Science.gov

Sample records for activation mechanism involving

  1. Cissus sicyoides: Pharmacological Mechanisms Involved in the Anti-Inflammatory and Antidiarrheal Activities

    PubMed Central

    Beserra, Fernando Pereira; de Cássia Santos, Raquel; Périco, Larissa Lucena; Rodrigues, Vinicius Peixoto; de Almeida Kiguti, Luiz Ricardo; Saldanha, Luiz Leonardo; Pupo, André Sampaio; da Rocha, Lúcia Regina Machado; Dokkedal, Anne Lígia; Vilegas, Wagner; Hiruma-Lima, Clélia Akiko

    2016-01-01

    The objective of this study was to evaluate the pharmacological mechanisms involved in anti-inflammatory and antidiarrheal actions of hydroalcoholic extract obtained from the leaves of Cissus sicyoides (HECS). The anti-inflammatory effect was evaluated by oral administration of HECS against acute model of edema induced by xylene, and the mechanisms of action were analysed by involvement of arachidonic acid (AA) and prostaglandin E2 (PGE2). The antidiarrheal effect of HECS was observed and we analyzed the motility and accumulation of intestinal fluid. We also analyzed the antidiarrheal mechanisms of action of HECS by evaluating the role of the opioid receptor, α2 adrenergic receptor, muscarinic receptor, nitric oxide (NO) and PGE2. The oral administration of HECS inhibited the edema induced by xylene and AA and was also able to significantly decrease the levels of PGE2. The extract also exhibited significant anti-diarrheal activity by reducing motility and intestinal fluid accumulation. This extract significantly reduced intestinal transit stimulated by muscarinic agonist and intestinal secretion induced by PGE2. Our data demonstrate that the mechanism of action involved in the anti-inflammatory effect of HECS is related to PGE2. The antidiarrheal effect of this extract may be mediated by inhibition of contraction by acting on the intestinal smooth muscle and/or intestinal transit. PMID:26805827

  2. Antinociceptive Activity of Methanol Extract of Muntingia calabura Leaves and the Mechanisms of Action Involved

    PubMed Central

    Sani, M. H. Mohd.; Zakaria, Z. A.; Balan, T.; Teh, L. K.; Salleh, M. Z.

    2012-01-01

    Muntingia calabura L. (family Elaeocarpaceae) has been traditionally used to relieve various pain-related ailments. The present study aimed to determine the antinociceptive activity of methanol extract of M. calabura leaves (MEMC) and to elucidate the possible mechanism of antinociception involved. The in vivo chemicals (acetic acid-induced abdominal constriction and formalin-, capsaicin-, glutamate-, serotonin-induced paw licking test) and thermal (hot plate test) models of nociception were used to evaluate the extract antinociceptive activity. The extract (100, 250, and 500 mg/kg) was administered orally 60 min prior to subjection to the respective test. The results obtained demonstrated that MEMC produced significant (P < 0.05) antinociceptive response in all the chemical- and thermal-induced nociception models, which was reversed after pretreatment with 5 mg/kg naloxone, a non-selective opioid antagonist. Furthermore, pretreatment with L-arginine (a nitric oxide (NO) donor), NG-nitro-L-arginine methyl esters (L-NAME; an inhibitor of NO synthase (NOS)), methylene blue (MB; an inhibitor of cyclic-guanosine monophosphate (cGMP) pathway), or their combination also caused significant (P < 0.05) change in the intensity of the MEMC antinociception. In conclusion, the MEMC antinociceptive activity involves activation of the peripheral and central mechanisms, and modulation via, partly, the opioid receptors and NO/cGMP pathway. PMID:22611437

  3. Molecular Mechanisms Involved in the Antitumor Activity of Cannabinoids on Gliomas: Role for Oxidative Stress

    PubMed Central

    Massi, Paola; Valenti, Marta; Solinas, Marta; Parolaro, Daniela

    2010-01-01

    Cannabinoids, the active components of Cannabis sativa, have been shown to exert antiproliferative and proapoptotic effects on a wide spectrum of tumor cells and tissues. Of interest, cannabinoids have displayed great potency in reducing the growth of glioma tumors, one of the most aggressive CNS tumors, either in vitro or in animal experimental models curbing the growth of xenografts generated by subcutaneous or intrathecal injection of glioma cells in immune-deficient mice. Cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of non-transformed cells. This review will summarize the anti-cancer properties that cannabinoids exert on gliomas and discuss their potential action mechanisms that appear complex, involving modulation of multiple key cell signaling pathways and induction of oxidative stress in glioma cells. PMID:24281104

  4. Mechanisms involved in Escherichia coli and Serratia marcescens removal during activated sludge wastewater treatment

    PubMed Central

    Orruño, Maite; Garaizabal, Idoia; Bravo, Zaloa; Parada, Claudia; Barcina, Isabel; Arana, Inés

    2014-01-01

    Wastewater treatment reduces environmental contamination by removing gross solids and mitigating the effects of pollution. Treatment also reduces the number of indicator organisms and pathogens. In this work, the fates of two coliform bacteria, Escherichia coli and Serratia marcescens, were analyzed in an activated sludge process to determine the main mechanisms involved in the reduction of pathogenic microorganisms during wastewater treatment. These bacteria, modified to express green fluorescent protein, were inoculated in an activated sludge unit and in batch systems containing wastewater. The results suggested that, among the different biological factors implied in bacterial removal, bacterivorous protozoa play a key role. Moreover, a representative number of bacteria persisted in the system as free-living or embedded cells, but their distribution into liquid or solid fractions varied depending on the bacterium tested, questioning the real value of bacterial indicators for the control of wastewater treatment process. Additionally, viable but nonculturable cells constituted an important part of the bacterial population adhered to solid fractions, what can be derived from the competition relationships with native bacteria, present in high densities in this environment. These facts, taken together, emphasize the need for reliable quantitative and qualitative analysis tools for the evaluation of pathogenic microbial composition in sludge, which could represent an undefined risk to public health and ecosystem functions when considering its recycling. PMID:25044599

  5. Sodium tungstate activates glycogen synthesis through a non-canonical mechanism involving G-proteins.

    PubMed

    Zafra, Delia; Nocito, Laura; Domínguez, Jorge; Guinovart, Joan J

    2013-01-31

    Tungstate treatment ameliorates experimental diabetes by increasing liver glycogen deposition through an as yet unidentified mechanism. The signalling mechanism of tungstate was studied in CHOIR cells and primary cultured hepatocytes. This compound exerted its pro-glycogenic effects through a new G-protein-dependent and Tyr-Kinase Receptor-independent mechanism. Chemical or genetic disruption of G-protein signalling prevented the activation of the Ras/ERK cascade and the downstream induction of glycogen synthesis caused by tungstate. Thus, these findings unveil a novel non-canonical signalling pathway that leads to the activation of glycogen synthesis and that could be exploited as an approach to treat diabetes.

  6. Involvement of TACE in colon inflammation: a novel mechanism of regulation via SIRT-1 activation.

    PubMed

    Sharma, Manoranjan; Mohapatra, Jogeswar; Wagh, Akshaya; Patel, Hiren M; Pandey, Dheerendra; Kadam, Shekhar; Argade, Anil; Deshpande, Shrikalp S; Shah, Gourang B; Chatterjee, Abhijit; Jain, Mukul R

    2014-03-01

    TNF-α converting enzyme (TACE) processes the membrane TNF-α to release the bioactive soluble TNF-α. Several evidences suggest the involvement of TNF-α and TACE in inflammatory bowel disease (IBD). Tissue inhibitor of metalloproteinase (TIMP)-3, an endogenous inhibitor of TACE, is positively associated with silent information regulator (SIRT)-1. We aimed to study the expression of TACE, TIMP-3 and SIRT-1 at different stages of colitis and how TACE is regulated in response to SIRT-1 activation. Acute colitis was induced by 3.5% dextran sulfate sodium (DSS) in drinking water for 5days and levels of cytokines and mRNA expression of TACE, TIMP-3 and SIRT-1 were measured in colon at different time intervals. Next, the effect of SIRT-1 activator (resveratrol) or a selective TACE inhibitor (compound 11p) treatment was evaluated. Elevated levels of TNF-α, interleukin (IL)-6, IL-1β, interferon (IFN)-γ and IL-17 were observed during DSS exposure phase which restored to the normal level after DSS removal. A significant increase in TACE and suppression in TIMP-3 and SIRT-1 mRNA level was observed during DSS exposure phase which reverts back to normal towards the remission phase. Treatment with resveratrol significantly elevated SIRT-1 and TIMP-3 and suppressed TACE mRNA expression and was associated with amelioration of disease. Furthermore, treatment with selective TACE inhibitor significantly suppressed body weight loss, disease activity index, colonic myeloperoxidase activity and the elevated levels of cytokines after DSS challenge. These results strongly emphasize the involvement of TACE in colon inflammation and inhibition of TACE directly or indirectly via SIRT-1 activation ameliorates colitis.

  7. Involvement of mast cells and proteinase-activated receptor 2 in oxaliplatin-induced mechanical allodynia in mice.

    PubMed

    Sakamoto, Ayumi; Andoh, Tsugunobu; Kuraishi, Yasushi

    2016-03-01

    The chemotherapeutic agent oxaliplatin induces neuropathic pain, a dose-limiting side effect, but the underlying mechanisms are not fully understood. Here, we show the potential involvement of cutaneous mast cells in oxaliplatin-induced mechanical allodynia in mice. A single intraperitoneal injection of oxaliplatin induced mechanical allodynia, which peaked on day 10 after injection. Oxaliplatin-induced mechanical allodynia was almost completely prevented by congenital mast cell deficiency. The numbers of total and degranulated mast cells was significantly increased in the skin after oxaliplatin administration. Repetitive topical application of the mast cell stabilizer azelastine hydrochloride inhibited mechanical allodynia and the degranulation of mast cells without affecting the number of mast cells in oxaliplatin-treated mice. The serine protease inhibitor camostat mesilate and the proteinase-activated receptor 2 (PAR2) antagonist FSLLRY-NH2 significantly inhibited oxaliplatin-induced mechanical allodynia. However, it was not inhibited by the H1 histamine receptor antagonist terfenadine. Single oxaliplatin administration increased the activity of cutaneous serine proteases, which was attenuated by camostat and mast cell deficiency. Depletion of the capsaicin-sensitive primary afferents by neonatal capsaicin treatment almost completely prevented oxaliplatin-induced mechanical allodynia, the increase in the number of mast cells, and the activity of cutaneous serine proteases. These results suggest that serine protease(s) released from mast cells and PAR2 are involved in oxaliplatin-induced mechanical allodynia. Therefore, oxaliplatin may indirectly affect the functions of mast cells through its action on capsaicin-sensitive primary afferents.

  8. Mechanism of activation of methyltransferases involved in translation by the Trm112 ‘hub’ protein

    PubMed Central

    Liger, Dominique; Mora, Liliana; Lazar, Noureddine; Figaro, Sabine; Henri, Julien; Scrima, Nathalie; Buckingham, Richard H.; van Tilbeurgh, Herman; Heurgué-Hamard, Valérie; Graille, Marc

    2011-01-01

    Methylation is a common modification encountered in DNA, RNA and proteins. It plays a central role in gene expression, protein function and mRNA translation. Prokaryotic and eukaryotic class I translation termination factors are methylated on the glutamine of the essential and universally conserved GGQ motif, in line with an important cellular role. In eukaryotes, this modification is performed by the Mtq2-Trm112 holoenzyme. Trm112 activates not only the Mtq2 catalytic subunit but also two other tRNA methyltransferases (Trm9 and Trm11). To understand the molecular mechanisms underlying methyltransferase activation by Trm112, we have determined the 3D structure of the Mtq2-Trm112 complex and mapped its active site. Using site-directed mutagenesis and in vivo functional experiments, we show that this structure can also serve as a model for the Trm9-Trm112 complex, supporting our hypothesis that Trm112 uses a common strategy to activate these three methyltransferases. PMID:21478168

  9. Mammary blood flow and metabolic activity are linked by a feedback mechanism involving nitric oxide synthesis.

    PubMed

    Cieslar, S R L; Madsen, T G; Purdie, N G; Trout, D R; Osborne, V R; Cant, J P

    2014-01-01

    To test which, if any, of the major milk precursors can elicit a rapid change in the rate of mammary blood flow (MBF) and to define the time course and magnitude of such changes, 4 lactating cows were infused with glucose, amino acids, or triacylglycerol into the external iliac artery feeding one udder half while iliac plasma flow (IPF) was monitored continuously by dye dilution. Adenosine and saline were infused as positive and negative controls, respectively, and insulin was infused to characterize the response to a centrally produced anabolic hormone. To test the roles of cyclooxygenase, NO synthase and ATP-sensitive K (KATP) channels in nutrient-mediated changes in blood flow, their respective inhibitors-indomethacin, Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME), and glibenclamide-were infused simultaneously with glucose. Each day, 1 infusate was given twice to each cow, over a 20-min period each time, separated by a 20-min washout period. In addition, each treatment protocol was administered on 2 separate days. A 73% increase in IPF during adenosine infusion showed that the mammary vasodilatory response was quadratic in time, with most changes occurring in the first 5min. Glucose infusion decreased IPF by 9% in a quadratic manner, most rapidly in the first 5min, indicating that a feedback mechanism of local blood flow control, likely through adenosine release, was operative in the mammary vasculature. Amino acid infusion increased IPF 9% in a linear manner, suggesting that mammary ATP utilization was stimulated more than ATP production. This could reflect a stimulation of protein synthesis. Triacylglycerol only tended to decrease IPF and insulin did not affect IPF. A lack of IPF response to glibenclamide indicates that KATP channels are not involved in MBF regulation. Indomethacin and L-NAME both depressed IPF. In the presence of indomethacin, glucose infusion caused a quadratic 9% increase in IPF. Indomethacin is an inhibitor of mitochondrial

  10. Phospholipase A{sub 2} is involved in the mechanism of activation of neutrophils by polychlorinated biphenyls

    SciTech Connect

    Tithof, P.K.; Schiamberg, E.; Ganey, P.E.; Peters-Golden, M.

    1996-01-01

    Aroclor 1242, a mixture of polychlorinated biphenyls (PCBs), activates neutrophils to produce superoxide anion (O{sub 2}{sup {minus}}) by a mechanism that involves phospholipase C-dependent hydrolysis of membrane phosphoinositides; however, subsequent signal transduction mechanisms are unknown. This study determines whether phospholipase A{sub 2}-dependent release of arachidonic acid is involved in PCB-induced O{sub 2}{sup {minus}} production. O{sub 2}{sup {minus}} production was measured in vitro in glycogen-elicited, rat neutrophils in the presence and absence of the inhibitors of phospholipase A{sub 2}: quinacrine, 4-bromophenacyl bromide (BPB), and manoalide. All three agents significantly decreased the amount of O{sub 2}{sup {minus}} detected during stimulation of neutrophils with Aroclor 1242. Similar inhibition occurred when neutrophils were activated with the classical stimuli, formyl-methionyl-leucyl-phenylalanine (fMLP) or phorbol myristate acetate. The effects of BPB and manoalide were not a result of cytotoxicity or other nonspecific effects. Significant release of {sup 3}H-arachidonic acid preceded O{sub 2}{sup {minus}} production in neutrophils stimulated with Aroclor 1242 or fMLP. Manoalide, at a concentration that abolished O{sub 2}{sup {minus}} production, also inhibited the release of {sup 3}H-arachidonate. Aspirin, zileuton, or WEB 2086 did not affect Aroclor 1242-induced O{sub 2}{sup {minus}} production, suggesting that eicosanoids and platelet-activating factor are not needed for neutrophil activation by PCBs. Activation of phos-pholipase A{sub 2} and O{sub 2}{sup {minus}} production do not appear to involve the Ah receptor. These data suggest that Aroclor 1242 stimulates neutrophils to produce O{sub 2}{sup {minus}} by a mechanism that involves phospholipase A{sub 2}-dependent release of arachiodonic acid. 49 refs., 6 figs., 2 tabs.

  11. Mechanisms involved in the antiplatelet activity of magnesium in human platelets.

    PubMed

    Sheu, Joen-Rong; Hsiao, George; Shen, Ming-Yi; Fong, Tsorng-Harn; Chen, Yi-Win; Lin, Chien-Huang; Chou, Duen-Suey

    2002-12-01

    In this study, magnesium sulphate dose-dependently (0.6-3.0 mmol/l) inhibited platelet aggregation in human platelets stimulated by agonists. Furthermore, magnesium sulphate (3.0 mmol/l) markedly interfered with the binding of fluorescein isothiocanate-triflavin to the glycoprotein (GP)IIb/IIIa complex in platelets stimulated by collagen. Magnesium sulphate (1.5 and 3.0 mmol/l) also inhibited phosphoinositide breakdown and intracellular Ca+2 mobilization in human platelets stimulated by collagen. Magnesium sulphate (3.0 mmol/l) significantly inhibited thromboxane A2 formation stimulated by collagen in platelets. Moreover, magnesium sulphate (1.5 and 3.0 mmol/l) obviously increased the fluorescence of platelet membranes tagged with diphenylhexatriene. In addition, magnesium sulphate (1.5 and 3.0 mmol/l) increased the formation of cyclic adenosine monophosphate (AMP) in platelets. Phosphorylation of a protein of Mr 47 000 (P47) was markedly inhibited by magnesium sulphate (1.5 mmol/l). In conclusion, the antiplatelet activity of magnesium sulphate may involve the following two pathways. (1) Magnesium sulphate may initially induce membrane fluidity changes with resulting interference of fibrinogen binding to the GPIIb/IIIa complex, followed by inhibition of phosphoinositide breakdown and thromboxane A2 formation, thereby leading to inhibition of both intracellular Ca2+ mobilization and phosphorylation of P47. (2) Magnesium sulphate might also trigger the formation of cyclic AM, ultimately resulting in inhibition of the phosphorylation of P47 and intracellular Ca+2 mobilization.

  12. Blockade of T-cell activation by dithiocarbamates involves novel mechanisms of inhibition of nuclear factor of activated T cells.

    PubMed Central

    Martínez-Martínez, S; Gómez del Arco, P; Armesilla, A L; Aramburu, J; Luo, C; Rao, A; Redondo, J M

    1997-01-01

    Dithiocarbamates (DTCs) have recently been reported as powerful inhibitors of NF-kappaB activation in a number of cell types. Given the role of this transcription factor in the regulation of gene expression in the inflammatory response, NF-kappaB inhibitors have been suggested as potential therapeutic drugs for inflammatory diseases. We show here that DTCs inhibited both interleukin 2 (IL-2) synthesis and membrane expression of antigens which are induced during T-cell activation. This inhibition, which occurred with a parallel activation of c-Jun transactivating functions and expression, was reflected by transfection experiments at the IL-2 promoter level, and involved not only the inhibition of NF-kappaB-driven reporter activation but also that of nuclear factor of activated T cells (NFAT). Accordingly, electrophoretic mobility shift assays (EMSAs) indicated that pyrrolidine DTC (PDTC) prevented NF-kappaB, and NFAT DNA-binding activity in T cells stimulated with either phorbol myristate acetate plus ionophore or antibodies against the CD3-T-cell receptor complex and simultaneously activated the binding of AP-1. Furthermore, PDTC differentially targeted both NFATp and NFATc family members, inhibiting the transactivation functions of NFATp and mRNA induction of NFATc. Strikingly, Western blotting and immunocytochemical experiments indicated that PDTC promoted a transient and rapid shuttling of NFATp and NFATc, leading to their accelerated export from the nucleus of activated T cells. We propose that the activation of an NFAT kinase by PDTC could be responsible for the rapid shuttling of the NFAT, therefore transiently converting the sustained transactivation of this transcription factor that occurs during lymphocyte activation, and show that c-Jun NH2-terminal kinase (JNK) can act by directly phosphorylating NFATp. In addition, the combined inhibitory effects on NFAT and NF-KB support a potential use of DTCs as immunosuppressants. PMID:9343406

  13. Signal-transducing mechanisms involved in activation of the platelet collagen receptor integrin alpha(2)beta(1).

    PubMed

    Jung, S M; Moroi, M

    2000-03-17

    Evidence was obtained about the mechanism responsible for platelet integrin alpha(2)beta activation by determining effects of various inhibitors on soluble collagen binding, a parameter to assess integrin alpha(2)beta(1) activation, in stimulated platelets. Agonists that can also activate platelet glycoprotein IIb/IIIa are able to activate integrin alpha(2)beta(1), but those operating via glycoprotein Ib cannot. Activation of alpha(2)beta(1) induced by low thrombin or collagen-related peptide concentrations was almost completely inhibited by apyrase, and the inhibitors wortmannin, 4-amino-5-(chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine, bisindolylmaleimide I, and SQ29548 significantly inhibited it. Activation induced by high thrombin or collagen-related peptide concentrations was far less sensitive to these inhibitors. However, only wortmannin markedly inhibited ADP-induced integrin alpha(2)beta(1) activation, and this was not ADP concentration-dependent. These results suggest that at the low agonist concentrations, the released ADP would be a primary inducer of integrin alpha(2)beta(1) activation, while at the high agonist concentrations, there would be several pathways through which integrin alpha(2)beta(1) activation can be induced. Kinetic analyses revealed that ADP-induced platelets had about the same number of binding sites (B(max)) as thrombin-induced platelets, but their affinity (K(d)) for soluble collagen was 3.7-12.7-fold lower, suggesting that activated integrin alpha(2)beta(1) induced by ADP is different from that induced by thrombin. The data are consistent with an activation mechanism involving released ADP and in which there exists two different states of activated integrin alpha(2)beta(1); these activated forms of integrin alpha(2)beta(1) would have different conformations that determine their ligand affinity.

  14. Constitutive opioid receptor activation: a prerequisite mechanism involved in acute opioid withdrawal.

    PubMed

    Freye, E; Levy, Jv

    2005-06-01

    The opioid receptor antagonist naltrexone, which is used in detoxification and rehabilitation programmes in opioid addicts, can precipitate opioid withdrawal symptoms even in patients who have no opioid present. We tested the hypothesis that in order to precipitate withdrawal, opioids need to convert the inactive opioid receptor site via protein kinase C into a constitutively active form on which the antagonist precipitates withdrawal. Acute microg/kg), given for 6 days, which was followed by the antagonist naltrexone (20 microg/kg i.v.) in the awake trained canine (n = 10). Abrupt displacement of opioid binding resulted in acute withdrawal symptoms: increase in blood pressure, heart rate, increase in amplitude height of somatosensory evoked potential, reduced tolerance to colon distention and a significant increase in grading of vegetative variables (restlessness, panting, thrashing of the head, whining, yawning, gnawing, salivation and/or rhinorrhoea, mydriasis, stepping of extremities and vomiting). Following a washout period of 14 days, the same animals were given the highly specific protein kinase C inhibitor H7 (250 microg/kg) prior to the same dosages of sufentanil and naltrexone. Such pretreatment was able to either attenuate or completely abolish the acute withdrawal symptoms. The data suggest that for precipitation of withdrawal, intracellular phosphorylation is a prerequisite in order to activate the opioid mu-receptor. In such a setting, naltrexone acts like an 'inverse agonist' relative to the action of the antagonist on a non-preoccupied receptor site not being exposed previously to a potent opioid agonist.

  15. Active cell membrane mechanisms involved in the exclusion of Rh 123 allow distinction between normal and tumoral cells.

    PubMed

    Lizard, G; Chignol, M C; Chardonnet, Y; Schmitt, D

    1994-12-01

    Human cell lines derived from three epithelial carcinomas (CaSki, HeLa, SiHa), one B lymphoma (BL60), one promyelocytic (HL60), one monocytic (U937) leukemia, one chronic myelogenous leukemia (sensitive K562S; multichemoresistant K562R) and normal human skin fibroblasts were compared for their capacity of staining with rhodamine 123 (Rh 123) and their kinetics of dye exclusion. Cells were exposed for 30 min to 10 micrograms/ml of Rh 123 in culture medium; fluorescence intensity was measured by flow cytometry immediately or 1, 2, 3 and 4 h after staining. The highest fluorescence intensity was observed in carcinoma cell lines; there was no incorporation in multichemoresistant K562R cells. Exclusion of Rh 123 was evaluated from 0 to 4 h, both by flow cytometry and by fluorimetry. Fluorescence intensity measured by flow cytometry decreased slightly in carcinoma and leukemia cells and rapidly in fibroblasts. In all cell lines Rh 123 exclusion was inhibited by 40 mumol/L verapamil and 5 mmol/L probenecid. Thus, incorporation and exclusion of Rh 123 allows distinction between normal and tumoral cells; moreover, inhibition of exclusion by verapamil and probenecid favors the involvement of active cell membrane mechanisms in the exclusion process.

  16. Formation of a tyrosine adduct involved in lignin degradation by Trametopsis cervina lignin peroxidase: a novel peroxidase activation mechanism.

    PubMed

    Miki, Yuta; Pogni, Rebecca; Acebes, Sandra; Lucas, Fátima; Fernández-Fueyo, Elena; Baratto, Maria Camilla; Fernández, María I; de los Ríos, Vivian; Ruiz-Dueñas, Francisco J; Sinicropi, Adalgisa; Basosi, Riccardo; Hammel, Kenneth E; Guallar, Victor; Martínez, Angel T

    2013-06-15

    LiP (lignin peroxidase) from Trametopsis cervina has an exposed catalytic tyrosine residue (Tyr181) instead of the tryptophan conserved in other lignin-degrading peroxidases. Pristine LiP showed a lag period in VA (veratryl alcohol) oxidation. However, VA-LiP (LiP after treatment with H2O2 and VA) lacked this lag, and H2O2-LiP (H2O2-treated LiP) was inactive. MS analyses revealed that VA-LiP includes one VA molecule covalently bound to the side chain of Tyr181, whereas H2O2-LiP contains a hydroxylated Tyr181. No adduct is formed in the Y171N variant. Molecular docking showed that VA binding is favoured by sandwich π stacking with Tyr181 and Phe89. EPR spectroscopy after peroxide activation of the pre-treated LiPs showed protein radicals other than the tyrosine radical found in pristine LiP, which were assigned to a tyrosine-VA adduct radical in VA-LiP and a dihydroxyphenyalanine radical in H2O2-LiP. Both radicals are able to oxidize large low-redox-potential substrates, but H2O2-LiP is unable to oxidize high-redox-potential substrates. Transient-state kinetics showed that the tyrosine-VA adduct strongly promotes (>100-fold) substrate oxidation by compound II, the rate-limiting step in catalysis. The novel activation mechanism is involved in ligninolysis, as demonstrated using lignin model substrates. The present paper is the first report on autocatalytic modification, resulting in functional alteration, among class II peroxidases.

  17. Activation mechanisms for the cystic fibrosis transmembrane conductance regulator protein involve direct binding of cAMP

    PubMed Central

    Pereira, Malcolm M. C.; Parker, Jody; Stratford, Fiona L. L.; McPherson, Margaret; Dormer, Robert L.

    2007-01-01

    The CFTR [CF (cystic fibrosis) transmembrane conductance regulator] chloride channel is activated by cyclic nucleotide-dependent phosphorylation and ATP binding, but also by non-phosphorylation-dependent mechanisms. Other CFTR functions such as regulation of exocytotic protein secretion are also activated by cyclic nucleotide elevating agents. A soluble protein comprising the first NBD (nucleotide-binding domain) and R-domain of CFTR (NBD1–R) was synthesized to determine directly whether CFTR binds cAMP. An equilibrium radioligand-binding assay was developed, firstly to show that, as for full-length CFTR, the NBD1–R protein bound ATP. Half-maximal displacement of [3H]ATP by non-radioactive ATP at 3.5 μM and 3.1 mM was demonstrated. [3H]cAMP bound to the protein with different affinities from ATP (half-maximal displacement by cAMP at 2.6 and 167 μM). Introduction of a mutation (T421A) in a motif predicted to be important for cyclic nucleotide binding decreased the higher affinity binding of cAMP to 9.2 μM. The anti-CFTR antibody (MPNB) that inhibits CFTR-mediated protein secretion also inhibited cAMP binding. Thus binding of cAMP to CFTR is consistent with a role in activation of protein secretion, a process defective in CF gland cells. Furthermore, the binding site may be important in the mechanism by which drugs activate mutant CFTR and correct defective ΔF508-CFTR trafficking. PMID:17381427

  18. Involvement of Mechanical Stress in Androgenetic Alopecia

    PubMed Central

    Tellez-Segura, Rafael

    2015-01-01

    Context: Androgenetic alopecia (AGA) is a frequent disorder characterized by progressive hair miniaturization in a very similar pattern among all affected men. The pathogenesis is related to androgen-inducible overexpression of transforming growth factor β-1 from balding dermal papilla cells, which is involved in epithelial inhibition and perifollicular fibrosis. Recent research shows that hair follicle androgen sensitivity is regulated by Hic-5, an androgen receptor co-activator which may be activated by the mechanical stimulation. Moreover, the dermis of scalp susceptible to be affected by AGA is firmly bounded to the galea aponeurotica, so the physical force exerted by the occipitofrontalis muscle is transmitted to the scalp skin. Aims: To know whether mechanical stress supported by hair follicles is involved in AGA phenomenon. Materials and Methods: It is performed with a finite element analysis of a galea model and a schematic representation of AGA progression according to Hamilton–Norwood scale in order to establish the correlation between elastic deformation in scalp and clinical progression of male pattern baldness. Results: The result was a highly significant correlation (r: −0.885, P < 0.001) that clearly identifies a mechanical factor in AGA development. Conclusions: All these data suggest that mechanical stress determines AGA patterning and a stretch-induced and androgen-mediated mechanotransduction in dermal papilla cells could be the primary mechanism in AGA pathogenesis. PMID:26622151

  19. Allosteric activation of SENP1 by SUMO1 β-grasp domain involves a dock-and-coalesce mechanism

    PubMed Central

    Guo, Jingjing; Zhou, Huan-Xiang

    2016-01-01

    Small ubiquitin-related modifiers (SUMOs) are conjugated to proteins to regulate a variety of cellular processes. SENPs are cysteine proteases with a catalytic center located within a channel between two subdomains that catalyzes SUMO C-terminal cleavage for processing of SUMO precursors and de-SUMOylation of target proteins. The β-grasp domain of SUMOs binds to an exosite cleft, and allosterically activates SENPs via an unknown mechanism. Our molecular dynamics simulations showed that binding of the β-grasp domain induces significant conformational and dynamic changes in SENP1, including widening of the exosite cleft and quenching of nanosecond dynamics in all but a distal region. A dock-and-coalesce mechanism emerges for SENP-catalyzed SUMO cleavage: the wedging of the β-grasp domain enables the docking of the proximal portion of the C-terminus and the strengthened cross-channel motional coupling initiates inter-subdomain correlated motions to allow for the distal portion to coalesce around the catalytic center. DOI: http://dx.doi.org/10.7554/eLife.18249.001 PMID:27576863

  20. Allosteric activation of SENP1 by SUMO1 β-grasp domain involves a dock-and-coalesce mechanism.

    PubMed

    Guo, Jingjing; Zhou, Huan-Xiang

    2016-08-31

    Small ubiquitin-related modifiers (SUMOs) are conjugated to proteins to regulate a variety of cellular processes. SENPs are cysteine proteases with a catalytic center located within a channel between two subdomains that catalyzes SUMO C-terminal cleavage for processing of SUMO precursors and de-SUMOylation of target proteins. The β-grasp domain of SUMOs binds to an exosite cleft, and allosterically activates SENPs via an unknown mechanism. Our molecular dynamics simulations showed that binding of the β-grasp domain induces significant conformational and dynamic changes in SENP1, including widening of the exosite cleft and quenching of nanosecond dynamics in all but a distal region. A dock-and-coalesce mechanism emerges for SENP-catalyzed SUMO cleavage: the wedging of the β-grasp domain enables the docking of the proximal portion of the C-terminus and the strengthened cross-channel motional coupling initiates inter-subdomain correlated motions to allow for the distal portion to coalesce around the catalytic center.

  1. Public Involvement in BOSC Activities

    EPA Pesticide Factsheets

    EPA policy and the Federal Advisory Committee Act provide for public involvement in committee activities primarily by open access to meetings and records and by providing the public an opportunity to submit comments to the committee.

  2. The mechanism of opiorphin-induced experimental priapism in rats involves activation of the polyamine synthetic pathway

    PubMed Central

    Kanika, Nirmala Devi; Tar, Moses; Tong, Yuehong; Kuppam, Dwaraka Srinivasa Rao; Melman, Arnold

    2009-01-01

    Intracorporal injection of plasmids encoding opiorphins into retired breeder rats can result in animals developing a priapic-like condition. Microarray analysis demonstrated that following intracorporal gene transfer of plasmids expressing opiorphins the most significantly upregulated gene in corporal tissue was the ornithine decarboxylase gene (ODC). Quantitative RT-PCR confirmed the upregulation of ODC, as well as other genes involved in polyamine synthesis, such as arginase-I and -II, polyamine oxidase, spermidine synthase, spermidine acetyltransferase (SAT), and S-adenosylmethionine decarboxylase. Western blot analysis demonstrated upregulation of arginase-I and -II, ODC, and SAT at the protein level. Levels of the polyamine putrescine were upregulated in animals treated with opiorphin-expressing plasmids compared with controls. A direct role for the upregulation of polyamine synthesis in the development of the priapic-like condition was supported by the observation that the ODC inhibitor 1,3-diaminopropane, when added to the drinking water of animals treated with plasmids expressing opiorphins, prevented experimental priapism. We also demonstrate that in sickle cell mice, another model of priapism, there is increased expression of the mouse opiorphin homologue in corporal tissue compared with the background strain at a life stage prior to evidence of priapism. At a life stage when there is onset of priapism, there is increased expression of the enzymes involved in polyamine synthesis (ODC and arginase-I and -II). Our results suggest that the upregulation of enzymes involved in the polyamine synthetic pathway may play a role in the development of experimental priapism and represent a target for the prevention of priapism. PMID:19657052

  3. The mechanism of opiorphin-induced experimental priapism in rats involves activation of the polyamine synthetic pathway.

    PubMed

    Kanika, Nirmala Devi; Tar, Moses; Tong, Yuehong; Kuppam, Dwaraka Srinivasa Rao; Melman, Arnold; Davies, Kelvin Paul

    2009-10-01

    Intracorporal injection of plasmids encoding opiorphins into retired breeder rats can result in animals developing a priapic-like condition. Microarray analysis demonstrated that following intracorporal gene transfer of plasmids expressing opiorphins the most significantly upregulated gene in corporal tissue was the ornithine decarboxylase gene (ODC). Quantitative RT-PCR confirmed the upregulation of ODC, as well as other genes involved in polyamine synthesis, such as arginase-I and -II, polyamine oxidase, spermidine synthase, spermidine acetyltransferase (SAT), and S-adenosylmethionine decarboxylase. Western blot analysis demonstrated upregulation of arginase-I and -II, ODC, and SAT at the protein level. Levels of the polyamine putrescine were upregulated in animals treated with opiorphin-expressing plasmids compared with controls. A direct role for the upregulation of polyamine synthesis in the development of the priapic-like condition was supported by the observation that the ODC inhibitor 1,3-diaminopropane, when added to the drinking water of animals treated with plasmids expressing opiorphins, prevented experimental priapism. We also demonstrate that in sickle cell mice, another model of priapism, there is increased expression of the mouse opiorphin homologue in corporal tissue compared with the background strain at a life stage prior to evidence of priapism. At a life stage when there is onset of priapism, there is increased expression of the enzymes involved in polyamine synthesis (ODC and arginase-I and -II). Our results suggest that the upregulation of enzymes involved in the polyamine synthetic pathway may play a role in the development of experimental priapism and represent a target for the prevention of priapism.

  4. Promoting Active Involvement in Classrooms

    ERIC Educational Resources Information Center

    Conderman, Greg; Bresnahan, Val; Hedin, Laura

    2012-01-01

    This article presents a rationale for using active involvement techniques, describes large- and small-group methods based on their documented effectiveness and applicability to K-12 classrooms, and illustrates their use. These approaches include ways of engaging students in large groups (e.g., unison responses, response cards, dry-erase boards,…

  5. Pathogenic forms of tau inhibit kinesin-dependent axonal transport through a mechanism involving activation of axonal phosphotransferases.

    PubMed

    Kanaan, Nicholas M; Morfini, Gerardo A; LaPointe, Nichole E; Pigino, Gustavo F; Patterson, Kristina R; Song, Yuyu; Andreadis, Athena; Fu, Yifan; Brady, Scott T; Binder, Lester I

    2011-07-06

    Aggregated filamentous forms of hyperphosphorylated tau (a microtubule-associated protein) represent pathological hallmarks of Alzheimer's disease (AD) and other tauopathies. While axonal transport dysfunction is thought to represent a primary pathogenic factor in AD and other neurodegenerative diseases, the direct molecular link between pathogenic forms of tau and deficits in axonal transport remain unclear. Recently, we demonstrated that filamentous, but not soluble, forms of wild-type tau inhibit anterograde, kinesin-based fast axonal transport (FAT) by activating axonal protein phosphatase 1 (PP1) and glycogen synthase kinase 3 (GSK3), independent of microtubule binding. Here, we demonstrate that amino acids 2-18 of tau, comprising a phosphatase-activating domain (PAD), are necessary and sufficient for activation of this pathway in axoplasms isolated from squid giant axons. Various pathogenic forms of tau displaying increased exposure of PAD inhibited anterograde FAT in squid axoplasm. Importantly, immunohistochemical studies using a novel PAD-specific monoclonal antibody in human postmortem tissue indicated that increased PAD exposure represents an early pathogenic event in AD that closely associates in time with AT8 immunoreactivity, an early marker of pathological tau. We propose a model of pathogenesis in which disease-associated changes in tau conformation lead to increased exposure of PAD, activation of PP1-GSK3, and inhibition of FAT. Results from these studies reveal a novel role for tau in modulating axonal phosphotransferases and provide a molecular basis for a toxic gain-of-function associated with pathogenic forms of tau.

  6. HMG-CoA reductase inhibitor rosuvastatin improves abnormal brain electrical activity via mechanisms involving eNOS.

    PubMed

    Seker, F B; Kilic, U; Caglayan, B; Ethemoglu, M S; Caglayan, A B; Ekimci, N; Demirci, S; Dogan, A; Oztezcan, S; Sahin, F; Yilmaz, B; Kilic, E

    2015-01-22

    Apart from its repressing effect on plasma lipid levels, 3-hydroxy-3-methyl glutaryl coenzyme A (HMG-CoA) reductase inhibitors exert neuroprotective functions in animal models of neurodegenerative disorders. In view of these promising observations, we were interested in whether HMG-CoA reductase inhibition would affect epileptiform activity in the brain. To elucidate this issue, atorvastatin, simvastatin and rosuvastatin were administered orally at a dose of 20 mg/kg each for 3 days and their anti-epileptic activities were tested and compared in rats. Epileptiform activity in the brain was induced by an intracortical penicillin G injection. Among HMG-CoA reductase inhibitors, simvastatin-treatment was less effective in terms of spike frequency as compared with atorvastatin- and rosuvastatin-treated animals. Atorvastatin treatment reduced spike frequencies and amplitudes significantly throughout the experiment. However, the most pronounced anti-epileptic effect was observed in rosuvastatin-treated animals, which was associated with improved blood-brain barrier (BBB) integrity, increased expression of endothelial nitric oxide synthase (eNOS) mRNA and decreased expressions of pro-apoptotic p53, Bax and caspase-3 mRNAs. Inhibition of eNOS activity with L-NG-Nitroarginine Methyl Ester (L-NAME) reversed the anti-epileptic effect of rosuvastatin significantly. However, L-NAME did not alter the effect of rosuvastatin on the levels of p53, Bax and caspase-3 mRNA expression. Here, we provide evidence that among HMG-CoA reductase inhibitors, rosuvastatin was the most effective statin on the reduction of epileptiform activity, which was associated with improved BBB permeability, increased expression of eNOS and decreased expressions of pro-apoptotic p53, Bax and caspase-3. Our observation also revealed that the anti-epileptic effect of rosuvastatin was dependent on the increased expression level of eNOS. The robust anti-epileptic effect encourages proof-of-concept studies with

  7. Decolorizing activity of malachite green and its mechanisms involved in dye biodegradation by Achromobacter xylosoxidans MG1.

    PubMed

    Wang, Ji'ai; Qiao, Min; Wei, Kangbi; Ding, Junmei; Liu, Zhongzhong; Zhang, Ke-Qin; Huang, Xiaowei

    2011-01-01

    An Achromobacter xylosoxidans MG1 strainisolated from the effluent treatment plant of a textile and dyeing factory from Yunnan Province in China was found capable of decolorizing the malachite green dye at a high efficacy. Strain MG1 reduced 86% malachite green at the concentration of 2,000 mg/l within 1 h, representing a greater ability for decolorizing and a higher tolerance of this compound than all previously reported bacteria. Color removal was optimal at pH 6 and 38°C. Further experimental evidences demonstrated that both cytoplasmic and extracellular biodegradation contributed to the decolorization of malachite green. Nested PCR was employed to identify the candidate genes responsible for malachite green decolorization, and we identified a cytoplasmic triphenylmethane reductase gene with 100% amino acid similarity to the corresponding gene in Citrobacter sp. strain. In contrast to our expectation, the addition of metyrapone had little effect on the cytoplasmic biodegradation, suggesting that cytochrome P450 was not involved in the high-performance reduction. The extracellular biodegradation was likely attributable to the secretion of extracellular proteases and some heat-resistant compounds.

  8. Brain mechanisms involved in processing unreal perceptions.

    PubMed

    Ku, Jeonghun; Kim, Jae-Jin; Jung, Young Chul; Park, Il Ho; Lee, Hyeongrae; Han, Kiwan; Yoon, Kang Jun; Kim, In Young; Kim, Sun I

    2008-12-01

    Individuals sometimes experience an illusory or hallucinatory perception. This unreal perception is usually resolved after the individual recognizes that the perception was not real. In this study, we investigated the brain mechanisms involved in the process to an illusory or hallucinatory perception through 'obtaining insight into unreality'. We used a novel and intuitive paradigm designed by combining functional magnetic resonance imaging and augmented reality technology to simulate visual illusory stimuli that mimic hallucinations during brain scanning. The results showed various brain activations, predominantly in the amygdala in the early phase, the medial frontal cortex and the occipitotemporal junction in the middle phase, and the thalamus in the late phase, which correlated with a subject's proneness to hallucinating. These activations may correspond to a 'responding stage' for a perception-based immediate emotional reaction, a 'monitoring stage' for integration and recalibration to ascertain that the perception was not real, and a 'resolving stage' for controlling the information and finally settling it, respectively. Our paradigm and findings may be useful in understanding the mechanisms for discriminating and coping with hallucinatory perceptions.

  9. Prostaglandin E2 reduces radiation-induced epithelial apoptosis through a mechanism involving AKT activation and bax translocation.

    PubMed

    Tessner, Teresa G; Muhale, Filipe; Riehl, Terrence E; Anant, Shrikant; Stenson, William F

    2004-12-01

    Prostaglandin E2 (PGE2) synthesis modulates the response to radiation injury in the mouse intestinal epithelium through effects on crypt survival and apoptosis; however, the downstream signaling events have not been elucidated. WT mice receiving 16,16-dimethyl PGE2 (dmPGE2) had fewer apoptotic cells per crypt than untreated mice. Apoptosis in Bax(-/-) mice receiving 12 Gy was approximately 50% less than in WT mice, and the ability of dmPGE2 to attenuate apoptosis was lost in Bax(-/-) mice. Positional analysis revealed that apoptosis in the Bax(-/-) mice was diminished only in the bax-expressing cells of the lower crypts and that in WT mice, dmPGE2 decreased apoptosis only in the bax-expressing cells. The HCT-116 intestinal cell line and Bax(-/-) HCT-116 recapitulated the apoptotic response of the mouse small intestine with regard to irradiation and dmPGE2. Irradiation of HCT-116 cells resulted in phosphorylation of AKT that was enhanced by dmPGE2 through transactivation of the EGFR. Inhibition of AKT phosphorylation prevented the reduction of apoptosis by dmPGE2 following radiation. Transfection of HCT-116 cells with a constitutively active AKT reduced apoptosis in irradiated cells to the same extent as in nontransfected cells treated with dmPGE2. Treatment with dmPGE2 did not alter bax or bcl-x expression but suppressed bax translocation to the mitochondrial membrane. Our in vivo studies indicate that there are bax-dependent and bax-independent radiation-induced apoptosis in the intestine but that only the bax-dependent apoptosis is reduced by dmPGE2. The in vitro studies indicate that dmPGE2, most likely by signaling through the E prostaglandin receptor EP2, reduces radiation-induced apoptosis through transactivation of the EGFR and enhanced activation of AKT and that this results in reduced bax translocation to the mitochondria.

  10. Selective inhibition of extracellular oxidants liberated from human neutrophils--A new mechanism potentially involved in the anti-inflammatory activity of hydroxychloroquine.

    PubMed

    Jančinová, Viera; Pažoureková, Silvia; Lucová, Marianna; Perečko, Tomáš; Mihalová, Danica; Bauerová, Katarína; Nosáľ, Radomír; Drábiková, Katarína

    2015-09-01

    Hydroxychloroquine is used in the therapy of rheumatoid arthritis or lupus erythematosus. Although these diseases are often accompanied by activation of neutrophils, there are still few data relating to the impact of hydroxychloroquine on these cells. We investigated the effect of orally administered hydroxychloroquine on neutrophil oxidative burst in rats with adjuvant arthritis. In human neutrophils, extra- and intracellular formation of oxidants, mobilisation of intracellular calcium and the phosphorylation of proteins regulating NADPH oxidase assembly were analysed. Administration of hydroxychloroquine decreased the concentration of oxidants in blood of arthritic rats. The inhibition was comparable with the reference drug methotrexate, yet it was not accompanied by a reduction in neutrophil count. When both drugs were co-applied, the effect became more pronounced. In isolated human neutrophils, treatment with hydroxychloroquine resulted in reduced mobilisation of intracellular calcium, diminished concentration of external oxidants and in decreased phosphorylation of Ca(2+)-dependent protein kinase C isoforms PKCα and PKCβII, which regulate activation of NADPH oxidase on plasma membrane. On the other hand, no reduction was observed in intracellular oxidants or in the phosphorylation of p40(phox) and PKCδ, two proteins directing the oxidase assembly to intracellular membranes. Hydroxychloroquine reduced neutrophil-derived oxidants potentially involved in tissue damage and protected those capable to suppress inflammation. The observed effects may represent a new mechanism involved in the anti-inflammatory activity of this drug.

  11. Kinetics and crystal structure of a mutant Escherichia coli alkaline phosphatase (Asp-369-->Asn): a mechanism involving one zinc per active site.

    PubMed

    Tibbitts, T T; Xu, X; Kantrowitz, E R

    1994-11-01

    Using site-directed mutagenesis, an aspartate side chain involved in binding metal ions in the active site of Escherichia coli alkaline phosphatase (Asp-369) was replaced, alternately, by asparagine (D369N) and by alanine (D369A). The purified mutant enzymes showed reduced turnover rates (kcat) and increased Michaelis constants (Km). The kcat for the D369A enzyme was 5,000-fold lower than the value for the wild-type enzyme. The D369N enzyme required Zn2+ in millimolar concentrations to become fully active; even under these conditions the kcat measured for hydrolysis of p-nitrophenol phosphate was 2 orders of magnitude lower than for the wild-type enzyme. Thus the kcat/Km ratios showed that catalysis is 50 times less efficient when the carboxylate side chain of Asp-369 is replaced by the corresponding amide; and activity is reduced to near nonenzymic levels when the carboxylate is replaced by a methyl group. The crystal structure of D369N, solved to 2.5 A resolution with an R-factor of 0.189, showed vacancies at 2 of the 3 metal binding sites. On the basis of the kinetic results and the refined X-ray coordinates, a reaction mechanism is proposed for phosphate ester hydrolysis by the D369N enzyme involving only 1 metal with the possible assistance of a histidine side chain.

  12. A novel mechanism for momordin Ic-induced HepG2 apoptosis: involvement of PI3K- and MAPK-dependent PPARγ activation.

    PubMed

    Wang, Jing; Yuan, Li; Xiao, Haifang; Wang, Chan; Xiao, Chunxia; Wang, Yutang; Liu, Xuebo

    2014-05-01

    Momordin Ic is a natural triterpenoid saponin found in various Chinese and Japanese natural medicines such as the fruit of Kochia scoparia (L.) Schrad. Momordin Ic has been previously demonstrated to induce HepG2 cell apoptosis in a ROS-mediated PI3K and MAPK pathway-dependent manner. In the present study, the underlying mechanisms of PI3K and MAPK pathway-mediated PPARγ, and PGC-1α co-regulator activation, as well as the effects of downstream proteins, COX-2 and FoxO4, on cell apoptosis were investigated. The results demonstrated that momordin Ic activated PPARγ and inhibited COX-2. PGC-1α and FoxO4 expressions were increased by the PI3K or MAPK pathways. Furthermore, PPARγ inhibition decreased p-p38 and FoxO4 expression, and restored COX-2 expression. ROS inhibition exerted little effect on PPARγ, COX-2 and FoxO4 expression but affected PGC-1α expression. These results revealed the involvement of PI3K and MAPK-dependent PPARγ activation in momordin Ic-induced apoptosis, providing more detailed information underlying the pro-apoptotic mechanism of momordin Ic in HepG2 cell apoptosis.

  13. Antidepressant-like activity of aroxyalkyl derivatives of 2-methoxyphenylpiperazine and evidence for the involvement of serotonin receptor subtypes in their mechanism of action.

    PubMed

    Kubacka, Monika; Mogilski, Szczepan; Bednarski, Marek; Nowiński, Leszek; Dudek, Magdalena; Żmudzka, Elżbieta; Siwek, Agata; Waszkielewicz, Anna M; Marona, Henryk; Satała, Grzegorz; Bojarski, Andrzej; Filipek, Barbara; Pytka, Karolina

    2016-02-01

    Since serotonin (5-HT) is strongly involved in the etiology and pathophysiology of depression, the development of new antidepressants is still based on the serotonergic system. The complexity of serotonergic system provides an opportunity for the development of compounds with multiple and complementary mechanism of action. This study describes serotonin receptor profile, functional characterization, and pharmacological in vivo evaluation of new aroxyalkyl derivatives of 2-methoxyphenylpiperazine. The obtained results allowed for the identification of compound 3, (1-[3-(2,6-dimethylphenoxy)propyl]-4-(2-methoxyphenyl)piperazine hydrochloride), a partial 5-HT1A receptor agonist, and 5-HT2A receptor antagonist, with high affinity toward 5-HT7 receptors, showing antidepressant- and anxiolytic-like properties. Moreover, 5-HT1A receptor activation is crucial for the antidepressant-like activity of compound 3. The rest of the compounds (except compounds 1 and 9) showed antidepressant but not anxiolytic-like properties, which did not result from 5-HT1A receptors activation. Furthermore, the compounds are 5-HT1A and weak 5-HT3 receptors antagonists, and some of them 5-HT2A antagonists. Moreover, none of the studied compounds impaired motor coordination at antidepressant-like doses. Since the studied compounds exhibited activity in behavioral assays and interacted with various receptors, the results of our experiments are very promising and require further studies.

  14. Distinct mechanism of activation of two transcription factors, AmyR and MalR, involved in amylolytic enzyme production in Aspergillus oryzae.

    PubMed

    Suzuki, Kuta; Tanaka, Mizuki; Konno, Yui; Ichikawa, Takanori; Ichinose, Sakurako; Hasegawa-Shiro, Sachiko; Shintani, Takahiro; Gomi, Katsuya

    2015-02-01

    The production of amylolytic enzymes in Aspergillus oryzae is induced in the presence of starch or maltose, and two Zn2Cys6-type transcription factors, AmyR and MalR, are involved in this regulation. AmyR directly regulates the expression of amylase genes, and MalR controls the expression of maltose-utilizing (MAL) cluster genes. Deletion of malR gene resulted in poor growth on starch medium and reduction in α-amylase production level. To elucidate the activation mechanisms of these two transcription factors in amylase production, the expression profiles of amylases and MAL cluster genes under carbon catabolite derepression condition and subcellular localization of these transcription factors fused with a green fluorescent protein (GFP) were examined. Glucose, maltose, and isomaltose induced the expression of amylase genes, and GFP-AmyR was translocated from the cytoplasm to nucleus after the addition of these sugars. Rapid induction of amylase gene expression and nuclear localization of GFP-AmyR by isomaltose suggested that this sugar was the strongest inducer for AmyR activation. In contrast, GFP-MalR was constitutively localized in the nucleus and the expression of MAL cluster genes was induced by maltose, but not by glucose or isomaltose. In the presence of maltose, the expression of amylase genes was preceded by MAL cluster gene expression. Furthermore, deletion of the malR gene resulted in a significant decrease in the α-amylase activity induced by maltose, but had apparently no effect on the expression of α-amylase genes in the presence of isomaltose. These results suggested that activation of AmyR and MalR is regulated in a different manner, and the preceding activation of MalR is essential for the utilization of maltose as an inducer for AmyR activation.

  15. Molecular mechanism of PdxR – a transcriptional activator involved in the regulation of vitamin B6 biosynthesis in the probiotic bacterium Bacillus clausii.

    PubMed

    Tramonti, Angela; Fiascarelli, Alessio; Milano, Teresa; di Salvo, Martino L; Nogués, Isabel; Pascarella, Stefano; Contestabile, Roberto

    2015-08-01

    Pyridoxal 5'-phosphate (PLP), the well-known active form of vitamin B6 , is an essential enzyme cofactor involved in a large number of metabolic processes. PLP levels need to be finely tuned in response to cell requirements; however, little is known about the regulation of PLP biosynthesis and recycling pathways. The transcriptional regulator PdxR activates transcription of the pdxST genes encoding PLP synthase. It is characterized by an N-terminal helix-turn-helix motif that binds DNA and an effector-binding C-terminal domain homologous to PLP-dependent enzymes. Although it is known that PLP acts as an anti-activator, the mechanism of action of PdxR is unknown. In the present study, we analyzed the biochemical and DNA-binding properties of PdxR from the probiotic Bacillus clausii. Spectroscopic measurements showed that PLP is the only B6 vitamer that acts as an effector molecule of PdxR. Binding of PLP to PdxR determines a protein conformational change, as detected by gel filtration chromatography and limited proteolysis experiments. We showed that two direct repeats and one inverted repeat are present in the DNA promoter region and PdxR is able to bind DNA fragments containing any combination of two of them. However, when PLP binds to PdxR, it modifies the DNA-binding properties of the protein, making it selective for inverted repeats. A molecular mechanism is proposed in which the two different DNA binding modalities of PdxR determined by the presence or absence of PLP are responsible for the control of pdxST transcription.

  16. A Mechanism of Male Germ Cell Apoptosis Induced by Bisphenol-A and Nonylphenol Involving ADAM17 and p38 MAPK Activation

    PubMed Central

    Moreno, Ricardo D.

    2014-01-01

    Germ cell apoptosis regulation is pivotal in order to maintain proper daily sperm production. Several reports have shown that endocrine disruptors such as Bisphenol-A (BPA) and Nonylphenol (NP) induce germ cell apoptosis along with a decrease in sperm production. Given their ubiquitous distribution in plastic products used by humans it is important to clarify their mechanism of action. TACE/ADAM17 is a widely distributed extracellular metalloprotease and participates in the physiological apoptosis of germ cells during spermatogenesis. The aims of this work were: 1) to determine whether BPA and NP induce ADAM17 activation; and 2) to study whether ADAM17 and/or ADAM10 are involved in germ cell apoptosis induced by BPA and NP in the pubertal rat testis. A single dose of BPA or NP (50 mg/kg) induces germ cell apoptosis in 21-day-old male rats, which was prevented by a pharmacological inhibitor of ADAM17, but not by an inhibitor of ADAM10. In vitro, we showed that BPA and NP, at similar concentrations to those found in human samples, induce the shedding of exogenous and endogenous (TNF-α) ADAM17 substrates in primary rat Sertoli cell cultures and TM4 cell line. In addition, pharmacological inhibitors of metalloproteases and genetic silencing of ADAM17 prevent the shedding induced in vitro by BPA and NP. Finally, we showed that in vivo BPA and NP induced early activation (phosphorylation) of p38 MAPK and translocation of ADAM17 to the cell surface. Interestingly, the inhibition of p38 MAPK prevents germ cell apoptosis and translocation of ADAM17 to the cell surface. These results show for the first time that xenoestrogens can induce activation of ADAM17 at concentrations similar to those found in human samples, suggesting a mechanism by which they could imbalance para/juxtacrine cell-to-cell-communication and induce germ cell apoptosis. PMID:25474107

  17. Mechanisms involved in the modulation of astroglial resistance to oxidative stress induced by activated microglia: antioxidative systems, peroxide elimination, radical generation, lipid peroxidation.

    PubMed

    Röhl, Claudia; Armbrust, Elisabeth; Herbst, Eva; Jess, Anne; Gülden, Michael; Maser, Edmund; Rimbach, Gerald; Bösch-Saadatmandi, Christine

    2010-05-01

    Microglia and astrocytes are the cellular key players in many neurological disorders associated with oxidative stress and neuroinflammation. Previously, we have shown that microglia activated by lipopolysaccharides (LPS) induce the expression of antioxidative enzymes in astrocytes and render them more resistant to hydrogen peroxide (H2O2). In this study, we examined the mechanisms involved with respect to the cellular action of different peroxides, the ability to detoxify peroxides, and the status of further antioxidative systems. Astrocytes were treated for 3 days with medium conditioned by purified quiescent (microglia-conditioned medium, MCM[-]) or LPS-activated (MCM[+]) microglia. MCM[+] reduced the cytotoxicity of the organic cumene hydroperoxide in addition to that of H2O2. Increased peroxide resistance was not accompanied by an improved ability of astrocytes to remove H2O2 or an increased expression/activity of peroxide eliminating antioxidative enzymes. Neither peroxide-induced radical generation nor lipid peroxidation were selectively affected in MCM[+] treated astrocytes. The glutathione content of peroxide resistant astrocytes, however, was increased and superoxide dismutase and heme oxygenase were found to be upregulated. These changes are likely to contribute to the higher peroxide resistance of MCM[+] treated astrocytes by improving their ability to detoxify reactive oxygen radicals and oxidation products. For C6 astroglioma cells a protective effect of microglia-derived factors could not be observed, underlining the difference of primary cells and cell lines concerning their mechanisms of oxidative stress resistance. Our results indicate the importance of microglial-astroglial cell interactions during neuroinflammatory processes.

  18. Alleviation of Microglial Activation Induced by p38 MAPK/MK2/PGE2 Axis by Capsaicin: Potential Involvement of other than TRPV1 Mechanism/s.

    PubMed

    Bhatia, Harsharan S; Roelofs, Nora; Muñoz, Eduardo; Fiebich, Bernd L

    2017-12-01

    Exaggerated inflammatory responses in microglia represent one of the major risk factors for various central nervous system's (CNS) associated pathologies. Release of excessive inflammatory mediators such as prostaglandins and cytokines are the hallmark of hyper-activated microglia. Here we have investigated the hitherto unknown effects of capsaicin (cap) - a transient receptor potential vanilloid 1 (TRPV1) agonist- in murine primary microglia, organotypic hippocampal slice cultures (OHSCs) and human primary monocytes. Results demonstrate that cap (0.1-25 µM) significantly (p < 0.05) inhibited the release of prostaglandin E2 (PGE2), 8-iso-PGF2α, and differentially regulated the levels of cytokines (TNF-α, IL-6 & IL-1β). Pharmacological blockade (via capsazepine & SB366791) and genetic deficiency of TRPV1 (TRPV1(-/-)) did not prevent cap-mediated suppression of PGE2 in activated microglia and OHSCs. Inhibition of PGE2 was partially dependent on the reduced levels of PGE2 synthesising enzymes, COX-2 and mPGES-1. To evaluate potential molecular targets, we discovered that cap significantly suppressed the activation of p38 MAPK and MAPKAPK2 (MK2). Altogether, we demonstrate that cap alleviates excessive inflammatory events by targeting the PGE2 pathway in in vitro and ex vivo immune cell models. These findings have broad relevance in understanding and paving new avenues for ongoing TRPV1 based drug therapies in neuroinflammatory-associated diseases.

  19. In vitro screening of major neurotransmitter systems possibly involved in the mechanism of action of antibodies to S100 protein in released-active form

    PubMed Central

    Gorbunov, Evgeniy A; Ertuzun, Irina A; Kachaeva, Evgeniya V; Tarasov, Sergey A; Epstein, Oleg I

    2015-01-01

    Experimentally and clinically, it was shown that released-active form of antibodies to S100 protein (RAF of Abs to S100) exerts a wide range of pharmacological activities: anxiolytic, antiasthenic, antiaggressive, stress-protective, antihypoxic, antiischemic, neuroprotective, and nootropic. The purpose of this study was to determine the influence of RAF of Abs to S100 on major neurotransmitter systems (serotoninergic, GABAergic, dopaminergic, and on sigma receptors as well) which are possibly involved in its mechanism of pharmacological activity. Radioligand binding assays were used for assessment of the drug influence on ligand–receptor interaction. [35S]GTPγS binding assay, cyclic adenosine monophosphate HTRF™, cellular dielectric spectroscopy assays, and assays based on measurement of intracellular concentration of Ca2+ ions were used for assessment of agonist or antagonist properties of the drug toward receptors. RAF of Abs to S100 increased radioligand binding to 5-HT1F, 5-HT2B, 5-HT2Cedited, 5-HT3, and to D3 receptors by 142.0%, 131.9%, 149.3%, 120.7%, and 126.3%, respectively. Also, the drug significantly inhibited specific binding of radioligands to GABAB1A/B2 receptors by 25.8%, and to both native and recombinant human sigma1 receptors by 75.3% and 40.32%, respectively. In the functional assays, it was shown that the drug exerted antagonism at 5-HT1B, D3, and GABAB1A/B2 receptors inhibiting agonist-induced responses by 23.24%, 32.76%, and 30.2%, respectively. On the contrary, the drug exerted an agonist effect at 5-HT1A receptors enhancing receptor functional activity by 28.0%. The pharmacological profiling of RAF of Abs to S100 among 27 receptor provides evidence for drug-related modification of major neurotransmitter systems. PMID:26604768

  20. [Signaling mechanisms involved in resolution of inflammation].

    PubMed

    Cervantes-Villagrana, Rodolfo Daniel; Cervantes-Villagrana, Alberto Rafael; Presno-Bernal, José Miguel

    2014-01-01

    Inflammation is a physiological process, which eliminates pathogens and induces repair of damaged tissue. This process is controlled by negative feedback mechanisms, but if the inflammation persists, it generates a deleterious autoimmune process or can to contribute with diseases such as obesity or cancer. The inflammation resolution involves mechanisms such as decrease of proliferation and maturation of immune cells, phagocytosis and apoptosis of immune cells, and decrease of proinflammatory mediators. Therefore, is relevant to study the physiological effects of specific receptors that participate in inflammation resolution and the design of specific agonists as conventional anti-inflammatory therapeutics, without dramatic collateral effects. In this review, we study some mechanisms associated with inflammation inhibition, particularly the transduction of receptors for ligands with anti-inflammatory effects and that are relevant for their potential therapeutic.

  1. Mechanism of action of the breast cancer-promoter hormone, 5α-dihydroprogesterone (5αP), involves plasma membrane-associated receptors and MAPK activation.

    PubMed

    Wiebe, John P; Pawlak, Kevin J; Kwok, Arthur

    2016-01-01

    Previous studies have shown that breast tissues and breast cell lines can convert progesterone to 5α-pregnane-3,20-dione (5aP), and that 5αP stimulates breast cell proliferation and detachment in vitro, and tumor formation in vivo, regardless of presence or absence of receptors for progesterone (PR) or estrogen (ER). Recently it was demonstrated, both in vitro and in vivo, that pro-cancer actions attributed to administered progesterone are due to the in situ produced 5αP. Because of the significant role of 5αP in breast cancers, it is important to understand its molecular mechanisms of action. The aims of the current studies were to identify 5αP binding sites and to determine if the mechanisms of action of 5αP involve the mitogen-activated protein kinase (MAPK), extracellular signal-regulated protein kinases (ERK1/2) pathway. Binding studies, using tritium-labeled 5αP ([(3)H]5αP), carried out on membrane, cytosol and nuclear fractions from human breast cells (MCF-7, PR/ER-positive; MDA-MB-231, PR/ER-negative) and on highly enriched membrane fractions, identified the plasma membrane as the site of ligand specific 5αP receptors. Localization of 5αP receptors to the cell membrane was confirmed visually with fluorescently labeled conjugate (5αP-BSA-FITC). Treatment of cells with either 5αP or membrane-impermeable 5αP-BSA resulted in significant increases in cell proliferation and detachment. 5αP and 5αP-BSA equally activated the MAPK/ERK1/2 pathway as evidenced by phosphorylation of ERK1/2. Inhibitors (PD98059, mevastatin and genistein) of specific sites along the Ras/Raf/MEK/ERK signaling pathway, blocked the phosphorylation and concomitantly inhibited 5αP-induced stimulation of cell proliferation and detachment. The study has identified high affinity, stereo-specific binding sites for 5αP that have the characteristics of a functional membrane 5αP receptor, and has shown that the cancer-promoter actions of 5αP are mediated from the liganded receptor

  2. Major regulatory mechanisms involved in sperm motility.

    PubMed

    Pereira, Rute; Sá, Rosália; Barros, Alberto; Sousa, Mário

    2017-01-01

    The genetic bases and molecular mechanisms involved in the assembly and function of the flagellum components as well as in the regulation of the flagellar movement are not fully understood, especially in humans. There are several causes for sperm immotility, of which some can be avoided and corrected, whereas other are related to genetic defects and deserve full investigation to give a diagnosis to patients. This review was performed after an extensive literature search on the online databases PubMed, ScienceDirect, and Web of Science. Here, we review the involvement of regulatory pathways responsible for sperm motility, indicating possible causes for sperm immotility. These included the calcium pathway, the cAMP-dependent protein kinase pathway, the importance of kinases and phosphatases, the function of reactive oxygen species, and how the regulation of cell volume and osmolarity are also fundamental components. We then discuss main gene defects associated with specific morphological abnormalities. Finally, we slightly discuss some preventive and treatments approaches to avoid development of conditions that are associated with unspecified sperm immotility. We believe that in the near future, with the development of more powerful techniques, the genetic causes of sperm immotility and the regulatory mechanisms of sperm motility will be better understand, thus enabling to perform a full diagnosis and uncover new therapies.

  3. Major regulatory mechanisms involved in sperm motility

    PubMed Central

    Pereira, Rute; Sá, Rosália; Barros, Alberto; Sousa, Mário

    2017-01-01

    The genetic bases and molecular mechanisms involved in the assembly and function of the flagellum components as well as in the regulation of the flagellar movement are not fully understood, especially in humans. There are several causes for sperm immotility, of which some can be avoided and corrected, whereas other are related to genetic defects and deserve full investigation to give a diagnosis to patients. This review was performed after an extensive literature search on the online databases PubMed, ScienceDirect, and Web of Science. Here, we review the involvement of regulatory pathways responsible for sperm motility, indicating possible causes for sperm immotility. These included the calcium pathway, the cAMP-dependent protein kinase pathway, the importance of kinases and phosphatases, the function of reactive oxygen species, and how the regulation of cell volume and osmolarity are also fundamental components. We then discuss main gene defects associated with specific morphological abnormalities. Finally, we slightly discuss some preventive and treatments approaches to avoid development of conditions that are associated with unspecified sperm immotility. We believe that in the near future, with the development of more powerful techniques, the genetic causes of sperm immotility and the regulatory mechanisms of sperm motility will be better understand, thus enabling to perform a full diagnosis and uncover new therapies. PMID:26680031

  4. Molecular Mechanisms Involved in Schwann Cell Plasticity

    PubMed Central

    Boerboom, Angélique; Dion, Valérie; Chariot, Alain; Franzen, Rachelle

    2017-01-01

    Schwann cell incredible plasticity is a hallmark of the utmost importance following nerve damage or in demyelinating neuropathies. After injury, Schwann cells undergo dedifferentiation before redifferentiating to promote nerve regeneration and complete functional recovery. This review updates and discusses the molecular mechanisms involved in the negative regulation of myelination as well as in the reprogramming of Schwann cells taking place early following nerve lesion to support repair. Significant advance has been made on signaling pathways and molecular components that regulate SC regenerative properties. These include for instance transcriptional regulators such as c-Jun or Notch, the MAPK and the Nrg1/ErbB2/3 pathways. This comprehensive overview ends with some therapeutical applications targeting factors that control Schwann cell plasticity and highlights the need to carefully modulate and balance this capacity to drive nerve repair. PMID:28261057

  5. Hydrogen inhalation reduced epithelial apoptosis in ventilator-induced lung injury via a mechanism involving nuclear factor-kappa B activation

    SciTech Connect

    Huang, Chien-Sheng; Kawamura, Tomohiro; Peng, Ximei; Tochigi, Naobumi; Shigemura, Norihisa; Billiar, Timothy R.; Nakao, Atsunori; Toyoda, Yoshiya

    2011-05-06

    Highlights: {yields} Hydrogen is a regulatory molecule with antiinflammatory and antiapoptotic protective effects. {yields} There is very limited information on the pathways regulated in vivo by the hydrogen. {yields} Antiapoptotic abilities of hydrogen were explained by upregulation of the antiapoptotic gene. {yields} NF{kappa}B activation during hydrogen treatment was correlated with elevated antiapoptotic protein. {yields} NF{kappa}B activation associated with increase Bcl-2 may contribute to cytoprotection of hydrogen. -- Abstract: We recently demonstrated the inhalation of hydrogen gas, a novel medical therapeutic gas, ameliorates ventilator-induced lung injury (VILI); however, the molecular mechanisms by which hydrogen ameliorates VILI remain unclear. Therefore, we investigated whether inhaled hydrogen gas modulates the nuclear factor-kappa B (NF{kappa}B) signaling pathway. VILI was generated in male C57BL6 mice by performing a tracheostomy and placing the mice on a mechanical ventilator (tidal volume of 30 ml/kg or 10 ml/kg without positive end-expiratory pressure). The ventilator delivered either 2% nitrogen or 2% hydrogen in balanced air. NF{kappa}B activation, as indicated by NF{kappa}B DNA binding, was detected by electrophoretic mobility shift assays and enzyme-linked immunosorbent assay. Hydrogen gas inhalation increased NF{kappa}B DNA binding after 1 h of ventilation and decreased NF{kappa}B DNA binding after 2 h of ventilation, as compared with controls. The early activation of NF{kappa}B during hydrogen treatment was correlated with elevated levels of the antiapoptotic protein Bcl-2 and decreased levels of Bax. Hydrogen inhalation increased oxygen tension, decreased lung edema, and decreased the expression of proinflammatory mediators. Chemical inhibition of early NF{kappa}B activation using SN50 reversed these protective effects. NF{kappa}B activation and an associated increase in the expression of Bcl-2 may contribute, in part, to the

  6. MECHANISMS INVOLVED IN THE ENHANCED SUSCEPTIBILITY OF SENESCENT RATS TO THE HEPATOCARCINOGENIC EFFECT OF PEROXISOME PROLIFERATORS: ROLE OF PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR ALPHA (PPARA), CELL PROLIFERATION AND OXIDATIVE STRESS

    EPA Science Inventory

    Mechanisms involved in the ENHANCED SUSCEPTIBILITY of SENESCENT Rats TO THE HEPATOCARCINOGENIC EFFECT OF PEROXISOME PROLIFERATORS: Role of peroxisome proliferator-activated receptor alpha (PPARa), cell proliferation and oxidative stress

    Jihan A. Youssef1, Pierre Ammann2, B...

  7. Activation of mineralocorticoid receptors in the rostral ventrolateral medulla is involved in hypertensive mechanisms in stroke-prone spontaneously hypertensive rats.

    PubMed

    Nakagaki, Toshiaki; Hirooka, Yoshitaka; Matsukawa, Ryuichi; Nishihara, Masaaki; Nakano, Masatsugu; Ito, Koji; Hoka, Sumio; Sunagawa, Kenji

    2012-04-01

    Mineralocorticoid receptor (MR) is recognized as a target for therapeutic intervention in hypertension and heart failure. MRs in the central nervous system are thought to have an important role in blood pressure regulation. Thus, we examined whether activation of the MR pathway in the rostral ventrolateral medulla (RVLM) of the brainstem contributes to the neural mechanism of hypertension in stroke-prone spontaneously hypertensive rats (SHRSPs). We microinjected eplerenone, aldosterone or Na(+)-rich artificial cerebrospinal fluid (aCSF) into the RVLM of anesthetized Wistar-Kyoto (WKY) rats and SHRSPs. Arterial pressure (AP), heart rate (HR) and renal sympathetic nerve activity (RSNA) were recorded. The expressions of the MR protein and the serum- and glucocorticoid-regulated kinase protein (Sgk1), which is a marker of MR activity, in the RVLM were measured by western blot analysis. Bilateral microinjection of eplerenone into the RVLM decreased AP and RSNA in WKY rats and SHRSPs, and the decreases in those variables were significantly greater in SHRSPs than WKY rats. Microinjection of aldosterone or Na(+)-rich aCSF into the RVLM increased AP and RSNA dose-dependently. The increases in those variables were significantly greater in SHRSPs than in WKY rats. The pressor responses of aldosterone or Na(+)-rich aCSF were attenuated by the prior injection of eplerenone in SHRSPs. Sgk1 expression levels in the RVLM were significantly greater in SHRSPs than in WKY rats. These findings suggest that activation of MRs in the RVLM enhances sympathetic activity, thereby contributing to the neural mechanism of hypertension in the SHRSP.

  8. Sub-lethal concentrations of activated complement increase rat lymphocyte glutamine utilization and oxidation while lethal concentrations cause death by a mechanism involving ATP depletion.

    PubMed

    Bacurau, R F P; O'Toole, C E; Newsholme, P; Costa Rosa, L F B P

    2002-09-01

    Nucleated cells are more resistant to complement-mediated cell death than anucleated cells such as erythrocytes. There are few reports concerning the metabolic response of nucleated cells subjected to sub-lethal complement attack. It is possible that the rate of utilization of specific metabolic fuels by the cell is increased to enhance cell defence. We have measured the maximum activity of hexokinase, citrate synthase, glucose 6-phosphate dehydrogenase and glutaminase in rat mesenteric lymphocytes exposed to sub-lethal concentrations of activated complement (present in zymosan-activated serum, ZAS). These enzymes were carefully selected as they indicate changes of flux in glycolysis, TCA cycle, pentose phosphate pathway and glutaminolysis, respectively. The only enzyme activity to change on exposure of lymphocytes to ZAS was glutaminase, which was enhanced approximately by two-fold. Although rates of both glutamine and glucose utilization were enhanced by exposure to ZAS, only the rate of oxidation of glutamine was increased. Complement kills anucleated cells by simple osmotic lysis. However, it is likely that some nucleated cells will display characteristics of an ordered death mechanism and we have demonstrated that the concentration of lymphocyte ATP is dramatically decreased by activated complement. Nevertheless, the extent of cell death could be significantly reduced by the addition of inhibitors of the nuclear enzyme poly (ADP-ribose) polymerase (PARP). We conclude that glutamine metabolism is not only important for lymphocyte proliferative responses but is also important for cell defence from sub-lethal concentrations of activated complement. The rapid rate of complement-induced lymphocyte death reported here is suggested to be a consequence of over-activation of the nuclear enzyme PARP and ATP depletion.

  9. The interrelationship of research in the laboratory and the field to assess hydration status and determine mechanisms involved in water regulation during physical activity.

    PubMed

    Stachenfeld, Nina S

    2014-05-01

    Changes in skin blood and sweating are the primary mechanisms for heat loss in humans. A hot, humid environment concomitant with dehydration limits the ability to increase skin blood flow for the purpose of transferring heat from the body core to skin surface and evaporate sweat to maintain core temperature within safe limits during exercise. Adequate hydration improves thermoregulation by maintaining blood volume to support skin blood flow and sweating. Humans rely on fluid intake to maintain total body water and blood volume, and have developed complex mechanisms to sense changes in the amount and composition of fluid in the body. This paper addresses the interrelationship of research in the laboratory and the field to assess hydration status involved in body water and temperature regulation during exercise. In the controlled setting of a research laboratory, investigators are able to investigate the contributions of volume and tonicity of fluid in the plasma to body water and temperature regulation during exercise and recovery. For example, laboratory studies have shown that tonicity in a rehydration beverage maintains the thirst mechanism (and stimulates drinking), and contributes to the ongoing stimulation of renal fluid retention hormones, ultimately leading to a more complete rehydration. Research in the field cannot control the environment precisely, but these studies provide a natural, 'real-life' setting to study fluid and temperature regulation during exercise. The conditions encountered in the field are closest to the environment during competition, and data collected in the field can have an immediate impact on performance and safety during exercise. There is an important synergy between these two methods of collecting data that support performance and protect athletes from harm during training and improve performance during competition.

