qian

    2009-01-01

    Microcystins (MCs) are a potent liver tumor promoter, possessing potent tumor-promoting activity and weak initiating activity. Proto-oncogenes are known to be involved in the tumor-promoting mechanisms of microcystin-LR. However, few data are available on the effects of MCs on proto-oncogenes in the whole animal. To investigate the effects of MCs on the expression profile of the proto-oncogenes in different organs, male Wistar rats were injected intravenously with microcystin extracts at a dose of 86.7 mug MC-LR eq/kg bw (MC-LR eq, MC-LR equivalents). mRNA levels of three proto-oncogenes c-fos, c-jun and c-myc in liver, kidney and testis were analyzed using quantitative real-time PCR at several time points post-injection. Significant induction of these genes at transcriptional level was observed in the three organs. In addition, the increase of mRNA expression of all three genes was much higher in liver than in kidney and testis. Meanwhile, the protein levels of c-Fos and c-Jun were investigated by western blotting. Both proteins were induced in the three organs. However, elevations of protein levels were much lower than those of mRNA levels. These findings suggest that the expression of c-fos, c-jun and c-myc might be one possible mechanism for the tumor-promoting activity and initiating activity of microcystins.

  17. Diarylheptanoid from Curcuma comosa Roxb. suppresses RANKL-induced osteoclast differentiation by decreasing NFATc1 and c-Fos expression via MAPK pathway.

    PubMed

    Chawalitpong, Supatta; Sornkaew, Nilubon; Suksamrarn, Apichart; Palaga, Tanapat

    2016-10-01

    Osteoporosis is caused by a functional imbalance between osteoblasts and osteoclasts. The increased activation of osteoclasts that is a hallmark of osteoporosis results in the progressive loss of bone mass and therefore in an increased susceptibility to bone fractures. Diarylheptanoids are a group of phytoestrogens that have been isolated from a number of plant species, including the rhizomes of Curcuma comosa Roxb. In this study, the effect of one of diarylheptanoids, (3S)-1-(3,4-dihydroxyphenyl)-3-hydroxy-7-phenyl-(6E)-6-heptene (DHPH), was investigated for anti-inflammatory and anti-osteoclastogenic activity. DHPH significantly inhibited nitric oxide production in RAW264.7 cell line following their activation by lipopolysaccharide and interferon-γ, with no cytotoxicity. In primary mouse bone-marrow-derived macrophage precursors, DHPH suppressed osteoclastogenesis induced by receptor activator of nuclear factor-κB (RANK) ligand at an inhibitory concentration 50 of 325±1.37nM. DHPH treatment delayed and reduced the expression of master regulators of osteoclast differentiation, NFATc1 and c-Fos. Consistent with this result, the mRNA level of cathepsin K, associated with osteoclast differentiation, was decreased whereas the reduction in the mRNA of irf8, a negative regulator of osteoclast differentiation, was similar to that measured in the vehicle-treated control cells. DHPH reduced the phosphorylation of p38 MAPK, ERK (p44/42). Furthermore, DHPH suppressed the bone absorption activity of osteoclasts and enhanced osteoblast differentiation. Taken together, DHPH interrupts the immediate downstream signaling cascade of RANK and interferes with osteoclast differentiation and its function while enhances osteoblast differentiation. These results demonstrate the potential of this diarylheptanoid as a new therapeutic agent in osteoporosis. PMID:27523282

  18. Predicting Virulence of Aeromonas Isolates Based-on Changes in Transcription of c-jun and c-fos in Human Tissue Culture Cells

    EPA Science Inventory

    Aims: To assess virulence of Aeromonas isolates based on the change in regulation of c-jun and c-fos in the human intestinal tissue culture cell line Caco-2. Methods and Results: Aeromonas cells were added to Caco-2 cells at approximately a one to one ratio. After 1, 2 and 3 ...

  19. Reciprocal Patterns of c-Fos Expression in the Medial Prefrontal Cortex and Amygdala after Extinction and Renewal of Conditioned Fear

    ERIC Educational Resources Information Center

    Knapska, Ewelina; Maren, Stephen

    2009-01-01

    After extinction of conditioned fear, memory for the conditioning and extinction experiences becomes context dependent. Fear is suppressed in the extinction context, but renews in other contexts. This study characterizes the neural circuitry underlying the context-dependent retrieval of extinguished fear memories using c-Fos immunohistochemistry.…

  20. Vesicular acetylcholine transporter knock down-mice are more susceptible to inflammation, c-Fos expression and sickness behavior induced by lipopolysaccharide.

    PubMed

    Leite, Hércules Ribeiro; Oliveira-Lima, Onésia Cristina de; Pereira, Luciana de Melo; Oliveira, Vinícius Elias de Moura; Prado, Vania Ferreira; Prado, Marco Antônio Máximo; Pereira, Grace Schenatto; Massensini, André Ricardo

    2016-10-01

    In addition to the well-known functions as a neurotransmitter, acetylcholine (ACh) can modulate of the immune system. Nonetheless, how endogenous ACh release inflammatory responses is still not clear. To address this question, we took advantage of an animal model with a decreased ACh release due a reduction (knockdown) in vesicular acetylcholine transporter (VAChT) expression (VAChT-KD(HOM)). These animals were challenged with lipopolysaccharide (LPS). Afterwards, we evaluated sickness behavior and quantified systemic and cerebral inflammation as well as neuronal activation in the dorsal vagal complex (DVC). VAChT-KD(HOM) mice that were injected with LPS (10mg/kg) showed increased mortality rate as compared to control mice. In line with this result, a low dose of LPS (0.1mg/kg) increased the levels of pro-inflammatory (TNF-α, IL-1β, and IL-6) and anti-inflammatory (IL-10) cytokines in the spleen and brain of VAChT-KD(HOM) mice in comparison with controls. Similarly, serum levels of TNF-α and IL-6 were increased in VAChT-KD(HOM) mice. This excessive cytokine production was completely prevented by administration of a nicotinic receptor agonist (0.4mg/kg) prior to the LPS injection. Three hours after the LPS injection, c-Fos expression increased in the DVC region of VAChT-KD(HOM) mice compared to controls. In addition, VAChT-KD(HOM) mice showed behavioral changes such as lowered locomotor and exploratory activity and reduced social interaction after the LPS challenge, when compared to control mice. Taken together, our results show that the decreased ability to release ACh exacerbates systemic and cerebral inflammation and promotes neural activation and behavioral changes induced by LPS. In conclusion, our findings support the notion that activity of cholinergic pathways, which can be modulated by VAChT expression, controls inflammatory and neural responses to LPS challenge.

  1. Baclofen prevented the changes in c-Fos and brain-derived neutrophic factor expressions during mecamylamine-precipitated nicotine withdrawal in mice.

    PubMed

    Varani, Andrés P; Moutinho Machado, Lirane; Balerio, Graciela N

    2014-11-01

    Previous studies from our laboratory showed that baclofen (BAC, GABAB receptor agonist) prevented the behavioral and neurochemical alterations of nicotine (NIC) withdrawal syndrome. To further investigate the mechanisms underlying these effects, we analyzed the c-Fos and brain-derived neutrophic factor (BDNF) expression during NIC withdrawal and its prevention with BAC. Swiss-Webster mice received NIC (2.5 mg/kg, sc) four times daily, for 7 days. On the 8th day, NIC-treated mice received the nicotinic antagonist mecamylamine (MEC; 2 mg/kg, i.p.) 1 h after the last dose of NIC. A second group of NIC-treated mice received BAC (2 mg/kg, i.p.) prior to MEC administration. Thirty minutes after MEC, mice were sacrificed and the immunohistochemistry assays (c-Fos and BDNF) were performed at different anatomical levels. c-Fos expression decreased in the dentate gyrus of the hippocampus (DG) and the bed nucleus of the stria terminalis (BST), and increased in the habenular (Hb), accumbens shell (AcbSh) nuclei during NIC withdrawal. BAC re-established the modified c-Fos expression only in the DG, BST and AcbSh during NIC withdrawal. Conversely, BDNF expression decreased in the CA1 and CA3 area of the hippocampus, the Hb, and caudate putamen (CPu) during NIC withdrawal. Finally, BAC restored the decreased BDNF expression during NIC withdrawal in the CA1, CA3, Hb, and CPu. The results suggest a relationship between BAC's preventive effect of the expression of NIC withdrawal signs, and its ability to restore the changes in c-Fos and BDNF expression, observed in specific brain areas of NIC-withdrawn mice.

  2. RB101(S), a dual inhibitor of enkephalinases does not induce antinociceptive tolerance, or cross-tolerance with morphine: a c-Fos study at the spinal level.

    PubMed

    Le Guen, Stéphanie; Noble, Florence; Fournié-Zaluski, Marie-Claude; Roques, Bernard Pierre; Besson, Jean-Marie; Buritova, Jaroslava

    2002-04-26

    In behavioural tests, RB101 (N-[(S)-2-benzyl-3[(S)(2-amino-4-methyl-thio)butyldithio]-1-oxopropyl]-L-phenylalanine benzyl ester), a mixed inhibitor of enkephalin-degrading enzymes, induces antinociceptive effects without producing tolerance, or cross-tolerance with morphine. In the present experiments, the acute or chronic effects of enantiomer RB101(S) were examined on the response of spinal cord neurons to nociceptive inflammatory stimulation (intraplantar injection of carrageenin) using c-Fos studies in awake rats. The number of c-Fos immunoreactive nuclei was evaluated in the lumbar spinal cord 90 min after carrageenin. c-Fos-immunoreactive nuclei were preferentially located in the superficial (I-II) and deep (V-VI) laminae of segments L4-L5 (areas containing numerous neurones responding exclusively, or not, to nociceptive stimuli). In the first experimental series, acute RB101(S) (30 mg/kg, i.v.), morphine (3 mg/kg, i.v.), or respective vehicles were injected in rats chronically treated with RB101(S) (160 mg/kg/day for 4 days, s.c.). In chronically treated RB101(S) rats, both acute RB101(S) and morphine reduced the total number of carrageenin-evoked c-Fos-immunoreactive nuclei. In the second experimental series, acute RB101(S) (30 mg/kg, i.v.) reduced the total number of carrageenin-evoked c-Fos-immunoreactive nuclei with similar magnitude in naive and in morphine-tolerant (100 mg/kg/day for 3 days, s.c.) rats. These data provide further evidence that different cellular mechanisms occurred after chronic stimulation of opioid receptors by morphine or endogenous enkephalins.

  3. Changes in c-Fos Expression in the Forced Swimming Test: Common and Distinct Modulation in Rat Brain by Desipramine and Citalopram

    PubMed Central

    Choi, Sun Hye; Chung, Sung; Cho, Jin Hee; Cho, Yun Ha; Kim, Jin Wook; Kim, Jeong Min; Kim, Hee Jeong; Kim, Hyun Ju

    2013-01-01

    Rodents exposed to a 15-min pretest swim in the forced swimming test (FST) exhibit prolonged immobility in a subsequent 5-min test swim, and antidepressant treatment before the test swim reduces immobility. At present, neuronal circuits recruited by antidepressant before the test swim remain unclear, and also less is known about whether antidepressants with different mechanisms of action could influence neural circuits differentially. To reveal the neural circuits associated with antidepressant effect in the FST, we injected desipramine or citalopram 0.5 h, 19 h, and 23 h after the pretest swim and observed changes in c-Fos expression in rats before the test swim, namely 24 h after the pretest swim. Desipramine treatment alone in the absence of pretest swim was without effect, whereas citalopram treatment alone significantly increased the number of c-Fos-like immunoreactive cells in the central nucleus of the amygdala and bed nucleus of the stria terminalis, where this pattern of increase appears to be maintained after the pretest swim. Both desipramine and citalopram treatment after the pretest swim significantly increased the number of c-Fos-like immunoreactive cells in the ventral lateral septum and ventrolateral periaqueductal gray before the test swim. These results suggest that citalopram may affect c-Fos expression in the central nucleus of the amygdala and bed nucleus of the stria terminalis distinctively and raise the possibility that upregulation of c-Fos in the ventral lateral septum and ventrolateral periaqueductal gray before the test swim may be one of the probable common mechanisms underlying antidepressant effect in the FST. PMID:23946692

  4. Light pulses do not induce c-fos or per1 in the SCN of hamsters that fail to reentrain to the photocycle.

    PubMed

    Barakat, Monique T; O'Hara, Bruce F; Cao, Vinh H; Larkin, Jennie E; Heller, H Craig; Ruby, Norman F

    2004-08-01

    Circadian activity rhythms of most Siberian hamsters (Phodopus sungorus sungorus) fail to reentrain to a 5-h phase shift of the light-dark (LD) cycle. Instead, their rhythms free-run at periods close to 25 h despite the continued presence of the LD cycle. This lack of behavioral reentrainment necessarily means that molecular oscillators in the master circadian pacemaker, the SCN, were unable to reentrain as well. The authors tested the hypothesis that a phase shift of the LD cycle rendered the SCN incapable of responding to photic input. Animals were exposed to a 5-h phase delay of the photocycle, and activity rhythms were monitored until a lack of reentrainment was confirmed. Hamsters were then housed in constant darkness for 24 h and administered a 30-min light pulse 2 circadian hours after activity onset. Brains were then removed, and tissue sections containing the SCN were processed for in situ hybridization. Sections were probed with Siberian hamster c-fos and per1 mRNA probes because light rapidly induces these 2 genes in the SCN during subjective night but not at other circadian phases. Light pulses induced robust expression of both genes in all animals that reentrained to the LD cycle, but no expression was observed in any animal that failed to reentrain. None of the animals exhibited an intermediate response. This finding is the first report of acute shift in a photocycle eliminating photosensitivity in the SCN and suggests that a specific pattern of light exposure may desensitize the SCN to subsequent photic input.

  5. Interleukin 1beta enhances non-rapid eye movement sleep and increases c-Fos protein expression in the median preoptic nucleus of the hypothalamus.

    PubMed

    Baker, F C; Shah, S; Stewart, D; Angara, C; Gong, H; Szymusiak, R; Opp, M R; McGinty, D

    2005-04-01

    Interleukin 1beta (IL-1) is a key mediator of the acute phase response in an infected host and acts centrally to coordinate responses to an immune challenge, such as fever and increased non-rapid eye movement (NREM) sleep. The preoptic area (POA) is a primary sleep regulatory center in the brain: the ventrolateral POA (VLPO) and median preoptic nucleus (MnPN) each contain high numbers of c-Fos protein immunoreactive (IR) neurons after sleep but not after waking. We hypothesized that IL-1 mediates increased NREM sleep through activation of these sleep-active sites. Rats injected intracerebroventricularly with IL-1 (10 ng) at dark onset spent significantly more time in NREM sleep 4-5 h after injection. This increase in NREM sleep was associated with increased numbers of Fos-IR neurons in the MnPN, but not in the VLPO. Fos IR in the rostral MnPN was significantly increased 2 h post IL-1 injection, although the percentage of NREM sleep in the preceding 2 h was the same as controls. Fos IR was also increased in the extended VLPO 2 h postinjection. Finally, Fos IR in the MnPN did not differ significantly between IL-1 and vehicle-treated rats that had been sleep deprived for 2 h postinjection, but it was increased in VLPO core. Taken together, these results suggest that Fos IR in the MnPN after IL-1 is not independent of behavioral state and may require some threshold amount of sleep for its expression. Our results support a hypothesis that IL-1 enhances NREM sleep, in part, through activation of neurons in the MnPN of the hypothalamus.

  6. Interleukin-1 beta inhibits the endogenous expression of the early gene c-fos located within the nucleus of LH-RH neurons and interferes with hypothalamic LH-RH release during proestrus in the rat.

    PubMed

    Rivest, S; Rivier, C

    1993-06-01

    The ability of central interleukin-1 beta (IL-1 beta) administration to modulate the hypothalamic LH-RH release as well as the endogenous expression of the c-fos protein located within the nucleus of LH-RH neurons was examined during the afternoon of proestrus in rats. In a first series of experiments, 50 or 100 ng IL-1 beta were infused into the lateral ventricle of the rat brain at either 08.30, 12.00, 14.30, or 17.00 h of proestrus. The animals were then perfused transcardially with a solution of 4% paraformaldehyde from 17.30 and 18.00 h. In a second series of experiments, the rats were equipped with an intracerebroventricular (i.c.v.) cannula in the lateral ventricle and a push-pull cannula into the median eminence (ME), and LH-RH secretion was measured during the afternoon of proestrus. The third experiment investigated the putative role of corticotropin-releasing factor (CRF) in modulating the inhibitory effect of IL-1 beta on LH secretion by infusing CRF antagonists before the i.c.v. administration of the cytokine to gonadectomized male and female rats. The central infusion of 50 or 100 ng IL-1 beta at 12.00 h completely blocked the spontaneous expression of c-fos protein which normally occurs in the nucleus of LH-RH neurons between 17.30 and 18.00 h on proestrus. In contrast, 50 ng IL-1 beta was less effective (P < 0.05) when administered at 08.30 h, and totally without effect when infused at 14.30 h. Infusion of 50 ng IL-1 beta also markedly suppressed the hypothalamic release of LH-RH in proestrus rats bearing a push-pull cannula into the ME, and significantly decreased plasma LH levels in both gonadectomized male and female rats. Finally, we observed that the central administration of CRF antagonists did not modify the inhibitory effects of the cytokine on the activity of the hypothalamic-pituitary-gonadal (HPG) axis. These results provide the first direct evidence that IL-1 beta is a potent inhibitor of LH-RH neuronal activity during the proestrus LH

  7. Expression of c-Fos protein in medial septum/diagonal band of Broca and CA3 region, associated with the temporary inactivation of the supramammillary area.

    PubMed

    Aranda, Lourdes

    2016-07-01

    The supramammillary (SuM) area is part of the diencephalic nuclei comprising the mammillary bodies, and is a key structure in the memory and spatial learning processes. It is a critical region in the modulation/generation of hippocampal theta rhythm. In addition, many papers have recently shown a clear involvement of this structure in the processes of spatial learning and memory in animal models, although it is still not known how it modulates spatial navigation and response emotional. The aim of the present research was to study the effect of the temporary inactivation of the SuM area on synaptic plasticity of crucial structures in the formation of spatial memory and emotional response. Sprague-Dawley rats were asigned in three groups: a control group where the animals were not subjected to any treatment, and two groups where the rats received microinjections of tetrodotoxin (TTX) in the SuM area (5ng diluted in 0.5μl of saline) or saline (0.5μl). The microinjections were administered 90min before the perfusion. Later, cellular activity in medial septum/diagonal band of Broca (MS/DBB) and CA3 region of the dorsal hippocampus was assessed, by measuring the immediate early gene c-fos. The results show a clear hiperactivity cellular in medial septum/diagonal band of Broca and a clear hypoactivity cellular in the CA3 region of the hippocampus when there was a functional inactivation of the SuM area. It suggests that the SuM area seems to be part of the connection and information input pathways to CA3 region of the hippocampal formation, key for proper functioning in spatial memory and emotional response. PMID:26802745

  8. Expression of c-Fos protein in medial septum/diagonal band of Broca and CA3 region, associated with the temporary inactivation of the supramammillary area.

    PubMed

    Aranda, Lourdes

    2016-07-01

    The supramammillary (SuM) area is part of the diencephalic nuclei comprising the mammillary bodies, and is a key structure in the memory and spatial learning processes. It is a critical region in the modulation/generation of hippocampal theta rhythm. In addition, many papers have recently shown a clear involvement of this structure in the processes of spatial learning and memory in animal models, although it is still not known how it modulates spatial navigation and response emotional. The aim of the present research was to study the effect of the temporary inactivation of the SuM area on synaptic plasticity of crucial structures in the formation of spatial memory and emotional response. Sprague-Dawley rats were asigned in three groups: a control group where the animals were not subjected to any treatment, and two groups where the rats received microinjections of tetrodotoxin (TTX) in the SuM area (5ng diluted in 0.5μl of saline) or saline (0.5μl). The microinjections were administered 90min before the perfusion. Later, cellular activity in medial septum/diagonal band of Broca (MS/DBB) and CA3 region of the dorsal hippocampus was assessed, by measuring the immediate early gene c-fos. The results show a clear hiperactivity cellular in medial septum/diagonal band of Broca and a clear hypoactivity cellular in the CA3 region of the hippocampus when there was a functional inactivation of the SuM area. It suggests that the SuM area seems to be part of the connection and information input pathways to CA3 region of the hippocampal formation, key for proper functioning in spatial memory and emotional response.

  9. Effect of estrogen and tamoxifen on the expression pattern of AP-1 factors in MCF-7 cells: role of c-Jun, c-Fos, and Fra-1 in cell cycle regulation.

    PubMed

    Babu, R L; Naveen Kumar, M; Patil, Rajeshwari H; Devaraju, K S; Ramesh, Govindarajan T; Sharma, S Chidananda

    2013-08-01

    The activated transcription factor ERα plays an important role in the breast development and progression of cancer. In a non-classical pathway ER interacts with other transcription factors AP-1, NFkB, SP1, etc. AP-1 transcription factors control rapid responses of mammalian cells to stimuli that impact proliferation, differentiation, and transformation. AP-1 factors are leucine zipper proteins belonging to members of the Jun family (c-Jun, JunB, and JunD) and Fos family (c-Fos, FosB, Fra-1, and Fra-2) proteins. Although AP-1 factors are well characterized, not much is known about the expression pattern of the AP-1 factors in breast cancer cells. Hence to determine which AP-1 factors are expressed and regulated by estrogen, we used human breast cancer MCF-7 cells as in vitro model system. The MCF-7 cells were treated with or without estradiol-17β (E2) or antiestrogen tamoxifen (TMX) and the cell proliferation and viability was assessed by MTT assay. The expression of different AP-1 factors was analyzed by semi-quantitative RT-PCR. The cells treated with E2 found to increase the cell proliferation by more than 35 % and TMX an antiestrogen decreased by 29 % compared to control. The E2 found to induce the expression of c-Jun, Fra-1, and c-Fos, while TMX decreased the expression. In addition TMX also decreased the mRNA levels of Jun-D and Fra-2. These results suggest that the AP-1 factors c-Jun, c-Fos, and Fra-1 may be involved in the proliferation and transformation of MCF-7 cells. E2 also found to induce cyclin D1 and cyclin E1 mRNA transcripts of cell cycle regulators while TMX significantly decreased compared to control. Further E2 induced the anti-apoptotic Bcl-2 and TMX decreased mRNA transcripts. The data presented here support the E2-ERα-mediated MCF-7 cell proliferation and confirms the role of AP-1 factors in cell cycle regulation. PMID:23625206

  10. Inhibition of receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation by pyrroloquinoline quinine (PQQ).

    PubMed

    Odkhuu, Erdenezaya; Koide, Naoki; Haque, Abedul; Tsolmongyn, Bilegtsaikhan; Naiki, Yoshikazu; Hashimoto, Shoji; Komatsu, Takayuki; Yoshida, Tomoaki; Yokochi, Takashi

    2012-02-29

    The effect of pyrroloquinoline quinine (PQQ) on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation was examined using RAW 264.7 macrophage-like cells. RANKL led to the formation of osteoclasts identified as tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells in the culture of RAW 264.7 cells. However, PQQ inhibited the appearance of osteoclasts and prevented the decrease of F4/80 macrophage maturation marker on RANKL-stimulated cells, suggesting a preventive action of PQQ on RANKL-induced osteoclast differentiation. PQQ inhibited the activation of nuclear factor of activated T cells (NFATc1), a key transcription factor of osteoclastogenesis, in RANKL-stimulated cells. On the other hand, PQQ did not inhibit the signaling pathway from RANK/RANKL binding to NFATc1 activation, including NF-κB and mitogen-activated protein kinases (MAPKs). PQQ augmented the expression of type I interferon receptor (IFNAR) and enhanced the IFN-β-mediated janus kinase (JAK1) and signal transducer and activator of transcription (STAT1) expression. Moreover, PQQ reduced the expression level of c-Fos leading to the activation of NFATc1. Taken together, PQQ was suggested to prevent RANKL-induced osteoclast formation via the inactivation of NFATc1 by reduced c-Fos expression. The reduced c-Fos expression might be mediated by the enhanced IFN-β signaling due to augmented IFNAR expression.

  11. Intrathecal P/Q- and R-type calcium channel blockade of spinal substance P release and c-Fos expression.

    PubMed

    Terashima, Tetsuji; Xu, Qinghao; Yamaguchi, Shigeki; Yaksh, Tony L

    2013-12-01

    Intrathecal (IT) studies have shown that several voltage sensitive calcium channels (VSCCs), such as the L-, N- and T-type may play roles in nociception and that of these only the N-type regulates primary afferent substance P (SP) release. However, the actions of other VSCCs at the spinal level are not well known. We investigated the roles of spinal P/Q- and R-type VSCCs, by IT administration of R-type (SNX-482) and P/Q-type (ω-agatoxin IVA) VSCC blockers on intraplantar formalin-evoked flinching, SP release from primary afferents and c-Fos expression in spinal dorsal horn. Intraplantar injection of formalin (2.5%, 50 μL) produced an intense, characteristic biphasic paw flinching response. In rats with IT catheters, IT SNX-482 (0.5 μg) reduced formalin-evoked paw flinching in both phase 1 and 2 compared with vehicle. Intraplantar formalin caused robust neurokinin 1 receptor (NK1r) internalization (indicating SP release) and c-Fos expression in the ipsilateral dorsal horn, which were blocked by IT SNX-482. IT ω-agatoxin IVA (0.03, 0.125 and 0.5 μg) did not reduce formalin-evoked paw flinching or c-Fos expression at any doses, with higher doses resulting in motor dysfunction. Thus, we demonstrated that blockade of spinal R-type, but not P/Q type VSCCs attenuated formalin-induced pain behavior, NK1r internalization and c-Fos expression in the superficial dorsal horn. This study supports a role for Cav2.3 in presynaptic neurotransmitter release from peptidergic nociceptive afferents and pain behaviors. PMID:23810829

  12. Electro-magnetic fields in the home environment (color TV, computer monitor, microwave oven, cellular phone, etc) as potential contributing factors for the induction of oncogen C-fos Ab1, oncogen C-fos Ab2, integrin alpha 5 beta 1 and development of cancer, as well as effects of microwave on amino acid composition of food and living human brain.

    PubMed

    Omura, Y; Losco, M

    1993-01-01

    The effects, on normal human subjects, of 3 minutes exposure to electro-magnetic fields (EMFs) emitted from: A) personal computers, B) color television sets, or C) microwave-ovens, or cellular phones were compared by placing the same large sheet of aluminum foil with a square hole or rectangular band-shaped hole at the chest level (or at the side of the head with the cellular phone), with or without grounding the aluminum foil, using the Bi-Digital O-Ring Test Dysfunction Localization and Molecular Identification Methods with cancer related substances (i.e., Oncogen C-fos Ab2 and mercury in the cell nucleus, Integrin alpha 5 beta 1 in the cell & nuclear membranes, and disappearance of Acetylcholine) as reference control substances. All the above sources of the EMFs not only induced the following various transitional abnormalities on the EMF entry area, but also induced similar abnormalities at the EMF exit area on the back (where the abnormality was found in the same shape as exposed EMF entry area, and the effect lasted for a shorter time than the entry point of the EMF): A) Exposure of the body at about 50 cm from the monitor of some of the typical personal computers resulted in: A1) decrease in Acetylcholine; A2) appearance of circulatory disturbance with the appearance of Thromboxane B2; A3) short-lasting appearance of Oncogen C-fos Ab2; A4) short-lasting appearance of Oncogen C-fos Ab1, though it lasted longer than C-fos Ab2; A5) no appearance of Integrin alpha 5 beta 1. B) part of the chest was exposed at a distance between 1 meter and up to 3 meters from a color television sized anywhere from 13'' to 21'', resulting in: B1) decrease in Acetylcholine; B2) appearance of circulatory disturbance with the appearance of Thromboxane B2; B3) short-lasting appearance of Oncogen C-fos Ab2; B4) short-lasting appearance of Oncogen C-fos Ab1, though it lasted longer than C-fos Ab2; B5) very short-lasting appearance of Integrin alpha 5 beta 1. C) When body was exposed, at

  13. c-Fos expression in neurons projecting from the preoptic and lateral hypothalamic areas to the ventrolateral periaqueductal gray in relation to sleep states

    PubMed Central

    Hsieh, Kung-Chiao; Gvilia, Irma; Kumar, Sunil; Uschakov, Aaron; McGinty, Dennis; Alam, M. Noor; Szymusiak, Ronald

    2011-01-01

    The ventrolateral division of the periaqueductal gray (vlPAG) and the adjacent deep mesencephalic reticular nucleus have been implicated in the control of sleep. The preoptic hypothalamus, which contains populations of sleep-active neurons, is an important source of afferents to the vlPAG. The perifornical lateral hypothalamus (LH) contains populations of wake-active neurons and also projects strongly to the vlPAG. We examined nonREM and REM sleep-dependent expression of c-Fos protein in preoptic-vlPAG and LH-vlPAG projection neurons identified by retrograde labeling with Fluoro-gold (FG). Separate groups of rats (n=5) were subjected to 3 hours total sleep deprivation (TSD) followed by 1 hour recovery sleep (RS), or to 3 hours of selective REM sleep deprivation (RSD) followed by RS. A third group of rats (n=5) was subjected to TSD without opportunity for RS (awake group). In the median preoptic nucleus (MnPN), the percentage of FG+ neurons that were also Fos+ was higher in TSD-RS animals compared to both RSD-RS rats and awake rats. There were significant correlations between time spent in deep nonREM sleep during the 1-hour prior to sacrifice across groups and the percentage of double-labeled cells in MnPN and ventrolateral preoptic area (VLPO). There were no significant correlations between percentage of double labeled neurons and time spent in REM sleep for any of the preoptic nuclei examined. In the LH, percentage of double-labeled neurons was highest in awake rats, intermediate in TSD-RS rats and lowest in the RSD-RS group. These results suggest that neurons projecting from MnPN and VLPO to the vlPAG are activated during nonREM sleep and support the hypothesis that preoptic neurons provide inhibitory input to vlPAG during sleep. Suppression of excitatory input to the vlPAG from the LH during sleep may have a permissive effect on REM sleep generation. PMID:21601616

  14. c-Fos expression in neurons projecting from the preoptic and lateral hypothalamic areas to the ventrolateral periaqueductal gray in relation to sleep states.

    PubMed

    Hsieh, K-C; Gvilia, I; Kumar, S; Uschakov, A; McGinty, D; Alam, M N; Szymusiak, R

    2011-08-11

    The ventrolateral division of the periaqueductal gray (vlPAG) and the adjacent deep mesencephalic reticular nucleus have been implicated in the control of sleep. The preoptic hypothalamus, which contains populations of sleep-active neurons, is an important source of afferents to the vlPAG. The perifornical lateral hypothalamus (LH) contains populations of wake-active neurons and also projects strongly to the vlPAG. We examined nonREM and REM sleep-dependent expression of c-Fos protein in preoptic-vlPAG and LH-vlPAG projection neurons identified by retrograde labeling with Fluorogold (FG). Separate groups of rats (n=5) were subjected to 3 h total sleep deprivation (TSD) followed by 1 h recovery sleep (RS), or to 3 h of selective REM sleep deprivation (RSD) followed by RS. A third group of rats (n=5) was subjected to TSD without opportunity for RS (awake group). In the median preoptic nucleus (MnPN), the percentage of FG+ neurons that were also Fos+ was higher in TSD-RS animals compared to both RSD-RS rats and awake rats. There were significant correlations between time spent in deep nonREM sleep during the 1 h prior to sacrifice across groups and the percentage of double-labeled cells in MnPN and ventrolateral preoptic area (VLPO). There were no significant correlations between percentage of double-labeled neurons and time spent in REM sleep for any of the preoptic nuclei examined. In the LH, percentage of double-labeled neurons was highest in awake rats, intermediate in TSD-RS rats and lowest in the RSD-RS group. These results suggest that neurons projecting from MnPN and VLPO to the vlPAG are activated during nonREM sleep and support the hypothesis that preoptic neurons provide inhibitory input to vlPAG during sleep. Suppression of excitatory input to the vlPAG from the LH during sleep may have a permissive effect on REM sleep generation.

  15. Cellular activation in limbic brain systems during social play behaviour in rats

    PubMed Central

    van Kerkhof, Linda W.M.; Trezza, Viviana; Mulder, Tessa; Gao, Ping; Voorn, Pieter; Vanderschuren, Louk J.M.J.

