Science.gov

Sample records for activation mitochondrial dysfunction

  1. Mitochondrial dysfunction during sepsis.

    PubMed

    Azevedo, Luciano Cesar Pontes

    2010-09-01

    Sepsis and multiple organ failure remain leading causes of death in intensive care patients. Recent advances in our understanding of the pathophysiology of these syndromes include a likely prominent role for mitochondria. Patient studies have shown that the degree of mitochondrial dysfunction is related to the eventual outcome. Associated mechanisms include damage to mitochondria or inhibition of the electron transport chain enzymes by nitric oxide and other reactive oxygen species (the effects of which are amplified by co-existing tissue hypoxia), hormonal influences that decrease mitochondrial activity, and downregulation of mitochondrial protein expression. Notably, despite these findings, there is minimal cell death seen in most affected organs, and these organs generally regain reasonably normal function should the patient survive. It is thus plausible that multiple organ failure following sepsis may actually represent an adaptive state whereby the organs temporarily 'shut down' their normal metabolic functions in order to protect themselves from an overwhelming and prolonged insult. A decrease in energy supply due to mitochondrial inhibition or injury may trigger this hibernation/estivation-like state. Likewise, organ recovery may depend on restoration of normal mitochondrial respiration. Data from animal studies show histological recovery of mitochondria after a septic insult that precedes clinical improvement. Stimulation of mitochondrial biogenesis could offer a new therapeutic approach for patients in multi-organ failure. This review will cover basic aspects of mitochondrial function, mechanisms of mitochondrial dysfunction in sepsis, and approaches to prevent, mitigate or speed recovery from mitochondrial injury. PMID:20509844

  2. Mitochondrial Dysfunction in Cancer

    PubMed Central

    Boland, Michelle L.; Chourasia, Aparajita H.; Macleod, Kay F.

    2013-01-01

    A mechanistic understanding of how mitochondrial dysfunction contributes to cell growth and tumorigenesis is emerging beyond Warburg as an area of research that is under-explored in terms of its significance for clinical management of cancer. Work discussed in this review focuses less on the Warburg effect and more on mitochondria and how dysfunctional mitochondria modulate cell cycle, gene expression, metabolism, cell viability, and other established aspects of cell growth and stress responses. There is increasing evidence that key oncogenes and tumor suppressors modulate mitochondrial dynamics through important signaling pathways and that mitochondrial mass and function vary between tumors and individuals but the significance of these events for cancer are not fully appreciated. We explore the interplay between key molecules involved in mitochondrial fission and fusion and in apoptosis, as well as in mitophagy, biogenesis, and spatial dynamics of mitochondria and consider how these distinct mechanisms are coordinated in response to physiological stresses such as hypoxia and nutrient deprivation. Importantly, we examine how deregulation of these processes in cancer has knock on effects for cell proliferation and growth. We define major forms of mitochondrial dysfunction and address the extent to which the functional consequences of such dysfunction can be determined and exploited for cancer diagnosis and treatment. PMID:24350057

  3. Asymmetric dimethylarginine inhibits HSP90 activity in Pulmonary Arterial Endothelial Cells: Role of Mitochondrial Dysfunction

    PubMed Central

    Sud, Neetu; Wells, Sandra M.; Wiseman, Dean A.; Wilham, Jason; Black, Stephen M.

    2013-01-01

    Increased ADMA levels have been implicated in the pathogenesis of a number of conditions affecting the cardiovascular system. However, the mechanism(s) by which ADMA exerts its effect has not been adequately elucidated. Thus, the purpose of this study was to determine the effect of increased ADMA on nitric oxide (NO) signaling and to begin to elucidate the mechanism by which ADMA acts. Our initial data demonstrated that that ADMA increased NOS uncoupling both in recombinant human endothelial NO synthase (eNOS) and pulmonary arterial endothelial cells (PAEC). Further, we found that this eNOS uncoupling increased 3-nitrotyrosine levels preferentially in the mitochondria of PAEC due to a redistribution of eNOS from the plasma membrane to the mitochondria. This increase in nitration in the mitochondria was found to induce mitochondrial dysfunction as determined by increased mitochondrial derived reactive oxygen species and decreased generation of ATP. Finally, we found that the decrease in ATP resulted in a reduction in the chaperone activity of HSP90 resulting in a decrease in its interaction with eNOS. In conclusion increased levels of ADMA causes mitochondrial dysfunction and a loss of HSP90 chaperone activity secondary to an uncoupling of eNOS. Mitochondrial dysfunction may be an understudied component of the endothelial dysfunction associated with various cardiovascular disease states. PMID:18385287

  4. Mitochondrial dysfunction and organophosphorus compounds

    SciTech Connect

    Karami-Mohajeri, Somayyeh; Abdollahi, Mohammad

    2013-07-01

    Organophosphorous (OPs) pesticides are the most widely used pesticides in the agriculture and home. However, many acute or chronic poisoning reports about OPs have been published in the recent years. Mitochondria as a site of cellular oxygen consumption and energy production can be a target for OPs poisoning as a non-cholinergic mechanism of toxicity of OPs. In the present review, we have reviewed and criticized all the evidences about the mitochondrial dysfunctions as a mechanism of toxicity of OPs. For this purpose, all biochemical, molecular, and morphological data were retrieved from various studies. Some toxicities of OPs are arisen from dysfunction of mitochondrial oxidative phosphorylation through alteration of complexes I, II, III, IV and V activities and disruption of mitochondrial membrane. Reductions of adenosine triphosphate (ATP) synthesis or induction of its hydrolysis can impair the cellular energy. The OPs disrupt cellular and mitochondrial antioxidant defense, reactive oxygen species generation, and calcium uptake and promote oxidative and genotoxic damage triggering cell death via cytochrome C released from mitochondria and consequent activation of caspases. The mitochondrial dysfunction induced by OPs can be restored by use of antioxidants such as vitamin E and C, alpha-tocopherol, electron donors, and through increasing the cytosolic ATP level. However, to elucidate many aspect of mitochondrial toxicity of Ops, further studies should be performed. - Highlights: • As a non-cholinergic mechanism of toxicity, mitochondria is a target for OPs. • OPs affect action of complexes I, II, III, IV and V in the mitochondria. • OPs reduce mitochondrial ATP. • OPs promote oxidative and genotoxic damage via release of cytochrome C from mitochondria. • OP-induced mitochondrial dysfunction can be restored by increasing the cytosolic ATP.

  5. Rapamycin attenuates mitochondrial dysfunction via activation of mitophagy in experimental ischemic stroke

    SciTech Connect

    Li, Qiang; Zhang, Ting; Wang, Jixian; Zhang, Zhijun; Zhai, Yu; Yang, Guo-Yuan; Sun, Xiaojiang

    2014-02-07

    Highlights: • Rapamycin enhances mitophagy via increasing p62 translocation to the mitochondria. • Rapamycin attenuates brain ischemic damage and improves mitochondrial function. • The protection of rapamycin to mitochondrial is linked to enhanced mitophagy. - Abstract: Rapamycin has been demonstrated to exhibit neuroprotective functions via the activation of autophagy in a cerebral ischemia model. However, the involvement of mitophagy in this process and its contribution to the protection of mitochondrial function remains unknown. The present study explored the characteristics of mitophagy after cerebral ischemia and the effect of rapamycin on mitochondrial function. Male Sprague–Dawley rats underwent transient middle cerebral artery occlusion (tMCAO). Neurological deficits scores; infarct volumes; mitophagy morphology; and the levels of malondialdehyde (MDA), adenosine triphosphate (ATP) and mitochondrial membrane potentials (Δψm) were examined. The expression of LC3, Beclin-1 and p62 in the mitochondrial fraction combined with transmission electronic microscopy were used to explore mitophagic activity after ischemia. We also blocked autophagosome formation using 3-methyladenine (3-MA) to check the linkage between the mitochondrial protective effect of rapamycin and enhanced mitophagy. We observed that rapamycin significantly enhanced mitophagy, as evidenced by the increase in LC3-II and Beclin-1 expression in the mitochondria and p62 translocation to the mitochondria. Rapamycin reduced infarct volume, improved neurological outcomes and inhibited mitochondrial dysfunction compared with the control animals (p < 0.05). However, these protective effects were reversed by 3-methyladenine treatment after rapamycin. The present study indicates that rapamycin treatment attenuates mitochondrial dysfunction following cerebral ischemia, which is linked to enhanced mitophagy.

  6. Aβ and NMDAR activation cause mitochondrial dysfunction involving ER calcium release.

    PubMed

    Ferreira, Ildete Luísa; Ferreiro, Elisabete; Schmidt, Jeannette; Cardoso, João M; Pereira, Cláudia M F; Carvalho, Ana Luísa; Oliveira, Catarina R; Rego, A Cristina

    2015-02-01

    Early cognitive deficits in Alzheimer's disease (AD) seem to be correlated to dysregulation of glutamate receptors evoked by amyloid-beta (Aβ) peptide. Aβ interference with the activity of N-methyl-d-aspartate receptors (NMDARs) may be a relevant factor for Aβ-induced mitochondrial toxicity and neuronal dysfunction. To evaluate the role of mitochondria in NMDARs activation mediated by Aβ, we followed in situ single-cell simultaneous measurement of cytosolic free Ca(2+)(Cai(2+)) and mitochondrial membrane potential in primary cortical neurons. Our results show that direct exposure to Aβ + NMDA largely increased Cai(2+) and induced immediate mitochondrial depolarization, compared with Aβ or NMDA alone. Mitochondrial depolarization induced by rotenone strongly inhibited the rise in Cai(2+) evoked by Aβ or NMDA, suggesting that mitochondria control Ca(2+) entry through NMDARs. However, incubation with rotenone did not preclude mitochondrial Ca(2+) (mitCa(2+)) retention in cells treated with Aβ. Aβ-induced Cai(2+) and mitCa(2+) rise were inhibited by ifenprodil, an antagonist of GluN2B-containing NMDARs. Exposure to Aβ + NMDA further evoked a higher mitCa(2+) retention, which was ameliorated in GluN2B(-/-) cortical neurons, largely implicating the involvement of this NMDAR subunit. Moreover, pharmacologic inhibition of endoplasmic reticulum (ER) inositol-1,4,5-triphosphate receptor (IP3R) and mitCa(2+) uniporter (MCU) evidenced that Aβ + NMDA-induced mitCa(2+) rise involves ER Ca(2+) release through IP3R and mitochondrial entry by the MCU. Altogether, data highlight mitCa(2+) dyshomeostasis and subsequent dysfunction as mechanisms relevant for early neuronal dysfunction in AD linked to Aβ-mediated GluN2B-composed NMDARs activation. PMID:25442114

  7. Role of mitochondrial dysfunction in cancer progression.

    PubMed

    Hsu, Chia-Chi; Tseng, Ling-Ming; Lee, Hsin-Chen

    2016-06-01

    Deregulated cellular energetics was one of the cancer hallmarks. Several underlying mechanisms of deregulated cellular energetics are associated with mitochondrial dysfunction caused by mitochondrial DNA mutations, mitochondrial enzyme defects, or altered oncogenes/tumor suppressors. In this review, we summarize the current understanding about the role of mitochondrial dysfunction in cancer progression. Point mutations and copy number changes are the two most common mitochondrial DNA alterations in cancers, and mitochondrial dysfunction induced by chemical depletion of mitochondrial DNA or impairment of mitochondrial respiratory chain in cancer cells promotes cancer progression to a chemoresistance or invasive phenotype. Moreover, defects in mitochondrial enzymes, such as succinate dehydrogenase, fumarate hydratase, and isocitrate dehydrogenase, are associated with both familial and sporadic forms of cancer. Deregulated mitochondrial deacetylase sirtuin 3 might modulate cancer progression by regulating cellular metabolism and oxidative stress. These mitochondrial defects during oncogenesis and tumor progression activate cytosolic signaling pathways that ultimately alter nuclear gene expression, a process called retrograde signaling. Changes in the intracellular level of reactive oxygen species, Ca(2+), or oncometabolites are important in the mitochondrial retrograde signaling for neoplastic transformation and cancer progression. In addition, altered oncogenes/tumor suppressors including hypoxia-inducible factor 1 and tumor suppressor p53 regulate mitochondrial respiration and cellular metabolism by modulating the expression of their target genes. We thus suggest that mitochondrial dysfunction plays a critical role in cancer progression and that targeting mitochondrial alterations and mitochondrial retrograde signaling might be a promising strategy for the development of selective anticancer therapy. PMID:27022139

  8. Mitochondrial Dysfunction Is Involved in the Toxic Activity of Boric Acid against Saprolegnia

    PubMed Central

    Ali, Shimaa E.; Thoen, Even; Evensen, Øystein; Wiik-Nielsen, Jannicke; Gamil, Amr A. A.; Skaar, Ida

    2014-01-01

    There has been a significant increase in the incidence of Saprolegnia infections over the past decades, especially after the banning of malachite green. Very often these infections are associated with high economic losses in salmonid farms and hatcheries. The use of boric acid to control the disease has been investigated recently both under in vitro and in vivo conditions, however its possible mode of action against fish pathogenic Saprolegnia is not known. In this study, we have explored the transformation in Saprolegnia spores/hyphae after exposure to boric acid (1 g/L) over a period 4–24 h post treatment. Using transmission electron microscopy (TEM), early changes in Saprolegnia spores were detected. Mitochondrial degeneration was the most obvious sign observed following 4 h treatment in about 20% of randomly selected spores. We also investigated the effect of the treatment on nuclear division, mitochondrial activity and function using confocal laser scanning microscopy (CLSM). Fluorescence microscopy was also used to test the effect of treatment on mitochondrial membrane potential and formation of reactive oxygen species. Additionally, the viability and proliferation of treated spores that correlated to mitochondrial enzymatic activity were tested using an MTS assay. All obtained data pointed towards changes in the mitochondrial structure, membrane potential and enzymatic activity following treatment. We have found that boric acid has no effect on the integrity of membranes of Saprolegnia spores at concentrations tested. It is therefore likely that mitochondrial dysfunction is involved in the toxic activity of boric acid against Saprolegnia spp. PMID:25354209

  9. Denbinobin induces apoptosis in human lung adenocarcinoma cells via Akt inactivation, Bad activation, and mitochondrial dysfunction.

    PubMed

    Kuo, Chen-Tzu; Hsu, Ming-Jen; Chen, Bing-Chang; Chen, Chien-Chih; Teng, Che-Ming; Pan, Shiow-Lin; Lin, Chien-Huang

    2008-02-28

    Increasing evidence demonstrated that denbinobin, isolated from Ephemerantha lonchophylla, exert cytotoxic effects in cancer cells. The purpose of this study was to investigate whether denbinobin induces apoptosis and the apoptotic mechanism of denbinobin in human lung adenocarcinoma cells (A549). Denbinobin (1-20microM) caused cell death in a concentration-dependent manner. Flow cytometric analysis and annexin V labeling demonstrated that denbinobin increased the percentage of apoptotic cells. A549 cells treated with denbinobin showed typical characteristics of apoptosis including morphological changes and DNA fragmentation. Denbinobin induced caspase 3 activation, and N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD-fmk), a broad-spectrum caspase inhibitor, prevented denbinobin-induced cell death. Denbinobin induced the loss of the mitochondrial membrane potential and the release of mitochondrial apoptotic proteins including cytochrome c, second mitochondria derived activator of caspase (Smac), and apoptosis-inducing factor (AIF). In addition, denbinobin-induced Bad activation was accompanied by the dissociation of Bad with 14-3-3 and the association of Bad with Bcl-xL. Furthermore, denbinobin induced Akt inactivation in a time-dependent manner. Transfection of A549 cells with both wild-type and constitutively active Akt significantly suppressed denbinobin-induced Bad activation and cell apoptosis. These results suggest that Akt inactivation, followed by Bad activation, mitochondrial dysfunction, caspase 3 activation, and AIF release, contributes to denbinobin-induced cell apoptosis. PMID:18262737

  10. Sustained Activation of Akt Elicits Mitochondrial Dysfunction to Block Plasmodium falciparum Infection in the Mosquito Host

    PubMed Central

    Drexler, Anna L.; Antonova-Koch, Yevgeniya; Sakaguchi, Danielle; Napoli, Eleonora; Wong, Sarah; Price, Mark S.; Eigenheer, Richard; Phinney, Brett S.; Pakpour, Nazzy; Pietri, Jose E.; Cheung, Kong; Georgis, Martha; Riehle, Michael

    2013-01-01

    The overexpression of activated, myristoylated Akt in the midgut of female transgenic Anopheles stephensi results in resistance to infection with the human malaria parasite Plasmodium falciparum but also decreased lifespan. In the present study, the understanding of mitochondria-dependent midgut homeostasis has been expanded to explain this apparent paradox in an insect of major medical importance. Given that Akt signaling is essential for cell growth and survival, we hypothesized that sustained Akt activation in the mosquito midgut would alter the balance of critical pathways that control mitochondrial dynamics to enhance parasite killing at some cost to survivorship. Toxic reactive oxygen and nitrogen species (RNOS) rise to high levels in the midgut after blood feeding, due to a combination of high NO production and a decline in FOXO-dependent antioxidants. Despite an apparent increase in mitochondrial biogenesis in young females (3 d), energy deficiencies were apparent as decreased oxidative phosphorylation and increased [AMP]/[ATP] ratios. In addition, mitochondrial mass was lower and accompanied by the presence of stalled autophagosomes in the posterior midgut, a critical site for blood digestion and stem cell-mediated epithelial maintenance and repair, and by functional degradation of the epithelial barrier. By 18 d, the age at which An. stephensi would transmit P. falciparum to human hosts, mitochondrial dysfunction coupled to Akt-mediated repression of autophagy/mitophagy was more evident and midgut epithelial structure was markedly compromised. Inhibition of RNOS by co-feeding of the nitric-oxide synthase inhibitor L-NAME at infection abrogated Akt-dependent killing of P. falciparum that begins within 18 h of infection in 3–5 d old mosquitoes. Hence, Akt-induced changes in mitochondrial dynamics perturb midgut homeostasis to enhance parasite resistance and decrease mosquito infective lifespan. Further, quality control of mitochondrial function in the

  11. Sustained activation of Akt elicits mitochondrial dysfunction to block Plasmodium falciparum infection in the mosquito host.

    PubMed

    Luckhart, Shirley; Giulivi, Cecilia; Drexler, Anna L; Antonova-Koch, Yevgeniya; Sakaguchi, Danielle; Napoli, Eleonora; Wong, Sarah; Price, Mark S; Eigenheer, Richard; Phinney, Brett S; Pakpour, Nazzy; Pietri, Jose E; Cheung, Kong; Georgis, Martha; Riehle, Michael

    2013-02-01

    The overexpression of activated, myristoylated Akt in the midgut of female transgenic Anopheles stephensi results in resistance to infection with the human malaria parasite Plasmodium falciparum but also decreased lifespan. In the present study, the understanding of mitochondria-dependent midgut homeostasis has been expanded to explain this apparent paradox in an insect of major medical importance. Given that Akt signaling is essential for cell growth and survival, we hypothesized that sustained Akt activation in the mosquito midgut would alter the balance of critical pathways that control mitochondrial dynamics to enhance parasite killing at some cost to survivorship. Toxic reactive oxygen and nitrogen species (RNOS) rise to high levels in the midgut after blood feeding, due to a combination of high NO production and a decline in FOXO-dependent antioxidants. Despite an apparent increase in mitochondrial biogenesis in young females (3 d), energy deficiencies were apparent as decreased oxidative phosphorylation and increased [AMP]/[ATP] ratios. In addition, mitochondrial mass was lower and accompanied by the presence of stalled autophagosomes in the posterior midgut, a critical site for blood digestion and stem cell-mediated epithelial maintenance and repair, and by functional degradation of the epithelial barrier. By 18 d, the age at which An. stephensi would transmit P. falciparum to human hosts, mitochondrial dysfunction coupled to Akt-mediated repression of autophagy/mitophagy was more evident and midgut epithelial structure was markedly compromised. Inhibition of RNOS by co-feeding of the nitric-oxide synthase inhibitor L-NAME at infection abrogated Akt-dependent killing of P. falciparum that begins within 18 h of infection in 3-5 d old mosquitoes. Hence, Akt-induced changes in mitochondrial dynamics perturb midgut homeostasis to enhance parasite resistance and decrease mosquito infective lifespan. Further, quality control of mitochondrial function in the

  12. Mitochondrial dysfunction induces SESN2 gene expression through Activating Transcription Factor 4.

    PubMed

    Garaeva, Alisa A; Kovaleva, Irina E; Chumakov, Peter M; Evstafieva, Alexandra G

    2016-01-01

    We found that inhibitors of mitochondrial respiratory chain complexes III (myxothiazol) and I (piericidin A) in some epithelial carcinoma cell lines induce transcription of the p53-responsive SESN2 gene that plays an important role in stress response and homeostatic regulation. However, the effect did not depend on p53 because i) there was no induction of p53 after the treatment with piericidin A; ii) after the treatment with myxothiazol the peak of SESN2 gene upregulation occurred as early as 5h, before the onset of p53 activation (13h); iii) a supplementation with uridine that abolishes the p53 activation in response to myxothiazol did not abrogate the induction of SESN2 transcripts; iv) in the p53 negative HCT116 p53 -/- cells SESN2 transcription could be also induced by myxothiazol. In response to the respiratory chain inhibitors we observed an induction of ATF4, the key transcription factor of the integrated stress response (ISR). We found that the induction of SESN2 transcripts could be prevented by the ISR inhibitory small molecule ISRIB. Also, by inhibiting or overexpressing ATF4 with specific shRNA or ATF4-expressing constructs, respectively, we have confirmed the role of ATF4 in the SESN2 gene upregulation induced by mitochondrial dysfunction. At a distance of 228 bp upstream from the SESN2 transcription start site we found a candidate sequence for the ATF4 binding site and confirmed its requirement for the induction of SESN2 in luciferase reporter experiments. We suggest that the upregulation of SESN2 by mitochondrial dysfunction provides a homeostatic feedback that attenuates biosynthetic processes during temporal losses of energy supply from mitochondria thereby assisting better adaptation and viability of cells in hostile environments. PMID:26771712

  13. Magnetic Resonance Imaging of Mitochondrial Dysfunction and Metabolic Activity, Accompanied by Overproduction of Superoxide.

    PubMed

    Bakalova, Rumiana; Georgieva, Ekaterina; Ivanova, Donika; Zhelev, Zhivko; Aoki, Ichio; Saga, Tsuneo

    2015-12-16

    This study shows that a mitochondria-penetrating nitroxide probe (mito-TEMPO) allows detection of superoxide and visualization of mitochondrial dysfunction in living cells due to the effect of T1 shortening in MRI. Mitochondrial dysfunction was induced by treatment of cells with rotenone and 2-methoxyestradiol (2-ME/Rot). The MRI measurements were performed on 7T MRI. The 2-ME/Rot-treated cells were characterized by overproduction of superoxide, which was confirmed by a conventional dihydroethidium test. In the presence of mito-TEMPO, the intensity of MRI signal in 2-ME/Rot-treated cells was ∼30-40% higher, in comparison with that in untreated cells or culture media. In model (cell-free) systems, we observed that superoxide, but not hydrogen peroxide, increased the intensity of T1-weighted MRI signal of mito-TEMPO. Moreover, the superoxide restores the T1-weighted MRI contrast of mito-TEMPOH, a noncontrast (diamagnetic) analogue of mito-TEMPO. This was also confirmed by using EPR spectroscopy. The results demonstrate that superoxide radical is involved in the enhancement of T1-weighted MRI contrast in living cells, in the absence and presence of mito-TEMPO. This report gives a direction for discovering new opportunities for functional MRI, for detection of metabolic activity, accompanied by overproduction of superoxide, as well as by disturbance of the balance between superoxide and hydrogen peroxide, a very important approach to clarify the fine molecular mechanisms in the regulation of many pathologies. The visualization of mitochondrial activity in real-time can be crucial to clarify the molecular mechanism of the functional MRI in its commonly accepted definition, as a method for detection of neurovascular coupling. PMID:26367059

  14. Alterations in enterocyte mitochondrial respiratory function and enzyme activities in gastrointestinal dysfunction following brain injury

    PubMed Central

    Zhu, Ke-Jun; Huang, Hong; Chu, Hui; Yu, Hang; Zhang, Shi-Ming

    2014-01-01

    ± 6, day 7: 88 ± 11, P < 0.01). The changes in α-ketoglutaric dehydrogenase (KGDH) activity were similar to PDH, except that the decrease in KGDH activity began at 12 h after TBI (12 h: 90 ± 12, 24 h: 80 ± 9, day 2: 76 ± 15, day 3: 68 ± 7, day 7: 90 ± 13, P < 0.01). No significant change in malate dehydrogenase (MDH) activity was observed. CONCLUSION: Rat enterocyte mitochondrial respiratory function and enzyme activities are inhibited following TBI. Mitochondrial dysfunction may play an important role in TBI-induced gastrointestinal dysfunction. PMID:25071356

  15. Loss of UCP2 attenuates mitochondrial dysfunction without altering ROS production and uncoupling activity.

    PubMed

    Kukat, Alexandra; Dogan, Sukru Anil; Edgar, Daniel; Mourier, Arnaud; Jacoby, Christoph; Maiti, Priyanka; Mauer, Jan; Becker, Christina; Senft, Katharina; Wibom, Rolf; Kudin, Alexei P; Hultenby, Kjell; Flögel, Ulrich; Rosenkranz, Stephan; Ricquier, Daniel; Kunz, Wolfram S; Trifunovic, Aleksandra

    2014-06-01

    Although mitochondrial dysfunction is often accompanied by excessive reactive oxygen species (ROS) production, we previously showed that an increase in random somatic mtDNA mutations does not result in increased oxidative stress. Normal levels of ROS and oxidative stress could also be a result of an active compensatory mechanism such as a mild increase in proton leak. Uncoupling protein 2 (UCP2) was proposed to play such a role in many physiological situations. However, we show that upregulation of UCP2 in mtDNA mutator mice is not associated with altered proton leak kinetics or ROS production, challenging the current view on the role of UCP2 in energy metabolism. Instead, our results argue that high UCP2 levels allow better utilization of fatty acid oxidation resulting in a beneficial effect on mitochondrial function in heart, postponing systemic lactic acidosis and resulting in longer lifespan in these mice. This study proposes a novel mechanism for an adaptive response to mitochondrial cardiomyopathy that links changes in metabolism to amelioration of respiratory chain deficiency and longer lifespan. PMID:24945157

  16. Loss of UCP2 Attenuates Mitochondrial Dysfunction without Altering ROS Production and Uncoupling Activity

    PubMed Central

    Kukat, Alexandra; Dogan, Sukru Anil; Edgar, Daniel; Mourier, Arnaud; Jacoby, Christoph; Maiti, Priyanka; Mauer, Jan; Becker, Christina; Senft, Katharina; Wibom, Rolf; Kudin, Alexei P.; Hultenby, Kjell; Flögel, Ulrich; Rosenkranz, Stephan; Ricquier, Daniel; Kunz, Wolfram S.; Trifunovic, Aleksandra

    2014-01-01

    Although mitochondrial dysfunction is often accompanied by excessive reactive oxygen species (ROS) production, we previously showed that an increase in random somatic mtDNA mutations does not result in increased oxidative stress. Normal levels of ROS and oxidative stress could also be a result of an active compensatory mechanism such as a mild increase in proton leak. Uncoupling protein 2 (UCP2) was proposed to play such a role in many physiological situations. However, we show that upregulation of UCP2 in mtDNA mutator mice is not associated with altered proton leak kinetics or ROS production, challenging the current view on the role of UCP2 in energy metabolism. Instead, our results argue that high UCP2 levels allow better utilization of fatty acid oxidation resulting in a beneficial effect on mitochondrial function in heart, postponing systemic lactic acidosis and resulting in longer lifespan in these mice. This study proposes a novel mechanism for an adaptive response to mitochondrial cardiomyopathy that links changes in metabolism to amelioration of respiratory chain deficiency and longer lifespan. PMID:24945157

  17. Mitochondrial DNA, mitochondrial dysfunction, and cardiac manifestations.

    PubMed

    Lee, Sung Ryul; Kim, Nari; Noh, Yeonhee; Xu, Zhelong; Ko, Kyung Soo; Rhee, Byoung Doo; Han, Jin

    2016-01-01

    Mitochondria, the powerhouses of cells, have their own DNA (mtDNA). They regulate the transport of metabolites and ions, which determine cell physiology, survival, and death. Mitochondrial dysfunction, including impaired oxidative phosphorylation, preferentially affects heart function via imbalance of energy supply and demand. Recently, mitochondrial mutations and associated mitochondrial dysfunction were suggested as a causal factor of cardiac manifestations. Oxidative stress largely influences mtDNA stability due to oxidative modifications of mtDNA. Furthermore, the continuous replicative state of mtDNA and presence of minimal nucleoid structure render mitochondria vulnerable to oxidative damage and subsequent mutations, which impair mitochondrial functions. However, the occurrence of mtDNA heteroplasmy in the same mitochondrion or cell and presence of nuclear DNA-encoded mtDNA repair systems raise questions regarding whether oxidative stress-mediated mtDNA mutations are the major driving force in accumulation of mtDNA mutations. Here, we address the possible causes of mitochondrial DNA mutations and their involvement in cardiac manifestations. Current strategies for treatment related to mitochondrial mutations and/or dysfunction in cardiac manifestations are briefly discussed. PMID:27100514

  18. Miltirone exhibits antileukemic activity by ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction pathways

    PubMed Central

    Zhou, Ling; Jiang, Lifeng; Xu, Maolei; Liu, Qun; Gao, Ning; Li, Ping; Liu, E-Hu

    2016-01-01

    In this study, we investigated the effects of miltirone in human leukemia cell lines, primary leukemia cells, and nude mice U937 xenograft. Treatment of cells with miltirone resulted in apoptosis, mitochondria membrane potential (MMP) collapses, increase of Bax/Bcl-2 ratio, and cytochrome c release. Miltirone triggered the endoplasmic reticulum (ER) stress identified through several key molecules of the unfolded protein response, including phosphorylated PERK, eIF2a, GRP78, GRP94, and caspase-12. Miltrone treatment also resulted in the release of Ca2+ from the ER stores and mitochondrial Ca2+ loading in the cells. Further research revealed that miltirone resulted in dose-dependent decrease in complex III activity and elevated reactive oxygen species (ROS) production in these cells. Miltirone-induced apoptosis, dissipation of MMP and ER stress were dramatically blocked by pretreatment with antioxidant N-acetylcysteine (NAC). In contrast, treatment with ER stress inhibitor TUDCA significantly attenuated miltirone-induced ROS and apoptosis in leukemia cells. Moreover, our in vivo findings showed that administration of miltirone markedly inhibited tumor growth and induced apoptosis in U937 xenograft model with low systemic toxicity. Taken together, these findings indicate that miltirone may exert its antileukemic activity by inducing apoptosis through a ROS-dependent destructive cycle involving ER stress and mitochondrial dysfunction. PMID:26848099

  19. Mitochondrial Dynamics and Mitochondrial Dysfunction in Diabetes.

    PubMed

    Wada, Jun; Nakatsuka, Atsuko

    2016-06-01

    The mitochondria are involved in active and dynamic processes, such as mitochondrial biogenesis, fission, fusion and mitophagy to maintain mitochondrial and cellular functions. In obesity and type 2 diabetes, impaired oxidation, reduced mitochondrial contents, lowered rates of oxidative phosphorylation and excessive reactive oxygen species (ROS) production have been reported. Mitochondrial biogenesis is regulated by various transcription factors such as peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), peroxisome proliferator-activated receptors (PPARs), estrogen-related receptors (ERRs), and nuclear respiratory factors (NRFs). Mitochondrial fusion is promoted by mitofusin 1 (MFN1), mitofusin 2 (MFN2) and optic atrophy 1 (OPA1), while fission is governed by the recruitment of dynamin-related protein 1 (DRP1) by adaptor proteins such as mitochondrial fission factor (MFF), mitochondrial dynamics proteins of 49 and 51 kDa (MiD49 and MiD51), and fission 1 (FIS1). Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) and PARKIN promote DRP1-dependent mitochondrial fission, and the outer mitochondrial adaptor MiD51 is required in DRP1 recruitment and PARKIN-dependent mitophagy. This review describes the molecular mechanism of mitochondrial dynamics, its abnormality in diabetes and obesity, and pharmaceuticals targeting mitochondrial biogenesis, fission, fusion and mitophagy. PMID:27339203

  20. Impaired enzymatic defensive activity, mitochondrial dysfunction and proteasome activation are involved in RTT cell oxidative damage.

    PubMed

    Cervellati, Carlo; Sticozzi, Claudia; Romani, Arianna; Belmonte, Giuseppe; De Rasmo, Domenico; Signorile, Anna; Cervellati, Franco; Milanese, Chiara; Mastroberardino, Pier Giorgio; Pecorelli, Alessandra; Savelli, Vinno; Forman, Henry J; Hayek, Joussef; Valacchi, Giuseppe

    2015-10-01

    A strong correlation between oxidative stress (OS) and Rett syndrome (RTT), a rare neurodevelopmental disorder affecting females in the 95% of the cases, has been well documented although the source of OS and the effect of a redox imbalance in this pathology has not been yet investigated. Using freshly isolated skin fibroblasts from RTT patients and healthy subjects, we have demonstrated in RTT cells high levels of H2O2 and HNE protein adducts. These findings correlated with the constitutive activation of NADPH-oxidase (NOX) and that was prevented by a NOX inhibitor and iron chelator pre-treatment, showing its direct involvement. In parallel, we demonstrated an increase in mitochondrial oxidant production, altered mitochondrial biogenesis and impaired proteasome activity in RTT samples. Further, we found that the key cellular defensive enzymes: glutathione peroxidase, superoxide dismutase and thioredoxin reductases activities were also significantly lower in RTT. Taken all together, our findings suggest that the systemic OS levels in RTT can be a consequence of both: increased endogenous oxidants as well as altered mitochondrial biogenesis with a decreased activity of defensive enzymes that leads to posttranslational oxidant protein modification and a proteasome activity impairment. PMID:26189585

  1. Mitochondrial dysfunction in heart failure

    PubMed Central

    Rosca, Mariana G.; Hoppel, Charles L.

    2013-01-01

    Heart failure (HF) is a complex chronic clinical syndrome. Energy deficit is considered to be a key contributor to the development of both cardiac and skeletal myopathy. In HF several components of cardiac and skeletal muscle bioenergetics are altered, such as oxygen availability, substrate oxidation, mitochondrial ATP production, and ATP transfer to the contractile apparatus via the creatine kinase shuttle. This review focuses on alterations in mitochondrial biogenesis and respirasome organization, substrate oxidation coupled with ATP synthesis in the context of their contribution to the chronic energy deficit, and mechanical dysfunction of the cardiac and skeletal muscle in HF. We conclude that HF is associated with decreased mitochondrial biogenesis and function in both heart and skeletal muscle, supporting the concept of a systemic mitochondrial cytopathy. The sites of mitochondrial defects are located within the electron transport and phosphorylation apparatus, and differ with the etiology and progression of HF in the two mitochondrial populations (subsarcolemmal and interfibrillar) of cardiac and skeletal muscle. The roles of adrenergic stimulation, the renin-angiotensin system, and cytokines are evaluated as factors responsible for the systemic energy deficit. We propose a cylic AMP-mediated mechanism by which increased adrenergic stimulation contributes to the mitochondrial dysfunction. PMID:22948484

  2. Mitochondrial dysfunction in cancer chemoresistance.

    PubMed

    Guaragnella, Nicoletta; Giannattasio, Sergio; Moro, Loredana

    2014-11-01

    Mitochondrial dysfunction has been associated with cancer development and progression. Recent evidences suggest that pathogenic mutations or depletion of the mitochondrial genome can contribute to development of chemoresistance in malignant tumors. In this review we will describe the current knowledge on the role of mitochondrial dysfunction in the development of chemoresistance in cancer. We will also discuss the significance of this research topic in the context of development of more effective, targeted therapeutic modalities and diagnostic strategies for cancer patients, with a particular focus on the potential use of PARP inhibitors in cancer patients displaying mitochondrial DNA mutations. We will discuss recent studies highlighting the importance of the cross-talk between the tumor microenvironment and mitochondrial functionality in determining selective response to certain chemotherapeutic drugs. Finally, owing to the similarities between cancer and yeast cell metabolism, we will point out the use of yeast as a model system to study cancer-related genes and for anti-cancer drugs screening. PMID:25107705

  3. Mitochondrial aerobic respiration is activated during hair follicle stem cell differentiation, and its dysfunction retards hair regeneration.

    PubMed

    Tang, Yan; Luo, Binping; Deng, Zhili; Wang, Ben; Liu, Fangfen; Li, Jinmao; Shi, Wei; Xie, Hongfu; Hu, Xingwang; Li, Ji

    2016-01-01

    Background. Emerging research revealed the essential role of mitochondria in regulating stem/progenitor cell differentiation of neural progenitor cells, mesenchymal stem cells and other stem cells through reactive oxygen species (ROS), Notch or other signaling pathway. Inhibition of mitochondrial protein synthesis results in hair loss upon injury. However, alteration of mitochondrial morphology and metabolic function during hair follicle stem cells (HFSCs) differentiation and how they affect hair regeneration has not been elaborated upon. Methods. We compared the difference in mitochondrial morphology and activity between telogen bulge cells and anagen matrix cells. Expression levels of mitochondrial ROS and superoxide dismutase 2 (SOD2) were measured to evaluate redox balance. In addition, the level of pyruvate dehydrogenase kinase (PDK) and pyruvate dehydrogenase (PDH) were estimated to present the change in energetic metabolism during differentiation. To explore the effect of the mitochondrial metabolism on regulating hair regeneration, hair growth was observed after application of a mitochondrial respiratory inhibitor upon hair plucking. Results. During HFSCs differentiation, mitochondria became elongated with more abundant organized cristae and showed higher activity in differentiated cells. SOD2 was enhanced for redox balance with relatively stable ROS levels in differentiated cells. PDK increased in HFSCs while differentiated cells showed enhanced PDH, indicating that respiration switched from glycolysis to oxidative phosphorylation during differentiation. Inhibiting mitochondrial respiration in differentiated hair follicle cells upon hair plucking repressed hair regeneration in vivo. Conclusions. Upon HFSCs differentiation, mitochondria are elongated with more abundant cristae and show higher activity, accompanying with activated aerobic respiration in differentiated cells for higher energy supply. Also, dysfunction of mitochondrial respiration delays hair

  4. Mitochondrial aerobic respiration is activated during hair follicle stem cell differentiation, and its dysfunction retards hair regeneration

    PubMed Central

    Tang, Yan; Luo, Binping; Deng, Zhili; Wang, Ben; Liu, Fangfen; Li, Jinmao; Shi, Wei; Xie, Hongfu; Hu, Xingwang

    2016-01-01

    Background. Emerging research revealed the essential role of mitochondria in regulating stem/progenitor cell differentiation of neural progenitor cells, mesenchymal stem cells and other stem cells through reactive oxygen species (ROS), Notch or other signaling pathway. Inhibition of mitochondrial protein synthesis results in hair loss upon injury. However, alteration of mitochondrial morphology and metabolic function during hair follicle stem cells (HFSCs) differentiation and how they affect hair regeneration has not been elaborated upon. Methods. We compared the difference in mitochondrial morphology and activity between telogen bulge cells and anagen matrix cells. Expression levels of mitochondrial ROS and superoxide dismutase 2 (SOD2) were measured to evaluate redox balance. In addition, the level of pyruvate dehydrogenase kinase (PDK) and pyruvate dehydrogenase (PDH) were estimated to present the change in energetic metabolism during differentiation. To explore the effect of the mitochondrial metabolism on regulating hair regeneration, hair growth was observed after application of a mitochondrial respiratory inhibitor upon hair plucking. Results. During HFSCs differentiation, mitochondria became elongated with more abundant organized cristae and showed higher activity in differentiated cells. SOD2 was enhanced for redox balance with relatively stable ROS levels in differentiated cells. PDK increased in HFSCs while differentiated cells showed enhanced PDH, indicating that respiration switched from glycolysis to oxidative phosphorylation during differentiation. Inhibiting mitochondrial respiration in differentiated hair follicle cells upon hair plucking repressed hair regeneration in vivo. Conclusions. Upon HFSCs differentiation, mitochondria are elongated with more abundant cristae and show higher activity, accompanying with activated aerobic respiration in differentiated cells for higher energy supply. Also, dysfunction of mitochondrial respiration delays hair

  5. Mitochondrial dysfunction in ataxia-telangiectasia.

    PubMed

    Valentin-Vega, Yasmine A; Maclean, Kirsteen H; Tait-Mulder, Jacqueline; Milasta, Sandra; Steeves, Meredith; Dorsey, Frank C; Cleveland, John L; Green, Douglas R; Kastan, Michael B

    2012-02-01

    Ataxia-telangiectasia mutated (ATM) plays a central role in DNA damage responses, and its loss leads to development of T-cell malignancies. Here, we show that ATM loss also leads to intrinsic mitochondrial abnormalities in thymocytes, including elevated reactive oxygen species, increased aberrant mitochondria, high cellular respiratory capacity, and decreased mitophagy. A fraction of ATM protein is localized in mitochondria, and it is rapidly activated by mitochondrial dysfunction. Unexpectedly, allelic loss of the autophagy regulator Beclin-1 significantly delayed tumor development in ATM-null mice. This effect was not associated with rescue of DNA damage signaling but rather with a significant reversal of the mitochondrial abnormalities. These data support a model in which ATM plays direct roles in modulating mitochondrial homeostasis and suggest that mitochondrial dysfunction and associated increases in mitochondrial reactive oxygen species contribute to the cancer-prone phenotype observed in organisms lacking ATM. Thus, ataxia-telangiectasia should be considered, at least in part, as a mitochondrial disease. PMID:22144182

  6. Cognitive dysfunction in mitochondrial disorders.

    PubMed

    Finsterer, J

    2012-07-01

    Among the various central nervous system (CNS) manifestations of mitochondrial disorders (MIDs), cognitive impairment is increasingly recognized and diagnosed (mitochondrial cognitive dysfunction). Aim of the review was to summarize recent findings concerning the aetiology, pathogenesis, diagnosis and treatment of cognitive decline in MIDs. Among syndromic MIDs due to mitochondrial DNA (mtDNA) mutations, cognitive impairment occurs in patients with mitochondrial encephalopathy, lactic acidosis and stroke-like episodes syndrome, myoclonus epilepsy with ragged-red fibres syndrome, mitochondrial chronic progressive external ophthalmoplegia, Kearns-Sayre syndrome, neuropathy, ataxia and retinitis pigmentosa syndrome and maternally inherited diabetes and deafness. Among syndromic MIDs due to nuclear DNA (nDNA) mutations, cognitive decline has been reported in myo-neuro-gastro-intestinal encephalopathy, mitochondrial recessive ataxia syndrome, spinocerebellar ataxia with encephalopathy, Mohr-Tranebjaerg syndrome, leuko-encephalopathy; brain and spinal cord involvement and lactic acidosis, CMT2, Wolfram syndrome, Wolf-Hirschhorn syndrome and Leigh syndrome. In addition to syndromic MIDs, a large number of non-syndromic MIDs due to mtDNA as well as nDNA mutations have been reported, which present with cognitive impairment as the sole or one among several other CNS manifestations of a MID. Delineation of mitochondrial cognitive impairment from other types of cognitive impairment is essential to guide the optimal management of these patients. Treatment of mitochondrial cognitive impairment is largely limited to symptomatic and supportive measures. Cognitive impairment may be a CNS manifestation of syndromic as well as non-syndromic MIDs. Correct diagnosis of mitochondrial cognitive impairment is a prerequisite for the optimal management of these patients. PMID:22335339

  7. Selenite activates the ATM kinase-dependent DNA repair pathway in human osteosarcoma cells with mitochondrial dysfunction.

    PubMed

    Wojewoda, Marta; Walczak, Jarosław; Duszyński, Jerzy; Szczepanowska, Joanna

    2015-06-01

    Mitochondrial dysfunction and reactive oxygen species (ROS) induced oxidative damage are implicated in the pathogenesis of several human diseases. Based on our previous findings that ROS level was higher in human osteosarcoma cybrids--Neuropathy, Ataxia and Retinitis Pigmentosa (NARP) and was reduced by selenite treatment, this study was designed to elucidate the effects of selenite administration on oxidative and nitrosative damage to lipids, proteins and DNA. Oxidative and nitrosative damage to lipids and proteins was not increased in NARP cybrids or mitochondrial DNA-lacking Rho0 cells (displaying mitochondrial dysfunction) when compared with control WT cells. However, we found the enhanced formation of DNA double-strand breaks based on the level of histone γH2AX (phosphorylated at Ser 139), which is known to be phosphorylated by ATM (Ataxia Telangiectasia Mutated) kinase in response to DNA damage. Selenite increased the activity of ATM kinase in NARP cybrids and Rho0 cells without concomitant increase in levels of histone γH2AX. Activation of the ATM kinase-dependent DNA repair pathway triggered by selenite could not be associated with enhanced DNA damage but might rather result from selenite-induced activation of ATM-dependent DNA repair mechanisms which could account for protective effects of this agent. PMID:25862479

  8. Mitochondrial Dysfunction in Obesity-Associated Nonalcoholic Fatty Liver Disease: The Protective Effects of Pomegranate with Its Active Component Punicalagin

    PubMed Central

    Zou, Xuan; Yan, Chunhong; Shi, Yujie; Cao, Ke; Xu, Jie; Wang, Xun; Chen, Cong; Luo, Cheng; Li, Yuan; Gao, Jing; Pang, Wentao; Zhao, Jialong; Zhao, Fei; Li, Hao; Zheng, Adi; Sun, Wenyan; Long, Jiangang; Szeto, Ignatius Man-Yau; Zhao, Youyou; Dong, Zhizhong; Zhang, Peifang; Wang, Junkuan; Lu, Wuyuan; Zhang, Yong

    2014-01-01

    Abstract Aims: Punicalagin (PU) is one of the major ellagitannins found in the pomegranate (Punica granatum), which is a popular fruit with several health benefits. So far, no studies have evaluated the effects of PU on nonalcoholic fatty liver disease (NAFLD). Our work aims at studying the effect of PU-enriched pomegranate extract (PE) on high fat diet (HFD)-induced NAFLD. Results: PE administration at a dosage of 150 mg/kg/day significantly inhibited HFD-induced hyperlipidemia and hepatic lipid deposition. As major contributors to NAFLD, increased expression of pro-inflammatory cytokines such as tumor necrosis factor-alpha, interleukins 1, 4, and 6 as well as augmented oxidative stress in hepatocytes followed by nuclear factor (erythroid-derived-2)-like 2 (Nrf2) activation were normalized through PE supplementation. In addition, PE treatment reduced uncoupling protein 2 (UCP2) expression, restored ATP content, suppressed mitochondrial protein oxidation, and improved mitochondrial complex activity in the liver. In contrast, mitochondrial content was not affected despite increased peroxisomal proliferator-activated receptor–gamma coactivator-1α (PGC-1α) and elevated expression of genes related to mitochondrial beta-oxidation after PE treatment. Finally, PU was identified as the predominant active component of PE with regard to the lowering of triglyceride and cholesterol content in HepG2 cells, and both PU- and PE-protected cells from palmitate induced mitochondrial dysfunction and insulin resistance. Innovation: Our work presents the beneficial effects of PE on obesity-associated NAFLD and multiple risk factors. PU was proposed to be the major active component. Conclusions: By promoting mitochondrial function, eliminating oxidative stress and inflammation, PU may be a useful nutrient for the treatment of NAFLD. Antioxid. Redox Signal. 21, 1557–1570. PMID:24393106

  9. Naringenin Mitigates Iron-Induced Anxiety-Like Behavioral Impairment, Mitochondrial Dysfunctions, Ectonucleotidases and Acetylcholinesterase Alteration Activities in Rat Hippocampus.

    PubMed

    Chtourou, Yassine; Slima, Ahlem Ben; Gdoura, Radhouane; Fetoui, Hamadi

    2015-08-01

    Studies demonstrated that the iron chelating antioxidant restores brain dysfunction induced by iron toxicity in animals. Earlier, we found that iron overload-induced cerebral cortex apoptosis correlated with oxidative stress could be protected by naringenin (NGEN). In this respect, the present study is focused on the mechanisms associated with the protective efficacy of NGEN, natural flavonoid compound abundant in the peels of citrus fruit, on iron induced impairment of the anxiogenic-like behaviour, purinergic and cholinergic dysfunctions with oxidative stress related disorders on mitochondrial function in the rat hippocampus. Results showed that administration of NGEN (50 mg/kg/day) by gavage significantly ameliorated anxiogenic-like behaviour impairment induced by the exposure to 50 mg of Fe-dextran/kg/day intraperitoneally for 28 days in rats, decreased iron-induced reactive oxygen species formation and restored the iron-induced decrease of the acetylcholinesterase expression level, mitochondrial membrane potential and mitochondrial complexes activities in the hippocampus of rats. Moreover, NGEN was able to restore the alteration on the activity and expression of ectonucleotidases such as adenosine triphosphate diphosphohydrolase and 5'-nucleotidase, enzymes which hydrolyze and therefore control extracellular ATP and adenosine concentrations in the synaptic cleft. These results may contribute to a better understanding of the neuroprotective role of NGEN, emphasizing the influence of including this flavonoid in the diet for human health, possibly preventing brain injury associated with iron overload. PMID:26050208

  10. Mitochondrial dysfunction and biogenesis: do ICU patients die from mitochondrial failure?

    PubMed Central

    2011-01-01

    Mitochondrial functions include production of energy, activation of programmed cell death, and a number of cell specific tasks, e.g., cell signaling, control of Ca2+ metabolism, and synthesis of a number of important biomolecules. As proper mitochondrial function is critical for normal performance and survival of cells, mitochondrial dysfunction often leads to pathological conditions resulting in various human diseases. Recently mitochondrial dysfunction has been linked to multiple organ failure (MOF) often leading to the death of critical care patients. However, there are two main reasons why this insight did not generate an adequate resonance in clinical settings. First, most data regarding mitochondrial dysfunction in organs susceptible to failure in critical care diseases (liver, kidney, heart, lung, intestine, brain) were collected using animal models. Second, there is no clear therapeutic strategy how acquired mitochondrial dysfunction can be improved. Only the benefit of such therapies will confirm the critical role of mitochondrial dysfunction in clinical settings. Here we summarized data on mitochondrial dysfunction obtained in diverse experimental systems, which are related to conditions seen in intensive care unit (ICU) patients. Particular attention is given to mechanisms that cause cell death and organ dysfunction and to prospective therapeutic strategies, directed to recover mitochondrial function. Collectively the data discussed in this review suggest that appropriate diagnosis and specific treatment of mitochondrial dysfunction in ICU patients may significantly improve the clinical outcome. PMID:21942988

  11. Epoxyeicosatrienoic acids attenuate reactive oxygen species level, mitochondrial dysfunction, caspase activation, and apoptosis in carcinoma cells treated with arsenic trioxide.

    PubMed

    Liu, Liu; Chen, Chen; Gong, Wei; Li, Yuanjing; Edin, Matthew L; Zeldin, Darryl C; Wang, Dao Wen

    2011-11-01

    Epoxyeicosatrienoic acids (EETs) and the cytochrome P450 epoxygenase CYP2J2 promote tumorogenesis in vivo and in vitro via direct stimulation of tumor cell growth and inhibition of tumor cell apoptosis. Herein, we describe a novel mechanism of inhibition of tumor cell apoptosis by EETs. In Tca-8113 cancer cells, the antileukemia drug arsenic trioxide (ATO) led to the generation of reactive oxygen species (ROS), impaired mitochondrial function, and induced apoptosis. 11,12-EET pretreatment increased expression of the antioxidant enzymes superoxide dismutase and catalase and inhibited ATO-induced apoptosis. 11,12-EET also prevented the ATO-induced activation of p38 mitogen-activated protein kinase, c-Jun NH(2)-terminal kinase, caspase-3, and caspase-9. Therefore, 11,12-EET-pretreatment attenuated the ROS generation, loss of mitochondrial function, and caspase activation observed after ATO treatment. Moreover, the CYP2J2-specific inhibitor compound 26 enhanced arsenic cytotoxicity to a clinically relevant concentration of ATO (1-2 μM). Both the thiol-containing antioxidant, N-acetyl-cysteine, and 11,12-EET reversed the synergistic effect of the two agents. Taken together, these data indicate that 11,12-EET inhibits apoptosis induced by ATO through a mechanism that involves induction of antioxidant proteins and attenuation of ROS-mediated mitochondrial dysfunction. PMID:21846841

  12. PGC-1α, Mitochondrial Dysfunction and Huntington’s Disease

    PubMed Central

    Johri, Ashu; Chandra, Abhishek; Beal, M. Flint

    2013-01-01

    The constant high energy demand of neurons makes them rely heavily on their mitochondria. Dysfunction of mitochondrial energy metabolism leads to reduced ATP production, impaired calcium buffering, and generation of reactive oxygen species. There is strong evidence that mitochondrial dysfunction results in neurodegeneration and may contribute to the pathogenesis of Huntington’s disease (HD). Studies over the past few years have implicated an impaired function of peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α (PGC-1α), a transcriptional master co-regulator of mitochondrial biogenesis, metabolism and antioxidant defenses, in causing mitochondrial dysfunction in HD. Here we have attempted to discuss in a nutshell, the key findings on the role of PGC-1α in mitochondrial dysfunction in HD and its potential as a therapeutic target to cure HD. PMID:23602910

  13. Polydatin Protecting Kidneys against Hemorrhagic Shock-Induced Mitochondrial Dysfunction via SIRT1 Activation and p53 Deacetylation

    PubMed Central

    Zeng, Zhenhua; Chen, Zhongqing; Xu, Siqi; Zhang, Qin; Wang, Xingmin; Gao, Youguang; Zhao, Ke-seng

    2016-01-01

    Objectives. To ascertain if mitochondrial dysfunction (MD) of kidney cells is present in severe hemorrhagic shock and to investigate whether polydatin (PD) can attenuate MD and its protective mechanisms. Research Design and Methods. Renal tubular epithelial cells (RTECs) from rat kidneys experiencing HS and a cell line (HK-2) under hypoxia/reoxygenation (H/R) treatment were used. Morphology and function of mitochondria in isolated RTECs or cultured HK-2 cells were evaluated, accompanied by mitochondrial apoptosis pathway-related proteins. Result. Severe MD was found in rat kidneys, especially in RTECs, as evidenced by swollen mitochondria and poorly defined cristae, decreased mitochondrial membrane potential (ΔΨm), and reduced ATP content. PD treatment attenuated MD partially and inhibited expression of proapoptotic proteins. PD treatment increased SIRT1 activity and decreased acetylated-p53 levels. Beneficial effect of PD was abolished partially when the SIRT1 inhibitor Ex527 was added. Similar phenomena were shown in the H/R cell model; when pifithrin-α (p53 inhibitor) was added to the PD/Ex527 group, considerable therapeutic effects were regained compared with the PD group apart from increased SIRT1 activity. Conclusions. MD is present in severe HS, and PD can attenuate MD of RTECs via the SIRT1-p53 pathway. PD might be a promising therapeutic drug for acute renal injury. PMID:27057271

  14. Mitochondrial dysfunction in liver failure requiring transplantation.

    PubMed

    Lane, Maria; Boczonadi, Veronika; Bachtari, Sahar; Gomez-Duran, Aurora; Langer, Thorsten; Griffiths, Alexandra; Kleinle, Stephanie; Dineiger, Christine; Abicht, Angela; Holinski-Feder, Elke; Schara, Ulrike; Gerner, Patrick; Horvath, Rita

    2016-05-01

    Liver failure is a heterogeneous condition which may be fatal and the primary cause is frequently unknown. We investigated mitochondrial oxidative phosphorylation in patients undergoing liver transplantation. We studied 45 patients who had liver transplantation due to a variety of clinical presentations. Blue native polyacrylamide gel electrophoresis with immunodetection of respiratory chain complexes I-V, biochemical activity of respiratory chain complexes II and IV and quantification of mitochondrial DNA (mtDNA) copy number were investigated in liver tissue collected from the explanted liver during transplantation. Abnormal mitochondrial function was frequently present in this cohort: ten of 40 patients (25 %) had a defect of one or more respiratory chain enzyme complexes on blue native gels, 20 patients (44 %) had low activity of complex II and/or IV and ten (22 %) had a reduced mtDNA copy number. Combined respiratory chain deficiency and reduced numbers of mitochondria were detected in all three patients with acute liver failure. Low complex IV activity in biliary atresia and complex II defects in cirrhosis were common findings. All six patients diagnosed with liver tumours showed variable alterations in mitochondrial function, probably due to the heterogeneity of the presenting tumour. In conclusion, mitochondrial dysfunction is common in severe liver failure in non-mitochondrial conditions. Therefore, in contrast to the common practice detection of respiratory chain abnormalities in liver should not restrict the inclusion of patients for liver transplantation. Furthermore, improving mitochondrial function may be targeted as part of a complex therapy approach in different forms of liver diseases. PMID:27053192

  15. Effects of mitochondrial dysfunction on the immunological properties of microglia

    PubMed Central

    2010-01-01

    Background Neurodegenerative diseases are characterized by both mitochondrial dysfunction and activation of microglia, the macrophages of the brain. Here, we investigate the effects of mitochondrial dysfunction on the activation profile of microglial cells. Methods We incubated primary mouse microglia with the mitochondrial toxins 3-nitropropionic acid (3-NP) or rotenone. These mitochondrial toxins are known to induce neurodegeneration in humans and in experimental animals. We characterized lipopolysaccharide- (LPS-) induced microglial activation and the alternative, interleukin-4- (IL-4-) induced microglial activation in these mitochondrial toxin-treated microglial cells. Results We found that, while mitochondrial toxins did not affect LPS-induced activation, as measured by release of tumor necrosis factor α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β), they did inhibit part of the IL-4-induced alternative activation, as measured by arginase activity and expression, induction of insulin-like growth factor 1 (IGF-1) and the counteraction of the LPS induced cytokine release. Conclusions Mitochondrial dysfunction in microglial cells inhibits part of the IL-4-induced alternative response. Because this alternative activation is considered to be associated with wound healing and an attenuation of inflammation, mitochondrial dysfunction in microglial cells might contribute to the detrimental effects of neuroinflammation seen in neurodegenerative diseases. PMID:20701773

  16. The Use of the Medical Dictionary for Regulatory Activities in the Identification of Mitochondrial Dysfunction in HIV-Infected Children

    PubMed Central

    Chernoff, Miriam; Ford-Chatterton, Heather; Crain, Marilyn J.

    2012-01-01

    Objective To demonstrate the utility of a medical terminology-based method for identifying cases of possible mitochondrial dysfunction (MD) in a large cohort of youths with perinatal HIV infection and to describe the scoring algorithms. Methods Medical Dictionary for Regulatory Activities (MedDRA)® version 6 terminology was used to query clinical criteria for mitochondrial dysfunction by two published classifications, the Enquête Périnatale Française (EPF) and the Mitochondrial Disease Classification (MDC). Data from 2,931 participants with perinatal HIV infection on PACTG 219/219C were analyzed. Data were qualified for severity and persistence, after which clinical reviews of MedDRA-coded and other study data were performed. Results Of 14,000 data records captured by the EPF MedDRA query, there were 3,331 singular events. Of 18,000 captured by the MDC query, there were 3,841 events. Ten clinicians blindly reviewed non MedDRA-coded supporting data for 15 separate clinical conditions. We used the Statistical Analysis System (SAS) language to code scoring algorithms. 768 participants (26%) met the EPF case definition of possible MD; 694 (24%) met the MDC case definition, and 480 (16%) met both definitions. Limitations Subjective application of codes could have affected our results. MedDRA terminology does not include indicators of severity or persistence. Version 6.0 of MedDRA did not include Standard MedDRA Queries, which would have reduced the time needed to map MedDRA terms to EPF and MDC criteria. Conclusion Together with a computer-coded scoring algorithm, MedDRA terminology enabled identification of potential MD based on clinical data from almost 3000 children with substantially less effort than a case by case review. The article is accessible to readers with a background in statistical hypothesis testing. An exposure to public health issues is useful but not strictly necessary. PMID:23797349

  17. β-Glucuronidase activity and mitochondrial dysfunction: the sites where flavonoid glucuronides act as anti-inflammatory agents

    PubMed Central

    Kawai, Yoshichika

    2014-01-01

    Epidemiological and experimental studies suggest that the consumption of flavonoid-rich diets decreases the risk of various chronic diseases such as cardiovascular diseases. Although studies on the bioavailability of flavonoids have been well-characterized, the tissue and cellular localizations underlying their biological mechanisms are largely unknown. The development and application of novel monoclonal antibodies revealed that macrophages could be the major target of dietary flavonoids in vivo. Using macrophage-like cell lines in vitro, we examined the molecular basis of the interaction between the macrophages and flavonoids, especially the glucuronide metabolites. We have found that extracellular β-glucuronidase secreted from macrophages is essential for the bioactivation of the glucuronide conjugates into the aglycone, and that the enzymatic activity, which requires an acidic pH, is promoted by the increased secretion of lactate in response to the mitochondrial dysfunction. This review describes our recent findings indicating the molecular mechanisms responsible for the anti-inflammatory activity of dietary flavonoids within the inflammation sites. We propose that the extracellular activity of β-glucuronidase associated with the status of the mitochondrial function in the target cells might be important biomarkers for the specific sites where the glucuronides of dietary flavonoids can act as anti-atherosclerotic and anti-inflammatory agents in vivo. PMID:24895476

  18. Structure-activity relationship of flavonoids derived from medicinal plants in preventing methylmercury-induced mitochondrial dysfunction

    PubMed Central

    Franco, Jeferson L.; Posser, Thais; Missau, Fabiana; Pizzolatti, Moacir G.; dos Santos, Adair R. S.; Souza, Diogo O.; Aschner, Michael; Rocha, João B. T.; Dafre, Alcir L.; Farina, Marcelo

    2010-01-01

    In the present study, we investigated the potential protective effects of three flavonoids (myricetin, myricitrin and rutin) derived from medicinal plants against methyl mercury (MeHg)-induced mitochondrial dysfunction in vitro. Incubation of mouse brain mitochondria with MeHg induced a significant decrease in mitochondrial function, which was correlated with decreased glutathione (GSH) levels and increased generation of reactive oxygen species (ROS) and lipid peroxidation. The co-incubation of mouse brain mitochondria with myricetin or myricitrin caused a concentration-dependent decrease of MeHg-induced mitochondrial dysfunction and oxidative stress. The flavonoid rutin was ineffective in counteracting MeHg toxicity. Among the three tested flavonoids, myricetin was the most efficient in protecting against MeHg-induced mitochondrial dysfunction. Moreover, myricetin completely blocked MeHg-induced ROS formation and lipid peroxidation and partially prevented MeHg-induced GSH depletion. The ability of myricetin to attenuate MeHg-induced mitochondrial dysfunction and oxidative stress appears to be related to its higher scavenging capability when compared to myricitrin and rutin. Overall, the results suggest that MeHg-induced mitotoxicity is associated with oxidative stress. The ability of myricetin to prevent MeHg-induced oxidative damage in brain mitochondria renders this flavonoid a promising molecule for further in vivo studies in the search for potential antidotes to counteract MeHg-induced neurotoxicity. PMID:21127717

  19. Modulation of mitochondrial dysfunction in neurodegenerative diseases via activation of nuclear factor erythroid-2-related factor 2 by food-derived compounds.