  10. Crystal structure of an enzymatically inactive trans-sialidase-like lectin from Trypanosoma cruzi: the carbohydrate binding mechanism involves residual sialidase activity.

    PubMed

    Oppezzo, Pablo; Obal, Gonzalo; Baraibar, Martín A; Pritsch, Otto; Alzari, Pedro M; Buschiazzo, Alejandro

    2011-09-01

    Trans-sialidases are surface-located proteins in Trypanosoma cruzi that participate in key parasite-host interactions and parasite virulence. These proteins are encoded by a large multigenic family, with tandem-repeated and individual genes dispersed throughout the genome. While a large number of genes encode for catalytically active enzyme isoforms, many others display mutations that involve catalytic residues. The latter ultimately code for catalytically inactive proteins with very high similarity to their active paralogs. These inactive members have been shown to be lectins, able to bind sialic acid and galactose in vitro, although their cellular functions are yet to be fully established. We now report structural and biochemical evidence extending the current molecular understanding of these lectins. We have solved the crystal structure of one such catalytically inactive trans-sialidase-like protein, after soaking with a specific carbohydrate ligand, sialyl-α2,3-lactose. Instead of the expected trisaccharide, the binding pocket was observed occupied by α-lactose, strongly suggesting that the protein retains residual hydrolytic activity. This hypothesis was validated by enzyme kinetics assays, in comparison to fully active wild-type trans-sialidase. Surface plasmon resonance also confirmed that these trans-sialidase-like lectins are not only able to bind small oligosaccharides, but also sialylated glycoproteins, which is relevant in the physiologic scenario of parasite infection. Inactive trans-sialidase proteins appear thus to be β-methyl-galactosyl-specific lectins, evolved within an exo-sialidase scaffold, thus explaining why their lectin activity is triggered by the presence of terminal sialic acid.

  11. Trypsin activity is not involved in premature, intrapancreatic trypsinogen activation.

    PubMed

    Halangk, Walter; Krüger, Burkhard; Ruthenbürger, Manuel; Stürzebecher, Jörg; Albrecht, Elke; Lippert, Hans; Lerch, Markus M

    2002-02-01

    A premature and intracellular activation of digestive zymogens is thought to be responsible for the onset of pancreatitis. Because trypsin has a critical role in initiating the activation cascade of digestive enzymes in the gut, it has been assumed that trypsin also initiates intracellular zymogen activation in the pancreas. We have tested this hypothesis in isolated acini and lobules from rat pancreas. Intracellular trypsinogen activation was induced by supramaximal secretagogue stimulation and measured using either specific trypsin substrates or immunoreactivity of the trypsinogen activation peptide (TAP). To prevent a trypsin-induced trypsinogen activation, we used the cell-permeant, highly specific, and reversible inhibitor Nalpha-(2-naphthylsulfonyl)-3-amidinophenylalanine-carboxymethylpiperazide (S124), and to prevent cathepsin-induced trypsinogen activation, we used the cysteine protease inhibitor E-64d. Incubation of acini or lobules in the presence of S124 completely prevented the generation of trypsin activity in response to supramaximal caerulein but had no effect whatsoever on the generation of TAP. Conversely, when trypsin activity was recovered at the end of the experiment by either washout of S124 from acini or extensive dilution of lobule homogenates, it was up to 400% higher than after caerulein alone and corresponded, in molar terms, to the generation of TAP. Both trypsin activity and TAP release were inhibited in parallel by E-64d. We conclude that caerulein-induced trypsinogen activation in the pancreas is caused by an E-64d-inhibitable mechanism such as cathepsin-induced trypsinogen activation, and neither involves nor requires intracellular trypsin activity. Specific trypsin inhibition, on the other hand, prevents 80% of trypsin inactivation or autodegradation in the pancreas.

  12. EGF receptor-dependent mechanism may be involved in the Tamm-Horsfall glycoprotein-enhanced PMN phagocytosis via activating Rho family and MAPK signaling pathway.

    PubMed

    Li, Ko-Jen; Siao, Sue-Cien; Wu, Cheng-Han; Shen, Chieh-Yu; Wu, Tsai-Hung; Tsai, Chang-Youh; Hsieh, Song-Chou; Yu, Chia-Li

    2014-01-21

    Our previous studies showed that urinary Tamm-Horsfall glycoprotein (THP) potently enhanced polymorphonuclear neutrophil (PMN) phagocytosis. However, the domain structure(s), signaling pathway and the intracellular events responsible for THP-enhanced PMN phagocytosis remain to be elucidated. THP was purified from normal human urine. The human promyelocytic leukemia cell line HL-60 was induced to differentiate into PMNs by all-trans retinoid acid. Pretreatment with different MAPK and PI3K inhibitors was used to delineate signaling pathways in THP-enhanced PMN phagocytosis. Phosphorylation of molecules responsible for PMN phagocytosis induced by bacterial lipopolysaccharide (LPS), THP, or human recombinant epidermal growth factor (EGF) was evaluated by western blot. A p38 MAPK inhibitor, SB203580, effectively inhibited both spontaneous and LPS- and THP-induced PMN phagocytosis. Both THP and LPS enhanced the expression of the Rho family proteins Cdc42 and Rac that may lead to F-actin re-arrangement. Further studies suggested that THP and EGF enhance PMN and differentiated HL-60 cell phagocytosis in a similar pattern. Furthermore, the EGF receptor inhibitor GW2974 significantly suppressed THP- and EGF-enhanced PMN phagocytosis and p38 and ERK1/2 phosphorylation in differentiated HL-60 cells. We conclude that EGF receptor-dependent signaling may be involved in THP-enhanced PMN phagocytosis by activating Rho family and MAP kinase.

  13. A p53-independent apoptotic mechanism of adenoviral mutant E1A was involved in its selective antitumor activity for human cancer

    PubMed Central

    Fang, Lin; Cheng, Qian; Zhao, Jingjing; Ge, Yan; Zhu, Qi; Zhao, Min; Zhang, Jie; Zhang, Qi; Li, Liantao; Liu, Junjie; Zheng, Junnian

    2016-01-01

    The conserved regions (CR) of adenoviral E1A had been shown to be necessary for disruption of pRb-E2F transcription factor complexes and induction of the S phase. Here we constructed a mutant adenoviral E1A with Rb-binding ability absent (E1A 30-60aa and 120-127aa deletion, mE1A) and investigated its antitumor capacities in vitro and in vivo. The mE1A suppressed the viability of tumor cells as efficiently as the wild type E1A, and there was no cytotoxic effect on normal cells. Although the mE1A arrested tumor cell cycle with the same manner as E1A, the former played a different role on cell cycle regulation compared with E1A in normal cells, which might contribute to its selective antitumor activity. E1A and mE1A had accumulated inactive p53, decreased the expression of mdm2, Cdkn1a (also named p21), increased p21's nuclear distribution and induced tumor cell apoptosis in a p53-indenpent manner. Further, E1A or mE1A significantly suppressed tumor growth in subcutaneous hepatocellular carcinoma xenograft models. Especially, tumor-bearing mice treated with mE1A had higher survival rate than those treated with E1A. Our data demonstrated that mutant adenoviral E1A significantly induced tumor cell apoptosis in a p53-indenpednt manner and had selective tumor suppressing ability. The observations of adenoviral E1A mutant had provided a novel mechanism for E1A's complex activities during infection. PMID:27340782

  14. Molecular Mechanisms in Mood Regulation Involving the Circadian Clock.

    PubMed

    Albrecht, Urs

    2017-01-01

    The circadian system coordinates activities and functions in cells and tissues in order to optimize body functions in anticipation to daily changes in the environment. Disruption of the circadian system, due to irregular lifestyle such as rotating shift work, frequent travel across time-zones, or chronic stress, is correlated with several diseases such as obesity, cancer, and neurological disorders. Molecular mechanisms linking the circadian clock with neurological functions have been uncovered suggesting that disruption of the clock may be critically involved in the development of mood disorders. In this mini-review, I will summarize molecular mechanisms in which clock components play a central role for mood regulation. Such mechanisms have been identified in the monoaminergic system, the HPA axis, and neurogenesis.

  15. Molecular Mechanisms in Mood Regulation Involving the Circadian Clock

    PubMed Central

    Albrecht, Urs

    2017-01-01

    The circadian system coordinates activities and functions in cells and tissues in order to optimize body functions in anticipation to daily changes in the environment. Disruption of the circadian system, due to irregular lifestyle such as rotating shift work, frequent travel across time-zones, or chronic stress, is correlated with several diseases such as obesity, cancer, and neurological disorders. Molecular mechanisms linking the circadian clock with neurological functions have been uncovered suggesting that disruption of the clock may be critically involved in the development of mood disorders. In this mini-review, I will summarize molecular mechanisms in which clock components play a central role for mood regulation. Such mechanisms have been identified in the monoaminergic system, the HPA axis, and neurogenesis. PMID:28223962

  16. Molecular mechanisms and pathways involved in bovine embryonic genome activation and their regulation by alternative in vivo and in vitro culture conditions.

    PubMed

    Gad, Ahmed; Hoelker, Michael; Besenfelder, Urban; Havlicek, Vitezslav; Cinar, Ulas; Rings, Franca; Held, Eva; Dufort, Isabelle; Sirard, Marc-André; Schellander, Karl; Tesfaye, Dawit

    2012-10-01

    Understanding gene expression patterns in response to altered environmental conditions at different time points of the preimplantation period would improve our knowledge on regulation of embryonic development. Here we aimed to examine the effect of alternative in vivo and in vitro culture conditions at the time of major embryonic genome activation (EGA) on the development and transcriptome profile of bovine blastocysts. Four different blastocyst groups were produced under alternative in vivo and in vitro culture conditions before or after major EGA. Completely in vitro- and in vivo-produced blastocysts were used as controls. We compared gene expression patterns between each blastocyst group and in vivo blastocyst control group using EmbryoGENE's bovine microarray. The data showed that changing culture conditions from in vivo to in vitro or vice versa, either before or after the time of major EGA, had no effect on the developmental rates; however, in vitro conditions during that time critically influenced the transcriptome of the blastocysts produced. The source of oocyte had a critical effect on developmental rates and the ability of the embryo to react to changing culture conditions. Ontological classification highlighted a marked contrast in expression patterns for lipid metabolism and oxidative stress response between blastocysts generated in vivo versus in vitro, with opposite trends. Molecular mechanisms and pathways that are influenced by altered culture conditions during EGA were defined. These results will help in the development of new strategies to modify culture conditions at this critical stage to enhance the development of competent blastocysts.

  17. [Inflammasome: activation mechanisms].

    PubMed

    Suárez, Raibel; Buelvas, Neudo

    2015-03-01

    Inflammation is a rapid biologic response of the immune system in vascular tissues, directed to eliminate stimuli capable of causing damage and begin the process of repair. The macromolecular complexes known as "inflammasomes" are formed by a receptor, either NOD (NLR) or ALR, the receptor absent in melanoma 2 (AIM2). In addition, the inflammasome is formed by the speck-like protein associated to apoptosis (ASC) and procaspase-1, that may be activated by variations in the ionic and intracellular and extracellular ATP concentrations; and the loss of stabilization of the fagolisosomme by internalization of insoluble crystals and redox mechanisms. As a result, there is activation of the molecular platform and the processing of inflammatory prointerleukins to their active forms. There are two modalities of activation of the inflammasome: canonical and non-canonical, both capable of generating effector responses. Recent data associate NLRP 3, IL-1β and IL-18 in the pathogenesis of a variety of diseases, including atherosclerosis, type II diabetes, hyperhomocysteinemia, gout, malaria and hypertension. The inflammasome cascade is emerging as a new chemotherapeutic target in these diseases. In this review we shall discuss the mechanisms of activation and regulation of the inflammasome that stimulate, modulate and resolve inflammation.

  18. Promoting Active Involvement in Today's Classrooms

    ERIC Educational Resources Information Center

    Conderman, Greg; Bresnahan, Val; Hedin, Laura

    2011-01-01

    In today's diverse classrooms and age of accountability, teachers need to use efficient, research-based instructional approaches that engage all students, promote interest and variety in learning and teaching, and provide immediate and continuous informal assessment data. This article presents a rationale for using active involvement techniques,…

  19. Mechanisms Involved in Exercise-Induced Cardioprotection: A Systematic Review

    PubMed Central

    Borges, Juliana Pereira; Lessa, Marcos Adriano

    2015-01-01

    Background Acute myocardial infarction is the leading cause of morbidity and mortality worldwide. Furthermore, research has shown that exercise, in addition to reducing cardiovascular risk factors, can also protect the heart against injury due to ischemia and reperfusion through a direct effect on the myocardium. However, the specific mechanism involved in exerciseinduced cardiac preconditioning is still under debate. Objective To perform a systematic review of the studies that have addressed the mechanisms by which aerobic exercise promotes direct cardioprotection against ischemia and reperfusion injury. Methods A search was conducted using MEDLINE, Literatura Latino-Americana e do Caribe de Informação em Ciências da Saúde, and Scientific Electronic Library Online databases. Data were extracted in a standardized manner by two independent researchers, who were responsible for assessing the methodological quality of the studies. Results The search retrieved 78 studies; after evaluating the abstracts, 30 studies were excluded. The manuscripts of the remaining 48 studies were completely read and, of these, 20 were excluded. Finally, 28 studies were included in this systematic review. Conclusion On the basis of the selected studies, the following are potentially involved in the cardioprotective response to exercise: increased heat shock protein production, nitric oxide pathway involvement, increased cardiac antioxidant capacity, improvement in ATP-dependent potassium channel function, and opioid system activation. Despite all the previous investigations, further research is still necessary to obtain more consistent conclusions. PMID:25830711

  20. Mechanically Activated Ion Channels

    PubMed Central

    Ranade, Sanjeev S.; Syeda, Ruhma; Patapoutian, Ardem

    2015-01-01

    Mechanotransduction, the conversion of physical forces into biochemical signals, is an essential component of numerous physiological processes including not only conscious senses of touch and hearing, but also unconscious senses such as blood pressure regulation. Mechanically activated (MA) ion channels have been proposed as sensors of physical force, but the identity of these channels and an understanding of how mechanical force is transduced has remained elusive. A number of recent studies on previously known ion channels along with the identification of novel MA ion channels have greatly transformed our understanding of touch and hearing in both vertebrates and invertebrates. Here, we present an updated review of eukaryotic ion channel families that have been implicated in mechanotransduction processes and evaluate the qualifications of the candidate genes according to specified criteria. We then discuss the proposed gating models for MA ion channels and highlight recent structural studies of mechanosensitive potassium channels. PMID:26402601

  1. Mechanically Activated Ion Channels.

    PubMed

    Ranade, Sanjeev S; Syeda, Ruhma; Patapoutian, Ardem

    2015-09-23

    Mechanotransduction, the conversion of physical forces into biochemical signals, is essential for various physiological processes such as the conscious sensations of touch and hearing, and the unconscious sensation of blood flow. Mechanically activated (MA) ion channels have been proposed as sensors of physical force, but the identity of these channels and an understanding of how mechanical force is transduced has remained elusive. A number of recent studies on previously known ion channels along with the identification of novel MA ion channels have greatly transformed our understanding of touch and hearing in both vertebrates and invertebrates. Here, we present an updated review of eukaryotic ion channel families that have been implicated in mechanotransduction processes and evaluate the qualifications of the candidate genes according to specified criteria. We then discuss the proposed gating models for MA ion channels and highlight recent structural studies of mechanosensitive potassium channels.

  2. Poly (ADP-Ribose) Polymerase is Involved in the Repair of DNA Damage Due to Sulfur Mustard by a Mechanism Other Than DNA Ligase I Activation

    DTIC Science & Technology

    2004-11-16

    agents including sulfur mustard (SM). We observed concurrent activation of PARP and DNA ligase in SM-exposed human epidermal keratinocytes (HEK...Previous reports from other laboratories suggested that DNA ligase activation could be due to its modification by PARP. In humans, there are three distinct...DNA ligases, I, II and IV of which DNA ligase I participates in DNA replication and repair. By metabolically labeling HEK using 3H-adenosine

  3. Possible involvement of membrane lipids peroxidation and oxidation of catalytically essential thiols of the cerebral transmembrane sodium pump as component mechanisms of iron-mediated oxidative stress-linked dysfunction of the pump's activity.

    PubMed

    Omotayo, T I; Akinyemi, G S; Omololu, P A; Ajayi, B O; Akindahunsi, A A; Rocha, J B T; Kade, I J

    2015-01-01

    The precise molecular events defining the complex role of oxidative stress in the inactivation of the cerebral sodium pump in radical-induced neurodegenerative diseases is yet to be fully clarified and thus still open. Herein we investigated the modulation of the activity of the cerebral transmembrane electrogenic enzyme in Fe(2+)-mediated in vitro oxidative stress model. The results show that Fe(2+) inhibited the transmembrane enzyme in a concentration dependent manner and this effect was accompanied by a biphasic generation of aldehydic product of lipid peroxidation. While dithiothreitol prevented both Fe(2+) inhibitory effect on the pump and lipid peroxidation, vitamin E prevented only lipid peroxidation but not inhibition of the pump. Besides, malondialdehyde (MDA) inhibited the pump by a mechanism not related to oxidation of its critical thiols. Apparently, the low activity of the pump in degenerative diseases mediated by Fe(2+) may involve complex multi-component mechanisms which may partly involve an initial oxidation of the critical thiols of the enzyme directly mediated by Fe(2+) and during severe progression of such diseases; aldehydic products of lipid peroxidation such as MDA may further exacerbate this inhibitory effect by a mechanism that is likely not related to the oxidation of the catalytically essential thiols of the ouabain-sensitive cerebral electrogenic pump.

  4. Mechanisms Involved in the Aging-Induced Vascular Dysfunction

    PubMed Central

    El Assar, Mariam; Angulo, Javier; Vallejo, Susana; Peiró, Concepción; Sánchez-Ferrer, Carlos F.; Rodríguez-Mañas, Leocadio

    2012-01-01

    Vascular aging is a key process determining health status of aged population. Aging is an independent cardiovascular risk factor associated to an impairment of endothelial function, which is a very early and important event leading to cardiovascular disease. Vascular aging, formerly being considered an immutable and inexorable risk factor, is now viewed as a target process for intervention in order to achieve a healthier old age. A further knowledge of the mechanisms underlying the age-related vascular dysfunction is required to design an adequate therapeutic strategy to prevent or restore this impairment of vascular functionality. Among the proposed mechanisms that contribute to age-dependent endothelial dysfunction, this review is focused on the following aspects occurring into the vascular wall: (1) the reduction of nitric oxide (NO) bioavailability, caused by diminished NO synthesis and/or by augmented NO scavenging due to oxidative stress, leading to peroxynitrite formation (ONOO−); (2) the possible sources involved in the enhancement of oxidative stress; (3) the increased activity of vasoconstrictor factors; and (4) the development of a low-grade pro-inflammatory environment. Synergisms and interactions between all these pathways are also analyzed. Finally, a brief summary of some cellular mechanisms related to endothelial cell senescence (including telomere and telomerase, stress-induced senescence, as well as sirtuins) are implemented, as they are likely involved in the age-dependent endothelial dysfunction, as well as in the lower vascular repairing capacity observed in the elderly. Prevention or reversion of those mechanisms leading to endothelial dysfunction through life style modifications or pharmacological interventions could markedly improve cardiovascular health in older people. PMID:22783194

  5. Mechanisms involved in the aging-induced vascular dysfunction.

    PubMed

    El Assar, Mariam; Angulo, Javier; Vallejo, Susana; Peiró, Concepción; Sánchez-Ferrer, Carlos F; Rodríguez-Mañas, Leocadio

    2012-01-01

    Vascular aging is a key process determining health status of aged population. Aging is an independent cardiovascular risk factor associated to an impairment of endothelial function, which is a very early and important event leading to cardiovascular disease. Vascular aging, formerly being considered an immutable and inexorable risk factor, is now viewed as a target process for intervention in order to achieve a healthier old age. A further knowledge of the mechanisms underlying the age-related vascular dysfunction is required to design an adequate therapeutic strategy to prevent or restore this impairment of vascular functionality. Among the proposed mechanisms that contribute to age-dependent endothelial dysfunction, this review is focused on the following aspects occurring into the vascular wall: (1) the reduction of nitric oxide (NO) bioavailability, caused by diminished NO synthesis and/or by augmented NO scavenging due to oxidative stress, leading to peroxynitrite formation (ONOO(-)); (2) the possible sources involved in the enhancement of oxidative stress; (3) the increased activity of vasoconstrictor factors; and (4) the development of a low-grade pro-inflammatory environment. Synergisms and interactions between all these pathways are also analyzed. Finally, a brief summary of some cellular mechanisms related to endothelial cell senescence (including telomere and telomerase, stress-induced senescence, as well as sirtuins) are implemented, as they are likely involved in the age-dependent endothelial dysfunction, as well as in the lower vascular repairing capacity observed in the elderly. Prevention or reversion of those mechanisms leading to endothelial dysfunction through life style modifications or pharmacological interventions could markedly improve cardiovascular health in older people.

  6. Rhus coriaria induces senescence and autophagic cell death in breast cancer cells through a mechanism involving p38 and ERK1/2 activation

    PubMed Central

    El Hasasna, Hussain; Athamneh, Khawlah; Al Samri, Halima; Karuvantevida, Noushad; Al Dhaheri, Yusra; Hisaindee, Soleiman; Ramadan, Gaber; Al Tamimi, Nedaa; AbuQamar, Synan; Eid, Ali; Iratni, Rabah

    2015-01-01

    Here, we investigated the anticancer effect of Rhus coriaria on three breast cancer cell lines. We demonstrated that Rhus coriaria ethanolic extract (RCE) inhibits the proliferation of these cell lines in a time- and concentration-dependent manner. RCE induced senescence and cell cycle arrest at G1 phase. These changes were concomitant with upregulation of p21, downregulation of cyclin D1, p27, PCNA, c-myc, phospho-RB and expression of senescence-associated β-galactosidase activity. No proliferative recovery was detected after RCE removal. Annexin V staining and PARP cleavage analysis revealed a minimal induction of apoptosis in MDA-MB-231 cells. Electron microscopy revealed the presence of autophagic vacuoles in RCE-treated cells. Interestingly, blocking autophagy by 3-methyladenine (3-MA) or chloroquine (CQ) reduced RCE-induced cell death and senescence. RCE was also found to activate p38 and ERK1/2 signaling pathways which coincided with induction of autophagy. Furthermore, we found that while both autophagy inhibitors abolished p38 phosphorylation, only CQ led to significant decrease in pERK1/2. Finally, RCE induced DNA damage and reduced mutant p53, two events that preceded autophagy. Our findings provide strong evidence that R. coriaria possesses strong anti-breast cancer activity through induction of senescence and autophagic cell death, making it a promising alternative or adjunct therapeutic candidate against breast cancer. PMID:26263881

  7. An evolutionarily conserved mechanism for cAMP elicited axonal regeneration involves direct activation of the dual leucine zipper kinase DLK

    PubMed Central

    Hao, Yan; Frey, Erin; Yoon, Choya; Wong, Hetty; Nestorovski, Douglas; Holzman, Lawrence B; Giger, Roman J; DiAntonio, Aaron; Collins, Catherine

    2016-01-01

    A broadly known method to stimulate the growth potential of axons is to elevate intracellular levels of cAMP, however the cellular pathway(s) that mediate this are not known. Here we identify the Dual Leucine-zipper Kinase (DLK, Wnd in Drosophila) as a critical target and effector of cAMP in injured axons. DLK/Wnd is thought to function as an injury ‘sensor’, as it becomes activated after axonal damage. Our findings in both Drosophila and mammalian neurons indicate that the cAMP effector kinase PKA is a conserved and direct upstream activator of Wnd/DLK. PKA is required for the induction of Wnd signaling in injured axons, and DLK is essential for the regenerative effects of cAMP in mammalian DRG neurons. These findings link two important mediators of responses to axonal injury, DLK/Wnd and cAMP/PKA, into a unified and evolutionarily conserved molecular pathway for stimulating the regenerative potential of injured axons. DOI: http://dx.doi.org/10.7554/eLife.14048.001 PMID:27268300

  8. Mechanisms involved in BACE upregulation associated to stress.

    PubMed

    Martisova, Eva; Solas, Maite; Gerenu, Gorka; Milagro, Fermin I; Campion, Javier; Ramirez, Maria J

    2012-09-01

    The objective of the present work was to study a purported involvement of stress in amyloid pathology through the modulation of BACE expression. Early-life stressed rats (maternal separation, MS) showed significant increases in corticosterone levels, BACE expression and Aβ levels. The CpG7 site of the BACE promoter was significantly hypomethylated in MS, and corticosterone levels negatively correlated to the methylation status of CpG7. The activation of the stress-activated protein kinase JNK was also increased in MS rats. In SHSY-5Y neuroblastoma cells, corticosterone induced a rapid increase in BACE expression that was abolished by specific inhibiton of JNK activation or by spironolactone, a mineralocorticoid receptor antagonist, but not by mifepristone, a glucocorticoid receptor antagonist. Corticosterone was also able to increase pJNK expression and this effect was fully reverted by spironolactone. Mice chronically treated with corticosterone showed increased BACE and pJNK expression. These increases were reverted by treatment with spironolactone or with a JNK inhibitor. It is suggested that increased corticosterone levels associated to stress lead to increase BACE transcription both through epigenetic mechanisms and activation of JNK.

  9. The Involvement of Mig1 from Xanthophyllomyces dendrorhous in Catabolic Repression: An Active Mechanism Contributing to the Regulation of Carotenoid Production

    PubMed Central

    Córdova, Pamela; Marcoleta, Andrés E.; Contreras, Gabriela; Barahona, Salvador; Sepúlveda, Dionisia; Fernández-Lobato, María; Baeza, Marcelo; Cifuentes, Víctor

    2016-01-01

    The red yeast X. dendrorhous is one of the few natural sources of astaxanthin, a carotenoid used in aquaculture for salmonid fish pigmentation and in the cosmetic and pharmaceutical industries for its antioxidant properties. Genetic control of carotenogenesis is well characterized in this yeast; however, little is known about the regulation of the carotenogenesis process. Several lines of evidence have suggested that carotenogenesis is regulated by catabolic repression, and the aim of this work was to identify and functionally characterize the X. dendrorhous MIG1 gene encoding the catabolic repressor Mig1, which mediates transcriptional glucose-dependent repression in other yeasts and fungi. The identified gene encodes a protein of 863 amino acids that demonstrates the characteristic conserved features of Mig1 proteins, and binds in vitro to DNA fragments containing Mig1 boxes. Gene functionality was demonstrated by heterologous complementation in a S. cerevisiae mig1- strain; several aspects of catabolic repression were restored by the X. dendrorhous MIG1 gene. Additionally, a X. dendrorhous mig1- mutant was constructed and demonstrated a higher carotenoid content than the wild-type strain. Most important, the mig1- mutation alleviated the glucose-mediated repression of carotenogenesis in X. dendrorhous: the addition of glucose to mig1- and wild-type cultures promoted the growth of both strains, but carotenoid synthesis was observed only in the mutant strain. Transcriptomic and RT-qPCR analyses revealed that several genes were differentially expressed between X. dendrorhous mig1- and the wild-type strain when cultured with glucose as the sole carbon source. The results obtained in this study demonstrate that catabolic repression in X. dendrorhous is an active process in which the identified MIG1 gene product plays a central role in the regulation of several biological processes, including carotenogenesis. PMID:27622474

  10. Oncogenic transformation of human lung bronchial epithelial cells induced by arsenic involves ROS-dependent activation of STAT3-miR-21-PDCD4 mechanism

    PubMed Central

    Pratheeshkumar, Poyil; Son, Young-Ok; Divya, Sasidharan Padmaja; Wang, Lei; Zhang, Zhuo; Shi, Xianglin

    2016-01-01

    Arsenic is a well-documented human carcinogen. The present study explored the role of the onco-miR, miR-21 and its target protein, programmed cell death 4 (PDCD4) in arsenic induced malignant cell transformation and tumorigenesis. Our results showed that treatment of human bronchial epithelial (BEAS-2B) cells with arsenic induces ROS through p47phox, one of the NOX subunits that is the key source of arsenic-induced ROS. Arsenic exposure induced an upregulation of miR-21 expression associated with inhibition of PDCD4, and caused malignant cell transformation and tumorigenesis of BEAS-2B cells. Indispensably, STAT3 transcriptional activation by IL-6 is crucial for the arsenic induced miR-21 increase. Upregulated miR-21 levels and suppressed PDCD4 expression was also observed in xenograft tumors generated with chronic arsenic exposed BEAS-2B cells. Stable shut down of miR-21, p47phox or STAT3 and overexpression of PDCD4 or catalase in BEAS-2B cells markedly inhibited the arsenic induced malignant transformation and tumorigenesis. Similarly, silencing of miR-21 or STAT3 and forced expression of PDCD4 in arsenic transformed cells (AsT) also inhibited cell proliferation and tumorigenesis. Furthermore, arsenic suppressed the downstream protein E-cadherin expression and induced β-catenin/TCF-dependent transcription of uPAR and c-Myc. These results indicate that the ROS-STAT3-miR-21-PDCD4 signaling axis plays an important role in arsenic -induced carcinogenesis. PMID:27876813

  11. Effects of distraction on muscle length: mechanisms involved in sarcomerogenesis.

    PubMed

    Caiozzo, Vincent J; Utkan, Ali; Chou, Richard; Khalafi, Afshin; Chandra, Heena; Baker, Michael; Rourke, Bryan; Adams, Greg; Baldwin, Ken; Green, Stuart

    2002-10-01

    Although a great deal of interest has been given to understanding the mechanisms involved in regulating the radial growth that occurs because of resistance training, much less has been given to studying the longitudinal growth of skeletal muscle that occurs because of passive stretch. The current authors provide a brief overview of key issues relevant to the longitudinal growth of skeletal muscle that occurs during distraction osteogenesis. Specifically, five key issues are addressed: (1) the pattern of sarcomerogenesis during distraction; (2) sarcomerogenesis and altered expression of sarcomeric and nonsarcomeric genes; (3) the satellite cell hypothesis; (4) mitogenic factors; and (5) new approaches for studying the longitudinal growth of skeletal muscle. A discussion is provided that revolves around the concept of a negative feedback loop. One of the most interesting issues to be resolved in muscle biology is the role of satellite cells in regulating the growth of skeletal muscle. Currently, it is not known whether satellite cell activation is a prerequisite for the longitudinal growth of skeletal muscle. Gene chip analyses provide a paradoxical view, showing that distraction osteogenesis results in the upregulation of a gene, GADD45, involved with growth arrest and deoxyribonucleic acid destruction.

  12. Cellular and Humoral Mechanisms Involved in the Control of Tuberculosis

    PubMed Central

    Zuñiga, Joaquin; Torres-García, Diana; Santos-Mendoza, Teresa; Rodriguez-Reyna, Tatiana S.; Granados, Julio; Yunis, Edmond J.

    2012-01-01

    Mycobacterium tuberculosis (Mtb) infection is a major international public health problem. One-third of the world's population is thought to have latent tuberculosis, a condition where individuals are infected by the intracellular bacteria without active disease but are at risk for reactivation, if their immune system fails. Here, we discuss the role of nonspecific inflammatory responses mediated by cytokines and chemokines induced by interaction of innate receptors expressed in macrophages and dendritic cells (DCs). We also review current information regarding the importance of several cytokines including IL-17/IL-23 in the development of protective cellular and antibody-mediated protective responses against Mtb and their influence in containment of the infection. Finally, in this paper, emphasis is placed on the mechanisms of failure of Mtb control, including the immune dysregulation induced by the treatment with biological drugs in different autoimmune diseases. Further functional studies, focused on the mechanisms involved in the early host-Mtb interactions and the interplay between host innate and acquired immunity against Mtb, may be helpful to improve the understanding of protective responses in the lung and in the development of novel therapeutic and prophylactic tools in TB. PMID:22666281

  13. The adaptor molecule signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) is essential in mechanisms involving the Fyn tyrosine kinase for induction and progression of collagen-induced arthritis.

    PubMed

    Zhong, Ming-Chao; Veillette, André

    2013-11-01

    Signaling lymphocytic activation molecule-associated protein (SAP) is an Src homology 2 domain-only adaptor involved in multiple immune cell functions. It has also been linked to immunodeficiencies and autoimmune diseases, such as systemic lupus erythematosus. Here, we examined the role and mechanism of action of SAP in autoimmunity using a mouse model of autoimmune arthritis, collagen-induced arthritis (CIA). We found that SAP was essential for development of CIA in response to collagen immunization. It was also required for production of collagen-specific antibodies, which play a key role in disease pathogenesis. These effects required SAP expression in T cells, not in B cells. In mice immunized with a high dose of collagen, the activity of SAP was nearly independent of its ability to bind the protein tyrosine kinase Fyn and correlated with the capacity of SAP to promote full differentiation of follicular T helper (TFH) cells. However, with a lower dose of collagen, the role of SAP was more dependent on Fyn binding, suggesting that additional mechanisms other than TFH cell differentiation were involved. Further studies suggested that this might be due to a role of the SAP-Fyn interaction in natural killer T cell development through the ability of SAP-Fyn to promote Vav-1 activation. We also found that removal of SAP expression during progression of CIA attenuated disease severity. However, it had no effect on disease when CIA was clinically established. Together, these results indicate that SAP plays an essential role in CIA because of Fyn-independent and Fyn-dependent effects on TFH cells and, possibly, other T cell types.

  14. Computational Insights on the Mechanism of H2 Activation at Ir2S2(PPh3)4: A Combination of Multiple Reaction Pathways Involving Facile H Migration Processes.

    PubMed

    Algarra, Andrés G

    2017-01-03

    The complex Ir2S2(PPh3)4 (1) is known to react with 1 and 2 equivalents of H2 leading to [Ir(H)(PPh3)2]2(μ-S)2 (2) and Ir2(μ-S)(μ-SH)(μ-H)H2(PPh3)4 (4), respectively ( Linck , R. C. ; Pafford , R. J. ; Rauchfuss , T. B. J. Am. Chem. Soc. 2001 , 123 , 8856 - 8857 ). Herein, the results of a thorough computational (DFT) study of these formally homo- and heterolytic H2 activation processes, respectively, are presented. These indicate that 2 is formed in a two-step process whereby the oxidative addition of H2 at a single Ir(II) center of 1 generates an intermediate (A) that rearranges into 2 by means of a facile H migration to the neighboring Ir center. Activation of the second equivalent of H2 most likely occurs at the bridging sulfur ligands of 2 leading to a reaction intermediate (3aa) that features two (μ-SH) ligands. Intermediate 3aa present two isomers that differ only on the stereochemistry of the (μ-SH) ligands, and both of them can further evolve into 4 via H migration from (μ-SH) to bridging (μ-H). Nevertheless, an alternative mechanism based on the initial isomerization of 2 into A, and followed by H2 coordination and activation steps at a single Ir center cannot be completely ruled out. In general, the results herein show that the mechanisms for the activation of H2 at 1 and 2 involve facile H migration processes, in agreement with the experimentally observed intermetallic hydride exchange in 2 and the exchange between IrH and SH centers in 4, which proceed with computed free energy barriers of ca. 19-23 kcal mol(-1).

  15. MECHANISMS INVOLVED IN MYCORRHIZAL WHEAT PROTECTION AGAINST POWDERY MILDEW.

    PubMed

    Mustafa, G; Tisserant, B; Randoux, B; Fontaine, J; Sahraoui, A Lounes-Hadj; Reignault, Ph

    2014-01-01

    In France, the Ecophyto 2018 national action plan will set out to reduce the use of pesticides by 50% by 2018, if possible. To achieve this goal, the use of arbuscular mycorrhizal (AM) fungi could be a potential alternative method allowing the control of crop diseases. The inoculation by AM fungi has been demonstrated to protect plants against soil-borne pathogens, but little is known about their effectiveness against aerial pathogens, such as the biotrophic fungus Blumeria graminis f.sp. tritici (Bgt) causing wheat (Triticum aestivum) powdery mildew. In the present study, wheat plants were grown in pots, under controlled conditions. Using various phosphorus (P) concentrations, the effectiveness of three AM inocula (Rhizophagus irregularis (Ri), Funneliformis mosseae (Fm)) and Solrize, a mixture of Ri and Fm) in Orvantis wheat cultivar, were tested. After 42 days of culture, mycorrhizal (M) and non-mycorrhizal (NM) wheat plants were infected by Bgt. A satisfactory mycorrhizal rate was obtained with the phosphorus concentration P/5 (P corresponding to the dose used in wheat fields in = 62 mg/L). Our work shows, for the first time, (i) a protective effect of AM inoculation against wheat powdery mildew, reaching up to 73% with Fm inocula, and (ii) its ability to induce a systemic resistance in wheat. Thereafter, we investigated mechanisms involved in this protection. Control plants, M plants, infected plants by Bgt, and M-infected plants were compared at: (i) cytological level, our results revealed that papillae and whole-fluorescent cells presence was induced, conversely fungal haustorium formation in epidermal cells was reduced within M plants leaves (ii) enzymatic level-by assessing defense enzyme activities (lipoxygenase, peroxidase) known as defense markers were measured 24, 48, 72 and 96 hours after infection (hai). The importance of these activities in the defense pathways induced in wheat by AM fungi will be discussed.

  16. A Review of Molecular Mechanisms Involved in Toxicity of Nanoparticles

    PubMed Central

    Khalili Fard, Javad; Jafari, Samira; Eghbal, Mohammad Ali

    2015-01-01

    In recent decades, the use of nanomaterials has received much attention in industrial and medical fields. However, some reports have mentioned adverse effects of these materials on the biological systems and cellular components. There are several major mechanisms for cytotoxicity of nanoparticles (NPs) such as physicochemical properties, contamination with toxic element, fibrous structure, high surface charge and radical species generation. In this review, a brief key mechanisms involved in toxic effect of NPs are given, followed by the in vitro toxicity assays of NPs and prooxidant effects of several NPs such as carbon nanotubes, titanium dioxide NPs, quantum dots, gold NPs and silver NPs. PMID:26819915

  17. Palmitate induces tumor necrosis factor-alpha expression in C2C12 skeletal muscle cells by a mechanism involving protein kinase C and nuclear factor-kappaB activation.

    PubMed

    Jové, Mireia; Planavila, Anna; Sánchez, Rosa M; Merlos, Manuel; Laguna, Juan Carlos; Vázquez-Carrera, Manuel

    2006-01-01

    The mechanisms responsible for increased expression of TNF-alpha in skeletal muscle cells in diabetic states are not well understood. We examined the effects of the saturated acid palmitate on TNF-alpha expression. Exposure of C2C12 skeletal muscle cells to 0.75 mm palmitate enhanced mRNA (25-fold induction, P < 0.001) and protein (2.5-fold induction) expression of the proinflammatory cytokine TNF-alpha. This induction was inversely correlated with a fall in GLUT4 mRNA levels (57% reduction, P < 0.001) and glucose uptake (34% reduction, P < 0.001). PD98059 and U0126, inhibitors of the ERK-MAPK cascade, partially prevented the palmitate-induced TNF-alpha expression. Palmitate increased nuclear factor (NF)-kappaB activation and incubation of the cells with the NF-kappaB inhibitors pyrrolidine dithiocarbamate and parthenolide partially prevented TNF-alpha expression. Incubation of palmitate-treated cells with calphostin C, a strong and specific inhibitor of protein kinase C (PKC), abolished palmitate-induced TNF-alpha expression, and restored GLUT4 mRNA levels. Palmitate treatment enhanced the expression of phospho-PKCtheta, suggesting that this PKC isoform was involved in the changes reported, and coincubation of palmitate-treated cells with the PKC inhibitor chelerythrine prevented the palmitate-induced reduction in the expression of IkappaBalpha and insulin-stimulated Akt activation. These findings suggest that enhanced TNF-alpha expression and GLUT4 down-regulation caused by palmitate are mediated through the PKC activation, confirming that this enzyme may be a target for either the prevention or the treatment of fatty acid-induced insulin resistance.

  18. Mechanically Active Electrospun Materials

    NASA Astrophysics Data System (ADS)

    Robertson, Jaimee M.

    Electrospinning, a technique used to fabricate small diameter polymer fibers, has been employed to develop unique, active materials falling under two categories: (1) shape memory elastomeric composites (SMECs) and (2) water responsive fiber mats. (1) Previous work has characterized in detail the properties and behavior of traditional SMECs with isotropic fibers embedded in an elastomer matrix. The current work has two goals: (i) characterize laminated anisotropic SMECs and (ii) develop a fabrication process that is scalable for commercial SMEC manufacturing. The former ((i)) requires electrospinning aligned polymer fibers. The aligned fibers are similarly embedded in an elastomer matrix and stacked at various fiber orientations. The resulting laminated composite has a unique response to tensile deformation: after stretching and releasing, the composite curls. This curling response was characterized based on fiber orientation. The latter goal ((ii)) required use of a dual-electrospinning process to simultaneously electrospin two polymers. This fabrication approach incorporated only industrially relevant processing techniques, enabling the possibility of commercial application of a shape memory rubber. Furthermore, the approach had the added benefit of increased control over composition and material properties. (2) The strong elongational forces experienced by polymer chains during the electrospinning process induce molecular alignment along the length of electrospun fibers. Such orientation is maintained in the fibers as the polymer vitrifies. Consequently, residual stress is stored in electrospun fiber mats and can be recovered by heating through the polymer's glass transition temperature. Alternatively, the glass transition temperature can be depressed by introducing a plasticizing agent. Poly(vinyl acetate) (PVAc) is plasticized by water, and its glass transition temperature is lowered below room temperature. Therefore, the residual stress can be relaxed at room

  19. Molecular mechanism(s) involved in differential expression of vitamin C transporters along the intestinal tract.

    PubMed

    Subramanian, Veedamali S; Srinivasan, Padmanabhan; Wildman, Alexis J; Marchant, Jonathan S; Said, Hamid M

    2017-04-01

    Mammalian cells utilize two transporters for the uptake of ascorbic acid (AA), Na(+)-dependent vitamin C transporter SVCT-1 and SVCT-2. In the intestine, these transporters are involved in AA absorption and are expressed at the apical and basolateral membrane domains of the polarized epithelia, respectively. Little is known about the differential expression of these two transporters along the anterior-posterior axis of the intestinal tract and the molecular mechanism(s) that dictate this pattern of expression. We used mouse and human intestinal cDNAs to address these issues. The results showed a significantly lower rate of carrier-mediated AA uptake by mouse colon than jejunum. This was associated with a significantly lower level of expression of SVCT-1 and SVCT-2 at the protein, mRNA, and heterogeneous nuclear RNA (hnRNA) levels in the colon than the jejunum, implying the involvement of transcriptional mechanism(s). Similarly, expression levels of SVCT-1 and SVCT-2 mRNA and hnRNA were significantly lower in human colon. We also examined the levels of expression of hepatocyte nuclear factor 1α and specificity protein 1, which drive transcription of the Slc23a1 and Slc23a2 promoters, respectively, and found them to be markedly lower in the colon. Furthermore, significantly lower levels of the activating markers for histone (H3) modifications [H3 trimethylation of lysine 4 (H3K4me3) and H3 triacetylation of lysine 9 (H3K9ac)] were observed in the Slc23a1 and Slc23a2 promoters in the colon. These findings show, for the first time, that SVCT-1 and SVCT-2 are differentially expressed along the intestinal tract and that this pattern of expression is, at least in part, mediated via transcriptional/epigenetic mechanisms.NEW & NOTEWORTHY Our findings show, for the first time, that transporters of the water-soluble vitamin ascorbic acid (i.e., the vitamin C transporters SVCT-1 and SVCT-2) are differentially expressed along the length of the intestinal tract and that the

  20. Mechanics of soft active materials

    NASA Astrophysics Data System (ADS)

    Zhao, Xuanhe

    Soft active materials, mostly elastomers and polymeric gels, are being developed to mimic a salient feature of life: movement in response to stimuli. For example, when an electric voltage is applied across a layer of a dielectric elastomer, the layer reduces in thickness and expands in area, giving a strain greater than 100%. As another example, in response to a small change of pH or temperature, a hydrogel may absorb a large amount of water and increase its volume over 100 times. The mechanics involved in these processes is important, interesting, and not well understood. This thesis studies large deformations and instabilities in dielectric elastomers and polymeric gels. The thesis first presents a nonlinear field theory for deformable dielectrics. The theory uses measurable quantities to define field variables. The definitions lead to decoupled field equations, and electromechanical coupling enters the theory through material laws. We use the theory to study electromechanical instability and coexistent states in dielectric elastomers. A computational method is also developed to analyze inhomogeneous deformations in complicated structures of dielectric elastomers. The second part of the thesis discusses large deformation and mass transportation in polymeric gels. A gel can undergo large deformation of two modes: local rearrangement and long-range migration. We assume that the local rearrangement is instantaneous, and model the long-range migration by assuming that the solvent molecules diffuse inside the gel. We further study inhomogeneous and anisotropic deformations and instabilities in gels constrained by rigid materials.

  1. Active auditory mechanics in mosquitoes.

    PubMed Central

    Göpfert, M. C.; Robert, D.

    2001-01-01

    In humans and other vertebrates, hearing is improved by active contractile properties of hair cells. Comparable active auditory mechanics is now demonstrated in insects. In mosquitoes, Johnston's organ transduces sound-induced vibrations of the antennal flagellum. A non-muscular 'motor' activity enhances the sensitivity and tuning of the flagellar mechanical response in physiologically intact animals. This motor is capable of driving the flagellum autonomously, amplifying sound-induced vibrations at specific frequencies and intensities. Motor-related electrical activity of Johnston's organ strongly suggests that mosquito hearing is improved by mechanoreceptor motility. PMID:11270428

  2. DESIGN CONSIDERATION INVOLVING ACTIVE SEDIMENT CAPS (PRESENTATION)

    EPA Science Inventory

    When contaminated sediments pose unacceptable risks to human health and the environment, management activities such as removal, treatment, or isolation of contaminated sediments may be required. Various capping designs are being considered for isolating contaminated sediment are...

  3. DESIGN CONSIDERATION INVOLVING ACTIVE SEDIMENT CAPS

    EPA Science Inventory

    When contaminated sediments pose unacceptable risks to human health and the environment, management activities such as removal, treatment, or isolation of contaminated sediments may be required. Various capping designs are being considered for isolating contaminated sediment are...

  4. Ochratoxin A carcinogenicity involves a complex network of epigenetic mechanisms.

    PubMed

    Marin-Kuan, Maricel; Cavin, Christophe; Delatour, Thierry; Schilter, Benoît

    2008-08-01

    Ochratoxin A (OTA) is a mycotoxin occurring in a wide range of food products. Because of the limitation of human epidemiological data, the safety significance of OTA in food has to rely on animal data, with renal toxicity and carcinogenicity being considered the pivotal effects. The elucidation of the mechanism of action would improve the use of experimental animal data for risk assessment. Direct genotoxicity versus epigenetic mechanisms appears to be a key question. In the present review, the increasingly documented epigenetic cellular effects of OTA and their potential toxicological relevance are discussed. The information available suggests that OTA is unlikely to act through a single, well-defined mechanism of action. Instead, it is proposed that a network of interacting epigenetic mechanisms, including protein synthesis inhibition, oxidative stress and the activation of specific cell signalling pathways, is responsible for OTA carcinogenicity. From a risk assessment perspective, it has to be noted that the mechanisms proposed above depend mainly upon gene expression and enzyme activation, and are, therefore, likely to be thresholded.

  5. Measuring psychological engagement in youth activity involvement.

    PubMed

    Ramey, Heather L; Rose-Krasnor, Linda; Busseri, Michael A; Gadbois, Shannon; Bowker, Anne; Findlay, Leanne

    2015-12-01

    Although psychological engagement (e.g., enjoyment, concentration) may be critical in fostering positive outcomes of youth activity participation, too few studies have been conducted to establish its role in development. Furthermore, an established measurement tool is lacking. In the current study, we evaluated a brief engagement measure with two Canadian samples of youth (Sample 1, N = 290, mean age = 16.9 years, 62% female; Sample 2, N = 1827, mean age = 13.1 years, 54% female). We conducted a confirmatory factor analysis with structural equation modeling to examine the hypothesized structure of the model. We also assessed the measure's validity by testing relations between engagement and both perceived outcomes and positive features of activity settings. Psychological engagement was best captured by three latent cognitive, affective, and relational/spiritual factors and a second-order latent factor. Also, as anticipated, psychological engagement was associated with features of the activity setting and perceived impact.

  6. Neurophysiological mechanisms involved in language learning in adults

    PubMed Central

    Rodríguez-Fornells, Antoni; Cunillera, Toni; Mestres-Missé, Anna; de Diego-Balaguer, Ruth

    2009-01-01

    Little is known about the brain mechanisms involved in word learning during infancy and in second language acquisition and about the way these new words become stable representations that sustain language processing. In several studies we have adopted the human simulation perspective, studying the effects of brain-lesions and combining different neuroimaging techniques such as event-related potentials and functional magnetic resonance imaging in order to examine the language learning (LL) process. In the present article, we review this evidence focusing on how different brain signatures relate to (i) the extraction of words from speech, (ii) the discovery of their embedded grammatical structure, and (iii) how meaning derived from verbal contexts can inform us about the cognitive mechanisms underlying the learning process. We compile these findings and frame them into an integrative neurophysiological model that tries to delineate the major neural networks that might be involved in the initial stages of LL. Finally, we propose that LL simulations can help us to understand natural language processing and how the recovery from language disorders in infants and adults can be accomplished. PMID:19933142

  7. [Ocular involvement in spondylarthritis--new mechanisms, new therapies].

    PubMed

    Itulescu, T C M; Alexandrescu, Cristina; Voinea, Liliana-Mary

    2014-01-01

    Spondyloarthrites (SPA) represent a group of heterogenous rheumatic diseases (ankylosing spondylitis/SA, psoriatic arthritis/PsA, reactive arthritis/ReA, spondyloarthritis in bowel inflammatory diseases/BID, undifferentiated spondyloarthritis/undif SpA) with distinct clinical features and common genetic predisposition (HLA-B27). SpA may also affect other organs, ocular involvement, represented by uveitis and conjunctivitis, being one of the most important extraskeletal manifestations. Pathogenic mechanisms of ocular involment in SpA are not entirely known; nevertheless, the inflammatory process which characterizes the main rheumatic diseases seems to be responsible for this extraskeletal manifestation. SpA treatment targeted at clinical remission has a favourable effect not only on articular but also on ocular involvement. The discovery of new pathogenic mechanisms of both rheumatic and eye disease in SpA have contributed to identification of new pathogenic therapies. The interdisciplinary team work of rheumatologists and ophtalmologists have prove essential for the management of SpA patients with ocular manifestations.

  8. Tissue formation and tissue engineering through host cell recruitment or a potential injectable cell-based biocomposite with replicative potential: Molecular mechanisms controlling cellular senescence and the involvement of controlled transient telomerase activation therapies.

    PubMed

    Babizhayev, Mark A; Yegorov, Yegor E

    2015-12-01

    Accumulated data indicate that wound-care products should have a composition equivalent to that of the skin: a combination of particular growth factors and extracellular matrix (ECM) proteins endogenous to the skin, together with viable epithelial cells, fibroblasts, and mesenchymal stem cells (MSCs). Strategies consisting of bioengineered dressings and cell-based products have emerged for widespread clinical use; however, their performance is not optimal because chronic wounds persist as a serious unmet medical need. Telomerase, the ribonucleoprotein complex that adds telomeric repeats to the ends of chromosomes, is responsible for telomere maintenance, and its expression is associated with cell immortalization and, in certain cases, cancerogenesis. Telomerase contains a catalytic subunit, the telomerase reverse transcriptase (hTERT). Introduction of TERT into human cells extends both their lifespan and their telomeres to lengths typical of young cells. The regulation of TERT involves transcriptional and posttranscriptional molecular biology mechanisms. The manipulation, regulation of telomerase is multifactorial in mammalian cells, involving overall telomerase gene expression, post-translational protein-protein interactions, and protein phosphorylation. Reactive oxygen species (ROS) have been implicated in aging, apoptosis, and necrosis of cells in numerous diseases. Upon production of high levels of ROS from exogenous or endogenous generators, the redox balance is perturbed and cells are shifted into a state of oxidative stress, which subsequently leads to modifications of intracellular proteins and membrane lipid peroxidation and to direct DNA damage. When the oxidative stress is severe, survival of the cell is dependent on the repair or replacement of damaged molecules, which can result in induction of apoptosis in the injured with ROS cells. ROS-mediated oxidative stress induces the depletion of hTERT from the nucleus via export through the nuclear pores

  9. Whisking mechanics and active sensing.

    PubMed

    Bush, Nicholas E; Solla, Sara A; Hartmann, Mitra Jz

    2016-10-01

    We describe recent advances in quantifying the three-dimensional (3D) geometry and mechanics of whisking. Careful delineation of relevant 3D reference frames reveals important geometric and mechanical distinctions between the localization problem ('where' is an object) and the feature extraction problem ('what' is an object). Head-centered and resting-whisker reference frames lend themselves to quantifying temporal and kinematic cues used for object localization. The whisking-centered reference frame lends itself to quantifying the contact mechanics likely associated with feature extraction. We offer the 'windowed sampling' hypothesis for active sensing: that rats can estimate an object's spatial features by integrating mechanical information across whiskers during brief (25-60ms) windows of 'haptic enclosure' with the whiskers, a motion that resembles a hand grasp.

  10. Mechanisms involved in antibody- and complement-mediated allograft rejection

    PubMed Central

    2010-01-01

    Antibody-mediated rejection has become critical clinically because this form of rejection is usually unresponsive to conventional anti-rejection therapy, and therefore, it has been recognized as a major cause of allograft loss. Our group developed experimental animal models of vascularized organ transplantation to study pathogenesis of antibody- and complement-mediated endothelial cell injury leading to graft rejection. In this review, we discuss mechanisms of antibody-mediated graft rejection resulting from activation of complement by C1q- and MBL (mannose-binding lectin)-dependent pathways and interactions with a variety of effector cells, including macrophages and monocytes through Fcγ receptors and complement receptors. PMID:20135240

  11. A novel mechanism of FSH regulation of DNA synthesis in the granulosa cells of hamster preantral follicles. Involvement of a protein kinase C mediated MAP kinase 3/1 self- activation loop

    PubMed Central

    Yang, Peixin; Roy, Shyamal K.

    2006-01-01

    Summary FSH- or EGF-induced granulosa cell proliferation in intact preantral follicles depends on a novel PKC-mediated MAPK3/1 self-activation loop. The objective was to reveal whether a PKC-mediated self-sustaining MAPK3/1 activation loop was necessary for FSH- or EGF-induced DNA synthesis in the granulosa cells of intact preantral follicles. For this purpose, hamster preantral follicles were cultured with FSH or EGF in the presence of selective kinase inhibitors. FSH or EGF phosphorylated RAF1, MAP2K1 and MAPK3/1. However, relatively higher dose of EGF was necessary to sustain the MAPK3/1 activity, which was essential for CDK4 activation and DNA synthesis. In intact preantral follicles, FSH or EGF stimulated DNA synthesis only in the granulosa cells. Sustained activation of MAPK3/1 beyond 3h was independent of EGFR kinase activity, but dependent on PKC activity, which appeared to form a self-sustaining MAPK3/1 activation loop by activating RAF1, MAP2K1 and PLA2G4. Inhibition of PKC activity as late as 4h after the administration of FSH or EGF arrested DNA synthesis, which corresponded with attenuated phosphorylation of RAF1 and MAPK3/1, thus suggesting an essential role of PKC in MAPK3/1 activation. Collectively, these data present a novel self-sustaining mechanism comprised of MAPK3/1, PLA2G4, PKC and RAF1 for CDK4 activation leading to DNA synthesis in granulosa cells. Either FSH or EGF can activate the loop to activate CDK4 and initiate DNA synthesis; however, consistent with our previous findings, FSH effect seems to be mediated by EGF, which initiates the event by stimulating EGFR kinase. PMID:16525034

  12. Tissue transglutaminase is involved in mechanical load-induced osteogenic differentiation of human ligamentum flavum cells.

    PubMed

    Chao, Yuan-Hung; Huang, Shih-Yung; Yang, Ruei-Cheng; Sun, Jui-Sheng

    2016-07-01

    Mechanical load-induced osteogenic differentiation might be the key cellular event in the calcification and ossification of ligamentum flavum. The aim of this study was to investigate the influence of tissue transglutaminase (TGM2) on mechanical load-induced osteogenesis of ligamentum flavum cells. Human ligamentum flavum cells were obtained from 12 patients undergoing lumbar spine surgery. Osteogenic phenotypes of ligamentum flavum cells, such as alkaline phosphatase (ALP), Alizarin red-S stain, and gene expression of osteogenic makers were evaluated following the administration of mechanical load and BMP-2 treatment. The expression of TGM2 was evaluated by real-time PCR, Western blotting, and enzyme-linked immunosorbent assay (ELISA) analysis. Our results showed that mechanical load in combination with BMP-2 enhanced calcium deposition and ALP activity. Mechanical load significantly increased ALP and OC gene expression on day 3, whereas BMP-2 significantly increased ALP, OPN, and Runx2 on day 7. Mechanical load significantly induced TGM2 gene expression and enzyme activity in human ligamentum flavum cells. Exogenous TGM2 increased ALP and OC gene expression; while, inhibited TG activity significantly attenuated mechanical load-induced and TGM2-induced ALP activity. In summary, mechanical load-induced TGM2 expression and enzyme activity is involved in the progression of the calcification of ligamentum flavum.

  13. Exploring Extension Involvement in Farm to School Program Activities

    ERIC Educational Resources Information Center

    Benson, Matthew C.

    2014-01-01

    The study reported here examined Extension professionals' involvement in farm-to-school program activities. Results of an online survey distributed to eight state Extension systems indicate that on average, Extension professionals are involved with one farm to school program activity, with most supporting school or community garden programs.…

  14. Involvement in Extracurricular Activities and Adjustment to College.

    ERIC Educational Resources Information Center

    Woo, Tae O.; Bilynsky, Julie

    Past research has supported the idea that involvement in extracurricular activities has a positive impact on students' evaluation of their college lives. This study investigated whether involvement, as measured by time commitment to campus activities, had a differential impact on the students' adjustment to various aspects of college life,…

  15. Mechanisms Involved in Osteoblast Response to Implant Surface Morphology

    NASA Astrophysics Data System (ADS)

    Boyan, Barbara D.; Lohmann, Christoph H.; Dean, David D.; Sylvia, Victor L.; Cochran, David L.; Schwartz, Zvi

    2001-08-01

    Osteoblasts respond to surface topography with altered morphology, proliferation, and differentiation. The effects observed vary with cell culture model and the topographical features of the surface. In general, increased surface roughness is associated with decreased proliferation and increased differentiation. Cell responses to hormones, growth factors, and cytokines are altered as well, as is autocrine production of these factors. The cells interact with the surface via integrin receptors, and their expression is also surface roughness-dependent. Integrin binding to cell attachment proteins activates signal transduction cascades, including those mediated by protein kinase C and phospholipase A2. These signaling pathways are also used by regulatory factors, which results in synergistic responses. Prostaglandins are important mediators of the surface effects, and both constitutive and inducible cyclooxygenase are involved.

  16. New mechanism of lenalidomide activity.

    PubMed

    Keevan, Jacob; Figg, William D

    2014-08-01

    Lenalidomide is an immunomodulatory agent (IMiD) that has activity in hematologic cancer (e.g., multiple myeloma). The immunomodulatory and apoptotic properties are readily apparent in therapy. However, the exact mechanism of action has been difficult to quantify until recently when it was shown that another IMiD, thalidomide, binds to an E3 ubiquitin ligase complex constituent, CRBN. The article by Kronke et al. demonstrates that, by binding to CRBN and altering its selectivity, lenalidomide potentiates the ubiquitination and proteolysis of 2 specific proteins, IKZF1 and IKZF3. An article in the same issue, by Lu et al., supports these observations. IKZF1 and IKZF3 are transcription factors that are necessary for multiple myeloma, and repression of these transcription factors is a likely mechanism for lenalidomide activity in this disease.

  17. Neuroprotective effects of the mGlu5R antagonist MPEP towards quinolinic acid-induced striatal toxicity: involvement of pre- and post-synaptic mechanisms and lack of direct NMDA blocking activity.

    PubMed

    Popoli, Patrizia; Pintor, Annita; Tebano, Maria Teresa; Frank, Claudio; Pepponi, Rita; Nazzicone, Valeria; Grieco, Rosa; Pèzzola, Antonella; Reggio, Rosaria; Minghetti, Luisa; De Berardinis, Maria Anna; Martire, Alberto; Potenza, Rosa Luisa; Domenici, Maria Rosaria; Massotti, Marino

    2004-06-01

    The aim of this work was to investigate the potential neuroprotective effects of the metabotropic glutamate receptor 5 (mGlu5R) antagonist 2-Methyl-6-(phenylethynyl)-pyridine (MPEP) towards quinolinic acid (QA)-induced striatal excitoxicity. Intrastriatal MPEP (5 nmol/0.5 micro L) significantly attenuated the body weight loss, the electroencephalographic alterations, the impairment in spatial memory and the striatal damage induced by bilateral striatal injection of QA (210 nmol/0.7 micro L). In a second set of experiments, we aimed to elucidate the mechanisms underlying the neuroprotective effects of MPEP. In microdialysis studies in naive rats MPEP (80-250 micro m through the dialysis probe) significantly reduced the increase in glutamate levels induced by 5 mm QA. In primary cultures of striatal neurons MPEP (50 micro m) reduced the toxicity induced by direct application of glutamate [measured as release of lactate dehydrogenase [LDH]). Finally, we found that 50 micro m MPEP was unable to directly block NMDA-induced effects (namely field potential reduction in corticostriatal slices, as well as LDH release and intracellular calcium increase in striatal neurons). We conclude that: (i) MPEP has neuroprotective effects towards QA-induced striatal excitotoxicity; (ii) both pre- and post-synaptic mechanisms are involved; (iii) the neuroprotective effects of MPEP do not appear to involve a direct blockade of NMDA receptors.

  18. Involvement of novel autophosphorylation sites in ATM activation.

    PubMed

    Kozlov, Sergei V; Graham, Mark E; Peng, Cheng; Chen, Philip; Robinson, Phillip J; Lavin, Martin F

    2006-08-09

    ATM kinase plays a central role in signaling DNA double-strand breaks to cell cycle checkpoints and to the DNA repair machinery. Although the exact mechanism of ATM activation remains unknown, efficient activation requires the Mre11 complex, autophosphorylation on S1981 and the involvement of protein phosphatases and acetylases. We report here the identification of several additional phosphorylation sites on ATM in response to DNA damage, including autophosphorylation on pS367 and pS1893. ATM autophosphorylates all these sites in vitro in response to DNA damage. Antibodies against phosphoserine 1893 revealed rapid and persistent phosphorylation at this site after in vivo activation of ATM kinase by ionizing radiation, paralleling that observed for S1981 phosphorylation. Phosphorylation was dependent on functional ATM and on the Mre11 complex. All three autophosphorylation sites are physiologically important parts of the DNA damage response, as phosphorylation site mutants (S367A, S1893A and S1981A) were each defective in ATM signaling in vivo and each failed to correct radiosensitivity, genome instability and cell cycle checkpoint defects in ataxia-telangiectasia cells. We conclude that there are at least three functionally important radiation-induced autophosphorylation events in ATM.

  19. Pontine respiratory activity involved in inspiratory/expiratory phase transition

    PubMed Central

    Mörschel, Michael; Dutschmann, Mathias

    2009-01-01

    Control of the timing of the inspiratory/expiratory (IE) phase transition is a hallmark of respiratory pattern formation. In principle, sensory feedback from pulmonary stretch receptors (Breuer–Hering reflex, BHR) is seen as the major controller for the IE phase transition, while pontine-based control of IE phase transition by both the pontine Kölliker–Fuse nucleus (KF) and parabrachial complex is seen as a secondary or backup mechanism. However, previous studies have shown that the BHR can habituate in vivo. Thus, habituation reduces sensory feedback, so the role of the pons, and specifically the KF, for IE phase transition may increase dramatically. Pontine-mediated control of the IE phase transition is not completely understood. In the present review, we discuss existing models for ponto-medullary interaction that may be involved in the control of inspiratory duration and IE transition. We also present intracellular recordings of pontine respiratory units derived from an in situ intra-arterially perfused brainstem preparation of rats. With the absence of lung inflation, this preparation generates a normal respiratory pattern and many of the recorded pontine units demonstrated phasic respiratory-related activity. The analysis of changes in membrane potentials of pontine respiratory neurons has allowed us to propose a number of pontine-medullary interactions not considered before. The involvement of these putative interactions in pontine-mediated control of IE phase transitions is discussed. PMID:19651653

  20. Toxoplasma gondii Prevents Neuron Degeneration by Interferon-γ-Activated Microglia in a Mechanism Involving Inhibition of Inducible Nitric Oxide Synthase and Transforming Growth Factor-β1 Production by Infected Microglia

    PubMed Central

    Rozenfeld, Claudia; Martinez, Rodrigo; Seabra, Sérgio; Sant’Anna, Celso; Gonçalves, J. Gabriel R.; Bozza, Marcelo; Moura-Neto, Vivaldo; De Souza, Wanderley

    2005-01-01

    Interferon (IFN)-γ, the main cytokine responsible for immunological defense against Toxoplasma gondii, is essential in all infected tissues, including the central nervous system. However, IFN-γ-activated microglia may cause tissue injury through production of toxic metabolites such as nitric oxide (NO), a potent inducer of central nervous system pathologies related to inflammatory neuronal disturbances. Despite potential NO toxicity, neurodegeneration is not commonly found during chronic T. gondii infection. In this study, we describe decreased NO production by IFN-γ-activated microglial cells infected by T. gondii. This effect involved strong inhibition of iNOS expression in IFN-γ-activated, infected microglia but not in uninfected neighboring cells. The inhibition of NO production and iNOS expression were parallel with recovery of neurite outgrowth when neurons were co-cultured with T. gondii-infected, IFN-γ-activated microglia. In the presence of transforming growth factor (TGF)-β1-neutralizing antibodies, the beneficial effect of the parasite on neurons was abrogated, and NO production reverted to levels similar to IFN-γ-activated uninfected co-cultures. In addition, we observed Smad-2 nuclear translocation, a hallmark of TGF-β1 downstream signaling, in infected microglial cultures, emphasizing an autocrine effect restricted to infected cells. Together, these data may explain a neuropreservation pattern observed during immunocompetent host infection that is dependent on T. gondii-triggered TGF-β1 secretion by infected microglia. PMID:16192637

  1. Mechanism involved in enhancement of osteoblast differentiation by hyaluronic acid

    SciTech Connect

    Kawano, Michinao; Ariyoshi, Wataru; Iwanaga, Kenjiro; Okinaga, Toshinori; Habu, Manabu; Yoshioka, Izumi; Tominaga, Kazuhiro; Nishihara, Tatsuji

    2011-02-25

    Research highlights: {yields} In this study was to investigate the effects of HA on osteoblast differentiation induced by BMP-2. {yields} MG63 cells were incubated with BMP-2 and HA for various time periods. {yields} Phosphorylation of Smad 1/5/8, p38, and ERK proteins was determined by western blot analysis. To elucidate the nuclear translocation of phosphorylated Smad 1/5/8, stimulated cells were subjected to immunofluorescence microscopy. {yields} HA enhanced BMP-2 induces osteoblastic differentiation in MG63 cells via down-regulation of BMP-2 antagonists and ERK phosphorylation. -- Abstract: Objectives: Bone morphogenetic protein-2 (BMP-2) is expected to be utilized to fill bone defects and promote healing of fractures. However, it is unable to generate an adequate clinical response for use in bone regeneration. Recently, it was reported that glycosaminoglycans, including heparin, heparan sulfate, keratan sulfate, dermatan sulfate, chondroitin-4-sulfate, chondroitin-6-sulfate, and hyaluronic acid (HA), regulate BMP-2 activity, though the mechanism by which HA regulates osteogenic activities has not been fully elucidated. The aim of this study was to investigate the effects of HA on osteoblast differentiation induced by BMP-2. Materials and methods: Monolayer cultures of osteoblastic lineage MG63 cells were incubated with BMP-2 and HA for various time periods. To determine osteoblastic differentiation, alkaline phosphatase (ALP) activity in the cell lysates was quantified. Phosphorylation of Smad 1/5/8, p38, and ERK proteins was determined by Western blot analysis. To elucidate the nuclear translocation of phosphorylated Smad 1/5/8, stimulated cells were subjected to immunofluorescence microscopy. To further elucidate the role of HA in enhancement of BMP-2-induced Smad signaling, mRNA expressions of the BMP-2 receptor antagonists noggin and follistatin were detected using real-time RT-PCR. Results: BMP-2-induced ALP activation, Smad 1/5/8 phosphorylation, and

  2. Basic Business and Economics: Varied Activities Encourage Active Student Involvement.

    ERIC Educational Resources Information Center

    Baker, Robert Lee, Jr.

    1978-01-01

    Describes a variety of activities for the basic business classroom, such as having guest speakers, question-and-answer sessions, simulations, role playing, debates, small group work, field trips, games, and individualized instruction. Includes a report of business teachers' knowledge of and attitudes toward these activities. (MF)

  3. Mechanisms involved in the intrinsic isoniazid resistance of Mycobacterium avium.

    PubMed

    Mdluli, K; Swanson, J; Fischer, E; Lee, R E; Barry, C E

    1998-03-01

    Isoniazid (INH), which acts by inhibiting mycolic acid biosynthesis, is very potent against the tuberculous mycobacteria. It is about 100-fold less effective against Mycobacterium avium. This difference has often been attributed to a decreased permeability of the cell wall. We measured the rate of conversion of radiolabelled INH to 4-pyridylmethanol by whole cells and cell-free extracts and estimated the permeability barrier imposed by the cell wall to INH influx in Mycobacterium tuberculosis and M. avium. There was no significant difference in the relative permeability to INH between these two species. However, the total conversion rate in M. tuberculosis was found to be four times greater. Examination of in vitro-generated mutants revealed that the major resistance mechanism for both species is loss of the catalase-peroxidase KatG. Analysis of lipid and protein biosynthetic profiles demonstrated that the molecular target of activated INH was identical for both species. M. avium, however, formed colonies at INH concentrations inhibitory for mycolic acid biosynthesis. These mycolate-deficient M. avium exhibited altered colony morphologies, modified cell wall ultrastructure and were 10-fold more sensitive to treatment with hydrophobic antibiotics, such as rifampin. These findings may significantly impact the design of new therapeutic regimens for the treatment of infections with atypical mycobacteria.

  4. Mechanisms involved in cholesterol-induced neuronal insulin resistance.

    PubMed

    Taghibiglou, Changiz; Bradley, Clarrisa A; Gaertner, Tara; Li, Yuping; Wang, Yushan; Wang, Yu Tian

    2009-09-01

    Insulin receptors (IRs) are highly expressed in the central nervous system (CNS) and play an important role in normal brain functions, such as learning and memory. Due to the increasing rate of obesity in western societies and overall high fat diets, the incidents of neuronal insulin resistance is also on the rise, but the underlying mechanism is still poorly characterized. We found that cholesterol treatment produces robust insulin signaling resistance that is characterized by the marked reduction in insulin-stimulated tyrosine phosphorylation of the IR and its downstream targets insulin receptor substrate 1 (IRS1) and 2 (IRS2). Surface expression of IRs was also decreased and was correlated with an increase in facilitated receptor endocytosis. Membrane fractionation showed that after cholesterol treatment, the proportion of IRs localized in the lipid raft increased and correspondingly there was a reduction of IRs in the non-raft membrane. Interestingly, we found that IRs in the lipid rafts, unlike their counterparts in the non-raft membrane domain, were essentially unresponsive to insulin stimulation and that a high level of tyrosine phosphatase activity was associated with these raft fractions. Our results suggest that the lipid raft microdomain of the neuronal plasma membrane has a strong influence on IR signaling, and that incorporation of high levels of cholesterol may reduce IR signaling by increasing their representation in lipid rafts. The trapping of the IR in the lipid raft domain may result in its inactivation and promote its endocytosis: effects that could contribute to neuronal insulin resistance in obesity.

  5. Empirical Evidence or Intuition? An Activity Involving the Scientific Method

    ERIC Educational Resources Information Center

    Overway, Ken

    2007-01-01

    Students need to have basic understanding of scientific method during their introductory science classes and for this purpose an activity was devised which involved a game based on famous Monty Hall game problem. This particular activity allowed students to banish or confirm their intuition based on empirical evidence.

  6. [Involvement of adrenergic mechanisms in developing the nervous syndrome of high pressure and nitrogen narcosis].

    PubMed

    Sledkov, A I; Bernarskii, K V; Shilina, M N

    1996-01-01

    Involvement of the adrenergic mediator system in central mechanisms of hyperbaric nitrogen narcosis or the high pressure nervous syndrome (NSHP) produced by nitrogen or heliox gas mixtures under increased pressure was studied in mice and rabbit experiments with the use of pharmacological substances-analyzers. Accumulated data are indicative of lack of a significant role of the adrenergic system in the NSHP genesis and a protective effect of activation of the central but not peripheric adrenergic mediation in development of the behavioural and electrophysiological symptomatics of nitrogen narcosis. Mechanisms of NSHP and nitrogen narcosis and possible principles of pharmacological correction are under discussion.

  7. Technical key and mechanism of laser-involved therapy

    NASA Astrophysics Data System (ADS)

    Tian, Zhaobing; Zhang, Dan; Gao, Feng

    1997-06-01

    The method of laser-involved therapy can be classified as the following: (1) intravascular low level He-Ne laser irradiation therapy; (2) light-oxygen-blood therapy; (3) light-oxygen-blood therapy. The key of laser-involved therapy is the proper wavelength light. The use of energy in laser-involved therapy is different from that in laser acupuncture. Of all kinds of light-involved therapy, oxygen has direct influence on the curative effect. Oxygen can be thought as the carrier of laser energy. Having absorbed the photon, the oxygen get excited and reaches every part of the organism through blood circulation, which promotes physiological and biochemistry reaction and therefore improves the metabolism.

  8. Homing orientation in salamanders: A mechanism involving chemical cues

    NASA Technical Reports Server (NTRS)

    Madison, D. M.

    1972-01-01

    A detailed description is given of experiments made to determine the senses and chemical cues used by salamanders for homing orientation. Sensory impairment and cue manipulative techniques were used in the investigation. All experiments were carried out at night. Results show that sense impaired animals did not home as readily as those who were blind but retained their sensory mechanism. This fact suggests that the olfactory mechanism is necessary for homing in the salamander. It was determined that after the impaired salamander regenerated its sensory mechanism it too returned home. It was concluded that homing ability in salamanders is direction independent, distant dependent, and vision independent.

  9. [Classical dengue transmission dynamics involving mechanical control and prophylaxis].

    PubMed

    Toro-Zapata, Hernán D; Restrepo, Leonardo D; Vergaño-Salazar, Juan G; Muñoz-Loaiza, Aníbal

    2010-12-01

    Dengue fever transmission dynamics were studied in an endemic region considering the use of preventative measures and mechanical control in reducing transmission of the disease. A system of ordinary differential equations was proposed, describing the dynamics and their evolution as determined by numerical simulation. Different mechanical control and prophylaxis strategies were compared to the situation without control. The basic reproduction number R₀ was determined R₀ to show that if R₀ > 1 there would be a risk of an epidemic and otherwise the disease would have low impact levels. The basic reproduction number helps determine the dynamics' future pattern and contrast the results so obtained with those obtained numerically. It was concluded that although prophylaxis and mechanical control alone provide effective results in controlling the disease, if both controls are combined then infection levels become significantly reduced. Around 60 % mechanical control and prevention levels are needed to provide suitable results in controlling dengue outbreaks.

  10. Mechanisms Involved in Virus-Induced Neural Cell Death

    DTIC Science & Technology

    2001-09-01

    We are using experimental infection with reoviruses as a model to study how viruses induce cell death (apoptosis) and cause dysregulation of the cell...and their ligand (TRAIL). Apoptosis involves both death-receptor (DR) and mitochondrial-associated cell death pathways, and leads to the early

  11. Mechanisms of molecular mimicry involving the microbiota in neurodegeneration.

    PubMed

    Friedland, Robert P

    2015-01-01

    The concept of molecular mimicry was established to explain commonalities of structure which developed in response to evolutionary pressures. Most examples of molecular mimicry in medicine have involved homologies of primary protein structure which cause disease. Molecular mimicry can be expanded beyond amino acid sequence to include microRNA and proteomic effects which are either pathogenic or salutogenic (beneficial) in regard to Parkinson's disease, Alzheimer's disease, and related disorders. Viruses of animal or plant origin may mimic nucleotide sequences of microRNAs and influence protein expression. Both Parkinson's and Alzheimer's diseases involve the formation of transmissible self-propagating prion-like proteins. However, the initiating factors responsible for creation of these misfolded nucleating factors are unknown. Amyloid patterns of protein folding are highly conserved through evolution and are widely distributed in the world. Similarities of tertiary protein structure may be involved in the creation of these prion-like agents through molecular mimicry. Cross-seeding of amyloid misfolding, altered proteostasis, and oxidative stress may be induced by amyloid proteins residing in bacteria in our microbiota in the gut and in the diet. Pathways of molecular mimicry induced processes induced by bacterial amyloid in neurodegeneration may involve TLR 2/1, CD14, and NFκB, among others. Furthermore, priming of the innate immune system by the microbiota may enhance the inflammatory response to cerebral amyloids (such as amyloid-β and α-synuclein). This paper describes the specific molecular pathways of these cross-seeding and neuroinflammatory processes. Evolutionary conservation of proteins provides the opportunity for conserved sequences and structures to influence neurological disease through molecular mimicry.