    2013-01-01

    Positive social interactions during the juvenile and adolescent phases of life are essential for proper social and cognitive development in mammals, including humans. During this developmental period, there is a marked increase in peer-peer interactions, signified by the abundance of social play behaviour. Despite its importance for behavioural development, our knowledge of the neural underpinnings of social play behaviour is limited. Therefore, the purpose of this study was to map the neural circuits involved in social play behaviour in rats. This was achieved by examining cellular activity after social play using the immediate early gene c-fos as a marker. After a session of social play behaviour, pronounced increases in c-fos expression were observed in the medial prefrontal cortex, medial and ventral orbitofrontal cortex, dorsal striatum, nucleus accumbens core and shell, lateral amygdala, several thalamic nuclei, dorsal raphe and the pedunculopontine tegmental nucleus. Importantly, the cellular activity patterns after social play were topographically organised in this network, as indicated by play-specific correlations in c-fos activity between regions with known direct connections. These correlations suggest involvement in social play behaviour of the projections from the medial prefrontal cortex to the striatum, and of amygdala and monoaminergic inputs to frontal cortex and striatum. The analyses presented here outline a topographically organised neural network implicated in processes such as reward, motivation and cognitive control over behaviour, which mediates social play behaviour in rats. PMID:23670540

  16. Cellular activation in limbic brain systems during social play behaviour in rats.

    PubMed

    van Kerkhof, Linda W M; Trezza, Viviana; Mulder, Tessa; Gao, Ping; Voorn, Pieter; Vanderschuren, Louk J M J

    2014-07-01

    Positive social interactions during the juvenile and adolescent phases of life are essential for proper social and cognitive development in mammals, including humans. During this developmental period, there is a marked increase in peer-peer interactions, signified by the abundance of social play behaviour. Despite its importance for behavioural development, our knowledge of the neural underpinnings of social play behaviour is limited. Therefore, the purpose of this study was to map the neural circuits involved in social play behaviour in rats. This was achieved by examining cellular activity after social play using the immediate early gene c-Fos as a marker. After a session of social play behaviour, pronounced increases in c-Fos expression were observed in the medial prefrontal cortex, medial and ventral orbitofrontal cortex, dorsal striatum, nucleus accumbens core and shell, lateral amygdala, several thalamic nuclei, dorsal raphe and the pedunculopontine tegmental nucleus. Importantly, the cellular activity patterns after social play were topographically organized in this network, as indicated by play-specific correlations in c-Fos activity between regions with known direct connections. These correlations suggest involvement in social play behaviour of the projections from the medial prefrontal cortex to the striatum, and of amygdala and monoaminergic inputs to frontal cortex and striatum. The analyses presented here outline a topographically organized neural network implicated in processes such as reward, motivation and cognitive control over behaviour, which mediates social play behaviour in rats. PMID:23670540

  17. Cellular activation in limbic brain systems during social play behaviour in rats.

    PubMed

    van Kerkhof, Linda W M; Trezza, Viviana; Mulder, Tessa; Gao, Ping; Voorn, Pieter; Vanderschuren, Louk J M J

    2014-07-01

    Positive social interactions during the juvenile and adolescent phases of life are essential for proper social and cognitive development in mammals, including humans. During this developmental period, there is a marked increase in peer-peer interactions, signified by the abundance of social play behaviour. Despite its importance for behavioural development, our knowledge of the neural underpinnings of social play behaviour is limited. Therefore, the purpose of this study was to map the neural circuits involved in social play behaviour in rats. This was achieved by examining cellular activity after social play using the immediate early gene c-Fos as a marker. After a session of social play behaviour, pronounced increases in c-Fos expression were observed in the medial prefrontal cortex, medial and ventral orbitofrontal cortex, dorsal striatum, nucleus accumbens core and shell, lateral amygdala, several thalamic nuclei, dorsal raphe and the pedunculopontine tegmental nucleus. Importantly, the cellular activity patterns after social play were topographically organized in this network, as indicated by play-specific correlations in c-Fos activity between regions with known direct connections. These correlations suggest involvement in social play behaviour of the projections from the medial prefrontal cortex to the striatum, and of amygdala and monoaminergic inputs to frontal cortex and striatum. The analyses presented here outline a topographically organized neural network implicated in processes such as reward, motivation and cognitive control over behaviour, which mediates social play behaviour in rats.

  18. Cannabidiol attenuates haloperidol-induced catalepsy and c-Fos protein expression in the dorsolateral striatum via 5-HT1A receptors in mice.

    PubMed

    Sonego, Andreza B; Gomes, Felipe V; Del Bel, Elaine A; Guimaraes, Francisco S

    2016-08-01

    Cannabidiol (CBD) is a major non-psychoactive compound from Cannabis sativa plant. Given that CBD reduces psychotic symptoms without inducing extrapyramidal motor side-effects in animal models and schizophrenia patients, it has been proposed to act as an atypical antipsychotic. In addition, CBD reduced catalepsy induced by drugs with distinct pharmacological mechanisms, including the typical antipsychotic haloperidol. To further investigate this latter effect, we tested whether CBD (15-60mg/kg) would attenuate the catalepsy and c-Fos protein expression in the dorsal striatum induced by haloperidol (0.6mg/kg). We also evaluated if these effects occur through the facilitation of 5-HT1A receptor-mediated neurotransmission. For this, male Swiss mice were treated with CBD and haloperidol systemically and then subjected to the catalepsy test. Independent groups of animals were also treated with the 5-HT1A receptor antagonist WAY100635 (0.1mg/kg). As expected, haloperidol induced catalepsy throughout the experiments, an effect that was prevented by systemic CBD treatment 30min before haloperidol administration. Also, CBD, administered 2.5h after haloperidol, reversed haloperidol-induced catalepsy. Haloperidol also increased c-Fos protein expression in the dorsolateral striatum, an effect attenuated by previous CBD administration. CBD effects on catalepsy and c-Fos protein expression induced by haloperidol were blocked by the 5-HT1A receptor antagonist. We also evaluated the effects of CBD (60nmol) injection into the dorsal striatum on haloperidol-induced catalepsy. Similar to systemic administration, this treatment reduced catalepsy induced by haloperidol. Altogether, these results suggest that CBD acts in the dorsal striatum to improve haloperidol-induced catalepsy via postsynaptic 5-HT1A receptors. PMID:27131780

  19. Breeding context-dependent relationships between song and cFOS labeling within social behavior brain regions in male European starlings (Sturnus vulgaris)

    PubMed Central

    Heimovics, Sarah A.; Riters, Lauren V.

    2008-01-01

    Male European starlings (Sturnus vulgaris) sing throughout the year, but the social factors that motivate singing behavior differ depending upon the context in which song is produced. In a non-breeding context (when testosterone concentrations are low) starlings form large, mixed-sex flocks and song is involved in flock cohesion and perhaps maintenance of social hierarchies. In contrast, in a breeding context (when testosterone concentrations are high) male song plays a direct role in mate attraction. How the nervous system ensures that song production occurs in an appropriate context in response to appropriate stimuli is not well understood. The song control system regulates song production, learning, and to some extent perception; however these nuclei do not appear to regulate the social context in which song is produced. A network of steroid hormone sensitive nuclei of the basal forebrain and midbrain regulates social behavior. The present study used the immediate early gene cFOS to explore possible involvement of these regions in context-dependent song production. Numbers of cFOS-labeled cells in the medial bed nucleus of the stria terminalis, anterior hypothalamus, and ventromedial nucleus of the hypothalamus related positively only to song produced in a breeding context. In contrast, numbers of cFOS-labeled cells in three zones of the lateral septum related positively only to song produced in a non-breeding context. Taken together, these data suggest differential regulation of male starling song by social behavior nuclei depending upon the breeding context in which it is produced. PMID:16914152

  20. Breeding-context-dependent relationships between song and cFOS labeling within social behavior brain regions in male European starlings (Sturnus vulgaris).

    PubMed

    Heimovics, Sarah A; Riters, Lauren V

    2006-12-01

    Male European starlings (Sturnus vulgaris) sing throughout the year, but the social factors that motivate singing behavior differ depending upon the context in which song is produced. In a non-breeding context (when testosterone concentrations are low), starlings form large, mixed-sex flocks and song is involved in flock cohesion and perhaps maintenance of social hierarchies. In contrast, in a breeding context (when testosterone concentrations are high), male song plays a direct role in mate attraction. How the nervous system ensures that song production occurs in an appropriate context in response to appropriate stimuli is not well understood. The song control system regulates song production, learning, and, to some extent, perception; however, these nuclei do not appear to regulate the social context in which song is produced. A network of steroid hormone sensitive nuclei of the basal forebrain and midbrain regulates social behavior. The present study used the immediate early gene cFOS to explore possible involvement of these regions in context-dependent song production. Numbers of cFOS-labeled cells in the medial bed nucleus of the stria terminalis, anterior hypothalamus, and ventromedial nucleus of the hypothalamus related positively only to song produced in a breeding context. In contrast, numbers of cFOS-labeled cells in three zones of the lateral septum related positively only to song produced in a non-breeding context. Taken together, these data suggest differential regulation of male starling song by social behavior nuclei depending upon the breeding context in which it is produced. PMID:16914152

  1. Identification of neural cells activated by mating stimulus in the periaqueductal gray in female rats

    PubMed Central

    Yamada, Shunji; Kawata, Mitsuhiro

    2014-01-01

    Induction of lordosis as typical female sexual behavior in rodents is dependent on a mount stimulus from males and blood levels of estrogen. Periaqueductal gray (PAG) efferent neurons have been suggested to be important for lordosis behavior; however, the neurochemical basis remains to be understood. In this study, we neuroanatomically examined (1) whether PAG neurons activated by mating stimulus project to the medullary reticular formation (MRF), which is also a required area for lordosis; and (2) whether these neurons are glutamatergic. Mating stimulus significantly increased the number of cFos-immunoreactive (ir) neurons in the PAG, particularly in its lateral region. Half of cFos-ir neurons in the lateral PAG were positive for a retrograde tracer (FluoroGold; FG) injected into the MRF. cFos-ir neurons also colocalized with mRNA of vesicular glutamate transporter 2 (vGLUT2), a molecular marker for glutamatergic neurons. Using retrograde tracing and in situ hybridization in conjunction with fluorescent microscopy, we also found FG and vGLUT2 mRNA double-positive neurons in the lateral PAG. These results suggest that glutamatergic neurons in the lateral PAG project to the MRF and are involved in lordosis behavior in female rats. PMID:25565950

  2. Subcaste differences in neural activation suggest a prosocial role for oxytocin in eusocial naked mole-rats.

    PubMed

    Hathaway, Georgia A; Faykoo-Martinez, Mariela; Peragine, Deane E; Mooney, Skyler J; Holmes, Melissa M

    2016-03-01

    The neuropeptide oxytocin (OT) influences prosocial behavior(s), aggression, and stress responsiveness, and these diverse effects are regulated in a species- and context-specific manner. The naked mole-rat (Heterocephalus glaber) is a unique species with which to study context-dependent effects of OT, exhibiting a strict social hierarchy with behavioral specialization within the subordinate caste: soldiers are aggressive and defend colonies against unfamiliar conspecifics while workers are prosocial and contribute to in-colony behaviors such as pup care. To determine if OT is involved in subcaste-specific behaviors, we compared behavioral responses between workers and soldiers of both sexes during a modified resident/intruder paradigm, and quantified activation of OT neurons in the hypothalamic paraventricular nucleus (PVN) and supraoptic nucleus (SON) using the immediate-early-gene marker c-fos co-localized with OT neurons. Resident workers and soldiers were age-matched with unfamiliar worker stimulus animals as intruders, and encounters were videorecorded and scored for aggressive behaviors. Colony-matched controls were left in their home colony for the duration of the encounters. Brains were extracted and cell counts were conducted for OT immunoreactive (ir), c-fos-ir, and percentage of OT-c-fos double-labeled cells. Results indicate that resident workers were less aggressive but showed greater OT neural activity than soldiers. Furthermore, a linear model including social treatment, cortisol, and subcaste revealed that subcaste was the only significant predictor of OT-c-fos double-labeled cells in the PVN. These data suggest that in naked mole-rats OT promotes prosocial behaviors rather than aggression and that even within subordinates status exerts robust effects on brain and behavior.

  3. Persistent c-fos expression and NADPH-d reactivity in the medulla and the lumbar spinal cord in rat with short-term peripheral anosmia.

    PubMed

    Kalueff, A V; Maisky, V A; Pilyavskii, A I; Makarchuk, N E

    2001-03-30

    Here we examine hypothesis that short-term peripheral ZnSO(4)-induced anosmia can produce effects on c-fos expression within spinal cord and caudal medulla in male Wistar rats (n=4). Fos-like-immunoreactive cells revealed by avidin-biotin-peroxidase method show a significant bilateral increase in the nucleus proprius (layers 3 and 4) and medial part of layers 5 and 6. In substantia gelatinosa (layer 2(i)) and area 10 Fos-positive neurons were intermixed together with nicotin-amide adenine dineucleotide phosphate-diaphorase (NADPH-d)-reactive cells. Short-term anosmia enhanced c-fos expression in ventral horn (layers 7 and 8), ventrolateral segment and dorsal part of the spinal trigeminal nuclei. In anosmic rats varicose fibres and numerous NADPH-d-stained neurons were present in the gelatinous layer of the spinal trigeminal nucleus caudalis, and a separate population of Fos-positive cells was detected within this layer. Nucleus tractus solitaris also contained a few NADPH-d-reactive, medium sized neurons intermixed with Fos-immunoreactive cells. PMID:11248440

  4. Markers

    ERIC Educational Resources Information Center

    Healthy Schools Network, Inc., 2011

    2011-01-01

    Dry erase whiteboards come with toxic dry erase markers and toxic cleaning products. Dry erase markers labeled "nontoxic" are not free of toxic chemicals and can cause health problems. Children are especially vulnerable to environmental health hazards; moreover, schools commonly have problems with indoor air pollution, as they are more densely…

  5. The effects of RB101, a mixed inhibitor of enkephalin-catabolizing enzymes, on carrageenin-induced spinal c-Fos expression are completely blocked by beta-funaltrexamine, a selective mu-opioid receptor antagonist.

    PubMed

    Le Guen, S; Honoré, P; Catheline, G; Fournié-Zaluski, M C; Roques, B P; Besson, J M

    1999-07-10

    We have demonstrated that pre-administered RB101 (40 mg/kg, i.v.), a mixed inhibitor of enkephalin-catabolizing enzymes, decreased spinal c-Fos expression induced 1 h and 30 min after intraplantar (i.pl.) carrageenin (41% reduction, p<0.01). These effects were completely blocked by pre-administered beta-funaltrexamine (10 mg/kg, i.v., 24 h prior to stimulation), a selective long-lasting mu-opioid receptor antagonist. In conclusion, these results clearly demonstrate that the effects of endogenous enkephalins on noxiously evoked spinal c-Fos expression are essentially mediated via mu-opioid receptors.

  6. Ginsenosides Have a Suppressive Effect on c-Fos Expression in Brain and Reduce Cardiovascular Responses Increased by Noxious Stimulation to the Rat Tooth

    PubMed Central

    Jung, Ji-Yeon; Seong, Kyung-Joo; Moon, In-Ohk; Cho, Jin-Hyoung; Kim, Sun-Hun

    2013-01-01

    The purpose of this study is to investigate the antinociceptive effects of ginsenosides on toothache. c-Fos immunoreactive (IR) neurons were examined after noxious intrapulpal stimulation (NS) by intrapulpal injection of 2 M KCl into upper and lower incisor pulps exposed by bone cutter in Sprague Dawley rats. The number of Fos-IR neurons was increased in the trigeminal subnucleus caudalis (Vc) and the transitional region between Vc and subnucleus interpolaris (Vi) by NS to tooth. The intradental NS raised arterial blood pressure (BP) and heart rate (HR). The number of Fos-IR neurons was also enhanced in thalamic ventral posteromedial nucleus (VPMN) and centrolateral nucleus (CLN) by NS to tooth. The intradental NS increased the number of Fos-IR neurons in the nucleus tractus solitarius (NTS) and rostral ventrolateral medulla (RVLM), hypothalamic supraoptic nucleus (SON) and paraventricular nucleus (PVN), central cardiovascular regulation centers. Ginsenosides reduced the number of c-Fos-IR increased by NS to tooth in the trigeminal Vc and thalamic VPMN and CLN. Naloxone, an opioid antagonist, did not block the effect of ginsenoside on the number of Fos-IR neurons enhanced by NS to tooth in the trigeminal Vc and thalamic VPMN and CLN. Ginsenosides ameliorated arterial BP and HR raised by NS to tooth and reduced the number of Fos-IR neurons increased by NS to tooth in the NTS, RVLM, hypothalamic SON, and PVN. These results suggest that ginsenosides have an antinociceptive effect on toothache through non-opioid system and attenuates BP and HR increased by NS to tooth. PMID:23626473

  7. Laguerre Filter Analysis with Partial Least Square Regression Reveals a Priming Effect of ERK and CREB on c-FOS Induction.

    PubMed

    Kudo, Takamasa; Uda, Shinsuke; Tsuchiya, Takaho; Wada, Takumi; Karasawa, Yasuaki; Fujii, Masashi; Saito, Takeshi H; Kuroda, Shinya

    2016-01-01

    Signaling networks are made up of limited numbers of molecules and yet can code information that controls different cellular states through temporal patterns and a combination of signaling molecules. In this study, we used a data-driven modeling approach, the Laguerre filter with partial least square regression, to describe how temporal and combinatorial patterns of signaling molecules are decoded by their downstream targets. The Laguerre filter is a time series model used to represent a nonlinear system based on Volterra series expansion. Furthermore, with this approach, each component of the Volterra series expansion is expanded by Laguerre basis functions. We combined two approaches, application of a Laguerre filter and partial least squares (PLS) regression, and applied the combined approach to analysis of a signal transduction network. We applied the Laguerre filter with PLS regression to identify input and output (IO) relationships between MAP kinases and the products of immediate early genes (IEGs). We found that Laguerre filter with PLS regression performs better than Laguerre filter with ordinary regression for the reproduction of a time series of IEGs. Analysis of the nonlinear characteristics extracted using the Laguerre filter revealed a priming effect of ERK and CREB on c-FOS induction. Specifically, we found that the effects of a first pulse of ERK enhance the subsequent effects on c-FOS induction of treatment with a second pulse of ERK, a finding consistent with prior molecular biological knowledge. The variable importance of projections and output loadings in PLS regression predicted the upstream dependency of each IEG. Thus, a Laguerre filter with partial least square regression approach appears to be a powerful method to find the processing mechanism of temporal patterns and combination of signaling molecules by their downstream gene expression. PMID:27513954

  8. A FOOD PREDICTIVE CUE MUST BE ATTRIBUTED WITH INCENTIVE SALIENCE FOR IT TO INDUCE c-FOS mRNA EXPRESSION IN CORTICO-STRIATAL-THALAMIC BRAIN REGIONS

    PubMed Central

    Flagel, Shelly B.; Cameron, Courtney M.; Pickup, Kristen N.; Watson, Stanley J.; Akil, Huda; Robinson, Terry E.

    2011-01-01

    Cues associated with rewards acquire the ability to engage the same brain systems as rewards themselves. However, reward cues have multiple properties. For example, they not only act as predictors of reward capable of evoking conditional responses (CRs), but they may also acquire incentive motivational properties. As incentive stimuli they can evoke complex emotional and motivational states. Here we sought to determine whether the predictive value of a reward cue is sufficient to engage brain reward systems, or whether the cue must also be attributed with incentive salience. We took advantage of the fact that there are large individual differences in the extent to which reward cues are attributed with incentive salience. When a cue (conditional stimulus, CS) is paired with delivery of food (unconditional stimulus, US), the cue acquires the ability to evoke a CR in all rats; that is, it is equally predictive and supports learning the CS-US association in all. However, only in a subset of rats is the cue attributed with incentive salience, becoming an attractive and desirable incentive stimulus. We used in situ hybridization histochemistry to quantify the ability of a food cue to induce c-fos mRNA expression in rats that varied in the extent to which they attributed incentive salience to the cue. We found that a food cue induced c-fos mRNA in the orbitofrontal cortex, striatum (caudate and nucleus accumbens), thalamus (paraventricular, intermediodorsal and central medial nuclei) and lateral habenula, only in rats that attributed incentive salience to the cue. Furthermore, patterns of “connectivity” between these brain regions differed markedly between rats that did or did not attribute incentive salience to the food cue. These data suggest that the predictive value of a reward cue is not sufficient to engage brain reward systems - the cue must also be attributed with incentive salience. PMID:21945724

  9. Laguerre Filter Analysis with Partial Least Square Regression Reveals a Priming Effect of ERK and CREB on c-FOS Induction

    PubMed Central

    Kudo, Takamasa; Uda, Shinsuke; Tsuchiya, Takaho; Wada, Takumi; Karasawa, Yasuaki; Fujii, Masashi; Saito, Takeshi H.; Kuroda, Shinya

    2016-01-01

    Signaling networks are made up of limited numbers of molecules and yet can code information that controls different cellular states through temporal patterns and a combination of signaling molecules. In this study, we used a data-driven modeling approach, the Laguerre filter with partial least square regression, to describe how temporal and combinatorial patterns of signaling molecules are decoded by their downstream targets. The Laguerre filter is a time series model used to represent a nonlinear system based on Volterra series expansion. Furthermore, with this approach, each component of the Volterra series expansion is expanded by Laguerre basis functions. We combined two approaches, application of a Laguerre filter and partial least squares (PLS) regression, and applied the combined approach to analysis of a signal transduction network. We applied the Laguerre filter with PLS regression to identify input and output (IO) relationships between MAP kinases and the products of immediate early genes (IEGs). We found that Laguerre filter with PLS regression performs better than Laguerre filter with ordinary regression for the reproduction of a time series of IEGs. Analysis of the nonlinear characteristics extracted using the Laguerre filter revealed a priming effect of ERK and CREB on c-FOS induction. Specifically, we found that the effects of a first pulse of ERK enhance the subsequent effects on c-FOS induction of treatment with a second pulse of ERK, a finding consistent with prior molecular biological knowledge. The variable importance of projections and output loadings in PLS regression predicted the upstream dependency of each IEG. Thus, a Laguerre filter with partial least square regression approach appears to be a powerful method to find the processing mechanism of temporal patterns and combination of signaling molecules by their downstream gene expression. PMID:27513954

  10. Development of tolerance to the antinociceptive effect of systemic morphine at the lumbar spinal cord level: a c-Fos study in the rat.

    PubMed

    Le Guen, S; Catheline, G; Besson, J M

    1998-11-30

    The development of tolerance to the antinociceptive effects of morphine was investigated in rats using carrageenin-induced spinal c-Fos expression. We took advantage of this technique to especially study, at the cellular level, in freely moving animals, the development of tolerance based on the visualization of dorsal horn spinal cord neurons which play a major role in nociceptive processes. Two hours after intraplantar injection of carrageenin (6 mg/150 microliter of saline), c-Fos-like immunoreactivity (FLI) was observed predominantly in the superficial and deep laminae of the dorsal horn in segments L4 and L5 of the spinal cord. In naive rats, acute intravenous morphine (3 mg/kg, i.v.) reduced the number of superficial and deep FLI neurons; 49% and 59% reduction respectively (p<0.0001 for both). In morphine-pretreated rats (daily administration of subcutaneous morphine: 1, 3, 5, 10, 20 or 40 mg/kg once a day for 4 days), antinociceptive tolerance tested on day 5 by acute morphine (3 mg/kg, i.v.) was manifest in those groups pretreated with the highest doses of morphine (10, 20 or 40 mg/kg). From regression analysis, it appeared that tolerance to the antinociceptive effect of morphine developed progressively as a function of the chronic morphine dose used on neurons involved in spinal nociceptive processes (superficial and deep dorsal horn neurons). Similarly, in rats pretreated with 10 mg/kg of morphine over 1, 2, 3 or 4 days, tolerance progressively developed, for both spinal neuronal populations, as a function of the duration of the pretreatment. These results are discussed in the context of the several possible sites of action of morphine.

  11. Peripheral and/or central effects of racemic-, S(+)- and R(−)-flurbiprofen on inflammatory nociceptive processes: a c-Fos protein study in the rat spinal cord

    PubMed Central

    Buritova, Jaroslava; Besson, Jean-Marie

    1998-01-01

    We have evaluated the effects of intravenous or intraplantar racemic-, S(+)- and R(−)-flurbiprofen on both the carrageenan-evoked peripheral oedema and spinal c-Fos immunoreactivity, an indirect index of neurons involved in spinal nociceptive processes. Three hours after intraplantar injection of carrageenan (6 mg in 150 μl of saline) in awake rats, a peripheral oedema and numerous c-Fos protein-like immunoreactive (c-Fos-LI) neurons in L4–L5 segments were observed. c-Fos-LI neurons were essentially located in the superficial (I–II) and deep (V–VI) laminae of the dorsal horn. Intravenous racemic-flurbiprofen (0.3, 3 and 9  mg kg−1) dose-relatedly reduced the carrageenan-evoked oedema and spinal c-Fos expression (r=0.64, r=0.88 and r=0.84 for paw diameter, ankle diameter and number of c-Fos-LI neurons; P<0.05, P<0.001 and P<0.001 respectively). Similar effects to those of intravenous racemic-flurbiprofen were obtained with intravenous S(+)-flurbiprofen (0.3, 3 and 9 mg kg−1) which dose-relatedly reduced the number of c-Fos-LI neurons (r=0.69, P<0.01) and diameters of paw and ankle (r=0.56 and r=0.52 respectively, P<0.05 for both). For the dose of 0.3 mg kg−1 i.v., R(−)-flurbiprofen did not modify the number of c-Fos-LI neurons and produced a weak reduction of oedema at only the ankle level (23±12% reduction, P<0.05). However, a ten times higher dose of R(−)-flurbiprofen (3 mg kg−1 i.v.) was necessary to obtain effects comparable to those of S(+)- or racemic-flurbiprofen (0.3 mg kg−1 i.v.). Intraplantar racemic-flurbiprofen (1, 10 and 30 μg) dose-relatedly reduced the carrageenan-enhanced ankle diameter (r=0.81, P<0.001) and the number of c-Fos-LI neurons in L4–L5 segments (r=0.83, P<0.001), with a 60±3% reduction of the number of c-Fos-LI neurons (P<0.001), and 30±3 and 67±7% reduction of paw and ankle diameter respectively (P<0.001 for both) for the dose of 30 μg. For intraplantar S(+)-flurbiprofen (1, 10

  12. Morphine-induced conditioned place preference and the alterations of p-ERK, p-CREB and c-fos levels in hypothalamus and hippocampus: the effects of physical stress.

    PubMed

    Pahlevani, P; Fatahi, Z; Moradi, M; Haghparast, A

    2014-12-08

    The hypothalamus and hippocampus are important areas involved in stress responses and reward processing. In addition, ERK/CREB pathway plays a critical role in the control of cellular responses to stress and reward. In the current study, effects of acute and subchronic stress on the alteration of p-ERK, p-CREB and c-fos levels in the hypothalamus and hippocampus of saline- or morphine-treated animals during morphine-induced conditioned place preference (CPP) procedure were investigated. Male Wistar rats were divided into two saline- and morphine-treated supergroups. Each supergroup includes of control, acute stress and subchronic stress groups. In all of groups, the CPP procedure was done, afterward the alternation of p-ERK/ERK ratio, p-CREB/CREB ratio and c-fos level in the hypothalamus and hippocampus were estimated by Western blot analysis. The results indicated that in saline- or morphine-treated animals, p-ERK/ERK ratio, p-CREB/CREB ratio and c-fos level increased after application of acute and subchronic stress (except for p-ERK/ERK ratio in morphine-control group). Our findings revealed that in saline- or morphine-treated animals, acute and subcronic stress increased the p-ERK/ERK ratio, p-CREB/CREB ratio and c-fos level in the hypothalamus and hippocampus and this enhancement in morphine-treated animals, was more considerable than that in saline-treated animals.

  13. Lymphocyte Activation Markers in Pediatric Kidney Transplant Recipients

    PubMed Central

    Fadel, Fatina I.; Elghoroury, Eman A.; Elshamaa, Manal F.; Bazaraa, Hafez M.; Salah, Doaa M.; Kassem, Neemat M. A.; Ibrahim, Mona H.; El-Saaid, Gamila S.; Nasr, Soha A.; Koura, Hala M.

    2015-01-01

    Background and objectives: The role of CD4+CD25+ T regulatory cells (Tregs) in immune tolerance in experimental transplantation is very important but the clinical significance of circulating Tregs in the peripheral blood is undetermined. We evaluated the association between the frequency of T cell activation markers CD25 and CD71 and clinical parameters that may affect the level of these T cell markers. Methods: In 47peditric kidney transplant (KT) recipients and 20 healthy controls, the frequency of T cell activation markers, CD25 and CD71 was measured with flow cytometry after transplantation. Two clinical protocols of induction immunosuppression were used: (1) anti-thymocyte globulin (THYMO) group (n =29) and Basiliximab (BSX) group (n=10). Results: The percentage of circulating CD25 after KT was significantly lower than that in the controls. There is no significant difference between KT and the controls s regard to circulating CD71. The percentage of CD25 was significantly increased in children with acute rejection compared with those without acute rejection. Calcineurin inhibitors (CNIs) decreased the frequency of CD25 but mammalian target rapamycin (mTOR) inhibitor did not. The proportion of CD25 significantly decreased in THYMO group during the first year after transplantation. Conclusion: The frequency of circulating T cell activation marker CD25 in pediatric KT recipients is strongly affected by CNIs, and a high frequency of CD25 is associated with acute rejection during the early posttransplant period. The measurement of T cell activation markers, may become a useful immune monitoring tool after kidney transplantation. PMID:26508906

  14. Pharmacokinetic and pharmacogenetic predictive markers of irinotecan activity and toxicity.

    PubMed

    Di Paolo, Antonello; Bocci, Guido; Polillo, Marialuisa; Del Re, Marzia; Di Desidero, Teresa; Lastella, Marianna; Danesi, Romano

    2011-12-01

    After the rapid development of new classes of antineoplastic drugs, research activities have focused their efforts to the identification of predictive markers of drug activity and tolerability. Irinotecan (CPT-11) may induce severe toxicities (diarrhea, neutropenia) that limit its clinical use, but the increasing knowledge of its pharmacokinetics offered a potential approach to treatment optimization. Pharmacokinetics, the first area of investigation, has identified markers such as biliary index, the relative extent of conversion and the glucuronidation ratio, which are capable to define the risk for severe adverse effects. Because of the existence of some issues concerning the adoption of pharmacokinetic strategies to optimize CPT-11 dose and schedule, analyses of genetic polymorphisms seemed to offer a more reliable and safer approach for the identification of patients at risk than pharmacokinetics. In this view, the uridine diphosphate glucuronosil transferase isoform 1A1 (UGT1A1) was associated with significant changes in disposition of CPT-11 and its metabolites, and consequently with treatment-induced toxicities. However, the complex pharmacokinetics of irinotecan and the involvement of several enzymes other than UGT (i.e., carboxyl estherases, CYP450 isoforms), and transmembrane transporters (ABCB1, ABCC1, ABCG2, SLCO1B1) make difficult the identification of patients with an optimal sensitivity and specificity, and a large part of variability among patients still remains unexplained. Furthermore, prospective clinical studies that should demonstrate the reliability of those pharmacokinetic and pharmacogenetic markers are still lacking. In the present review, pharmacokinetic and pharmacogenetic markers will be discussed. PMID:21787264

  15. Refeeding-activated glutamatergic neurons in the hypothalamic paraventricular nucleus (PVN) mediate effects of melanocortin signaling in the nucleus tractus solitarius (NTS).

    PubMed

    Singru, Praful S; Wittmann, Gábor; Farkas, Erzsébet; Zséli, Györgyi; Fekete, Csaba; Lechan, Ronald M

    2012-08-01

    We previously demonstrated that refeeding after a prolonged fast activates a subset of neurons in the ventral parvocellular subdivision of the paraventricular nucleus (PVNv) as a result of increased melanocortin signaling. To determine whether these neurons contribute to satiety by projecting to the nucleus tractus solitarius (NTS), the retrogradely transported marker substance, cholera toxin-β (CTB), was injected into the dorsal vagal complex of rats that were subsequently fasted and refed for 2 h. By double-labeling immunohistochemistry, CTB accumulation was found in the cytoplasm of the majority of refeeding-activated c-Fos neurons in the ventral parvocellular subdivision of the hypothalamic paraventricular nucleus (PVNv). In addition, a large number of refeeding-activated c-Fos-expressing neurons were observed in the lateral parvocellular subdivision (PVNl) that also contained CTB and were innervated by axon terminals of proopiomelanocortin neurons. To visualize the location of neuronal activation within the NTS by melanocortin-activated PVN neurons, α-MSH was focally injected into the PVN, resulting in an increased number of c-Fos-containing neurons in the PVN and in the NTS, primarily in the medial and commissural parts. All refeeding-activated neurons in the PVNv and PVNl expressed the mRNA of the glutamatergic marker, type 2 vesicular glutamate transporter (VGLUT2), indicating their glutamatergic phenotype, but only rare neurons contained oxytocin. These data suggest that melanocortin-activated neurons in the PVNv and PVNl may contribute to refeeding-induced satiety through effects on the NTS and may alter the sensitivity of NTS neurons to vagal satiety inputs via glutamate excitation.

  16. Flow Cytometric Investigation of Classical and Alternative Platelet Activation Markers

    PubMed Central

    Debreceni, Ildikó Beke; Kappelmayer, János

    2013-01-01

    Platelets show a substantial role in the maintenance of vascular integrity when these cells after a rapid activation adhere to the vessel wall lesion, aggregate with other platelets and leukocytes resulting in an arterial thrombosis. Analysis of in vivo platelet activation at an early time point is crucial in the detection of developing thrombotic events. In addition, the forecast of future complications as well as the evaluation of the efficacy of anti- platelet medication are also essential in a large group of patients. Changes in the levels of platelet receptors or alteration in other surface properties due to intra- and extracellular responses to a stimulus can be measurable primarily by flow cytometry with specific antibodies via the assessment of classical and alternative platelet activation markers. Some of these biomarkers have been already used in routine laboratory settings in many cases, while others still stand in the phase of research applications. Deficiency in platelet receptors is also accessible with this technique for the diagnosis of certain bleeding disorders. We here describe the most important types of platelet activation markers, and give an overview how the levels of these markers are altered in different diseases.

  17. Patterns of social-experience-related c-fos and Arc expression in the frontal cortices of rats exposed to saccharin or moderate levels of ethanol during prenatal brain development.

    PubMed

    Hamilton, Derek A; Candelaria-Cook, Felicha T; Akers, Katherine G; Rice, James P; Maes, Levi I; Rosenberg, Martina; Valenzuela, C Fernando; Savage, Daniel D

    2010-12-01

    Recent findings from our laboratory indicate that alterations in frontal cortex function, structural plasticity, and related social behaviors are persistent consequences of exposure to moderate levels of ethanol during prenatal brain development [24]. Fetal-ethanol-related reductions in the expression of the immediate early genes (IEGs) c-fos and Arc and alterations in dendritic spine density in ventrolateral and medial aspects of frontal cortex suggest a dissociation reminiscent of that described by Kolb et al. [38] in which these aspects of frontal cortex undergo reciprocal experience-dependent changes. In addition to providing a brief review of the available data on social behavior and frontal cortex function in fetal-ethanol-exposed rats, the present paper presents novel data on social-experience-related IEG expression in four regions of frontal cortex (Zilles LO, VLO, Fr1, Fr2) that are evaluated alongside our prior data from AID and Cg3. Social experience in normal rats was related to a distinct pattern of IEG expression in ventrolateral and medial aspects of frontal cortex, with generally greater expression observed in ventrolateral frontal cortex. In contrast, weaker expression was observed in all aspects of frontal cortex in ethanol-exposed rats, with the exception of an experience-related increase in the medial agranular cortex. Behaviors related to social investigation and wrestling/boxing were differentially correlated with patterns of activity-related IEG expression in the regions under investigation for saccharin- and ethanol-exposed rats. These observations suggest that recruitment and expression of IEGs in frontal cortex following social experience are potentially important for understanding the long-term consequences of moderate prenatal ethanol exposure on frontal cortex function, synaptic plasticity, and related behaviors.

  18. A comparative study of fibrous dysplasia and osteofibrous dysplasia with regard to expressions of c-fos and c-jun products and bone matrix proteins: a clinicopathologic review and immunohistochemical study of c-fos, c-jun, type I collagen, osteonectin, osteopontin, and osteocalcin.