    PubMed

    Denzer, Isabel; Münch, Gerald; Friedland, Kristina

    2016-01-01

    Oxidative stress and mitochondrial dysfunction are early events in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS). Mitochondria are important key players in cellular function based on mitochondrial energy production and their major role in cell physiology. Since neurons are highly depending on mitochondrial energy production due to their high energy demand and their reduced glycolytic capacity mitochondrial dysfunction has fatal consequences for neuronal function and survival. The transcription factor nuclear factor erythroid-2-related factor 2 (Nrf2) is the major regulator of cellular response to oxidative stress. Activation of Nrf2 induces the transcriptional regulation of antioxidant response element (ARE)-dependent expression of a battery of cytoprotective and antioxidant enzymes and proteins. Moreover, activation of Nrf2 protects mitochondria from dysfunction and promotes mitochondrial biogenesis. Therefore, the Nrf2/ARE pathway has become an attractive target for the prevention and treatment of oxidative stress-related neurodegenerative diseases. Small food-derived inducers of the Nrf2/ARE pathway including l-sulforaphane from broccoli and isoliquiritigenin from licorice displayed promising protection of mitochondrial function in models of oxidative stress and neurodegenerative diseases and represent a novel approach to prevent and treat aging-associated neurodegenerative diseases. PMID:26626189

  20. Mitochondrial [dys]function; culprit in pre-eclampsia?

    PubMed

    McCarthy, Cathal Michael; Kenny, Louise Clare

    2016-07-01

    Mitochondria are extensively identified for their bioenergetic capacities; however, recently these metabolic hubs are increasingly being appreciated as critical regulators of numerous cellular signalling systems. Mitochondrial reactive oxygen species have evolved as a mode of cross-talk between mitochondrial function and physiological systems, to sustain equipoise and foster adaption to cellular stress. Redox signalling mediated by exaggerated mitochondrial-ROS (reactive oxygen species) has been incriminated in a plethora of disease pathologies. Excessive production of mitochondrial ROS is intrinsically linked to mitochondrial dysfunction. Furthermore, mitochondrial dysfunction is a key facilitator of oxidative stress, inflammation, apoptosis and metabolism. These are key pathogenic intermediaries of pre-eclampsia, hence we hypothesize that mitochondrial dysfunction is a pathogenic mediator of oxidative stress in the pathophysiology of pre-eclampsia. We hypothesize that mitochondrial-targeted antioxidants may restrain production of ROS-mediated deleterious redox signalling pathways. If our hypothesis proves correct, therapeutic strategies directly targeting mitochondrial superoxide scavenging should be actively pursued as they may alleviate maternal vascular dysfunction and dramatically improve maternal and fetal health worldwide. PMID:27252404

  1. Activation of mitochondrial STAT-3 and reduced mitochondria damage during hypothermia treatment for post-cardiac arrest myocardial dysfunction.

    PubMed

    Huang, Chien-Hua; Tsai, Min-Shan; Chiang, Chih-Yen; Su, Yu-Jen; Wang, Tzung-Dau; Chang, Wei-Tien; Chen, Huei-Wen; Chen, Wen-Jone

    2015-11-01

    While therapeutic hypothermia improves the outcomes of individuals in cardiac arrest, the hemodynamic responses and mechanisms which underlie hypothermia-induced cardioprotection are not fully understood. Therefore, we investigated the mechanism by which induced hypothermia preserves cardiac function and protects against mitochondrial damage following cardiac arrest. Cardiac arrest was induced in adult male Wistar rats by asphyxiation for 8.5 min. Following resuscitation, the animals were randomly assigned to a hypothermia (32 °C) or normothermia (37 °C) group. Monitoring results showed that cardiac output at the fourth hour after resuscitation was significantly better in rats treated with hypothermia when compared to rats treated with normothermia (P < 0.01). Examinations by transmission electron microscopy showed that mitochondria in the left ventricle of rats in the hypothermia group were significantly less swollen compared to such mitochondria in the normothermia group (P < 0.001). Additionally, opening of mitochondrial permeability transition pores occurred less frequently in the hypothermic group. While complex I/III activity in the electron transport reaction was damaged after cardiac arrest and resuscitation, the degree of injury was ameliorated by hypothermia treatment (P < 0.05). The amount of STAT-3 phosphorylated at tyrosine 705 and its expression in mitochondria were significantly higher under hypothermia treatment compared to normothermia treatment. In vitro studies showed that inhibition STAT-3 activation abolished the ability of hypothermia to protect H9C2 cardiomyocytes against injury produced by simulated ischemia and reperfusion. Therapeutic hypothermia treatment can ameliorate cardiac dysfunction and help preserve both mitochondrial integrity and electron transport activity. PMID:26471891

  2. Mitochondrial dysfunction in neuromuscular disorders.

    PubMed

    Katsetos, Christos D; Koutzaki, Sirma; Melvin, Joseph J

    2013-09-01

    This review deciphers aspects of mitochondrial (mt) dysfunction among nosologically, pathologically, and genetically diverse diseases of the skeletal muscle, lower motor neuron, and peripheral nerve, which fall outside the traditional realm of mt cytopathies. Special emphasis is given to well-characterized mt abnormalities in collagen VI myopathies (Ullrich congenital muscular dystrophy and Bethlem myopathy), megaconial congenital muscular dystrophy, limb-girdle muscular dystrophy type 2 (calpainopathy), centronuclear myopathies, core myopathies, inflammatory myopathies, spinal muscular atrophy, Charcot-Marie-Tooth neuropathy type 2, and drug-induced peripheral neuropathies. Among inflammatory myopathies, mt abnormalities are more prominent in inclusion body myositis and a subset of polymyositis with mt pathology, both of which are refractory to corticosteroid treatment. Awareness is raised about instances of phenotypic mimicry between cases harboring primary mtDNA depletion, in the context of mtDNA depletion syndrome, and established neuromuscular disorders such as spinal muscular atrophy. A substantial body of experimental work, derived from animal models, attests to a major role of mitochondria (mt) in the early process of muscle degeneration. Common mechanisms of mt-related cell injury include dysregulation of the mt permeability transition pore opening and defective autophagy. The therapeutic use of mt permeability transition pore modifiers holds promise in various neuromuscular disorders, including muscular dystrophies. PMID:24331362

  3. Mitochondrial dysfunction and insulin resistance: an update

    PubMed Central

    Montgomery, Magdalene K; Turner, Nigel

    2014-01-01

    Mitochondrial dysfunction has been implicated in the development of insulin resistance (IR); however, a large variety of association and intervention studies as well as genetic manipulations in rodents have reported contrasting results. Indeed, even 39 years after the first publication describing a relationship between IR and diminished mitochondrial function, it is still unclear whether a direct relationship exists, and more importantly if changes in mitochondrial capacity are a cause or consequence of IR. This review will take a journey through the past and summarise the debate about the occurrence of mitochondrial dysfunction and its possible role in causing decreased insulin action in obesity and type 2 diabetes. Evidence is presented from studies in various human populations, as well as rodents with genetic manipulations of pathways known to affect mitochondrial function and insulin action. Finally, we have discussed whether mitochondria are a potential target for the treatment of IR. PMID:25385852

  4. Mitochondrial dysfunction associated with glucocerebrosidase deficiency.

    PubMed

    Gegg, Matthew E; Schapira, Anthony H V

    2016-06-01

    The lysosomal hydrolase glucocerebrosidase (GCase) is encoded for by the GBA gene. Homozygous GBA mutations cause Gaucher disease (GD), a lysosomal storage disorder. Furthermore, homozygous and heterozygous GBA mutations are numerically the greatest genetic risk factor for developing Parkinson's disease (PD), the second most common neurodegenerative disorder. The loss of GCase activity results in impairment of the autophagy-lysosome pathway (ALP), which is required for the degradation of macromolecules and damaged organelles. Aberrant protein handling of α-synuclein by the ALP occurs in both GD and PD. α-synuclein is the principle component of Lewy bodies, a defining hallmark of PD. Mitochondrial dysfunction is also observed in both GD and PD. In this review we will describe how mitochondria are affected following loss of GCase activity. The pathogenic mechanisms leading to mitochondria dysfunction will also be discussed, focusing on the likely inhibition of the degradation of mitochondria by the ALP, also termed mitophagy. Other pathogenic cellular processes associated with GBA mutations that might contribute, such as the unfolding of GCase in the endoplasmic reticulum, calcium dysregulation and neuroinflammation will also be described. Impairment of the ALP and mitochondria dysfunction are common pathogenic themes between GD and PD and probably explain why GBA mutations increase the risk of developing PD that is very similar to sporadic forms of the disease. PMID:26388395

  5. Mitochondrial dysfunction associated with glucocerebrosidase deficiency

    PubMed Central

    Gegg, Matthew E.; Schapira, Anthony H.V.

    2016-01-01

    The lysosomal hydrolase glucocerebrosidase (GCase) is encoded for by the GBA gene. Homozygous GBA mutations cause Gaucher disease (GD), a lysosomal storage disorder. Furthermore, homozygous and heterozygous GBA mutations are numerically the greatest genetic risk factor for developing Parkinson's disease (PD), the second most common neurodegenerative disorder. The loss of GCase activity results in impairment of the autophagy‐lysosome pathway (ALP), which is required for the degradation of macromolecules and damaged organelles. Aberrant protein handling of α-synuclein by the ALP occurs in both GD and PD. α-synuclein is the principle component of Lewy bodies, a defining hallmark of PD. Mitochondrial dysfunction is also observed in both GD and PD. In this review we will describe how mitochondria are affected following loss of GCase activity. The pathogenic mechanisms leading to mitochondria dysfunction will also be discussed, focusing on the likely inhibition of the degradation of mitochondria by the ALP, also termed mitophagy. Other pathogenic cellular processes associated with GBA mutations that might contribute, such as the unfolding of GCase in the endoplasmic reticulum, calcium dysregulation and neuroinflammation will also be described. Impairment of the ALP and mitochondria dysfunction are common pathogenic themes between GD and PD and probably explain why GBA mutations increase the risk of developing PD that is very similar to sporadic forms of the disease. PMID:26388395

  6. Mitochondrial dysfunction contributes to neurodegeneration in multiple sclerosis.

    PubMed

    Witte, Maarten E; Mahad, Don J; Lassmann, Hans; van Horssen, Jack

    2014-03-01

    Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system. Current treatments are very effective in reducing the neuroinflammatory attack, but fail to significantly halt disease progression and associated loss of neuronal tissue. In recent years, it has become increasingly clear that dysfunctional mitochondria are important contributors to damage and loss of both axons and neurons. Observations in animal and histopathological studies suggest that infiltrating leukocytes and activated microglia play a central role in neuronal mitochondrial dysfunction. This review provides a comprehensive overview on the current knowledge regarding mitochondrial dysfunction in MS. Importantly, more insight into the cause and consequences of impaired mitochondrial function provide a basis for mitochondrial-targeted medicine to combat progressive MS. PMID:24369898

  7. Mitochondrial dysfunction in rabies virus infection of neurons.

    PubMed

    Alandijany, Thamir; Kammouni, Wafa; Roy Chowdhury, Subir K; Fernyhough, Paul; Jackson, Alan C

    2013-12-01

    Infection with the challenge virus standard-11 (CVS) strain of fixed rabies virus induces neuronal process degeneration in adult mice after hindlimb footpad inoculation. CVS-induced axonal swellings of primary rodent dorsal root ganglion neurons are associated with 4-hydroxy-2-nonenal protein adduct staining, indicating a critical role of oxidative stress. Mitochondrial dysfunction is the major cause of oxidative stress. We hypothesized that CVS infection induces mitochondrial dysfunction leading to oxidative stress. We investigated the effects of CVS infection on several mitochondrial parameters in different cell types. CVS infection significantly increased maximal uncoupled respiration and complex IV respiration and complex I and complex IV activities, but did not affect complex II-III or citrate synthase activities. Increases in complex I activity, but not complex IV activity, correlated with susceptibility of the cells to CVS infection. CVS infection maintained coupled respiration and rate of proton leak, indicating a tight mitochondrial coupling. Possibly as a result of enhanced complex activity and efficient coupling, a high mitochondrial membrane potential was generated. CVS infection reduced the intracellular ATP level and altered the cellular redox state as indicated by a high NADH/NAD+ ratio. The basal production of reactive oxygen species (ROS) was not affected in CVS-infected neurons. However, a higher rate of ROS generation occurred in CVS-infected neurons in the presence of mitochondrial substrates and inhibitors. We conclude that CVS infection induces mitochondrial dysfunction leading to ROS overgeneration and oxidative stress. PMID:24277436

  8. Drug-induced mitochondrial dysfunction and cardiotoxicity.

    PubMed

    Varga, Zoltán V; Ferdinandy, Peter; Liaudet, Lucas; Pacher, Pál

    2015-11-01

    Mitochondria has an essential role in myocardial tissue homeostasis; thus deterioration in mitochondrial function eventually leads to cardiomyocyte and endothelial cell death and consequent cardiovascular dysfunction. Several chemical compounds and drugs have been known to directly or indirectly modulate cardiac mitochondrial function, which can account both for the toxicological and pharmacological properties of these substances. In many cases, toxicity problems appear only in the presence of additional cardiovascular disease conditions or develop months/years following the exposure, making the diagnosis difficult. Cardiotoxic agents affecting mitochondria include several widely used anticancer drugs [anthracyclines (Doxorubicin/Adriamycin), cisplatin, trastuzumab (Herceptin), arsenic trioxide (Trisenox), mitoxantrone (Novantrone), imatinib (Gleevec), bevacizumab (Avastin), sunitinib (Sutent), and sorafenib (Nevaxar)], antiviral compound azidothymidine (AZT, Zidovudine) and several oral antidiabetics [e.g., rosiglitazone (Avandia)]. Illicit drugs such as alcohol, cocaine, methamphetamine, ecstasy, and synthetic cannabinoids (spice, K2) may also induce mitochondria-related cardiotoxicity. Mitochondrial toxicity develops due to various mechanisms involving interference with the mitochondrial respiratory chain (e.g., uncoupling) or inhibition of the important mitochondrial enzymes (oxidative phosphorylation, Szent-Györgyi-Krebs cycle, mitochondrial DNA replication, ADP/ATP translocator). The final phase of mitochondrial dysfunction induces loss of mitochondrial membrane potential and an increase in mitochondrial oxidative/nitrative stress, eventually culminating into cell death. This review aims to discuss the mechanisms of mitochondrion-mediated cardiotoxicity of commonly used drugs and some potential cardioprotective strategies to prevent these toxicities. PMID:26386112

  9. Deficient Autophagy Results in Mitochondrial Dysfunction and FSGS.

    PubMed

    Kawakami, Takahisa; Gomez, Ivan G; Ren, Shuyu; Hudkins, Kelly; Roach, Allie; Alpers, Charles E; Shankland, Stuart J; D'Agati, Vivette D; Duffield, Jeremy S

    2015-05-01

    FSGS is a heterogeneous fibrosing disease of the kidney, the cause of which remains poorly understood. In most cases, there is no effective treatment to halt or retard progression to renal failure. Increasing evidence points to mitochondrial dysfunction and the generation of reactive oxygen species in the pathogenesis of CKD. Autophagy, a major intracellular lysosomal degradation system, performs homeostatic functions linked to metabolism and organelle turnover. We prevented normal autophagic pathways in nephrons of mice by mutating critical autophagy genes ATG5 or ATG7 during nephrogenesis. Mutant mice developed mild podocyte and tubular dysfunction within 2 months, profound glomerular and tubular changes bearing close similarity to human disease by 4 months, and organ failure by 6 months. Ultrastructurally, podocytes and tubular cells showed vacuolization, abnormal mitochondria, and evidence of endoplasmic reticulum stress, features that precede the appearance of histologic or clinical disease. Similar changes were observed in human idiopathic FSGS kidney biopsy specimens. Biochemical analysis of podocytes and tubules of 2-month-old mutant mice revealed elevated production of reactive oxygen species, activation of endoplasmic reticulum stress pathways, phosphorylation of p38, and mitochondrial dysfunction. Furthermore, cultured proximal tubule cells isolated from mutant mice showed marked mitochondrial dysfunction and elevated mitochondrial reactive oxygen species generation that was suppressed by a mitochondrial superoxide scavenger. We conclude that mitochondrial dysfunction and endoplasmic reticulum stress due to impaired autophagic organelle turnover in podocytes and tubular epithelium are sufficient to cause many of the manifestations of FSGS in mice. PMID:25406339

  10. Deficient Autophagy Results in Mitochondrial Dysfunction and FSGS

    PubMed Central

    Kawakami, Takahisa; Gomez, Ivan G.; Ren, Shuyu; Hudkins, Kelly; Roach, Allie; Alpers, Charles E.; Shankland, Stuart J.; D’Agati, Vivette D.

    2015-01-01

    FSGS is a heterogeneous fibrosing disease of the kidney, the cause of which remains poorly understood. In most cases, there is no effective treatment to halt or retard progression to renal failure. Increasing evidence points to mitochondrial dysfunction and the generation of reactive oxygen species in the pathogenesis of CKD. Autophagy, a major intracellular lysosomal degradation system, performs homeostatic functions linked to metabolism and organelle turnover. We prevented normal autophagic pathways in nephrons of mice by mutating critical autophagy genes ATG5 or ATG7 during nephrogenesis. Mutant mice developed mild podocyte and tubular dysfunction within 2 months, profound glomerular and tubular changes bearing close similarity to human disease by 4 months, and organ failure by 6 months. Ultrastructurally, podocytes and tubular cells showed vacuolization, abnormal mitochondria, and evidence of endoplasmic reticulum stress, features that precede the appearance of histologic or clinical disease. Similar changes were observed in human idiopathic FSGS kidney biopsy specimens. Biochemical analysis of podocytes and tubules of 2-month-old mutant mice revealed elevated production of reactive oxygen species, activation of endoplasmic reticulum stress pathways, phosphorylation of p38, and mitochondrial dysfunction. Furthermore, cultured proximal tubule cells isolated from mutant mice showed marked mitochondrial dysfunction and elevated mitochondrial reactive oxygen species generation that was suppressed by a mitochondrial superoxide scavenger. We conclude that mitochondrial dysfunction and endoplasmic reticulum stress due to impaired autophagic organelle turnover in podocytes and tubular epithelium are sufficient to cause many of the manifestations of FSGS in mice. PMID:25406339

  11. [Dysfunction of mitochondrial dynamic and distribution in Amyotrophic Lateral Sclerosis].

    PubMed

    Walczak, Jarosław; Szczepanowska, Joanna

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a complex disease leading to degradation of motor neurons. One of the early symptoms of many neurodegenerative disorders are mitochondrial dysfunctions. Since few decades mitochondrial morphology changes have been observed in tissues of patients with ALS. Mitochondria are highly dynamic organelles which constantly undergo continuous process of fusion and fission and are actively transported within the cell. Proper functioning of mitochondrial dynamics and distribution is crucial for cell survival, especially neuronal cells that have long axons. This article summarizes the current knowledge about the role of mitochondrial dynamics and distribution in pathophysiology of familial and sporadic form of ALS. PMID:26689011

  12. Protochlamydia Induces Apoptosis of Human HEp-2 Cells through Mitochondrial Dysfunction Mediated by Chlamydial Protease-Like Activity Factor

    PubMed Central

    Matsuo, Junji; Nakamura, Shinji; Ito, Atsushi; Yamazaki, Tomohiro; Ishida, Kasumi; Hayashi, Yasuhiro; Yoshida, Mitsutaka; Takahashi, Kaori; Sekizuka, Tsuyoshi; Takeuchi, Fumihiko; Kuroda, Makoto; Nagai, Hiroki; Hayashida, Kyoko; Sugimoto, Chihiro; Yamaguchi, Hiroyuki

    2013-01-01

    Obligate amoebal endosymbiotic bacterium Protochlamydia with ancestral pathogenic chlamydial features evolved to survive within protist hosts, such as Acanthamoba, 0.7–1.4 billion years ago, but not within vertebrates including humans. This observation raises the possibility that interactions between Protochlamydia and human cells may result in a novel cytopathic effect, leading to new insights into host-parasite relationships. Previously, we reported that Protochlamydia induces apoptosis of the immortalized human cell line, HEp-2. In this study, we attempted to elucidate the molecular mechanism underlying this apoptosis. We first confirmed that, upon stimulation with the bacteria, poly (ADP-ribose) polymerase (PARP) was cleaved at an early stage in HEp-2 cells, which was dependent on the amount of bacteria. A pan-caspase inhibitor and both caspase-3 and -9 inhibitors similarly inhibited the apoptosis of HEp-2 cells. A decrease of the mitochondrial membrane potential was also confirmed. Furthermore, lactacystin, an inhibitor of chlamydial protease-like activity factor (CPAF), blocked the apoptosis. Cytochalasin D also inhibited the apoptosis, which was dependent on the drug concentration, indicating that bacterial entry into cells was required to induce apoptosis. Interestingly, Yersinia type III inhibitors (ME0052, ME0053, and ME0054) did not have any effect on the apoptosis. We also confirmed that the Protochlamydia used in this study possessed a homologue of the cpaf gene and that two critical residues, histidine-101 and serine-499 of C. trachomatis CPAF in the active center, were conserved. Thus, our results indicate that after entry, Protochlamydia-secreted CPAF induces mitochondrial dysfunction with a decrease of the membrane potential, followed by caspase-9, caspase-3 and PARP cleavages for apoptosis. More interestingly, because C. trachomatis infection can block the apoptosis, our finding implies unique features of CPAF between pathogenic and primitive

  13. Mitochondrial loss, dysfunction and altered dynamics in Huntington's disease

    PubMed Central

    Kim, Jinho; Moody, Jennifer P.; Edgerly, Christina K.; Bordiuk, Olivia L.; Cormier, Kerry; Smith, Karen; Beal, M. Flint; Ferrante, Robert J.

    2010-01-01

    Although a direct causative pathway from the gene mutation to the selective neostriatal neurodegeneration remains unclear in Huntington's disease (HD), one putative pathological mechanism reported to play a prominent role in the pathogenesis of this neurological disorder is mitochondrial dysfunction. We examined mitochondria in preferentially vulnerable striatal calbindin-positive neurons in moderate-to-severe grade HD patients, using antisera against mitochondrial markers of COX2, SOD2 and cytochrome c. Combined calbindin and mitochondrial marker immunofluorescence showed a significant and progressive grade-dependent reduction in the number of mitochondria in spiny striatal neurons, with marked alteration in size. Consistent with mitochondrial loss, there was a reduction in COX2 protein levels using western analysis that corresponded with disease severity. In addition, both mitochondrial transcription factor A, a regulator of mtDNA, and peroxisome proliferator-activated receptor-co-activator gamma-1 alpha, a key transcriptional regulator of energy metabolism and mitochondrial biogenesis, were also significantly reduced with increasing disease severity. Abnormalities in mitochondrial dynamics were observed, showing a significant increase in the fission protein Drp1 and a reduction in the expression of the fusion protein mitofusin 1. Lastly, mitochondrial PCR array profiling in HD caudate nucleus specimens showed increased mRNA expression of proteins involved in mitochondrial localization, membrane translocation and polarization and transport that paralleled mitochondrial derangement. These findings reveal that there are both mitochondrial loss and altered mitochondrial morphogenesis with increased mitochondrial fission and reduced fusion in HD. These findings provide further evidence that mitochondrial dysfunction plays a critical role in the pathogenesis of HD. PMID:20660112

  14. Mitochondrial Disorders of DNA Polymerase γ Dysfunction

    PubMed Central

    Zhang, Linsheng; Chan, Sherine S. L.; Wolff, Daynna J.

    2011-01-01

    Context Primary mitochondrial dysfunction is one of the most common causes of inherited disorders predominantly involving the neuromuscular system. Advances in the molecular study of mitochondrial DNA have changed our vision and our approach to primary mitochondrial disorders. Many of the mitochondrial disorders are caused by mutations in nuclear genes and are inherited in an autosomal recessive pattern. Among the autosomal inherited mitochondrial disorders, those related to DNA polymerase γ dysfunction are the most common and the best studied. Understanding the molecular mechanisms and being familiar with the recent advances in laboratory diagnosis of this group of mitochondrial disorders are essential for pathologists to interpret abnormal histopathology and laboratory results and to suggest further studies for a definitive diagnosis. Objectives To help pathologists better understand the common clinical syndromes originating from mutations in DNA polymerase γ and its associated proteins and use the stepwise approach of clinical, laboratory, and pathologic diagnosis of these syndromes. Data Sources Review of pertinent published literature and relevant Internet databases. Conclusions Mitochondrial disorders are now better recognized with the development of molecular tests for clinical diagnosis. A cooperative effort among primary physicians, diagnostic pathologists, geneticists, and molecular biologists with expertise in mitochondrial disorders is required to reach a definitive diagnosis. PMID:21732785

  15. Propofol but not sevoflurane prevents mitochondrial dysfunction and oxidative stress by limiting HIF-1α activation in hepatic ischemia/reperfusion injury.

    PubMed

    Bellanti, Francesco; Mirabella, Lucia; Mitarotonda, Domenica; Blonda, Maria; Tamborra, Rosanna; Cinnella, Gilda; Fersini, Alberto; Ambrosi, Antonio; Dambrosio, Michele; Vendemiale, Gianluigi; Serviddio, Gaetano

    2016-07-01

    Mitochondrial dysfunction, reactive oxygen species (ROS) production and oxidative stress during reperfusion are determinant in hepatic ischemia/reperfusion (I/R) injury but may be impacted by different anesthetic agents. Thus, we aimed at comparing the effects of inhaled sevoflurane or intravenous propofol anesthesia on liver mitochondria in a rodent model of hepatic I/R injury. To this, male Wistar rats underwent I/R surgery using sevoflurane or propofol. In the I/R model, propofol limited the raise in serum aminotransferase levels as compared to sevoflurane. Mitochondrial oxygen uptake, respiratory activity, membrane potential and proton leak were altered in I/R; however, this impairment was significantly prevented by propofol but not sevoflurane. In addition, differently from sevoflurane, propofol limited hepatic I/R-induced mitochondria H2O2 production rate, free radical leak and hydroxynonenal-protein adducts levels. The I/R group anesthetized with propofol also showed a better recovery of hepatic ATP homeostasis and conserved integrity of mitochondrial PTP. Moreover, hypoxia-inducible factor 1 alpha (HIF-1α) expression was limited in such group. By using a cell model of desferoxamine-dependent HIF activation, we demonstrated that propofol was able to inhibit apoptosis and mitochondrial depolarization associated to HIF-1α action. In conclusion, hepatic I/R injury induces mitochondrial dysfunction that is not prevented by inhaled sevoflurane. On the contrary, propofol reduces liver damage and mitochondrial dysfunction by preserving respiratory activity, membrane potential and energy homeostasis, and limiting free radicals production as well as PTP opening. These hepatoprotective effects may involve the inhibition of HIF-1α. PMID:27154980

  16. Mitochondrial dysfunction and risk of cancer

    PubMed Central

    Lund, M; Melbye, M; Diaz, L J; Duno, M; Wohlfahrt, J; Vissing, J

    2015-01-01

    Background: Mitochondrial mutations are commonly reported in tumours, but it is unclear whether impaired mitochondrial function per se is a cause or consequence of cancer. To elucidate this, we examined the risk of cancer in a nationwide cohort of patients with mitochondrial dysfunction. Methods: We used nationwide results on genetic testing for mitochondrial disease and the Danish Civil Registration System, to construct a cohort of 311 patients with mitochondrial dysfunction. A total of 177 cohort members were identified from genetic testing and 134 genetically untested cohort members were matrilineal relatives to a cohort member with a genetically confirmed maternally inherited mDNA mutation. Information on cancer was obtained by linkage to the Danish Cancer Register. Standardised incidence ratios (SIRs) were used to assess the relative risk of cancer. Results: During 7334 person-years of follow-up, 19 subjects developed a primary cancer. The corresponding SIR for any primary cancer was 1.06 (95% confidence interval 0.68–1.63). Subgroup analyses according to mutational subtype yielded similar results, for example, a SIR of 0.94 (95% CI 0.53 to 1.67) for the m.3243A>G maternally inherited mDNA mutation, cases=13. Conclusions: Patients with mitochondrial dysfunction do not appear to be at increased risk of cancer compared with the general population. PMID:25742477

  17. Mitochondrial dysfunction in Parkinson's disease: molecular mechanisms and pathophysiological consequences.

    PubMed

    Exner, Nicole; Lutz, Anne Kathrin; Haass, Christian; Winklhofer, Konstanze F

    2012-07-18

    Neurons are critically dependent on mitochondrial integrity based on specific morphological, biochemical, and physiological features. They are characterized by high rates of metabolic activity and need to respond promptly to activity-dependent fluctuations in bioenergetic demand. The dimensions and polarity of neurons require efficient transport of mitochondria to hot spots of energy consumption, such as presynaptic and postsynaptic sites. Moreover, the postmitotic state of neurons in combination with their exposure to intrinsic and extrinsic neuronal stress factors call for a high fidelity of mitochondrial quality control systems. Consequently, it is not surprising that mitochondrial alterations can promote neuronal dysfunction and degeneration. In particular, mitochondrial dysfunction has long been implicated in the etiopathogenesis of Parkinson's disease (PD), based on the observation that mitochondrial toxins can cause parkinsonism in humans and animal models. Substantial progress towards understanding the role of mitochondria in the disease process has been made by the identification and characterization of genes causing familial variants of PD. Studies on the function and dysfunction of these genes revealed that various aspects of mitochondrial biology appear to be affected in PD, comprising mitochondrial biogenesis, bioenergetics, dynamics, transport, and quality control. PMID:22735187

  18. Amblyomin-X induces ER stress, mitochondrial dysfunction, and caspase activation in human melanoma and pancreatic tumor cell.

    PubMed

    Morais, Katia L P; Pacheco, Mario Thiego Fernandes; Berra, Carolina Maria; Bosch, Rosemary V; Sciani, Juliana Mozer; Chammas, Roger; de Freitas Saito, Renata; Iqbal, Asif; Chudzinski-Tavassi, Ana Marisa

    2016-04-01

    During the last two decades, new insights into proteasome function and its role in several human diseases made it a potential therapeutic target. In this context, Amblyomin-X is a Kunitz-type FXa inhibitor similar to endogenous tissue factor pathway inhibitor (TFPI) and is a novel proteasome inhibitor. Herein, we have demonstrated Amblyomin-X cytotoxicity to different tumor cells lines such as pancreatic (Panc1, AsPC1BxPC3) and melanoma (SK-MEL-5 and SK-MEL-28). Of note, Amblyomin-X was not cytotoxic to normal human fibroblast cells. In addition, Amblyomin-X promoted accumulation of ER stress markers (GRP78 and GADD153) in sensitive (SK-MEL-28) and bortezomib-resistant (Mia-PaCa-2) tumor cells. The intracellular calcium concentration [Ca(2+)] i was slightly modulated in human tumor cells (SK-MEL-28 and Mia-PaCa-2) after 24 h of Amblyomin-X treatment. Furthermore, Amblyomin-X induced mitochondrial dysfunction, cytochrome-c release, PARP cleavage, and activation of caspase cascade in both human tumor (SK-MEL-28 and Mia-PaCa-2) cells. These investigations might help in further understanding of the antitumor properties of Amblyomin-X. PMID:27015684

  19. Mitochondrial dysfunction and seizures: the neuronal energy crisis.

    PubMed

    Zsurka, Gábor; Kunz, Wolfram S

    2015-09-01

    Seizures are often the key manifestation of neurological diseases caused by pathogenic mutations in 169 of the genes that have so far been identified to affect mitochondrial function. Mitochondria are the main producers of ATP needed for normal electrical activities of neurons and synaptic transmission. Additionally, they have a central role in neurotransmitter synthesis, calcium homoeostasis, redox signalling, production and modulation of reactive oxygen species, and neuronal death. Hypotheses link mitochondrial failure to seizure generation through changes in calcium homoeostasis, oxidation of ion channels and neurotransmitter transporters by reactive oxygen species, a decrease in neuronal plasma membrane potential, and reduced network inhibition due to interneuronal dysfunction. Seizures, irrespective of their origin, represent an excessive acute energy demand in the brain. Accordingly, secondary mitochondrial dysfunction has been described in various epileptic disorders, including disorders that are mainly of non-mitochondrial origin. An understanding of the reciprocal relation between mitochondrial dysfunction and epilepsy is crucial to select appropriate anticonvulsant treatment and has the potential to open up new therapeutic approaches in the subset of epileptic disorders caused by mitochondrial dysfunction. PMID:26293567

  20. Implications of mitochondrial dynamics on neurodegeneration and on hypothalamic dysfunction

    PubMed Central

    Zorzano, Antonio; Claret, Marc

    2015-01-01

    Mitochondrial dynamics is a term that encompasses the movement of mitochondria along the cytoskeleton, regulation of their architecture, and connectivity mediated by tethering and fusion/fission. The importance of these events in cell physiology and pathology has been partially unraveled with the identification of the genes responsible for the catalysis of mitochondrial fusion and fission. Mutations in two mitochondrial fusion genes (MFN2 and OPA1) cause neurodegenerative diseases, namely Charcot-Marie Tooth type 2A and autosomal dominant optic atrophy (ADOA). Alterations in mitochondrial dynamics may be involved in the pathophysiology of prevalent neurodegenerative conditions. Moreover, impairment of the activity of mitochondrial fusion proteins dysregulates the function of hypothalamic neurons, leading to alterations in food intake and in energy homeostasis. Here we review selected findings in the field of mitochondrial dynamics and their relevance for neurodegeneration and hypothalamic dysfunction. PMID:26113818

  1. Mitochondrial Dysfunction in Neurodegenerative Diseases

    PubMed Central

    Johri, Ashu

    2012-01-01

    Neurodegenerative diseases are a large group of disabling disorders of the nervous system, characterized by the relative selective death of neuronal subtypes. In most cases, there is overwhelming evidence of impaired mitochondrial function as a causative factor in these diseases. More recently, evidence has emerged for impaired mitochondrial dynamics (shape, size, fission-fusion, distribution, movement etc.) in neurodegenerative diseases such as Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Alzheimer's disease. Here, we provide a concise overview of the major findings in recent years highlighting the importance of healthy mitochondria for a healthy neuron. PMID:22700435

  2. Mitochondrial dysfunction and resuscitation in sepsis.

    PubMed

    Ruggieri, Albert J; Levy, Richard J; Deutschman, Clifford S

    2010-07-01

    Sepsis is among the most common causes of death in patients in intensive care units in North America and Europe. In the United States, it accounts for upwards of 250,000 deaths each year. Investigations into the pathobiology of sepsis have most recently focused on common cellular and subcellular processes. One possibility would be a defect in the production of energy, which translates to an abnormality in the production of adenosine triphosphate and therefore in the function of mitochondria. This article presents a clear role for mitochondrial dysfunction in the pathogenesis and pathophysiology of sepsis. What is less clear is the teleology underlying this response. Prolonged mitochondrial dysfunction and impaired biogenesis clearly are detrimental. However, early inhibition of mitochondrial function may be adaptive. PMID:20643307

  3. Advanced glycation end-product (AGE) induces apoptosis in human retinal ARPE-19 cells via promoting mitochondrial dysfunction and activating the Fas-FasL signaling.

    PubMed

    Wang, Pu; Xing, Yiqiao; Chen, Changzheng; Chen, Zhen; Qian, Zhimin

    2016-01-01

    Advanced glycation end-products (AGEs) are extremely accumulated in the retinal vascular and epithelial cells of diabetes mellitus (DM) patients, particularly with diabetic retinopathy (DR). To elucidate the pathogenesis of the AGE-induced toxicity to retinal epithelial cells, we investigated the role of Fas-Fas ligand (FasL) signaling and mitochondrial dysfunction in the AGE-induced apoptosis. Results demonstrated that the AGE-BSA- induced apoptosis of retinal ARPE-19 cells. And the AGE-BSA treatment caused mitochondrial dysfunction, via deregulating the B-cell lymphoma 2 (Bcl-2) signaling. Moreover, the Fas/FasL and its downstreamer Caspase 8 were promoted by the AGE-BSA treatment, and the exogenous α-Fas exacerbated the activation of Caspase 3/8. On the other side, the siRNA-mediated knockdown of Fas/FasL inhibited the AGE-BSA-induced apoptosis. Taken together, we confirmed the activation of Fas-FasL signaling and of mitochondrial dysfunction in the AGE-BSA-promoted apoptosis in retinal ARPE-19 cells, implying the important role of Fas-FasL signaling in the DR in DM. PMID:26479732

  4. Mitochondrial tRNA cleavage by tRNA-targeting ribonuclease causes mitochondrial dysfunction observed in mitochondrial disease

    SciTech Connect

    Ogawa, Tetsuhiro Shimizu, Ayano; Takahashi, Kazutoshi; Hidaka, Makoto; Masaki, Haruhiko

    2014-08-15

    Highlights: • MTS-tagged ribonuclease was translocated successfully to the mitochondrial matrix. • MTS-tagged ribonuclease cleaved mt tRNA and reduced COX activity. • Easy and reproducible method of inducing mt tRNA dysfunction. - Abstract: Mitochondrial DNA (mtDNA) is a genome possessed by mitochondria. Since reactive oxygen species (ROS) are generated during aerobic respiration in mitochondria, mtDNA is commonly exposed to the risk of DNA damage. Mitochondrial disease is caused by mitochondrial dysfunction, and mutations or deletions on mitochondrial tRNA (mt tRNA) genes are often observed in mtDNA of patients with the disease. Hence, the correlation between mt tRNA activity and mitochondrial dysfunction has been assessed. Then, cybrid cells, which are constructed by the fusion of an enucleated cell harboring altered mtDNA with a ρ{sup 0} cell, have long been used for the analysis due to difficulty in mtDNA manipulation. Here, we propose a new method that involves mt tRNA cleavage by a bacterial tRNA-specific ribonuclease. The ribonuclease tagged with a mitochondrial-targeting sequence (MTS) was successfully translocated to the mitochondrial matrix. Additionally, mt tRNA cleavage, which resulted in the decrease of cytochrome c oxidase (COX) activity, was observed.

  5. Association of Mitochondrial Dysfunction and Fatigue: A Review of the Literature.

    PubMed

    Filler, Kristin; Lyon, Debra; Bennett, James; McCain, Nancy; Elswick, Ronald; Lukkahatai, Nada; Saligan, Leorey N

    2014-06-01

    Fatigue is often described by patients as a lack of energy, mental or physical tiredness, diminished endurance, and prolonged recovery after physical activity. Etiologic mechanisms underlying fatigue are not well understood; however, fatigue is a hallmark symptom of mitochondrial disease, making mitochondrial dysfunction a putative biological mechanism for fatigue. Therefore, this review examined studies that investigated the association of markers of mitochondrial dysfunction with fatigue and proposes possible research directions to enhance understanding of the role of mitochondrial dysfunction in fatigue. A thorough search using PubMed, Scopus, Web of Science, and Embase databases returned 1,220 articles. After application of inclusion and exclusion criteria, a total of 25 articles meeting eligibility criteria were selected for full review. Dysfunctions in the mitochondrial structure, mitochondrial function (mitochondrial enzymes and oxidative/nitrosative stress), mitochondrial energy metabolism (ATP production and fatty acid metabolism), immune response, and genetics were investigated as potential contributors to fatigue. Carnitine was the most investigated mitochondrial function marker. Dysfunctional levels were reported in all the studies investigating carnitine; however, the specific type of carnitine that was dysfunctional varied. Genetic profiles were the second most studied mitochondrial parameter. Six common pathways were proposed: metabolism, energy production, protein transport, mitochondrial morphology, central nervous system dysfunction and post-viral infection. Coenzyme Q10 was the most commonly investigated mitochondrial enzyme. Low levels of Coenzyme Q10 were consistently associated with fatigue. Potential targets for further investigation were identified as well as gaps in the current literature. PMID:25147756

  6. Association of mitochondrial dysfunction and fatigue: A review of the literature

    PubMed Central

    Filler, Kristin; Lyon, Debra; Bennett, James; McCain, Nancy; Elswick, Ronald; Lukkahatai, Nada; Saligan, Leorey N.

    2014-01-01

    Fatigue is often described by patients as a lack of energy, mental or physical tiredness, diminished endurance, and prolonged recovery after physical activity. Etiologic mechanisms underlying fatigue are not well understood; however, fatigue is a hallmark symptom of mitochondrial disease, making mitochondrial dysfunction a putative biological mechanism for fatigue. Therefore, this review examined studies that investigated the association of markers of mitochondrial dysfunction with fatigue and proposes possible research directions to enhance understanding of the role of mitochondrial dysfunction in fatigue. A thorough search using PubMed, Scopus, Web of Science, and Embase databases returned 1220 articles. After the application of inclusion and exclusion criteria, a total of 25 articles meeting eligibility criteria were selected for full review. Dysfunctions in the mitochondrial structure, mitochondrial function (mitochondrial enzymes and oxidative/nitrosative stress), mitochondrial energy metabolism (ATP production and fatty acid metabolism), immune response, and genetics were investigated as potential contributors to fatigue. Carnitine was the most investigated mitochondrial function marker. Dysfunctional levels were reported in all the studies investigating carnitine; however, the specific type of carnitine that was dysfunctional varied. Genetic profiles were the second most studied mitochondrial parameter. Six common pathways were proposed: metabolism, energy production, protein transport, mitochondrial morphology, central nervous system dysfunction and post-viral infection. Coenzyme Q10 was the most commonly investigated mitochondrial enzyme. Low levels of Coenzyme Q10 were consistently associated with fatigue. Potential targets for further investigation were identified as well as gaps in the current literature. PMID:25147756

  7. Mitochondrial dysfunction in inflammatory bowel disease

    PubMed Central

    Novak, Elizabeth A.; Mollen, Kevin P.

    2015-01-01

    Inflammatory Bowel Disease (IBD) represents a group of idiopathic disorders characterized by chronic or recurring inflammation of the gastrointestinal tract. While the exact etiology of disease is unknown, IBD is recognized to be a complex, multifactorial disease that results from an intricate interplay of genetic predisposition, an altered immune response, changes in the intestinal microbiota, and environmental factors. Together, these contribute to a destruction of the intestinal epithelial barrier, increased gut permeability, and an influx of immune cells. Given that most cellular functions as well as maintenance of the epithelial barrier is energy-dependent, it is logical to assume that mitochondrial dysfunction may play a key role in both the onset and recurrence of disease. Indeed several studies have demonstrated evidence of mitochondrial stress and alterations in mitochondrial function within the intestinal epithelium of patients with IBD and mice undergoing experimental colitis. Although the hallmarks of mitochondrial dysfunction, including oxidative stress and impaired ATP production are known to be evident in the intestines of patients with IBD, it is as yet unclear whether these processes occur as a cause of consequence of disease. We provide a current review of mitochondrial function in the setting of intestinal inflammation during IBD. PMID:26484345

  8. Exercise-induced mitochondrial dysfunction: a myth or reality?

    PubMed

    Ostojic, Sergej M

    2016-08-01

    Beneficial effects of physical activity on mitochondrial health are well substantiated in the scientific literature, with regular exercise improving mitochondrial quality and quantity in normal healthy population, and in cardiometabolic and neurodegenerative disorders and aging. However, several recent studies questioned this paradigm, suggesting that extremely heavy or exhaustive exercise fosters mitochondrial disturbances that could permanently damage its function in health and disease. Exercise-induced mitochondrial dysfunction (EIMD) might be a key proxy for negative outcomes of exhaustive exercise, being a pathophysiological substrate of heart abnormalities, chronic fatigue syndrome (CFS) or muscle degeneration. Here, we overview possible factors that mediate negative effects of exhaustive exercise on mitochondrial function and structure, and put forward alternative solutions for the management of EIMD. PMID:27389587

  9. Mitochondrial dysfunction and neurodegeneration in multiple sclerosis

    PubMed Central

    Su, Kimmy; Bourdette, Dennis; Forte, Michael

    2013-01-01

    Multiple sclerosis (MS) has traditionally been considered an autoimmune inflammatory disorder leading to demyelination and clinical debilitation as evidenced by our current standard anti-inflammatory and immunosuppressive treatment regimens. While these approaches do control the frequency of clinical relapses, they do not prevent the progressive functional decline that plagues many people with MS. Many avenues of research indicate that a neurodegenerative process may also play a significant role in MS from the early stages of disease, and one of the current hypotheses identifies mitochondrial dysfunction as a key contributing mechanism. We have hypothesized that pathological permeability transition pore (PTP) opening mediated by reactive oxygen species (ROS) and calcium dysregulation is central to mitochondrial dysfunction and neurodegeneration in MS. This focused review highlights recent evidence supporting this hypothesis, with particular emphasis on our in vitro and in vivo work with the mitochondria-targeted redox enzyme p66ShcA. PMID:23898299

  10. Antioxidant treatment reverses mitochondrial dysfunction in a sepsis animal model.

    PubMed

    Zapelini, Paula H; Rezin, Gislaine T; Cardoso, Mariane R; Ritter, Cristiane; Klamt, Fábio; Moreira, José C F; Streck, Emilio L; Dal-Pizzol, Felipe

    2008-06-01

    Evidence from the literature has demonstrated that reactive oxygen species (ROS) play an important role in the development of multiple organ failure and septic shock. In addition, mitochondrial dysfunction has been implicated in the pathogenesis of multiple organ dysfunction syndrome (MODS). The hypothesis of cytopathic hypoxia postulates that impairment in mitochondrial oxidative phosphorylation reduces aerobic adenosine triphosphate (ATP) production and potentially induces MODS. In this work, our aim was to evaluate the effects of antioxidants on oxidative damage and energy metabolism parameters in liver of rats submitted to a cecal ligation puncture (CLP) model of sepsis. We speculate that CLP induces a sequence of events that culminate with liver cells death. We propose that mitochondrial superoxide production induces mitochondrial oxidative damage, leading to mitochondrial dysfunction, swelling and release of cytochrome c. These events occur in early sepsis development, as reported in the present work. Liver cells necrosis only occurs 24 h after CLP, but all other events occur earlier (6-12 h). Moreover, we showed that antioxidants may prevent oxidative damage and mitochondrial dysfunction in liver of rats after CLP. In another set of experiments, we verified that L-NAME administration did not reverse increase of superoxide anion production, TBARS formation, protein carbonylation, mitochondrial swelling, increased serum AST or inhibition on complex IV activity caused by CLP. Considering that this drug inhibits nitric oxide synthase and that no parameter was reversed by its administration, we suggest that all the events reported in this study are not mediated by nitric oxide. In conclusion, although it is difficult to extrapolate our findings to human, it is tempting to speculate that antioxidants may be used in the future in the treatment of this disease. PMID:18417427

  11. Mitochondrial Dysfunction in Amyotrophic Lateral Sclerosis

    PubMed Central

    Shi, Ping; Gal, Jozsef; Kwinter, David M.; Liu, Xiaoyan; Zhu, Haining

    2009-01-01

    The etiology of motor neuron degeneration in amyotrophic lateral sclerosis (ALS) remains to be better understood. Based on the studies from ALS patients and transgenic animal models, it is believed that ALS is likely to be a multifactorial and multisystem disease. Many mechanisms have been postulated to be involved in the pathology of ALS, such as oxidative stress, glutamate excitotoxicity, mitochondrial damage, defective axonal transport, glia cell pathology and aberrant RNA metabolism. Mitochondria, which play crucial roles in excitotoxicity, apoptosis and cell survival, have shown to be an early target in ALS pathogenesis and contribute to the disease progression. Morphological and functional defects in mitochondria were found in both human patients and ALS mice overexpressing mutant SOD1. Mutant SOD1 was found to be preferentially associated with mitochondria and subsequently impair mitochondrial function. Recent studies suggest that axonal transport of mitochondria along microtubules and mitochondrial dynamics may also be disrupted in ALS. These results also illustrate the critical importance of maintaining proper mitochondrial function in axons and neuromuscular junctions, supporting the emerging “dying-back” axonopathy model of ALS. In this review, we will discuss how mitochondrial dysfunction has been linked to the ALS variants of SOD1 and the mechanisms by which mitochondrial damage contributes to the disease etiology. PMID:19715760

  12. Oxidative stress and mitochondrial dysfunction in fibromyalgia.

    PubMed

    Cordero, Mario D; de Miguel, Manuel; Carmona-López, Inés; Bonal, Pablo; Campa, Francisco; Moreno-Fernández, Ana María

    2010-01-01

    Fibromyalgia (FM) is a chronic pain syndrome with unknown etiology and pathophysiology. Recent studies have shown some evidence demonstrating that oxidative stress may have a role in the pathophysiology of FM. Furthermore, it is controversial the role of mitochondria in the oxidant imbalance documented in FM. Signs and symptoms associated with muscular alteration and mitochondrial dysfunction, including oxidative stress, have been observed in patients with FM. To this respect, Coenzyme Q10 (CoQ10) deficiency, an essential electron carrier in the mitochondrial respiratory chain and a strong antioxidant, alters mitochondria function and mitochondrial respiratory complexes organization and leading to increased ROS generation. Recently have been showed CoQ10 deficiency in blood mononuclear cells in FM patients, so if the hypothesis that mitochondrial dysfunction is the origin of oxidative stress in FM patients is demonstrated, could help to understand the complex pathophysiology of this disorder and may lead to development of new therapeutic strategies for prevention and treatment of this disease. PMID:20424583

  13. Targeting mitochondria for cancer treatment - two types of mitochondrial dysfunction.

    PubMed

    Pokorný, Jiří; Pokorný, Jan; Kobilková, Jitka; Jandová, Anna; Vrba, Jan; Vrba, Jan

    2014-01-01

    Two basic types of cancers were identified – those with the mitochondrial dysfunction in cancer cells (the Warburg effect) or in fibroblasts supplying energy rich metabolites to a cancer cell with functional mitochondria (the reverse Warburg effect). Inner membrane potential of the functional and dysfunctional mitochondria measured by fluorescent dyes (e.g. by Rhodamine 123) displays low and high values (apparent potential), respectively, which is in contrast to the level of oxidative metabolism. Mitochondrial dysfunction (full function) results in reduced (high) oxidative metabolism, low (high) real membrane potential, a simple layer (two layers) of transported protons around mitochondria, and high (low) damping of microtubule electric polar vibrations. Crucial modifications are caused by ordered water layer (exclusion zone). For the high oxidative metabolism one proton layer is at the mitochondrial membrane and the other at the outer rim of the ordered water layer. High and low damping of electric polar vibrations results in decreased and increased electromagnetic activity in cancer cells with the normal and the reverse Warburg effect, respectively. Due to nonlinear properties the electromagnetic frequency spectra of cancer cells and transformed fibroblasts are shifted in directions corresponding to their power deviations resulting in disturbances of interactions and escape from tissue control. The cancer cells and fibroblasts of the reverse Warburg effect tumors display frequency shifts in mutually opposite directions resulting in early generalization. High oxidative metabolism conditions high aggressiveness. Mitochondrial dysfunction, a gate to malignancy along the cancer transformation pathway, forms a narrow neck which could be convenient for cancer treatment. PMID:25626329

  14. Vinca alkaloids cause aberrant ROS-mediated JNK activation, Mcl-1 downregulation, DNA damage, mitochondrial dysfunction, and apoptosis in lung adenocarcinoma cells.

    PubMed

    Chiu, Wei-Hsin; Luo, Sheng-Jei; Chen, Chia-Ling; Cheng, Jai-Hong; Hsieh, Chia-Yuan; Wang, Chi-Yun; Huang, Wei-Ching; Su, Wu-Chou; Lin, Chiou-Feng

    2012-05-01

    Vinca alkaloids are clinically used to inhibit the growth of malignancy by interfering with microtubule polymerization. The purpose of this study was to identify the molecular mechanisms underlying growth inhibition as well as apoptosis in vinca alkaloid-treated lung adenocarcinoma cells. Consistent with nocodazole, treatment with vinorelbine (VNR) caused mitotic prometaphase arrest in a time-dependent manner, accompanied by cell apoptosis, dependent on both dose and time. VNR sequentially induced mitochondrial transmembrane potential (MTP) loss and caspase-dependent apoptosis following myeloid cell leukemia (Mcl) 1 downregulation. Prolonged activation of c-Jun N-terminal kinase (JNK) was required for vinca alkaloid- and nocodazole-induced apoptosis but not cell cycle arrest. Vinca alkaloids and nocodazole caused glutathione/reactive oxygen species (ROS) imbalance, and inhibiting ROS prevented prolonged JNK activation, decreased Mcl-1 levels, MTP loss, and apoptosis. Notably, cell size and granularity were enlarged in stimulated cells; unexpectedly, many ROS-producing mitochondria were accumulated followed by aberrant JNK-mediated mitochondrial dysfunction. Unlike cisplatin, which causes DNA damage in each phase of the cell cycle, VNR and nocodazole induced aberrant JNK-regulated DNA damage in prometaphase; however, inhibiting ATM (ataxia telangiectasia, mutated) and ATR (ATM and Rad3-related) did not reverse mitotic arrest or apoptosis. These results demonstrate an essential role of ROS in vinca alkaloid-induced aberrant JNK-mediated Mcl-1 downregulation and DNA damage followed by mitochondrial dysfunction-related apoptosis but not mitotic arrest. PMID:22285910

  15. The non-invasive 13C-methionine breath test detects hepatic mitochondrial dysfunction as a marker of disease activity in non-alcoholic steatohepatitis

    PubMed Central

    2011-01-01

    Introduction Mitochondrial dysfunction plays a central role in the general pathogenesis of non-alcoholic fatty liver disease (NAFLD), increasing the risk of developing steatosis and subsequent hepatocellular inflammation. We aimed to assess hepatic mitochondrial function by a non-invasive 13C-methionine breath test (MeBT) in patients with histologically proven NAFLD. Methods 118 NAFLD-patients and 18 healthy controls were examined by MeBT. Liver biopsy specimens were evaluated according to the NASH scoring system. Results Higher grades of NASH activity and fibrosis were independently associated with a significant decrease in cumulative 13C-exhalation (expressed as cPDR(%)). cPDR1.5h was markedly declined in patients with NASH and NASH cirrhosis compared to patients with simple steatosis or borderline diagnosis (cPDR1.5h: 3.24 ± 1.12% and 1.32 ± 0.94% vs. 6.36 ± 0.56% and 4.80 ± 0.88% respectively; p < 0.001). 13C-exhalation further declined in the presence of advanced fibrosis which was correlated with NASH activity (r = 0.36). The area under the ROC curve (AUROC) for NASH diagnosis was estimated to be 0.87 in the total cohort and 0.83 in patients with no or mild fibrosis (F0-1). Conclusion The 13C-methionine breath test indicates mitochondrial dysfunction in non-alcoholic fatty liver disease and predicts higher stages of disease activity. It may, therefore, be a valuable diagnostic addition for longitudinal monitoring of hepatic (mitochondrial) function in non-alcoholic fatty liver disease. PMID:21810560

  16. Dysfunction of Rice Mitochondrial Membrane Induced by Yb3+.

    PubMed

    Gao, Jia-Ling; Wu, Man; Liu, Wen; Feng, Zhi-Jiang; Zhang, Ye-Zhong; Jiang, Feng-Lei; Liu, Yi; Dai, Jie

    2015-12-01

    Ytterbium (Yb), a widely used rare earth element, is treated as highly toxic to human being and adverseness to plant. Mitochondria play a significant role in plant growth and development, and are proposed as a potential target for ytterbium toxicity. In this paper, the biological effect of Yb(3+) on isolated rice mitochondria was investigated. We found that Yb(3+) with high concentrations (200 ~ 600 μM) not only induced mitochondrial membrane permeability transition (mtMPT), but also disturbed the mitochondrial ultrastructure. Moreover, Yb(3+) caused the respiratory chain damage, ROS formation, membrane potential decrease, and mitochondrial complex II activity reverse. The results above suggested that Yb(3+) with high concentrations could induce mitochondrial membrane dysfunction. These findings will support some valuable information to the safe application of Yb-based agents. PMID:26305923

  17. Mitochondrial dysfunction in metabolic syndrome and asthma.

    PubMed

    Mabalirajan, Ulaganathan; Ghosh, Balaram

    2013-01-01

    Though severe or refractory asthma merely affects less than 10% of asthma population, it consumes significant health resources and contributes significant morbidity and mortality. Severe asthma does not fell in the routine definition of asthma and requires alternative treatment strategies. It has been observed that asthma severity increases with higher body mass index. The obese-asthmatics, in general, have the features of metabolic syndrome and are progressively causing a significant burden for both developed and developing countries thanks to the westernization of the world. As most of the features of metabolic syndrome seem to be originated from central obesity, the underlying mechanisms for metabolic syndrome could help us to understand the pathobiology of obese-asthma condition. While mitochondrial dysfunction is the common factor for most of the risk factors of metabolic syndrome, such as central obesity, dyslipidemia, hypertension, insulin resistance, and type 2 diabetes, the involvement of mitochondria in obese-asthma pathogenesis seems to be important as mitochondrial dysfunction has recently been shown to be involved in airway epithelial injury and asthma pathogenesis. This review discusses current understanding of the overlapping features between metabolic syndrome and asthma in relation to mitochondrial structural and functional alterations with an aim to uncover mechanisms for obese-asthma. PMID:23840225

  18. Mitochondrial Redox Dysfunction and Environmental Exposures

    PubMed Central

    Caito, Samuel W.

    2015-01-01

    Abstract Significance: Mitochondria are structurally and biochemically diverse, even within a single type of cell. Protein complexes localized to the inner mitochondrial membrane synthesize ATP by coupling electron transport and oxidative phosphorylation. The organelles produce reactive oxygen species (ROS) from mitochondrial oxygen and ROS can, in turn, alter the function and expression of proteins used for aerobic respiration by post-translational and transcriptional regulation. Recent Advances: New interest is emerging not only into the roles of mitochondria in disease development and progression but also as a target for environmental toxicants. Critical Issues: Dysregulation of respiration has been linked to cell death and is a major contributor to acute neuronal trauma, peripheral diseases, as well as chronic neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. Future Directions: Here, we discuss the mechanisms underlying the sensitivity of the mitochondrial respiratory complexes to redox modulation, as well as examine the effects of environmental contaminants that have well-characterized mitochondrial toxicity. The contaminants discussed in this review are some of the most prevalent and potent environmental contaminants that have been linked to neurological dysfunction, altered cellular respiration, and oxidation. Antioxid. Redox Signal. 23, 578–595. PMID:25826672

  19. TRPV1 Activation Exacerbates Hypoxia/Reoxygenation-Induced Apoptosis in H9C2 Cells via Calcium Overload and Mitochondrial Dysfunction

    PubMed Central

    Sun, Zewei; Han, Jie; Zhao, Wenting; Zhang, Yuanyuan; Wang, Shuai; Ye, Lifang; Liu, Tingting; Zheng, Liangrong

    2014-01-01

    Transient potential receptor vanilloid 1 (TRPV1) channels, which are expressed on sensory neurons, elicit cardioprotective effects during ischemia reperfusion injury by stimulating the release of neuropeptides, namely calcitonin gene-related peptide (CGRP) and substance P (SP). Recent studies show that TRPV1 channels are also expressed on cardiomyocytes and can exacerbate air pollutant-induced apoptosis. However, whether these channels present on cardiomyocytes directly modulate cell death and survival pathways during hypoxia/reoxygenation (H/R) injury remains unclear. In the present study, we investigated the role of TRPV1 in H/R induced apoptosis of H9C2 cardiomyocytes. We demonstrated that TRPV1 was indeed expressed in H9C2 cells, and activated by H/R injury. Although neuropeptide release caused by TRPV1 activation on sensory neurons elicits a cardioprotective effect, we found that capsaicin (CAP; a TRPV1 agonist) treatment of H9C2 cells paradoxically enhanced the level of apoptosis by increasing intracellular calcium and mitochondrial superoxide levels, attenuating mitochondrial membrane potential, and inhibiting mitochondrial biogenesis (measured by the expression of ATP synthase β). In contrast, treatment of cells with capsazepine (CPZ; a TRPV1 antagonist) or TRPV1 siRNA attenuated H/R induced-apoptosis. Furthermore, CAP and CPZ treatment revealed a similar effect on cell viability and mitochondrial superoxide production in primary cardiomyocytes. Finally, using both CGRP8–37 (a CGRP receptor antagonist) and RP67580 (a SP receptor antagonist) to exclude the confounding effects of neuropeptides, we confirmed aforementioned detrimental effects as TRPV1−/− mouse hearts exhibited improved cardiac function during ischemia/reperfusion. In summary, direct activation of TRPV1 in myocytes exacerbates H/R-induced apoptosis, likely through calcium overload and associated mitochondrial dysfunction. Our study provides a novel understanding of the role of myocyte

  20. Role and Treatment of Mitochondrial DNA-Related Mitochondrial Dysfunction in Sporadic Neurodegenerative Diseases

    PubMed Central

    Swerdlow, Russell H.

    2012-01-01

    Several sporadic neurodegenerative diseases display phenomena that directly or indirectly relate to mitochondrial function. Data suggesting altered mitochondrial function in these diseases could arise from mitochondrial DNA (mtDNA) are reviewed. Approaches for manipulating mitochondrial function and minimizing the downstream consequences of mitochondrial dysfunction are discussed. PMID:21902672

  1. The carbonic anhydrase inhibitor methazolamide prevents amyloid beta-induced mitochondrial dysfunction and caspase activation protecting neuronal and glial cells in vitro and in the mouse brain.