  12. Bringing Person-Centeredness and Active Involvement into Reality

    ERIC Educational Resources Information Center

    Torenholt, Rikke; Engelund, Gitte; Willaing, Ingrid

    2015-01-01

    Purpose: The purpose of this paper is to examine the use and applicability of cultural probes--an explorative participatory method to gain insights into a person's life and thoughts--to achieve person-centeredness and active involvement in self-management education for people with chronic illness. Design/methodology/approach: An education toolkit…

  13. Identifying Associations between Student Achievement and Parental Involvement Activities

    ERIC Educational Resources Information Center

    Waddle, Ann R.

    2011-01-01

    The revision and renewal of the Elementary and Secondary Education Act of 1965 will likely expand its parental involvement component to engage educators, parents, and community partners in supporting public education for children. This revisions call for best practices, but current literature fails to identify specific activities associated…

  14. Moon Watch: A Parental-Involvement Homework Activity.

    ERIC Educational Resources Information Center

    Rillero, Peter; Gonzalez-Jensen, Margarita; Moy, Tracy

    2000-01-01

    Presents the goals, philosophy, and methods of the SPLASH (Student-Parent Laboratories Achieving Science at Home) program. Describes an at-home, parental-involvement activity called Moon Watch in which students and their parents observe how the phases of the moon and the moon's position in the sky change over a two-week period. (WRM)

  15. Heterogeneous ribonucleoprotein C displays a repressor activity mediated by T-cell intracellular antigen-1-related/like protein to modulate Fas exon 6 splicing through a mechanism involving Hu antigen R.

    PubMed

    Izquierdo, José M

    2010-12-01

    T-cell intracellular antigen (TIA)-proteins are known regulators of alternative pre-mRNA splicing. In this study, pull-down experiments and mass spectrometry indicate that TIAR/TIAL1 and hnRNP C1/C2 are associated in HeLa nuclear extracts. Co-immunoprecipitation and GST-pull-down assays confirmed this interaction. Interestingly, binding requires the glutamine-rich (Q-rich) C-terminal domain of TIAR and the leucine-rich plus acidic residues-rich C-terminal domains of hnRNP C1/C2. This interaction also occurs in an RNA-dependent manner. Recombinant GFP-TIAR and RFP-hnRNP C1 proteins display partial nuclear co-localization when overexpressed in HeLa cells, and this requires the Q-rich domain of TIAR. hnRNP C1 overexpression in the presence of rate-limiting amounts of TIAR in HeLa and HEK293 cells affects alternative splicing of Fas and FGFR2 minigenes, promoting Fas exon 6 and FGFR2 exon K-SAM skipping, respectively. The repressor activity of hnRNP C1 on Fas exon 6 splicing is mediated by Hu antigen R (HuR). Experiments involving tethering approaches showed that the repressor capacity of hnRNP C1 is associated with an exonic splicing silencer in Fas exon 6. This effect was reversed by splice-site strengthening and is linked to its basic leucine zipper-like motif. These results suggest that hnRNP C1/C2 acts as a bridge between HuR and TIAR to modulate alternative Fas splicing.

  16. The cytotoxic mechanism of glyoxal involves oxidative stress.

    PubMed

    Shangari, Nandita; O'Brien, Peter J

    2004-10-01

    Glyoxal is a reactive alpha-oxoaldehyde that is a physiological metabolite formed by lipid peroxidation, ascorbate autoxidation, oxidative degradation of glucose and degradation of glycated proteins. Glyoxal is capable of inducing cellular damage, like methylglyoxal (MG), but may also accelerate the rate of glycation leading to the formation of advanced glycation end-products (AGEs). However, the mechanism of glyoxal cytotoxicity has not been precisely defined. In this study we have focused on the cytotoxic effects of glyoxal and its ability to overcome cellular resistance to oxidative stress. Isolated rat hepatocytes were incubated with different concentrations of glyoxal. Glyoxal by itself was cytotoxic at 5mM, depleted GSH, formed reactive oxygen species (ROS) and collapsed the mitochondrial membrane potential. Glyoxal also induced lipid peroxidation and formaldehyde formation. Glycolytic substrates, e.g. fructose, sorbitol and xylitol inhibited glyoxal-induced cytotoxicity and prevented the decrease in mitochondrial membrane potential suggesting that mitochondrial toxicity contributed to the cytotoxic mechanism. Glyoxal cytotoxicity was prevented by the glyoxal traps d-penicillamine or aminoguanidine or ROS scavengers were also cytoprotective even when added some time after glyoxal suggesting that oxidative stress contributed to the glyoxal cytotoxic mechanism.

  17. Integrated Innate Mechanisms Involved in Airway Allergic Inflammation to the Serine Protease Subtilisin

    PubMed Central

    Florsheim, Esther; Yu, Shuang; Bragatto, Ivan; Faustino, Lucas; Gomes, Eliane; Ramos, Rodrigo N.; Barbuto, José Alexandre M.; Medzhitov, Ruslan; Russo, Momtchilo

    2015-01-01

    Proteases are recognized environmental allergens, but little is known about the mechanisms responsible for sensing enzyme activity and initiating the development of allergic inflammation. Because usage of the serine protease subtilisin in the detergent industry resulted in an outbreak of occupational asthma in workers, we sought to develop an experimental model of allergic lung inflammation to subtilisin and to determine the immunological mechanisms involved in type 2 responses. By using a mouse model of allergic airway disease, we have defined here that subcutaneous or intranasal sensitization followed by airway challenge to subtilisin induces prototypic allergic lung inflammation, characterized by airway eosinophilia, type 2 cytokines release, mucus production, high levels of serum IgE, and airway reactivity. These allergic responses were dependent on subtilisin protease activity, protease-activated receptor (PAR)-2, IL-33 receptor ST2, and MyD88 signaling. Also, subtilisin stimulated the expression of the pro-allergic cytokines IL-1α, IL-33, TSLP, and the growth factor amphiregulin in a human bronchial epithelial cell line. Notably, acute administration of subtilisin into the airways increased lung IL-5-producing type 2 innate lymphoid cells, which required PAR-2 expression. Finally, subtilisin activity acted as a Th2 adjuvant to an unrelated airborne antigen promoting allergic inflammation to inhaled OVA. Therefore, we established a murine model of occupational asthma to a serine protease and characterized the main molecular pathways involved in allergic sensitization to subtilisin that potentially contribute to initiate allergic airway disease. PMID:25876764

  18. A review on the molecular mechanisms involved in insulin resistance induced by organophosphorus pesticides.

    PubMed

    Lasram, Mohamed Montassar; Dhouib, Ines Bini; Annabi, Alya; El Fazaa, Saloua; Gharbi, Najoua

    2014-08-01

    There is increasing evidence reporting that organophosphorus pesticides (OPs) impair glucose homeostasis and cause insulin resistance and type 2 diabetes. Insulin resistance is a complex metabolic disorder that defies explanation by a single etiological pathway. Formation of advanced glycation end products, accumulation of lipid metabolites, activation of inflammatory pathways and oxidative stress have all been implicated in the pathogenesis of insulin resistance. Ultimately, these molecular processes activate a series of stress pathways involving a family of serine kinases, which in turn have a negative effect on insulin signaling. Experimental and clinical data suggest an association between these molecular mechanisms and OPs compounds. It was first reported that OPs induce hyperglycemia. Then a concomitant increase of blood glucose and insulin was pointed out. For some years only, we have begun to understand that OPs promote insulin resistance and increase the risk of type 2 diabetes. Overall, this review outlines various mechanisms that lead to the development of insulin resistance by OPs exposure.

  19. Active cell mechanics: Measurement and theory.

    PubMed

    Ahmed, Wylie W; Fodor, Étienne; Betz, Timo

    2015-11-01

    Living cells are active mechanical systems that are able to generate forces. Their structure and shape are primarily determined by biopolymer filaments and molecular motors that form the cytoskeleton. Active force generation requires constant consumption of energy to maintain the nonequilibrium activity to drive organization and transport processes necessary for their function. To understand this activity it is necessary to develop new approaches to probe the underlying physical processes. Active cell mechanics incorporates active molecular-scale force generation into the traditional framework of mechanics of materials. This review highlights recent experimental and theoretical developments towards understanding active cell mechanics. We focus primarily on intracellular mechanical measurements and theoretical advances utilizing the Langevin framework. These developing approaches allow a quantitative understanding of nonequilibrium mechanical activity in living cells. This article is part of a Special Issue entitled: Mechanobiology.

  20. Molecular mechanisms involved in mammalian primary sex determination.

    PubMed

    She, Zhen-Yu; Yang, Wan-Xi

    2014-08-01

    Sex determination refers to the developmental decision that directs the bipotential genital ridge to develop as a testis or an ovary. Genetic studies on mice and humans have led to crucial advances in understanding the molecular fundamentals of sex determination and the mutually antagonistic signaling pathway. In this review, we summarize the current molecular mechanisms of sex determination by focusing on the known critical sex determining genes and their related signaling pathways in mammalian vertebrates from mice to humans. We also discuss the underlying delicate balance between testis and ovary sex determination pathways, concentrating on the antagonisms between major sex determining genes.

  1. Mechanisms involved in regulation of osteoclastic differentiation by mechanical stress-loaded osteoblasts

    SciTech Connect

    Kaneuji, Takeshi; Ariyoshi, Wataru; Okinaga, Toshinori; Toshinaga, Akihiro; Takahashi, Tetsu; Nishihara, Tatsuji

    2011-04-29

    Highlights: {yields} Effect of compressive force on osteoblasts were examined. {yields} Compressive force induced OPG expression and suppressed osteoclastogenesis. {yields} This enhancement of OPG is dependent on Wnt/Ca2+ signal pathway. -- Abstract: Mechanical stress is known to be important for regulation of bone turnover, though the detailed mechanisms are not fully understood. In the present study, we examined the effect of mechanical stress on osteoblasts using a novel compression model. Mouse osteoblastic MC3T3-E1 cells were embedded in three-dimensional (3D) gels and cultured with continuous compressive force (0-10.0 g/cm{sup 2}) for 48 h, and the conditioned medium were collected. RAW264.7 cells were then incubated with the conditioned medium for various times in the presence of receptor activator of nuclear factor-{kappa}B ligand (RANKL). Conditioned medium was found to inhibit the differentiation of RAW264.7 cells into osteoclasts induced by RANKL via down-regulation of the expression of tumor necrosis factor receptor-associated factor 6 (TRAF6), phosphorylation of I{kappa}B{alpha}, and nuclear translocation of p50 and p65. Interestingly, the conditioned medium also had a high level of binding activity to RANKL and blocked the binding of RANK to RANKL. Furthermore, the binding activity of conditioned medium to RANKL was reduced when the 3D gel was supplemented with KN-93, an inhibitor of non-canonical Wnt/Ca{sup 2+} pathway. In addition, expression level of osteoprotegerin (OPG) mRNA was increased in time- and force-dependent manners, and remarkably suppressed by KN-93. These results indicate that osteoblastic cells subjected to mechanical stress produce OPG, which binds to RANKL. Furthermore, this binding activity strongly inhibited osteoclastogenesis through suppression of TRAF6 and the nuclear factor-kappa B (NF-{kappa}B) signaling pathway, suggesting that enhancement of OPG expression induced by mechanical stress is dependent on non-canonical Wnt

  2. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements.

    PubMed

    Liu, Pengfei; Erez, Ayelet; Nagamani, Sandesh C Sreenath; Dhar, Shweta U; Kołodziejska, Katarzyna E; Dharmadhikari, Avinash V; Cooper, M Lance; Wiszniewska, Joanna; Zhang, Feng; Withers, Marjorie A; Bacino, Carlos A; Campos-Acevedo, Luis Daniel; Delgado, Mauricio R; Freedenberg, Debra; Garnica, Adolfo; Grebe, Theresa A; Hernández-Almaguer, Dolores; Immken, LaDonna; Lalani, Seema R; McLean, Scott D; Northrup, Hope; Scaglia, Fernando; Strathearn, Lane; Trapane, Pamela; Kang, Sung-Hae L; Patel, Ankita; Cheung, Sau Wai; Hastings, P J; Stankiewicz, Paweł; Lupski, James R; Bi, Weimin

    2011-09-16

    Complex genomic rearrangements (CGRs) consisting of two or more breakpoint junctions have been observed in genomic disorders. Recently, a chromosome catastrophe phenomenon termed chromothripsis, in which numerous genomic rearrangements are apparently acquired in one single catastrophic event, was described in multiple cancers. Here, we show that constitutionally acquired CGRs share similarities with cancer chromothripsis. In the 17 CGR cases investigated, we observed localization and multiple copy number changes including deletions, duplications, and/or triplications, as well as extensive translocations and inversions. Genomic rearrangements involved varied in size and complexities; in one case, array comparative genomic hybridization revealed 18 copy number changes. Breakpoint sequencing identified characteristic features, including small templated insertions at breakpoints and microhomology at breakpoint junctions, which have been attributed to replicative processes. The resemblance between CGR and chromothripsis suggests similar mechanistic underpinnings. Such chromosome catastrophic events appear to reflect basic DNA metabolism operative throughout an organism's life cycle.

  3. Molecular mechanisms involved in initiation of the DNA damage response

    PubMed Central

    Barnum, Kevin J; O’Connell, Matthew J

    2015-01-01

    DNA is subject to a wide variety of damage. In order to maintain genomic integrity, cells must respond to this damage by activating repair and cell cycle checkpoint pathways. The initiating events in the DNA damage response entail recognition of the lesion and the assembly of DNA damage response complexes at the DNA. Here, we review what is known about these processes for various DNA damage pathways. PMID:27308403

  4. Molecular mechanisms involved in initiation of the DNA damage response.

    PubMed

    Barnum, Kevin J; O'Connell, Matthew J

    2015-01-01

    DNA is subject to a wide variety of damage. In order to maintain genomic integrity, cells must respond to this damage by activating repair and cell cycle checkpoint pathways. The initiating events in the DNA damage response entail recognition of the lesion and the assembly of DNA damage response complexes at the DNA. Here, we review what is known about these processes for various DNA damage pathways.

  5. Mechanisms Involved in Glucocorticoid Induction of Pituitary GH Expression During Embryonic Development

    PubMed Central

    Ellestad, Laura E.; Puckett, Stefanie A.

    2015-01-01

    Glucocorticoid hormones are involved in functional differentiation of GH-producing somatotrophs. Glucocorticoid treatment prematurely induces GH expression in mammals and birds in a process requiring protein synthesis and Rat sarcoma (Ras) signaling. The objective of this study was to investigate mechanisms through which glucocorticoids initiate GH expression during embryogenesis, taking advantage of the unique properties of chicken embryos as a developmental model. We determined that stimulation of GH expression occurred through transcriptional activation of GH, rather than enhancement of mRNA stability, and this process requires histone deacetylase activity. Through pharmacological inhibition, we identified the ERK1/2 pathway as a likely downstream Ras effector necessary for glucocorticoid stimulation of GH. However, we also found that chronic activation of ERK1/2 activity with a constitutively active mutant or stimulatory ligand reduced initiation of GH expression by glucocorticoid treatment. Corticosterone treatment of cultured embryonic pituitary cells increased ERK1/2 activity in an apparent cyclical manner, with a rapid increase within 5 minutes, followed by a reduction to near-basal levels at 3 hours, and a subsequent increase again at 6 hours. Therefore, we conclude that ERK1/2 signaling must be strictly controlled for maximal glucocorticoid induction of GH to occur. These results are the first in any species to demonstrate that Ras- and ERK1/2-mediated transcriptional events requiring histone deacetylase activity are involved in glucocorticoid induction of pituitary GH during embryonic development. This report increases our understanding of the molecular mechanisms underlying glucocorticoid recruitment of somatotrophs during embryogenesis and should provide insight into glucocorticoid-induced developmental changes in other tissues and cell types. PMID:25560830

  6. Mechanisms involved in the development of chemotherapy-induced neuropathy

    PubMed Central

    Boyette-Davis, Jessica A; Walters, Edgar T; Dougherty, Patrick M

    2015-01-01

    SUMMARY Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating and painful condition seen in patients undergoing treatment with common agents such as vincristine, paclitaxel, oxaliplatin and bortezomib. The mechanisms of this condition are diverse, and include an array of molecular and cellular contributions. Current research implicates genetic predispositions to this condition, which then may influence cellular responses to chemotherapy. Processes found to be influenced during CIPN include increased expression of inflammatory mediators, primarily cytokines, which can create cascading effects in neurons and glia. Changes in ion channels and neurotransmission, as well as changes in intracellular signaling and structures have been implicated in CIPN. This review explores these issues and suggests considerations for future research. PMID:26087973

  7. Kinetics and mechanisms of reactions involving small aromatic reactive intermediates

    SciTech Connect

    Lin, M.C.

    1993-12-01

    Small aromatic radicals such as C{sub 6}H{sub 5}, C{sub 6}H{sub 5}O and C{sub 6}H{sub 4} are key prototype species of their homologs. C{sub 6}H{sub 5} and its oxidation product, C{sub 6}H{sub 5}O are believed to be important intermediates which play a pivotal role in hydrocarbon combustion, particularly with regard to soot formation. Despite their fundamental importance, experimental data on the reaction mechanisms and reactivities of these species are very limited. For C{sub 6}H{sub 5}, most kinetic data except its reactions with NO and NO{sub 2}, were obtained by relative rate measurements. For C{sub 6}H{sub 5}O, the authors have earlier measured its fragmentation reaction producing C{sub 5}H{sub 5} + CO in shock waves. For C{sub 6}H{sub 4}, the only rate constant measured in the gas phase is its recombination rate at room temperature. The authors have proposed to investigate systematically the kinetics and mechanisms of this important class of molecules using two parallel laser diagnostic techniques--laser resonance absorption (LRA) and resonance enhanced multiphoton ionization mass spectrometry (REMPI/MS). In the past two years, study has been focused on the development of a new multipass adsorption technique--the {open_quotes}cavity-ring-down{close_quotes} technique for kinetic applications. The preliminary results of this study appear to be quite good and the sensitivity of the technique is at least comparable to that of the laser-induced fluorescence method.

  8. Mechanisms and Targets Involved in Dissemination of Ovarian Cancer

    PubMed Central

    H. WEIDLE, ULRICH; BIRZELE, FABIAN; KOLLMORGEN, GWENDLYN; RUEGER, RÜDIGER

    2016-01-01

    Ovarian carcinoma is associated with the highest death rate of all gynecological tumors. On one hand, its aggressiveness is based on the rapid dissemination of ovarian cancer cells to the peritoneum, the omentum, and organs located in the peritoneal cavity, and on the other hand, on the rapid development of resistance to chemotherapeutic agents. In this review, we focus on the metastatic process of ovarian cancer, which involves dissemination of, homing to and growth of tumor cells in distant organs, and describe promising molecular targets for possible therapeutic intervention. We provide an outline of the interaction of ovarian cancer cells with the microenvironment such as mesothelial cells, adipocytes, fibroblasts, endothelial cells, and other stromal components in the context of approaches for therapeutic interference with dissemination. The targets described in this review are discussed with respect to their validity as drivers of metastasis and to the availability of suitable efficient agents for their blockage, such as small molecules, monoclonal antibodies or antibody conjugates as emerging tools to manage this disease. PMID:27807064

  9. Mechanisms regulating proteostasis are involved in sympatric speciation of the blind mole rat, Spalax galili.

    PubMed

    Rodriguez, Karl A; Li, Kexin; Nevo, Eviatar; Buffenstein, Rochelle

    2016-01-01

    Genome-wide analysis demonstrates extensive genomic adaptive complexes involved in sympatric speciation between blind mole rats (Spalax galili) in abutting populations living in basalt and chalk soils. Among the gene ontology (GO) enrichment, musculature and metabolism stood out in basalt dwellers while nutrition and neurogenetics were highlighted in chalk residents. Measurements of mechanisms regulating protein homeostasis inspired by these GO terms suggest that at the proteomic level there is also a habitat/soil-type driven divergence with the basalt residents exhibiting higher proteasome activity whereas elevated levels of markers of autophagy are evident in the chalk inhabitants.

  10. Mechanisms regulating proteostasis are involved in sympatric speciation of the blind mole rat, Spalax galili

    PubMed Central

    Rodriguez, Karl A.; Li, Kexin; Nevo, Eviatar; Buffenstein, Rochelle

    2016-01-01

    ABSTRACT Genome-wide analysis demonstrates extensive genomic adaptive complexes involved in sympatric speciation between blind mole rats (Spalax galili) in abutting populations living in basalt and chalk soils. Among the gene ontology (GO) enrichment, musculature and metabolism stood out in basalt dwellers while nutrition and neurogenetics were highlighted in chalk residents. Measurements of mechanisms regulating protein homeostasis inspired by these GO terms suggest that at the proteomic level there is also a habitat/soil-type driven divergence with the basalt residents exhibiting higher proteasome activity whereas elevated levels of markers of autophagy are evident in the chalk inhabitants. PMID:27050459

  11. Synergistic mechanisms involved in the antidepressant effects of agomelatine.

    PubMed

    Tardito, Daniela; Molteni, Raffaella; Popoli, Maurizio; Racagni, Giorgio

    2012-01-01

    Agomelatine is a novel and clinically effective antidepressant drug with melatonergic (MT1/MT2) agonist and 5-HT(2C) receptor antagonist properties. Both receptorial components are widely expressed in the central nervous system and it seems that this compound could act synergistically on both the melatonergic and the 5-HT(2C) receptors. In this review we will briefly summarize the preclinical evidence suggesting that the molecular-cellular effects of agomelatine and in turn its antidepressant activity are the result of a synergistic action between its agonism at MT1/MT2 and antagonism at 5-HT(2C) receptors. The antidepressant properties of agomelatine related to its effect on neurogenesis, cell survival, brain-derived neurotrophic factor (BDNF), activity-regulated cytoskeleton associated protein (Arc) and stress-induced glutamate release, appear to be due to this synergistic action. Compared with traditional antidepressants which also affect these parameters, agomelatine is the only one able to resynchronize these effectors at distinct levels, circuital and intracellular. This suggests that agomelatine effects in restoring circadian rhythms and relieving depressive symptoms result from a synergistic interaction between melatonergic and serotonergic receptors.

  12. Involvement of ASR genes in aluminium tolerance mechanisms in rice.

    PubMed

    Arenhart, Rafael Augusto; Lima, Julio César de; Pedron, Marcelo; Carvalho, Fabricio E L; Silveira, Joaquim Albenisio Gomes da; Rosa, Silvia Barcelos; Caverzan, Andreia; Andrade, Claudia M B; Schünemann, Mariana; Margis, Rogério; Margis-Pinheiro, Márcia

    2013-01-01

    Among cereal crops, rice is considered the most tolerant to aluminium (Al). However, variability among rice genotypes leads to remarkable differences in the degree of Al tolerance for distinct cultivars. A number of studies have demonstrated that rice plants achieve Al tolerance through an unknown mechanism that is independent of root tip Al exclusion. We have analysed expression changes of the rice ASR gene family as a function of Al treatment. The gene ASR5 was differentially regulated in the Al-tolerant rice ssp. Japonica cv. Nipponbare. However, ASR5 expression did not respond to Al exposure in Indica cv. Taim rice roots, which are highly Al sensitive. Transgenic plants carrying RNAi constructs that targeted the ASR genes were obtained, and increased Al susceptibility was observed in T1 plants. Embryogenic calli of transgenic rice carrying an ASR5-green fluorescent protein fusion revealed that ASR5 was localized in both the nucleus and cytoplasm. Using a proteomic approach to compare non-transformed and ASR-RNAi plants, a total of 41 proteins with contrasting expression patterns were identified. We suggest that the ASR5 protein acts as a transcription factor to regulate the expression of different genes that collectively protect rice cells from Al-induced stress responses.

  13. Mechanisms involved in the developmental programming of adulthood disease.

    PubMed

    Warner, Matthew J; Ozanne, Susan E

    2010-04-14

    There are many instances in life when the environment plays a critical role in the health outcomes of an individual, yet none more so than those experienced in fetal and neonatal life. One of the most detrimental environmental problems encountered during this critical growth period are changes in nutrition to the growing fetus and newborn. Disturbances in the supply of nutrients and oxygen to the fetus can not only lead to adverse fetal growth patterns, but they have also been associated with the development of features of metabolic syndrome in adult life. This fetal response has been termed developmental programming or the developmental origins of health and disease. The present review focuses on the epidemiological studies that identified this association and the importance that animal models have played in studying this concept. We also address the potential mechanisms that may underpin the developmental programming of future disease. It also highlights (i) how developmental plasticity, although beneficial for short-term survival, can subsequently programme glucose intolerance and insulin resistance in adult life by eliciting changes in key organ structures and the epigenome, and (ii) how aberrant mitochondrial function can potentially lead to the development of Type 2 diabetes and other features of metabolic syndrome.

  14. Peripheral and Central Mechanisms Involved in the Hormonal Control of Male and Female Reproduction

    PubMed Central

    Rudolph, L. M.; Bentley, G. E.; Calandra, R. S.; Paredes, A. H.; Tesone, M.; Wu, T. J.; Micevych, P. E.

    2016-01-01

    Reproduction involves the integration of hormonal signals acting across multiple systems to generate a synchronised physiological output. A critical component of reproduction is the luteinising hormone (LH) surge, which is mediated by oestradiol (E2) and neuroprogesterone interacting to stimulate kisspeptin release in the rostral periventricular nucleus of the third ventricle in rats. Recent evidence indicates the involvement of both classical and membrane E2 and progesterone signalling in this pathway. A metabolite of gonadotrophin-releasing hormone (GnRH), GnRH-(1-5), has been shown to stimulate GnRH expression and secretion, and has a role in the regulation of lordosis. Additionally, gonadotrophin release-inhibitory hormone (GnIH) projects to and influences the activity of GnRH neurones in birds. Stress-induced changes in GnIH have been shown to alter breeding behaviour in birds, demonstrating another mechanism for the molecular control of reproduction. Peripherally, paracrine and autocrine actions within the gonad have been suggested as therapeutic targets for infertility in both males and females. Dysfunction of testicular prostaglandin synthesis is a possible cause of idiopathic male infertility. Indeed, local production of melatonin and corticotrophin-releasing hormone could influence spermatogenesis via immune pathways in the gonad. In females, vascular endothelial growth factor A has been implicated in an angiogenic process that mediates development of the corpus luteum and thus fertility via the Notch signalling pathway. Age-induced decreases in fertility involve ovarian kisspeptin and its regulation of ovarian sympathetic innervation. Finally, morphological changes in the arcuate nucleus of the hypothalamus influence female sexual receptivity in rats. The processes mediating these morphological changes have been shown to involve the rapid effects of E2 controlling synaptogenesis in this hypothalamic nucleus. In summary, this review highlights new

  15. Mechanism(S) Involved in the Colon-Specific Expression of the Thiamine Pyrophosphate (Tpp) Transporter.

    PubMed

    Nabokina, Svetlana M; Ramos, Mel Brendan; Said, Hamid M

    2016-01-01

    Microbiota of the large intestine synthesizes considerable amount of vitamin B1 (thiamine) in the form of thiamine pyrophosphate (TPP). We have recently demonstrated the existence of an efficient and specific carrier-mediated uptake process for TPP in human colonocytes, identified the TPP transporter (TPPT) involved (product of the SLC44A4 gene), and shown that expression of TPPT along the gastrointestinal (GI) tract is restricted to the colon. Our aim in this study was to determine the molecular basis of the colon-specific expression of TPPT focusing on a possible epigenetic mechanism. Our results showed that the CpG island predicted in the SLC44A4 promoter is non-methylated in the human colonic epithelial NCM460 cells, but is hyper-methylated in the human duodenal epithelial HuTu80 cells (as well as in the human retinal pigment epithelial ARPE19 cells). In the mouse (where TPPT expression in the GI tract is also restricted to the colon), the CpG island predicted in the Slc44a4 promoter is non-methylated in both the jejunum and colon, thus arguing against possible contribution of DNA methylation in the colon-specific expression of TPPT. A role for histone modifications in the tissue-specific pattern of Slc44a4 expression, however, was suggested by the findings that in mouse colon, histone H3 in the 5'-regulatory region of Slc44a4 is tri-methylated at lysine 4 and acetylated at lysine 9, whereas the tri-methylation at lysine 27 modification was negligible. In contrast, in the mouse jejunum, histone H3 is hyper-trimethylated at lysine 27 (repressor mark). Similarly, possible involvement of miRNA(s) in the tissue-specific expression of TPPT was also suggested by the findings that the 3'-UTR of SLC44A4 is targeted by specific miRNAs/RNA binding proteins in non-colonic, but not in colonic, epithelial cells. These studies show, for the first time, epigenetic mechanisms (histone modifications) play a role in determining the tissue-specific pattern of expression of TPPT

  16. Mechanism of base activation of persulfate.

    PubMed

    Furman, Olha S; Teel, Amy L; Watts, Richard J

    2010-08-15

    Base is the most commonly used activator of persulfate for the treatment of contaminated groundwater by in situ chemical oxidation (ISCO). A mechanism for the base activation of persulfate is proposed involving the base-catalyzed hydrolysis of persulfate to hydroperoxide anion and sulfate followed by the reduction of another persulfate molecule by hydroperoxide. Reduction by hydroperoxide decomposes persulfate into sulfate radical and sulfate anion, and hydroperoxide is oxidized to superoxide. The base-catalyzed hydrolysis of persulfate was supported by kinetic analyses of persulfate decomposition at various base:persulfate molar ratios and an increased rate of persulfate decomposition in D(2)O vs H(2)O. Stoichiometric analyses confirmed that hydroperoxide reacts with persulfate in a 1:1 molar ratio. Addition of hydroperoxide to basic persulfate systems resulted in rapid decomposition of the hydroperoxide and persulfate and decomposition of the superoxide probe hexachloroethane. The presence of superoxide was confirmed with scavenging by Cu(II). Electron spin resonance spectroscopy confirmed the generation of sulfate radical, hydroxyl radical, and superoxide. The results of this research are consistent with the widespread reactivity reported for base-activated persulfate when it is used for ISCO.

  17. Mechanism of Highly Synchronized Bilateral Hippocampal Activity

    PubMed Central

    Wang, Y.; Toprani, S.; Tang, Y.; Vrabec, T.; Durand, D.M.

    2014-01-01

    In vivo studies of epileptiform discharges in the hippocampi of rodents have shown that bilateral seizure activity can sometimes be synchronized with very small delays (< 2 ms). This observed small time delay of epileptiform activity between the left and right CA3 regions is unexpected given the physiological propagation time across the hemispheres (> 6 ms). The goal of this study is to determine the mechanisms of this tight synchronization with in-vitro electrophysiology techniques and computer simulations. The hypothesis of a common source was first eliminated by using an in-vitro preparation containing both hippocampi with a functional ventral hippocampal commissure (VHC) and no other tissue. Next, the hypothesis that a noisy baseline could mask the underlying synchronous activity between the two hemispheres was ruled out by low noise in-vivo recordings and computer simulation of the noisy environment. Then we built a novel bilateral CA3 model to test the hypothesis that the phenomenon of very small left-to-right propagation delay of seizure activity is a product of epileptic cell network dynamics. We found that the commissural tract connectivity could decrease the delay between seizure events recorded from two sides while the activity propagated longitudinally along the CA3 layer thereby yielding delays much smaller than the propagation time between the two sides. The modeling results indicate that both recurrent and feedforward inhibition were required for shortening the bilateral propagation delay and depended critically on the length of the commissural fiber tract as well as the number of cells involved in seizure generation. These combined modeling/experimental studies indicate that it is possible to explain near perfect synchronization between the two hemispheres by taking into account the structure of the hippocampal network. PMID:24262205

  18. Gamma Band Activity in the RAS-intracellular mechanisms

    PubMed Central

    Garcia-Rill, E.; Kezunovic, N.; D’Onofrio, S.; Luster, B.; Hyde, J.; Bisagno, V.; Urbano, F.J.

    2014-01-01

    Gamma band activity participates in sensory perception, problem solving, and memory. This review considers recent evidence showing that cells in the reticular activating system (RAS) exhibit gamma band activity, and describes the intrinsic membrane properties behind such manifestation. Specifically, we discuss how cells in the mesopontine pedunculopontine nucleus (PPN), intralaminar parafascicular nucleus (Pf), and pontine Subcoeruleus nucleus dorsalis (SubCD) all fire in the gamma band range when maximally activated, but no higher. The mechanisms involve high threshold, voltage-dependent P/Q-type calcium channels or sodium-dependent subthreshold oscillations. Rather than participating in the temporal binding of sensory events as in the cortex, gamma band activity in the RAS may participate in the processes of preconscious awareness, and provide the essential stream of information for the formulation of many of our actions. We address three necessary next steps resulting from these discoveries, an intracellular mechanism responsible for maintaining gamma band activity based on persistent G-protein activation, separate intracellular pathways that differentiate between gamma band activity during waking vs during REM sleep, and an intracellular mechanism responsible for the dysregulation in gamma band activity in schizophrenia. These findings open several promising research avenues that have not been thoroughly explored. What are the effects of sleep or REM sleep deprivation on these RAS mechanisms? Are these mechanisms involved in memory processing during waking and/or during REM sleep? Does gamma band processing differ during waking vs REM sleep after sleep or REM sleep deprivation? PMID:24309750

  19. Afferent control mechanisms involved in the development of soleus fiber alterations in simulated hypogravity

    NASA Astrophysics Data System (ADS)

    Shenkman, B. S.; Nemirovskaya, T. L.; Shapovalova, K. B.; Podlubnaya, Z. A.; Vikhliantsev, I. M.; Moukhina, A. M.; Kozlovskaya, I. B.

    2007-02-01

    It was recently established that support withdrawal (withdrawal of support reaction force) in microgravity provokes a sequence of functional shifts in the activity of motor units (inactivation of slow ones) and peripheral muscle apparatus which lead to the decline of postural muscle contractility and alterations in fiber characteristics. However, mechanisms involved in inactivation of the slow motor units and appropriate slow-twitch muscle fiber disuse under the supportless conditions remained unknown. We show here that artificial inactivation of muscles-antagonists (which are known to be hyperactive during unloading) counteracts some of the unloading-induced events in the rat soleus (fiber size reduction, slow-to-fast fiber-type transition and decline of titin and nebulin content). It was also demonstrated that direct activation of the muscarinic receptors of the neostriatum neurons prevented slow-to-fast fiber-type transformation in soleus of hindlimb suspended rats.

  20. Molecular Mechanisms of Anthracycline Activity

    NASA Astrophysics Data System (ADS)

    Beretta, Giovanni Luca; Zunino, Franco

    On the basis of evidence that anthracyclines are DNA intercalating agents and DNA is the primary target, a large number of analogs and related intercalators have been developed. However, doxorubicin and closely related anthracyclines still remain among the most effective antitumor agents. Multiple mechanisms have been proposed to explain their efficacy. They include inhibition of DNA-dependent functions, free radical formation, and membrane interactions. The primary mechanism of action is now ascribed to drug interference with the function of DNA topoisomerase II. The stabilization of the topoisomerase-mediated cleavable complex results in a specific type of DNA damage (i.e., double-strand protein-associated DNA breaks). The drug-stabilized cleavable complex is a potentially reversible molecular event and its persistence, as a consequence of strong DNA binding, may be recognized as an apoptotic stimulus. Indirect evidence supports the notion that the bioreductive processes of the quinone moiety generating the semiquinone radical with concomitant production of reactive oxygen species may contribute to the drug effects. The cellular defense mechanisms and response to genotoxic/cytotoxic stress appear to be critical determinants of the tumor sensitivity to anthracyclines.

  1. Role of the Wasp Venom Peptide Mastoparan in the Study of Mechanisms Involved in Cell Death

    DTIC Science & Technology

    1989-08-23

    Involved in Cell Death 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK...study of mechanisms involved in cell death " beyond brief excerpts is with the permission of the copyright owner, and will save and hold harmless...Dissertation: Role of the wasp venom peptide mastoparan in the study of mechanisms involved in cell death . Samuel P. Eng, Master of Science, 1989

  2. Active stream segregation specifically involves the left human auditory cortex.

    PubMed

    Deike, Susann; Scheich, Henning; Brechmann, André

    2010-06-14

    An important aspect of auditory scene analysis is the sequential grouping of similar sounds into one "auditory stream" while keeping competing streams separate. In the present low-noise fMRI study we presented sequences of alternating high-pitch (A) and low-pitch (B) complex harmonic tones using acoustic parameters that allow the perception of either two separate streams or one alternating stream. However, the subjects were instructed to actively and continuously segregate the A from the B stream. This was controlled by the additional instruction to listen for rare level deviants only in the low-pitch stream. Compared to the control condition in which only one non-separable stream was presented the active segregation of the A from the B stream led to a selective increase of activation in the left auditory cortex (AC). Together with a similar finding from a previous study using a different acoustic cue for streaming, namely timbre, this suggests that the left auditory cortex plays a dominant role in active sequential stream segregation. However, we found cue differences within the left AC: Whereas in the posterior areas, including the planum temporale, activation increased for both acoustic cues, the anterior areas, including Heschl's gyrus, are only involved in stream segregation based on pitch.

  3. Labdane diterpenes protect against anoxia/reperfusion injury in cardiomyocytes: involvement of AKT activation

    PubMed Central

    Cuadrado, I; Fernández-Velasco, M; Boscá, L; de las Heras, B

    2011-01-01

    Several labdane diterpenes exert anti-inflammatory and cytoprotective actions; therefore, we have investigated whether these molecules protect cardiomyocytes in an anoxia/reperfusion (A/R) model, establishing the molecular mechanisms involved in the process. The cardioprotective activity of three diterpenes (T1, T2 and T3) was studied in the H9c2 cell line and in isolated rat cardiomyocyte subjected to A/R injury. In both cases, treatment with diterpenes T1 and T2 protected from A/R-induced apoptosis, as deduced by a decrease in the percentage of apoptotic and caspase-3 active positive cells, a decrease in the Bcl-2/Bax ratio and an increase in the expression of antiapoptotic proteins. Analysis of cell survival signaling pathways showed that diterpenes T1 and T2 added after A/R increased phospho-AKT and phospho-ERK 1/2 levels. These cardioprotective effects were lost when AKT activity was pharmacologically inhibited. Moreover, the labdane-induced cardioprotection involves activation of AMPK, suggesting a role for energy homeostasis in their mechanism of action. Labdane diterpenes (T1 and T2) also exerted cardioprotective effects against A/R-induced injury in isolated cardiomyocytes and the mechanisms involved activation of specific survival signals (PI3K/AKT pathways, ERK1/2 and AMPK) and inhibition of apoptosis. PMID:22071634

  4. Mechanisms and neuronal networks involved in reactive and proactive cognitive control of interference in working memory.

    PubMed

    Irlbacher, Kerstin; Kraft, Antje; Kehrer, Stefanie; Brandt, Stephan A

    2014-10-01

    Cognitive control can be reactive or proactive in nature. Reactive control mechanisms, which support the resolution of interference, start after its onset. Conversely, proactive control involves the anticipation and prevention of interference prior to its occurrence. The interrelation of both types of cognitive control is currently under debate: Are they mediated by different neuronal networks? Or are there neuronal structures that have the potential to act in a proactive as well as in a reactive manner? This review illustrates the way in which integrating knowledge gathered from behavioral studies, functional imaging, and human electroencephalography proves useful in answering these questions. We focus on studies that investigate interference resolution at the level of working memory representations. In summary, different mechanisms are instrumental in supporting reactive and proactive control. Distinct neuronal networks are involved, though some brain regions, especially pre-SMA, possess functions that are relevant to both control modes. Therefore, activation of these brain areas could be observed in reactive, as well as proactive control, but at different times during information processing.

  5. Dietary restriction involves NAD⁺ -dependent mechanisms and a shift toward oxidative metabolism.

    PubMed

    Moroz, Natalie; Carmona, Juan J; Anderson, Edward; Hart, Anne C; Sinclair, David A; Blackwell, T Keith

    2014-12-01

    Interventions that slow aging and prevent chronic disease may come from an understanding of how dietary restriction (DR) increases lifespan. Mechanisms proposed to mediate DR longevity include reduced mTOR signaling, activation of the NAD⁺ -dependent deacylases known as sirtuins, and increases in NAD⁺ that derive from higher levels of respiration. Here, we explored these hypotheses in Caenorhabditis elegans using a new liquid feeding protocol. DR lifespan extension depended upon a group of regulators that are involved in stress responses and mTOR signaling, and have been implicated in DR by some other regimens [DAF-16 (FOXO), SKN-1 (Nrf1/2/3), PHA-4 (FOXA), AAK-2 (AMPK)]. Complete DR lifespan extension required the sirtuin SIR-2.1 (SIRT1), the involvement of which in DR has been debated. The nicotinamidase PNC-1, a key NAD⁺ salvage pathway component, was largely required for DR to increase lifespan but not two healthspan indicators: movement and stress resistance. Independently of pnc-1, DR increased the proportion of respiration that is coupled to ATP production but, surprisingly, reduced overall oxygen consumption. We conclude that stress response and NAD⁺ -dependent mechanisms are each critical for DR lifespan extension, although some healthspan benefits do not require NAD⁺ salvage. Under DR conditions, NAD⁺ -dependent processes may be supported by a DR-induced shift toward oxidative metabolism rather than an increase in total respiration.

  6. Estradiol decreases cortical reactive astrogliosis after brain injury by a mechanism involving cannabinoid receptors.

    PubMed

    López Rodríguez, Ana Belén; Mateos Vicente, Beatriz; Romero-Zerbo, Silvana Y; Rodriguez-Rodriguez, Noé; Bellini, María José; Rodriguez de Fonseca, Fernando; Bermudez-Silva, Francisco Javier; Azcoitia, Iñigo; Garcia-Segura, Luis M; Viveros, María-Paz

    2011-09-01

    The neuroactive steroid estradiol reduces reactive astroglia after brain injury by mechanisms similar to those involved in the regulation of reactive gliosis by endocannabinoids. In this study, we have explored whether cannabinoid receptors are involved in the effects of estradiol on reactive astroglia. To test this hypothesis, the effects of estradiol, the cannabinoid CB1 antagonist/inverse agonist AM251, and the cannabinoid CB2 antagonist/inverse agonist AM630 were assessed in the cerebral cortex of male rats after a stab wound brain injury. Estradiol reduced the number of vimentin immunoreactive astrocytes and the number of glial fibrillary acidic protein immunoreactive astrocytes in the proximity of the wound. The effect of estradiol was significantly inhibited by the administration of either CB1 or CB2 receptor antagonists. The effect of estradiol may be in part mediated by alterations in endocannabinoid signaling because the hormone increased in the injured cerebral cortex the messenger RNA levels of CB2 receptors and of some of the enzymes involved in the synthesis and metabolism of endocannabinoids. These findings suggest that estradiol may decrease reactive astroglia in the injured brain by regulating the activity of the endocannabinoid system.

  7. Kinetic analysis of a general model of activation of aspartic proteinase zymogens involving a reversible inhibitor. I. Kinetic analysis.

    PubMed

    Muñoz-López, A; Sotos-Lomas, A; Arribas, E; Masia-Perez, J; Garcia-Molina, F; García-Moreno, M; Varon, R

    2007-04-01

    Starting from a simple general reaction mechanism of activation of aspartic proteinases zymogens involving a uni- and a bimolecular simultaneous activation route and a reversible inhibition step, the time course equation of the zymogen, inhibitor and activated enzyme concentrations have been derived. Likewise, expressions for the time required for any reaction progress and the corresponding mean activation rates as well as the half-life of the global zymogen activation have been derived. An experimental design and kinetic data analysis is suggested to estimate the kinetic parameters involved in the reaction mechanism proposed.

  8. A steady-state-kinetic model for formaldehyde dehydrogenase from human liver. A mechanism involving NAD+ and the hemimercaptal adduct of glutathione and formaldehyde as substrates and free glutathione as an allosteric activator of the enzyme.

    PubMed Central

    Uotila, L; Mannervik, B

    1979-01-01

    The steady-state kinetics of formaldehyde dehydrogenase from human liver have been explored. Non-linearities were obtained in v-versus-v[S] plots. It was necessary and sufficient to consider two reactants of the equilibrium mixture of formaldehyde, glutathione and their hemimercaptal adduct for a complete description of the kinetics. A random sequential reaction scheme is proposed in which adduct and beta-NAD+ are the substrates. In addition, glutathione can bind to an allosteric regulatory site and only the glutathione-containing enzyme is considered productive. Various alternative reaction models were examined but no simple alterative was superior to the model chosen. The discrimination was largely based on results of non-linear regression analysis. Several S-substituted glutathione derivatives were tested as activators or inhibitors of the enzyme, but all were without effect. Thio-NAD+, nicotinamide--hypoxanthine dinucleotide and 3-acetylpyridine-adenine dinucleotide could substitute for beta-NAD+ as the nucleotide substrate. alpha-NAD+ and ADP-ribose were competitive inhibitors with respect to beta-NAD+ and non-competitive with glutathione and the adduct. When used simultaneously, the inhibitors were linear competitive versus each other, indicating a single nucleotide-binding site or, if more than one, non-co-operative binding sites. PMID:220952

  9. Fibroblasts, glial, and neuronal cells are involved in extravascular prothrombin activation.

    PubMed

    Yamazaki, Y; Shikamoto, Y; Fukudome, K; Kimoto, M; Morita, T

    1999-10-01

    A membrane-associated prothrombin activator (MAPA) was found on various cultured cells derived from non-hematopoietic cells [Sekiya, F. et al. (1994) J. Biol. Chem. 269, 32441-32445]. In this study, we investigated the enzymatic properties of this enzyme using protease inhibitors. While the metalloproteinase inhibitor, o-phenanthroline, had no effect, some Kunitz type serine protease inhibitors attenuated MAPA activity. Recombinant tissue factor pathway inhibitor (rTFPI) also markedly reduced the activity (IC(50), 1. 3+/-0.6 x 10(-10) M). MAPA activity is, therefore, most likely to be due to factor Xa. We evaluated the effect of exogenous factor Xa on MAPA activity. Factor Xa-dependent prothrombin activation was observed on fibroblast cells (apparent K(d), 1.47+/-0.72 nM). Activation was also observed on glial and neuronal cells, which expressed MAPA activity. These results imply that membrane-bound factor Xa results in MAPA activity on these cells. Therefore, we considered the involvement of factor Va, a component of prothrombinase, in this activity. We examined whether or not the prothrombinase complex is assembled on these cells. Prothrombin was activated in a manner dependent on both exogenous factor Xa and factor Va (apparent K(d) of 0.51-1.81 nM for factor Va). These results indicate that the prothrombinase complex forms specifically on various extravascular cells. Although the prothrombinase complex can be assembled on monocytes and lymphocytes, it is not known why these cells can activate prothrombin specifically. These cells which have the capacity for prothrombin activator activity could also activate factor X; i.e. cells with factor X activation activity were able to convert prothrombin. These observations suggest that thrombin was generated via two procoagulant activities; factor X activation and subsequent prothrombinase complex formation on the surface of these cells. This mechanism may explain the various pathological states involving or resulting

  10. Mechanisms Involved in the Nociception Triggered by the Venom of the Armed Spider Phoneutria nigriventer

    PubMed Central

    Gewehr, Camila; Oliveira, Sara Marchesan; Rossato, Mateus Fortes; Trevisan, Gabriela; Dalmolin, Gerusa Duarte; Rigo, Flávia Karine; de Castro Júnior, Célio José; Cordeiro, Marta Nascimento; Ferreira, Juliano; Gomez, Marcus V.

    2013-01-01

    Background The frequency of accidental spider bites in Brazil is growing, and poisoning due to bites from the spider genus Phoneutria nigriventer is the second most frequent source of such accidents. Intense local pain is the major symptom reported after bites of P. nigriventer, although the mechanisms involved are still poorly understood. Therefore, the aim of this study was to identify the mechanisms involved in nociception triggered by the venom of Phoneutria nigriventer (PNV). Methodology/Principal Findings Twenty microliters of PNV or PBS was injected into the mouse paw (intraplantar, i.pl.). The time spent licking the injected paw was considered indicative of the level of nociception. I.pl. injection of PNV produced spontaneous nociception, which was reduced by arachnid antivenin (ArAv), local anaesthetics, opioids, acetaminophen and dipyrone, but not indomethacin. Boiling or dialysing the venom reduced the nociception induced by the venom. PNV-induced nociception is not dependent on glutamate or histamine receptors or on mast cell degranulation, but it is mediated by the stimulation of sensory fibres that contain serotonin 4 (5-HT4) and vanilloid receptors (TRPV1). We detected a kallikrein-like kinin-generating enzyme activity in tissue treated with PNV, which also contributes to nociception. Inhibition of enzymatic activity or administration of a receptor antagonist for kinin B2 was able to inhibit the nociception induced by PNV. PNV nociception was also reduced by the blockade of tetrodotoxin-sensitive Na+ channels, acid-sensitive ion channels (ASIC) and TRPV1 receptors. Conclusion/Significance Results suggest that both low- and high-molecular-weight toxins of PNV produce spontaneous nociception through direct or indirect action of kinin B2, TRPV1, 5-HT4 or ASIC receptors and voltage-dependent sodium channels present in sensory neurons but not in mast cells. Understanding the mechanisms involved in nociception caused by PNV are of interest not only for

  11. Mechanism for the activation of glutamate receptors

    Cancer.gov

    Scientists at the NIH have used a technique called cryo-electron microscopy to determine a molecular mechanism for the activation and desensitization of ionotropic glutamate receptors, a prominent class of neurotransmitter receptors in the brain and spina

  12. Individual differences in dispositional mindfulness and brain activity involved in reappraisal of emotion

    PubMed Central

    Ormel, Johan; Aleman, André

    2010-01-01

    The regulation of negative emotion through reappraisal has been shown to induce increased prefrontal activity and decreased amygdala activity. Individual differences in dispositional mindfulness reflect differences in typical recognition, detachment and regulation of current experience, thought to also operate as top–down control mechanism. We sought to investigate whether such individual differences would be associated with brain activity elicited during reappraisal of negative emotion. Eighteen healthy participants completed a functional magnetic resonance imaging task that involved attending to or reappraising negative stimuli, and provided emotion experience ratings after each trial. Dispositional mindfulness was assessed with a self-report questionnaire. Reappraisal induced activity in a brain network involving predominantly dorsal portions of the prefrontal cortex, replicating previous studies. A voxelwise regression analysis showed that individual differences in the tendency to be mindful predicted activity in neural regions underlying reappraisal, with dorsomedial prefrontal cortex activation increasing with more mindfulness traits. Notably, this prefrontal activation was inversely correlated with the amygdala response to negative scenes, further supporting its role in down-regulating emotion-generation regions. These findings suggest that individual differences in dispositional mindfulness, which reflect the tendency to recognize and regulate current states, may modulate activity in neural systems involved in the effective cognitive control of negative emotion. PMID:20147457

  13. School Involvement Leave: Providing Leave for Parental Involvement in School Activities. Policy Briefing Series. Issue 18

    ERIC Educational Resources Information Center

    Curlew, Mary; Weber, Julie

    2009-01-01

    One of the most important factors in school performance is parental involvement. However, many parents do not have the flexibility in their work schedules or the leave policies necessary to attend school functions. As a result, legislators are creating policies to address this issue. School involvement leave policies provide parents with…

  14. Bovine glycomacropeptide ameliorates experimental rat ileitis by mechanisms involving downregulation of interleukin 17

    PubMed Central

    Requena, P; Daddaoua, A; Martínez-Plata, E; González, M; Zarzuelo, A; Suárez, M D; Sánchez de Medina, F; Martínez-Augustin, O

    2008-01-01

    Background and purpose: Bovine glycomacropeptide (BGMP) is an inexpensive, non-toxic milk peptide with anti-inflammatory effects in rat experimental colitis but its mechanism of action is unclear. It is also unknown whether BGMP can ameliorate inflammation in proximal regions of the intestine. Our aim was therefore two-fold: first, to determine the anti-inflammatory activity of BGMP in the ileum; second, to characterise its mechanism of action. Experimental approach: We used a model of ileitis induced by trinitrobenzenesulphonic acid in rats. Rats were treated orally with BGMP and its efficacy compared with that of oral 5-aminosalicylic acid or vehicle, starting 2 days before ileitis induction. Key results: BGMP pretreatment (500 mg kg−1 day−1) resulted in marked reduction of inflammatory injury, as assessed by lower extension of necrosis and damage score, myeloperoxidase, alkaline phosphatase, inducible nitric oxide synthase, interleukin 1β, tumour necrosis factor and interleukin 17. These effects were generally comparable to those of 5-aminosalicylic acid (200 mg kg−1 day−1). Neither compound affected the production of interferon γ, tumour necrosis factor and interleukin 2 by mesenteric lymph node cells isolated from animals with ileitis. The expression of Foxp3 was increased in ileitis and not reduced significantly by BGMP or aminosalicylate treatment. Conclusions and implications: These results demonstrate that BGMP has anti-inflammatory activity in the ileum with similar efficacy to 5-aminosalicylic acid. The mechanism of action may involve Th17 and regulatory T cells and perhaps macrophages but probably not Th1 lymphocytes. Patients with Crohn's ileitis may benefit from treatment with BGMP. PMID:18536735

  15. Lysine 2,3-aminomutase. Support for a mechanism of hydrogen transfer involving S-adenosylmethionine.

    PubMed

    Baraniak, J; Moss, M L; Frey, P A

    1989-01-25

    The conversion of L-lysine to L-beta-lysine is catalyzed by lysine 2,3-aminomutase. The reaction involves the interchange of the 2-amino group of lysine with a hydrogen at carbon 3. As such the reaction is formally analogous to adenosylcobalamin-dependent rearrangements. However, the enzyme does not contain and is not activated by this coenzyme. Instead it contains iron and pyridoxal phosphate and is activated by S-adenosylmethionine. Earlier experiments implicated adenosyl-C-5' of S-adenosylmethionine in the hydrogen transfer mechanism, apparently in a role similar or analogous to that of adenosyl moiety of adenosylcobalamin in the B12-dependent rearrangements. The question of whether both hydrogens or only one hydrogen at adenosyl-C-5' participate in the hydrogen-transfer process has been addressed by carrying out the lysine 2,3-aminomutase reaction with S-[5'-3H] adenosylmethionine in the presence of 10 times its molar concentration of enzyme. Under these conditions all of the tritium appeared in lysine and beta-lysine, showing that C-5'-hydrogens participate. To determine whether hydrogen transfer is compulsorily intermolecular and intramolecular, various molar ratios of [3,3-2H2]lysine and unlabeled lysine were submitted to the action of lysine 2,3-aminomutase under conditions in which 10-15% conversion to beta-lysine occurred. Mass spectral analysis of the beta-lysine for monodeutero and dideutero species showed conclusively that hydrogen transfer is both intramolecular and intermolecular. The results quantitatively support our postulate that activation of the enzyme involves a transformation of S-adenosylmethionine into a form that promotes the generation of an adenosyl-5' free radical, which abstracts hydrogen from lysine to form 5'-deoxyadenosine as an intermediate.

  16. Chronic alcohol exposure inhibits biotin uptake by pancreatic acinar cells: possible involvement of epigenetic mechanisms.

    PubMed

    Srinivasan, Padmanabhan; Kapadia, Rubina; Biswas, Arundhati; Said, Hamid M

    2014-11-01

    Chronic exposure to alcohol affects different physiological aspects of pancreatic acinar cells (PAC), but its effect on the uptake process of biotin is not known. We addressed this issue using mouse-derived pancreatic acinar 266-6 cells chronically exposed to alcohol and wild-type and transgenic mice (carrying the human SLC5A6 5'-promoter) fed alcohol chronically. First we established that biotin uptake by PAC is Na(+) dependent and carrier mediated and involves sodium-dependent multivitamin transporter (SMVT). Chronic exposure of 266-6 cells to alcohol led to a significant inhibition in biotin uptake, expression of SMVT protein, and mRNA as well as in the activity of the SLC5A6 promoter. Similarly, chronic alcohol feeding of wild-type and transgenic mice carrying the SLC5A6 promoter led to a significant inhibition in biotin uptake by PAC, as well as in the expression of SMVT protein and mRNA and the activity of the SLC5A6 promoters expressed in the transgenic mice. We also found that chronic alcohol feeding of mice is associated with a significant increase in the methylation status of CpG islands predicted to be in the mouse Slc5a6 promoters and a decrease in the level of expression of transcription factor KLF-4, which plays an important role in regulating SLC5A6 promoter activity. These results demonstrate, for the first time, that chronic alcohol exposure negatively impacts biotin uptake in PAC and that this effect is exerted (at least in part) at the level of transcription of the SLC5A6 gene and may involve epigenetic/molecular mechanisms.

  17. Zuclopenthixol facilitates memory retrieval in rats: possible involvement of noradrenergic and serotonergic mechanisms.

    PubMed

    Khalifa, Amani E

    2003-07-01

    Although disturbed memory function often coexists with psychosis, the cognitive effects of antipsychotic medications with diverse pharmacodynamic properties are rarely investigated. The neurocognitive profile of zuclopenthixol, a thioxanthene dopaminergic antagonist and a conventional neuroleptic agent, has yet to be investigated despite the effect of the drug on a variety of neurotransmitter systems involved in mediation of learning and memory processes. In this study, the effect of zuclopenthixol was tested on memory retrieval 24 h after training using an inhibitory avoidance task in rats. Acute administration of zuclopenthixol (0.7 and 1.4 mg/kg i.p.) before retrieval testing increased step-through latency during the test session. The same doses of zuclopenthixol did not affect the ambulatory activity of rats in the openfield test and therefore the facilitatory effect of the drug on memory function could not be confounded with any motoric properties. This study also investigated the effect of zuclopenthixol on cortical and hippocampal monoaminergic neurotransmitters' levels together with acetylcholinesterase enzyme (AChE) activity, both of which are known to be important in control of cognitive function. Administration of zuclopenthixol (0.7 and 1.4 mg/kg i.p.) neither affected dopamine (DA) level nor AChE activity in rat cortex and hippocampus. On the other hand, the lower dose of zuclopenthixol elevated cortical norepinephrine (NE) level, while the higher dose elevated both cortical and hippocampal NE level together with hippocampal serotonin (5-HT) level. These results may suggest the involvement of adrenergic and serotonergic mechanisms in the facilitatory effect of zuclopenthixol on retrieval memory. Zuclopenthixol may therefore be a better alternative than other commonly used antipsychotic medications reported to impair cognitive function of schizophrenic patients.

  18. Mechanisms of Action Involved in Ozone Therapy: Is healing induced via a mild oxidative stress?

    PubMed Central

    2011-01-01

    The potential mechanisms of action of ozone therapy are reviewed in this paper. The therapeutic efficacy of ozone therapy may be partly due the controlled and moderate oxidative stress produced by the reactions of ozone with several biological components. The line between effectiveness and toxicity of ozone may be dependent on the strength of the oxidative stress. As with exercise, it is well known that moderate exercise is good for health, whereas excessive exercise is not. Severe oxidative stress activates nuclear transcriptional factor kappa B (NFκB), resulting in an inflammatory response and tissue injury via the production of COX2, PGE2, and cytokines. However, moderate oxidative stress activates another nuclear transcriptional factor, nuclear factor-erythroid 2-related factor 2 (Nrf2). Nrf2 then induces the transcription of antioxidant response elements (ARE). Transcription of ARE results in the production of numerous antioxidant enzymes, such as SOD, GPx, glutathione-s-transferase(GSTr), catalase (CAT), heme-oxygenase-1 (HO-1), NADPH-quinone-oxidoreductase (NQO-1), phase II enzymes of drug metabolism and heat shock proteins (HSP). Both free antioxidants and anti-oxidative enzymes not only protect cells from oxidation and inflammation but they may be able to reverse the chronic oxidative stress. Based on these observations, ozone therapy may also activate Nrf2 via moderate oxidative stress, and suppress NFκB and inflammatory responses. Furthermore, activation of Nrf2 results in protection against neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Mild immune responses are induced via other nuclear transcriptional factors, such as nuclear factor of activated T-cells (NFAT) and activated protein-1 (AP-1). Additionally, the effectiveness of ozone therapy in vascular diseases may also be explained by the activation of another nuclear transcriptional factor, hypoxia inducible factor-1α (HIF-1a), which is also induced via moderate

  19. Mechanisms of Action Involved in Ozone Therapy: Is healing induced via a mild oxidative stress?

    PubMed

    Sagai, Masaru; Bocci, Velio

    2011-12-20

    The potential mechanisms of action of ozone therapy are reviewed in this paper. The therapeutic efficacy of ozone therapy may be partly due the controlled and moderate oxidative stress produced by the reactions of ozone with several biological components. The line between effectiveness and toxicity of ozone may be dependent on the strength of the oxidative stress. As with exercise, it is well known that moderate exercise is good for health, whereas excessive exercise is not.Severe oxidative stress activates nuclear transcriptional factor kappa B (NFκB), resulting in an inflammatory response and tissue injury via the production of COX2, PGE2, and cytokines. However, moderate oxidative stress activates another nuclear transcriptional factor, nuclear factor-erythroid 2-related factor 2 (Nrf2). Nrf2 then induces the transcription of antioxidant response elements (ARE). Transcription of ARE results in the production of numerous antioxidant enzymes, such as SOD, GPx, glutathione-s-transferase(GSTr), catalase (CAT), heme-oxygenase-1 (HO-1), NADPH-quinone-oxidoreductase (NQO-1), phase II enzymes of drug metabolism and heat shock proteins (HSP). Both free antioxidants and anti-oxidative enzymes not only protect cells from oxidation and inflammation but they may be able to reverse the chronic oxidative stress. Based on these observations, ozone therapy may also activate Nrf2 via moderate oxidative stress, and suppress NFκB and inflammatory responses. Furthermore, activation of Nrf2 results in protection against neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Mild immune responses are induced via other nuclear transcriptional factors, such as nuclear factor of activated T-cells (NFAT) and activated protein-1 (AP-1).Additionally, the effectiveness of ozone therapy in vascular diseases may also be explained by the activation of another nuclear transcriptional factor, hypoxia inducible factor-1α (HIF-1a), which is also induced via moderate oxidative

  20. Peptide Bond Synthesis by a Mechanism Involving an Enzymatic Reaction and a Subsequent Chemical Reaction.

    PubMed

    Abe, Tomoko; Hashimoto, Yoshiteru; Zhuang, Ye; Ge, Yin; Kumano, Takuto; Kobayashi, Michihiko

    2016-01-22

    We recently reported that an amide bond is unexpectedly formed by an acyl-CoA synthetase (which catalyzes the formation of a carbon-sulfur bond) when a suitable acid and l-cysteine are used as substrates. DltA, which is homologous to the adenylation domain of nonribosomal peptide synthetase, belongs to the same superfamily of adenylate-forming enzymes, which includes many kinds of enzymes, including the acyl-CoA synthetases. Here, we demonstrate that DltA synthesizes not only N-(d-alanyl)-l-cysteine (a dipeptide) but also various oligopeptides. We propose that this enzyme catalyzes peptide synthesis by the following unprecedented mechanism: (i) the formation of S-acyl-l-cysteine as an intermediate via its "enzymatic activity" and (ii) subsequent "chemical" S → N acyl transfer in the intermediate, resulting in peptide formation. Step ii is identical to the corresponding reaction in native chemical ligation, a method of chemical peptide synthesis, whereas step i is not. To the best of our knowledge, our discovery of this peptide synthesis mechanism involving an enzymatic reaction and a subsequent chemical reaction is the first such one to be reported. This new process yields peptides without the use of a thioesterified fragment, which is required in native chemical ligation. Together with these findings, the same mechanism-dependent formation of N-acyl compounds by other members of the above-mentioned superfamily demonstrated that all members most likely form peptide/amide compounds by using this novel mechanism. Each member enzyme acts on a specific substrate; thus, not only the corresponding peptides but also new types of amide compounds can be formed.

  1. Hemolysis-induced lethality involves inflammasome activation by heme

    PubMed Central

    Dutra, Fabianno F.; Alves, Letícia S.; Rodrigues, Danielle; Fernandez, Patricia L.; de Oliveira, Rosane B.; Golenbock, Douglas T.; Zamboni, Dario S.; Bozza, Marcelo T.

    2014-01-01

    The increase of extracellular heme is a hallmark of hemolysis or extensive cell damage. Heme has prooxidant, cytotoxic, and inflammatory effects, playing a central role in the pathogenesis of malaria, sepsis, and sickle cell disease. However, the mechanisms by which heme is sensed by innate immune cells contributing to these diseases are not fully characterized. We found that heme, but not porphyrins without iron, activated LPS-primed macrophages promoting the processing of IL-1β dependent on nucleotide-binding domain and leucine rich repeat containing family, pyrin domain containing 3 (NLRP3). The activation of NLRP3 by heme required spleen tyrosine kinase, NADPH oxidase-2, mitochondrial reactive oxygen species, and K+ efflux, whereas it was independent of heme internalization, lysosomal damage, ATP release, the purinergic receptor P2X7, and cell death. Importantly, our results indicated the participation of macrophages, NLRP3 inflammasome components, and IL-1R in the lethality caused by sterile hemolysis. Thus, understanding the molecular pathways affected by heme in innate immune cells might prove useful to identify new therapeutic targets for diseases that have heme release. PMID:25225402

  2. Potential fluid mechanic pathways of platelet activation.

    PubMed

    Shadden, Shawn C; Hendabadi, Sahar

    2013-06-01

    Platelet activation is a precursor for blood clotting, which plays leading roles in many vascular complications and causes of death. Platelets can be activated by chemical or mechanical stimuli. Mechanically, platelet activation has been shown to be a function of elevated shear stress and exposure time. These contributions can be combined by considering the cumulative stress or strain on a platelet as it is transported. Here, we develop a framework for computing a hemodynamic-based activation potential that is derived from a Lagrangian integral of strain rate magnitude. We demonstrate that such a measure is generally maximized along, and near to, distinguished material surfaces in the flow. The connections between activation potential and these structures are illustrated through stenotic flow computations. We uncover two distinct structures that may explain observed thrombus formation at the apex and downstream of stenoses. More broadly, these findings suggest fundamental relationships may exist between potential fluid mechanic pathways for mechanical platelet activation and the mechanisms governing their transport.

  3. Salamander limb regeneration involves the activation of a multipotent skeletal muscle satellite cell population.

    PubMed

    Morrison, Jamie I; Lööf, Sara; He, Pingping; Simon, András

    2006-01-30

    In contrast to mammals, salamanders can regenerate complex structures after injury, including entire limbs. A central question is whether the generation of progenitor cells during limb regeneration and mammalian tissue repair occur via separate or overlapping mechanisms. Limb regeneration depends on the formation of a blastema, from which the new appendage develops. Dedifferentiation of stump tissues, such as skeletal muscle, precedes blastema formation, but it was not known whether dedifferentiation involves stem cell activation. We describe a multipotent Pax7+ satellite cell population located within the skeletal muscle of the salamander limb. We demonstrate that skeletal muscle dedifferentiation involves satellite cell activation and that these cells can contribute to new limb tissues. Activation of salamander satellite cells occurs in an analogous manner to how the mammalian myofiber mobilizes stem cells during skeletal muscle tissue repair. Thus, limb regeneration and mammalian tissue repair share common cellular and molecular programs. Our findings also identify satellite cells as potential targets in promoting mammalian blastema formation.

  4. Application of flexure structures to active and adaptive opto-mechanical mechanisms

    NASA Astrophysics Data System (ADS)

    Zago, Lorenzo; Genequand, Pierre M.; Kjelberg, Ivar; Morschel, Joseph

    1997-03-01

    Active and adaptive structures, also commonly called 'smart' structures, combine in one integrated system various functions such as load carrying and structural function, mechanical (cinematic) functions, sensing, control and actuating. Originally developed for high accuracy opto-mechanical applications, CSEM's technology of flexure structures and flexible mechanisms is particularly suited to solve many structural and mechanical issues found in such active/adaptive mechanisms. The paper illustrates some recent flexure structures developments at CSEM and outlines the comprehensive know-how involved in this technology. This comprises in particular the elaboration of optimal design guidelines, related to the geometry, kinematics and dynamics issues (for instance, the minimization of spurious high frequency effects), the evaluation and predictability of all performance quantities relevant to the utilization of flexure structures in space (reliability, fatigue, static and dynamic modeling, etc.). material issues and manufacturing procedures.

  5. Depletion of bovine pituitary prolactin by cysteamine involves a thiol:disulfide mechanism

    SciTech Connect

    Lorenson, M.Y.; Jacobs, L.S.

    1984-10-01

    Cysteamine (2-aminoethanethiol (CySH)) reduces measurable PRL concentrations in vivo and in vitro. Since secretion is also inhibited, CySH may block conversion from a poorly assayable hormone storage form(s) to readily assayable, releasable PRL. This would represent a previously unrecognized mechanism for secretory regulation. We undertook the present study to identify the sites involved in the loss of measurable PRL (depletion) induced by cysteamine. The disulfide cystamine was ineffective on secretory granules unless combined with reduced glutathione, indicating the generation of the active CySH-thiol form. Pretreatment of granules with thiol-blocking agents resulted in dose-dependent enhancement of CySH inhibition, achieving nearly complete inhibition with 5 mM iodoacetamide. In contrast, pretreatment with reduced glutathione or dithiothreitol, respectively, impaired or abolished the CySH effect. These data suggest that the mechanism by which CySH causes PRL depletion is mediated by granule disulfides and the -SH of CySH. The regulation of thiol:disulfide equilibria appears to be an important determinant of the detectability of PRL storage forms and of their secretion.

  6. A quantized mechanism for activation of pannexin channels

    PubMed Central

    Chiu, Yu-Hsin; Jin, Xueyao; Medina, Christopher B.; Leonhardt, Susan A.; Kiessling, Volker; Bennett, Brad C.; Shu, Shaofang; Tamm, Lukas K.; Yeager, Mark; Ravichandran, Kodi S.; Bayliss, Douglas A.

    2017-01-01

    Pannexin 1 (PANX1) subunits form oligomeric plasma membrane channels that mediate nucleotide release for purinergic signalling, which is involved in diverse physiological processes such as apoptosis, inflammation, blood pressure regulation, and cancer progression and metastasis. Here we explore the mechanistic basis for PANX1 activation by using wild type and engineered concatemeric channels. We find that PANX1 activation involves sequential stepwise sojourns through multiple discrete open states, each with unique channel gating and conductance properties that reflect contributions of the individual subunits of the hexamer. Progressive PANX1 channel opening is directly linked to permeation of ions and large molecules (ATP and fluorescent dyes) and occurs during both irreversible (caspase cleavage-mediated) and reversible (α1 adrenoceptor-mediated) forms of channel activation. This unique, quantized activation process enables fine tuning of PANX1 channel activity and may be a generalized regulatory mechanism for other related multimeric channels. PMID:28134257

  7. Evaluation of Analgesic Activity of Papaver libanoticum Extract in Mice: Involvement of Opioids Receptors.

    PubMed

    Hijazi, Mohamad Ali; El-Mallah, Ahmed; Aboul-Ela, Maha; Ellakany, Abdalla

    2017-01-01

    Papaver libanoticum is an endemic plant to Lebanese region (family Papaveraceae) that has not been investigated before. The present study aimed to explore the analgesic activity of dried ethanolic extract of Papaver libanoticum (PLE) using tail flick, hot plate, and acetic acid induced writhing models in mice. The involvement of opioid receptors in the analgesic mechanism was investigated using naloxone antagonism. Results demonstrated that PLE exhibited a potent dose dependent analgesic activity in all tested models for analgesia. The analgesic effect involved activation of opioid receptors in the central nervous system, where both spinal and supraspinal components might be involved. The time course for analgesia revealed maximum activity after three hours in both tail flick and hot plate methods, which was prolonged to 24 hours. Metabolites of PLE could be responsible for activation of opioid receptors. The EC50 of PLE was 79 and 50 mg/kg in tail flick and hot plate tests, respectively. The total coverage of analgesia by PLE was double that of morphine in both tests. In conclusion, PLE proved to have opioid agonistic activity with a novel feature of slow and prolonged effect. The present study could add a potential tool in the armaments of opioid drugs as a natural potent analgesic and for treatment of opioid withdrawal syndrome.

  8. Evaluation of Analgesic Activity of Papaver libanoticum Extract in Mice: Involvement of Opioids Receptors

    PubMed Central

    El-Mallah, Ahmed; Aboul-Ela, Maha; Ellakany, Abdalla

    2017-01-01

    Papaver libanoticum is an endemic plant to Lebanese region (family Papaveraceae) that has not been investigated before. The present study aimed to explore the analgesic activity of dried ethanolic extract of Papaver libanoticum (PLE) using tail flick, hot plate, and acetic acid induced writhing models in mice. The involvement of opioid receptors in the analgesic mechanism was investigated using naloxone antagonism. Results demonstrated that PLE exhibited a potent dose dependent analgesic activity in all tested models for analgesia. The analgesic effect involved activation of opioid receptors in the central nervous system, where both spinal and supraspinal components might be involved. The time course for analgesia revealed maximum activity after three hours in both tail flick and hot plate methods, which was prolonged to 24 hours. Metabolites of PLE could be responsible for activation of opioid receptors. The EC50 of PLE was 79 and 50 mg/kg in tail flick and hot plate tests, respectively. The total coverage of analgesia by PLE was double that of morphine in both tests. In conclusion, PLE proved to have opioid agonistic activity with a novel feature of slow and prolonged effect. The present study could add a potential tool in the armaments of opioid drugs as a natural potent analgesic and for treatment of opioid withdrawal syndrome. PMID:28280516

  9. Head Start Parent Involvement Activities: Measuring the Effect of School Based Parent Involvement Activities on Parent Efficacy in Early Childhood Learning

    ERIC Educational Resources Information Center

    Quadri, Khadijat O.

    2012-01-01

    Purpose: The purpose of this position paper was to examine the impact of school based parent involvement activities on parent efficacy. Methodology: The paper explores research studies into school based activities on long term parent efficacy. Conclusions: Most schools are involving parents in school-based activities in a variety of ways but the…

  10. Microalloying of transition metal silicides by mechanical activation and field-activated reaction

    DOEpatents

    Munir, Zuhair A.; Woolman, Joseph N.; Petrovic, John J.

    2003-09-02

    Alloys of transition metal suicides that contain one or more alloying elements are fabricated by a two-stage process involving mechanical activation as the first stage and densification and field-activated reaction as the second stage. Mechanical activation, preferably performed by high-energy planetary milling, results in the incorporation of atoms of the alloying element(s) into the crystal lattice of the transition metal, while the densification and field-activated reaction, preferably performed by spark plasma sintering, result in the formation of the alloyed transition metal silicide. Among the many advantages of the process are its ability to accommodate materials that are incompatible in other alloying methods.

  11. Noradrenergic mechanism involved in the nociceptive modulation of hippocampal CA3 region of normal rats.

    PubMed

    Jin, Hua; Teng, Yueqiu; Zhang, Xuexin; Yang, Chunxiao; Xu, Manying; Yang, Lizhuang

    2014-06-27

    Norepinephrine (NE) is an important neurotransmitter in the brain, and regulates antinociception. However, the mechanism of action of NE on pain-related neurons in the hippocampal CA3 region is not clear. This study examines the effects of NE, phentolamine on the electrical activities of pain-excited neurons (PENs) and pain-inhibited neurons (PINs) in the hippocampal CA3 region of rats. Trains of electric impulses applied to the right sciatic nerve were used as noxious stimulation. The electrical activities of PENs or PINs in the hippocampal CA3 region were recorded by using a glass microelectrode. Our results revealed that, in the hippocampal CA3 region, the intra-CA3 region microinjection of NE decreased the pain-evoked discharged frequency and prolonged the discharged latency of PEN, and increased the pain-evoked discharged frequency and shortened discharged inhibitory duration (ID) of PIN, exhibiting the specific analgesic effect of NE. While intra-CA3 region microinjection of phentolamine produced the opposite response. It implies that phentolamine can block the effect of endogenous NE to cause the enhanced response of PEN and PIN to noxious stimulation. On the basis of above findings we can deduce that NE, phentolamine and alpha-adrenoceptor are involved in the modulation of nociceptive information transmission in the hippocampal CA3 region.