    PubMed

    Sakamoto, A; Oda, Y; Iwamoto, Y; Tsuneyoshi, M

    1999-12-01

    Fibrous dysplasia and osteofibrous dysplasia are both benign fibro-osseous lesions of the bone and are generally seen during childhood or adolescence. Histologically, the features of these bone lesions sometimes look quite similar, but their precise nature remains controversial. We retrospectively studied clinicopathologic findings in 62 cases of fibrous dysplasia and 20 cases of osteofibrous dysplasia with regard to their anatomic location and histological appearance. From among these cases, the immunohistochemical expressions of c-fos and c-jun proto-oncogene products and bone matrix proteins of type I collagen, osteonectin, osteopontin, and osteocalcin were evaluated in 20 typical fibrous dysplasias and 17 osteofibrous dysplasias using paraffin sections, and these expressions were then assessed semiquantitatively. Microscopically, fibrous dysplasia showed various secondary changes, such as hyalinization, hemorrhage, xanthomatous reaction, and cystic change in 22 of the 62 cases (35%). This was a higher incidence than in osteofibrous dysplasia, in which only 2 of the 20 cases (10%) showed such changes. In the elderly fibrous dysplasia cases, the cellularity of fibroblast-like cells was rather low, and those cases were hyalinized. Almost all of the cases of fibrous dysplasia and osteofibrous dysplasia showed positive expressions of c-fos and c-jun products. The expressions of type I collagen and osteopontin showed no difference between fibrous dysplasia and osteofibrous dysplasia. Immunoreactivity for osteonectin in bone matrix was detected in only 1 case of fibrous dysplasia (1 of 20), whereas it was recognized in 14 of the 17 cases of osteofibrous dysplasia. Furthermore, the immunoreactivity for osteocalcin in bone matrix and fibroblast-like cells was higher in fibrous dysplasia than it was in osteofibrous dysplasia, semiquantitatively. Our immunohistochemical results regarding osteonectin and osteocalcin suggest that the bone matrix of fibrous dysplasia is

  19. Macrophage Activation Syndrome-Associated Markers in Severe Dengue

    PubMed Central

    Ab-Rahman, Hasliana Azrah; Rahim, Hafiz; AbuBakar, Sazaly; Wong, Pooi-Fong

    2016-01-01

    Hemophagocytosis, a phenomenon of which activated macrophages phagocytosed hematopoietic elements was reportedly observed in severe dengue patients. In the present study, we investigated whether markers of macrophage activation syndrome (MAS) can be used as differential diagnostic markers of severe dengue. Two hundred and eight confirmed dengue patients were recruited for the study. Sandwich ELISA was used to determine serum ferritin, soluble CD163 (sCD163), and soluble CD25 (sCD25) levels. The population of circulating CD163 (mCD163) monocytes was determined using flow cytometry. Receiver operating characteristic (ROC) analysis was plotted to determine the predictive validity of the biomarkers. Serum ferritin and sCD163 were found significantly increased in severe dengue patients compared to dengue fever patients (P = 0.003). A fair area under ROC curves (AUC) at 0.72 with a significant P value of 0.004 was observed for sCD163. sCD25 and mCD163 levels were not significantly different between severe dengue and dengue fever patients. Our findings suggest that in addition to serum ferritin, sCD163 can differentiate severe dengue from that of dengue fever patients. Hence, sCD163 level can be considered for use as a predictive marker for impending severe dengue. PMID:26941578

  20. Swim stress activates serotonergic and nonserotonergic neurons in specific subdivisions of the rat dorsal raphe nucleus in a temperature-dependent manner.

    PubMed

    Kelly, K J; Donner, N C; Hale, M W; Lowry, C A

    2011-12-01

    Physical (exteroceptive) stimuli and emotional (interoceptive) stimuli are thought to influence stress-related physiologic and behavioral responses through different neural mechanisms. Previous studies have demonstrated that stress-induced activation of brainstem serotonergic systems is influenced by environmental factors such as temperature. In order to further investigate the effects of environmental influences on stress-induced activation of serotonergic systems, we exposed adult male Wistar rats to either home cage control conditions or a 15-min swim in water maintained at 19 °C, 25 °C, or 35 °C and conducted dual immunohistochemical staining for c-Fos, a marker of immediate-early nuclear activation, and tryptophan hydroxylase (TPH), a marker of serotonergic neurons. Changes in core body temperature were documented using biotelemetry. As expected, exposure to cold (19 °C) swim, relative to warm (35 °C) swim, increased c-Fos expression in the external lateral part of the parabrachial nucleus (LPBel), an important part of the spinoparabrachial pathway involved in sensation of cold, cutaneous stimuli, and in serotonergic neurons in the raphe pallidus nucleus (RPa), an important part of the efferent mechanisms controlling thermoregulatory warming responses. In addition, exposure to cold (19 °C) swim, relative to 35 °C swim, increased c-Fos expression in the dorsal raphe nucleus, ventrolateral part/periaqueductal gray (DRVL/VLPAG) and dorsal raphe nucleus, interfascicular part (DRI). Both of these subregions of the dorsal raphe nucleus (DR) have previously been implicated in thermoregulatory responses. Altogether, the data are consistent with the hypothesis that midbrain serotonergic neurons, possibly via activation of afferents to the DR by thermosensitive spinoparabrachial pathways, play a role in integration of physiologic and behavioral responses to interoceptive stress-related cues involved in forced swimming and exteroceptive cues related to cold

  1. Inflammation-responsive transcription factors SAF-1 and c-Jun/c-Fos promote canine MMP-1 gene expression.

    PubMed

    Ray, Alpana; Shakya, Arvind; Ray, Bimal K

    2005-12-30

    Matrix metalloproteinase-1 (MMP-1) has been implicated in the pathogenesis of osteoarthritis (OA) due to its ability to degrade extracellular matrix component of the joint cartilage tissue that cushions the bone from frictional damage. Canine hip dysplasia, a developmental orthopedic disease which results in arthritic condition as is seen in human OA is an excellent system to study the involvement of MMP-1 in the pathogenesis of OA. To date, however, no report is available regarding canine MMP-1 promoter and the regulatory mechanism by which increased synthesis of MMP-1 protein might be regulated. To gain an insight, we have investigated the promoter region of canine MMP-1. MMP-1 synthesis in the resident cells of arthritic joints is regulated via two major cytokines, IL-1beta and TNF-alpha. By using a series of progressively deleted reporter constructs, multiple cytokine-responsive elements were identified in the proximal promoter region of canine MMP-1. These include DNA-binding elements of AP-1 and SAF-1 transcription factors. Mutation of AP-1 or SAF-1 element resulted in marked reduction in the cytokine responsiveness of MMP-1 promoter. We show that AP-1 and SAF-1 DNA-binding activities are increased in cytokine-stimulated cells as well as in osteoarthritic cartilage tissues. In correlation, immunohistochemical analysis indicated higher levels of MMP-1, SAF-1 and AP-1 proteins in osteoarthritic but not in the normal cartilage tissue. These results show that induction and activation of AP-1 and SAF-1 transcription factors are involved in the regulation of MMP-1 expression in the chondrocytes which could be used as therapeutic targets to combat pathogenesis of OA. PMID:16380175

  2. Interplay among Drosophila transcription factors Ets21c, Fos and Ftz-F1 drives JNK-mediated tumor malignancy.

    PubMed

    Külshammer, Eva; Mundorf, Juliane; Kilinc, Merve; Frommolt, Peter; Wagle, Prerana; Uhlirova, Mirka

    2015-10-01

    Cancer initiation and maintenance of the transformed cell state depend on altered cellular signaling and aberrant activities of transcription factors (TFs) that drive pathological gene expression in response to cooperating genetic lesions. Deciphering the roles of interacting TFs is therefore central to understanding carcinogenesis and for designing cancer therapies. Here, we use an unbiased genomic approach to define a TF network that triggers an abnormal gene expression program promoting malignancy of clonal tumors, generated in Drosophila imaginal disc epithelium by gain of oncogenic Ras (Ras(V12)) and loss of the tumor suppressor Scribble (scrib(1)). We show that malignant transformation of the ras(V12)scrib(1) tumors requires TFs of distinct families, namely the bZIP protein Fos, the ETS-domain factor Ets21c and the nuclear receptor Ftz-F1, all acting downstream of Jun-N-terminal kinase (JNK). Depleting any of the three TFs improves viability of tumor-bearing larvae, and this positive effect can be enhanced further by their combined removal. Although both Fos and Ftz-F1 synergistically contribute to ras(V12)scrib(1) tumor invasiveness, only Fos is required for JNK-induced differentiation defects and Matrix metalloprotease (MMP1) upregulation. In contrast, the Fos-dimerizing partner Jun is dispensable for JNK to exert its effects in ras(V12)scrib(1) tumors. Interestingly, Ets21c and Ftz-F1 are transcriptionally induced in these tumors in a JNK- and Fos-dependent manner, thereby demonstrating a hierarchy within the tripartite TF network, with Fos acting as the most upstream JNK effector. Of the three TFs, only Ets21c can efficiently substitute for loss of polarity and cooperate with Ras(V12) in inducing malignant clones that, like ras(V12)scrib(1) tumors, invade other tissues and overexpress MMP1 and the Drosophila insulin-like peptide 8 (Dilp8). While ras(V12)ets21c tumors require JNK for invasiveness, the JNK activity is dispensable for their growth. In

  3. Interplay among Drosophila transcription factors Ets21c, Fos and Ftz-F1 drives JNK-mediated tumor malignancy

    PubMed Central

    Külshammer, Eva; Mundorf, Juliane; Kilinc, Merve; Frommolt, Peter; Wagle, Prerana; Uhlirova, Mirka

    2015-01-01

    ABSTRACT Cancer initiation and maintenance of the transformed cell state depend on altered cellular signaling and aberrant activities of transcription factors (TFs) that drive pathological gene expression in response to cooperating genetic lesions. Deciphering the roles of interacting TFs is therefore central to understanding carcinogenesis and for designing cancer therapies. Here, we use an unbiased genomic approach to define a TF network that triggers an abnormal gene expression program promoting malignancy of clonal tumors, generated in Drosophila imaginal disc epithelium by gain of oncogenic Ras (RasV12) and loss of the tumor suppressor Scribble (scrib1). We show that malignant transformation of the rasV12scrib1 tumors requires TFs of distinct families, namely the bZIP protein Fos, the ETS-domain factor Ets21c and the nuclear receptor Ftz-F1, all acting downstream of Jun-N-terminal kinase (JNK). Depleting any of the three TFs improves viability of tumor-bearing larvae, and this positive effect can be enhanced further by their combined removal. Although both Fos and Ftz-F1 synergistically contribute to rasV12scrib1 tumor invasiveness, only Fos is required for JNK-induced differentiation defects and Matrix metalloprotease (MMP1) upregulation. In contrast, the Fos-dimerizing partner Jun is dispensable for JNK to exert its effects in rasV12scrib1 tumors. Interestingly, Ets21c and Ftz-F1 are transcriptionally induced in these tumors in a JNK- and Fos-dependent manner, thereby demonstrating a hierarchy within the tripartite TF network, with Fos acting as the most upstream JNK effector. Of the three TFs, only Ets21c can efficiently substitute for loss of polarity and cooperate with RasV12 in inducing malignant clones that, like rasV12scrib1 tumors, invade other tissues and overexpress MMP1 and the Drosophila insulin-like peptide 8 (Dilp8). While rasV12ets21c tumors require JNK for invasiveness, the JNK activity is dispensable for their growth. In conclusion, our study

  4. Matrix metalloproteinases in the adult brain physiology: a link between c-Fos, AP-1 and remodeling of neuronal connections?

    PubMed

    Kaczmarek, Leszek; Lapinska-Dzwonek, Joanna; Szymczak, Sylwia

    2002-12-16

    Matrix metalloproteinases (MMPs), together with their endogenous inhibitors (TIMPs) form an enzymatic system that plays an important role in a variety of physiological and pathological conditions. These proteins are also expressed in the brain, especially under pathological conditions, in which glia as well as invading inflammatory cells provide the major source of the MMP activity. Surprisingly little is known about the MMP function(s) in adult neuronal physiology. This review describes available data on this topic, which is presented in a context of knowledge about the MMP/TIMP system in other organs as well as in brain disorders. An analysis of the MMP and TIMP expression patterns in the brain, along with a consideration of their regulatory mechanisms and substrates, leads to the proposal of possible roles of the MMP system in the brain. This analysis suggests that MMPs may play an important role in the neuronal physiology, especially in neuronal plasticity, including their direct participation in the remodeling of synaptic connections-a mechanism pivotal for learning and memory.

  5. Whole-Brain Mapping of Neuronal Activity in the Learned Helplessness Model of Depression

    PubMed Central

    Kim, Yongsoo; Perova, Zinaida; Mirrione, Martine M.; Pradhan, Kith; Henn, Fritz A.; Shea, Stephen; Osten, Pavel; Li, Bo

    2016-01-01

    Some individuals are resilient, whereas others succumb to despair in repeated stressful situations. The neurobiological mechanisms underlying such divergent behavioral responses remain unclear. Here, we employed an automated method for mapping neuronal activity in search of signatures of stress responses in the entire mouse brain. We used serial two-photon tomography to detect expression of c-FosGFP – a marker of neuronal activation – in c-fosGFP transgenic mice subjected to the learned helplessness (LH) procedure, a widely used model of stress-induced depression-like phenotype in laboratory animals. We found that mice showing “helpless” behavior had an overall brain-wide reduction in the level of neuronal activation compared with mice showing “resilient” behavior, with the exception of a few brain areas, including the locus coeruleus, that were more activated in the helpless mice. In addition, the helpless mice showed a strong trend of having higher similarity in whole-brain activity profile among individuals, suggesting that helplessness is represented by a more stereotypic brain-wide activation pattern. This latter effect was confirmed in rats subjected to the LH procedure, using 2-deoxy-2[18F]fluoro-D-glucose positron emission tomography to assess neural activity. Our findings reveal distinct brain activity markings that correlate with adaptive and maladaptive behavioral responses to stress, and provide a framework for further studies investigating the contribution of specific brain regions to maladaptive stress responses. PMID:26869888

  6. Whole-Brain Mapping of Neuronal Activity in the Learned Helplessness Model of Depression.

    PubMed

    Kim, Yongsoo; Perova, Zinaida; Mirrione, Martine M; Pradhan, Kith; Henn, Fritz A; Shea, Stephen; Osten, Pavel; Li, Bo

    2016-01-01

    Some individuals are resilient, whereas others succumb to despair in repeated stressful situations. The neurobiological mechanisms underlying such divergent behavioral responses remain unclear. Here, we employed an automated method for mapping neuronal activity in search of signatures of stress responses in the entire mouse brain. We used serial two-photon tomography to detect expression of c-FosGFP - a marker of neuronal activation - in c-fosGFP transgenic mice subjected to the learned helplessness (LH) procedure, a widely used model of stress-induced depression-like phenotype in laboratory animals. We found that mice showing "helpless" behavior had an overall brain-wide reduction in the level of neuronal activation compared with mice showing "resilient" behavior, with the exception of a few brain areas, including the locus coeruleus, that were more activated in the helpless mice. In addition, the helpless mice showed a strong trend of having higher similarity in whole-brain activity profile among individuals, suggesting that helplessness is represented by a more stereotypic brain-wide activation pattern. This latter effect was confirmed in rats subjected to the LH procedure, using 2-deoxy-2[18F]fluoro-D-glucose positron emission tomography to assess neural activity. Our findings reveal distinct brain activity markings that correlate with adaptive and maladaptive behavioral responses to stress, and provide a framework for further studies investigating the contribution of specific brain regions to maladaptive stress responses. PMID:26869888

  7. Mapping social behavior-induced brain activation at cellular resolution in the mouse

    PubMed Central

    Kim, Yongsoo; Venkataraju, Kannan Umadevi; Pradhan, Kith; Mende, Carolin; Taranda, Julian; Turaga, Srinivas C.; Arganda-Carreras, Ignacio; Ng, Lydia; Hawrylycz, Michael J.; Rockland, Kathleen; Seung, H. Sebastian; Osten, Pavel

    2014-01-01

    Understanding how brain activation mediates behaviors is a central goal of systems neuroscience. Here we apply an automated method for mapping brain activation in the mouse in order to probe how sex-specific social behaviors are represented in the male brain. Our method uses the immediate early gene c-fos, a marker of neuronal activation, visualized by serial two-photon tomography: the c-fos-GFP-positive neurons are computationally detected, their distribution is registered to a reference brain and a brain atlas, and their numbers are analyzed by statistical tests. Our results reveal distinct and shared female and male interaction-evoked patterns of male brain activation representing sex discrimination and social recognition. We also identify brain regions whose degree of activity correlates to specific features of social behaviors and estimate the total numbers and the densities of activated neurons per brain areas. Our study opens the door to automated screening of behavior-evoked brain activation in the mouse. PMID:25558063

  8. Central serotonin depletion modulates the behavioural, endocrine and physiological responses to repeated social stress and subsequent c-fos expression in the brains of male rats.

    PubMed

    Chung, K K; Martinez, M; Herbert, J

    1999-01-01

    Intraspecific confrontation has been used to study effect of depleting central serotonin on the adaptation of male rats to repeated social stress (social defeat). Four groups of adult male rats were used (serotonin depletion/sham: stressed; serotonin depletion/sham: non-stressed). Central serotonin was reduced (by 59-97%) by a single infusion of the neurotoxin 5,7-dihydroxtryptamine (150 microg) into the cerebral ventricles; levels of dopamine and noradrenaline were unaltered (rats received appropriate uptake blockers prior to neurotoxic infusions). Sham-operated animals received solute only. Rats were then either exposed daily for 10 days to a second larger aggressive male in the latter's home cage, or simply transferred to an empty cage (control procedure). Rats with reduced serotonin failed to show the increased freezing behaviour during the pre-defeat phase of the social interaction test characteristic of sham animals. There was no change in the residents' behaviour. Core temperature increased during aggressive interaction in sham rats, and this did not adapt with repeated stress. By contrast, stress-induced hyperthermia was accentuated in serotonin-reduced rats as the number of defeat sessions increased. Basal core temperature was unaffected by serotonin depletion. Heart rate increased during social defeat, but this did not adapt with repeated stress; serotonin depletion had no effect on this cardiovascular response. Basal corticosterone was increased in serotonin-depleted rats, but the progressive reduction in stress response over days was not altered. C-fos expression in the brain was not altered in control (non-stressed) rats by serotonin reduction in the areas examined, but there was increased expression after repeated social stress in the medial amygdala of 5-HT depleted rats. These experiments show that reduction of serotonin alters responses to repeated social stress in male rats, and suggests a role for serotonin in the adaptive process. PMID:10408610

  9. Stress-Induced Changes In C-Fos And Corticotropin Releasing Hormone Immunoreactivity In The Amygdala Of The Spontaneously Hypertensive Rat

    PubMed Central

    Porter, Karen; Hayward, Linda F

    2010-01-01

    The present study was undertaken to test the hypothesis that dysregulation of the amygdala contributes to the exaggerated autonomic response to stress in an animal model of essential hypertension. Spontaneously hypertensive (SHR) and normotensive Wistar male rats were chronically instrumented and exposed to 20 min of either air jet stress (AJS) or air noise alone (CON). AJS induced a significant increase in both heart rate and arterial pressure that was greater in the SHR. AJS induced a significant increase in c-Fos-like immunoreactivity (FLI) throughout the caudal-rostral extent of the basolateral, medial, and central (CEA) subnuclei of the amygdala. Differences in FLI between strains were localized to the rostral CEA and the SHR expressed significantly less FLI. AJS also induced a significant increase in the number of corticotrophin releasing hormone (CRH) positive neurons in the CEA. Differences between strains were localized to the caudal CEA and the number of CRH-positive cells was significantly greater in the SHR. The stress-induced increase in CRH-labeling in caudal CEA of the SHR was coupled to a greater increase in FLI in the rostral locus coeruleus (LC) of the SHR versus the Wistar. AJS also induced significant increases in FLI in several hypothalamus subnuclei, but no strain-related differences were identified. These results suggest for the first time that dysregulation of CRH-positive cells in the caudal CEA and reduced excitation and/or exaggerated inhibition of rostral CEA neurons may contribute to the exaggerated cardiovascular response to stress in the SHR, possibly through descending modulation of the rostral LC. PMID:20832430

  10. Effects of NMDA receptor antagonists on morphine tolerance: a c-Fos study in the lumbar spinal cord of the rat.

    PubMed

    Le Guen, S; Catheline, G; Besson, J M

    1999-05-28

    This study investigated the contribution of NMDA receptors to the development of tolerance to the antinociceptive properties of morphine at the level of the spinal cord dorsal horn. The expression of c-Fos protein following intraplantar (i.pl.) injection of carrageenin (6 mg/150 microl of saline) was used. In naive rats, acute intravenous (i.v.) administration of morphine (3 mg/kg) decreased the total number per section of Fos-Like-Immunoreactive (Fos-LI) neurons by 51%, observed at 2 h after injection of carrageenin. In tolerant rats, acute morphine did not significantly modify the total number of Fos-like immunoreactive neurons/section. In rats receiving chronic morphine and chronic injections of the non-competitive ((+)-MK 801 maleate: (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,1 0-imine) or the competitive (LY 235959: [3S-(3alpha,4a alpha,6beta,8a alpha)]-Decahydro-6-(phosphonomethyl)-3-isoquinolinecarboxylic+ ++ acid) NMDA receptor antagonists, only partial tolerance to the acute effects of morphine were observed (decrease of 42% and 38%, respectively). Administration of an antagonist at the strychnine-insensitive glycine site of the NMDA receptor ((+)-HA-966: R(+)-3-Amino-1-hydroxypyrrolidin-2-one) did not affect the development of morphine tolerance. These findings suggest that compounds attenuating the actions of the NMDA receptor via blockade of the glycine modulatory site may be substantially different from those acting at the ion channel of the NMDA receptor complex. This in vivo experiment in freely moving animals demonstrates for the first time an attenuation of tolerance at the cellular level.

  11. Central serotonin depletion modulates the behavioural, endocrine and physiological responses to repeated social stress and subsequent c-fos expression in the brains of male rats.

    PubMed

    Chung, K K; Martinez, M; Herbert, J

    1999-01-01

    Intraspecific confrontation has been used to study effect of depleting central serotonin on the adaptation of male rats to repeated social stress (social defeat). Four groups of adult male rats were used (serotonin depletion/sham: stressed; serotonin depletion/sham: non-stressed). Central serotonin was reduced (by 59-97%) by a single infusion of the neurotoxin 5,7-dihydroxtryptamine (150 microg) into the cerebral ventricles; levels of dopamine and noradrenaline were unaltered (rats received appropriate uptake blockers prior to neurotoxic infusions). Sham-operated animals received solute only. Rats were then either exposed daily for 10 days to a second larger aggressive male in the latter's home cage, or simply transferred to an empty cage (control procedure). Rats with reduced serotonin failed to show the increased freezing behaviour during the pre-defeat phase of the social interaction test characteristic of sham animals. There was no change in the residents' behaviour. Core temperature increased during aggressive interaction in sham rats, and this did not adapt with repeated stress. By contrast, stress-induced hyperthermia was accentuated in serotonin-reduced rats as the number of defeat sessions increased. Basal core temperature was unaffected by serotonin depletion. Heart rate increased during social defeat, but this did not adapt with repeated stress; serotonin depletion had no effect on this cardiovascular response. Basal corticosterone was increased in serotonin-depleted rats, but the progressive reduction in stress response over days was not altered. C-fos expression in the brain was not altered in control (non-stressed) rats by serotonin reduction in the areas examined, but there was increased expression after repeated social stress in the medial amygdala of 5-HT depleted rats. These experiments show that reduction of serotonin alters responses to repeated social stress in male rats, and suggests a role for serotonin in the adaptive process.

  12. Effects of exposure to male goat hair extracts on luteinizing hormone secretion and neuronal activation in seasonally anestrous ewes.

    PubMed

    Ohara, Hiromi; Mogi, Kazutaka; Ichimaru, Toru; Ohkura, Satoshi; Takeuchi, Yukari; Mori, Yuji; Okamura, Hiroaki

    2014-10-01

    In sheep and goats, exposure of seasonally anestrous females to males or their fleece/hair activates the gonadotropin-releasing hormone (GnRH) pulse generator leading to pulsatile luteinizing hormone (LH) secretion. Pheromones emitted by sexually mature males are thought to play a prominent role in this male effect. In the present study, we first aimed to clarify whether the male goat pheromone is effective in ewes. Seasonally anestrous St. Croix ewes were exposed to hair extracts derived from either intact or castrated (control) male Shiba goats. The male goat-hair extract significantly increased LH secretion compared to the control, suggesting that an interspecies action of the male pheromone occurs between sheep and goats. Using the male goat-hair extract as the pheromone source, we then aimed to clarify the neural pathway involved in the signal transduction of the male pheromone. Ewes were exposed to either the goat-hair extract or the control and sacrificed 2 hr after the exposure. Expression of c-Fos, a marker of neuronal activation, was immunohistochemically examined. The male goat-hair extract significantly increased the c-Fos expression compared to the control in regions of the vomeronasal system, such as the accessory olfactory bulb and medial amygdala, and the arcuate nucleus. The main olfactory bulb did not exhibit any significant increase in the c-Fos expression by the male goat-hair extract. This result suggests that the neural signal of the male pheromone is conveyed to the GnRH pulse generator through the activated regions in ewes.

  13. Exposure to Advertisement Calls of Reproductive Competitors Activates Vocal-Acoustic and Catecholaminergic Neurons in the Plainfin Midshipman Fish, Porichthys notatus

    PubMed Central

    Petersen, Christopher L.; Timothy, Miky; Kim, D. Spencer; Bhandiwad, Ashwin A.; Mohr, Robert A.; Sisneros, Joseph A.; Forlano, Paul M.

    2013-01-01

    While the neural circuitry and physiology of the auditory system is well studied among vertebrates, far less is known about how the auditory system interacts with other neural substrates to mediate behavioral responses to social acoustic signals. One species that has been the subject of intensive neuroethological investigation with regard to the production and perception of social acoustic signals is the plainfin midshipman fish, Porichthys notatus, in part because acoustic communication is essential to their reproductive behavior. Nesting male midshipman vocally court females by producing a long duration advertisement call. Females localize males by their advertisement call, spawn and deposit all their eggs in their mate’s nest. As multiple courting males establish nests in close proximity to one another, the perception of another male’s call may modulate individual calling behavior in competition for females. We tested the hypothesis that nesting males exposed to advertisement calls of other males would show elevated neural activity in auditory and vocal-acoustic brain centers as well as differential activation of catecholaminergic neurons compared to males exposed only to ambient noise. Experimental brains were then double labeled by immunofluorescence (-ir) for tyrosine hydroxylase (TH), an enzyme necessary for catecholamine synthesis, and cFos, an immediate-early gene product used as a marker for neural activation. Males exposed to other advertisement calls showed a significantly greater percentage of TH-ir cells colocalized with cFos-ir in the noradrenergic locus coeruleus and the dopaminergic periventricular posterior tuberculum, as well as increased numbers of cFos-ir neurons in several levels of the auditory and vocal-acoustic pathway. Increased activation of catecholaminergic neurons may serve to coordinate appropriate behavioral responses to male competitors. Additionally, these results implicate a role for specific catecholaminergic neuronal groups

  14. Exposure to advertisement calls of reproductive competitors activates vocal-acoustic and catecholaminergic neurons in the plainfin midshipman fish, Porichthys notatus.

    PubMed

    Petersen, Christopher L; Timothy, Miky; Kim, D Spencer; Bhandiwad, Ashwin A; Mohr, Robert A; Sisneros, Joseph A; Forlano, Paul M

    2013-01-01

    While the neural circuitry and physiology of the auditory system is well studied among vertebrates, far less is known about how the auditory system interacts with other neural substrates to mediate behavioral responses to social acoustic signals. One species that has been the subject of intensive neuroethological investigation with regard to the production and perception of social acoustic signals is the plainfin midshipman fish, Porichthys notatus, in part because acoustic communication is essential to their reproductive behavior. Nesting male midshipman vocally court females by producing a long duration advertisement call. Females localize males by their advertisement call, spawn and deposit all their eggs in their mate's nest. As multiple courting males establish nests in close proximity to one another, the perception of another male's call may modulate individual calling behavior in competition for females. We tested the hypothesis that nesting males exposed to advertisement calls of other males would show elevated neural activity in auditory and vocal-acoustic brain centers as well as differential activation of catecholaminergic neurons compared to males exposed only to ambient noise. Experimental brains were then double labeled by immunofluorescence (-ir) for tyrosine hydroxylase (TH), an enzyme necessary for catecholamine synthesis, and cFos, an immediate-early gene product used as a marker for neural activation. Males exposed to other advertisement calls showed a significantly greater percentage of TH-ir cells colocalized with cFos-ir in the noradrenergic locus coeruleus and the dopaminergic periventricular posterior tuberculum, as well as increased numbers of cFos-ir neurons in several levels of the auditory and vocal-acoustic pathway. Increased activation of catecholaminergic neurons may serve to coordinate appropriate behavioral responses to male competitors. Additionally, these results implicate a role for specific catecholaminergic neuronal groups in

  15. Exposure to advertisement calls of reproductive competitors activates vocal-acoustic and catecholaminergic neurons in the plainfin midshipman fish, Porichthys notatus.

    PubMed

    Petersen, Christopher L; Timothy, Miky; Kim, D Spencer; Bhandiwad, Ashwin A; Mohr, Robert A; Sisneros, Joseph A; Forlano, Paul M

    2013-01-01

    While the neural circuitry and physiology of the auditory system is well studied among vertebrates, far less is known about how the auditory system interacts with other neural substrates to mediate behavioral responses to social acoustic signals. One species that has been the subject of intensive neuroethological investigation with regard to the production and perception of social acoustic signals is the plainfin midshipman fish, Porichthys notatus, in part because acoustic communication is essential to their reproductive behavior. Nesting male midshipman vocally court females by producing a long duration advertisement call. Females localize males by their advertisement call, spawn and deposit all their eggs in their mate's nest. As multiple courting males establish nests in close proximity to one another, the perception of another male's call may modulate individual calling behavior in competition for females. We tested the hypothesis that nesting males exposed to advertisement calls of other males would show elevated neural activity in auditory and vocal-acoustic brain centers as well as differential activation of catecholaminergic neurons compared to males exposed only to ambient noise. Experimental brains were then double labeled by immunofluorescence (-ir) for tyrosine hydroxylase (TH), an enzyme necessary for catecholamine synthesis, and cFos, an immediate-early gene product used as a marker for neural activation. Males exposed to other advertisement calls showed a significantly greater percentage of TH-ir cells colocalized with cFos-ir in the noradrenergic locus coeruleus and the dopaminergic periventricular posterior tuberculum, as well as increased numbers of cFos-ir neurons in several levels of the auditory and vocal-acoustic pathway. Increased activation of catecholaminergic neurons may serve to coordinate appropriate behavioral responses to male competitors. Additionally, these results implicate a role for specific catecholaminergic neuronal groups in

  16. Comparable reduction in Zif268 levels and cytochrome oxidase activity in the retrosplenial cortex following mammillothalamic tract lesions.

    PubMed

    Frizzati, Aura; Milczarek, Michal M; Sengpiel, Frank; Thomas, Kerrie L; Dillingham, Christopher M; Vann, Seralynne D

    2016-08-25

    Damage to the mammillothalamic tract (MTT) produces memory impairments in both humans and rats, yet it is still not clear why this diencephalic pathway is vital for memory. One suggestion is that it is an important route for midbrain inputs to reach a wider cortical and subcortical network that supports memory. Consistent with this idea, MTT lesions produce widespread hypoactivity in distal brain regions as measured by the immediate-early gene, c-fos. To determine whether these findings were selective to c-fos or reflected more general changes in neuronal function, we assessed the effects of MTT lesions on the expression of the immediate-early gene protein, Zif268 and the metabolic marker, cytochrome oxidase, in the retrosplenial cortex and hippocampus. The lesions decreased levels of both activity markers in the superficial and deep layers of the retrosplenial cortex in both its granular and dysgranular subregions. In contrast, no significant changes were observed in the hippocampus, despite the MTT-lesioned animals showing marked impairments on T-maze alternation. These findings are consistent with MTT lesions providing important, indirect inputs for normal retrosplenial cortex functioning. These distal functional changes may contribute to the memory impairments observed after MTT lesions. PMID:27233617

  17. Effects of 50 Hz electromagnetic fields on the histology, apoptosis, and expression of c-Fos and β-catenin on the livers of preincubated white Leghorn chicken embryos.

    PubMed

    Lahijani, Maryam Shams; Farivar, Shirin; Khodaeian, Mehrnoosh

    2011-09-01

    Reports have demonstrated occurrences of abnormalities in the early stages of chicken embryonic development due to the exposure to electromagnetic fields (EMFs). This article was designed to investigate the effects of sinusoidal EMF on the histopathology, apoptosis, and expressions of c-Fos and β-Catenin genes of the livers of preincubated White Leghorn chicken embryos, based on our published experiments. 300 healthy, fresh fertilized eggs were divided into control (n = 70), sham (n = 70), and four experimental (1-4,days 13, 14, 5, and 19, n = 40) groups. Experimental eggs were exposed to the most effective intensity in a coil with 7.32 mT density, and sham groups were also located in the same coil with no exposure, both for 24 h before incubation. Control, sham, and experimental groups were then incubated in an incubator (37°C, humidity 60%) for 13,14,15, and 19 days. Livers of 13-15 and 19 day-old chicken embryos were removed by C-section and fixed in formalin (10%), stained with Hematoxylin-Eosin and TUNEL for histopathological and apoptosis studies. Others were used for investigating c-Fos and β-Catenin expressions, using RT-PCR. Results showed extensive hemorrhages all over the chicken embryos' bodies and livers, more lymphoid tissues, disturbed parenchymal tissues, sinusoid denaturation, vesiculizad cytoplasm, an increase in the number of apoptotic cells, and a decrease on the levels of expressions of c-Fos and β-Catenin genes in experimental groups of 1-4, comparing control and sham groups.