    PubMed

    Fossati, Silvia; Giannoni, Patrizia; Solesio, Maria E; Cocklin, Sarah L; Cabrera, Erwin; Ghiso, Jorge; Rostagno, Agueda

    2016-02-01

    Mitochondrial dysfunction has been recognized as an early event in Alzheimer's disease (AD) pathology, preceding and inducing neurodegeneration and memory loss. The presence of cytochrome c (CytC) released from the mitochondria into the cytoplasm is often detected after acute or chronic neurodegenerative insults, including AD. The carbonic anhydrase inhibitor (CAI) methazolamide (MTZ) was identified among a library of drugs as an inhibitor of CytC release and proved to be neuroprotective in Huntington's disease and stroke models. Here, using neuronal and glial cell cultures, in addition to an acute model of amyloid beta (Aβ) toxicity, which replicates by intra-hippocampal injection the consequences of interstitial and cellular accumulation of Aβ, we analyzed the effects of MTZ on neuronal and glial degeneration induced by the Alzheimer's amyloid. MTZ prevented DNA fragmentation, CytC release and activation of caspase 9 and caspase 3 induced by Aβ in neuronal and glial cells in culture through the inhibition of mitochondrial hydrogen peroxide production. Moreover, intraperitoneal administration of MTZ prevented neurodegeneration induced by intra-hippocampal Aβ injection in the mouse brain and was effective at reducing caspase 3 activation in neurons and microglia in the area surrounding the injection site. Our results, delineating the molecular mechanism of action of MTZ against Aβ-mediated mitochondrial dysfunction and caspase activation, and demonstrating its efficiency in a model of acute amyloid-mediated toxicity, provide the first combined in vitro and in vivo evidence supporting the potential of a new therapy employing FDA-approved CAIs in AD. PMID:26581638

  2. Involvement of mitochondrial dysfunction in nefazodone-induced hepatotoxicity.

    PubMed

    Silva, Ana Marta; Barbosa, Inês A; Seabra, Cátia; Beltrão, Nuno; Santos, Raquel; Vega-Naredo, Ignacio; Oliveira, Paulo J; Cunha-Oliveira, Teresa

    2016-08-01

    Nefazodone (NEF) is an antidepressive agent that was widely used in the treatment of depression until its withdrawal from the market, due to reports of liver injury and failure. NEF hepatotoxicity has been associated with mitochondrial impairment due to interference with the OXPHOS enzymatic activities, increased ROS generation and decreased antioxidant defenses. However, the mechanisms by which NEF induces mitochondrial dysfunction in hepatocytes are not completely understood. Here, we investigated the mitochondrial mechanisms affected upon NEF exposure and whether these might be linked to drug hepatotoxicity, in order to infer liabilities of future drug candidates. Two moderately hepatotoxic NEF concentrations (20 and 50 μM) were selected from dose-response growth curves performed in HepG2 cells. Cell viability, caspase activity, nuclear morphology, mitochondrial transmembrane potential, mitochondrial superoxide levels, and the expression of genes associated with different cellular pathways were evaluated at different time points. NEF treatment led to an increase in the expression of genes associated with DNA-damage response, antioxidant defense and apoptosis and a decreased expression of genes encoding proteins involved in oxidative phosphorylation, DNA repair, cell proliferation and cell cycle progression, which seem to constitute mechanisms underlying the observed mitochondrial and cell function impairment. PMID:27288927

  3. Sepsis-induced brain mitochondrial dysfunction is associated with altered mitochondrial Src and PTP1B levels.

    PubMed

    Lyu, Juanjuan; Zheng, Guilang; Chen, Zhijiang; Wang, Bin; Tao, Shaohua; Xiang, Dan; Xie, Meiyan; Huang, Jinda; Liu, Cui; Zeng, Qiyi

    2015-09-16

    Sepsis-induced brain dysfunction (SIBD) is often the first manifestation of sepsis, and its pathogenesis is associated with mitochondrial dysfunction. In this study, we investigated the roles of the tyrosine kinase Src and protein tyrosine phosphatase 1B (PTP1B) in brain mitochondrial dysfunction using a rat model of lipopolysaccharide (LPS)-induced sepsis. We found that there was a gradual and significant increase of PTP1B levels in the rat brain after sepsis induction. In contrast, brain Src levels were reduced in parallel with the PTP1B increase. Sepsis led to significantly reduced tyrosine phosphorylation of mitochondrial oxidative phosphorylation (OXPHOS) complexes I, II and III. Pretreatment of mitochondrial proteins with active PTP1B significantly inhibited complexes I and III activities in vitro, whereas Src enhanced complexes I, II, and III activities. PTP1B and Src were each co-immunoprecipitated with OXPHOS complexes I and III, suggesting direct interactions between both proteins and complexes I and III. Src also directly interacted with complex II. Furthermore, pretreatment of mitochondrial proteins with active PTP1B resulted in overproduction of reactive oxygen species and decreased mitochondrial membrane potential. Pretreatment with active Src produced the opposite effect. These results suggest that brain mitochondrial dysfunction following LPS-induced sepsis in rats is partly attributed to PTP1B and Src mediated decrease in mitochondrial protein tyrosine phosphorylation. PMID:25998537

  4. Mitochondrial Dysfunction Launches Dexamethasone-Induced Skeletal Muscle Atrophy via AMPK/FOXO3 Signaling.

    PubMed

    Liu, Jing; Peng, Yunhua; Wang, Xun; Fan, Yingying; Qin, Chuan; Shi, Le; Tang, Ying; Cao, Ke; Li, Hua; Long, Jiangang; Liu, Jiankang

    2016-01-01

    Muscle atrophy occurs in several pathologic conditions such as diabetes and chronic obstructive pulmonary disease (COPD), as well as after long-term clinical administration of synthesized glucocorticoid, where increased circulating glucocorticoid accounts for the pathogenesis of muscle atrophy. Others and we previously reported mitochondrial dysfunction in muscle atrophy-related conditions and that mitochondria-targeting nutrients efficiently prevent kinds of muscle atrophy. However, whether and how mitochondrial dysfunction involves glucocorticoid-induced muscle atrophy remains unclear. Therefore, in the present study, we measured mitochondrial function in dexamethasone-induced muscle atrophy in vivo and in vitro, and we found that mitochondrial respiration was compromised on the 3rd day following after dexamethasone administration, earlier than the increases of MuRF1 and Fbx32, and dexamethasone-induced loss of mitochondrial components and key mitochondrial dynamics proteins. Furthermore, dexamethasone treatment caused intracellular ATP deprivation and robust AMPK activation, which further activated the FOXO3/Atrogenes pathway. By directly impairing mitochondrial respiration, FCCP leads to similar readouts in C2C12 myotubes as dexamethasone does. On the contrary, resveratrol, a mitochondrial nutrient, efficiently reversed dexamethasone-induced mitochondrial dysfunction and muscle atrophy in both C2C12 myotubes and mice, by improving mitochondrial function and blocking AMPK/FOXO3 signaling. These results indicate that mitochondrial dysfunction acts as a central role in dexamethasone-induced skeletal muscle atrophy and that nutrients or drugs targeting mitochondria might be beneficial in preventing or curing muscle atrophy. PMID:26592738

  5. Mitochondrial Dysfunction in Parkinson's Disease: Pathogenesis and Neuroprotection

    PubMed Central

    Mounsey, Ross B.; Teismann, Peter

    2011-01-01

    Mitochondria are vitally important organelles involved in an array of functions. The most notable is their prominent role in energy metabolism, where they generate over 90% of our cellular energy in the form of ATP through oxidative phosphorylation. Mitochondria are involved in various other processes including the regulation of calcium homeostasis and stress response. Mitochondrial complex I impairment and subsequent oxidative stress have been identified as modulators of cell death in experimental models of Parkinson's disease (PD). Identification of specific genes which are involved in the rare familial forms of PD has further augmented the understanding and elevated the role mitochondrial dysfunction is thought to have in disease pathogenesis. This paper provides a review of the role mitochondria may play in idiopathic PD through the study of experimental models and how genetic mutations influence mitochondrial activity. Recent attempts at providing neuroprotection by targeting mitochondria are described and their progress assessed. PMID:21234411

  6. Chicken or the egg: Warburg effect and mitochondrial dysfunction

    PubMed Central

    Senyilmaz, Deniz

    2015-01-01

    Compared with normal cells, cancer cells show alterations in many cellular processes, including energy metabolism. Studies on cancer metabolism started with Otto Warburg's observation at the beginning of the last century. According to Warburg, cancer cells rely on glycolysis more than mitochondrial respiration for energy production. Considering that glycolysis yields much less energy compared with mitochondrial respiration, Warburg hypothesized that mitochondria must be dysfunctional and this is the initiating factor for cancer formation. However, this hypothesis did not convince every scientist in the field. Some believed the opposite: the reduction in mitochondrial activity is a result of increased glycolysis. This discrepancy of opinions is ongoing. In this review, we will discuss the alterations in glycolysis, pyruvate metabolism, and the Krebs cycle in cancer cells and focus on cause and consequence. PMID:26097714

  7. Apoptosis Induction by the Total Flavonoids from Arachniodes exilis in HepG2 Cells through Reactive Oxygen Species-Mediated Mitochondrial Dysfunction Involving MAPK Activation

    PubMed Central

    Chen, Jing; Xiong, Chaomei; Wei, Han; Yin, Changchang; Ruan, Jinlan

    2014-01-01

    Arachniodes exilis is used as a folk medicine in China and proved to have antibacterial, anti-inflammatory, and sedative activities. In the present study, the antitumor effect of the total flavonoids of A. exilis (TFAE) against HepG2 cells was evaluated. The results showed that TFAE inhibited the growth of HepG2 cells in a dosage- and time-dependent manner. Flow cytometry and Hoechst 33342 fluorescence staining results showed that TFAE could significantly increase the apoptosis ratio of HepG2 cells, which is accompanied with increased intracellular reactive oxygen species (ROS) production and decreased mitochondrial membrane potential (ΔΨm). Western blotting indicated that TFAE downregulated the ratio of Bcl-2/Bax, increased cytochrome c release, and activated the caspases-3 and -9. Further analysis showed that TFAE stimulated the mitogen-activated protein kinase (MAPK). However, treatment with NAC (reactive oxygen species scavenger) and MAPK-specific inhibitors (SP600125 and SB203580) could reverse the changes of these apoptotic-related proteins. These results suggested that TFAE possessed potential anticancer activity in HepG2 cells through ROS-mediated mitochondrial dysfunction involving MAPK pathway. PMID:24976852

  8. SIRT1 activation by pterostilbene attenuates the skeletal muscle oxidative stress injury and mitochondrial dysfunction induced by ischemia reperfusion injury.

    PubMed

    Cheng, Yedong; Di, Shouyin; Fan, Chongxi; Cai, Liping; Gao, Chao; Jiang, Peng; Hu, Wei; Ma, Zhiqiang; Jiang, Shuai; Dong, Yushu; Li, Tian; Wu, Guiling; Lv, Jianjun; Yang, Yang

    2016-08-01

    Ischemia reperfusion (IR) injury is harmful to skeletal muscles and causes mitochondrial oxidative stress. Pterostilbene (PTE), an analogue of resveratrol, has organic protective effects against oxidative stress. However, no studies have investigated whether PTE can protect against IR-related skeletal muscular injury. In this study, we sought to evaluate the protective effect of PTE against IR-related skeletal muscle injury and to determine the mechanisms in this process. Male Sprague-Dawley rats were pretreated with PTE for a week and then underwent limb IR surgery. The IR injury induced segmental necrosis and apoptosis, myofilament disintegration, thicker interstitial spaces, and inflammatory cell infiltration. Furthermore, mitochondrial respiratory chain activity in the muscular tissue was inhibited, methane dicarboxylic aldehyde concentration and myeloperoxidase activity were up-regulated, and superoxide dismutase was down-regulated after IR. However, these effects were significantly inhibited by PTE in a dose-dependent manner. The mechanism underlying IR injury is attributed to the down-regulation of silent information regulator 1 (SIRT1)-FOXO1/p53 pathway and the increase of the Bax/Bcl2 ratio, Cleaved poly ADP-ribose polymerase 1, Cleaved Caspase 3, which can be reversed with PTE. Furthermore, EX527, an SIRT1 inhibitor, counteracted the protective effects of PTE on IR-related muscle injury. In conclusion, PTE has protective properties against IR injury of the skeletal muscles. The mechanism of this protective effect depends on the activation of the SIRT1-FOXO1/p53 signaling pathway and the decrease of the apoptotic ratio in skeletal muscle cells. PMID:27270300

  9. Unraveling Biochemical Pathways Affected by Mitochondrial Dysfunctions Using Metabolomic Approaches

    PubMed Central

    Demine, Stéphane; Reddy, Nagabushana; Renard, Patricia; Raes, Martine; Arnould, Thierry

    2014-01-01

    Mitochondrial dysfunction(s) (MDs) can be defined as alterations in the mitochondria, including mitochondrial uncoupling, mitochondrial depolarization, inhibition of the mitochondrial respiratory chain, mitochondrial network fragmentation, mitochondrial or nuclear DNA mutations and the mitochondrial accumulation of protein aggregates. All these MDs are known to alter the capacity of ATP production and are observed in several pathological states/diseases, including cancer, obesity, muscle and neurological disorders. The induction of MDs can also alter the secretion of several metabolites, reactive oxygen species production and modify several cell-signalling pathways to resolve the mitochondrial dysfunction or ultimately trigger cell death. Many metabolites, such as fatty acids and derived compounds, could be secreted into the blood stream by cells suffering from mitochondrial alterations. In this review, we summarize how a mitochondrial uncoupling can modify metabolites, the signalling pathways and transcription factors involved in this process. We describe how to identify the causes or consequences of mitochondrial dysfunction using metabolomics (liquid and gas chromatography associated with mass spectrometry analysis, NMR spectroscopy) in the obesity and insulin resistance thematic. PMID:25257998

  10. Mevalonate Pathway Blockade, Mitochondrial Dysfunction and Autophagy: A Possible Link

    PubMed Central

    Tricarico, Paola Maura; Crovella, Sergio; Celsi, Fulvio

    2015-01-01

    The mevalonate pathway, crucial for cholesterol synthesis, plays a key role in multiple cellular processes. Deregulation of this pathway is also correlated with diminished protein prenylation, an important post-translational modification necessary to localize certain proteins, such as small GTPases, to membranes. Mevalonate pathway blockade has been linked to mitochondrial dysfunction: especially involving lower mitochondrial membrane potential and increased release of pro-apoptotic factors in cytosol. Furthermore a severe reduction of protein prenylation has also been associated with defective autophagy, possibly causing inflammasome activation and subsequent cell death. So, it is tempting to hypothesize a mechanism in which defective autophagy fails to remove damaged mitochondria, resulting in increased cell death. This mechanism could play a significant role in Mevalonate Kinase Deficiency, an autoinflammatory disease characterized by a defect in Mevalonate Kinase, a key enzyme of the mevalonate pathway. Patients carrying mutations in the MVK gene, encoding this enzyme, show increased inflammation and lower protein prenylation levels. This review aims at analysing the correlation between mevalonate pathway defects, mitochondrial dysfunction and defective autophagy, as well as inflammation, using Mevalonate Kinase Deficiency as a model to clarify the current pathogenetic hypothesis as the basis of the disease. PMID:26184189

  11. Chronic fatigue syndrome and mitochondrial dysfunction

    PubMed Central

    Myhill, Sarah; Booth, Norman E.; McLaren-Howard, John

    2009-01-01

    This study aims to improve the health of patients suffering from chronic fatigue syndrome (CFS) by interventions based on the biochemistry of the illness, specifically the function of mitochondria in producing ATP (adenosine triphosphate), the energy currency for all body functions, and recycling ADP (adenosine diphosphate) to replenish the ATP supply as needed. Patients attending a private medical practice specializing in CFS were diagnosed using the Centers for Disease Control criteria. In consultation with each patient, an integer on the Bell Ability Scale was assigned, and a blood sample was taken for the “ATP profile” test, designed for CFS and other fatigue conditions. Each test produced 5 numerical factors which describe the availability of ATP in neutrophils, the fraction complexed with magnesium, the efficiency of oxidative phosphorylation, and the transfer efficiencies of ADP into the mitochondria and ATP into the cytosol where the energy is used. With the consent of each of 71 patients and 53 normal, healthy controls the 5 factors have been collated and compared with the Bell Ability Scale. The individual numerical factors show that patients have different combinations of biochemical lesions. When the factors are combined, a remarkable correlation is observed between the degree of mitochondrial dysfunction and the severity of illness (P<0.001). Only 1 of the 71 patients overlaps the normal region. The “ATP profile” test is a powerful diagnostic tool and can differentiate patients who have fatigue and other symptoms as a result of energy wastage by stress and psychological factors from those who have insufficient energy due to cellular respiration dysfunction. The individual factors indicate which remedial actions, in the form of dietary supplements, drugs and detoxification, are most likely to be of benefit, and what further tests should be carried out. PMID:19436827

  12. Identification of Human ABAD Inhibitors for Rescuing Aβ-Mediated Mitochondrial Dysfunction

    PubMed Central

    Valasani, Koteswara Rao; Sun, Qinru; Hu, Gang; Li, Jianping; Du, Fang; Guo, Yaopeng; Carlson, Emily A; Gan, Xueqi; Yan, Shirley ShiDu

    2014-01-01

    Amyloid beta (Aβ) binding alcohol dehydrogenase (ABAD) is a cellular cofactor for promoting (Aβ)-mediated mitochondrial and neuronal dysfunction, and cognitive decline in transgenic Alzheimer's disease (AD) mouse models. Targeting mitochondrial ABAD may represent a novel therapeutic strategy against AD. Here, we report the biological activity of small molecule ABAD inhibitors. Using in vitro surface plasmon resonance (SPR) studies, we synthesized compounds with strong binding affinities for ABAD. Further, these ABAD inhibitors (ABAD-4a and 4b) reduced ABAD enzyme activity and administration of phosphonate derivatives of ABAD inhibitors antagonized calcium-mediated mitochondrial swelling. Importantly, these compounds also abolished Aβ-induced mitochondrial dysfunction as shown by increased cytochrome c oxidase and adenosine-5′-triphosphate levels, suggesting protective mitochondrial function effects of these synthesized compounds. Thus, these compounds are potential candidates for further pharmacologic development to target ABAD to improve mitochondrial function. PMID:24479630

  13. Sulfur Dioxide Contributes to the Cardiac and Mitochondrial Dysfunction in Rats.

    PubMed

    Qin, Guohua; Wu, Meiqiong; Wang, Jiaoxia; Xu, Zhifang; Xia, Jin; Sang, Nan

    2016-06-01

    Epidemiological studies have demonstrated an association between sulfur dioxide (SO2) and an increase of morbidity and mortality of cardiovascular diseases, such as ischemic heart disease, heart failure, and arrhythmia. Mitochondrion is the most sensitive organelle in myocardium of animals exposed to SO2 Here we study the molecular characterization of mitochondrial dysfunction in cardiac muscles of rat after SO2 exposure. We found that the cytochrome c oxidase (COX) activity, mitochondrial membrane potential (ΔΨm), ATP contents, mitochondrial DNA (mtDNA) contents, and mRNA expression of complexes IV and V subunits encoded by mtDNA were decreased after NaHSO3 treatment in vitro or SO2 inhalation in vivo The mitochondrial dysfunctions were accompanied by depressions of co-activator of peroxisome proliferator activated receptor gamma (PGC-1α), nuclear respiratory factor 1, and mitochondrial transcription factor A (TFAM) mRNA and protein. We observed swollen mitochondria and lower amounts of cristae in hearts of rats after 3.5 mg/m(3) SO2 inhalation for 30 days. Interestingly, NaHSO3 induced mitochondrial dysfunctions marked by ΔΨm and ATP reduction could be inhibited by an antioxidant N-acetyl-L-cysteine (NALC), accompanied by the restoration of transcriptional factors expressions. The cardiac mitochondrial dysfunctions could also be alleviated by overexpression of TFAM. SO2 induced abnormal left ventricular function was restored by NALC in vivo Our findings demonstrate that SO2 induces cardiac and mitochondrial dysfunction. And inhibition of reactive oxygen species and enhancing the transcriptional network controlling mitochondrial biogenesis can mitigate the SO2-induced mitochondrial dysfunction. PMID:26980303

  14. Nanotechnology inspired tools for mitochondrial dysfunction related diseases.

    PubMed

    Wen, Ru; Banik, Bhabatosh; Pathak, Rakesh K; Kumar, Anil; Kolishetti, Nagesh; Dhar, Shanta

    2016-04-01

    Mitochondrial dysfunctions are recognized as major factors for various diseases including cancer, cardiovascular diseases, diabetes, neurological disorders, and a group of diseases so called "mitochondrial dysfunction related diseases". One of the major hurdles to gain therapeutic efficiency in diseases where the targets are located in the mitochondria is the accessibility of the targets in this compartmentalized organelle that imposes barriers toward internalization of ions and molecules. Over the time, different tools and techniques were developed to improve therapeutic index for mitochondria acting drugs. Nanotechnology has unfolded as one of the logical and encouraging tools for delivery of therapeutics in controlled and targeted manner simultaneously reducing side effects from drug overdose. Tailor-made nanomedicine based therapeutics can be an excellent tool in the toolbox for diseases associated with mitochondrial dysfunctions. In this review, we present an extensive coverage of possible therapeutic targets in different compartments of mitochondria for cancer, cardiovascular, and mitochondrial dysfunction related diseases. PMID:26776231

  15. Experimental treatments for mitochondrial dysfunction in sepsis: A narrative review

    PubMed Central

    Zheng, Guilang; Lyu, Juanjuan; Huang, Jingda; Xiang, Dan; Xie, Meiyan; Zeng, Qiyi

    2015-01-01

    Sepsis is a systemic inflammatory response to infection. Sepsis, which can lead to severe sepsis, septic shock, and multiple organ dysfunction syndrome, is an important cause of mortality. Pathogenesis is extremely complex. In recent years, cell hypoxia caused by mitochondrial dysfunction has become a hot research field. Sepsis damages the structure and function of mitochondria, conversely, mitochondrial dysfunction aggravated sepsis. The treatment of sepsis lacks effective specific drugs. The aim of this paper is to undertake a narrative review of the current experimental treatment for mitochondrial dysfunction in sepsis. The search was conducted in PubMed databases and Web of Science databases from 1950 to January 2014. A total of 1,090 references were retrieved by the search, of which 121 researches met all the inclusion criteria were included. Articles on the relationship between sepsis and mitochondria, and drugs used for mitochondrial dysfunction in sepsis were reviewed retrospectively. The drugs were divided into four categories: (1) Drug related to mitochondrial matrix and respiratory chain, (2) drugs of mitochondrial antioxidant and free radical scavengers, (3) drugs related to mitochondrial membrane stability, (4) hormone therapy for septic mitochondria. In animal experiments, many drugs show good results. However, clinical research lacks. In future studies, the urgent need is to develop promising drugs in clinical trials. PMID:25983774

  16. Mitochondrial dysfunction in bipolar disorder: Evidence, pathophysiology and translational implications.

    PubMed

    Scaini, Giselli; Rezin, Gislaine T; Carvalho, Andre F; Streck, Emilio L; Berk, Michael; Quevedo, João

    2016-09-01

    Bipolar disorder (BD) is a chronic psychiatric illness characterized by severe and biphasic changes in mood. Several pathophysiological mechanisms have been hypothesized to underpin the neurobiology of BD, including the presence of mitochondrial dysfunction. A confluence of evidence points to an underlying dysfunction of mitochondria, including decreases in mitochondrial respiration, high-energy phosphates and pH; changes in mitochondrial morphology; increases in mitochondrial DNA polymorphisms; and downregulation of nuclear mRNA molecules and proteins involved in mitochondrial respiration. Mitochondria play a pivotal role in neuronal cell survival or death as regulators of both energy metabolism and cell survival and death pathways. Thus, in this review, we discuss the genetic and physiological components of mitochondria and the evidence for mitochondrial abnormalities in BD. The final part of this review discusses mitochondria as a potential target of therapeutic interventions in BD. PMID:27377693

  17. Rabies virus phosphoprotein interacts with mitochondrial Complex I and induces mitochondrial dysfunction and oxidative stress.

    PubMed

    Kammouni, Wafa; Wood, Heidi; Saleh, Ali; Appolinario, Camila M; Fernyhough, Paul; Jackson, Alan C

    2015-08-01

    Our previous studies in an experimental model of rabies showed neuronal process degeneration in association with severe clinical disease. Cultured adult rodent dorsal root ganglion neurons infected with challenge virus standard (CVS)-11 strain of rabies virus (RABV) showed axonal swellings and reduced axonal growth with evidence of oxidative stress. We have shown that CVS infection alters a variety of mitochondrial parameters and increases reactive oxygen species (ROS) production and mitochondrial Complex I activity vs. mock infection. We have hypothesized that a RABV protein targets mitochondria and triggers dysfunction. Mitochondrial extracts of mouse neuroblastoma cells were analyzed with a proteomics approach. We have identified peptides belonging to the RABV nucleocapsid protein (N), phosphoprotein (P), and glycoprotein (G), and our data indicate that the extract was most highly enriched with P. P was also detected by immunoblotting in RABV-infected purified mitochondrial extracts and also in Complex I immunoprecipitates from the extracts but not in mock-infected extracts. A plasmid expressing P in cells increased Complex I activity and increased ROS generation, whereas expression of other RABV proteins did not. We have analyzed recombinant plasmids encoding various P gene segments. Expression of a peptide from amino acid 139-172 increased Complex I activity and ROS generation similar to expression of the entire P protein, whereas peptides that did not contain this region did not increase Complex I activity or induce ROS generation. These results indicate that a region of the RABV P interacts with Complex I in mitochondria causing mitochondrial dysfunction, increased generation of ROS, and oxidative stress. PMID:25698500

  18. Mitochondrial dysfunction impairs tumor suppressor p53 expression/function.

    PubMed

    Compton, Shannon; Kim, Chul; Griner, Nicholas B; Potluri, Prasanth; Scheffler, Immo E; Sen, Sabyasachi; Jerry, D Joseph; Schneider, Sallie; Yadava, Nagendra

    2011-06-10

    Recently, mitochondria have been suggested to act in tumor suppression. However, the underlying mechanisms by which mitochondria suppress tumorigenesis are far from being clear. In this study, we have investigated the link between mitochondrial dysfunction and the tumor suppressor protein p53 using a set of respiration-deficient (Res(-)) mammalian cell mutants with impaired assembly of the oxidative phosphorylation machinery. Our data suggest that normal mitochondrial function is required for γ-irradiation (γIR)-induced cell death, which is mainly a p53-dependent process. The Res(-) cells are protected against γIR-induced cell death due to impaired p53 expression/function. We find that the loss of complex I biogenesis in the absence of the MWFE subunit reduces the steady-state level of the p53 protein, although there is no effect on the p53 protein level in the absence of the ESSS subunit that is also essential for complex I assembly. The p53 protein level was also reduced to undetectable levels in Res(-) cells with severely impaired mitochondrial protein synthesis. This suggests that p53 protein expression is differentially regulated depending upon the type of electron transport chain/respiratory chain deficiency. Moreover, irrespective of the differences in the p53 protein expression profile, γIR-induced p53 activity is compromised in all Res(-) cells. Using two different conditional systems for complex I assembly, we also show that the effect of mitochondrial dysfunction on p53 expression/function is a reversible phenomenon. We believe that these findings will have major implications in the understanding of cancer development and therapy. PMID:21502317

  19. Mitochondrial Mislocalization Underlies Aβ42-Induced Neuronal Dysfunction in a Drosophila Model of Alzheimer's Disease

    PubMed Central

    Iijima-Ando, Kanae; Hearn, Stephen A.; Shenton, Christopher; Gatt, Anthony; Zhao, LiJuan; Iijima, Koichi

    2009-01-01

    The amyloid-β 42 (Aβ42) is thought to play a central role in the pathogenesis of Alzheimer's disease (AD). However, the molecular mechanisms by which Aβ42 induces neuronal dysfunction and degeneration remain elusive. Mitochondrial dysfunctions are implicated in AD brains. Whether mitochondrial dysfunctions are merely a consequence of AD pathology, or are early seminal events in AD pathogenesis remains to be determined. Here, we show that Aβ42 induces mitochondrial mislocalization, which contributes to Aβ42-induced neuronal dysfunction in a transgenic Drosophila model. In the Aβ42 fly brain, mitochondria were reduced in axons and dendrites, and accumulated in the somata without severe mitochondrial damage or neurodegeneration. In contrast, organization of microtubule or global axonal transport was not significantly altered at this stage. Aβ42-induced behavioral defects were exacerbated by genetic reductions in mitochondrial transport, and were modulated by cAMP levels and PKA activity. Levels of putative PKA substrate phosphoproteins were reduced in the Aβ42 fly brains. Importantly, perturbations in mitochondrial transport in neurons were sufficient to disrupt PKA signaling and induce late-onset behavioral deficits, suggesting a mechanism whereby mitochondrial mislocalization contributes to Aβ42-induced neuronal dysfunction. These results demonstrate that mislocalization of mitochondria underlies the pathogenic effects of Aβ42 in vivo. PMID:20016833

  20. Chemerin-induced mitochondrial dysfunction in skeletal muscle.

    PubMed

    Xie, Qihai; Deng, Yujie; Huang, Chenglin; Liu, Penghao; Yang, Ying; Shen, Weili; Gao, Pingjin

    2015-05-01

    Chemerin is a novel adipocyte-derived factor that induces insulin resistance in skeletal muscle. However, the effect of chemerin on skeletal muscle mitochondrial function has received little attention. In the present study, we investigated whether mitochondrial dysfunction is involved in the pathogenesis of chemerin-mediated insulin resistance. In this study, we used recombinant adenovirus to express murine chemerin in C57BL/6 mice. The mitochondrial function and structure were evaluated in isolated soleus muscles from mice. The oxidative mechanism of mitochondrial dysfunction in cultured C2C12 myotubes exposed to recombinant chemerin was analysed by western blotting, immunofluorescence and quantitative real-time polymerase chain reaction. The overexpression of chemerin in mice reduced the muscle mitochondrial content and increased mitochondrial autophagy, as determined by the increased conversion of LC3-I to LC3-II and higher expression levels of Beclin1 and autophagy-related protein-5 and 7. The chemerin treatment of C2C12 myotubes increased the generation of mitochondrial reactive oxygen species, concomitant with a reduced mitochondrial membrane potential and increased the occurrence of mitochondrial protein carbonyls and mitochondrial DNA deletions. Knockdown of the expression of chemokine-like receptor 1 or the use of mitochondria-targeting antioxidant Mito-TEMPO restored the mitochondrial dysfunction induced by chemerin. Furthermore, chemerin exposure in C2C12 myotubes not only reduced the insulin-stimulated phosphorylation of protein kinase B (AKT) but also dephosphorylated forkhead box O3α (FoxO3α). Chemerin-induced mitochondrial autophagy likely through an AKT-FoxO3α-dependent signalling pathway. These findings provide direct evidence that chemerin may play an important role in regulating mitochondrial remodelling and function in skeletal muscle. PMID:25754411

  1. Mitochondrial dysfunction and intracellular calcium dysregulation in ALS

    PubMed Central

    Kawamata, Hibiki; Manfredi, Giovanni

    2010-01-01

    Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder that affects the aging population. A progressive loss of motor neurons in the spinal cord and brain leads to muscle paralysis and death. As in other common neurodegenerative diseases, aging-related mitochondrial dysfunction is increasingly being considered among the pathogenic factors. Mitochondria are critical for cell survival: they provide energy to the cell, buffer intracellular calcium, and regulate apoptotic cell death. Whether mitochondrial abnormalities are a trigger or a consequence of the neurodegenerative process and the mechanisms whereby mitochondrial dysfunction contributes to disease are not clear yet. Calcium homeostasis is a major function of mitochondria in neurons, and there is ample evidence that intracellular calcium is dysregulated in ALS. The impact of mitochondrial dysfunction on intracellular calcium homeostasis and its role in motor neuron demise are intriguing issues that warrants in depth discussion. Clearly, unraveling the causal relationship between mitochondrial dysfunction, calcium dysregulation, and neuronal death is critical for the understanding of ALS pathogenesis. In this review, we will outline the current knowledge of various aspects of mitochondrial dysfunction in ALS, with a special emphasis on the role of these abnormalities on intracellular calcium handling. PMID:20493207

  2. Mitochondrial dysfunction in psychiatric morbidity: current evidence and therapeutic prospects

    PubMed Central

    Toker, Lilach; Agam, Galila

    2015-01-01

    Cumulating evidence for the involvement of mitochondrial dysfunction in psychiatric disorders leaves little to no doubt regarding the involvement of this pathology in mood disorders. However, mitochondrial abnormalities are also observed in a wide range of disorders spanning from cancer and diabetes to various neurodegenerative and neurodevelopmental disorders such as Parkinson’s, Alzheimer’s, Huntington’s, autism, and amyotrophic lateral sclerosis. The apparent lack of specificity questions the role of mitochondrial dysfunction in psychiatric disorders, in general, and in mood disorders, in particular. Is mitochondrial dysfunction a general phenomenon, simplistically rendering brain cells to be more vulnerable to a variety of disease-specific perturbations? Or is it an epiphenomenon induced by various disease-specific factors? Or possibly, the severity and the anatomical region of the dysfunction are the ones responsible for the distinct features of the disorders. Whichever of the aforementioned ones, if any, is correct, “mitochondrial dysfunction” became more of a cliché than a therapeutic target. In this review, we summarize current studies supporting the involvement of mitochondrial dysfunction in different psychiatric disorders. We address the question of specificity and causality of the different findings and provide an alternative explanation for some of the aforementioned questions. PMID:26442764

  3. Loss of PLA2G6 leads to elevated mitochondrial lipid peroxidation and mitochondrial dysfunction

    PubMed Central

    Castillo-Quan, Jorge Iván; Bartolome, Fernando; Angelova, Plamena R.; Li, Li; Pope, Simon; Cochemé, Helena M.; Khan, Shabana; Asghari, Shabnam; Bhatia, Kailash P.; Hardy, John; Abramov, Andrey Y.; Partridge, Linda

    2015-01-01

    The PLA2G6 gene encodes a group VIA calcium-independent phospholipase A2 beta enzyme that selectively hydrolyses glycerophospholipids to release free fatty acids. Mutations in PLA2G6 have been associated with disorders such as infantile neuroaxonal dystrophy, neurodegeneration with brain iron accumulation type II and Karak syndrome. More recently, PLA2G6 was identified as the causative gene in a subgroup of patients with autosomal recessive early-onset dystonia-parkinsonism. Neuropathological examination revealed widespread Lewy body pathology and the accumulation of hyperphosphorylated tau, supporting a link between PLA2G6 mutations and parkinsonian disorders. Here we show that knockout of the Drosophila homologue of the PLA2G6 gene, iPLA2-VIA, results in reduced survival, locomotor deficits and organismal hypersensitivity to oxidative stress. Furthermore, we demonstrate that loss of iPLA2-VIA function leads to a number of mitochondrial abnormalities, including mitochondrial respiratory chain dysfunction, reduced ATP synthesis and abnormal mitochondrial morphology. Moreover, we show that loss of iPLA2-VIA is strongly associated with increased lipid peroxidation levels. We confirmed our findings using cultured fibroblasts taken from two patients with mutations in the PLA2G6 gene. Similar abnormalities were seen including elevated mitochondrial lipid peroxidation and mitochondrial membrane defects, as well as raised levels of cytoplasmic and mitochondrial reactive oxygen species. Finally, we demonstrated that deuterated polyunsaturated fatty acids, which inhibit lipid peroxidation, were able to partially rescue the locomotor abnormalities seen in aged flies lacking iPLA2-VIA gene function, and restore mitochondrial membrane potential in fibroblasts from patients with PLA2G6 mutations. Taken together, our findings demonstrate that loss of normal PLA2G6 gene activity leads to lipid peroxidation, mitochondrial dysfunction and subsequent mitochondrial membrane

  4. Mitochondrial dysfunction is an important cause of neurological deficits in an inflammatory model of multiple sclerosis.

    PubMed

    Sadeghian, Mona; Mastrolia, Vincenzo; Rezaei Haddad, Ali; Mosley, Angelina; Mullali, Gizem; Schiza, Dimitra; Sajic, Marija; Hargreaves, Iain; Heales, Simon; Duchen, Michael R; Smith, Kenneth J

    2016-01-01

    Neuroinflammation can cause major neurological dysfunction, without demyelination, in both multiple sclerosis (MS) and a mouse model of the disease (experimental autoimmune encephalomyelitis; EAE), but the mechanisms remain obscure. Confocal in vivo imaging of the mouse EAE spinal cord reveals that impaired neurological function correlates with the depolarisation of both the axonal mitochondria and the axons themselves. Indeed, the depolarisation parallels the expression of neurological deficit at the onset of disease, and during relapse, improving during remission in conjunction with the deficit. Mitochondrial dysfunction, fragmentation and impaired trafficking were most severe in regions of extravasated perivascular inflammatory cells. The dysfunction at disease onset was accompanied by increased expression of the rate-limiting glycolytic enzyme phosphofructokinase-2 in activated astrocytes, and by selective reduction in spinal mitochondrial complex I activity. The metabolic changes preceded any demyelination or axonal degeneration. We conclude that mitochondrial dysfunction is a major cause of reversible neurological deficits in neuroinflammatory disease, such as MS. PMID:27624721

  5. Mechanisms of mitochondrial dysfunction and energy deficiency in Alzheimer's disease.

    PubMed

    Atamna, Hani; Frey, William H

    2007-09-01

    Several studies have demonstrated aberrations in the Electron Transport Complexes (ETC) and Krebs (TCA) cycle in Alzheimer's disease (AD) brain. Optimal activity of these key metabolic pathways depends on several redox active centers and metabolites including heme, coenzyme Q, iron-sulfur, vitamins, minerals, and micronutrients. Disturbed heme metabolism leads to increased aberrations in the ETC (loss of complex IV), dimerization of APP, free radical production, markers of oxidative damage, and ultimately cell death all of which represent key cytopathologies in AD. The mechanism of mitochondrial dysfunction in AD is controversial. The observations that Abeta is found both in the cells and in the mitochondria and that Abeta binds with heme may provide clues to this mechanism. Mitochondrial Abeta may interfere with key metabolites or metabolic pathways in a manner that overwhelms the mitochondrial mechanisms of repair. Identifying the molecular mechanism for how Abeta interferes with mitochondria and that explains the established key cytopathologies in AD may also suggest molecular targets for therapeutic interventions. Below we review recent studies describing the possible role of Abeta in altered energy production through heme metabolism. We further discuss how protecting mitochondria could confer resistance to oxidative and environmental insults. Therapies targeted at protecting mitochondria may improve the clinical outcome of AD patients. PMID:17625988

  6. Mitochondrial dysfunction in inherited renal disease and acute kidney injury.

    PubMed

    Emma, Francesco; Montini, Giovanni; Parikh, Samir M; Salviati, Leonardo

    2016-05-01

    Mitochondria are increasingly recognized as key players in genetic and acquired renal diseases. Most mitochondrial cytopathies that cause renal symptoms are characterized by tubular defects, but glomerular, tubulointerstitial and cystic diseases have also been described. For example, defects in coenzyme Q10 (CoQ10) biosynthesis and the mitochondrial DNA 3243 A>G mutation are important causes of focal segmental glomerulosclerosis in children and in adults, respectively. Although they sometimes present with isolated renal findings, mitochondrial diseases are frequently associated with symptoms related to central nervous system and neuromuscular involvement. They can result from mutations in nuclear genes that are inherited according to classic Mendelian rules or from mutations in mitochondrial DNA, which are transmitted according to more complex rules of mitochondrial genetics. Diagnosis of mitochondrial disorders involves clinical characterization of patients in combination with biochemical and genetic analyses. In particular, prompt diagnosis of CoQ10 biosynthesis defects is imperative because of their potentially reversible nature. In acute kidney injury (AKI), mitochondrial dysfunction contributes to the physiopathology of tissue injury, whereas mitochondrial biogenesis has an important role in the recovery of renal function. Potential therapies that target mitochondrial dysfunction or promote mitochondrial regeneration are being developed to limit renal damage during AKI and promote repair of injured tissue. PMID:26804019

  7. Therapeutically targeting mitochondrial redox signalling alleviates endothelial dysfunction in preeclampsia.

    PubMed

    McCarthy, Cathal; Kenny, Louise C

    2016-01-01

    Aberrant placentation generating placental oxidative stress is proposed to play a critical role in the pathophysiology of preeclampsia. Unfortunately, therapeutic trials of antioxidants have been uniformly disappointing. There is provisional evidence implicating mitochondrial dysfunction as a source of oxidative stress in preeclampsia. Here we provide evidence that mitochondrial reactive oxygen species mediates endothelial dysfunction and establish that directly targeting mitochondrial scavenging may provide a protective role. Human umbilical vein endothelial cells exposed to 3% plasma from women with pregnancies complicated by preeclampsia resulted in a significant decrease in mitochondrial function with a subsequent significant increase in mitochondrial superoxide generation compared to cells exposed to plasma from women with uncomplicated pregnancies. Real-time PCR analysis showed increased expression of inflammatory markers TNF-α, TLR-9 and ICAM-1 respectively in endothelial cells treated with preeclampsia plasma. MitoTempo is a mitochondrial-targeted antioxidant, pre-treatment of cells with MitoTempo protected against hydrogen peroxide-induced cell death. Furthermore MitoTempo significantly reduced mitochondrial superoxide production in cells exposed to preeclampsia plasma by normalising mitochondrial metabolism. MitoTempo significantly altered the inflammatory profile of plasma treated cells. These novel data support a functional role for mitochondrial redox signaling in modulating the pathogenesis of preeclampsia and identifies mitochondrial-targeted antioxidants as potential therapeutic candidates. PMID:27604418

  8. Therapeutically targeting mitochondrial redox signalling alleviates endothelial dysfunction in preeclampsia

    PubMed Central

    McCarthy, Cathal; Kenny, Louise C.

    2016-01-01

    Aberrant placentation generating placental oxidative stress is proposed to play a critical role in the pathophysiology of preeclampsia. Unfortunately, therapeutic trials of antioxidants have been uniformly disappointing. There is provisional evidence implicating mitochondrial dysfunction as a source of oxidative stress in preeclampsia. Here we provide evidence that mitochondrial reactive oxygen species mediates endothelial dysfunction and establish that directly targeting mitochondrial scavenging may provide a protective role. Human umbilical vein endothelial cells exposed to 3% plasma from women with pregnancies complicated by preeclampsia resulted in a significant decrease in mitochondrial function with a subsequent significant increase in mitochondrial superoxide generation compared to cells exposed to plasma from women with uncomplicated pregnancies. Real-time PCR analysis showed increased expression of inflammatory markers TNF-α, TLR-9 and ICAM-1 respectively in endothelial cells treated with preeclampsia plasma. MitoTempo is a mitochondrial-targeted antioxidant, pre-treatment of cells with MitoTempo protected against hydrogen peroxide-induced cell death. Furthermore MitoTempo significantly reduced mitochondrial superoxide production in cells exposed to preeclampsia plasma by normalising mitochondrial metabolism. MitoTempo significantly altered the inflammatory profile of plasma treated cells. These novel data support a functional role for mitochondrial redox signaling in modulating the pathogenesis of preeclampsia and identifies mitochondrial-targeted antioxidants as potential therapeutic candidates. PMID:27604418

  9. Aldose Reductase-Mediated Phosphorylation of p53 Leads to Mitochondrial Dysfunction, and Damage in Diabetic Platelets

    PubMed Central

    Tang, Wai Ho; Stitham, Jeremiah; Jin, Yu; Liu, Renjing; Lee, Seung Hee; Du, Jing; Atteya, Gourg; Gleim, Scott; Spollett, Geralyn; Martin, Kathleen; Hwa, John

    2014-01-01

    Background Platelet abnormalities are well-recognized complications of diabetes mellitus (DM). Mitochondria play a central role in platelet metabolism and activation. Mitochondrial dysfunction is evident in DM. The molecular pathway for hyperglycemia-induced mitochondrial dysfunction in DM platelets is unknown. Methods and Results Using both human and humanized mouse models, we report that hyperglycemia-induced aldose reductase (AR) activation, and subsequent reactive oxygen species (ROS) production, leads to increased p53 phosphorylation (Ser15), which promotes mitochondrial dysfunction, damage and rupture by sequestration of the anti-apoptotic protein Bcl-xL. In a glucose dose dependent manner, severe mitochondrial damage leads to loss of mitochondrial membrane potential and platelet apoptosis (cytochrome c release, caspase 3 activation and phosphatidylserine exposure). Although platelet hyperactivation, mitochondrial dysfunction, AR activation, ROS production and p53 phosphorylation are all induced by hyperglycemia, we demonstrate that platelet apoptosis and hyperactivation are two distinct states, dependent upon the severity of the hyperglycemia and mitochondrial damage. Combined, both lead to increased thrombus formation in a mouse blood stasis model. Conclusions AR contributes to diabetes-mediated mitochondrial dysfunction and damage through the activation of p53. The degree of mitochondrial dysfunction and damage determines whether hyperactivity (mild damage) or apoptosis (severe damage) will ensue. These signaling components provide novel therapeutic targets for DM thrombotic complications. PMID:24474649

  10. Metformin increases APP expression and processing via oxidative stress, mitochondrial dysfunction and NF-κB activation: Use of insulin to attenuate metformin's effect.

    PubMed

    Picone, Pasquale; Nuzzo, Domenico; Caruana, Luca; Messina, Elisa; Barera, Annalisa; Vasto, Sonya; Di Carlo, Marta

    2015-05-01

    Clinical and experimental biomedical studies have shown Type 2 diabetes mellitus (T2DM) to be a risk factor for the development of Alzheimer's disease (AD). This study demonstrates the effect of metformin, a therapeutic biguanide administered for T2DM therapy, on β-amyloid precursor protein (APP) metabolism in in vitro, ex vivo and in vivo models. Furthermore, the protective role of insulin against metformin is also demonstrated. In LAN5 neuroblastoma cells, metformin increases APP and presenilin levels, proteins involved in AD. Overexpression of APP and presenilin 1 (Pres 1) increases APP cleavage and intracellular accumulation of β-amyloid peptide (Aβ), which, in turn, promotes aggregation of Aβ. In the experimental conditions utilized the drug causes oxidative stress, mitochondrial damage, decrease of Hexokinase-II levels and cytochrome C release, all of which lead to cell death. Several changes in oxidative stress-related genes following metformin treatment were detected by PCR arrays specific for the oxidative stress pathway. These effects of metformin were found to be antagonized by the addition of insulin, which reduced Aβ levels, oxidative stress, mitochondrial dysfunction and cell death. Similarly, antioxidant molecules, such as ferulic acid and curcumin, are able to revert metformin's effect. Comparable results were obtained using peripheral blood mononuclear cells. Finally, the involvement of NF-κB transcription factor in regulating APP and Pres 1 expression was investigated. Upon metformin treatment, NF-κB is activated and translocates from the cytoplasm to the nucleus, where it induces increased APP and Pres 1 transcription. The use of Bay11-7085 inhibitor suppressed the effect of metformin on APP and Pres 1 expression. PMID:25667085

  11. IDH2 deficiency promotes mitochondrial dysfunction and dopaminergic neurotoxicity: implications for Parkinson's disease.

    PubMed

    Kim, Hyunjin; Kim, Sung Hwan; Cha, Hanvit; Kim, Sang Ryong; Lee, Jin Hyup; Park, Jeen-Woo

    2016-08-01

    Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and its pathogenesis is under intense investigation. Substantial evidence indicates that mitochondrial dysfunction and oxidative stress play central roles in the pathophysiology of PD, through activation of mitochondria-dependent apoptotic molecular pathways. Several mitochondrial internal regulating factors act to maintain mitochondrial function. However, the mechanism by which these internal regulating factors contribute to mitochondrial dysfunction in PD remains elusive. One of these factors, mitochondrial NADP(+)-dependent isocitrate dehydrogenase (IDH2), has been implicated in the regulation of mitochondrial redox balance and reduction of oxidative stress-induced cell injury. Here we report that IDH2 regulates mitochondrial dysfunction and cell death in MPP(+)/MPTP-induced DA neuronal cells, and in a mouse model of PD. Down-regulation of IDH2 increased DA neuron sensitivity to MPP(+); lowered IDH2 levels facilitated induction of apoptotic cell death due to elevated mitochondrial oxidative stress. Deficient IDH2 also promoted loss of DA SNpc neurons in an MPTP mouse model of PD. Interestingly, Mito-TEMPO, a mitochondrial ROS-specific scavenger, protected degeneration of SNpc DA neurons in the MPTP model of PD. These findings demonstrate that IDH2 contributes to degeneration of the DA neuron in the neurotoxin model of PD and establish IDH2 as a molecular target of potential therapeutic significance for this disabling neurological illness. PMID:27142242

  12. High-density lipoprotein, mitochondrial dysfunction and cell survival mechanisms.

    PubMed

    White, C Roger; Giordano, Samantha; Anantharamaiah, G M

    2016-09-01

    Ischemic injury is associated with acute myocardial infarction, percutaneous coronary intervention, coronary artery bypass grafting and open heart surgery. The timely re-establishment of blood flow is critical in order to minimize cardiac complications. Reperfusion after a prolonged ischemic period, however, can induce severe cardiomyocyte dysfunction with mitochondria serving as a major target of ischemia/reperfusion (I/R) injury. An increase in the formation of reactive oxygen species (ROS) induces damage to mitochondrial respiratory complexes leading to uncoupling of oxidative phosphorylation. Mitochondrial membrane perturbations also contribute to calcium overload, opening of the mitochondrial permeability transition pore (mPTP) and the release of apoptotic mediators into the cytoplasm. Clinical and experimental studies show that ischemic preconditioning (ICPRE) and postconditioning (ICPOST) attenuate mitochondrial injury and improve cardiac function in the context of I/R injury. This is achieved by the activation of two principal cell survival cascades: 1) the Reperfusion Injury Salvage Kinase (RISK) pathway; and 2) the Survivor Activating Factor Enhancement (SAFE) pathway. Recent data suggest that high density lipoprotein (HDL) mimics the effects of conditioning protocols and attenuates myocardial I/R injury via activation of the RISK and SAFE signaling cascades. In this review, we discuss the roles of apolipoproteinA-I (apoA-I), the major protein constituent of HDL, and sphingosine 1-phosphate (S1P), a lysosphingolipid associated with small, dense HDL particles as mediators of cardiomyocyte survival. Both apoA-I and S1P exert an infarct-sparing effect by preventing ROS-dependent injury and inhibiting the opening of the mPTP. PMID:27150975

  13. Secondary mitochondrial dysfunction in propionic aciduria: a pathogenic role for endogenous mitochondrial toxins

    PubMed Central

    Schwab, Marina A.; Sauer, Sven W.; Okun, Jürgen G.; Nijtmans, Leo G. J.; Rodenburg, Richard J. T.; van den Heuvel, Lambert P.; Dröse, Stefan; Brandt, Ulrich; Hoffmann, Georg F.; Ter Laak, Henk; Kölker, Stefan; Smeitink, Jan A. M.

    2006-01-01

    Mitochondrial dysfunction during acute metabolic crises is considered an important pathomechanism in inherited disorders of propionate metabolism, i.e. propionic and methylmalonic acidurias. Biochemically, these disorders are characterized by accumulation of propionyl-CoA and metabolites of alternative propionate oxidation. In the present study, we demonstrate uncompetitive inhibition of PDHc (pyruvate dehydrogenase complex) by propionyl-CoA in purified porcine enzyme and in submitochondrial particles from bovine heart being in the same range as the inhibition induced by acetyl-CoA, the physiological product and known inhibitor of PDHc. Evaluation of similar monocarboxylic CoA esters showed a chain-length specificity for PDHc inhibition. In contrast with CoA esters, non-esterified fatty acids did not inhibit PDHc activity. In addition to PDHc inhibition, analysis of respiratory chain and tricarboxylic acid cycle enzymes also revealed an inhibition by propionyl-CoA on respiratory chain complex III and α-ketoglutarate dehydrogenase complex. To test whether impairment of mitochondrial energy metabolism is involved in the pathogenesis of propionic aciduria, we performed a thorough bioenergetic analysis in muscle biopsy specimens of two patients. In line with the in vitro results, oxidative phosphorylation was severely compromised in both patients. Furthermore, expression of respiratory chain complexes I–IV and the amount of mitochondrial DNA were strongly decreased, and ultrastructural mitochondrial abnormalities were found, highlighting severe mitochondrial dysfunction. In conclusion, our results favour the hypothesis that toxic metabolites, in particular propionyl-CoA, are involved in the pathogenesis of inherited disorders of propionate metabolism, sharing mechanistic similarities with propionate toxicity in micro-organisms. PMID:16686602

  14. Roles of mitochondrial fragmentation and reactive oxygen species in mitochondrial dysfunction and myocardial insulin resistance

    SciTech Connect

    Watanabe, Tomoyuki; Saotome, Masao; Nobuhara, Mamoru; Sakamoto, Atsushi; Urushida, Tsuyoshi; Katoh, Hideki; Satoh, Hiroshi; Funaki, Makoto; Hayashi, Hideharu

    2014-05-01

    Purpose: Evidence suggests an association between aberrant mitochondrial dynamics and cardiac diseases. Because myocardial metabolic deficiency caused by insulin resistance plays a crucial role in heart disease, we investigated the role of dynamin-related protein-1 (DRP1; a mitochondrial fission protein) in the pathogenesis of myocardial insulin resistance. Methods and Results: DRP1-expressing H9c2 myocytes, which had fragmented mitochondria with mitochondrial membrane potential (ΔΨ{sub m}) depolarization, exhibited attenuated insulin signaling and 2-deoxy-D-glucose (2-DG) uptake, indicating insulin resistance. Treatment of the DRP1-expressing myocytes with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride (TMPyP) significantly improved insulin resistance and mitochondrial dysfunction. When myocytes were exposed to hydrogen peroxide (H{sub 2}O{sub 2}), they increased DRP1 expression and mitochondrial fragmentation, resulting in ΔΨ{sub m} depolarization and insulin resistance. When DRP1 was suppressed by siRNA, H{sub 2}O{sub 2}-induced mitochondrial dysfunction and insulin resistance were restored. Our results suggest that a mutual enhancement between DRP1 and reactive oxygen species could induce mitochondrial dysfunction and myocardial insulin resistance. In palmitate-induced insulin-resistant myocytes, neither DRP1-suppression nor TMPyP restored the ΔΨ{sub m} depolarization and impaired 2-DG uptake, however they improved insulin signaling. Conclusions: A mutual enhancement between DRP1 and ROS could promote mitochondrial dysfunction and inhibition of insulin signal transduction. However, other mechanisms, including lipid metabolite-induced mitochondrial dysfunction, may be involved in palmitate-induced insulin resistance. - Highlights: • DRP1 promotes mitochondrial fragmentation and insulin-resistance. • A mutual enhancement between DRP1 and ROS ipromotes insulin-resistance. • Palmitate increases DRP1 expression and induces insulin

  15. Mitochondrial dysfunction: a neglected component of skin diseases.

    PubMed

    Feichtinger, René G; Sperl, Wolfgang; Bauer, Johann W; Kofler, Barbara

    2014-09-01

    Aberrant mitochondrial structure and function influence tissue homeostasis and thereby contribute to multiple human disorders and ageing. Ten per cent of patients with primary mitochondrial disorders present skin manifestations that can be categorized into hair abnormalities, rashes, pigmentation abnormalities and acrocyanosis. Less attention has been paid to the fact that several disorders of the skin are linked to alterations of mitochondrial energy metabolism. This review article summarizes the contribution of mitochondrial pathology to both common and rare skin diseases. We explore the intriguing observation that a wide array of skin disorders presents with primary or secondary mitochondrial pathology and that a variety of molecular defects can cause dysfunctional mitochondria. Among them are mutations in mitochondrial- and nuclear DNA-encoded subunits and assembly factors of oxidative phosphorylation (OXPHOS) complexes; mutations in intermediate filament proteins involved in linking, moving and shaping of mitochondria; and disorders of mitochondrial DNA metabolism, fatty acid metabolism and heme synthesis. Thus, we assume that mitochondrial involvement is the rule rather than the exception in skin diseases. We conclude the article by discussing how improving mitochondrial function can be beneficial for aged skin and can be used as an adjunct therapy for certain skin disorders. Consideration of mitochondrial energy metabolism in the skin creates a new perspective for both dermatologists and experts in metabolic disease. PMID:24980550

  16. Reactive Oxygen Species, Apoptosis, and Mitochondrial Dysfunction in Hearing Loss

    PubMed Central

    Fujimoto, Chisato

    2015-01-01

    Reactive oxygen species (ROS) production is involved in several apoptotic and necrotic cell death pathways in auditory tissues. These pathways are the major causes of most types of sensorineural hearing loss, including age-related hearing loss, hereditary hearing loss, ototoxic drug-induced hearing loss, and noise-induced hearing loss. ROS production can be triggered by dysfunctional mitochondrial oxidative phosphorylation and increases or decreases in ROS-related enzymes. Although apoptotic cell death pathways are mostly activated by ROS production, there are other pathways involved in hearing loss that do not depend on ROS production. Further studies of other pathways, such as endoplasmic reticulum stress and necrotic cell death, are required. PMID:25874222

  17. Mitochondrial Dysfunction in Lyssavirus-Induced Apoptosis▿ †

    PubMed Central

    Gholami, Alireza; Kassis, Raïd; Real, Eléonore; Delmas, Olivier; Guadagnini, Stéphanie; Larrous, Florence; Obach, Dorothée; Prevost, Marie-Christine; Jacob, Yves; Bourhy, Hervé

    2008-01-01

    Lyssaviruses are highly neurotropic viruses associated with neuronal apoptosis. Previous observations have indicated that the matrix proteins (M) of some lyssaviruses induce strong neuronal apoptosis. However, the molecular mechanism(s) involved in this phenomenon is still unknown. We show that for Mokola virus (MOK), a lyssavirus of low pathogenicity, the M (M-MOK) targets mitochondria, disrupts the mitochondrial morphology, and induces apoptosis. Our analysis of truncated M-MOK mutants suggests that the information required for efficient mitochondrial targeting and dysfunction, as well as caspase-9 activation and apoptosis, is held between residues 46 and 110 of M-MOK. We used a yeast two-hybrid approach, a coimmunoprecipitation assay, and confocal microscopy to demonstrate that M-MOK physically associates with the subunit I of the cytochrome c (cyt-c) oxidase (CcO) of the mitochondrial respiratory chain; this is in contrast to the M of the highly pathogenic Thailand lyssavirus (M-THA). M-MOK expression induces a significant decrease in CcO activity, which is not the case with M-THA. M-MOK mutations (K77R and N81E) resulting in a similar sequence to M-THA at positions 77 and 81 annul cyt-c release and apoptosis and restore CcO activity. As expected, the reverse mutations, R77K and E81N, introduced in M-THA induce a phenotype similar to that due to M-MOK. These features indicate a novel mechanism for energy depletion during lyssavirus-induced apoptosis. PMID:18321977

  18. Cold Storage Exacerbates Renal and Mitochondrial Dysfunction Following Transplantation

    PubMed Central

    Shrum, S; MacMillan-Crow, LA; Parajuli, N

    2016-01-01

    Long-term renal function is compromised in patients receiving deceased donor kidneys which require cold storage exposure prior to transplantation. It is well established that extended cold storage induces renal damage and several labs, including our own, have demonstrated renal mitochondrial damage after cold storage alone. However, to our knowledge, few studies have assessed renal and mitochondrial function after transplantation of rat kidneys exposed to short-term (4 hr) cold storage compared to transplant without cold storage (autotransplantation). Our data reveal that cold storage plus transplantation exacerbated renal and mitochondrial dysfunction when compared to autotransplantation alone. PMID:27066594

  19. Aerobic Interval Training Attenuates Mitochondrial Dysfunction in Rats Post-Myocardial Infarction: Roles of Mitochondrial Network Dynamics

    PubMed Central

    Jiang, Hong-Ke; Wang, You-Hua; Sun, Lei; He, Xi; Zhao, Mei; Feng, Zhi-Hui; Yu, Xiao-Jiang; Zang, Wei-Jin

    2014-01-01

    Aerobic interval training (AIT) can favorably affect cardiovascular diseases. However, the effects of AIT on post-myocardial infarction (MI)—associated mitochondrial dysfunctions remain unclear. In this study, we investigated the protective effects of AIT on myocardial mitochondria in post-MI rats by focusing on mitochondrial dynamics (fusion and fission). Mitochondrial respiratory functions (as measured by the respiratory control ratio (RCR) and the ratio of ADP to oxygen consumption (P/O)); complex activities; dynamic proteins (mitofusin (mfn) 1/2, type 1 optic atrophy (OPA1) and dynamin-related protein1 (DRP1)); nuclear peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α); and the oxidative signaling of extracellular signal-regulated kinase (ERK) 1/2, c-Jun NH2-terminal protein kinase (JNK) and P53 were observed. Post-MI rats exhibited mitochondrial dysfunction and adverse mitochondrial network dynamics (reduced fusion and increased fission), which was associated with activated ERK1/2-JNK-P53 signaling and decreased nuclear PGC-1α. After AIT, MI-associated mitochondrial dysfunction was improved (elevated RCR and P/O and enhanced complex I, III and IV activities); in addition, increased fusion (mfn2 and OPA1), decreased fission (DRP1), elevated nuclear PGC-1α and inactivation of the ERK1/2-JNK-P53 signaling were observed. These data demonstrate that AIT may restore the post-MI mitochondrial function by inhibiting dynamics pathological remodeling, which may be associated with inactivation of ERK1/2-JNK-P53 signaling and increase in nuclear PGC-1α expression. PMID:24675698

  20. Mitochondrial Respiratory Defect Causes Dysfunctional Lactate Turnover via AMP-activated Protein Kinase Activation in Human-induced Pluripotent Stem Cell-derived Hepatocytes.

    PubMed

    Im, Ilkyun; Jang, Mi-Jin; Park, Seung Ju; Lee, Sang-Hee; Choi, Jin-Ho; Yoo, Han-Wook; Kim, Seyun; Han, Yong-Mahn

    2015-12-01

    A defective mitochondrial respiratory chain complex (DMRC) causes various metabolic disorders in humans. However, the pathophysiology of DMRC in the liver remains unclear. To understand DMRC pathophysiology in vitro, DMRC-induced pluripotent stem cells were generated from dermal fibroblasts of a DMRC patient who had a homoplasmic mutation (m.3398T→C) in the mitochondrion-encoded NADH dehydrogenase 1 (MTND1) gene and that differentiated into hepatocytes (DMRC hepatocytes) in vitro. DMRC hepatocytes showed abnormalities in mitochondrial characteristics, the NAD(+)/NADH ratio, the glycogen storage level, the lactate turnover rate, and AMPK activity. Intriguingly, low glycogen storage and transcription of lactate turnover-related genes in DMRC hepatocytes were recovered by inhibition of AMPK activity. Thus, AMPK activation led to metabolic changes in terms of glycogen storage and lactate turnover in DMRC hepatocytes. These data demonstrate for the first time that energy depletion may lead to lactic acidosis in the DMRC patient by reduction of lactate uptake via AMPK in liver. PMID:26491018

  1. Protein Carbonylation, Mitochondrial Dysfunction, and Insulin Resistance123

    PubMed Central

    Frohnert, Brigitte I.; Bernlohr, David A.

    2013-01-01

    Oxidative stress has been identified as a common mechanism for cellular damage and dysfunction in a wide variety of disease states. Current understanding of the metabolic changes associated with obesity and the development of insulin resistance has focused on the role of oxidative stress and its interaction with inflammatory processes at both the tissue and organismal level. Obesity-related oxidative stress is an important contributing factor in the development of insulin resistance in the adipocyte as well as the myocyte. Moreover, oxidative stress has been linked to mitochondrial dysfunction, and this is thought to play a role in the metabolic defects associated with oxidative stress. Of the various effects of oxidative stress, protein carbonylation has been identified as a potential mechanism underlying mitochondrial dysfunction. As such, this review focuses on the relationship between protein carbonylation and mitochondrial biology and addresses those features that point to either the causal or casual relationship of lipid peroxidation–induced protein carbonylation as a determining factor in mitochondrial dysfunction. PMID:23493532

  2. Mitochondrial Dysfunction and Disturbed Coherence: Gate to Cancer

    PubMed Central

    Pokorný, Jiří; Pokorný, Jan; Foletti, Alberto; Kobilková, Jitka; Vrba, Jan; Vrba, Jan

    2015-01-01

    Continuous energy supply, a necessary condition for life, excites a state far from thermodynamic equilibrium, in particular coherent electric polar vibrations depending on water ordering in the cell. Disturbances in oxidative metabolism and coherence are a central issue in cancer development. Oxidative metabolism may be impaired by decreased pyruvate transfer to the mitochondrial matrix, either by parasitic consumption and/or mitochondrial dysfunction. This can in turn lead to disturbance in water molecules’ ordering, diminished power, and coherence of the electromagnetic field. In tumors with the Warburg (reverse Warburg) effect, mitochondrial dysfunction affects cancer cells (fibroblasts associated with cancer cells), and the electromagnetic field generated by microtubules in cancer cells has low power (high power due to transport of energy-rich metabolites from fibroblasts), disturbed coherence, and a shifted frequency spectrum according to changed power. Therapeutic strategies restoring mitochondrial function may trigger apoptosis in treated cells; yet, before this step is performed, induction (inhibition) of pyruvate dehydrogenase kinases (phosphatases) may restore the cancer state. In tumor tissues with the reverse Warburg effect, Caveolin-1 levels should be restored and the transport of energy-rich metabolites interrupted to cancer cells. In both cancer phenotypes, achieving permanently reversed mitochondrial dysfunction with metabolic-modulating drugs may be an effective, specific anti-cancer strategy. PMID:26437417

  3. Mitochondrial Dysfunction and Disturbed Coherence: Gate to Cancer.

    PubMed

    Pokorný, Jiří; Pokorný, Jan; Foletti, Alberto; Kobilková, Jitka; Vrba, Jan; Vrba, Jan

    2015-01-01

    Continuous energy supply, a necessary condition for life, excites a state far from thermodynamic equilibrium, in particular coherent electric polar vibrations depending on water ordering in the cell. Disturbances in oxidative metabolism and coherence are a central issue in cancer development. Oxidative metabolism may be impaired by decreased pyruvate transfer to the mitochondrial matrix, either by parasitic consumption and/or mitochondrial dysfunction. This can in turn lead to disturbance in water molecules' ordering, diminished power, and coherence of the electromagnetic field. In tumors with the Warburg (reverse Warburg) effect, mitochondrial dysfunction affects cancer cells (fibroblasts associated with cancer cells), and the electromagnetic field generated by microtubules in cancer cells has low power (high power due to transport of energy-rich metabolites from fibroblasts), disturbed coherence, and a shifted frequency spectrum according to changed power. Therapeutic strategies restoring mitochondrial function may trigger apoptosis in treated cells; yet, before this step is performed, induction (inhibition) of pyruvate dehydrogenase kinases (phosphatases) may restore the cancer state. In tumor tissues with the reverse Warburg effect, Caveolin-1 levels should be restored and the transport of energy-rich metabolites interrupted to cancer cells. In both cancer phenotypes, achieving permanently reversed mitochondrial dysfunction with metabolic-modulating drugs may be an effective, specific anti-cancer strategy. PMID:26437417

  4. Curcumin induces apoptotic cell death of activated human CD4+ T cells via increasing endoplasmic reticulum stress and mitochondrial dysfunction.