  12. Evidence for the involvement of central serotonin in mechanism of domestication of silver foxes.

    PubMed

    Popova, N K; Voitenko, N N; Kulikov, A V; Avgustinovich, D F

    1991-12-01

    Silver foxes selected for more than 30 years for tame behavior and displaying no defensive reaction to human contact were shown to have a higher serotonin level in midbrain and hypothalamus, and a higher 5-hydroxyindole acetic acid (5-HIAA) content in midbrain, hypothalamus and hippocampus in comparison to nonselected wild silver foxes bred in captivity over the same time span. Tryptophan hydroxylase (TPH) activity in midbrain and hypothalamus in domesticated foxes was increased as compared with their aggressive/defensive counterparts. Monoamine oxidase type A (MAO A) activity was was decreased with an increased Km and unchanged Vmax in domesticated foxes. No changes in specific [3H]ketanserin or [3H]8-OH-DPAT binding in frontal cortex was revealed. A reduced density (Bmax) of 5HT1A receptors in hypothalamic membranes in domesticated foxes was shown. It is suggested that the brain serotonergic system is involved in the mechanism of domestication converting wild aggressive/defensive animals into tame ones.

  13. Consumer involvement in research projects: the activities of research funders.

    PubMed

    O'Donnell, Máire; Entwistle, Vikki

    2004-08-01

    This paper reports findings from a postal questionnaire survey and in-depth interviews with UK funders of health-related research that explored whether, why and how they promote consumer involvement in research projects. Many UK funders of health-related research are adopting a policy of promoting consumer involvement in research projects. Telephone interviews revealed they have several reasons for doing so, and that they vary in the ways they encourage and support researchers to involve consumers. For some, descriptions of consumer involvement in a research proposal are important for project funding decisions. They recognized a need for flexibility when assessing consumer involvement in different contexts. We suggest that funders should continue to work to clarify what they consider to be the parameters of acceptability in terms of consumer involvement and ensure that 'flexible' criteria are fairly applied. Researchers should be aware of particular funders' views when applying for project funding.

  14. Ghrelin prevents tumour- and cisplatin-induced muscle wasting: characterization of multiple mechanisms involved

    PubMed Central

    Chen, Ji-an; Splenser, Andres; Guillory, Bobby; Luo, Jiaohua; Mendiratta, Meenal; Belinova, Blaga; Halder, Tripti; Zhang, Guohua; Li, Yi-Ping; Garcia, Jose M

    2015-01-01

    Background Cachexia and muscle atrophy are common consequences of cancer and chemotherapy administration. The novel hormone ghrelin has been proposed as a treatment for this condition. Increases in food intake and direct effects on muscle proteolysis and protein synthesis are likely to mediate these effects, but the pathways leading to these events are not well understood. Methods We characterized molecular pathways involved in muscle atrophy induced by Lewis lung carcinoma (LLC) tumour implantation in c57/bl6 adult male mice and by administration of the chemotherapeutic agent cisplatin in mice and in C2C12 myotubes. The effects of exogenous ghrelin administration and its mechanisms of action were examined in these settings. Results Tumour implantation and cisplatin induced muscle atrophy by activating pro-inflammatory cytokines, p38-C/EBP-β, and myostatin, and by down-regulating Akt, myoD, and myogenin, leading to activation of ubiquitin-proteasome-mediated proteolysis and muscle weakness. Tumour implantation also increased mortality. In vitro, cisplatin up-regulated myostatin and atrogin-1 by activating C/EBP-β and FoxO1/3. Ghrelin prevented these changes in vivo and in vitro, significantly increasing muscle mass (P < 0.05 for LLC and P < 0.01 for cisplatin models) and grip strength (P = 0.038 for LLC and P = 0.001 for cisplatin models) and improving survival (P = 0.021 for LLC model). Conclusion Ghrelin prevents muscle atrophy by down-regulating inflammation, p38/C/EBP-β/myostatin, and activating Akt, myogenin, and myoD. These changes appear, at least in part, to target muscle cells directly. Ghrelin administration in this setting is associated with improved muscle strength and survival. PMID:26136189

  15. Mechanism(s) involved in opioid drug abuse modulation of HAND.

    PubMed

    Dutta, Raini; Roy, Sabita

    2012-07-01

    Drug abuse and HIV infection are interlinked. From the onset of the HIV/AIDS epidemic, the impact of illicit drug use on HIV disease progression has been a focus of many investigations. Both laboratory-based and epidemiological studies strongly indicate that drug abuse may exacerbate HIV disease progression and increase mortality and morbidity in these patients. Increase susceptibility to opportunistic infection has been implicated as one of the major causes for this detriment. Furthermore, opioids are known to elicit prevalence of neurodegenerative disorders in HIV-infected patients. Numerous authors have delineated various molecular as well as cellular mechanisms associated with neurological complications in these patients. This review gives an overview of these findings. Understanding the mechanisms will allow for the development of targeted therapies aimed at reducing the progression of neurocognitive decline in the drug abusing HIV infected individuals.

  16. Multiple mechanisms involved in the large-spectrum therapeutic potential of cannabidiol in psychiatric disorders.

    PubMed

    Campos, Alline Cristina; Moreira, Fabricio Araújo; Gomes, Felipe Villela; Del Bel, Elaine Aparecida; Guimarães, Francisco Silveira

    2012-12-05

    Cannabidiol (CBD) is a major phytocannabinoid present in the Cannabis sativa plant. It lacks the psychotomimetic and other psychotropic effects that the main plant compound Δ(9)-tetrahydrocannabinol (THC) being able, on the contrary, to antagonize these effects. This property, together with its safety profile, was an initial stimulus for the investigation of CBD pharmacological properties. It is now clear that CBD has therapeutic potential over a wide range of non-psychiatric and psychiatric disorders such as anxiety, depression and psychosis. Although the pharmacological effects of CBD in different biological systems have been extensively investigated by in vitro studies, the mechanisms responsible for its therapeutic potential are still not clear. Here, we review recent in vivo studies indicating that these mechanisms are not unitary but rather depend on the behavioural response being measured. Acute anxiolytic and antidepressant-like effects seem to rely mainly on facilitation of 5-HT1A-mediated neurotransmission in key brain areas related to defensive responses, including the dorsal periaqueductal grey, bed nucleus of the stria terminalis and medial prefrontal cortex. Other effects, such as anti-compulsive, increased extinction and impaired reconsolidation of aversive memories, and facilitation of adult hippocampal neurogenesis could depend on potentiation of anandamide-mediated neurotransmission. Finally, activation of TRPV1 channels may help us to explain the antipsychotic effect and the bell-shaped dose-response curves commonly observed with CBD. Considering its safety profile and wide range of therapeutic potential, however, further studies are needed to investigate the involvement of other possible mechanisms (e.g. inhibition of adenosine uptake, inverse agonism at CB2 receptor, CB1 receptor antagonism, GPR55 antagonism, PPARγ receptors agonism, intracellular (Ca(2+)) increase, etc.), on CBD behavioural effects.

  17. Involvement of metabolites in early defense mechanism of oil palm (Elaeis guineensis Jacq.) against Ganoderma disease.

    PubMed

    Nusaibah, S A; Siti Nor Akmar, A; Idris, A S; Sariah, M; Mohamad Pauzi, Z

    2016-12-01

    Understanding the mechanism of interaction between the oil palm and its key pathogen, Ganoderma spp. is crucial as the disease caused by this fungal pathogen leads to a major loss of revenue in leading palm oil producing countries in Southeast Asia. Here in this study, we assess the morphological and biochemical changes in Ganoderma disease infected oil palm seedling roots in both resistant and susceptible progenies. Rubber woodblocks fully colonized by G. boninense were applied as a source of inoculum to artificially infect the roots of resistant and susceptible oil palm progenies. Gas chromatography-mass spectrometry was used to measure an array of plant metabolites in 100 resistant and susceptible oil palm seedling roots treated with pathogenic Ganoderma boninense fungus. Statistical effects, univariate and multivariate analyses were used to identify key-Ganoderma disease associated metabolic agitations in both resistant and susceptible oil palm root tissues. Ganoderma disease related defense shifts were characterized based on (i) increased antifungal activity in crude extracts, (ii) increased lipid levels, beta- and gamma-sitosterol particularly in the resistant progeny, (iii) detection of heterocyclic aromatic organic compounds, benzo [h] quinoline, pyridine, pyrimidine (iv) elevation in antioxidants, alpha- and beta-tocopherol (iv) degraded cortical cell wall layers, possibly resulting from fungal hydrolytic enzyme activity needed for initial penetration. The present study suggested that plant metabolites mainly lipids and heterocyclic aromatic organic metabolites could be potentially involved in early oil palm defense mechanism against G. boninense infection, which may also highlight biomarkers for disease detection, treatment, development of resistant variety and monitoring.

  18. [Activation and inhibitory mechanisms of blood platelets].

    PubMed

    Suzuki-Inoue, Katsue

    2014-07-01

    Exposure of platelets to subendothelial matrices initiates physiological hemostasis and pathological thrombosis. Under high shear stress, von Willebrand factor bridges newly exposed collagen to glycoprotein (GP) Ib on platelets. This initial tethering facilitates association between the collagen receptor GPVI and collagen, which generates tyrosine kinase-dependent activation signals, followed by release of secondary mediators and integrin activation. Activated integrin can bind to their ligands including fibrinogen. The released secondary mediators, ADP and thromboxane A2, activate integrin of flowing platelets, which enables formation of platelet thrombi by binding of activated flowing platelets and adhered platelets to collagen via binding between activated aIIbbeta3 integrin and fibrinogen. Platelets also have inhibitory mechanisms, which help to prevent unwanted platelet activation in vivo.

  19. Spontaneous mechanical activity in depolarized frog ventricle

    PubMed Central

    1976-01-01

    Spontaneous mechanical activity can be produced in depolarized frog ventricle by bathing the tissue in a solution with low Na, Iow Ca, and high K+. The contractions can be inhibited by depleting the tissue of Ca first, but they are relatively insensitive to changes in either extracellular [Ca++] or [Ca++]/[Na+]2. They are terminated very rapidly by raising [Na+] to 40 mM. Local anesthetics enhance the spontaneous activity in proportion to the concentration of their free base form. These contractions occur relatively rhythmically for several hours. Since the preparation is multicellular, this suggests a mechanism for intercellular communication without change in membrane potential. PMID:822122

  20. Molecular Mechanisms Mediating Involvement of Glial Cells in Brain Plastic Remodeling in Epilepsy.

    PubMed

    Khaspekov, L G; Frumkina, L E

    2017-03-01

    In this review we summarize published data on the involvement of glial cells in molecular mechanisms underlying brain plastic reorganization in epilepsy. The role of astrocytes as glial elements in pathological plasticity in epilepsy is discussed. Data on the involvement of aquaporin-4 in epileptogenic plastic changes and on participation of microglia and extracellular matrix in dysregulation of synaptic transmission and plastic remodeling in epileptic brain tissue are reviewed.

  1. [THE ROLE OF MATERNAL DIET IN METABOLIC AND BEHAVIOURAL PROGRAMMING: REVIEW OF BIOLOGIC MECHANISMS INVOLVED].

    PubMed

    Ramírez-López, María Teresa; Vázquez Berrios, Mariam; Arco González, Rocío; Blanco Velilla, Rosario Noemí; Decara Del Olmo, Juan; Suárez Pérez, Juan; Rodríguez de Fonseca, Fernando; Gómez de Heras, Raquel

    2015-12-01

    Over the last few years, a considerable amount of studies have focused on the effect of undernutrition and overnutrition during critical periods of offspring development and their risk of developing metabolic diseases later in life. Additionally, inadequate maternal diets have been involved in the malprogramming of brain functions and some behaviours. Several mechanisms have been associated with the process of malprogramming such as epigenetics modifications, excessive oxidative stress or hypothalamic alterations. This evidence supports the idea that nutritional prevention strategies must be considered for offspring during early development stages that include the preconceptional period. Additionally, studying involved mechanisms could be particularly useful in the search of efficient therapies against malprogramming.

  2. Achyranthes aspera Attenuates epilepsy in experimental animals: possible involvement of GABAergic mechanism.

    PubMed

    Viswanatha, Gollapalle Lakshminarayanashastry; Venkataranganna, Marikunte V; Prasad, Nunna Bheema Lingeswara; Godavarthi, Ashok

    2017-03-06

    The present study was aimed to examine the possible anticonvulsant property of aerial parts of Achyranthes aspera using various experimental models of epilepsy in mice. Petroleum ether extract of aerial parts of A. aspera (PeAA), methanolic eAA (MeAA) and aqueous eAA (AeAA) was initially evaluated against six-hertz seizure model in mice, based on the outcomes the effective extract was further evaluated against maximal electroshock (MES) and pentylenetetrazole (PTZ) models in mice. In addition, the potent extract was evaluated against the PTZ model by co-administering with flumazenil (FMZ), and also evaluated for its effect on GABA levels in brain and NMDA-induced lethality in mice. Furthermore, the probable locomotor deficit-inducing property of the extract was evaluated by actophotometer test in mice. In results, only MeAA showed protection against six-hertz-induced seizures in mice, based on these outcomes only MeAA was evaluated in MES and PTZ models. Notably, the MeAA (200, 400 and 800 mg/kg) has offered mild and dose dependent protection against MES and PTZ-induced seizures in mice. Alongside, the MeAA (400 mg/kg) showed a significant increase in GABA levels in the brain compared to control, and in line with these findings the anti-PTZ effect of MeAA (400 mg/kg, p.o.) was blocked when co-administered with flumazenil (5 mg/kg, i.p.). However, the MeAA has not shown significant protection against NMDA-induced mortality and also did not cause significant change in locomotor activity compared to before treatment. These findings suggest that MeAA possess mild anticonvulsant activity and the outcomes further confirmed the involvement of GABAergic mechanism behind the anticonvulsant activity of MeAA.

  3. Mechanisms involved in the transport of mercuric ions in target tissues.

    PubMed

    Bridges, Christy C; Zalups, Rudolfs K

    2017-01-01

    Mercury exists in the environment in various forms, all of which pose a risk to human health. Despite guidelines regulating the industrial release of mercury into the environment, humans continue to be exposed regularly to various forms of this metal via inhalation or ingestion. Following exposure, mercuric ions are taken up by and accumulate in numerous organs, including brain, intestine, kidney, liver, and placenta. In order to understand the toxicological effects of exposure to mercury, a thorough understanding of the mechanisms that facilitate entry of mercuric ions into target cells must first be obtained. A number of mechanisms for the transport of mercuric ions into target cells and organs have been proposed in recent years. However, the ability of these mechanisms to transport mercuric ions and the regulatory features of these carriers have not been characterized completely. The purpose of this review is to summarize the current findings related to the mechanisms that may be involved in the transport of inorganic and organic forms of mercury in target tissues and organs. This review will describe mechanisms known to be involved in the transport of mercury and will also propose additional mechanisms that may potentially be involved in the transport of mercuric ions into target cells.

  4. Organized Activity Involvement among Rural Youth: Gender Differences in Associations between Activity Type and Developmental Outcomes

    ERIC Educational Resources Information Center

    Ferris, Kaitlyn A.; Oosterhoff, Benjamin; Metzger, Aaron

    2013-01-01

    The current study examined associations between organized activity involvement, academic achievement, and problem behavior in a sample of youth from a non-agricultural based rural community (M[subscript age] = 15.26, Age range = 11-19 years, N = 456). Analyses examined whether associations varied as a function of adolescent gender and age.…

  5. Molecular mechanisms regulating NLRP3 inflammasome activation

    PubMed Central

    Jo, Eun-Kyeong; Kim, Jin Kyung; Shin, Dong-Min; Sasakawa, Chihiro

    2016-01-01

    Inflammasomes are multi-protein signaling complexes that trigger the activation of inflammatory caspases and the maturation of interleukin-1β. Among various inflammasome complexes, the NLRP3 inflammasome is best characterized and has been linked with various human autoinflammatory and autoimmune diseases. Thus, the NLRP3 inflammasome may be a promising target for anti-inflammatory therapies. In this review, we summarize the current understanding of the mechanisms by which the NLRP3 inflammasome is activated in the cytosol. We also describe the binding partners of NLRP3 inflammasome complexes activating or inhibiting the inflammasome assembly. Our knowledge of the mechanisms regulating NLRP3 inflammasome signaling and how these influence inflammatory responses offers further insight into potential therapeutic strategies to treat inflammatory diseases associated with dysregulation of the NLRP3 inflammasome. PMID:26549800

  6. Strict control of auricin production in Streptomyces aureofaciens CCM 3239 involves a feedback mechanism.

    PubMed

    Kutas, Peter; Feckova, Lubomira; Rehakova, Alena; Novakova, Renata; Homerova, Dagmar; Mingyar, Erik; Rezuchova, Bronislava; Sevcikova, Beatrica; Kormanec, Jan

    2013-03-01

    The polyketide gene cluster aur1 is responsible for the production of the angucycline antibiotic auricin in Streptomyces aureofaciens CCM 3239. Auricin production is regulated in a complex manner involving several regulators, including a key pathway-specific positive regulator Aur1P that belongs to the family of 'atypical' response regulators. Production of auricin is induced after entry into stationary phase. However, auricin was produced in only a short time interval of several hours. We found that the decrease of auricin production was due to a strict regulation of auricin biosynthetic genes at the transcriptional level by a feedback mechanism; auricin and/or its intermediate(s) inhibited binding of Aur1P to its cognate biosynthetic promoter aur1Ap and consequently stopped its activation. In addition, we also determined that synthesised auricin is unstable during growth of S. aureofaciens CCM3239 in the production medium even though purified auricin is stable for days in various organic solvents. The critical parameter affecting its stability was pH. Auricin is stable at acid pH and unstable at neutral and alkaline pH. The drop in auricin concentration was due to an increase of pH shortly after induction of auricin production during cultivation of S. aureofaciens CCM3239.

  7. Molecular mechanisms involved in the pathogenesis of alphavirus-induced arthritis.

    PubMed

    Assunção-Miranda, Iranaia; Cruz-Oliveira, Christine; Da Poian, Andrea T

    2013-01-01

    Arthritogenic alphaviruses, including Ross River virus (RRV), Chikungunya virus (CHIKV), Sindbis virus (SINV), Mayaro virus (MAYV), O'nyong-nyong virus (ONNV), and Barmah Forest virus (BFV), cause incapacitating and long lasting articular disease/myalgia. Outbreaks of viral arthritis and the global distribution of these diseases point to the emergence of arthritogenic alphaviruses as an important public health problem. This review discusses the molecular mechanisms involved in alphavirus-induced arthritis, exploring the recent data obtained with in vitro systems and in vivo studies using animal models and samples from patients. The factors associated to the extension and persistence of symptoms are highlighted, focusing on (a) virus replication in target cells, and tissues, including macrophages and muscle cells; (b) the inflammatory and immune responses with recruitment and activation of macrophage, NK cells and T lymphocytes to the lesion focus and the increase of inflammatory mediators levels; and (c) the persistence of virus or viral products in joint and muscle tissues. We also discuss the importance of the establishment of novel animal models to test new molecular targets and to develop more efficient and selective drugs to treat these diseases.

  8. Semiquinone Intermediates are involved in the Energy Coupling Mechanism of E. coli Complex I

    PubMed Central

    Narayanan, Madhavan; Leung, Steven A.; Inaba, Yuta; Elguindy, Mahmoud M.; Nakamaru-Ogiso, Eiko

    2015-01-01

    Complex I (NADH:quinone oxidoreductase) is central to cellular aerobic energy metabolism, and its deficiency is involved in many human mitochondrial diseases. Complex I translocates protons across the membrane using electron transfer energy. Semiquinone (SQ) intermediates appearing during catalysis are suggested to be key for the coupling mechanism in complex I. However, the existence of SQ has remained controversial due to the extreme difficulty in detecting unstable and low intensity SQ signals. Here, for the first time with E. coli complex I reconstituted in proteoliposomes, we successfully resolved and characterized three distinct SQ species by EPR. These species include: fast-relaxing SQ (SQNf) with P1/2 (half-saturation power level) > 50 mW and a wider linewidth (12.8 G); slow-relaxing SQ (SQNs) with P1/2 = 2–3 mW and a 10 G linewidth; and very slow-relaxing SQ (SQNvs) with P1/2 = ~ 0.1 mW and a 7.5 G linewidth. The SQNf signals completely disappeared in the presence of the uncoupler gramicidin D or squamotacin, a potent E. coli complex I inhibitor. The pH dependency of the SQNf signals correlated with the proton-pumping activities of complex I. The SQNs signals were insensitive to gramicidin D, but sensitive to squamotacin. The SQNvs signals were insensitive to both gramicidin D and squamotacin. Our deuterium exchange experiments suggested that SQNf is neutral, while SQNs and SQNvs are anion radicals. The SQNs signals were lost in the ΔNuoL mutant missing transporter module subunits NuoL and NuoM. The roles and relationships of the SQ intermediates in the coupling mechanism are discussed. PMID:25868873

  9. Neural Correlates of Successful and Unsuccessful Strategical Mechanisms Involved in Uncertain Decision-Making.

    PubMed

    Giustiniani, Julie; Gabriel, Damien; Nicolier, Magali; Monnin, Julie; Haffen, Emmanuel

    2015-01-01

    The ability to develop successful long-term strategies in uncertain situations relies on complex neural mechanisms. Although lesion studies have shown some of the mechanisms involved, it is still unknown why some healthy subjects are able to make the right decision whereas others are not. The aim of our study was to investigate neurophysiological differences underlying this ability to develop a successful strategy in a group of healthy subjects playing a monetary card game called the Iowa Gambling Task (IGT). In this task, subjects have to win and earn money by choosing between four decks of cards, two were advantageous in the long term and two disadvantageous. Twenty healthy right-handed subjects performed the IGT while their cerebral activity was recorded by electroencephalography. Based on their behavioral performances, two groups of subjects could clearly be distinguished: one who selected the good decks and thus succeeded in developing a Favorable strategy (9 subjects) and one who remained Undecided (11 subjects). No neural difference was found between each group before the selection of a deck, but in both groups a greater negativity was found emerging from the right superior frontal gyrus 600 ms before a disadvantageous selection. During the processing of the feedback, an attenuation of the P200 and P300 waveforms was found for the Undecided group, and a P300 originating from the medial frontal gyrus was found in response to a loss only in the Favorable group. Our results suggest that undecided subjects are hyposensitive to the valence of the cards during gambling, which affects the feedback processing.

  10. Targeting GLI by GANT61 involves mechanisms dependent on inhibition of both transcription and DNA licensing

    PubMed Central

    Zhang, Ruowen; Wu, Jiahui; Ferrandon, Sylvain; Glowacki, Katie J.; Houghton, Janet A.

    2016-01-01

    The GLI genes are transcription factors and in cancers are oncogenes, aberrantly and constitutively activated. GANT61, a specific GLI inhibitor, has induced extensive cytotoxicity in human models of colon cancer. The FOXM1 promoter was determined to be a transcriptional target of GLI1. In HT29 cells, inhibition of GLI1 binding at the GLI consensus sequence by GANT61 led to inhibited binding of Pol II, the pause-release factors DSIF, NELF and p-TEFb. The formation of R-loops (RNA:DNA hybrids, ssDNA), were reduced by GANT61 at the FOXM1 promoter. Pretreatment of HT29 cells with α-amanitin reduced GANT61-induced γH2AX foci. Co-localization of GLI1 and BrdU foci, inhibited by GANT61, indicated GLI1 and DNA replication to be linked. By co-immunoprecipitation and confocal microscopy, GLI1 co-localized with the DNA licensing factors ORC4, CDT1, and MCM2. Significant co-localization of GLI1 and ORC4 was inhibited by GANT61, and enrichment of ORC4 occurred at the GLI binding site in the FOXM1 promoter. CDT1 was found to be a transcription target of GLI1. Overexpression of CDT1 in HT29 and SW480 cells reduced GANT61-induced cell death, gH2AX foci, and cleavage of caspase-3. Data demonstrate involvement of transcription and of DNA replication licensing factors by non-transcriptional and transcriptional mechanisms in the GLI-dependent mechanism of action of GANT61. PMID:27863397

  11. Neural Correlates of Successful and Unsuccessful Strategical Mechanisms Involved in Uncertain Decision-Making

    PubMed Central

    Giustiniani, Julie; Gabriel, Damien; Nicolier, Magali; Monnin, Julie; Haffen, Emmanuel

    2015-01-01

    The ability to develop successful long-term strategies in uncertain situations relies on complex neural mechanisms. Although lesion studies have shown some of the mechanisms involved, it is still unknown why some healthy subjects are able to make the right decision whereas others are not. The aim of our study was to investigate neurophysiological differences underlying this ability to develop a successful strategy in a group of healthy subjects playing a monetary card game called the Iowa Gambling Task (IGT). In this task, subjects have to win and earn money by choosing between four decks of cards, two were advantageous in the long term and two disadvantageous. Twenty healthy right-handed subjects performed the IGT while their cerebral activity was recorded by electroencephalography. Based on their behavioral performances, two groups of subjects could clearly be distinguished: one who selected the good decks and thus succeeded in developing a Favorable strategy (9 subjects) and one who remained Undecided (11 subjects). No neural difference was found between each group before the selection of a deck, but in both groups a greater negativity was found emerging from the right superior frontal gyrus 600 ms before a disadvantageous selection. During the processing of the feedback, an attenuation of the P200 and P300 waveforms was found for the Undecided group, and a P300 originating from the medial frontal gyrus was found in response to a loss only in the Favorable group. Our results suggest that undecided subjects are hyposensitive to the valence of the cards during gambling, which affects the feedback processing. PMID:26086196

  12. Multiple mechanisms involved in diabetes protection by lipopolysaccharide in non-obese diabetic mice

    SciTech Connect

    Wang, Jun; Cao, Hui; Wang, Hongjie; Yin, Guoxiao; Du, Jiao; Xia, Fei; Lu, Jingli; Xiang, Ming

    2015-06-15

    Toll-like receptor 4 (TLR4) activation has been proposed to be important for islet cell inflammation and eventually β cell loss in the course of type 1 diabetes (T1D) development. However, according to the “hygiene hypothesis”, bacterial endotoxin lipopolysaccharide (LPS), an agonist on TLR4, inhibits T1D progression. Here we investigated possible mechanisms for the protective effect of LPS on T1D development in non-obese diabetic (NOD) mice. We found that LPS administration to NOD mice during the prediabetic state neither prevented nor reversed insulitis, but delayed the onset and decreased the incidence of diabetes, and that a multiple-injection protocol is more effective than a single LPS intervention. Further, LPS administration suppressed spleen T lymphocyte proliferation, increased the generation of CD4{sup +}CD25{sup +}Foxp3{sup +} regulatory T cells (Tregs), reduced the synthesis of strong Th1 proinflammatory cytokines, and downregulated TLR4 and its downstream MyD88-dependent signaling pathway. Most importantly, multiple injections of LPS induced a potential tolerogenic dendritic cell (DC) subset with low TLR4 expression without influencing the DC phenotype. Explanting DCs from repeated LPS-treated NOD mice into NOD/SCID diabetic mice conferred sustained protective effects against the progression of diabetes in the recipients. Overall, these results suggest that multiple mechanisms are involved in the protective effects of LPS against the development of diabetes in NOD diabetic mice. These include Treg induction, down-regulation of TLR4 and its downstream MyD88-dependent signaling pathway, and the emergence of a potential tolerogenic DC subset. - Highlights: • Administration of lipopolysaccharide (LPS) prevented type 1 diabetes in NOD mice. • Downregulating TLR4 level and MyD88-dependent pathway contributed to protection of LPS. • LPS administration also hampered DC maturation and promoted Treg differentiation.

  13. The central anorexigenic mechanism of adrenocorticotropic hormone involves the caudal hypothalamus in chicks.

    PubMed

    Shipp, Steven L; Yi, Jiaqing; Dridi, Sami; Gilbert, Elizabeth R; Cline, Mark A

    2015-10-01

    Adrenocorticotropic hormone (ACTH), consisting of 39 amino acids, is most well-known for its involvement in an organism's response to stress. It also participates in satiety, as exogenous ACTH causes decreased food intake in rats. However, its anorexigenic mechanism is not well understood in any species and its effect on appetite is not reported in the avian class. Thus, the present study was designed to evaluate central ACTH's effect on food intake and to elucidate the mechanism mediating this response using broiler chicks. Chicks that received intracerebroventricular (ICV) injection of 1, 2, or 4 nmol of ACTH reduced food intake, under both ad libitum and 180 min fasted conditions. Water intake was also reduced in ACTH-injected chicks under both feeding conditions, but when measured without access to feed it was not affected. Blood glucose was not affected in either feeding condition. Following ACTH injection, c-Fos immunoreactivity was quantified in key appetite-associated hypothalamic nuclei including the ventromedial hypothalamus (VMH), dorsomedial hypothalamus, lateral hypothalamus (LH), arcuate nucleus (ARC) and the parvo- and magno-cellular portions of the paraventricular nucleus. ACTH-injected chicks had increased c-Fos immunoreactivity in the VMH, LH, and ARC. Hypothalamus was collected at 1h post-injection, and real-time PCR performed to measure mRNA abundance of some appetite-associated factors. Neuropeptide Y, pro-opiomelanocortin, glutamate decarboxylase 1, melanocortin receptors 2-5, and urocortin 3 mRNA abundance was not affected by ACTH treatment. However, expression of corticotropin releasing factor (CRF), urotensin 2 (UT), agouti-related peptide (AgRP), and orexin (ORX), and melanocortin receptor 1 (MC1R) mRNA decreased in the hypothalamus of ACTH-injected chicks. In conclusion, ICV ACTH causes decreased food intake in chicks, and is associated with VMH, LH, and ARC activation, and a decrease in hypothalamic mRNA abundance of CRF, UT, AgRP, ORX

  14. Epidemiological and genetic clues for molecular mechanisms involved in uterine leiomyoma development and growth

    PubMed Central

    Commandeur, Arno E.; Styer, Aaron K.; Teixeira, Jose M.

    2015-01-01

    in vivo, human syndrome, rodent xenograft, naturally mutant, and genetically modified models used to study possible molecular mechanisms of leiomyoma development and growth are described. Particular emphasis is placed on known links to fibrosis, hypertrophy, and hyperplasia and genes that are potentially important in these processes. CONCLUSIONS Menstrual cycle-related injury and repair and coinciding hormonal cycling appears to affect myometrial stem cells that, at a certain stage of fibroid development, often obtain cytogenetic aberrations and mutations of Mediator complex subunit 12 (MED12). Mammalian target of rapamycin (mTOR), a master regulator of proliferation, is activated in many of these tumors, possibly by mechanisms that are similar to some human fibrosis syndromes and/or by mutation of upstream tumor suppressor genes. Animal models of the disease support some of these dysregulated pathways in fibroid etiology or pathogenesis, but none are definitive. All of this suggests that there are likely several key mechanisms involved in the disease that, in addition to increasing the complexity of uterine fibroid pathobiology, offer possible approaches for patient-specific therapies. A final model that incorporates many of these reported mechanisms is presented with a discussion of their implications for leiomyoma clinical practice. PMID:26141720

  15. On reaction mechanisms involved in the deuteron–induced surrogate reactions

    SciTech Connect

    Avrigeanu, M.; Avrigeanu, V.; Mănăilescu, C.

    2015-02-24

    An extended analysis of the nuclear reaction mechanisms involved within deuteron interaction with nuclei, namely the breakup, stripping, pick-up, pre-equilibrium emission, and evaporation from fully equilibrated compound nucleus, is presented in order to highlight the importance of the direct mechanisms still neglected in the analysis of deuteron-induced surrogate reactions. Particularly, the dominance of the breakup mechanism at low energies around the Coulomb barrier should be considered in the case of (d,x) surrogate reactions on actinide target nuclei.

  16. Evaluation of autophagy as a mechanism involved in air pollutant-induced pulmonary injury

    EPA Science Inventory

    Evaluation of autophagy as a mechanism involved in air pollutant-induced pulmonary injuryHenriquez, A.1, Snow, S.2, Miller, D1.,Schladweiler, M.2 and Kodavanti, U2.1 Curriculum in Toxicology, UNC, Chapel Hill, NC. 2 EPHD/NHEERL, US EPA, RTP, Durham, NC. ...

  17. Involvement of the Central Cognitive Mechanism in Word Production in Adults Who Stutter

    ERIC Educational Resources Information Center

    Tsai, Pei-Tzu; Bernstein Ratner, Nan

    2016-01-01

    Purpose: The study examined whether semantic and phonological encoding processes were capacity demanding, involving the central cognitive mechanism, in adults who do and do not stutter (AWS and NS) to better understand the role of cognitive demand in linguistic processing and stuttering. We asked (a) whether the two linguistic processes in AWS are…

  18. 48 CFR 3452.224-71 - Notice about research activities involving human subjects.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... activities involving human subjects. 3452.224-71 Section 3452.224-71 Federal Acquisition Regulations System... Text of Provisions and Clauses 3452.224-71 Notice about research activities involving human subjects... contract will include, or is likely to include, research activities involving human subjects covered...

  19. Colorado court involvement in chemical spill clean-up activities.

    PubMed Central

    Rice, D

    1981-01-01

    Judicial involvement was utilized to force the owners of a pesticide formulation plant to decontaminate property that had been covered with toxic pesticides having the potential to contaminate both surface and groundwater supplies in the East Denver metropolitan area. This case represented the first use of the Colorado state court system in dealing with a hazardous waste "spill." In this case, judicial intervention was unsatisfactory because of the delays involved. Other courses of action will be considered in future cases of a similar nature. PMID:7270771

  20. Colorado court involvement in chemical spill clean-up activities.

    PubMed

    Rice, D

    1981-09-01

    Judicial involvement was utilized to force the owners of a pesticide formulation plant to decontaminate property that had been covered with toxic pesticides having the potential to contaminate both surface and groundwater supplies in the East Denver metropolitan area. This case represented the first use of the Colorado state court system in dealing with a hazardous waste "spill." In this case, judicial intervention was unsatisfactory because of the delays involved. Other courses of action will be considered in future cases of a similar nature.

  1. Anticonvulsant activity of Dorema ammoniacum gum: evidence for the involvement of benzodiazepines and opioid receptors

    PubMed Central

    Motevalian, Manijeh; Mehrzadi, Saeed; Ahadi, Samira; Shojaii, Asie

    2017-01-01

    This study investigated the anticonvulsant activity and possible mechanism of action of an aqueous solution of Dorema ammoniacum gum (DAG) which has been used traditionally in the treatment of convulsions. In this study, the anticonvulsant activity of DAG was examined using the pentylentetrazole (PTZ) model in mice. Thirty male albino mice were divided randomly and equally to 5 groups, and pretreated with normal saline, diazepam, or various doses of DAG (500, 700, and 1000 mg/kg, i.p.), prior to the injection of PTZ (60 mg/kg, i.p.). The latency and duration of seizures were recorded 30 min after PTZ injection. Pretreatments with naloxone and flumazenil in different groups were studied to further clarify the mechanisms of the anticonvulsant action. Phytochemical screening and thin layer chromatography (TLC) fingerprinting of ammoniacum gum was also determined. DAG showed significant anticonvulsant activity at all doses used. The gum delayed both the onset and the duration of seizures induced by PTZ. Treatment with flumazenil before DAG (700 mg/kg) inhibited the effect of gum on seizure duration and latency to some extent and administration of naloxone before DAG also significantly inhibited changes in latency and duration of seizure produced by DAG. The percentage inhibition was greater with naloxone than with flumazenil. This study showed that DAG had significant anticonvulsant activity in PTZ-induced seizures, and GABAergic and opioid systems may be involved. More studies are needed to further investigate its detailed mechanism. PMID:28255314

  2. Involvement of the plasminogen activation system in cow endometritis.

    PubMed

    Moraitis, S; Taitzoglou, I A; Tsantarliotou, M P; Boscos, C M; Kaldrimidou, E; Saratsis, Ph

    2004-01-15

    The objectives of this study were to investigate the: (a) presence and activity of components of the "plasminogen activators/plasmin" system in dairy cows with or without endometritis; (b) variations in enzyme activity according to the degree of endometritis; and (c) associations between these enzymes and changes in endometrial histology after intrauterine antibiotic treatment. Endometrial biopsies were collected from anestrus (no palpable ovarian structures and milk progesterone <1 ng/ml) Holstein cows, 30-40 days postpartum. On the basis of a vaginoscopic examination, rectal palpation of the cervix and uterus, and endometrial histology, there were 92 cows with endometritis and 20 cows without endometritis. After biopsy collection, each cow was given an intrauterine infusion of 1.5x10(6) IU of procaine penicillin G. In cows with endometritis, genital tract examinations and biopsies were repeated 2 weeks later. Both plasminogen activators (PAs), tissue type (t-PA) and urokinase (u-PA), were immunologically identified in all uterine biopsies. Plasminogen activator activity (PAA) increased, whereas plasminogen activator inhibition (PAI) and plasmin inhibition (PI) decreased in proportion to the degree of inflammation. Two weeks after intrauterine treatment, PAA had decreased significantly in all cows that had reduced severity of endometrial inflammation and had increased significantly in all cows with increased severity of inflammation. The change in the degree of inflammation depended upon plasminogen activator activity; cows with higher PAA were more likely to improve. In conclusion, there was evidence for a role of the plasminogen activation proteolytic system in bovine endometritis.

  3. Studies on Bronchodilator Activity of Salvia officinalis (Sage): Possible Involvement of K(+) Channel Activation and Phosphodiesterase Inhibition.

    PubMed

    Gilani, Anwarul-Hassan; Rehman, Najeeb-Ur; Khan, Aslam; Alkharfy, Khalid M

    2015-06-01

    The aqueous methanolic extract of the aerial parts of Salvia officinalis (So.Cr) was studied to provide possible underlying mechanism(s) for its medicinal use in asthma using the in vivo bronchodilatory assay and isolated tracheal preparations. S. officinalis (1-10 mg/kg) dose-dependently inhibited carbachol (CCh)-induced bronchospasm in anesthetized rats with three-fold greater potency than the positive control, aminophylline. In tracheal preparations, So.Cr inhibited the low K(+) (25 mM)-induced contractions. Pretreatment of the tissues with 4-aminopyridine reversed the inhibitory effect of the plant extract against low K(+) , whereas glibenclamide did not show any effect, thus showing the involvement of voltage-sensitive K(+) channels. When tested against the CCh-induced pre-contractions for the involvement of any additional mechanism, interestingly, the extract showed a dose-dependent (0.03-0.1 mg/mL) inhibitory effect and shifted the inhibitory concentration response curves of isoprenaline to the left, thus showing phosphodiesterase enzyme inhibitory-like action, similar to that of papaverine. These results indicate that the crude extract of S. officinalis possesses bronchodilatory activity mediated predominantly via activation of voltage-dependent K(+) channels and inhibition of phosphodiesterase enzyme; thus, this study provides sound pharmacological basis for its medicinal use in hyperactive airways disorders such as asthma and cough. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Pathophysiological mechanisms involved in non-alcoholic steatohepatitis and novel potential therapeutic targets

    PubMed Central

    Higuera-de la Tijera, Fátima; Servín-Caamaño, Alfredo I

    2015-01-01

    Non-alcoholic fatty liver disease (NAFLD) is a major health care problem and represents the hepatic expression of the metabolic syndrome. NAFLD is classified as non-alcoholic fatty liver (NAFL) or simple steatosis, and non-alcoholic steatohepatitis (NASH). NASH is characterized by the presence of steatosis and inflammation with or without fibrosis. The physiopathology of NAFL and NASH and their progression to cirrhosis involve several parallel and interrelated mechanisms, such as, insulin resistance (IR), lipotoxicity, inflammation, oxidative stress, and recently the gut-liver axis interaction has been described. Incretin-based therapies could play a role in the treatment of NAFLD. Glucagon-like peptide-1 (GLP-1) is an intestinal mucosa-derived hormone which is secreted into the bloodstream in response to nutrient ingestion; it favors glucose-stimulated insulin secretion, inhibition of postprandial glucagon secretion and delayed gastric emptying. It also promotes weight loss and is involved in lipid metabolism. Once secreted, GLP-1 is quickly degraded by dipeptidyl peptidase-4 (DPP-4). Therefore, DPP-4 inhibitors are able to extend the activity of GLP-1. Currently, GLP-1 agonists and DPP-4 inhibitors represent attractive options for the treatment of NAFLD and NASH. The modulation of lipid and glucose metabolism through nuclear receptors, such as the farsenoid X receptor, also constitutes an attractive therapeutic target. Obeticholic acid is a potent activator of the farnesoid X nuclear receptor and reduces liver fat content and fibrosis in animal models. Ursodeoxycholic acid (UDCA) is a hydrophilic bile acid with immunomodulatory, anti-inflammatory, antiapoptotic, antioxidant and anti-fibrotic properties. UDCA can improve IR and modulate lipid metabolism through its interaction with nuclear receptors such as, TGR5, farnesoid X receptor-α, or the small heterodimeric partner. Finally, pharmacologic modulation of the gut microbiota could have a role in the therapy of

  5. Presumptive mechanisms of peptic ulceration by Helicobacter pylori VacA involving mucoprotease and CagA.

    PubMed

    Choi, K M; Lim, W J; Park, J K; Hwang, S Y

    2001-06-30

    Helicobacter pylori vacuolating toxin (VacA) appears to be unusually stable, not only against extreme pH conditions or high temperatures, but also against common organic solvents or detergents. Under acidic conditions, its activity was markedly increased in the manner of temperature-independent, suggesting a spontaneous activation. A similar finding was also observed under alkaline conditions, however, it should have an appropriate temperature. From these observations, the mechanisms of VacA activation were suggested to be so redundant that either the case of acidic or basic amino acid residues could be involved in the VacA activation. Separately, we also found that the VacA production by H. pylori was pH-dependent: Its production was increased at a low pH region with a broad range (1.0-5.0), and at a high pH region with a narrow range (8.0-9.0). Astonishingly, a highly immunogenic CagA did not appear to be expressed under the acidic conditions. Its expression, however, was shown to be enhanced when the surrounding pH of this bacterium was raised. In contrast, mucoproteolytic activity in the H. pylori membrane was found to be increased at acidic conditions. Considering these observations, together with the stomach and duodenal pH of humans, two presumptive mechanisms of H. pylori VacA-associated ulceration may be deduced; namely, an acid- and an alkali-dependent type, involving mucoprotease and CagA, respectively.

  6. Radiation protection in radiologic technology: Apathy versus active involvement

    SciTech Connect

    Franz, K.H.

    1982-11-01

    The lack of active participation in radiation protection is a serious problem in Radiologic Technology today. Underlying the problem is professional apathy. An overview of the historical changes, as well as various recent developments in radiology, accentuate the importance of necessary changes in technologists' attitudes and activities. 22 references.

  7. 101 Activities for Building More Effective School-Community Involvement.

    ERIC Educational Resources Information Center

    Rich, Dorothy; Mattox, Beverly

    This booklet contains a collection of more than 100 activities designed to promote school-home and school-community relations. Activities are organized into seven categories: (1) communicating word from home to school, (2) people to people, (3) educational events, (4) volunteers--hands on in the classroom, (5) utilizing community resources, (6)…

  8. Extracurricular Activity Involvement and Adolescent Self-Esteem

    ERIC Educational Resources Information Center

    Kort-Butler, Lisa A.

    2012-01-01

    Structured extracurricular activity participation has been linked to self-esteem and other indicators of positive youth development. This article describes the theoretical basis for this relationship, centering on extracurricular activities as a location for identity development. A summary of the empirical evidence points to the importance of…

  9. HTLV-1 Tax-mediated TAK1 activation involves TAB2 adapter protein

    SciTech Connect

    Yu Qingsheng; Minoda, Yasumasa; Yoshida, Ryoko; Yoshida, Hideyuki; Iha, Hidekatsu; Kobayashi, Takashi; Yoshimura, Akihiko; Takaesu, Giichi

    2008-01-04

    Human T cell leukemia virus type 1 (HTLV-1) Tax is an oncoprotein that plays a crucial role in the proliferation and transformation of HTLV-1-infected T lymphocytes. It has recently been reported that Tax activates a MAPKKK family, TAK1. However, the molecular mechanism of Tax-mediated TAK1 activation is not well understood. In this report, we investigated the role of TAK1-binding protein 2 (TAB2) in Tax-mediated TAK1 activation. We found that TAB2 physically interacts with Tax and augments Tax-induced NF-{kappa}B activity. Tax and TAB2 cooperatively activate TAK1 when they are coexpressed. Furthermore, TAK1 activation by Tax requires TAB2 binding as well as ubiquitination of Tax. We also found that the overexpression of TRAF2, 5, or 6 strongly induces Tax ubiquitination. These results suggest that TAB2 may be critically involved in Tax-mediated activation of TAK1 and that NF-{kappa}B-activating TRAF family proteins are potential cellular E3 ubiquitin ligases toward Tax.

  10. Mechanobiocatalysis: Modulating Enzymatic Activity with Mechanical Force

    DTIC Science & Technology

    2015-09-28

    displayed by enzymes and other materials. It was demonstrated that the application of forces to enzymes properly outfitted with polymers resulted in...intrinsic activities displayed by enzymes and other materials. It was demonstrated that the application of forces to enzymes properly outfitted with polymers ...of eYFP-containing polymer composites via the application of mechanical force, as well as showing that the photophysical properties displayed by

  11. Topological mechanics: from metamaterials to active matter

    NASA Astrophysics Data System (ADS)

    Vitelli, Vincenzo

    2015-03-01

    Mechanical metamaterials are artificial structures with unusual properties, such as negative Poisson ratio, bistability or tunable acoustic response, which originate in the geometry of their unit cell. At the heart of such unusual behavior is often a mechanism: a motion that does not significantly stretch or compress the links between constituent elements. When activated by motors or external fields, these soft motions become the building blocks of robots and smart materials. In this talk, we discuss topological mechanisms that possess two key properties: (i) their existence cannot be traced to a local imbalance between degrees of freedom and constraints (ii) they are robust against a wide range of structural deformations or changes in material parameters. The continuum elasticity of these mechanical structures is captured by non-linear field theories with a topological boundary term similar to topological insulators and quantum Hall systems. We present several applications of these concepts to the design and experimental realization of 2D and 3D topological structures based on linkages, origami, buckling meta-materials and lastly active media that break time-reversal symmetry.

  12. Cell resistance to the Cytolethal Distending Toxin involves an association of DNA repair mechanisms

    PubMed Central

    Bezine, Elisabeth; Malaisé, Yann; Loeuillet, Aurore; Chevalier, Marianne; Boutet-Robinet, Elisa; Salles, Bernard; Mirey, Gladys; Vignard, Julien

    2016-01-01

    The Cytolethal Distending Toxin (CDT), produced by many bacteria, has been associated with various diseases including cancer. CDT induces DNA double-strand breaks (DSBs), leading to cell death or mutagenesis if misrepaired. At low doses of CDT, other DNA lesions precede replication-dependent DSB formation, implying that non-DSB repair mechanisms may contribute to CDT cell resistance. To address this question, we developed a proliferation assay using human cell lines specifically depleted in each of the main DNA repair pathways. Here, we validate the involvement of the two major DSB repair mechanisms, Homologous Recombination and Non Homologous End Joining, in the management of CDT-induced lesions. We show that impairment of single-strand break repair (SSBR), but not nucleotide excision repair, sensitizes cells to CDT, and we explore the interplay of SSBR with the DSB repair mechanisms. Finally, we document the role of the replicative stress response and demonstrate the involvement of the Fanconi Anemia repair pathway in response to CDT. In conclusion, our work indicates that cellular survival to CDT-induced DNA damage involves different repair pathways, in particular SSBR. This reinforces a model where CDT-related genotoxicity primarily involves SSBs rather than DSBs, underlining the importance of cell proliferation during CDT intoxication and pathogenicity. PMID:27775089

  13. Adult criminal involvement: A cross-sectional inquiry into correlates and mechanisms over the life course

    PubMed Central

    DePadilla, Lara; Perkins, Molly M.; Elifson, Kirk W.; Sterk, Claire E.

    2013-01-01

    In this paper, we examine the relative contribution of four domains of predictors that have been linked to adult criminal involvement: (1) socio-demographic characteristics, (2) family-of-origin factors, (3) proximal processes developed during adolescence, and (4) current lifestyle and situational factors. Cross-sectional data were collected through face-to-face interviews with 242 community-recruited adults. Data analysis involved negative binomial regression. Being male, family size, juvenile delinquency, aggression, living with someone involved in illegal activity and recent violent victimization were independently associated with non-violent criminal involvement. Aggression, association with deviant peers, and recent violent victimization were independently associated with violent criminal involvement. Juvenile delinquency and aggression mediated the affect of multiple family-of-origin characteristics on non-violent criminal involvement and aggression mediated the effect of childhood physical abuse on violent criminal involvement. The results emphasize the importance of investigating both antecedents and proximal risk factors predictive of different types of criminal involvement, which, in turn, will assist in developing risk-focused prevention and intervention programs. PMID:24307752

  14. Mechanically activated artificial cell by using microfluidics

    PubMed Central

    Ho, Kenneth K. Y.; Lee, Lap Man; Liu, Allen P.

    2016-01-01

    All living organisms sense mechanical forces. Engineering mechanosensitive artificial cell through bottom-up in vitro reconstitution offers a way to understand how mixtures of macromolecules assemble and organize into a complex system that responds to forces. We use stable double emulsion droplets (aqueous/oil/aqueous) to prototype mechanosensitive artificial cells. In order to demonstrate mechanosensation in artificial cells, we develop a novel microfluidic device that is capable of trapping double emulsions into designated chambers, followed by compression and aspiration in a parallel manner. The microfluidic device is fabricated using multilayer soft lithography technology, and consists of a control layer and a deformable flow channel. Deflections of the PDMS membrane above the main microfluidic flow channels and trapping chamber array are independently regulated pneumatically by two sets of integrated microfluidic valves. We successfully compress and aspirate the double emulsions, which result in transient increase and permanent decrease in oil thickness, respectively. Finally, we demonstrate the influx of calcium ions as a response of our mechanically activated artificial cell through thinning of oil. The development of a microfluidic device to mechanically activate artificial cells creates new opportunities in force-activated synthetic biology. PMID:27610921

  15. Mechanically activated artificial cell by using microfluidics

    NASA Astrophysics Data System (ADS)

    Ho, Kenneth K. Y.; Lee, Lap Man; Liu, Allen P.

    2016-09-01

    All living organisms sense mechanical forces. Engineering mechanosensitive artificial cell through bottom-up in vitro reconstitution offers a way to understand how mixtures of macromolecules assemble and organize into a complex system that responds to forces. We use stable double emulsion droplets (aqueous/oil/aqueous) to prototype mechanosensitive artificial cells. In order to demonstrate mechanosensation in artificial cells, we develop a novel microfluidic device that is capable of trapping double emulsions into designated chambers, followed by compression and aspiration in a parallel manner. The microfluidic device is fabricated using multilayer soft lithography technology, and consists of a control layer and a deformable flow channel. Deflections of the PDMS membrane above the main microfluidic flow channels and trapping chamber array are independently regulated pneumatically by two sets of integrated microfluidic valves. We successfully compress and aspirate the double emulsions, which result in transient increase and permanent decrease in oil thickness, respectively. Finally, we demonstrate the influx of calcium ions as a response of our mechanically activated artificial cell through thinning of oil. The development of a microfluidic device to mechanically activate artificial cells creates new opportunities in force-activated synthetic biology.

  16. Multiple mechanisms are involved in 6-gingerol-induced cell growth arrest and apoptosis in human colorectal cancer cells.

    PubMed

    Lee, Seong-Ho; Cekanova, Maria; Baek, Seung Joon

    2008-03-01

    6-Gingerol, a natural product of ginger, has been known to possess anti-tumorigenic and pro-apoptotic activities. However, the mechanisms by which it prevents cancer are not well understood in human colorectal cancer. Cyclin D1 is a proto-oncogene that is overexpressed in many cancers and plays a role in cell proliferation through activation by beta-catenin signaling. Nonsteroidal anti-inflammatory drug (NSAID)-activated gene-1 (NAG-1) is a cytokine associated with pro-apoptotic and anti-tumorigenic properties. In the present study, we examined whether 6-gingerol influences cyclin D1 and NAG-1 expression and determined the mechanisms by which 6-gingerol affects the growth of human colorectal cancer cells in vitro. 6-Gingerol treatment suppressed cell proliferation and induced apoptosis and G(1) cell cycle arrest. Subsequently, 6-gingerol suppressed cyclin D1 expression and induced NAG-1 expression. Cyclin D1 suppression was related to inhibition of beta-catenin translocation and cyclin D1 proteolysis. Furthermore, experiments using inhibitors and siRNA transfection confirm the involvement of the PKCepsilon and glycogen synthase kinase (GSK)-3beta pathways in 6-gingerol-induced NAG-1 expression. The results suggest that 6-gingerol stimulates apoptosis through upregulation of NAG-1 and G(1) cell cycle arrest through downregulation of cyclin D1. Multiple mechanisms appear to be involved in 6-gingerol action, including protein degradation as well as beta-catenin, PKCepsilon, and GSK-3beta pathways.

  17. The hypotriglyceridemic effect of biotin supplementation involves increased levels of cGMP and AMPK activation.

    PubMed

    Aguilera-Méndez, Asdrúbal; Fernández-Mejía, Cristina

    2012-01-01

    In addition to its role as a carboxylase cofactor, biotin modifies gene expression and has manifold effects on systemic processes. Several studies have shown that biotin supplementation reduces hypertriglyceridemia. We have previously reported that this effect is related to decreased expression of lipogenic genes. In the present work, we analyzed signaling pathways and posttranscriptional mechanisms involved in the hypotriglyceridemic effects of biotin. Male BALB/cAnN Hsd mice were fed a control or a biotin-supplemented diet (1.76 or 97.7 mg of free biotin/kg diet, respectively for 8 weeks after weaning. The abundance of mature sterol regulatory element-binding protein (SREBP-1c), fatty-acid synthase (FAS), total acetyl-CoA carboxylase-1 (ACC-1) and its phosphorylated form, and AMP-activated protein kinase (AMPK) were evaluated in the liver. We also determined the serum triglyceride concentrations and the hepatic levels of triglycerides and cyclic GMP (cGMP). Compared to the control group, biotin-supplemented mice had lower serum and hepatic triglyceride concentrations. Biotin supplementation increased the levels of cGMP and the phosphorylated forms of AMPK and ACC-1 and decreased the abundance of the mature form of SREBP-1c and FAS. These data provide evidence that the mechanisms by which biotin supplementation reduces lipogenesis involve increased cGMP content and AMPK activation. In turn, these changes lead to augmented ACC-1 phosphorylation and decreased expression of both the mature form of SREBP-1c and FAS. Our results demonstrate for the first time that AMPK is involved in the effects of biotin supplementation and offer new insights into the mechanisms of biotin-mediated hypotriglyceridemic effects.

  18. Viral evasion mechanisms of early antiviral responses involving regulation of ubiquitin pathways.

    PubMed

    Rajsbaum, Ricardo; García-Sastre, Adolfo

    2013-08-01

    Early innate and cell-intrinsic responses are essential to protect host cells against pathogens. In turn, viruses have developed sophisticated mechanisms to establish productive infections by counteracting host innate immune responses. Increasing evidence indicates that these antiviral factors may have a dual role by directly inhibiting viral replication as well as by sensing and transmitting signals to induce antiviral cytokines. Recent studies have pointed at new, unappreciated mechanisms of viral evasion of host innate protective responses including manipulating the host ubiquitin (Ub) system. Virus-mediated inhibition of antiviral factors by Ub-dependent degradation is emerging as a crucial mechanism for evading the antiviral response. In addition, recent studies have uncovered new mechanisms by which virus-encoded proteins inhibit Ub and Ub-like (Ubl) modification of host proteins involved in innate immune signaling pathways. Here we discuss recent findings and novel strategies that viruses have developed to counteract these early innate antiviral defenses.

  19. Mechanism of FGF receptor dimerization and activation

    NASA Astrophysics Data System (ADS)

    Sarabipour, Sarvenaz; Hristova, Kalina

    2016-01-01

    Fibroblast growth factors (fgfs) are widely believed to activate their receptors by mediating receptor dimerization. Here we show, however, that the FGF receptors form dimers in the absence of ligand, and that these unliganded dimers are phosphorylated. We further show that ligand binding triggers structural changes in the FGFR dimers, which increase FGFR phosphorylation. The observed effects due to the ligands fgf1 and fgf2 are very different. The fgf2-bound dimer structure ensures the smallest separation between the transmembrane (TM) domains and the highest possible phosphorylation, a conclusion that is supported by a strong correlation between TM helix separation in the dimer and kinase phosphorylation. The pathogenic A391E mutation in FGFR3 TM domain emulates the action of fgf2, trapping the FGFR3 dimer in its most active state. This study establishes the existence of multiple active ligand-bound states, and uncovers a novel molecular mechanism through which FGFR-linked pathologies can arise.

  20. Artificial masculinization in tilapia involves androgen receptor activation.

    PubMed

    Golan, Matan; Levavi-Sivan, Berta

    2014-10-01

    Estrogens have a pivotal role in natural female sexual differentiation of tilapia while lack of steroids results in testicular development. Despite the fact that androgens do not participate in natural sex differentiation, synthetic androgens, mainly 17-α-methyltestosterone (MT) are effective in the production of all-male fish in aquaculture. The sex inversion potency of synthetic androgens may arise from their androgenic activity or else as inhibitors of aromatase activity. The current study is an attempt to differentiate between the two alleged activities in order to evaluate their contribution to the sex inversion process and aid the search for novel sex inversion agents. In the present study, MT inhibited aromatase activity, when applied in vitro as did the non-aromatizable androgen dihydrotestosterone (DHT). In comparison, exposure to fadrozole, a specific aromatase inhibitor, was considerably more effective. Androgenic activity of MT was evaluated by exposure of Sciaenochromis fryeri fry to the substance and testing for the appearance of blue color. Flutamide, an androgen antagonist, administered concomitantly with MT, reduced the appearance of the blue color and the sex inversion potency of MT in a dose-dependent manner. In tilapia, administration of MT, fadrozole or DHT resulted in efficient sex inversion while flutamide reduced the sex inversion potency of all three compounds. In the case of MT and DHT the decrease in sex inversion efficiency caused by flutamide is most likely due to the direct blocking of the androgen binding to its cognate receptor. The negative effect of flutamide on the efficiency of the fadrozole treatment may indicate that the masculinizing activity of fadrozole may be attributed to excess, un-aromatized, androgens accumulated in the differentiating gonad. The present study shows that when androgen receptors are blocked, there is a reduction in the efficiency of sex inversion treatments. Our results suggest that in contrast to

  1. 48 CFR 3452.224-72 - Research activities involving human subjects.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... involving human subjects. 3452.224-72 Section 3452.224-72 Federal Acquisition Regulations System DEPARTMENT... Text of Provisions and Clauses 3452.224-72 Research activities involving human subjects. As prescribed... human subjects covered under 34 CFR part 97: Research Activities Involving Human Subjects (MAR 2011)...

  2. 48 CFR 3452.224-72 - Research activities involving human subjects.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... involving human subjects. 3452.224-72 Section 3452.224-72 Federal Acquisition Regulations System DEPARTMENT... Text of Provisions and Clauses 3452.224-72 Research activities involving human subjects. As prescribed... human subjects covered under 34 CFR part 97: Research Activities Involving Human Subjects (MAR 2011)...

  3. 45 CFR 1177.4 - Claims involving criminal activity or misconduct.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false Claims involving criminal activity or misconduct. 1177.4 Section 1177.4 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL... Claims involving criminal activity or misconduct. (a) A debtor whose indebtedness involves...

  4. 48 CFR 3452.224-72 - Research activities involving human subjects.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... involving human subjects. 3452.224-72 Section 3452.224-72 Federal Acquisition Regulations System DEPARTMENT... Text of Provisions and Clauses 3452.224-72 Research activities involving human subjects. As prescribed... human subjects covered under 34 CFR part 97: Research Activities Involving Human Subjects (MAR 2011)...

  5. Study of the Genes and Mechanism Involved in the Radioadaptive Response

    NASA Technical Reports Server (NTRS)

    Dasgupta, Pushan R.

    2009-01-01

    The radioadaptive response is a phenomenon where exposure to a prior low dose of radiation reduces the level of damage induced by a subsequent high radiation dose. The molecular mechanism behind this is still not well understood. Learning more about the radioadaptive response is critical for long duration spaceflight since astronauts are exposed to low levels of cosmic radiation. The micronucleus assay was used to measure the level of damage caused by radiation. Although cells which were not washed with phosphate buffered saline (PBS) after a low priming dose of 5cGy did not show adaptation to the challenge dose, washing the cells with PBS and giving the cells fresh media after the low dose did allow radioadaptation to occur. This is consistent with the results of a previous publication by another research group. In the present study, genes involved in DNA damage signaling and the oxidative stress response were studied using RT PCR techniques in order to look at changes in expression level after the low dose with or without washing. Our preliminary results indicate that upregulation of oxidative stress response genes ANGPTL7, NCF2, TTN, and SRXN1 may be involved in the radioadaptive response. The low dose of radiation alone was found to activate the oxidative stress response genes GPR156 and MTL5, whereas, washing the cells alone caused relatively robust upregulation of the oxidative stress response genes DUSP1 and PTGS2. Washing after the priming dose showed some changes in the expression level of several DNA damage signaling genes. In addition, we studied whether washing the cells after the priming dose has an effect on the level of nitric oxide in both the media and cells, since nitric oxide levels are known to increase in the media of the cells after a high dose of radiation only if the cells were already exposed to a low priming dose. Based on this preliminary study, we propose that washing the cells after priming exposure actually eliminates some factor

  6. Neural Mechanisms Involved in Hypersensitive Hearing: Helping Children with ASD Who Are Overly Sensitive to Sounds

    PubMed Central

    Lucker, Jay R.; Doman, Alex

    2015-01-01

    Professionals working with children diagnosed with autism spectrum disorder (ASD) may find that these children are overly sensitive to sounds. These professionals are often concerned as to why children may have auditory hypersensitivities. This review article discusses the neural mechanisms identified underlying hypersensitive hearing in people. The authors focus on brain research to support the idea of the nonclassical auditory pathways being involved in connecting the auditory system with the emotional system of the brain. The authors also discuss brain mechanisms felt to be involved in auditory hypersensitivity. The authors conclude with a discussion of some treatments for hypersensitive hearing. These treatments include desensitization training and the use of listening therapies such as The Listening Program. PMID:26823983

  7. Social Work with Religious Volunteers: Activating and Sustaining Community Involvement

    ERIC Educational Resources Information Center

    Garland, Diana R.; Myers, Dennis M.; Wolfer, Terry A.

    2008-01-01

    Social workers in diverse community practice settings recruit and work with volunteers from religious congregations. This article reports findings from two surveys: 7,405 congregants in 35 Protestant congregations, including 2,570 who were actively volunteering, and a follow-up survey of 946 volunteers. It compares characteristics of congregation…

  8. Transportation as a "Related Service": Issues that Involve Transition Activities.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Missouri LINC.

    The paper discusses transportation as a related service for students with disabilities expecially as related to school-to-work transition activities. First, the legislative and legal basis for providing transportation services is discussed in the form of answers to frequently asked questions: why provide transportation? what is the basis for…

  9. Ionic mechanisms involved in the nodal swelling of myelinated axons caused by marine toxins.

    PubMed

    Benoit, Evelyne; Mattei, Cesar; Ouanounou, Gilles; Meunier, Frederic A; Suput, Dusan; Le Gall, Frederic; Marquais, Michel; Dechraoui, Marie Y; Molgo, Jordi

    2002-01-01

    This review describes the ionic mechanisms involved in the nodal swelling of frog myelinated axons caused by specific marine neurotoxins (ciguatoxins, brevetoxins, Conus consors toxin and equinatoxin-II), analysed using confocal laser scanning microscopy. We have focussed on toxins that either target neuronal voltage-dependent Na+ channels, or that form cation-selective pores and indirectly affect the functioning of the Na(+)-Ca(++)exchanger.

  10. Molecular mechanisms involved in the hormonal prevention of aging in the rat.

    PubMed

    Tresguerres, Jesús A F; Kireev, Roman; Tresguerres, Ana F; Borras, Consuelo; Vara, Elena; Ariznavarreta, Carmen

    2008-02-01

    Previous data from our group have provided support for the role of GH, melatonin and estrogens in the prevention of aging of several physiological parameters from bone, liver metabolism, vascular activity, the central nervous system (CNS), the immune system and the skin. In the present work data on the molecular mechanisms involved are presented. A total of 140 male and female rats have been submitted to different treatments over 10 weeks, between 22 and 24 months of age. Males have been treated with GH and melatonin. Females were divided in two groups: intact and castrated at 12 months of age. The first group was treated with GH and melatonin and the second with the two latter compounds and additionally with estradiol and Phytosoya. Aging was associated with a reduction in the number of neurons of the hylus of the dentate gyrus of the hippocampus and with a reduction of neurogenesis. GH treatment increased the number of neurons but did not increase neurogenesis thus suggesting a reduction of apoptosis. This was supported by the reduction in nucleosomes and the increase in Bcl2 observed in cerebral homogenates together with an increase in sirtuin2 and a reduction of caspases 9 and 3. Melatonin, estrogen and Phytosoya treatments increased neurogenesis but did not enhance the total number of neurons. Aging induced a significant increase in mitochondrial nitric oxide in the hepatocytes, together with a reduction in the mitochondrial fraction content in cytochrome C and an increase of this compound in the cytosolic fraction. Reductions of glutathione peroxidase and glutathione S-transferase were also detected, thus indicating oxidative stress and possibly apoptosis. Treatment for 2.5 months of old rats with GH and melatonin were able to significantly and favourably affect age-induced deteriorations, thus reducing oxidative damage. Keratinocytes obtained from old rats in primary culture showed an increase in lipoperoxides, caspases 8 and 3 as well as a reduction in Bcl2

  11. Activities of the Institute for Mechanical Engineering

    NASA Astrophysics Data System (ADS)

    The Institute of Mechanical Engineering (IME) is part of Canada's National Research Council. Its mission is to undertake, support, promote, and disseminate research and development in the mechanical engineering aspects of three vital sectors of the Canadian economy: transportation, resource industries, and manufacturing. The IME achieves its mission by performing research and development in its own facilities; by developing, providing, and transferring expertise and knowledge; by making its research facilities available to collaborators and clients; and by participating in international liaison and collaborative research activities. Six research programs are conducted in the IME: Advanced Manufacturing Technology; Coastal Zone Engineering; Cold Regions Engineering; Combustion and Fluids Engineering; Ground Transportation Technology; and Machinery and Engine Technology. The rationale and major research thrusts of each program are described, and specific achievements in 1991-92 are reviewed. Lists of technical reports and papers presented by IME personnel are also included.

  12. Involvement of protein kinase C in the mechanism of action of Escherichia coli heat-stable enterotoxin (STa) in a human colonic carcinoma cell line, COLO-205

    SciTech Connect

    Gupta, Dyuti Datta; Saha, Subhrajit; Chakrabarti, Manoj K. . E-mail: mkc_niced@yahoo.co.in

    2005-08-01

    The present study was undertaken to determine the involvement of calcium-protein kinase C pathway in the mechanism of action of Escherichia coli heat stable enterotoxin (STa) apart from STa-induced activation of guanylate cyclase in human colonic carcinoma cell line COLO-205, which was used as a model cultured cell line to study the mechanism of action of E. coli STa. In response to E. coli STa, protein kinase C (PKC) activity was increased in a time-dependent manner with its physical translocation from cytosol to membrane. Inhibition of the PKC activity in membrane fraction and inhibition of its physical translocation in response to IP{sub 3}-mediated calcium release inhibitor dantrolene suggested the involvement of intracellular store depletion in the regulation of PKC activity. Among different PKC isoforms, predominant involvement of calcium-dependent protein kinase C (PKC{alpha}) was specified using isotype-specific pseudosubstrate, which showed pronounce enzyme activity. Inhibition of enzyme activity by PKC{alpha}-specific inhibitor Goe6976 and immunoblott study employing isotype-specific antibody further demonstrated the involvement of calcium-dependent isoform of PKC in the mechanism of action of E. coli STa. Moreover, inhibition of guanylate cyclase activity by PKC{alpha}-specific inhibitor Goe6976 suggested the involvement of PKC{alpha} in the regulation of guanylate cyclase activity.

  13. Insights into the Thiamine Diphosphate Enzyme Activation Mechanism: Computational Model for Transketolase Using a Quantum Mechanical/Molecular Mechanical Method.

    PubMed

    Nauton, Lionel; Hélaine, Virgil; Théry, Vincent; Hecquet, Laurence

    2016-04-12

    We propose the first computational model for transketolase (TK), a thiamine diphosphate (ThDP)-dependent enzyme, using a quantum mechanical/molecular mechanical method on the basis of crystallographic TK structures from yeast and Escherichia coli, together with experimental kinetic data reported in the literature with wild-type and mutant TK. This model allowed us to define a new route for ThDP activation in the enzyme environment. We evidenced a strong interaction between ThDP and Glu418B of the TK active site, itself stabilized by Glu162A. The crucial point highlighted here is that deprotonation of ThDP C2 is not performed by ThDP N4' as reported in the literature, but by His481B, involving a HOH688A molecule bridge. Thus, ThDP N4' is converted from an amino form to an iminium form, ensuring the stabilization of the C2 carbanion or carbene. Finally, ThDP activation proceeds via an intermolecular process and not by an intramolecular one as reported in the literature. More generally, this proposed ThDP activation mechanism can be applied to some other ThDP-dependent enzymes and used to define the entire TK mechanism with donor and acceptor substrates more accurately.

  14. Transmembrane myosin chitin synthase involved in mollusc shell formation produced in Dictyostelium is active.

    PubMed

    Schönitzer, Veronika; Eichner, Norbert; Clausen-Schaumann, Hauke; Weiss, Ingrid M

    2011-12-02

    Several mollusc shells contain chitin, which is formed by a transmembrane myosin motor enzyme. This protein could be involved in sensing mechanical and structural changes of the forming, mineralizing extracellular matrix. Here we report the heterologous expression of the transmembrane myosin chitin synthase Ar-CS1 of the bivalve mollusc Atrina rigida (2286 amino acid residues, M.W. 264 kDa/monomer) in Dictyostelium discoideum, a model organism for myosin motor proteins. Confocal laser scanning immunofluorescence microscopy (CLSM), chitin binding GFP detection of chitin on cells and released to the cell culture medium, and a radiochemical activity assay of membrane extracts revealed expression and enzymatic activity of the mollusc chitin synthase in transgenic slime mold cells. First high-resolution atomic force microscopy (AFM) images of Ar-CS1 transformed cellulose synthase deficient D. discoideumdcsA(-) cell lines are shown.

  15. Involvement of hypothalamic AMP-activated protein kinase in leptin-induced sympathetic nerve activation.

    PubMed

    Tanida, Mamoru; Yamamoto, Naoki; Shibamoto, Toshishige; Rahmouni, Kamal

    2013-01-01

    In mammals, leptin released from the white adipose tissue acts on the central nervous system to control feeding behavior, cardiovascular function, and energy metabolism. Central leptin activates sympathetic nerves that innervate the kidney, adipose tissue, and some abdominal organs in rats. AMP-activated protein kinase (AMPK) is essential in the intracellular signaling pathway involving the activation of leptin receptors (ObRb). We investigated the potential of AMPKα2 in the sympathetic effects of leptin using in vivo siRNA injection to knockdown AMPKα2 in rats, to produce reduced hypothalamic AMPKα2 expression. Leptin effects on body weight, food intake, and blood FFA levels were eliminated in AMPKα2 siRNA-treated rats. Leptin-evoked enhancements of the sympathetic nerve outflows to the kidney, brown and white adipose tissues were attenuated in AMPKα2 siRNA-treated rats. To check whether AMPKα2 was specific to sympathetic changes induced by leptin, we examined the effects of injecting MT-II, a melanocortin-3 and -4 receptor agonist, on the sympathetic nerve outflows to the kidney and adipose tissue. MT-II-induced sympatho-excitation in the kidney was unchanged in AMPKα2 siRNA-treated rats. However, responses of neural activities involving adipose tissue to MT-II were attenuated in AMPKα2 siRNA-treated rats. These results suggest that hypothalamic AMPKα2 is involved not only in appetite and body weight regulation but also in the regulation of sympathetic nerve discharges to the kidney and adipose tissue. Thus, AMPK might function not only as an energy sensor, but as a key molecule in the cardiovascular, thermogenic, and lipolytic effects of leptin through the sympathetic nervous system.

  16. Bifidobacterium breve MCC-117 Induces Tolerance in Porcine Intestinal Epithelial Cells: Study of the Mechanisms Involved in the Immunoregulatory Effect.

    PubMed

    Murata, Kozue; Tomosada, Yohsuke; Villena, Julio; Chiba, Eriko; Shimazu, Tomoyuki; Aso, Hisashi; Iwabuchi, Noriyuki; Xiao, Jin-Zhong; Saito, Tadao; Kitazawa, Haruki

    2014-01-01

    Bifidobacterium breve MCC-117 is able to significantly reduce the expression of inflammatory cytokines in porcine intestinal epithelial (PIE) cells and to improve IL-10 levels in CD4(+)CD25(high) Foxp3(+) lymphocytes in response to heat-stable enterotoxigenic Escherichia coli (ETEC) pathogen-associated molecular patterns (PAMPs), while the immunoregulatory effect of B. adolescentis ATCC15705 was significantly lower than that observed for the MCC-117 strain. Considering the different capacities of the two bifidobacterium strains to activate toll-like receptor (TLR)-2 and their differential immunoregulatory activities in PIE and immune cells, we hypothesized that comparative studies with both strains could provide important information regarding the molecular mechanism(s) involved in the anti-inflammatory activity of bifidobacteria. In this work, we demonstrated that the anti-inflammatory effect of B. breve MCC-117 was achieved by a complex interaction of multiple negative regulators of TLRs as well as inhibition of multiple signaling pathways. We showed that B. breve MCC-117 reduced heat-stable ETEC PAMP-induced NF-κB, p38 MAPK and PI3 K activation and expression of pro-inflammatory cytokines in PIE cells. In addition, we demonstrated that B. breve MCC-117 may activate TLR2 synergistically and cooperatively with one or more other pattern recognition receptors (PRRs), and that interactions may result in a coordinated sum of signals that induce the upregulation of A20, Bcl-3, Tollip and SIGIRR. Upregulation of these negative regulators could have an important physiological impact on maintaining or reestablishing homeostatic TLR signals in PIE cells. Therefore, in the present study, we gained insight into the molecular mechanisms involved in the immunoregulatory effect of B. breve MCC-117.

  17. Bifidobacterium breve MCC-117 Induces Tolerance in Porcine Intestinal Epithelial Cells: Study of the Mechanisms Involved in the Immunoregulatory Effect

    PubMed Central

    MURATA, Kozue; TOMOSADA, Yohsuke; VILLENA, Julio; CHIBA, Eriko; SHIMAZU, Tomoyuki; ASO, Hisashi; IWABUCHI, Noriyuki; XIAO, Jin-zhong; SAITO, Tadao; KITAZAWA, Haruki

    2014-01-01

    Bifidobacterium breve MCC-117 is able to significantly reduce the expression of inflammatory cytokines in porcine intestinal epithelial (PIE) cells and to improve IL-10 levels in CD4+CD25high Foxp3+ lymphocytes in response to heat-stable enterotoxigenic Escherichia coli (ETEC) pathogen-associated molecular patterns (PAMPs), while the immunoregulatory effect of B. adolescentis ATCC15705 was significantly lower than that observed for the MCC-117 strain. Considering the different capacities of the two bifidobacterium strains to activate toll-like receptor (TLR)-2 and their differential immunoregulatory activities in PIE and immune cells, we hypothesized that comparative studies with both strains could provide important information regarding the molecular mechanism(s) involved in the anti-inflammatory activity of bifidobacteria. In this work, we demonstrated that the anti-inflammatory effect of B. breve MCC-117 was achieved by a complex interaction of multiple negative regulators of TLRs as well as inhibition of multiple signaling pathways. We showed that B. breve MCC-117 reduced heat-stable ETEC PAMP-induced NF-κB, p38 MAPK and PI3 K activation and expression of pro-inflammatory cytokines in PIE cells. In addition, we demonstrated that B. breve MCC-117 may activate TLR2 synergistically and cooperatively with one or more other pattern recognition receptors (PRRs), and that interactions may result in a coordinated sum of signals that induce the upregulation of A20, Bcl-3, Tollip and SIGIRR. Upregulation of these negative regulators could have an important physiological impact on maintaining or reestablishing homeostatic TLR signals in PIE cells. Therefore, in the present study, we gained insight into the molecular mechanisms involved in the immunoregulatory effect of B. breve MCC-117. PMID:24936377

  18. Evidence that intramolecular interactions are involved in masking the activation domain of transcriptional activator Leu3p.