  18. Effects of early life stress on brain activity: implications from maternal separation model in rodents.

    PubMed

    Nishi, Mayumi; Horii-Hayashi, Noriko; Sasagawa, Takayo; Matsunaga, Wataru

    2013-01-15

    Adverse experiences in early life can affect the formation of neuronal circuits during postnatal development and exert long-lasting influences on neural function. Many studies have shown that daily repeated maternal separation (RMS), an animal model of early life stress, can modulate the hypothalamic-pituitary-adrenal axis (HPA-axis) and can affect subsequent brain function and emotional behavior during adulthood. However, the molecular basis of the long-lasting effects of early life stress on brain function has not been completely elucidated. In this mini-review, we introduce various cases of maternal separation in rodents and illustrate the alterations in HPA-axis activity by focusing on corticosterone (CORT), an end-product of the HPA-axis in rodents. We then present the characterization of the brain regions affected by various patterns of MS, including RMS and single time maternal separation (SMS) at various stages before weaning, by investigating c-Fos expression, a biological marker of neuronal activity. These CORT and c-Fos studies suggest that repeated early life stress may affect neuronal function in region- and temporal-specific manners, indicating a critical period for habituation to early life stress. Furthermore, we introduce changes in behavioral aspects and gene expression in adult mice exposed to RMS.

  19. Serum inflammatory mediators as markers of human Lyme disease activity.

    PubMed

    Soloski, Mark J; Crowder, Lauren A; Lahey, Lauren J; Wagner, Catriona A; Robinson, William H; Aucott, John N

    2014-01-01

    Chemokines and cytokines are key signaling molecules that orchestrate the trafficking of immune cells, direct them to sites of tissue injury and inflammation and modulate their states of activation and effector cell function. We have measured, using a multiplex-based approach, the levels of 58 immune mediators and 7 acute phase markers in sera derived from of a cohort of patients diagnosed with acute Lyme disease and matched controls. This analysis identified a cytokine signature associated with the early stages of infection and allowed us to identify two subsets (mediator-high and mediator-low) of acute Lyme patients with distinct cytokine signatures that also differed significantly (p<0.0005) in symptom presentation. In particular, the T cell chemokines CXCL9 (MIG), CXCL10 (IP-10) and CCL19 (MIP3B) were coordinately increased in the mediator-high group and levels of these chemokines could be associated with seroconversion status and elevated liver function tests (p = 0.027 and p = 0.021 respectively). There was also upregulation of acute phase proteins including CRP and serum amyloid A. Consistent with the role of CXCL9/CXCL10 in attracting immune cells to the site of infection, CXCR3+ CD4 T cells are reduced in the blood of early acute Lyme disease (p = 0.01) and the decrease correlates with chemokine levels (p = 0.0375). The levels of CXCL9/10 did not relate to the size or number of skin lesions but elevated levels of serum CXCL9/CXCL10 were associated with elevated liver enzymes levels. Collectively these results indicate that the levels of serum chemokines and the levels of expression of their respective chemokine receptors on T cell subsets may prove to be informative biomarkers for Lyme disease and related to specific disease manifestations.

  20. Exposure of nerve growth factor-treated PC12 rat pheochromocytoma cells to a modulated radiofrequency field at 836.55 MHz: Effects on c-jun and c-fos expression

    SciTech Connect

    Ivaschuk, O.I.; Jones, R.A.; Ishida-Jones, T.; Haggren, W.; Adey, W.R.; Phillips, J.L.

    1997-05-01

    Rat PC12 pheochromocytoma cells have been treated with nerve growth factor and then exposed to athermal levels of a packet-modulated radiofrequency field at 836.55 MHz. This signal was produced by a prototype time-domain multiple-access (TDMA) transmitter that conforms to the North American digital cellular telephone standard. Three slot average power densities were used: 0.09, 0.9, and 9 mW/cm{sup 2}. Exposures were for 20, 40, and 60 min and included an intermittent exposure regime, resulting in total incubation times of 20, 60, and 100 min, respectively. Concurrent controls were sham exposed. After extracting total cellular RNA, Northern blot analysis was used to assess the expression of the immediate early genes, c-fos and c-jun, in all cell populations. No change in c-fos transcript levels were detected after 20 min exposure at each field intensity. Transcript levels for c-jun were altered only after 20 min exposure to 9 mW/cm{sup 2}. 51 refs., 2 tabs.

  1. Fos and serotonin immunoreactivity in the raphe nuclei of the cat during carbachol-induced active sleep: a double-labeling study.

    PubMed

    Yamuy, J; Sampogna, S; López-Rodríguez, F; Luppi, P H; Morales, F R; Chase, M H

    1995-07-01

    The microinjection of carbachol into the nucleus pontis oralis produces a state which is polygraphically and behaviorally similar to active sleep (rapid eye movement sleep). In the present study, using double-labeling techniques for serotonin and the protein product of c-fos (Fos), we sought to examine whether immunocytochemically identified serotonergic neurons of the raphe nuclei of the cat were activated, as indicated by their expression of c-fos, during this pharmacologically-induced behavioral state (active sleep-carbachol). Compared with control cats, which were injected with saline, active sleep-carbachol cats exhibited a significantly greater number of c-fos-expressing neurons in the raphe dorsalis, magnus and pallidus. Whereas most of the c-fos-expressing neurons in the raphe dorsalis were small, those in the raphe magnus were medium-sized and in the raphe pallidus they were small and medium-sized. The mean number of serotonergic neurons that expressed c-fos (i.e. double-labeled cells) was similar in control and active sleep-carbachol cats. These data indicate that there is an increased number of non-serotonergic, c-fos-expressing neurons in the raphe dorsalis, magnus and pallidus during the carbachol-induced state.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7477901

  2. A mimic of phosphorylated prolactin induces apoptosis by activating AP-1 and upregulating p21/waf1 in human prostate cancer PC3 cells

    PubMed Central

    DU, LIANLIAN; WU, WEI

    2012-01-01

    A mimic of phosphorylated prolactin (S179D PRL) has been demonstrated to inhibit prostate cancer cell growth in vitro and in vivo; however, the mechanisms involved in this process remain unknown. In this study, we identified that a four-day treatment of S179D PRL (1 μg/ml) in human prostate PC3 cancer cells activated JNK, c-fos and c-jun, and led to apoptosis. We also demonstrated that p21/waf1 was upregulated in cells transfected with the human PRL receptor (S1b) following a four-day incubation with S179D PRL (1 μg/ml). Once the cells were cotransfected with S1b and either c-fos, c-jun or the c-fos/c-jun constructs for 24 h, S17D PRL activated JNK, c-fos and c-jun, and induced apoptosis in the c-fos/c-jun transfected cells. Additionally, S179D PRL upregulated p21 luciferase activity in the cells transfected with the S1b, activating protein-1 (AP-1) (7x) Luc or p21 Luc constructs. SP600125 (25 μM), a JNK blocker, inhibited the upregulation of AP-1 Luc and p21 Luc in the c-fos/c-jun transfected cells. These results demonstrate that S179D PRL activates JNK and AP-1, which leads to p21 upregulation and apoptosis in human prostate PC3 cancer cells. PMID:23162652

  3. Cuneiform neurons activated during cholinergically induced active sleep in the cat.

    PubMed

    Pose, I; Sampogna, S; Chase, M H; Morales, F R

    2000-05-01

    In the present study, we report that the cuneiform (Cun) nucleus, a brainstem structure that before now has not been implicated in sleep processes, exhibits a large number of neurons that express c-fos during carbachol-induced active sleep (AS-carbachol). Compared with control (awake) cats, during AS-carbachol, there was a 671% increase in the number of neurons that expressed c-fos in this structure. Within the Cun nucleus, three immunocytochemically distinct populations of neurons were observed. One group consisted of GABAergic neurons, which predominantly did not express c-fos during AS-carbachol. Two other different populations expressed c-fos during this state. One of the Fos-positive (Fos(+)) populations consisted of a distinct group of nitric oxide synthase (NOS)-NADPH-diaphorase (NADPH-d)-containing neurons; the neurotransmitter of the other Fos(+) population remains unknown. The Cun nucleus did not contain cholinergic, catecholaminergic, serotonergic, or glycinergic neurons. On the basis of neuronal activation during AS-carbachol, as indicated by c-fos expression, we suggest that the Cun nucleus is involved, in an as yet unknown manner, in the physiological expression of active sleep. The finding of a population of NOS-NADPH-d containing neurons, which were activated during AS-carbachol, suggests that nitrergic modulation of their target cell groups is likely to play a role in active sleep-related physiological processes. PMID:10777795

  4. Synergistic effects of NOD1 or NOD2 and TLR4 activation on mouse sickness behavior in relation to immune and brain activity markers.

    PubMed

    Farzi, Aitak; Reichmann, Florian; Meinitzer, Andreas; Mayerhofer, Raphaela; Jain, Piyush; Hassan, Ahmed M; Fröhlich, Esther E; Wagner, Karin; Painsipp, Evelin; Rinner, Beate; Holzer, Peter

    2015-02-01

    Toll-like receptors (TLRs) and nuclear-binding domain (NOD)-like receptors (NLRs) are sensors of bacterial cell wall components to trigger an immune response. The TLR4 agonist lipopolysaccharide (LPS) is a strong immune activator leading to sickness and depressed mood. NOD agonists are less active but can prime immune cells to augment LPS-induced cytokine production. Since the impact of NOD and TLR co-activation in vivo has been little studied, the effects of the NOD1 agonist FK565 and the NOD2 agonist muramyl dipeptide (MDP), alone and in combination with LPS, on immune activation, brain function and sickness behavior were investigated in male C57BL/6N mice. Intraperitoneal injection of FK565 (0.001 or 0.003mg/kg) or MDP (1 or 3mg/kg) 4h before LPS (0.1 or 0.83mg/kg) significantly aggravated and prolonged the LPS-evoked sickness behavior as deduced from a decrease in locomotion, exploration, food intake and temperature. When given alone, FK565 and MDP had only minor effects. The exacerbation of sickness behavior induced by FK565 or MDP in combination with LPS was paralleled by enhanced plasma protein and cerebral mRNA levels of proinflammatory cytokines (IFN-γ, IL-1β, IL-6, TNF-α) as well as enhanced plasma levels of kynurenine. Immunohistochemical visualization of c-Fos in the brain revealed that NOD2 synergism with TLR4 resulted in increased activation of cerebral nuclei relevant to sickness. These data show that NOD1 or NOD2 synergizes with TLR4 in exacerbating the immune, sickness and brain responses to peripheral immune stimulation. Our findings demonstrate that the known interactions of NLRs and TLRs at the immune cell level extend to interactions affecting brain function and behavior.

  5. EEG markers for characterizing anomalous activities of cerebral neurons in NAT (neuronal activity topography) method.

    PubMed

    Musha, Toshimitsu; Matsuzaki, Haruyasu; Kobayashi, Yohei; Okamoto, Yoshiwo; Tanaka, Mieko; Asada, Takashi

    2013-08-01

    A pair of markers, sNAT and vNAT, is derived from the electroencephalogram (EEG) power spectra (PS) recorded for 5 min with 21 electrodes (4-20 Hz) arranged according to the 10-20 standard. These markers form a new diagnosis tool "NAT" aiming at characterizing various brain disorders. Each signal sequence is divided into segments of 0.64 s and its discrete PS consists of eleven frequency components from 4.68 (3 × 1.56) Hz through 20.34 (13 × 1.56) Hz. PS is normalized to its mean and the bias of PS components on each frequency component across the 21 signal channels is reset to zero. The marker sNAT consists of ten frequency components on 21 channels, characterizing neuronal hyperactivity or hypoactivity as compared with NLc (normal controls). The marker vNAT consists of ten ratios between adjacent PS components denoting the over- or undersynchrony of collective neuronal activities as compared with NLc. The likelihood of a test subject to a specified brain disease is defined in terms of the normalized distance to the template NAT state of the disease in the NAT space. Separation of MCI-AD patients (developing AD in 12-18 months) from NLc is made with a false alarm rate of 15%. Locations with neuronal hypoactivity and undersynchrony of AD patients agree with locations of rCBF reduction measured by SPECT. The 2-D diagram composed of the binary likelihoods between ADc and NLc in the two representations of sNAT and vNAT enables tracing the NAT state of a test subject approaching the AD area, and the follow-up of the treatment effects. PMID:23559020

  6. Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase1 gene.

    PubMed

    Venugopal, R; Jaiswal, A K

    1996-12-10

    Twenty-four base pairs of the human antioxidant response element (hARE) are required for high basal transcription of the NAD(P)H:quinone oxidoreductase1 (NQO1) gene and its induction in response to xenobiotics and antioxidants. hARE is a unique cis-element that contains one perfect and one imperfect AP1 element arranged as inverse repeats separated by 3 bp, followed by a "GC" box. We report here that Jun, Fos, Fra, and Nrf nuclear transcription factors bind to the hARE. Overexpression of cDNA derived combinations of the nuclear proteins Jun and Fos or Jun and Fra1 repressed hARE-mediated chloramphenicol acetyltransferase (CAT) gene expression in transfected human hepatoblastoma (Hep-G2) cells. Further experiments suggested that this repression was due to overexpression of c-Fos and Fra1, but not due to Jun proteins. The Jun (c-Jun, Jun-B, and Jun-D) proteins in all the possible combinations were more or less ineffective in repression or upregulation of hARE-mediated gene expression. Interestingly, overexpression of Nrf1 and Nrf2 individually in Hep-G2 and monkey kidney (COS1) cells significantly increased CAT gene expression from reporter plasmid hARE-thymidine kinase-CAT in transfected cells that were inducible by beta-naphthoflavone and teri-butyl hydroquinone. These results indicated that hARE-mediated expression of the NQO1 gene and its induction by xenobiotics and antioxidants are mediated by Nrf1 and Nrf2. The hARE-mediated basal expression, however, is repressed by overexpression of c-Fos and Fra1. PMID:8962164

  7. Effects of sciatic nerve transection on ultrastructure, NADPH-diaphorase reaction and serotonin-, tyrosine hydroxylase-, c-Fos-, glucose transporter 1- and 3-like immunoreactivities in frog dorsal root ganglion.

    PubMed

    Rigon, F; Rossato, D; Auler, V B; Dal Bosco, L; Faccioni-Heuser, M C; Partata, W A

    2013-06-01

    Frogs have been used as an alternative model to study pain mechanisms. Since we did not find any reports on the effects of sciatic nerve transection (SNT) on the ultrastructure and pattern of metabolic substances in frog dorsal root ganglion (DRG) cells, in the present study, 18 adult male frogs (Rana catesbeiana) were divided into three experimental groups: naive (frogs not subjected to surgical manipulation), sham (frogs in which all surgical procedures to expose the sciatic nerve were used except transection of the nerve), and SNT (frogs in which the sciatic nerve was exposed and transected). After 3 days, the bilateral DRG of the sciatic nerve was collected and used for transmission electron microscopy. Immunohistochemistry was used to detect reactivity for glucose transporter (Glut) types 1 and 3, tyrosine hydroxylase, serotonin and c-Fos, as well as nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-diaphorase). SNT induced more mitochondria with vacuolation in neurons, satellite glial cells (SGCs) with more cytoplasmic extensions emerging from cell bodies, as well as more ribosomes, rough endoplasmic reticulum, intermediate filaments and mitochondria. c-Fos immunoreactivity was found in neuronal nuclei. More neurons and SGCs surrounded by tyrosine hydroxylase-like immunoreactivity were found. No change occurred in serotonin- and Glut1- and Glut3-like immunoreactivity. NADPH-diaphorase occurred in more neurons and SGCs. No sign of SGC proliferation was observed. Since the changes of frog DRG in response to nerve injury are similar to those of mammals, frogs should be a valid experimental model for the study of the effects of SNT, a condition that still has many unanswered questions. PMID:23739744

  8. Selectively active markers for solving of the partial occlusion problem in matchmoving and chromakeying workflow

    NASA Astrophysics Data System (ADS)

    Mazurek, Przemysław

    2013-09-01

    Matchmoving (Match Moving) is the process used for the estimation of camera movements for further integration of acquired video image with computer graphics. The estimation of movements is possible using pattern recognition, 2D and 3D tracking algorithms. The main problem for the workflow is the partial occlusion of markers by the actor, because manual rotoscoping is necessary for fixing of the chroma-keyed footage. In the paper, the partial occlusion problem is solved using the invented, selectively active electronic markers. The sensor network with multiple infrared links detects occlusion state (no-occlusion, partial, full) and switch LED's based markers.

  9. Left insula activation: a marker for language attainment in bilinguals.

    PubMed

    Chee, Michael W L; Soon, Chun Siong; Lee, Hwee Ling; Pallier, Christophe

    2004-10-19

    Several lines of evidence suggest the importance of phonological working memory (PWM) in language acquisition. We investigated the neural correlates of PWM in young adults who were under compelling social pressure to be bilingual. Equal bilinguals had high proficiency in English and Chinese as measured by a standardized examination, whereas unequal bilinguals were proficient in English but not Chinese. Both groups were matched on several measures of nonverbal intelligence and working memory. In-scanner behavioral results did not show between-group differences. Of the regions showing load-dependent increments in activation, the left insula showed greater activation in equal bilinguals. Unequal bilinguals showed greater task-related deactivation in the anterior medial frontal region and greater anterior cingulate activation. Although unequal bilinguals kept apace with equal bilinguals in the simple PWM task, the differential cortical activations suggest that more optimal engagement of PWM in the latter may correlate with better second-language attainment. PMID:15469927

  10. Left insula activation: A marker for language attainment in bilinguals

    PubMed Central

    Chee, Michael W. L.; Soon, Chun Siong; Lee, Hwee Ling; Pallier, Christophe

    2004-01-01

    Several lines of evidence suggest the importance of phonological working memory (PWM) in language acquisition. We investigated the neural correlates of PWM in young adults who were under compelling social pressure to be bilingual. Equal bilinguals had high proficiency in English and Chinese as measured by a standardized examination, whereas unequal bilinguals were proficient in English but not Chinese. Both groups were matched on several measures of nonverbal intelligence and working memory. In-scanner behavioral results did not show between-group differences. Of the regions showing load-dependent increments in activation, the left insula showed greater activation in equal bilinguals. Unequal bilinguals showed greater task-related deactivation in the anterior medial frontal region and greater anterior cingulate activation. Although unequal bilinguals kept apace with equal bilinguals in the simple PWM task, the differential cortical activations suggest that more optimal engagement of PWM in the latter may correlate with better second-language attainment. PMID:15469927

  11. Left insula activation: a marker for language attainment in bilinguals.

    PubMed

    Chee, Michael W L; Soon, Chun Siong; Lee, Hwee Ling; Pallier, Christophe

    2004-10-19

    Several lines of evidence suggest the importance of phonological working memory (PWM) in language acquisition. We investigated the neural correlates of PWM in young adults who were under compelling social pressure to be bilingual. Equal bilinguals had high proficiency in English and Chinese as measured by a standardized examination, whereas unequal bilinguals were proficient in English but not Chinese. Both groups were matched on several measures of nonverbal intelligence and working memory. In-scanner behavioral results did not show between-group differences. Of the regions showing load-dependent increments in activation, the left insula showed greater activation in equal bilinguals. Unequal bilinguals showed greater task-related deactivation in the anterior medial frontal region and greater anterior cingulate activation. Although unequal bilinguals kept apace with equal bilinguals in the simple PWM task, the differential cortical activations suggest that more optimal engagement of PWM in the latter may correlate with better second-language attainment.

  12. Mechanism of Plasminogen Activator Inhibitor-1 regulation by Oncostatin M and Interleukin-1 in human astrocytes

    PubMed Central

    Kasza, Aneta; Kiss, Daniel L.; Gopalan, Sunita; Xu, Weili; Rydel, Russell E.; Koj, Aleksander; Kordula, Tomasz

    2015-01-01

    Glial cells that produce and respond to various cytokines mediate inflammatory processes in the brain. Here, we show that oncostatin M (OSM) and interleukin-1 (IL-1) regulate the expression of plasminogen activator inhibitor-1 (PAI-1) and urokinase-type plasminogen activator (uPA) in human astrocytes. Using the PAI-1 reporter constructs we show that the −58 to −51 proximal element mediates activation by both cytokines. This element is already bound by c-fos/c-jun heterodimers in unstimulated astrocytes, and treatment with cytokine strongly stimulates both expression of c-fos and binding of c-fos/c-jun heterodimers. In addition, IL-1 activates an inhibitory mechanism that downregulates PAI-1 expression after longer exposure to this cytokine. Overexpression of dominant-negative signal transducer and activator of transcription-1 (STAT1), STAT3, STAT5 and inhibitor of nuclear factor kB (IkB) suppressed OSM/IL-1-induced expression of the PAI-1 reporter construct. We conclude that OSM and IL-1 regulate the PAI-1 gene expression via up-regulating c-fos levels and subsequent binding of c-fos/c-jun heterodimers to the proximal element of the PAI-1 gene. PMID:12390531

  13. Phytochelatin synthase activity as a marker of metal pollution.

    PubMed

    Zitka, Ondrej; Krystofova, Olga; Sobrova, Pavlina; Adam, Vojtech; Zehnalek, Josef; Beklova, Miroslava; Kizek, Rene

    2011-08-30

    The synthesis of phytochelatins is catalyzed by γ-Glu-Cys dipeptidyl transpeptidase called phytochelatin synthase (PCS). Aim of this study was to suggest a new tool for determination of phytochelatin synthase activity in the tobacco BY-2 cells treated with different concentrations of the Cd(II). After the optimization steps, an experiment on BY-2 cells exposed to different concentrations of Cd(NO(3))(2) for 3 days was performed. At the end of the experiment, cells were harvested and homogenized. Reduced glutathione and cadmium (II) ions were added to the cell suspension supernatant. These mixtures were incubated at 35°C for 30min and analysed using high performance liquid chromatography coupled with electrochemical detector (HPLC-ED). The results revealed that PCS activity rises markedly with increasing concentration of cadmium (II) ions. The lowest concentration of the toxic metal ions caused almost three fold increase in PCS activity as compared to control samples. The activity of PCS (270fkat) in treated cells was more than seven times higher in comparison to control ones. K(m) for PCS was estimated as 2.3mM. PMID:21715087

  14. Spleen-specific isoforms of Pax5 and Ataxin-7 as potential proteomic markers of lymphoma-affected spleen.

    PubMed

    Bharti, Brij; Mishra, Rajnikant

    2015-04-01

    The splenomegaly, enlargement of spleen, has been observed in several diseases. It has been intended to evaluate histochemical alterations, spleen-specific enzymatic and proteomic markers during splenomegaly, and lympho-proliferative disorders from spleen of mice bearing Dalton's lymphoma. The higher expression of c-fos, c-jun, and MAPK testifies proliferation of lymphocytes. The lower expression of Pax5, higher expression of CD3, and the presence of additional form of Zap-70 suggest hypertrophy of follicles and splenomegaly influenced by weak B-cell receptor-mediated signaling, but activated T-cell receptor-mediated signaling. Simultaneously, lower levels of SOD, NDR2, and MIB2 and higher expression levels of Ataxin-7 and LDH also suggest impact of stress either as a cause or effect of cell proliferation. Spleen-specific isoform of Pax5, NDR2, MIB2, and Ataxin-7 can be considered as spleen-specific unique molecular markers for the evaluation of splenomegaly and lympho-proliferative disorders.

  15. Chronic sugar intake dampens feeding-related activity of neurons synthesizing a satiety mediator, oxytocin

    PubMed Central

    Mitra, Anaya; Gosnell, Blake A.; Schiöth, Helgi B.; Grace, Martha K.; Klockars, Anica; Olszewski, Pawel K.; Levine, Allen S.

    2010-01-01

    Increased tone of orexigens mediating reward occurs upon repeated consumption of sweet foods. Interestingly, some of these reward orexigens, such as opioids, diminish activity of neurons synthesizing oxytocin, a nonapeptide that promotes satiety and feeding termination. It is not known, however, whether consumption-related activity of the central oxytocin system is modified under chronic sugar feeding reward itself. Therefore, we examined how chronic consumption of a rewarding high-sucrose (HS) vs. bland cornstarch (CS) diet affected the activity of oxytocin cells in the hypothalamus at the time of meal termination. Schedule-fed (2 hrs/day) rats received either a HS or CS powdered diet for 20 days. On the 21st day, they were given the same or the opposite diet, and food was removed after the main consummatory activity was completed. Animals were perfused 60 minutes after feeding termination and brains were immunostained for oxytocin and the marker of neuronal activity, c-Fos. The percentage of c-Fos-positive oxytocin cells in the hypothalamic paraventricular nucleus was significantly lower in rats chronically exposed to the HS than to the CS diet, regardless of which diet they received on the final day. A similar pattern was observed in the supraoptic nucleus. We conclude that the chronic rather than acute sucrose intake reduces activity of the anorexigenic oxytocin system. These findings indicate that chronic consumption of sugar blunts activity of pathways that mediate satiety. We speculate that a reduction in central satiety signaling precipitated by regular intake of foods high in sugar may lead to generalized overeating. PMID:20399242

  16. Sleep Loss Activates Cellular Markers of Inflammation: Sex Differences

    PubMed Central

    Irwin, Michael R.; Carrillo, Carmen; Olmstead, Richard

    2009-01-01

    Sleep disturbance is associated with inflammation and related disorders including cardiovascular disease, arthritis, and diabetes mellitus. Given sex differences in the prevalence of inflammatory disorders with stronger associations in females, this study was undertaken to test the effects of sleep loss on cellular mechanisms that contribute to proinflammatory cytokine activity. In 26 healthy adults (11 females; 15 males), monocyte intracellular proinflammatory cytokine production was repeatedly assessed at 08:00, 12:00, 16:00, 20:00, and 23:00 h during a baseline period and after partial sleep deprivation (awake from 11 PM to 3 AM). In the morning after a night of sleep loss, monocyte production of interleukin 6 and tumor necrosis factor- α differentially changed between the two sexes. Whereas both females and males showed a marked increase in the lipopolysaccharide (LPS) - stimulated production of IL-6 and TNF-α in the morning immediately after PSD, production of these cytokines during the early- and late evening was increased in the females as compared to decreases in the males. Sleep loss induces a functional alteration of monocyte proinflammatory cytokine responses with females showing greater cellular immune activation as compared to changes in males. These results have implications for understanding the role of sleep disturbance in the differential risk profile for inflammatory disorders between the sexes. PMID:19520155

  17. Molecular cloning of the lymphocyte activation marker Blast-1.

    PubMed Central

    Staunton, D E; Thorley-Lawson, D A

    1987-01-01

    Blast-1 is an early activation-associated glycoprotein expressed on the surface of human lymphocytes. Here we report the isolation and analysis of a cDNA encoding Blast-1. The translated sequence of the Blast-1 cDNA contains a hydrophobic putative signal peptide and a hydrophobic carboxyl terminus devoid of charged residues. The sequence also contains five N-linked glycosylation sites, the utilization of which was confirmed by the shift in relative mol. wt of Blast-1 upon digestion with N-glycosidase F. The translated sequence reveals that Blast-1 is related to members of the immunoglobulin superfamily, especially to CD4 and MHC class II molecules. The homology to these proteins is greatest in their amino termini where they demonstrate 30-32% identity. This region of Blast-1 also demonstrated 25% identity to a V kappa sequence. Considering conservative amino acid substitutions this homology to CD4, MHC class II and V kappa becomes 60, 49 and 48%, respectively. Images Fig. 1. Fig. 3. Fig. 4. PMID:2828034

  18. Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms

    PubMed Central

    Rőszer, Tamás

    2015-01-01

    The alternatively activated or M2 macrophages are immune cells with high phenotypic heterogeneity and are governing functions at the interface of immunity, tissue homeostasis, metabolism, and endocrine signaling. Today the M2 macrophages are identified based on the expression pattern of a set of M2 markers. These markers are transmembrane glycoproteins, scavenger receptors, enzymes, growth factors, hormones, cytokines, and cytokine receptors with diverse and often yet unexplored functions. This review discusses whether these M2 markers can be reliably used to identify M2 macrophages and define their functional subdivisions. Also, it provides an update on the novel signals of the tissue environment and the neuroendocrine system which shape the M2 activation. The possible evolutionary roots of the M2 macrophage functions are also discussed. PMID:26089604

  19. PDGFRβ Is a Novel Marker of Stromal Activation in Oral Squamous Cell Carcinomas

    PubMed Central

    Han, Rong; Haines, Paul; Gallagher, George; Noonan, Vikki; Kukuruzinska, Maria; Monti, Stefano; Trojanowska, Maria

    2016-01-01

    Carcinoma associated fibroblasts (CAFs) form the main constituents of tumor stroma and play an important role in tumor growth and invasion. The presence of CAFs is a strong predictor of poor prognosis of head and neck squamous cell carcinoma. Despite significant progress in determining the role of CAFs in tumor progression, the mechanisms contributing to their activation remain poorly characterized, in part due to fibroblast heterogeneity and the scarcity of reliable fibroblast surface markers. To search for such markers in oral squamous cell carcinoma (OSCC), we applied a novel approach that uses RNA-sequencing data derived from the cancer genome atlas (TCGA). Specifically, our strategy allowed for an unbiased identification of genes whose expression was closely associated with a set of bona fide stroma-specific transcripts, namely the interstitial collagens COL1A1, COL1A2, and COL3A1. Among the top hits were genes involved in cellular matrix remodeling and tumor invasion and migration, including platelet-derived growth factor receptor beta (PDGFRβ), which was found to be the highest-ranking receptor protein genome-wide. Similar analyses performed on ten additional TCGA cancer datasets revealed that other tumor types shared CAF markers with OSCC, including PDGFRβ, which was found to significantly correlate with the reference collagen expression in ten of the 11 cancer types tested. Subsequent immunostaining of OSCC specimens demonstrated that PDGFRβ was abundantly expressed in stromal fibroblasts of all tested cases (12/12), while it was absent in tumor cells, with greater specificity than other known markers such as alpha smooth muscle actin or podoplanin (3/11). Overall, this study identified PDGFRβ as a novel marker of stromal activation in OSCC, and further characterized a list of promising candidate CAF markers that may be relevant to other carcinomas. Our novel approach provides for a fast and accurate method to identify CAF markers without the need for

  20. PDGFRβ Is a Novel Marker of Stromal Activation in Oral Squamous Cell Carcinomas.

    PubMed

    Kartha, Vinay K; Stawski, Lukasz; Han, Rong; Haines, Paul; Gallagher, George; Noonan, Vikki; Kukuruzinska, Maria; Monti, Stefano; Trojanowska, Maria

    2016-01-01

    Carcinoma associated fibroblasts (CAFs) form the main constituents of tumor stroma and play an important role in tumor growth and invasion. The presence of CAFs is a strong predictor of poor prognosis of head and neck squamous cell carcinoma. Despite significant progress in determining the role of CAFs in tumor progression, the mechanisms contributing to their activation remain poorly characterized, in part due to fibroblast heterogeneity and the scarcity of reliable fibroblast surface markers. To search for such markers in oral squamous cell carcinoma (OSCC), we applied a novel approach that uses RNA-sequencing data derived from the cancer genome atlas (TCGA). Specifically, our strategy allowed for an unbiased identification of genes whose expression was closely associated with a set of bona fide stroma-specific transcripts, namely the interstitial collagens COL1A1, COL1A2, and COL3A1. Among the top hits were genes involved in cellular matrix remodeling and tumor invasion and migration, including platelet-derived growth factor receptor beta (PDGFRβ), which was found to be the highest-ranking receptor protein genome-wide. Similar analyses performed on ten additional TCGA cancer datasets revealed that other tumor types shared CAF markers with OSCC, including PDGFRβ, which was found to significantly correlate with the reference collagen expression in ten of the 11 cancer types tested. Subsequent immunostaining of OSCC specimens demonstrated that PDGFRβ was abundantly expressed in stromal fibroblasts of all tested cases (12/12), while it was absent in tumor cells, with greater specificity than other known markers such as alpha smooth muscle actin or podoplanin (3/11). Overall, this study identified PDGFRβ as a novel marker of stromal activation in OSCC, and further characterized a list of promising candidate CAF markers that may be relevant to other carcinomas. Our novel approach provides for a fast and accurate method to identify CAF markers without the need for

  1. Chemogenetic Activation of Melanopsin Retinal Ganglion Cells Induces Signatures of Arousal and/or Anxiety in Mice.

    PubMed

    Milosavljevic, Nina; Cehajic-Kapetanovic, Jasmina; Procyk, Christopher A; Lucas, Robert J

    2016-09-12

    Functional imaging and psychometric assessments indicate that bright light can enhance mood, attention, and cognitive performance in humans. Indirect evidence links these events to light detection by intrinsically photosensitive melanopsin-expressing retinal ganglion cells (mRGCs) [1-9]. However, there is currently no direct demonstration that mRGCs can have such an immediate effect on mood or behavioral state in any species. We addressed this deficit by using chemogenetics to selectively activate mRGCs, simulating the excitatory effects of bright light on this cell type in dark-housed mice. This specific manipulation evoked circadian phase resetting and pupil constriction (known consequences of mRGC activation). It also induced c-Fos (a marker of neuronal activation) in multiple nuclei in the hypothalamus (paraventricular, dorsomedial, and lateral hypothalamus), thalamus (paraventricular and centromedian thalamus), and limbic system (amygdala and nucleus accumbens). These regions influence numerous aspects of autonomic and neuroendocrine activity and are typically active during periods of wakefulness or arousal. By contrast, c-Fos was absent from the ventrolateral preoptic area (active during sleep). In standard behavioral tests (open field and elevated plus maze), mRGC activation induced behaviors commonly interpreted as anxiety like or as signs of increased alertness. Similar changes in behavior could be induced by bright light in wild-type and rodless and coneless mice, but not melanopsin knockout mice. These data demonstrate that mRGCs drive a light-dependent switch in behavioral motivation toward a more alert, risk-averse state. They also highlight the ability of this small fraction of retinal ganglion cells to realign activity in brain regions defining widespread aspects of physiology and behavior. PMID:27426512

  2. Chemogenetic Activation of Melanopsin Retinal Ganglion Cells Induces Signatures of Arousal and/or Anxiety in Mice.

    PubMed

    Milosavljevic, Nina; Cehajic-Kapetanovic, Jasmina; Procyk, Christopher A; Lucas, Robert J

    2016-09-12

    Functional imaging and psychometric assessments indicate that bright light can enhance mood, attention, and cognitive performance in humans. Indirect evidence links these events to light detection by intrinsically photosensitive melanopsin-expressing retinal ganglion cells (mRGCs) [1-9]. However, there is currently no direct demonstration that mRGCs can have such an immediate effect on mood or behavioral state in any species. We addressed this deficit by using chemogenetics to selectively activate mRGCs, simulating the excitatory effects of bright light on this cell type in dark-housed mice. This specific manipulation evoked circadian phase resetting and pupil constriction (known consequences of mRGC activation). It also induced c-Fos (a marker of neuronal activation) in multiple nuclei in the hypothalamus (paraventricular, dorsomedial, and lateral hypothalamus), thalamus (paraventricular and centromedian thalamus), and limbic system (amygdala and nucleus accumbens). These regions influence numerous aspects of autonomic and neuroendocrine activity and are typically active during periods of wakefulness or arousal. By contrast, c-Fos was absent from the ventrolateral preoptic area (active during sleep). In standard behavioral tests (open field and elevated plus maze), mRGC activation induced behaviors commonly interpreted as anxiety like or as signs of increased alertness. Similar changes in behavior could be induced by bright light in wild-type and rodless and coneless mice, but not melanopsin knockout mice. These data demonstrate that mRGCs drive a light-dependent switch in behavioral motivation toward a more alert, risk-averse state. They also highlight the ability of this small fraction of retinal ganglion cells to realign activity in brain regions defining widespread aspects of physiology and behavior.