    PubMed

    Zheng, Min; Zhang, Qinggao; Joe, Yeonsoo; Lee, Bong Hee; Ryu, Do Gon; Kwon, Kang Beom; Ryter, Stefan W; Chung, Hun Taeg

    2013-03-01

    Curcumin, a natural polyphenolic antioxidant compound, exerts well-known anti-inflammatory and immunomodulatory effects, the latter which can influence the activation of immune cells including T cells. Furthermore, curcumin can inhibit the expression of pro-inflammatory cytokines and chemokines, through suppression of the NF-κB signaling pathway. The beneficial effects of curcumin in diseases such as arthritis, allergy, asthma, atherosclerosis, diabetes and cancer may be due to its immunomodulatory properties. We studied the potential of curcumin to modulate CD4+ T cells-mediated autoimmune disease, by examining the effects of this compound on human CD4+ lymphocyte activation. Stimulation of human T cells with PHA or CD3/CD28 induced IL-2 mRNA expression and activated the endoplasmic reticulum (ER) stress response. The treatment of T cells with curcumin induced the unfolded protein response (UPR) signaling pathway, initiated by the phosphorylation of PERK and IRE1. Furthermore, curcumin increased the expression of the ER stress associated transcriptional factors XBP-1, cleaved p50ATF6α and C/EBP homologous protein (CHOP) in human CD4+ and Jurkat T cells. In PHA-activated T cells, curcumin further enhanced PHA-induced CHOP expression and reduced the expression of the anti-apoptotic protein Bcl-2. Finally, curcumin treatment induced apoptotic cell death in activated T cells via eliciting an excessive ER stress response, which was reversed by the ER-stress inhibitor 4-phenylbutyric acid or transfection with CHOP-specific siRNA. These results suggest that curcumin can impact both ER stress and mitochondria functional pathways, and thereby could be used as a promising therapy in the context of Th1-mediated autoimmune diseases. PMID:23415873

  5. Assessment of Mitochondrial Dysfunction Arising from Treatment with Hepatotoxicants

    PubMed Central

    King, Adrienne L.; Bailey, Shannon M.

    2010-01-01

    Studies demonstrate that mitochondrial dysfunction is a key causative factor in liver disease. Indeed, defects in mitochondrial energy metabolism, disrupted calcium handling, and increased reactive oxygen/nitrogen species production are observed in many metabolic disorders and diseases induced by toxicants. Mitochondria have emerged as a main research focus through work defining new functions of this key organelle in normal cellular physiology and pathophysiology. Specifically, studies show a critical role of mitochondrial reactive oxygen/nitrogen species production in regulating cellular signaling pathways involved in cell survival and death. Given this, along with advances made in proteomics technologies, mitochondria are recognized as top candidates for proteomics analysis. However, assessment of mitochondrial function and it’s proteome following toxicant exposure are not trivial undertakings. In this chapter a technique used to isolate mitochondria from liver tissue is presented along with methods needed to assess mitochondria functionality. The methods described include measurement of mitochondrial respiration, calcium accumulation, and reactive oxygen species production. A presentation of proteomics approaches is also included to allow researchers the basic tools needed to identify alterations in the mitochondrial proteome that contribute to toxicant-mediated diseases. Specifically, methods are presented that demonstrate how thiol labeling reagents in combination with electrophoresis and western blotting can be used to detect oxidant-mediated alterations in mitochondrial protein thiols. A few select pieces data are presented highlighting the power of proteomics to identify mitochondrial targets that contribute to mitochondrial dysfunction and hepatotoxicity in response to specific toxicant exposures and metabolic stressors such as alcohol and environmental tobacco smoke. PMID:23045017

  6. Mitochondrial Dysfunction and Pathology in Bipolar Disorder and Schizophrenia

    PubMed Central

    Clay, Hayley; Sillivan, Stephanie; Konradi, Christine

    2010-01-01

    Bipolar disorder (BPD) and schizophrenia (SZ) are severe psychiatric illnesses with a combined prevalence of 4%. A disturbance of energy metabolism is frequently observed in these disorders. Several pieces of evidence point to an underlying dysfunction of mitochondria: i) decreased mitochondrial respiration; (ii) changes in mitochondrial morphology; iii) increases in mitochondrial DNA (mtDNA) polymorphisms and in levels of mtDNA mutations; iv) downregulation of nuclear mRNA molecules and proteins involved in mitochondrial respiration; v) decreased high-energy phosphates and decreased pH in the brain; and vi) psychotic and affective symptoms, and cognitive decline in mitochondrial disorders. Furthermore, transgenic mice with mutated mitochondrial DNA polymerase show mood disorder-like phenotypes. In this review, we will discuss the genetic and physiological components of mitochondria and the evidence for mitochondrial abnormalities in BPD and SZ. We will furthermore describe the role of mitochondria during brain development and the effect of current drugs for mental illness on mitochondrial function. Understanding the role of mitochondria, both developmentally as well as in the ailing brain, is of critical importance to elucidate pathophysiological mechanisms in psychiatric disorders. PMID:20833242

  7. Mitochondrial Dysfunction Contributes to Hypertensive Target Organ Damage: Lessons from an Animal Model of Human Disease

    PubMed Central

    Stanzione, Rosita; Volpe, Massimo

    2016-01-01

    Mechanisms underlying hypertensive target organ damage (TOD) are not completely understood. The pathophysiological role of mitochondrial oxidative stress, resulting from mitochondrial dysfunction, in development of TOD is unclear. The stroke-prone spontaneously hypertensive rat (SHRSP) is a suitable model of human hypertension and of its vascular consequences. Pathogenesis of TOD in SHRSP is multifactorial, being determined by high blood pressure levels, high salt/low potassium diet, and genetic factors. Accumulating evidence points to a key role of mitochondrial dysfunction in increased susceptibility to TOD development of SHRSP. Mitochondrial abnormalities were described in both heart and brain of SHRSP. Pharmacological compounds able to protect mitochondrial function exerted a significant protective effect on TOD development, independently of blood pressure levels. Through our research efforts, we discovered that two genes encoding mitochondrial proteins, one (Ndufc2) involved in OXPHOS complex I assembly and activity and the second one (UCP2) involved in clearance of mitochondrial ROS, are responsible, when dysregulated, for vascular damage in SHRSP. The suitability of SHRSP as a model of human disease represents a promising background for future translation of the experimental findings to human hypertension. Novel therapeutic strategies toward mitochondrial molecular targets may become a valuable tool for prevention and treatment of TOD in human hypertension. PMID:27594970

  8. Mitochondrial Dysfunction Contributes to Hypertensive Target Organ Damage: Lessons from an Animal Model of Human Disease.

    PubMed

    Rubattu, Speranza; Stanzione, Rosita; Volpe, Massimo

    2016-01-01

    Mechanisms underlying hypertensive target organ damage (TOD) are not completely understood. The pathophysiological role of mitochondrial oxidative stress, resulting from mitochondrial dysfunction, in development of TOD is unclear. The stroke-prone spontaneously hypertensive rat (SHRSP) is a suitable model of human hypertension and of its vascular consequences. Pathogenesis of TOD in SHRSP is multifactorial, being determined by high blood pressure levels, high salt/low potassium diet, and genetic factors. Accumulating evidence points to a key role of mitochondrial dysfunction in increased susceptibility to TOD development of SHRSP. Mitochondrial abnormalities were described in both heart and brain of SHRSP. Pharmacological compounds able to protect mitochondrial function exerted a significant protective effect on TOD development, independently of blood pressure levels. Through our research efforts, we discovered that two genes encoding mitochondrial proteins, one (Ndufc2) involved in OXPHOS complex I assembly and activity and the second one (UCP2) involved in clearance of mitochondrial ROS, are responsible, when dysregulated, for vascular damage in SHRSP. The suitability of SHRSP as a model of human disease represents a promising background for future translation of the experimental findings to human hypertension. Novel therapeutic strategies toward mitochondrial molecular targets may become a valuable tool for prevention and treatment of TOD in human hypertension. PMID:27594970

  9. Assessment of mitochondrial dysfunction-related, drug-induced hepatotoxicity in primary rat hepatocytes.

    PubMed

    Liu, Cong; Sekine, Shuichi; Ito, Kousei

    2016-07-01

    Evidence that mitochondrial dysfunction plays a central role in drug-induced liver injury is rapidly accumulating. In contrast to physiological conditions, in which almost all adenosine triphosphate (ATP) in hepatocytes is generated in mitochondria via aerobic respiration, the high glucose content and limited oxygen supply of conventional culture systems force primary hepatocytes to generate most ATP via cytosolic glycolysis. Thus, such anaerobically poised cells are resistant to xenobiotics that impair mitochondrial function, and are not suitable to identify drugs with mitochondrial liabilities. In this study, primary rat hepatocytes were cultured in galactose-based medium, instead of the conventional glucose-based medium, and in hyperoxia to improve the reliance of energy generation on aerobic respiration. Activation of mitochondria was verified by diminished cellular lactate release and increased oxygen consumption. These conditions improved sensitivity to the mitochondrial complex I inhibitor rotenone. Since oxidative stress is also a general cause of mitochondrial impairment, cells were exposed to test compounds in the presence of transferrin to increase the generation of reactive oxygen species via increased uptake of iron. Finally, 14 compounds with reported mitochondrial liabilities were tested to validate this new drug-induced mitochondrial toxicity assay. Overall, the culture of primary rat hepatocytes in galactose, hyperoxia and transferrin is a useful model for the identification of mitochondrial dysfunction-related drug-induced hepatotoxicity. PMID:27095095

  10. Shizukaol D Isolated from Chloranthus japonicas Inhibits AMPK-Dependent Lipid Content in Hepatic Cells by Inducing Mitochondrial Dysfunction

    PubMed Central

    Hu, Rongkuan; Yan, Huan; Hao, Xiaojiang; Liu, Haiyang; Wu, Jiarui

    2013-01-01

    This study is the first to demonstrate that shizukaol D, a natural compound isolated from Chloranthusjaponicus, can activate AMP- activated protein kinase (AMPK), a key sensor and regulator of intracellular energy metabolism, leading to a decrease in triglyceride and cholesterol levels in HepG2 cells. Furthermore, we found that shizukaol D induces mitochondrial dysfunction by depolarizing the mitochondrial membrane and suppressing energy production, which may result in AMPK activation. Our results provide a possible link between mitochondrial dysfunction and AMPK activation and suggest that shizukaol D might be used to treat metabolic syndrome. PMID:23967345

  11. Synaptosomal Mitochondrial Dysfunction in 5xFAD Mouse Model of Alzheimer's Disease

    PubMed Central

    Wang, Lu; Guo, Lan; Lu, Lin; Sun, Huili; Shao, Muming; Beck, Simon J.; Li, Lin; Ramachandran, Janani; Du, Yifeng; Du, Heng

    2016-01-01

    Brain mitochondrial dysfunction is hallmark pathology of Alzheimer’s disease (AD). Recently, the role of synaptosomal mitochondrial dysfunction in the development of synaptic injury in AD has received increasing attention. Synaptosomal mitochondria are a subgroup of neuronal mitochondria specifically locating at synapses. They play an essential role in fueling synaptic functions by providing energy on the site; and their defects may lead to synaptic failure, which is an early and pronounced pathology in AD. In our previous studies we have determined early synaptosomal mitochondrial dysfunction in an AD animal model (J20 line) overexpressing human Amyloid beta (Aβ), the key mediator of AD. In view of the limitations of J20 line mice in representing the full aspects of amyloidopathy in AD cases, we employed 5xFAD mice which are thought to be a desirable paradigm of amyloidopathy as seen in AD subjects. In addition, we have also examined the status of synaptosomal mitochondrial dynamics as well as Parkin-mediated mitophagy which have not been previously investigated in this mouse model. In comparison to nontransgenic (nonTg mice), 5xFAD mice demonstrated prominent synaptosomal mitochondrial dysfunction. Moreover, synaptosomal mitochondria from the AD mouse model displayed imbalanced mitochondrial dynamics towards fission along with activated Parkin and LC3BII recruitment correlating to spatial learning & memory impairments in 5xFAD mice in an age-dependent manner. These results suggest that synaptosomal mitochondrial deficits are primary pathology in Aβ-rich environments and further confirm the relevance of synaptosomal mitochondrial deficits to the development of AD. PMID:26942905

  12. Is inflammation a mitochondrial dysfunction-dependent event in fibromyalgia?

    PubMed

    Cordero, Mario D; Díaz-Parrado, Eduardo; Carrión, Angel M; Alfonsi, Simona; Sánchez-Alcazar, José Antonio; Bullón, Pedro; Battino, Maurizio; de Miguel, Manuel

    2013-03-01

    Fibromyalgia (FM) is a complex disorder that affects up to 5% of the general population worldwide. Both mitochondrial dysfunction and inflammation have been implicated in the pathophysiology of FM. We have investigated the possible relationship between mitochondrial dysfunction, oxidative stress, and inflammation in FM. We studied 30 women diagnosed with FM and 20 healthy women. Blood mononuclear cells (BMCs) from FM patients showed reduced level of coenzyme Q₁₀ (CoQ₁₀) and mtDNA contents and high level of mitochondrial reactive oxygen species (ROS) and serum tumor necrosis factor (TNF)-alpha and transcript levels. A significant negative correlation between CoQ₁₀ and TNF-alpha levels (r=-0.588; p<0.01), and a positive correlation between ROS and TNF-alpha levels (r=0.791; p<0.001) were observed accompanied by a significant correlation of visual analogical scale with serum TNF-alpha and transcript levels (r=0.4507; p<0.05 and r=0.7089; p<0.001, respectively). TNF-alpha release was observed in an in vitro (BMCs) and in vivo (mice) CoQ₁₀ deficiency model. Oral CoQ₁₀ supplementation restored biochemical parameters and induced a significant improvement in clinical symptoms (p<0.001). These results lead to the hypothesis that inflammation could be a mitochondrial dysfunction-dependent event implicated in the pathophysiology of FM in several patients indicating at mitochondria as a possible new therapeutic target. PMID:22938055

  13. Modeling mitochondrial dysfunctions in the brain: from mice to men.

    PubMed

    Breuer, Megan E; Willems, Peter H G M; Russel, Frans G M; Koopman, Werner J H; Smeitink, Jan A M

    2012-03-01

    The biologist Lewis Thomas once wrote: "my mitochondria comprise a very large proportion of me. I cannot do the calculation, but I suppose there is almost as much of them in sheer dry bulk as there is the rest of me". As humans, or indeed as any mammal, bird, or insect, we contain a specific molecular makeup that is driven by vast numbers of these miniscule powerhouses residing in most of our cells (mature red blood cells notwithstanding), quietly replicating, living independent lives and containing their own DNA. Everything we do, from running a marathon to breathing, is driven by these small batteries, and yet there is evidence that these molecular energy sources were originally bacteria, possibly parasitic, incorporated into our cells through symbiosis. Dysfunctions in these organelles can lead to debilitating, and sometimes fatal, diseases of almost all the bodies' major organs. Mitochondrial dysfunction has been implicated in a wide variety of human disorders either as a primary cause or as a secondary consequence. To better understand the role of mitochondrial dysfunction in human disease, a multitude of pharmacologically induced and genetically manipulated animal models have been developed showing to a greater or lesser extent the clinical symptoms observed in patients with known and unknown causes of the disease. This review will focus on diseases of the brain and spinal cord in which mitochondrial dysfunction has been proven or is suspected and on animal models that are currently used to study the etiology, pathogenesis and treatment of these diseases. PMID:21755361

  14. Protection from palmitate-induced mitochondrial DNA damage prevents from mitochondrial oxidative stress, mitochondrial dysfunction, apoptosis, and impaired insulin signaling in rat L6 skeletal muscle cells.

    PubMed

    Yuzefovych, Larysa V; Solodushko, Viktoriya A; Wilson, Glenn L; Rachek, Lyudmila I

    2012-01-01

    Saturated free fatty acids have been implicated in the increase of oxidative stress, mitochondrial dysfunction, apoptosis, and insulin resistance seen in type 2 diabetes. The purpose of this study was to determine whether palmitate-induced mitochondrial DNA (mtDNA) damage contributed to increased oxidative stress, mitochondrial dysfunction, apoptosis, impaired insulin signaling, and reduced glucose uptake in skeletal muscle cells. Adenoviral vectors were used to deliver the DNA repair enzyme human 8-oxoguanine DNA glycosylase/(apurinic/apyrimidinic) lyase (hOGG1) to mitochondria in L6 myotubes. After palmitate exposure, we evaluated mtDNA damage, mitochondrial function, production of mitochondrial reactive oxygen species, apoptosis, insulin signaling pathways, and glucose uptake. Protection of mtDNA from palmitate-induced damage by overexpression of hOGG1 targeted to mitochondria significantly diminished palmitate-induced mitochondrial superoxide production, restored the decline in ATP levels, reduced activation of c-Jun N-terminal kinase (JNK) kinase, prevented cells from entering apoptosis, increased insulin-stimulated phosphorylation of serine-threonine kinase (Akt) (Ser473) and tyrosine phosphorylation of insulin receptor substrate-1, and thereby enhanced glucose transporter 4 translocation to plasma membrane, and restored insulin signaling. Addition of a specific inhibitor of JNK mimicked the effect of mitochondrial overexpression of hOGG1 and partially restored insulin sensitivity, thus confirming the involvement of mtDNA damage and subsequent increase of oxidative stress and JNK activation in insulin signaling in L6 myotubes. Our results are the first to report that mtDNA damage is the proximal cause in palmitate-induced mitochondrial dysfunction and impaired insulin signaling and provide strong evidence that targeting DNA repair enzymes into mitochondria in skeletal muscles could be a potential therapeutic treatment for insulin resistance. PMID:22128025

  15. Acute mitochondrial dysfunction after blast exposure: potential role of mitochondrial glutamate oxaloacetate transaminase.

    PubMed

    Arun, Peethambaran; Abu-Taleb, Rania; Oguntayo, Samuel; Wang, Ying; Valiyaveettil, Manojkumar; Long, Joseph B; Nambiar, Madhusoodana P

    2013-10-01

    Use of improvised explosive devices has significantly increased the incidence of traumatic brain injury (TBI) and associated neuropsychiatric deficits in the recent wars in Iraq and Afghanistan. Acute deleterious effects of single and repeated blast exposure can lead to long-term neurobiological effects and neuropsychiatric deficits. Using in vitro and in vivo shock tube models of blast-induced TBI, we studied changes in mitochondrial energy metabolism after blast exposure. Single and repeated blast exposures in vitro resulted in significant decreases in neuronal adenosine triphosphate (ATP) levels at 6 h post-blast that returned towards normal levels by 24 h. Similar changes in ATP also were observed in the cerebral cortices of mice subjected to single and repeated blast exposures. In neurons, mitochondrial glutamate oxaloacetate transaminase (GOT2) plays a critical role in metabolism and energy production. Proteomic analysis of brain cortices showed a significant decrease in GOT2 levels 6 h after repeated blast exposures, which was further confirmed by Western blotting. Western blot analysis of GOT2 and pyruvate dehydrogenase in the cortex showed direct correlation only between GOT2 and ATP levels. Activity of GOT2 in the isolated cortical mitochondria also showed significant decrease at 6 h supporting the results of proteomic and Western blot analyses. Knowing the significant role of GOT2 in the neuronal mitochondrial energy metabolism, it is quite likely that the down regulation of GOT2 after blast exposure is playing a significant role in mitochondrial dysfunction after blast exposure. PMID:23600763

  16. Mitochondrial dysfunction remodels one-carbon metabolism in human cells

    PubMed Central

    Bao, Xiaoyan Robert; Ong, Shao-En; Goldberger, Olga; Peng, Jun; Sharma, Rohit; Thompson, Dawn A; Vafai, Scott B; Cox, Andrew G; Marutani, Eizo; Ichinose, Fumito; Goessling, Wolfram; Regev, Aviv; Carr, Steven A; Clish, Clary B; Mootha, Vamsi K

    2016-01-01

    Mitochondrial dysfunction is associated with a spectrum of human disorders, ranging from rare, inborn errors of metabolism to common, age-associated diseases such as neurodegeneration. How these lesions give rise to diverse pathology is not well understood, partly because their proximal consequences have not been well-studied in mammalian cells. Here we provide two lines of evidence that mitochondrial respiratory chain dysfunction leads to alterations in one-carbon metabolism pathways. First, using hypothesis-generating metabolic, proteomic, and transcriptional profiling, followed by confirmatory experiments, we report that mitochondrial DNA depletion leads to an ATF4-mediated increase in serine biosynthesis and transsulfuration. Second, we show that lesioning the respiratory chain impairs mitochondrial production of formate from serine, and that in some cells, respiratory chain inhibition leads to growth defects upon serine withdrawal that are rescuable with purine or formate supplementation. Our work underscores the connection between the respiratory chain and one-carbon metabolism with implications for understanding mitochondrial pathogenesis. DOI: http://dx.doi.org/10.7554/eLife.10575.001 PMID:27307216

  17. Mitochondrial dysfunction remodels one-carbon metabolism in human cells.

    PubMed

    Bao, Xiaoyan Robert; Ong, Shao-En; Goldberger, Olga; Peng, Jun; Sharma, Rohit; Thompson, Dawn A; Vafai, Scott B; Cox, Andrew G; Marutani, Eizo; Ichinose, Fumito; Goessling, Wolfram; Regev, Aviv; Carr, Steven A; Clish, Clary B; Mootha, Vamsi K

    2016-01-01

    Mitochondrial dysfunction is associated with a spectrum of human disorders, ranging from rare, inborn errors of metabolism to common, age-associated diseases such as neurodegeneration. How these lesions give rise to diverse pathology is not well understood, partly because their proximal consequences have not been well-studied in mammalian cells. Here we provide two lines of evidence that mitochondrial respiratory chain dysfunction leads to alterations in one-carbon metabolism pathways. First, using hypothesis-generating metabolic, proteomic, and transcriptional profiling, followed by confirmatory experiments, we report that mitochondrial DNA depletion leads to an ATF4-mediated increase in serine biosynthesis and transsulfuration. Second, we show that lesioning the respiratory chain impairs mitochondrial production of formate from serine, and that in some cells, respiratory chain inhibition leads to growth defects upon serine withdrawal that are rescuable with purine or formate supplementation. Our work underscores the connection between the respiratory chain and one-carbon metabolism with implications for understanding mitochondrial pathogenesis. PMID:27307216

  18. Salidroside Stimulates Mitochondrial Biogenesis and Protects against H2O2-Induced Endothelial Dysfunction

    PubMed Central

    Xing, Shasha; Yang, Xiaoyan; Li, Wenjing; Bian, Fang; Wu, Dan; Chi, Jiangyang; Xu, Gao; Zhang, Yonghui; Jin, Si

    2014-01-01

    Salidroside (SAL) is an active component of Rhodiola rosea with documented antioxidative properties. The purpose of this study is to explore the mechanism of the protective effect of SAL on hydrogen peroxide- (H2O2-) induced endothelial dysfunction. Pretreatment of the human umbilical vein endothelial cells (HUVECs) with SAL significantly reduced the cytotoxicity brought by H2O2. Functional studies on the rat aortas found that SAL rescued the endothelium-dependent relaxation and reduced superoxide anion (O2∙−) production induced by H2O2. Meanwhile, SAL pretreatment inhibited H2O2-induced nitric oxide (NO) production. The underlying mechanisms involve the inhibition of H2O2-induced activation of endothelial nitric oxide synthase (eNOS), adenosine monophosphate-activated protein kinase (AMPK), and Akt, as well as the redox sensitive transcription factor, NF-kappa B (NF-κB). SAL also increased mitochondrial mass and upregulated the mitochondrial biogenesis factors, peroxisome proliferator-activated receptor gamma-coactivator-1alpha (PGC-1α), and mitochondrial transcription factor A (TFAM) in the endothelial cells. H2O2-induced mitochondrial dysfunction, as demonstrated by reduced mitochondrial membrane potential (Δψm) and ATP production, was rescued by SAL pretreatment. Taken together, these findings implicate that SAL could protect endothelium against H2O2-induced injury via promoting mitochondrial biogenesis and function, thus preventing the overactivation of oxidative stress-related downstream signaling pathways. PMID:24868319

  19. Mitochondrial dysfunction in aging: Much progress but many unresolved questions

    PubMed Central

    Payne, Brendan A.I.; Chinnery, Patrick F.

    2015-01-01

    The free radical theory of aging is almost 60 years old. As mitochondria are the principle source of intracellular reactive oxygen species (ROS), this hypothesis suggested a central role for the mitochondrion in normal mammalian aging. In recent years, however, much work has questioned the importance of mitochondrial ROS in driving aging. Conversely new evidence points to other facets of mitochondrial dysfunction which may nevertheless suggest the mitochondrion retains a critical role at the center of a complex web of processes leading to cellular and organismal aging. PMID:26050973

  20. Mitochondrial dysfunction in DDR-related cancer predisposition syndromes.

    PubMed

    Lyakhovich, Alex; Graifer, Dmitry; Stefanovie, Barbora; Krejci, Lumir

    2016-04-01

    Given the key role of mitochondria in various cellular events, it is not surprising that mitochondrial dysfunction (MDF) is seen in many pathological conditions, in particular cancer. The mechanisms defining MDF are not clearly understood and may involve genetic defects, misbalance of reactive oxygen species (ROS), impaired autophagy (mitophagy), acquired mutations in mitochondrial or nuclear DNA and inability of cells to cope with the consequences. The importance of MDF arises from its detection in the syndromes with defective DNA damage response (DDR) and cancer predisposition. Here, we will focus on the dual role of these syndromes in cancer predisposition and MDF with specific emphasis on impaired autophagy. PMID:26926806

  1. Hypoxia, mitochondrial dysfunction and synovial invasiveness in rheumatoid arthritis.

    PubMed

    Fearon, Ursula; Canavan, Mary; Biniecka, Monika; Veale, Douglas J

    2016-07-01

    Synovial proliferation, neovascularization and leukocyte extravasation transform the normally acellular synovium into an invasive tumour-like 'pannus'. The highly dysregulated architecture of the microvasculature creates a poor oxygen supply to the synovium, which, along with the increased metabolic turnover of the expanding synovial pannus, creates a hypoxic microenvironment. Abnormal cellular metabolism and mitochondrial dysfunction thus ensue and, in turn, through the increased production of reactive oxygen species, actively induce inflammation. When exposed to hypoxia in the inflamed joint, immune-inflammatory cells show adaptive survival reactions by activating key proinflammatory signalling pathways, including those mediated by hypoxia-inducible factor-1α (HIF-1α), nuclear factor κB (NF-κB), Janus kinase-signal transducer and activator of transcription (JAK-STAT) and Notch, which contribute to synovial invasiveness. The reprogramming of hypoxia-mediated pathways in synovial cells, such as fibroblasts, dendritic cells, macrophages and T cells, is implicated in the pathogenesis of rheumatoid arthritis and other inflammatory conditions, and might therefore provide an opportunity for therapeutic intervention. PMID:27225300

  2. Melatonin: A Potential Anti-Oxidant Therapeutic Agent for Mitochondrial Dysfunctions and Related Disorders.

    PubMed

    Ganie, Showkat Ahmad; Dar, Tanveer Ali; Bhat, Aashiq Hussain; Dar, Khalid B; Anees, Suhail; Zargar, Mohammad Afzal; Masood, Akbar

    2016-02-01

    Mitochondria play a central role in cellular physiology. Besides their classic function of energy metabolism, mitochondria are involved in multiple cell functions, including energy distribution through the cell, energy/heat modulation, regulation of reactive oxygen species (ROS), calcium homeostasis, and control of apoptosis. Simultaneously, mitochondria are the main producer and target of ROS with the result that multiple mitochondrial diseases are related to ROS-induced mitochondrial injuries. Increased free radical generation, enhanced mitochondrial inducible nitric oxide synthase (iNOS) activity, enhanced nitric oxide (NO) production, decreased respiratory complex activity, impaired electron transport system, and opening of mitochondrial permeability transition pores have all been suggested as factors responsible for impaired mitochondrial function. Because of these, neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and aging, are caused by ROS-induced mitochondrial dysfunctions. Melatonin, the major hormone of the pineal gland, also acts as an anti-oxidant and as a regulator of mitochondrial bioenergetic function. Melatonin is selectively taken up by mitochondrial membranes, a function not shared by other anti-oxidants, and thus has emerged as a major potential therapeutic tool for treating neurodegenerative disorders. Multiple in vitro and in vivo experiments have shown the protective role of melatonin for preventing oxidative stress-induced mitochondrial dysfunction seen in experimental models of PD, AD, and HD. With these functions in mind, this article reviews the protective role of melatonin with mechanistic insights against mitochondrial diseases and suggests new avenues for safe and effective treatment modalities against these devastating neurodegenerative diseases. Future insights are also discussed. PMID:26087000

  3. Nitro-Arachidonic Acid Prevents Angiotensin II-Induced Mitochondrial Dysfunction in a Cell Line of Kidney Proximal Tubular Cells

    PubMed Central

    Sánchez-Calvo, Beatriz; Cassina, Adriana; Rios, Natalia; Boggia, José; Radi, Rafael; Rubbo, Homero; Trostchansky, Andres

    2016-01-01

    Nitro-arachidonic acid (NO2-AA) is a cell signaling nitroalkene that exerts anti-inflammatory activities during macrophage activation. While angiotensin II (ANG II) produces an increase in reactive oxygen species (ROS) production and mitochondrial dysfunction in renal tubular cells, little is known regarding the potential protective effects of NO2-AA in ANG II-mediated kidney injury. As such, this study examines the impact of NO2-AA on ANG II-induced mitochondrial dysfunction in an immortalized renal proximal tubule cell line (HK-2 cells). Treatment of HK-2 cells with ANG II increases the production of superoxide (O2●-), nitric oxide (●NO), inducible nitric oxide synthase (NOS2) expression, peroxynitrite (ONOO-) and mitochondrial dysfunction. Using high-resolution respirometry, it was observed that the presence of NO2-AA prevented ANG II-mediated mitochondrial dysfunction. Attempting to address mechanism, we treated isolated rat kidney mitochondria with ONOO-, a key mediator of ANG II-induced mitochondrial damage, in the presence or absence of NO2-AA. Whereas the activity of succinate dehydrogenase (SDH) and ATP synthase (ATPase) were diminished upon exposure to ONOO-, they were restored by pre-incubating the mitochondria with NO2-AA. Moreover, NO2-AA prevents oxidation and nitration of mitochondrial proteins. Combined, these data demonstrate that ANG II-mediated oxidative damage and mitochondrial dysfunction is abrogated by NO2-AA, identifying this compound as a promising pharmacological tool to prevent ANG II–induced renal disease. PMID:26943326

  4. Primary Mitochondrial Disease and Secondary Mitochondrial Dysfunction: Importance of Distinction for Diagnosis and Treatment.

    PubMed

    Niyazov, Dmitriy M; Kahler, Stephan G; Frye, Richard E

    2016-07-01

    Mitochondrial disease refers to a heterogeneous group of disorders resulting in defective cellular energy production due to abnormal oxidative phosphorylation (oxphos). Primary mitochondrial disease (PMD) is diagnosed clinically and ideally, but not always, confirmed by a known or indisputably pathogenic mitochondrial DNA (mtDNA) or nuclear DNA (nDNA) mutation. The PMD genes either encode oxphos proteins directly or they affect oxphos function by impacting production of the complex machinery needed to run the oxphos process. However, many disorders have the 'mitochondrial' phenotype without an identifiable mtDNA or nDNA mutation or they have a variant of unknown clinical significance. Secondary mitochondrial dysfunction (SMD) can be caused by genes encoding neither function nor production of the oxphos proteins and accompanies many hereditary non-mitochondrial diseases. SMD may also be due to nongenetic causes such as environmental factors. In our practice, we see many patients with clinical signs of mitochondrial dysfunction based on phenotype, biomarkers, imaging, muscle biopsy, or negative/equivocal mtDNA or nDNA test results. In these cases, it is often tempting to assign a patient's phenotype to 'mitochondrial disease', but SMD is often challenging to distinguish from PMD. Fortunately, rapid advances in molecular testing, made possible by next generation sequencing, have been effective at least in some cases in establishing accurate diagnoses to distinguish between PMD and SMD. This is important, since their treatments and prognoses can be quite different. However, even in the absence of the ability to distinguish between PMD and SMD, treating SMD with standard treatments for PMD can be effective. We review the latest findings regarding mitochondrial disease/dysfunction and give representative examples in which differentiation between PMD and SMD has been crucial for diagnosis and treatment. PMID:27587988

  5. New therapeutic approach: diphenyl diselenide reduces mitochondrial dysfunction in acetaminophen-induced acute liver failure.

    PubMed

    Carvalho, Nélson R; da Rosa, Edovando F; da Silva, Michele H; Tassi, Cintia C; Dalla Corte, Cristiane L; Carbajo-Pescador, Sara; Mauriz, Jose L; González-Gallego, Javier; Soares, Félix A

    2013-01-01

    The acute liver failure (ALF) induced by acetaminophen (APAP) is closely related to oxidative damage and depletion of hepatic glutathione, consequently changes in cell energy metabolism and mitochondrial dysfunction have been observed after APAP overdose. Diphenyl diselenide [(PhSe)2], a simple organoselenium compound with antioxidant properties, previously demonstrated to confer hepatoprotection. However, little is known about the protective mechanism on mitochondria. The main objective of this study was to investigate the effects (PhSe)2 to reduce mitochondrial dysfunction and, secondly, compare in the liver homogenate the hepatoprotective effects of the (PhSe)2 to the N-acetylcysteine (NAC) during APAP-induced ALF to validate our model. Mice were injected intraperitoneal with APAP (600 mg/kg), (PhSe)2 (15.6 mg/kg), NAC (1200 mg/kg), APAP+(PhSe)2 or APAP+NAC, where the (PhSe)2 or NAC treatment were given 1 h following APAP. The liver was collected 4 h after overdose. The plasma alanine and aspartate aminotransferase activities increased after APAP administration. APAP caused a remarkable increase of oxidative stress markers (lipid peroxidation, reactive species and protein carbonylation) and decrease of the antioxidant defense in the liver homogenate and mitochondria. APAP caused a marked loss in the mitochondrial membrane potential, the mitochondrial ATPase activity, and the rate of mitochondrial oxygen consumption and increased the mitochondrial swelling. All these effects were significantly prevented by (PhSe)2. The effectiveness of (PhSe)2 was similar at a lower dose than NAC. In summary, (PhSe)2 provided a significant improvement to the mitochondrial redox homeostasis and the mitochondrial bioenergetics dysfunction caused by membrane permeability transition in the hepatotoxicity APAP-induced. PMID:24349162

  6. New Therapeutic Approach: Diphenyl Diselenide Reduces Mitochondrial Dysfunction in Acetaminophen-Induced Acute Liver Failure

    PubMed Central

    Carvalho, Nélson R.; da Rosa, Edovando F.; da Silva, Michele H.; Tassi, Cintia C.; Dalla Corte, Cristiane L.; Carbajo-Pescador, Sara; Mauriz, Jose L.; González-Gallego, Javier; Soares, Félix A.

    2013-01-01

    The acute liver failure (ALF) induced by acetaminophen (APAP) is closely related to oxidative damage and depletion of hepatic glutathione, consequently changes in cell energy metabolism and mitochondrial dysfunction have been observed after APAP overdose. Diphenyl diselenide [(PhSe)2], a simple organoselenium compound with antioxidant properties, previously demonstrated to confer hepatoprotection. However, little is known about the protective mechanism on mitochondria. The main objective of this study was to investigate the effects (PhSe)2 to reduce mitochondrial dysfunction and, secondly, compare in the liver homogenate the hepatoprotective effects of the (PhSe)2 to the N-acetylcysteine (NAC) during APAP-induced ALF to validate our model. Mice were injected intraperitoneal with APAP (600 mg/kg), (PhSe)2 (15.6 mg/kg), NAC (1200 mg/kg), APAP+(PhSe)2 or APAP+NAC, where the (PhSe)2 or NAC treatment were given 1 h following APAP. The liver was collected 4 h after overdose. The plasma alanine and aspartate aminotransferase activities increased after APAP administration. APAP caused a remarkable increase of oxidative stress markers (lipid peroxidation, reactive species and protein carbonylation) and decrease of the antioxidant defense in the liver homogenate and mitochondria. APAP caused a marked loss in the mitochondrial membrane potential, the mitochondrial ATPase activity, and the rate of mitochondrial oxygen consumption and increased the mitochondrial swelling. All these effects were significantly prevented by (PhSe)2. The effectiveness of (PhSe)2 was similar at a lower dose than NAC. In summary, (PhSe)2 provided a significant improvement to the mitochondrial redox homeostasis and the mitochondrial bioenergetics dysfunction caused by membrane permeability transition in the hepatotoxicity APAP-induced. PMID:24349162

  7. Lycopene Prevents Amyloid [Beta]-Induced Mitochondrial Oxidative Stress and Dysfunctions in Cultured Rat Cortical Neurons.

    PubMed

    Qu, Mingyue; Jiang, Zheng; Liao, Yuanxiang; Song, Zhenyao; Nan, Xinzhong

    2016-06-01

    Brains affected by Alzheimer's disease (AD) show a large spectrum of mitochondrial alterations at both morphological and genetic level. The causal link between β-amyloid (Aβ) and mitochondrial dysfunction has been established in cellular models of AD. We observed previously that lycopene, a member of the carotenoid family of phytochemicals, could counteract neuronal apoptosis and cell damage induced by Aβ and other neurotoxic substances, and that this neuroprotective action somehow involved the mitochondria. The present study aims to investigate the effects of lycopene on mitochondria in cultured rat cortical neurons exposed to Aβ. It was found that lycopene attenuated Aβ-induced oxidative stress, as evidenced by the decreased intracellular reactive oxygen species generation and mitochondria-derived superoxide production. Additionally, lycopene ameliorated Aβ-induced mitochondrial morphological alteration, opening of the mitochondrial permeability transition pores and the consequent cytochrome c release. Lycopene also improved mitochondrial complex activities and restored ATP levels in Aβ-treated neuron. Furthermore, lycopene prevented mitochondrial DNA damages and improved the protein level of mitochondrial transcription factor A in mitochondria. Those results indicate that lycopene protects mitochondria against Aβ-induced damages, at least in part by inhibiting mitochondrial oxidative stress and improving mitochondrial function. These beneficial effects of lycopene may account for its protection against Aβ-induced neurotoxicity. PMID:26816095

  8. Targeting advanced glycation endproducts and mitochondrial dysfunction in cardiovascular disease.

    PubMed

    Ward, Micheal S; Fortheringham, Amelia K; Cooper, Mark E; Forbes, Josephine M

    2013-08-01

    Cardiovascular disease (CVD) is a leading cause of mortality in the Western World. The development and onset of disease can be attributed to many risk factors including genetic susceptibility, diabetes, obesity and atherosclerosis. Numerous studies highlight the production of advanced glycation endproducts (AGEs) and interaction with their receptor (RAGE) as playing a key pathogenic role. The AGEs-RAGE axis is thought to contribute to a proinflammatory environment inducing cellular dysfunction which cascades towards pathology. Mitochondrial dysfunction concurrently plays a role in these proinflammatory responses presenting excess reactive oxygen species (ROS) production under pathological conditions. This ROS release can exacerbate the production of AGEs fuelling the fire somewhat. However, the AGEs-RAGE axis may influence mitochondrial function independently of inflammation. Therefore instigation of the AGEs-RAGE axis may facilitate spiralling towards pathology on many fronts including CVD development. PMID:23871446

  9. Curcumin alleviates oxidative stress and mitochondrial dysfunction in astrocytes.

    PubMed

    Daverey, Amita; Agrawal, Sandeep K

    2016-10-01

    Oxidative stress plays a critical role in various neurodegenerative diseases, thus alleviating oxidative stress is a potential strategy for therapeutic intervention and/or prevention of neurodegenerative diseases. In the present study, alleviation of oxidative stress through curcumin is investigated in A172 (human glioblastoma cell line) and HA-sp (human astrocytes cell line derived from the spinal cord) astrocytes. H2O2 was used to induce oxidative stress in astrocytes (A172 and HA-sp). Data show that H2O2 induces activation of astrocytes in dose- and time-dependent manner as evident by increased expression of GFAP in A172 and HA-sp cells after 24 and 12h respectively. An upregulation of Prdx6 was also observed in A172 and HA-sp cells after 24h of H2O2 treatment as compared to untreated control. Our data also showed that curcumin inhibits oxidative stress-induced cytoskeleton disarrangement, and impedes the activation of astrocytes by inhibiting upregulation of GFAP, vimentin and Prdx6. In addition, we observed an inhibition of oxidative stress-induced inflammation, apoptosis and mitochondria fragmentation after curcumin treatment. Therefore, our results suggest that curcumin not only protects astrocytes from H2O2-induced oxidative stress but also reverses the mitochondrial damage and dysfunction induced by oxidative stress. This study also provides evidence for protective role of curcumin on astrocytes by showing its effects on attenuating reactive astrogliosis and inhibiting apoptosis. PMID:27423629

  10. Dysfunctional Mitochondrial Dynamics in the Pathophysiology of Neurodegenerative Diseases

    PubMed Central

    Haun, Florian; Nakamura, Tomohiro; Lipton, Stuart A

    2013-01-01

    Mitochondrial dysfunction occurs in neurodegenerative diseases, however molecular mechanisms underlying this process remain elusive. Emerging evidence suggests that nitrosative stress, mediated by reactive nitrogen species (RNS), may play a role in mitochondrial pathology. Here, we review findings that highlight the abnormal mitochondrial morphology observed in many neurodegenerative disorders including Alzheimer’s, Parkinson’s, and Huntington’s diseases. One mechanism whereby RNS can affect mitochondrial function and thus neuronal survival occurs via protein S-nitrosylation, representing chemical reaction of a nitric oxide (NO) group with a critical cysteine thiol. In this review, we focus on the signaling pathway whereby S-nitrosylation of the mitochondrial fission protein Drp1 (dynamin-related protein 1; forming S-nitrosothiol (SNO)-Drp1) precipitates excessive mitochondrial fission or fragmentation and consequent bioenergetic compromise. Subsequently, the formation of SNO-Drp1 leads to synaptic damage and neuronal death. Thus, intervention in the SNO-Drp1 pathway may provide therapeutic benefit in neurodegenerative diseases. PMID:24587691

  11. HIV antiretroviral drug combination induces endothelial mitochondrial dysfunction and reactive oxygen species production, but not apoptosis

    SciTech Connect

    Jiang Bo; Hebert, Valeria Y.; Li, Yuchi; Mathis, J. Michael; Alexander, J. Steven; Dugas, Tammy R.

    2007-10-01

    ROS production culminate in apoptosis, we performed the terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL), annexin V and 4',6-diamidino-2-phenylindole (DAPI) staining, and caspase-3 activity assays. However, none of these assays showed appreciable levels of ART-induced apoptosis. Our studies thus suggest that in endothelial cells, ART induces mitochondrial dysfunction with a concomitant increase in mitochondria-derived ROS. This compromised mitochondrial function may be one important factor culminating in endothelial dysfunction, without inducing an increase in apoptosis.

  12. Mitochondrial dysfunction precedes depression of AMPK/AKT signaling in insulin resistance induced by high glucose in primary cortical neurons.

    PubMed

    Peng, Yunhua; Liu, Jing; Shi, Le; Tang, Ying; Gao, Dan; Long, Jiangang; Liu, Jiankang

    2016-06-01

    Recent studies have demonstrated brain insulin signaling impairment and mitochondrial dysfunction in diabetes. Hyperinsulinemia and hyperlipidemia arising from diabetes have been linked to neuronal insulin resistance, and hyperglycemia induces peripheral sensory neuronal impairment and mitochondrial dysfunction. However, how brain glucose at diabetic conditions elicits cortical neuronal insulin signaling impairment and mitochondrial dysfunction remains unknown. In the present study, we cultured primary cortical neurons with high glucose levels and investigated the neuronal mitochondrial function and insulin response. We found that mitochondrial function was declined in presence of 10 mmol/L glucose, prior to the depression of AKT signaling in primary cortical neurons. We further demonstrated that the cerebral cortex of db/db mice exhibited both insulin resistance and loss of mitochondrial complex components. Moreover, we found that adenosine monophosphate-activated protein kinase (AMPK) inactivation is involved in high glucose-induced mitochondrial dysfunction and insulin resistance in primary cortical neurons and neuroblastoma cells, as well as in cerebral cortex of db/db mice, and all these impairments can be rescued by mitochondrial activator, resveratrol. Taken together, our results extend the finding that high glucose (≥10 mmol/L) comparable to diabetic brain extracellular glucose level leads to neuronal mitochondrial dysfunction and resultant insulin resistance, and targeting mitochondria-AMPK signaling might be a promising strategy to protect against diabetes-related neuronal impairment in central nerves system. We found that high glucose (≥10 mmol/L), comparable to diabetic brain extracellular glucose level, leads to neuronal mitochondrial dysfunction and resultant insulin resistance in an AMPK-dependent manner, and targeting mitochondria-AMPK signaling might be a promising strategy to protect against diabetes-related neuronal impairment in central

  13. Mitochondrial dysfunction in schizophrenia: an evolutionary perspective.

    PubMed

    Gonçalves, Vanessa F; Andreazza, Ana C; Kennedy, James L

    2015-01-01

    Schizophrenia (SCZ) is a severe psychiatric illness with a lifetime prevalence of 0.4 %. A disturbance of energy metabolism has been suggested as part of the etiopathogenesis of the disorder. Several lines of evidence have proposed a connection between etiopathogenesis of SCZ and human brain evolution, which was characterized by an increase in the energy requirement, demanding a co-evolution of the mitochondrial system. Mitochondria are key players in brain energy homeostasis and multiple lines of evidence suggest that the system is disrupted in SCZ. In this review, we will describe the current knowledge on pathways/system involved in the human brain evolution as well as the main theories regarding the evolutionary origin of SCZ. We will furthermore discuss the role of mitochondria in the context of brain energy metabolism and its role in the etiopathogenesis of SCZ. Understanding SCZ in the context of human brain evolution opens a new perspective to elucidate pathophysiological mechanisms involved in the origin and/or portions of the complex symptomatology of this severe mental disorder. PMID:25312050

  14. Alzheimer's Proteins, Oxidative Stress, and Mitochondrial Dysfunction Interplay in a Neuronal Model of Alzheimer's Disease

    PubMed Central

    Bobba, Antonella; Petragallo, Vito A.; Marra, Ersilia; Atlante, Anna

    2010-01-01

    In this paper, we discuss the interplay between beta-amyloid (Aβ) peptide, Tau fragments, oxidative stress, and mitochondria in the neuronal model of cerebellar granule neurons (CGNs) in which the molecular events reminiscent of AD are activated. The identification of the death route and the cause/effect relationships between the events leading to death could be helpful to manage the progression of apoptosis in neurodegeneration and to define antiapoptotic treatments acting on precocious steps of the death process. Mitochondrial dysfunction is among the earliest events linked to AD and might play a causative role in disease onset and progression. Recent studies on CGNs have shown that adenine nucleotide translocator (ANT) impairment, due to interaction with toxic N-ter Tau fragment, contributes in a significant manner to bioenergetic failure and mitochondrial dysfunction. These findings open a window for new therapeutic strategies aimed at preserving and/or improving mitochondrial function. PMID:20862336

  15. Preferential killing of cancer cells with mitochondrial dysfunction by natural compounds

    PubMed Central

    Chen, Gang; Wang, Feng; Trachootham, Dunyaporn; Huang, Peng

    2011-01-01

    Mitochondria play essential roles in cellular metabolism, redox homeostasis, and regulation of cell death. Emerging evidences suggest that cancer cells exhibit various degrees of mitochondrial dysfunctions and metabolic alterations, which may serve as a basis to develop therapeutic strategies to preferentially kill the malignant cells. Mitochondria as a therapeutic target for cancer treatment is gaining much attention in the recent years, and agents that impact mitochondria with anticancer activity have been identified and tested in vitro and in vivo using various experimental systems. Anticancer agents that directly target mitochondria or indirectly affect mitochondrial functions are collectively classified as mitocans. This review article focuses on several natural compounds that preferentially kill cancer cells with mitochondrial dysfunction, and discusses the possible underlying mechanisms and their therapeutic implications in cancer treatment. Mitocans that have been comprehensively reviewed recently are not included in this article. Important issues such as therapeutic selectivity and the relevant biochemical basis are discussed in the context of future perspectives. PMID:20713185

  16. Recovery of adriamycin induced mitochondrial dysfunction in liver by selenium.

    PubMed

    Taskin, E; Dursun, N

    2015-12-01

    Adriamycin (ADR) is a chemotherapeutic drug. Its toxicities may associate with mitochondriopathy. Selenium (Se) is a trace element for essential intracellular antioxidant enzymes. However, there is lack of data related to the effect of selenium on the liver tissue of ADR-induced mitochondrial dysfunction. The study was to investigate whether Se could restore mitochondrial dysfunction of liver-exposed ADR. Rats were divided into four groups as a control, ADR, Se, co-treated ADR with Se groups. The biochemical measurements of the liver were made in mitochondrial and cytosol. ATP level and mitochondria membrane potential (MMP) were measured. Total oxidant (TOS), total antioxidant (TAS) status were determined and oxidative stress index (OSI) was calculated by using TOS and TAS. ADR increased TOS in mitochondria and also oxidative stress in mitochondria. ADR sligtly decreased MMP, and ATP level. Partial recovery of MMP by Se was able to elevate the ATP production in cotreatment of ADR with Se. TOS in mitochondria and cytosol was diminished, as well as OSI. We concluded that selenium could potentially be used against oxidative stress induced by ADR in liver, resulting from the restoration of MMP and ATP production and prevention of mitochondrial damage in vivo. PMID:25322894

  17. Mitochondrial integrity in a neonatal bovine model of right ventricular dysfunction.

    PubMed

    Bruns, Danielle R; Brown, R Dale; Stenmark, Kurt R; Buttrick, Peter M; Walker, Lori A

    2015-01-15

    Right ventricular (RV) function is a key determinant of survival in patients with both RV and left ventricular (LV) failure, yet the mechanisms of RV failure are poorly understood. Recent studies suggest cardiac metabolism is altered in RV failure in pulmonary hypertension (PH). Accordingly, we assessed mitochondrial content, dynamics, and function in hearts from neonatal calves exposed to hypobaric hypoxia (HH). This model develops severe PH with concomitant RV hypertrophy, dilation, and dysfunction. After 2 wk of HH, pieces of RV and LV were obtained along with samples from age-matched controls. Comparison with control assesses the effect of hypoxia, whereas comparison between the LV and RV in HH assesses the additional impact of RV overload. Mitochondrial DNA was unchanged in HH, as was mitochondrial content as assessed by electron microscopy. Immunoblotting for electron transport chain subunits revealed a small increase in mitochondrial content in HH in both ventricles. Mitochondrial dynamics were largely unchanged. Activity of individual respiratory chain complexes was reduced (complex I) or unchanged (complex V) in HH. Key enzymes in the glycolysis pathway were upregulated in both HH ventricles, alongside upregulation of hypoxia-inducible factor-1α protein. Importantly, none of the changes in expression or activity were different between ventricles, suggesting the changes are in response to HH and not RV overload. Upregulation of glycolytic modulators without chamber-specific mitochondrial dysfunction suggests that mitochondrial capacity and activity are maintained at the onset of PH, and the early RV dysfunction in this model results from mechanisms independent of the mitochondria. PMID:25416385

  18. MTERF2 contributes to MPP(+)-induced mitochondrial dysfunction and cell damage.

    PubMed

    Han, Yanyan; Gao, Peiye; Qiu, Shi; Zhang, Linbing; Yang, Ling; Zuo, Ji; Zhong, Chunjiu; Zhu, Shun; Liu, Wen

    2016-02-26

    Parkinson's disease (PD) is a common neurodegenerative disorder whose pathogenesis is under intense investigation. Substantial evidence indicates that mitochondrial dysfunction plays a central role in the pathophysiology of PD. Several mitochondrial internal regulating factors act to maintain the mitochondrial function. However, how these internal regulating factors contribute to mitochondrial dysfunction in PD remains elusive. One of these factors, mitochondrial transcription termination factor 2 (MTERF2), has been implicated in the regulation of oxidative phosphorylation by modulating mitochondrial DNA transcription. Here, we discovered a new role of MTERF2 in regulating mitochondrial dysfunction and cell damage induced by MPP(+) in SH-SY5Y cells. We found that MPP(+) treatment elevated MTERF2 expression, induced mitochondrial dysfunction and cell damage, which was alleviated by MTERF2 knockdown. These findings demonstrate that MTERF2 contributes to MPP(+)-induced mitochondrial disruption and cell damage. This study indicates that MTERF2 is a potential therapeutic target for environmentally induced Parkinson's disease. PMID:26826381

  19. Nrf2-ARE Activator Carnosic Acid Decreases Mitochondrial Dysfunction, Oxidative Damage and Neuronal Cytoskeletal Degradation Following Traumatic Brain Injury in Mice

    PubMed Central

    Miller, Darren M.; Singh, Indrapal N.; Wang, Juan A.; Hall, Edward D.

    2014-01-01

    The importance of free radical-induced oxidative damage after traumatic brain injury (TBI) has been well documented. Despite multiple clinical trials with radical-scavenging antioxidants that are neuroprotective in TBI models, none is approved for acute TBI patients. As an alternative antioxidant target, Nrf2 is a transcription factor that activates expression of antioxidant and cytoprotective genes by binding to antioxidant response elements (ARE) within DNA. Previous research has shown that neuronal mitochondria are susceptible to oxidative damage post-TBI, and thus the current study investigates whether Nrf2-ARE activation protects mitochondrial function when activated post-TBI. It was hypothesized that administration of carnosic acid (CA) would reduce oxidative damage biomarkers in brain tissue and also preserve cortical mitochondrial respiratory function post-TBI. A mouse controlled cortical impact (CCI) model was employed with a 1.0mm cortical deformation injury. Administration of CA at 15 minutes post-TBI reduced cortical lipid peroxidation, protein nitration, and cytoskeletal breakdown markers in a dose-dependent manner at 48 hours post-injury. Moreover, CA preserved mitochondrial respiratory function compared to vehicle animals. This was accompanied by decreased oxidative damage to mitochondrial proteins, suggesting the mechanistic connection of the two effects. Lastly, delaying the initial administration of CA up to 8 hours post-TBI was still capable of reducing cytoskeletal breakdown, thereby demonstrating a clinically relevant therapeutic window for this approach. This study demonstrates that pharmacological Nrf2-ARE induction is capable of neuroprotective efficacy when administered after TBI. PMID:25432068

  20. Cigarette smoke-induced mitochondrial fragmentation and dysfunction in human airway smooth muscle

    PubMed Central

    Aravamudan, Bharathi; Kiel, Alexander; Freeman, Michelle; Delmotte, Philippe; Thompson, Michael; Vassallo, Robert; Sieck, Gary C.; Pabelick, Christina M.

    2014-01-01

    The balance between mitochondrial fission and fusion is crucial for mitochondria to perform its normal cellular functions. We hypothesized that cigarette smoke (CS) disrupts this balance and enhances mitochondrial dysfunction in the airway. In nonasthmatic human airway smooth muscle (ASM) cells, CS extract (CSE) induced mitochondrial fragmentation and damages their networked morphology in a concentration-dependent fashion, via increased expression of mitochondrial fission protein dynamin-related protein 1 (Drp1) and decreased fusion protein mitofusin (Mfn) 2. CSE effects on Drp1 vs. Mfn2 and mitochondrial network morphology involved reactive oxygen species (ROS), activation of extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), protein kinase C (PKC) and proteasome pathways, as well as transcriptional regulation via factors such as NF-κB and nuclear erythroid 2-related factor 2. Inhibiting Drp1 prevented CSE effects on mitochondrial networks and ROS generation, whereas blocking Mfn2 had the opposite, detrimental effect. In ASM from asmatic patients, mitochondria exhibited substantial morphological defects at baseline and showed increased Drp1 but decreased Mfn2 expression, with exacerbating effects of CSE. Overall, these results highlight the importance of mitochondrial networks and their regulation in the context of cellular changes induced by insults such as inflammation (as in asthma) or CS. Altered mitochondrial fission/fusion proteins have a further potential to influence parameters such as ROS and cell proliferation and apoptosis relevant to airway diseases. PMID:24610934

  1. Is Inflammation a Mitochondrial Dysfunction-Dependent Event in Fibromyalgia?

    PubMed Central

    Díaz-Parrado, Eduardo; Carrión, Angel M.; Alfonsi, Simona; Sánchez-Alcazar, José Antonio; Bullón, Pedro; Battino, Maurizio; de Miguel, Manuel

    2013-01-01

    Abstract Fibromyalgia (FM) is a complex disorder that affects up to 5% of the general population worldwide. Both mitochondrial dysfunction and inflammation have been implicated in the pathophysiology of FM. We have investigated the possible relationship between mitochondrial dysfunction, oxidative stress, and inflammation in FM. We studied 30 women diagnosed with FM and 20 healthy women. Blood mononuclear cells (BMCs) from FM patients showed reduced level of coenzyme Q10 (CoQ10) and mtDNA contents and high level of mitochondrial reactive oxygen species (ROS) and serum tumor necrosis factor (TNF)-alpha and transcript levels. A significant negative correlation between CoQ10 and TNF-alpha levels (r=−0.588; p<0.01), and a positive correlation between ROS and TNF-alpha levels (r=0.791; p<0.001) were observed accompanied by a significant correlation of visual analogical scale with serum TNF-alpha and transcript levels (r=0.4507; p<0.05 and r=0.7089; p<0.001, respectively). TNF-alpha release was observed in an in vitro (BMCs) and in vivo (mice) CoQ10 deficiency model. Oral CoQ10 supplementation restored biochemical parameters and induced a significant improvement in clinical symptoms (p<0.001). These results lead to the hypothesis that inflammation could be a mitochondrial dysfunction-dependent event implicated in the pathophysiology of FM in several patients indicating at mitochondria as a possible new therapeutic target. Antioxid. Redox Signal. 18, 800–807. PMID:22938055

  2. Identification of a Small Molecule Cyclophilin D Inhibitor for Rescuing Aβ-Mediated Mitochondrial Dysfunction.

    PubMed

    Valasani, Koteswara Rao; Sun, Qinru; Fang, Du; Zhang, Zhihua; Yu, Qing; Guo, Yaopeng; Li, Jianping; Roy, Anuradha; ShiDu Yan, Shirley

    2016-03-10

    Cyclophilin D (CypD), a peptidylprolyl isomerase F (PPIase), plays a central role in opening the mitochondrial membrane permeability transition pore leading to cell death. CypD resides in the mitochondrial matrix, associates with the inner mitochondrial membrane, interacts with amyloid beta to exacerbate mitochondrial and neuronal stress and has been linked to Alzheimer's disease (AD). We report the biological activity of a small-molecule CypD inhibitor (C-9), which binds strongly to CypD and attenuates mitochondrial and cellular perturbation insulted by Aβ and calcium stress. Binding affinities for C-9 were determined using in vitro surface plasmon resonance. This compound antagonized calcium-mediated mitochondrial swelling, abolished Aβ-induced mitochondrial dysfunction as shown by increased cytochrome c oxidase activity and adenosine-5'-triphosphate levels, and inhibited CypD PPIase enzymatic activity by real-time fluorescence capture assay using Hamamatsu FDSS 7000. Compound C-9 seems a good candidate for further investigation as an AD drug. PMID:26985318

  3. SIRT1 attenuates high glucose-induced insulin resistance via reducing mitochondrial dysfunction in skeletal muscle cells.

    PubMed

    Zhang, Hao-Hao; Ma, Xiao-Jun; Wu, Li-Na; Zhao, Yan-Yan; Zhang, Peng-Yu; Zhang, Ying-Hui; Shao, Ming-Wei; Liu, Fei; Li, Fei; Qin, Gui-Jun

    2015-05-01

    Insulin resistance is often characterized as the most critical factor contributing to the development of type 2 diabetes mellitus (T2DM). Sustained high glucose is an important extracellular environment that induces insulin resistance. Acquired insulin resistance is associated with reduced insulin-stimulated mitochondrial activity as a result of increased mitochondrial dysfunction. Silent information regulator 1 (SIRT1) is one member of the SIRT2 (Sir2)-like family of proteins involved in glucose homeostasis and insulin secretion in mammals. Although SIRT1 has a therapeutic effect on metabolic deterioration in insulin resistance, it is still not clear how SIRT1 is involved in the development of insulin resistance. Here, we demonstrate that pcDNA3.1 vector-mediated overexpression of SIRT1 attenuates insulin resistance in the high glucose-induced insulin-resistant skeleton muscle cells. These beneficial effects were associated with ameliorated mitochondrial dysfunction. Further studies have demonstrated that SIRT1 restores mitochondrial complex I activity leading to decreased oxidative stress and mitochondrial dysfunction. Furthermore, SIRT1 significantly elevated the level of another SIRT which is named SIRT3, and SIRT3 siRNA-suppressed SIRT1-induced mitochondria complex activity increments. Taken together, these results showed that SIRT1 improves insulin sensitivity via the amelioration of mitochondrial dysfunction, and this is achieved through the SIRT1-SIRT3-mitochondrial complex I pathway. PMID:25710929

  4. Ketamine Causes Mitochondrial Dysfunction in Human Induced Pluripotent Stem Cell-Derived Neurons

    PubMed Central

    Ito, Hiroyuki; Uchida, Tokujiro; Makita, Koshi

    2015-01-01

    Purpose Ketamine toxicity has been demonstrated in nonhuman mammalian neurons. To study the toxic effect of ketamine on human neurons, an experimental model of cultured neurons from human induced pluripotent stem cells (iPSCs) was examined, and the mechanism of its toxicity was investigated. Methods Human iPSC-derived dopaminergic neurons were treated with 0, 20, 100 or 500 μM ketamine for 6 and 24 h. Ketamine toxicity was evaluated by quantification of caspase 3/7 activity, reactive oxygen species (ROS) production, mitochondrial membrane potential, ATP concentration, neurotransmitter reuptake activity and NADH/NAD+ ratio. Mitochondrial morphological change was analyzed by transmission electron microscopy and confocal microscopy. Results Twenty-four-hour exposure of iPSC-derived neurons to 500 μM ketamine resulted in a 40% increase in caspase 3/7 activity (P < 0.01), 14% increase in ROS production (P < 0.01), and 81% reduction in mitochondrial membrane potential (P < 0.01), compared with untreated cells. Lower concentration of ketamine (100 μM) decreased the ATP level (22%, P < 0.01) and increased the NADH/NAD+ ratio (46%, P < 0.05) without caspase activation. Transmission electron microscopy showed enhanced mitochondrial fission and autophagocytosis at the 100 μM ketamine concentration, which suggests that mitochondrial dysfunction preceded ROS generation and caspase activation. Conclusions We established an in vitro model for assessing the neurotoxicity of ketamine in iPSC-derived neurons. The present data indicate that the initial mitochondrial dysfunction and autophagy may be related to its inhibitory effect on the mitochondrial electron transport system, which underlies ketamine-induced neural toxicity. Higher ketamine concentration can induce ROS generation and apoptosis in human neurons. PMID:26020236

  5. LRRK2 modulates vulnerability to mitochondrial dysfunction in C. elegans

    PubMed Central

    Saha, Shamol; Guillily, Maria; Ferree, Andrew; Lanceta, Joel; Chan, Diane; Ghosh, Joy; Hsu, Cindy H.; Segal, Lilach; Raghavan, Kesav; Matsumoto, Kunihiro; Hisamoto, Naoki; Kuwahara, Tomoki; Iwatsubo, Takeshi; Moore, Landon; Goldstein, Lee; Cookson, Mark; Wolozin, Benjamin

    2009-01-01

    Summary Mutations in leucine rich repeat kinase 2 (LRRK2) cause autosomal dominant familial Parkinson’s disease. We generated lines of C. elegans expressing neuronally directed human LRRK2. Expressing human LRRK2 expression increased nematode survival in response to rotenone or paraquat, which are agents that cause mitochondrial dysfunction. Protection by G2019S, R1441C or kinase dead LRRK2 was less than protection by wild type LRRK2. Knockdown of lrk-1, the endogenous orthologue of LRRK2 in C. elegans, reduced survival associated with mitochondrial dysfunction. C. elegans expressing LRRK2 showed rapid loss of dopaminergic markers (DAT∷GFP fluorescence and dopamine levels) beginning in early adulthood. Loss of dopaminergic markers was greater for the G2019S LRRK2 line than for the WT line. Rotenone treatment induced a larger loss of dopamine markers in C. elegans expressing G2019S LRRK2 than in C. elegans expressing WT LRRK2; however loss of dopaminergic markers in the G2019S LRRK2 nematode lines was not statistically different than that in the control line. These data suggest that LRRK2 plays an important role in modulating the response to mitochondrial inhibition, and raises the possibility that mutations in LRRK2 selectively enhance the vulnerability of dopaminergic neurons to a stressor associated with Parkinson’s disease. PMID:19625511

  6. Differential sensitivity to LPS-induced myocardial dysfunction in the isolated Brown Norway and Dahl S rat hearts: roles of mitochondrial function, NFκB activation and TNF-α production

    PubMed Central

    An, Jianzhong; Du, Jianhai; Wei, Na; Guan, Tongju; Camara, Amadou K.S.; Shi, Yang

    2011-01-01

    Recently we reported that BN rats were more resistant to lipopolysaccharide (LPS)-induced myocardial dysfunction than SS rats. This differential sensitivity was exemplified by reduced production of proinflammatory cytokines and diminished NFκB pathway activation. To further clarify the mechanisms of different susceptibility of these two strains to endotoxin, this study was designed to examine the alterations of cardiac and mitochondrial bioenergetics, proinflammatory cytokines, and signaling pathways after hearts were isolated and exposed to LPS ex vivo. Isolated BN and SS hearts were perfused with LPS (4 μg/ml) for 30 min in the Langendorff preparation. LPS depressed cardiac function as evident by reduced left ventricular developed pressure as well as decreased peak rate of contraction and relaxation in SS hearts, but not in BN heart. These findings are consistent with our previous in vivo data. Under complex I substrates a higher O2 consumption and H2O2 production were observed in mitochondria from SS hearts than that from BN hearts. LPS significantly increased H2O2 levels in both SS and BN heart mitochondria; however the increase in O2 consumption and H2O2 production in BN heart mitochondria was much lower than that in SS heart mitochondria. Additionally LPS significantly decreased complex I activity in SS hearts but not in BN hearts. Furthermore, LPS induced higher levels of TNF-α and increased phosphorylation of IκB and p65 more in SS hearts than BN hearts. Our results clearly demonstrate that less mitochondrial dysfunction combined with a reduced production of TNF-α and diminished activation of NFκB are involved in the mechanisms by which isolated BN hearts were more resistant to LPS-induced myocardial dysfunction. PMID:22089203

  7. Urinary mitochondrial DNA is a biomarker of mitochondrial disruption and renal dysfunction in acute kidney injury

    PubMed Central

    Whitaker, Ryan M.; Stallons, L. Jay; Kneff, Joshua E.; Alge, Joseph L.; Harmon, Jennifer L.; Rahn, Jennifer J.; Arthur, John M.; Beeson, Craig C.; Chan, Sherine L.; Schnellmann, Rick G.