    PubMed

    Wang, D; Hu, Y; Zheng, F; Zhou, K; Kohlhaw, G B

    1997-08-01

    The Leu3 protein of Saccharomyces cerevisiae regulates the expression of genes involved in branched chain amino acid biosynthesis and in ammonia assimilation. It is modulated by alpha-isopropylmalate, an intermediate in leucine biosynthesis. In the presence of alpha-isopropylmalate, Leu3p is a transcriptional activator. In the absence of the signal molecule, the activation domain is masked, and Leu3p acts as a repressor. The recent discovery that Leu3p retains its regulatory properties when expressed in mammalian cells (Guo, H., and Kohlhaw, G. B. (1996) FEBS Lett. 390, 191-195) suggests that masking and unmasking of the activation domain occur without the participation of auxiliary proteins. Here we present experimental support for this notion and address the mechanism of masking. We show that modulation of Leu3p is exceedingly sensitive to mutations in the activation domain. An activation domain double mutant (D872N/D874N; designated Leu3-dd) was constructed that has the characteristics of a permanently masked activator. Using separately expressed segments containing either the DNA binding domain-middle region or the activation domain of wild type Leu3p (or Leu3-dd) in a modified yeast two-hybrid system, we provide direct evidence for alpha-isopropylmalate-dependent interaction between these segments. Finally, we use the phenotype of Leu3-dd-containing cells (slow growth in the absence of added leucine) to select for suppressor mutations that map to the middle region of Leu3-dd. The properties of nine such suppressors further support the idea that masking is an intramolecular process and suggest a means for mapping the surface involved in masking.

  19. Molecular Mechanisms of DNA Replication Checkpoint Activation

    PubMed Central

    Recolin, Bénédicte; van der Laan, Siem; Tsanov, Nikolay; Maiorano, Domenico

    2014-01-01

    The major challenge of the cell cycle is to deliver an intact, and fully duplicated, genetic material to the daughter cells. To this end, progression of DNA synthesis is monitored by a feedback mechanism known as replication checkpoint that is untimely linked to DNA replication. This signaling pathway ensures coordination of DNA synthesis with cell cycle progression. Failure to activate this checkpoint in response to perturbation of DNA synthesis (replication stress) results in forced cell division leading to chromosome fragmentation, aneuploidy, and genomic instability. In this review, we will describe current knowledge of the molecular determinants of the DNA replication checkpoint in eukaryotic cells and discuss a model of activation of this signaling pathway crucial for maintenance of genomic stability. PMID:24705291

  20. Mechanism and active variety of allelochemicals

    USGS Publications Warehouse

    Peng, S.-L.; Wen, J.; Guo, Q.-F.

    2004-01-01

    This article summarizes allelochemicals' active variety, its potential causes and function mechanisms. Allelochemicals' activity varies with temperature, photoperiod, water and soils during natural processes, with its initial concentration, compound structure and mixed degree during functional processes, with plant accessions, tissues and maturity within-species, and with research techniques and operation processes. The prospective developmental aspects of allelopathy studies in the future are discussed. Future research should focus on: (1) to identify and purify allelochemicals more effectively, especially for agriculture, (2) the functions of allelopathy at the molecular structure level, (3) using allelopathy to explain plant species interactions, (4) allelopathy as a driving force of succession, and (5) the significance of allelopathy in the evolutionary processes.

  1. Multiple allosteric sites are involved in the modulation of insulin-degrading-enzyme activity by somatostatin.

    PubMed

    Tundo, Grazia R; Di Muzio, Elena; Ciaccio, Chiara; Sbardella, Diego; Di Pierro, Donato; Polticelli, Fabio; Coletta, Massimo; Marini, Stefano

    2016-10-01

    Somatostatin is a cyclic peptide, released in the gastrointestinal system and the central nervous system, where it is involved in the regulation of cognitive and sensory functions, motor activity and sleep. It is a substrate of insulin-degrading enzyme (IDE), as well as a modulator of its activity and expression. In the present study, we have investigated the modulatory role of somatostatin on IDE activity at 37 °C and pH 7.3 for various substrates [i.e. insulin, β-amyloid (Aβ)1-40 and bradykinin], aiming to quantitatively characterize the correlation between the specific features of the substrates and the regulatory mechanism. Functional data indicate that somatostatin, in addition to the catalytic site of IDE (being a substrate), is also able to bind to two additional exosites, which play different roles according to the size of the substrate and its binding mode to the IDE catalytic cleft. In particular, one exosite, which displays high affinity for somatostatin, regulates only the interaction of IDE with larger substrates (such as insulin and Aβ1-40 ) in a differing fashion according to their various modes of binding to the enzyme. A second exosite, which is involved in the regulation of enzymatic processing by IDE of all substrates investigated (including a 10-25 amino acid long amyloid-like peptide, bradykinin and somatostatin itself, which had been studied previously), probably acts through the alteration of an 'open-closed' equilibrium.

  2. Organized activity involvement, depressive symptoms, and social adjustment in adolescents: ethnicity and socioeconomic status as moderators.

    PubMed

    Randall, Edin T; Bohnert, Amy M

    2009-10-01

    The current cross-sectional study investigated the links between various dimensions of organized activity involvement and depressive symptoms, loneliness, and peer victimization in an ethnically and economically diverse sample of adolescents (N = 152; 58% female). Results indicate that adolescents who were involved in organized activities for more years also reported lower levels of loneliness. There was evidence of diminishing returns when adolescents were very highly involved in organized activities; those who were either under- or over-involved reported the highest levels of depressive symptoms. Conversely, findings indicate that adolescents who participated in a narrow or wide range of activity contexts reported the lowest levels of depressive symptoms. In addition, results suggested that the relation between organized activity involvement and adjustment differs among adolescents from diverse ethnic and socioeconomic backgrounds. Findings from the current study also underscore the importance of considering multiple indices of activity involvement when assessing its association with adjustment.

  3. Laboratory activities involving transmissible spongiform encephalopathy causing agents

    PubMed Central

    Leunda, Amaya; Van Vaerenbergh, Bernadette; Baldo, Aline; Roels, Stefan; Herman, Philippe

    2013-01-01

    Since the appearance in 1986 of epidemic of bovine spongiform encephalopathy (BSE), a new form of neurological disease in cattle which also affected human beings, many diagnostic and research activities have been performed to develop detection and therapeutic tools. A lot of progress was made in better identifying, understanding and controlling the spread of the disease by appropriate monitoring and control programs in European countries. This paper reviews the recent knowledge on pathogenesis, transmission and persistence outside the host of prion, the causative agent of transmissible spongiform encephalopathies (TSE) in mammals with a particular focus on risk (re)assessment and management of biosafety measures to be implemented in diagnostic and research laboratories in Belgium. Also, in response to the need of an increasing number of European diagnostic laboratories stopping TSE diagnosis due to a decreasing number of TSE cases reported in the last years, decontamination procedures and a protocol for decommissioning TSE diagnostic laboratories is proposed. PMID:24055928

  4. Mechanisms of spontaneous activity in developing spinal networks.

    PubMed

    O'Donovan, M J; Chub, N; Wenner, P

    1998-10-01

    Developing networks of the chick spinal cord become spontaneously active early in development and remain so until hatching. Experiments using an isolated preparation of the spinal cord have begun to reveal the mechanisms responsible for this activity. Whole-cell and optical recordings have shown that spinal neurons receive a rhythmic, depolarizing synaptic drive and experience rhythmic elevations of intracellular calcium during spontaneous episodes. Activity is expressed throughout the neuraxis and can be produced by different parts of the cord and by the isolated brain stem, suggesting that it does not depend upon the details of network architecture. Two factors appear to be particularly important for the production of endogenous activity. The first is the predominantly excitatory nature of developing synaptic connections, and the second is the presence of prolonged activity-dependent depression of network excitability. The interaction between high excitability and depression results in an equilibrium in which episodes are expressed periodically by the network. The mechanism of the rhythmic bursting within an episode is not understood, but it may be due to a "fast" form of network depression. Spontaneous embryonic activity has been shown to play a role in neuron and muscle development, but is probably not involved in the initial formation of connections between spinal neurons. It may be important in refining the initial connections, but this possibility remains to be explored.

  5. Pathophysiology of major depressive disorder: mechanisms involved in etiology are not associated with clinical progression.

    PubMed

    Verduijn, J; Milaneschi, Y; Schoevers, R A; van Hemert, A M; Beekman, A T F; Penninx, B W J H

    2015-09-29

    Meta-analyses support the involvement of different pathophysiological mechanisms (inflammation, hypothalamic-pituitary (HPA)-axis, neurotrophic growth and vitamin D) in major depressive disorder (MDD). However, it remains unknown whether dysregulations in these mechanisms are more pronounced when MDD progresses toward multiple episodes and/or chronicity. We hypothesized that four central pathophysiological mechanisms of MDD are not only involved in etiology, but also associated with clinical disease progression. Therefore, we expected to find increasingly more dysregulation across consecutive stages of MDD progression. The sample from the Netherlands Study of Depression and Anxiety (18-65 years) consisted of 230 controls and 2333 participants assigned to a clinical staging model categorizing MDD in eight stages (0, 1A, 1B, 2, 3A, 3B, 3C and 4), from familial risk at MDD (stage 0) to chronic MDD (stage 4). Analyses of covariance examined whether pathophysiological mechanism markers (interleukin (IL)-6, C-reactive protein (CRP), cortisol, brain-derived neurotrophic factor and vitamin D) showed a linear trend across controls, those at risk for MDD (stages 0, 1A and 1B), and those with full-threshold MDD (stages 2, 3A, 3B, 3C and 4). Subsequently, pathophysiological differences across separate stages within those at risk and with full-threshold MDD were examined. A linear increase of inflammatory markers (CRP P=0.026; IL-6 P=0.090), cortisol (P=0.025) and decrease of vitamin D (P<0.001) was found across the entire sample (for example, from controls to those at risk and those with full-threshold MDD). Significant trends of dysregulations across stages were present in analyses focusing on at-risk individuals (IL-6 P=0.050; cortisol P=0.008; vitamin D P<0.001); however, no linear trends were found in dysregulations for any of the mechanisms across more progressive stages of full-threshold MDD. Our results support that the examined pathophysiological mechanisms are

  6. Impaired enzymatic defensive activity, mitochondrial dysfunction and proteasome activation are involved in RTT cell oxidative damage.

    PubMed

    Cervellati, Carlo; Sticozzi, Claudia; Romani, Arianna; Belmonte, Giuseppe; De Rasmo, Domenico; Signorile, Anna; Cervellati, Franco; Milanese, Chiara; Mastroberardino, Pier Giorgio; Pecorelli, Alessandra; Savelli, Vinno; Forman, Henry J; Hayek, Joussef; Valacchi, Giuseppe

    2015-10-01

    A strong correlation between oxidative stress (OS) and Rett syndrome (RTT), a rare neurodevelopmental disorder affecting females in the 95% of the cases, has been well documented although the source of OS and the effect of a redox imbalance in this pathology has not been yet investigated. Using freshly isolated skin fibroblasts from RTT patients and healthy subjects, we have demonstrated in RTT cells high levels of H2O2 and HNE protein adducts. These findings correlated with the constitutive activation of NADPH-oxidase (NOX) and that was prevented by a NOX inhibitor and iron chelator pre-treatment, showing its direct involvement. In parallel, we demonstrated an increase in mitochondrial oxidant production, altered mitochondrial biogenesis and impaired proteasome activity in RTT samples. Further, we found that the key cellular defensive enzymes: glutathione peroxidase, superoxide dismutase and thioredoxin reductases activities were also significantly lower in RTT. Taken all together, our findings suggest that the systemic OS levels in RTT can be a consequence of both: increased endogenous oxidants as well as altered mitochondrial biogenesis with a decreased activity of defensive enzymes that leads to posttranslational oxidant protein modification and a proteasome activity impairment.

  7. Mechanism of photodynamic activity of pheophorbides.

    PubMed

    Tanielian, C; Kobayashi, M; Wolff, C

    2001-04-01

    Plasmid DNA is efficiently photocleaved by sodium pheophorbides (Na-Phdes) a and b in the absence of oxygen as well as in the presence of oxygen. Fluorescence microscopic observation shows a rapid incorporation of Na-Phde a into nuclei, mitochondria, and lysosome of human oral mucosa cells. In contrast Na-Phde b is incorporated only into the plasma membrane. The photodynamic activity of these pigments in living tissues is probably determined by the monomeric pigment molecules formed in hydrophobic cellular structures and involves two types of reactions: (i) direct electron transfer between DNA bases (especially guanine) and pheophorbide singlet excited state, and (ii) indirect reactions mediated by reactive oxygen species, including singlet oxygen whose production from molecular oxygen is sensitized by the Na-Phdes triplet state. A preliminary report has appeared in "Photodynamic Therapy of Cancer II," Proc. SPIE 2325, 416-424 (1994).

  8. Anticancer Activity of Metal Complexes: Involvement of Redox Processes

    PubMed Central

    Jungwirth, Ute; Kowol, Christian R.; Keppler, Bernhard K.; Hartinger, Christian G.; Berger, Walter; Heffeter, Petra

    2012-01-01

    Cells require tight regulation of the intracellular redox balance and consequently of reactive oxygen species for proper redox signaling and maintenance of metal (e.g., of iron and copper) homeostasis. In several diseases, including cancer, this balance is disturbed. Therefore, anticancer drugs targeting the redox systems, for example, glutathione and thioredoxin, have entered focus of interest. Anticancer metal complexes (platinum, gold, arsenic, ruthenium, rhodium, copper, vanadium, cobalt, manganese, gadolinium, and molybdenum) have been shown to strongly interact with or even disturb cellular redox homeostasis. In this context, especially the hypothesis of “activation by reduction” as well as the “hard and soft acids and bases” theory with respect to coordination of metal ions to cellular ligands represent important concepts to understand the molecular modes of action of anticancer metal drugs. The aim of this review is to highlight specific interactions of metal-based anticancer drugs with the cellular redox homeostasis and to explain this behavior by considering chemical properties of the respective anticancer metal complexes currently either in (pre)clinical development or in daily clinical routine in oncology. PMID:21275772

  9. Inhibition of Fast Axonal Transport by Pathogenic SOD1 Involves Activation of p38 MAP Kinase

    PubMed Central

    Morfini, Gerardo A.; Bosco, Daryl A.; Brown, Hannah; Gatto, Rodolfo; Kaminska, Agnieszka; Song, Yuyu; Molla, Linda; Baker, Lisa; Marangoni, M. Natalia; Berth, Sarah; Tavassoli, Ehsan; Bagnato, Carolina; Tiwari, Ashutosh; Hayward, Lawrence J.; Pigino, Gustavo F.; Watterson, D. Martin; Huang, Chun-Fang; Banker, Gary; Brown, Robert H.; Brady, Scott T.

    2013-01-01

    Dying-back degeneration of motor neuron axons represents an established feature of familial amyotrophic lateral sclerosis (FALS) associated with superoxide dismutase 1 (SOD1) mutations, but axon-autonomous effects of pathogenic SOD1 remained undefined. Characteristics of motor neurons affected in FALS include abnormal kinase activation, aberrant neurofilament phosphorylation, and fast axonal transport (FAT) deficits, but functional relationships among these pathogenic events were unclear. Experiments in isolated squid axoplasm reveal that FALS-related SOD1 mutant polypeptides inhibit FAT through a mechanism involving a p38 mitogen activated protein kinase pathway. Mutant SOD1 activated neuronal p38 in mouse spinal cord, neuroblastoma cells and squid axoplasm. Active p38 MAP kinase phosphorylated kinesin-1, and this phosphorylation event inhibited kinesin-1. Finally, vesicle motility assays revealed previously unrecognized, isoform-specific effects of p38 on FAT. Axon-autonomous activation of the p38 pathway represents a novel gain of toxic function for FALS-linked SOD1 proteins consistent with the dying-back pattern of neurodegeneration characteristic of ALS. PMID:23776455

  10. Calpain activation is involved in acute manganese neurotoxicity in the rat striatum in vivo.

    PubMed

    Quintanar, Liliana; Montiel, Teresa; Márquez, Maripaz; González, Alejandra; Massieu, Lourdes

    2012-01-01

    Manganese is essential for life, yet chronic exposure to this metal can cause a neurodegenerative disease named manganism that affects motor function. In the present study we have evaluated Mn neurotoxicity after its administration in the rat striatum. The participation of the calcium-dependent protease calpain and the apoptosis-related protease caspase-3, in Mn-induced cell death was monitored in the striatum and globus pallidus. Mn induced the activation of both proteases, although calpain activation seems to be an earlier event. Moreover, while the broad-spectrum caspase inhibitor QVD did not significantly prevent Mn-induced cell death, the specific calpain inhibitor MDL-28170 did. The role of NMDA glutamate receptors on calpain activity was also investigated; blockage of these receptors by MK-801 and memantine did not prevent calpain activation, nor Mn-induced cell death. Finally, studies in striatal homogenates suggest a direct activation of calpain by Mn ions. Altogether the present study suggests that additional mechanisms to excitotoxicity are involved in Mn-induced cell death, placing calpain as an important mediator of acute Mn neurotoxicity in vivo.

  11. Longitudinal Modeling of Adolescents' Activity Involvement, Problem Peer Associations, and Youth Smoking

    PubMed Central

    Metzger, Aaron; Dawes, Nickki; Mermelstein, Robin; Wakschlag, Lauren

    2010-01-01

    Longitudinal associations among different types of organized activity involvement, problem peer associations, and cigarette smoking were examined in a sample of 1,040 adolescents (mean age = 15.62 at baseline, 16.89 at 15-month assessment, 17.59 at 24 months) enriched for smoking experimentation (83% had tried smoking). A structural equation model tested longitudinal paths between three categories of involvement (team sports, school clubs and activities, and religious activities, measured at baseline and 15 months), problem peer associations (baseline and 15 months), and cigarette smoking behavior (baseline and 24 months). Multi-group analyses indicated pathways differed by type of activity and adolescent gender. Boys’ baseline team sports and religious involvement predicted lower levels of smoking at 24 months via continued activity involvement at 15 months. Girls’ involvement in school clubs and activities and religious activities indirectly predicted lower levels of smoking at 24 months via reduced exposure to problem peers at 15 months. PMID:21603061

  12. NRF2 activation is involved in ozonated human serum upregulation of HO-1 in endothelial cells

    SciTech Connect

    Pecorelli, Alessandra; Bocci, Velio; Acquaviva, Alessandra; Belmonte, Giuseppe; Gardi, Concetta; Virgili, Fabio; Ciccoli, Lucia; Valacchi, Giuseppe

    2013-02-15

    During the last decade, it has been shown that the activation of NRF2 and the binding to electrophile-responsive element (EpREs), stimulates the expression of a great number of genes responsible for the synthesis of phase I and phase II proteins, including antioxidants enzymes and heme oxygenase-1 (HO-1). This critical cell response occurs in cardiovascular, degenerative and chronic infective diseases aggravated by a chronic oxidative stress. In our previous reports we have shown that ozonated plasma is able to up-regulate HO-1 expression in endothelial cells. In the present work we investigated a candidate mechanism involved in this process. After treatment with increasing doses of ozonated serum (20, 40 and 80 μg/mL O{sub 3} per mL of serum), a clear dose dependent activation of NRF2 and the subsequent induction of HO-1 and NAD(P)H quinone oxidoreductase 1(NQO1) was observed. This effect was also present when cells were treated with serum and hydrogen peroxide (H{sub 2}O{sub 2}) or serum and 4-hydroxynonenal (4HNE). Moreover, the treatment with ozonated serum was associated with a dose-dependent activation of extracellular-signal-regulated kinases (ERK1/2) and p38 MAP kinases (p38), not directly involved in NRF2 activation. These data, provide a new insight on the mechanism responsible for the induction of HO-1 expression by ozonated serum in the endothelium, and have a practical importance as an expedient approach to the treatment of patients with both effective orthodox drugs and ozonated autohemotherapy, targeted to the restoration of redox homeostasis. - Highlights: ► Endothelial HO1 is upregulated by ozonated plasma ► This activation is induced by NRF2 and it is ERK independent. ► 4HNE and H{sub 2}O{sub 2} are the main molecules involved in this process. ► Ozonated plasma induced a hormetic effect ► Combination of orthodox medicine and ozonated plasma can be a useful treatment.

  13. GABA(B) receptors and opioid mechanisms involved in homotaurine-induced analgesia.

    PubMed

    Serrano, M I; Serrano, J S; Fernández, A; Asadi, I; Serrano-Martino, M C

    1998-03-01

    1. The involvement of GABA(B) receptors and opioid mechanisms in homotaurine-induced analgesia has been investigated in current models of nociception by using a GABA(B) receptor antagonist, morphine, and naloxone. CGP 35348 (50-200 mg/kg IP), a highly selective GABA(B) antagonist, was administered prior to carrying out a dose-response curve of homotaurine (22.6-445 mg/kg IP) antinociceptive effect in the abdominal constriction (mice) and tail flick (rats) tests. 2. The tail flick test was performed in animals pretreated with morphine (0.5 mg/kg SC) and naloxone (1 mg/kg), 15 min before amino acid. Animals treated with saline 10 ml/kg (mice) or 1.25 ml/kg (rats) were included as control for the vehicle used. 3. CGP 35348 antagonized the antinociceptive effect of homotaurine in both tests. The range of doses affected by the interaction depended on the test assayed, but it was coincident for the main part of the dose-response curve. 4. A subanalgesic dose of morphine potentiated the antinociceptive effect of lower doses of homotaurine in the tail flick test. Naloxone pretreatment inhibited the antinociceptive effect of homotaurine. 5. These data imply that GABA(B) receptor subpopulations and opiate mechanisms are involved in the antinociceptive effect of homotaurine. Because functional relationships have been found between GABAergic and opiate systems in analgesic effects, an interaction of the two mechanisms may be operating in the effects described for homotaurine.

  14. Differential gene expression in seasonal sympatry: mechanisms involved in diverging life histories

    PubMed Central

    Peterson, Mark P.; Greives, Timothy J.; Atwell, Jonathan W.; Bridge, Eli S.; Ketterson, Ellen D.

    2016-01-01

    In an era of climate change, understanding the genetic and physiological mechanisms underlying flexibility in phenology and life history has gained greater importance. These mechanisms can be elucidated by comparing closely related populations that differ in key behavioural and physiological traits such as migration and timing of reproduction. We compared gene expression in two recently diverged dark-eyed Junco ( Junco hyemalis) subspecies that live in seasonal sympatry during winter and early spring, but that differ in behaviour and physiology, despite exposure to identical environmental cues. We identified 547 genes differentially expressed in blood and pectoral muscle. Genes involved in lipid transport and metabolism were highly expressed in migrant juncos, while genes involved in reproductive processes were highly expressed in resident breeders. Seasonal differences in gene expression in closely related populations residing in the same environment provide significant insights into mechanisms underlying variation in phenology and life history, and have potential implications for the role of seasonal timing differences in gene flow and reproductive isolation. PMID:26979563

  15. Predicting involvement in prison gang activity: street gang membership, social and psychological factors.

    PubMed

    Wood, Jane L; Alleyne, Emma; Mozova, Katarina; James, Mark

    2014-06-01

    The aim of this study was to examine whether street gang membership, psychological factors, and social factors such as preprison experiences could predict young offenders' involvement in prison gang activity. Data were collected via individual interviews with 188 young offenders held in a Young Offenders Institution in the United Kingdom. Results showed that psychological factors such as the value individuals attached to social status, a social dominance orientation, and antiauthority attitudes were important in predicting young offenders' involvement in prison gang activity. Further important predictors included preimprisonment events such as levels of threat, levels of individual delinquency, and levels of involvement in group crime. Longer current sentences also predicted involvement in prison gang activity. However, street gang membership was not an important predictor of involvement in prison gang activity. These findings have implications for identifying prisoners involved in prison gang activity and for considering the role of psychological factors and group processes in gang research.

  16. Combined Quantum Mechanical and Molecular Mechanics Studies of the Electron-Transfer Reactions Involving Carbon Tetrachloride in Solution

    SciTech Connect

    Valiev, Marat; Bylaska, Eric J.; Dupuis, Michel; Tratnyek, Paul G.

    2008-03-27

    The reductive dechlorination of carbon tetrachloride, CC₄, was investigated using combined high level quantum mechanical and molecular mechanics (QM/MM) approach. The first electron transfer process was assumed to proceed by a concerted electron transfer-bond breaking mechanism, and reaction barriers for the first electron reduction were estimated by using the crossing point of the free energy profiles of CCl₃-Cl and CCl₃-Cl•- as a function of the CCl₃-Cl distance. The results of these calculations showed that the activation barriers for this reaction are reachable under a wide range of reduction potentials. In the gas-phase, the barrier to reduction varied from 0.8 kcal/mol for reducing agent with a -5 kcal/mol work function to 24.7 kcal/mol for a reducing agent with a 40 kcal/mol work function at the CCSD(T)/aug-cc-pVDZ level. In the aqueous phase, QM/MM calculations at the CCSD(T)/aug-cc-pVDZ level predicted that the barrier to reduction varied from 0.7 kcal/mol to 35.2 kcal/mol for -2.32 V and 0.93 V reduction potentials respectively. COSMO continuum solvation calculations were also performed for comparison. For strong reducing agents (EH < -1.5V) very little difference was seen between the QM/MM and COSMO activation barriers. For weak reducing agents (EH > 0V) the activation barriers differed by as much as 6 kcal/mol between the QM/MM and COSMO calculations. These results demonstrate that ab initio electronic structure methods coupled with explicit molecular mechanics representation of the aqueous environment offer an efficient and accurate way to calculate the free energy reaction barriers for dissociative electron transfer reactions of organochlorine compounds to identify the potentially important environmental degradation processes.

  17. Mechanisms Involved in the Pro-Apoptotic Effect of Melatonin in Cancer Cells

    PubMed Central

    Rodriguez, Carmen; Martín, Vanesa; Herrera, Federico; García-Santos, Guillermo; Rodriguez-Blanco, Jezabel; Casado-Zapico, Sara; Sánchez-Sánchez, Ana María; Suárez, Santos; Puente-Moncada, Noelia; Anítua, María José; Antolín, Isaac

    2013-01-01

    It is well established that melatonin exerts antitumoral effects in many cancer types, mostly decreasing cell proliferation at low concentrations. On the other hand, induction of apoptosis by melatonin has been described in the last few years in some particular cancer types. The cytotoxic effect occurs after its administration at high concentrations, and the molecular pathways involved have been only partially determined. Moreover, a synergistic effect has been found in several cancer types when it is administered in combination with chemotherapeutic agents. In the present review, we will summarize published work on the pro-apoptotic effect of melatonin in cancer cells and the reported mechanisms involved in such action. We will also construct a hypothesis on how different cell signaling pathways may relate each other on account for such effect. PMID:23528889

  18. Mechanisms involved in the psychological distress of Black Caribbeans in the United States

    NASA Astrophysics Data System (ADS)

    Govia, Ishtar O.

    The mental health of ethnic minorities in the United States is of urgent concern. The accelerated growth of groups of ethnic minorities and immigrants in the United States and the stressors to which they are exposed, implores academic researchers to investigate more deeply health disparities and the factors that exacerbate or minimize such inequalities. This dissertation attended to that concern. It used data from the National Survey of American Life (NSAL), the first survey with a national representative sample of Black Caribbeans, to explore mechanisms that involved in the psychological distress of Black Caribbeans in the United States. In a series of three studies, the dissertation investigated the role and consequence of (1) chronic discrimination, immigration factors, and closeness to ethnic and racial groups; (2) personal control and social support; and (3) family relations and social roles in the psychological distress of Black Caribbeans. Study 1 examined how the associations between discrimination and psychological distress were buffered or exacerbated by closeness to ethnic group and closeness to racial group. It also examined how these associations differed depending on immigration factors. Results indicated that the buffering or exacerbating effect of ethnic and racial group closeness varied according to the type of discrimination (subtle or severe) and were more pronounced among those born in the United States. Using the stress process framework, Study 2 tested moderation and mediation models of the effects of social support and personal control in the association between discrimination and distress. Results from a series of analyses on 579 respondents suggested that personal control served as a mediator in this relationship and that emotional support exerted a direct distress deterring function. Study 3 investigated sex differences in the associations between social roles, intergenerational family relationship perceptions and distress. Results

  19. Pathogenic mechanisms involved in the hematological alterations of arenavirus-induced hemorrhagic fevers.

    PubMed

    Schattner, Mirta; Rivadeneyra, Leonardo; Pozner, Roberto G; Gómez, Ricardo M

    2013-01-21

    Viral hemorrhagic fevers (VHFs) caused by arenaviruses are acute diseases characterized by fever, headache, general malaise, impaired cellular immunity, eventual neurologic involvement, and hemostatic alterations that may ultimately lead to shock and death. The causes of the bleeding are still poorly understood. However, it is generally accepted that these causes are associated to some degree with impaired hemostasis, endothelial cell dysfunction and low platelet counts or function. In this article, we present the current knowledge about the hematological alterations present in VHF induced by arenaviruses, including new aspects on the underlying pathogenic mechanisms.

  20. Pathogenic Mechanisms Involved in the Hematological Alterations of Arenavirus-induced Hemorrhagic Fevers

    PubMed Central

    Schattner, Mirta; Rivadeneyra, Leonardo; Pozner, Roberto G.; Gómez, Ricardo M.

    2013-01-01

    Viral hemorrhagic fevers (VHFs) caused by arenaviruses are acute diseases characterized by fever, headache, general malaise, impaired cellular immunity, eventual neurologic involvement, and hemostatic alterations that may ultimately lead to shock and death. The causes of the bleeding are still poorly understood. However, it is generally accepted that these causes are associated to some degree with impaired hemostasis, endothelial cell dysfunction and low platelet counts or function. In this article, we present the current knowledge about the hematological alterations present in VHF induced by arenaviruses, including new aspects on the underlying pathogenic mechanisms. PMID:23337384

  1. 16 CFR 1031.5 - Criteria for Commission involvement in voluntary standards activities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ACTIVITIES General Policies § 1031.5 Criteria for Commission involvement in voluntary standards activities... share of product production. (g) Provisions in the standard for marking products conforming to...

  2. 75 FR 69630 - Impact of Implementation of the Chemical Weapons Convention on Commercial Activities Involving...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ...-0543-02] Impact of Implementation of the Chemical Weapons Convention on Commercial Activities Involving... Chemical Weapons Convention (CWC), through the Chemical Weapons Convention Implementation Act (CWCIA) and the Chemical Weapons Convention Regulations (CWCR), has had on commercial activities...

  3. Reaction mechanisms involved in reduction of halogenated hydrocarbons using sulfated iron

    SciTech Connect

    Hassan, S.M.; Cipollone, M.G.; Wolfe, N.L.

    1995-12-01

    Experiments were carried out to investigate the mechanisms and pathways involved in the reduction of halogenated hydrocarbons represented by trichloroethylene (TCE) and tetrachloroethylene (PCE) with sulfated iron aqueous media. Results suggested that iron sulfide acted as the dehalogenation center. Zero-valent iron acted as a generator for molecular hydrogen through its reaction with water. Results of experiments in which iron sulfide was replaced by other transition metal sulfides and experiments in which zero-valent iron was replaced by other sources of molecular hydrogen will be reported. The main reduction product of chloroethylene derivatives was ethyne which under the catalytic reaction of zero-valent iron was reduced further to ethene and finally to ethane. Intermediate products were identified using GC-MS. Mechanisms and pathways will be presented.

  4. Cholinergic deficiency involved in vascular dementia: possible mechanism and strategy of treatment

    PubMed Central

    Wang, Juan; Zhang, Hai-yan; Tang, Xi-can

    2009-01-01

    Vascular dementia (VaD) is a progressive neurodegenerative disease with a high prevalence. Several studies have recently reported that VaD patients present cholinergic deficits in the brain and cerebrospinal fluid (CSF) that may be closely related to the pathophysiology of cognitive impairment. Moreover, cholinergic therapies have shown promising effects on cognitive improvement in VaD patients. The precise mechanisms of these cholinergic agents are currently not fully understood; however, accumulating evidence indicates that these drugs may act through the cholinergic anti-inflammatory pathway, in which the efferent vagus nerve signals suppress pro-inflammatory cytokine release and inhibit inflammation, although regulation of oxidative stress and energy metabolism, alleviation of apoptosis may also be involved. In this paper, we provide a brief overview of the cholinergic treatment strategy for VaD and its relevant mechanisms of anti-inflammation. PMID:19574993

  5. CIPK23 is involved in iron acquisition of Arabidopsis by affecting ferric chelate reductase activity.

    PubMed

    Tian, Qiuying; Zhang, Xinxin; Yang, An; Wang, Tianzuo; Zhang, Wen-Hao

    2016-05-01

    Iron deficiency is one of the major limiting factors affecting quality and production of crops in calcareous soils. Numerous signaling molecules and transcription factors have been demonstrated to play a regulatory role in adaptation of plants to iron deficiency. However, the mechanisms underlying the iron deficiency-induced physiological processes remain to be fully dissected. Here, we demonstrated that the protein kinase CIPK23 was involved in iron acquisition. Lesion of CIPK23 rendered Arabidopsis mutants hypersensitive to iron deficiency, as evidenced by stronger chlorosis in young leaves and lower iron concentration than wild-type plants under iron-deficient conditions by down-regulating ferric chelate reductase activity. We found that iron deficiency evoked an increase in cytosolic Ca(2+) concentration and the elevated Ca(2+) would bind to CBL1/CBL9, leading to activation of CIPK23. These novel findings highlight the involvement of calcium-dependent CBL-CIPK23 complexes in the regulation of iron acquisition. Moreover, mutation of CIPK23 led to changes in contents of mineral elements, suggesting that CBL-CIPK23 complexes could be as "nutritional sensors" to sense and regulate the mineral homeostasis in Arabisopsis.

  6. Luminal and basolateral mechanisms involved in the renal tubular uptake of inorganic mercury

    SciTech Connect

    Zalups, R.K.; Minor, K.H.

    1995-09-01

    The present study provides evidence for the existence of both a luminal and a basolateral mechanism involved in the renal tubular uptake of inorganic mercury. The researchers compared the disposition of inorganic mercury in groups of surgical control rats, rats that underwent a unilateral ureteral ligation, and rats that underwent a bilateral ureteral ligation that were pretreated with either normal saline or a 7.5 mmol/kg intravenous dose of PAH 5 min prior to receiving a nontoxic 0.5-{mu}mol/kg intravenous dose of mercuric chloride. The {open_quotes}stop-flow{close_quotes} conditions induced by either unilateral or bilateral ureteral ligation caused a significant reduction in the uptake and content of mercury in the kidneys (whose ureter was ligated) both at 1 h and 24 h after the intravenous injection of the nontoxic dose of mercuric chloride. This decreased renal uptake of mercury was due specifically to decreased uptake of mercury in the renal cortex and outer stripe of the outer medulla. The amount of mercury has not taken up during ureteral ligation represents the portion of mercury that is presumably taken up by a luminal mechanism. Pretreatment with PAH also caused a significant reduction in the renal uptake of mercury in the cortex and outer stripe of the outer medulla. When either unilateral or bilateral ureteral ligation was combined with PAH pretreatment, an additive inhibitory effect occurred with respect to the renal uptake of mercury. In fact, the renal uptake of mercury was reduced by approximately 85% at 1 h after the injection of mercuric chloride. Since the luminal uptake of mercury was blocked by ureteral ligation, the effect of PAH on the renal uptake of mercury must have occurred at the basolateral membrane. Two distinct mechanisms are involved in mercury uptake, with one mechanism located on the luminal membrane and another located on the basolateral membrane. 22 refs., 11 figs., 2 tabs.

  7. Resistance to spiramycin in Streptomyces ambofaciens, the producer organism, involves at least two different mechanisms.

    PubMed

    Pernodet, J L; Alegre, M T; Blondelet-Rouault, M H; Guérineau, M

    1993-05-01

    During its stationary phase, Streptomyces ambofaciens produces the macrolide antibiotic spiramycin, and has to protect itself against this antibiotic. Young mycelia, not yet producing spiramycin, are sensitive to it, but they become fully resistant when production begins. In a sensitive mycelium, resistance could be induced by exposure to sub-inhibitory concentrations of spiramycin, and these induced mycelia, like producing mycelia were resistant not only to spiramycin but also to several other macrolide antibiotics. Ribosomes extracted from these resistant mycelia were shown in vitro to be more resistant to spiramycin than ribosomes extracted from sensitive mycelium, indicating that S. ambofaciens possesses a spiramycin-inducible ribosomal resistance to spiramycin and to macrolide antibiotics. Studies with spiramycin non-producing mutants showed that, in these mutants, resistance to spiramycin also varies during cultivation, in that an old culture was much more resistant than a young one. But with these non-producing mutants, the spectrum of resistance was narrower, and in vitro data showed that resistance was not due to ribosomal modification. These results suggest that S. ambofaciens presents at least two distinct mechanisms for spiramycin resistance; a spiramycin-inducible ribosomal resistance, and a second resistance mechanism which might be temporally regulated and which could involve decreased permeability to, or export of, the antibiotic. The two mechanisms are probably at work simultaneously in the producing mycelium, the spiramycin-inducible resistance being induced by endogenous spiramycin. In non-producing mutants, in the absence of self-induction by spiramycin, only the second mechanism is observed.

  8. The mechanism of sperm-egg interaction and the involvement of IZUMO1 in fusion.

    PubMed

    Inoue, Naokazu; Ikawa, Masahito; Okabe, Masaru

    2011-01-01

    An average human ejaculate contains over 100 million sperm, but only a few succeed in accomplishing the journey to an egg by migration through the female reproductive tract. Among these few sperm, only one participates in fertilization. There might be an ingenious molecular mechanism to ensure that the very best sperm fertilize an egg. However, recent gene disruption experiments in mice have revealed that many factors previously described as important for fertilization are largely dispensable. One could argue that the fertilization mechanism is made robust against gene disruptions. However, this is not likely, as there are already six different gene-disrupted mouse lines (Calmegin, Adam1a, Adam2, Adam3, Ace and Pgap1), all of which result in male sterility. The sperm from these animals are known to have defective zona-binding ability and at the same time lose oviduct-migrating ability. Concerning sperm-zona binding, the widely accepted involvement of sugar moiety on zona pellucida 3 (ZP3) is indicated to be dispensable by gene disruption experiments. Thus, the landscape of the mechanism of fertilization is revolving considerably. In the sperm-egg fusion process, CD9 on egg and IZUMO1 on sperm have emerged as essential factors. This review focuses on the mechanism of fertilization elucidated by gene-manipulated animals.

  9. Effects of negative air ions on activity of neural substrates involved in autonomic regulation in rats

    NASA Astrophysics Data System (ADS)

    Suzuki, Satoko; Yanagita, Shinya; Amemiya, Seiichiro; Kato, Yumi; Kubota, Natsuko; Ryushi, Tomoo; Kita, Ichiro

    2008-07-01

    The neural mechanism by which negative air ions (NAI) mediate the regulation of autonomic nervous system activity is still unknown. We examined the effects of NAI on physiological responses, such as blood pressure (BP), heart rate (HR), and heart rate variability (HRV) as well as neuronal activity, in the paraventricular nucleus of the hypothalamus (PVN), locus coeruleus (LC), nucleus ambiguus (NA), and nucleus of the solitary tract (NTS) with c-Fos immunohistochemistry in anesthetized, spontaneously breathing rats. In addition, we performed cervical vagotomy to reveal the afferent pathway involved in mediating the effects of NAI on autonomic regulation. NAI significantly decreased BP and HR, and increased HF power of the HRV spectrum. Significant decreases in c-Fos positive nuclei in the PVN and LC, and enhancement of c-Fos expression in the NA and NTS were induced by NAI. After vagotomy, these physiological and neuronal responses to NAI were not observed. These findings suggest that NAI can modulate autonomic regulation through inhibition of neuronal activity in PVN and LC as well as activation of NA neurons, and that these effects of NAI might be mediated via the vagus nerves.

  10. Mangiferin, a natural xanthone, accelerates gastrointestinal transit in mice involving cholinergic mechanism

    PubMed Central

    Morais, Talita Cavalcante; Lopes, Synara Cavalcante; Carvalho, Karine Maria Martins Bezerra; Arruda, Bruno Rodrigues; de Souza, Francisco Thiago Correia; Trevisan, Maria Teresa Salles; Rao, Vietla Satyanarayana; Santos, Flávia Almeida

    2012-01-01

    AIM: To investigate the effects of mangiferin on gastrointestinal transit (GIT) in normal and constipated mice, together with the possible mechanism. METHODS: Intragastrically-administered charcoal meal was used to measure GIT in overnight starved Swiss mice. In the first experiments, mangiferin (3 mg/kg, 10 mg/kg, 30 mg/kg, and 100 mg/kg, po) or tegaserod (1 mg/kg, ip) were administered 30 min before the charcoal meal to study their effects on normal transit. In the second series, mangiferin (30 mg/kg) was tested on delayed GIT induced by several different pharmacological agonists (morphine, clonidine, capsaicin) or antagonists (ondansetron, verapamil, and atropine) whereas in the third series, mangiferin (30 mg/kg, 100 mg/kg and 300 mg/kg) or tegaserod (1 mg/kg) were tested on 6 h fecal pellets outputted by freely fed mice. The ratio of wet to dry weight was calculated and used as a marker of fecal water content. RESULTS: Mangiferin administered orally significantly (P < 0.05) accelerated GIT at 30 mg/kg and 100 mg/kg (89% and 93%, respectively), similarly to 5-hydroxytryptamine4 (5-HT4) agonist tegaserod (81%) when compared to vehicle-treated control (63%). Co-administered mangiferin (30 mg/kg) totally reversed the inhibitory effect of opioid agonist morphine, 5-HT3-receptor antagonist ondansetron and transient receptor potential vanilloid-1 receptor agonist capsaicin on GIT, but only to a partial extent with the GIT-delay induced by α2-adrenoceptor agonist clonidine, and calcium antagonist verapamil. However, co-administered atropine completely blocked the stimulant effect of mangiferin on GIT, suggesting the involvement of muscarinic acetylcholine receptor activation. Although mangiferin significantly enhanced the 6 h fecal output at higher doses (245.5 ± 10.43 mg vs 161.9 ± 10.82 mg and 227.1 ± 20.11 mg vs 161.9 ± 10.82 mg of vehicle-treated control, at 30 and 100 mg/kg, P < 0.05, respectively), the effect of tegaserod was more potent (297.4 ± 7.42 mg

  11. Are serotonergic neurons involved in the control of anxiety and in the anxiolytic activity of benzodiazepines?

    PubMed

    Thiebot, M H

    1986-05-01

    Several studies have shown that, like benzodiazepines (BZP), treatments able to reduce or block the activity of CNS serotonergic (5-HT) neurons released punished behavior. Therefore, 5-HT mechanisms have been tentatively implicated in the anti-punishment (anxiolytic?) activity of BZP. Numerous data, however, are not in keeping with this hypothesis. Since not responding enables the animals to avoid punishment but also delays the receipt of food-reward, one of these factors could be an alteration of waiting capacities. Indeed, we have shown that diazepam released behavioral suppression in conflict schedules only when the duration of the punished periods exceeded 1 minute. Moreover, in rats allowed to choose in a T-maze between immediate-but-small vs. delayed-but-large reward, BZP significantly decreased the frequency with which the delayed reward was chosen, with 5-HT uptake blockers producing opposite effects. Therefore, one can hypothesize that BZP render the animals less prone than controls to tolerate delay of reward and that 5-HT mechanisms may be involved in this phenomenon. An altered tolerance to delay of reward should be taken into account when interpreting the BZP-induced release of behavioral inhibition in classical conflict procedures.

  12. Plasminogen Activator Inhibitor-1 Is Involved in Streptozotocin-Induced Bone Loss in Female Mice

    PubMed Central

    Tamura, Yukinori; Kawao, Naoyuki; Okada, Kiyotaka; Yano, Masato; Okumoto, Katsumi; Matsuo, Osamu; Kaji, Hiroshi

    2013-01-01

    In diabetic patients, the risk of fracture is high because of impaired bone formation. However, the details of the mechanisms in the development of diabetic osteoporosis remain unclear. In the current study, we investigated the role of plasminogen activator inhibitor (PAI)-1 in the pathogenesis of type 1 diabetic osteoporosis by using PAI-1–deficient mice. Quantitative computed tomography analysis showed that PAI-1 deficiency protected against streptozotocin-induced bone loss in female mice but not in male mice. PAI-1 deficiency blunted the changes in the levels of Runx2, osterix, and alkaline phosphatase in tibia as well as serum osteocalcin levels suppressed by the diabetic state in female mice only. Furthermore, the osteoclast levels in tibia, suppressed in diabetes, were also blunted by PAI-1 deficiency in female mice. Streptozotocin markedly elevated the levels of PAI-1 mRNA in liver in female mice only. In vitro study demonstrated that treatment with active PAI-1 suppressed the levels of osteogenic genes and mineralization in primary osteoblasts from female mouse calvaria. In conclusion, the current study indicates that PAI-1 is involved in the pathogenesis of type 1 diabetic osteoporosis in females. The expression of PAI-1 in the liver and the sensitivity of bone cells to PAI-1 may be an underlying mechanism. PMID:23715621

  13. TRPV4 channel is involved in the coupling of fluid viscosity changes to epithelial ciliary activity

    PubMed Central

    Andrade, Yaniré N.; Fernandes, Jacqueline; Vázquez, Esther; Fernández-Fernández, José M.; Arniges, Maite; Sánchez, Trinidad M.; Villalón, Manuel; Valverde, Miguel A.

    2005-01-01

    Autoregulation of the ciliary beat frequency (CBF) has been proposed as the mechanism used by epithelial ciliated cells to maintain the CBF and prevent the collapse of mucociliary transport under conditions of varying mucus viscosity. Despite the relevance of this regulatory response to the pathophysiology of airways and reproductive tract, the underlying cellular and molecular aspects remain unknown. Hamster oviductal ciliated cells express the transient receptor potential vanilloid 4 (TRPV4) channel, which is activated by increased viscous load involving a phospholipase A2–dependent pathway. TRPV4-transfected HeLa cells also increased their cationic currents in response to high viscous load. This mechanical activation is prevented in native ciliated cells loaded with a TRPV4 antibody. Application of the TRPV4 synthetic ligand 4α-phorbol 12,13-didecanoate increased cationic currents, intracellular Ca2+, and the CBF in the absence of a viscous load. Therefore, TRPV4 emerges as a candidate to participate in the coupling of fluid viscosity changes to the generation of the Ca2+ signal required for the autoregulation of CBF. PMID:15753126

  14. 5 CFR 1215.24 - Claims involving criminal activity or misconduct.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 3 2013-01-01 2013-01-01 false Claims involving criminal activity or misconduct. 1215.24 Section 1215.24 Administrative Personnel MERIT SYSTEMS PROTECTION BOARD ORGANIZATION AND PROCEDURES DEBT MANAGEMENT Claims Collection § 1215.24 Claims involving criminal activity or misconduct....

  15. 5 CFR 1215.24 - Claims involving criminal activity or misconduct.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 3 2014-01-01 2014-01-01 false Claims involving criminal activity or misconduct. 1215.24 Section 1215.24 Administrative Personnel MERIT SYSTEMS PROTECTION BOARD ORGANIZATION AND PROCEDURES DEBT MANAGEMENT Claims Collection § 1215.24 Claims involving criminal activity or misconduct....

  16. Breadth and Intensity of Youth Activity Involvement as Contexts for Positive Development

    ERIC Educational Resources Information Center

    Rose-Krasnor, Linda; Busseri, Michael A.; Willoughby, Teena; Chalmers, Heather

    2006-01-01

    Research has linked youth activity involvement to positive development. However, past studies have confounded at least two separable dimensions of involvement: breadth (number of activities) and intensity (participation frequency). Theory and the limited available evidence suggest that these dimensions may make independent contributions to…

  17. Ego Strength Development of Adolescents Involved in Adult-Sponsored Structured Activities.

    ERIC Educational Resources Information Center

    Markstrom, Carol A.; Li, Xaioming; Blackshire, Shana L.; Wilfong, Juanita J.

    2005-01-01

    A psychosocial conception of ego strengths is presented in relation to adolescent involvement in adult-sponsored structured youth activities. Five-hundred and seventeen high school students completed measures on their involvement in structured activities and on 8 ego strengths. Gender, age, and SES were controlled in a MANCOVA procedure and it was…

  18. 48 CFR 3452.224-71 - Notice about research activities involving human subjects.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... about the regulations for the protection of human subjects and related policies and guidelines... activities involving human subjects. 3452.224-71 Section 3452.224-71 Federal Acquisition Regulations System... Text of Provisions and Clauses 3452.224-71 Notice about research activities involving human...

  19. 5 CFR 1215.24 - Claims involving criminal activity or misconduct.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Claims involving criminal activity or misconduct. 1215.24 Section 1215.24 Administrative Personnel MERIT SYSTEMS PROTECTION BOARD ORGANIZATION AND PROCEDURES DEBT MANAGEMENT Claims Collection § 1215.24 Claims involving criminal activity or misconduct....

  20. Breadth and Intensity: Salient, Separable, and Developmentally Significant Dimensions of Structured Youth Activity Involvement

    ERIC Educational Resources Information Center

    Busseri, Michael A.; Rose-Krasnor, Linda

    2009-01-01

    In recent years, an impressive volume of evidence has accumulated demonstrating that youth involvement in structured, organized activities (e.g. school sports, community clubs) may facilitate positive youth development. We present a theory-based framework for studying structured activity involvement (SAI) as a context for positive youth…

  1. The Possible Mechanisms Involved in Degradation of Patulin by Pichia caribbica

    PubMed Central

    Zheng, Xiangfeng; Yang, Qiya; Zhang, Hongyin; Cao, Jing; Zhang, Xiaoyun; Apaliya, Maurice Tibiru

    2016-01-01

    In this work, we examined the mechanisms involved in the degradation of patulin by Pichia caribbica. Our results indicate that cell-free filtrate of P. caribbica reduced patutlin content. The heat-killed cells could not degrade patulin. However, the live cells significantly reduced the concentration of the patulin. In furtherance to this, it was observed that patulin was not detected in the broken yeast cells and cell wall. The addition of cycloheximide to the P. caribbica cells decreased the capacity of degradation of patulin. Proteomics analyses revealed that patulin treatment resulted in an upregulated protein which was involved in metabolism and stress response processes. Our results suggested that the mechanism of degradation of patulin by P. caribbica was not absorption; the presence of patulin can induce P. caribbica to produce associated intracellular and extracellular enzymes, both of which have the ability to degrade patulin. The result provides a new possible method that used the enzymes produced by yeast to detoxify patulin in food and feed. PMID:27735830

  2. Mechanism involved in phagocytosis and killing of Listeria monocytogenes by Acanthamoeba polyphaga.

    PubMed

    Akya, Alisha; Pointon, Andrew; Thomas, Connor

    2009-10-01

    Intra-cellular pathogen, Listeria monocytogenes, is capable of invasion and survival within mammalian cells. However, Acanthamoeba polyphaga trophozoites phagocytose and rapidly degrade Listeria cells. In order to provide more information on amoeba phagocytosis and killing mechanisms, this study used several inhibitor agents known to affect the phagocytosis and killing of bacteria by eukaryotes. Amoebae were pre-treated with mannose, cytochalasin D, wortmannin, suramin, ammonium chloride, bafilomycin A and monensin followed by co-culture with bacteria. Phagocytosis and killing of bacterial cells by amoeba trophozoites was assessed using plate counting methods and microscopy. The data presented indicates that actin polymerisation and cytoskeletal rearrangement are involved in phagocytosis of L. monocytogenes cells by A. polyphaga trophozoites. Further, both phagosomal acidification and phagosome-lysosome fusion are involved in killing and degradation of L. monocytogenes cells by A. polyphaga. However, the mannose-binding protein receptor does not play an important role in uptake of bacteria by amoeba trophozoites. In conclusion, this data reveals the similar principles of molecular mechanisms used by different types of eukaryotes in uptake and killing of bacteria.

  3. Soil biochar amendment as a climate change mitigation tool: Key parameters and mechanisms involved.

    PubMed

    Brassard, Patrick; Godbout, Stéphane; Raghavan, Vijaya

    2016-10-01

    Biochar, a solid porous material obtained from the carbonization of biomass under low or no oxygen conditions, has been proposed as a climate change mitigation tool because it is expected to sequester carbon (C) for centuries and to reduce greenhouse gas (GHG) emissions from soils. This review aimed to identify key biochar properties and production parameters that have an effect on these specific applications of the biochar. Moreover, mechanisms involved in interactions between biochar and soils were highlighted. Following a compilation and comparison of the characteristics of 76 biochars from 40 research studies, biochars with a lower N content, and consequently a higher C/N ratio (>30), were found to be more suitable for mitigation of N2O emissions from soils. Moreover, biochars produced at a higher pyrolysis temperature, and with O/C ratio <0.2, H/Corg ratio <0.4 and volatile matter below 80% may have high C sequestration potential. Based on these observations, biochar production and application to the field can be used as a tool to mitigate climate change. However, it is important to determine the pyrolysis conditions and feedstock needed to produce a biochar with the desired properties for a specific application. More research studies are needed to identify the exact mechanisms involved following biochar amendment to soil.

  4. Acid catalyzed alcoholysis of sulfinamides: unusual stereochemistry, kinetics and a question of mechanism involving sulfurane intermediates and their pseudorotation.

    PubMed

    Bujnicki, Bogdan; Drabowicz, Józef; Mikołajczyk, Marian

    2015-02-11

    The synthesis of optically active sulfinic acid esters has been accomplished by the acid catalyzed alcoholysis of optically active sulfinamides. Sulfinates are formed in this reaction with a full or predominant inversion of configuration at chiral sulfur or with predominant retention of configuration. The steric course of the reaction depends mainly on the size of the dialkylamido group in the sulfinamides and of the alcohols used as nucleophilic reagents. It has been found that bulky reaction components preferentially form sulfinates with retention of configuration. It has been demonstrated that the stereochemical outcome of the reaction can be changed from inversion to retention and vice versa by adding inorganic salts to the acidic reaction medium. The unusual stereochemistry of this typical bimolecular nucleophilic substitution reaction, as confirmed by kinetic measurements, has been rationalized in terms of the addition-elimination mechanism, A-E, involving sulfuranes as intermediates which undergo pseudorotations.

  5. Mechanisms of a novel anticancer therapeutic strategy involving atmospheric pressure plasma-mediated apoptosis and DNA strand break formation.

    PubMed

    Chung, Woo-Hyun

    2016-01-01

    Atmospheric pressure plasma has been developed for a variety of biomedical applications due to its chemically reactive components. Recently, the plasma has emerged as a promising novel cancer therapy based on its ability to selectively ablate cancer cells while leaving normal cells essentially unaffected. The therapeutic effect of plasma is attributed to intracellular generation of reactive oxygen/nitrogen species (ROS/RNS) leading to mitochondria-mediated apoptosis and to activation of the DNA damage checkpoint signaling pathway via severe DNA strand break formation. However, the biochemical mechanisms responsible for appropriate activation of these physiological events and which pathway is more crucial for plasma-mediated cytotoxicity have not been clarified. Understanding the molecular link between ROS/RNS-mediated apoptosis and DNA damage-involved chromosome instability is critical for the development of more efficacious therapeutic strategies for selective killing of diverse cancer cells.

  6. Involvement of a glibenclamide-sensitive mechanism in the nitrergic neurotransmission of the pig intravesical ureter

    PubMed Central

    Hernández, Medardo; Prieto, Dolores; Orensanz, Luis M; Barahona, María Victoria; Jiménez-Cidre, Miguel; Rivera, Luis; García-Sacristán, Albino; Simonsen, Ulf

    1997-01-01

    The present study was designed to investigate whether potassium (K+) channels are involved in the relaxations to nitric oxide (NO) of pig intravesical ureteral preparations suspended in organ baths for isometric tension recordings. In ureteral strips treated with guanethidine (10−5 M) and atropine (10−7 M) to block adrenergic neurotransmission and muscarinic receptors, respectively, NO was either released from nitrergic nerves by electrical field stimulation (EFS, 0.5–10 Hz, 1 ms duration, 20 s trains), or exogenously-applied as an acidified solution of sodium nitrite (NaNO2, 10−6–10−3 M).Incubation with an inhibitor of guanylate cyclase activation by NO, methylene blue (10−5 M) did not change the basal tension of intravesical ureteral strips but inhibited the relaxation induced by EFS or exogenous NO on ureteral preparations contracted with the thromboxane analogue U46619 (10−7 M).Incubation with charybdotoxin (3×10−8 M) and apamin (5×10−7 M), which are inhibitors of large and small conductance calcium (Ca2+)-activated K+ channels, respectively, did not modify basal tension or the relaxations induced by EFS and exogenous NO. Treatment with charybdotoxin or apamin plus methylene blue (10−5 M) significantly reduced the relaxations to EFS and exogenous NO. However, in both cases the reductions were similar to the inhibition evoked by methylene blue alone. The combined addition of charybdotoxin plus apamin did not change the relaxations to EFS or exogenously added NO of the porcine intravesical ureter.Cromakalim (10−8–3×10−6 M), an opener of ATP-sensitive K+ channels, evoked a dose-dependent relaxation with a pD2 of 7.3±0.2 and maximum relaxant effect of a 71.8±4.2% of the contraction induced by U46619 in the pig intravesical ureter. The blocker of ATP-sensitive K+ channels, glibenclamide (10−6 M), inhibited markedly the relaxations to cromakalim.Glibenclamide (10−6 M) had no effect on the basal tone of

  7. Involvement of ER stress and activation of apoptotic pathways in fisetin induced cytotoxicity in human melanoma.

    PubMed

    Syed, Deeba N; Lall, Rahul K; Chamcheu, Jean Christopher; Haidar, Omar; Mukhtar, Hasan

    2014-12-01

    The prognosis of malignant melanoma remains poor in spite of recent advances in therapeutic strategies for the deadly disease. Fisetin, a dietary flavonoid is currently being investigated for its growth inhibitory properties in various cancer models. We previously showed that fisetin inhibited melanoma growth in vitro and in vivo. Here, we evaluated the molecular basis of fisetin induced cytotoxicity in metastatic human melanoma cells. Fisetin treatment induced endoplasmic reticulum (ER) stress in highly aggressive A375 and 451Lu human melanoma cells, as revealed by up-regulation of ER stress markers including IRE1α, XBP1s, ATF4 and GRP78. Time course analysis indicated that the ER stress was associated with activation of the extrinsic and intrinsic apoptotic pathways. Fisetin treated 2-D melanoma cultures displayed autophagic response concomitant with induction of apoptosis. Prolonged treatment (16days) with fisetin in a 3-D reconstituted melanoma model resulted in inhibition of melanoma progression with significant apoptosis, as evidenced by increased staining of cleaved Caspase-3 in the treated constructs. However, no difference in the expression of autophagic marker LC-3 was noted between treated and control groups. Fisetin treatment to 2-D melanoma cultures resulted in phosphorylation and activation of the multifunctional AMP-activated protein kinase (AMPK) involved in the regulation of diverse cellular processes, including autophagy and apoptosis. Silencing of AMPK failed to prevent cell death indicating that fisetin induced cytotoxicity is mediated through both AMPK-dependent and -independent mechanisms. Taken together, our studies confirm apoptosis as the primary mechanism through which fisetin inhibits melanoma cell growth and that activation of both extrinsic and intrinsic pathways contributes to fisetin induced cytotoxicity.

  8. Mechanosensitive channels are activated by stress in the actin stress fibres, and could be involved in gravity sensing in plants.

    PubMed

    Tatsumi, H; Furuichi, T; Nakano, M; Toyota, M; Hayakawa, K; Sokabe, M; Iida, H

    2014-01-01

    Mechanosensitive (MS) channels are expressed in a variety of cells. The molecular and biophysical mechanism involved in the regulation of MS channel activities is a central interest in basic biology. MS channels are thought to play crucial roles in gravity sensing in plant cells. To date, two mechanisms have been proposed for MS channel activation. One is that tension development in the lipid bilayer directly activates MS channels. The second mechanism proposes that the cytoskeleton is involved in the channel activation, because MS channel activities are modulated by pharmacological treatments that affect the cytoskeleton. We tested whether tension in the cytoskeleton activates MS channels. Mammalian endothelial cells were microinjected with phalloidin-conjugated beads, which bound to stress fibres, and a traction force to the actin cytoskeleton was applied by dragging the beads with optical tweezers. MS channels were activated when the force was applied, demonstrating that a sub-pN force to the actin filaments activates a single MS channel. Plants may use a similar molecular mechanism in gravity sensing, since the cytoplasmic Ca(2+) concentration increase induced by changes in the gravity vector was attenuated by potential MS channel inhibitors, and by actin-disrupting drugs. These results support the idea that the tension increase in actin filaments by gravity-dependent sedimentation of amyloplasts activates MS Ca(2+) -permeable channels, which can be the molecular mechanism of a Ca(2+) concentration increase through gravistimulation. We review recent progress in the study of tension sensing by actin filaments and MS channels using advanced biophysical methods, and discuss their possible roles in gravisensing.

  9. Tetrahydrocannabinol induces brain mitochondrial respiratory chain dysfunction and increases oxidative stress: a potential mechanism involved in cannabis-related stroke.

    PubMed

    Wolff, Valérie; Schlagowski, Anna-Isabel; Rouyer, Olivier; Charles, Anne-Laure; Singh, François; Auger, Cyril; Schini-Kerth, Valérie; Marescaux, Christian; Raul, Jean-Sébastien; Zoll, Joffrey; Geny, Bernard

    2015-01-01

    Cannabis has potential therapeutic use but tetrahydrocannabinol (THC), its main psychoactive component, appears as a risk factor for ischemic stroke in young adults. We therefore evaluate the effects of THC on brain mitochondrial function and oxidative stress, key factors involved in stroke. Maximal oxidative capacities V max (complexes I, III, and IV activities), V succ (complexes II, III, and IV activities), V tmpd (complex IV activity), together with mitochondrial coupling (V max/V 0), were determined in control conditions and after exposure to THC in isolated mitochondria extracted from rat brain, using differential centrifugations. Oxidative stress was also assessed through hydrogen peroxide (H2O2) production, measured with Amplex Red. THC significantly decreased V max (-71%; P < 0.0001), V succ (-65%; P < 0.0001), and V tmpd (-3.5%; P < 0.001). Mitochondrial coupling (V max/V 0) was also significantly decreased after THC exposure (1.8±0.2 versus 6.3±0.7; P < 0.001). Furthermore, THC significantly enhanced H2O2 production by cerebral mitochondria (+171%; P < 0.05) and mitochondrial free radical leak was increased from 0.01±0.01 to 0.10±0.01% (P < 0.001). Thus, THC increases oxidative stress and induces cerebral mitochondrial dysfunction. This mechanism may be involved in young cannabis users who develop ischemic stroke since THC might increase patient's vulnerability to stroke.

  10. Tetrahydrocannabinol Induces Brain Mitochondrial Respiratory Chain Dysfunction and Increases Oxidative Stress: A Potential Mechanism Involved in Cannabis-Related Stroke

    PubMed Central

    Wolff, Valérie; Schlagowski, Anna-Isabel; Rouyer, Olivier; Charles, Anne-Laure; Singh, François; Auger, Cyril; Schini-Kerth, Valérie; Marescaux, Christian; Raul, Jean-Sébastien; Zoll, Joffrey; Geny, Bernard

    2015-01-01

    Cannabis has potential therapeutic use but tetrahydrocannabinol (THC), its main psychoactive component, appears as a risk factor for ischemic stroke in young adults. We therefore evaluate the effects of THC on brain mitochondrial function and oxidative stress, key factors involved in stroke. Maximal oxidative capacities Vmax (complexes I, III, and IV activities), Vsucc (complexes II, III, and IV activities), Vtmpd (complex IV activity), together with mitochondrial coupling (Vmax/V0), were determined in control conditions and after exposure to THC in isolated mitochondria extracted from rat brain, using differential centrifugations. Oxidative stress was also assessed through hydrogen peroxide (H2O2) production, measured with Amplex Red. THC significantly decreased Vmax (−71%; P < 0.0001), Vsucc (−65%; P < 0.0001), and Vtmpd (−3.5%; P < 0.001). Mitochondrial coupling (Vmax/V0) was also significantly decreased after THC exposure (1.8±0.2 versus 6.3±0.7; P < 0.001). Furthermore, THC significantly enhanced H2O2 production by cerebral mitochondria (+171%; P < 0.05) and mitochondrial free radical leak was increased from 0.01±0.01 to 0.10±0.01% (P < 0.001). Thus, THC increases oxidative stress and induces cerebral mitochondrial dysfunction. This mechanism may be involved in young cannabis users who develop ischemic stroke since THC might increase patient's vulnerability to stroke. PMID:25654095

  11. Mechanism of ascaridole activation in Leishmania.

    PubMed

    Geroldinger, Gerald; Tonner, Matthias; Hettegger, Hubert; Bacher, Markus; Monzote, Lianet; Walter, Martin; Staniek, Katrin; Rosenau, Thomas; Gille, Lars

    2017-03-02

    values for Art. In a heme association assay Asc demonstrated a lower binding affinity to heme than Art. ICP-OES measurements revealed that in LtP the total iron concentrations were twice as high as values in J774 macrophages. Since low molecular iron was important in Asc activation we studied the influence of Asc on the labile iron pool (LIP) in LtP. Low temperature EPR experiments demonstrated that Asc shifts the redox balance of iron in the LIP to its oxidized state. These data demonstrate that univalent cleavage of Asc/Art in LtP is an essential part of their pharmacological mechanism. The structure of the EP determines whether activation by low molecular iron or heme is favored and the availability of these intracellular activators modulates their cytotoxicity. These findings may be helpful for synthesis of new Asc derivatives and understanding the action of EP in other cell types.

  12. Mitochondrial DNA replication proceeds via a ‘bootlace’ mechanism involving the incorporation of processed transcripts

    PubMed Central

    Reyes, Aurelio; Kazak, Lawrence; Wood, Stuart R.; Yasukawa, Takehiro; Jacobs, Howard T.; Holt, Ian J.

    2013-01-01

    The observation that long tracts of RNA are associated with replicating molecules of mitochondrial DNA (mtDNA) suggests that the mitochondrial genome of mammals is copied by an unorthodox mechanism. Here we show that these RNA-containing species are present in living cells and tissue, based on interstrand cross-linking. Using DNA synthesis in organello, we demonstrate that isolated mitochondria incorporate radiolabeled RNA precursors, as well as DNA precursors, into replicating DNA molecules. RNA-containing replication intermediates are chased into mature mtDNA, to which they are thus in precursor–product relationship. While a DNA chain terminator rapidly blocks the labeling of mitochondrial replication intermediates, an RNA chain terminator does not. Furthermore, processed L-strand transcripts can be recovered from gel-extracted mtDNA replication intermediates. Therefore, instead of concurrent DNA and RNA synthesis, respectively, on the leading and lagging strands, preformed processed RNA is incorporated as a provisional lagging strand during mtDNA replication. These findings indicate that RITOLS is a physiological mechanism of mtDNA replication, and that it involves a ‘bootlace' mechanism, in which processed transcripts are successively hybridized to the lagging-strand template, as the replication fork advances. PMID:23595151

  13. Identification of an ovarian voltage-activated Na+-channel type: hints to involvement in luteolysis.

    PubMed

    Bulling, A; Berg, F D; Berg, U; Duffy, D M; Stouffer, R L; Ojeda, S R; Gratzl, M; Mayerhofer, A

    2000-07-01

    An endocrine type of voltage-activated sodium channel (eNaCh) was identified in the human ovary and human luteinized granulosa cells (GC). Whole-cell patch-clamp studies showed that the eNaCh in GC is functional and tetrodotoxin (TTX) sensitive. The luteotrophic hormone human CG (hCG) was found to decrease the peak amplitude of the sodium current within seconds. Treatment with hCG for 24-48 h suppressed not only eNaCh mRNA levels, but also mean Na+ peak currents and resting membrane potentials. An unexpected role for eNaChs in regulating cell morphology and function was indicated after pharmacological modulation of presumed eNaCh steady-state activity in GC cultures for 24-48 h using TTX (NaCh blocker) and veratridine (NaCh activator). TTX preserved a highly differentiated cellular phenotype. Veratridine not only increased the number of secondary lysosomes but also led to a significantly reduced progesterone production. Importantly, endocrine cells of the nonhuman primate corpus luteum (CL), which represent in vivo counterparts of luteinized GC, also contain eNaCh mRNA. Although the mechanism of channel activity under physiological conditions is not clear, it may include persistent Na+ currents. As observed in GC in culture, abundant secondary lysosomes were particularly evident in the regressing CL, suggesting a functional link between eNaCh activity and this form of cellular regression in vivo. Our results identify eNaCh in ovarian endocrine cells and demonstrate that their expression is under the inhibitory control of hCG. Activation of eNaChs in luteal cells, due to loss of gonadotropin support, may initiate a cascade of events leading to decreased CL function, a process that involves lysosomal activation and autophagy. These results imply that ovarian eNaChs are involved in the physiological demise of the temporary endocrine organ CL in the primate ovary during the menstrual cycle. Because commonly used drugs, including phenytoin, target NaChs, these results

  14. Mechanism of action of peptidoglycan O-acetyltransferase B involves a Ser-His-Asp catalytic triad.

    PubMed

    Moynihan, Patrick J; Clarke, Anthony J

    2014-10-07

    The O-acetylation of the essential cell wall polymer peptidoglycan is essential in many bacteria for their integrity and survival, and it is catalyzed by peptidoglycan O-acetlytransferase B (PatB). Using PatB from Neisseria gonorrhoeae as the model, we have shown previously that the enzyme has specificity for polymeric muropeptides that possess tri- and tetrapeptide stems and that rates of reaction increase with increasing degrees of polymerization. Here, we present the catalytic mechanism of action of PatB, the first to be described for an O-acetyltransferase of any bacterial exopolysaccharide. The influence of pH on PatB activity was investigated, and pKa values of 6.4-6.45 and 6.25-6.35 for the enzyme-substrate complex (kcat vs pH) and the free enzyme (kcat·KM(-1) vs pH), respectively, were determined for the respective cosubstrates. The enzyme is partially inactivated by sulfonyl fluorides but not by EDTA, suggesting the participation of a serine residue in its catalytic mechanism. Alignment of the known and hypothetical PatB amino acid sequences identified Ser133, Asp302, and His305 as three invariant amino acid residues that could potentially serve as a catalytic triad. Replacement of Asp302 with Ala resulted in an enzyme with less than 20% residual activity, whereas activity was barely detectable with (His305 → Ala)PatB and (Ser133 → Ala)PatB was totally inactive. The reaction intermediate of the transferase reaction involving acetyl- and propionyl-acyl donors was trapped on both the wild-type and (Asp302 → Ala) enzymes and LC-MS/MS analysis of tryptic peptides identified Ser133 as the catalytic nucleophile. A transacetylase mechanism is proposed based on the mechanism of action of serine esterases.

  15. Transmembrane myosin chitin synthase involved in mollusc shell formation produced in Dictyostelium is active

    SciTech Connect

    Schoenitzer, Veronika; Eichner, Norbert; Clausen-Schaumann, Hauke; Weiss, Ingrid M.

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Dictyostelium produces the 264 kDa myosin chitin synthase of bivalve mollusc Atrina. Black-Right-Pointing-Pointer Chitin synthase activity releases chitin, partly associated with the cell surface. Black-Right-Pointing-Pointer Membrane extracts of transgenic slime molds produce radiolabeled chitin in vitro. Black-Right-Pointing-Pointer Chitin producing Dictyostelium cells can be characterized by atomic force microscopy. Black-Right-Pointing-Pointer This model system enables us to study initial processes of chitin biomineralization. -- Abstract: Several mollusc shells contain chitin, which is formed by a transmembrane myosin motor enzyme. This protein could be involved in sensing mechanical and structural changes of the forming, mineralizing extracellular matrix. Here we report the heterologous expression of the transmembrane myosin chitin synthase Ar-CS1 of the bivalve mollusc Atrina rigida (2286 amino acid residues, M.W. 264 kDa/monomer) in Dictyostelium discoideum, a model organism for myosin motor proteins. Confocal laser scanning immunofluorescence microscopy (CLSM), chitin binding GFP detection of chitin on cells and released to the cell culture medium, and a radiochemical activity assay of membrane extracts revealed expression and enzymatic activity of the mollusc chitin synthase in transgenic slime mold cells. First high-resolution atomic force microscopy (AFM) images of Ar-CS1 transformed cellulose synthase deficient D. discoideumdcsA{sup -} cell lines are shown.

  16. Transient neural activation in human amygdala involved in aversive conditioning of face and voice.

    PubMed

    Iidaka, Tetsuya; Saito, Daisuke N; Komeda, Hidetsugu; Mano, Yoko; Kanayama, Noriaki; Osumi, Takahiro; Ozaki, Norio; Sadato, Norihiro

    2010-09-01

    Elucidating the neural mechanisms involved in aversive conditioning helps find effective treatments for psychiatric disorders such as anxiety disorder and phobia. Previous studies using fMRI and human subjects have reported that the amygdala plays a role in this phenomenon. However, the noxious stimuli that were used as unconditioned stimuli in previous studies (e.g., electric shock) might have been ecologically invalid because we seldom encounter such stimuli in daily life. Therefore, we investigated whether a face stimulus could be conditioned by using a voice that had negative emotional valence and was collected from a real-life environment. A skin conductance response showed that healthy subjects were conditioned by using these stimuli. In an fMRI study, there was greater amygdala activation in response to the faces that had been paired with the voice than to those that had not. The right amygdala showed transient activity in the early stage of acquisition. A psychophysiological interaction analysis indicated that the subcortical pathway from the medial geniculate body to the amygdala played a role in conditioning. Modulation of the subcortical pathway by voice stimuli preceded the transient activity in the amygdala. The finding that an ecologically valid stimulus elicited the conditioning and amygdala response suggests that our brain is automatically processing unpleasant stimuli in daily life.

  17. Protein receptor for activated C kinase 1 is involved in morphine reward in mice.

    PubMed

    Wan, L; Su, L; Xie, Y; Liu, Y; Wang, Y; Wang, Z

    2009-07-07

    Opiate addiction is associated with upregulation of cAMP signaling in the brain. cAMP-responsive element binding protein (CREB), a nuclear transcription factor, is a downstream component of the extracellular signal-regulated protein kinase (ERK) pathway, which has been shown to regulate different physiological and psychological responses of drug addiction. RACK1, the protein receptor for activated C kinase 1, is a multifunctional scaffolding protein known to be a key regulator of various signaling cascades in the CNS. RACK1 functions specifically in integrin mediated activation of ERK cascade and targets active ERK. We examined if RACK1 is involved in the mechanism of drug addiction by regulating CREB in mouse hippocampus and prefrontal cortex. Several expressions were observed. Chronic administration of morphine made the expression of RACK1 and CREB mRNA increase in hippocampus and prefrontal cortex. The expression of RACK1 and CREB protein was strongly positive in CA1, CA3 and dentate gyrus (DG) of the hippocampus of morphine-treated mice brain, especially the pyramidal neurons in the DG of the hippocampus. Using the small interfering RNA technology, we determined that the expression of CREB mRNA was decreased in hippocampus and prefrontal cortex of morphine-treated mice. The expression of RACK1 and CREB protein was negative in CA1, CA3 and DG of hippocampus. These findings suggest that morphine reward can influence the expression of RACK1 in mouse hippocampus and prefrontal cortex through regulating CREB transcription.

  18. Genes and mechanisms involved in beta-amyloid generation and Alzheimer's disease.

    PubMed

    Steiner, H; Capell, A; Leimer, U; Haass, C

    1999-01-01

    Alzheimer's disease is characterized by the invariable accumulation of senile plaques that are predominantly composed of amyloid beta-peptide (Abeta). Abeta is generated by proteolytic processing of the beta-amyloid precursor protein (betaAPP) involving the combined action of beta- and gamma-secretase. Cleavage within the Abeta domain by alpha-secretase prevents Abeta generation. In some very rare cases of familial AD (FAD), mutations have been identified within the betaAPP gene. These mutations are located close to or at the cleavage sites of the secretases and pathologically effect betaAPP processing by increasing Abeta production, specifically its highly amyloidogenic 42 amino acid variant (Abeta42). Most of the mutations associated with FAD have been identified in the two presenilin (PS) genes, particularly the PS1 gene. Like the mutations identified within the betaAPP gene, mutations in PS1 and PS2 cause the increased generation of Abeta42. PS1 has been shown to be functionally involved in Notch signaling, a key process in cellular differentation, and in betaAPP processing. A gene knock out of PS1 in mice leads to an embryonic lethal phenotype similar to that of mice lacking Notch. In addition, absence of PS1 results in reduced gamma-secretase cleavage and leads to an accumulation of betaAPP C-terminal fragments and decreased amounts of Abeta. Recent work may suggest that PS1 could be the gamma-secretase itself, exhibiting the properties of a novel aspartyl protease. Mutagenesis of either of two highly conserved intramembraneous aspartate residues of PS1 leads to reduced Abeta production as observed in the PS1 knockout. A corresponding mutation in PS2 interfered with betaAPP processing and Notch signaling suggesting a functional redundancy of both presenilins. In this issue, some of the recent work on the molecular mechanisms involved in Alzheimer's disease (AD) as well as novel diagnostic approaches and risk factors for AD will be discussed. In the first

  19. Novel mechanism for scavenging of hypochlorite involving a periplasmic methionine-rich peptide and methionine sulfoxide reductase

    SciTech Connect

    Melnyk, Ryan A.; Youngblut, Matthew D.; Clark, Iain C.; Carlson, Hans K.; Wetmore, Kelly M.; Price, Morgan N.; Lavarone, Anthony T.; Deutschbauer, Adam M.; Arkin, Adam P.; Coates, John D.