  3. Markers of oxidative stress and erythrocyte antioxidant enzyme activity in older men and women with differing physical activity.

    PubMed

    Rowiński, Rafał; Kozakiewicz, Mariusz; Kędziora-Kornatowska, Kornelia; Hübner-Woźniak, Elżbieta; Kędziora, Józef

    2013-11-01

    The aim of the present study was to examine the relationship between markers of oxidative stress and erythrocyte antioxidant enzyme activity and physical activity in older men and women. The present study included 481 participants (233 men and 248 women) in the age group 65-69 years (127 men and 125 women) and in the age group 90 years and over (106 men and 123 women). The classification of respondents by physical activity was based on answers to the question if, in the past 12 months, they engaged in any pastimes which require physical activity. The systemic oxidative stress status was assessed by measuring plasma iso-PGF2α and protein carbonyl concentration as well as erythrocyte antioxidant enzymes activity, i.e., superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR). The concentration of plasma iso-PGF2α and protein carbonyls (CP) was lower in groups of younger men and women compared to the respective older groups. In all examined groups, physical activity resulted in decrease of these oxidative stress markers and simultaneously caused adaptive increase in the erythrocyte SOD activity. Additionally, in active younger men CAT, GPx, and GR activities were higher than in sedentary ones. In conclusion, oxidative stress increase is age-related, but physical activity can reduce oxidative stress markers and induce adaptive increase in the erythrocyte antioxidant enzyme activity, especially SOD, even in old and very old men and women.

  4. Curcumin inhibits osteoclastogenic potential in PBMCs from rheumatoid arthritis patients via the suppression of MAPK/RANK/c-Fos/NFATc1 signaling pathways.

    PubMed

    Shang, Wei; Zhao, Ling-Jie; Dong, Xiao-Lei; Zhao, Zhi-Ming; Li, Jing; Zhang, Bei-Bei; Cai, Hui

    2016-10-01

    The aim of the present study was to determine the effects of curcumin on the osteoclastogenic potential of peripheral blood mononuclear cells (PBMCs) obtained from patients with rheumatoid arthritis (RA), and to investigate the underlying molecular mechanisms. PBMCs from patients with RA (n=12) and healthy controls (n=10) were cultured to assess osteoclastogenic potential. The number of tartrate‑resistant acid phosphatase‑positive osteoclasts differentiated from PBMCs isolated from patients with RA was significantly increased compared with that of the healthy controls. In addition, the osteoclast number in patients with RA was correlated with the clinical indicators, Sharp score (r=0.810; P=0.001) and lumbar T‑score (r=‑0.685; P=0.014). Furthermore, the resorption area was increased in the RA group compared with the healthy controls. The mRNA and protein expression levels in PBMC‑derived osteoclasts treated with curcumin were measured by reverse transcription‑quantitative polymerase chain reaction and western blotting, respectively. Curcumin inhibited the osteoclastogenic potential of PBMCs, potentially by suppressing activation of extracellular signal‑regulated kinases 1 and 2, p38 and c‑Jun N‑terminal kinase, and inhibiting receptor activator of nuclear factor κB (RANK), c‑Fos and nuclear factor of activated T cells (NFATc1) expression. The results of the present study demonstrated that curcumin may inhibit the osteoclastogenic potential of PBMCs from patients with RA through the suppression of the mitogen‑activated protein kinase/RANK/c‑Fos/NFATc1 signaling pathways, and that curcumin may be a potential novel therapeutic agent for the treatment of bone deterioration in inflammatory diseases such as RA. PMID:27572279

  5. An interplay between the p38 MAPK pathway and AUBPs regulates c-fos mRNA stability during mitogenic stimulation.

    PubMed

    Degese, Maria Sol; Tanos, Tamara; Naipauer, Julian; Gingerich, Tim; Chiappe, Diego; Echeverria, Pablo; LaMarre, Jonathan; Gutkind, J Silvio; Coso, Omar A

    2015-04-01

    Mitogen-activated protein kinase (MAPK) pathways constitute key regulatory elements linking extracellular stimuli to nuclear gene expression. Immediate-early responsive genes (IEGs) of the activator protein 1 (AP-1) family, such as fos, achieve peak expression levels shortly after cells are stimulated with growth factors and sharply decrease thereafter. Several AU-rich binding proteins (AUBPs), including HuR (Hu-antigen R, Elav-like protein 1, ELAVL1) and KSRP (far upstream element-binding protein 2, KHSRP) bind to a fos AU-rich element (ARE) present in the 3'-UTR (untranslated region) of fos mRNA regulating its stability by a still poorly defined mechanism. We show in the present study that, whereas HuR binds and stabilizes transcribed reporter mRNAs bearing the fos 3'-UTR, KSRP counteracts this effect. Furthermore, we found that fos mRNA stability and HuR phosphorylation status are dependent on the activity of p38 MAPK in both epithelial cells and fibroblasts upon proliferative stimulation. Analysing PPI (protein-protein interaction) networks, we performed a thorough query of interacting proteins for p38 MAPKs, HuR and other AUBPs upon growth factor stimulation. This revealed novel HuR interactors including inhibitors of protein phosphatase 2 (PP2A) activity. Over-expression of two of these interactors, pp32 and APRIL (acidic leucine-rich nuclear phosphoprotein 32 family member B, ANP32B) and pharmacological inhibition of PP2A stabilized a fos reporter mRNA. Our results indicate that p38 MAPK regulates fos mRNA decay by affecting the state of phosphorylation of HuR while controlling yet to be fully elucidated PP regulatory networks.

  6. Markers of activated T cells on synovial fluid lymphocytes in rheumatoid arthritis.

    PubMed

    Mathieu, A

    1979-01-31

    Membrane markers of activated T lymphocytes of synovial fluid of two groups of patients with various forms of arthritis were studied. The first group (group A) concerns patients affected by rheumatoid arthritis (RA), and the other (group B) includes those affected by not immunologically-mediated arthropathies as osteoarthrosis, crystal synovitis, post-traumatic arthritis. Some other arthropathies included in a third group (group C) have been considered separately. Both the receptor for human group O Rh negative erythrocytes (H rosettes forming cells) and the receptor able to bind at 37 degrees C sheep red blood cells (stable-E-rosette forming cells) respectively were used as markers for the identification of activated T lymphocytes. The results show a marked increase of activated T cells in group A in comparison to group B. So the possible causes of this lymphocyte activation in rheumatoid patients are suggested.

  7. Physical activity and bone turnover markers: a cross-sectional and a longitudinal study.

    PubMed

    Adami, Silvano; Gatti, Davide; Viapiana, Ombretta; Fiore, Carmelo Erio; Nuti, Ranuccio; Luisetto, Giovanni; Ponte, Marco; Rossini, Maurizio

    2008-12-01

    Strenuous physical activity in young individuals has an important effect on both bone mass and bone turnover but the effect of moderate physical activity in adults remains uncertain. In a large cohort (N = 530) of healthy premenopausal women, bone formation markers (osteocalcin and N-terminal propeptide of type 1 procollagen [P1NP]), but not serum C-telopeptide of type 1 collagen (sCTX), were found to be significantly associated with the level of physical activity, and this association remained significant after adjusting the data (ANCOVA) by age and body mass index. Mean spine and hip bone mineral density (BMD) values were positively associated with physical activity but this was statistically significant (P = 0.050) only for adjusted values of spine BMD. Twenty-four healthy sedentary premenopausal women, subscribing to participate in a community exercise program lasting a month, and 18 age-matched controls were included in the longitudinal study. Serum osteocalcin and P1NP, but not sCTX, rose significantly, by ca. 25%, only in the active group after a month of exercise. The changes in the two bone formation markers remained statistically significant for values adjusted for body weight, which fell significantly in the exercise group. In conclusion, both the cross-sectional and the longitudinal parts of our study demonstrate that even minor changes in physical activity are associated with a clear effect on bone formation markers.

  8. Impact of physical activity, cardiorespiratory fitness, and exercise training on markers of inflammation.

    PubMed

    Lavie, Carl J; Church, Timothy S; Milani, Richard V; Earnest, Conrad P

    2011-01-01

    Physical activity and exercise training (ET) enhance overall cardiorespiratory fitness (ie, fitness), thus producing many benefits in the primary and secondary prevention of cardiovascular diseases. Substantial evidence also indicates that acute and chronic inflammation is involved in the development and progression of atherosclerosis and major cardiovascular events. The most commonly utilized marker of inflammation is C-reactive protein (CRP). In this review, we discuss the importance of inflammation, especially CRP, as a cardiovascular risk marker by reviewing an abundant cross-sectional and clinical intervention literature providing evidence that physical activity, enhanced fitness, and ET are inversely associated with CRP and that being overweight or obese is directly related with inflammation/CRP. Although we discuss the controversy regarding whether or not ET reduces CRP independent of weight loss, clearly physical activity, improved fitness, and ET are associated with reductions in inflammation and overall cardiovascular risk in both primary and secondary prevention.

  9. Right atrial stretch alters fore- and hind-brain expression of c-fos and inhibits the rapid onset of salt appetite.

    PubMed

    De Gobbi, Juliana Irani Fratucci; Menani, Jose Vanderlei; Beltz, Terry G; Johnson, Ralph F; Thunhorst, Robert L; Johnson, Alan Kim

    2008-08-01

    The inflation of an intravascular balloon positioned at the superior vena cava and right atrial junction (SVC-RAJ) reduces sodium or water intake induced by various experimental procedures (e.g. sodium depletion; hypovolaemia). In the present study we investigated if the stretch induced by a balloon at this site inhibits a rapid onset salt appetite, and if this procedure modifies the pattern of immunohistochemical labelling for Fos protein (Fos-ir) in the brain. Male Sprague-Dawley rats with SVC-RAJ balloons received a combined treatment of furosemide (Furo; 10 mg (kg bw)(-1)) plus a low dose of the angiotensin-converting enzyme inhibitor captopril (Cap; 5 mg (kg bw)(-1)). Balloon inflation greatly decreased the intake of 0.3 m NaCl for as long as the balloon was inflated. Balloon inflation over a 3 h period following Furo-Cap treatment decreased Fos-ir in the organum vasculosum of the lamina terminalis and the subfornical organ and increased Fos-ir in the lateral parabrachial nucleus and caudal ventrolateral medulla. The effect of balloon inflation was specific for sodium intake because it did not affect the drinking of diluted sweetened condensed milk. Balloon inflation and deflation also did not acutely change mean arterial pressure. These results suggest that activity in forebrain circumventricular organs and in hindbrain putative body fluid/cardiovascular regulatory regions is affected by loading low pressure mechanoreceptors at the SVC-RAJ, a manipulation that also attenuates salt appetite.

  10. Imaging of moving fiducial markers during radiotherapy using a fast, efficient active pixel sensor based EPID

    SciTech Connect

    Osmond, John P. F.; Zin, Hafiz M.; Harris, Emma J.; Lupica, Giovanni; Allinson, Nigel M.; Evans, Philip M.

    2011-11-15

    Purpose: The purpose of this work was to investigate the use of an experimental complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) for tracking of moving fiducial markers during radiotherapy. Methods: The APS has an active area of 5.4 x 5.4 cm and maximum full frame read-out rate of 20 frame s{sup -1}, with the option to read out a region-of-interest (ROI) at an increased rate. It was coupled to a 4 mm thick ZnWO4 scintillator which provided a quantum efficiency (QE) of 8% for a 6 MV x-ray treatment beam. The APS was compared with a standard iViewGT flat panel amorphous Silicon (a-Si) electronic portal imaging device (EPID), with a QE of 0.34% and a frame-rate of 2.5 frame s{sup -1}. To investigate the ability of the two systems to image markers, four gold cylinders of length 8 mm and diameter 0.8, 1.2, 1.6, and 2 mm were placed on a motion-platform. Images of the stationary markers were acquired using the APS at a frame-rate of 20 frame s{sup -1}, and a dose-rate of 143 MU min{sup -1} to avoid saturation. EPID images were acquired at the maximum frame-rate of 2.5 frame s{sup -1}, and a reduced dose-rate of 19 MU min{sup -1} to provide a similar dose per frame to the APS. Signal-to-noise ratio (SNR) of the background signal and contrast-to-noise ratio (CNR) of the marker signal relative to the background were evaluated for both imagers at doses of 0.125 to 2 MU. Results: Image quality and marker visibility was found to be greater in the APS with SNR {approx}5 times greater than in the EPID and CNR up to an order of magnitude greater for all four markers. To investigate the ability to image and track moving markers the motion-platform was moved to simulate a breathing cycle with period 6 s, amplitude 20 mm and maximum speed 13.2 mm s{sup -1}. At the minimum integration time of 50 ms a tracking algorithm applied to the APS data found all four markers with a success rate of {>=}92% and positional error {<=}90 {mu}m. At an integration time of 400

  11. Neonatal propofol anesthesia modifies activity-dependent processes and induces transient hyperlocomotor response to d-amphetamine during adolescence in rats.

    PubMed

    Pešić, Vesna; Milanović, Desanka; Popić, Jelena; Smiljanić, Kosara; Tešić, Vesna; Kanazir, Selma; Jevtović-Todorović, Vesna; Ruždijić, Sabera

    2015-12-01

    This study examined the influence of propofol anesthesia on the expression of activity-regulated molecules (BDNF and c-Fos) and synaptic plasticity markers (synaptophysin, GAP-43, drebrin) in the frontal cortex and thalamus of 7-day-old (P7) rats. Although these brain regions are the main targets of anesthetic action, they are contained in the cortico-striato-thalamo-cortical feedback loops, involved in naturally occurring and drug-induced psychoses. Therefore, functional integrity of these loops was examined in adolescent and adult rats through d-amphetamine-induced hyperactivity. Propofol treatment (25mg/kg) decreased exon-specific and total BDNF mRNA expression in the frontal cortex and thalamus, in a time-dependent manner. BDNF protein level was increased in the frontal cortex and decreased in the thalamus, which was accompanied by the change of phospho-TrkB expression. Similarly to BDNF, the expression of c-Fos was decreased in the frontal cortex while it was changed only at the protein level in the thalamus. Synaptic plasticity markers changed in a time- and region-specific manner, indicating increased synaptogenesis in the frontal cortex and synapse elimination in the thalamus in P7 rats after the propofol anesthesia exposure. These early molecular changes were followed by time-related, increased motor reaction to d-amphetamine in adolescent, but not in adult rats. Our study revealed that exposure of immature brain to propofol anesthesia during the critical phase of development provoked immediate changes in activity-dependent processes and synaptic adjustment, influencing brain capacity to integrate later developmental events and resulting in temporary altered response to acute psychotropic stimulation during adolescence.

  12. Mean platelet volume as an inflammation marker in active pulmonary tuberculosis

    PubMed Central

    2014-01-01

    Background The mean platelet volume (MPV) reflects the size of platelets. It has been shown to be inversely correlated with level of the inflammation in some chronic inflammatory diseases. This prospective study aims to show the usability of MPV as an inflammation marker in patients with active pulmonary tuberculosis (PTB) by comparison with healthy controls. In addition, its relationships with other inflammatory markers such as C-reactive protein (CRP) and the erythrocyte sedimentation rate (ESR) as well as with the radiological extent of disease were examined. Methods This study included 82 patients with active PTB and 95 healthy subjects (control group). Whole blood counts, CRP level, and ESR were compared between the two groups. In the PTB group, the relationships between the radiological extent of disease and the MPV and other inflammation markers were investigated. Results The MPV was 7.74 ± 1.33/μL in the PTB group and 8.20 ± 1.13/μL in the control group (p = 0.005). The blood platelet count, CRP level, and ESR were significantly higher in the active PTB group than in the control group (p < 0.0001). In the PTB group, CRP levels (r = 0.26, p = 0.003) and ESR (r = 0.39, p = 0.003), but not MPV (p = 0.80), were significantly correlated with the radiologic extent of the disease. Conclusions The MPV was lower in patients with PTB than in healthy controls, however, the difference was limited. The MPV does not reflect the severity of the disease. The use of MPV as an inflammation marker and a negative acute-phase reactant in PTB does not seem to be reliable. PMID:24581084

  13. Protein synthesis inhibitors reveal differential regulation of mitogen-activated protein kinase and stress-activated protein kinase pathways that converge on Elk-1.

    PubMed Central

    Zinck, R; Cahill, M A; Kracht, M; Sachsenmaier, C; Hipskind, R A; Nordheim, A

    1995-01-01

    Inhibitors of protein synthesis, such as anisomycin and cycloheximide, lead to superinduction of immediate-early genes. We demonstrate that these two drugs activate intracellular signaling pathways involving both the mitogen-activated protein kinase (MAPK) and stress-activated protein kinase (SAPK) cascades. The activation of either pathway correlates with phosphorylation of the c-fos regulatory transcription factor Elk-1. In HeLa cells, anisomycin stabilizes c-fos mRNA when protein synthesis is inhibited to only 50%. Under these conditions, anisomycin, in contrast to cycloheximide, rapidly induces kinase activation and efficient Elk-1 phosphorylation. However, full inhibition of translation by either drug leads to prolonged activation of SAPK activity, while MAPK induction is transient. This correlates with prolonged Elk-1 phosphorylation and c-fos transcription. Elk-1 induction and c-fos activation are also observed in KB cells, in which anisomycin strongly induces SAPKs but not MAPKs. Purified p54 SAPK alpha efficiently phosphorylates the Elk-1 C-terminal domain in vitro and comigrates with anisomycin-activated kinases in in-gel kinase assays. Thus, Elk-1 provides a potential convergence point for the MAPK and SAPK signaling pathways. The activation of signal cascades and control of transcription factor function therefore represent prominent processes in immediate-early gene superinduction. PMID:7651411

  14. Serological markers of hepatitis B and C in patients with HIV/AIDS and active tuberculosis.

    PubMed

    Araújo-Mariz, Carolline; Lopes, Edmundo Pessoa; Ximenes, Ricardo A A; Lacerda, Heloísa R; Miranda-Filho, Demócrito B; Montarroyos, Ulisses R; Barreto, Silvana; Salustiano, Daniela Medeiros; Albuquerque, Maria Fátima Pessoa Militão

    2016-06-01

    Infection with hepatitis B virus (HBV) and C virus (HCV) are common in patients with HIV/AIDS and tuberculosis (TB). This is a cross-sectional study with patients infected with HIV/AIDS and active TB in Recife, Brazil, aiming to verify the prevalence of markers for HBV: antibody to hepatitis B core antigen (anti-HBc); and HCV: antibody to hepatitis C virus (anti-HCV) by chemiluminescence, and to identify the frequency of associated factors. Data were collected through questionnaires, and blood was drawn from patients for analysis. We used the chi-square test and the Fisher exact test when necessary. We conducted a bivariate logistic regression analysis and the magnitude of the associations was expressed as odds ratio (OR) with a confidence interval of 95%. Among 166 patients studied with HIV/AIDS and active TB, anti-HBc was positive in 61 patients [36.7%; 95%CI (29.4-44.6%)] and anti-HCV in 11[6.6%; 95%CI (3.4-11.5%)]. In the logistic regression analysis, male sex, and age ≥40 years were independent factors associated with the occurrence of anti-HBc. In conclusion, we verified a high frequency of HBV contact marker and a low frequency of HCV markers in patients with HIV/AIDS and TB in Recife.

  15. Relationship between physical activity and markers of oxidative stress in independent community-living elderly individuals.

    PubMed

    Fraile-Bermúdez, A B; Kortajarena, M; Zarrazquin, I; Maquibar, A; Yanguas, J J; Sánchez-Fernández, C E; Gil, J; Irazusta, A; Ruiz-Litago, F

    2015-10-01

    The aim of the present study was to examine the relationship between objective data of physical activity and markers of oxidative stress in older men and women. Participants were old adults, aged≥60years (61 women and 34 men) who were all capable of performing basic daily activities by themselves and lived on their own. To describe physical activity we used objective data measured by accelerometers which record active and sedentary periods during everyday life for five days. Determination of oxidative stress was conducted from three perspectives: determination plasma total antioxidant status (TAS), plasma antioxidant enzyme activities, i.e., glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD), and membrane lipid peroxidation (TBARS). In the group of women, those who met physical activity recommendations (WR) had lower level of TAS. In addition, the moderate to vigorous physical activity (MVPA) was negatively correlated with TAS. Simultaneously, MVPA was correlated with increase in the GPx antioxidant enzyme activity, and the counts per minute were positively correlated with CAT activity. In the group of men, the cpm and the MVPA were negatively correlated with lipid peroxidation while lifestyle physical activity was positively correlated with CAT activity. These findings suggest that MVPA in the elderly although it is related to a decrease in the TAS in women, induces adaptive increase in antioxidant enzyme activity and decreases lipid peroxidation in both women and men. These results suggest that at this time of life, it is not only the amount of physical activity performed that is important but also its intensity.

  16. Expression of intercellular adhesion molecule-1 on macrophages in vitro as a marker of activation.

    PubMed

    Bernatchez, S F; Atkinson, M R; Parks, P J

    1997-10-01

    Macrophage activation is a major component of wound healing. It also determines the extent of inflammatory reactions and the response of the body to implanted materials. We have previously shown, using an in vitro model, that the extent of spreading of macrophages on different materials is a marker of activation, and that a soluble inducer has a dose-response effect on the secretion of cytokines in the culture medium. This work investigates the expression of three different cell surface markers [macrophages MAC-1, MAC-3 and intercellular adhesion molecule-1 (ICAM-1)] on macrophages in vitro using confocal microscopy and shows that ICAM-1 is also a marker of macrophage activation in this model. We observed increased amounts of ICAM-1 on activated macrophages compared to unactivated macrophages, whereas MAC-1 and MAC-3 were either expressed constitutively or demonstrated no quantitative change in expression after activation under the same experimental conditions. We also tested the expression of ICAM-1 with various concentrations of soluble inducers (lipopolysaccharide, 0.001, 0.01, 0.1, 1 and 10 micrograms ml-1. S-27609, 0.1, 0.25, 0.5, 1, 2 and 3 micrograms ml-1 and on a sheet of polylactic acid alone or in combination with soluble inducers. All doses of soluble inducers induced the expression of ICAM-1 on cells grown in glass chamber slides. The induction was not dose related but seemed to work rather in an on-off manner. There was no effect of material on ICAM-1 expression on the cell surface when no soluble inducer was added. This was similar to cytokine secretion, which was not induced by our material alone. When either lipopolysaccharide or S-27609 was used in combination with the material, there was an increase in the average measured intensity of ICAM-1. In this in vitro model, ICAM-1 staining as measured by confocal microscopy is a marker for macrophage activation. Our results suggest that the extent of macrophage activation as measured by ICAM-1 and by

  17. Androgenic influence on serotonergic activation of the HPA stress axis.

    PubMed

    Goel, Nirupa; Plyler, Kimberly S; Daniels, Derek; Bale, Tracy L

    2011-05-01

    The higher incidence of stress-mediated affective disorders in women may be a function of gonadal hormone influence on complex interactions between serotonin and neural circuits that mediate the hypothalamic-pituitary-adrenal (HPA) stress axis. The paraventricular nucleus of the hypothalamus (PVN) receives serotonergic innervation, and selective serotonin reuptake inhibitors such as citalopram activate the HPA axis independent of stress. We have previously demonstrated that the magnitude of this serotonergic activation was greater in females and was attenuated by testosterone administration; however, the potential central sites of action where androgens reduce these serotonergic effects have not been determined. Therefore, we examined a time course of corticosterone production and used central c-Fos protein levels to assay neuronal activation in stress-related brain regions in female, male, and gonadectomized male mice after an acute citalopram injection (15 mg/kg). In the hippocampus, c-Fos-immunoreactivity was greater in males than in females or gonadectomized males. This same pattern emerged in the lateral septum after vehicle and gonadectomy reversed the effect of citalopram. These regions are important for inhibitory influences on the PVN, and accordingly, hippocampal c-Fos levels were negatively correlated with corticosterone production. No sex differences in c-Fos were detected in the PVN, cingulate cortex, or paraventricular thalamus in response to vehicle or citalopram. These data support brain region-specific regulation of the HPA axis where sex differences may be mediated partly through androgen enhancement of signaling in inhibitory regions.

  18. CD107a as a marker of activation in chicken cytotoxic T cells.

    PubMed

    Wattrang, Eva; Dalgaard, Tina S; Norup, Liselotte R; Kjærup, Rikke B; Lundén, Anna; Juul-Madsen, Helle R

    2015-04-01

    The study aimed to evaluate cell surface mobilisation of CD107a as a general activation marker on chicken cytotoxic T cells (CTL). Experiments comprised establishment of an in vitro model for activation-induced CD107a mobilisation and design of a marker panel for the detection of CD107a mobilisation on chicken CTL isolated from different tissues. Moreover, CD107a mobilisation was analysed on CTL isolated from airways of infectious bronchitis virus (IBV)-infected birds direct ex vivo and upon in vitro stimulation. Results showed that phorbol 12-myristate 13-acetate (PMA) in combination with ionomycin was a consistent inducer of CD107a cell surface mobilisation on chicken CTL in a 4h cell culture model. In chickens experimentally infected with IBV, higher frequencies of CTL isolated from respiratory tissues were positive for CD107a on the cell surface compared to those from uninfected control chickens indicating in vivo activation. Moreover, upon in vitro PMA+ ionomycin stimulation, higher proportions of CTL isolated from the airways of IBV-infected chickens showed CD107a mobilisation compared to those from uninfected control chickens. Monitoring of CD107a cell surface mobilisation may thus be a useful tool for studies of chicken CTL cytolytic potential both in vivo and in vitro.

  19. The influence of statin therapy on platelet activity markers in hyperlipidemic patients after ischemic stroke

    PubMed Central

    Chmielewski, Henryk; Kaczorowska, Beata; Przybyła, Monika; Baj, Zbigniew

    2015-01-01

    Introduction Low-density lipoprotein cholesterol (LDL-C) has been reported to increase platelet activation. Reducing the level of LDL-C with statins induces important pleiotropic effects such as platelet inhibition. This association between platelet activity and statin therapy may be clinically important in reducing the risk of ischemic stroke. We investigated the effect of simvastatin therapy on platelet activation markers (platelet CD62P, sP-selectin, and platelet-derived microparticles (PDMPs)) in hyperlipidemic patients after ischemic stroke. Material and methods The study group consisted of 21 hyperlipidemic patients after ischemic stroke confirmed by CT, and 20 healthy subjects served as controls. We assessed the CD62P expression on resting and thrombin-activated blood platelets. CD62P and PDMPs were analyzed by the use of monoclonal antibodies anti-CD61 and anti-CD62 on a flow cytometer. The level of sP-selectin in serum was measured by the ELISA (enzyme-linked immunosorbent assay) method. All markers were re-analyzed after 6 months of treatment with simvastatin (20 mg/day). Results Hyperlipidemic patients presented a significantly higher percentage of CD62+ platelets and higher reactivity to thrombin compared to control subjects. After simvastatin therapy hyperlipidemic patients showed a reduction of the percentage of resting CD62P(+) platelets (p = 0.005) and a reduction of expression and percentage of CD62P(+) platelets after activation by thrombin (median p < 0.05; percentage: p = 0.001). A decrease of sP-selectin levels (p = 0.001) and percentage of PDMPs (p < 0.05) in this group was also observed. Conclusions HMG-CoA reductase inhibitor therapy in stroke patients with hyperlipidemia may be useful not only due to the lipid-lowering effect but also because of a significant role in reduction of platelet activation and reactivity. PMID:25861297

  20. Impact of physical activity on ovarian reserve markers in normal, overweight and obese reproductive age women.

    PubMed

    Surekha, T; Himabindu, Y; Sriharibabu, M; Pandey, Anil Kumar

    2014-01-01

    Physical inactivity is a leading risk factor for overweight and obesity in the society. Prevalence of overweight and obesity in the reproductive age group women not only affects maternal health but also the health of the off spring. Infertility is a common problem in India affecting 13-19 million people at any given time. Even though it is not life threatening, infertility causes intense mental agony and trauma that can only be best described by infertile couples themselves. Infertility is more common in overweight and obese individuals compared to normal weight individuals. Decreasing ovarian reserve is an important factor for infertility in women. This study examined the impact of physical activity on ovarian reserve markers in normal, overweight and obese reproductive age women. The observations made in this study reveal that physical activity improves ovarian reserve markers in all reproductive age women but this improvement is more distinct and statistically significant in overweight and obese women compared to normal weight women. PMID:25509968

  1. Prospective active marker motion correction improves statistical power in BOLD fMRI.

    PubMed

    Muraskin, Jordan; Ooi, Melvyn B; Goldman, Robin I; Krueger, Sascha; Thomas, William J; Sajda, Paul; Brown, Truman R

    2013-03-01

    Group level statistical maps of blood oxygenation level dependent (BOLD) signals acquired using functional magnetic resonance imaging (fMRI) have become a basic measurement for much of systems, cognitive and social neuroscience. A challenge in making inferences from these statistical maps is the noise and potential confounds that arise from the head motion that occurs within and between acquisition volumes. This motion results in the scan plane being misaligned during acquisition, ultimately leading to reduced statistical power when maps are constructed at the group level. In most cases, an attempt is made to correct for this motion through the use of retrospective analysis methods. In this paper, we use a prospective active marker motion correction (PRAMMO) system that uses radio frequency markers for real-time tracking of motion, enabling on-line slice plane correction. We show that the statistical power of the activation maps is substantially increased using PRAMMO compared to conventional retrospective correction. Analysis of our results indicates that the PRAMMO acquisition reduces the variance without decreasing the signal component of the BOLD (beta). Using PRAMMO could thus improve the overall statistical power of fMRI based BOLD measurements, leading to stronger inferences of the nature of processing in the human brain.

  2. Parietal Epithelial Cell Activation Marker in Early Recurrence of FSGS in the Transplant

    PubMed Central

    Fatima, Huma; Moeller, Marcus J.; Smeets, Bart; Yang, Hai-Chun; D’Agati, Vivette D.; Alpers, Charles E.

    2012-01-01

    Summary Background and objectives Podocyte loss is key in glomerulosclerosis. Activated parietal epithelial cells are proposed to contribute to pathogenesis of glomerulosclerosis and may serve as stem cells that can transition to podocytes. CD44 is a marker for activated parietal epithelial cells. This study investigated whether activated parietal epithelial cells are increased in early recurrent FSGS in transplant compared with minimal change disease. Design, setting, participants, & measurements CD44 staining in renal allograft biopsies from 12 patients with recurrent FSGS was performed and compared with native kidneys with minimal change disease or FSGS and normal control native and transplant kidneys without FSGS. CD44+ epithelial cells along Bowman’s capsule in the parietal epithelial cell location and over the glomerular tuft in the visceral epithelial cell location were assessed. Results Cases with early recurrent FSGS manifesting only foot process effacement showed significantly increased CD44+ visceral epithelial cells involving 29.0% versus 2.6% of glomeruli in minimal change disease and 0% in non-FSGS transplants. Parietal location CD44 positivity also was numerically increased in recurrent FSGS. In later transplant biopsies, glomeruli with segmental lesions had more CD44+ visceral epithelial cells than glomeruli without lesions. Conclusions Parietal epithelial cell activation marker is significantly increased in evolving FSGS versus minimal change disease, and this increase may distinguish early FSGS from minimal change disease. Whether parietal epithelial cell activation contributes to pathogenesis of sclerosis in idiopathic FSGS or is a regenerative/repair response to replace injured podocytes awaits additional study. PMID:22917699

  3. Changes in urinary amino acids excretion in relationship with muscle activity markers over a professional cycling stage race: in search of fatigue markers.

    PubMed

    Corsetti, Roberto; Barassi, Alessandra; Perego, Silvia; Sansoni, Veronica; Rossi, Alessandra; Damele, Clara Anna Linda; Melzi D'Eril, Gianlodovico; Banfi, Giuseppe; Lombardi, Giovanni

    2016-01-01

    The aim of this study was to identify the relationship between metabolic effort, muscular damage/activity indices, and urinary amino acids profile over the course of a strenuous prolonged endurance activity, as a cycling stage race is, in order to identify possible fatigue markers. Nine professional cyclists belonging to a single team, competing in the Giro d'Italia cycling stage race, were anthropometrically characterized and sampled for blood and urine the day before the race started, and on days 12 and 23 of the race. Diet was kept the same over the race, and power output and energy expenditure were recorded. Sera were assayed for muscle markers (lactate dehydrogenase, aspartate aminotransferase, and creatine kinase activities, and blood urea nitrogen), and creatinine, all corrected for plasma volume changes. Urines were profiled for amino acid concentrations, normalized on creatinine excretion. Renal function, in terms of glomerular filtration rate, was monitored by MDRD equation corrected on body surface area. Creatine kinase activity and blood urea were increased during the race as did serum creatinine while kidney function remained stable. Among the amino acids, taurine, glycine, cysteine, leucine, carnosine, 1-methyl histidine, and 3-methyl histidine showed a net decreased, while homocysteine was increased. Taurine and the dipeptide carnosine (β-alanyl-L-histidine) were significantly correlated with the muscle activity markers and the indices of effort. In conclusion, the metabolic profile is modified strikingly due to the effort. Urinary taurine and carnosine seem useful tools to evaluate the muscle damage and possibly the fatigue status on a long-term basis. PMID:26306846

  4. Changes in urinary amino acids excretion in relationship with muscle activity markers over a professional cycling stage race: in search of fatigue markers.