    2015-01-01

    Recent studies show the importance of mitochondrial dysfunction in the initiation and progression of acute kidney injury (AKI). However, no biomarkers exist linking renal injury to mitochondrial function and integrity. To this end, we evaluated urinary mitochondrial DNA (UmtDNA) as a biomarker of renal injury and function in humans with AKI following cardiac surgery. mtDNA was isolated from the urine of patients following cardiac surgery and quantified by qPCR. Patients were stratified into no AKI, stable AKI and progressive AKI groups based on Acute Kidney Injury Network (AKIN) staging. UmtDNA was elevated in progressive AKI patients, and was associated with progression of patients with AKI at collection to higher AKIN stages. To evaluate the relationship of UmtDNA to measures of renal mitochondrial integrity in AKI, mice were subjected to sham surgery or varying degrees of ischemia followed by 24 hours of reperfusion. UmtDNA increased in mice after 10-15 minutes of ischemia and positively correlated with ischemia time. Furthermore, UmtDNA was predictive of AKI in the mouse model. Finally, UmtDNA levels were negatively correlated with renal cortical mtDNA and mitochondrial gene expression. These translational studies demonstrate that UmtDNA is associated with recovery from AKI following cardiac surgery by serving as an indicator of mitochondrial integrity. Thus, UmtDNA may serve as valuable biomarker for the development of mitochondrial targeted therapies in AKI. PMID:26287315

  8. Effects of Astragalus Polysaccharides on Dysfunction of Mitochondrial Dynamics Induced by Oxidative Stress

    PubMed Central

    Huang, Yan-Feng; Lu, Lu; Zhu, Da-Jian; Wang, Ming; Yin, Yi; Chen, De-Xiu; Wei, Lian-Bo

    2016-01-01

    This paper studied the chronic fatigue induced by excessive exercise and the restoration effects of Astragalus polysaccharides (APS) on mitochondria. In vivo, we found that excessive exercise could cause oxidative stress statue which led to morphological and functional changes of mitochondria. The changes, including imbalance between mitochondria fusion-fission processes, activation of mitophagy, and decrease of PGC-1α expression, could be restored by APS. We further confirmed in vitro, and what is more, we found that APS may ameliorate mitochondrial dysfunction through Sirt1 pathway. Based on the results, we may figure out part of the molecular mechanism of mitochondrial amelioration by APS. PMID:26881048

  9. Protective effects of N-acetylcysteine against hyperoxaluria induced mitochondrial dysfunction in male wistar rats.

    PubMed

    Sharma, Minu; Kaur, Tanzeer; Singla, S K

    2015-07-01

    The purpose of the present study was to evaluate the nephro-protective potential of N-acetylcysteine against hyperoxaluria-induced renal mitochondrial dysfunction in rats. Nine days dosing of 0.4 % ethylene glycol +1 % ammonium chloride, developed hyperoxaluria in male wistar rats which resulted in renal injury and dysfunction as supported by increased level of urinary lactate dehydrogenase, calcium, and decreased creatinine clearance. Mitochondrial oxidative strain in hyperoxaluric animals was evident by decreased levels of superoxide dismutase, glutathione peroxidase, glutathione reductase, reduced glutathione, and an increased lipid peroxidation. Declined activities of respiratory chain enzymes and tricarboxylic acid cycle enzymes showed mitochondrial dysfunction in hyperoxaluric animals. N-acetylcysteine (50 mg/kg, i.p.), by virtue of its -SH reviving power, was able to increase the glutathione levels and thus decrease the oxidative stress in renal mitochondria. Hence, mitochondrial damage is, evidently, an essential event in ethylene glycol-induced hyperoxaluria and N-acetylcysteine presented itself as a safe and effective remedy in combating nephrolithiasis. PMID:25842190

  10. C-phycocyanin prevents cisplatin-induced mitochondrial dysfunction and oxidative stress.

    PubMed

    Fernández-Rojas, Berenice; Rodríguez-Rangel, Daniela Sarai; Granados-Castro, Luis Fernando; Negrette-Guzmán, Mario; León-Contreras, Juan Carlos; Hernández-Pando, Rogelio; Molina-Jijón, Eduardo; Reyes, José L; Zazueta, Cecilia; Pedraza-Chaverri, José

    2015-08-01

    The potential of C-phycocyanin (C-PC) to prevent cisplatin (CP)-induced kidney mitochondrial dysfunction was determined in CD-1 male mice. The CP-induced mitochondrial dysfunction was characterized by ultrastructural abnormalities and by decrease in the following parameters in isolated kidney mitochondria: adenosine diphosphate (ADP)-induced oxygen consumption (state 3), respiratory control ratio, ADP/oxygen (ADP/O) ratio, adenosine triphosphate synthesis, membrane potential, calcium retention, glutathione (GSH) content, and activity of respiratory complex I, aconitase, catalase, and GSH peroxidase. These mitochondria also showed increase in hydrogen peroxide production, malondialdehyde, and 3-nitrotyrosine protein adducts content. The above-described changes, as well as CP-induced nephrotoxicity, were attenuated in mice pretreated with a single injection of C-PC. Our data suggest that the attenuation of mitochondrial abnormalities is involved in the protective effect of C-PC against CP-induced nephrotoxicity. This is the first demonstration that C-PC pretreatment prevents CP-induced mitochondrial dysfunction in mice. PMID:25971372

  11. Evidence of oxidative stress and mitochondrial respiratory chain dysfunction in an in vitro model of sepsis-induced kidney injury.

    PubMed

    Quoilin, C; Mouithys-Mickalad, A; Lécart, S; Fontaine-Aupart, M-P; Hoebeke, M

    2014-10-01

    To investigate the role of oxidative stress and/or mitochondrial impairment in the occurrence of acute kidney injury (AKI) during sepsis, we developed a sepsis-induced in vitro model using proximal tubular epithelial cells exposed to a bacterial endotoxin (lipopolysaccharide, LPS). This investigation has provided key features on the relationship between oxidative stress and mitochondrial respiratory chain activity defects. LPS treatment resulted in an increase in the expression of inducible nitric oxide synthase (iNOS) and NADPH oxidase 4 (NOX-4), suggesting the cytosolic overexpression of nitric oxide and superoxide anion, the primary reactive nitrogen species (RNS) and reactive oxygen species (ROS). This oxidant state seemed to interrupt mitochondrial oxidative phosphorylation by reducing cytochrome c oxidase activity. As a consequence, disruptions in the electron transport and the proton pumping across the mitochondrial inner membrane occurred, leading to a decrease of the mitochondrial membrane potential, a release of apoptotic-inducing factors and a depletion of adenosine triphosphate. Interestingly, after being targeted by RNS and ROS, mitochondria became in turn producer of ROS, thus contributing to increase the mitochondrial dysfunction. The role of oxidants in mitochondrial dysfunction was further confirmed by the use of iNOS inhibitors or antioxidants that preserve cytochrome c oxidase activity and prevent mitochondrial membrane potential dissipation. These results suggest that sepsis-induced AKI should not only be regarded as failure of energy status but also as an integrated response, including transcriptional events, ROS signaling, mitochondrial activity and metabolic orientation such as apoptosis. PMID:25019585

  12. Methylglyoxal induces mitochondrial dysfunction and cell death in liver.

    PubMed

    Seo, Kyuhwa; Ki, Sung Hwan; Shin, Sang Mi

    2014-09-01

    Degradation of glucose is aberrantly increased in hyperglycemia, which causes various harmful effects on the liver. Methylglyoxal is produced during glucose degradation and the levels of methylglyoxal are increased in diabetes patients. In this study we investigated whether methylglyoxal induces mitochondrial impairment and apoptosis in HepG2 cells and induces liver toxicity in vivo. Methylglyoxal caused apoptotic cell death in HepG2 cells. Moreover, methylglyoxal significantly promoted the production of reactive oxygen species (ROS) and depleted glutathione (GSH) content. Pretreatment with antioxidants caused a marked decrease in methylglyoxal-induced apoptosis, indicating that oxidant species are involved in the apoptotic process. Methylglyoxal treatment induced mitochondrial permeability transition, which represents mitochondrial impairment. However, pretreatment with cyclosporin A, an inhibitor of the formation of the permeability transition pore, partially inhibited methylglyoxal-induced cell death. Furthermore, acute treatment of mice with methylglyoxal increased the plasma levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), indicating liver toxicity. Collectively, our results showed that methylglyoxal increases cell death and induces liver toxicity, which results from ROS-mediated mitochondrial dysfunction and oxidative stress. PMID:25343013

  13. Impaired Insulin Signaling Accelerates Cardiac Mitochondrial Dysfunction After Myocardial Infarction

    PubMed Central

    Sena, Sandra; Hu, Ping; Zhang, Dongfang; Wang, Xiaohui; Wayment, Benjamin; Olsen, Curtis; Avelar, Erick; Abel, E. Dale; Litwin, Sheldon E

    2009-01-01

    Diabetes increases mortality and accelerates left ventricular (LV) dysfunction following myocardial infarction (MI). This study sought to determine the impact of impaired myocardial insulin signaling, in the absence of diabetes, on the development of LV dysfunction following MI. Mice with cardiomyocyte-restricted knock out of the insulin receptor (CIRKO) and wild type (WT) mice were subjected to proximal left coronary artery ligation (MI) and followed for 14 days. Despite equivalent infarct size, mortality was increased in CIRKO-MI vs. WT-MI mice (68 % vs. 40 %, respectively). In surviving mice, LV ejection fraction and dP/dt were reduced by > 40% in CIRKO-MI vs. WT-MI. Relative to shams, isometric developed tension in LV papillary muscles increased in WT-MI but not in CIRKO-MI. Time to peak tension and relaxation times were prolonged in CIRKO-MI vs. WT-MI suggesting impaired, load-independent myocardial contractile function. To elucidate mechanisms for impaired LV contractility, mitochondrial function was examined in permeabilized cardiac fibers. Whereas maximal ADP-stimulated mitochondrial O2 consumption rates (VADP) with palmitoyl carnitine were unchanged in WT-MI mice relative to sham-operated animals, VADP was significantly reduced in CIRKO-MI (13.17 ± 0.94 vs. 9.14 ± 0.88 nmol O2/min/mgdw, p<0.05). Relative to WT-MI, expression levels of GLUT4, PPAR-α, SERCA2, and the FA-Oxidation genes MCAD, LCAD, CPT2 and the electron transfer flavoprotein ETFDH were repressed in CIRKO-MI. Thus reduced insulin action in cardiac myocytes accelerates post-MI LV dysfunction, due in part to a rapid decline in mitochondrial FA oxidative capacity, which combined with limited glucose transport capacity may reduce substrate utilization and availability. PMID:19249310

  14. V63 and N65 of overexpressed α-synuclein are involved in mitochondrial dysfunction.

    PubMed

    Zhang, Huilin; Liu, Jia; Wang, Xue; Duan, Chunli; Wang, Xiaomin; Yang, Hui

    2016-07-01

    Parkinson's Disease (PD) is one of the most common neurodegenerative diseases. α-Synuclein (α-Syn)-encoded by SNCA, the first-identified PD-related gene-is the main component of Lewy bodies, which are a pathological hallmark of PD. We previously reported that α-Syn accumulates in mitochondria in PD, causing mitochondrial abnormalities and disrupting mitochondrial membrane potential (Δψm) and mitochondrial potential transition pore (mPTP) opening by interacting with the voltage-dependent anion channel (VDAC) and adenine nucleotide translocator. However, the mechanistic basis of mitochondrial impairment caused by α-Syn has yet to be elucidated. It has been suggested that the amino acid residues Q62, V63, and N65 of α-Syn are important for the interaction of the protein with membranes. To investigate whether this underlies the mitochondrial dysfunction induced by α-Syn overexpression, we mutated these residues to alanine and transfected HEK293T and MN9D cells with the mutated forms of α-Syn protein. The V63A and N65A mutations prevented mitochondrial Ca(2+) overload and Δψm dysregulation as well as complex I inactivation and reactive oxygen species production while blocking mPTP opening and caspase 9 activation, possibly by reducing α-Syn accumulation in mitochondria. These results indicate that V63 and N65 are critical residues mediating mitochondrial inactivation. These findings provide novel insight into the molecular events contributing to PD pathogenesis. PMID:27048753

  15. Monoamine Oxidase B Prompts Mitochondrial and Cardiac Dysfunction in Pressure Overloaded Hearts

    PubMed Central

    Kaludercic, Nina; Carpi, Andrea; Nagayama, Takahiro; Sivakumaran, Vidhya; Zhu, Guangshuo; Lai, Edwin W.; Bedja, Djahida; De Mario, Agnese; Chen, Kevin; Gabrielson, Kathleen L.; Lindsey, Merry L.; Pacak, Karel; Takimoto, Eiki; Shih, Jean C.; Kass, David A.; Di Lisa, Fabio

    2014-01-01

    Abstract Aims: Monoamine oxidases (MAOs) are mitochondrial flavoenzymes responsible for neurotransmitter and biogenic amines catabolism. MAO-A contributes to heart failure progression via enhanced norepinephrine catabolism and oxidative stress. The potential pathogenetic role of the isoenzyme MAO-B in cardiac diseases is currently unknown. Moreover, it is has not been determined yet whether MAO activation can directly affect mitochondrial function. Results: In wild type mice, pressure overload induced by transverse aortic constriction (TAC) resulted in enhanced dopamine catabolism, left ventricular (LV) remodeling, and dysfunction. Conversely, mice lacking MAO-B (MAO-B−/−) subjected to TAC maintained concentric hypertrophy accompanied by extracellular signal regulated kinase (ERK)1/2 activation, and preserved LV function, both at early (3 weeks) and late stages (9 weeks). Enhanced MAO activation triggered oxidative stress, and dropped mitochondrial membrane potential in the presence of ATP synthase inhibitor oligomycin both in neonatal and adult cardiomyocytes. The MAO-B inhibitor pargyline completely offset this change, suggesting that MAO activation induces a latent mitochondrial dysfunction, causing these organelles to hydrolyze ATP. Moreover, MAO-dependent aldehyde formation due to inhibition of aldehyde dehydrogenase 2 activity also contributed to alter mitochondrial bioenergetics. Innovation: Our study unravels a novel role for MAO-B in the pathogenesis of heart failure, showing that both MAO-driven reactive oxygen species production and impaired aldehyde metabolism affect mitochondrial function. Conclusion: Under conditions of chronic hemodynamic stress, enhanced MAO-B activity is a major determinant of cardiac structural and functional disarrangement. Both increased oxidative stress and the accumulation of aldehyde intermediates are likely liable for these adverse morphological and mechanical changes by directly targeting mitochondria. Antioxid. Redox

  16. Soluble Heparan Sulfate in Serum of Septic Shock Patients Induces Mitochondrial Dysfunction in Murine Cardiomyocytes.

    PubMed

    Martin, Lukas; Peters, Carsten; Schmitz, Susanne; Moellmann, Julia; Martincuks, Antons; Heussen, Nicole; Lehrke, Michael; Müller-Newen, Gerhard; Marx, Gernot; Schuerholz, Tobias

    2015-12-01

    The heart is one of the most frequently affected organs in sepsis. Recent studies focused on lipopolysaccharide-induced mitochondrial dysfunction; however myocardial dysfunction is not restricted to gram-negative bacterial sepsis. The purpose of this study was to investigate circulating heparan sulfate (HS) as an endogenous danger associated molecule causing cardiac mitochondrial dysfunction in sepsis. We used an in vitro model with native sera (SsP) and sera eliminated from HS (HS-free), both of septic shock patients, to stimulate murine cardiomyocytes. As determined by extracellular flux analyzing, SsP increased basal mitochondrial respiration, but reduced maximum mitochondrial respiration, compared with unstimulated cells (P < 0.0001 and P < 0.0001, respectively). Cells stimulated with HS-free serum revealed unaltered basal and maximum mitochondrial respiration, compared with unstimulated cells (P = 0.1174 and P = 0.8992, respectively). Cellular ATP-level were decreased in SsP-stimulated cells but unaltered in cells stimulated with HS-free serum compared with unstimulated cells (P < 0.0001 and P = 0.1593, respectively). Live-cell imaging revealed an increased production of mitochondrial reactive oxygen species in cells stimulated with SsP compared with cells stimulated with HS-free serum (P < 0.0001). Expression of peroxisome proliferator-activated receptors (PPARα and PPARγ) and their co-activators PGC-1α, which regulate mitochondrial function, were studied using PCR. Cells stimulated with SsP showed downregulated PPARs and PGC-1α mRNA-levels compared with HS-free serum (P = 0.0082, P = 0.0128, and P = 0.0185, respectively). Blocking Toll-like receptor 4 revealed an inhibition of HS-dependent downregulation of PPARs and PGC-1α (all P < 0.0001). In conclusion, circulating HS in serum of septic shock patients cause cardiac mitochondrial dysfunction, suggesting that HS may be targets of therapeutics in septic

  17. Oxidative stress induces mitochondrial dysfunction in a subset of autistic lymphoblastoid cell lines.

    PubMed

    Rose, S; Frye, R E; Slattery, J; Wynne, R; Tippett, M; Melnyk, S; James, S J

    2014-01-01

    There is an increasing recognition that mitochondrial dysfunction is associated with autism spectrum disorders. However, little attention has been given to the etiology of mitochondrial dysfunction and how mitochondrial abnormalities might interact with other physiological disturbances such as oxidative stress. Reserve capacity is a measure of the ability of the mitochondria to respond to physiological stress. In this study, we demonstrate, for the first time, that lymphoblastoid cell lines (LCLs) derived from children with autistic disorder (AD) have an abnormal mitochondrial reserve capacity before and after exposure to reactive oxygen species (ROS). Ten (44%) of 22 AD LCLs exhibited abnormally high reserve capacity at baseline and a sharp depletion of reserve capacity when challenged with ROS. This depletion of reserve capacity was found to be directly related to an atypical simultaneous increase in both proton-leak respiration and adenosine triphosphate-linked respiration in response to increased ROS in this AD LCL subgroup. In this AD LCL subgroup, 48-hour pretreatment with N-acetylcysteine, a glutathione precursor, prevented these abnormalities and improved glutathione metabolism, suggesting a role for altered glutathione metabolism associated with this type of mitochondrial dysfunction. The results of this study suggest that a significant subgroup of AD children may have alterations in mitochondrial function, which could render them more vulnerable to a pro-oxidant microenvironment as well as intrinsic and extrinsic sources of ROS such as immune activation and pro-oxidant environmental toxins. These findings are consistent with the notion that AD is caused by a combination of genetic and environmental factors. PMID:24690598

  18. Alcohol hangover induces mitochondrial dysfunction and free radical production in mouse cerebellum.

    PubMed

    Karadayian, A G; Bustamante, J; Czerniczyniec, A; Lombardi, P; Cutrera, R A; Lores-Arnaiz, S

    2015-09-24

    Alcohol hangover (AH) is defined as the temporary state after alcohol binge-like drinking, starting when ethanol (EtOH) is absent in plasma. Previous data indicate that AH induces mitochondrial dysfunction and free radical production in mouse brain cortex. The aim of this work was to study mitochondrial function and reactive oxygen species production in mouse cerebellum at the onset of AH. Male mice received a single i.p. injection of EtOH (3.8g/kg BW) or saline solution. Mitochondrial function was evaluated 6h after injection (AH onset). At the onset of AH, malate-glutamate and succinate-supported state 4 oxygen uptake was 2.3 and 1.9-fold increased leading to a reduction in respiratory control of 55% and 48% respectively, as compared with controls. Decreases of 38% and 16% were found in Complex I-III and IV activities. Complex II-III activity was not affected by AH. Mitochondrial membrane potential and mitochondrial permeability changes were evaluated by flow cytometry. Mitochondrial membrane potential and permeability were decreased by AH in cerebellum mitochondria. Together with this, AH induced a 25% increase in superoxide anion and a 92% increase in hydrogen peroxide production in cerebellum mitochondria. Related to nitric oxide (NO) metabolism, neuronal nitric oxide synthase (nNOS) protein expression was 52% decreased by the hangover condition compared with control group. No differences were found in cerebellum NO production between control and treated mice. The present work demonstrates that the physiopathological state of AH involves mitochondrial dysfunction in mouse cerebellum showing the long-lasting effects of acute EtOH exposure in the central nervous system. PMID:26192095

  19. SIRT3 Deacetylates Ceramide Synthases: IMPLICATIONS FOR MITOCHONDRIAL DYSFUNCTION AND BRAIN INJURY.

    PubMed

    Novgorodov, Sergei A; Riley, Christopher L; Keffler, Jarryd A; Yu, Jin; Kindy, Mark S; Macklin, Wendy B; Lombard, David B; Gudz, Tatyana I

    2016-01-22

    Experimental evidence supports the role of mitochondrial ceramide accumulation as a cause of mitochondrial dysfunction and brain injury after stroke. Herein, we report that SIRT3 regulates mitochondrial ceramide biosynthesis via deacetylation of ceramide synthase (CerS) 1, 2, and 6. Reciprocal immunoprecipitation experiments revealed that CerS1, CerS2, and CerS6, but not CerS4, are associated with SIRT3 in cerebral mitochondria. Furthermore, CerS1, -2, and -6 are hyperacetylated in the mitochondria of SIRT3-null mice, and SIRT3 directly deacetylates the ceramide synthases in a NAD(+)-dependent manner that increases enzyme activity. Investigation of the SIRT3 role in mitochondrial response to brain ischemia/reperfusion (IR) showed that SIRT3-mediated deacetylation of ceramide synthases increased enzyme activity and ceramide accumulation after IR. Functional studies demonstrated that absence of SIRT3 rescued the IR-induced blockade of the electron transport chain at the level of complex III, attenuated mitochondrial outer membrane permeabilization, and decreased reactive oxygen species generation and protein carbonyls in mitochondria. Importantly, Sirt3 gene ablation reduced the brain injury after IR. These data support the hypothesis that IR triggers SIRT3-dependent deacetylation of ceramide synthases and the elevation of ceramide, which could inhibit complex III, leading to increased reactive oxygen species generation and brain injury. The results of these studies highlight a novel mechanism of SIRT3 involvement in modulating mitochondrial ceramide biosynthesis and suggest an important role of SIRT3 in mitochondrial dysfunction and brain injury after experimental stroke. PMID:26620563

  20. Mfn2 Affects Embryo Development via Mitochondrial Dysfunction and Apoptosis

    PubMed Central

    Liu, Qun; Xiang, Wenpei

    2015-01-01

    Background Growth factors, energy sources, and mitochondrial function strongly affect embryo growth and development in vitro. The biological role and prospective significance of the mitofusin gene Mfn2 in the development of preimplantation embryos remain poorly understood. Our goal is to profile the role of Mfn2 in mouse embryos and determine the underlying mechanism of Mfn2 function in embryo development. Methods We transfected Mfn2-siRNA into 2-cell fertilized eggs and then examined the expression of Mfn2, the anti-apoptotic protein Bcl-2, and the apoptosis-promoting protein Bax by Western blot. Additionally, we determined the blastocyst formation rate and measured ATP levels, mtDNA levels, mitochondrial membrane potential (ΔΨm), and apoptosis in all of the embryos. Results The results indicate that the Mfn2 and Bcl-2 levels were markedly decreased, whereas Bax levels were increased in the T group (embryos transfected with Mfn2-siRNA) compared with the C group (embryos transfected with control-siRNA). The blastocyst formation rate was significantly decreased in the T group. The ATP content and the relative amounts of mtDNA and cDNA in the T group were significantly reduced compared with the C group. In the T group, ΔΨm and Ca2+ levels were reduced, and the number of apoptotic cells was increased. Conclusion Low in vitro expression of Mfn2 attenuates the blastocyst formation rate and cleavage speed in mouse zygotes and causes mitochondrial dysfunction, as confirmed by the ATP and mtDNA levels and mitochondrial membrane potential. Mfn2 deficiency induced apoptosis through the Bcl-2/Bax and Ca2+ pathways. These findings indicate that Mfn2 could affect preimplantation embryo development through mitochondrial function and cellular apoptosis. PMID:25978725

  1. Mitochondrial dysfunction: a crucial event in okadaic acid (ICV) induced memory impairment and apoptotic cell death in rat brain.

    PubMed

    Kamat, Pradeep K; Tota, Santoshkumar; Shukla, Rakesh; Ali, Shakir; Najmi, Abul Kalam; Nath, Chandishwar

    2011-12-01

    Mitochondrial abnormalities have been identified in a large proportion of neurodegenerative diseases. Recently we have reported that intracerebroventricular (ICV) administration of okadaic acid (OKA) causes memory impairment in rat. However involvement of mitochondrial function in OKA induced memory impairment and neuronal damage has not been determined. OKA (200 ng) was administered by ICV route. After 13th day of OKA administration memory function was evaluated by Morris Water Maze test. Following completion of behavioral studies on 16th day, mitochondrial membrane potential, Ca(2+) and reactive oxygen species were evaluated in mitochondrial preparation of cortex, hippocampus, striatum and cerebellum of rat brain. While ATP, mitochondrial activity, lipid peroxidation and nitrite were investigated in synaptosomal preparation of rat brain areas. The activities and mRNA expression of apoptotic factors, caspase-3 and caspase-9, were studied in rat brain regions. The neuronal damage was also confirmed by histopathological study. OKA treated rats showed memory impairment including increased Ca(2+) and reactive oxygen species and decreased mitochondrial membrane potential, ATP and mitochondrial activity in mitochondrial preparation. There was a significant increase in lipid peroxidation and nitrite in synaptosomal preparations. Preventive treatment daily for 13 days with antidementic drugs, donepezil (5 mg/kg, p.o) and memantine (10 mg/kg, p.o), significantly attenuated OKA induced mitochondrial dysfunction, apoptotic cell death, memory impairment and histological changes. Mitochondrial dysfunction appeared as a key factor in OKA induced memory impairment and apoptotic cell death. This study indicates that clinically used antidementic drugs are effective against OKA induced adverse changes at behavioral, cellular, and histological levels and mitochondrial dysfunction. PMID:21893081

  2. Rosiglitazone activation of PPARγ-dependent pathways is neuroprotective in human neural stem cells against amyloid-beta-induced mitochondrial dysfunction and oxidative stress.

    PubMed

    Chiang, Ming-Chang; Nicol, Christopher J; Cheng, Yi-Chuan; Lin, Kuan-Hung; Yen, Chia-Hui; Lin, Chien-Hung

    2016-04-01

    Neuronal cell impairment, such as that induced by amyloid-beta (Aβ) protein, is a process with limited therapeutic interventions and often leads to long-term neurodegeneration common in disorders such as Alzheimer's disease. Interestingly, peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated nuclear receptor whose ligands control many physiological and pathologic processes, and may be neuroprotective. We hypothesized that rosiglitazone, a PPARγ agonist, would prevent Aβ-mediated effects in human neural stem cells (hNSCs). Here, we show that rosiglitazone reverses, via PPARγ-dependent downregulation of caspase 3 and 9 activity, the Aβ-mediated decreases in hNSC cell viability. In addition, Aβ decreases hNSC messenger RNA (mRNA) levels of 2 neuroprotective factors (Bcl-2 and CREB), but co-treatment with rosiglitazone significantly rescues these effects. Rosiglitazone co-treated hNSCs also showed significantly increased mitochondrial function (reflected by levels of adenosine triphosphate and Mit mass), and PPARγ-dependent mRNA upregulation of PGC1α and mitochondrial genes (nuclear respiratory factor-1 and Tfam). Furthermore, hNSCs co-treated with rosiglitazone were significantly rescued from Aβ-induced oxidative stress and correlates with reversal of the Aβ-induced mRNA decrease in oxidative defense genes (superoxide dismutase 1, superoxide dismutase 2, and glutathione peroxidase 1). Taken together, these novel findings show that rosiglitazone-induced activation of PPARγ-dependent signaling rescues Aβ-mediated toxicity in hNSCs and provide evidence supporting a neuroprotective role for PPARγ activating drugs in Aβ-related diseases such as Alzheimer's disease. PMID:26973118

  3. Mutation in MRPS34 Compromises Protein Synthesis and Causes Mitochondrial Dysfunction

    PubMed Central

    Richman, Tara R.; Ermer, Judith A.; Davies, Stefan M. K.; Perks, Kara L.; Viola, Helena M.; Shearwood, Anne-Marie J.; Hool, Livia C.; Rackham, Oliver; Filipovska, Aleksandra

    2015-01-01

    The evolutionary divergence of mitochondrial ribosomes from their bacterial and cytoplasmic ancestors has resulted in reduced RNA content and the acquisition of mitochondria-specific proteins. The mitochondrial ribosomal protein of the small subunit 34 (MRPS34) is a mitochondria-specific ribosomal protein found only in chordates, whose function we investigated in mice carrying a homozygous mutation in the nuclear gene encoding this protein. The Mrps34 mutation causes a significant decrease of this protein, which we show is required for the stability of the 12S rRNA, the small ribosomal subunit and actively translating ribosomes. The synthesis of all 13 mitochondrially-encoded polypeptides is compromised in the mutant mice, resulting in reduced levels of mitochondrial proteins and complexes, which leads to decreased oxygen consumption and respiratory complex activity. The Mrps34 mutation causes tissue-specific molecular changes that result in heterogeneous pathology involving alterations in fractional shortening of the heart and pronounced liver dysfunction that is exacerbated with age. The defects in mitochondrial protein synthesis in the mutant mice are caused by destabilization of the small ribosomal subunit that affects the stability of the mitochondrial ribosome with age. PMID:25816300

  4. Prevention of oxidative stress, inflammation and mitochondrial dysfunction in the intestine by different cranberry phenolic fractions.

    PubMed

    Denis, Marie-Claude; Desjardins, Yves; Furtos, Alexandra; Marcil, Valérie; Dudonné, Stéphanie; Montoudis, Alain; Garofalo, Carole; Delvin, Edgard; Marette, André; Levy, Emile

    2015-02-01

    Cranberry fruit has been reported to have high antioxidant effectiveness that is potentially linked to its richness in diversified polyphenolic content. The aim of the present study was to determine the role of cranberry polyphenolic fractions in oxidative stress (OxS), inflammation and mitochondrial functions using intestinal Caco-2/15 cells. The combination of HPLC and UltraPerformance LC®-tandem quadrupole (UPLC-TQD) techniques allowed us to characterize the profile of low, medium and high molecular mass polyphenolic compounds in cranberry extracts. The medium molecular mass fraction was enriched with flavonoids and procyanidin dimers whereas procyanidin oligomers (DP > 4) were the dominant class of polyphenols in the high molecular mass fraction. Pre-incubation of Caco-2/15 cells with these cranberry extracts prevented iron/ascorbate-mediated lipid peroxidation and counteracted lipopolysaccharide-mediated inflammation as evidenced by the decrease in pro-inflammatory cytokines (TNF-α and interleukin-6), cyclo-oxygenase-2 and prostaglandin E2. Cranberry polyphenols (CP) fractions limited both nuclear factor κB activation and Nrf2 down-regulation. Consistently, cranberry procyanidins alleviated OxS-dependent mitochondrial dysfunctions as shown by the rise in ATP production and the up-regulation of Bcl-2, as well as the decline of protein expression of cytochrome c and apoptotic-inducing factor. These mitochondrial effects were associated with a significant stimulation of peroxisome-proliferator-activated receptor γ co-activator-1-α, a central inducing factor of mitochondrial biogenesis and transcriptional co-activator of numerous downstream mediators. Finally, cranberry procyanidins forestalled the effect of iron/ascorbate on the protein expression of mitochondrial transcription factors (mtTFA, mtTFB1, mtTFB2). Our findings provide evidence for the capacity of CP to reduce intestinal OxS and inflammation while improving mitochondrial dysfunction. PMID

  5. Nicorandil ameliorates mitochondrial dysfunction in doxorubicin-induced heart failure in rats: possible mechanism of cardioprotection.

    PubMed

    Ahmed, Lamiaa A; El-Maraghy, Shohda A

    2013-11-01

    Despite of its known cardiotoxicity, doxorubicin is still a highly effective anti-neoplastic agent in the treatment of several cancers. In the present study, the cardioprotective effect of nicorandil was investigated on hemodynamic alterations and mitochondrial dysfunction induced by cumulative administration of doxorubicin in rats. Doxorubicin was injected i.p. over 2 weeks to obtain a cumulative dose of 18 mg/kg. Nicorandil (3 mg/kg/day) was given orally with or without doxorubicin treatment. Heart rate and aortic blood flow were recorded 24 h after receiving the last dose of doxorubicin. Rats were then sacrificed and hearts were rapidly excised for estimation of caspase-3 activity, phosphocreatine and adenine nucleotides contents in addition to cytochrome c, Bcl2, Bax and caspase 3 expression. Moreover, mitochondrial oxidative phosphorylation capacity, creatine kinase activity and oxidative stress markers were measured together with the examination of DNA fragmentation and ultrastructural changes. Nicorandil was effective in alleviating the decrement of heart rate and aortic blood flow and the state of mitochondrial oxidative stress induced by doxorubicin cardiotoxicity. Nicorandil also preserved phosphocreatine and adenine nucleotides contents by restoring mitochondrial oxidative phosphorylation capacity and creatine kinase activity. Moreover, nicorandil provided a significant cardioprotection via inhibition of apoptotic signaling pathway, DNA fragmentation and mitochondrial ultrastructural changes. Interestingly, nicorandil did not interfere with cytotoxic effect of doxorubicin against the growth of solid Ehrlich carcinoma. In conclusion, nicorandil was effective against the development of doxorubicin-induced heart failure in rats as indicated by improvement of hemodynamic perturbations, mitochondrial dysfunction and ultrastructural changes without affecting its antitumor activity. PMID:23872193

  6. Administration of the Nrf2-ARE Activators Sulforaphane and Carnosic Acid Attenuate 4-hydroxy-2-nonenal Induced Mitochondrial Dysfunction Ex Vivo

    PubMed Central

    Miller, Darren M.; Singh, Indrapal N.; Wang, Juan A.; Hall, Edward D.

    2013-01-01

    The transcription factor NF-E2-related factor 2 (Nrf2) mediates transcription of antioxidant/cytoprotective genes by binding to the antioxidant response element (ARE) within DNA. Upregulation of these genes constitutes a pleiotropic cytoprotective-defense pathway which has been shown to produce neuroprotection in numerous models by decreasing lipid peroxidation (LP) as measured by the neurotoxic LP by-product 4-hyrdoxynonenal (4-HNE). As neuronal mitochondria have previously been shown to be susceptible to insult-induced LP-mediated oxidative damage, we sought to mechanistically investigate whether Nrf2-ARE activation in vivo could protect mitochondria from subsequent 4-HNE exposure ex vivo. Young adult male CF-1 mice were administered one of two known Nrf2-ARE activators as single I.P. doses – sulforaphane (SFP; 5.0 mg/kg) or carnosic acid (CA; 1.0mg/kg) – or their respective vehicles 48 hours prior to Ficoll isolation of rat cerebral cortical mitochondria. Purified mitochondria were then exposed ex vivo to 4-HNE for 15 minutes at 37°C which we showed to cause a concentration-related inhibition of mitochondrial respiration together with covalent binding of 4-HNE to mitochondrial proteins. We chose a 30 μM concentration of 4-HNE, which produced an approximate 50% inhibition of complex I or complex II-driven respiration, to assess whether prior in vivo the Nrf2-ARE activating compounds would increase the resistance of the isolated cortical mitochondria to 4-HNE's mito-toxic effects. Administration of either compound significantly increased (p< 0.05) expression of heme oxygenase-1 mRNA in cortical tissue 48 hours post-administration, verifying that both compounds were capable of inducing the Nrf2-ARE pathway. Moreover, the prior in vivo administration of sulforaphane (SFP) and carnosic acid (CA) significantly (p< 0.05) attenuated 4-HNE-induced inhibition of mitochondrial respiration for complex I while only carnosic acid acted to protect complex II. Furthermore

  7. Oxidative Stress Induced Mitochondrial Protein Kinase A Mediates Cytochrome C Oxidase Dysfunction

    PubMed Central

    Srinivasan, Satish; Spear, Joseph; Chandran, Karunakaran; Joseph, Joy; Kalyanaraman, Balaraman; Avadhani, Narayan G.

    2013-01-01

    Previously we showed that Protein kinase A (PKA) activated in hypoxia and myocardial ischemia/reperfusion mediates phosphorylation of subunits I, IVi1 and Vb of cytochrome c oxidase. However, the mechanism of activation of the kinase under hypoxia remains unclear. It is also unclear if hypoxic stress activated PKA is different from the cAMP dependent mitochondrial PKA activity reported under normal physiological conditions. In this study using RAW 264.7 macrophages and in vitro perfused mouse heart system we investigated the nature of PKA activated under hypoxia. Limited protease treatment and digitonin fractionation of intact mitochondria suggests that higher mitochondrial PKA activity under hypoxia is mainly due to increased sequestration of PKA Catalytic α (PKAα) subunit in the mitochondrial matrix compartment. The increase in PKA activity is independent of mitochondrial cAMP and is not inhibited by adenylate cyclase inhibitor, KH7. Instead, activation of hypoxia-induced PKA is dependent on reactive oxygen species (ROS). H89, an inhibitor of PKA activity and the antioxidant Mito-CP prevented loss of CcO activity in macrophages under hypoxia and in mouse heart under ischemia/reperfusion injury. Substitution of wild type subunit Vb of CcO with phosphorylation resistant S40A mutant subunit attenuated the loss of CcO activity and reduced ROS production. These results provide a compelling evidence for hypoxia induced phosphorylation as a signal for CcO dysfunction. The results also describe a novel mechanism of mitochondrial PKA activation which is independent of mitochondrial cAMP, but responsive to ROS. PMID:24130844

  8. Sex differences in mitochondrial (dys)function: Implications for neuroprotection

    PubMed Central

    McCarthy, Margaret M.

    2016-01-01

    Decades of research have revealed numerous differences in brain structure size, connectivity and metabolism between males and females. Sex differences in neurobehavioral and cognitive function after various forms of central nervous system (CNS) injury are observed in clinical practice and animal research studies. Sources of sex differences include early life exposure to gonadal hormones, chromosome compliment and adult hormonal modulation. It is becoming increasingly apparent that mitochondrial metabolism and cell death signaling are also sexually dimorphic. Mitochondrial metabolic dysfunction is a common feature of CNS injury. Evidence suggests males predominantly utilize proteins while females predominantly use lipids as a fuel source within mitochondria and that these differences may significantly affect cellular survival following injury. These fundamental biochemical differences have a profound impact on energy production and many cellular processes in health and disease. This review will focus on the accumulated evidence revealing sex differences in mitochondrial function and cellular signaling pathways in the context of CNS injury mechanisms and the potential implications for neuroprotective therapy development. PMID:25293493

  9. Basic FGF attenuates amyloid beta-peptide-induced oxidative stress, mitochondrial dysfunction, and impairment of Na+/K+-ATPase activity in hippocampal neurons.

    PubMed

    Mark, R J; Keller, J N; Kruman, I; Mattson, M P

    1997-05-01

    Basic fibroblast growth factor (bFGF) exhibits trophic activity for many populations of neurons in the brain, and can protect those neurons against excitotoxic, metabolic and oxidative insults. In Alzheimer's disease (AD), amyloid beta-peptide (A beta) fibrils accumulate in plaques which are associated with degenerating neurons. A beta can be neurotoxic by a mechanism that appears to involve induction of oxidative stress and disruption of calcium homeostasis. Plaques in AD brain contain high levels of bFGF suggesting a possible modulatory role for bFGF in the neurodegenerative process. We now report that bFGF can protect cultured hippocampal neurons against A beta25-35 toxicity by a mechanism that involves suppression of reactive oxygen species (ROS) accumulation and maintenance of Na+/K+-ATPase activity. A beta25-35 induced lipid peroxidation, accumulation of H2O2, mitochondrial ROS accumulation, and a decrease in mitochondrial transmembrane potential; each of these effects of A beta25-35 was abrogated in cultures pre-treated with bFGF. Na+/K+-ATPase activity was significantly reduced following exposure to A beta25-35 in control cultures, but not in cultures pre-treated with bFGF. bFGF did not protect neurons from death induced by ouabain (a specific inhibitor of the Na+/K+-ATPase) or 4-hydroxynonenal (an aldehydic product of lipid peroxidation) consistent with a site of action of bFGF prior to induction of oxidative stress and impairment of ion-motive ATPases. By suppressing accumulation of oxyradicals, bFGF may slow A beta-induced neurodegenerative cascades. PMID:9187334

  10. Chronic plus binge ethanol feeding induces myocardial oxidative stress, mitochondrial and cardiovascular dysfunction, and steatosis.

    PubMed

    Matyas, Csaba; Varga, Zoltan V; Mukhopadhyay, Partha; Paloczi, Janos; Lajtos, Tamas; Erdelyi, Katalin; Nemeth, Balazs T; Nan, Mintong; Hasko, Gyorgy; Gao, Bin; Pacher, Pal

    2016-06-01

    Alcoholic cardiomyopathy in humans develops in response to chronic excessive alcohol consumption; however, good models of alcohol-induced cardiomyopathy in mice are lacking. Herein we describe mouse models of alcoholic cardiomyopathies induced by chronic and binge ethanol (EtOH) feeding and characterize detailed hemodynamic alterations, mitochondrial function, and redox signaling in these models. Mice were fed a liquid diet containing 5% EtOH for 10, 20, and 40 days (d) combined with single or multiple EtOH binges (5 g/kg body wt). Isocalorically pair-fed mice served as controls. Left ventricular (LV) function and morphology were assessed by invasive pressure-volume conductance approach and by echocardiography. Mitochondrial complex (I, II, IV) activities, 3-nitrotyrosine (3-NT) levels, gene expression of markers of oxidative stress (gp91phox, p47phox), mitochondrial biogenesis (PGC1α, peroxisome proliferator-activated receptor α), and fibrosis were examined. Cardiac steatosis and fibrosis were investigated by histological/immunohistochemical methods. Chronic and binge EtOH feeding (already in 10 days EtOH plus single binge group) was characterized by contractile dysfunction (decreased slope of end-systolic pressure-volume relationship and preload recruitable stroke work), impaired relaxation (decreased time constant of LV pressure decay and maximal slope of systolic pressure decrement), and vascular dysfunction (impaired arterial elastance and lower total peripheral resistance). This was accompanied by enhanced myocardial oxidative/nitrative stress (3-NT; gp91phox; p47phox; angiotensin II receptor, type 1a) and deterioration of mitochondrial complex I, II, IV activities and mitochondrial biogenesis, excessive cardiac steatosis, and higher mortality. Collectively, chronic plus binge EtOH feeding in mice leads to alcohol-induced cardiomyopathies (National Institute on Alcohol Abuse and Alcoholism models) characterized by increased myocardial oxidative

  11. Tempol, a Superoxide Dismutase Mimetic Agent, Ameliorates Cisplatin-Induced Nephrotoxicity through Alleviation of Mitochondrial Dysfunction in Mice

    PubMed Central

    Ahmed, Lamiaa A.; Shehata, Nagwa I.; Abdelkader, Noha F.; Khattab, Mahmoud M.

    2014-01-01

    Background Mitochondrial dysfunction is a crucial mechanism by which cisplatin, a potent chemotherapeutic agent, causes nephrotoxicity where mitochondrial electron transport complexes are shifted mostly toward imbalanced reactive oxygen species versus energy production. In the present study, the protective role of tempol, a membrane-permeable superoxide dismutase mimetic agent, was evaluated on mitochondrial dysfunction and the subsequent damage induced by cisplatin nephrotoxicity in mice. Methods and Findings Nephrotoxicity was assessed 72 h after a single i.p. injection of cisplatin (25 mg/kg) with or without oral administration of tempol (100 mg/kg/day). Serum creatinine and urea as well as glucosuria and proteinuria were evaluated. Both kidneys were isolated for estimation of oxidative stress markers, adenosine triphosphate (ATP) content and caspase-3 activity. Moreover, mitochondrial oxidative phosphorylation capacity, complexes I–IV activities and mitochondrial nitric oxide synthase (mNOS) protein expression were measured along with histological examinations of renal tubular damage and mitochondrial ultrastructural changes. Tempol was effective against cisplatin-induced elevation of serum creatinine and urea as well as glucosuria and proteinuria. Moreover, pretreatment with tempol notably inhibited cisplatin-induced oxidative stress and disruption of mitochondrial function by restoring mitochondrial oxidative phosphorylation, complexes I and III activities, mNOS protein expression and ATP content. Tempol also provided significant protection against apoptosis, tubular damage and mitochondrial ultrastructural changes. Interestingly, tempol did not interfere with the cytotoxic effect of cisplatin against the growth of solid Ehrlich carcinoma. Conclusion This study highlights the potential role of tempol in inhibiting cisplatin-induced nephrotoxicity without affecting its antitumor activity via amelioration of oxidative stress and mitochondrial dysfunction

  12. Further Commentary on Mitochondrial Dysfunction in Autism Spectrum Disorder: Assessment and Treatment Considerations

    ERIC Educational Resources Information Center

    Dager, Stephen R.; Corrigan, Neva M.; Estes, Annette; Shaw, Dennis W. W.

    2012-01-01

    The authors respond to a recent letter (Rossignol and Frye 2011) critical of their paper, "Proton magnetic resonance spectroscopy and MRI reveal no evidence for brain mitochondrial dysfunction in children with autism spectrum disorder" (Corrigan et al. 2011). Further considerations regarding the assessment of mitochondrial dysfunction in autism…

  13. High saturated fat feeding prevents left ventricular dysfunction and enhances mitochondrial function in heart failure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accumulation of lipids in the heart is associated with contractile dysfunction, and has been proposed to be a causative factor in mitochondrial dysfunction. We have previously shown that administration of a high saturated fat diet in heart failure (HF) increased mitochondrial respiration and ETC com...

  14. Cerebrospinal Fluid from Sporadic Amyotrophic Lateral Sclerosis Patients Induces Mitochondrial and Lysosomal Dysfunction.

    PubMed

    Sharma, Aparna; Varghese, Anu Mary; Vijaylakshmi, Kalyan; Sumitha, Rajendrarao; Prasanna, V K; Shruthi, S; Chandrasekhar Sagar, B K; Datta, Keshava K; Gowda, Harsha; Nalini, Atchayaram; Alladi, Phalguni Anand; Christopher, Rita; Sathyaprabha, Talakad N; Raju, Trichur R; Srinivas Bharath, M M

    2016-05-01

    In our laboratory, we have developed (1) an in vitro model of sporadic Amyotrophic Lateral Sclerosis (sALS) involving exposure of motor neurons to cerebrospinal fluid (CSF) from sALS patients and (2) an in vivo model involving intrathecal injection of sALS-CSF into rat pups. In the current study, we observed that spinal cord extract from the in vivo sALS model displayed elevated reactive oxygen species (ROS) and mitochondrial dysfunction. Quantitative proteomic analysis of sub-cellular fractions from spinal cord of the in vivo sALS model revealed down-regulation of 35 mitochondrial proteins and 4 lysosomal proteins. Many of the down-regulated mitochondrial proteins contribute to alterations in respiratory chain complexes and organellar morphology. Down-regulated lysosomal proteins Hexosaminidase, Sialidase and Aryl sulfatase also displayed lowered enzyme activity, thus validating the mass spectrometry data. Proteomic analysis and validation by western blot indicated that sALS-CSF induced the over-expression of the pro-apoptotic mitochondrial protein BNIP3L. In the in vitro model, sALS-CSF induced neurotoxicity and elevated ROS, while it lowered the mitochondrial membrane potential in rat spinal cord mitochondria in the in vivo model. Ultra structural alterations were evident in mitochondria of cultured motor neurons exposed to ALS-CSF. These observations indicate the first line evidence that sALS-CSF mediated mitochondrial and lysosomal defects collectively contribute to the pathogenesis underlying sALS. PMID:26646005

  15. Could mitochondrial dysfunction be a differentiating marker between chronic fatigue syndrome and fibromyalgia?

    PubMed

    Castro-Marrero, Jesús; Cordero, Mario D; Sáez-Francas, Naia; Jimenez-Gutierrez, Conxita; Aguilar-Montilla, Francisco J; Aliste, Luisa; Alegre-Martin, José

    2013-11-20

    Chronic fatigue syndrome (CFS) and fibromyalgia (FM) are complex and serious illnesses that affect approximately 2.5% and 5% of the general population worldwide, respectively. The etiology is unknown; however, recent studies suggest that mitochondrial dysfunction has been involved in the pathophysiology of both conditions. We have investigated the possible association between mitochondrial biogenesis and oxidative stress in patients with CFS and FM. We studied 23 CFS patients, 20 FM patients, and 15 healthy controls. Peripheral blood mononuclear cell showed decreased levels of Coenzyme Q10 from CFS patients (p<0.001 compared with controls) and from FM subjects (p<0.001 compared with controls) and ATP levels for CFS patients (p<0.001 compared with controls) and for FM subjects (p<0.001 compared with controls). On the contrary, CFS/FM patients had significantly increased levels of lipid peroxidation, respectively (p<0.001 for both CFS and FM patients with regard to controls) that were indicative of oxidative stress-induced damage. Mitochondrial citrate synthase activity was significantly lower in FM patients (p<0.001) and, however, in CFS, it resulted in similar levels than controls. Mitochondrial DNA content (mtDNA/gDNA ratio) was normal in CFS and reduced in FM patients versus healthy controls, respectively (p<0.001). Expression levels of peroxisome proliferator-activated receptor gamma-coactivator 1-alpha and transcription factor A, mitochondrial by immunoblotting were significantly lower in FM patients (p<0.001) and were normal in CFS subjects compared with healthy controls. These data lead to the hypothesis that mitochondrial dysfunction-dependent events could be a marker of differentiation between CFS and FM, indicating the mitochondria as a new potential therapeutic target for these conditions. PMID:23600892

  16. Mitochondrial Dysfunction and Oxidative Stress in Asthma: Implications for Mitochondria-Targeted Antioxidant Therapeutics

    PubMed Central

    Reddy, P. Hemachandra

    2011-01-01

    Asthma is a complex, inflammatory disorder characterized by airflow obstruction of variable degrees, bronchial hyper-responsiveness, and airway inflammation. Asthma is caused by environmental factors and a combination of genetic and environmental stimuli. Genetic studies have revealed that multiple loci are involved in the etiology of asthma. Recent cellular, molecular, and animal-model studies have revealed several cellular events that are involved in the progression of asthma, including: increased Th2 cytokines leading to the recruitment of inflammatory cells to the airway, and an increase in the production of reactive oxygen species and mitochondrial dysfunction in the activated inflammatory cells, leading to tissue injury in the bronchial epithelium. Further, aging and animal model studies have revealed that mitochondrial dysfunction and oxidative stress are involved and play a large role in asthma. Recent studies using experimental allergic asthmatic mouse models and peripheral cells and tissues from asthmatic humans have revealed antioxidants as promising treatments for people with asthma. This article summarizes the latest research findings on the involvement of inflammatory changes, and mitochondrial dysfunction/oxidative stress in the development and progression of asthma. This article also addresses the relationship between aging and age-related immunity in triggering asthma, the antioxidant therapeutic strategies in treating people with asthma. PMID:21461182

  17. Mitochondrial uncouplers inhibit hepatic stellate cell activation

    PubMed Central

    2012-01-01

    Background Mitochondrial dysfunction participates in the progression of several pathologies. Although there is increasing evidence for a mitochondrial role in liver disease, little is known about its contribution to hepatic stellate cell (HSC) activation. In this study we investigated the role of mitochondrial activity through mild uncoupling during in vitro activation of HSCs. Methods Cultured primary human and mouse HSCs were treated with the chemical uncouplers FCCP and Valinomycin. ATP levels were measured by luciferase assay and production of reactive oxygen species was determined using the fluorescent probe DCFH-DA. Possible cytotoxicity by uncoupler treatment was evaluated by caspase 3/7 activity and cytoplasmic protease leakage. Activation of HSCs and their response to the pro-fibrogenic cytokine TGF-β was evaluated by gene expression of activation markers and signal mediators using RT-qPCR. Proliferation was measured by incorporation of EdU and protein expression of α-smooth muscle actin was analyzed by immunocytochemistry and western blot. Results FCCP and Valinomycin treatment mildly decreased ATP and reactive oxygen species levels. Both uncouplers increased the expression of mitochondrial genes such as Tfam and COXIV while inducing morphological features of quiescent mouse HSCs and abrogating TGF-β signal transduction. Mild uncoupling reduced HSC proliferation and expression of pro-fibrogenic markers of mouse and human HSCs. Conclusions Mild mitochondrial uncoupling inhibits culture-induced HSC activation and their response to pro-fibrogenic cytokines like TGF-β. These results therefore suggest mitochondrial uncoupling of HSCs as a strategy to reduce progression of liver fibrosis. PMID:22686625

  18. The Mitochondrial-Derived Peptide Humanin Protects RPE Cells From Oxidative Stress, Senescence, and Mitochondrial Dysfunction

    PubMed Central

    Sreekumar, Parameswaran G.; Ishikawa, Keijiro; Spee, Chris; Mehta, Hemal H.; Wan, Junxiang; Yen, Kelvin; Cohen, Pinchas; Kannan, Ram; Hinton, David R.

    2016-01-01

    Purpose To investigate the expression of humanin (HN) in human retinal pigment epithelial (hRPE) cells and its effect on oxidative stress–induced cell death, mitochondrial bioenergetics, and senescence. Methods Humanin localization in RPE cells and polarized RPE monolayers was assessed by confocal microscopy. Human RPE cells were treated with 150 μM tert-Butyl hydroperoxide (tBH) in the absence/presence of HN (0.5–10 μg/mL) for 24 hours. Mitochondrial respiration was measured by XF96 analyzer. Retinal pigment epithelial cell death and caspase-3 activation, mitochondrial biogenesis and senescence were analyzed by TUNEL, immunoblot analysis, mitochondrial DNA copy number, SA-β-Gal staining, and p16INK4a expression and HN levels by ELISA. Oxidative stress–induced changes in transepithelial resistance were studied in RPE monolayers with and without HN cotreatment. Results A prominent localization of HN was found in the cytoplasmic and mitochondrial compartments of hRPE. Humanin cotreatment inhibited tBH-induced reactive oxygen species formation and significantly restored mitochondrial bioenergetics in hRPE cells. Exogenous HN was taken up by RPE and colocalized with mitochondria. The oxidative stress–induced decrease in mitochondrial bioenergetics was prevented by HN cotreatment. Humanin treatment increased mitochondrial DNA copy number and upregulated mitochondrial transcription factor A, a key biogenesis regulator protein. Humanin protected RPE cells from oxidative stress–induced cell death by STAT3 phosphorylation and inhibiting caspase-3 activation. Humanin treatment inhibited oxidant-induced senescence. Polarized RPE demonstrated elevated cellular HN and increased resistance to cell death. Conclusions Humanin protected RPE cells against oxidative stress–induced cell death and restored mitochondrial function. Our data suggest a potential role for HN therapy in the prevention of retinal degeneration, including AMD. PMID:26990160

  19. Lamivudine/telbivudine-associated neuromyopathy: neurogenic damage, mitochondrial dysfunction and mitochondrial DNA depletion

    PubMed Central

    Xu, Hongliang; Wang, Zhaoxia; Zheng, Lemin; Zhang, Wei; Lv, He; Jin, Suqin; Yuan, Yun

    2014-01-01

    Aims Myopathy or neuropathy has been associated with lamivudine/telbivudine therapy in hepatitis B patients. We aim to describe the pathological changes of lamivudine/telbivudine-associated neuromyopathy. Methods We retrospectively recruited six patients who were diagnosed with nucleotide analogues-associated myopathy or neuropathy. Muscle and nerve biopsy were performed, and the specimens were prepared for the light microscopy and electron microscopy. Genomic DNA was extracted from frozen muscle specimens, and the mitochondrial DNA (mtDNA) content was quantified by real-time PCR. Results Recovery of the myopathy can be achieved after the discontinuation or changing the drugs to entecavir. Muscle and nerve biopsy revealed similar changes under either the light or electronic microscopy in all the subjects. Quantitative real-time PCR revealed decrease of mtDNA content in the affected muscle. Conclusions MtDNA depletion results in mitochondrial dysfunction in the lamivudine/telbivudine-associated neuromyopathy. Myopathy was characterised by mitochondrial dysfunction accompanied with neurogenic damage due to axonal neuropathy. Ultrastructure changes of mitochondria included vacuolisation, simplification of the cristae and homogenised matrix. PMID:25190818

  20. Impact of Cyanidin-3-Glucoside on Glycated LDL-Induced NADPH Oxidase Activation, Mitochondrial Dysfunction and Cell Viability in Cultured Vascular Endothelial Cells

    PubMed Central

    Xie, Xueping; Zhao, Ruozhi; Shen, Garry X.

    2012-01-01

    Elevated levels of glycated low density lipoprotein (glyLDL) are frequently detected in diabetic patients. Previous studies demonstrated that glyLDL increased the production of reactive oxygen species (ROS), activated NADPH oxidase (NOX) and suppressed mitochondrial electron transport chain (mETC) enzyme activities in vascular endothelial cells (EC). The present study examined the effects of cyanidin-3-glucoside (C3G), a type of anthocyanin abundant in dark-skinned berries, on glyLDL-induced ROS production, NOX activation and mETC enzyme activity in porcine aortic EC (PAEC). Co-treatment of C3G prevented glyLDL-induced upregulation of NOX4 and intracellular superoxide production in EC. C3G normalized glyLDL-induced inhibition on the enzyme activities of mETC Complex I and III, as well as the abundances of NADH dehydrogenase 1 in Complex I and cytochrome b in Complex III in EC. Blocking antibody for the receptor of advanced glycation end products (RAGE) prevented glyLDL-induced changes in NOX and mETC enzymes. Combination of C3G and RAGE antibody did not significantly enhance glyLDL-induced inhibition of NOX or mETC enzymes. C3G reduced glyLDL-induced RAGE expression with the presence of RAGE antibody. C3G prevented prolonged incubation with the glyLDL-induced decrease in cell viability and the imbalance between key regulators for cell viability (cleaved caspase 3 and B cell Lyphoma-2) in EC. The findings suggest that RAGE plays an important role in glyLDL-induced oxidative stress in vascular EC. C3G may prevent glyLDL-induced NOX activation, the impairment of mETC enzymes and cell viability in cultured vascular EC. PMID:23443099

  1. Beneficial effects of astragaloside IV against angiotensin II-induced mitochondrial dysfunction in rat vascular smooth muscle cells.