    2015-05-12

    Reactive chlorine species (RCS) defense mechanisms are important for bacterial fitness in diverse environments. In addition to the anthropogenic use of RCS in the form of bleach, these compounds are also produced naturally through photochemical reactions of natural organic matter and in vivo by the mammalian immune system in response to invading microorganisms. To gain insight into bacterial RCS defense mechanisms, we investigated Azospira suillum strain PS, which produces periplasmic RCS as an intermediate of perchlorate respiration. Our studies identified an RCS response involving an RCS stress-sensing sigma/anti-sigma factor system (SigF/NrsF), a soluble hypochlorite-scavenging methionine-rich periplasmic protein (MrpX), and a putative periplasmic methionine sulfoxide reductase (YedY1). We investigated the underlying mechanism by phenotypic characterization of appropriate gene deletions, chemogenomic profiling of barcoded transposon pools, transcriptome sequencing, and biochemical assessment of methionine oxidation. Our results demonstrated that SigF was specifically activated by RCS and initiated the transcription of a small regulon centering around yedY1 and mrpX. A yedY1 paralog (yedY2) was found to have a similar fitness to yedY1 despite not being regulated by SigF. Markerless deletions of yedY2 confirmed its synergy with the SigF regulon. MrpX was strongly induced and rapidly oxidized by RCS, especially hypochlorite. Our results suggest a mechanism involving hypochlorite scavenging by sacrificial oxidation of the MrpX in the periplasm. Reduced MrpX is regenerated by the YedY methionine sulfoxide reductase activity. The phylogenomic distribution of this system revealed conservation in several Proteobacteria of clinical importance, including uropathogenic Escherichia coli and Brucella spp., implying a putative role in immune response evasion in vivo. In addition, bacteria are often

  20. Novel mechanism for scavenging of hypochlorite involving a periplasmic methionine-rich peptide and methionine sulfoxide reductase

    DOE PAGES

    Melnyk, Ryan A.; Youngblut, Matthew D.; Clark, Iain C.; ...

    2015-05-12

    Reactive chlorine species (RCS) defense mechanisms are important for bacterial fitness in diverse environments. In addition to the anthropogenic use of RCS in the form of bleach, these compounds are also produced naturally through photochemical reactions of natural organic matter and in vivo by the mammalian immune system in response to invading microorganisms. To gain insight into bacterial RCS defense mechanisms, we investigated Azospira suillum strain PS, which produces periplasmic RCS as an intermediate of perchlorate respiration. Our studies identified an RCS response involving an RCS stress-sensing sigma/anti-sigma factor system (SigF/NrsF), a soluble hypochlorite-scavenging methionine-rich periplasmic protein (MrpX), and amore » putative periplasmic methionine sulfoxide reductase (YedY1). We investigated the underlying mechanism by phenotypic characterization of appropriate gene deletions, chemogenomic profiling of barcoded transposon pools, transcriptome sequencing, and biochemical assessment of methionine oxidation. Our results demonstrated that SigF was specifically activated by RCS and initiated the transcription of a small regulon centering around yedY1 and mrpX. A yedY1 paralog (yedY2) was found to have a similar fitness to yedY1 despite not being regulated by SigF. Markerless deletions of yedY2 confirmed its synergy with the SigF regulon. MrpX was strongly induced and rapidly oxidized by RCS, especially hypochlorite. Our results suggest a mechanism involving hypochlorite scavenging by sacrificial oxidation of the MrpX in the periplasm. Reduced MrpX is regenerated by the YedY methionine sulfoxide reductase activity. The phylogenomic distribution of this system revealed conservation in several Proteobacteria of clinical importance, including uropathogenic Escherichia coli and Brucella spp., implying a putative role in immune response evasion in vivo. In addition, bacteria are often stressed in the environment by reactive chlorine species (RCS) of

  1. Influence of mechanical activation of steel powder on its properties

    NASA Astrophysics Data System (ADS)

    Vaulina, O. Yu; Darenskaia, E. A.; Myachin, Y. V.; Vasilyeva, I. E.; Kulkov, S. N.

    2017-02-01

    It has been studied properties of stainless steel based powders after mechanical activation using planetary ball milling technique. It have been shown that after one minute mechanical activation porosity of sintered steel is less than 5%, which is less than the porosity of the sintered steel powder without mechanical activation. The sample without activation has austenite state, which changes after activation toaustenite and ferrite mixtures. X-ray analysis confirmed that the mechanical activation leads to a change in the phase state of the samples: the samples without activation of the FCC structure (γ-Fe), after activation - FCC (γ-Fe) and BCC (α-Fe). The hardness increases at increasing activation time from 800 MPa for the sample without mechanical activation to 1250 MPa for the sample with the activation time of 10 minutes.

  2. Inhibition of proteasome activity is involved in cobalt-induced apoptosis of human alveolar macrophages.

    PubMed

    Araya, Jun; Maruyama, Muneharu; Inoue, Akira; Fujita, Tadashi; Kawahara, Junko; Sassa, Kazuhiko; Hayashi, Ryuji; Kawagishi, Yukio; Yamashita, Naohiro; Sugiyama, Eiji; Kobayashi, Masashi

    2002-10-01

    Inhalation of particulate cobalt has been known to induce interstitial lung disease. There is growing evidence that apoptosis plays a crucial role in physiological and pathological settings and that the ubiquitin-proteasome system is involved in the regulation of apoptosis. Cadmium, the same transitional heavy metal as cobalt, has been reported to accumulate ubiquitinated proteins in neuronal cells. On the basis of these findings, we hypothesized that cobalt would induce apoptosis in the lung by disturbance of the ubiquitin-proteasome pathway. To evaluate this, we exposed U-937 cells and human alveolar macrophages (AMs) to cobalt chloride (CoCl(2)) and examined their apoptosis by DNA fragmentation assay, 4',6-diamidino-2'-phenylindol dihydrochloride staining, and Western blot analysis. CoCl(2) induced apoptosis and accumulated ubiquitinated proteins. Exposure to CoCl(2) inhibited proteasome activity in U-937 cells. Cobalt-induced apoptosis was mediated via mitochondrial pathway because CoCl(2) released cytochrome c from mitochondria. These results suggest that cobalt-induced apoptosis of AMs may be one of the mechanisms for cobalt-induced lung injury and that the accumulation of ubiquitinated proteins might be involved in this apoptotic process.

  3. Coral bleaching under thermal stress: putative involvement of host/symbiont recognition mechanisms

    PubMed Central

    Vidal-Dupiol, Jeremie; Adjeroud, Mehdi; Roger, Emmanuel; Foure, Laurent; Duval, David; Mone, Yves; Ferrier-Pages, Christine; Tambutte, Eric; Tambutte, Sylvie; Zoccola, Didier; Allemand, Denis; Mitta, Guillaume

    2009-01-01

    Background Coral bleaching can be defined as the loss of symbiotic zooxanthellae and/or their photosynthetic pigments from their cnidarian host. This major disturbance of reef ecosystems is principally induced by increases in water temperature. Since the beginning of the 1980s and the onset of global climate change, this phenomenon has been occurring at increasing rates and scales, and with increasing severity. Several studies have been undertaken in the last few years to better understand the cellular and molecular mechanisms of coral bleaching but the jigsaw puzzle is far from being complete, especially concerning the early events leading to symbiosis breakdown. The aim of the present study was to find molecular actors involved early in the mechanism leading to symbiosis collapse. Results In our experimental procedure, one set of Pocillopora damicornis nubbins was subjected to a gradual increase of water temperature from 28°C to 32°C over 15 days. A second control set kept at constant temperature (28°C). The differentially expressed mRNA between the stressed states (sampled just before the onset of bleaching) and the non stressed states (control) were isolated by Suppression Subtractive Hybridization. Transcription rates of the most interesting genes (considering their putative function) were quantified by Q-RT-PCR, which revealed a significant decrease in transcription of two candidates six days before bleaching. RACE-PCR experiments showed that one of them (PdC-Lectin) contained a C-Type-Lectin domain specific for mannose. Immunolocalisation demonstrated that this host gene mediates molecular interactions between the host and the symbionts suggesting a putative role in zooxanthellae acquisition and/or sequestration. The second gene corresponds to a gene putatively involved in calcification processes (Pdcyst-rich). Its down-regulation could reflect a trade-off mechanism leading to the arrest of the mineralization process under stress. Conclusion Under thermal

  4. Involvement of endothelium-dependent and -independent mechanisms in midazolam-induced vasodilation.

    PubMed

    Colussi, Gian Luca; Di Fabio, Alessandro; Catena, Cristiana; Chiuch, Alessandra; Sechi, Leonardo A

    2011-08-01

    Benzodiazepine (BDZ) infusion has been shown to reduce blood pressure in both humans and animals. Although the inhibitory effects of BDZ on the central nervous system have been well documented, less is known about the direct effects of BDZ on the vascular bed. The aims of this study were to assess the effects of the BDZ midazolam on the vascular system in C57/BL6 mouse aortic rings and to investigate the mechanisms of its direct vascular action. We found that midazolam induced reversible, dose-dependent vasodilation in potassium- and phenylephrine-precontracted rings. In rings that were precontracted with potassium or phenylephrine, treatment with 10 μmol l(-1) midazolam increased vasodilation by 15 and 60%, respectively, compared with baseline. Vasodilation increased by 80 and 87%, respectively, after treatment with 50 μmol l(-1) midazolam. Only the low concentration of midazolam (10 μmol l(-1)) induced endothelium-dependent vasodilation in phenylephrine-precontracted rings. Vasodilation increased by 60% in rings with endothelium and by 20% in rings without endothelium. Conversely, only the high concentration of midazolam (50 μmol l(-1)) reduced the CaCl(2)-induced vasoconstriction of aortic rings with EC(50) (the concentration giving 50% of the maximal effect) values of 1 and 6 mmol l(-1) for vehicle- and midazolam-treated rings, respectively. Furthermore, the incubation of phenylephrine-precontracted rings with an inhibitor of the nitric oxide synthase (NOS) NG-nitro-L-arginine methyl ester or the inhibitors of central or peripheral type BDZ receptors (flumazenil or PK 11195, respectively) produced no change in midazolam-induced vasodilation. Thus, low concentrations of midazolam induce vasodilation via an endothelium-dependent mechanism that does not involve NO production. In contrast, high concentrations of midazolam induce vasodilation via an endothelium-independent mechanism that implies reduced sensitivity of aortic rings to calcium ions. Additionally

  5. One mechanism of glucocorticoid action in asthma may involve the inhibition of IL-25 expression

    PubMed Central

    Lu, Wei; Lu, Chao; Zhang, Chengming; Zhang, Chenghao

    2017-01-01

    While the mechanism of action of classic cytokines in asthma has received increased attention from researchers, certain non-classical cytokines, such as IL-25, also participate in this mechanism. The present study was performed to investigate the changes in IL-25 (IL-17E) mRNA and protein in bronchial asthma and to further characterize the mechanism underlying the action of glucocorticoids in asthma. A total of 96 specific pathogen-free BALB/c male mice were randomly divided into three normal groups (after the first allergization, after the second allergization and after excitation), three asthma groups (with the same three subgroups), a dexamethasone group and a budesonide group (n=12/group). An asthma model was established via the ovalbumin-sensitized excitation method. Mice in the dexamethasone group received intraperitoneal injections of dexamethasone 1 h prior to each excitation, the budesonide group received a budesonide suspension via inhalation 2 h before and after each provocation, and the normal group was sensitized and challenged with isotonic saline. IL-25 protein expression levels in the bronchoalveolar lavage fluid were measured by ELISA, and the relative IL-25 mRNA content in lung tissue was determined by reverse transcription-quantitative polymerase chain reaction. Compared with the normal groups, both the protein and mRNA levels of IL-25 were significantly increased (P<0.05) in the asthma groups. Dexamethasone and budesonide groups exhibited significant protein and mRNA reductions in IL-25, as compared with the asthma group after excitation (P<0.05), whereas these two groups significantly increased levels compared with the normal group after excitation (P<0.05). No significant differences in IL-25 mRNA expression levels were detected in the dexamethasone and budesonide groups when compared with the normal group after excitation. Therefore, we conclude that IL-25 is involved throughout the process of inflammation and inflammatory immune pathogenesis

  6. The corticotropin-releasing hormone network and the hypothalamic-pituitary-adrenal axis: molecular and cellular mechanisms involved.

    PubMed

    Bonfiglio, Juan José; Inda, Carolina; Refojo, Damián; Holsboer, Florian; Arzt, Eduardo; Silberstein, Susana

    2011-01-01

    Corticotropin-releasing hormone (CRH) plays a key role in adjusting the basal and stress-activated hypothalamic-pituitary-adrenal axis (HPA). CRH is also widely distributed in extrahypothalamic circuits, where it acts as a neuroregulator to integrate the complex neuroendocrine, autonomic, and behavioral adaptive response to stress. Hyperactive and/or dysregulated CRH circuits are involved in neuroendocrinological disturbances and stress-related mood disorders such as anxiety and depression. This review describes the main physiological features of the CRH network and summarizes recent relevant information concerning the molecular mechanism of CRH action obtained from signal transduction studies using cells and wild-type and transgenic mice lines. Special focus is placed on the MAPK signaling pathways triggered by CRH through the CRH receptor 1 that plays an essential role in CRH action in pituitary corticotrophs and in specific brain structures. Recent findings underpin the concept of specific CRH-signaling pathways restricted to specific anatomical areas. Understanding CRH action at molecular levels will not only provide insight into the precise CRH mechanism of action, but will also be instrumental in identifying novel targets for pharmacological intervention in neuroendocrine tissues and specific brain areas involved in CRH-related disorders.

  7. Human kallikrein 6 activity is regulated via an autoproteolytic mechanism of activation/inactivation.

    PubMed

    Bayés, Alex; Tsetsenis, Theodoros; Ventura, Salvador; Vendrell, Josep; Aviles, Francesc X; Sotiropoulou, Georgia

    2004-06-01

    Human kallikrein 6 (protease M/zyme/neurosin) is a serine protease that has been suggested to be a serum biomarker for ovarian cancer and may also be involved in pathologies of the CNS. The precursor form of human kallikrein 6 (pro-hK6) was overexpressed in Pichia pastoris and found to be autoprocessed to an active but unstable mature enzyme that subsequently yielded the inactive, self-cleavage product, hK6 (D81-K244). Site-directed mutagenesis was used to investigate the basis for the intrinsic catalytic activity and the activation mechanism of pro-hK6. A single substitution R80 --> Q stabilized the activity of the mature enzyme, while substitution of the active site serine (S197 --> A) resulted in complete loss of hK6 proteolytic activity and facilitated protein production. Our data suggest that the enzymatic activity of hK6 is regulated by an autoactivation/autoinactivation mechanism. Mature hK6 displayed a trypsin-like activity against synthetic substrates and human plasminogen was identified as a putative physiological substrate for hK6, as specific cleavage at the plasminogen internal bond S460-V461 resulted in the generation of angiostatin, an endogenous inhibitor of angiogenesis and metastatic growth.

  8. Gut bitter taste receptor signalling induces ABCB1 through a mechanism involving CCK.

    PubMed

    Jeon, Tae-Il; Seo, Young-Kyo; Osborne, Timothy F

    2011-08-15

    T2Rs (bitter taste-sensing type 2 receptors) are expressed in the oral cavity to prevent ingestion of dietary toxins through taste avoidance. They are also expressed in other cell types, including gut enteroendocrine cells, where their physiological role is enigmatic. Previously, we proposed that T2R-dependent CCK (cholecystokinin) secretion from enteroendocrine cells limits absorption of dietary toxins, but an active mechanism was lacking. In the present study we show that T2R signalling activates ABCB1 (ATP-binding cassette B1) in intestinal cells through a CCK signalling mechanism. PTC (phenylthiocarbamide), an agonist for the T2R38 bitter receptor, increased ABCB1 expression in both intestinal cells and mouse intestine. PTC induction of ABCB1 was decreased by either T2R38 siRNA (small interfering RNA) or treatment with YM022, a gastrin receptor antagonist. Thus gut ABCB1 is regulated through signalling by CCK/gastrin released in response to PTC stimulation of T2R38 on enteroendocrine cells. We also show that PTC increases the efflux activity of ABCB1, suggesting that T2R signalling limits the absorption of bitter tasting/toxic substances through modulation of gut efflux membrane transporters.

  9. Cardioproteomics: advancing the discovery of signaling mechanisms involved in cardiovascular diseases

    PubMed Central

    Cui, Ziyou; Dewey, Shannamar; Gomes, Aldrin V

    2011-01-01

    Cardioproteomics (Cardiovascular proteomics) is fast becoming an indispensible technique in deciphering changes in signaling pathways that occur in cardiovascular diseases (CVDs). The quality and availability of the instruments and bioinformatics software used for cardioproteomics continues to improve, and these techniques are now available to most cardiovascular researchers either directly or indirectly via university core centers. The heart and aorta are specialized tissues which present unique challenges to investigate. Currently, the diverse range of proteomic techniques available for cardiovascular research makes the choice of the best method or best combination of methods for the disease parameter(s) being investigated as important as the equipment used. This review focuses on proteomic techniques and their applications which have advanced our understanding of the signaling mechanisms involved in CVDs at the levels of protein complex/protein-protein interaction, post-translational modifications and signaling induced protein changes. PMID:22254205

  10. Active Learning in Fluid Mechanics: Youtube Tube Flow and Puzzling Fluids Questions

    ERIC Educational Resources Information Center

    Hrenya, Christine M.

    2011-01-01

    Active-learning exercises appropriate for a course in undergraduate fluid mechanics are presented. The first exercise involves an experiment in gravity-driven tube flow, with small groups of students partaking in a contest to predict the experimental flow rates using the mechanical energy balance. The second exercise takes the form of an…

  11. Hair Growth Promotion Activity and Its Mechanism of Polygonum multiflorum

    PubMed Central

    Li, Yunfei; Han, Mingnuan; Lin, Pei; He, Yanran; Yu, Jie; Zhao, Ronghua

    2015-01-01

    Polygonum multiflorum Radix (PMR) has long history in hair growth promotion and hair coloring in clinical applications. However, several crucial problems in its clinic usage and mechanisms are still unsolved or lack scientific evidences. In this research, C57BL/6J mice were used to investigate hair growth promotion activity and possible mechanism of PMR and Polygonum multiflorum Radix Preparata (PMRP). Hair growth promotion activities were investigated by hair length, hair covered skin ratio, the number of follicles, and hair color. Regulation effects of several cytokines involved in the hair growth procedure were tested, such as fibroblast growth factor (FGF-7), Sonic Hedgehog (SHH), β-catenin, insulin-like growth factor-1 (IGF-1), and hepatocyte growth factor (HGF). Oral PMR groups had higher hair covered skin ratio (100 ± 0.00%) than oral PMRP groups (48%~88%). However, topical usage of PMRP had about 90% hair covered skin ratio. Both oral administration of PMR and topically given PMRP showed hair growth promotion activities. PMR was considered to be more suitable for oral administration, while PMRP showed greater effects in external use. The hair growth promotion effect of oral PMR was most probably mediated by the expression of FGF-7, while topical PMRP promoted hair growth by the stimulation of SHH expression. PMID:26294926

  12. Myeloma cells resistance to NK cell lysis mainly involves an HLA class I-dependent mechanism.

    PubMed

    Gao, Minjie; Gao, Lu; Yang, Guang; Tao, Yi; Hou, Jun; Xu, Hongwei; Hu, Xiaojing; Han, Ying; Zhang, Qianqiao; Zhan, Fenghuang; Wu, Xiaosong; Shi, Jumei

    2014-07-01

    The anti-multiple myeloma (MM) potential of natural killer (NK) cells has been of rising interest in recent years. However, the molecular mechanism of NK cell cytotoxicity to myeloma cells remains unclear. In the present study, we investigated the expressions of human leukocyte antigen (HLA) class I and HLA-G in patient myeloma cells, and determined their relevance in patient tumor-cell susceptibility to NK cell cytotoxicity. Our results showed that patient myeloma cells (n = 12) were relatively resistant to NK-92 cell lysis, compared with myeloma cell lines (n = 7, P < 0.01). Gene expression profiling and flow cytometry analysis showed that both mRNA and protein of HLA class I were highly expressed in 12 patient myeloma cells. Interestingly, no or low HLA-G surface expression was detected, although multiple HLA-G transcripts were detected in these myeloma cells. NK cell function assay showed that down-regulating HLA class I expression on patient cells by acid treatment significantly increased the susceptibility of MM cells to NK-mediated lysis. Furthermore, we found that the blocking of membrane-bound HLA class I rather than HLA-G using antibodies on myeloma samples markedly increased their susceptibility to NK-mediated killing. These results demonstrated that the resistance of patient MM cells to NK lysis mainly involves an HLA class I-dependent mechanism, suggesting that HLA class I may be involved in protecting MM cells from NK-mediated attack and contribute to their immune escape in vivo.

  13. GABAB receptors modulate catecholamine secretion in chromaffin cells by a mechanism involving cyclic AMP formation.

    PubMed Central

    Oset-Gasque, M. J.; Parramón, M.; González, M. P.

    1993-01-01

    1. The function of gamma-aminobutyric acidB (GABAB) receptors in modulation of catecholamine secretion by chromaffin cells and the possible mechanism involved in this action have been examined. 2. The GABAB agonists (-)-baclofen and 3-aminopropylphosphinic acid (3-APPA) were found to induce a dose-dependent increase of basal catecholamine secretion. The EC50s were 151 +/- 35 microM and 225 +/- 58 microM for baclofen and 3-APPA, respectively. This stimulatory effect was specific since it could be blocked by 0.5 mM of the specific GABAB antagonist CGP-35348. 3. In contrast, preincubation of chromaffin cells with the GABAB agonists was found to inhibit, in a dose-dependent manner, the catecholamine secretion evoked by 10 microM nicotine and 200 microM muscimol. 4. The effects of GABAB agonists on both basal and evoked catecholamine secretion were found to be accompanied by parallel changes in intracellular calcium concentration ([Ca2+]i). GABAB agonists produced a dose-dependent increase in [Ca2+]i which was partially blocked by CGP 35348, but they produced a strong inhibition of the [Ca2+]i increase induced by nicotine and muscimol. 5. The GABAB agonists also produced a dose-dependent increase in intracellular cyclic AMP levels, there being a direct correlation between both increase in catecholamine secretion and in intracellular cyclic AMP levels. 6. The pretreatment of chromaffin cells with pertussis toxin doubled the catecholamine secretion and increased by four times the intracellular cyclic AMP levels evoked by GABAB agonists. 7. The possible involvement of adenylate cyclase in the mechanism of GABAA receptor modulation of catecholamine secretion is discussed. PMID:8306105

  14. GABAB receptors modulate catecholamine secretion in chromaffin cells by a mechanism involving cyclic AMP formation.

    PubMed

    Oset-Gasque, M J; Parramón, M; González, M P

    1993-12-01

    1. The function of gamma-aminobutyric acidB (GABAB) receptors in modulation of catecholamine secretion by chromaffin cells and the possible mechanism involved in this action have been examined. 2. The GABAB agonists (-)-baclofen and 3-aminopropylphosphinic acid (3-APPA) were found to induce a dose-dependent increase of basal catecholamine secretion. The EC50s were 151 +/- 35 microM and 225 +/- 58 microM for baclofen and 3-APPA, respectively. This stimulatory effect was specific since it could be blocked by 0.5 mM of the specific GABAB antagonist CGP-35348. 3. In contrast, preincubation of chromaffin cells with the GABAB agonists was found to inhibit, in a dose-dependent manner, the catecholamine secretion evoked by 10 microM nicotine and 200 microM muscimol. 4. The effects of GABAB agonists on both basal and evoked catecholamine secretion were found to be accompanied by parallel changes in intracellular calcium concentration ([Ca2+]i). GABAB agonists produced a dose-dependent increase in [Ca2+]i which was partially blocked by CGP 35348, but they produced a strong inhibition of the [Ca2+]i increase induced by nicotine and muscimol. 5. The GABAB agonists also produced a dose-dependent increase in intracellular cyclic AMP levels, there being a direct correlation between both increase in catecholamine secretion and in intracellular cyclic AMP levels. 6. The pretreatment of chromaffin cells with pertussis toxin doubled the catecholamine secretion and increased by four times the intracellular cyclic AMP levels evoked by GABAB agonists. 7. The possible involvement of adenylate cyclase in the mechanism of GABAA receptor modulation of catecholamine secretion is discussed.

  15. Activation mechanism of Gi and Go by reactive oxygen species.

    PubMed

    Nishida, Motohiro; Schey, Kevin L; Takagahara, Shuichi; Kontani, Kenji; Katada, Toshiaki; Urano, Yasuteru; Nagano, Tetsuo; Nagao, Taku; Kurose, Hitoshi

    2002-03-15

    Reactive oxygen species are proposed to work as intracellular mediators. One of their target proteins is the alpha subunit of heterotrimeric GTP-binding proteins (Galpha(i) and Galpha(o)), leading to activation. H(2)O(2) is one of the reactive oxygen species and activates purified Galpha(i2). However, the activation requires the presence of Fe(2+), suggesting that H(2)O(2) is converted to more reactive species such as c*OH. The analysis with mass spectrometry shows that seven cysteine residues (Cys(66), Cys(112), Cys(140), Cys(255), Cys(287), Cys(326), and Cys(352)) of Galpha(i2) are modified by the treatment with *OH. Among these cysteine residues, Cys(66), Cys(112), Cys(140), Cys(255), and Cys(352) are not involved in *OH-induced activation of Galpha(i2). Although the modification of Cys(287) but not Cys(326) is required for subunit dissociation, the modification of both Cys(287) and Cys(326) is necessary for the activation of Galpha(i2) as determined by pertussis toxin-catalyzed ADP-ribosylation, conformation-dependent change of trypsin digestion pattern or guanosine 5'-3-O-(thio)triphosphate binding. Wild type Galpha(i2) but not Cys(287)- or Cys(326)-substituted mutants are activated by UV light, singlet oxygen, superoxide anion, and nitric oxide, indicating that these oxidative stresses activate Galpha(i2) by the mechanism similar to *OH-induced activation. Because Cys(287) exists only in G(i) family, this study explains the selective activation of G(i)/G(o) by oxidative stresses.

  16. Mechanisms involved in antinociception induced by a polysulfated fraction from seaweed Gracilaria cornea in the temporomandibular joint of rats.

    PubMed

    Coura, Chistiane Oliveira; Chaves, Hellíada Vasconcelos; do Val, Danielle Rocha; Vieira, Lorena Vasconcelos; Silveira, Felipe Dantas; Dos Santos Lopes, Fernanda Maxcynne Lino; Gomes, Francisco Isaac Fernandes; Frota, Annyta Fernandes; Souza, Ricardo Basto; Clemente-Napimoga, Juliana Trindade; Bezerra, Mirna Marques; Benevides, Norma Maria Barros

    2017-04-01

    Temporomandibular disorder is a common clinical condition involving pain in the temporomandibular joint (TMJ) region. This study assessed the antinociceptive effects of a polysulfated fraction from the red seaweed Gracilaria cornea (Gc-FI) on the formalin-induced TMJ hypernociception in rats and investigated the involvement of different mechanisms. Male Wistar rats were pretreated with injection (sc) of saline or Gc-FI 1h before intra- TMJ injection of formalin to evaluate the nociception. The results showed that pretreatment with Gc-FI significantly reduced formalin-induced nociceptive behavior. Moreover, the antinociceptive effect of the Gc-FI was blocked by naloxone (a non-selective opioid antagonist), suggesting the involvement of opioids selective receptors. Thus, the pretreatment with selective opioids receptors antagonists, reversed the antinociceptive effect of the Gc-FI in the TMJ. The Gc-FI antinociceptive effect depends on the nitric oxide/cyclic GMP/protein kinase G/ATP-sensitive potassium channel (NO/cGMP/PKG/K(+)ATP) pathway because it was prevented by pretreatment with inhibitors of nitric oxide synthase, guanylate cyclase enzyme, PKG and a K(+)ATP blocker. In addition, after inhibition with a specific heme oxygenase-1 (HO-1) inhibitor, the antinociceptive effect of the Gc-FI was not observed. Collectively, these data suggest that the antinociceptive effect induced by Gc-FI is mediated by μ/δ/κ-opioid receptors and by activation NO/cGMP/PKG/K(+)ATP channel pathway, besides of HO-1.

  17. Key diffusion mechanisms involved in regulating bidirectional water permeation across E. coli outer membrane lectin

    PubMed Central

    Sachdeva, Shivangi; Kolimi, Narendar; Nair, Sanjana Anilkumar; Rathinavelan, Thenmalarchelvi

    2016-01-01

    Capsular polysaccharides (CPSs) are major bacterial virulent determinants that facilitate host immune evasion. E. coli group1 K30CPS is noncovalently attached to bacterial surface by Wzi, a lectin. Intriguingly, structure based phylogenetic analysis indicates that Wzi falls into porin superfamily. Molecular dynamics (MD) simulations further shed light on dual role of Wzi as it also functions as a bidirectional passive water specific porin. Such a functional role of Wzi was not realized earlier, due to the occluded pore. While five water specific entry points distributed across extracellular & periplasmic faces regulate the water diffusion involving different mechanisms, a luminal hydrophobic plug governs water permeation across the channel. Coincidently, MD observed open state structure of “YQF” triad is seen in sugar-binding site of sodium-galactose cotransporters, implicating its involvement in K30CPS surface anchorage. Importance of Loop 5 (L5) in membrane insertion is yet another highlight. Change in water diffusion pattern of periplasmic substitution mutants suggests Wzi’s role in osmoregulation by aiding in K30CPS hydration, corroborating earlier functional studies. Water molecules located inside β-barrel of Wzi crystal structure further strengthens the role of Wzi in osmoregulation. Thus, interrupting water diffusion or L5 insertion may reduce bacterial virulence. PMID:27320406

  18. Post-ictal analgesia: involvement of opioid, serotoninergic and cholinergic mechanisms.

    PubMed

    Coimbra, N C; Castro-Souza, C; Segato, E N; Nora, J E; Herrero, C F; Tedeschi-Filho, W; Garcia-Cairasco, N

    2001-01-12

    The neural mechanisms involved in post-ictal analgesia remain to be elucidated. Pentylenetetrazol (PTZ) is used experimentally to induce seizure in animal subjects. This non-competitive antagonist blocks GABA-mediated Cl(-) flux. The aim of this work is to study the neurochemical basis of the antinociception induced by convulsions elicited by peripheral administration of PTZ (64 mg/kg). The analgesia was measured by the tail-flick test, in eight rats per group. Convulsions were followed by significant increase in the tail-flick latencies (TFL), at least for 30 min of the post-ictal period. Peripheral administration of naloxone (5 mg/kg and 10 mg/kg), atropine (1 mg/kg and 5 mg/kg), methysergide (1 mg/kg and 5 mg/kg) and ketanserine (1 mg/kg and 2 mg/kg) caused a significant decrease in the TFL in seizing animals, as compared to controls. However, while naloxone antagonized analgesia 15 and 25 min post convulsions, the other drugs caused a blockade of the post-ictal analgesia in a relatively greater period of time. These results indicate that endogenous opioids, serotonin and acetylcholine may be involved in post-ictal analgesia.

  19. A novel mechanism involved in the coupling of mitochondrial biogenesis to oxidative phosphorylation

    PubMed Central

    Ostojić, Jelena; Rago, Jean-Paul; Dujardin, Geneviève

    2014-01-01

    Mitochondria are essential organelles that are central to a multitude of cellular processes, including oxidative phosphorylation (OXPHOS), which produces most of the ATP in animal cells. Thus it is important to understand not only the mechanisms and biogenesis of this energy production machinery but also how it is regulated in both physiological and pathological contexts. A recent study by Ostojić et al. [Cell Metabolism (2013) 18, 567-577] has uncovered a regulatory loop by which the biogenesis of a major enzyme of the OXPHOS pathway, the respiratory complex III, is coupled to the energy producing activity of the mitochondria. PMID:28357209

  20. An activation-collision mechanism for cholesterol transfer between membranes.

    PubMed

    Steck, T L; Kezdy, F J; Lange, Y

    1988-09-15

    We report the results of experiments which show that cholesterol transfer between membranes cannot proceed by aqueous diffusion, as widely held, but must involve a more complex mechanism. (a) The rate of transfer of [3H]cholesterol from red blood cells was found to vary inversely with the size of the acceptor particle (ghosts, vesicles of ghosts, liposomes, and plasma lipoproteins). (b) The transfer of [3H]cholesterol from red blood cells to ghosts was accelerated by the presence of plasma, even though the plasma competed with the ghosts as an acceptor. (c) The rate of transfer of [3H]cholesterol from red blood cells to ghosts decreased to zero with increasing dilution but was not simply second-order. (d) The cholesterol in retinal rod disc membranes is not at equilibrium with plasma lipoproteins in that disc cholesterol increased when the homogenates were incubated in vitro with plasma. (e) The kinetics of cholesterol transfer cannot be limited by unstirred layer effects since the transfer of lysolecithin in the same system was faster than that of cholesterol by 3 orders of magnitude. The simplest model compatible with all the data suggests a two-step pathway involving a first-order followed by a second-order process. The first step could be a unimolecular activation event, perhaps the movement of the sterol in the donor particle to a more exposed (hydrated) position. In the second step, the activated sterol would be transferred during transient collisions between donor and acceptor particles. When collision is not rate-limiting, the overall process would appear to be simply first-order, hence kinetically indistinguishable from the aqueous diffusion mechanism. The activation-collision model thus not only rationalizes our data but is also consistent with the simpler kinetics previously reported for the transfer of both membrane phospholipids and sterols.

  1. Anti-inflammatory effect of certain dihydroxy flavones and the mechanisms involved.

    PubMed

    Vidyalakshmi, K; Kamalakannan, P; Viswanathan, S; Ramaswamy, S

    2012-01-01

    This study was designed to evaluate the anti-inflammatory action of four dihydroxy flavone derivatives; 3,3'- dihydroxy flavone, 5,6-dihydroxy flavone, 3,7-dihydroxy flavone and 6,3'-dihydroxy flavone and to further investigate the multiple cellular mechanisms underlying the anti-inflammatory effect of these compounds. The effect of dihydroxy flavones on acute inflammation was studied in rats employing carrageenan induced hind paw edema method. Further, the role of proinflammatory cytokines like TNF-α and IL-1β, cyclooxygenases (COX-1 and COX-2), and free radicals in the action of flavone derivatives was investigated using in vitro assays. All the four dihydroxy flavone derivatives exhibited time and dose dependent inhibition of carrageenan induced paw edema. In addition, the investigated compounds inhibited both the isoforms of cyclooxygenase and cytokines in a concentration dependent manner and also suppressed the release of reactive oxygen species. The anti-inflammatory effect of dihydroxy flavones may be through mechanisms that involve an interaction with cyclooxygenases, cytokines and reactive oxygen species.

  2. Exploring the temporal mechanism involved in the pitch of unresolved harmonics.

    PubMed

    Kaernbach, C; Bering, C

    2001-08-01

    This paper continues a line of research initiated by Kaernbach and Demany [J. Acoust. Soc. Am. 104, 2298-2306 (1998)], who employed filtered click sequences to explore the temporal mechanism involved in the pitch of unresolved harmonics. In a first experiment, the just noticeable difference (jnd) for the fundamental frequency (F0) of high-pass filtered and low-pass masked click trains was measured, with F0 (100 to 250 Hz) and the cut frequency (0.5 to 6 kHz) being varied orthogonally. The data confirm the result of Houtsma and Smurzynski [J. Acoust. Soc. Am. 87, 304-310 (1990)] that a pitch mechanism working on the temporal structure of the signal is responsible for analyzing frequencies higher than ten times the fundamental. Using high-pass filtered click trains, however, the jnd for the temporal analysis is at 1.2% as compared to 2%-3% found in studies using band-pass filtered stimuli. Two further experiments provide evidence that the pitch of this stimulus can convey musical information. A fourth experiment replicates the finding of Kaernbach and Demany on first- and second-order regularities with a cut frequency of 2 kHz and extends the paradigm to binaural aperiodic click sequences. The result suggests that listeners can detect first-order temporal regularities in monaural click streams as well as in binaurally fused click streams.

  3. Involvement of β-defensin 130 (DEFB130) in the macrophage microbicidal mechanisms for killing Plasmodium falciparum.

    PubMed

    Terkawi, Mohamad Alaa; Takano, Ryo; Furukawa, Atsushi; Murakoshi, Fumi; Kato, Kentaro

    2017-02-09

    Understanding the molecular defense mechanism of macrophages and identifying their effector molecules against malarial parasites may provide important clues for the discovery of new therapies. To analyze the immunological responses of malarial parasite-induced macrophages, we used DNA microarray technology to examine the gene profile of differentiated macrophages phagocytizing Plasmodium falciparum-parasitized erythrocytes (iRBC). The transcriptional gene profile of macrophages in response to iRBCs represented 168 down-regulated genes, which were mainly involved in the cellular immune response, and 216 upregulated genes, which were involved in cellular proteolysis, growth, and adhesion. Importantly, the specific upregulation of β-defensin 130 (DEFB130) in these macrophages suggested a possible role for DEFB130 in malarial parasite elimination. Differentiated macrophages phagocytizing iRBCs exhibited an increase in intracellular DEFB130 levels and DEFB130 appeared to accumulate at the site of iRBC engulfment. Transfection of esiRNA-mediated knockdown of DEFB130 into macrophages resulted in a remarkable reduction in their antiplasmodial activity in vitro. Furthermore, DEFB130 synthetic peptide exhibited a modest toxic effect on P. falciparum in vitro and P. yoelii in vivo, unlike scrambled DEFB130 peptide, which showed no antiplasmodial activity. Together, these results suggest that DEFB130 might be one of the macrophage effector molecules for eliminating malarial parasites. Our data broaden our knowledge of the immunological response of macrophages to iRBCs and shed light on a new target for therapeutic intervention.

  4. Involvement of β-defensin 130 (DEFB130) in the macrophage microbicidal mechanisms for killing Plasmodium falciparum

    PubMed Central

    Terkawi, Mohamad Alaa; Takano, Ryo; Furukawa, Atsushi; Murakoshi, Fumi; Kato, Kentaro

    2017-01-01

    Understanding the molecular defense mechanism of macrophages and identifying their effector molecules against malarial parasites may provide important clues for the discovery of new therapies. To analyze the immunological responses of malarial parasite-induced macrophages, we used DNA microarray technology to examine the gene profile of differentiated macrophages phagocytizing Plasmodium falciparum-parasitized erythrocytes (iRBC). The transcriptional gene profile of macrophages in response to iRBCs represented 168 down-regulated genes, which were mainly involved in the cellular immune response, and 216 upregulated genes, which were involved in cellular proteolysis, growth, and adhesion. Importantly, the specific upregulation of β-defensin 130 (DEFB130) in these macrophages suggested a possible role for DEFB130 in malarial parasite elimination. Differentiated macrophages phagocytizing iRBCs exhibited an increase in intracellular DEFB130 levels and DEFB130 appeared to accumulate at the site of iRBC engulfment. Transfection of esiRNA-mediated knockdown of DEFB130 into macrophages resulted in a remarkable reduction in their antiplasmodial activity in vitro. Furthermore, DEFB130 synthetic peptide exhibited a modest toxic effect on P. falciparum in vitro and P. yoelii in vivo, unlike scrambled DEFB130 peptide, which showed no antiplasmodial activity. Together, these results suggest that DEFB130 might be one of the macrophage effector molecules for eliminating malarial parasites. Our data broaden our knowledge of the immunological response of macrophages to iRBCs and shed light on a new target for therapeutic intervention. PMID:28181499

  5. Mechanisms involved in the vasorelaxant effects produced by the acute application of amfepramone in vitro to rat aortic rings

    PubMed Central

    López-Canales, J.S.; Lozano-Cuenca, J.; Muãoz-Islas, E.; Aguilar-Carrasco, J.C.; López-Canales, O.A.; López-Mayorga, R.M.; Castillo-Henkel, E.F.; Valencia-Hernández, I.; Castillo-Henkel, C.

    2015-01-01

    Amfepramone (diethylpropion) is an appetite-suppressant drug used for the treatment of overweight and obesity. It has been suggested that the systemic and central activity of amfepramone produces cardiovascular effects such as transient ischemic attacks and primary pulmonary hypertension. However, it is not known whether amfepramone produces immediate vascular effects when applied in vitro to rat aortic rings and, if so, what mechanisms may be involved. We analyzed the effect of amfepramone on phenylephrine-precontracted rat aortic rings with or without endothelium and the influence of inhibitors or blockers on this effect. Amfepramone produced a concentration-dependent vasorelaxation in phenylephrine-precontracted rat aortic rings that was not affected by the vehicle, atropine, 4-AP, glibenclamide, indomethacin, clotrimazole, or cycloheximide. The vasorelaxant effect of amfepramone was significantly attenuated by NG-nitro-L-arginine methyl ester (L-NAME) and tetraethylammonium (TEA), and was blocked by removal of the vascular endothelium. These results suggest that amfepramone had a direct vasorelaxant effect on phenylephrine-precontracted rat aortic rings, and that inhibition of endothelial nitric oxide synthase and the opening of Ca2+-activated K+ channels were involved in this effect. PMID:25831200

  6. Crosstalk of Signaling Mechanisms Involved in Host Defense and Symbiosis Against Microorganisms in Rice

    PubMed Central

    Akamatsu, Akira; Shimamoto, Ko; Kawano, Yoji

    2016-01-01

    Rice is one of the most important food crops, feeding about half population in the world. Rice pathogens cause enormous damage to rice production worldwide. In plant immunity research, considerable progress has recently been made in our understanding of the molecular mechanisms underlying microbe-associated molecular pattern (MAMP)-triggered immunity. Using genome sequencing and molecular techniques, a number of new MAMPs and their receptors have been identified in the past two decades. Notably, the mechanisms for chitin perception via the lysine motif (LysM) domain-containing receptor OsCERK1, as well as the mechanisms for bacterial MAMP (e.g. flg22, elf18) perception via the leucine-rich repeat (LRR) domain-containing receptors FLS2 and EFR, have been clarified in rice and Arabidopsis, respectively. In chitin signaling in rice, two direct substrates of OsCERK1, Rac/ROP GTPase guanine nucleotide exchange factor OsRacGEF1 and receptor-like cytoplasmic kinase OsRLCK185, have been identified as components of the OsCERK1 complex and are rapidly phosphorylated by OsCERK1 in response to chitin. Interestingly, OsCERK1 also participates in symbiosis with arbuscular mycorrhizal fungi (AMF) in rice and plays a role in the recognition of short-chitin molecules (CO4/5), which are symbiotic signatures included in AMF germinated spore exudates and induced by synthetic strigolactone. Thus, OsCERK1 contributes to both immunity and symbiotic responses. In this review, we describe recent studies on pathways involved in rice immunity and symbiotic signaling triggered by interactions with microorganisms. In addition, we describe recent advances in genetic engineering by using plant immune receptors and symbiotic microorganisms to enhance disease resistance of rice. PMID:27499679

  7. Mild mitochondrial depolarization is involved in a neuroprotective mechanism of Citrus sunki peel extract.

    PubMed

    Wu, Jin-Ji; Cui, Yanji; Yang, Yoon-Sil; Jung, Sung-Cherl; Hyun, Jin Won; Maeng, Young-Hee; Park, Deok-Bae; Lee, Sun-Ryung; Kim, Se-Jae; Eun, Su-Yong

    2013-04-01

    Mitochondrial membrane potential (∆Ψm ) contributes to determining a driving force for calcium to enter the mitochondria. It has been demonstrated that even a small mitochondrial depolarization is sufficient to prevent mitochondrial calcium overload and the subsequent apoptosis. Therefore, mild mitochondrial depolarization has been recently evaluated as a novel mechanism of neuroprotection via inhibiting neurotoxic mitochondrial calcium overload during neuronal insults. In the present study, using both real-time recording and flow cytometric analyses of ∆Ψm , we demonstrated that ethanolic peel extract of Citrus sunki Hort. ex Tanaka (CPE) and its active compounds are capable of inducing a mild mitochondrial depolarization. Polymethoxylated flavones such as nobiletin and tangeretin were found as the active compounds responsible for CPE effects on ∆Ψm . Neuronal viability was significantly increased in a dose-dependent manner by CPE treatment in H2 O2 -stimulated HT-22 cells as an in vitro neuronal insult model. CPE treatment significantly inhibited H2 O2 -induced apoptotic processes such as chromatin condensation, caspase 3 activation and anti-poly (ADP-ribose) polymerase (PARP) cleavage. CPE treatment significantly blocked mitochondrial calcium overload in H2 O2 -stimulated HT-22 neurons as indicated by rhod-2 acetoxymethyl ester. Taken together, our findings suggest that CPE and its active compounds may be considered as promising neuroprotective agents via inducing a mild mitochondrial depolarization.

  8. Involvement of JNK and Caspase Activation in Hoiamide A-Induced Neurotoxicity in Neocortical Neurons

    PubMed Central

    Cao, Zhengyu; Li, Xichun; Zou, Xiaohan; Greenwood, Michael; Gerwick, William H.; Murray, Thomas F.

    2015-01-01

    The frequent occurrence of Moorea producens (formerly Lyngbya majuscula) blooms has been associated with adverse effects on human health. Hoiamide A is a structurally unique cyclic depsipeptide isolated from an assemblage of the marine cyanobacteria M. producens and Phormidium gracile. We examined the influence of hoiamide A on neurite outgrowth in neocortical neurons and found that it suppressed neurite outgrowth with an IC50 value of 4.89 nM. Further study demonstrated that hoiamide A stimulated lactic acid dehydrogenase (LDH) efflux, nuclear condensation and caspase-3 activity with EC50 values of 3.66, 2.55 and 4.33 nM, respectively. These data indicated that hoiamide A triggered a unique neuronal death profile that involves both necrotic and apoptotic mechanisms. The similar potencies and similar time-response relationships between LDH efflux and caspase-3 activation/nuclear condensation suggested that both necrosis and apoptosis may derive from interaction with a common molecular target. The broad-spectrum caspase inhibitor, Z-VAD-FMK completely inhibited hoiamide A-induced neurotoxicity. Additionally, hoiamide A stimulated JNK phosphorylation, and a JNK inhibitor attenuated hoiamide A-induced neurotoxicity. Collectively, these data demonstrate that hoiamide A-induced neuronal death requires both JNK and caspase signaling pathways. The potent neurotoxicity and unique neuronal cell death profile of hoiamide A represents a novel neurotoxic chemotype from marine cyanobacteria. PMID:25675001

  9. Recent Advances on the Molecular Mechanisms Involved in the Drug Resistance of Cancer Cells and Novel Targeting Therapies

    PubMed Central

    Mimeault, M; Hauke, R; Batra, SK

    2010-01-01

    This review summarizes the recent knowledge obtained on the molecular mechanisms involved in the intrinsic and acquired resistance of cancer cells to current cancer therapies. We describe the cascades that are often altered in cancer cells during cancer progression that may contribute in a crucial manner to drug resistance and disease relapse. The emphasis is on the implication of ATP-binding cassette (ABC) multidrug efflux transporters in drug disposition and antiapoptotic factors, including epidermal growth factor receptor cascades and deregulated enzymes in ceramide metabolic pathways. The altered expression and activity of these signaling elements may have a critical role in the resistance of cancer cells to cytotoxic effects induced by diverse chemotherapeutic drugs and cancer recurrence. Of therapeutic interest, new strategies for reversing the multidrug resistance and developing more effective clinical treatments against the highly aggressive, metastatic, and recurrent cancers, based on the molecular targeting of the cancer progenitor cells and their further differentiated progeny, are also described. PMID:17786164

  10. Dynamin-2 Regulates Fusion Pore Expansion and Quantal Release through a Mechanism that Involves Actin Dynamics in Neuroendocrine Chromaffin Cells

    PubMed Central

    González-Jamett, Arlek M.; Momboisse, Fanny; Guerra, María José; Ory, Stéphane; Báez-Matus, Ximena; Barraza, Natalia; Calco, Valerie; Houy, Sébastien; Couve, Eduardo; Neely, Alan; Martínez, Agustín D.; Gasman, Stéphane; Cárdenas, Ana M.

    2013-01-01

    Over the past years, dynamin has been implicated in tuning the amount and nature of transmitter released during exocytosis. However, the mechanism involved remains poorly understood. Here, using bovine adrenal chromaffin cells, we investigated whether this mechanism rely on dynamin’s ability to remodel actin cytoskeleton. According to this idea, inhibition of dynamin GTPase activity suppressed the calcium-dependent de novo cortical actin and altered the cortical actin network. Similarly, expression of a small interfering RNA directed against dynamin-2, an isoform highly expressed in chromaffin cells, changed the cortical actin network pattern. Disruption of dynamin-2 function, as well as the pharmacological inhibition of actin polymerization with cytochalasine-D, slowed down fusion pore expansion and increased the quantal size of individual exocytotic events. The effects of cytochalasine-D and dynamin-2 disruption were not additive indicating that dynamin-2 and F-actin regulate the late steps of exocytosis by a common mechanism. Together our data support a model in which dynamin-2 directs actin polymerization at the exocytosis site where both, in concert, adjust the hormone quantal release to efficiently respond to physiological demands. PMID:23940613

  11. Evaluation of the analgesic effect of alkaloid extract of Peganum harmala L.: possible mechanisms involved.

    PubMed

    Farouk, Loubna; Laroubi, Amine; Aboufatima, Rachida; Benharref, Ahmed; Chait, Abderrahman

    2008-02-12

    The seeds of Peganum harmala L. (Pgh) (Zygophyllaceae) have been used in Moroccan traditional medicine for treatment of a various diseases and to relieve dolorous process. The major objective of this paper was to investigate the mechanism of the analgesia induced by alkaloid extract of Peganum harmala. In the present work, the antinociceptive action was assayed in several experimental models in mice: writhing, formalin, and hot plate tests. The alkaloid extract (12.5 and 25mg/kg) and in a dose-dependent manner significantly reduced the nociception by acetic acid intraperitoneal injection (p<0.001). In the formalin test, the extract also significantly reduced the painful stimulus in both phases of the test (p<0.001). Treatment with the extract when given by (i.p. or i.c.v.) or with morphine (10mg/kg, i.p.) produced a significant increase of the reaction time in hot plate test. These result showed that the alkaloid extract of Pgh contains active analgesic principles acting both centrally and peripherally. Furthermore, this antinociceptive effect has been avoided by naloxone at a dose of 1mg/kg in the first phase of formalin and hot plate tests indicating that this extract act partly through an opioid-mediated mechanism. In conclusion, the alkaloid extract of Peganum harmala seems to have both central and peripheral antinociceptive activities which may be mediated by opioid receptors.

  12. Evidence for the involvement of descending pain-inhibitory mechanisms in the antinociceptive effect of hecogenin acetate.

    PubMed

    Gama, Kelly Barbosa; Quintans, Jullyana S S; Antoniolli, Angelo R; Quintans-Júnior, Lucindo J; Santana, Wagno Alcântara; Branco, Alexsandro; Soares, Milena Botelho Pereira; Villarreal, Cristiane Flora

    2013-04-26

    Hecogenin is a sapogenin present in the leaves of species from the Agave genus, with a wide spectrum of reported pharmacological activities. The present study was undertaken to evaluate whether hecogenin acetate (1) has antinociceptive properties and to determine its mechanism of action. The nociceptive threshold was evaluated using the tail flick test in mice. Mice motor performance was evaluated in a Rotarod test. By using Fos expression as a marker of neural activation, the involvement of the periaqueductal gray in 1-induced antinociception was evaluated. Intraperitoneal administration of 1 (5-40 mg/kg) produced a dose-dependent increase in the tail flick latency time compared to vehicle-treated group (p < 0.01). Mice treated with 1 (40 mg/kg) did not show motor performance alterations. The antinociception of 1 (40 mg/kg) was prevented by naloxone (nonselective opioid receptor antagonist; 5 mg/kg), CTOP (μ-opioid receptor antagonist; 1 mg/kg), nor-BNI (κ-opioid receptor antagonist; 0.5 mg/kg), naltrindole (δ-opioid receptor antagonist; 3 mg/kg), or glibenclamide (ATP-sensitive K(+) channel blocker; 2 mg/kg). Systemic administration of 1 (5-40 mg/kg) increased the number of Fos positive cells in the periaqueductal gray. The present study has demonstrated for the first time that 1 produces consistent antinociception mediated by opioid receptors and endogenous analgesic mechanisms.

  13. Dark-induced senescence of barley leaves involves activation of plastid transglutaminases.

    PubMed

    Sobieszczuk-Nowicka, E; Zmienko, A; Samelak-Czajka, A; Łuczak, M; Pietrowska-Borek, M; Iorio, R; Del Duca, S; Figlerowicz, M; Legocka, J

    2015-04-01

    Transglutaminases (E.C. 2.3.2.13) catalyze the post-translational modification of proteins by establishing ε-(γ-glutamyl) lysine isopeptide bonds and by the covalent conjugation of polyamines to endo-glutamyl residues of proteins. In light of the confirmed role of transglutaminases in animal cell apoptosis and only limited information on the role of these enzymes in plant senescence, we decided to investigate the activity of chloroplast transglutaminases (ChlTGases) and the fate of chloroplast-associated polyamines in Hordeum vulgare L. 'Nagrad' leaves, where the senescence process was induced by darkness (day 0) and continued until chloroplast degradation (day 12). Using an anti-TGase antibody, we detected on a subcellular level, the ChlTGases that were associated with destacked/degraded thylakoid membranes, and beginning on day 5, were also found in the stroma. Colorimetric and radiometric assays revealed during senescence an increase in ChlTGases enzymatic activity. The MS/MS identification of plastid proteins conjugated with exogenous polyamines had shown that the ChlTGases are engaged in the post-translational modification of proteins involved in photosystem organization, stress response, and oxidation processes. We also computationally identified the cDNA of Hv-Png1-like, a barley homologue of the Arabidopsis AtPng1 gene. Its mRNA level was raised from days 3 to 10, indicating that transcriptional regulation controls the activity of barley ChlTGases. Together, the presented results deepen our knowledge of the mechanisms of the events happened in dark-induced senescence of barley leaves that might be activation of plastid transglutaminases.

  14. Involvement of RVM-expressed P2X7 receptor in bone cancer pain: mechanism of descending facilitation.

    PubMed

    Huang, Zhang Xiang; Lu, Zhi Jie; Ma, Wei Qing; Wu, Fei Xiang; Zhang, Yu Qiu; Yu, Wei-Feng; Zhao, Zhi Qi

    2014-04-01

    Patients with bone cancer commonly experience bone pain that is severe, intolerable, and difficult to manage. The rostral ventromedial medulla (RVM) plays an important role in the development of chronic pain via descending facilitation of spinal nociception. The compelling evidence shows that glial P2X7 receptor (P2X7R) is involved in the induction and maintenance of chronic pain syndromes. The present study explored the mechanism of glial activation and P2X7R expression underlying the induction of bone cancer pain. The results demonstrated that microglia and astrocytes in the RVM were markedly activated in bone cancer rats, and the expression of P2X7R was significantly upregulated. Injection of Brilliant Blue G (BBG), an inhibitor of P2X7R, into the RVM significantly alleviated pain behaviors of cancer rats, which was supported by intra-RVM injection of RNA interference targeting the P2X7R in the RVM. It is suggested that activation of microglia-expressed P2X7R in the RVM contributes to bone cancer pain. Given that 5-HT in the RVM is involved in modulating spinal nociception, changes in 5-HT and Fos expression were addressed in the spinal cord. Inhibition of P2X7R by BBG or small-interference RNA targeting P2X7 in the RVM markedly reduced 5-HT level and Fos expression in the spinal cord. The data clearly suggest that the activation of microglial P2X7R in the RVM contributes to the development of bone cancer pain via upregulation of spinal 5HT levels by the descending pain facilitatory system.

  15. Unraveling fatty acid transport and activation mechanisms in Yarrowia lipolytica.

    PubMed

    Dulermo, Rémi; Gamboa-Meléndez, Heber; Ledesma-Amaro, Rodrigo; Thévenieau, France; Nicaud, Jean-Marc

    2015-09-01

    Fatty acid (FA) transport and activation have been extensively studied in the model yeast species Saccharomyces cerevisiae but have rarely been examined in oleaginous yeasts, such as Yarrowia lipolytica. Because the latter begins to be used in biodiesel production, understanding its FA transport and activation mechanisms is essential. We found that Y. lipolytica has FA transport and activation proteins similar to those of S. cerevisiae (Faa1p, Pxa1p, Pxa2p, Ant1p) but mechanism of FA peroxisomal transport and activation differs greatly with that of S. cerevisiae. While the ScPxa1p/ScPxa2p heterodimer is essential for growth on long-chain FAs, ΔYlpxa1 ΔYlpxa2 is not impaired for growth on FAs. Meanwhile, ScAnt1p and YlAnt1p are both essential for yeast growth on medium-chain FAs, suggesting they function similarly. Interestingly, we found that the ΔYlpxa1 ΔYlpxa2 ΔYlant1 mutant was unable to grow on short-, medium-, or long-chain FAs, suggesting that YlPxa1p, YlPxa2p, and YlAnt1p belong to two different FA degradation pathways. We also found that YlFaa1p is involved in FA storage in lipid bodies and that FA remobilization largely depended on YlFat1p, YlPxa1p and YlPxa2p. This study is the first to comprehensively examine FA intracellular transport and activation in oleaginous yeast.

  16. Different Dose-Dependent Mechanisms Are Involved in Early Cyclosporine A-Induced Cholestatic Effects in HepaRG Cells

    PubMed Central

    Sharanek, Ahmad; Azzi, Pamela Bachour-El; Al-Attrache, Houssein; Savary, Camille C.; Humbert, Lydie; Rainteau, Dominique; Guguen-Guillouzo, Christiane; Guillouzo, André

    2014-01-01

    Mechanisms involved in drug-induced cholestasis in humans remain poorly understood. Although cyclosporine A (CsA) and tacrolimus (FK506) share similar immunosuppressive properties, only CsA is known to cause dose-dependent cholestasis. Here, we have investigated the mechanisms implicated in early cholestatic effects of CsA using the differentiated human HepaRG cell line. Inhibition of efflux and uptake of taurocholate was evidenced as early as 15 min and 1 h respectively after addition of 10μM CsA; it peaked at around 2 h and was reversible. These early effects were associated with generation of oxidative stress and deregulation of cPKC pathway. At higher CsA concentrations (≥50μM) alterations of efflux and uptake activities were enhanced and became irreversible, pericanalicular F-actin microfilaments were disorganized and bile canaliculi were constricted. These changes were associated with induction of endoplasmic reticulum stress that preceded generation of oxidative stress. Concentration-dependent changes were observed on total bile acid disposition, which were characterized by an increase and a decrease in culture medium and cells, respectively, after a 24-h treatment with CsA. Accordingly, genes encoding hepatobiliary transporters and bile acid synthesis enzymes were differently deregulated depending on CsA concentration. By contrast, FK506 induced limited effects only at 25–50μM and did not alter bile canaliculi. Our data demonstrate involvement of different concentration-dependent mechanisms in CsA-induced cholestasis and point out a critical role of endoplasmic reticulum stress in the occurrence of the major cholestatic features. PMID:24973091

  17. Health benefits of serious involvement in leisure activities among older Korean adults.

    PubMed

    Kim, Junhyoung; Yamada, Naoko; Heo, Jinmoo; Han, Areum

    2014-01-01

    The existing literature suggests that serious engagement in leisure activities leads to happiness, life satisfaction, and successful aging among older adults. This qualitative study was used to examine the benefits of serious involvement in leisure activities among older Korean adults who were members of a sports club. Using an analytic data analysis, we identified three main themes associated with the benefits of serious engagement in leisure activities: 1) the experience of psychological benefits, 2) the creation of social support, and 3) the enhancement of physical health. These themes indicate that, through serious involvement in certain physical activities, participants gain various health benefits, which may contribute to successful aging.

  18. Health benefits of serious involvement in leisure activities among older Korean adults

    PubMed Central

    Kim, Junhyoung; Yamada, Naoko; Heo, Jinmoo; Han, Areum

    2014-01-01

    The existing literature suggests that serious engagement in leisure activities leads to happiness, life satisfaction, and successful aging among older adults. This qualitative study was used to examine the benefits of serious involvement in leisure activities among older Korean adults who were members of a sports club. Using an analytic data analysis, we identified three main themes associated with the benefits of serious engagement in leisure activities: 1) the experience of psychological benefits, 2) the creation of social support, and 3) the enhancement of physical health. These themes indicate that, through serious involvement in certain physical activities, participants gain various health benefits, which may contribute to successful aging. PMID:25059979

  19. Tractor Mechanics: Maintaining and Servicing the Fuel System. Learning Activity Packages 20-33.

    ERIC Educational Resources Information Center

    Clemson Univ., SC. Vocational Education Media Center.

    Learning activity packages are presented for instruction in tractor mechanics. The packages deal with the duties involved in maintaining the fuel system. The following fourteen learning activity packages are included: servicing fuel and air filters, servicing fuel tanks and lines, adjusting a carburetor, servicing a carburetor, servicing the…

  20. Growth capacity and biochemical mechanisms involved in rhizobia tolerance to salinity and water deficit.

    PubMed

    Mhamdi, Rakia; Nouairi, Issam; ben Hammouda, Thouraya; Mhamdi, Ridha; Mhadhbi, Haythem

    2015-04-01

    The aim of the present study was to evaluate abiotic stress tolerance of rhizobial strains belonging to Mesorhizobium, Sinorhizobium, and Rhizobium genera, as well as to investigate specie specific stress response mechanisms. Effect of NaCl and PEG on growth capacity, protein, lipid peroxydation (MDA), membrane fatty acid composition and antioxidant enzymes were investigated. Growth capacity and viability of overall rhizobia strains decreased proportionally to the increase of NaCl and PEG levels in the medium. Sinorhizobium strains appeared the most tolerant, where 4H41strain was able to grow at 800 mM NaCl and 40% PEG. On the other hand, growth of R. gallicum and M. mediterraneum was inhibited by 200 mM NaCl. The content of MDA was unchanged in Sinorhizobium strains under both stresses. For Mesorhizobium, only PEG treatment increased the content of MDA. Amount of the C19:0 cyclo fatty-acid was increased in both Sinorhizobium and Mesorhizobium tolerant strains. NaCl stress increased Superoxide dismutase (SOD) activity of overall species; especially the most tolerant strain 4H41. Both treatments increased catalase (CAT) activity in 4H41, TII7, and 835 strains. Obtained results suggest that major response of tolerant Sinorhizobium and Mesorhizobium strains to NaCl and PEG stresses is a preferential accumulation of the C19:0 cyclo fatty acid within bacterial membrane as mechanism to reduce fluidity and maintain integrity. Cell integrity and functioning is also assured by maintaining and/or increasing activity of SOD and CAT antioxidant enzymes for tolerant strains to omit structural and functional damages related to reactive oxygen species overproduced under stressful conditions.

  1. Mechanisms of insulin action on sympathetic nerve activity

    NASA Technical Reports Server (NTRS)

    Muntzel, Martin S.; Anderson, Erling A.; Johnson, Alan Kim; Mark, Allyn L.

    1996-01-01

    Insulin resistance and hyperinsulinemia may contribute to the development of arterial hypertension. Although insulin may elevate arterial pressure, in part, through activation of the sympathetic nervous system, the sites and mechanisms of insulin-induced sympathetic excitation remain uncertain. While sympathoexcitation during insulin may be mediated by the baroreflex, or by modulation of norepinephrine release from sympathetic nerve endings, it has been shown repeatedly that insulin increases sympathetic outflow by actions on the central nervous system. Previous studies employing norepinephrine turnover have suggested that insulin causes sympathoexcitation by acting in the hypothalamus. Recent experiments from our laboratory involving direct measurements of regional sympathetic nerve activity have provided further evidence that insulin acts in the central nervous system. For example, administration of insulin into the third cerebralventricle increased lumbar but not renal or adrenal sympathetic nerve activity in normotensive rats. Interestingly, this pattern of regional sympathetic nerve responses to central neural administration of insulin is similar to that seen with systemic administration of insulin. Further, lesions of the anteroventral third ventricle hypothalamic (AV3V) region abolished increases in sympathetic activity to systemic administration of insulin with euglycemic clamp, suggesting that AV3V-related structures are critical for insulin-induced elevations in sympathetic outflow.

  2. Insights into reference point indentation involving human cortical bone: sensitivity to tissue anisotropy and mechanical behavior.

    PubMed

    Granke, Mathilde; Coulmier, Aurélie; Uppuganti, Sasidhar; Gaddy, Jennifer A; Does, Mark D; Nyman, Jeffry S

    2014-09-01

    Reference point indentation (RPI) is a microindentation technique involving 20 cycles of loading in "force-control" that can directly assess a patient׳s bone tissue properties. Even though preliminary clinical studies indicate a capability for fracture discrimination, little is known about what mechanical behavior the various RPI properties characterize and how these properties relate to traditional mechanical properties of bone. To address this, the present study investigated the sensitivity of RPI properties to anatomical location and tissue organization as well as examined to what extent RPI measurements explain the intrinsic mechanical properties of human cortical bone. Multiple indents with a target force of 10N were done in 2 orthogonal directions (longitudinal and transverse) per quadrant (anterior, medial, posterior, and lateral) of the femoral mid-shaft acquired from 26 donors (25-101 years old). Additional RPI measurements were acquired for 3 orthogonal directions (medial only). Independent of age, most RPI properties did not vary among these locations, but they did exhibit transverse isotropy such that resistance to indentation is greater in the longitudinal (axial) direction than in the transverse direction (radial or circumferential). Next, beam specimens (~2mm×5mm×40mm) were extracted from the medial cortex of femoral mid-shafts, acquired from 34 donors (21-99 years old). After monotonically loading the specimens in three-point bending to failure, RPI properties were acquired from an adjacent region outside the span. Indent direction was orthogonal to the bending axis. A significant inverse relationship was found between resistance to indentation and the apparent-level mechanical properties. Indentation distance increase (IDI) and a linear combination of IDI and the loading slope, averaged over cycles 3 through 20, provided the best explanation of the variance in ultimate stress (r(2)=0.25, p=0.003) and toughness (r(2)=0.35, p=0.004), respectively

  3. Mutant p53: Multiple Mechanisms Define Biologic Activity in Cancer

    PubMed Central

    Kim, Michael Paul; Zhang, Yun; Lozano, Guillermina

    2015-01-01

    The functional importance of p53 as a tumor suppressor gene is evident through its pervasiveness in cancer biology. The p53 gene is the most commonly altered gene in human cancer; however, not all genetic alterations are biologically equivalent. The majority of alterations involve p53 missense mutations that result in the production of mutant p53 proteins. Such mutant p53 proteins lack normal p53 function and may concomitantly gain novel functions, often with deleterious effects. Here, we review characterized mechanisms of mutant p53 gain of function in various model systems. In addition, we review mutant p53 addiction as emerging evidence suggests that tumors may depend on sustained mutant p53 activity for continued growth. We also discuss the role of p53 in stromal elements and their contribution to tumor initiation and progression. Lastly, current genetic mouse models of mutant p53 in various organ systems are reviewed and their limitations discussed. PMID:26618142

  4. Control of mechanically activated polymersome fusion: Factors affecting fusion

    DOE PAGES

    Henderson, Ian M.; Paxton, Walter F.

    2014-12-15

    Previously we have studied the mechanically-activated fusion of extruded (200 nm) polymer vesicles into giant polymersomes using agitation in the presence of salt. In this study we have investigated several factors contributing to this phenomenon, including the effects of (i) polymer vesicle concentration, (ii) agitation speed and duration, and iii) variation of the salt and its concentration. It was found that increasing the concentration of the polymer dramatically increases the production of giant vesicles through the increased collisions of polymersomes. Our investigations also found that increasing the frequency of agitation increased the efficiency of fusion, though ultimately limited the sizemore » of vesicle which could be produced due to the high shear involved. Finally it was determined that salt-mediation of the fusion process was not limited to NaCl, but is instead a general effect facilitated by the presence of solvated ionic compounds, albeit with different salts initiating fusion at different concentration.« less

  5. Control of mechanically activated polymersome fusion: Factors affecting fusion

    SciTech Connect

    Henderson, Ian M.; Paxton, Walter F.

    2014-12-15

    Previously we have studied the mechanically-activated fusion of extruded (200 nm) polymer vesicles into giant polymersomes using agitation in the presence of salt. In this study we have investigated several factors contributing to this phenomenon, including the effects of (i) polymer vesicle concentration, (ii) agitation speed and duration, and iii) variation of the salt and its concentration. It was found that increasing the concentration of the polymer dramatically increases the production of giant vesicles through the increased collisions of polymersomes. Our investigations also found that increasing the frequency of agitation increased the efficiency of fusion, though ultimately limited the size of vesicle which could be produced due to the high shear involved. Finally it was determined that salt-mediation of the fusion process was not limited to NaCl, but is instead a general effect facilitated by the presence of solvated ionic compounds, albeit with different salts initiating fusion at different concentration.

  6. Mutant p53: Multiple Mechanisms Define Biologic Activity in Cancer.

    PubMed

    Kim, Michael Paul; Zhang, Yun; Lozano, Guillermina

    2015-01-01

    The functional importance of p53 as a tumor suppressor gene is evident through its pervasiveness in cancer biology. The p53 gene is the most commonly altered gene in human cancer; however, not all genetic alterations are biologically equivalent. The majority of alterations involve p53 missense mutations that result in the production of mutant p53 proteins. Such mutant p53 proteins lack normal p53 function and may concomitantly gain novel functions, often with deleterious effects. Here, we review characterized mechanisms of mutant p53 gain of function in various model systems. In addition, we review mutant p53 addiction as emerging evidence suggests that tumors may depend on sustained mutant p53 activity for continued growth. We also discuss the role of p53 in stromal elements and their contribution to tumor initiation and progression. Lastly, current genetic mouse models of mutant p53 in various organ systems are reviewed and their limitations discussed.

  7. Toxic effects of expanded ataxin-1 involve mechanical instability of the nuclear membrane.

    PubMed

    Mapelli, Lisa; Canale, Claudio; Pesci, Daniela; Averaimo, Stefania; Guizzardi, Fabiana; Fortunati, Valentina; Falasca, Laura; Piacentini, Mauro; Gliozzi, Alessandra; Relini, Annalisa; Mazzanti, Michele; Jodice, Carla

    2012-06-01

    Ataxin 1 (ATXN1) is the protein involved in spinocerebellar ataxia type 1, one of nine dominantly inherited neurodegenerative diseases triggered by polyglutamine expansion. One of the isolated polyglutamine tracts properties is to interact with lipid bilayers. Here we used a multidisciplinary approach to test whether one of the mechanisms responsible for neuronal degeneration involves the destabilization of the nuclear membrane. We thus analyzed the interaction between ATXN1 and lipid membranes, both on cellular models and on artificial lipid bilayers, comparing pathological expanded polyglutamine and histidine interrupted non-harmful polyglutamine tracts of the same length. The toxicity of the different constructs was tested in transiently transfected COS1 cells. Cells expressing pathological ATXN1 presented a significantly higher frequency of anomalous nuclei with respect to those expressing non-harmful ATXN1. Immunofluorescence and electron microscopy showed severe damage in the nuclear membrane of cells expressing the pathological protein. Atomic force microscopy on artificial membranes containing interrupted and non-interrupted partial ATXN1 peptides revealed a different arrangement of the peptides within the lipid bilayer. Force-distance measurements indicated that membrane fragility increases with the lengthening of the uninterrupted glutamine. Transmembrane electrical measurements were performed on artificial bilayers and on the inner nuclear membrane of ATXN1 full length transfected cells. Both artificial lipid bilayers and cellular models demonstrated the dynamic appearance of ionic pathways. Uninterrupted polyglutamines showed not only a larger ionic flow, but also an increase in the single event conductance. Collectively, our results suggest that expanded ATXN1 may induce unregulated ionic pathways in the nuclear membrane, causing severe damage to the cell.

  8. Development of neurodevelopmental disorders: a regulatory mechanism involving bromodomain-containing proteins.

    PubMed

    Li, Junlin; Zhao, Guifang; Gao, Xiaocai

    2013-02-20

    Neurodevelopmental disorders are classified as diseases that cause abnormal functions of the brain or central nervous system. Children with neurodevelopmental disorders show impaired language and speech abilities, learning and memory damage, and poor motor skills. However, we still know very little about the molecular etiology of these disorders. Recent evidence implicates the bromodomain-containing proteins (BCPs) in the initiation and development of neurodevelopmental disorders. BCPs have a particular domain, the bromodomain (Brd), which was originally identified as specifically binding acetyl-lysine residues at the N-terminus of histone proteins in vitro and in vivo. Other domains of BCPs are responsible for binding partner proteins to form regulatory complexes. Once these complexes are assembled, BCPs alter chromosomal states and regulate gene expression. Some BCP complexes bind nucleosomes, are involved in basal transcription regulation, and influence the transcription of many genes. However, most BCPs are involved in targeting. For example, some BCPs function as a recruitment platform or scaffold through their Brds-binding targeting sites. Others are recruited to form a complex to bind the targeting sites of their partners. The regulation mediated by these proteins is especially critical during normal and abnormal development. Mutant BCPs or dysfunctional BCP-containing complexes are implicated in the initiation and development of neurodevelopmental disorders. However, the pathogenic molecular mechanisms are not fully understood. In this review, we focus on the roles of regulatory BCPs associated with neurodevelopmental disorders, including mental retardation, Fragile X syndrome (FRX), Williams syndrome (WS), Rett syndrome and Rubinstein-Taybi syndrome (RTS). A better understanding of the molecular pathogenesis, based upon the roles of BCPs, will lead to screening of targets for the treatment of neurodevelopmental disorders.

  9. Molecular Mechanisms Involved in the Interaction Effects of Alcohol and Hepatitis C Virus in Liver Cirrhosis

    PubMed Central

    Mas, Valeria R; Fassnacht, Ryan; Archer, Kellie J; Maluf, Daniel

    2010-01-01

    The mechanisms by which alcohol consumption accelerates liver disease in patients with chronic hepatitis C virus (HCV) are not well understood. To identify the characteristics of molecular pathways affected by alcohol in HCV patients, we fit probe-set level linear models that included the additive effects as well as the interaction between alcohol and HCV. The study included liver tissue samples from 78 patients, 23 (29.5%) with HCV-cirrhosis, 13 (16.7%) with alcohol-cirrhosis, 23 (29.5%) with HCV/alcohol cirrhosis and 19 (24.4%) with no liver disease (no HCV/no alcohol group). We performed gene-expression profiling by using microarrays. Probe-set expression summaries were calculated by using the robust multiarray average. Probe-set level linear models were fit where probe-set expression was modeled by HCV status, alcohol status, and the interaction between HCV and alcohol. We found that 2172 probe sets (1895 genes) were differentially expressed between HCV cirrhosis versus alcoholic cirrhosis groups. Genes involved in the virus response and the immune response were the more important upregulated genes in HCV cirrhosis. Genes involved in apoptosis regulation were also overexpressed in HCV cirrhosis. Genes of the cytochrome P450 superfamily of enzymes were upregulated in alcoholic cirrhosis, and 1230 probe sets (1051 genes) had a significant interaction estimate. Cell death and cellular growth and proliferation were affected by the interaction between HCV and alcohol. Immune response and response to the virus genes were downregulated in HCV-alcohol interaction (interaction term alcohol*HCV). Alcohol*HCV in the cirrhotic tissues resulted in a strong negative regulation of the apoptosis pattern with concomitant positive regulation of cellular division and proliferation. PMID:20386865

  10. Structure and Mechanism of Enzymes Involved in Biosynthesis and Breakdown of the Phosphonates Fosfomycin, Dehydrophos, and Phosphinothricin

    PubMed Central

    Nair, Satish K.; van der Donk, Wilfred A.