    PubMed

    Corsetti, Roberto; Barassi, Alessandra; Perego, Silvia; Sansoni, Veronica; Rossi, Alessandra; Damele, Clara Anna Linda; Melzi D'Eril, Gianlodovico; Banfi, Giuseppe; Lombardi, Giovanni

    2016-01-01

    The aim of this study was to identify the relationship between metabolic effort, muscular damage/activity indices, and urinary amino acids profile over the course of a strenuous prolonged endurance activity, as a cycling stage race is, in order to identify possible fatigue markers. Nine professional cyclists belonging to a single team, competing in the Giro d'Italia cycling stage race, were anthropometrically characterized and sampled for blood and urine the day before the race started, and on days 12 and 23 of the race. Diet was kept the same over the race, and power output and energy expenditure were recorded. Sera were assayed for muscle markers (lactate dehydrogenase, aspartate aminotransferase, and creatine kinase activities, and blood urea nitrogen), and creatinine, all corrected for plasma volume changes. Urines were profiled for amino acid concentrations, normalized on creatinine excretion. Renal function, in terms of glomerular filtration rate, was monitored by MDRD equation corrected on body surface area. Creatine kinase activity and blood urea were increased during the race as did serum creatinine while kidney function remained stable. Among the amino acids, taurine, glycine, cysteine, leucine, carnosine, 1-methyl histidine, and 3-methyl histidine showed a net decreased, while homocysteine was increased. Taurine and the dipeptide carnosine (β-alanyl-L-histidine) were significantly correlated with the muscle activity markers and the indices of effort. In conclusion, the metabolic profile is modified strikingly due to the effort. Urinary taurine and carnosine seem useful tools to evaluate the muscle damage and possibly the fatigue status on a long-term basis.

  5. Long-term Exposure to Air Pollution and Markers of Inflammation, Coagulation, and Endothelial Activation

    PubMed Central

    Hajat, Anjum; Allison, Matthew; Diez-Roux, Ana V.; Jenny, Nancy Swords; Jorgensen, Neal W.; Szpiro, Adam A.; Vedal, Sverre; Kaufman, Joel D.

    2015-01-01

    Background Air pollution is associated with cardiovascular disease, and systemic inflammation may mediate this effect. We assessed associations between long- and short-term concentrations of air pollution and markers of inflammation, coagulation, and endothelial activation. Methods We studied participants from the Multi-Ethnic Study of Atherosclerosis from 2000 to 2012 with repeat measures of serum C-reactive protein (CRP), interleukin-6 (IL-6), fibrinogen, D-dimer, soluble E-selectin, and soluble Intercellular Adhesion Molecule-1. Annual average concentrations of ambient fine particulate matter (PM2.5), individual-level ambient PM2.5 (integrating indoor concentrations and time–location data), oxides of nitrogen (NOx), nitrogen dioxide (NO2), and black carbon were evaluated. Short-term concentrations of PM2.5 reflected the day of blood draw, day prior, and averages of prior 2-, 3-, 4-, and 5-day periods. Random-effects models were used for long-term exposures and fixed effects for short-term exposures. The sample size was between 9,000 and 10,000 observations for CRP, IL-6, fibrinogen, and D-dimer; approximately 2,100 for E-selectin; and 3,300 for soluble Intercellular Adhesion Molecule-1. Results After controlling for confounders, 5 µg/m3 increase in long-term ambient PM2.5 was associated with 6% higher IL-6 (95% confidence interval = 2%, 9%), and 40 parts per billion increase in long-term NOx was associated with 7% (95% confidence interval = 2%, 13%) higher level of D-dimer. PM2.5 measured at day of blood draw was associated with CRP, fibrinogen, and E-selectin. There were no other positive associations between blood markers and short- or long-term air pollution. Conclusions These data are consistent with the hypothesis that long-term exposure to air pollution is related to some markers of inflammation and fibrinolysis. PMID:25710246

  6. Context Fear Learning Specifically Activates Distinct Populations of Neurons in Amygdala and Hypothalamus

    ERIC Educational Resources Information Center

    Trogrlic, Lidia; Wilson, Yvette M.; Newman, Andrew G.; Murphy, Mark

    2011-01-01

    The identity and distribution of neurons that are involved in any learning or memory event is not known. In previous studies, we identified a discrete population of neurons in the lateral amygdala that show learning-specific activation of a c-"fos"-regulated transgene following context fear conditioning. Here, we have extended these studies to…

  7. Activation of the hypothalamic-pituitary-adrenal axis in lithium-induced conditioned taste aversion learning.

    PubMed

    Jahng, Jeong Won; Lee, Jong-Ho

    2015-12-01

    Intraperitoneal injections (ip) of lithium chloride at large doses induce c-Fos expression in the brain regions implicated in conditioned taste aversion (CTA) learning, and also activate the hypothalamic-pituitary-adrenal (HPA) axis and increase the plasma corticosterone levels in rats. A pharmacologic treatment blunting the lithium-induced c-Fos expression in the brain regions, but not the HPA axis activation, induced CTA formation. Synthetic glucocorticoids at conditioning, but not glucocorticoid antagonist, attenuated the lithium-induced CTA acquisition. The CTA acquisition by ip lithium was not affected by adrenalectomy regardless of basal corticosterone supplement, but the extinction was delayed in the absence of basal corticosterone. Glucocorticoids overloading delayed the extinction memory formation of lithium-induced CTA. ip lithium consistently induced the brain c-Fos expression, the HPA activation and CTA formation regardless of the circadian activation of the HPA axis. Intracerebroventricular (icv) injections of lithium at day time also increased the brain c-Fos expression, activated the HPA axis and induced CTA acquisition. However, icv lithium at night, when the HPA axis shows its circadian activation, did not induce CTA acquisition nor activate the HPA axis, although it increased the brain c-Fos expression. These results suggest that the circadian activation of the HPA axis may affect central, but not peripheral, effect of lithium in CTA learning in rats, and the HPA axis activation may be necessary for the central effect of lithium in CTA formation. Also, glucocorticoids may be required for a better extinction; however, increased glucocorticoids hinder both the acquisition and the extinction of lithium-induced CTA.

  8. Evaluation of Potential Clinical Surrogate Markers of a Trauma Induced Alteration of Clotting Factor Activities

    PubMed Central

    Payas, Arzu; Schoeneberg, Carsten; Wegner, Alexander; Kauther, Max Daniel; Lendemans, Sven

    2016-01-01

    Objective. The aim of this study was to identify routinely available clinical surrogate markers for potential clotting factor alterations following multiple trauma. Methods. In 68 patients admitted directly from the scene of the accident, all soluble clotting factors were analyzed and clinical data was collected prospectively. Ten healthy subjects served as control group. Results. Patients showed reduced activities of clotting factors II, V, VII, and X and calcium levels (all P < 0.0001 to 0.01). Levels of hemoglobin and base deficit correlated moderately to highly with the activities of a number of clotting factors. Nonsurvivors and patients who needed preclinical intubation or hemostatic therapy showed significantly reduced factor activities at admission. In contrast, factor VIII activity was markedly elevated after injury in general (P < 0.0001), but reduced in nonsurvivors (P < 0.05). Conclusions. Multiple trauma causes an early reduction of the activities of nearly all soluble clotting factors in general. Initial hemoglobin and, with certain qualifications, base deficit levels demonstrated a potential value in detecting those underlying clotting factor deficiencies. Nevertheless, their role as triggers of a hemostatic therapy as well as the observed response of factor VIII to multiple trauma and also its potential prognostic value needs further evaluation. PMID:27433474

  9. Characterizing proton-activated materials to develop PET-mediated proton range verification markers

    NASA Astrophysics Data System (ADS)

    Cho, Jongmin; Ibbott, Geoffrey S.; Kerr, Matthew D.; Amos, Richard A.; Stingo, Francesco C.; Marom, Edith M.; Truong, Mylene T.; Palacio, Diana M.; Betancourt, Sonia L.; Erasmus, Jeremy J.; DeGroot, Patricia M.; Carter, Brett W.; Gladish, Gregory W.; Sabloff, Bradley S.; Benveniste, Marcelo F.; Godoy, Myrna C.; Patil, Shekhar; Sorensen, James; Mawlawi, Osama R.

    2016-06-01

    Conventional proton beam range verification using positron emission tomography (PET) relies on tissue activation alone and therefore requires particle therapy PET whose installation can represent a large financial burden for many centers. Previously, we showed the feasibility of developing patient implantable markers using high proton cross-section materials (18O, Cu, and 68Zn) for in vivo proton range verification using conventional PET scanners. In this technical note, we characterize those materials to test their usability in more clinically relevant conditions. Two phantoms made of low-density balsa wood (~0.1 g cm‑3) and beef (~1.0 g cm‑3) were embedded with Cu or 68Zn foils of several volumes (10–50 mm3). The metal foils were positioned at several depths in the dose fall-off region, which had been determined from our previous study. The phantoms were then irradiated with different proton doses (1–5 Gy). After irradiation, the phantoms with the embedded foils were moved to a diagnostic PET scanner and imaged. The acquired data were reconstructed with 20–40 min of scan time using various delay times (30–150 min) to determine the maximum contrast-to-noise ratio. The resultant PET/computed tomography (CT) fusion images of the activated foils were then examined and the foils’ PET signal strength/visibility was scored on a 5 point scale by 13 radiologists experienced in nuclear medicine. For both phantoms, the visibility of activated foils increased in proportion to the foil volume, dose, and PET scan time. A linear model was constructed with visibility scores as the response variable and all other factors (marker material, phantom material, dose, and PET scan time) as covariates. Using the linear model, volumes of foils that provided adequate visibility (score 3) were determined for each dose and PET scan time. The foil volumes that were determined will be used as a guideline in developing practical implantable markers.

  10. Characterizing proton-activated materials to develop PET-mediated proton range verification markers.

    PubMed

    Cho, Jongmin; Ibbott, Geoffrey S; Kerr, Matthew D; Amos, Richard A; Stingo, Francesco C; Marom, Edith M; Truong, Mylene T; Palacio, Diana M; Betancourt, Sonia L; Erasmus, Jeremy J; DeGroot, Patricia M; Carter, Brett W; Gladish, Gregory W; Sabloff, Bradley S; Benveniste, Marcelo F; Godoy, Myrna C; Patil, Shekhar; Sorensen, James; Mawlawi, Osama R

    2016-06-01

    Conventional proton beam range verification using positron emission tomography (PET) relies on tissue activation alone and therefore requires particle therapy PET whose installation can represent a large financial burden for many centers. Previously, we showed the feasibility of developing patient implantable markers using high proton cross-section materials ((18)O, Cu, and (68)Zn) for in vivo proton range verification using conventional PET scanners. In this technical note, we characterize those materials to test their usability in more clinically relevant conditions. Two phantoms made of low-density balsa wood (~0.1 g cm(-3)) and beef (~1.0 g cm(-3)) were embedded with Cu or (68)Zn foils of several volumes (10-50 mm(3)). The metal foils were positioned at several depths in the dose fall-off region, which had been determined from our previous study. The phantoms were then irradiated with different proton doses (1-5 Gy). After irradiation, the phantoms with the embedded foils were moved to a diagnostic PET scanner and imaged. The acquired data were reconstructed with 20-40 min of scan time using various delay times (30-150 min) to determine the maximum contrast-to-noise ratio. The resultant PET/computed tomography (CT) fusion images of the activated foils were then examined and the foils' PET signal strength/visibility was scored on a 5 point scale by 13 radiologists experienced in nuclear medicine. For both phantoms, the visibility of activated foils increased in proportion to the foil volume, dose, and PET scan time. A linear model was constructed with visibility scores as the response variable and all other factors (marker material, phantom material, dose, and PET scan time) as covariates. Using the linear model, volumes of foils that provided adequate visibility (score 3) were determined for each dose and PET scan time. The foil volumes that were determined will be used as a guideline in developing practical implantable markers. PMID:27203621

  11. Characterizing proton-activated materials to develop PET-mediated proton range verification markers

    NASA Astrophysics Data System (ADS)

    Cho, Jongmin; Ibbott, Geoffrey S.; Kerr, Matthew D.; Amos, Richard A.; Stingo, Francesco C.; Marom, Edith M.; Truong, Mylene T.; Palacio, Diana M.; Betancourt, Sonia L.; Erasmus, Jeremy J.; DeGroot, Patricia M.; Carter, Brett W.; Gladish, Gregory W.; Sabloff, Bradley S.; Benveniste, Marcelo F.; Godoy, Myrna C.; Patil, Shekhar; Sorensen, James; Mawlawi, Osama R.

    2016-06-01

    Conventional proton beam range verification using positron emission tomography (PET) relies on tissue activation alone and therefore requires particle therapy PET whose installation can represent a large financial burden for many centers. Previously, we showed the feasibility of developing patient implantable markers using high proton cross-section materials (18O, Cu, and 68Zn) for in vivo proton range verification using conventional PET scanners. In this technical note, we characterize those materials to test their usability in more clinically relevant conditions. Two phantoms made of low-density balsa wood (~0.1 g cm-3) and beef (~1.0 g cm-3) were embedded with Cu or 68Zn foils of several volumes (10-50 mm3). The metal foils were positioned at several depths in the dose fall-off region, which had been determined from our previous study. The phantoms were then irradiated with different proton doses (1-5 Gy). After irradiation, the phantoms with the embedded foils were moved to a diagnostic PET scanner and imaged. The acquired data were reconstructed with 20-40 min of scan time using various delay times (30-150 min) to determine the maximum contrast-to-noise ratio. The resultant PET/computed tomography (CT) fusion images of the activated foils were then examined and the foils’ PET signal strength/visibility was scored on a 5 point scale by 13 radiologists experienced in nuclear medicine. For both phantoms, the visibility of activated foils increased in proportion to the foil volume, dose, and PET scan time. A linear model was constructed with visibility scores as the response variable and all other factors (marker material, phantom material, dose, and PET scan time) as covariates. Using the linear model, volumes of foils that provided adequate visibility (score 3) were determined for each dose and PET scan time. The foil volumes that were determined will be used as a guideline in developing practical implantable markers.

  12. Expression of T lymphocyte chemoattractants and activation markers in vernal keratoconjunctivitis

    PubMed Central

    El-Asrar, A M Abu; Struyf, S; Al-Kharashi, S A; Missotten, L; Van Damme, J; Geboes, K

    2002-01-01

    Background/aims: T lymphocytes are present in increased numbers in the conjunctiva of patients with vernal keratoconjunctivitis (VKC) and their activation has a central role in the pathogenesis of the chronic allergic inflammatory reactions seen in VKC. The aims of this study were to examine the expression of three recently described potent T lymphocyte chemoattractants, PARC (pulmonary and activation regulated chemokine), macrophage derived chemokine (MDC), and I-309, the MDC receptor CCR4, and T lymphocyte activation markers, CD25, CD26, CD62L, CD71, and CD30, and to correlate them with the counts of CD3+ T lymphocytes in the conjunctiva of patients with VKC. Method: Conjunctival biopsy specimens from 11 patients with active VKC, and eight control subjects were studied by immunohistochemical techniques using a panel of monoclonal and polyclonal antibodies directed against PARC, MDC, I-309, CCR4, CD25, CD26, CD62L, CD71, and CD30. The numbers of positively stained cells were counted. The phenotype of inflammatory cells expressing chemokines was examined by double immunohistochemistry. Results: In the normal conjunctiva, vascular endothelial cells in the upper substantia propria showed weak immunoreactivity for CD26. There was no immunoreactivity for the other antibodies. VKC specimens showed inflammatory cells expressing PARC, MDC, and I-309. The numbers of PARC+ inflammatory cells were higher than the numbers of MDC+ and I-309+ inflammatory cells and the mean values of the three groups differed significantly (17.0 (SD 10.1); 9.5 (9.9), and 4.3 (7.9), respectively, p = 0.0117, ANOVA). The numbers of PARC+ inflammatory cells had the strongest correlation with the numbers of CD3+ T lymphocytes. Few CCR4+ inflammatory cells were observed in only three specimens. Double immunohistochemistry revealed that all inflammatory cells expressing chemokines were CD68+ monocytes/macrophages. The numbers of CD25+ T lymphocytes were higher than the numbers of CD26+, CD62L+, CD71

  13. Neural Correlates of Migration: Activation of Hypothalamic Clock(s) in and out of Migratory State in the Blackheaded Bunting (Emberiza melanocephala)

    PubMed Central

    Rastogi, Ashutosh; Kumari, Yatinesh; Rani, Sangeeta; Kumar, Vinod

    2013-01-01

    Background Many vertebrates distinguish between short and long day lengths using suprachiasmatic nuclei (SCN). In birds particular, the mediobasal hypothalamus (MBH) is suggested to be involved in the timing of seasonal reproduction. This study investigated the response of SCN and MBH to a single long day, and the role of MBH in induction of the migratory phenotype in night-migratory blackheaded buntings. Methodology/Principal Findings Experiment 1 immunocytochemically measured c-fos in the SCN, and c-fos, vasoactive intestinal peptide (VIP) and neuropeptide Y (NPY) in the MBH of buntings exposed to a 20 h light period. Long light period induced significantly stronger c-fos expression, measured as number of c-fos-like immunoreactive (c-fos-lir) cells, in MBH, but not in the SCN. Within the MBH, c-fos-lir cells were significantly denser in the inferior hypothalamic nucleus (IH) and infundibular nucleus (IN), but not in the dorsomedial hypothalamus (DMH). IH and IN also had significantly increased number of VIP and NPY labeled cells. DMH had significantly increased number of VIP labeled cells only. Experiment 2 assayed c-fos, VIP and NPY immunoreactivities in the middle of day and night in the MBH of buntings, after seven long days (day active, non-migratory state) and after seven days of Zugunruhe (night active, migratory state) in long days. In the migratory state, the number of c-fos-lir cells was significantly greater only in DMH; VIP-lir cells were denser in all three MBH regions suggesting enhanced light sensitivity at night. The denser NPY-lir cells only in IN in the non-migratory state were probably due to premigratory hyperphagia. Conclusions/Significance In buntings, SCN may not be involved in the photoperiod-induced seasonal responses. MBH contains the seasonal clock sensitive to day length. VIP and NPY are parts of the neuroendocrine mechanism(s) involved, respectively, in sensing and translating the photoperiodic message in a seasonal response. PMID

  14. Serum Copper as a Marker of Disease Activity in Rheumatoid Arthritis

    PubMed Central

    Chakraborty, Montosh; Changkakati, Rita

    2015-01-01

    Introduction Copper is an important trace element for normal growth and development of the body. It is also essential for maturation of collagen tissues. The purpose of the study was to estimate the serum copper levels in rheumatoid arthritis patients and to see its association with the various parameters of disease activity. Materials and Methods The study was carried out among 50 diagnosed rheumatoid arthritis patients (25 each of active disease & remission patients) and 50 age and sex matched controls. Fasting blood sample was collected for estimation of serum copper, haemoglobin level and ESR in the subjects. Results Mean serum copper level in the case group was found to be significantly higher than that of the control group (p-value<0.001). This increase of copper level was more in active disease than those with remission (p-value < 0.0001). A significant positive correlation was found between serum copper level and ESR, serum copper level and morning stiffness and a negative correlation was found between serum copper level and haemoglobin level in rheumatoid arthritis patients. Conclusion In rheumatoid arthritis patients, serum copper level may be used as an additional biochemical marker for estimation of disease activity. PMID:26816881

  15. Antimicrobial Activity of Euplotin C, the Sesquiterpene Taxonomic Marker from the Marine Ciliate Euplotes crassus

    PubMed Central

    Savoia, Dianella; Avanzini, Claudio; Allice, Tiziano; Callone, Emanuela; Guella, Graziano; Dini, Fernando

    2004-01-01

    Strains of the marine ciliate protist Euplotes crassus produce exclusive terpenoids called euplotins that play an ecological role. Among these derivatives, euplotin C is the main of four secondary metabolites isolated from cultures of this protozoon and represents the sesquiterpene taxonomic marker from E. crassus. Because different terpenoid metabolites of plant origin showed a certain antimicrobial activity, we assessed the compound euplotin C, purified by high-pressure liquid chromatography and solubilized in two solubility enhancers, against the protozoa Leishmania major and Leishmani infantum, the fungus Candida albicans, and nine strains of gram-positive and gram-negative microorganisms. An activity of euplotin C against Leishmania promastigotes was demonstrated (50% lethal doses were 4.6 or 8.1 μg/ml depending on the agent used to solubilize the compound), while the effect was less evident on Candida and nearly absent on bacteria. A nonsignificant cytotoxicity (50% lethal dose, >200 μg/ml) against the J774 cell line was observed. A leishmanicidal activity was also shown by the living, euplotin-producing cells of E. crassus cultured together with promastigotes; this activity increased with time from 10 min to 6 h of incubation. This study provides an initial rationale for the evaluation of euplotin C and other similar natural products as alternative or possibly synergistic compounds for current antiprotozoon chemotherapeutics. PMID:15388442

  16. Expression of the nuclear factor-kappaB and proto-oncogenes c-fos and c-jun are induced by low extracellular Mg2+ in aortic and cerebral vascular smooth muscle cells: possible links to hypertension, atherogenesis, and stroke.

    PubMed

    Altura, Burton M; Kostellow, Adele B; Zhang, Aimin; Li, Wenyan; Morrill, Gene A; Gupta, Raj K; Altura, Bella T

    2003-09-01

    Proto-oncogene (c-fos, c-jun) and nuclear factor-kappa B (NF-kappaB) expression, as well as DNA synthesis, in aortic and cerebral vascular smooth muscle cells (VSMCs) were upregulated by a decrease in extracellular magnesium ions ([Mg2+]o). Upregulation of these transcriptional factors was inversely proportional to the [Mg2+]o and occurred over the pathophysiologic range of serum Mg2+ found in patients presenting with hypertension, ischemic heart disease, and stroke. Removal of extracellular Ca2+ ([Ca2+]o), use of nifedipine or protein kinase C (PKC) inhibitors prevented the upregulation of the proto-oncogenes and DNA synthesis in VSMCs. These data show that [Mg2+]o may be an important, heretofore, overlooked natural modulator of proto-oncogene and NF-kappaB expression in VSMCs and that Ca2+ and PKC may play critical roles in induction of c-fos and c-jun in VSMCs induced by a decrease in [Mg2+]o. These results point to a role for low serum Mg2+ in potential development of hypertension, atherogenesis, vascular disease, and stroke.

  17. The multidrug resistance protein 1: a functionally important activation marker for murine Th1 cells.

    PubMed

    Prechtl, S; Roellinghoff, M; Scheper, R; Cole, S P; Deeley, R G; Lohoff, M

    2000-01-15

    Previously, we described the expression of an energy-dependent pump in resting murine Th2 (but not resting Th1) cells which extruded the fluorescent dye Fluo-3. After stimulation with Ag and APCs, Th1 cells also expressed this pump. Furthermore, expression of the murine multidrug resistance protein 1 (mrp1) correlated with the presence of the pump. In this study, we report that Fluo-3 is indeed transported by murine mrp1 or its human ortholog MRP1, as revealed by transfection of HEK 293 cells with mrp1 or MRP1 cDNA. Like antigenic activation, IL-2 dose-dependently enhanced the Fluo-3-extruding activity in murine Th1 cells. Although TNF-alpha and IL-12 by themselves only weakly enhanced Fluo-3 extrusion, each of them did so in strong synergism with IL-2. An Ab directed against mrp1 was used to quantify the expression of mrp1 protein in T cells at the single-cell level. Like the Fluo-3 pump, mrp1 protein expression was enhanced by IL-2. Immunohistochemical studies using confocal laser microscopy indicated that mrp1 is localized mainly at the plasma membrane. In addition, protein expression of mrp1 was induced in Vbeta8+CD4+ T cells 12 h after in vivo application of Staphylococcal enterotoxin B. Finally, mrp1 was functionally relevant during the activation process of Th1 cells, because T cell activation could be suppressed by exposure of cells to the mrp1 inhibitor MK571. Thus, we present mrp1 as a novel, functionally important activation marker for Th1 cells and short-term in vivo activated CD4+ T cells, whereas its expression seems to be constitutive in Th2 cells.

  18. Study of the cytotoxic activity of Styrax camporum extract and its chemical markers, egonol and homoegonol.

    PubMed

    de Oliveira, Pollyanna Francielli; Damasceno, Jaqueline Lopes; Bertanha, Camila Spereta; Araújo, Alba Regina Barbosa; Pauletti, Patrícia Mendonça; Tavares, Denise Crispim

    2016-08-01

    The benzofuran lignans egonol and homoegonol are found in all species of the genus Styrax. Since natural products are important sources of new anticancer drugs, this study evaluated the cytotoxic activity of a hydroalcoholic extract of the stems of S. camporum (SCHE) and their chemical markers, egonol (EG) and homoegonol (HE), against different tumor cell lines (B16F10, MCF-7, HeLa, HepG2, and MO59J). A normal human cell line (GM07492A) was included. Cytotoxic activity was evaluated at different treatment times (24, 48 and 72 h) using the XTT assay. More effective results were observed after 72 h of treatment. The lowest IC50 values were found for the HepG2 cell line, ranging from 11.2 to 55.0 µg/mL. The combination of EG and HE exerted higher cytotoxic activity than SCHE or treatment with either lignan alone, with the lowest IC50 (13.31 µg/mL) being observed for the MCF-7 line. Furthermore, treatment with these lignans was significantly more cytotoxic for some tumor cell lines compared to the normal cell line, GM07492A, indicating selectivity. These results suggest that these lignans may be used to treat cancer without affecting normal cells.

  19. The Role of Power Doppler Ultrasonography as Disease Activity Marker in Rheumatoid Arthritis

    PubMed Central

    Bhasin, Shaloo; Cheung, Peter P.

    2015-01-01

    Structural damage in rheumatoid arthritis (RA) occurs early if inflammation is not treated promptly. Treatment targeted to reduce inflammation, in particular, that of synovial inflammation in the joints (synovitis), has been recommended as standard treat-to-target recommendations by rheumatologists. The goal is to achieve disease remission (i.e., no disease activity). Several accepted remission criteria have not always equated to the complete absence of true inflammation. Over the last decade, musculoskeletal ultrasonography has been demonstrated to detect subclinical synovitis not appreciated by routine clinical or laboratory assessments, with the Power Doppler modality allowing clinicians to more readily appreciate true inflammation. Thus, targeting therapy to Power Doppler activity may provide superior outcomes compared with treating to clinical targets alone, making it an attractive marker of disease activity in RA. However, more validation on its true benefits such as its benefits to patients in regard to patient related outcomes and issues with standardized training in acquisition and interpretation of power Doppler findings are required. PMID:26063952

  20. Neuronal activity topography parameters as a marker for differentiating vascular cognitive impairment in carotid stenosis.

    PubMed

    Shibata, Takashi; Musha, Toshimitu; Kubo, Michiya; Horie, Yukio; Asahi, Takashi; Kuwayama, Naoya; Kuroda, Satoshi; Hayashi, Karin; Kobayashi, Yohei; Tanaka, Mieko; Matsuzaki, Haruyasu; Asada, Takashi

    2014-10-01

    Previously, we reported on the differentiation between patients with Alzheimer disease and normal controls using a quantitative electroencephalographic technique called neuronal activity topography (NAT). In this technique, cerebral neuronal activities are characterized by the signal intensity and coherence (sNAT and vNAT, respectively). In the present study, we examined 47 patients with vascular cognitive impairment in carotid stenosis and 52 normal controls. All subjects underwent electroencephalography in a resting state with closed eyes for 5 minutes. Electroencephalographic markers of the differential likelihood, that is, the sensitivity-versus-specificity characteristics, sL(x:VCI-NLc) and vL(x:VCI-NLc), were assessed with neuronal activity topography and were compared between the 2 groups. sL(x:VCI-NLc) and vL(x:VCI-NLc) crossed each other at a cutoff value of the differential likelihood. Separation of the patients and controls was made with a sensitivity of 92% and 88%, as well as a false-positive rate of 8% and 12% for sL(x:VCI-NLc) and vL(x:VCI-NLc), respectively. Using sNAT, we accurately differentiated 92% patients with vascular cognitive impairment. We recommend that sNAT, rather than vNAT, should be used in detecting vascular cognitive impaired patients. PMID:25174560

  1. Subchronic exposure to leachate activates key markers linked with neurological disorder in Wistar male rat.

    PubMed

    Akintunde, J K; Oboh, G

    2015-12-01

    The linking of various environmental chemicals exposure to neurodegenerative disorders is current. This study was undertaken to elucidate the toxic effects and the underlying biochemical mechanism of leachate obtained from Elewi Odo municipal battery recycling site (EOMABRL) using key markers of neuronal damage in rat via an oral route. Analysis of the concentrations of heavy metals showed that lead, cadmium, nickel, chromium, manganese, and iron were higher than the acceptable limits set by the regulatory authority-the World Health Organization. Whereas, copper, zinc, and cobalt were lower than permissible limits. EOMABRL was administered at 0, 20, 40, 60, 80, and 100% concentrations to adult male rats for 60 days. An in vitro study was also carried out in the cerebellum to assess cholinesterase biochemistry assays. Following exposure, brain was collected to determine the antioxidant status. EOMABRL administration significantly increased superoxide dismutase (SOD) and catalase (CAT) activities, and a sequential decrease in reduced glutathione (GSH) level with a concomitant increase in the accumulation of hydrogen peroxide (H2O2) and malondialdehyde (MDA) level was observed, when compared with the control. The treated rat had a significant (P < 0.05) increase in the activities of acetycholinesterase (AChE) and butyrylcholinesterase (BuChE). Taken together, these findings conclude that some possible mechanisms by which EOMABRL elicits neuronal disorder in male rat could be through the activation of AChE and BuChE and induction of oxidative stress with necrosis of neuronal cells. PMID:26362636

  2. Markers of thrombogenesis are activated in unmedicated patients with acute psychosis: a matched case control study

    PubMed Central

    2011-01-01

    Background Antipsychotic treatment has been repeatedly found to be associated with an increased risk for venous thromboembolism in schizophrenia. The extent to which the propensity for venous thromboembolism is linked to antipsychotic medication alone or psychosis itself is unclear. The objective of this study was to determine whether markers of thrombogenesis are increased in psychotic patients who have not yet been treated with antipsychotic medication. Methods We investigated the plasma levels of markers indicating activation of coagulation (D-dimers and Factor VIII) and platelets (soluble P-selectin, sP-selectin) in an antipsychotic-naive group of fourteen men and eleven women with acute psychosis (age 29.1 ± 8.3 years, body mass index 23.6 ± 4.7), and twenty-five healthy volunteers were matched for age, gender and body mass index. Results D-dimers (median 0.38 versus 0.19 mg/l, mean 1.12 ± 2.38 versus 0.28 ± 0.3 mg/l; P = 0.003) and sP-selectin (median 204.1 versus 112.4 ng/ml, mean 209.9 ± 124 versus 124.1 ± 32; P = 0.0005) plasma levels were significantly increased in the group of patients with acute psychosis as compared with healthy volunteers. We found a trend (median 148% versus 110%, mean 160 ± 72.5 versus 123 ± 62.5; P = 0.062) of increased plasma levels of factor VIII in psychotic patients as compared with healthy volunteers. Conclusions The results suggest that at least a part of venous thromboembolic events in patients with acute psychosis may be induced by pathogenic mechanisms related to psychosis rather than by antipsychotic treatment. Finding an exact cause for venous thromboembolism in psychotic patients is necessary for its effective treatment and prevention. PMID:21199572

  3. Blood acylpeptide hydrolase activity is a sensitive marker for exposure to some organophosphate toxicants.

    PubMed

    Quistad, Gary B; Klintenberg, Rebecka; Casida, John E

    2005-08-01

    Acylpeptide hydrolase (APH) unblocks N-acetyl peptides. It is a major serine hydrolase in rat blood, brain, and liver detected by derivatization with (3)H-diisopropyl fluorophosphate (DFP) or a biotinylated fluorophosphonate. Although APH does not appear to be a primary target of acute poisoning by organophosphorus (OP) compounds, the inhibitor specificity of this secondary target is largely unknown. This study fills the gap and emphasizes blood APH as a potential marker of OP exposure. The most potent in vitro inhibitors for human erythrocyte and mouse brain APH are DFP (IC(50) 11-17 nM), chlorpyrifos oxon (IC(50) 21-71 nM), dichlorvos (IC(50) 230-560 nM), naled (IC(50) 370-870 nM), and their analogs with modified alkyl substituents. (3)H-diisopropyl fluorophosphate is a potent inhibitor of mouse blood and brain APH in vivo (ED(50) 0.09-0.2 mg/kg and 0.02-0.03 mg/l for ip and vapor exposure, respectively). Mouse blood and brain APH and blood butyrylcholinesterase (BChE) are of similar sensitivity to DFP in vitro and in vivo (ip and vapor exposure), but APH inhibition is much more persistent in vivo (still >80% inhibition after 4 days). The inhibitory potency of OP pesticides in vivo in mice varies from APH selective (dichlorvos, naled, and trichlorfon), to APH and BChE selective (profenofos and tribufos), to ChE selective or nonselective (many commercial insecticides). Sarin administered ip at a lethal dose to guinea pigs inhibits blood acetylcholinesterase and BChE completely but erythrocyte APH only partially. Blood APH activity is therefore a sensitive marker for exposure to some but not all OP pesticides and chemical warfare agents. PMID:15888665

  4. The effects of Lycii Radicis Cortex on RANKL-induced osteoclast differentiation and activation in RAW 264.7 cells

    PubMed Central

    KIM, JAE-HYUN; KIM, EUN-YOUNG; LEE, BINA; MIN, JU-HEE; SONG, DEA-UK; LIM, JEONG-MIN; EOM, JI WHAN; YEOM, MIJUNG; JUNG, HYUK-SANG; SOHN, YOUNGJOO

    2016-01-01

    Post-menopausal osteoporosis is a serious age-related disease. After the menopause, estrogen deficiency is common, and excessive osteoclast activity causes osteoporosis. Osteoclasts are multinucleated cells generated from the differentiation of monocyte/macrophage precursor cells such as RAW 264.7 cells. The water extract of Lycii Radicis Cortex (LRC) is made from the dried root bark of Lycium chinense Mill. and is termed 'Jigolpi' in Korea. Its effects on osteoclastogenesis and post-menopausal osteoporosis had not previously been tested. In the present study, the effect of LRC on receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclast differentiation was demonstrated using a tartrate-resistant acid phosphatase (TRAP) assay and pit formation assay. Moreover, in order to analyze molecular mechanisms, we studied osteoclastogenesis-related markers such as nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), c-Fos, receptor activator of NF-κB (RANK), TRAP, cathepsin K (CTK), matrix metallopeptidase-9 (MMP-9), calcitonin receptor (CTR) and carbonic anhydrase II (CAII) using RT-qPCR and western blot analysis. Additionally, we also determined the effect of LRC on an ovariectomized (OVX) rat model. We noted that LRC inhibited RANKL-induced osteoclast differentiation via suppressing osteoclastogenesis-related markers. It also inhibited osteoporosis in the OVX rat model by decreasing loss of bone density and trabecular area. These results suggest that LRC exerts a positive effect on menopausal osteoporosis. PMID:26848104

  5. Specific marker of feigned memory impairment: The activation of left superior frontal gyrus.

    PubMed

    Chen, Zi-Xiang; Xue, Li; Liang, Chun-Yu; Wang, Li-Li; Mei, Wei; Zhang, Qiang; Zhao, Hu

    2015-11-01

    Faking memory impairment means normal people complain lots of memory problems without organic damage in forensic assessments. Using alternative forced-choice paradigm, containing digital or autobiographical information, previous neuroimaging studies have indicated that faking memory impairment could cause the activation in the prefrontal and parietal regions, and might involve a fronto-parietal-subcortical circuit. However, it is still unclear whether different memory types have influence on faking or not. Since different memory types, such as long-term memory (LTM) and short-term memory (STM), were found supported by different brain areas, we hypothesized that feigned STM or LTM impairment had distinct neural activation mapping. Besides that, some common neural correlates may act as the general characteristic of feigned memory impairment. To verify this hypothesis, the functional magnetic resonance imaging (fMRI) combined with an alternative word forced-choice paradigm were used in this study. A total of 10 right-handed participants, in this study, had to perform both STW and LTM tasks respectively under answering correctly, answering randomly and feigned memory impairment conditions. Our results indicated that the activation of the left superior frontal gyrus and the left medial frontal gyrus was associated with feigned LTM impairment, whereas the left superior frontal gyrus, the left precuneus and the right anterior cingulate cortex (ACC) were highly activated while feigning STM impairment. Furthermore, an overlapping was found in the left superior frontal gyrus, and it suggested that the activity of the left superior frontal gyrus might be acting as a specific marker of feigned memory impairment. PMID:26479324

  6. Procoagulant activity may be a marker of the malignant phenotype in experimental prostate cancer.

    PubMed Central

    Adamson, A. S.; Luckert, P.; Pollard, M.; Snell, M. E.; Amirkhosravi, M.; Francis, J. L.