    PubMed

    Lu, Yao; Li, Su; Wu, Hengfang; Bian, Zhiping; Xu, Jindan; Gu, Chunrong; Chen, Xiangjian; Yang, Di

    2015-11-01

    Angiotensin II (Ang II)-induced mitochondrial dysfunction is a prominent characteristic of the majority of cardiovascular diseases. Astragaloside IV (As-IV), the major active ingredient of Astragalus membranaceus (Fisch.) Bge. (a traditional Chinese herbal medicine), possesses antioxidant properties. The present study was carried out to examine whether As-IV can reverse Ang II-induced mitochondrial dysfunction in vascular smooth muscle cells (VSMCs) and to elucidate the underlying molecular mechanisms. Cultured rat aortic VSMCs treated with Ang II (1 µM) for 24 h exhibited mitochondrial dysfunction, including a decrease in mitochondrial oxygen consumption rates (OCRs), adenosine triphosphate (ATP) production and mitochondrial DNA (mtDNA) levels, as well as the disruption of mitochondrial structural integrity. Following treatment with Ang II, As-IV (50 µg/ml) was added to the culture medium followed by incubation for a further 24 h. The administration of As-IV significantly increased the mitochondrial OCRs, ATP production and the mtDNA levels, and reversed the mitochondrial morphological changes which occurred in the VSMCs. Treatment with As-IV also reversed the Ang II-induced increase in the production of reactive oxygen species (ROS), the increase in NADPH oxidase and xanthine oxidase activity, as well as the decrease in mitochondrial membrane potential (ΔΨm) and manganese superoxide dismutase (Mn-SOD) activity. Furthermore, treatment with As-IV led to an increase in the mRNA expression of peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) and mitochondrial transcription factor A (Tfam), and in the protein expression of PGC-1α, parkin and dynamin 1-like protein 1 (Drp1) in the VSMCs. These results indicate that As-IV exerts beneficial effects on Ang II-induced mitochondrial dysfunction in rat VSMCs and that these effects are mediated through the inhibition of ROS overproduction, as well as the promotion of mitochondrial autophagy and

  2. Beneficial effects of astragaloside IV against angiotensin II-induced mitochondrial dysfunction in rat vascular smooth muscle cells

    PubMed Central

    LU, YAO; LI, SU; WU, HENGFANG; BIAN, ZHIPING; XU, JINDAN; GU, CHUNRONG; CHEN, XIANGJIAN; YANG, DI

    2015-01-01

    Angiotensin II (Ang II)-induced mitochondrial dysfunction is a prominent characteristic of the majority of cardiovascular diseases. Astragaloside IV (As-IV), the major active ingredient of Astragalus membranaceus (Fisch.) Bge. (a traditional Chinese herbal medicine), possesses antioxidant properties. The present study was carried out to examine whether As-IV can reverse Ang II-induced mitochondrial dysfunction in vascular smooth muscle cells (VSMCs) and to elucidate the underlying molecular mechanisms. Cultured rat aortic VSMCs treated with Ang II (1 µM) for 24 h exhibited mitochondrial dysfunction, including a decrease in mitochondrial oxygen consumption rates (OCRs), adenosine triphosphate (ATP) production and mitochondrial DNA (mtDNA) levels, as well as the disruption of mitochondrial structural integrity. Following treatment with Ang II, As-IV (50 µg/ml) was added to the culture medium followed by incubation for a further 24 h. The administration of As-IV significantly increased the mitochondrial OCRs, ATP production and the mtDNA levels, and reversed the mitochondrial morphological changes which occurred in the VSMCs. Treatment with As-IV also reversed the Ang II-induced increase in the production of reactive oxygen species (ROS), the increase in NADPH oxidase and xanthine oxidase activity, as well as the decrease in mitochondrial membrane potential (ΔΨm) and manganese superoxide dismutase (Mn-SOD) activity. Furthermore, treatment with As-IV led to an increase in the mRNA expression of peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) and mitochondrial transcription factor A (Tfam), and in the protein expression of PGC-1α, parkin and dynamin 1-like protein 1 (Drp1) in the VSMCs. These results indicate that As-IV exerts beneficial effects on Ang II-induced mitochondrial dysfunction in rat VSMCs and that these effects are mediated through the inhibition of ROS overproduction, as well as the promotion of mitochondrial autophagy and

  3. Mitochondrial (Dys)function in Adipocyte (De)differentiation and Systemic Metabolic Alterations

    PubMed Central

    De Pauw, Aurélia; Tejerina, Silvia; Raes, Martine; Keijer, Jaap; Arnould, Thierry

    2009-01-01

    In mammals, adipose tissue, composed of BAT and WAT, collaborates in energy partitioning and performs metabolic regulatory functions. It is the most flexible tissue in the body, because it is remodeled in size and shape by modifications in adipocyte cell size and/or number, depending on developmental status and energy fluxes. Although numerous reviews have focused on the differentiation program of both brown and white adipocytes as well as on the pathophysiological role of white adipose tissues, the importance of mitochondrial activity in the differentiation or the dedifferentiation programs of adipose cells and in systemic metabolic alterations has not been extensively reviewed previously. Here, we address the crucial role of mitochondrial functions during adipogenesis and in mature adipocytes and discuss the cellular responses of white adipocytes to mitochondrial activity impairment. In addition, we discuss the increase in scientific knowledge regarding mitochondrial functions in the last 10 years and the recent suspicion of mitochondrial dysfunction in several 21st century epidemics (ie, obesity and diabetes), as well as in lipodystrophy found in HIV-treated patients, which can contribute to the development of new therapeutic strategies targeting adipocyte mitochondria. PMID:19700756

  4. GDF-15 Is Elevated in Children with Mitochondrial Diseases and Is Induced by Mitochondrial Dysfunction

    PubMed Central

    Montero, Raquel; Yubero, Delia; Villarroya, Joan; Henares, Desiree; Jou, Cristina; Rodríguez, Maria Angeles; Ramos, Federico; Nascimento, Andrés; Ortez, Carlos Ignacio; Campistol, Jaume; Perez-Dueñas, Belen; O'Callaghan, Mar; Pineda, Mercedes; Garcia-Cazorla, Angeles; Oferil, Jaume Colomer; Montoya, Julio; Ruiz-Pesini, Eduardo; Emperador, Sonia; Meznaric, Marija; Campderros, Laura; Kalko, Susana G.; Villarroya, Francesc; Artuch, Rafael; Jimenez-Mallebrera, Cecilia

    2016-01-01

    Background We previously described increased levels of growth and differentiation factor 15 (GDF-15) in skeletal muscle and serum of patients with mitochondrial diseases. Here we evaluated GDF-15 as a biomarker for mitochondrial diseases affecting children and compared it to fibroblast-growth factor 21 (FGF-21). To investigate the mechanism of GDF-15 induction in these pathologies we measured its expression and secretion in response to mitochondrial dysfunction. Methods We analysed 59 serum samples from 48 children with mitochondrial disease, 19 samples from children with other neuromuscular diseases and 33 samples from aged-matched healthy children. GDF-15 and FGF-21 circulating levels were determined by ELISA. Results Our results showed that in children with mitochondrial diseases GDF-15 levels were on average increased by 11-fold (mean 4046pg/ml, 1492 SEM) relative to healthy (350, 21) and myopathic (350, 32) controls. The area under the curve for the receiver-operating-characteristic curve for GDF-15 was 0.82 indicating that it has a good discriminatory power. The overall sensitivity and specificity of GDF-15 for a cut-off value of 550pg/mL was 67.8% (54.4%-79.4%) and 92.3% (81.5%-97.9%), respectively. We found that elevated levels of GDF-15 and or FGF-21 correctly identified a larger proportion of patients than elevated levels of GDF-15 or FGF-21 alone. GDF-15, as well as FGF-21, mRNA expression and protein secretion, were significantly induced after treatment of myotubes with oligomycin and that levels of expression of both factors significantly correlated. Conclusions Our data indicate that GDF-15 is a valuable serum quantitative biomarker for the diagnosis of mitochondrial diseases in children and that measurement of both GDF-15 and FGF-21 improves the disease detection ability of either factor separately. Finally, we demonstrate for the first time that GDF-15 is produced by skeletal muscle cells in response to mitochondrial dysfunction and that its levels

  5. Troglitazone, but not rosiglitazone, damages mitochondrial DNA and induces mitochondrial dysfunction and cell death in human hepatocytes

    SciTech Connect

    Rachek, Lyudmila I.; Yuzefovych, Larysa V.; LeDoux, Susan P.; Julie, Neil L.; Wilson, Glenn L.

    2009-11-01

    Thiazolidinediones (TZDs), such as troglitazone (TRO) and rosiglitazone (ROSI), improve insulin resistance by acting as ligands for the nuclear receptor peroxisome proliferator-activated receptor-gamma (PPARgamma). TRO was withdrawn from the market because of reports of serious hepatotoxicity. A growing body of evidence suggests that TRO caused mitochondrial dysfunction and induction of apoptosis in human hepatocytes but its mechanisms of action remain unclear. We hypothesized that damage to mitochondrial DNA (mtDNA) is an initiating event involved in TRO-induced mitochondrial dysfunction and hepatotoxicity. Primary human hepatocytes were exposed to TRO and ROSI. The results obtained revealed that TRO, but not ROSI at equimolar concentrations, caused a substantial increase in mtDNA damage and decreased ATP production and cellular viability. The reactive oxygen species (ROS) scavenger, N-acetyl cystein (NAC), significantly diminished the TRO-induced cytotoxicity, suggesting involvement of ROS in TRO-induced hepatocyte cytotoxicity. The PPARgamma antagonist (GW9662) did not block the TRO-induced decrease in cell viability, indicating that the TRO-induced hepatotoxicity is PPARgamma-independent. Furthermore, TRO induced hepatocyte apoptosis, caspase-3 cleavage and cytochrome c release. Targeting of a DNA repair protein to mitochondria by protein transduction using a fusion protein containing the DNA repair enzyme Endonuclease III (EndoIII) from Escherichia coli, a mitochondrial translocation sequence (MTS) and the protein transduction domain (PTD) from HIV-1 TAT protein protected hepatocytes against TRO-induced toxicity. Overall, our results indicate that significant mtDNA damage caused by TRO is a prime initiator of the hepatoxicity caused by this drug.

  6. L-Lactate Protects Skin Fibroblasts against Aging-Associated Mitochondrial Dysfunction via Mitohormesis.

    PubMed

    Zelenka, Jaroslav; Dvořák, Aleš; Alán, Lukáš

    2015-01-01

    A moderate elevation of reactive oxygen species (ROS) production and a mild inhibition of mitochondrial respiratory chain have been associated with a health promotion and a lifespan extension in several animal models of aging. Here, we tested whether this phenomenon called mitohormesis could be mediated by L-lactate. The treatment with 5 mM L-lactate significantly increased H2O2 production and slightly inhibited the respiration in cultured skin fibroblasts and in isolated mitochondria. The L-lactate exposure was associated with oxidation of intracellular glutathione, phosphorylation of 5'AMP-activated protein kinase (AMPK), and induction of peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1α) transcription. A replicative aging of fibroblasts (L0) with a constant (LC), or intermittent 5 mM L-lactate (LI) in media showed that the high-passage LI fibroblasts have higher respiration, lower H2O2 release, and lower secretion of L-lactate compared to L0 and LC. This protection against mitochondrial dysfunction in LI cells was associated with lower activity of mechanistic target of rapamycin complex 1 (mTORC1), less signs of cellular senescence, and increased autophagy compared to L0 and LC. In conclusion, we demonstrated that intermittent but not constant exposure to L-lactate triggers mitohormesis, prevents aging-associated mitochondrial dysfunction, and improves other markers of aging. PMID:26171114

  7. L-Lactate Protects Skin Fibroblasts against Aging-Associated Mitochondrial Dysfunction via Mitohormesis

    PubMed Central

    Zelenka, Jaroslav; Dvořák, Aleš; Alán, Lukáš

    2015-01-01

    A moderate elevation of reactive oxygen species (ROS) production and a mild inhibition of mitochondrial respiratory chain have been associated with a health promotion and a lifespan extension in several animal models of aging. Here, we tested whether this phenomenon called mitohormesis could be mediated by L-lactate. The treatment with 5 mM L-lactate significantly increased H2O2 production and slightly inhibited the respiration in cultured skin fibroblasts and in isolated mitochondria. The L-lactate exposure was associated with oxidation of intracellular glutathione, phosphorylation of 5′AMP-activated protein kinase (AMPK), and induction of peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1α) transcription. A replicative aging of fibroblasts (L0) with a constant (LC), or intermittent 5 mM L-lactate (LI) in media showed that the high-passage LI fibroblasts have higher respiration, lower H2O2 release, and lower secretion of L-lactate compared to L0 and LC. This protection against mitochondrial dysfunction in LI cells was associated with lower activity of mechanistic target of rapamycin complex 1 (mTORC1), less signs of cellular senescence, and increased autophagy compared to L0 and LC. In conclusion, we demonstrated that intermittent but not constant exposure to L-lactate triggers mitohormesis, prevents aging-associated mitochondrial dysfunction, and improves other markers of aging. PMID:26171114

  8. A Signaling Lipid Associated with Alzheimer's Disease Promotes Mitochondrial Dysfunction.

    PubMed

    Kennedy, Michael A; Moffat, Tia C; Gable, Kenneth; Ganesan, Suriakarthiga; Niewola-Staszkowska, Karolina; Johnston, Anne; Nislow, Corey; Giaever, Guri; Harris, Linda J; Loewith, Robbie; Zaremberg, Vanina; Harper, Mary-Ellen; Dunn, Teresa; Bennett, Steffany A L; Baetz, Kristin

    2016-01-01

    Fundamental changes in the composition and distribution of lipids within the brain are believed to contribute to the cognitive decline associated with Alzheimer's disease (AD). The mechanisms by which these changes in lipid composition affect cellular function and ultimately cognition are not well understood. Although "candidate gene" approaches can provide insight into the effects of dysregulated lipid metabolism they require a preexisting understanding of the molecular targets of individual lipid species. In this report we combine unbiased gene expression profiling with a genome-wide chemogenomic screen to identify the mitochondria as an important downstream target of PC(O-16:0/2:0), a neurotoxic lipid species elevated in AD. Further examination revealed that PC(O-16:0/2:0) similarly promotes a global increase in ceramide accumulation in human neurons which was associated with mitochondrial-derived reactive oxygen species (ROS) and toxicity. These findings suggest that PC(O-16:0/2:0)-dependent mitochondrial dysfunction may be an underlying contributing factor to the ROS production associated with AD. PMID:26757638

  9. Mitochondrial Dysfunction Contributes to the Pathogenesis of Alzheimer's Disease

    PubMed Central

    Cabezas-Opazo, Fabian A.; Vergara-Pulgar, Katiana; Pérez, María José; Jara, Claudia; Osorio-Fuentealba, Cesar; Quintanilla, Rodrigo A.

    2015-01-01

    Alzheimer's disease (AD) is a neurodegenerative disease that affects millions of people worldwide. Currently, there is no effective treatment for AD, which indicates the necessity to understand the pathogenic mechanism of this disorder. Extracellular aggregates of amyloid precursor protein (APP), called Aβ peptide and neurofibrillary tangles (NFTs), formed by tau protein in the hyperphosphorylated form are considered the hallmarks of AD. Accumulative evidence suggests that tau pathology and Aβ affect neuronal cells compromising energy supply, antioxidant response, and synaptic activity. In this context, it has been showed that mitochondrial function could be affected by the presence of tau pathology and Aβ in AD. Mitochondria are essential for brain cells function and the improvement of mitochondrial activity contributes to preventing neurodegeneration. Several reports have suggested that mitochondria could be affected in terms of morphology, bioenergetics, and transport in AD. These defects affect mitochondrial health, which later will contribute to the pathogenesis of AD. In this review, we will discuss evidence that supports the importance of mitochondrial injury in the pathogenesis of AD and how studying these mechanisms could lead us to suggest new targets for diagnostic and therapeutic intervention against neurodegeneration. PMID:26221414

  10. Carbohydrate Metabolism Is Perturbed in Peroxisome-deficient Hepatocytes Due to Mitochondrial Dysfunction, AMP-activated Protein Kinase (AMPK) Activation, and Peroxisome Proliferator-activated Receptor γ Coactivator 1α (PGC-1α) Suppression*

    PubMed Central

    Peeters, Annelies; Fraisl, Peter; van den Berg, Sjoerd; Ver Loren van Themaat, Emiel; Van Kampen, Antoine; Rider, Mark H.; Takemori, Hiroshi; van Dijk, Ko Willems; Van Veldhoven, Paul P.; Carmeliet, Peter; Baes, Myriam

    2011-01-01

    Hepatic peroxisomes are essential for lipid conversions that include the formation of mature conjugated bile acids, the degradation of branched chain fatty acids, and the synthesis of docosahexaenoic acid. Through unresolved mechanisms, deletion of functional peroxisomes from mouse hepatocytes (L-Pex5−/− mice) causes severe structural and functional abnormalities at the inner mitochondrial membrane. We now demonstrate that the peroxisomal and mitochondrial anomalies trigger energy deficits, as shown by increased AMP/ATP and decreased NAD+/NADH ratios. This causes suppression of gluconeogenesis and glycogen synthesis and up-regulation of glycolysis. As a consequence, L-Pex5−/− mice combust more carbohydrates resulting in lower body weights despite increased food intake. The perturbation of carbohydrate metabolism does not require a long term adaptation to the absence of functional peroxisomes as similar metabolic changes were also rapidly induced by acute elimination of Pex5 via adenoviral administration of Cre. Despite its marked activation, peroxisome proliferator-activated receptor α (PPARα) was not causally involved in these metabolic perturbations, because all abnormalities still manifested when peroxisomes were eliminated in a peroxisome proliferator-activated receptor α null background. Instead, AMP-activated kinase activation was responsible for the down-regulation of glycogen synthesis and induction of glycolysis. Remarkably, PGC-1α was suppressed despite AMP-activated kinase activation, a paradigm not previously reported, and they jointly contributed to impaired gluconeogenesis. In conclusion, lack of functional peroxisomes from hepatocytes results in marked disturbances of carbohydrate homeostasis, which are consistent with adaptations to an energy deficit. Because this is primarily due to impaired mitochondrial ATP production, these L-Pex5-deficient livers can also be considered as a model for secondary mitochondrial hepatopathies. PMID

  11. Real-time monitoring of metabolic function in liver-on-chip microdevices tracks the dynamics of mitochondrial dysfunction.

    PubMed

    Bavli, Danny; Prill, Sebastian; Ezra, Elishai; Levy, Gahl; Cohen, Merav; Vinken, Mathieu; Vanfleteren, Jan; Jaeger, Magnus; Nahmias, Yaakov

    2016-04-19

    Microfluidic organ-on-a-chip technology aims to replace animal toxicity testing, but thus far has demonstrated few advantages over traditional methods. Mitochondrial dysfunction plays a critical role in the development of chemical and pharmaceutical toxicity, as well as pluripotency and disease processes. However, current methods to evaluate mitochondrial activity still rely on end-point assays, resulting in limited kinetic and prognostic information. Here, we present a liver-on-chip device capable of maintaining human tissue for over a month in vitro under physiological conditions. Mitochondrial respiration was monitored in real time using two-frequency phase modulation of tissue-embedded phosphorescent microprobes. A computer-controlled microfluidic switchboard allowed contiguous electrochemical measurements of glucose and lactate, providing real-time analysis of minute shifts from oxidative phosphorylation to anaerobic glycolysis, an early indication of mitochondrial stress. We quantify the dynamics of cellular adaptation to mitochondrial damage and the resulting redistribution of ATP production during rotenone-induced mitochondrial dysfunction and troglitazone (Rezulin)-induced mitochondrial stress. We show troglitazone shifts metabolic fluxes at concentrations previously regarded as safe, suggesting a mechanism for its observed idiosyncratic effect. Our microfluidic platform reveals the dynamics and strategies of cellular adaptation to mitochondrial damage, a unique advantage of organ-on-chip technology. PMID:27044092

  12. Hydrogen-rich saline protects against mitochondrial dysfunction and apoptosis in mice with obstructive jaundice.

    PubMed

    Liu, Qu; Li, Bao-Shan; Song, Yu-Jiao; Hu, Ming-Gen; Lu, Jian-Yue; Gao, Ang; Sun, Xue-Jun; Guo, Xi-Ming; Liu, Rong

    2016-04-01

    Previous studies have demonstrated that hydrogen-rich saline (HS) protects against bile duct ligation (BDL)-induced liver injury by suppressing oxidative stress and inflammation. Mitochondria, which are targets of excessive reactive oxygen species and central mediators of apoptosis, have a pivotal role in hepatic injury during obstructive jaundice (OJ); however, the implications of HS in the hepatic mitochondria of BDL mice remain unknown. The present study investigated the hypothesis that HS could reduce OJ‑induced liver injury through the protection of mitochondrial structure and function, as well as inhibition of the mitochondrial apoptotic pathway. Male C57BL/6 mice were randomly divided into three experimental groups: Sham operation group, BDL injury with normal saline (NS) treatment group, and BDL‑injury with HS treatment group. Mitochondrial damage and apoptotic parameters were determined 3 days post‑BDL injury and treatment. The results demonstrated that mitochondria isolated from the livers of NS-treated BDL mice exhibited increased mitochondrial swelling, cytochrome c release, and oxidative damage. In addition, liver samples from NS‑treated BDL mice exhibited significant increases in B‑cell lymphoma 2 (Bcl‑2)‑associated X protein expression, caspase activities, and hepatocyte apoptosis compared with livers from sham‑operated controls. Notably, treatment with HS reduced the levels of these markers and alleviated morphological defects in the mitochondria following injury. In addition, HS markedly increased the antioxidant potential of mitochondria, as evidenced by elevated adenosine triphosphate levels, mitochondrial respiratory function, and increased levels of active Bcl‑2. In conclusion, HS attenuates mitochondrial oxidative stress and dysfunction, and inhibits mitochondrial-mediated apoptosis in the livers of BDL mice. PMID:26936224

  13. Mitochondrial ubiquitin ligase MITOL blocks S-nitrosylated MAP1B-light chain 1-mediated mitochondrial dysfunction and neuronal cell death

    PubMed Central

    Yonashiro, Ryo; Kimijima, Yuya; Shimura, Takuya; Kawaguchi, Kohei; Fukuda, Toshifumi; Inatome, Ryoko; Yanagi, Shigeru

    2012-01-01

    Nitric oxide (NO) is implicated in neuronal cell survival. However, excessive NO production mediates neuronal cell death, in part via mitochondrial dysfunction. Here, we report that the mitochondrial ubiquitin ligase, MITOL, protects neuronal cells from mitochondrial damage caused by accumulation of S-nitrosylated microtubule-associated protein 1B-light chain 1 (LC1). S-nitrosylation of LC1 induces a conformational change that serves both to activate LC1 and to promote its ubiquination by MITOL, indicating that microtubule stabilization by LC1 is regulated through its interaction with MITOL. Excessive NO production can inhibit MITOL, and MITOL inhibition resulted in accumulation of S-nitrosylated LC1 following stimulation of NO production by calcimycin and N-methyl-D-aspartate. LC1 accumulation under these conditions resulted in mitochondrial dysfunction and neuronal cell death. Thus, the balance between LC1 activation by S-nitrosylation and down-regulation by MITOL is critical for neuronal cell survival. Our findings may contribute significantly to an understanding of the mechanisms of neurological diseases caused by nitrosative stress-mediated mitochondrial dysfunction. PMID:22308378

  14. Apoptosis-induced mitochondrial dysfunction causes cytoplasmic lipid droplet formation.

    PubMed

    Boren, J; Brindle, K M

    2012-09-01

    A characteristic of apoptosis is the rapid accumulation of cytoplasmic lipid droplets, which are composed largely of neutral lipids. The proton signals from these lipids have been used for the non-invasive detection of cell death using magnetic resonance spectroscopy. We show here that despite an apoptosis-induced decrease in the levels and activities of enzymes involved in lipogenesis, which occurs downstream of p53 activation and inhibition of the mTOR signaling pathway, the increase in lipid accumulation is due to increased de novo lipid synthesis. This results from inhibition of mitochondrial fatty acid β-oxidation, which coupled with an increase in acyl-CoA synthetase activity, diverts fatty acids away from oxidation and into lipid synthesis. The inhibition of fatty acid oxidation can be explained by a rapid rise in mitochondrial membrane potential and an attendant increase in the levels of reactive oxygen species. PMID:22460322

  15. Molecular insights into mitochondrial dysfunction in cancer-related muscle wasting.

    PubMed

    Antunes, Diana; Padrão, Ana Isabel; Maciel, Elisabete; Santinha, Deolinda; Oliveira, Paula; Vitorino, Rui; Moreira-Gonçalves, Daniel; Colaço, Bruno; Pires, Maria João; Nunes, Cláudia; Santos, Lúcio L; Amado, Francisco; Duarte, José Alberto; Domingues, Maria Rosário; Ferreira, Rita

    2014-06-01

    Alterations in muscle mitochondrial bioenergetics during cancer cachexia were previously suggested; however, the underlying mechanisms are not known. So, the goal of this study was to evaluate mitochondrial phospholipid remodeling in cancer-related muscle wasting and its repercussions to respiratory chain activity and fiber susceptibility to apoptosis. An animal model of urothelial carcinoma induced by exposition to N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN) and characterized by significant body weight loss due to skeletal muscle mass decrease was used. Morphological evidences of muscle atrophy were associated to decreased respiratory chain activity and increased expression of mitochondrial UCP3, which altogether highlight the lower ability of wasted muscle to produce ATP. Lipidomic analysis of isolated mitochondria revealed a significant decrease of phosphatidic acid, phosphatidylglycerol and cardiolipin in BBN mitochondria, counteracted by increased phosphatidylcholine levels. Besides the impact on membrane fluidity, this phospholipid remodeling seems to justify, at least in part, the lower oxidative phosphorylation activity observed in mitochondria from wasted muscle and their increased susceptibility to apoptosis. Curiously, no evidences of lipid peroxidation were observed but proteins from BBN mitochondria, particularly the metabolic ones, seem more prone to carbonylation with the consequent implications in mitochondria functionality. Overall, data suggest that bladder cancer negatively impacts skeletal muscle activity specifically by affecting mitochondrial phospholipid dynamics and its interaction with proteins, ultimately leading to the dysfunction of this organelle. The regulation of phospholipid biosynthetic pathways might be seen as potential therapeutic targets for the management of cancer-related muscle wasting. PMID:24657703

  16. Telomerase Reverse Transcriptase and Peroxisome Proliferator-Activated Receptor γ Co-Activator-1α Cooperate to Protect Cells from DNA Damage and Mitochondrial Dysfunction in Vascular Senescence.

    PubMed

    Mendelsohn, Andrew R; Larrick, James W

    2015-10-01

    Reduced telomere length with increasing age in dividing cells has been implicated in contributing to the pathologies of human aging, which include cardiovascular and metabolic disorders, through induction of cellular senescence. Telomere shortening results from the absence of telomerase, an enzyme required to maintain telomere length. Telomerase reverse transcriptase (TERT), the protein subunit of telomerase, is expressed only transiently in a subset of adult somatic cells, which include stem cells and smooth muscle cells. A recent report from Xiong and colleagues demonstrates a pivotal role for the transcription co-factor peroxisome proliferator-activated receptor γ co-activator-1α (PGC-1α) in maintaining TERT expression and preventing vascular senescence and atherosclerosis in mice. Ablation of PGC-1α reduced TERT expression and increased DNA damage and reactive oxygen species (ROS), resulting in shortened telomeres and vascular senescence. In the ApoE(-/-) mouse model of atherosclerosis, forced expression of PGC-1α increased expression of TERT, extended telomeres, and reversed genomic DNA damage, vascular senescence, and the development of atherosclerotic plaques. Alpha lipoic acid (ALA) stimulated expression of PGC-1α and TERT and reversed DNA damage, vascular senescence, and atherosclerosis, similarly to ectopic expression of PGC-1α. ALA stimulated cyclic adenosine monophosphate (cAMP) signaling, which in turn activated the cAMP response element-binding protein (CREB), a co-factor for PGC-1α expression. The possibility that ALA might induce TERT to extend telomeres in human cells suggests that ALA may be useful in treating atherosclerosis and other aging-related diseases. However, further investigation is needed to identify whether ALA induces TERT in human cells, which cell types are susceptible, and whether such changes have clinical significance. PMID:26414604

  17. Insulin-like growth factor 1 (IGF-1) therapy: Mitochondrial dysfunction and diseases.

    PubMed

    Sádaba, M C; Martín-Estal, I; Puche, J E; Castilla-Cortázar, I

    2016-07-01

    This review resumes the association between mitochondrial function and diseases, especially neurodegenerative diseases. Additionally, it summarizes the major role of IGF-1 as a mitochondrial protector, as studied in several experimental models (cirrhosis, aging …). The contribution of mitochondrial dysfunction to impairments in insulin metabolic signaling is also suggested by gene array analysis showing that reductions in gene expression, that regulates mitochondrial ATP production, are associated with insulin resistance and type 2 diabetes mellitus. Moreover, reductions in oxidative capacity of mitochondrial electron transport chain are manifested in obese, insulin-resistant and diabetic patients. Genetic and environmental factors, oxidative stress, and alterations in mitochondrial biogenesis can adversely affect mitochondrial function, leading to insulin resistance and several pathological conditions, such as type 2 diabetes. Finally, it remains essential to know the exact mechanisms involved in mitochondrial generation and metabolism, mitophagy, apoptosis, and oxidative stress to establish new targets in order to develop potentially effective therapies. One of the newest targets to recover mitochondrial dysfunction could be the administration of IGF-1 at low doses. In the last years, it has been observed that IGF-1 therapy has several beneficial effects: restores physiological IGF-1 levels; improves insulin resistance and lipid metabolism; exerts mitochondrial protection; and has hepatoprotective, neuroprotective, antioxidant and antifibrogenic effects. In consequence, treatment of mitochondrial dysfunctions with low doses of IGF-1 could be a powerful and useful effective therapy to restore normal mitochondrial functions. PMID:27020404

  18. Mitochondrial Division Inhibitor 1 Ameliorates Mitochondrial Injury, Apoptosis, and Motor Dysfunction After Acute Spinal Cord Injury in Rats.

    PubMed

    Li, Gang; Jia, Zhiqiang; Cao, Yang; Wang, Yansong; Li, Haotian; Zhang, Zhenyu; Bi, Jing; Lv, Gang; Fan, Zhongkai

    2015-07-01

    Mitochondrial division inhibitor 1 (Mdivi-1) is the most effective pharmacological inhibitor of mitochondrial fission. Spinal cord injury (SCI) is a common and serious trauma, which lacks efficient treatment. This study aimed to detect the role of Mdivi-1 in neuronal injury and its underlying mechanism after acute SCI (ASCI) in rats. Western blot analysis showed that Bax levels on the mitochondrial outer membrane, and release of cytochrome C (cytC) and apoptosis-inducing factor (AIF) from the mitochondria began to increase significantly at 4 h after ASCI, then peaked at 16 h, and declined significantly from 16 to 24 h. However, the mitochondrial levels of Bcl-2 increased significantly at 2 h, peaked at 4 h, and subsequently significantly decreased from 4 to 24 h after ASCI. In addition, Mdivi-1(1.2 mg/kg) significantly suppressed the translocation of dynamin-related protein 1 (Drp1) and Bax to the mitochondria, mitochondrial depolarization, decrease of ATP and reduced Glutathione, increase of the Malondialdehyde, cytC release, and AIF translocation at 16 h and 3 days after ASCI, and also inhibited the caspase-3 activation and decrease of the percentage of apoptotic cells at 16 h, 3 and 10 days, further, ameliorated the motor dysfunction greatly from 3 to 10 days after ASCI in rats. This neuroprotective effect was dose-dependent. However, Mdivi-1(1.2 mg/kg) had no effects on the translocation of Bcl-2 and fission protein 1 on the mitochondria, and did not affect the expression of total Drp1 at 16 h after ASCI. Our experimental findings indicated that Mdivi-1 can protect rats against ASCI, and that its underlying mechanism may be associated with inhibition of Drp1 translocation to the mitochondria, alleviation of mitochondrial dysfunction and oxidative stress, and suppression of caspase-dependent and -independent apoptosis. PMID:25968480

  19. p21{sup WAF1/CIP1} deficiency induces mitochondrial dysfunction in HCT116 colon cancer cells

    SciTech Connect

    Kim, Ae Jeong; Jee, Hye Jin; Song, Naree; Kim, Minjee; Jeong, Seon-Young; Yun, Jeanho

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer p21{sup -/-} HCT116 cells exhibited an increase in mitochondrial mass. Black-Right-Pointing-Pointer The expression levels of PGC-1{alpha} and AMPK were upregulated in p21{sup -/-} HCT116 cells. Black-Right-Pointing-Pointer The proliferation of p21{sup -/-} HCT116 cells in galactose medium was significantly impaired. Black-Right-Pointing-Pointer p21 may play a role in maintaining proper mitochondrial mass and respiratory function. -- Abstract: p21{sup WAF1/CIP1} is a critical regulator of cell cycle progression. However, the role of p21 in mitochondrial function remains poorly understood. In this study, we examined the effect of p21 deficiency on mitochondrial function in HCT116 human colon cancer cells. We found that there was a significant increase in the mitochondrial mass of p21{sup -/-} HCT116 cells, as measured by 10-N-nonyl-acridine orange staining, as well as an increase in the mitochondrial DNA content. In contrast, p53{sup -/-} cells had a mitochondrial mass comparable to that of wild-type HCT116 cells. In addition, the expression levels of the mitochondrial biogenesis regulators PGC-1{alpha} and TFAM and AMPK activity were also elevated in p21{sup -/-} cells, indicating that p21 deficiency induces the rate of mitochondrial biogenesis through the AMPK-PGC-1{alpha} axis. However, the increase in mitochondrial biogenesis in p21{sup -/-} cells did not accompany an increase in the cellular steady-state level of ATP. Furthermore, p21{sup -/-} cells exhibited significant proliferation impairment in galactose medium, suggesting that p21 deficiency induces a defect in the mitochondrial respiratory chain in HCT116 cells. Taken together, our results suggest that the loss of p21 results in an aberrant increase in the mitochondrial mass and in mitochondrial dysfunction in HCT116 cells, indicating that p21 is required to maintain proper mitochondrial mass and respiratory function.

  20. Evidence of Mitochondrial Dysfunction within the Complex Genetic Etiology of Schizophrenia

    PubMed Central

    Hjelm, Brooke E.; Rollins, Brandi; Mamdani, Firoza; Lauterborn, Julie C.; Kirov, George; Lynch, Gary; Gall, Christine M.; Sequeira, Adolfo; Vawter, Marquis P.

    2015-01-01

    Genetic evidence has supported the hypothesis that schizophrenia (SZ) is a polygenic disorder caused by the disruption in function of several or many genes. The most common and reproducible cellular phenotype associated with SZ is a reduction in dendritic spines within the neocortex, suggesting alterations in dendritic architecture may cause aberrant cortical circuitry and SZ symptoms. Here, we review evidence supporting a multifactorial model of mitochondrial dysfunction in SZ etiology and discuss how these multiple paths to mitochondrial dysfunction may contribute to dendritic spine loss and/or underdevelopment in some SZ subjects. The pathophysiological role of mitochondrial dysfunction in SZ is based upon genomic analyses of both the mitochondrial genome and nuclear genes involved in mitochondrial function. Previous studies and preliminary data suggest SZ is associated with specific alleles and haplogroups of the mitochondrial genome, and also correlates with a reduction in mitochondrial copy number and an increase in synonymous and nonsynonymous substitutions of mitochondrial DNA. Mitochondrial dysfunction has also been widely implicated in SZ by genome-wide association, exome sequencing, altered gene expression, proteomics, microscopy analyses, and induced pluripotent stem cell studies. Together, these data support the hypothesis that SZ is a polygenic disorder with an enrichment of mitochondrial targets. PMID:26550561

  1. Signaling mechanisms underlying the glioprotective effects of resveratrol against mitochondrial dysfunction.

    PubMed

    Bellaver, Bruna; Bobermin, Larissa Daniele; Souza, Débora Guerini; Rodrigues, Marília Danielly Nunes; de Assis, Adriano Martimbianco; Wajner, Moacir; Gonçalves, Carlos-Alberto; Souza, Diogo Onofre; Quincozes-Santos, André

    2016-09-01

    Resveratrol, a polyphenol found in grapes and red wine, exhibits antioxidant, anti-inflammatory, anti-aging and, neuroprotective effects. Resveratrol also plays a significant role modulating glial functionality, protecting the health of neuroglial cells against several neuropsychiatric in vivo and in vitro experimental models. Mitochondrial impairment strongly affected astrocyte functions and consequently brain homeostasis. Molecules that promote astrocyte mitochondrial protection are fundamental to maintain brain energy balance and cellular redox state, contributing to brain healthy. Thus, the present study was designed to evaluate some glioprotective mechanisms of resveratrol against mitochondrial damage promoted by azide exposure in hippocampal primary astrocyte cultures. Azide treatment provoked deleterious effects, including the dysfunction of mitochondria, the deterioration of redox homeostasis, the augmentation of pro-inflammatory cytokines and impairment of glutamate uptake activity. However, resveratrol prevented these effects, protecting hippocampal astrocytes against azide-induced cytotoxicity through the heme-oxygenase-1 (HO-1) pathway and inhibiting p38 mitogen-activated protein kinase (p38 MAPK) and nuclear factor kappa B (NFκB) activation. Resveratrol also protected astrocytes via phosphatidylinositide 3-kinase (PI3K)/Akt. These results contribute to the comprehension of the mechanisms by which resveratrol mediates hippocampal astrocyte protection against mitochondrial failure and implicate resveratrol as an important glioprotective molecule. PMID:27373419

  2. Mitochondrial dysfunction, impaired oxidative-reduction activity, degeneration, and death in human neuronal and fetal cells induced by low-level exposure to thimerosal and other metal compounds

    PubMed Central

    Geier, D.A.; King, P.G.; Geier, M.R.

    2009-01-01

    Thimerosal (ethylmercurithiosalicylic acid), an ethylmercury (EtHg)-releasing compound (49.55% mercury (Hg)), was used in a range of medical products for more than 70 years. Of particular recent concern, routine administering of Thimerosal-containing biologics/childhood vaccines have become significant sources of Hg exposure for some fetuses/infants. This study was undertaken to investigate cellular damage among in vitro human neuronal (SH-SY-5Y neuroblastoma and 1321N1 astrocytoma) and fetal (nontransformed) model systems using cell vitality assays and microscope-based digital image capture techniques to assess potential damage induced by Thimerosal and other metal compounds (aluminum (Al) sulfate, lead (Pb)(II) acetate, methylmercury (MeHg) hydroxide, and mercury (Hg)(II) chloride) where the cation was reported to exert adverse effects on developing cells. Thimerosal-associated cellular damage was also evaluated for similarity to pathophysiological findings observed in patients diagnosed with autistic disorders (ADs). Thimerosal-induced cellular damage as evidenced by concentration- and time-dependent mitochondrial damage, reduced oxidative–reduction activity, cellular degeneration, and cell death in the in vitro human neuronal and fetal model systems studied. Thimerosal at low nanomolar (nM) concentrations induced significant cellular toxicity in human neuronal and fetal cells. Thimerosal-induced cytoxicity is similar to that observed in AD pathophysiologic studies. Thimerosal was found to be significantly more toxic than the other metal compounds examined. Future studies need to be conducted to evaluate additional mechanisms underlying Thimerosal-induced cellular damage and assess potential co-exposures to other compounds that may increase or decrease Thimerosal-mediated toxicity. PMID:24532866

  3. Reactive Oxygen Species Production and Mitochondrial Dysfunction Contribute to Quercetin Induced Death in Leishmania amazonensis

    PubMed Central

    Fonseca-Silva, Fernanda; Inacio, Job D. F.; Canto-Cavalheiro, Marilene M.; Almeida-Amaral, Elmo Eduardo

    2011-01-01

    Background Leishmaniasis, a parasitic disease caused by protozoa of the genus Leishmania, affects more than 12 million people worldwide. Quercetin has generated considerable interest as a pharmaceutical compound with a wide range of therapeutic activities. One such activity is exhibited against the bloodstream parasite Trypanosoma brucei and amastigotes of Leishmania donovani. However, the mechanism of protozoan action of quercetin has not been studied. Methodology/Principal Findings In the present study, we report here the mechanism for the antileishmanial activity of quercetin against Leishmania amazonensis promastigotes. Quercetin inhibited L. amazonensis promastigote growth in a dose- and time- dependent manner beginning at 48 hours of treatment and with maximum growth inhibition observed at 96 hours. The IC50 for quercetin at 48 hours was 31.4 µM. Quercetin increased ROS generation in a dose-dependent manner after 48 hours of treatment. The antioxidant GSH and NAC each significantly reduced quercetin-induced cell death. In addition, quercetin caused mitochondrial dysfunction due to collapse of mitochondrial membrane potential. Conclusions/Significance The effects of several drugs that interfere directly with mitochondrial physiology in parasites such as Leishmania have been described. The unique mitochondrial features of Leishmania make this organelle an ideal drug target while minimizing toxicity. Quercetin has been described as a pro-oxidant, generating ROS which are responsible for cell death in some cancer cells. Mitochondrial membrane potential loss can be brought about by ROS added directly in vitro or induced by chemical agents. Taken together, our results demonstrate that quercetin eventually exerts its antileishmanial effect on L. amazonensis promastigotes due to the generation of ROS and disrupted parasite mitochondrial function. PMID:21346801

  4. Mitochondrial dysfunction induced by heat stress in cultured rat CNS neurons

    PubMed Central

    White, Michael G.; Saleh, Osama; Nonner, Doris; Barrett, Ellen F.; Moraes, Carlos T.

    2012-01-01

    Previous work demonstrated that hyperthermia (43°C for 2 h) results in delayed, apoptotic-like death in striatal neuronal cultures. We investigated early changes in mitochondrial function induced by this heat stress. Partial depolarization of the mitochondrial membrane potential (ΔΨm) began about 1 h after the onset of hyperthermia and increased as the stress continued. When the heat stress ended, there was a partial recovery of ΔΨm, followed hours later by a progressive, irreversible depolarization of ΔΨm. During the heat stress, O2 consumption initially increased but after 20–30 min began a progressive, irreversible decline to about one-half the initial rate by the end of the stress. The percentage of oligomycin-insensitive respiration increased during the heat stress, suggesting an increased mitochondrial leak conductance. Analysis using inhibitors and substrates for specific respiratory chain complexes indicated hyperthermia-induced dysfunction at or upstream of complex I. ATP levels remained near normal for ∼4 h after the heat stress. Mitochondrial movement along neurites was markedly slowed during and just after the heat stress. The early, persisting mitochondrial dysfunction described here likely contributes to the later (>10 h) caspase activation and neuronal death produced by this heat stress. Consistent with this idea, proton carrier-induced ΔΨm depolarizations comparable in duration to those produced by the heat stress also reduced neuronal viability. Post-stress ΔΨm depolarization and/or delayed neuronal death were modestly reduced/postponed by nicotinamide adenine dinucleotide, a calpain inhibitor, and increased expression of Bcl-xL. PMID:22832569

  5. Cytoplasmic irradiation results in mitochondrial dysfunction and DRP1-dependent mitochondrial fission

    PubMed Central

    Zhang, Bo; Davidson, Mercy M.; Zhou, Hongning; Wang, Chunxin; Walker, Winsome F.; Hei, Tom K.

    2014-01-01

    Direct DNA damage is often considered the primary cause of cancer in patients exposed to ionizing radiation or environmental carcinogens. While mitochondria are known to play an important role in radiation-induced cellular response, the mechanisms by which cytoplasmic stimuli modulate mitochondrial dynamics and functions are largely unknown. In the present study, we examined changes in mitochondrial dynamics and functions triggered by α particle damage to the mitochondria in human small airway epithelial cells, using a precision microbeam irradiator with a beam width of one micron. Targeted cytoplasmic irradiation using this device resulted in mitochondrial fragmentation and a reduction of cytochrome c oxidase and succinate dehydrogenase activity, when compared with nonirradiated controls, suggesting a reduction in respiratory chain function. Additionally, mitochondrial fragmentation or fission was associated with increased expression of the dynamin-like protein DRP1, which promotes mitochondrial fission. DRP1 inhibition by the drug mdivi-1 prevented radiation-induced mitochondrial fission, but respiratory chain function in mitochondria inhibited by radiation persisted for 12 hr. Irradiated cells also showed an increase in mitochondria-derived superoxide that could be quenched by dimethyl sulfoxide. Taken together, our results provide a mechanistic explanation for the extranuclear, non-targeted effects of ionizing radiation. PMID:24080278

  6. Status Epilepticus in Immature Rats Is Associated with Oxidative Stress and Mitochondrial Dysfunction.

    PubMed

    Folbergrová, Jaroslava; Ješina, Pavel; Kubová, Hana; Druga, Rastislav; Otáhal, Jakub

    2016-01-01

    Epilepsy is a neurologic disorder, particularly frequent in infants and children where it can lead to serious consequences later in life. Oxidative stress and mitochondrial dysfunction are implicated in the pathogenesis of many neurological disorders including epilepsy in adults. However, their role in immature epileptic brain is unclear since there have been two contrary opinions: oxidative stress is age-dependent and does not occur in immature brain during status epilepticus (SE) and, on the other hand, evidence of oxidative stress in immature brain during a specific model of SE. To solve this dilemma, we have decided to investigate oxidative stress following SE induced in immature 12-day-old rats by three substances with a different mechanism of action, namely 4-aminopyridine, LiCl-pilocarpine or kainic acid. Fluoro-Jade-B staining revealed mild brain damage especially in hippocampus and thalamus in each of the tested models. Decrease of glucose and glycogen with parallel rises of lactate clearly indicate high rate of glycolysis, which was apparently not sufficient in 4-AP and Li-Pilo status, as evident from the decreases of PCr levels. Hydroethidium method revealed significantly higher levels of superoxide anion (by ∼60%) in the hippocampus, cerebral cortex and thalamus of immature rats during status. SE lead to mitochondrial dysfunction with a specific pronounced decrease of complex I activity that persisted for a long period of survival. Complexes II and IV activities remained in the control range. Antioxidant treatment with SOD mimetic MnTMPYP or peroxynitrite scavenger FeTPPS significantly attenuated oxidative stress and inhibition of complex I activity. These findings bring evidence that oxidative stress and mitochondrial dysfunction are age and model independent, and may thus be considered a general phenomenon. They can have a clinical relevance for a novel approach to the treatment of epilepsy, allowing to target the mechanisms which play a crucial or

  7. Status Epilepticus in Immature Rats Is Associated with Oxidative Stress and Mitochondrial Dysfunction

    PubMed Central

    Folbergrová, Jaroslava; Ješina, Pavel; Kubová, Hana; Druga, Rastislav; Otáhal, Jakub

    2016-01-01

    Epilepsy is a neurologic disorder, particularly frequent in infants and children where it can lead to serious consequences later in life. Oxidative stress and mitochondrial dysfunction are implicated in the pathogenesis of many neurological disorders including epilepsy in adults. However, their role in immature epileptic brain is unclear since there have been two contrary opinions: oxidative stress is age-dependent and does not occur in immature brain during status epilepticus (SE) and, on the other hand, evidence of oxidative stress in immature brain during a specific model of SE. To solve this dilemma, we have decided to investigate oxidative stress following SE induced in immature 12-day-old rats by three substances with a different mechanism of action, namely 4-aminopyridine, LiCl-pilocarpine or kainic acid. Fluoro-Jade-B staining revealed mild brain damage especially in hippocampus and thalamus in each of the tested models. Decrease of glucose and glycogen with parallel rises of lactate clearly indicate high rate of glycolysis, which was apparently not sufficient in 4-AP and Li-Pilo status, as evident from the decreases of PCr levels. Hydroethidium method revealed significantly higher levels of superoxide anion (by ∼60%) in the hippocampus, cerebral cortex and thalamus of immature rats during status. SE lead to mitochondrial dysfunction with a specific pronounced decrease of complex I activity that persisted for a long period of survival. Complexes II and IV activities remained in the control range. Antioxidant treatment with SOD mimetic MnTMPYP or peroxynitrite scavenger FeTPPS significantly attenuated oxidative stress and inhibition of complex I activity. These findings bring evidence that oxidative stress and mitochondrial dysfunction are age and model independent, and may thus be considered a general phenomenon. They can have a clinical relevance for a novel approach to the treatment of epilepsy, allowing to target the mechanisms which play a crucial or

  8. The role of myeloid differentiation factor 88 on mitochondrial dysfunction of peritoneal leukocytes during polymicrobial sepsis

    PubMed Central

    Zou, Lin; Chen, Dunjin; Chao, Wei

    2016-01-01

    Objective To investigate the role of myeloid differentiation factor 88 (MyD88) on mitochondrial dysfunction of peritoneal leukocytes during polymicrobial sepsis. Material and methods Polymicrobial peritonitis, a clinically relevant mouse model of sepsis, was generated by cecum ligation and puncture (CLP) in both male C57BL/6J wild-type (WT) and MyD88 knockout (MyD88–/–) mice. Twenty-four hours after surgeries, peritoneal leukocytes were collected and four parameters of mitochondrial function, including total intracellular and mitochondrial ROS burst, mitochondrial membrane depolarization and ATP depletion, were measured by flow cytometry or ATP assay, and then compared. Results Polymicrobial sepsis led to a marked mitochondrial dysfunction of peritoneal leukocytes with total intracellular and mitochondrial ROS overproduction, decreased mitochondrial membrane potential and reduced intracellular ATP production. In comparison, there was no significant difference in the extent of mitochondrial dysfunction of peritoneal leukocytes between WT and MyD88–/– septic mice. Conclusions MyD88 may be not sufficient to regulate mitochondrial dysfunction of peritoneal leukocytes during polymicrobial sepsis. PMID:27536200

  9. Oxidative stress, cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liver disease

    PubMed Central

    Paradies, Giuseppe; Paradies, Valeria; Ruggiero, Francesca M; Petrosillo, Giuseppe

    2014-01-01

    Nonalcoholic fatty liver disease (NAFLD) is today considered the most common form of chronic liver disease, affecting a high proportion of the population worldwide. NAFLD encompasses a large spectrum of liver damage, ranging from simple steatosis to steatohepatitis, advanced fibrosis and cirrhosis. Obesity, hyperglycemia, type 2 diabetes and hypertriglyceridemia are the most important risk factors. The pathogenesis of NAFLD and its progression to fibrosis and chronic liver disease is still unknown. Accumulating evidence indicates that mitochondrial dysfunction plays a key role in the physiopathology of NAFLD, although the mechanisms underlying this dysfunction are still unclear. Oxidative stress is considered an important factor in producing lethal hepatocyte injury associated with NAFLD. Mitochondrial respiratory chain is the main subcellular source of reactive oxygen species (ROS), which may damage mitochondrial proteins, lipids and mitochondrial DNA. Cardiolipin, a phospholipid located at the level of the inner mitochondrial membrane, plays an important role in several reactions and processes involved in mitochondrial bioenergetics as well as in mitochondrial dependent steps of apoptosis. This phospholipid is particularly susceptible to ROS attack. Cardiolipin peroxidation has been associated with mitochondrial dysfunction in multiple tissues in several physiopathological conditions, including NAFLD. In this review, we focus on the potential roles played by oxidative stress and cardiolipin alterations in mitochondrial dysfunction associated with NAFLD. PMID:25339807

  10. Calcium Release from Intra-Axonal Endoplasmic Reticulum Leads to Axon Degeneration through Mitochondrial Dysfunction

    PubMed Central

    Villegas, Rosario; Martinez, Nicolas W.; Lillo, Jorge; Pihan, Phillipe; Hernandez, Diego; Twiss, Jeffery L.

    2014-01-01

    Axonal degeneration represents an early pathological event in neurodegeneration, constituting an important target for neuroprotection. Regardless of the initial injury, which could be toxic, mechanical, metabolic, or genetic, degeneration of axons shares a common mechanism involving mitochondrial dysfunction and production of reactive oxygen species. Critical steps in this degenerative process are still unknown. Here we show that calcium release from the axonal endoplasmic reticulum (ER) through ryanodine and IP3 channels activates the mitochondrial permeability transition pore and contributes to axonal degeneration triggered by both mechanical and toxic insults in ex vivo and in vitro mouse and rat model systems. These data reveal a critical and early ER-dependent step during axonal degeneration, providing novel targets for axonal protection in neurodegenerative conditions. PMID:24849352

  11. Cinnamon polyphenols attenuate cell swelling and mitochondrial dysfunction following oxygen-glucose deprivation in glial cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Astrocyte swelling is an integral component of cytotoxic brain edema in ischemic injury. While mechanisms underlying astrocyte swelling are likely multifactorial, oxidative stress and mitochondrial dysfunction are hypothesized to contribute to such swelling. We investigated the protective effects of...

  12. Mitochondrial dysfunction in inflammatory responses and cellular senescence: pathogenesis and pharmacological targets for chronic lung diseases.

    PubMed

    Yue, Li; Yao, Hongwei

    2016-08-01

    Mitochondria are dynamic organelles, which couple the various cellular processes that regulate metabolism, cell proliferation and survival. Environmental stress can cause mitochondrial dysfunction and dynamic changes including reduced mitochondrial biogenesis, oxidative phosphorylation and ATP production, as well as mitophagy impairment, which leads to increased ROS, inflammatory responses and cellular senescence. Oxidative stress, inflammation and cellular senescence all have important roles in the pathogenesis of chronic lung diseases, such as chronic obstructive pulmonary disease, pulmonary fibrosis and bronchopulmonary dysplasia. In this review, we discuss the current state on how mitochondrial dysfunction affects inflammatory responses and cellular senescence, the mechanisms of mitochondrial dysfunction underlying the pathogenesis of chronic lung diseases and the potential of mitochondrial transfer and replacement as treatments for these diseases. PMID:27189175

  13. How mitochondrial dysfunction affects zebrafish development and cardiovascular function: an in vivo model for testing mitochondria-targeted drugs

    PubMed Central

    Pinho, Brígida R; Santos, Miguel M; Fonseca-Silva, Anabela; Valentão, Patrícia; Andrade, Paula B; Oliveira, Jorge M A

    2013-01-01

    Background and Purpose Mitochondria are a drug target in mitochondrial dysfunction diseases and in antiparasitic chemotherapy. While zebrafish is increasingly used as a biomedical model, its potential for mitochondrial research remains relatively unexplored. Here, we perform the first systematic analysis of how mitochondrial respiratory chain inhibitors affect zebrafish development and cardiovascular function, and assess multiple quinones, including ubiquinone mimetics idebenone and decylubiquinone, and the antimalarial atovaquone. Experimental Approach Zebrafish (Danio rerio) embryos were chronically and acutely exposed to mitochondrial inhibitors and quinone analogues. Concentration-response curves, developmental and cardiovascular phenotyping were performed together with sequence analysis of inhibitor-binding mitochondrial subunits in zebrafish versus mouse, human and parasites. Phenotype rescuing was assessed in co-exposure assays. Key Results Complex I and II inhibitors induced developmental abnormalities, but their submaximal toxicity was not additive, suggesting active alternative pathways for complex III feeding. Complex III inhibitors evoked a direct normal-to-dead transition. ATP synthase inhibition arrested gastrulation. Menadione induced hypochromic anaemia when transiently present following primitive erythropoiesis. Atovaquone was over 1000-fold less lethal in zebrafish than reported for Plasmodium falciparum, and its toxicity partly rescued by the ubiquinone precursor 4-hydroxybenzoate. Idebenone and decylubiquinone delayed rotenone- but not myxothiazol- or antimycin-evoked cardiac dysfunction. Conclusion and Implications This study characterizes pharmacologically induced mitochondrial dysfunction phenotypes in zebrafish, laying the foundation for comparison with future studies addressing mitochondrial dysfunction in this model organism. It has relevant implications for interpreting zebrafish disease models linked to complex I/II inhibition. Further

  14. Trihalomethanes in liver pathology: Mitochondrial dysfunction and oxidative stress in the mouse.

    PubMed

    Faustino-Rocha, Ana I; Rodrigues, D; da Costa, R Gil; Diniz, C; Aragão, S; Talhada, D; Botelho, M; Colaço, A; Pires, M J; Peixoto, F; Oliveira, P A

    2016-08-01

    Trihalomethanes (THMs) are disinfection byproducts found in chlorinated water, and are associated with several different kinds of cancer in human populations and experimental animal models. Metabolism of THMs proceeds through enzymes such as GSTT1 and CYP2E1 and gives rise to reactive intermediates, which form the basis for their toxic activities. The aim of this study was to assess the mitochondrial dysfunction caused by THMs at low levels, and the resulting hepatic histological and biochemical changes in the mouse. Male ICR mice were administered with two THMs: dibromochloromethane (DBCM) and bromodichloromethane (BDCM); once daily, by gavage, to a total of four administrations. Animals were sacrificed four weeks after DBCM and BDCM administrations. Blood biochemistry was performed for alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total bilirubin (TB), albumin (Alb), total protein (TP), creatinine, and urea. Animals exposed to DBCM and BDCM showed elevated ALT and TB levels (p < 0.05) as compared with controls. Histological analysis confirmed the presence of vacuolar degenerescence and a multifocal necrotizing hepatitis in 33% of animals (n = 2). Mitochondrial analysis showed that THMs reduced mitochondrial bioenergetic activity (succinate dehydrogenase (SQR), cytochrome c oxidase (COX), and ATP synthase) and increased oxidative stress (glutathione S-transferase (GST)) in hepatic tissues (p < 0.05). These results add detail to the current understanding of the mechanisms underlying THM-induced toxicity, supporting the role of mitochondrial dysfunction and oxidative stress in liver toxicity caused by DBCM and BDCM. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1009-1016, 2016. PMID:25640707

  15. Oxidative Stress and Mitochondrial Dysfunction in Alzheimer’s Disease

    PubMed Central

    Wang, Xinglong; Wang, Wenzhang; Li, Li; Perry, George; Lee, Hyoung-gon; Zhu, Xiongwei

    2013-01-01

    Alzheimer’s disease (AD) exhibits extensive oxidative stress throughout the body, being detected peripherally as well as associated with the vulnerable regions of the brain affected in disease. Abundant evidence not only demonstrates the full spectrum of oxidative damage to neuronal macromolecules, but also reveals the occurrence of oxidative events early in the course of the disease and prior to the formation of the pathology, which support an important role of oxidative stress in AD. As a disease of abnormal aging, AD demonstrats oxidative damage at levels that significantly surpass that of elderly controls, which suggests the involvement of additional factor(s). Structurally and functionally damaged mitochondria, which are more proficient at producing reactive oxygen species but less so in ATP, are also an early and prominent feature of the disease. Since mitochondria are also vulnerable to oxidative stress, it is likely that a vicious downward spiral involving the interactions between mitochondrial dysfunction and oxidative stress contributes to the initiation and/or amplification of reactive oxygen species that is critical to the pathogenesis of AD. PMID:24189435

  16. The role of SIGMAR1 gene mutation and mitochondrial dysfunction in amyotrophic lateral sclerosis.

    PubMed

    Fukunaga, Kohji; Shinoda, Yasuharu; Tagashira, Hideaki

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) patients exhibit diverse pathologies such as endoplasmic reticulum (ER) stress and mitochondrial dysfunction in motor neurons. Five to ten percent of patients have familial ALS, a form of the disease caused by mutations in ALS-related genes, while sporadic forms of the disease occur in 90-95% of patients. Recently, it was reported that familial ALS patients exhibit a missense mutation in SIGMAR1 (c.304G > C), which encodes sigma-1 receptor (Sig-1R), substituting glutamine for glutamic acid at amino acid residue 102 (p.E102Q). Expression of that mutant Sig-1R(E102Q) protein reduces mitochondrial ATP production, inhibits proteasome activity and causes mitochondrial injury, aggravating ER stress-induced neuronal death in neuro2A cells. In this issue, we discuss mechanisms underlying mitochondrial impairment seen in ALS motor neurons and propose that therapies that protect mitochondria might improve the quality of life (QOL) of ALS patients and should be considered for clinical trials. PMID:25704016

  17. Increased COUP-TFII expression in adult hearts induces mitochondrial dysfunction resulting in heart failure.

    PubMed

    Wu, San-Pin; Kao, Chung-Yang; Wang, Leiming; Creighton, Chad J; Yang, Jin; Donti, Taraka R; Harmancey, Romain; Vasquez, Hernan G; Graham, Brett H; Bellen, Hugo J; Taegtmeyer, Heinrich; Chang, Ching-Pin; Tsai, Ming-Jer; Tsai, Sophia Y

    2015-01-01

    Mitochondrial dysfunction and metabolic remodelling are pivotal in the development of cardiomyopathy. Here, we show that myocardial COUP-TFII overexpression causes heart failure in mice, suggesting a causal effect of elevated COUP-TFII levels on development of dilated cardiomyopathy. COUP-TFII represses genes critical for mitochondrial electron transport chain enzyme activity, oxidative stress detoxification and mitochondrial dynamics, resulting in increased levels of reactive oxygen species and lower rates of oxygen consumption in mitochondria. COUP-TFII also suppresses the metabolic regulator PGC-1 network and decreases the expression of key glucose and lipid utilization genes, leading to a reduction in both glucose and oleate oxidation in the hearts. These data suggest that COUP-TFII affects mitochondrial function, impairs metabolic remodelling and has a key role in dilated cardiomyopathy. Last, COUP-TFII haploinsufficiency attenuates the progression of cardiac dilation and improves survival in a calcineurin transgenic mouse model, indicating that COUP-TFII may serve as a therapeutic target for the treatment of dilated cardiomyopathy. PMID:26356605

  18. Increased COUP-TFII expression in adult hearts induces mitochondrial dysfunction resulting in heart failure

    PubMed Central

    Wu, San-Pin; Kao, Chung-Yang; Wang, Leiming; Creighton, Chad J.; Yang, Jin; Donti, Taraka R.; Harmancey, Romain; Vasquez, Hernan G.; Graham, Brett H.; Bellen, Hugo J.; Taegtmeyer, Heinrich; Chang, Ching-Pin; Tsai, Ming-Jer; Tsai, Sophia Y.

    2015-01-01

    Mitochondrial dysfunction and metabolic remodelling are pivotal in the development of cardiomyopathy. Here, we show that myocardial COUP-TFII overexpression causes heart failure in mice, suggesting a causal effect of elevated COUP-TFII levels on development of dilated cardiomyopathy. COUP-TFII represses genes critical for mitochondrial electron transport chain enzyme activity, oxidative stress detoxification and mitochondrial dynamics, resulting in increased levels of reactive oxygen species and lower rates of oxygen consumption in mitochondria. COUP-TFII also suppresses the metabolic regulator PGC-1 network and decreases the expression of key glucose and lipid utilization genes, leading to a reduction in both glucose and oleate oxidation in the hearts. These data suggest that COUP-TFII affects mitochondrial function, impairs metabolic remodelling and has a key role in dilated cardiomyopathy. Last, COUP-TFII haploinsufficiency attenuates the progression of cardiac dilation and improves survival in a calcineurin transgenic mouse model, indicating that COUP-TFII may serve as a therapeutic target for the treatment of dilated cardiomyopathy. PMID:26356605

  19. Mitochondrial dysfunction as a mediator of hippocampal apoptosis in a model of hepatic encephalopathy.

    PubMed

    Bustamante, J; Lores-Arnaiz, S; Tallis, S; Roselló, D M; Lago, N; Lemberg, A; Boveris, A; Perazzo, J C

    2011-08-01

    In this study, we describe the presence of apoptosis, associated with a mitochondrial dysfunction in the hippocampus of animals in an experimental model defined as minimal hepatic encephalopathy (MHE). This experimental model was studied after 10 days of induced portal vein calibrated stricture, leading to portal hypertension and to a moderate hyperammonemia, without the presence of other evident central nervous system changes. The molecular mechanisms here proposed indicate the presence of apoptotic intrinsic pathways that point to hippocampal mitochondria as an important mediator of apoptosis in this experimental model. In this model of MHE, the presence of DNA fragmentation is documented by 2.3-times increased number of TUNEL-positive cells. These findings together with a higher ratio of the Bcl-2 family members Bax/Bcl-xL in the outer mitochondrial membrane of the MHE animals together with 11% of cytochrome c release indicate the presence of apoptosis in this experimental model. A detailed analysis of the hippocampal mitochondrial physiology was performed after mitochondrial isolation. The determination of the respiratory rate in the presence of malate plus glutamate and ADP showed a 45% decrease in respiratory control in MHE animals as compared with the sham group. A marked decrease of cytochrome oxidase (complex IV of the electron transport chain) was also observed, showing 46% less activity in hippocampal mitochondria from MHE animals. In addition, mitochondria from these animals showed less ability to maintain membrane potential (ΔΨ (m)) which was 13% lower than the sham group. Light scattering experiments showed that mitochondria from MHE animals were more sensitive to swell in the presence of increased calcium concentrations as compared with the sham group. In addition, in vitro studies performed in mitochondria from sham animals showed that mitochondrial permeability transition (MPT) could be a mitochondrial mediator of the apoptotic signaling in the

  20. Targeting mitochondrial dysfunction in lung diseases: emphasis on mitophagy

    PubMed Central

    Sureshbabu, Angara; Bhandari, Vineet

    2013-01-01

    During mild stressful conditions, cells activate a multitude of mechanisms in an attempt to repair or re-establish homeostasis. One such mechanism is autophagic degradation of mitochondria or mitophagy to dispose damaged mitochondria. However, if stress persists beyond recovery then dysfunctional mitochondria can ignite cell death. This review article summarizes recent studies highlighting the molecular pathways that facilitate mitochondria to alter its morphological dynamics, coordinate stress responses, initiate mitophagy and activate cell death in relevance to pulmonary pathologies. Thorough understanding of how these signaling mechanisms get disrupted may aid in designing new mitochondria-based therapies to combat lung diseases. PMID:24421769

  1. Glutathione Supplementation Attenuates Lipopolysaccharide-Induced Mitochondrial Dysfunction and Apoptosis in a Mouse Model of Acute Lung Injury

    PubMed Central

    Aggarwal, Saurabh; Dimitropoulou, Christiana; Lu, Qing; Black, Stephen M.; Sharma, Shruti

    2012-01-01

    Acute lung injury (ALI) is a life threatening condition associated with hypoxemia, diffuse alveolar damage, inflammation, and loss of lung function. Lipopolysaccharide (LPS; endotoxin) from the outer membrane of Gram-negative bacteria is a major virulence factor involved in the development of ALI. The depletion of glutathione (GSH), an essential intra- and extra-cellular protective antioxidant, by LPS is an important event that contributes to the elevation in reactive oxygen species. Whether restoring GSH homeostasis can effectively ameliorate mitochondrial dysfunction and cellular apoptosis in ALI is unknown and therefore, was the focus of this study. In peripheral lung tissue of LPS-treated mice, hydrogen peroxide and protein nitration levels were significantly increased. Pre-treatment with GSH-ethyl ester (GSH-EE) prevented this increase in oxidative stress. LPS also increased the lactate/pyruvate ratio, attenuated SOD2 protein levels, and decreased ATP levels in the mouse lung indicative of mitochondrial dysfunction. Again, GSH-EE treatment preserved the mitochondrial function. Finally, our studies showed that LPS induced an increase in the mitochondrial translocation of Bax, caspase 3 activation, and nuclear DNA fragmentation and these parameters were all prevented with GSH-EE. Thus, this study suggests that GSH-EE supplementation may reduce the mitochondrial dysfunction associated with ALI. PMID:22654772

  2. Short communication: The relationship between mitochondrial dysfunction and insulin resistance in HIV-infected children receiving antiretroviral therapy.