    2011-01-01

    Recent years have seen a rapid increase in the mechanistic and structural information on enzymes that are involved in the biosynthesis and breakdown of naturally occurring phosphonates. This review focuses on these recent developments with an emphasis on those enzymes that have been characterized crystallographically in the past five years, including proteins involved in the biosynthesis of phosphinothricin, fosfomycin, and dehydrophos and proteins involved in resistance mechanisms. PMID:20854789

  11. Identification of mechanisms involved in the acute airway toxicity induced by parathion.

    PubMed

    Segura, P; Chávez, J; Montaño, L M; Vargas, M H; Delaunois, A; Carbajal, V; Gustin, P

    1999-12-01

    Organophosphates are still widely used worldwide and cause thousands of intoxications every year. In this work we investigated the mechanisms of parathion (Pth) airway toxicity, using biochemical and functional approaches. A plethysmographic technique for unrestrained guinea pigs was used to analyze Pth-induced modifications of airway mechanics and responsiveness to acetylcholine (ACh: 0.1-3.2 mg/ml, 2-min inhalation each dose). The isolated perfused rabbit lung preparation was used to study the acute effects of Pth on airway responsiveness to ACh (10(-8)-10(-3) M), histamine (10(-8)-10(-3) M) and substance P (10(-10)-10(-6) M), pulmonary acetylcholinesterase inhibition and cytochrome P450 (P450) activity, and their modifications with previous administration of Pth (1 mg/kg s.c. daily, 7 days). We found that: (1) In guinea pigs Pth (3.2-17 mg/kg i.p.) produced a dose-dependent increase in a lung resistance index (iRL), which was greatly reverted (approximately 50%) by salbutamol (2 mg/ml, 2-min inhalation, or 10 microg/kg i.p.). This salbutamol effect was transient (5-10 min), suggesting that this bronchodilator triggered additional obstructive mechanisms. (2) Pth increased the water content in lung parenchyma samples, but not in trachea or bronchi, and augmented the respiratory secretions measured through monosaccharide content in bronchoalveolar lavage. (3) The increase in iRL was greater in female animals, probably due to a higher P450 basal activity, and completely blocked by pharmacological inhibition of P450 with piperonyl butoxide (500 mg/kg i.p.). (4) In male guinea pigs a subclinical dose of Pth (10 mg/kg i.p.) induced airway hyperresponsiveness to ACh. In isolated perfused rabbit lung Pth (10(-6) M) produced airway hyperresponsiveness to ACh and histamine, the latter prevented by atropine (10(-5) M). (5) Repetitive exposure to subclinical doses (1 mg/kg s.c.) of Pth during 1 week caused approximately 80% inhibition of P450 activity in rabbits, which was

  12. Distinct molecular mechanisms involved in carbon catabolite repression of the arabinose regulon in Bacillus subtilis.

    PubMed

    Inácio, José Manuel; Costa, Carla; de Sá-Nogueira, Isabel

    2003-09-01

    The Bacillus subtilis proteins involved in the utilization of L-arabinose are encoded by the araABDLMNPQ-abfA metabolic operon and by the araE/araR divergent unit. Transcription from the ara operon, araE transport gene and araR regulatory gene is induced by L-arabinose and negatively controlled by AraR. Additionally, expression of both the ara operon and the araE gene is regulated at the transcriptional level by glucose repression. Here, by transcriptional fusion analysis in different mutant backgrounds, it is shown that CcpA most probably complexed with HPr-Ser46-P plays the major role in carbon catabolite repression of the ara regulon by glucose and glycerol. Site-directed mutagenesis and deletion analysis indicate that two catabolite responsive elements (cres) present in the ara operon (cre araA and cre araB) and one cre in the araE gene (cre araE) are implicated in this mechanism. Furthermore, cre araA located between the promoter region of the ara operon and the araA gene, and cre araB placed 2 kb downstream within the araB gene are independently functional and both contribute to glucose repression. In Northern blot analysis, in the presence of glucose, a CcpA-dependent transcript consistent with a message stopping at cre araB was detected, suggesting that transcription 'roadblocking' of RNA polymerase elongation is the most likely mechanism operating in this system. Glucose exerts an additional repression of the ara regulon, which requires a functional araR.

  13. The involvement and possible mechanism of NR4A1 in chondrocyte apoptosis during osteoarthritis

    PubMed Central

    Shi, Xinge; Ye, Hui; Yao, Xuedong; Gao, Yanzheng

    2017-01-01

    Osteoarthritis (OA) is a joint disease caused by the breakdown of joint cartilage and underlying bone, and places great burdens to daily life of patients. Nuclear orphan receptor nuclear receptor subfamily 4, group A, member 1 (NR4A1) is vital for cell apoptosis, but little is known about its role in OA. This study aims to reveal the expression and function of NR4A1 during OA chondrocyte apoptosis. NR4A1 expression by qRT-PCR and western blot, and chondrocyte apoptosis by TUNEL assay were detected in normal and OA joint cartilage. NR4A1 was located in cartilage sections by immunohistofluorescence. Chondrocytes from normal joint cartilage were cultured in vitro for interleukin 6 (IL6) or tumor necrosis factor (TNF) treatment and si-NR4A1 transfection, after which the possible mechanism involving NR4A1 was analyzed. Results showed that NR4A1 expression and chondrocyte apoptosis were significantly elevated in OA cartilage (P < 0.05 and P < 0.01). NR4A1 was located in nuclei of normal cartilage chondrocytes, but was translocated to mitochondria and co-located with B-cell lymphoma 2 in OA chondrocytes. NR4A1 expression in cultured chondrocytes could be promoted by both IL6 and TNF treatment. si-NR4A1 partly reduced TNF-induced cell apoptosis. Inhibiting p38 by SB203580 could decrease TNF-induced NR4A1 to some extent, while inhibiting JNK could not. So NR4A1 is likely to facilitate OA chondrocyte apoptosis, which is associated with p38 MAPK and mitochondrial apoptosis pathway. This study provides a potential therapeutic target for OA treatment and offers information for regulatory mechanisms in OA. PMID:28337303

  14. Mechanisms involved in the anti-inflammatory action of inhaled tea tree oil in mice.

    PubMed

    Golab, Mateusz; Skwarlo-Sonta, Krystyna

    2007-03-01

    Tea tree oil (TTO) is well known as an antimicrobial and immunomodulatory agent. In the present study we confirmed the anti-inflammatory properties of TTO and investigated the involvement of the hypothalamic-pituitary-adrenal (HPA) axis in the immunomodulatory action of TTO administered by inhalation. Sexually mature, 6-8-week-old, C(57)BI(10) x CBA/H (F(1)) male mice were used. One group of animals was injected intra-peritoneally (ip) with Zymosan to elicit peritoneal inflammation and was then submitted to four sessions of TTO inhalation (15 mins each). Some of the mice were simultaneously injected ip with Antalarmin, a CRH-1 receptor antagonist, to block HPA axis functions. Twenty-four hours after the injections the mice were killed by CO(2) asphyxia, and peritoneal leukocytes (PTLs) were isolated and counted. Levels of reactive oxygen species (ROS) and cyclooxygenase (COX) activity in PTLs were assessed by fluorimetric and colorimetric assays, respectively. The results obtained show that sessions of TTO inhalation exert a strong anti-inflammatory influence on the immune system stimulated by Zymosan injection, while having no influence on PTL number, ROS level, and COX activity in mice without inflammation. The HPA axis was shown to mediate the anti-inflammatory effect of TTO; Antalarmin abolished the influence of inhaled TTO on PTL number and their ROS production in mice with experimental peritonitis, but it had no effect on these parameters in mice without inflammation.

  15. Mechanisms Involved in Thromboxane A2 -induced Vasoconstriction of Rat Intracavernous Small Penile Arteries.

    PubMed

    Grann, Martin; Comerma-Steffensen, Simon; Arcanjo, Daniel D R; Simonsen, Ulf

    2016-10-01

    Diabetes is associated with erectile dysfunction and with hypercontractility in erectile tissue and this is in part ascribed to increased formation of thromboxane. Rho kinase (ROCK) is a key regulator of calcium sensitization and contraction in vascular smooth muscle. This study investigated the role of calcium and ROCK in contraction evoked by activation of the thromboxane receptors. Rat intracavernous penile arteries were mounted for isometric tension and intracellular calcium ([Ca(2+) ]i ) recording and corpus cavernosum for measurements of MYPT1 phosphorylation. In penile arteries, U46619 by activation of thromboxane receptors concentration dependently increased calcium and contraction. U46619-induced calcium influx was blocked by nifedipine, a blocker of L-type calcium channels, and by 2-aminoethoxydiphenyl borate, a blocker of transient receptor potential (TRP) channels. Inhibitors of ROCK, Y27632 and glycyl-H1152P, concentration dependently reduced U46619-induced contraction, but only Y27632 reduced [Ca(2+) ]i levels in the penile arteries activated with either high extracellular potassium or U46619. MYPT-Thr(850) phosphorylation in corpus cavernous strips was increased in response to U46619 through activation of TP receptors and was found to be a direct result of phosphorylation by ROCK. Y27632 induced less relaxation in mesenteric arteries, H1152P induced equipotent relaxations, and a protein kinase C inhibitor, Ro-318220, failed to relax intracavernous penile arteries, but induced full relaxation in rat mesenteric arteries. Our findings suggest that U46619 contraction depends on Ca(2+) influx through L-type and TRP channels, and ROCK-dependent mechanisms in penile arteries. Inhibition of the ROCK pathway is a potential approach for the treatment of erectile dysfunction associated with hypertension and diabetes.

  16. Endocytic collagen degradation: a novel mechanism involved in protection against liver fibrosis.

    PubMed

    Madsen, Daniel H; Jürgensen, Henrik J; Ingvarsen, Signe; Melander, Maria C; Vainer, Ben; Egerod, Kristoffer L; Hald, Andreas; Rønø, Birgitte; Madsen, Charlotte A; Bugge, Thomas H; Engelholm, Lars H; Behrendt, Niels

    2012-05-01

    Fibrosis of the liver and its end-stage, cirrhosis, represent major health problems worldwide. In these fibrotic conditions, activated fibroblasts and hepatic stellate cells display a net deposition of collagen. This collagen deposition is a major factor leading to liver dysfunction, thus making it crucially important to understand both the collagen synthesis and turnover mechanisms in this condition. Here we show that the endocytic collagen receptor, uPARAP/Endo180, is a major determinant in governing the balance between collagen deposition and degradation. Cirrhotic human livers displayed a marked up-regulation of uPARAP/Endo180 in activated fibroblasts and hepatic stellate cells located close to the collagen deposits. In a hepatic stellate cell line, uPARAP/Endo180 was shown to be active in, and required for, the uptake and intracellular degradation of collagen. To evaluate the functional importance of this collagen receptor in vivo, liver fibrosis was induced in uPARAP/Endo180-deficient mice and littermate wild-type mice by chronic CCl(4) administration. A strong up-regulation of uPARAP/Endo180 was observed in wild-type mice, and a quantitative comparison of collagen deposits in the two groups of mice clearly revealed a fibrosis protective role of uPARAP/Endo180. This effect appeared to directly reflect the activity of the collagen receptor, since no compensatory events were noted when comparing the mRNA expression profiles of the two groups of mice in an array system focused on matrix-degrading components. This function of uPARAP/Endo180 defines a novel role of intracellular collagen turnover in fibrosis protection.

  17. Critical review on the physical and mechanical factors involved in tissue engineering of cartilage.

    PubMed

    Gaut, Carrie; Sugaya, Kiminobu

    2015-01-01

    Articular cartilage defects often progress to osteoarthritis, which negatively impacts quality of life for millions of people worldwide and leads to high healthcare expenditures. Tissue engineering approaches to osteoarthritis have concentrated on proliferation and differentiation of stem cells by activation and suppression of signaling pathways, and by using a variety of scaffolding techniques. Recent studies indicate a key role of environmental factors in the differentiation of mesenchymal stem cells to mature cartilage-producing chondrocytes. Therapeutic approaches that consider environmental regulation could optimize chondrogenesis protocols for regeneration of articular cartilage. This review focuses on the effect of scaffold structure and composition, mechanical stress and hypoxia in modulating mesenchymal stem cell fate and the current use of these environmental factors in tissue engineering research.

  18. Getting Involved: Exploring Latino GBT Volunteerism and Activism in AIDS and LGBT Organizations

    PubMed Central

    Ramirez-Valles, Jesus; Kuhns, Lisa M.; Vázquez, Raquel; Benjamin, Gregory D.

    2014-01-01

    The purpose of this paper is to investigate the community involvement (e.g., volunteerism, activism) of Latino gay and bisexual men and transgender persons (GBT) in two areas: AIDS/GLBT and other general causes. Drawing from volunteering and identity theories, we explore: Who is likely to get involved? What factors affect variation in the levels of involvement? Where do Latino GBT participate and what do they do? Data come from a cross-sectional sample (N=643) of Latino GBT in Chicago and San Francisco. We find high levels of involvement, but primarily focused on AIDS/GLBT. Involvement appears to be driven by income, early involvement, role modeling, and childhood stigmatization of gender nonconformity. PMID:26451081

  19. Platelet Activation: The Mechanisms and Potential Biomarkers

    PubMed Central

    Yun, Seong-Hoon; Sim, Eun-Hye; Goh, Ri-Young; Park, Joo-In

    2016-01-01

    Beyond hemostasis and thrombosis, an increasing number of studies indicate that platelets play an integral role in intercellular communication, mediating inflammatory and immunomodulatory activities. Our knowledge about how platelets modulate inflammatory and immunity has greatly improved in recent years. In this review, we discuss recent advances in the pathways of platelet activation and potential application of platelet activation biomarkers to diagnosis and prediction of disease states. PMID:27403440

  20. The principal motions involved in the coupling mechanism of the recovery stroke of the myosin motor.

    SciTech Connect

    Mesentean, Sidonia; Koppole, Sampath; Smith, Jeremy C; Fischer, S.

    2007-03-01

    Muscle contraction is driven by a cycle of conformational changes in the myosin II head. After myosin binds ATP and releases from the actin fibril, myosin prepares for the next power stroke by rotating back the converter domain that carries the lever arm by 60{sup o}. This recovery stroke is coupled to the activation of myosin ATPase by a mechanism that is essential for an efficient motor cycle. The mechanics of this coupling have been proposed to occur via two distinct and successive motions of the two helices that hold the converter domain: in a first phase a seesaw motion of the relay helix, followed by a piston-like motion of the SH1 helix in a second phase. To test this model, we have determined the principal motions of these structural elements during equilibrium molecular dynamics simulations of the crystallographic end states of the recovery-stroke by using principal component analysis. This reveals that the only principal motions of these two helices that make a large-amplitude contribution towards the conformational change of the recovery stroke are indeed the predicted seesaw and piston motions. Moreover, the results demonstrate that the seesaw motion of the relay helix dominates in the dynamics of the pre-recovery stroke structure, but not in the dynamics of the post-recovery stroke structure, and vice versa for the piston motion of the SH1 helix. This is consistent with the order of the proposed two-phase model for the coupling mechanism of the recovery stroke. Molecular movies of these principal motions are available at http://www.iwr.uni-heidelberg.de/groups/biocomp/fischer.

  1. Mechanical stretch upregulates proteins involved in Ca2+ sensitization in urinary bladder smooth muscle hypertrophy.

    PubMed

    Boopathi, Ettickan; Gomes, Cristiano; Zderic, Stephen A; Malkowicz, Bruce; Chakrabarti, Ranjita; Patel, Darshan P; Wein, Alan J; Chacko, Samuel

    2014-09-15

    Partial bladder outlet obstruction (pBOO)-induced remodeling of bladder detrusor smooth muscle (DSM) is associated with the modulation of cell signals regulating contraction. We analyzed the DSM from obstructed murine urinary bladders for the temporal regulation of RhoA GTPase and Rho-activated kinase (ROCK), which are linked to Ca(2+) sensitization. In addition, the effects of equibiaxial cell stretch, a condition thought to be associated with pBOO-induced bladder wall smooth muscle hypertrophy and voiding frequency, on the expression of RhoA, ROCK, and C-kinase-activated protein phosphatase I inhibitor (CPI-17) were investigated. DSM from 1-, 3-, 7-, and 14-day obstructed male mice bladders and benign prostatic hyperplasia (BPH)-induced obstructed human bladders revealed overexpression of RhoA and ROCK-β at the mRNA and protein levels compared with control. Primary human bladder myocytes seeded onto type I collagen-coated elastic silicone membranes were subjected to cyclic equibiaxial stretch, mimicking the cellular mechanical stretch in the bladder in vivo, and analyzed for the expression of RhoA, ROCK-β, and CPI-17. Stretch caused a significant increase of RhoA, ROCKβ, and CPI-17 expression. The stretch-induced increase in CPI-17 expression occurs at the transcriptional level and is associated with CPI-17 promoter binding by GATA-6 and NF-κB, the transcription factors responsible for CPI-17 gene transcription. Cell stretch caused by bladder overdistension in pBOO is the likely mechanism for initiating overexpression of the signaling proteins regulating DSM tone.

  2. Attentional Biases toward Attractive Alternatives and Rivals: Mechanisms Involved in Relationship Maintenance among Chinese Women

    PubMed Central

    Ma, Yidan; Zhao, Guang; Tu, Shen; Zheng, Yong

    2015-01-01

    A long-term romantic relationship can offer many benefits to committed individuals. Thus, humans possess relationship maintenance mechanisms to protect against threats from those who serve as attractive alternatives or intrasexual rivals. Many studies have indicated that romantic love can act as a commitment device to activate these mechanisms. To examine the attentional bias associated with relationship maintenance among 108 college students (49 single and 59 committed females) in China, we used a semantic priming procedure to activate mental representations associated with romantic love and then asked participants to complete a dot-probe task for the purpose of making a distinction between the engage and disengage components of attention. No significant engaging effects toward attractive faces were observed among committed females, but the following significant disengaging effects were found: when primed with romantic love, single females showed increased attention toward and difficulty in disengaging from attractive male faces, whereas females already in a committed relationship did not alter their attention, remaining as inattentive to attractive alternatives as they were in the baseline condition. In addition, committed females responded to love priming by exhibiting difficulty in disengaging from attractive rivals. The present findings provide evidence in the Chinese cultural context for the existence of early-stage attentional processes in the domain of relationship maintenance that committed Chinese females protected an ongoing relationship by not only being inattentive to attractive males who could serve as attractive alternatives, but also being more attentive to attractive females who could be potential rivals when mental representations associated with romantic love were primed. PMID:26309232

  3. Modulation of a voltage-gated Na+ channel by sevoflurane involves multiple sites and distinct mechanisms.

    PubMed

    Barber, Annika F; Carnevale, Vincenzo; Klein, Michael L; Eckenhoff, Roderic G; Covarrubias, Manuel

    2014-05-06

    Halogenated inhaled general anesthetic agents modulate voltage-gated ion channels, but the underlying molecular mechanisms are not understood. Many general anesthetic agents regulate voltage-gated Na(+) (NaV) channels, including the commonly used drug sevoflurane. Here, we investigated the putative binding sites and molecular mechanisms of sevoflurane action on the bacterial NaV channel NaChBac by using a combination of molecular dynamics simulation, electrophysiology, and kinetic analysis. Structural modeling revealed multiple sevoflurane interaction sites possibly associated with NaChBac modulation. Electrophysiologically, sevoflurane favors activation and inactivation at low concentrations (0.2 mM), and additionally accelerates current decay at high concentrations (2 mM). Explaining these observations, kinetic modeling suggests concurrent destabilization of closed states and low-affinity open channel block. We propose that the multiple effects of sevoflurane on NaChBac result from simultaneous interactions at multiple sites with distinct affinities. This multiple-site, multiple-mode hypothesis offers a framework to study the structural basis of general anesthetic action.

  4. The principal motions involved in the coupling mechanism of the recovery stroke of the myosin motor

    SciTech Connect

    Mesentean, Sidonia; Koppole, Sampath; Smith, Jeremy C; Fischer, S.

    2006-12-01

    Muscle contraction is driven by a cycle of conformational changes in the myosin II head. After myosin binds ATP and releases from the actin fibril, myosin prepares for the next power stroke by rotating back the converter domain that carries the lever arm by {approx}60 degrees. This recovery stroke is coupled to the activation of myosin's ATPase by a mechanism that is essential for an efficient motor cycle. The mechanics of this coupling have been proposed to occur via two distinct and successive motions of the two helices that hold the converter domain: in a first phase a see-saw motion of the relay helix, followed by a piston/seesaw motion of the SH1 helix in a second phase. To test this model, we have determined the principal motions of these structural elements during equilibrium molecular dynamics simulations of the crystallographic end states of the recovery stroke by using Principal Component Analysis. This reveals that the only principal motions of these two helices that make a large amplitude contribution towards the conformational change of the recovery stroke are indeed the predicted seesaw and piston motions.

  5. Modulation of a voltage-gated Na+ channel by sevoflurane involves multiple sites and distinct mechanisms

    PubMed Central

    Barber, Annika F.; Carnevale, Vincenzo; Klein, Michael L.; Eckenhoff, Roderic G.; Covarrubias, Manuel

    2014-01-01

    Halogenated inhaled general anesthetic agents modulate voltage-gated ion channels, but the underlying molecular mechanisms are not understood. Many general anesthetic agents regulate voltage-gated Na+ (NaV) channels, including the commonly used drug sevoflurane. Here, we investigated the putative binding sites and molecular mechanisms of sevoflurane action on the bacterial NaV channel NaChBac by using a combination of molecular dynamics simulation, electrophysiology, and kinetic analysis. Structural modeling revealed multiple sevoflurane interaction sites possibly associated with NaChBac modulation. Electrophysiologically, sevoflurane favors activation and inactivation at low concentrations (0.2 mM), and additionally accelerates current decay at high concentrations (2 mM). Explaining these observations, kinetic modeling suggests concurrent destabilization of closed states and low-affinity open channel block. We propose that the multiple effects of sevoflurane on NaChBac result from simultaneous interactions at multiple sites with distinct affinities. This multiple-site, multiple-mode hypothesis offers a framework to study the structural basis of general anesthetic action. PMID:24753583

  6. Multiple Mechanisms are Involved in Salt-Sensitive Hypertension-Induced Renal Injury and Interstitial Fibrosis

    PubMed Central

    Wei, Shi-Yao; Wang, Yu-Xiao; Zhang, Qing-Fang; Zhao, Shi-Lei; Diao, Tian-Tian; Li, Jian-Si; Qi, Wen-Rui; He, Yi-Xin; Guo, Xin-Yu; Zhang, Man-Zhu; Chen, Jian-Yu; Wang, Xiao-Ting; Wei, Qiu-Ju; Wang, Yu; Li, Bing

    2017-01-01

    Salt-sensitive hypertension (SSHT) leads to kidney interstitial fibrosis. However, the potential mechanisms leading to renal fibrosis have not been well investigated. In present study, Dahl salt-sensitive (DS) rats were divided into three groups: normal salt diet (DSN), high salt diet (DSH) and high salt diet treated with hydrochlorothiazide (HCTZ) (DSH + HCTZ). A significant increase in systolic blood pressure (SBP) was observed 3 weeks after initiating the high salt diet, and marked histological alterations were observed in DSH rats. DSH rats showed obvious podocyte injury, peritubular capillary (PTC) loss, macrophage infiltration, and changes in apoptosis and cell proliferation. Moreover, Wnt/β-catenin signaling was significantly activated in DSH rats. However, HCTZ administration attenuated these changes with decreased SBP. In addition, increased renal and urinary Wnt4 expression was detected with time in DSH rats and was closely correlated with histopathological alterations. Furthermore, these alterations were also confirmed by clinical study. In conclusion, the present study provides novel insight into the mechanisms related to PTC loss, macrophage infiltration and Wnt/β-catenin signaling in SSHT-induced renal injury and fibrosis. Therefore, multi-target therapeutic strategies may be the most effective in preventing these pathological processes. Moreover, urinary Wnt4 may be a noninvasive biomarker for monitoring renal injury after hypertension. PMID:28383024

  7. Resistance to coumaphos and diazinon in Boophilus microplus (Acari: Ixodidae) and evidence for the involvement of an oxidative detoxification mechanism.

    PubMed

    Li, Andrew Y; Davey, Ronald B; Miller, Robert J; George, John E

    2003-07-01

    The levels of resistance to two organophosphate acaricides, coumaphos and diazinon, in several Mexican strains of Boophilus microplus (Canestrini) were evaluated using the FAO larval packet test. Regression analysis of LC50 data revealed a significant cross-resistance pattern between those two acaricides. Metabolic mechanisms of resistance were investigated with synergist bioassays. Piperonyl butoxide (PBO) reduced coumaphos toxicity in susceptible strains, but synergized coumaphos toxicity in resistant strains. There was a significant correlation between PBO synergism ratios and the coumaphos resistance ratios. The results suggest that an enhanced cytochrome P450 monooxygenase (cytP450)-mediated detoxification mechanism may exist in the resistant strains, in addition to the cytP450-mediated metabolic pathway that activates coumaphos. PBO failed to synergize diazinon toxicity in resistant strains, suggesting the cytP450 involved in detoxification were specific. Triphenylphosphate (TPP) synergized toxicity of both acaricides in both susceptible and resistant strains, and there was no correlation between TPP synergism ratios and the LC50 estimates for either acaricide. Esterases may not play a major role in resistance to coumaphos and diazinon in those strains. Bioassays with diethyl maleate (DEM) revealed a significant correlation between DEM synergism ratios and LC50 estimates for diazinon, suggesting a possible role for glutathione S-transferases in diazinon detoxification. Resistance to coumaphos in the Mexican strains of B. microplus was likely to be conferred by both a cytP450-mediated detoxification mechanism described here and the mechanism of insensitive acetylcholinesterases reported elsewhere. The results of this study also underscore the potential risk of coumaphos resistance in B. microplus from Mexico to the U.S. cattle fever tick eradication program.

  8. A Study of Lipscomb University Students' Internet Use and Involvement in Extracurricular Activities

    ERIC Educational Resources Information Center

    Smith, Samuel Aarron

    2010-01-01

    The purpose of this study was to analyze Lipscomb University students' Internet use and involvement in extracurricular activities. A survey of students at Lipscomb University was conducted. As confirmed by the data the research was able to determine that the type of extracurricular activity a student participates in most often is related to the…

  9. 15 CFR 712.2 - Restrictions on activities involving Schedule 1 chemicals.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Schedule 1 chemicals. 712.2 Section 712.2 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS ACTIVITIES INVOLVING SCHEDULE 1 CHEMICALS § 712.2 Restrictions on activities...

  10. 15 CFR 712.2 - Restrictions on activities involving Schedule 1 chemicals.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Schedule 1 chemicals. 712.2 Section 712.2 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS ACTIVITIES INVOLVING SCHEDULE 1 CHEMICALS § 712.2 Restrictions on activities...

  11. Middle-Class Parental Involvement in the Summer Activities of Four Elementary Students: A Qualitative Study

    ERIC Educational Resources Information Center

    Ballard, Iva B.; Chappell, Manya; Johnson, Susan; Ngassam, Marlise DePaul

    2013-01-01

    In this study, we explore middle-class parental involvement in summer activities of four elementary students. Many researchers discuss summer programs initiated by institutions, but fail to explain how parents' availability, experiences, and related criteria affect student summer activities. From our interviews, observations, and artifacts, we…

  12. 15 CFR 712.2 - Restrictions on activities involving Schedule 1 chemicals.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Schedule 1 chemicals. 712.2 Section 712.2 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS ACTIVITIES INVOLVING SCHEDULE 1 CHEMICALS § 712.2 Restrictions on activities...

  13. 40 CFR 13.5 - Claims involving criminal activities or misconduct.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... misconduct. 13.5 Section 13.5 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL CLAIMS COLLECTION STANDARDS General § 13.5 Claims involving criminal activities or misconduct. (a) The Administrator will refer cases of suspected criminal activity or misconduct to the EPA Office of Inspector...

  14. Understanding Threshold Effects of Organized Activity Involvement in Adolescents: Sex and Family Income as Moderators

    ERIC Educational Resources Information Center

    Randall, Edin T.; Bohnert, Amy M.

    2012-01-01

    The current study examined the curvilinear links between involvement in organized activities (OA) and sport activities specifically and various indicators of psychological and social development. Participants included 150 9th and 10th graders (57% females) from an urban, selective-enrollment high school. Eligibility for admission is based on city…

  15. 48 CFR 3452.224-72 - Research activities involving human subjects.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 7 2013-10-01 2012-10-01 true Research activities... OF EDUCATION ACQUISITION REGULATION CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Text of Provisions and Clauses 3452.224-72 Research activities involving human subjects. As...

  16. 15 CFR 712.2 - Restrictions on activities involving Schedule 1 chemicals.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Schedule 1 chemicals. 712.2 Section 712.2 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS ACTIVITIES INVOLVING SCHEDULE 1 CHEMICALS § 712.2 Restrictions on activities...

  17. Mechanisms of Prescription Drug Diversion Among Drug-Involved Club- and Street-Based Populations

    PubMed Central

    Inciardi, James A.; Surratt, Hilary L.; Kurtz, Steven P.; Cicero, Theodore J.

    2010-01-01

    Objective Prescription drug diversion involves the unlawful channeling of regulated pharmaceuticals from legal sources to the illicit marketplace, and can occur along all points in the drug delivery process, from the original manufacturing site to the wholesale distributor, the physician's office, the retail pharmacy, or the patient. However, empirical data on diversion are limited. Method In an attempt to develop a better understanding of how specific drug-using populations are diverting prescription opioids and other medications, or obtaining controlled drugs that have already been diverted, qualitative interviews and focus group data were collected on four separate populations of prescription drug abusers in Miami, Florida—club drug users, street-based illicit drug users, methadone maintenance patients, and HIV positive individuals who abuse and/or divert drugs. Results Sources of abused prescription drugs cited by focus group participants were extremely diverse, including their physicians and pharmacists; parents and relatives; “doctor shopping”; leftover supplies following an illness or injury; personal visits to Mexico, South America and the Caribbean; prescriptions intended for the treatment of mental illness; direct sales on the street and in nightclubs; pharmacy and hospital theft; through friends or acquaintances; under-the-door apartment flyers advertising telephone numbers to call; and “stealing from grandma's medicine cabinet.” Conclusion While doctor shoppers, physicians and the Internet receive much of the attention regarding diversion, the data reported in this paper suggest that there are numerous active street markets involving patients, Medicaid recipients and pharmacies as well. In addition, there are other data which suggest that the contributions of residential burglaries, pharmacy robberies and thefts, and “sneak thefts” to the diversion problem may be understated. PMID:17305688

  18. Kindling-induced learning deficiency and possible cellular and molecular involved mechanisms.

    PubMed

    Sherafat, Mohammad Amin; Ronaghi, Abdolaziz; Ahmad-Molaei, Leila; Nejadhoseynian, Mohammad; Ghasemi, Rasoul; Hosseini, Arman; Naderi, Nima; Motamedi, Fereshteh

    2013-06-01

    Hippocampus learning disturbance is a major symptom of patients with seizure, hence hippocampal dysfunction has essential role in worsening the disease. Hippocampal formation includes neurons and myelinated fibers that are necessary for acquisition and consolidation of memory, long-term potentiation and learning activity. The exact mechanism by which seizure can decrease memory and learning activity of hippocampus remains unknown. In the present study, electrical kindling-induced learning deficit in rats was evaluated by Morris water maze (MWM) test. The hippocampus was removed and changes in neurons and myelin sheaths around hippocampal fibers were investigated using histological and immunohistochemical methods. Demyelination was assessed by luxol fast blue staining, and immunohistological staining of myelin-binding protein (MBP). The TUNEL assay was used for evaluation of neuronal apoptosis and the glial fibriliary acetic protein (GFAP) was used for assessment of inflammatory reaction. The results indicated that electrical kindling of hippocampus could induce deficiency in spatial learning and memory as compared to control group. In addition, electrical kindling caused damage to the myelin sheath around hippocampal fibers and produced vast demyelination. Furthermore, an increase in the number of apoptotic cells in hippocampal slices was observed. In addition, inflammatory response was higher in kindled animals as compared to the control group. The results suggested that the decrease in learning and memory in kindled animals is likely due to demyelination and augmentation in apoptosis rate accompanied by inflammatory reaction in hippocampal neurons of kindled rats.

  19. An embryonic demethylation mechanism involving binding of transcription factors to replicating DNA.

    PubMed Central

    Matsuo, K; Silke, J; Georgiev, O; Marti, P; Giovannini, N; Rungger, D

    1998-01-01

    In vertebrates, transcriptionally active promoters are undermethylated. Since the transcription factor Sp1, and more recently NF-kappaB, have been implicated in the demethylation process, we examined the effect of transcription factors on demethylation by injecting in vitro methylated plasmid DNA into Xenopus fertilized eggs. We found that various transactivation domains, including a strong acidic activation domain from the viral protein VP16, can enhance demethylation of a promoter region when fused to a DNA binding domain which recognizes the promoter. Furthermore, demethylation occurs only after the midblastula transition, when the general transcription machinery of the host embryo becomes available. Nevertheless, transcription factor binding need not be followed by actual transcription, since demethylation is not blocked by alpha-amanitin treatment. Finally, replication of the target DNA is a prerequisite for efficient demethylation since only plasmids that carry the bovine papilloma virus sequences which support plasmid replication after the midblastula transition are demethylated. No demethylation is detectable in the oocyte system where DNA is not replicated. These results suggest that, in the Xenopus embryo, promoters for which transcription factors are available are demethylated by a replication-dependent, possibly passive mechanism. PMID:9482741

  20. How do bifidobacteria counteract environmental challenges? Mechanisms involved and physiological consequences.

    PubMed

    Ruiz, Lorena; Ruas-Madiedo, Patricia; Gueimonde, Miguel; de Los Reyes-Gavilán, Clara G; Margolles, Abelardo; Sánchez, Borja

    2011-08-01

    An effective response to stress is of paramount importance for probiotic bifidobacteria administered in foods, since it determines their performance as beneficial microorganisms. Firstly, bifidobacteria have to be resistant to the stress sources typical in manufacturing, including heating, exposure to low water activities, osmotic shock and presence of oxygen. Secondly, and once they are orally ingested, bifidobacteria have to overcome physiological barriers in order to arrive in the large intestine biologically active. These barriers are mainly the acid pH in the stomach and the presence of high bile salt concentrations in the small intestine. In addition, the large intestine is, in terms of microbial amounts, a densely populated environment in which there is an extreme variability in carbon source availability. For this reason, bifidobacteria harbours a wide molecular machinery allowing the degradation of a wide variety of otherwise non-digestible sugars. In this review, the molecular mechanisms allowing this bacterial group to favourably react to the presence of different stress sources are presented and discussed.

  1. Effects of nitric oxide on magnocellular neurons of the supraoptic nucleus involve multiple mechanisms

    PubMed Central

    da Silva, M.P.; Cedraz-Mercez, P.L.; Varanda, W.A.

    2014-01-01

    Physiological evidence indicates that the supraoptic nucleus (SON) is an important region for integrating information related to homeostasis of body fluids. Located bilaterally to the optic chiasm, this nucleus is composed of magnocellular neurosecretory cells (MNCs) responsible for the synthesis and release of vasopressin and oxytocin to the neurohypophysis. At the cellular level, the control of vasopressin and oxytocin release is directly linked to the firing frequency of MNCs. In general, we can say that the excitability of these cells can be controlled via two distinct mechanisms: 1) the intrinsic membrane properties of the MNCs themselves and 2) synaptic input from circumventricular organs that contain osmosensitive neurons. It has also been demonstrated that MNCs are sensitive to osmotic stimuli in the physiological range. Therefore, the study of their intrinsic membrane properties became imperative to explain the osmosensitivity of MNCs. In addition to this, the discovery that several neurotransmitters and neuropeptides can modulate their electrical activity greatly increased our knowledge about the role played by the MNCs in fluid homeostasis. In particular, nitric oxide (NO) may be an important player in fluid balance homeostasis, because it has been demonstrated that the enzyme responsible for its production has an increased activity following a hypertonic stimulation of the system. At the cellular level, NO has been shown to change the electrical excitability of MNCs. Therefore, in this review, we focus on some important points concerning nitrergic modulation of the neuroendocrine system, particularly the effects of NO on the SON. PMID:24519124

  2. The Ang II-induced growth of vascular smooth muscle cells involves a phospholipase D-mediated signaling mechanism.

    PubMed

    Freeman, E J

    2000-02-15

    Angiotensin (Ang) II acts as a mitogen in vascular smooth muscle cells (VSMC) via the activation of multiple signaling cascades, including phospholipase C, tyrosine kinase, and mitogen-activated protein kinase pathways. However, increasing evidence supports signal-activated phospholipases A(2) and D (PLD) as additional mechanisms. Stimulation of PLD results in phosphatidic acid (PA) formation, and PA has been linked to cell growth. However, the direct involvement of PA or its metabolite diacylglycerol (DAG) in Ang II-induced growth is unclear. PLD activity was measured in cultured rat VSMC prelabeled with [(3)H]oleic acid, while the incorporation of [(3)H]thymidine was used to monitor growth. We have previously reported the Ang II-dependent, AT(1)-coupled stimulation of PLD and growth in VSMC. Here, we show that Ang II (100 nM) and exogenous PLD (0.1-100 units/mL; Streptomyces chromofuscus) stimulated thymidine incorporation (43-208% above control). PA (100 nM-1 microM) also increased thymidine incorporation to 135% of control. Propranolol (100 nM-10 microM), which inhibits PA phosphohydrolase, blocked the growth stimulated by Ang II, PLD, or PA by as much as 95%, an effect not shared by other beta-adrenergic antagonists. Propranolol also increased the production of PA in the presence of Ang II by 320% and reduced DAG and arachidonic acid (AA) accumulation. The DAG lipase inhibitor RHC-80267 (1-10 microM) increased Ang II-induced DAG production, while attenuating thymidine incorporation and release of AA. Thus, it appears that activation of PLD, formation of PA, conversion of PA to DAG, and metabolism of DAG comprise an important signaling cascade in Ang II-induced growth of VSMC.

  3. Water-soluble chlorophyll protein is involved in herbivore resistance activation during greening of Arabidopsis thaliana

    PubMed Central

    Boex-Fontvieille, Edouard; Rustgi, Sachin; von Wettstein, Diter; Reinbothe, Steffen; Reinbothe, Christiane

    2015-01-01

    Water-soluble chlorophyll proteins (WSCPs) constitute a small family of unusual chlorophyll (Chl)-binding proteins that possess a Kunitz-type protease inhibitor domain. In Arabidopsis thaliana, a WSCP has been identified, named AtWSCP, that forms complexes with Chl and the Chl precursor chlorophyllide (Chlide) in vitro. AtWSCP exhibits a quite unexpected expression pattern for a Chl binding protein and accumulated to high levels in the apical hook of etiolated plants. AtWSCP expression was negatively light-regulated. Transgenic expression of AtWSCP fused to green fluorescent protein (GFP) revealed that AtWSCP is localized to cell walls/apoplastic spaces. Biochemical assays identified AtWSCP as interacting with RD21 (RESPONSIVE TO DESICCATION 21), a granulin domain-containing cysteine protease implicated in stress responses and defense. Reconstitution experiments showed tight interactions between RD21 and WSCP that were relieved upon Chlide binding. Laboratory feeding experiments with two herbivorous isopod crustaceans, Porcellio scaber (woodlouse) and Armadillidium vulgare (pillbug), identified the apical hook as Achilles’ heel of etiolated plants and that this was protected by RD21 during greening. Because Chlide is formed in the apical hook during seedling emergence from the soil, our data suggest an unprecedented mechanism of herbivore resistance activation that is triggered by light and involves AtWSCP. PMID:26016527

  4. Duality of G protein-coupled mechanisms for beta-adrenergic activation of NKCC activity in skeletal muscle.

    PubMed

    Gosmanov, Aidar R; Wong, Jennifer A; Thomason, Donald B

    2002-10-01

    Skeletal muscle Na(+)-K(+)-2Cl(-) cotransporter (NKCC) activity provides a potential mechanism for regulated K(+) uptake. beta-Adrenergic receptor (beta-AR) activation stimulates skeletal muscle NKCC activity in a MAPK pathway-dependent manner. We examined potential G protein-coupled pathways for beta-AR-stimulated NKCC activity. Inhibition of G(s)-coupled PKA blocked isoproterenol-stimulated NKCC activity in both the slow-twitch soleus muscle and the fast-twitch plantaris muscle. However, the PKA-activating agents cholera toxin, forskolin, and 8-bromo-cAMP (8-BrcAMP) were not sufficient to activate NKCC in the plantaris and partially stimulated NKCC activity in the soleus. Isoproterenol-stimulated NKCC activity in the soleus was abolished by pretreatment with pertussis toxin (PTX), indicating a G(i)-coupled mechanism. PTX did not affect the 8-BrcAMP-stimulated NKCC activity. PTX treatment also precluded the isoproterenol-mediated ERK1/2 MAPK phosphorylation in the soleus, consistent with NKCC's MAPK dependency. Inhibition of isoproterenol-stimulated ERK activity by PTX treatment was associated with an increase in Akt activation and phosphorylation of Raf-1 on the inhibitory residue Ser(259). These results demonstrate a novel, muscle phenotype-dependent mechanism for beta-AR-mediated NKCC activation that involves both G(s) and G(i) protein-coupled mechanisms.

  5. Modafinil disrupts prepulse inhibition in mice: strain differences and involvement of dopaminergic and serotonergic activation.

    PubMed

    Kwek, Perrin; van den Buuse, Maarten

    2013-01-15

    Modafinil is a wakefulness-promoting agent with possible beneficial effects for the management of addiction and in psychiatric conditions, but also with abuse potential of its own. The mechanism of action of modafinil remains unclear. We studied pharmacological mechanisms in the effect of modafinil on prepulse inhibition (PPI), a model of sensorimotor gating. Mice were tested in automated startle boxes after administration of modafinil and antagonist drugs. Oral administration of 100mg/kg of modafinil, but not lower doses, caused a significant reduction of PPI in C57Bl/6 mice, but not Balb/c mice. This effect of modafinil could be blocked by co-treatment with the dopamine D(2) receptor antagonist, haloperidol, and the serotonin (5-HT) 2A receptor antagonist, ketanserin, but not the 5-HT(1A) receptor antagonist, WAY100,635. At 30mg/kg, which did not influence PPI, modafinil inhibited PPI disruption caused by the dopamine transporter inhibitor, GBR12909. There was no interaction between modafinil and the serotonin transporter inhibitor, fluoxetine. There were no consistent effects of modafinil on startle amplitude. These results show that oral modafinil treatment may cause disruption of PPI in mice. This effect was strain-dependent, involving dopamine D(2) and 5-HT(2A) receptor activation, and was likely mediated by an interaction with the dopamine transporter. These results extend our insight into the behavioral effects of modafinil and could be of importance for the clinical use of this agent as they may indicate an increased risk of side-effects in conditions where PPI is already reduced, such as in schizophrenia and bipolar disorder.

  6. Monocyte Migration Driven by Galectin-3 Occurs through Distinct Mechanisms Involving Selective Interactions with the Extracellular Matrix

    PubMed Central

    Danella Polli, Cláudia; Alves Toledo, Karina; Franco, Luís Henrique; Sammartino Mariano, Vânia; de Oliveira, Leandro Licursi; Soares Bernardes, Emerson; Roque-Barreira, Maria Cristina; Pereira-da-Silva, Gabriela

    2013-01-01

    Monocyte migration into tissues, an important event in inflammation, requires an intricate interplay between determinants on cell surfaces and extracellular matrix (ECM). Galectin-3 is able to modulate cell-ECM interactions and is an important mediator of inflammation. In this study, we sought to investigate whether interactions established between galectin-3 and ECM glycoproteins are involved in monocyte migration, given that the mechanisms by which monocytes move across the endothelium and through the extravascular tissue are poorly understood. Using the in vitro transwell system, we demonstrated that monocyte migration was potentiated in the presence of galectin-3 plus laminin or fibronectin, but not vitronectin, and was dependent on the carbohydrate recognition domain of the lectin. Only galectin-3-fibronectin combinations potentiated the migration of monocyte-derived macrophages. In binding assays, galectin-3 did not bind to fibronectin, whereas both the full-length and the truncated forms of the lectin, which retains carbohydrate binding ability, were able to bind to laminin. Our results show that monocytes migrate through distinct mechanisms and selective interactions with the extracellular matrix driven by galectin-3. We suggest that the lectin may bridge monocytes to laminin and may also activate these cells, resulting in the positive regulation of other adhesion molecules and cell adhesion to fibronectin. PMID:24049657

  7. Antihyperalgesic effect of a Cannabis sativa extract in a rat model of neuropathic pain: mechanisms involved.

    PubMed

    Comelli, Francesca; Giagnoni, Gabriella; Bettoni, Isabella; Colleoni, Mariapia; Costa, Barbara

    2008-08-01

    This study aimed to give a rationale for the employment of phytocannabinoid formulations to treat neuropathic pain. It was found that a controlled cannabis extract, containing multiple cannabinoids, in a defined ratio, and other non-cannabinoid fractions (terpenes and flavonoids) provided better antinociceptive efficacy than the single cannabinoid given alone, when tested in a rat model of neuropathic pain. The results also demonstrated that such an antihyperalgesic effect did not involve the cannabinoid CB1 and CB2 receptors, whereas it was mediated by vanilloid receptors TRPV1. The non-psychoactive compound, cannabidiol, is the only component present at a high level in the extract able to bind to this receptor: thus cannabidiol was the drug responsible for the antinociceptive behaviour observed. In addition, the results showed that after chronic oral treatment with cannabis extract the hepatic total content of cytochrome P450 was strongly inhibited as well as the intestinal P-glycoprotein activity. It is suggested that the inhibition of hepatic metabolism determined an increased bioavailability of cannabidiol resulting in a greater effect. However, in the light of the well known antioxidant and antiinflammatory properties of terpenes and flavonoids which could significantly contribute to the therapeutic effects, it cannot be excluded that the synergism observed might be achieved also in the absence of the cytochrome P450 inhibition.

  8. Activities involving aeronautical, space science, and technology support for minority institutions

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Final Report addressed the activities with which the Interracial Council for Business Opportunity (ICBO) was involved over the past 12 months. ICBO was involved in the design and development of a CARES Student Tracking System Software (CARES). Cares is intended to provide an effective means of maintaining relevant current and historical information on NASA-funded students through a range of educational program initiatives. ICBP was extensively involved in the formation of a minority university consortium amd implementation of collaborative research activities by the consortium as part of NASA's Mission to Planet Earth/Earth Observing System. ICBO was involved in the formation of an HBCU/MI Consortium to facilitate technology transfer efforts to the small and minority business community in their respective regions.

  9. Cellular mechanisms involved in the increased contraction of portal veins from Schistosoma mansoni-infected mice.

    PubMed

    Silva, C L M; Lenzi, H L; Silva, V F M; Paulo, F O; Noël, F

    2003-01-01

    We previously reported that portal veins from mice infected with male Schistosoma mansoni exhibited an increased reactivity to 5-hydroxytryptamine (5-HT). Here, we extended our observations to mice infected by both male and female worms and we further investigated another constrictor agent and the mechanism(s) responsible for the enhanced maximal contraction ( E(max)). Bisexual infection increased the E(max) of 5-HT (from 0.66+/-0.06 mN.s to 1.56+/-0.38 mN.s), in a similar way to the unisexual (male) infection. Infection with male worms increased portal vein reactivity to acetylcholine, as revealed by a higher E(max) (1.03+/-0.2 mN.s) in relation to non-infected control animals ( E(max)= 0.54+/-0.08 mN.s). Sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA) inhibition with 100 nM thapsigargin reduced the E(max) of 5-HT by 35% in both tissues, discharging a deficiency of SERCA pump in infected animals. In contrast, the number of voltage-dependent Ca(2+) channels (L-type) was higher in portal veins from infected than non-infected control mice. Inhibition of Ca(2+)-activated chloride channels (Cl(Ca)) with 10 micro M niflumic acid reduced the E(max) of 5-HT in portal veins more from infected than non-infected animals (remaining tension = 60.9+/-2.2% and 70.4+/-2.3%, respectively). Histopathological analysis revealed an increased content of collagen and elastin in portal veins from male S. mansoni-infected mice, compatible with an increased intraluminal pressure. In conclusion, male S. mansoni altered portal vein physiology, increasing the E(max) of two vasoconstrictors, possibly by increasing membrane depolarisation through a more effective opening of Cl(Ca) channels, with calcium entering through L-type Ca(2+) channels.

  10. Evidence for the Involvement of p38 MAPK Activation in Barnacle Larval Settlement

    PubMed Central

    He, Li-Sheng; Xu, Ying; Matsumura, Kiyotaka; Zhang, Yu; Zhang, Gen; Qi, Shu-Hua; Qian, Pei-Yuan

    2012-01-01

    The barnacle Balanus ( = Amphibalanus) amphitrite is a major marine fouling animal. Understanding the molecular mechanism of larval settlement in this species is critical for anti-fouling research. In this study, we cloned one isoform of p38 MAPK (Bar-p38 MAPK) from this species, which shares the significant characteristic of containing a TGY motif with other species such as yeast, Drosophila and humans. The activation of p38 MAPK was detected by an antibody that recognizes the conserved dual phosphorylation sites of TGY. The results showed that phospho-p38 MAPK (pp38 MAPK) was more highly expressed at the cyprid stage, particularly in aged cyprids, in comparison to other stages, including the nauplius and juvenile stages. Immunostaining showed that Bar-p38 MAPK and pp38 MAPK were mainly located at the cyprid antennules, and especially the third and fourth segments, which are responsible for substratum exploration during settlement. The expression and localization patterns of Bar-p38 MAPK suggest its involvement in larval settlement. This postulation was also supported by the larval settlement bioassay with the p38 MAPK inhibitor SB203580. Behavioral analysis by live imaging revealed that the larvae were still capable of exploring the surface of the substratum after SB203580 treatment. This shows that the effect of p38 MAPK on larval settlement might be by regulating the secretion of permanent proteinaceous substances. Furthermore, the level of pp38 MAPK dramatically decreased after full settlement, suggesting that Bar-p38 MAPK maybe plays a role in larval settlement rather than metamorphosis. Finally, we found that Bar-p38 MAPK was highly activated when larvae confronted extracts of adult barnacle containing settlement cues, whereas larvae pre-treated with SB203580 failed to respond to the crude adult extracts. PMID:23115639

  11. Mechanisms involved in vitamin D mediated intestinal calcium absorption and in non-classical actions of vitamin D.

    PubMed

    Christakos, Sylvia; Dhawan, Puneet; Ajibade, Dare; Benn, Bryan S; Feng, Jingjing; Joshi, Sneha S

    2010-07-01

    Recent studies in our laboratory using calbindin-D9k null mutant mice as well as mice lacking the 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) inducible epithelial calcium channel TRPV6 provide evidence for calbindin-D9k and TRPV6 independent regulation of active intestinal calcium absorption. These findings suggest that in the knock out (KO) mice there is compensation by another calcium channel or protein and that other novel factors are involved in 1,25(OH)2D3 mediated active intestinal calcium absorption. In addition, 1,25(OH)2D3 mediated paracellular transport of calcium may have contributed to the normalization of serum calcium in the null mutant mice. 1,25(OH)2D3 downregulates cadherin-17 and upregulates claudin-2 and claudin-12 in the intestine, suggesting that 1,25(OH)2D3, by regulating these epithelial cell junction proteins, can route calcium through the paracellular path. With regard to non-classical actions, 1,25(OH)2D3 has been reported to inhibit the proliferation of a number of malignant cells and to regulate adaptive as well as innate immunity. This article will review new developments related to the function and regulation of vitamin D target proteins in classical and non-classical vitamin D target tissues that have provided novel insight into mechanisms of vitamin D action.

  12. Cooperative mechanisms involved in chronic antidiuretic response to bendroflumethiazide in rats with lithium-induced nephrogenic diabetes insipidus.

    PubMed

    Moosavi, S M S; Karimi, Z

    2014-03-01

    Previous studies of central diabetes insipidus suggested that thiazides acutely exerted a paradoxical antidiuresis by either indirectly activating volume-homeostatic reflexes to decrease distal fluid-delivery, or directly stimulating distal water-reabsorption. This study investigated whether the direct and indirect actions of bendroflumethiazide (BFTZ) simultaneously cooperated and also whether the renal nerves were involved in inducing long-term antidiuresis in nephrogenic diabetes insipidus (NDI). BFTZ or vehicle was gavaged into bilateral renal denervated and innervated rats with lithium-induced NDI for 10 days, constituting four groups. At one day before (D0) and one, five and ten days after starting administration of BFTZ or vehicle, rats were placed in metabolic cages to collect urine for 6 hours. BFTZ-treatment in both renal innervated and denervated rats caused equivalent reductions in urine-flow, creatinine clearance, lithium clearance and free-water clearance, but rises in urine-osmolality, fractional proximal reabsorption and fractional distal reabsorption at all days compared to D0, as well as to those of their relevant vehicle-received group. Therefore, the chronic antidiuretic response to BFTZ in conscious NDI rats was exerted through a concomitant cooperation of its direct distal effect of stimulating water-reabsorption and its indirect effect of reducing distal fluid-delivery by activating volume-homeostatic mechanisms, which appeared independent of the renal nerves.

  13. Aeromonas hydrophila induced head kidney macrophage apoptosis in Clarias batrachus involves the activation of calpain and is caspase-3 mediated.

    PubMed

    Banerjee, Chaitali; Goswami, Ramansu; Verma, Gaurav; Datta, Malabika; Mazumder, Shibnath

    2012-07-01

    The mechanism of macrophage cytotoxicity induced by Aeromonas hydrophila is yet unresolved. We observed A. hydrophila induces Head Kidney Macrophage (HKM) apoptosis in Clarias batrachus, as evident from Hoechst 33342 and AnnexinV-Propidium Iodide staining and presence of oligonucleosomal DNA ladder. Initiation of apoptosis required the bacteria to be alive, be actively phagocytosed into HKM and was dependent on host proteins. Elevated cytosolic calcium and consequent calpain activity that declined following pre-incubation with EGTA, verapamil and nifedipine implicates the role of calcium influx through voltage gated calcium channels and calpain in A. hydrophila-induced HKM apoptosis. Though, calpain-1 and -2 were involved, calpain-2 appeared to be more important in the process. EGTA, verapamil, nifedipine and calpain-2 inhibitor reduced caspase-3 activity and apoptosis. We conclude that A. hydrophila alters cytosolic calcium homeostasis initiating the activation of calpains, more specifically calpain-2, which leads to caspase-3 mediated HKM apoptosis in C. batrachus.

  14. Fatty acid transport and activation and the expression patterns of genes involved in fatty acid trafficking.

    PubMed

    Sandoval, Angel; Fraisl, Peter; Arias-Barrau, Elsa; Dirusso, Concetta C; Singer, Diane; Sealls, Whitney; Black, Paul N

    2008-09-15

    These studies defined the expression patterns of genes involved in fatty acid transport, activation and trafficking using quantitative PCR (qPCR) and established the kinetic constants of fatty acid transport in an effort to define whether vectorial acylation represents a common mechanism in different cell types (3T3-L1 fibroblasts and adipocytes, Caco-2 and HepG2 cells and three endothelial cell lines (b-END3, HAEC, and HMEC)). As expected, fatty acid transport protein (FATP)1 and long-chain acyl CoA synthetase (Acsl)1 were the predominant isoforms expressed in adipocytes consistent with their roles in the transport and activation of exogenous fatty acids destined for storage in the form of triglycerides. In cells involved in fatty acid processing including Caco-2 (intestinal-like) and HepG2 (liver-like), FATP2 was the predominant isoform. The patterns of Acsl expression were distinct between these two cell types with Acsl3 and Acsl5 being predominant in Caco-2 cells and Acsl4 in HepG2 cells. In the endothelial lines, FATP1 and FATP4 were the most highly expressed isoforms; the expression patterns for the different Acsl isoforms were highly variable between the different endothelial cell lines. The transport of the fluorescent long-chain fatty acid C(1)-BODIPY-C(12) in 3T3-L1 fibroblasts and 3T3-L1 adipocytes followed typical Michaelis-Menten kinetics; the apparent efficiency (k(cat)/K(T)) of this process increases over 2-fold (2.1 x 10(6)-4.5 x 10(6)s(-1)M(-1)) upon adipocyte differentiation. The V(max) values for fatty acid transport in Caco-2 and HepG2 cells were essentially the same, yet the efficiency was 55% higher in Caco-2 cells (2.3 x 10(6)s(-1)M(-1) versus 1.5 x 10(6)s(-1)M(-1)). The kinetic parameters for fatty acid transport in three endothelial cell types demonstrated they were the least efficient cell types for this process giving V(max) values that were nearly 4-fold lower than those defined form 3T3-L1 adipocytes, Caco-2 cells and HepG2 cells. The

  15. Diversity of mechanisms involved in aromatase regulation and estrogen action in the brain

    PubMed Central

    Charlier, Thierry D.; Cornil, Charlotte A.; Ball, Gregory F.; Balthazart, Jacques

    2010-01-01

    The mechanisms through which estrogens modulate neuronal physiology, brain morphology, and behavior in recent years have proven to be far more complex than previously thought. For example, a second nuclear estrogen receptor has been identified, a new family of coregulatory proteins regulating steroid-dependent gene transcriptions was discovered and, finally, it has become clear that estrogens have surprisingly rapid effects based on their actions on cell membranes, which in turn results in the modulation of intracellular signaling cascades. This paper presents a selective review of new findings in this area related to work in our laboratories, focusing on the role of estrogens in the activation of male sexual behavior. Two separate topics are considered. We first discuss functions of the steroid receptor coactivator-1 (SRC-1) that has emerged as a key limiting factor for behavioral effects of estradiol. Knocking-down its expression by antisense oligonucleotides drastically inhibits male-typical sexual behaviors. Secondly, we describe rapid regulations of brain estradiol production by calcium-dependent phosphorylations of the aromatase enzyme, themselves under the control of neurotransmitter activity. These rapid changes in estrogen bioavailability have clear behavioral consequences. Increases or decreases in estradiol concentrations respectively obtained by an acute injection of estradiol itself or of an aromatase inhibitor lead within 15-30 min to parallel changes in sexual behavior frequencies. These new controls of estrogens action offer a vast array of possibilities for discrete local controls of estrogen action. They also represent a formidable challenge for neuroendocrinologists trying to obtain an integrated view of brain function in relation to behavior. PMID:20060879

  16. Obesity Weighs down Memory through a Mechanism Involving the Neuroepigenetic Dysregulation of Sirt1

    PubMed Central

    Heyward, Frankie D.; Gilliam, Daniel; Coleman, Mark A.; Gavin, Cristin F.; Wang, Jing; Kaas, Garrett; Trieu, Richard; Lewis, John; Moulden, Jerome

    2016-01-01

    Aberrant gene expression within the hippocampus has recently been implicated in the pathogenesis of obesity-induced memory impairment. Whether a dysregulation of epigenetic modifications mediates this disruption in gene transcription has yet to be established. Here we report evidence of obesity-induced alterations in DNA methylation of memory-associated genes, including Sirtuin 1 (Sirt1), within the hippocampus, and thus offer a novel mechanism by which SIRT1 expression within the hippocampus is suppressed during obesity. Forebrain neuron-specific Sirt1 knock-out closely recapitulated the memory deficits exhibited by obese mice, consistent with the hypothesis that the high-fat diet-mediated reduction of hippocampal SIRT1 could be responsible for obesity-linked memory impairment. Obese mice fed a diet supplemented with the SIRT1-activating molecule resveratrol exhibited increased hippocampal SIRT1 activity and preserved hippocampus-dependent memory, further strengthening this conclusion. Thus, our findings suggest that the memory-impairing effects of diet-induced obesity may potentially be mediated by neuroepigenetic dysregulation of SIRT1 within the hippocampus. SIGNIFICANCE STATEMENT Previous studies have implicated transcriptional dysregulation within the hippocampus as being a relevant pathological concomitant of obesity-induced memory impairment, yet a deeper understanding of the basis for, and etiological significance of, transcriptional dysregulation in this context is lacking. Here we present the first evidence of epigenetic dysregulation (i.e., altered DNA methylation and hydroxymethylation) of memory-related genes, including Sirt1, within the hippocampus of obese mice. Furthermore, experiments using transgenic and pharmacological approaches strongly implicate reduced hippocampal SIRT1 as being a principal pathogenic mediator of obesity-induced memory impairment. This paper offers a novel working model that may serve as a conceptual basis for the

  17. Abnormally high thromboxane biosynthesis in homozygous homocystinuria. Evidence for platelet involvement and probucol-sensitive mechanism.

    PubMed Central

    Di Minno, G; Davì, G; Margaglione, M; Cirillo, F; Grandone, E; Ciabattoni, G; Catalano, I; Strisciuglio, P; Andria, G; Patrono, C

    1993-01-01

    Homocystinuria due to homozygous cystathionine beta-synthase deficiency is an inborn error of metabolism characterized by a high incidence of thrombosis and premature atherosclerosis. We evaluated TXA2 biosynthesis in vivo and several in vitro tests of platelet function in 11 homocystinuric patients and 12 healthy controls. In vitro, patients' platelet aggregation was within control values as were TXB2 formation, fibrinogen binding, and ATP secretion in response to thrombin. In contrast, the urinary excretion of 11-dehydro-TXB2, a major enzymatic derivative of TXA2, was > 2 SD of controls in all patients (1,724 +/- 828 pg/mg creatinine, mean +/- SD, in patients vs. 345 +/- 136 in controls, P < 0.001). The administration to four patients of low-dose aspirin (50 mg/d for 1 wk) reduced metabolite excretion by > 80%. The recovery of 11-dehydro-TXB2 excretion over the 10 d that followed aspirin cessation occurred with a pattern consistent with the entry into the circulation of platelets with intact cyclooxygenase activity. Prolonged partial reduction in the abnormally high excretion of both 11-dehydro-TXB2 and 2,3-dinor-TXB2, was also observed in seven patients who ingested 500 mg daily for 3 wk of the antioxidant drug probucol. These results provide evidence for enhanced thromboxane biosynthesis in homocystinuria and for its partial dependence on probucol-sensitive mechanisms. Furthermore, the elevated TXA2 formation in homocystinuria is likely to reflect, at least in part, in vivo platelet activation. PMID:8376592

  18. Pomegranate-mediated chemoprevention of experimental hepatocarcinogenesis involves Nrf2-regulated antioxidant mechanisms

    PubMed Central

    Bishayee, Anupam; Bhatia, Deepak; Thoppil, Roslin J.; Darvesh, Altaf S.; Nevo, Eviatar; Lansky, Ephraim P.

    2011-01-01

    Hepatocellular carcinoma (HCC), one of the most prevalent and lethal cancers, has shown an alarming rise in the USA. Without effective therapy for HCC, novel chemopreventive strategies may effectively circumvent the current morbidity and mortality. Oxidative stress predisposes to hepatocarcinogenesis and is the major driving force of HCC. Pomegranate, an ancient fruit, is gaining tremendous attention due to its powerful antioxidant properties. Here, we examined mechanism-based chemopreventive potential of a pomegranate emulsion (PE) against dietary carcinogen diethylnitrosamine (DENA)-induced rat hepatocarcinogenesis that mimics human HCC. PE treatment (1 or 10 g/kg), started 4 weeks prior to the DENA challenge and continued for 18 weeks thereafter, showed striking chemopreventive activity demonstrated by reduced incidence, number, multiplicity, size and volume of hepatic nodules, precursors of HCC. Both doses of PE significantly attenuated the number and area of γ-glutamyl transpeptidase-positive hepatic foci compared with the DENA control. PE also attenuated DENA-induced hepatic lipid peroxidation and protein oxidation. Mechanistic studies revealed that PE elevated gene expression of an array of hepatic antioxidant and carcinogen detoxifying enzymes in DENA-exposed animals. PE elevated protein and messenger RNA expression of the hepatic nuclear factor E2-related factor 2 (Nrf2). Our results provide substantial evidence, for the first time, that pomegranate constituents afford chemoprevention of hepatocarcinogenesis possibly through potent antioxidant activity achieved by upregulation of several housekeeping genes under the control of Nrf2 without toxicity. The outcome of this study strongly supports the development of pomegranate-derived products in the prevention and treatment of human HCC, which remains a devastating disease. PMID:21389260

  19. Mechanisms underlying the neurotoxicity induced by glyphosate-based herbicide in immature rat hippocampus: involvement of glutamate excitotoxicity.

    PubMed

    Cattani, Daiane; de Liz Oliveira Cavalli, Vera Lúcia; Heinz Rieg, Carla Elise; Domingues, Juliana Tonietto; Dal-Cim, Tharine; Tasca, Carla Inês; Mena Barreto Silva, Fátima Regina; Zamoner, Ariane

    2014-06-05

    Previous studies demonstrate that glyphosate exposure is associated with oxidative damage and neurotoxicity. Therefore, the mechanism of glyphosate-induced neurotoxic effects needs to be determined. The aim of this study was to investigate whether Roundup(®) (a glyphosate-based herbicide) leads to neurotoxicity in hippocampus of immature rats following acute (30min) and chronic (pregnancy and lactation) pesticide exposure. Maternal exposure to pesticide was undertaken by treating dams orally with 1% Roundup(®) (0.38% glyphosate) during pregnancy and lactation (till 15-day-old). Hippocampal slices from 15 day old rats were acutely exposed to Roundup(®) (0.00005-0.1%) during 30min and experiments were carried out to determine whether glyphosate affects (45)Ca(2+) influx and cell viability. Moreover, we investigated the pesticide effects on oxidative stress parameters, (14)C-α-methyl-amino-isobutyric acid ((14)C-MeAIB) accumulation, as well as glutamate uptake, release and metabolism. Results showed that acute exposure to Roundup(®) (30min) increases (45)Ca(2+) influx by activating NMDA receptors and voltage-dependent Ca(2+) channels, leading to oxidative stress and neural cell death. The mechanisms underlying Roundup(®)-induced neurotoxicity also involve the activation of CaMKII and ERK. Moreover, acute exposure to Roundup(®) increased (3)H-glutamate released into the synaptic cleft, decreased GSH content and increased the lipoperoxidation, characterizing excitotoxicity and oxidative damage. We also observed that both acute and chronic exposure to Roundup(®) decreased (3)H-glutamate uptake and metabolism, while induced (45)Ca(2+) uptake and (14)C-MeAIB accumulation in immature rat hippocampus. Taken together, these results demonstrated that Roundup(®) might lead to excessive extracellular glutamate levels and consequently to glutamate excitotoxicity and oxidative stress in rat hippocampus.

  20. Physiologic mechanism of the ultrasonically activated scalpel.

    PubMed

    McCarus, S D

    1996-08-01

    An ultrasonically activated scalpel was developed and used clinically to provide hemostatic cutting in laparoscopic surgery. Results of experimental work with the ultrasonic scalpel blades were compared with those of electrosurgery and lasers. Some features that distinguish this energy form may confer specific advantages in various surgical procedures.

  1. The novel mechanism of lenalidomide activity.

    PubMed

    Fink, Emma C; Ebert, Benjamin L

    2015-11-19

    Lenalidomide acts by a novel drug mechanism-modulation of the substrate specificity of the CRL4(CRBN) E3 ubiquitin ligase. In multiple myeloma, lenalidomide induces the ubiquitination of IKZF1 and IKZF3 by CRL4(CRBN). Subsequent proteasomal degradation of these transcription factors kills multiple myeloma cells. In del(5q) myelodysplastic syndrome, lenalidomide induces the degradation of CK1α, which preferentially affects del(5q) cells because they express this gene at haploinsufficient levels. In the future, modulation of ubiquitin ligase function may enable us to target previously "undruggable" proteins.

  2. Optimal Control of Active Recoil Mechanisms

    DTIC Science & Technology

    1977-02-01

    forces from 25 to 2.5% for lower zones and cavitation was avoided for zone 8. Tachometer feedback was shown to be effective for low zones. The...concept of feedback control system coupled with optimization procedure to design recoil mechanisms was demonstrated to be an efficient and very effective ...122o •nl260 .01300 .01340 .01380 • ouzo #01460 •01500 •01540 •01580 •0162" .0166 i 309o,6 504P.6 9964.5 10075,9 39121.5 75397.3

  3. [The adrenergic mechanisms are involved in the pulmonary hemodynamics changes following experimental myocardial ischemia in rabbits].

    PubMed

    Evlakhov, V I; Poiasov, I Z

    2012-05-01

    In acute experiments in anesthetized rabbits the changes of the pulmonary hemodynamics following myocardial ischemia in the region of the descendent left coronary artery were studied in control animals and after the blockade of alpha-adrenoreceptors by phentolamine or N-cholinoreceptors of autonomic ganglia by hexamethonium. Following myocardial ischemia in control animals the pulmonary artery pressure and flow decreased, the pulmonary vascular resistance was elevated not significantly, the cardiac output decreased more than pulmonary artery flow. Following myocardial ischemia after the blockade of alpha-adrenoreceptors the pulmonary artery flow and cardiac output decreased in the same level and the pulmonary vascular resistance was decreased. In these conditions the pulmonary artery pressure decreased more than in control animals, meanwhile the pulmonary artery flow was decreased in the same level as in the last case. Following myocardial ischemia after the blockade of N-cholinoreceptors the pulmonary hemodynamics changes were the same as they were following myocardial ischemia in the control rabbits, the cardiac output decreased more than pulmonary artery flow. The disbalance of the cardiac output and pulmonary artery flow changes in the case of myocardial ischemia was caused by the pulmonary vessel reactions following activations of the humoral adrenergic mechanisms.

  4. What Do Effective Treatments for Multiple Sclerosis Tell Us about the Molecular Mechanisms Involved in Pathogenesis?

    PubMed Central

    Buzzard, Katherine A.; Broadley, Simon A.; Butzkueven, Helmut

    2012-01-01

    Multiple sclerosis is a potentially debilitating disease of the central nervous system. A concerted program of research by many centers around the world has consistently demonstrated the importance of the immune system in its pathogenesis. This knowledge has led to the formal testing of a number of therapeutic agents in both animal models and humans. These clinical trials have shed yet further light on the pathogenesis of MS through their sometimes unexpected effects and by their differential effects in terms of impact on relapses, progression of the disease, paraclinical parameters (MRI) and the adverse events that are experienced. Here we review the currently approved medications for the commonest form of multiple sclerosis (relapsing-remitting) and the emerging therapies for which preliminary results from phase II/III clinical trials are available. A detailed analysis of the molecular mechanisms responsible for the efficacy of these medications in multiple sclerosis indicates that blockade or modulation of both T- and B-cell activation and migration pathways in the periphery or CNS can lead to amelioration of the disease. It is hoped that further therapeutic trials will better delineate the pathogenesis of MS, ultimately leading to even better treatments with fewer adverse effects. PMID:23202920

  5. A Mechanism Involving Solar Ultraviolet Variations for Modulating the Interannual Climatology of the Middle Atmosphere

    NASA Technical Reports Server (NTRS)

    Hood, L. L.; Jirikowic, J. L.

    1990-01-01

    In years of low solar activity, free traveling wave modes in the upper stratosphere are dominated by atmospheric normal modes such as the 16-day wave. However, within a 4-year interval centered on the 1980 to 1981 solar maximum, cross-spectral analyses of zonal mean satellite temperature data versus the solar UV flux demonstrate significant power near 27 and 13 days, providing indirect evidence that short-term UV variations were capable of exciting traveling planetary-scale waves in the upper stratosphere. Previous theoretical and observational work has indicated that interference between traveling waves and stationary waves forced from below (and the resulting oscillating latitudinal heat transports) plays a likely role in the initiation of stratospheric warmings. Researchers therefore hypothesize that the initiation of a major stratospheric warming in the upper stratosphere and lower mesosphere may depend to some extent on the amplitude of longer-period 27-day traveling waves in the upper stratosphere. This would represent a new mechanism for solar UV effects on stratospheric climatology that may be relevant to the interpretation of some recent long-term correlative results.

  6. Successful retrieval of competing spatial environments in humans involves hippocampal pattern separation mechanisms

    PubMed Central

    Kyle, Colin T; Stokes, Jared D; Lieberman, Jennifer S; Hassan, Abdul S; Ekstrom, Arne D

    2015-01-01

    The rodent hippocampus represents different spatial environments distinctly via changes in the pattern of “place cell” firing. It remains unclear, though, how spatial remapping in rodents relates more generally to human memory. Here participants retrieved four virtual reality environments with repeating or novel landmarks and configurations during high-resolution functional magnetic resonance imaging (fMRI). Both neural decoding performance and neural pattern similarity measures revealed environment-specific hippocampal neural codes. Conversely, an interfering spatial environment did not elicit neural codes specific to that environment, with neural activity patterns instead resembling those of competing environments, an effect linked to lower retrieval performance. We find that orthogonalized neural patterns accompany successful disambiguation of spatial environments while erroneous reinstatement of competing patterns characterized interference errors. These results provide the first evidence for environment-specific neural codes in the human hippocampus, suggesting that pattern separation/completion mechanisms play an important role in how we successfully retrieve memories. DOI: http://dx.doi.org/10.7554/eLife.10499.001 PMID:26613414

  7. The mechanism of nuclear export of Smad3 involves exportin 4 and Ran.

    PubMed

    Kurisaki, Akira; Kurisaki, Keiko; Kowanetz, Marcin; Sugino, Hiromu; Yoneda, Yoshihiro; Heldin, Carl-Henrik; Moustakas, Aristidis

    2006-02-01

    Transforming growth factor beta (TGF-beta) receptors phosphorylate Smad3 and induce its nuclear import so it can regulate gene transcription. Smad3 can return to the cytoplasm to propagate further cycles of signal transduction or to be degraded. We demonstrate that Smad3 is exported by a constitutive mechanism that is insensitive to leptomycin B. The Mad homology 2 (MH2) domain is responsible for Smad3 export, which requires the GTPase Ran. Inactive, GDP-locked RanT24N or nuclear microinjection of Ran GTPase activating protein 1 blocked Smad3 export. Inactivation of the Ran guanine nucleotide exchange factor RCC1 inhibited Smad3 export and led to nuclear accumulation of phosphorylated Smad3. A screen for importin/exportin family members that associate with Smad3 identified exportin 4, which binds a conserved peptide sequence in the MH2 domain of Smad3 in a Ran-dependent manner. Exportin 4 is sufficient for carrying the in vitro nuclear export of Smad3 in cooperation with Ran. Knockdown of endogenous exportin 4 completely abrogates the export of endogenous Smad3. A short peptide representing the minimal interaction domain in Smad3 effectively competes with Smad3 association to exportin 4 and blocks nuclear export of Smad3 in vivo. We thus delineate a novel nuclear export pathway for Smad3.

  8. Involvement of a joker mutation in a polymerase-independent lethal mutagenesis escape mechanism.

    PubMed

    Agudo, Rubén; de la Higuera, Ignacio; Arias, Armando; Grande-Pérez, Ana; Domingo, Esteban

    2016-07-01

    We previously characterized a foot-and-mouth disease virus (FMDV) with three amino acid replacements in its polymerase (3D) that conferred resistance to the mutagenic nucleoside analogue ribavirin. Here we show that passage of this mutant in the presence of high ribavirin concentrations resulted in selection of viruses with the additional replacement I248T in 2C. This 2C substitution alone (even in the absence of replacements in 3D) increased FMDV fitness mainly in the presence of ribavirin, prevented an incorporation bias in favor of A and U associated with ribavirin mutagenesis, and conferred the ATPase activity of 2C decreased sensitivity to ribavirin-triphosphate. Since in previous studies we described that 2C with I248T was selected under different selective pressures, this replacement qualifies as a joker substitution in FMDV evolution. The results have identified a role of 2C in nucleotide incorporation, and have unveiled a new polymerase-independent mechanism of virus escape to lethal mutagenesis.

  9. NIK is involved in constitutive activation of the alternative NF-{kappa}B pathway and proliferation of pancreatic cancer cells

    SciTech Connect

    Nishina, Takashi; Yamaguchi, Noritaka; Gohda, Jin; Semba, Kentaro; Inoue, Jun-ichiro

    2009-10-09

    Pancreatic cancer has one of the poorest prognoses among human neoplasms. Constitutive activation of NF-{kappa}B is frequently observed in pancreatic cancer cells and is involved in their malignancy. However, little is known about the molecular mechanism of this constitutive NF-{kappa}B activation. Here, we show that the alternative pathway is constitutively activated and NF-{kappa}B-inducing kinase (NIK), a mediator of the alternative pathway, is significantly expressed in pancreatic cancer cells. siRNA-mediated silencing of NIK expression followed by subcellular fractionation revealed that NIK is constitutively involved in the processing of p100 and nuclear transport of p52 and RelB in pancreatic cancer cells. In addition, NIK silencing significantly suppressed proliferation of pancreatic cancer cells. These results clearly indicate that NIK is involved in the constitutive activation of the alternative pathway and controls cell proliferation in pancreatic cancer cells. Therefore, NIK might be a novel target for the treatment of pancreatic cancer.