    1994-01-01

    Using a one-stage kinetic chromogenic assay, we studied the procoagulant activity (PCA) of prostatic tissue in an experimental model of prostate cancer in the rat. PCA was present in homogenates of rat prostate glands containing either benign or malignant tumours. The procoagulant activated factor X directly and was provisionally characterised as a tissue factor-factor VIIa complex. There was no significant differences in PCA between control rats and rats exposed to carcinogens that did not develop tumour. Levels in rats that developed tumours were significantly higher (P < 0.01) than all other groups and there was a positive correlation between tumour weight and PCA (r = 0.85, P < 0.001). Furthermore, prostatic PCA levels were higher in the metastasis (P < 0.02). We conclude that PCA reflects the malignant phenotype in this animals, the PCA of the primary tumour was compared with that of the corresponding secondary deposit and levels were higher in the metastasis (P < 0.02). We conclude that PCA reflects the malignant phenotype in this model of experimental prostate cancer and suggest that this parameter is worth evaluating as a potential tumour marker in the human disease. PMID:8297726

  7. APOE genotype alters glial activation and loss of synaptic markers in mice.

    PubMed

    Zhu, Yuangui; Nwabuisi-Heath, Evelyn; Dumanis, Sonya B; Tai, Leon M; Yu, Chunjiang; Rebeck, G William; LaDu, Mary Jo

    2012-04-01

    The ε4 allele of the Apolipoprotein E (APOE) gene is the strongest genetic risk factor for late-onset Alzheimer's disease (AD), and affects clinical outcomes of chronic and acute brain damages. The mechanisms by which apoE affect diverse diseases and disorders may involve modulation of the glial response to various types of brain damage. We examined glial activation in a mouse model where each of the human APOE alleles are expressed under the endogenous mouse APOE promoter, as well as in APOE knock-out mice. APOE4 mice displayed increased glial activation in response to intracerebroventricular lipopolysaccharide (LPS) compared to APOE2 and APOE3 mice by several measures. There were higher levels of microglia/macrophage, astrocytes, and invading T-cells after LPS injection in APOE4 mice. APOE4 mice also displayed greater and more prolonged increases of cytokines (IL-1β, IL-6, TNF-α) than APOE2 and APOE3 mice. We found that APOE4 mice had greater synaptic protein loss after LPS injection, as measured by three markers: PSD-95, drebin, and synaptophysin. In all assays, APOE knock-out mice responded similar to APOE4 mice, suggesting that the apoE4 protein may lack anti-inflammatory characteristics of apoE2 and apoE3. Together, these findings demonstrate that APOE4 predisposes to inflammation, which could contribute to its association with Alzheimer's disease and other disorders.

  8. Cancer procoagulant: a factor X activator, tumor marker and growth factor from malignant tissue.

    PubMed

    Gordon, S G; Mielicki, W P

    1997-03-01

    Hemostatic abnormalities associated with malignant disease led to the search for and discovery of a proteolytic enzyme that activated factor X in the blood coagulation cascade. It was named cancer procoagulant (CP). CP is a cysteine proteinase that is found in malignant and fetal (human amnion-chorion) tissue; it has not been found in normally differentiated tissue. It is a calcium-dependent, Mn2+ stimulated enzyme that has enhanced activity and inhibition in a reduced environment. This review presents a complete compilation and discussion of the known chemical and enzymatic characteristics of CP as well as many purification and assay procedures. Several unique properties of these procedures are described. Some problems and controversies are highlighted in each of the sections. An immunoassay for CP as a tumor marker and some of its potential applications in the diagnosis and monitoring of cancer are reviewed. Some therapeutic implications of CP are noted in light of the observation that antibodies to CP block the metastatic seeding of lung colonies in vivo and diminish the viability of tumor cells in vitro. Finally, comments about the relationship between tissue factor and CP in the malignant cells are provided.

  9. BACE1 activity in cerebrospinal fluid and its relation to markers of AD pathology.

    PubMed

    Mulder, Sandra D; van der Flier, Wiesje M; Verheijen, Jan H; Mulder, Cees; Scheltens, Philip; Blankenstein, Marinus A; Hack, C Erik; Veerhuis, Robert

    2010-01-01

    Several studies have shown that reduced amyloid-beta 1-42 (Abeta(42)) and increased tau levels in cerebrospinal fluid (CSF) reflect increased Alzheimer's disease (AD) pathology in the brain. beta-site APP cleaving enzyme (BACE1) is thought to be the major beta-secretase involved in Abeta production in the brain, and therefore we investigated the relation between BACE1 activity and CSF markers Abeta(40), Abeta(42), total tau (t-tau), and tau phosphorylated at threonine 181 (p-tau) in CSF of control (n=12), mild cognitive impairment (n=18), and AD (n=17) subjects. Patients were classified according to their Abeta(42), t-tau, and p-tau CSF biomarker levels, with either an AD-like biomarker profile (two or three biomarkers abnormal: Abeta(42) < 495 pg/ml in combination with t-tau > 356 pg/ml, and/or p-tau > 54 pg/ml) or a normal biomarker profile (activity levels, compared to patients with a normal biomarker profile (20 pg/ml and 16 pg/ml respectively; p=0.01), when controlled for age and gender. In the whole sample, BACE1 activity correlated with CSF levels of Abeta(40), t-tau, and p-tau (r=0.38, r=0.63, and r=0.65; all p< 0.05), but not with Abeta(42). These data suggest that increased BACE1 activity in CSF relates to AD pathology in the brain.

  10. BACE1 activity in cerebrospinal fluid and its relation to markers of AD pathology.

    PubMed

    Mulder, Sandra D; van der Flier, Wiesje M; Verheijen, Jan H; Mulder, Cees; Scheltens, Philip; Blankenstein, Marinus A; Hack, C Erik; Veerhuis, Robert

    2010-01-01

    Several studies have shown that reduced amyloid-beta 1-42 (Abeta(42)) and increased tau levels in cerebrospinal fluid (CSF) reflect increased Alzheimer's disease (AD) pathology in the brain. beta-site APP cleaving enzyme (BACE1) is thought to be the major beta-secretase involved in Abeta production in the brain, and therefore we investigated the relation between BACE1 activity and CSF markers Abeta(40), Abeta(42), total tau (t-tau), and tau phosphorylated at threonine 181 (p-tau) in CSF of control (n=12), mild cognitive impairment (n=18), and AD (n=17) subjects. Patients were classified according to their Abeta(42), t-tau, and p-tau CSF biomarker levels, with either an AD-like biomarker profile (two or three biomarkers abnormal: Abeta(42) < 495 pg/ml in combination with t-tau > 356 pg/ml, and/or p-tau > 54 pg/ml) or a normal biomarker profile (activity levels, compared to patients with a normal biomarker profile (20 pg/ml and 16 pg/ml respectively; p=0.01), when controlled for age and gender. In the whole sample, BACE1 activity correlated with CSF levels of Abeta(40), t-tau, and p-tau (r=0.38, r=0.63, and r=0.65; all p< 0.05), but not with Abeta(42). These data suggest that increased BACE1 activity in CSF relates to AD pathology in the brain. PMID:20164582

  11. Tissue factor activity. A marker of alveolar macrophage maturation in rabbits. Effects of granulomatous pneumonitis.

    PubMed Central

    Rothberger, H; McGee, M P; Lee, T K

    1984-01-01

    amounts of tissue factor activity due to the presence of large numbers of mature alveolar macrophage forms that had high levels of the procoagulant. Thus, tissue factor activity in alveolar macrophages is a marker of cellular maturation in vivo and in vitro. Increased amounts of this initiator of the extrinsic clotting pathway, as found in alveolar macrophage populations from animals with granulomatous pneumonitis induced by BCG hypersensitivity, suggest that alveolar macrophage tissue factor may contribute to the pathology of immune lung diseases. PMID:6373826

  12. Odours stimulate neuronal activity in the dorsolateral area of the hippocampal formation during path integration.

    PubMed

    Jorge, P E; Phillips, J B; Gonçalves, A; Marques, P A M; Nĕmec, P

    2014-05-22

    The dorsolateral area of the hippocampal formation of birds is commonly assumed to play a central role in processing information needed for geographical positioning and homing. Previous work has interpreted odour-induced activity in this region as evidence for an 'olfactory map'. Here, we show, using c-Fos expression as a marker, that neuronal activation in the dorsolateral area of the hippocampal formation of pigeons is primarily a response to odour novelty, not to the spatial distribution of odour sources that would be necessary for an olfactory map. Pigeons exposed to odours had significantly more neurons activated in this area of the brain than pigeons exposed to filtered air with odours removed. This increased activity was observed only in response to unfamiliar odours. No change in activity was observed when pigeons were exposed to home odours. These findings are consistent with non-home odours activating non-olfactory components of the pigeon's navigation system. The pattern of neuronal activation in the triangular and dorsomedial areas of the hippocampal formation was, by contrast, consistent with the possibility that odours play a role in providing spatial information. PMID:24671977

  13. Odours stimulate neuronal activity in the dorsolateral area of the hippocampal formation during path integration

    PubMed Central

    Jorge, P. E.; Phillips, J. B.; Gonçalves, A.; Marques, P. A. M.; Nĕmec, P.

    2014-01-01

    The dorsolateral area of the hippocampal formation of birds is commonly assumed to play a central role in processing information needed for geographical positioning and homing. Previous work has interpreted odour-induced activity in this region as evidence for an ‘olfactory map’. Here, we show, using c-Fos expression as a marker, that neuronal activation in the dorsolateral area of the hippocampal formation of pigeons is primarily a response to odour novelty, not to the spatial distribution of odour sources that would be necessary for an olfactory map. Pigeons exposed to odours had significantly more neurons activated in this area of the brain than pigeons exposed to filtered air with odours removed. This increased activity was observed only in response to unfamiliar odours. No change in activity was observed when pigeons were exposed to home odours. These findings are consistent with non-home odours activating non-olfactory components of the pigeon's navigation system. The pattern of neuronal activation in the triangular and dorsomedial areas of the hippocampal formation was, by contrast, consistent with the possibility that odours play a role in providing spatial information. PMID:24671977

  14. Plasminogen activator inhibitor-1 as an early potential diagnostic marker for Alzheimer's disease.

    PubMed

    Oh, Jaeho; Lee, Hye-Ja; Song, Ji-Hyun; Park, Sang Ick; Kim, Hyunyoung

    2014-12-01

    Alzheimer's disease (AD) is the most common cause of dementia in individuals over 65 years old. However, to date, no useful early diagnostic markers for AD have been discovered. We examined the utility of plasminogen activator inhibitor-1 (PAI-1) as a potential biomarker for AD in subjects with mild cognitive impairment (MCI) or AD, as well as in nondemented healthy controls. Plasma PAI-1 levels were measured by enzyme-linked immunosorbent assays (ELISAs) in samples collected from 76 patients with MCI, 74 patients with AD, and 76 healthy controls. Our results show that plasma PAI-1 levels gradually increased as dementia progressed. The mean levels of plasma PAI-1 in patients with MCI and AD patients were significantly higher than those of in healthy controls. Consistently, neuropsychological examination (e.g., MMSE, CDR) also demonstrated significant correlations between the plasma PAI-1 levels and cognitive function. In conclusion, the level of plasma PAI-1 is a potential biomarker for the early detection and diagnosis of AD.

  15. ADENOSINE DEAMINASE ACTIVITY AND SERUM C-REACTIVE PROTEIN AS PROGNOSTIC MARKERS OF CHAGAS DISEASE SEVERITY.

    PubMed

    Bravo-Tobar, Iván Darío; Nello-Pérez, Carlota; Fernández, Alí; Mogollón, Nora; Pérez, Mary Carmen; Verde, Juan; Concepción, Juan Luis; Rodriguez-Bonfante, Claudina; Bonfante-Cabarcas, Rafael

    2015-01-01

    Chagas disease is a public health problem worldwide. The availability of diagnostic tools to predict the development of chronic Chagas cardiomyopathy is crucial to reduce morbidity and mortality. Here we analyze the prognostic value of adenosine deaminase serum activity (ADA) and C-reactive protein serum levels (CRP) in chagasic individuals. One hundred and ten individuals, 28 healthy and 82 chagasic patients were divided according to disease severity in phase I (n = 35), II (n = 29), and III (n = 18). A complete medical history, 12-lead electrocardiogram, chest X-ray, and M-mode echocardiogram were performed on each individual. Diagnosis of Chagas disease was confirmed by ELISA and MABA using recombinant antigens; ADA was determined spectrophotometrically and CRP by ELISA. The results have shown that CRP and ADA increased linearly in relation to disease phase, CRP being significantly higher in phase III and ADA at all phases. Also, CRP and ADA were positively correlated with echocardiographic parameters of cardiac remodeling and with electrocardiographic abnormalities, and negatively with ejection fraction. CRP and ADA were higher in patients with cardiothoracic index ≥ 50%, while ADA was higher in patients with ventricular repolarization disturbances. Finally, CRP was positively correlated with ADA. In conclusion, ADA and CRP are prognostic markers of cardiac dysfunction and remodeling in Chagas disease.

  16. ADENOSINE DEAMINASE ACTIVITY AND SERUM C-REACTIVE PROTEIN AS PROGNOSTIC MARKERS OF CHAGAS DISEASE SEVERITY

    PubMed Central

    BRAVO-TOBAR, Iván Darío; NELLO-PÉREZ, Carlota; FERNÁNDEZ, Alí; MOGOLLÓN, Nora; PÉREZ, Mary Carmen; VERDE, Juan; CONCEPCIÓN, Juan Luis; RODRIGUEZ-BONFANTE, Claudina; BONFANTE-CABARCAS, Rafael

    2015-01-01

    SUMMARY Chagas disease is a public health problem worldwide. The availability of diagnostic tools to predict the development of chronic Chagas cardiomyopathy is crucial to reduce morbidity and mortality. Here we analyze the prognostic value of adenosine deaminase serum activity (ADA) and C-reactive protein serum levels (CRP) in chagasic individuals. One hundred and ten individuals, 28 healthy and 82 chagasic patients were divided according to disease severity in phase I (n = 35), II (n = 29), and III (n = 18). A complete medical history, 12-lead electrocardiogram, chest X-ray, and M-mode echocardiogram were performed on each individual. Diagnosis of Chagas disease was confirmed by ELISA and MABA using recombinant antigens; ADA was determined spectrophotometrically and CRP by ELISA. The results have shown that CRP and ADA increased linearly in relation to disease phase, CRP being significantly higher in phase III and ADA at all phases. Also, CRP and ADA were positively correlated with echocardiographic parameters of cardiac remodeling and with electrocardiographic abnormalities, and negatively with ejection fraction. CRP and ADA were higher in patients with cardiothoracic index ≥ 50%, while ADA was higher in patients with ventricular repolarization disturbances. Finally, CRP was positively correlated with ADA. In conclusion, ADA and CRP are prognostic markers of cardiac dysfunction and remodeling in Chagas disease. PMID:26603224

  17. Role of sex hormones in hypercapnia-induced activation of the locus coeruleus in female and male rats.

    PubMed

    de Carvalho, D; Marques, D A; Bernuci, M P; Leite, C M; Araújo-Lopes, R; Anselmo-Franci, J; Bícego, K C; Szawka, R E; Gargaglioni, L H

    2016-01-28

    The locus coeruleus (LC) has been suggested as a CO2 chemoreceptor site in mammals. Most of the studies involving the role of the LC in hypercapnic ventilatory responses have been performed in males. Since ovarian steroids modulate the activity of LC neurons and females have a different respiratory response to CO2 than males, we evaluated the activity of LC noradrenergic neurons during normocapnia and hypercapnia in female and male rats with distinct sex hormone levels. Ovariectomized (OVX), estradiol (E2)-treated ovariectomized (OVX+E2) and female rats on the diestrous day of the estrous cycle were evaluated. Concurrently, males were investigated as gonad-intact, orchidectomized (ORX), testosterone (T)-treated ORX (ORX+T), and E2-treated ORX (ORX+E2). Activation of LC neurons was determined by double-label immunohistochemistry to c-Fos and tyrosine hydroxylase (TH). Hypercapnia induced by 7% CO2 increased the number of c-Fos/TH-immunoreactive (ir) neurons in the LC of all groups when compared to air exposure. Hypercapnia-induced c-Fos expression did not differ between diestrous females and intact male rats. In the OVX+E2 group, there was attenuation in the c-Fos expression during normocapnia compared with OVX rats, but CO2 responsiveness was not altered. Moreover, in ORX rats, neither T nor E2 treatments changed c-Fos expression in LC noradrenergic neurons. Thus, in female rats, E2 reduces activation of LC noradrenergic neurons, whereas in males, sex hormones do not influence the LC activity.

  18. Effect of nor-trimebutine on neuronal activation induced by a noxious stimulus or an acute colonic inflammation in the rat.

    PubMed

    Sinniger, Valérie; Mouchet, Patrick; Bonaz, Bruno

    2005-10-21

    Nor-trimebutine is the main metabolite of trimebutine that is used in the treatment of patients with irritable bowel syndrome. Nor-trimebutine has a blocking activity on sodium channels and a potent local anesthetic effect. These properties were used to investigate the effect of nor-trimebutine on spinal neuronal activation induced by models of noxious somato-visceral stimulus and acute colonic inflammation. Nor-trimebutine was administered in rats either subcutaneously 30 min before intraperitoneal administration of acetic acid or intracolonically 30 min before intracolonic infusion of trinitrobenzenesulfonic acid. Abdominal contractions were counted for 1 h as a marker of abdominal pain. c-fos expression was used as a marker of neuronal activation and revealed by immunohistochemistry 1h after intraperitoneal acetic acid injection and 2 h after colonic inflammation. Nor-trimebutine decreased Fos expression in the thoraco-lumbar (peritoneal irritation) and lumbo-sacral (colonic inflammation) spinal cord in laminae I, IIo V, VII and X. This effect was also observed in the sacral parasympathetic nucleus after colonic inflammation. Nor-trimebutine induced a significant decrease of abdominal contractions following intraperitoneal acetic acid injection. These data may explain the effectiveness of trimebutine in the therapy of abdominal pain in the irritable bowel syndrome. PMID:15978629

  19. Exposure to inhaled particulate matter activates early markers of oxidative stress, inflammation and unfolded protein response in rat striatum

    PubMed Central

    Guerra, R.; Vera-Aguilar, E.; Uribe-Ramirez, M.; Gookin, G.; Camacho, J.; Osornio-Vargas, A.R.; Mugica-Alvarez, V.; Angulo-Olais, R.; Campbell, A.; Froines, J.; Kleinman, T.M.; De Vizcaya-Ruiz, A.

    2014-01-01

    To study central nervous system airborne PM related subchronic toxicity, SD male rats were exposed for eight weeks to either coarse (32 µg/m3), fine (178 µg/m3) or ultrafine (107 µg/m3) concentrated PM or filtered air. Different brain regions (olfactory bulb, frontal cortex, striatum and hippocampus), were harvested from the rats following exposure to airborne PM. Subsequently, prooxidant (HO-1 and SOD-2), and inflammatory markers (IL-1β and TNFα), apoptotic (caspase 3), and unfolded protein response (UPR) markers (XBP-1S and BiP), were also measured using real-time PCR. Activation of nuclear transcription factors Nrf-2 and NF-κB, associated with antioxidant and inflammation processes, respectively, were also analyzed by GSMA. Ultrafine PM increased HO-1 and SOD-2 mRNA levels in the striatum and hippocampus, in the presence of Nrf-2 activation. Also, ultrafine PM activated NF-κB and increased IL-1β and TNFα in the striatum. Activation of UPR was observed after exposure to coarse PM through the increment of XBP-1S and BiP in the striatum, accompanied by an increase in antioxidant response markers HO-1 and SOD-2. Our results indicate that exposure to different size fractions of PM may induce physiological changes (in a neuroanatomical manner) in the central nervous system (CNS), specifically within the striatum, where inflammation, oxidative stress and UPR signals were effectively activated. PMID:23892126

  20. Stability of cytokines, chemokines and soluble activation markers in unprocessed blood stored under different conditions

    PubMed Central

    Aziz, Najib; Detels, Roger; Quint, Joshua J.; Li, Qian; Gjertson, David; Butch, Anthony W.

    2016-01-01

    Background Biomarkers such as cytokines, chemokines, and soluble activation markers can be unstable when processing of blood is delayed. The stability of various biomarkers in serum and plasma was investigated when unprocessed blood samples were stored for up to 24 h at room and refrigerator temperature. Methods Blood was collected from 16 healthy volunteers. Unprocessed serum, EDTA and heparinized blood was stored at room (20–25 °C) and refrigerator temperature (4–8 °C) for 0.5, 2, 4, 6, 8, and 24 h after collection before centrifugation and separation of serum and plasma. Samples were batch tested for various biomarkers using commercially available immunoassays. Statistically significant changes were determined using the generalized estimating equation. Results IFN-γ, sIL-2Rα, sTNF-RII and β2-microglobulin were stable in unprocessed serum, EDTA and heparinized blood samples stored at either room or refrigerator temperature for up to 24 h. IL-6, TNF-α, MIP-1β and RANTES were unstable in heparinized blood at room temperature; TNF-α, and MIP-1β were unstable in unprocessed serum at room temperature; IL-12 was unstable in unprocessed serum at refrigerator temperature; and neopterin was unstable in unprocessed EDTA blood at room temperature. IL-1ra was stable only in unprocessed serum at room temperature. Conclusion All the biomarkers studied, with the exception of IL-1ra, were stable in unprocessed EDTA blood stored at refrigerator temperature for 24 h. This indicates that blood for these biomarkers should be collected in EDTA and if delays in processing are anticipated the unseparated blood should be stored at refrigerator temperature until processing. PMID:27208752

  1. CALHM1 deficiency impairs cerebral neuron activity and memory flexibility in mice

    PubMed Central

    Vingtdeux, Valérie; Chang, Eric H.; Frattini, Stephen A.; Zhao, Haitian; Chandakkar, Pallavi; Adrien, Leslie; Strohl, Joshua J.; Gibson, Elizabeth L.; Ohmoto, Makoto; Matsumoto, Ichiro; Huerta, Patricio T.; Marambaud, Philippe

    2016-01-01

    CALHM1 is a cell surface calcium channel expressed in cerebral neurons. CALHM1 function in the brain remains unknown, but recent results showed that neuronal CALHM1 controls intracellular calcium signaling and cell excitability, two mechanisms required for synaptic function. Here, we describe the generation of Calhm1 knockout (Calhm1−/−) mice and investigate CALHM1 role in neuronal and cognitive functions. Structural analysis revealed that Calhm1−/− brains had normal regional and cellular architecture, and showed no evidence of neuronal or synaptic loss, indicating that CALHM1 deficiency does not affect brain development or brain integrity in adulthood. However, Calhm1−/− mice showed a severe impairment in memory flexibility, assessed in the Morris water maze, and a significant disruption of long-term potentiation without alteration of long-term depression, measured in ex vivo hippocampal slices. Importantly, in primary neurons and hippocampal slices, CALHM1 activation facilitated the phosphorylation of NMDA and AMPA receptors by protein kinase A. Furthermore, neuronal CALHM1 activation potentiated the effect of glutamate on the expression of c-Fos and C/EBPβ, two immediate-early gene markers of neuronal activity. Thus, CALHM1 controls synaptic activity in cerebral neurons and is required for the flexible processing of memory in mice. These results shed light on CALHM1 physiology in the mammalian brain. PMID:27066908

  2. Microparticles reveal cell activation during IVF - a possible early marker of a prothrombotic state during the first trimester.

    PubMed

    Olausson, Nina; Mobarrez, Fariborz; Wallen, Håkan; Westerlund, Eli; Hovatta, Outi; Henriksson, Peter

    2016-08-30

    Cell-derived microparticles (MPs) are known to be elevated in a number of diseases related to arterial and venous thromboembolism (VTE), such as acute myocardial infarction, VTE (deep-vein thrombosis and pulmonary embolism) and peripheral arterial disease. IVF-associated pregnancies have previously been shown to be associated with an increased incidence of VTE, mechanisms behind being unknown and sparsely studied. Our objective was to assess cell activation during IVF through analysis of MP levels and phenotype following ovarian stimulation. Thirty-one women undergoing IVF were included and blood samples were collected at down regulation of oestrogen and at high level stimulation with 10- to 100-fold increased endogenous oestrogen levels. MPs were analysed by flow cytometry and phenotyped according to size and protein expression. We found that overall phosphatidylserine positive platelet-, endothelial- and monocyte-derived MPs significantly increased following ovarian stimulation with increased levels of platelet activation markers CD40 ligand and P-selectin. Furthermore, there was an increase in endothelial-derived MPs exposing activation marker E-selectin and monocyte-derived MPs, while neutrophil-derived MPs decreased slightly. In conclusion we found a major increase in MPs and markers indicating cell activation in parallel with the profound oestrogen boost during IVF. To assess whether these changes in MPs are associated with thromboembolic events requires extended longitudinal studies.

  3. Microparticles reveal cell activation during IVF - a possible early marker of a prothrombotic state during the first trimester.

    PubMed

    Olausson, Nina; Mobarrez, Fariborz; Wallen, Håkan; Westerlund, Eli; Hovatta, Outi; Henriksson, Peter

    2016-08-30

    Cell-derived microparticles (MPs) are known to be elevated in a number of diseases related to arterial and venous thromboembolism (VTE), such as acute myocardial infarction, VTE (deep-vein thrombosis and pulmonary embolism) and peripheral arterial disease. IVF-associated pregnancies have previously been shown to be associated with an increased incidence of VTE, mechanisms behind being unknown and sparsely studied. Our objective was to assess cell activation during IVF through analysis of MP levels and phenotype following ovarian stimulation. Thirty-one women undergoing IVF were included and blood samples were collected at down regulation of oestrogen and at high level stimulation with 10- to 100-fold increased endogenous oestrogen levels. MPs were analysed by flow cytometry and phenotyped according to size and protein expression. We found that overall phosphatidylserine positive platelet-, endothelial- and monocyte-derived MPs significantly increased following ovarian stimulation with increased levels of platelet activation markers CD40 ligand and P-selectin. Furthermore, there was an increase in endothelial-derived MPs exposing activation marker E-selectin and monocyte-derived MPs, while neutrophil-derived MPs decreased slightly. In conclusion we found a major increase in MPs and markers indicating cell activation in parallel with the profound oestrogen boost during IVF. To assess whether these changes in MPs are associated with thromboembolic events requires extended longitudinal studies. PMID:27412479

  4. Immunohistochemical evaluation of stem cell markers and signal transducer and activator of transcription 6 (STAT6) in solitary fibrous tumors.

    PubMed

    Wang, Chengyan; Qi, Yan; Liu, Ruixue; Lan, Jiaojiao; Zhou, Yang; Ju, Xinxin; Chen, Dongdong; Zou, Hong; Li, Shugang; Hu, Jianming; Zhao, Jin; Shen, Yaoyuan; Sun, Zhenzhu; Pang, Lijuan; Li, Feng

    2015-01-01

    Solitary fibrous tumors (SFT) are fibroblastic, ubiquitous mesenchymal tumors. Although several SFT studies have been conducted, the cell of origin of SFT remains controversial and reliable diagnostic markers are needed for SFT identification for proper prognosis and therapeutics. To analyze the immunophenotype of SFT for the identification of specific diagnostic markers and the cell of origin of this tumor, we performed an immunohistochemical study of stem cell markers [aldehyde dehydrogenase 1 (ALDH1), CD29, CD44, CD133, and nestin] and signal transducer and activator of transcription 6 (STAT6) in 18 cases of SFT. The results demonstrated that ALDH1 was present in 16 cases (16/18), STAT6 in 13 cases (13/18), CD44 in 8 cases (8/18), and CD29 in 1 case (1/18), whereas CD133 and nestin were absent in all cases (0/18). Our results indicate that combination with ALDH1 and STAT6 can improve the diagnostic value of CD34 for SFT. The immunohistochemical findings for stem cell surface markers indicate that SFT may originate from stem cells and that ALDH1 plays an important role in the development of SFT. PMID:26617768

  5. Immunohistochemical evaluation of stem cell markers and signal transducer and activator of transcription 6 (STAT6) in solitary fibrous tumors.

    PubMed

    Wang, Chengyan; Qi, Yan; Liu, Ruixue; Lan, Jiaojiao; Zhou, Yang; Ju, Xinxin; Chen, Dongdong; Zou, Hong; Li, Shugang; Hu, Jianming; Zhao, Jin; Shen, Yaoyuan; Sun, Zhenzhu; Pang, Lijuan; Li, Feng

    2015-01-01

    Solitary fibrous tumors (SFT) are fibroblastic, ubiquitous mesenchymal tumors. Although several SFT studies have been conducted, the cell of origin of SFT remains controversial and reliable diagnostic markers are needed for SFT identification for proper prognosis and therapeutics. To analyze the immunophenotype of SFT for the identification of specific diagnostic markers and the cell of origin of this tumor, we performed an immunohistochemical study of stem cell markers [aldehyde dehydrogenase 1 (ALDH1), CD29, CD44, CD133, and nestin] and signal transducer and activator of transcription 6 (STAT6) in 18 cases of SFT. The results demonstrated that ALDH1 was present in 16 cases (16/18), STAT6 in 13 cases (13/18), CD44 in 8 cases (8/18), and CD29 in 1 case (1/18), whereas CD133 and nestin were absent in all cases (0/18). Our results indicate that combination with ALDH1 and STAT6 can improve the diagnostic value of CD34 for SFT. The immunohistochemical findings for stem cell surface markers indicate that SFT may originate from stem cells and that ALDH1 plays an important role in the development of SFT.

  6. Cocaine differentially regulates activator protein-1 mRNA levels and DNA-binding complexes in the rat striatum and cerebellum.

    PubMed

    Couceyro, P; Pollock, K M; Drews, K; Douglass, J

    1994-10-01

    Cocaine is a psychomotor stimulant that exerts many of its behavioral and physiological effects through alteration of catecholamine reuptake systems. One early cellular response to cocaine administration is a brain region-specific alteration in the transcriptional pattern of immediate early genes belonging to the Fos/Jun family of nucleotide sequence-specific [activator protein-1 (AP-1)] DNA-binding proteins. The work described here compares cocaine-induced transcriptional regulation of immediate early gene mRNA levels, as well as AP-1 DNA-binding activity, within the striatum and cerebellum. In the striatum, acute cocaine administration increases cellular levels of c-fos and jun-B mRNA, whereas transcriptional effects in the cerebellum are limited to c-fos mRNA. After chronic cocaine treatment a desensitization of c-fos mRNA induction is observed in the striatum, with sensitization of the same transcriptional effect occurring in the cerebellum. Pharmacological studies further reveal that the dopamine D1, dopamine D2, gamma-aminobutyric acid type B, and N-methyl-D-aspartate receptor systems mediate the effects of cocaine on cerebellar neurons, whereas striatal effects are modulated through D1 and N-methyl-D-aspartate receptors. Gel retention analysis using antibodies to the various Fos and Jun proteins was used to characterize cocaine-dependent alterations in the composition of striatal and cerebellar AP-1 DNA-binding complexes. In striatum, cocaine increases the relative levels of c-Fos, Fos-B, Jun-B, and Jun-D proteins that bind the AP-1 DNA sequence element, whereas in the cerebellum only c-Fos and Jun-D binding activities are increased. These data suggest two possible neuroanatomical sites where tolerance and sensitization to cocaine can be examined at the genomic level. PMID:7969045

  7. Elevated reward-related neural activation as a unique biological marker of bipolar disorder: assessment and treatment implications.