    PubMed

    Sharma, Tanvi S; Jacobson, Denise L; Anderson, Lynn; Gerschenson, Mariana; Van Dyke, Russell B; McFarland, Elizabeth J; Miller, Tracie L

    2013-09-01

    Mitochondrial abnormalities may lead to metabolic complications in HIV-infected children who have been receiving long-term antiretroviral treatment. We conducted a matched, case-control study comparing 21 HIV-infected children with insulin resistance (cases) to 21 HIV-infected children without insulin resistance (controls) to assess differences in mitochondrial DNA (mtDNA) copies/cell and oxidative phosphorylation NADH dehydrogenase (C1) and cytochrome c oxidase (C4) enzyme activities in peripheral blood mononuclear cells. MtDNA copies/cell tended to be lower in cases, and fasting serum glucose levels were inversely and significantly correlated with C1 enzyme activity, more so in cases. Larger pediatric studies should evaluate mitochondrial etiologies of insulin resistance and determine the role of antiretroviral therapies or HIV infection on mitochondrial dysfunction. PMID:23742635

  3. Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis

    PubMed Central

    Rossignol, D A; Frye, R E

    2012-01-01

    A comprehensive literature search was performed to collate evidence of mitochondrial dysfunction in autism spectrum disorders (ASDs) with two primary objectives. First, features of mitochondrial dysfunction in the general population of children with ASD were identified. Second, characteristics of mitochondrial dysfunction in children with ASD and concomitant mitochondrial disease (MD) were compared with published literature of two general populations: ASD children without MD, and non-ASD children with MD. The prevalence of MD in the general population of ASD was 5.0% (95% confidence interval 3.2, 6.9%), much higher than found in the general population (∼0.01%). The prevalence of abnormal biomarker values of mitochondrial dysfunction was high in ASD, much higher than the prevalence of MD. Variances and mean values of many mitochondrial biomarkers (lactate, pyruvate, carnitine and ubiquinone) were significantly different between ASD and controls. Some markers correlated with ASD severity. Neuroimaging, in vitro and post-mortem brain studies were consistent with an elevated prevalence of mitochondrial dysfunction in ASD. Taken together, these findings suggest children with ASD have a spectrum of mitochondrial dysfunction of differing severity. Eighteen publications representing a total of 112 children with ASD and MD (ASD/MD) were identified. The prevalence of developmental regression (52%), seizures (41%), motor delay (51%), gastrointestinal abnormalities (74%), female gender (39%), and elevated lactate (78%) and pyruvate (45%) was significantly higher in ASD/MD compared with the general ASD population. The prevalence of many of these abnormalities was similar to the general population of children with MD, suggesting that ASD/MD represents a distinct subgroup of children with MD. Most ASD/MD cases (79%) were not associated with genetic abnormalities, raising the possibility of secondary mitochondrial dysfunction. Treatment studies for ASD/MD were limited, although

  4. MIDAS/GPP34, a nuclear gene product, regulates total mitochondrial mass in response to mitochondrial dysfunction.

    PubMed

    Nakashima-Kamimura, Naomi; Asoh, Sadamitsu; Ishibashi, Yoshitomo; Mukai, Yuri; Shidara, Yujiro; Oda, Hideaki; Munakata, Kae; Goto, Yu-Ichi; Ohta, Shigeo

    2005-11-15

    To investigate the regulatory system in mitochondrial biogenesis involving crosstalk between the mitochondria and nucleus, we found a factor named MIDAS (mitochondrial DNA absence sensitive factor) whose expression was enhanced by the absence of mitochondrial DNA (mtDNA). In patients with mitochondrial diseases, MIDAS expression was increased only in dysfunctional muscle fibers. A majority of MIDAS localized to mitochondria with a small fraction in the Golgi apparatus in HeLa cells. To investigate the function of MIDAS, we stably transfected HeLa cells with an expression vector carrying MIDAS cDNA or siRNA. Cells expressing the MIDAS protein and the siRNA constitutively showed an increase and decrease in the total mass of mitochondria, respectively, accompanying the regulation of a mitochondria-specific phospholipid, cardiolipin. In contrast, amounts of the mitochondrial DNA, RNA and proteins did not depend upon MIDAS. Thus, MIDAS is involved in the regulation of mitochondrial lipids, leading to increases of total mitochondrial mass in response to mitochondrial dysfunction. PMID:16263763

  5. CFTR activity and mitochondrial function☆

    PubMed Central

    Valdivieso, Angel Gabriel; Santa-Coloma, Tomás A.

    2013-01-01

    Cystic Fibrosis (CF) is a frequent and lethal autosomal recessive disease, caused by mutations in the gene encoding the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). Before the discovery of the CFTR gene, several hypotheses attempted to explain the etiology of this disease, including the possible role of a chloride channel, diverse alterations in mitochondrial functions, the overexpression of the lysosomal enzyme α-glucosidase and a deficiency in the cytosolic enzyme glucose 6-phosphate dehydrogenase. Because of the diverse mitochondrial changes found, some authors proposed that the affected gene should codify for a mitochondrial protein. Later, the CFTR cloning and the demonstration of its chloride channel activity turned the mitochondrial, lysosomal and cytosolic hypotheses obsolete. However, in recent years, using new approaches, several investigators reported similar or new alterations of mitochondrial functions in Cystic Fibrosis, thus rediscovering a possible role of mitochondria in this disease. Here, we review these CFTR-driven mitochondrial defects, including differential gene expression, alterations in oxidative phosphorylation, calcium homeostasis, oxidative stress, apoptosis and innate immune response, which might explain some characteristics of the complex CF phenotype and reveals potential new targets for therapy. PMID:24024153

  6. Mitochondrial dysfunction and defects in lipid homeostasis as therapeutic targets in neurodegeneration with brain iron accumulation.

    PubMed

    Kinghorn, Kerri J; Castillo-Quan, Jorge Iván

    2016-01-01

    The PLA2G6 gene encodes a group VIA calcium independent phospholipase A2 (iPLA2β), which hydrolyses glycerophospholipids to release fatty acids and lysophospholipids. Mutations in PLA2G6 are associated with a number of neurodegenerative disorders including neurodegeneration with brain iron accumulation (NBIA), infantile neuroaxonal dystrophy (INAD), and dystonia parkinsonism, collectively known as PLA2G6-associated neurodegeneration (PLAN). Recently Kinghorn et al. demonstrated in Drosophila and PLA2G6 mutant fibroblasts that loss of normal PLA2G6 activity is associated with mitochondrial dysfunction and mitochondrial lipid peroxidation. Furthermore, they were able to show the beneficial effects of deuterated polyunsaturated fatty acids (D-PUFAs), which reduce lipid peroxidation. D-PUFAs were able to rescue the locomotor deficits of flies lacking the fly ortholog of PLA2G6 (iPLA2-VIA), as well as the mitochondrial abnormalities in PLA2G6 mutant fibroblasts. This work demonstrated that the iPLA2-VIA knockout fly is a useful organism to dissect the mechanisms of pathogenesis of PLAN, and that further investigation is required to determine the therapeutic potential of D-PUFAs in patients with PLA2G6 mutations. The fruit fly has also been used to study some of the other genetic causes of NBIA, and here we also describe what is known about the mechanisms of pathogenesis of these NBIA variants. Mitochondrial dysfunction, defects in lipid metabolism, as well as defective Coenzyme A (CoA) biosynthesis, have all been implicated in some genetic forms of NBIA, including PANK2, CoASY, C12orf19 and FA2H. PMID:27141409

  7. Mitochondrial dysfunction and defects in lipid homeostasis as therapeutic targets in neurodegeneration with brain iron accumulation

    PubMed Central

    Kinghorn, Kerri J.; Castillo-Quan, Jorge Iván

    2016-01-01

    ABSTRACT The PLA2G6 gene encodes a group VIA calcium independent phospholipase A2 (iPLA2β), which hydrolyses glycerophospholipids to release fatty acids and lysophospholipids. Mutations in PLA2G6 are associated with a number of neurodegenerative disorders including neurodegeneration with brain iron accumulation (NBIA), infantile neuroaxonal dystrophy (INAD), and dystonia parkinsonism, collectively known as PLA2G6-associated neurodegeneration (PLAN). Recently Kinghorn et al. demonstrated in Drosophila and PLA2G6 mutant fibroblasts that loss of normal PLA2G6 activity is associated with mitochondrial dysfunction and mitochondrial lipid peroxidation. Furthermore, they were able to show the beneficial effects of deuterated polyunsaturated fatty acids (D-PUFAs), which reduce lipid peroxidation. D-PUFAs were able to rescue the locomotor deficits of flies lacking the fly ortholog of PLA2G6 (iPLA2-VIA), as well as the mitochondrial abnormalities in PLA2G6 mutant fibroblasts. This work demonstrated that the iPLA2-VIA knockout fly is a useful organism to dissect the mechanisms of pathogenesis of PLAN, and that further investigation is required to determine the therapeutic potential of D-PUFAs in patients with PLA2G6 mutations. The fruit fly has also been used to study some of the other genetic causes of NBIA, and here we also describe what is known about the mechanisms of pathogenesis of these NBIA variants. Mitochondrial dysfunction, defects in lipid metabolism, as well as defective Coenzyme A (CoA) biosynthesis, have all been implicated in some genetic forms of NBIA, including PANK2, CoASY, C12orf19 and FA2H. PMID:27141409

  8. Rice bran extract compensates mitochondrial dysfunction in a cellular model of early Alzheimer's disease.

    PubMed

    Hagl, Stephanie; Grewal, Rekha; Ciobanu, Ion; Helal, Amr; Khayyal, Mohamed T; Muller, Walter E; Eckert, Gunter P

    2015-01-01

    Mitochondrial dysfunction plays an important role in brain aging and has emerged to be an early event in Alzheimer's disease (AD), contributing to neurodegeneration and the loss of physical abilities seen in patients suffering from this disease. We examined mitochondrial dysfunction in a cell culture model of AD (PC12APPsw cells) releasing very low amyloid-β (Aβ40) levels and thus mimicking early AD stages. Our data show that these cells have impaired energy metabolism, low ATP levels, and decreased endogenous mitochondrial respiration. Furthermore, protein levels of PGC1α as well as of Mitofusin 1 were decreased. PC12APPsw cells also showed increased mitochondrial content, probably due to an attempt to compensate the impaired mitochondrial function. Recent data showed that stabilized rice bran extract (RBE) protects from mitochondrial dysfunction in vivo Pharmacol Res. (2013) 76C, 17-27. To assess the effect of RBE on mitochondrial function, we treated PC12APPsw cells for 24 h with RBE. Key components of RBE are oryzanols, tocopherols, and tocotrienols, all substances that have been found to exert beneficial effects on mitochondrial function. RBE incubation elevated ATP production and respiratory rates as well as PGC1α protein levels in PC12APPsw cells, thus improving the impaired mitochondrial function assessed in our cell culture AD model. Therefore, RBE represents to be a promising nutraceutical for the prevention of AD. PMID:25125472

  9. Posttranslational modifications and dysfunction of mitochondrial enzymes in human heart failure.

    PubMed

    Sheeran, Freya L; Pepe, Salvatore

    2016-08-01

    Deficiency of energy supply is a major complication contributing to the syndrome of heart failure (HF). Because the concurrent activity profile of mitochondrial bioenergetic enzymes has not been studied collectively in human HF, our aim was to examine the mitochondrial enzyme defects in left ventricular myocardium obtained from explanted end-stage failing hearts. Compared with nonfailing donor hearts, activity rates of complexes I and IV and the Krebs cycle enzymes isocitrate dehydrogenase, malate dehydrogenase, and aconitase were lower in HF, as determined spectrophotometrically. However, activity rates of complexes II and III and citrate synthase did not differ significantly between the two groups. Protein expression, determined by Western blotting, did not differ between the groups, implying posttranslational perturbation. In the face of diminished total glutathione and coenzyme Q10 levels, oxidative modification was explored as an underlying cause of enzyme dysfunction. Of the three oxidative modifications measured, protein carbonylation was increased significantly by 31% in HF (P < 0.01; n = 18), whereas levels of 4-hydroxynonenal and protein nitration, although elevated, did not differ. Isolation of complexes I and IV and F1FoATP synthase by immunocapture revealed that proteins containing iron-sulphur or heme redox centers were targets of oxidative modification. Energy deficiency in end-stage failing human left ventricle involves impaired activity of key electron transport chain and Krebs cycle enzymes without altered expression of protein levels. Augmented oxidative modification of crucial enzyme subunit structures implicates dysfunction due to diminished capacity for management of mitochondrial reactive oxygen species, thus contributing further to reduced bioenergetics in human HF. PMID:27406740

  10. α-Synuclein-induced mitochondrial dysfunction in isolated preparation and intact cells: implications in the pathogenesis of Parkinson's disease.

    PubMed

    Bir, Aritri; Sen, Oishimaya; Anand, Shruti; Khemka, Vineet Kumar; Banerjee, Priyanjalee; Cappai, Roberto; Sahoo, Arghyadip; Chakrabarti, Sasanka

    2014-12-01

    This study has shown that purified recombinant human α-synuclein (20 μM) causes membrane depolarization and loss of phosphorylation capacity of isolated purified rat brain mitochondria by activating permeability transition pore complex. In intact SHSY5Y (human neuroblastoma cell line) cells, lactacystin (5 μM), a proteasomal inhibitor, causes an accumulation of α-synuclein with concomitant mitochondrial dysfunction and cell death. The effects of lactacystin on intact SHSY5Y cells are, however, prevented by knocking down α-synuclein expression by specific siRNA. Furthermore, in wild-type (non-transfected) SHSY5Y cells, the effects of lactacystin on mitochondrial function and cell viability are also prevented by cyclosporin A (1 μM) which blocks the activity of the mitochondrial permeability transition pore. Likewise, in wild-type SHSY5Y cells, typical mitochondrial poison like antimycin A (50 nM) produces loss of cell viability comparable to that of lactacystin (5 μM). These data, in combination with those from isolated brain mitochondria, strongly suggest that intracellularly accumulated α-synuclein can interact with mitochondria in intact SHSY5Y cells causing dysfunction of the organelle which drives the cell death under our experimental conditions. The results have clear implications in the pathogenesis of sporadic Parkinson's disease. α-Synuclein is shown to cause mitochondrial impairment through interaction with permeability transition pore complex in isolated preparations. Intracellular accumulation of α-synuclein in SHSY5Y cells following proteasomal inhibition leads to mitochondrial impairment and cell death which could be prevented by knocking down α-synuclein gene. The results link mitochondrial dysfunction and α-synuclein accumulation, two key pathogenic mechanisms of Parkinson's disease, in a common damage pathway. PMID:25319443

  11. Reactive Oxygen Species, Endoplasmic Reticulum Stress and Mitochondrial Dysfunction: The Link with Cardiac Arrhythmogenesis

    PubMed Central

    Tse, Gary; Yan, Bryan P.; Chan, Yin W. F.; Tian, Xiao Yu; Huang, Yu

    2016-01-01

    Background: Cardiac arrhythmias represent a significant problem globally, leading to cerebrovascular accidents, myocardial infarction, and sudden cardiac death. There is increasing evidence to suggest that increased oxidative stress from reactive oxygen species (ROS), which is elevated in conditions such as diabetes and hypertension, can lead to arrhythmogenesis. Method: A literature review was undertaken to screen for articles that investigated the effects of ROS on cardiac ion channel function, remodeling and arrhythmogenesis. Results: Prolonged endoplasmic reticulum stress is observed in heart failure, leading to increased production of ROS. Mitochondrial ROS, which is elevated in diabetes and hypertension, can stimulate its own production in a positive feedback loop, termed ROS-induced ROS release. Together with activation of mitochondrial inner membrane anion channels, it leads to mitochondrial depolarization. Abnormal function of these organelles can then activate downstream signaling pathways, ultimately culminating in altered function or expression of cardiac ion channels responsible for generating the cardiac action potential (AP). Vascular and cardiac endothelial cells become dysfunctional, leading to altered paracrine signaling to influence the electrophysiology of adjacent cardiomyocytes. All of these changes can in turn produce abnormalities in AP repolarization or conduction, thereby increasing likelihood of triggered activity and reentry. Conclusion: ROS plays a significant role in producing arrhythmic substrate. Therapeutic strategies targeting upstream events include production of a strong reducing environment or the use of pharmacological agents that target organelle-specific proteins and ion channels. These may relieve oxidative stress and in turn prevent arrhythmic complications in patients with diabetes, hypertension, and heart failure. PMID:27536244

  12. Impaired coronary metabolic dilation in the metabolic syndrome is linked to mitochondrial dysfunction and mitochondrial DNA damage.

    PubMed

    Guarini, Giacinta; Kiyooka, Takahiko; Ohanyan, Vahagn; Pung, Yuh Fen; Marzilli, Mario; Chen, Yeong Renn; Chen, Chwen Lih; Kang, Patrick T; Hardwick, James P; Kolz, Christopher L; Yin, Liya; Wilson, Glenn L; Shokolenko, Inna; Dobson, James G; Fenton, Richard; Chilian, William M

    2016-05-01

    Mitochondrial dysfunction in obesity and diabetes can be caused by excessive production of free radicals, which can damage mitochondrial DNA. Because mitochondrial DNA plays a key role in the production of ATP necessary for cardiac work, we hypothesized that mitochondrial dysfunction, induced by mitochondrial DNA damage, uncouples coronary blood flow from cardiac work. Myocardial blood flow (contrast echocardiography) was measured in Zucker lean (ZLN) and obese fatty (ZOF) rats during increased cardiac metabolism (product of heart rate and arterial pressure, i.v. norepinephrine). In ZLN increased metabolism augmented coronary blood flow, but in ZOF metabolic hyperemia was attenuated. Mitochondrial respiration was impaired and ROS production was greater in ZOF than ZLN. These were associated with mitochondrial DNA (mtDNA) damage in ZOF. To determine if coronary metabolic dilation, the hyperemic response induced by heightened cardiac metabolism, is linked to mitochondrial function we introduced recombinant proteins (intravenously or intraperitoneally) in ZLN and ZOF to fragment or repair mtDNA, respectively. Repair of mtDNA damage restored mitochondrial function and metabolic dilation, and reduced ROS production in ZOF; whereas induction of mtDNA damage in ZLN reduced mitochondrial function, increased ROS production, and attenuated metabolic dilation. Adequate metabolic dilation was also associated with the extracellular release of ADP, ATP, and H2O2 by cardiac myocytes; whereas myocytes from rats with impaired dilation released only H2O2. In conclusion, our results suggest that mitochondrial function plays a seminal role in connecting myocardial blood flow to metabolism, and integrity of mtDNA is central to this process. PMID:27040114

  13. Mitochondrial Oxidative Stress, Mitochondrial DNA Damage and Their Role in Age-Related Vascular Dysfunction

    PubMed Central

    Mikhed, Yuliya; Daiber, Andreas; Steven, Sebastian

    2015-01-01

    The prevalence of cardiovascular diseases is significantly increased in the older population. Risk factors and predictors of future cardiovascular events such as hypertension, atherosclerosis, or diabetes are observed with higher frequency in elderly individuals. A major determinant of vascular aging is endothelial dysfunction, characterized by impaired endothelium-dependent signaling processes. Increased production of reactive oxygen species (ROS) leads to oxidative stress, loss of nitric oxide (•NO) signaling, loss of endothelial barrier function and infiltration of leukocytes to the vascular wall, explaining the low-grade inflammation characteristic for the aged vasculature. We here discuss the importance of different sources of ROS for vascular aging and their contribution to the increased cardiovascular risk in the elderly population with special emphasis on mitochondrial ROS formation and oxidative damage of mitochondrial DNA. Also the interaction (crosstalk) of mitochondria with nicotinamide adenosine dinucleotide phosphate (NADPH) oxidases is highlighted. Current concepts of vascular aging, consequences for the development of cardiovascular events and the particular role of ROS are evaluated on the basis of cell culture experiments, animal studies and clinical trials. Present data point to a more important role of oxidative stress for the maximal healthspan (healthy aging) than for the maximal lifespan. PMID:26184181

  14. The Role of Mitochondrial Dysfunction in Psychiatric Disease

    ERIC Educational Resources Information Center

    Scaglia, Fernando

    2010-01-01

    Mitochondrial respiratory chain disorders are a group of genetically and clinically heterogeneous disorders caused by the biochemical complexity of mitochondrial respiration and the fact that two genomes, one mitochondrial and one nuclear, encode the components of the respiratory chain. These disorders can manifest at birth or present later in…

  15. Monoamine oxidase inhibition prevents mitochondrial dysfunction and apoptosis in myoblasts from patients with collagen VI myopathies

    PubMed Central

    Sorato, E.; Menazza, S.; Zulian, A.; Sabatelli, P.; Gualandi, F.; Merlini, L.; Bonaldo, P.; Canton, M.; Bernardi, P.; Di Lisa, F.

    2014-01-01

    Although mitochondrial dysfunction and oxidative stress have been proposed to play a crucial role in several types of muscular dystrophy (MD), whether a causal link between these two alterations exists remains an open question. We have documented that mitochondrial dysfunction through opening of the permeability transition pore plays a key role in myoblasts from patients as well as in mouse models of MD, and that oxidative stress caused by monoamine oxidases (MAO) is involved in myofiber damage. In the present study we have tested whether MAO-dependent oxidative stress is a causal determinant of mitochondrial dysfunction and apoptosis in myoblasts from patients affected by collagen VI myopathies. We find that upon incubation with hydrogen peroxide or the MAO substrate tyramine myoblasts from patients upregulate MAO-B expression and display a significant rise in reactive oxygen species (ROS) levels, with concomitant mitochondrial depolarization. MAO inhibition by pargyline significantly reduced both ROS accumulation and mitochondrial dysfunction, and normalized the increased incidence of apoptosis in myoblasts from patients. Thus, MAO-dependent oxidative stress is causally related to mitochondrial dysfunction and cell death in myoblasts from patients affected by collagen VI myopathies, and inhibition of MAO should be explored as a potential treatment for these diseases. PMID:25017965

  16. Robust protein nitration contributes to acetaminophen-induced mitochondrial dysfunction and acute liver injury

    PubMed Central

    Abdelmegeed, Mohamed A.; Jang, Sehwan; Banerjee, Atrayee; Hardwick, James P.; Song, Byoung-Joon

    2013-01-01

    Acetaminophen (APAP), a widely-used analgesic agent, can cause liver injury through increased nitrative stress, leading to protein nitration. However, the identities of nitrated proteins and their roles in hepatotoxicity are poorly understood. Thus, we aimed at studying the mechanism of APAP-induced hepatotoxicity by systematic identification and characterization of nitrated proteins in the absence or presence of an anti-oxidant N-acetylcysteine (NAC). The levels of nitrated proteins markedly increased at 2 h in mice exposed to a single APAP dose (350 mg/kg ip), which caused severe liver necrosis at 24 h. Protein nitration and liver necrosis were minimal in mice exposed to nontoxic 3-hydroxyacetanilide or animals co-treated with APAP and NAC. Mass-spectral analysis of the affinity-purified nitrated proteins identified numerous mitochondrial and cytosolic proteins including mitochondrial aldehyde dehydrogenase, Mn-superoxide dismutase, glutathione peroxidase, ATP synthase, and 3-ketoacyl-CoA thiolase involved in anti-oxidant defense, energy supply, and fatty acid metabolism, respectively. Immunoprecipitation followed by immunoblot with anti-3-NT antibody confirmed that the aforementioned proteins were nitrated in APAP-exposed mice but not in NAC-co-treated mice. Consistently, NAC co-treatment significantly restored the suppressed activities of these enzymes. Thus, we demonstrate a new mechanism by which many nitrated proteins with concomitantly suppressed activities promotes APAP-induced mitochondrial dysfunction and hepatotoxicity. PMID:23454065

  17. Benzaldehyde Thiosemicarbazone Derived from Limonene Complexed with Copper Induced Mitochondrial Dysfunction in Leishmania amazonensis

    PubMed Central

    Britta, Elizandra Aparecida; Barbosa Silva, Ana Paula; Ueda-Nakamura, Tânia; Dias-Filho, Benedito Prado; Silva, Cleuza Conceição; Sernaglia, Rosana Lázara; Nakamura, Celso Vataru

    2012-01-01

    Background Leishmaniasis is a major health problem that affects more than 12 million people. Treatment presents several problems, including high toxicity and many adverse effects, leading to the discontinuation of treatment and emergence of resistant strains. Methodology/Principal Findings We evaluated the in vitro antileishmanial activity of benzaldehyde thiosemicarbazone derived from limonene complexed with copper, termed BenzCo, against Leishmania amazonensis. BenzCo inhibited the growth of the promastigote and axenic amastigote forms, with IC50 concentrations of 3.8 and 9.5 µM, respectively, with 72 h of incubation. Intracellular amastigotes were inhibited by the compound, with an IC50 of 10.7 µM. BenzCo altered the shape, size, and ultrastructure of the parasites. Mitochondrial membrane depolarization was observed in protozoa treated with BenzCo but caused no alterations in the plasma membrane. Additionally, BenzCo induced lipoperoxidation and the production of mitochondrial superoxide anion radicals in promastigotes and axenic amastigotes of Leishmania amazonensis. Conclusion/Significance Our studies indicated that the antileishmania activity of BenzCo might be associated with mitochondrial dysfunction and oxidative damage, leading to parasite death. PMID:22870222

  18. Mitochondrial dysfunction leads to impairment of insulin sensitivity and adiponectin secretion in adipocytes.

    PubMed

    Wang, Chih-Hao; Wang, Ching-Chu; Huang, Hsin-Chang; Wei, Yau-Huei

    2013-02-01

    Adipocytes play an integrative role in the regulation of energy metabolism and glucose homeostasis in the human body. Functional defects in adipocytes may cause systemic disturbance of glucose homeostasis. Recent studies revealed mitochondrial abnormalities in the adipose tissue of patients with type 2 diabetes. In addition, patients with mitochondrial diseases usually manifest systemic metabolic disorder. However, it is unclear how mitochondrial dysfunction in adipocytes affects the regulation of glucose homeostasis. In this study, we induced mitochondrial dysfunction and overproduction of reactive oxygen species (ROS) by addition of respiratory inhibitors oligomycin A and antimycin A and by knockdown of mitochondrial transcription factor A (mtTFA), respectively. We found an attenuation of the insulin response as indicated by lower glucose uptake and decreased phosphorylation of Akt upon insulin stimulation of adipocytes with mitochondrial dysfunction. Furthermore, the expression of glucose transporter 4 (Glut4) and secretion of adiponectin were decreased in adipocytes with increased ROS generated by defective mitochondria. Moreover, the severity of insulin insensitivity was correlated with the extent of mitochondrial dysfunction. These results suggest that higher intracellular ROS levels elicited by mitochondrial dysfunction resulted in impairment of the function of adipocytes in the maintenance of glucose homeostasis through attenuation of insulin signaling, downregulation of Glut4 expression, and decrease in adiponectin secretion. Our findings substantiate the important role of mitochondria in the regulation of glucose homeostasis in adipocytes and also provide a molecular basis for the explanation of the manifestation of diabetes mellitus or insulin insensitivity in a portion of patients with mitochondrial diseases such as MELAS or MERRF syndrome. PMID:23253816

  19. Hypothalamic mitochondrial dysfunction associated with anorexia in the anx/anx mouse

    PubMed Central

    Lindfors, Charlotte; Nilsson, Ida A. K.; Garcia-Roves, Pablo M.; Zuberi, Aamir R.; Karimi, Mohsen; Donahue, Leah Rae; Roopenian, Derry C.; Mulder, Jan; Uhlén, Mathias; Ekström, Tomas J.; Davisson, Muriel T.; Hökfelt, Tomas G. M.; Schalling, Martin; Johansen, Jeanette E.

    2011-01-01

    The anorectic anx/anx mouse exhibits disturbed feeding behavior and aberrances, including neurodegeneration, in peptidergic neurons in the appetite regulating hypothalamic arcuate nucleus. Poor feeding in infants, as well as neurodegeneration, are common phenotypes in human disorders caused by dysfunction of the mitochondrial oxidative phosphorylation system (OXPHOS). We therefore hypothesized that the anorexia and degenerative phenotypes in the anx/anx mouse could be related to defects in the OXPHOS. In this study, we found reduced efficiency of hypothalamic OXPHOS complex I assembly and activity in the anx/anx mouse. We also recorded signs of increased oxidative stress in anx/anx hypothalamus, possibly as an effect of the decreased hypothalamic levels of fully assembled complex I, that were demonstrated by native Western blots. Furthermore, the Ndufaf1 gene, encoding a complex I assembly factor, was genetically mapped to the anx interval and found to be down-regulated in anx/anx mice. These results suggest that the anorexia and hypothalamic neurodegeneration of the anx/anx mouse are associated with dysfunction of mitochondrial complex I. PMID:22025706

  20. Diastolic Dysfunction Induced by a High-Fat Diet Is Associated with Mitochondrial Abnormality and Adenosine Triphosphate Levels in Rats

    PubMed Central

    Kang, Ki-Woon; Kim, Ok-Soon; Chin, Jung Yeon; Kim, Won Ho; Park, Sang Hyun; Choi, Yu Jeong; Shin, Jong Ho; Jung, Kyung Tae; Lim, Do-Seon

    2015-01-01

    Background Obesity is well-known as a risk factor for heart failure, including diastolic dysfunction. However, this mechanism in high-fat diet (HFD)-induced obese rats remain controversial. The purpose of this study was to investigate whether cardiac dysfunction develops when rats are fed with a HFD for 10 weeks; additionally, we sought to investigate the association between mitochondrial abnormalities, adenosine triphosphate (ATP) levels and cardiac dysfunction. Methods We examined myocardia in Wistar rats after 10 weeks of HFD (45 kcal% fat, n=6) or standard diet (SD, n=6). Echocardiography, histomorphologic analysis, and electron microscopy were performed. The expression levels of mitochondrial oxidative phosphorylation (OXPHOS) subunit genes, peroxisome-proliferator-activated receptor γ co-activator-1α (PGC1α) and anti-oxidant enzymes were assessed. Markers of oxidative stress damage, mitochondrial DNA copy number and myocardial ATP level were also examined. Results After 10 weeks, the body weight of the HFD group (349.6±22.7 g) was significantly higher than that of the SD group (286.8±14.9 g), and the perigonadal and epicardial fat weights of the HFD group were significantly higher than that of the SD group. Histomorphologic and electron microscopic images were similar between the two groups. However, in the myocardium of the HFD group, the expression levels of OXPHOS subunit NDUFB5 in complex I and PGC1α, and the mitochondrial DNA copy number were decreased and the oxidative stress damage marker 8-hydroxydeoxyguanosine was increased, accompanied by reduced ATP levels. Conclusion Diastolic dysfunction was accompanied by the mitochondrial abnormality and reduced ATP levels in the myocardium of 10 weeks-HFD-induced rats. PMID:26790384

  1. Microvascular and mitochondrial dysfunction in the female F1 generation after gestational TiO2 nanoparticle exposure

    PubMed Central

    Stapleton, Phoebe A.; Nichols, Cody E.; Yi, Jinghai; McBride, Carroll R.; Minarchick, Valerie C.; Shepherd, Danielle L.; Hollander, John M.; Nurkiewicz, Timothy R.

    2016-01-01

    Due to the ongoing evolution of nanotechnology, there is a growing need to assess the toxicological outcomes in under-studied populations in order to properly consider the potential of engineered nanomaterials (ENM) and fully enhance their safety. Recently, we and others have explored the vascular consequences associated with gestational nanomaterial exposure, reporting microvascular dysfunction within the uterine circulation of pregnant dams and the tail artery of fetal pups. It has been proposed (via work derived by the Barker Hypothesis) that mitochondrial dysfunction and subsequent oxidative stress mechanisms as a possible link between a hostile gestational environment and adult disease. Therefore, in this study, we exposed pregnant Sprague-Dawley rats to nanosized titanium dioxide aerosols after implantation (gestational day 6). Pups were delivered, and the progeny grew into adulthood. Microvascular reactivity, mitochondrial respiration and hydrogen peroxide production of the coronary and uterine circulations of the female offspring were evaluated. While there were no significant differences within the maternal or litter characteristics, endothelium-dependent dilation and active mechanotransduction in both coronary and uterine arterioles were significantly impaired. In addition, there was a significant reduction in maximal mitochondrial respiration (state 3) in the left ventricle and uterus. These studies demonstrate microvascular dysfunction and coincide with mitochondrial inefficiencies in both the cardiac and uterine tissues, which may represent initial evidence that prenatal ENM exposure produces microvascular impairments that persist throughout multiple developmental stages. PMID:25475392

  2. Mitochondrial Dysfunction: A Basic Mechanism in Inflammation-Related Non-Communicable Diseases and Therapeutic Opportunities

    PubMed Central

    Hernández-Aguilera, Anna; Rull, Anna; Rodríguez-Gallego, Esther; Riera-Borrull, Marta; Luciano-Mateo, Fedra; Camps, Jordi; Menéndez, Javier A.; Joven, Jorge

    2013-01-01

    Obesity is not necessarily a predisposing factor for disease. It is the handling of fat and/or excessive energy intake that encompasses the linkage of inflammation, oxidation, and metabolism to the deleterious effects associated with the continuous excess of food ingestion. The roles of cytokines and insulin resistance in excessive energy intake have been studied extensively. Tobacco use and obesity accompanied by an unhealthy diet and physical inactivity are the main factors that underlie noncommunicable diseases. The implication is that the management of energy or food intake, which is the main role of mitochondria, is involved in the most common diseases. In this study, we highlight the importance of mitochondrial dysfunction in the mutual relationships between causative conditions. Mitochondria are highly dynamic organelles that fuse and divide in response to environmental stimuli, developmental status, and energy requirements. These organelles act to supply the cell with ATP and to synthesise key molecules in the processes of inflammation, oxidation, and metabolism. Therefore, energy sensors and management effectors are determinants in the course and development of diseases. Regulating mitochondrial function may require a multifaceted approach that includes drugs and plant-derived phenolic compounds with antioxidant and anti-inflammatory activities that improve mitochondrial biogenesis and act to modulate the AMPK/mTOR pathway. PMID:23533299

  3. Catecholamine-induced cardiac mitochondrial dysfunction and mPTP opening: protective effect of curcumin.

    PubMed

    Izem-Meziane, Malika; Djerdjouri, Bahia; Rimbaud, Stephanie; Caffin, Fanny; Fortin, Dominique; Garnier, Anne; Veksler, Vladimir; Joubert, Frederic; Ventura-Clapier, Renee

    2012-02-01

    The present study was designed to characterize the mitochondrial dysfunction induced by catecholamines and to investigate whether curcumin, a natural antioxidant, induces cardioprotective effects against catecholamine-induced cardiotoxicity by preserving mitochondrial function. Because mitochondria play a central role in ischemia and oxidative stress, we hypothesized that mitochondrial dysfunction is involved in catecholamine toxicity and in the potential protective effects of curcumin. Male Wistar rats received subcutaneous injection of 150 mg·kg(-1)·day(-1) isoprenaline (ISO) for two consecutive days with or without pretreatment with 60 mg·kg(-1)·day(-1) curcumin. Twenty four hours after, cardiac tissues were examined for apoptosis and oxidative stress. Expression of proteins involved in mitochondrial biogenesis and function were measured by real-time RT-PCR. Isolated mitochondria and permeabilized cardiac fibers were used for swelling and mitochondrial function experiments, respectively. Mitochondrial morphology and permeability transition pore (mPTP) opening were assessed by fluorescence in isolated cardiomyocytes. ISO treatment induced cell damage, oxidative stress, and apoptosis that were prevented by curcumin. Moreover, mitochondria seem to play an important role in these effects as respiration and mitochondrial swelling were increased following ISO treatment, these effects being again prevented by curcumin. Importantly, curcumin completely prevented the ISO-induced increase in mPTP calcium susceptibility in isolated cardiomyocytes without affecting mitochondrial biogenesis and mitochondrial network dynamic. The results unravel the importance of mitochondrial dysfunction in isoprenaline-induced cardiotoxicity as well as a new cardioprotective effect of curcumin through prevention of mitochondrial damage and mPTP opening. PMID:22101527

  4. Functional mitochondrial analysis in acute brain sections from adult rats reveals mitochondrial dysfunction in a rat model of migraine

    PubMed Central

    Fried, Nathan T.; Moffat, Cynthia; Seifert, Erin L.

    2014-01-01

    Mitochondrial dysfunction has been implicated in many neurological disorders that only develop or are much more severe in adults, yet no methodology exists that allows for medium-throughput functional mitochondrial analysis of brain sections from adult animals. We developed a technique for quantifying mitochondrial respiration in acutely isolated adult rat brain sections with the Seahorse XF Analyzer. Evaluating a range of conditions made quantifying mitochondrial function from acutely derived adult brain sections from the cortex, cerebellum, and trigeminal nucleus caudalis possible. Optimization of this technique demonstrated that the ideal section size was 1 mm wide. We found that sectioning brains at physiological temperatures was necessary for consistent metabolic analysis of trigeminal nucleus caudalis sections. Oxygen consumption in these sections was highly coupled to ATP synthesis, had robust spare respiratory capacities, and had limited nonmitochondrial respiration, all indicative of healthy tissue. We demonstrate the effectiveness of this technique by identifying a decreased spare respiratory capacity in the trigeminal nucleus caudalis of a rat model of chronic migraine, a neurological disorder that has been associated with mitochondrial dysfunction. This technique allows for 24 acutely isolated sections from multiple brain regions of a single adult rat to be analyzed simultaneously with four sequential drug treatments, greatly advancing the ability to study mitochondrial physiology in adult neurological disorders. PMID:25252946

  5. Mitochondrial Dysfunction during the Early Stages of Excitotoxic Spinal Motor Neuron Degeneration in Vivo.

    PubMed

    Santa-Cruz, Luz Diana; Guerrero-Castillo, Sergio; Uribe-Carvajal, Salvador; Tapia, Ricardo

    2016-07-20

    Glutamate excitotoxicity and mitochondrial dysfunction are involved in motor neuron degeneration process during amyotrophic lateral sclerosis (ALS). We have previously shown that microdialysis perfusion of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) in the lumbar region of the rat spinal cord produces permanent paralysis of the ipsilateral hindlimb and death of motor neurons by a Ca(2+)-dependent mechanism, in a process that starts 2-3 h after AMPA perfusion. Co-perfusion with different energy metabolic substrates, mainly pyruvate, prevented the paralysis and motor neuron degeneration induced by AMPA, suggesting that mitochondrial energetic deficiencies are involved in this excitotoxic motor neuron death. To test this, in the present work, we studied the functional and ultrastructural characteristics of mitochondria isolated from the ventral horns of lumbar spinal cords of rats, at the beginning of the AMPA-induced degeneration process, when motor neurons are still alive. Animals were divided in four groups: perfused with AMPA, AMPA + pyruvate, and pyruvate alone and Krebs-Ringer medium as controls. Mitochondria from the AMPA-treated group showed decreased oxygen consumption rates, respiratory controls, and transmembrane potentials. Additionally, activities of the respiratory chain complexes I and IV were significantly decreased. Electron microscopy showed that mitochondria from AMPA-treated rats presented swelling, disorganized cristae and disrupted membranes. Remarkably, in the animals co-perfused with AMPA and pyruvate all these abnormalities were prevented. We conclude that mitochondrial dysfunction plays a crucial role in spinal motor neuron degeneration induced by overactivation of AMPA receptors in vivo. These mechanisms could be involved in ALS motor neuron degeneration. PMID:27090876

  6. Dysfunction of mitochondrial dynamics in the brains of scrapie-infected mice

    SciTech Connect

    Choi, Hong-Seok; Choi, Yeong-Gon; Shin, Hae-Young; Oh, Jae-Min; Park, Jeong-Ho; Kim, Jae-Il; Carp, Richard I.; Choi, Eun-Kyoung; Kim, Yong-Sun

    2014-05-30

    Highlights: • Mfn1 and Fis1 are significantly increased in the hippocampal region of the ME7 prion-infected brain, whereas Dlp1 is significantly decreased in the infected brain. • Dlp1 is significantly decreased in the cytosolic fraction of the hippocampus in the infected brain. • Neuronal mitochondria in the prion-infected brains are enlarged and swollen compared to those of control brains. • There are significantly fewer mitochondria in the ME7-infected brain compared to the number in control brain. - Abstract: Mitochondrial dysfunction is a common and prominent feature of many neurodegenerative diseases, including prion diseases; it is induced by oxidative stress in scrapie-infected animal models. In previous studies, we found swelling and dysfunction of mitochondria in the brains of scrapie-infected mice compared to brains of controls, but the mechanisms underlying mitochondrial dysfunction remain unclear. To examine whether the dysregulation of mitochondrial proteins is related to the mitochondrial dysfunction associated with prion disease, we investigated the expression patterns of mitochondrial fusion and fission proteins in the brains of ME7 prion-infected mice. Immunoblot analysis revealed that Mfn1 was up-regulated in both whole brain and specific brain regions, including the cerebral cortex and hippocampus, of ME7-infected mice compared to controls. Additionally, expression levels of Fis1 and Mfn2 were elevated in the hippocampus and the striatum, respectively, of the ME7-infected brain. In contrast, Dlp1 expression was significantly reduced in the hippocampus in the ME7-infected brain, particularly in the cytosolic fraction. Finally, we observed abnormal mitochondrial enlargement and histopathological change in the hippocampus of the ME7-infected brain. These observations suggest that the mitochondrial dysfunction, which is presumably caused by the dysregulation of mitochondrial fusion and fission proteins, may contribute to the

  7. Ameliorating Endothelial Mitochondrial Dysfunction Restores Coronary Function via Transient Receptor Potential Vanilloid 1-Mediated Protein Kinase A/Uncoupling Protein 2 Pathway.

    PubMed

    Xiong, Shiqiang; Wang, Peijian; Ma, Liqun; Gao, Peng; Gong, Liuping; Li, Li; Li, Qiang; Sun, Fang; Zhou, Xunmei; He, Hongbo; Chen, Jing; Yan, Zhencheng; Liu, Daoyan; Zhu, Zhiming

    2016-02-01

    Coronary heart disease arising from atherosclerosis is a leading cause of cardiogenic death worldwide. Mitochondria are the principal source of reactive oxygen species (ROS), and defective oxidative phosphorylation by the mitochondrial respiratory chain contributes to ROS generation. Uncoupling protein 2 (UCP2), an adaptive antioxidant defense factor, protects against mitochondrial ROS-induced endothelial dysfunction in atherosclerosis. The activation of transient receptor potential vanilloid 1 (TRPV1) attenuates vascular dysfunction. Therefore, whether TRPV1 activation antagonizes coronary lesions by alleviating endothelial mitochondrial dysfunction and enhancing the activity of the protein kinase A/UCP2 pathway warrants examination. ApoE(-/-), ApoE(-/-)/TRPV1(-/-), and ApoE(-/-)/UCP2(-/-) mice were fed standard chow, a high-fat diet (HFD), or the HFD plus 0.01% capsaicin. HFD intake profoundly impaired coronary vasodilatation and myocardial perfusion and shortened the survival duration of ApoE(-/-) mice. TRPV1 or UCP2 deficiency exacerbated HFD-induced coronary dysfunction and was associated with increased ROS generation and reduced nitric oxide production in the endothelium. The activation of TRPV1 by capsaicin upregulated UCP2 expression via protein kinase A phosphorylation, thereby alleviating endothelial mitochondrial dysfunction and inhibiting mitochondrial ROS generation. In vivo, dietary capsaicin supplementation enhanced coronary relaxation and prolonged the survival duration of HFD-fed ApoE(-/-) mice. These effects were not observed in ApoE(-/-) mice lacking the TRPV1 or UCP2 gene. The upregulation of protein kinase A /UCP2 via TRPV1 activation ameliorates coronary dysfunction and prolongs the lifespan of atherosclerotic mice by ameliorating endothelial mitochondrial dysfunction. Dietary capsaicin supplementation may represent a promising intervention for the primary prevention of coronary heart disease. PMID:26667415

  8. HO-1 Protects against Hypoxia/Reoxygenation-Induced Mitochondrial Dysfunction in H9c2 Cardiomyocytes

    PubMed Central

    Chen, Dongling; Jin, Zhe; Zhang, Jingjing; Jiang, Linlin; Chen, Kai; He, Xianghu; Song, Yinwei; Ke, Jianjuan; Wang, Yanlin

    2016-01-01

    Background Mitochondrial dysfunction would ultimately lead to myocardial cell apoptosis and death during ischemia-reperfusion injuries. Autophagy could ameliorate mitochondrial dysfunction by autophagosome forming, which is a catabolic process to preserve the mitochondrial’s structural and functional integrity. HO-1 induction and expression are important protective mechanisms. This study in order to investigate the role of HO-1 during mitochondrial damage and its mechanism. Methods and Results The H9c2 cardiomyocyte cell line were incubated by hypoxic and then reoxygenated for the indicated time (2, 6, 12, 18, and 24 h). Cell viability was tested with CCK-8 kit. The expression of endogenous HO-1(RT-PCR and Western blot) increased with the duration of reoxygenation and reached maximum levels after 2 hours of H/R; thereafter, the expression gradually decreased to a stable level. Mitochondrial dysfunction (Flow cytometry quantified the ROS generation and JC-1 staining) and autophagy (The Confocal microscopy measured the autophagy. RFP-GFP-LC3 double-labeled adenovirus was used for testing.) were induced after 6 hours of H/R. Then, genetic engineering technology was employed to construct an Lv-HO1-H9c2 cell line. When HO-1 was overexpressed, the LC3II levels were significantly increased after reoxygenation, p62 protein expression was significantly decreased, the level of autophagy was unchanged, the mitochondrial membrane potential was significantly increased, and the mitochondrial ROS level was significantly decreased. Furthermore, when the HO-1 inhibitor ZnPP was applied the level of autophagy after reoxygenation was significantly inhibited, and no significant improvement in mitochondrial dysfunction was observed. Conclusions During myocardial hypoxia-reoxygenation injury, HO-1 overexpression induces autophagy to protect the stability of the mitochondrial membrane and reduce the amount of mitochondrial oxidation products, thereby exerting a protective effect. PMID

  9. Low molecular weight guluronate prevents TNF-α-induced oxidative damage and mitochondrial dysfunction in C2C12 skeletal muscle cells.

    PubMed

    Dun, Yun-lou; Zhou, Xiao-lin; Guan, Hua-shi; Yu, Guang-li; Li, Chun-xia; Hu, Ting; Zhao, Xia; Cheng, Xiao-lei; He, Xiao-xi; Hao, Jie-jie

    2015-09-01

    Muscle wasting is associated with a variety of chronic or inflammatory disorders. Evidence suggests that inflammatory cytokines play a vital role in muscle inflammatory pathology and this may result in oxidative damage and mitochondrial dysfunction in skeletal muscle. In our study, we used microwave degradation to prepare a water-soluble low molecular weight guluronate (LMG) of 3000 Da from Fucus vesiculosus obtained from Canada, the Atlantic Ocean. We demonstrated the structural characteristics, using HPLC, FTIR and NMR of LMG and investigated its effects on oxidative damage and mitochondrial dysfunction in C2C12 skeletal muscle cells induced by tumor necrosis factor alpha (TNF-α), a cell inflammatory cytokine. The results indicated that LMG could alleviate mitochondrial reactive oxygen species (ROS) production, increase the activities of antioxidant enzymes (GSH and SOD), promote mitochondrial membrane potential (MMP) and upregulate the expression of mitochondrial respiratory chain protein in TNF-α-induced C2C12 cells. LMG supplement also increased the mitochondrial DNA copy number and mitochondrial biogenesis related genes in TNF-α-induced C2C12 cells. LMG may exert these protective effects through the nuclear factor kappa B (NF-κB) signaling pathway. These suggest that LMG is capable of protecting TNF-α-induced C2C12 cells against oxidative damage and mitochondrial dysfunction. PMID:26205038

  10. Mitochondrial and Ubiquitin Proteasome System Dysfunction in Ageing and Disease: Two Sides of the Same Coin?

    PubMed Central

    Ross, Jaime M.; Olson, Lars; Coppotelli, Giuseppe

    2015-01-01

    Mitochondrial dysfunction and impairment of the ubiquitin proteasome system have been described as two hallmarks of the ageing process. Additionally, both systems have been implicated in the etiopathogenesis of many age-related diseases, particularly neurodegenerative disorders, such as Alzheimer’s and Parkinson’s disease. Interestingly, these two systems are closely interconnected, with the ubiquitin proteasome system maintaining mitochondrial homeostasis by regulating organelle dynamics, the proteome, and mitophagy, and mitochondrial dysfunction impairing cellular protein homeostasis by oxidative damage. Here, we review the current literature and argue that the interplay of the two systems should be considered in order to better understand the cellular dysfunction observed in ageing and age-related diseases. Such an approach may provide valuable insights into molecular mechanisms underlying the ageing process, and further discovery of treatments to counteract ageing and its associated diseases. Furthermore, we provide a hypothetical model for the heterogeneity described among individuals during ageing. PMID:26287188

  11. Akt3 knockdown induces mitochondrial dysfunction in human cancer cells.

    PubMed

    Kim, Minjee; Kim, Young Yeon; Jee, Hye Jin; Bae, Sun Sik; Jeong, Na Young; Um, Jee-Hyun; Yun, Jeanho

    2016-05-01

    Akt/PKB plays a pivotal role in cell proliferation and survival. However, the isotype-specific roles of Akt in mitochondrial function have not been fully addressed. In this study, we explored the role of Akt in mitochondrial function after stable knockdown of the Akt isoforms in EJ human bladder cancer cells. We found that the mitochondrial mass was significantly increased in the Akt1- and Akt3-knockdown cells, and this increase was accompanied by an increase in TFAM and NRF1. Akt2 knockdown did not cause a similar effect. Interestingly, Akt3 knockdown also led to severe structural defects in the mitochondria, an increase in doxorubicin-induced senescence, and impairment of cell proliferation in galactose medium. Consistent with these observations, the mitochondrial oxygen consumption rate was significantly reduced in the Akt3-knockdown cells. An Akt3 deficiency-induced decrease in mitochondrial respiration was also observed in A549 lung cancer cells. Collectively, these results suggest that the Akt isoforms play distinct roles in mitochondrial function and that Akt3 is critical for proper mitochondrial respiration in human cancer cells. PMID:26972278

  12. Knockdown of IRF6 Attenuates Hydrogen Dioxide-Induced Oxidative Stress via Inhibiting Mitochondrial Dysfunction in HT22 Cells.

    PubMed

    Guo, Xiao-Min; Chen, Bo; Lv, Jian-Meng; Lei, Qi; Pan, Ya-Juan; Yang, Qian

    2016-10-01

    Oxidative stress-induced cell damage is involved in many neurological diseases. Interferon regulatory factor 6 (IRF6), a member of the IRF family of transcription factors, is required for the differentiation of skin, breast epithelium, and oral epithelium. However, the regulation and function of IRF6 in central nervous system remain unknown. This study aimed to investigate the role of IRF6 in hydrogen peroxide (H2O2)-induced oxidative neuronal injury in HT22 mouse hippocampal cells. Treatment with H2O2 significantly increased the expression of IRF6 at both mRNA and protein levels, and knockdown of IRF6 using specific small interfering RNA reduced H2O2-induced cytotoxicity, as evidenced by increased cell viability and decreased apoptosis. Knockdown of IRF6 attenuated intracellular reactive oxygen species (ROS) generation and lipid peroxidation, and also preserved endogenous antioxidant enzyme activities. The inhibitory effect of IRF6 knockdown on mitochondrial dysfunction was demonstrated by reduced mitochondrial oxidative level, preserved mitochondrial membrane potential (MMP) and ATP generation, as well as attenuated mitochondrial swelling. In addition, down-regulation of IRF6 inhibited the activation of mitochondrial apoptotic factors, whereas IRF6 knockdown together with caspase inhibitors had no extra effect on cell viability and LDH release. These results suggest that knockdown of IRF6 has protective effects against H2O2-induced oxidative stress by reducing ROS accumulation and apoptosis, and these protective effects are dependent on preservation of mitochondrial function. PMID:26620051

  13. The role of mitochondrial dysfunction in sepsis-induced multi-organ failure

    PubMed Central

    Singer, Mervyn

    2014-01-01

    An important role for bioenergetic dysfunction is increasingly emerging to potentially explain the paradox of clinical and biochemical organ failure in sepsis yet minimal cell death, maintained tissue oxygenation and recovery in survivors. Associations are well-recognized between the degree of mitochondrial dysfunction and outcomes. While this does not confirm cause-and-effect, it does nevertheless suggest a new route for therapeutic intervention focused on either mitochondrial protection or acceleration of the recovery process through stimulation of mitochondrial biogenesis (new protein turnover). This is particularly pertinent in light of the multiple trial failures related to immunomodulatory therapies. This overview will provide insights into mitochondrial biology, the relevance to sepsis, and therapeutic opportunities that possibly emerge. PMID:24185508

  14. Amelioration of Mitochondrial Dysfunction-Induced Insulin Resistance in Differentiated 3T3-L1 Adipocytes via Inhibition of NF-κB Pathways

    PubMed Central

    Hafizi Abu Bakar, Mohamad; Sarmidi, Mohamad Roji; Kai, Cheng Kian; Huri, Hasniza Zaman; Yaakob, Harisun

    2014-01-01

    A growing body of evidence suggests that activation of nuclear factor kappa B (NF-κB) signaling pathways is among the inflammatory mechanism involved in the development of insulin resistance and chronic low-grade inflammation in adipose tissues derived from obese animal and human subjects. Nevertheless, little is known about the roles of NF-κB pathways in regulating mitochondrial function of the adipose tissues. In the present study, we sought to investigate the direct effects of celastrol (potent NF-κB inhibitor) upon mitochondrial dysfunction-induced insulin resistance in 3T3-L1 adipocytes. Celastrol ameliorates mitochondrial dysfunction by altering mitochondrial fusion and fission in adipocytes. The levels of oxidative DNA damage, protein carbonylation and lipid peroxidation were down-regulated. Further, the morphology and quantification of intracellular lipid droplets revealed the decrease of intracellular lipid accumulation with reduced lipolysis. Moreover, massive production of the pro-inflammatory mediators tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were markedly depleted. Insulin-stimulated glucose uptake activity was restored with the enhancement of insulin signaling pathways. This study signified that the treatments modulated towards knockdown of NF-κB transcription factor may counteract these metabolic insults exacerbated in our model of synergy between mitochondrial dysfunction and inflammation. These results demonstrate for the first time that NF-κB inhibition modulates mitochondrial dysfunction induced insulin resistance in 3T3-L1 adipocytes. PMID:25474091

  15. Cause and Consequence: Mitochondrial Dysfunction Initiates and Propagates Neuronal Dysfunction, Neuronal Death and Behavioral Abnormalities in Age Associated Neurodegenerative Diseases

    PubMed Central

    Gibson, Gary E.; Starkov, Anatoly; Blass, John P.; Ratan, Rajiv R.; Beal, M. Flint

    2009-01-01

    SUMMARY Age-related neurodegenerative diseases are associated with mild impairment of oxidative metabolism and accumulation of abnormal proteins. Within the cell, the mitochondria appears to be a dominant site for initiation and propagation of disease processes. Shifts in metabolism in response to mild metabolic perturbations may decrease the threshold for irreversible injury in response to ordinarily sub lethal metabolic insults. Mild impairment of metabolism accrue from and lead to increased reactive oxygen species (ROS). Increased ROS change cell signaling via post transcriptional and transcriptional changes. The cause and consequences of mild impairment of mitochondrial metabolism is one focus of this review. Many experiments in tissues from humans support the notion that oxidative modification of the α-ketoglutarate dehydrogenase complex (KGDHC) compromises neuronal energy metabolism and enhance ROS production in Alzheimer’s Disease (AD). These data suggest that cognitive decline in AD derives from the selective tricarboxylic acid (TCA) cycle abnormalities. By contrast in Huntington’s Disease (HD), a movement disorder with cognitive features distinct form AD, complex II + III abnormalities may dominate. These distinct mitochondrial abnormalities culminate in oxidative stress, energy dysfunction, and aberrant homeostasis of cytosolic calcium. Cytosolic calcium, elevations even only transiently, leads to hyperactivity of a number of enzymes. One calcium activated enzyme with demonstrated pathophysiological import in HD and AD is transglutaminase (TGase). TGase is a cross linking enzymes that can modulate transcrption, inactivate metabolic enzymes, and cause aggregation of critical proteins. Recent data indicate that TGase can silence expression of genes involved in compensating for metabolic stress. Altogether, our results suggest that increasing KGDHC via inhibition of TGase or via a host of other strategies to be described would be effective therapeutic

  16. A silybin-phospholipid complex prevents mitochondrial dysfunction in a rodent model of nonalcoholic steatohepatitis.

    PubMed

    Serviddio, Gaetano; Bellanti, Francesco; Giudetti, Anna Maria; Gnoni, Gabriele Vincenzo; Petrella, Antonio; Tamborra, Rosanna; Romano, Antonino Davide; Rollo, Tiziana; Vendemiale, Gianluigi; Altomare, Emanuele

    2010-03-01

    Mitochondrial dysfunction and oxidative stress are determinant events in the pathogenesis of nonalcoholic steatohepatitis. Silybin has shown antioxidant, anti-inflammatory, and antifibrotic effects in chronic liver disease. We aimed to study the effect of the silybin-phospholipid complex (SILIPHOS) on liver redox balance and mitochondrial function in a dietary model of nonalcoholic steatohepatitis. To accomplish this, glutathione oxidation, mitochondrial oxygen uptake, proton leak, ATP homeostasis, and H(2)O(2) production rate were evaluated in isolated liver mitochondria from rats fed a methionine- and choline-deficient (MCD) diet and the MCD diet plus SILIPHOS for 7 and 14 weeks. Oxidative proteins, hydroxynonenal (HNE)- and malondialdehyde (MDA)-protein adducts, and mitochondrial membrane lipid composition were also measured. Treatment with SILIPHOS limited glutathione depletion and mitochondrial H(2)O(2) production. Moreover, SILIPHOS preserved mitochondrial bioenergetics and prevented mitochondrial proton leak and ATP reduction. Finally, SILIPHOS limited the formation of HNE- and MDA-protein adducts. In conclusion, SILIPHOS is effective in preventing severe oxidative stress and preserving hepatic mitochondrial bioenergetics in nonalcoholic steatohepatitis induced by the MCD diet. The modifications of mitochondrial membrane fatty acid composition induced by the MCD diet are partially prevented by SILIPHOS, conferring anti-inflammatory and antifibrotic effects. The increased vulnerability of lipid membranes to oxidative damage is limited by SILIPHOS through preserved mitochondrial function. PMID:20008062

  17. Increased Susceptibility to Ethylmercury-Induced Mitochondrial Dysfunction in a Subset of Autism Lymphoblastoid Cell Lines

    PubMed Central

    Wynne, Rebecca; Frye, Richard E.; Melnyk, Stepan; James, S. Jill

    2015-01-01

    The association of autism spectrum disorders with oxidative stress, redox imbalance, and mitochondrial dysfunction has become increasingly recognized. In this study, extracellular flux analysis was used to compare mitochondrial respiration in lymphoblastoid cell lines (LCLs) from individuals with autism and unaffected controls exposed to ethylmercury, an environmental toxin known to deplete glutathione and induce oxidative stress and mitochondrial dysfunction. We also tested whether pretreating the autism LCLs with N-acetyl cysteine (NAC) to increase glutathione concentrations conferred protection from ethylmercury. Examination of 16 autism/control LCL pairs revealed that a subgroup (31%) of autism LCLs exhibited a greater reduction in ATP-linked respiration, maximal respiratory capacity, and reserve capacity when exposed to ethylmercury, compared to control LCLs. These respiratory parameters were significantly elevated at baseline in the ethylmercury-sensitive autism subgroup as compared to control LCLs. NAC pretreatment of the sensitive subgroup reduced (normalized) baseline respiratory parameters and blunted the exaggerated ethylmercury-induced reserve capacity depletion. These findings suggest that the epidemiological link between environmental mercury exposure and an increased risk of developing autism may be mediated through mitochondrial dysfunction and support the notion that a subset of individuals with autism may be vulnerable to environmental influences with detrimental effects on development through mitochondrial dysfunction. PMID:25688267

  18. Role of oxidative DNA damage in mitochondrial dysfunction and Huntington's disease pathogenesis.

    PubMed

    Ayala-Peña, Sylvette

    2013-09-01

    Huntington's disease (HD) is a neurodegenerative disorder with an autosomal dominant expression pattern and typically a late-onset appearance. HD is a movement disorder with a heterogeneous phenotype characterized by involuntary dance-like gait, bioenergetic deficits, motor impairment, and cognitive and psychiatric deficits. Compelling evidence suggests that increased oxidative stress and mitochondrial dysfunction may underlie HD pathogenesis. However, the exact mechanisms underlying mutant huntingtin-induced neurological toxicity remain unclear. The objective of this paper is to review recent literature regarding the role of oxidative DNA damage in mitochondrial dysfunction and HD pathogenesis. PMID:23602907

  19. Curcumin attenuates D-galactosamine/lipopolysaccharide-induced liver injury and mitochondrial dysfunction in mice.

    PubMed

    Zhang, Jingfei; Xu, Li; Zhang, Lili; Ying, Zhixiong; Su, Weipeng; Wang, Tian

    2014-08-01

    Curcumin, a naturally occurring antioxidant, has various beneficial effects in the treatment of human diseases. However, little information regarding the protection it provides against acute liver injury is available. The present study investigated the protective effects of curcumin against D-galactosamine (D-GalN)/lipopolysaccharide (LPS)-induced acute liver injury in mice. A total of 40 male Kunming mice were randomly assigned to 5 groups: 1) mice administered saline vehicle injection (control), 2) mice administered 200 mg/kg body weight (BW) curcumin by i.p. injection (CUR), 3) mice administered D-GalN/LPS (700 mg and 5 μg/kg BW) via i.p. injection (GL), 4) mice administered 200 mg/kg BW curcumin i.p. 1 h before D-GalN/LPS injection (CUR-GL), and 5) mice administered 200 mg/kg BW curcumin i.p. 1 h after D-GalN/LPS injection (GL-CUR). Twenty h after D-GalN/LPS injection, serum alanine aminotransferase activities were 18.5% and 13.5% lower (P < 0.05) and aspartate aminotransferase (AST) activities were 26.6% and 9.6% lower (P < 0.05) in the CUR-GL and GL-CUR groups, respectively, than in the GL group. The CUR-GL and GL-CUR groups had 64.4% and 15.0% higher (P < 0.05) mitochondrial membrane potentials, respectively, and the CUR-GL group had a 44.7% lower reactive oxygen species concentration than the GL group (P < 0.05). Mitochondrial manganese superoxide dismutase activities were 111% and 77.9% higher (P < 0.05) and the percentages of necrotic cells were 47.0% and 32.4% lower (P < 0.05) in the CUR-GL and GL-CUR groups, respectively, than in the GL group. Liver mRNA levels of sirtuin 1 (Sirt1) were 56.4% lower (P < 0.05) in the CUR-GL group than in the GL group. Moreover, compared with the GL-CUR group, the CUR-GL group had an 18.7% lower serum AST activity, a 31.7% lower mitochondrial malondialdehyde concentration, a 36.0% lower hepatic reactive oxygen species concentration, and a 43.0% higher mitochondrial membrane potential. These results suggested that

  20. Mitochondrial dysfunction and cell death in neurodegenerative diseases through nitroxidative stress.

    PubMed

    Akbar, Mohammed; Essa, Musthafa Mohamed; Daradkeh, Ghazi; Abdelmegeed, Mohamed A; Choi, Youngshim; Mahmood, Lubna; Song, Byoung-Joon

    2016-04-15

    Mitochondria are important for providing cellular energy ATP through the oxidative phosphorylation pathway. They are also critical in regulating many cellular functions including the fatty acid oxidation, the metabolism of glutamate and urea, the anti-oxidant defense, and the apoptosis pathway. Mitochondria are an important source of reactive oxygen species leaked from the electron transport chain while they are susceptible to oxidative damage, leading to mitochondrial dysfunction and tissue injury. In fact, impaired mitochondrial function is commonly observed in many types of neurodegenerative diseases, including Alzheimer's disease, Parkinson׳s disease, Huntington׳s disease, alcoholic dementia, brain ischemia-reperfusion related injury, and others, although many of these neurological disorders have unique etiological factors. Mitochondrial dysfunction under many pathological conditions is likely to be promoted by increased nitroxidative stress, which can stimulate post-translational modifications (PTMs) of mitochondrial proteins and/or oxidative damage to mitochondrial DNA and lipids. Furthermore, recent studies have demonstrated that various antioxidants, including naturally occurring flavonoids and polyphenols as well as synthetic compounds, can block the formation of reactive oxygen and/or nitrogen species, and thus ultimately prevent the PTMs of many proteins with improved disease conditions. Therefore, the present review is aimed to describe the recent research developments in the molecular mechanisms for mitochondrial dysfunction and tissue injury in neurodegenerative diseases and discuss translational research opportunities. PMID:26883165

  1. Redox regulation of protein misfolding, mitochondrial dysfunction, synaptic damage, and cell death in neurodegenerative diseases

    PubMed Central

    Nakamura, Tomohiro; Cho, Dong-Hyung; Lipton, Stuart A.