  10. Natural Endogenous Human Matriptase and Prostasin Undergo Zymogen Activation via Independent Mechanisms in an Uncoupled Manner

    PubMed Central

    Su, Hui Chen; Liang, Yan A.; Lai, Ying-Jung J.; Chiu, Yi-Lin; Barndt, Robert B.; Shiao, Frank; Chang, Hsiang-Hua D.; Lu, Dajun D.; Huang, Nanxi; Tseng, Chun-Che; Wang, Jehng-Kang; Lee, Ming-Shyue; Johnson, Michael D.; Huang, Shih-Ming; Lin, Chen-Yong

    2016-01-01

    The membrane-associated serine proteases matriptase and prostasin are believed to function in close partnership. Their zymogen activation has been reported to be tightly coupled, either as a matriptase-initiated proteolytic cascade or through a mutually dependent mechanism involving the formation of a reciprocal zymogen activation complex. Here we show that this putative relationship may not apply in the context of human matriptase and prostasin. First, the tightly coupled proteolytic cascade between matriptase and prostasin might not occur when modest matriptase activation is induced by sphingosine 1-phospahte in human mammary epithelial cells. Second, prostasin is not required and/or involved in matriptase autoactivation because matriptase can undergo zymogen activation in cells that do not endogenously express prostasin. Third, matriptase is not required for and/or involved in prostasin activation, since activated prostasin can be detected in cells expressing no endogenous matriptase. Finally, matriptase and prostasin both undergo zymogen activation through an apparently un-coupled mechanism in cells endogenously expressing both proteases, such as in Caco-2 cells. In these human enterocytes, matriptase is detected primarily in the zymogen form and prostasin predominantly as the activated form, either in complexes with protease inhibitors or as the free active form. The negligible levels of prostasin zymogen with high levels of matriptase zymogen suggests that the reciprocal zymogen activation complex is likely not the mechanism for matriptase zymogen activation. Furthermore, high level prostasin activation still occurs in Caco-2 variants with reduced or absent matriptase expression, indicating that matriptase is not required and/or involved in prostasin zymogen activation. Collectively, these data suggest that any functional relationship between natural endogenous human matriptase and prostasin does not occur at the level of zymogen activation. PMID:27936035

  11. Factors Involved in Iranian Women Heads of Household's Health Promotion Activities: A Grounded Theory Study.

    PubMed

    Rafii, Forough; Seyedfatemi, Naima; Rezaei, Mahboubeh

    2013-01-01

    We aimed to explore and describe the factors involved in Iranian women heads of household's health promotion activities. Grounded theory was used as the method. Sixteen women heads of household were recruited. Data were generated by semi structured interviews. Our findings indicated that remainder of resources (money, time and energy) alongside perceived severity of health risk were two main factors whereas women's personal and socio-economic characteristics were two contextual factors involved in these women's health promotion activities. To help these women improve their health status, we recommended that the government, non-governmental organizations and health care professionals provide them with required resources and increase their knowledge by holding training sessions.

  12. AMPK activators: mechanisms of action and physiological activities

    PubMed Central

    Kim, Joungmok; Yang, Goowon; Kim, Yeji; Kim, Jin; Ha, Joohun

    2016-01-01

    AMP-activated protein kinase (AMPK) is a central regulator of energy homeostasis, which coordinates metabolic pathways and thus balances nutrient supply with energy demand. Because of the favorable physiological outcomes of AMPK activation on metabolism, AMPK has been considered to be an important therapeutic target for controlling human diseases including metabolic syndrome and cancer. Thus, activators of AMPK may have potential as novel therapeutics for these diseases. In this review, we provide a comprehensive summary of both indirect and direct AMPK activators and their modes of action in relation to the structure of AMPK. We discuss the functional differences among isoform-specific AMPK complexes and their significance regarding the development of novel AMPK activators and the potential for combining different AMPK activators in the treatment of human disease. PMID:27034026

  13. Mechanisms of Physical Activity Limitation in Chronic Lung Diseases

    PubMed Central

    Vogiatzis, Ioannis; Zakynthinos, George; Andrianopoulos, Vasileios

    2012-01-01

    In chronic lung diseases physical activity limitation is multifactorial involving respiratory, hemodynamic, and peripheral muscle abnormalities. The mechanisms of limitation discussed in this paper relate to (i) the imbalance between ventilatory capacity and demand, (ii) the imbalance between energy demand and supply to working respiratory and peripheral muscles, and (iii) the factors that induce peripheral muscle dysfunction. In practice, intolerable exertional symptoms (i.e., dyspnea) and/or leg discomfort are the main symptoms that limit physical performance in patients with chronic lung diseases. Furthermore, the reduced capacity for physical work and the adoption of a sedentary lifestyle, in an attempt to avoid breathlessness upon physical exertion, cause profound muscle deconditioning which in turn leads to disability and loss of functional independence. Accordingly, physical inactivity is an important component of worsening the patients' quality of life and contributes importantly to poor prognosis. Identifying the factors which prevent a patient with lung disease to easily carry out activities of daily living provides a unique as well as important perspective for the choice of the appropriate therapeutic strategy. PMID:23365738

  14. Rundown of the hyperpolarization-activated KAT1 channel involves slowing of the opening transitions regulated by phosphorylation.

    PubMed Central

    Tang, X D; Hoshi, T

    1999-01-01

    Disappearance of the functional activity or rundown of ion channels upon patch excision in many cells involves a decrease in the number of channels available to open. A variety of cellular and biophysical mechanisms have been shown to be involved in the rundown of different ion channels. We examined the rundown process of the plant hyperpolarization-activated KAT1 K+ channel expressed in Xenopus oocytes. The decrease in the KAT1 channel activity on patch excision was accompanied by progressive slowing of the activation time course, and it was caused by a shift in the voltage dependence of the channel without any change in the single-channel amplitude. The single-channel analysis showed that patch excision alters only the transitions leading up to the burst states of the channel. Patch cramming or concurrent application of protein kinase A (PKA) and ATP restored the channel activity. In contrast, nonspecific alkaline phosphatase (ALP) accelerated the rundown time course. Low internal pH, which inhibits ALP activity, slowed the KAT1 rundown time course. The results show that the opening transitions of the KAT1 channel are enhanced not only by hyperpolarization but also by PKA-mediated phosphorylation. PMID:10354434

  15. Lipid Dependent Mechanisms of Protein Pump Activity

    DTIC Science & Technology

    1989-05-23

    properties which result form the colligative interactions of many lipid molecules. Important materials properties include . . . i I I II II I i I 1 the...d identify by olock number) *This project is aime at investigating if a lipid elastic property , known as the spontaneous radius of curvature Ro’, is...a regulated membrane property and if its value modulates membrane protein activity. Specific aims reported on here include: 1) Correlation of ion pump

  16. Involvement of matrix metalloproteinases (MMPs) and inflammasome pathway in molecular mechanisms of fibrosis

    PubMed Central

    Robert, Sacha; Gicquel, Thomas; Victoni, Tatiana; Valença, Samuel; Barreto, Emiliano; Bailly-Maître, Béatrice; Boichot, Elisabeth; Lagente, Vincent

    2016-01-01

    Fibrosis is a basic connective tissue lesion defined by the increase in the fibrillar extracellular matrix (ECM) components in tissue or organ. Matrix metalloproteinases (MMPs) are a major group of proteases known to regulate the turn-over of ECM and so they are suggested to be important in tissue remodelling observed during fibrogenic process associated with chronic inflammation. Tissue remodelling is the result of an imbalance in the equilibrium of the normal processes of synthesis and degradation of ECM components markedly controlled by the MMPs/TIMP imbalance. We previously showed an association of the differences in collagen deposition in the lungs of bleomycin-treated mice with a reduced molar pro-MMP-9/TIMP-1 ratio. Using the carbon tetrachloride (CCl4) preclinical model of liver fibrosis in mice, we observed a significant increase in collagen deposition with increased expression and release of tissue inhibitors of metalloproteinase (TIMP)-1 both at 24 h and 3 weeks later. This suggests an early altered regulation of matrix turnover involved in the development of fibrosis. We also demonstrated an activation of NLRP3-inflammasome pathway associated with the IL-1R/MyD88 signalling in the development of experimental fibrosis both in lung and liver. This was also associated with an increased expression of purinergic receptors mainly P2X7. Finally, these observations emphasize those effective therapies for these disorders must be given early in the natural history of the disease, prior to the development of tissue remodelling and fibrosis. PMID:27247426

  17. Motor and attentional mechanisms involved in social interaction--evidence from mu and alpha EEG suppression.

    PubMed

    Perry, Anat; Stein, Libi; Bentin, Shlomo

    2011-10-01

    Mu rhythms are EEG oscillations in the 8-13 Hz recorded at sites located roughly over the sensory-motor cortex. There is reliable evidence that the amplitude of mu rhythms is reduced when the participant performs a motor act (mu suppression). Recent studies found mu suppression not only in response to actual movements but also while the participant observes actions executed by someone else. This finding putatively associates the mu suppression to the activity of a mirror neurons system which, in humans, has been suggested to contribute to social skills. In the present study we explored the effects of different levels of social interaction on mu suppression. Participants observed dynamic displays of hand gestures performing actions used in the Rock-Scissors-Paper game. In different blocks, participants passively viewed identical video clips with no game context and in the context of a game, or while being actually engaged in the game either by imagining actions or by actual playing. As a baseline for calculating mu suppression we used a dynamic display of a rolling ball. In addition, to isolate the social aspect of the actual movements, participants performed the same acts outside the game context. Mu suppression was larger while participants were engaged in the social game than when they passively looked at the "opponent" actions or when they performed movements without the game context. This effect was found while viewing the opponent play as well as while actually playing, which supports the view that mu suppression is affected not only by motion, but also by the social context of the motion. However, we did not find differences in mu suppression between perception segments in which the participant did not actually play. Furthermore, in all perception segments occipital alpha suppression was more robust than mu suppression suggesting the involvement of a strong attentional component. While actually playing, however, mu suppression was stronger than alpha

  18. Mechanical Impact Induces Cartilage Degradation via Mitogen Activated Protein Kinases

    PubMed Central

    Ding, Lei; Heying, Emily; Nicholson, Nathan; Stroud, Nicolas J.; Homandberg, Gene A.; Guo, Danping; Buckwalter, Joseph A.; Martin, James A.

    2010-01-01

    Objective To determine the activation of MAP kinases in and around cartilage subjected to mechanical damage and to determine the effects of their inhibitors on impaction induced chondrocyte death and cartilage degeneration. Design The phosphorylation of MAP kinases was examined with confocal microscopy and immunoblotting. The effects of MAP kinase inhibitors on impaction-induced chondrocyte death and proteoglycan loss were determined with fluorescent microscopy and DMMB assay. The expression of catabolic genes at mRNA levels was examined with quantitative real time PCR. Results Early p38 activation was detected at 20 min and 1 hr post-impaction. At 24 hr, enhanced phosphorylation of p38 and ERK1/2 was visualized in chondrocytes from in and around impact sites. The phosphorylation of p38 was increased by 3.0-fold in impact sites and 3.3-fold in adjacent cartilage. The phosphorylation of ERK-1 was increased by 5.8-fold in impact zone and 5.4-fold in adjacent cartilage; the phosphorylation of ERK-2 increased by 4.0-fold in impacted zone and 3.6-fold in adjacent cartilage. Furthermore, the blocking of p38 pathway did not inhibit impaction-induced ERK activation. The inhibition of p38 or ERK pathway significantly reduced injury-related chondrocyte death and proteoglycan losses. Quantative Real-time PCR analysis revealed that blunt impaction significantly up-regulated MMP-13, TNF-α, and ADAMTS-5 expression. Conclusion These findings implicate p38 and ERK MAPKs in the post injury spread of cartilage degeneration and suggest that the risk of PTOA following joint trauma could be decreased by blocking their activities, which might be involved in up-regulating expressions of MMP-13, ADAMTS-5, and TNF-α. PMID:20813194

  19. Pharmacological mechanisms involved in the vasodilator effects of extracts from Echinodorus grandiflorus.

    PubMed

    Tibiriçá, Eduardo; Almeida, Andressa; Caillleaux, Solange; Pimenta, Daniel; Kaplan, Maria Auxiliadora; Lessa, Marcos Adriano; Figueiredo, Maria Raquel

    2007-04-20

    We investigated the vascular effects of a crude aqueous extract (AEEG) of Echinodorus grandiflorus (Alismataceae) using the in vitro experimental models of the rabbit isolated aorta and perfused kidney. Echinodorus grandiflorus, a native semi-aquatic plant widely distributed in Brazil, has been extensively used in Brazilian folk medicine for the treatment of high blood pressure and inflammatory diseases. The bolus injection of AEEG (0.1-10 mg) into the rabbit renal circulation pre-contracted with norepinephrine induced marked and dose-dependent vasodilator responses (maximum of 37+/-4%; n=6; P<0.001), which was similar to that induced by injection of 10 mmol acetylcholine (41+/-3%). Moreover, AEEG elicited a significant and concentration-dependent relaxation in the endothelium-intact, but not endothelium-denuded aortic rings, reaching the maximum of 81+/-5% (n=7, P<0.001). Inhibition of the nitric oxide-cGMP pathway with L-NAME (100 microM) or Methylene Blue (20 microM) reduced maximum relaxation induced by AEEG from 81+/-5% to 46+/-3 and 45+/-3%, respectively (n=7, P<0.001). A similar reduction was obtained with the incubation of the aortic rings with the selective PAF receptor antagonist WEB 2086 (10 microM) (from 81+/-5% to 55+/-3%; n=7; P<0.01). Conversely, blockade of muscarinic receptors with atropine (10 microM) did not affect the vasodilator effects of AEEG, while inhibition of the enzyme cyclooxigenase not only did not block, but rather potentiated vasodilation induced by AEEG (n=7, P<0.001). Finally, blockade of Ca(2+)- and ATP-activated K(+) channels using the specific blockers charydbotoxin (100 nM) and glibenclamide (3 microM), respectively, did not modify aortic relaxation induced by AEEG. We conclude that water-soluble extracts from leaves of Echinodorus grandiflorus elicit an endothelium-dependent, nitric oxide and PAF receptor-mediated vasodilation in rabbit aortic rings, which does not appear to involve the generation of vasodilating

  20. Glyoxalase I inhibition induces apoptosis in irradiated MCF-7 cells via a novel mechanism involving Hsp27, p53 and NF-κB

    PubMed Central

    Antognelli, C; Palumbo, I; Aristei, C; Talesa, V N

    2014-01-01

    Background: Glyoxalase I (GI) is a cellular defence enzyme involved in the detoxification of methylglyoxal (MG), a cytotoxic byproduct of glycolysis, and MG-derived advanced glycation end products (AGEs). Argpyrimidine (AP), one of the major AGEs coming from MG modifications of proteins arginines, is a pro-apoptotic agent. Radiotherapy is an important modality widely used in cancer treatment. Exposure of cells to ionising radiation (IR) results in a number of complex biological responses, including apoptosis. The present study was aimed at investigating whether, and through which mechanism, GI was involved in IR-induced apoptosis. Methods: Apoptosis, by TUNEL assay, transcript and protein levels or enzymatic activity, by RT–PCR, western blot and spectrophotometric methods, respectively, were evaluated in irradiated MCF-7 breast cancer cells, also in experiments with appropriate inhibitors or using small interfering RNA. Results: Ionising radiation induced a dramatic reactive oxygen species (ROS)-mediated inhibition of GI, leading to AP-modified Hsp27 protein accumulation that, in a mechanism involving p53 and NF-κB, triggered an apoptotic mitochondrial pathway. Inhibition of GI occurred at both functional and transcriptional levels, the latter occurring via ERK1/2 MAPK and ERα modulation. Conclusions: Glyoxalase I is involved in the IR-induced MCF-7 cell mitochondrial apoptotic pathway via a novel mechanism involving Hsp27, p53 and NF-κB. PMID:24918814

  1. The mechanism of binding staphylococcal protein A to immunoglobin G does not involve helix unwinding.

    PubMed

    Jendeberg, L; Tashiro, M; Tejero, R; Lyons, B A; Uhlén, M; Montelione, G T; Nilsson, B

    1996-01-09

    maintains its three-helical bundle structure in the Z-Fc complex, though there may be a small structural change involved in the binding mechanism.

  2. Mechanism for Clastogenic Activity of Naphthalene

    SciTech Connect

    Buchholz, Bruce A.

    2015-09-29

    Naphthalene incubations form DNA adducts in vitro in a dose dependent manner in both mouse and rat tissues. Rodent tissue incubations with naphthalene indicate that naphthalene forms as many DNA adducts as Benzo(a)pyrene, a known DNA binding carcinogen. The mouse airway has the greatest number of DNA adducts, corresponding to the higher metabolic activation of naphthalene in this location. Both rat tissues, the rat olfactory (tumor target) and the airways (non-tumor target), have similar levels of NA-DNA adducts, indicating that short term measures of initial adduct formation do not directly correlate with sites of tumor formation in the NTP bioassays.

  3. Mechanism for Clastogenic Activity of Naphthalene

    SciTech Connect

    Buchholz, Bruce A.

    2016-06-24

    Naphthalene incubations form DNA adducts in vitro in a dose dependent manner in both mouse and rat tissues. Rodent tissue incubations with naphthalene indicate that naphthalene forms as many DNA adducts as Benzo(a)pyrene, a known DNA binding carcinogen. The mouse airway has the greatest number of DNA adducts, corresponding to the higher metabolic activation of naphthalene in this location. Both rat tissues, the rat olfactory (tumor target) and the airways (non-tumor target), have similar levels of NA-DNA adducts, indicating that short term measures of initial adduct formation do not directly correlate with sites of tumor formation in the NTP bioassays.

  4. Another look at the mechanism involving trimeric dUTPases in Staphylococcus aureus pathogenicity island induction involves novel players in the party

    PubMed Central

    Maiques, Elisa; Quiles-Puchalt, Nuria; Donderis, Jorge; Ciges-Tomas, J. Rafael; Alite, Christian; Bowring, Janine Z.; Humphrey, Suzanne; Penadés, José R.; Marina, Alberto

    2016-01-01

    We have recently proposed that the trimeric staphylococcal phage encoded dUTPases (Duts) are signaling molecules that act analogously to eukaryotic G-proteins, using dUTP as a second messenger. To perform this regulatory role, the Duts require their characteristic extra motif VI, present in all the staphylococcal phage coded trimeric Duts, as well as the strongly conserved Dut motif V. Recently, however, an alternative model involving Duts in the transfer of the staphylococcal islands (SaPIs) has been suggested, questioning the implication of motifs V and VI. Here, using state-of the-art techniques, we have revisited the proposed models. Our results confirm that the mechanism by which the Duts derepress the SaPI cycle depends on dUTP and involves both motifs V and VI, as we have previously proposed. Surprisingly, the conserved Dut motif IV is also implicated in SaPI derepression. However, and in agreement with the proposed alternative model, the dUTP inhibits rather than inducing the process, as we had initially proposed. In summary, our results clarify, validate and establish the mechanism by which the Duts perform regulatory functions. PMID:27112567

  5. Another look at the mechanism involving trimeric dUTPases in Staphylococcus aureus pathogenicity island induction involves novel players in the party.

    PubMed

    Maiques, Elisa; Quiles-Puchalt, Nuria; Donderis, Jorge; Ciges-Tomas, J Rafael; Alite, Christian; Bowring, Janine Z; Humphrey, Suzanne; Penadés, José R; Marina, Alberto

    2016-06-20

    We have recently proposed that the trimeric staphylococcal phage encoded dUTPases (Duts) are signaling molecules that act analogously to eukaryotic G-proteins, using dUTP as a second messenger. To perform this regulatory role, the Duts require their characteristic extra motif VI, present in all the staphylococcal phage coded trimeric Duts, as well as the strongly conserved Dut motif V. Recently, however, an alternative model involving Duts in the transfer of the staphylococcal islands (SaPIs) has been suggested, questioning the implication of motifs V and VI. Here, using state-of the-art techniques, we have revisited the proposed models. Our results confirm that the mechanism by which the Duts derepress the SaPI cycle depends on dUTP and involves both motifs V and VI, as we have previously proposed. Surprisingly, the conserved Dut motif IV is also implicated in SaPI derepression. However, and in agreement with the proposed alternative model, the dUTP inhibits rather than inducing the process, as we had initially proposed. In summary, our results clarify, validate and establish the mechanism by which the Duts perform regulatory functions.

  6. Study of catalase adsorption on two mixed-mode ligands and the mechanism involved therein.

    PubMed

    Shiva Ranjini, S; Vijayalakshmi, M A

    2012-11-01

    Mixed-mode chromatography sorbents n-hexylamine HyperCel™ (HEA) and phenylpropylamine HyperCel™ (PPA) were evaluated for the study of adsorption of catalase from two different sources. Various parameters such as buffer composition, ionic strength and pH were investigated to study the mechanism of interaction of commercially available pre-purified catalase from Bovine liver, purified catalase from black gram (Vigna mungo) and crude extract of black gram containing catalase with these mixed-mode ligands. A simple and economical screening protocol for identifying optimal buffer conditions for adsorption and desorption of catalase was established with micro volumes of the sorbent in batch mode. With HEA HyperCel, it was observed that pre-purified catalase from both bovine liver and black gram was completely retained at pH 7.0, irrespective of the presence or absence of NaCl in the adsorption buffer, whereas the catalase from crude extract of black gram was completely retained only in the presence of 0.2 M salt in the adsorption buffer. The elution of catalase from both the sources was accomplished by lowering the pH to 4.5 in absence of salt. In case of PPA HyperCel, catalase from both the sources was very strongly adsorbed under different buffer conditions studied, and elution did not yield a significant catalase activity. From the screening experiments, it could be concluded that the interaction of catalase with HEA HyperCel could be dominated by hydrophobic forces with minor contributions from ionic interaction and with PPA HyperCel, it could be a combination of different non-covalent interactions acting on different loci on the surface of the protein.

  7. The mechanism involved in the loss of PTEN expression in NSCLC tumor cells

    SciTech Connect

    Li, Gang; Zhao, Jingfeng; Peng, Xianjing; Liang, Jian; Deng, Xin; Chen, Yuxiang

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer Radiation stimulates PTEN reexpression in NSCLC independent of p53 activation. Black-Right-Pointing-Pointer PTEN reexpression is mediated by miR-29b overexpression. Black-Right-Pointing-Pointer miR-29b regulates Dnmts expression in NSCLC tumor cells. Black-Right-Pointing-Pointer Target therapy could be established by overexpressing miR-29b expression. -- Abstract: Loss of PTEN expression is observed in most non-small cell lung cancers (NSCLC). However, the mechanism by which PTEN expression is regulated in NSCLC has not been fully elucidated. In this study, we investigated the role of DNA methyltransferases (Dnmts), microRNA-29b (miR-29b), and anti-miR-29b inhibitor in PTEN promoter methylation and PTEN gene expression in H358 NSCLC cells in vitro and in vivo. PTEN mRNA was measured by RT-PCR. PTEN and Dnmts protein levels were measured by Western blot. miR-29b expression was detected by Northern blot. A xenograft H358 tumor mouse model was established by subcutaneously inoculating H358 cells into the right hind limbs of nude mice. We found that radiation induced cell apoptosis and hypomethylation in PTEN promoter, PTEN and miR-29b expression, and downregulation of Dnmt1, 3a and 3b expression in H358 tumor cells. The effect of radiation on gene expression and apoptosis was blocked by anti-miR-29b inhibitor. In the xenograft H358 tumor model, anti-miR-29b inhibitor reversed radiation-induced tumor growth delay, PTEN reexpression and downregulation of Dnmts expression. Our study suggested that miR-29b is an upstream molecule of PTEN. miR-29b regulates PTEN gene expression through downregulating Dnmts expression and subsequently induces hypomethylation in PTEN promoter. Targeting therapy could be established in NSCLC by upregulating miR-29b expression.

  8. Mechanisms Involved in the Association between Periodontitis and Complications in Pregnancy

    PubMed Central

    Zi, Marcela Yang Hui; Longo, Priscila Larcher; Bueno-Silva, Bruno; Mayer, Marcia Pinto Alves

    2015-01-01

    The association between periodontitis and some of the problems with pregnancy such as premature delivery, low weight at birth, and preeclampsia (PE) has been suggested. Nevertheless, epidemiological data have shown contradictory data, mainly due to differences in clinical parameters of periodontitis assessment. Furthermore, differences in microbial composition and immune response between aggressive and chronic periodontitis are not addressed by these epidemiological studies. We aimed to review the current data on the association between some of these problems with pregnancy and periodontitis, and the mechanisms underlying this association. Shifts in the microbial composition of the subgingival biofilm may occur during pregnancy, leading to a potentially more hazardous microbial community. Pregnancy is characterized by physiological immune tolerance. However, the infection leads to a shift in maternal immune response to a pathogenic pro-inflammatory response, with production of inflammatory cytokines and toxic products. In women with periodontitis, the infected periodontal tissues may act as reservoirs of bacteria and their products that can disseminate to the fetus-placenta unit. In severe periodontitis patients, the infection agents and their products are able to activate inflammatory signaling pathways locally and in extra-oral sites, including the placenta-fetal unit, which may not only induce preterm labor but also lead to PE and restrict intrauterine growth. Despite these evidences, the effectiveness of periodontal treatment in preventing gestational complications was still not established since it may be influenced by several factors such as severity of disease, composition of microbial community, treatment strategy, and period of treatment throughout pregnancy. This lack of scientific evidence does not exclude the need to control infection and inflammation in periodontitis patients during pregnancy, and treatment protocols should be validated. PMID:25688342

  9. Mechanism of antibacterial activity of copper nanoparticles

    NASA Astrophysics Data System (ADS)

    Chatterjee, Arijit Kumar; Chakraborty, Ruchira; Basu, Tarakdas

    2014-04-01

    In a previous communication, we reported a new method of synthesis of stable metallic copper nanoparticles (Cu-NPs), which had high potency for bacterial cell filamentation and cell killing. The present study deals with the mechanism of filament formation and antibacterial roles of Cu-NPs in E. coli cells. Our results demonstrate that NP-mediated dissipation of cell membrane potential was the probable reason for the formation of cell filaments. On the other hand, Cu-NPs were found to cause multiple toxic effects such as generation of reactive oxygen species, lipid peroxidation, protein oxidation and DNA degradation in E. coli cells. In vitro interaction between plasmid pUC19 DNA and Cu-NPs showed that the degradation of DNA was highly inhibited in the presence of the divalent metal ion chelator EDTA, which indicated a positive role of Cu2+ ions in the degradation process. Moreover, the fast destabilization, i.e. the reduction in size, of NPs in the presence of EDTA led us to propose that the nascent Cu ions liberated from the NP surface were responsible for higher reactivity of the Cu-NPs than the equivalent amount of its precursor CuCl2; the nascent ions were generated from the oxidation of metallic NPs when they were in the vicinity of agents, namely cells, biomolecules or medium components, to be reduced simultaneously.

  10. Mechanism of antibacterial activity of copper nanoparticles.

    PubMed

    Chatterjee, Arijit Kumar; Chakraborty, Ruchira; Basu, Tarakdas

    2014-04-04

    In a previous communication, we reported a new method of synthesis of stable metallic copper nanoparticles (Cu-NPs), which had high potency for bacterial cell filamentation and cell killing. The present study deals with the mechanism of filament formation and antibacterial roles of Cu-NPs in E. coli cells. Our results demonstrate that NP-mediated dissipation of cell membrane potential was the probable reason for the formation of cell filaments. On the other hand, Cu-NPs were found to cause multiple toxic effects such as generation of reactive oxygen species, lipid peroxidation, protein oxidation and DNA degradation in E. coli cells. In vitro interaction between plasmid pUC19 DNA and Cu-NPs showed that the degradation of DNA was highly inhibited in the presence of the divalent metal ion chelator EDTA, which indicated a positive role of Cu(2+) ions in the degradation process. Moreover, the fast destabilization, i.e. the reduction in size, of NPs in the presence of EDTA led us to propose that the nascent Cu ions liberated from the NP surface were responsible for higher reactivity of the Cu-NPs than the equivalent amount of its precursor CuCl2; the nascent ions were generated from the oxidation of metallic NPs when they were in the vicinity of agents, namely cells, biomolecules or medium components, to be reduced simultaneously.

  11. Carbohydrate in the mouth enhances activation of brain circuitry involved in motor performance and sensory perception.

    PubMed

    Turner, Clare E; Byblow, Winston D; Stinear, Cathy M; Gant, Nicholas

    2014-09-01

    The presence of carbohydrate in the human mouth has been associated with the facilitation of motor output and improvements in physical performance. Oral receptors have been identified as a potential mode of afferent transduction for this novel form of nutrient signalling that is distinct from taste. In the current study oral exposure to carbohydrate was combined with a motor task in a neuroimaging environment to identify areas of the brain involved in this phenomenon. A mouth-rinsing protocol was conducted whilst carbohydrate (CHO) and taste-matched placebo (PLA) solutions were delivered and recovered from the mouths of 10 healthy volunteers within a double-blind, counterbalanced design. This protocol eliminates post-oral factors and controls for the perceptual qualities of solutions. Functional magnetic resonance imaging of the brain was used to identify cortical areas responsive to oral carbohydrate during rest and activity phases of a hand-grip motor task. Mean blood-oxygen-level dependent signal change experienced in the contralateral primary sensorimotor cortex was larger for CHO compared with PLA during the motor task when contrasted with a control condition. Areas of activation associated with CHO exclusively were observed over the primary taste cortex and regions involved in visual perception. Regions in the limbic system associated with reward were also significantly more active with CHO. This is the first demonstration that oral carbohydrate signalling can increase activation within the primary sensorimotor cortex during physical activity and enhance activation of neural networks involved in sensory perception.

  12. Molecular genetic analysis of activation-tagged transcription factors thought to be involved in photomorphogenesis

    SciTech Connect

    Neff, Michael M.

    2011-06-23

    This is a final report for Department of Energy Grant No. DE-FG02-08ER15927 entitled “Molecular Genetic Analysis of Activation-Tagged Transcription Factors Thought to be Involved in Photomorphogenesis”. Based on our preliminary photobiological and genetic analysis of the sob1-D mutant, we hypothesized that OBP3 is a transcription factor involved in both phytochrome and cryptochrome-mediated signal transduction. In addition, we hypothesized that OBP3 is involved in auxin signaling and root development. Based on our preliminary photobiological and genetic analysis of the sob2-D mutant, we also hypothesized that a related gene, LEP, is involved in hormone signaling and seedling development.

  13. Two opposite effects of Delta(9)-tetrahydrocannabinol on subthalamic nucleus neuron activity: involvement of GABAergic and glutamatergic neurotransmission.

    PubMed

    Morera-Herreras, Teresa; Ruiz-Ortega, Jose Angel; Ugedo, Luisa

    2010-01-01

    Activation of CB1 cannabinoid receptors in the basal ganglia interferes with movement regulation. The aim of this study was to characterize the effect of Delta(9)-tetrahydrocannabinol (Delta(9)-THC) on neurons in the subthalamic nucleus (STN) and to elucidate the mechanisms involved in this effect using single-unit extracellular recordings in anesthetized rats. Administration of Delta(9)-THC (0.25-2 mg/kg, i.v.) stimulated (by 107% +/- 32%) neurons mainly recorded in the ventromedial portion of the caudal STN, whereas it inhibited (by 65% +/- 4%) neurons recorded in the dorsolateral portion of the rostral STN. The CB1 receptor antagonist rimonabant (1 mg/kg, i.v.) completely reverted these effects. The excitatory effect of Delta(9)-THC on STN neurons was not observed after antagonism of GABA(A) receptors by bicuculline administration (10 ng, icv.) or after chemical lesion of the globus pallidus with ibotenic acid. The inhibitory effect was abolished when excitatory amino acid receptors were blocked by kynurenic acid (0.5 mumol, icv.). These results indicate that CB1 receptor activation modulates STN neuron activity by indirect mechanisms involving glutamatergic and GABAergic neurotransmission.

  14. Differential Pro-Inflammatory Responses of Astrocytes and Microglia Involve STAT3 Activation in Response to 1800 MHz Radiofrequency Fields

    PubMed Central

    Lu, Yonghui; He, Mindi; Zhang, Yang; Xu, Shangcheng; Zhang, Lei; He, Yue; Chen, Chunhai; Liu, Chuan; Pi, Huifeng; Yu, Zhengping; Zhou, Zhou

    2014-01-01

    Microglia and astrocytes play important role in maintaining the homeostasis of central nervous system (CNS). Several CNS impacts have been postulated to be associated with radiofrequency (RF) electromagnetic fields exposure. Given the important role of inflammation in neural physiopathologic processes, we investigated the pro-inflammatory responses of microglia and astrocytes and the involved mechanism in response to RF fields. Microglial N9 and astroglial C8-D1A cells were exposed to 1800 MHz RF for different time with or without pretreatment with STAT3 inhibitor. Microglia and astrocytes were activated by RF exposure indicated by up-regulated CD11b and glial fibrillary acidic protein (GFAP). However, RF exposure induced differential pro-inflammatory responses in astrocytes and microglia, characterized by different expression and release profiles of IL-1β, TNF-α, IL-6, PGE2, nitric oxide (NO), inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2). Moreover, the RF exposure activated STAT3 in microglia but not in astrocytes. Furthermore, the STAT3 inhibitor Stattic ameliorated the RF-induced release of pro-inflammatory cytokines in microglia but not in astrocytes. Our results demonstrated that RF exposure differentially induced pro-inflammatory responses in microglia and astrocytes, which involved differential activation of STAT3 in microglia and astrocytes. Our data provide novel insights into the potential mechanisms of the reported CNS impacts associated with mobile phone use and present STAT3 as a promising target to protect humans against increasing RF exposure. PMID:25275372

  15. An Active Self-Determination Technique: Involving Students in Effective Career Planning.

    ERIC Educational Resources Information Center

    Denison, Grace L.

    This paper discusses creating story boards to help students with disabilities to develop effective career plans. It describes storyboarding as a technique for project planning which requires active involvement of both hemispheres of the brain. A group of 6-8 people, including students, teachers, counselors, and vocational rehabilitation…

  16. Emotional Creativity and Real-Life Involvement in Different Types of Creative Leisure Activities

    ERIC Educational Resources Information Center

    Trnka, Radek; Zahradnik, Martin; Kuška, Martin

    2016-01-01

    The role of emotional creativity in practicing creative leisure activities and in the preference of college majors remains unknown. This study aims to explore how emotional creativity measured by the Emotional Creativity Inventory (ECI; Averill, 1999) is interrelated with the real-life involvement in different types of specific creative leisure…

  17. Regrouping: organized activity involvement and social adjustment across the transition to high school.

    PubMed

    Bohnert, Amy M; Aikins, Julie Wargo; Arola, Nicole T

    2013-01-01

    Although organized activities (OAs) have been established as important contexts of development, limited work has examined the role of OAs across the high school transition in buffering adolescents' social adjustment by providing opportunities for visibility and peer affiliation. The transition to high school is characterized by numerous changes and OAs may provide an important setting for establishing and maintaining peer relationships during this tumultuous time. This study included 151 8th grade U.S. students (58% male) who were assessed across the transition to high school (spring of 8th and 9th grade). Continuous involvement in academic activities across the transition and becoming involved (i.e., initiation) in community/service activities following the transition was associated with fewer depressive symptoms in the spring of 9th grade. Continuous involvement in sports and initiation of academic activities was associated with having more friendships. In addition, links between OAs and loneliness were only evident among females. There appear to be significant social benefits for OA involvement.

  18. Beyond the Classroom: Involving Students with Disabilities in Extracurricular Activities at Levy Middle School.

    ERIC Educational Resources Information Center

    Walker, Pam; And Others

    Six students in a special education classroom at Levy Middle School (Syracuse, New York) became involved in a variety of after-school activities with nondisabled students. The students participated in the school computer club, cross-country skiing, volleyball, stage crew, intramural basketball, the Spanish Club, and after-school programs at two…

  19. An Emergent Language Program Framework: Actively Involving Learners in Needs Analysis.

    ERIC Educational Resources Information Center

    Savage, William; Storer, Graeme

    1992-01-01

    Relates the experience of the staff of an aquaculture outreach program in Northeast Thailand in implementing an English for special purposes program. By actively involving learners in both the needs analysis and program design, teachers were able to adapt the program content to the requirements of the students. (15 references) (JL)

  20. Longitudinal Modeling of Adolescents' Activity Involvement, Problem Peer Associations, and Youth Smoking

    ERIC Educational Resources Information Center

    Metzger, Aaron; Dawes, Nickki; Mermelstein, Robin; Wakschlag, Lauren

    2011-01-01

    Longitudinal associations among different types of organized activity involvement, problem peer associations, and cigarette smoking were examined in a sample of 1040 adolescents (mean age = 15.62 at baseline, 16.89 at 15-month assessment, 17.59 at 24 months) enriched for smoking experimentation (83% had tried smoking). A structural equation model…

  1. 15 CFR 712.2 - Restrictions on activities involving Schedule 1 chemicals.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 2 2011-01-01 2011-01-01 false Restrictions on activities involving Schedule 1 chemicals. 712.2 Section 712.2 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL...

  2. Involving Your Child or Teen with ASD in Integrated Community Activities

    ERIC Educational Resources Information Center

    McKee, Rebecca

    2011-01-01

    Participating in outside activities and community-based endeavors can be tricky for people with special needs, like Autism Spectrum Disorder (ASD). Families meet more than a few obstacles attempting to integrate their children or teens who have special needs like ASD. Most typical children are highly involved in sports, clubs and camps. If a…

  3. Enzyme activity alteration by cadmium administration to rats: the possibility of iron involvement in lipid peroxidation.

    PubMed

    Casalino, E; Sblano, C; Landriscina, C

    1997-10-15

    The specific activities of D-3-hydroxybutyrate dehydrogenase (BDH) and glutamate dehydrogenase (GDH) are reduced in the liver and kidney of rats intoxicated with 2.5 mg Cd/kg body wt and sacrificed after 24 h; conversely ketone-body concentration is strongly increased in both of these organs and blood. In the same animals a great stimulation of antioxidant enzymes glutathione reductase and glutathione peroxidase occurs. The prooxidant state induced by cadmium in liver mitochondria and microsomes is unaffected by superoxide dismutase, catalase, or mannitol, whereas it is completely blocked by vitamin E thus excluding the involvement of reactive oxygen species in this process. The mechanism by which cadmium induces lipid peroxidation has been investigated by measuring the effect of this metal on liposomes. Ninety-minute treatment of liposomes with CdCl2 does not induce any lipid peroxidation. In contrast, Fe2+ ions under the same conditions cause strong liposome peroxidation. It has also been observed that cadmium promotes a time-dependent iron release from biological membranes. When lipid peroxidation is induced by a low concentration (5 microM) of FeCl2, in place of CdCl2, the characteristics of this process and the sensitivity to the various antioxidants used are similar to those observed with Cd. From these results we conclude that the prooxidative effect of cadmium is an indirect one since it is mediated by iron. With regard to the inhibitory effect on BDH and GDH following cadmium intoxication, it does not appear to be imputable to lipid peroxidation since in vitro investigations indicate that the presence of vitamin E does not remove the inhibition at all.

  4. Plasminogen Activator Inhibitor-1 Is Involved in Impaired Bone Repair Associated with Diabetes in Female Mice

    PubMed Central

    Mao, Li; Kawao, Naoyuki; Tamura, Yukinori; Okumoto, Katsumi; Okada, Kiyotaka; Yano, Masato; Matsuo, Osamu; Kaji, Hiroshi

    2014-01-01

    Previous studies suggest that fracture healing is impaired in diabetes; however, the underlying mechanism remains unclear. Here, we investigated the roles of plasminogen activator inhibitor-1 (PAI-1) in the impaired bone repair process by using streptozotocin (STZ)-induced diabetic female wild-type (PAI-1+/+) and PAI-1-deficient (PAI-1−/−) mice. Bone repair and the number of alkaline phosphatase (ALP)-positive cells at the site of a femoral bone damage were comparable in PAI-1+/+ and PAI-1−/− mice without STZ treatment. Although the bone repair process was delayed by STZ treatment in PAI-1+/+ mice, this delayed bone repair was blunted in PAI-1−/− mice. The reduction in the number of ALP-positive cells at the site of bone damage induced by STZ treatment was attenuated in PAI-1−/− mice compared to PAI-1+/+ mice. On the other hand, PAI-1 deficiency increased the levels of ALP and type I collagen mRNA in female mice with or without STZ treatment, and the levels of Osterix and osteocalcin mRNA, suppressed by diabetic state in PAI-1+/+ mice, were partially protected in PAI-1−/− mice. PAI-1 deficiency did not affect formation of the cartilage matrix and the levels of types II and X collagen and aggrecan mRNA suppressed by STZ treatment, although PAI-1 deficiency increased the expression of chondrogenic markers in mice without STZ treatment. The present study indicates that PAI-1 is involved in the impaired bone repair process induced by the diabetic state in part through a decrease in the number of ALP-positive cells. PMID:24651693

  5. Plasminogen activator inhibitor-1 is involved in impaired bone repair associated with diabetes in female mice.

    PubMed

    Mao, Li; Kawao, Naoyuki; Tamura, Yukinori; Okumoto, Katsumi; Okada, Kiyotaka; Yano, Masato; Matsuo, Osamu; Kaji, Hiroshi

    2014-01-01

    Previous studies suggest that fracture healing is impaired in diabetes; however, the underlying mechanism remains unclear. Here, we investigated the roles of plasminogen activator inhibitor-1 (PAI-1) in the impaired bone repair process by using streptozotocin (STZ)-induced diabetic female wild-type (PAI-1+/+) and PAI-1-deficient (PAI-1-/-) mice. Bone repair and the number of alkaline phosphatase (ALP)-positive cells at the site of a femoral bone damage were comparable in PAI-1+/+ and PAI-1-/- mice without STZ treatment. Although the bone repair process was delayed by STZ treatment in PAI-1+/+ mice, this delayed bone repair was blunted in PAI-1-/- mice. The reduction in the number of ALP-positive cells at the site of bone damage induced by STZ treatment was attenuated in PAI-1-/- mice compared to PAI-1+/+ mice. On the other hand, PAI-1 deficiency increased the levels of ALP and type I collagen mRNA in female mice with or without STZ treatment, and the levels of Osterix and osteocalcin mRNA, suppressed by diabetic state in PAI-1+/+ mice, were partially protected in PAI-1-/- mice. PAI-1 deficiency did not affect formation of the cartilage matrix and the levels of types II and X collagen and aggrecan mRNA suppressed by STZ treatment, although PAI-1 deficiency increased the expression of chondrogenic markers in mice without STZ treatment. The present study indicates that PAI-1 is involved in the impaired bone repair process induced by the diabetic state in part through a decrease in the number of ALP-positive cells.

  6. Salvia officinalis for hot flushes: towards determination of mechanism of activity and active principles.

    PubMed

    Rahte, Sinikka; Evans, Richard; Eugster, Philippe J; Marcourt, Laurence; Wolfender, Jean-Luc; Kortenkamp, Andreas; Tasdemir, Deniz

    2013-06-01

    Herbal medicinal products are commonly used in alternative treatment of menopausal hot flushes. In a recent clinical study, Salvia officinalis tincture was found to reduce hot flush frequency and intensity. The aim of the current study was the investigation of the mechanism(s) responsible for the anti-hot flush activity of S. officinalis and determination of its active principle(s). The 66% ethanolic tincture, as well as the n-hexane, CHCl₃, and aqueous ethanolic subextracts obtained from the tincture were studied in vitro for two of the most relevant activities, estrogenicity and selective serotonin reuptake inhibition. Because of an increased risk of menopausal women to suffer from Alzheimer's disease, an in vitro acetylcholinesterase inhibition assay was also employed. No activity was observed in the selective serotonin reuptake inhibition or the acetylcholinesterase inhibition assays at the highest test concentrations. The tincture showed no estrogenic effects whereas the aqueous ethanolic subextract exhibited estrogenicity in the ERLUX assay with an EC₅₀ value of 64 µg/mL. Estrogenic activity-guided fractionation of the aqueous ethanolic subextract by a combination of reverse-phase vacuum liquid chromatography and gel chromatography identified luteolin-7-O-glucuronide (EC₅₀ 129 µg/mL) as the active component of the vacuum liquid chromatography fraction 4 (EC₅₀ 69 µg/mL). Luteolin-7-O-glucoside was identified as the putative estrogenic principle of the most potent minor fraction (7.6.7.6, EC₅₀ 0.7 µg/mL) obtained from the initial vacuum liquid chromatography fraction 7 (EC₅₀ 3 µg/mL). This study suggests the involvement of common and ubiquitous estrogenic flavonoids in the anti-hot flush effect of Salvia officinalis, a safe and commonly used herbal medicinal product during the menopause.

  7. The rate-limiting step in P450 hydroxylation of hydrocarbons a direct comparison of the "somersault" versus the "consensus" mechanism involving compound I.

    PubMed

    Bach, Robert D

    2010-09-02

    Model theoretical quantum mechanical (QM) calculations are described for the P-450 hydroxylation of methane, isobutane, and camphor that compare the concerted somersault H-abstraction mechanism with the oxidation step involving Cpd I. Special emphasis has been placed on maintaining a balanced basis set in the oxidation step. QM calculations, employing the 6-311+G(d,p) basis set on the Fe atom and all of the key surrounding atoms involved in the C-H abstraction step, reaffirm a mechanism involving rearrangement of the iron hydroperoxide group (FeO-OH --> FeO...HO(*)) in concert with hydrogen abstraction from the C-H bond of the substrate by the incipient bound hydroxyl radical HO(*). The barrier for the somersault rearrangement of model Cpd 0 (FeO-OH) is calculated to be 21.4 kcal/mol in the absence of substrate. The overall activation energy for the oxidation of camphor involving the somersault motion of the FeO-OH group of P450 model porphyrin iron(III) hydroperoxide [Por(SH)Fe(III)-OOH(-)] --> [Por(SH)Fe(III)-O....HO(-)] in concert with hydrogen abstraction is DeltaE(++) = 12.4 kcal/mol. The corresponding abstraction of the hydrogen atom from the C-H bond of camphor by Cpd I has an activation barrier of 17.6 kcal/mol. Arguments are presented that the somersault rearrangement is induced by steric compression at the active site. Kinetic isotope effect data are discussed that provides compelling evidence for a rate-limiting step involving C-H bond cleavage.

  8. Plant-Plant-Microbe Mechanisms Involved in Soil-Borne Disease Suppression on a Maize and Pepper Intercropping System

    PubMed Central

    Mei, Xinyue; Liao, Jingjing; Ding, Xupo; Deng, Weiping; Fan, Limin; He, Xiahong; Vivanco, Jorge M.; Li, Chengyun; Zhu, Youyong; Zhu, Shusheng

    2014-01-01

    Background Intercropping systems could increase crop diversity and avoid vulnerability to biotic stresses. Most studies have shown that intercropping can provide relief to crops against wind-dispersed pathogens. However, there was limited data on how the practice of intercropping help crops against soil-borne Phytophthora disease. Principal Findings Compared to pepper monoculture, a large scale intercropping study of maize grown between pepper rows reduced disease levels of the soil-borne pepper Phytophthora blight. These reduced disease levels of Phytophthora in the intercropping system were correlated with the ability of maize plants to form a “root wall” that restricted the movement of Phytophthora capsici across rows. Experimentally, it was found that maize roots attracted the zoospores of P. capsici and then inhibited their growth. When maize plants were grown in close proximity to each other, the roots produced and secreted larger quantities of 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) and 6-methoxy-2-benzoxazolinone (MBOA). Furthermore, MBOA, benzothiazole (BZO), and 2-(methylthio)-benzothiazole (MBZO) were identified in root exudates of maize and showed antimicrobial activity against P. capsici. Conclusions Maize could form a “root wall” to restrict the spread of P. capsici across rows in maize and pepper intercropping systems. Antimicrobe compounds secreted by maize root were one of the factors that resulted in the inhibition of P. capsici. These results provide new insights into plant-plant-microbe mechanisms involved in intercropping systems. PMID:25551554

  9. Capsaicin-stimulated release of substance P from cultured dorsal root ganglion neurons: involvement of two distinct mechanisms.

    PubMed

    Purkiss, J; Welch, M; Doward, S; Foster, K

    2000-06-01

    Capsaicin, the pungent component of "hot" chili peppers, selectively activates a distinct population of primary sensory neurons responsive to noxious stimuli. Many of these fibres express neuropeptides including the tachykinin, substance P. Using cultured dorsal root ganglion neurons, we found that capsaicin (10 microM) stimulated a 2-fold increase in release of substance P in the absence of extracellular Ca(2+). Elevated potassium (75 mM) was unable to induce release under these conditions. The introduction of Ca(2+) enhanced capsaicin-induced release and brought about a robust response to potassium. Preincubation of cells with botulinum neurotoxin A (100 nM) completely blocked potassium-induced release but the capsaicin response, in the absence of Ca(2+), was unaffected. However, toxin treatment dramatically reduced capsaicin-stimulated release in the presence of Ca(2+). It is concluded that capsaicin induces release of substance P from dorsal root ganglion neurons via two mechanisms, one requiring extracellular Ca(2+) and the intact synaptosomal-associated protein 25 kDa (SNAP-25), and the other independent of extracellular Ca(2+) and not involving SNAP-25.

  10. Oral Efficacy of Apigenin against Cutaneous Leishmaniasis: Involvement of Reactive Oxygen Species and Autophagy as a Mechanism of Action

    PubMed Central

    Fonseca-Silva, Fernanda; Inacio, Job D. F.; Canto-Cavalheiro, Marilene M.; Menna-Barreto, Rubem F. S.; Almeida-Amaral, Elmo E.

    2016-01-01

    Background The treatment for leishmaniasis is currently based on pentavalent antimonials and amphotericin B; however, these drugs result in numerous adverse side effects. The lack of affordable therapy has necessitated the urgent development of new drugs that are efficacious, safe, and more accessible to patients. Natural products are a major source for the discovery of new and selective molecules for neglected diseases. In this paper, we evaluated the effect of apigenin on Leishmania amazonensis in vitro and in vivo and described the mechanism of action against intracellular amastigotes of L. amazonensis. Methodology/Principal Finding Apigenin reduced the infection index in a dose-dependent manner, with IC50 values of 4.3 μM and a selectivity index of 18.2. Apigenin induced ROS production in the L. amazonensis-infected macrophage, and the effects were reversed by NAC and GSH. Additionally, apigenin induced an increase in the number of macrophages autophagosomes after the infection, surrounding the parasitophorous vacuole, suggestive of the involvement of host autophagy probably due to ROS generation induced by apigenin. Furthermore, apigenin treatment was also effective in vivo, demonstrating oral bioavailability and reduced parasitic loads without altering serological toxicity markers. Conclusions/Significance In conclusion, our study suggests that apigenin exhibits leishmanicidal effects against L. amazonensis-infected macrophages. ROS production, as part of the mechanism of action, could occur through the increase in host autophagy and thereby promoting parasite death. Furthermore, our data suggest that apigenin is effective in the treatment of L. amazonensis-infected BALB/c mice by oral administration, without altering serological toxicity markers. The selective in vitro activity of apigenin, together with excellent theoretical predictions of oral availability, clear decreases in parasite load and lesion size, and no observed compromises to the overall health

  11. The cyanobacterial Fluorescence Recovery Protein has two distinct activities: Orange Carotenoid Protein amino acids involved in FRP interaction.

    PubMed

    Thurotte, Adrien; Bourcier de Carbon, Céline; Wilson, Adjélé; Talbot, Léa; Cot, Sandrine; López-Igual, Rocio; Kirilovsky, Diana

    2017-04-01

    To deal with fluctuating light condition, cyanobacteria have developed a photoprotective mechanism which, under high light conditions, decreases the energy arriving at the photochemical centers. It relies on a photoswitch, the Orange Carotenoid Protein (OCP). Once photoactivated, OCP binds to the light harvesting antenna, the phycobilisome (PBS), and triggers the thermal dissipation of the excess energy absorbed. Deactivation of the photoprotective mechanism requires the intervention of a third partner, the Fluorescence Recovery Protein (FRP). FRP by interacting with the photoactivated OCP accelerates its conversion to the non-active form and its detachment from the phycobilisome. We have studied the interaction of FRP with free and phycobilisome-bound OCP. Several OCP variants were constructed and characterized. In this article we show that OCP amino acid F299 is essential and D220 important for OCP deactivation mediated by FRP. Mutations of these amino acids did not affect FRP activity as helper to detach OCP from phycobilisomes. In addition, while mutated R60L FRP is inactive on OCP deactivation, its activity on the detachment of the OCP from the phycobilisomes is not affected. Thus, our results demonstrate that FRP has two distinct activities: it accelerates OCP detachment from phycobilisomes and then it helps deactivation of the OCP. They also suggest that different OCP and FRP amino acids could be involved in these two activities.

  12. Swarming mechanisms in the yellow fever mosquito: aggregation pheromones involved in the mating behavior of Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mosquitoes of various species mate in swarms comprised of tens to thousands flying males. Yet little information is known about mosquito swarming mechanism. Discovering chemical cues involved in mosquito biology leads to better adaptation of disease control interventions. In this study, we aimed ...

  13. The involvement of the opioidergic system in the antinociceptive mechanism of action of antidepressant compounds

    PubMed Central

    Gray, A M; Spencer, P S J; Sewell, R D E

    1998-01-01

    Debate exists as to the nature of antidepressant-induced antinociception. It is unclear whether antidepressants are inherently antinociceptive, are able to potentiate opioid antinociception or both. We have used the acetic acid induced abdominal constriction assay in mice to investigate antidepressant-induced antinociception.All the antidepressants tested (s.c.) produced dose-dependent protection against acetic acid-induced abdominal constriction. Similarly, morphine and aspirin were also effective antinociceptive agents in this nociceptive assay.Opioid antagonists, naloxone (0.5 mg kg−1, s.c.) and naltrindole (1 mg kg−1, s.c.), shifted the dose-response relationships to the right for each of the antidepressant agents (dothiepin, amitriptyline, sibutramine, (+)-oxaprotiline and paroxetine). In this context the naloxone dose-ratios were 1.95, 3.90, 2.32, 4.50 and 2.65, with naltrindole dose-ratios of 4.36, 17.00, 4.28, 11.48 and 2.65 were obtained, respectively. Naloxone also shifted the morphine dose-response relationship to the right, by a factor of 2.62, whilst naltrindole had no effect upon morphine antinociception. Aspirin antinociception remained unaffected by both opioid antagonists.The enkephalin catabolism inhibitor acetorphan, by itself, produced no activity in this test at a dose of 10 mg kg−1 (s.c.). However, at higher doses, acetorphan produced a linear dose-response relationship against acetic acid-induced abdominal constriction.When acetorphan was administered before either the antidepressants or morphine, there was a clear potentiation of the antidepressant- or morphine-induced antinociception. However, acetorphan had no effect on aspirin antinociception.Since neither of the opioid antagonists were able to attenuate, nor was acetorphan able to potentiate, aspirin antinociception, we concluded that the mechanism of antidepressant-induced antinociception is different from that of the non-steroidal anti-inflammatory drugs.These data

  14. Involvement of surface cysteines in activity and multimer formation of thimet oligopeptidase.

    PubMed

    Sigman, J A; Sharky, M L; Walsh, S T; Pabon, A; Glucksman, M J; Wolfson, A J

    2003-08-01

    Thimet oligopeptidase is a metalloenzyme involved in regulating neuropeptide processing. Three cysteine residues (246, 248, 253) are known to be involved in thiol activation of the enzyme. In contrast to the wild-type enzyme, the triple mutant (C246S/C248S/C253S) displays increased activity in the absence of dithiothreitol. Dimers, purportedly formed through cysteines 246, 248 and 253, have been thought to be inactive. However, analysis of the triple mutant by native gel electrophoresis reveals the existence of dimers and multimers, implying that oligomer formation is mediated by other cysteines, probably on the surface, and that some of these forms are enzymatically active. Isolation and characterization of iodoacetate-modified monomers and dimers of the triple mutant revealed that, indeed, certain dimeric forms of the enzyme are still fully active, whereas others show reduced activity. Cysteine residues potentially involved in dimerization were identified by modeling of thimet oliogopeptidase to its homolog, neurolysin. Five mutants were constructed; all contained the triple mutation C246S/C248S/C253S and additional substitutions. Substitutions at C46 or C682 and C687 prevented multimer formation and inhibited dimer formation. The C46S mutant had enzymatic activity comparable to the parent triple mutant, whereas that of C682S/C687S was reduced. Thus, the location of intermolecular disulfide bonds, rather than their existence per se, is relevant to activity. Dimerization close to the N-terminus is detrimental to activity, whereas dimerization near the C-terminus has little effect. Altering disulfide bond formation is a potential regulatory factor in the cell owing to the varying oxidation states in subcellular compartments and the different compartmental locations and functions of the enzyme.

  15. Molecular mechanism of allosteric substrate activation in a thiamine diphosphate-dependent decarboxylase.

    PubMed

    Versées, Wim; Spaepen, Stijn; Wood, Martin D H; Leeper, Finian J; Vanderleyden, Jos; Steyaert, Jan

    2007-11-30

    Thiamine diphosphate-dependent enzymes are involved in a wide variety of metabolic pathways. The molecular mechanism behind active site communication and substrate activation, observed in some of these enzymes, has since long been an area of debate. Here, we report the crystal structures of a phenylpyruvate decarboxylase in complex with its substrates and a covalent reaction intermediate analogue. These structures reveal the regulatory site and unveil the mechanism of allosteric substrate activation. This signal transduction relies on quaternary structure reorganizations, domain rotations, and a pathway of local conformational changes that are relayed from the regulatory site to the active site. The current findings thus uncover the molecular mechanism by which the binding of a substrate in the regulatory site is linked to the mounting of the catalytic machinery in the active site in this thiamine diphosphate-dependent enzyme.

  16. Embedding a Recovery Orientation into Neuroscience Research: Involving People with a Lived Experience in Research Activity.

    PubMed

    Stratford, Anthony; Brophy, Lisa; Castle, David; Harvey, Carol; Robertson, Joanne; Corlett, Philip; Davidson, Larry; Everall, Ian

    2016-03-01

    This paper highlights the importance and value of involving people with a lived experience of mental ill health and recovery in neuroscience research activity. In this era of recovery oriented service delivery, involving people with the lived experience of mental illness in neuroscience research extends beyond their participation as "subjects". The recovery paradigm reconceptualises people with the lived experience of mental ill health as experts by experience. To support this contribution, local policies and procedures, recovery-oriented training for neuroscience researchers, and dialogue about the practical applications of neuroscience research, are required.

  17. Personal Involvement with Learning Disability Children: Activities Groups Can Do for Personal Involvement with Learning Disability Children thru Movement Education.

    ERIC Educational Resources Information Center

    Smith, Elizabeth I.

    Described are perceptual motor activities in the areas of coordination, agility, strength, balance, and endurance for use with learning disabled children. Provided are a rationale for movement education and definitions of 10 terms such as laterality and endurance. A sequence of activities is provided for the following skills: ball bouncing, rope…

  18. A Mechanism for Land-Atmosphere Feedback Involving Planetary Wave Structures

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Chang, Yehui; Schubert, Siegfried D.

    2014-01-01

    While the ability of land surface conditions to influence the atmosphere has been demonstrated in various modeling and observational studies, the precise mechanisms by which land-atmosphere feedback occurs are still largely unknown particularly the mechanisms that allow land moisture state in one region to affect atmospheric conditions in another. Such remote impacts are examined here in the context of atmospheric general circulation model (AGCM) simulations, leading to the identification of one potential mechanism: the phase-locking and amplification of a planetary wave through the imposition of a spatial pattern of soil moisture at the land surface. This mechanism, shown here to be relevant in the AGCM, apparently also operates in nature, as suggested by supporting evidence found in reanalysis data.

  19. Molecules and mechanisms involved in the generation and migration of cortical interneurons

    PubMed Central

    Hernández-Miranda, Luis R; Parnavelas, John G; Chiara, Francesca

    2010-01-01

    The GABA (γ-aminobutyric acid)-containing interneurons of the neocortex are largely derived from the ganglionic eminences in the subpallium. Numerous studies have previously defined the migratory paths travelled by these neurons from their origins to their destinations in the cortex. We review here results of studies that have identified many of the genes expressed in the subpallium that are involved in the specification of the subtypes of cortical interneurons, and the numerous transcription factors, motogenic factors and guidance molecules that are involved in their migration. PMID:20360946

  20. Molecules and mechanisms involved in the generation and migration of cortical interneurons.

    PubMed

    Hernández-Miranda, Luis R; Parnavelas, John G; Chiara, Francesca

    2010-03-31

    The GABA (γ-aminobutyric acid)-containing interneurons of the neocortex are largely derived from the ganglionic eminences in the subpallium. Numerous studies have previously defined the migratory paths travelled by these neurons from their origins to their destinations in the cortex. We review here results of studies that have identified many of the genes expressed in the subpallium that are involved in the specification of the subtypes of cortical interneurons, and the numerous transcription factors, motogenic factors and guidance molecules that are involved in their migration.

  1. Mechanical Activation of Construction Binder Materials by Various Mills

    NASA Astrophysics Data System (ADS)

    Fediuk, R. S.

    2016-04-01

    The paper deals with the mechanical grinding down to the nano powder of construction materials. During mechanical activation a composite binder active molecules cement minerals occur in the destruction of the molecular defects in the areas of packaging and breaking metastable phase decompensation intermolecular forces. The process is accompanied by a change in the kinetics of hardening of portland cement. Mechanical processes during grinding mineral materials cause, along with the increase in their surface energy, increase the Gibbs energy of powders and, respectively, their chemical activity, which also contributes to the high adhesion strength when contacting them with binders. Thus, the set of measures for mechanical activation makes better use of the weight of components filled with cement systems and adjust their properties. At relatively low cost is possible to provide a spectacular and, importantly, easily repeatable results in a production environment.

  2. Investigation of oxidation process of mechanically activated ultrafine iron powders

    NASA Astrophysics Data System (ADS)

    Lysenko, E. N.; Nikolaev, E. V.; Vlasov, V. A.; Zhuravkov, S. P.

    2016-02-01

    The oxidation of mechanically activated ultrafine iron powders was studied using X- ray powder diffraction and thermogravimetric analyzes. The powders with average particles size of 100 nm were made by the electric explosion of wire, and were subjected to mechanical activation in planetary ball mill for 15 and 40 minutes. It was shown that a certain amount of FeO phase is formed during mechanical activation of ultrafine iron powders. According to thermogravimetric analysis, the oxidation process of non-milled ultrafine iron powders is a complex process and occurs in three stages. The preliminary mechanical activation of powders considerably changes the nature of the iron powders oxidation, leads to increasing in the temperature of oxidation onset and shifts the reaction to higher temperatures. For the milled powders, the oxidation is more simple process and occurs in a single step.

  3. In vitro reassortment between Infectious Pancreatic Necrosis Virus (IPNV) strains: The mechanisms involved and its effect on virulence.

    PubMed

    Lago, María; Bandín, Isabel; Olveira, José G; Dopazo, Carlos P

    2017-01-15

    Reassortment is one of the main mechanisms of evolution in dsRNA viruses with segmented genomes. It contributes to generate genetic diversity and plays an important role in the emergence and spread of new strains with altered virulence. Natural reassorment has been demonstrated among infectious pancreatic necrosis-like viruses (genus Aquabirnavirus, Birnaviridae). In the present study, coinfections between different viral strains, and genome sequencing by the Sanger and Illumina methods were applied to analyze the frequency of reassortment of this virus in vitro, the possible mechanisms involved, and its effect on virulence. Results have demonstrated that reassortment is a cell-dependent and non-random process, probably through differential expression of the different mRNA classes in the ribosomes of a specific cell, and by specific associations between the components to construct the ribonucleoprotein (RNP) complexes and/or RNP cross-inhibition. However, the precise mechanisms involved, known in other viruses, still remain to be demonstrated in birnaviruses.

  4. Belinostat-induced apoptosis and growth inhibition in pancreatic cancer cells involve activation of TAK1-AMPK signaling axis

    SciTech Connect

    Wang, Bing Wang, Xin-bao; Chen, Li-yu; Huang, Ling; Dong, Rui-zen

    2013-07-19

    Highlights: •Belinostat activates AMPK in cultured pancreatic cancer cells. •Activation of AMPK is important for belinostat-induced cytotoxic effects. •ROS and TAK1 are involved in belinostat-induced AMPK activation. •AMPK activation mediates mTOR inhibition by belinostat. -- Abstract: Pancreatic cancer accounts for more than 250,000 deaths worldwide each year. Recent studies have shown that belinostat, a novel pan histone deacetylases inhibitor (HDACi) induces apoptosis and growth inhibition in pancreatic cancer cells. However, the underlying mechanisms are not fully understood. In the current study, we found that AMP-activated protein kinase (AMPK) activation was required for belinostat-induced apoptosis and anti-proliferation in PANC-1 pancreatic cancer cells. A significant AMPK activation was induced by belinostat in PANC-1 cells. Inhibition of AMPK by RNAi knockdown or dominant negative (DN) mutation significantly inhibited belinostat-induced apoptosis in PANC-1 cells. Reversely, AMPK activator AICAR and A-769662 exerted strong cytotoxicity in PANC-1 cells. Belinostat promoted reactive oxygen species (ROS) production in PANC-1 cells, increased ROS induced transforming growth factor-β-activating kinase 1 (TAK1)/AMPK association to activate AMPK. Meanwhile, anti-oxidants N-Acetyl-Cysteine (NAC) and MnTBAP as well as TAK1 shRNA knockdown suppressed belinostat-induced AMPK activation and PANC-1 cell apoptosis. In conclusion, we propose that belinostat-induced apoptosis and growth inhibition require the activation of ROS-TAK1-AMPK signaling axis in cultured pancreatic cancer cells.

  5. Regulation of ERK1/2 activity by ghrelin-activated growth hormone secretagogue receptor 1A involves a PLC/PKCɛ pathway

    PubMed Central

    Mousseaux, Delphine; Le Gallic, Lionel; Ryan, Joanne; Oiry, Catherine; Gagne, Didier; Fehrentz, Jean-Alain; Galleyrand, Jean-Claude; Martinez, Jean

    2006-01-01

    The growth hormone secretagogue receptor 1a (GHSR-1a) is a G-protein coupled receptor, involved in the biological actions of ghrelin by triggering inositol phosphates and calcium intracellular second messengers. It has also been reported that ghrelin could activate the 44- and 42-kDa extracellular signal-regulated protein kinases (ERK1/2) in different cell lines, but it is not clear whether this regulation is GHSR-1a dependent or not. To provide direct evidence for the coupling of GHSR-1a to ERK1/2 activation, this pathway has been studied in a heterologous expression system. Thus, in Chinese hamster ovary (CHO) cells we showed that ghrelin induced, via the human GHSR-1a, a transient and dose-dep endent activation of ERK1/2 leading to activation of the transcriptional factor Elk1. We then investigated the precise mechanisms involved in GHSR-1a-mediated ERK1/2 activation using various specific inhibitors and dominant-negative mutants and found that internalization of GHSR-1a was not necessary. Our results also indicate that phospholipase C (PLC) was involved in GHSR-1a-mediated ERK1/2 activation, however, pathways like tyrosine kinases, including Src, and phosphoinositide 3-kinases were not found to be involved. GHSR-1a-mediated ERK1/2 activation was abolished both by a general protein kinase C (PKC) inhibitor, Gö6983, and by PKC depletion using overnight pretreatment with phorbol ester. Moreover, the calcium chelator, BAPTA-AM, and the inhibitor of conventional PKCs, Gö6976, had no effect on the GHSR-1a-mediated ERK1/2 activation, suggesting the involvement of novel PKC isoforms (ɛ, δ), but not conventional or atypical PKCs. Further analyses suggest that PKCɛ is required for the activation of ERK1/2. Taken together, these data suggest that ghrelin, through GHSR-1a, activates the Elk1 transcriptional factor and ERK1/2 by a PLC- and PKCɛ-dependent pathway. PMID:16582936

  6. Regulation of ERK1/2 activity by ghrelin-activated growth hormone secretagogue receptor 1A involves a PLC/PKCvarepsilon pathway.

    PubMed

    Mousseaux, Delphine; Le Gallic, Lionel; Ryan, Joanne; Oiry, Catherine; Gagne, Didier; Fehrentz, Jean-Alain; Galleyrand, Jean-Claude; Martinez, Jean

    2006-06-01

    1. The growth hormone secretagogue receptor 1a (GHSR-1a) is a G-protein coupled receptor, involved in the biological actions of ghrelin by triggering inositol phosphates and calcium intracellular second messengers. It has also been reported that ghrelin could activate the 44- and 42-kDa extracellular signal-regulated protein kinases (ERK1/2) in different cell lines, but it is not clear whether this regulation is GHSR-1a dependent or not. 2. To provide direct evidence for the coupling of GHSR-1a to ERK1/2 activation, this pathway has been studied in a heterologous expression system. 3. Thus, in Chinese hamster ovary (CHO) cells we showed that ghrelin induced, via the human GHSR-1a, a transient and dose-dependent activation of ERK1/2 leading to activation of the transcriptional factor Elk1. 4. We then investigated the precise mechanisms involved in GHSR-1a-mediated ERK1/2 activation using various specific inhibitors and dominant-negative mutants and found that internalization of GHSR-1a was not necessary. Our results also indicate that phospholipase C (PLC) was involved in GHSR-1a-mediated ERK1/2 activation, however, pathways like tyrosine kinases, including Src, and phosphoinositide 3-kinases were not found to be involved. GHSR-1a-mediated ERK1/2 activation was abolished both by a general protein kinase C (PKC) inhibitor, Gö6983, and by PKC depletion using overnight pretreatment with phorbol ester. Moreover, the calcium chelator, BAPTA-AM, and the inhibitor of conventional PKCs, Gö6976, had no effect on the GHSR-1a-mediated ERK1/2 activation, suggesting the involvement of novel PKC isoforms (epsilon, delta), but not conventional or atypical PKCs. Further analyses suggest that PKCepsilon is required for the activation of ERK1/2. 5. Taken together, these data suggest that ghrelin, through GHSR-1a, activates the Elk1 transcriptional factor and ERK1/2 by a PLC- and PKCepsilon-dependent pathway.

  7. Different brain mechanisms between stereotype activation and application: evidence from an ERP study.

    PubMed

    Jia, Lei; Dickter, Cheryl L; Luo, Junlong; Xiao, Xiao; Yang, Qun; Lei, Ming; Qiu, Jiang; Zhang, Qinglin

    2012-01-01

    Stereotyping involves two processes in which first, social stereotypes are activated (stereotype activation), and then, stereotypes are applied to given targets (stereotype application). Previous behavioral studies have suggested that these two processes are independent of each other and may have different mechanisms. As few psychophysiological studies have given an integrated account of these stages in stereotyping so far, this study utilized a trait categorization task in which event-related potentials (ERPs) were used to explore the brain mechanisms associated with the processes of stereotype activation and its application. The behavioral (reaction time) and electrophysiological data showed that stereotype activation and application were elicited respectively in an affective valence identification subtask and in a semantic content judgment subtask. The electrophysiological results indicated that the categorization processes involved in stereotype activation to quickly identify stereotypic and nonstereotypic information were quite different from those involved in the application. During the process of stereotype activation, a P2 and N2 effect was observed, indicating that stereotype activation might be facilitated by an early attentional bias. Also, a late positive potential (LPP) was elicited, suggesting that social expectancy violation might be involved. During the process of the stereotype application, electrophysiological data showed a P2 and P3 effect, indicating that stereotype application might be related to the rapid social knowledge identification in semantic representation and thus may be associated with an updating of existing stereotypic contents or a motivation to resolve the inconsistent information. This research strongly suggested that different mechanisms are involved in the stereotype activation and application processes.

  8. Difficulty with daily activities involving the lower extremities in people with systemic sclerosis.

    PubMed

    Poole, Janet L; Brandenstein, Jane

    2016-02-01

    The purpose of this study was to examine the extent of lower extremity impairments in motion and strength in people with systemic sclerosis and the relationships of the impairments to limitations in activities of daily living primarily involving the lower extremities. Participants were 69 persons with SSc who received evaluations of lower extremity joint motion (Keitel function test), strength (timed-stands test), and basic mobility (timed up and go test) and completed a demographic questionnaire regarding symptoms in the lower extremities. Activity limitations were measured by the Rheumatoid and Arthritis Outcome Score (RAOS) which examines functional ability, pain, and quality of life. The participants had difficulty with items requiring external rotation of the hips and lower extremity strength. There were moderate correlations between the impairment measures of joint motion, strength, mobility, and activity limitations. Fair correlations were found between the skin scores and the RAOS sections except for pain. The results of this study show that lower extremity involvement is present in persons with SSc. The findings, regarding strength, mobility, and joint motion are related to the ability to perform everyday activities involving the lower extremities, suggest that these areas should be targeted for intervention in persons with SSc.

  9. Sensitizing Children to the Social and Emotional Mechanisms Involved in Racism: A Program Evaluation

    ERIC Educational Resources Information Center

    Triliva, Sofia; Anagnostopoulou, Tanya; Vleioras, Georgios

    2014-01-01

    This paper describes and discusses the results of an intervention aiming to sensitize children to the social and emotional processes involved in racism. The intervention was applied and evaluated in 10 Greek elementary schools. The goals and the intervention methods of the program modules are briefly outlined and the results of the program…

  10. Dysregulation of apoptosis is a major mechanism in the lymph node involvement in colorectal carcinoma.

    PubMed

    Bandres, Eva; Catalan, Victoria; Sola, Iosu; Honorato, Beatriz; Cubedo, Elena; Cordeu, Lucia; Andion, Esther; Escalada, Alvaro; Zarate, Ruth; Salgado, Esteban; Zabalegui, Natalia; García, Fermin; Garcia-Foncillas, Jesus

    2004-08-01

    The purpose of this study was to define gene expression profile changes in colorectal tumors in order to identify target genes involved in neoplastic progression. cDNA microarray analysis was used to detect differences in gene expression profiles between colon tumor samples obtained from 20 patients in different tumor stages. Genes included in the cDNA microarray were selected according to their role in the cell cycle, apoptosis process, drug resistance and transcription factor regulation. Cluster analysis showed 2 well differentiated gene expression profiles between colorectal tumors with or without lymph node involvement. Some of these genes are important regulators of apoptotic pathways (DAD1, APO3, DRAK1 or BIK), suggesting that this process could be associated with node involvement. Subsequent analysis of certain genes identified in the microarray analysis were confirmed by quantitative real-time PCR. Our data suggest that microarray technology could discriminate between the involvement of regional lymph node in colon cancer where apoptosis-related genes would be implied. This preliminary analysis also suggests that the gene expression profile may be useful in improving risk-group stratification.

  11. Mechanical stimulation of skeletal muscle increases prostaglandin F2(alpha) synthesis and cyclooxygenase activity by a pertussis toxin sensitive mechanism

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.; Shansky, Janet; Solerssi, Rosa; Chromiak, Joseph

    1992-01-01

    Repetitive mechanical stimulation of differentiated skeletal muscle in tissue culture increases the production of prostaglandin F(sub 2(alpha)), an anabolic stimulator of myofiber growth. Within 4 h of initiating mechanical activity, the activity of cyclooxygenase, a regulatory enzyme in prostaglandin synthesis, was increased 82% (P is less than .005), and this increase was maintained for at least 24 h. Kinetic analysis of the stretch-activated cyclooxygenase indicated a two to three-fold decrease in the enzyme's K(sub m) with no change in V(sub max). The stretch-induced increase in enzymatic activity was not inhibited by cycloheximide, was independent of cellular electrical activity (tetrodotoxin-insensitive), but was prevented by the G protein inhibitor pertussis toxin. Pertussis toxin also inhibited the stretch-induced increases in PGF(sub 2(alpha)) production, and cell growth. It is concluded that stretch of skeletal muscle increases the synthesis of the anabolic modulator PGF(sub 2(alpha)) by a G protein-dependent process which involves activation of cyclooxygenase by a posttranslational mechanism.

  12. Cumulative asbestos exposure for US automobile mechanics involved in brake repair (circa 1950s-2000).

    PubMed

    Finley, Brent L; Richter, Richard O; Mowat, Fionna S; Mlynarek, Steve; Paustenbach, Dennis J; Warmerdam, John M; Sheehan, Patrick J

    2007-11-01

    We analyzed cumulative lifetime exposure to chrysotile asbestos experienced by brake mechanics in the US during the period 1950-2000. Using Monte Carlo methods, cumulative exposures were calculated using the distribution of 8-h time-weighted average exposure concentrations for brake mechanics and the distribution of job tenure data for automobile mechanics. The median estimated cumulative exposures for these mechanics, as predicted by three probabilistic models, ranged from 0.16 to 0.41 fibers per cubic centimeter (f/cm(3)) year for facilities with no dust-control procedures (1970s), and from 0.010 to 0.012 f/cm(3) year for those employing engineering controls (1980s). Upper-bound (95%) estimates for the 1970s and 1980s were 1.96 to 2.79 and 0.07-0.10 f/cm(3) year, respectively. These estimates for US brake mechanics are consistent with, but generally slightly lower than, those reported for European mechanics. The values are all substantially lower than the cumulative exposure of 4.5 f/cm(3) year associated with occupational exposure to 0.1 f/cm(3) of asbestos for 45 years that is currently permitted under the current occupational exposure limits in the US. Cumulative exposures were usually about 100- to 1,000-fold less than those of other occupational groups with asbestos exposure for similar time periods. The cumulative lifetime exposure estimates presented here, combined with the negative epidemiology data for brake mechanics, could be used to refine the risk assessments for chrysotile-exposed populations.