    PubMed

    Nusslock, Robin; Young, Christina B; Damme, Katherine S F

    2014-11-01

    Growing evidence indicates that risk for bipolar disorder is characterized by elevated activation in a fronto-striatal reward neural circuit involving the ventral striatum and orbitofrontal cortex, among other regions. It is proposed that individuals with abnormally elevated reward-related neural activation are at risk for experiencing an excessive increase in approach-related motivation during life events involving rewards or goal striving and attainment. In the extreme, this increase in motivation is reflected in hypomanic/manic symptoms. By contrast, unipolar depression (without a history of hypomania/mania) is characterized by decreased reward responsivity and decreased reward-related neural activation. Collectively, this suggests that risk for bipolar disorder and unipolar depression are characterized by distinct and opposite profiles of reward processing and reward-related neural activation. The objective of the present paper is threefold. First, we review the literature on reward processing and reward-related neural activation in bipolar disorder, and in particular risk for hypomania/mania. Second, we propose that reward-related neural activation reflects a biological marker of differential risk for bipolar disorder versus unipolar depression that may help facilitate psychiatric assessment and differential diagnosis. We also discuss, however, the challenges to using neuroscience techniques and biological markers in a clinical setting for assessment and diagnostic purposes. Lastly, we address the pharmacological and psychosocial treatment implications of research on reward-related neural activation in bipolar disorder. PMID:25241675

  8. Effects of Smoking Intensity and Cessation on Inflammatory Markers in a Large Cohort of Active Smokers

    PubMed Central

    Asthana, Asha; Johnson, Heather M.; Piper, Megan E.; Fiore, Michael C.; Baker, Timothy B.; Stein, James H.

    2010-01-01

    Background Cigarette smoking has been associated with increases in C-reactive protein (CRP) and leukocyte counts (WBC); however, the effects of smoking intensity and smoking cessation on inflammatory markers have not been evaluated prospectively in a large, modern cohort of current smokers. Methods WBC count and high-sensitivity CRP were measured in current smokers enrolled in a randomized, prospective clinical trial of five smoking cessation pharmacotherapies. Smoking intensity parameters included: cigarettes/day, pack-years, Fagerstrom Test of Nicotine Dependence (FTND) score, and carbon monoxide (CO) levels. CRP also was measured after 1 year with assessment of abstinence status. Results The 1,504 current smokers (58% female) were mean (standard deviation): 44.7 (11.1) years old, smoked 21.4 (8.9) cigarettes/day and had a smoking burden of 29.4 (20.4) pack-years. Log (CRP) was not associated with any marker of smoking intensity, except for a weak correlation with pack-years (r=0.05, p=0.047). In contrast, statistically significant correlations were observed between all 4 markers of smoking intensity and WBC count (all p≤0.011). In multivariable models, waist circumference (p<0.001) and triglycerides (p<0.05), but no markers of smoking intensity, were associated with log(CRP). However, pack-years (p=0.002), cigarettes/day (p=0.013), CO (p<0.001), and FTND (p<0.001) were independently associated with WBC count. After 1 year, log(CRP) (p=0.296) and changes in log(CRP) (p=0.455) did not differ between abstainers and continuing smokers. Conclusions Smoking intensity is associated with increased WBC count, but not CRP levels. Smoking cessation does not reduce CRP. The relationship between CRP and smoking intensity may be masked by CRP’s stronger relationship with adiposity. PMID:20826253

  9. Chronic stress and moderate physical exercise prompt widespread common activation and limited differential activation in specific brain regions.

    PubMed

    Kim, Tae-Kyung; Han, Pyung-Lim

    2016-10-01

    Chronic stress in rodents produces depressive behaviors, whereas moderate physical exercise counteracts stress-induced depressive behaviors. Chronic stress and physical exercise appear to produce such opposing effects by changing the neural activity of specific brain regions. However, the detailed mechanisms through which the two different types of stimuli regulate brain function in opposite directions are not clearly understood. In the present study, we attempted to explore the neuroanatomical substrates mediating stress-induced behavioral changes and anti-depressant effects of exercise by examining stimulus-dependent c-Fos induction in the brains of mice that were exposed to repeated stress or exercise in a scheduled manner. Systematic and integrated analyses of c-Fos expression profiles indicated that various brain areas, including the prelimbic cortex, lateral septal area, and paraventricular nuclei of hypothalamus were commonly and strongly activated by both stress and exercise, while the lateral habenula and hippocampus were identified as being preferentially activated by stress and exercise, respectively. Exercise-dependent c-Fos expression in all regions examined in the brain occurred in both glutamatergic and GABAergic neurons. These results suggest that chronic stress and moderate exercise produce counteractive effects on mood behaviors, along with prompting widespread common activation and limited differential activation in specific brain regions. PMID:27539656

  10. Chronic stress and moderate physical exercise prompt widespread common activation and limited differential activation in specific brain regions.

    PubMed

    Kim, Tae-Kyung; Han, Pyung-Lim

    2016-10-01

    Chronic stress in rodents produces depressive behaviors, whereas moderate physical exercise counteracts stress-induced depressive behaviors. Chronic stress and physical exercise appear to produce such opposing effects by changing the neural activity of specific brain regions. However, the detailed mechanisms through which the two different types of stimuli regulate brain function in opposite directions are not clearly understood. In the present study, we attempted to explore the neuroanatomical substrates mediating stress-induced behavioral changes and anti-depressant effects of exercise by examining stimulus-dependent c-Fos induction in the brains of mice that were exposed to repeated stress or exercise in a scheduled manner. Systematic and integrated analyses of c-Fos expression profiles indicated that various brain areas, including the prelimbic cortex, lateral septal area, and paraventricular nuclei of hypothalamus were commonly and strongly activated by both stress and exercise, while the lateral habenula and hippocampus were identified as being preferentially activated by stress and exercise, respectively. Exercise-dependent c-Fos expression in all regions examined in the brain occurred in both glutamatergic and GABAergic neurons. These results suggest that chronic stress and moderate exercise produce counteractive effects on mood behaviors, along with prompting widespread common activation and limited differential activation in specific brain regions.

  11. ERK5 activation is essential for osteoclast differentiation.

    PubMed

    Amano, Shigeru; Chang, Yu-Tzu; Fukui, Yasuhisa

    2015-01-01

    The MEK/ERK pathways are critical for controlling cell proliferation and differentiation. In this study, we show that the MEK5/ERK5 pathway participates in osteoclast differentiation. ERK5 was activated by M-CSF, which is one of the essential factors in osteoclast differentiation. Inhibition of MEK5 by BIX02189 or inhibition of ERK5 by XMD 8-92 blocked osteoclast differentiation. MEK5 knockdown inhibited osteoclast differentiation. RAW264.7D clone cells, which are monocytic cells, differentiate into osteoclasts after stimulation with sRANKL. ERK5 was activated without any stimulation in these cells. Inhibition of the MEK5/ERK5 pathway by the inhibitors also blocked the differentiation of RAW264.7D cells into osteoclasts. Moreover, expression of the transcription factor c-Fos, which is indispensable for osteoclast differentiation, was inhibited by treatment with MEK5 or ERK5 inhibitors. Therefore, activation of ERK5 is required for the induction of c-Fos. These events were confirmed in experiments using M-CSF-dependent bone marrow macrophages. Taken together, the present results show that activation of the MEK5/ERK5 pathway with M-CSF is required for osteoclast differentiation, which may induce differentiation through the induction of c-Fos.

  12. Platelet leukocyte aggregates and markers of platelet aggregation, immune activation and disease progression in HIV infected treatment naive asymptomatic individuals.

    PubMed

    Nkambule, Bongani B; Davison, Glenda; Ipp, Hayley

    2015-11-01

    Platelet aggregates play a crucial role in the immune defence mechanism against viruses. Increased levels of lipopolysaccharide have been reported in human immunodeficiency virus (HIV) infected individuals. Platelets are capable of interacting with bacterial LPS and subsequently forming platelet leukocyte aggregates (PLAs). This study aimed at determining the levels of circulating PLAs in treatment naïve HIV infected individuals and correlating them, with markers of immune activation, disease progression and platelet aggregation. Thirty-two HIV negative and 35 HIV positive individuals were recruited from a clinic in the Western Cape. Platelet monocyte and platelet neutrophil aggregates were measured using flow cytometry at baseline and were correlated with markers of platelet activation (CD62P); aggregation (CD36); monocyte and neutrophil activation (CD69); monocyte tissue factor expression (CD142); immune activation (CD38 on T+ cells); D-dimers (a marker of active coagulation); CD4 count and viral load. Platelet monocyte aggregates were also measured post stimulation with lipopolysaccharide. PMA levels were higher in HIV 25.26 (16.16-32.28) versus control 14.12 (8.36-18.83), p = 0.0001. PMAs correlated with %CD38/8 expression (r = 0.54624, p = 0.0155); CD4 count (r = -0.6964, p = 0.0039) viral load (r = 0.633, p < 0.009) and monocyte %CD69 expression (r = 0.757, p = 0.030). In addition the %PMAs correlated with platelet %CD36 (r = 0.606, p = 0.017). The HIV group showed increased levels of %CD62P 5.44 (2.72-11.87) versus control 1.15 (0.19-3.59), p < 0.0001; %CD36 22.53 (10.59-55.15) versus 11.01 (3.69-26.98), p = 0.0312 and tissue factor (CD142) MFI 4.84 (4.01-8.17) versus 1.74 (1.07-9.3), p = 0.0240. We describe increased levels of circulating PMAs which directly correlates with markers of immune activation, disease progression and platelet aggregation in HIV treatment naïve individuals.

  13. Complexes between C1q and C3 or C4: novel and specific markers for classical complement pathway activation.

    PubMed

    Wouters, Diana; Wiessenberg, Hans D; Hart, Margreet; Bruins, Peter; Voskuyl, Alexandre; Daha, Mohamed R; Hack, C Erik

    2005-03-01

    Classical pathway activation is often assessed by measuring circulating levels of activated C4. However, this parameter does not discriminate between activation through the classical or the lectin pathway. We hypothesized that during classical pathway activation, complexes are formed between C1q and activated C4 or C3. Using ELISA, we investigated whether such complexes constitute specific markers for classical pathway activation. In vitro, C1q-C3d/C4d complexes were generated upon incubation of normal recalcified plasma with aggregated IgG or an anti-C1q mAb that activates C1 (mAb anti-C1q-130). In contrast, during incubation with C1s or trypsin, C1q-C3d/C4d complexes were not generated, which excludes an innocent bystander effect. Additionally, C1q-C3d/C4d complexes were not generated during activation of the alternative or the lectin pathway. Repeated freezing and thawing did not influence levels of C1q-C3d/C4d complexes in recalcified plasma. To measure C1q-complement complexes in plasma samples, we separated unbound complement proteins from C1q-C3d/C4d complexes in the samples prior to testing with ELISA. In samples from patients undergoing cardiopulmonary bypass surgery or suffering from rheumatoid arthritis, we found higher levels of C1q-C4 complexes than in samples from healthy individuals. We conclude that complexes between C1q and C4 or C3 are specific markers of classical complement pathway activation.

  14. Clinical laboratory markers of inflammation as determinants of chronic graft-versus-host disease activity and NIH global severity

    PubMed Central

    Grkovic, Lana; Baird, Kristin; Steinberg, Seth M.; Williams, Kirsten M.; Pulanic, Drazen; Cowen, Edward W.; Mitchell, Sandra A.; Hakim, Fran T.; Martires, Kathryn J.; Avila, Daniele N.; Taylor, Tiffani N.; Salit, Rachel B.; Rowley, Scott D.; Zhang, Dan; Fowler, Daniel H.; Bishop, Michael R.; Gress, Ronald E.; Pavletic, Steven Z.

    2011-01-01

    Chronic graft versus host disease (cGVHD) remains a major cause of non-relapse morbidity and mortality after allogeneic hematopoietic stem cell transplantation. Currently there are no accepted measures of cGVHD activity to aid in clinical management and disease staging. We analyzed clinical markers of inflammation in the sera of patients with established cGVHD and correlated those with definitions of disease activity. 189 adults with cGVHD (33% moderate and 66% severe according to NIH global scoring) were consecutively enrolled onto a cross-sectional prospective cGVHD natural history study. At the time of evaluation, 80% were receiving systemic immunosuppression and failed a median of 4 prior systemic therapies (PST) for their cGVHD. Lower albumin (p<0.0001), higher CRP (C-reactive protein; p=0.043), higher platelets (p=0.030) and higher number of PST (p<0.0001) were associated with active disease defined as clinician's intention to intensify or alter systemic therapy due to the lack of response. Higher platelet count (p=0.021) and higher number of PST (p<0.0001) were associated with more severe diseased defined by NIH global score. This study identified common laboratory indicators of inflammation that can serve as markers of cGVHD activity and severity. PMID:22005783

  15. Effects of the contraceptive skin patch and subdermal contraceptive implant on markers of endothelial cell activation and inflammation.

    PubMed

    Hernandez-Juarez, Jesus; Sanchez-Serrano, Juan Carlos; Moreno-Hernandez, Manuel; Alvarado-Moreno, Jose Antonio; Hernandez-Lopez, Jose Rubicel; Isordia-Salas, Irma; Majluf-Cruz, Abraham

    2015-07-01

    Changes in blood coagulation factors may partially explain the association between hormonal contraceptives and thrombosis. Therefore, the likely effects of the contraceptive skin patch and subdermal contraceptive implant on levels of inflammatory markers and endothelial activation were analyzed. This was an observational, prospective, longitudinal, nonrandomized study composed of 80 women between 18 and 35 years of age who made the decision to use the contraceptive skin patch or subdermal contraceptive implant. vascular cell adhesion molecule-1 (VCAM-1), endothelial cell leukocyte adhesion molecule-1 (ELAM-1), von Willebrand factor (VWF), and plasminogen activator inhibitor type 1(PAI-1) as well as high-sensitivity C-reactive protein (hsCRP) were assayed before and after 4 months of use of the contraceptive method. VCAM-1, VWF, and PAI-1 remained unchanged in the contraceptive skin patch group; however, a significant increase in hsCRP (0.29-0.50 mg/dL; P =.012) and a significant decrease in ELAM-1 (44-25 ng/mL; P =.022) were observed. A significant diminution in VCAM-1 (463-362 ng/mL; P =.022) was also found in the subdermal contraceptive implant group. Our results strongly suggest that these contraceptive methods do not induce endothelial activation after 4 months of use. Increase in hsCRP levels was unrelated to changes in markers of endothelial activation.

  16. Myristoleic acid inhibits osteoclast formation and bone resorption by suppressing the RANKL activation of Src and Pyk2.

    PubMed

    Kwon, Jun-Oh; Jin, Won Jong; Kim, Bongjun; Kim, Hong-Hee; Lee, Zang Hee

    2015-12-01

    Cytoskeletal changes in osteoclasts such as formation of actin ring is required for bone-resorbing activity. The tyrosine kinase Src is a key player in massive cytoskeletal change of osteoclasts, thereby in bone destruction. In order for Src to be activated, trafficking to the inner plasma membrane via myristoylation is of importance. A previous study reported that myristoleic acid derived from myristic acid, inhibited N-myristoyl-transferase, an essential enzyme for myristoylation process. This prompted us to investigate whether myristoleic acid could affect osteoclastogenesis. Indeed, we observed that myristoleic acid inhibited RANKL-induced osteoclast formation in vitro, especially, at later stages of differentiation. Myristoleic acid attenuated the tyrosine phosphorylation of c-Src and Pyk2, which associates with Src, by RANKL. When myristoleic acid was co-administered with soluble RANKL into mice, RANKL-induced bone loss was substantially prevented. Bone dissection clearly revealed that the number of multinucleated osteoclasts was significantly diminished by myristoleic acid. On the other hand, myristoleic acid treatment had little or no influence on early osteoclast differentiation markers, such as c-Fos and NFATc1, and proteins related to cytoskeletal rearrangement, including DC-STAMP, integrin αv and integrin β3 in vitro. Taken together, our data suggest that myristoleic acid is capable of blocking the formation of large multinucleated osteoclasts and bone resorption likely through suppressing activation of Src and Pyk2.

  17. Activity of rubidium and cesium in soybean looper (Lepidoptera: Noctuidae): insect feeding on cotton and soybean measured by elemental markers.

    PubMed

    Jost, Douglas J; Pitre, Henry N

    2002-04-01

    Uptake and translocation of the elemental markers rubidium (Rb) and cesium (Cs) within adult soybean looper, Pseudoplusia includens (Walker), were determined using atomic absorption spectrophotometry in the laboratory in various feeding and mating treatments. Neonates were tested to determine marker transfer from male and female adults fed rubidium chloride (RbCl)-treated artificial nectar, cesium chloride (CsCI)-treated artificial nectar, or both. All females contained detectable levels of Rb, Cs, or both, which were obtained either through direct feeding or via spermatophores. Rubidium was present in females at significantly greater levels than Cs. No significant differences in Rb levels were observed between feeding or spermatophore acquisitions. Most neonates had significantly higher levels of Rb than Cs. In a field cage study to evaluate adult feeding and oviposition behavior on blooming cotton and blooming soybean treated with RbCl and CsCl, respectively, more eggs contained Rb than Cs, indicating greater feeding on cotton nectar than soybean nectar, regardless of the host plant upon which eggs were laid. Females laid more eggs on blooming soybean than on blooming cotton. Higher levels of Rb in cotton than Cs in soybean were recorded and may be attributed to initial elemental marker quantities available to the insects. This study provides the support for the generalized observations that soybean looper infestations in soybean can be related to feeding activities by adults in cotton.

  18. Marker development

    SciTech Connect

    Adams, M.R.

    1987-05-01

    This report is to discuss the marker development for radioactive waste disposal sites. The markers must be designed to last 10,000 years, and place no undue burdens on the future generations. Barriers cannot be constructed that preclude human intrusion. Design specifications for surface markers will be discussed, also marker pictograms will also be covered.

  19. The active metabolite of prasugrel inhibits ADP-stimulated thrombo-inflammatory markers of platelet activation: Influence of other blood cells, calcium, and aspirin.

    PubMed

    Frelinger, Andrew L; Jakubowski, Joseph A; Li, Youfu; Barnard, Marc R; Fox, Marsha L; Linden, Matthew D; Sugidachi, Atsuhiro; Winters, Kenneth J; Furman, Mark I; Michelson, Alan D

    2007-07-01

    The novel thienopyridine prodrug prasugrel, a platelet P2Y(12) ADP receptor antagonist, requires in vivo metabolism for activity. Although pharmacological data have been collected on the effects of prasugrel on platelet aggregation, there are few data on the direct effects of the prasugrel's active metabolite, R-138727, on other aspects of platelet function. Here we examined the effects of R-138727 on thrombo-inflammatory markers of platelet activation, and the possible modulatory effects of other blood cells, calcium, and aspirin. Blood (PPACK or citrate anticoagulated) from healthy donors pre- and post-aspirin was incubated with R-138727 and the response to ADP assessed in whole blood or platelet-rich plasma (PRP) by aggregometry and flow cytometric analysis of leukocyte-platelet aggregates, platelet surface P-selectin, and GPIIb-IIIa activation. Low-micromolar concentrations of R-138727 resulted in a rapid and consistent inhibition of these ADP-stimulated thrombo-inflammatory markers. These rapid kinetics required physiological calcium levels, but were largely unaffected by aspirin. Lower IC(50) values in whole blood relative to PRP suggested that other blood cells affect ADP-induced platelet activation and hence the net inhibition by R-138727. R-138727 did not inhibit P2Y(12)-mediated ADP-induced shape change, even at concentrations that completely inhibited platelet aggregation, confirming the specificity of R-138727 for P2Y(12). In conclusion, R-138727, the active metabolite of prasugrel, results in rapid, potent, consistent, and selective inhibition of P2Y(12)-mediated up-regulation of thrombo-inflammatory markers of platelet activation. This inhibition is enhanced in the presence other blood cells and calcium, but not aspirin. PMID:17598013

  20. Plasma level of neopterin as a marker of disease activity in treated rheumatoid arthritis patients: association with gender, disease activity and anti-CCP antibody.

    PubMed

    Arshadi, Delnia; Nikbin, Behrouz; Shakiba, Yadollah; Kiani, Amir; Jamshidi, Ahmad Reza; Boroushaki, Mohammad Taher

    2013-11-01

    Immune system activation is known to be involved in the progression of rheumatoid arthritis (RA). The pro-inflammatory cytokine interferon-γ in various cells, including monocytes, induces neopterin production. Plasma level of neopterin has been measured in many autoimmune diseases and can be used as a marker of cellular immunity activation. In this study we measured the plasma level of neopterin in 418 treated RA patients and 398 age and sex matched healthy people by high pressure liquid chromatography (HPLC) method. Disease activity score was calculated in all patients by DAS-CRP method. Plasma level of neopterin was compared between RA and control groups. We also determined the association between neopterin level with gender and disease activity score in RA patients. Significantly higher level of neopterin was observed in RA patients compared to healthy controls. Moreover, there was higher neopterin level in male RA patients versus female patients. Plasma neopterin level was increased in patients with active disease and also was correlated with disease activity parameters. There was a significant correlation of plasma level of neopterin with age in both RA and control group and also age of onset and disease duration in RA patients. Anti-CCP positive patients had higher level of neopterin in comparison to anti-CCP negative patients and there was a significant correlation between neopterin level and anti-CCP titer. Our results indicated that neopterin is a sensitive marker for assaying background inflammation and disease activity score in RA patients and may be used as a marker for evaluation of therapy efficacy.

  1. The effects of perioperatively administered crystalloids and colloids on concentrations of molecular markers of activated coagulation and fibrinolysis.

    PubMed

    Fries, Dietmar; Streif, Werner; Margreiter, Josef; Klingler, Anton; Kühbacher, Gabriele; Schobersberger, Wolfgang; Wirleitner, Barbara; Innerhofer, Petra

    2004-04-01

    To explore whether intravenous administration of routinely used crystalloid or colloid solutions differently affects the coagulation system, we investigated orthopaedic patients. Since crystalloid solutions might cause hypercoagulability, we here present our results on molecular markers of coagulation and fibrinolysis. Patients undergoing knee replacement surgery randomly received isovolemic amounts of lactated Ringer's solution, 6% hydroxyethyl starch 200/0.5 or 4% modified gelatine. Arterial blood samples for determination of specific molecular markers of activated coagulation (thrombin/antithrombin complex, D-dimer, prothrombin fragment F1 + 2), fibrinolysis (plasmin/alpha 2-antiplasmin complex, tissue plasminogen activator, plasminogen activator inhibitor-1), and concentrations of coagulation factor XIII were obtained at baseline, before tourniquet release, at the end of surgery and 2 h after operation. During the observation period, thrombin/antithrombin complex increased from 4.8 to 54.7 microg/l, D-dimer increased from 0.3 to 6.0 mg/ml, prothrombin fragment F1 + 2 increased from 1.7 to 5.9 nmol/l, tissue plasminogen activator decreased from 7.3 to 6.7 ng/ml, plasminogen activator inhibitor-1 increased from 68.4 to 71.0 ng/ml, plasmin/alpha 2-antiplasmin complex increased from 281.5 to 884 microg/l and factor XIII decreased from 89.0 to 58.5%. All parameters changed significantly but without any detectable difference in the response profile between the groups receiving different intravenous fluids. During knee replacement surgery a pronounced activation of the coagulation/fibrinolytic system was observed, regardless of whether patients received crystalloid or colloid fluids. Thus, these results cannot confirm the hypothesis that crystalloid fluids per se cause hypercoagulability in vivo.

  2. Activated peripheral lymphocytes with increased expression of cell adhesion molecules and cytotoxic markers are associated with dengue fever disease.

    PubMed

    Azeredo, Elzinandes L; Zagne, Sonia M O; Alvarenga, Allan R; Nogueira, Rita M R; Kubelka, Claire F; de Oliveira-Pinto, Luzia M

    2006-06-01

    The immune mechanisms involved in dengue fever and dengue hemorrhagic/dengue shock syndrome are not well understood. The ex vivo activation status of immune cells during the dengue disease in patients was examined. CD4 and CD8 T cells were reduced during the acute phase. Interestingly, CD8 T cells co-expressing activation marker HLA-DR, Q, P, and cytolytic granule protein-Tia-1 were significantly higher in dengue patients than in controls. Detection of adhesion molecules indicated that in dengue patients the majority of T cells (CD4 and CD8) express the activation/memory phenotype, characterized as CD44HIGH and lack the expression of the naïve cell marker, CD62L LOW. Also, the levels of T cells co-expressing ICAM-1 (CD54), VLA-4, and LFA-1 (CD11a) were significantly increased. CD8 T lymphocytes expressed predominantly low levels of anti-apoptotic molecule Bcl-2 in the acute phase, possibly leading to the exhibition of a phenotype of activated/effector cells. Circulating levels of IL-18, TGF-b1 and sICAM-1 were significantly elevated in dengue patients. Early activation events occur during acute dengue infection which might contribute to viral clearance. Differences in expression of adhesion molecules among CD4 and CD8 T cells might underlie the selective extravasation of these subsets from blood circulation into lymphoid organs and/or tissues. In addition, activated CD8 T cells would be more susceptible to apoptosis as shown by the alteration in Bcl-2 expression. Cytokines such as IL-18, TGF-b1, and sICAM-1 may be contributing by either stimulating or suppressing the adaptative immune response, during dengue infection, thereby perhaps establishing a relationship with disease severity.

  3. Effect of silica and gold nanoparticles on macrophage proliferation, activation markers, cytokine production, and phagocytosis in vitro

    PubMed Central

    Bancos, Simona; Stevens, David L; Tyner, Katherine M

    2015-01-01

    The accumulation of durable nanoparticles (NPs) in macrophages following systemic administration is well described. The ultimate biological impact of this accumulation on macrophage function, however, is not fully understood. In this study, nontoxic doses of two durable NPs, SiO2 and Au, at particle sizes of ~10 nm and 300 nm were used to evaluate the effect of bioaccumulation on macrophage function in vitro using RAW 264.7 mouse macrophage-like cells as a model system. Cell proliferation, cell cycle, cytokine production, surface marker activation, and phagocytosis responses were evaluated through a panel of assays using flow cytometry and confocal microscopy. The most dramatic change in RAW 264.7 cell function was a reduction in phagocytosis as monitored by the uptake of Escherichia coli. Cells exposed to both 10 nm Au NPs and 10 nm SiO2 NPs showed ~50% decrease in phagocytosis, while the larger NPs caused a less dramatic reduction. In addition to modifying phagocytosis profiles, 10 nm SiO2 NPs caused changes in proliferation, cell cycle, and cell morphology. Au NPs had no effect on cell cycle, cytokine production, or surface markers and caused interference in phagocytosis in the form of quenching when the assay was performed via flow cytometry. Confocal microscopy analysis was used to minimize this interference and demonstrated that both sizes of Au NPs decreased the phagocytosis of E. coli. Overall, our results demonstrate that Au and SiO2 NP uptake by macrophages can influence macrophage phagocytosis in vitro without altering surface markers and cytokine production in vitro. While the biological impact of these findings remains unclear, our results indicate that bioaccumulation of durable NPs within the macrophages may lead to a suppression of bacterial uptake and possibly impair bactericidal activity. PMID:25565813

  4. Mammographic parenchymal texture as an imaging marker of hormonal activity: a comparative study between pre- and post-menopausal women

    NASA Astrophysics Data System (ADS)

    Daye, Dania; Bobo, Ezra; Baumann, Bethany; Ioannou, Antonios; Conant, Emily F.; Maidment, Andrew D. A.; Kontos, Despina

    2011-03-01

    Mammographic parenchymal texture patterns have been shown to be related to breast cancer risk. Yet, little is known about the biological basis underlying this association. Here, we investigate the potential of mammographic parenchymal texture patterns as an inherent phenotypic imaging marker of endogenous hormonal exposure of the breast tissue. Digital mammographic (DM) images in the cranio-caudal (CC) view of the unaffected breast from 138 women diagnosed with unilateral breast cancer were retrospectively analyzed. Menopause status was used as a surrogate marker of endogenous hormonal activity. Retroareolar 2.5cm2 ROIs were segmented from the post-processed DM images using an automated algorithm. Parenchymal texture features of skewness, coarseness, contrast, energy, homogeneity, grey-level spatial correlation, and fractal dimension were computed. Receiver operating characteristic (ROC) curve analysis was performed to evaluate feature classification performance in distinguishing between 72 pre- and 66 post-menopausal women. Logistic regression was performed to assess the independent effect of each texture feature in predicting menopause status. ROC analysis showed that texture features have inherent capacity to distinguish between pre- and post-menopausal statuses (AUC>0.5, p<0.05). Logistic regression including all texture features yielded an ROC curve with an AUC of 0.76. Addition of age at menarche, ethnicity, contraception use and hormonal replacement therapy (HRT) use lead to a modest model improvement (AUC=0.78) while texture features maintained significant contribution (p<0.05). The observed differences in parenchymal texture features between pre- and post- menopausal women suggest that mammographic texture can potentially serve as a surrogate imaging marker of endogenous hormonal activity.

  5. Effect of silica and gold nanoparticles on macrophage proliferation, activation markers, cytokine production, and phagocytosis in vitro.

    PubMed

    Bancos, Simona; Stevens, David L; Tyner, Katherine M

    2015-01-01

    The accumulation of durable nanoparticles (NPs) in macrophages following systemic administration is well described. The ultimate biological impact of this accumulation on macrophage function, however, is not fully understood. In this study, nontoxic doses of two durable NPs, SiO2 and Au, at particle sizes of ~10 nm and 300 nm were used to evaluate the effect of bioaccumulation on macrophage function in vitro using RAW 264.7 mouse macrophage-like cells as a model system. Cell proliferation, cell cycle, cytokine production, surface marker activation, and phagocytosis responses were evaluated through a panel of assays using flow cytometry and confocal microscopy. The most dramatic change in RAW 264.7 cell function was a reduction in phagocytosis as monitored by the uptake of Escherichia coli. Cells exposed to both 10 nm Au NPs and 10 nm SiO2 NPs showed ~50% decrease in phagocytosis, while the larger NPs caused a less dramatic reduction. In addition to modifying phagocytosis profiles, 10 nm SiO2 NPs caused changes in proliferation, cell cycle, and cell morphology. Au NPs had no effect on cell cycle, cytokine production, or surface markers and caused interference in phagocytosis in the form of quenching when the assay was performed via flow cytometry. Confocal microscopy analysis was used to minimize this interference and demonstrated that both sizes of Au NPs decreased the phagocytosis of E. coli. Overall, our results demonstrate that Au and SiO2 NP uptake by macrophages can influence macrophage phagocytosis in vitro without altering surface markers and cytokine production in vitro. While the biological impact of these findings remains unclear, our results indicate that bioaccumulation of durable NPs within the macrophages may lead to a suppression of bacterial uptake and possibly impair bactericidal activity.

  6. Post-training gamma irradiation-enhanced contextual fear memory associated with reduced neuronal activation of the infralimbic cortex.

    PubMed

    Kugelman, Tara; Zuloaga, Damian G; Weber, Sydney; Raber, Jacob

    2016-02-01

    The brain might be exposed to irradiation under a variety of situations, including clinical treatments, nuclear accidents, dirty bomb scenarios, and military and space missions. Correctly recalling tasks learned prior to irradiation is important but little is known about post-learning effects of irradiation. It is not clear whether exposure to X-ray irradiation during memory consolidation, a few hours following training, is associated with altered contextual fear conditioning 24h after irradiation and which brain region(s) might be involved in these effects. Brain immunoreactivity patterns of the immediately early gene c-Fos, a marker of cellular activity was used to determine which brain areas might be altered in post-training irradiation memory retention tasks. In this study, we show that post-training gamma irradiation exposure (1 Gy) enhanced contextual fear memory 24h later and is associated with reduced cellular activation in the infralimbic cortex. Reduced GABA-ergic neurotransmission in parvalbumin-positive cells in the infralimbic cortex might play a role in this post-training radiation-enhanced contextual fear memory.

  7. Low Dose Cadmium Inhibits Proliferation of Human Renal Mesangial Cells via Activation of the JNK Pathway

    PubMed Central

    Chen, Xiaocui; Li, Jing; Cheng, Zuowang; Xu, Yinghua; Wang, Xia; Li, Xiaorui; Xu, Dongmei; Kapron, Carolyn M.; Liu, Ju

    2016-01-01

    Cadmium (Cd) is a heavy metal and environmental pollutant. The kidney is the principal target organ of Cd exposure. Previously, we found that low concentration of Cd damages the integrity of the glomerular filtration barrier. However, little is known about the effects of Cd on renal mesangial cells, which provide structural support for the glomerular capillary loops and regulate intraglomerular blood flow. In this study, human renal mesangial cells (HRMCs) were cultured in the presence of serum and treated with 4 μM Cd. We found that Cd activates the c-Jun N-terminal kinase (JNK) pathway, and increases the protein levels of c-Jun and c-Fos. Cd treatment also induces a decrease in proliferation and an increase in apoptosis of HRMCs, but only the decrease in HRMC proliferation was reversed by pretreatment with SP600125, an inhibitor of the JNK pathway. In addition, Cd does not change the expression of α-smooth muscle actin and platelet-derived growth factor receptor-β, the markers of mesangial cells, or the alignment of the filamentous actin (F-actin) cytoskeleton of HRMCs. Our data indicate that the JNK pathway mediates the inhibitory effects of Cd on HRMC proliferation. PMID:27739415

  8. The product of a novel growth factor activated gene, fos B, interacts with JUN proteins enhancing their DNA binding activity.

    PubMed Central

    Zerial, M; Toschi, L; Ryseck, R P; Schuermann, M; Müller, R; Bravo, R

    1989-01-01

    We have identified a gene, fos B, encoding a nuclear protein of 338 amino acids presenting a 70% homology with c-fos, whose expression is activated during G0/G1 transition. Growth factor stimulation of quiescent cells leads to a rapid and transient accumulation of fos B mRNA, with kinetics similar to those of c-fos. The induction of fos B mRNA levels is in part due to a dramatic increase in the transcription of the gene. The half-life of fos B mRNA is in the order of 10-15 min. Both transcriptional activation and mRNA stability are substantially increased in the presence of protein synthesis inhibitors. Immunoprecipitation studies showed that fos B as c-fos protein, forms a complex in vitro with c-jun and jun B proteins in the absence of a target binding sequence. Gel retardation assays demonstrated that fos B protein positively influences the binding of c-jun and jun B proteins to an AP-1 binding consensus sequence, suggesting that fos B protein plays a role in control of gene expression. Images PMID:2498083

  9. Arctigenin suppresses receptor activator of nuclear factor κB ligand (RANKL)-mediated osteoclast differentiation in bone marrow-derived macrophages.

    PubMed

    Kim, A-Ram; Kim, Hyuk Soon; Lee, Jeong Min; Choi, Jung Ho; Kim, Se Na; Kim, Do Kyun; Kim, Ji Hyung; Mun, Se Hwan; Kim, Jie Wan; Jeon, Hyun Soo; Kim, Young Mi; Choi, Wahn Soo

    2012-05-01

    Osteoclasts, multinucleated bone-resorbing cells, are closely associated with bone diseases such as rheumatoid