    2012-01-01

    The loss or injury of neurons associated with oxidative and nitrosative redox stress plays an important role in the onset of various neurodegenerative diseases. Specifically, nitric oxide (NO), can affect neuronal survival through a process called S-nitrosylation, by which the NO group undergoes a redox reaction with specific protein thiols. This in turn can lead to the accumulation of misfolded proteins, which generally form aggregates in Alzheimer’s, Parkinson’s, and other neurodegenerative diseases. Evidence suggests that S-nitrosylation can also impair mitochondrial function and lead to excessive fission of mitochondria and consequent bioenergetic compromise via effects on the activity of the fission protein dynamin-related protein 1 (Drp1). This insult leads to synaptic dysfunction and loss. Additionally, high levels of NO can S-nitrosylate a number of aberrant targets involved in neuronal survival pathways, including the antiapoptotic protein XIAP, inhibiting its ability to prevent apoptosis. PMID:22771760

  2. Proton Magnetic Resonance Spectroscopy and MRI Reveal No Evidence for Brain Mitochondrial Dysfunction in Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Corrigan, Neva M.; Shaw, Dennis. W. W.; Richards, Todd L.; Estes, Annette M.; Friedman, Seth D.; Petropoulos, Helen; Artru, Alan A.; Dager, Stephen R.

    2012-01-01

    Brain mitochondrial dysfunction has been proposed as an etiologic factor in autism spectrum disorder (ASD). Proton magnetic resonance spectroscopic imaging ([superscript 1]HMRS) and MRI were used to assess for evidence of brain mitochondrial dysfunction in longitudinal samples of children with ASD or developmental delay (DD), and cross-sectionally…

  3. Mitochondrial iron and energetic dysfunction distinguish fibroblasts and induced neurons from pantothenate kinase-associated neurodegeneration patients

    PubMed Central

    Santambrogio, Paolo; Dusi, Sabrina; Guaraldo, Michela; Rotundo, Luisa Ida; Broccoli, Vania; Garavaglia, Barbara; Tiranti, Valeria; Levi, Sonia

    2015-01-01

    Pantothenate kinase-associated neurodegeneration is an early onset autosomal recessive movement disorder caused by mutation of the pantothenate kinase-2 gene, which encodes a mitochondrial enzyme involved in coenzyme A synthesis. The disorder is characterised by high iron levels in the brain, although the pathological mechanism leading to this accumulation is unknown. To address this question, we tested primary skin fibroblasts from three patients and three healthy subjects, as well as neurons induced by direct fibroblast reprogramming, for oxidative status, mitochondrial functionality and iron parameters. The patients' fibroblasts showed altered oxidative status, reduced antioxidant defence, and impaired cytosolic and mitochondrial aconitase activities compared to control cells. Mitochondrial iron homeostasis and functionality analysis of patient fibroblasts indicated increased labile iron pool content and reactive oxygen species development, altered mitochondrial shape, decreased membrane potential and reduced ATP levels. Furthermore, analysis of induced neurons, performed at a single cell level, confirmed some of the results obtained in fibroblasts, indicating an altered oxidative status and signs of mitochondrial dysfunction, possibly due to iron mishandling. Thus, for the first time, altered biological processes have been identified in vitro in live diseased neurons. Moreover, the obtained induced neurons can be considered a suitable human neuronal model for the identification of candidate therapeutic compounds for this disease. PMID:25836419

  4. Ultrafine Particulate Ferrous Iron and Anthracene Associations with Mitochondrial Dysfunction

    SciTech Connect

    Faiola, Celia; Johansen, Anne M.; Rybka, Sara; Nieber, Annika; Thomas-Bradley, Carin; Bryner, Stephanie; Johnston, Justin M.; Engelhard, Mark H.; Nachimuthu, Ponnusamy; Owens, Kalyn S.

    2011-04-20

    The ultrafine size fraction of ambient particles (ultrafine particles, UFP, diameter < 100 nm) has been identified as being far more potent in their adverse health effects than their larger counterparts, yet, the detailed mechanisms for why UFP display such distinctive toxicity are not well understood. In the present study, ambient UFP were exposed to mitochondria while monitoring electron transport chain (ETC) activity as a model system for biochemical toxicity. UFP samples were collected in rural (Ellensburg, WA) and urban environments (Seattle, WA) and chemically characterized for total trace metals, ferrous (Fe(II)) and easily reducible ferric (Fe(III)) iron, polycyclic aromatic hydrocarbons, and surface constituents with X-ray photoelectron spectroscopy (XPS). Low doses of UFP (8 µg mL-1) caused a decrease in mitochondrial ETC function compared to controls in 94% of the samples after The 20 min of exposure. Significant correlations exist between initial %ETC inhibition (0-10 min) and Fe(II) (R=0.55, P=0.03, N=15), anthracene (R=0.74, P<0.01, N=13), and %C-O surface bonds (R=0.56, P=0.03, N=15), whereby anthracene and %C-O correlate as well (R=0.58, P=0.03, N=14). No significant associations were identified with total Fe and other trace metals. Results from this study indicate that the redox active fraction of Fe as well as the abundance of anthracene-related, C-O containing, surface structures may contribute to the initial detrimental behavior of UFP, thus supporting the idea that the Fe(II)/Fe(III) and certain efficient hydroquinone/quinone redox pairs may play an important role likely due to their potential to produce reactive oxygen species (ROS).

  5. Trimetazidine prevents palmitate-induced mitochondrial fission and dysfunction in cultured cardiomyocytes.

    PubMed

    Kuzmicic, Jovan; Parra, Valentina; Verdejo, Hugo E; López-Crisosto, Camila; Chiong, Mario; García, Lorena; Jensen, Michael D; Bernlohr, David A; Castro, Pablo F; Lavandero, Sergio

    2014-10-01

    Metabolic and cardiovascular disease patients have increased plasma levels of lipids and, specifically, of palmitate, which can be toxic for several tissues. Trimetazidine (TMZ), a partial inhibitor of lipid oxidation, has been proposed as a metabolic modulator for several cardiovascular pathologies. However, its mechanism of action is controversial. Given the fact that TMZ is able to alter mitochondrial metabolism, we evaluated the protective role of TMZ on mitochondrial morphology and function in an in vitro model of lipotoxicity induced by palmitate. We treated cultured rat cardiomyocytes with BSA-conjugated palmitate (25 nM free), TMZ (0.1-100 μM), or a combination of both. We evaluated mitochondrial morphology and lipid accumulation by confocal fluorescence microscopy, parameters of mitochondrial metabolism (mitochondrial membrane potential, oxygen consumption rate [OCR], and ATP levels), and ceramide production by mass spectrometry and indirect immunofluorescence. Palmitate promoted mitochondrial fission evidenced by a decrease in mitochondrial volume (50%) and an increase in the number of mitochondria per cell (80%), whereas TMZ increased mitochondrial volume (39%), and decreased mitochondrial number (56%), suggesting mitochondrial fusion. Palmitate also decreased mitochondrial metabolism (ATP levels and OCR), while TMZ potentiated all the metabolic parameters assessed. Moreover, pretreatment with TMZ protected the cardiomyocytes from palmitate-induced mitochondrial fission and dysfunction. TMZ also increased lipid accumulation in cardiomyocytes, and prevented palmitate-induced ceramide production. Our data show that TMZ protects cardiomyocytes by changing intracellular lipid management. Thus, the beneficial effects of TMZ on patients with different cardiovascular pathologies can be related to modulation of the mitochondrial morphology and function. PMID:25091560

  6. Parkinson disease-associated mutant VPS35 causes mitochondrial dysfunction by recycling DLP1 complexes

    PubMed Central

    Fujioka, Hisashi; Hoppel, Charles; Whone, Alan L.; Caldwell, Maeve A.; Cullen, Peter J.; Liu, Jun; Zhu, Xiongwei

    2015-01-01

    Mitochondrial dysfunction represents a critical step during the pathogenesis of Parkinson disease (PD) and increasing evidence suggests abnormal mitochondrial dynamics and quality control as important underlying mechanisms. The VPS35 gene, encoding a key component of the retromer complex, is the third autosomal-dominant gene associated with PD. However, how VPS35 mutations may lead to neurodegeneration remains unclear. Here we demonstrate that PD-associated VPS35 mutations caused mitochondrial fragmentation and cell death in cultured neurons in vitro, in mouse substantia nigra neurons in vivo, and in human fibroblasts from PD patient bearing the D620N mutation. VPS35-induced mitochondrial deficits and neuronal dysfunction could be prevented by inhibition of mitochondrial fission. VPS35 mutation caused increased interactions with DLP1 which enhanced mitochondrial DLP1 complex turnover via mitochondria-derived vesicles-dependent trafficking to lysosomes for degradation. Importantly, oxidative stress increased the VPS35–DLP1 interaction which was also increased in the brains of sporadic PD cases. These results revealed a novel cellular mechanism for the involvement of VPS35 in mitochondrial fission, dysregulation of which is likely involved in the pathogenesis of familial, and possibly sporadic, PD. PMID:26618722

  7. Targeted overexpression of mitochondrial catalase protects against cancer chemotherapy-induced skeletal muscle dysfunction.

    PubMed

    Gilliam, Laura A A; Lark, Daniel S; Reese, Lauren R; Torres, Maria J; Ryan, Terence E; Lin, Chien-Te; Cathey, Brook L; Neufer, P Darrell

    2016-08-01

    The loss of strength in combination with constant fatigue is a burden on cancer patients undergoing chemotherapy. Doxorubicin, a standard chemotherapy drug used in the clinic, causes skeletal muscle dysfunction and increases mitochondrial H2O2 We hypothesized that the combined effect of cancer and chemotherapy in an immunocompetent breast cancer mouse model (E0771) would compromise skeletal muscle mitochondrial respiratory function, leading to an increase in H2O2-emitting potential and impaired muscle function. Here, we demonstrate that cancer chemotherapy decreases mitochondrial respiratory capacity supported with complex I (pyruvate/glutamate/malate) and complex II (succinate) substrates. Mitochondrial H2O2-emitting potential was altered in skeletal muscle, and global protein oxidation was elevated with cancer chemotherapy. Muscle contractile function was impaired following exposure to cancer chemotherapy. Genetically engineering the overexpression of catalase in mitochondria of muscle attenuated mitochondrial H2O2 emission and protein oxidation, preserving mitochondrial and whole muscle function despite cancer chemotherapy. These findings suggest mitochondrial oxidants as a mediator of cancer chemotherapy-induced skeletal muscle dysfunction. PMID:27329802

  8. Trichodermin induces cell apoptosis through mitochondrial dysfunction and endoplasmic reticulum stress in human chondrosarcoma cells

    SciTech Connect

    Su, Chen-Ming; Wang, Shih-Wei; Lee, Tzong-Huei; Tzeng, Wen-Pei; Hsiao, Che-Jen; Liu, Shih-Chia; Tang, Chih-Hsin

    2013-10-15

    Chondrosarcoma is the second most common primary bone tumor, and it responds poorly to both chemotherapy and radiation treatment. Nalanthamala psidii was described originally as Myxosporium in 1926. This is the first study to investigate the anti-tumor activity of trichodermin (trichothec-9-en-4-ol, 12,13-epoxy-, acetate), an endophytic fungal metabolite from N. psidii against human chondrosarcoma cells. We demonstrated that trichodermin induced cell apoptosis in human chondrosarcoma cell lines (JJ012 and SW1353 cells) instead of primary chondrocytes. In addition, trichodermin triggered endoplasmic reticulum (ER) stress protein levels of IRE1, p-PERK, GRP78, and GRP94, which were characterized by changes in cytosolic calcium levels. Furthermore, trichodermin induced the upregulation of Bax and Bid, the downregulation of Bcl-2, and the dysfunction of mitochondria, which released cytochrome c and activated caspase-3 in human chondrosarcoma. In addition, animal experiments illustrated reduced tumor volume, which led to an increased number of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells and an increased level of cleaved PARP protein following trichodermin treatment. Together, this study demonstrates that trichodermin is a novel anti-tumor agent against human chondrosarcoma cells both in vitro and in vivo via mitochondrial dysfunction and ER stress. - Highlights: • Trichodermin induces chondrosarcoma apoptosis. • ER stress is involved in trichodermin-induced cell death. • Trichodermin induces chondrosarcoma death in vivo.

  9. Naringin ameliorates gentamicin-induced nephrotoxicity and associated mitochondrial dysfunction, apoptosis and inflammation in rats: Possible mechanism of nephroprotection

    SciTech Connect

    Sahu, Bidya Dhar; Tatireddy, Srujana; Koneru, Meghana; Borkar, Roshan M.; Kumar, Jerald Mahesh; Kuncha, Madhusudana; Srinivas, R.; Shyam Sunder, R.; Sistla, Ramakrishna

    2014-05-15

    Gentamicin-induced nephrotoxicity has been well documented, although its underlying mechanisms and preventive strategies remain to be investigated. The present study was designed to investigate the protective effect of naringin, a bioflavonoid, on gentamicin-induced nephrotoxicity and to elucidate the potential mechanism. Serum specific renal function parameters (blood urea nitrogen and creatinine) and histopathology of kidney tissues were evaluated to assess the gentamicin-induced nephrotoxicity. Renal oxidative stress (lipid peroxidation, protein carbonylation, enzymatic and non-enzymatic antioxidants), inflammatory (NF-kB [p65], TNF-α, IL-6 and MPO) and apoptotic (caspase 3, caspase 9, Bax, Bcl-2, p53 and DNA fragmentation) markers were also evaluated. Significant decrease in mitochondrial NADH dehydrogenase, succinate dehydrogenase, cytochrome c oxidase and mitochondrial redox activity indicated the gentamicin-induced mitochondrial dysfunction. Naringin (100 mg/kg) treatment along with gentamicin restored the mitochondrial function and increased the renal endogenous antioxidant status. Gentamicin induced increased renal inflammatory cytokines (TNF-α and IL-6), nuclear protein expression of NF-κB (p65) and NF-κB-DNA binding activity and myeloperoxidase (MPO) activity were significantly decreased upon naringin treatment. In addition, naringin treatment significantly decreased the amount of cleaved caspase 3, Bax, and p53 protein expression and increased the Bcl-2 protein expression. Naringin treatment also ameliorated the extent of histologic injury and reduced inflammatory infiltration in renal tubules. U-HPLS-MS data revealed that naringin co-administration along with gentamicin did not alter the renal uptake and/or accumulation of gentamicin in kidney tissues. These findings suggest that naringin treatment attenuates renal dysfunction and structural damage through the reduction of oxidative stress, mitochondrial dysfunction, inflammation and apoptosis in

  10. Tetrahydrocannabinol induces brain mitochondrial respiratory chain dysfunction and increases oxidative stress: a potential mechanism involved in cannabis-related stroke.

    PubMed

    Wolff, Valérie; Schlagowski, Anna-Isabel; Rouyer, Olivier; Charles, Anne-Laure; Singh, François; Auger, Cyril; Schini-Kerth, Valérie; Marescaux, Christian; Raul, Jean-Sébastien; Zoll, Joffrey; Geny, Bernard

    2015-01-01

    Cannabis has potential therapeutic use but tetrahydrocannabinol (THC), its main psychoactive component, appears as a risk factor for ischemic stroke in young adults. We therefore evaluate the effects of THC on brain mitochondrial function and oxidative stress, key factors involved in stroke. Maximal oxidative capacities V max (complexes I, III, and IV activities), V succ (complexes II, III, and IV activities), V tmpd (complex IV activity), together with mitochondrial coupling (V max/V 0), were determined in control conditions and after exposure to THC in isolated mitochondria extracted from rat brain, using differential centrifugations. Oxidative stress was also assessed through hydrogen peroxide (H2O2) production, measured with Amplex Red. THC significantly decreased V max (-71%; P < 0.0001), V succ (-65%; P < 0.0001), and V tmpd (-3.5%; P < 0.001). Mitochondrial coupling (V max/V 0) was also significantly decreased after THC exposure (1.8±0.2 versus 6.3±0.7; P < 0.001). Furthermore, THC significantly enhanced H2O2 production by cerebral mitochondria (+171%; P < 0.05) and mitochondrial free radical leak was increased from 0.01±0.01 to 0.10±0.01% (P < 0.001). Thus, THC increases oxidative stress and induces cerebral mitochondrial dysfunction. This mechanism may be involved in young cannabis users who develop ischemic stroke since THC might increase patient's vulnerability to stroke. PMID:25654095

  11. Tetrahydrocannabinol Induces Brain Mitochondrial Respiratory Chain Dysfunction and Increases Oxidative Stress: A Potential Mechanism Involved in Cannabis-Related Stroke

    PubMed Central

    Wolff, Valérie; Schlagowski, Anna-Isabel; Rouyer, Olivier; Charles, Anne-Laure; Singh, François; Auger, Cyril; Schini-Kerth, Valérie; Marescaux, Christian; Raul, Jean-Sébastien; Zoll, Joffrey; Geny, Bernard

    2015-01-01

    Cannabis has potential therapeutic use but tetrahydrocannabinol (THC), its main psychoactive component, appears as a risk factor for ischemic stroke in young adults. We therefore evaluate the effects of THC on brain mitochondrial function and oxidative stress, key factors involved in stroke. Maximal oxidative capacities Vmax (complexes I, III, and IV activities), Vsucc (complexes II, III, and IV activities), Vtmpd (complex IV activity), together with mitochondrial coupling (Vmax/V0), were determined in control conditions and after exposure to THC in isolated mitochondria extracted from rat brain, using differential centrifugations. Oxidative stress was also assessed through hydrogen peroxide (H2O2) production, measured with Amplex Red. THC significantly decreased Vmax (−71%; P < 0.0001), Vsucc (−65%; P < 0.0001), and Vtmpd (−3.5%; P < 0.001). Mitochondrial coupling (Vmax/V0) was also significantly decreased after THC exposure (1.8±0.2 versus 6.3±0.7; P < 0.001). Furthermore, THC significantly enhanced H2O2 production by cerebral mitochondria (+171%; P < 0.05) and mitochondrial free radical leak was increased from 0.01±0.01 to 0.10±0.01% (P < 0.001). Thus, THC increases oxidative stress and induces cerebral mitochondrial dysfunction. This mechanism may be involved in young cannabis users who develop ischemic stroke since THC might increase patient's vulnerability to stroke. PMID:25654095

  12. Isoniazid-induced cell death is precipitated by underlying mitochondrial complex I dysfunction in mouse hepatocytes.

    PubMed

    Lee, Kang Kwang; Fujimoto, Kazunori; Zhang, Carmen; Schwall, Christine T; Alder, Nathan N; Pinkert, Carl A; Krueger, Winfried; Rasmussen, Theodore; Boelsterli, Urs A

    2013-12-01

    Isoniazid (INH) is an antituberculosis drug that has been associated with idiosyncratic liver injury in susceptible patients. The underlying mechanisms are still unclear, but there is growing evidence that INH and/or its major metabolite, hydrazine, may interfere with mitochondrial function. However, hepatic mitochondria have a large reserve capacity, and minor disruption of energy homeostasis does not necessarily induce cell death. We explored whether pharmacologic or genetic impairment of mitochondrial complex I may amplify mitochondrial dysfunction and precipitate INH-induced hepatocellular injury. We found that INH (≤ 3000 μM) did not induce cell injury in cultured mouse hepatocytes, although it decreased hepatocellular respiration and ATP levels in a concentration-dependent fashion. However, coexposure of hepatocytes to INH and nontoxic concentrations of the complex I inhibitors rotenone (3 μM) or piericidin A (30 nM) resulted in massive ATP depletion and cell death. Although both rotenone and piericidin A increased MitoSox-reactive fluorescence, Mito-TEMPO or N-acetylcysteine did not attenuate the extent of cytotoxicity. However, preincubation of cells with the acylamidase inhibitor bis-p-nitrophenol phosphate provided protection from hepatocyte injury induced by rotenone/INH (but not rotenone/hydrazine), suggesting that hydrazine was the cell-damaging species. Indeed, we found that hydrazine directly inhibited the activity of solubilized complex II. Hepatocytes isolated from mutant Ndufs4(+/-) mice, although featuring moderately lower protein expression levels of this complex I subunit in liver mitochondria, exhibited unchanged hepatic complex I activity and were therefore not sensitized to INH. These data indicate that underlying inhibition of complex I, which alone is not acutely toxic, can trigger INH-induced hepatocellular injury. PMID:23911619

  13. Cadmium induced inhibition of autophagy is associated with microtubule disruption and mitochondrial dysfunction in primary rat cerebral cortical neurons.

    PubMed

    Wang, Tao; Wang, Qiwen; Song, Ruilong; Zhang, Yajing; Yang, Jinlong; Wang, Yi; Yuan, Yan; Bian, Jianchun; Liu, Xuezhong; Gu, Jianhong; Zhu, Jiaqiao; Liu, Zongping

    2016-01-01

    Recent studies have reported that mitochondria serve as direct targets for cadmium- (Cd-) induced neuronal toxicity, which can be attenuated by autophagy. The molecular mechanisms' underlying Cd-induced mitochondrial dysfunction and autophagy in neurons are not known. In this study, we studied the upstream signaling pathways induced by Cd-mediated mitochondrial metabolism alterations using primary rat neuron as a model. We found that Cd induced the destruction of microtubules (MTs), and resulted in tau hyper-phosphorylation and decreased acetylated tubulin levels, which were related to a decrease in mitochondrial membrane potential (MMP) and adenosine triphosphate (ATP) levels. As a result of taxol disruption, alterations in macroautophagy, like altered cellular distribution of the autophagy-related protein light chain 3 beta (LC3B) and the expression of Atg5 were found compared with Cd group. We found for the first time that MT disruption induced by Cd reduced the levels of autophagy, leading to mitochondrial dysfunction. These observations suggest new therapeutic strategies aimed to activate or ameliorate pro-survival macroautophagy. PMID:26582496

  14. Cardiolipin profile changes are associated to the early synaptic mitochondrial dysfunction in Alzheimer's disease.

    PubMed

    Monteiro-Cardoso, Vera F; Oliveira, M Manuel; Melo, Tânia; Domingues, Maria R M; Moreira, Paula I; Ferreiro, Elisabete; Peixoto, Francisco; Videira, Romeu A

    2015-01-01

    Brain mitochondria are fundamental to maintaining healthy functional brains, and their dysfunction is involved in age-related neurodegenerative disorders such as Alzheimer's disease (AD). In this study, we conducted a research on how both non-synaptic and synaptic mitochondrial functions are compromised at an early stage of AD-like pathologies and their correlation with putative changes on membranes lipid profile, using 3 month-old nontransgenic and 3xTg-AD mice, a murine model of experimental AD. Bioenergetic dysfunction in 3xTg-AD brains is evidenced by a decrease of brain ATP levels resulting, essentially, from synaptic mitochondria functionality disruption as indicated by declined respiratory control ratio associated with a 50% decreased complex I activity. Lipidomics studies revealed that synaptic bioenergetic deficit of 3xTg-AD brains is accompanied by alterations in the phospholipid composition of synaptic mitochondrial membranes, detected either in phospholipid class distribution or in the phospholipids molecular profile. Globally, diacyl- and lyso-phosphatidylcholine lipids increase while ethanolamine plasmalogens and cardiolipins content drops in relation to nontransgenic background. However, the main lipidomic mark of 3xTg-AD brains is that cardiolipin cluster-organized profile is lost in synaptic mitochondria due to a decline of the most representative molecular species. In contrast to synaptic mitochondria, results support the idea that non-synaptic mitochondria function is preserved at the age of 3 months. Although the genetically construed 3xTg-AD mouse model does not represent the most prevalent form of AD in humans, the present study provides insights into the earliest biochemical events in AD brain, connecting specific lipidomic changes with synaptic bioenergetic deficit that may contribute to the progressive synapses loss and the neurodegenerative process that characterizes AD. PMID:25182746

  15. A novel proteasome inhibitor acting in mitochondrial dysfunction, ER stress and ROS production.

    PubMed

    Maria, Durvanei Augusto; de Souza, Jean Gabriel; Morais, Katia L P; Berra, Carolina Maria; Zampolli, Hamilton de Campos; Demasi, Marilene; Simons, Simone Michaela; de Freitas Saito, Renata; Chammas, Roger; Chudzinski-Tavassi, Ana Marisa

    2013-06-01

    In cancer-treatment, potentially therapeutic drugs trigger their effects through apoptotic mechanisms. Generally, cell response is manifested by Bcl-2 family protein regulation, the impairment of mitochondrial functions, and ROS production. Notwithstanding, several drugs operate through proteasome inhibition, which, by inducing the accumulation and aggregation of misfolded or unfolded proteins, can lead to endoplasmic reticulum (ER) stress. Accordingly, it was shown that Amblyomin-X, a Kunitz-type inhibitor identified in the transcriptome of the Amblyomma cajennense tick by ESTs sequence analysis of a cDNA library, obtained in recombinant protein form, induces apoptosis in murine renal adenocarcinoma (RENCA) cells by: inducing imbalance between pro- and anti-apoptotic Bcl-2 family proteins, dysfunction/mitochondrial damage, production of reactive oxygen species (ROS), caspase cascade activation, and proteasome inhibition, all ER-stress inductive. Moreover, there was no manifest action on normal mouse-fibroblast cells (NHI3T3), suggesting an Amblyomin-X tumor-cell selectivity. Taken together, these evidences indicate that Amblyomin-X could be a promising candidate for cancer therapy. PMID:22975862

  16. Shikonin Directly Targets Mitochondria and Causes Mitochondrial Dysfunction in Cancer Cells

    PubMed Central

    Wiench, Benjamin; Eichhorn, Tolga; Paulsen, Malte; Efferth, Thomas

    2012-01-01

    Chemotherapy is a mainstay of cancer treatment. Due to increased drug resistance and the severe side effects of currently used therapeutics, new candidate compounds are required for improvement of therapy success. Shikonin, a natural naphthoquinone, was used in traditional Chinese medicine for the treatment of different inflammatory diseases and recent studies revealed the anticancer activities of shikonin. We found that shikonin has strong cytotoxic effects on 15 cancer cell lines, including multidrug-resistant cell lines. Transcriptome-wide mRNA expression studies showed that shikonin induced genetic pathways regulating cell cycle, mitochondrial function, levels of reactive oxygen species, and cytoskeletal formation. Taking advantage of the inherent fluorescence of shikonin, we analyzed its uptake and distribution in live cells with high spatial and temporal resolution using flow cytometry and confocal microscopy. Shikonin was specifically accumulated in the mitochondria, and this accumulation was associated with a shikonin-dependent deregulation of cellular Ca2+ and ROS levels. This deregulation led to a breakdown of the mitochondrial membrane potential, dysfunction of microtubules, cell-cycle arrest, and ultimately induction of apoptosis. Seeing as both the metabolism and the structure of mitochondria show marked differences between cancer cells and normal cells, shikonin is a promising candidate for the next generation of chemotherapy. PMID:23118796

  17. Frontal cortical mitochondrial dysfunction and mitochondria-related β-amyloid accumulation by chronic sleep restriction in mice.

    PubMed

    Zhao, Hongyi; Wu, Huijuan; He, Jialin; Zhuang, Jianhua; Liu, Zhenyu; Yang, Yang; Huang, Liuqing; Zhao, Zhongxin

    2016-08-17

    Mitochondrial dysfunction induced by mitochondria-related β-amyloid (Aβ) accumulation is increasingly being considered a novel risk factor for sporadic Alzheimer's disease pathophysiology. The close relationship between chronic sleep restriction (CSR) and cortical Aβ elevation was confirmed recently. By assessing frontal cortical mitochondrial function (electron microscopy manifestation, cytochrome C oxidase concentration, ATP level, and mitochondrial membrane potential) and the levels of mitochondria-related Aβ in 9-month-old adult male C57BL/6J mice subjected to CSR and as an environmental control (CO) group, we aimed to evaluate the association of CSR with mitochondrial dysfunction and mitochondria-related Aβ accumulation. In this study, frontal cortical mitochondrial dysfunction was significantly more severe in CSR mice compared with CO animals. Furthermore, CSR mice showed higher mitochondria-associated Aβ, total Aβ, and mitochondria-related β-amyloid protein precursor (AβPP) levels compared with CO mice. In the CSR model, mouse frontal cortical mitochondrial dysfunction was correlated with mitochondria-associated Aβ and mitochondria-related AβPP levels. However, frontal cortical mitochondria-associated Aβ levels showed no significant association with cortical total Aβ and mitochondrial AβPP concentrations. These findings indicated that CSR-induced frontal cortical mitochondrial dysfunction and mitochondria-related Aβ accumulation, which was closely related to mitochondrial dysfunction under CSR. PMID:27341212

  18. Frontal cortical mitochondrial dysfunction and mitochondria-related β-amyloid accumulation by chronic sleep restriction in mice

    PubMed Central

    Zhao, Hongyi; He, Jialin; Zhuang, Jianhua; Liu, Zhenyu; Yang, Yang; Huang, Liuqing; Zhao, Zhongxin

    2016-01-01

    Mitochondrial dysfunction induced by mitochondria-related β-amyloid (Aβ) accumulation is increasingly being considered a novel risk factor for sporadic Alzheimer’s disease pathophysiology. The close relationship between chronic sleep restriction (CSR) and cortical Aβ elevation was confirmed recently. By assessing frontal cortical mitochondrial function (electron microscopy manifestation, cytochrome C oxidase concentration, ATP level, and mitochondrial membrane potential) and the levels of mitochondria-related Aβ in 9-month-old adult male C57BL/6J mice subjected to CSR and as an environmental control (CO) group, we aimed to evaluate the association of CSR with mitochondrial dysfunction and mitochondria-related Aβ accumulation. In this study, frontal cortical mitochondrial dysfunction was significantly more severe in CSR mice compared with CO animals. Furthermore, CSR mice showed higher mitochondria-associated Aβ, total Aβ, and mitochondria-related β-amyloid protein precursor (AβPP) levels compared with CO mice. In the CSR model, mouse frontal cortical mitochondrial dysfunction was correlated with mitochondria-associated Aβ and mitochondria-related AβPP levels. However, frontal cortical mitochondria-associated Aβ levels showed no significant association with cortical total Aβ and mitochondrial AβPP concentrations. These findings indicated that CSR-induced frontal cortical mitochondrial dysfunction and mitochondria-related Aβ accumulation, which was closely related to mitochondrial dysfunction under CSR. PMID:27341212

  19. Green tea polyphenols attenuate glial swelling and mitochondrial dysfunction following oxygen-glucose deprivation in cultures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Astrocyte swelling is a major component of cytotoxic brain edema in ischemia. Oxidative stress and mitochondrial dysfunction have been hypothesized to contribute to such swelling in cultures. We investigated the protective effects of polyphenol-rich green tea extract (GTE) on key features of ischemi...

  20. Modulation of Rho GTPases rescues brain mitochondrial dysfunction, cognitive deficits and aberrant synaptic plasticity in female mice modeling Rett syndrome.

    PubMed

    De Filippis, Bianca; Valenti, Daniela; Chiodi, Valentina; Ferrante, Antonella; de Bari, Lidia; Fiorentini, Carla; Domenici, Maria Rosaria; Ricceri, Laura; Vacca, Rosa Anna; Fabbri, Alessia; Laviola, Giovanni

    2015-06-01

    Rho GTPases are molecules critically involved in neuronal plasticity and cognition. We have previously reported that modulation of brain Rho GTPases by the bacterial toxin CNF1 rescues the neurobehavioral phenotype in MeCP2-308 male mice, a model of Rett syndrome (RTT). RTT is a rare X-linked neurodevelopmental disorder and a genetic cause of intellectual disability, for which no effective therapy is available. Mitochondrial dysfunction has been proposed to be involved in the mechanism of the disease pathogenesis. Here we demonstrate that modulation of Rho GTPases by CNF1 rescues the reduced mitochondrial ATP production via oxidative phosphorylation in the brain of MeCP2-308 heterozygous female mice, the condition which more closely recapitulates that of RTT patients. In RTT mouse brain, CNF1 also restores the alterations in the activity of the mitochondrial respiratory chain (MRC) complexes and of ATP synthase, the molecular machinery responsible for the majority of cell energy production. Such effects were achieved through the upregulation of the protein content of those MRC complexes subunits, which were defective in RTT mouse brain. Restored mitochondrial functionality was accompanied by the rescue of deficits in cognitive function (spatial reference memory in the Barnes maze), synaptic plasticity (long-term potentiation) and Tyr1472 phosphorylation of GluN2B, which was abnormally enhanced in the hippocampus of RTT mice. Present findings bring into light previously unknown functional mitochondrial alterations in the brain of female mice modeling RTT and provide the first evidence that RTT brain mitochondrial dysfunction can be rescued by modulation of Rho GTPases. PMID:25890884

  1. Mitochondrial dysfunction induced by different concentrations of gadolinium ion.

    PubMed

    Zhao, Jie; Zhou, Zhi-Qiang; Jin, Jian-Cheng; Yuan, Lian; He, Huan; Jiang, Feng-Lei; Yang, Xiao-Gang; Dai, Jie; Liu, Yi

    2014-04-01

    Gadolinium-based compounds are the most widely used paramagnetic contrast agents in magnetic resonance imaging on the world. But the tricationic gadolinium ion (Gd(3+)) could induce cell apoptosis probably because of its effects on mitochondria. Until now, the mechanism about how Gd(3+) interacts with mitochondria is not well elucidated. In this work, mitochondrial swelling, collapsed transmembrane potential and decreased membrane fluidity were observed to be important factors for mitochondrial permeability transition pore (mtPTP) opening induced by Gd(3+). The protection effect of CsA (Cyclosporin A) could confirm high concentration of Gd(3+) (500 μM) would trigger mtPTP opening. Moreover, mitochondrial outer membrane breakdown and volume expansion observed clearly by transmission electron microscopy and the release of Cyt c (Cytochrome c) could explain the mtPTP opening from another aspect. In addition, MBM(+) (monobromobimane(+)) and DTT (dithiothreitol) could protect thiol (-SH) groups from oxidation so that the toxicity of Gd(3+) might be resulted from the chelation of -SH of membrane proteins by free Gd(3+). Gd(3+) could inhibit the initiation of mitochondrial membrane lipid peroxidation, so it might interact with anionic lipids too. These findings will highly contribute to the safe applications of Gd-based agents. PMID:24321333

  2. Minocycline prevents paraquat-induced cell death through attenuating endoplasmic reticulum stress and mitochondrial dysfunction.

    PubMed

    Huang, Chuen-Lin; Lee, Yi-Chao; Yang, Ying-Chen; Kuo, Tsun-Yung; Huang, Nai-Kuei

    2012-03-25

    Paraquat (PQ) was demonstrated to induce dopaminergic neuron death and is used as a Parkinson's disease (PD) mimetic; however, its mechanism remains contradictory. Alternatively, minocycline is a second-generation tetracycline and is undergoing clinical trials for treating PD with an unresolved mechanism. We thus investigated the molecular mechanism of minocycline in preventing PQ-induced cytotoxicity. In this study, minocycline was effective in preventing PQ-induced apoptotic cell death, which involves the cleavages of poly (ADP-ribose) polymerase (PARP) and caspase 3 and increased fluorescence intensity of annexin V-FITC. In addition, PQ also quickly induced alterations of unfolded protein responses (UPRs) and subsequently dysfunction of the mitochondria (such as the decrease in membrane potential and increase in membrane permeability and superoxide formation). Finally, the mechanism of minocycline in preventing PQ-induced apoptosis might be mediated by attenuating endoplasmic reticulum (ER) stress and mitochondrial dysfunction, which respectively results in caspase-12 activation and the release of H2O2, HtrA2/Omi, and Smac/Diablo. Thus, minocycline could possibly be used to treat other neurodegenerative disorders with similar pathologic mechanisms. PMID:22245251

  3. Mitochondrial Dysfunction and α-Synuclein Synaptic Pathology in Parkinson's Disease: Who's on First?

    PubMed Central

    Zaltieri, Michela; Longhena, Francesca; Pizzi, Marina; Missale, Cristina; Spano, PierFranco; Bellucci, Arianna

    2015-01-01

    Parkinson's disease (PD) is the most common neurodegenerative movement disorder. Its characteristic neuropathological features encompass the loss of dopaminergic neurons of the nigrostriatal system and the presence of Lewy bodies and Lewy neurites. These are intraneuronal and intraneuritic proteinaceous insoluble aggregates whose main constituent is the synaptic protein α-synuclein. Compelling lines of evidence indicate that mitochondrial dysfunction and α-synuclein synaptic deposition may play a primary role in the onset of this disorder. However, it is not yet clear which of these events may come first in the sequel of processes leading to neurodegeneration. Here, we reviewed data supporting either that α-synuclein synaptic deposition precedes and indirectly triggers mitochondrial damage or that mitochondrial deficits lead to neuronal dysfunction and α-synuclein synaptic accumulation. The present overview shows that it is still difficult to establish the exact temporal sequence and contribution of these events to PD. PMID:25918668

  4. [Digestive system disease as manifestation of the pleiotropic action of genes in mitochondrial dysfunction].

    PubMed

    Hrechanina, O Ia; Hrechanina, Iu B; Husar, V A; Molodan, L V

    2014-11-01

    Defined involvement lesions of the digestive system of clinical manifestations of mitochondrial dysfunction associated with both point mutations and polymorphism of mitochondrial DNA. The nature of the clinical signs of mtDNA polymorphisms carriers--multi organical, a progressive, clinical polymorphism, genetic heterogeneity with predominant involvement of energotropic bodies (cerebrum, cordis, hepatic). Set individual nosological forms of mitochondrial dysfunctions--syndromes Leia, Leber, Cairns, Sarah, MERRF, MELAS, NARP, MNGIE confirmed by clinical and genetic, morphological, biochemical, enzymatic, molecular genetics methods. It was found that 84-88% of these syndromes involving the violation of the digestive system with varying degrees of injury. This damage will be the first in the complex chain signs recovery which determines the direction of early rehabilitation. PMID:25528830

  5. Mitochondrial dysfunction in aging rat brain following transient global ischemia.

    PubMed

    Xu, Kui; Puchowicz, Michelle A; Sun, Xiaoyan; LaManna, Joseph C

    2008-01-01

    Aged rat brain is more sensitive to reperfusion injury induced by cardiac arrest and resuscitation. The mitochondrial respiratory chain, the major source of free radicals during reperfusion, is likely to be the target of lipid peroxidation. Previous work has shown a higher mortality and lower hippocampal neuronal survival in older rats. 4-hydroxy-2-nonenal (HNE), a major product of lipid peroxidation, was found to be elevated in cortex and brainstem after resuscitation. In this study we investigated the acute changes of mitochondrial function in aging rat brain following cardiac arrest and resuscitation; the effect of an antioxidant, alpha-phenyl-tert-butyl-nitrone (PBN) was also tested. Fischer 344 rats, 6 and 24-month old, were subjected to cardiac arrest (7-10 minutes) and allowed to recover 1 hour after resuscitation. Mitochondria of cortex and brainstem were isolated and assayed for respiratory function. Compared to their respective non-arrested control group, 1h untreated groups (both 6 month and 24 month) had similar state 3 (ADP-stimulated) but higher state 4 (resting state) respiratory rates. The respiratory control ratio (state 3/state 4) of cortex in the 1h untreated group was 26% lower than the non-arrested control group; similar results were found in brainstem. The decreased mitochondrial respiratory function was improved by PBN treatment. HNE-modified mitochondrial proteins were elevated 1h after resuscitation, with an evident change in the aged. Treatment with PBN reduced the elevated HNE production in mitochondria of cortex. The data suggest (i) there is increased sensitivity to lipid peroxidation with aging, (ii) mitochondrial respiratory function related to coupled oxidation decreases following cardiac arrest and resuscitation, and (iii) treatment with antioxidant, such as PBN, reduces the oxidative damage following cardiac arrest and resuscitation. PMID:18290349

  6. NOX2 amplifies acetaldehyde-mediated cardiomyocyte mitochondrial dysfunction in alcoholic cardiomyopathy.

    PubMed

    Brandt, Moritz; Garlapati, Venkata; Oelze, Matthias; Sotiriou, Efthymios; Knorr, Maike; Kröller-Schön, Swenja; Kossmann, Sabine; Schönfelder, Tanja; Morawietz, Henning; Schulz, Eberhard; Schultheiss, Heinz-Peter; Daiber, Andreas; Münzel, Thomas; Wenzel, Philip

    2016-01-01

    Alcoholic cardiomyopathy (ACM) resulting from excess alcohol consumption is an important cause of heart failure (HF). Although it is assumed that the cardiotoxicity of the ethanol (EtOH)-metabolite acetaldehyde (ACA) is central for its development and progression, the exact mechanisms remain obscure. Murine cardiomyocytes (CMs) exposed to ACA or EtOH showed increased superoxide (O2(•-)) levels and decreased mitochondrial polarization, both being normalized by NADPH oxidase (NOX) inhibition. C57BL/6 mice and mice deficient for the ACA-degrading enzyme mitochondrial aldehyde dehydrogenase (ALDH-2(-/-)) were fed a 2% EtOH diet for 5 weeks creating an ACA-overload. 2% EtOH-fed ALDH-2(-/-) mice exhibited a decreased cardiac function, increased heart-to-body and lung-to-body weight ratios, increased cardiac levels of the lipid peroxidation product malondialdehyde (MDA) as well as increased NOX activity and NOX2/glycoprotein 91(phox) (NOX2/gp91(phox)) subunit expression compared to 2% EtOH-fed C57BL/6 mice. Echocardiography revealed that ALDH-2(-/-)/gp91(phox-/-) mice were protected from ACA-overload-induced HF after 5 weeks of 2% EtOH-diet, demonstrating that NOX2-derived O2(•-) contributes to the development of ACM. Translated to human pathophysiology, we found increased gp91(phox) expression in endomyocardial biopsies of ACM patients. In conclusion, ACM is promoted by ACA-driven mitochondrial dysfunction and can be improved by ablation of NOX2/gp91(phox). NOX2/gp91(phox) therefore might be a potential pharmacological target to treat ACM. PMID:27624556

  7. Involvement of mitochondrial dysfunction and ER-stress in the physiopathology of equine osteochondritis dissecans (OCD).

    PubMed

    Desjardin, Clémence; Chat, Sophie; Gilles, Mailys; Legendre, Rachel; Riviere, Julie; Mata, Xavier; Balliau, Thierry; Esquerré, Diane; Cribiu, Edmond P; Betch, Jean-Marc; Schibler, Laurent

    2014-06-01

    Osteochondrosis (OC) is a developmental bone disorder affecting several mammalian species including the horse. Equine OC is described as a focal disruption of endochondral ossification, leading to osteochondral lesions (osteochondritis dissecans, OCD) that may release free bodies within the joint. OCD lesions trigger joint swelling, stiffness and lameness and affects about 30% of the equine population. OCD is considered as multifactorial but its physiopathology is still poorly understood and genes involved in genetic predisposition are still unknown. Our study compared two healthy and two OC-affected 18-month-old French Trotters diagnosed with OCD lesions at the intermediate ridge of the distal tibia. A comparative shot-gun proteomic analysis of non-wounded cartilage and sub-chondral bone from healthy (healthy samples) and OC-affected foals (predisposed samples) identified 83 and 53 modulated proteins, respectively. These proteins are involved in various biological pathways including matrix structure and maintenance, protein biosynthesis, folding and transport, mitochondrial activity, energy and calcium metabolism. Transmission electron microscopy revealed typical features of mitochondrial swelling and ER-stress, such as large, empty mitochondria, and hyper-dilated rough endoplasmic reticulum, in the deep zone of both OC lesions and predisposed cartilage. Abnormal fibril organization surrounding chondrocytes and abnormal features at the ossification front were also observed. Combining these findings with quantitative trait loci and whole genome sequencing results identified about 140 functional candidate genes carrying putative damaging mutations in 30 QTL regions. In summary, our study suggests that OCD lesions may result from defective hypertrophic terminal differentiation associated with mitochondrial dysfunction and ER-stress, leading to impaired cartilage and bone biomechanical properties, making them prone to fractures. In addition, 11 modulated proteins and

  8. Soluble, Prefibrillar α-Synuclein Oligomers Promote Complex I-dependent, Ca2+-induced Mitochondrial Dysfunction*

    PubMed Central

    Luth, Eric S.; Stavrovskaya, Irina G.; Bartels, Tim; Kristal, Bruce S.; Selkoe, Dennis J.

    2014-01-01

    α-Synuclein (αSyn) aggregation and mitochondrial dysfunction both contribute to the pathogenesis of Parkinson disease (PD). Although recent studies have suggested that mitochondrial association of αSyn may disrupt mitochondrial function, it is unclear what aggregation state of αSyn is most damaging to mitochondria and what conditions promote or inhibit the effect of toxic αSyn species. Because the neuronal populations most vulnerable in PD are characterized by large cytosolic Ca2+ oscillations that burden mitochondria, we examined mitochondrial Ca2+ stress in an in vitro system comprising isolated mitochondria and purified recombinant human αSyn in various aggregation states. Using fluorimetry to simultaneously measure four mitochondrial parameters, we observed that soluble, prefibrillar αSyn oligomers, but not monomeric or fibrillar αSyn, decreased the retention time of exogenously added Ca2+, promoted Ca2+-induced mitochondrial swelling and depolarization, and accelerated cytochrome c release. Inhibition of the permeability transition pore rescued these αSyn-induced changes in mitochondrial parameters. Interestingly, the mitotoxic effects of αSyn were specifically dependent upon both electron flow through complex I and mitochondrial uptake of exogenous Ca2+. Our results suggest that soluble prefibrillar αSyn oligomers recapitulate several mitochondrial phenotypes previously observed in animal and cell models of PD: complex I dysfunction, altered membrane potential, disrupted Ca2+ homeostasis, and enhanced cytochrome c release. These data reveal how the association of oligomeric αSyn with mitochondria can be detrimental to the function of cells with high Ca2+-handling requirements. PMID:24942732

  9. Resveratrol attenuates methylglyoxal-induced mitochondrial dysfunction and apoptosis by Sestrin2 induction.

    PubMed

    Seo, Kyuhwa; Seo, Suho; Han, Jae Yun; Ki, Sung Hwan; Shin, Sang Mi

    2014-10-15

    Methylglyoxal is found in high levels in the blood and other tissues of diabetic patients and exerts deleterious effects on cells and tissues. Previously, we reported that resveratrol, a polyphenol in grapes, induced the expression of Sestrin2 (SESN2), a novel antioxidant protein, and inhibited hepatic lipogenesis. This study investigated whether resveratrol protects cells from the methylglyoxal-induced toxicity via SESN2 induction. Methylglyoxal significantly induced cell death in HepG2 cells. However, cells pretreated with resveratrol were rescued from methylglyoxal-induced apoptosis. Resveratrol attenuated glutathione (GSH) depletion and ROS production promoted by methylglyoxal. Moreover, mitochondrial damage was observed by methylglyoxal treatment, but resveratrol restored mitochondrial function, as evidenced by the observed lack of mitochondrial permeability transition and increased ADP/ATP ratio. Resveratrol treatment inhibited SESN2 depletion elicited by methylglyoxal. SESN2 overexpression repressed methylglyoxal-induced mitochondrial dysfunction and apoptosis. Likewise, rotenone-induced cytotoxicity was not observed in SESN2 overexpressed cells. Furthermore, siRNA knockdown of SESN2 reduced the ability of resveratrol to prevent methylglyoxal-induced mitochondrial permeability transition. In addition, when mice were exposed to methylglyoxal after infection of Ad-SESN2, the plasma levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and GSH depletion by methylglyoxal in liver was reduced in Ad-SESN2 infected mice. Our results demonstrated that resveratrol is capable of protecting cells from methylglyoxal-induced mitochondrial dysfunction and oxidative stress via SESN2 induction. PMID:25151220

  10. TOM40 Mediates Mitochondrial Dysfunction Induced by α-Synuclein Accumulation in Parkinson’s Disease

    PubMed Central

    Rockenstein, Edward; Adame, Anthony; Elstner, Matthias; Laub, Christoph; Mueller, Sarina; Koob, Andrew O.; Mante, Michael; Pham, Emily; Klopstock, Thomas; Masliah, Eliezer

    2013-01-01

    Alpha-synuclein (α-Syn) accumulation/aggregation and mitochondrial dysfunction play prominent roles in the pathology of Parkinson’s disease. We have previously shown that postmortem human dopaminergic neurons from PD brains accumulate high levels of mitochondrial DNA (mtDNA) deletions. We now addressed the question, whether alterations in a component of the mitochondrial import machinery -TOM40- might contribute to the mitochondrial dysfunction and damage in PD. For this purpose, we studied levels of TOM40, mtDNA deletions, oxidative damage, energy production, and complexes of the respiratory chain in brain homogenates as well as in single neurons, using laser-capture-microdissection in transgenic mice overexpressing human wildtype α-Syn. Additionally, we used lentivirus-mediated stereotactic delivery of a component of this import machinery into mouse brain as a novel therapeutic strategy. We report here that TOM40 is significantly reduced in the brain of PD patients and in α-Syn transgenic mice. TOM40 deficits were associated with increased mtDNA deletions and oxidative DNA damage, and with decreased energy production and altered levels of complex I proteins in α-Syn transgenic mice. Lentiviral-mediated overexpression of Tom40 in α-Syn-transgenic mice brains ameliorated energy deficits as well as oxidative burden. Our results suggest that alterations in the mitochondrial protein transport machinery might contribute to mitochondrial impairment in α-Synucleinopathies. PMID:23626796

  11. TOM40 mediates mitochondrial dysfunction induced by α-synuclein accumulation in Parkinson's disease.

    PubMed

    Bender, Andreas; Desplats, Paula; Spencer, Brian; Rockenstein, Edward; Adame, Anthony; Elstner, Matthias; Laub, Christoph; Mueller, Sarina; Koob, Andrew O; Mante, Michael; Pham, Emily; Klopstock, Thomas; Masliah, Eliezer

    2013-01-01

    Alpha-synuclein (α-Syn) accumulation/aggregation and mitochondrial dysfunction play prominent roles in the pathology of Parkinson's disease. We have previously shown that postmortem human dopaminergic neurons from PD brains accumulate high levels of mitochondrial DNA (mtDNA) deletions. We now addressed the question, whether alterations in a component of the mitochondrial import machinery--TOM40--might contribute to the mitochondrial dysfunction and damage in PD. For this purpose, we studied levels of TOM40, mtDNA deletions, oxidative damage, energy production, and complexes of the respiratory chain in brain homogenates as well as in single neurons, using laser-capture-microdissection in transgenic mice overexpressing human wildtype α-Syn. Additionally, we used lentivirus-mediated stereotactic delivery of a component of this import machinery into mouse brain as a novel therapeutic strategy. We report here that TOM40 is significantly reduced in the brain of PD patients and in α-Syn transgenic mice. TOM40 deficits were associated with increased mtDNA deletions and oxidative DNA damage, and with decreased energy production and altered levels of complex I proteins in α-Syn transgenic mice. Lentiviral-mediated overexpression of Tom40 in α-Syn-transgenic mice brains ameliorated energy deficits as well as oxidative burden. Our results suggest that alterations in the mitochondrial protein transport machinery might contribute to mitochondrial impairment in α-Synucleinopathies. PMID:23626796

  12. Inhaled Methane Limits the Mitochondrial Electron Transport Chain Dysfunction during Experimental Liver Ischemia-Reperfusion Injury

    PubMed Central

    Strifler, Gerda; Tuboly, Eszter; Szél, Edit; Kaszonyi, Enikő; Cao, Chun; Kaszaki, József; Mészáros, András; Boros, Mihály; Hartmann, Petra

    2016-01-01

    Background Methanogenesis can indicate the fermentation activity of the gastrointestinal anaerobic flora. Methane also has a demonstrated anti-inflammatory potential. We hypothesized that enriched methane inhalation can influence the respiratory activity of the liver mitochondria after an ischemia-reperfusion (IR) challenge. Methods The activity of oxidative phosphorylation system complexes was determined after in vitro methane treatment of intact liver mitochondria. Anesthetized Sprague-Dawley rats subjected to standardized 60-min warm hepatic ischemia inhaled normoxic air (n = 6) or normoxic air containing 2.2% methane, from 50 min of ischemia and throughout the 60-min reperfusion period (n = 6). Measurement data were compared with those on sham-operated animals (n = 6 each). Liver biopsy samples were subjected to high-resolution respirometry; whole-blood superoxide and hydrogen peroxide production was measured; hepatocyte apoptosis was detected with TUNEL staining and in vivo fluorescence laser scanning microscopy. Results Significantly decreased complex II-linked basal respiration was found in the normoxic IR group at 55 min of ischemia and a lower respiratory capacity (~60%) and after 5 min of reperfusion. Methane inhalation preserved the maximal respiratory capacity at 55 min of ischemia and significantly improved the basal respiration during the first 30 min of reperfusion. The IR-induced cytochrome c activity, reactive oxygen species (ROS) production and hepatocyte apoptosis were also significantly reduced. Conclusions The normoxic IR injury was accompanied by significant functional damage of the inner mitochondrial membrane, increased cytochrome c activity, enhanced ROS production and apoptosis. An elevated methane intake confers significant protection against mitochondrial dysfunction and reduces the oxidative damage of the hepatocytes. PMID:26741361

  13. Genipin ameliorates age-related insulin resistance through inhibiting hepatic oxidative stress and mitochondrial dysfunction.

    PubMed

    Guan, Lili; Feng, Haiyan; Gong, Dezheng; Zhao, Xu; Cai, Li; Wu, Qiong; Yuan, Bo; Yang, Mei; Zhao, Jie; Zou, Yuan

    2013-12-01

    Insulin resistance (IR) increases with age and plays a key role in the pathogenesis of type 2 diabetes mellitus. Oxidative stress and mitochondrial dysfunction are supposed to be major factors leading to age-related IR. Genipin, an extract from Gardenia jasminoides Ellis fruit, has been reported to stimulate insulin secretion in pancreatic islet cells by regulating mitochondrial function. In this study, we first investigated the effects of genipin on insulin sensitivity and the potential mitochondrial mechanisms in the liver of aging rats. The rats were randomly assigned to receive intraperitoneal injections of either 25mg/kg genipin or vehicle once daily for 12days. The aging rats showed hyperinsulinemia and hyperlipidemia, and insulin resistance as examined by the decreased glucose decay constant rate during insulin tolerance test (kITT). The hepatic tissues showed steatosis and reduced glycogen content. Hepatic malondialdehyde level and mitochondrial reactive oxygen species (ROS) were higher, and levels of mitochondrial membrane potential (MMP) and ATP were lower as compared with the normal control rats. Administration of genipin ameliorated systemic and hepatic insulin resistance, alleviated hyperinsulinemia, hyperglyceridemia and hepatic steatosis, relieved hepatic oxidative stress and mitochondrial dysfunction in aging rats. Furthermore, genipin not only improved insulin sensitivity by promoting insulin-stimulated glucose consumption and glycogen synthesis, inhibited cellular ROS overproduction and alleviated the reduction of levels of MMP and ATP, but also reversed oxidative stress-associated JNK hyperactivation and reduced Akt phosphorylation in palmitate-treated L02 hepatocytes. In conclusion, genipin ameliorates age-related insulin resistance through inhibiting hepatic oxidative stress and mitochondrial dysfunction. PMID:24041487

  14. Mitochondrial Dysfunction and Chronic Disease: Treatment With Natural Supplements

    PubMed Central

    Nicolson, Garth L.

    2014-01-01

    Loss of function in mitochondria, the key organelle responsible for cellular energy production, can result in the excess fatigue and other symptoms that are common complaints in almost every chronic disease. At the molecular level, a reduction in mitochondrial function occurs as a result of the following changes: (1) a loss of maintenance of the electrical and chemical transmembrane potential of the inner mitochondrial membrane, (2) alterations in the function of the electron transport chain, or (3) a reduction in the transport of critical metabolites into mitochondria. In turn, these changes result in a reduced efficiency of oxidative phosphorylation and a reduction in production of adenosine-5′-triphosphate (ATP). Several components of this system require routine replacement, and this need can be facilitated with natural supplements. Clinical trials have shown the utility of using oral replacement supplements, such as l-carnitine, alpha-lipoic acid (α-lipoic acid [1,2-dithiolane-3-pentanoic acid]), coenzyme Q10 (CoQ10 [ubiquinone]), reduced nicotinamide adenine dinucleotide (NADH), membrane phospholipids, and other supplements. Combinations of these supplements can reduce significantly the fatigue and other symptoms associated with chronic disease and can naturally restore mitochondrial function, even in long-term patients with intractable fatigue. PMID:26770107

  15. Recombinant Buckwheat Trypsin Inhibitor Induces Mitophagy by Directly Targeting Mitochondria and Causes Mitochondrial Dysfunction in Hep G2 Cells.

    PubMed

    Wang, Zhuanhua; Li, Shanshan; Ren, Rong; Li, Jiao; Cui, Xiaodong

    2015-09-01

    Mitochondria are essential targets for cancer chemotherapy and other disease treatments. Recombinant buckwheat trypsin inhibitor (rBTI), a member of the potato type I proteinase inhibitor family, was derived from tartary buckwheat extracts. Our results showed that rBTI directly targeted mitochondria and induced mitochondrial fragmentation and mitophagy. This occurs through enhanced depolarization of the mitochondrial membrane potential, increasing reactive oxygen species (ROS) generation associated with the rise of the superoxide dismutase and catalase activity and glutathione peroxidase (GSH) content, and changes in the GSH/oxidized glutathione ratio. Mild and transient ROS induced by rBTI were shown to be important signaling molecules required to induce Hep G2 mitophagy to remove dysfunctional mitochondria. Furthermore, rBTI could directly induce mitochondrial fragmentation. It was also noted that rBTI highly increased colocalization of mitochondria in treated cells compared to nontreated cells. Tom 20, a subunit of the translocase of the mitochondrial outer membrane complex responsible for recognizing mitochondrial presequences, may be the direct target of rBTI. PMID:26301894

  16. Parp mutations protect against mitochondrial dysfunction and neurodegeneration in a PARKIN model of Parkinson's disease

    PubMed Central

    Lehmann, S; Costa, A C; Celardo, I; Loh, S H Y; Martins, L M

    2016-01-01

    The co-enzyme nicotinamide adenine dinucleotide (NAD+) is an essential co-factor for cellular energy generation in mitochondria as well as for DNA repair mechanisms in the cell nucleus involving NAD+-consuming poly (ADP-ribose) polymerases (PARPs). Mitochondrial function is compromised in animal models of Parkinson's disease (PD) associated with PARKIN mutations. Here, we uncovered alterations in NAD+ salvage metabolism in Drosophila parkin mutants. We show that a dietary supplementation with the NAD+ precursor nicotinamide rescues mitochondrial function and is neuroprotective. Further, by mutating Parp in parkin mutants, we show that this increases levels of NAD+ and its salvage metabolites. This also rescues mitochondrial function and suppresses dopaminergic neurodegeneration. We conclude that strategies to enhance NAD+ levels by administration of dietary precursors or the inhibition of NAD+-dependent enzymes, such as PARP, that compete with mitochondria for NAD+ could be used to delay neuronal death associated with mitochondrial dysfunction. PMID:27031963

  17. Role of Pterocarpus santalinus against mitochondrial dysfunction and membrane lipid changes induced by ulcerogens in rat gastric mucosa.

    PubMed

    Narayan, Shoba; Devi, R S; Devi, C S Shyamala

    2007-11-20

    Free radicals produced by ulcerogenic agents affect the TCA cycle enzymes located in the outer membrane of the mitochondria. Upon induction with ulcerogens, peroxidation of membrane lipids bring about alterations in the mitochondrial enzyme activity. This indicates an increase in the permeability levels of the mitochondrial membrane. The ability of PSE to scavenge the reactive oxygen species results in restoration of activities of TCA cycle enzymes. NSAIDs interfere with the mitochondrial beta-oxidation of fatty acids in vitro and in vivo, resulting in uncoupling of mitochondrial oxidative phosphorylation process. This usually results in diminished cellular ATP production. The recovery of gastric mucosal barrier function through maintenance of energy metabolism results in maintenance of ATP levels, as observed in this study upon treatment with PSE. Membrane integrity altered by peroxidation is known to have a modified fatty acid composition, a disruption of permeability, a decrease in electrical resistance, and increase in flip-flopping between monolayers and inactivated cross-linked proteins. The severe depletion of arachidonic acid in ulcer induced groups was prevented upon treatment with PSE. The acid inhibitory property of the herbal extract enables the maintenance of GL activity upon treatment with PSE. The ability to prevent membrane peroxidation has been traced to the presence of active constituents in the PSE. In essence, PSE has been found to prevent mitochondrial dysfunction, provide mitochondrial cell integrity, through the maintenance of lipid bilayer by its ability to provide a hydrophobic character to the gastric mucosa, further indicating its ability to reverse the action of NSAIDs and mast cell degranulators in gastric mucosa. PMID:17719569

  18. Prolonged Fasting Identifies Skeletal Muscle Mitochondrial Dysfunction as Consequence Rather Than Cause of Human Insulin Resistance

    PubMed Central

    Hoeks, Joris; van Herpen, Noud A.; Mensink, Marco; Moonen-Kornips, Esther; van Beurden, Denis; Hesselink, Matthijs K.C.; Schrauwen, Patrick

    2010-01-01

    OBJECTIVE Type 2 diabetes and insulin resistance have been associated with mitochondrial dysfunction, but it is debated whether this is a primary factor in the pathogenesis of the disease. To test the concept that mitochondrial dysfunction is secondary to the development of insulin resistance, we employed the unique model of prolonged fasting in humans. Prolonged fasting is a physiologic condition in which muscular insulin resistance develops in the presence of increased free fatty acid (FFA) levels, increased fat oxidation and low glucose and insulin levels. It is therefore anticipated that skeletal muscle mitochondrial function is maintained to accommodate increased fat oxidation unless factors secondary to insulin resistance exert negative effects on mitochondrial function. RESEARCH DESIGN AND METHODS While in a respiration chamber, twelve healthy males were subjected to a 60 h fast and a 60 h normal fed condition in a randomized crossover design. Afterward, insulin sensitivity was assessed using a hyperinsulinemic-euglycemic clamp, and mitochondrial function was quantified ex vivo in permeabilized muscle fibers using high-resolution respirometry. RESULTS Indeed, FFA levels were increased approximately ninefold after 60 h of fasting in healthy male subjects, leading to elevated intramuscular lipid levels and decreased muscular insulin sensitivity. Despite an increase in whole-body fat oxidation, we observed an overall reduction in both coupled state 3 respiration and maximally uncoupled respiration in permeabilized skeletal muscle fibers, which could not be explained by changes in mitochondrial density. CONCLUSIONS These findings confirm that the insulin-resistant state has secondary negative effects on mitochondrial function. Given the low insulin and glucose levels after prolonged fasting, hyperglycemia and insulin action per se can be excluded as underlying mechanisms, pointing toward elevated plasma FFA and/or intramuscular fat accumulation as possible

  19. Thymol, a dietary monoterpene phenol abrogates mitochondrial dysfunction in β-adrenergic agonist induced myocardial infarcted rats by inhibiting oxidative stress.

    PubMed

    Nagoor Meeran, M F; Jagadeesh, G S; Selvaraj, P

    2016-01-25

    Mitochondrial dysfunction has been suggested to be one of the important pathological events in isoproterenol (ISO), a synthetic catecholamine and β-adrenergic agonist induced myocardial infarction (MI). In this context, we have evaluated the impact of thymol against ISO induced oxidative stress and calcium uniporter malfunction involved in the pathology of mitochondrial dysfunction in rats. Male albino Wistar rats were pre and co-treated with thymol (7.5 mg/kg body weight) daily for 7 days. Isoproterenol (100 mg/kg body weight) was subcutaneously injected into rats on 6th and 7th day to induce MI. To explore the extent of cardiac mitochondrial damage, the activities/levels of cardiac marker enzymes, mitochondrial lipid peroxidation products, antioxidants, lipids, calcium, adenosine triphosphate and multi marker enzymes were evaluated. Isoproterenol induced myocardial infarcted rats showed a significant increase in the activities of cardiac diagnostic markers, heart mitochondrial lipid peroxidation, lipids, calcium, and a significant decrease in the activities/levels of heart mitochondrial superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione, isocitrate, malate, α-ketoglutarate and NADH-dehydrogenases, cytochrome-C-oxidase, and adenosine triphosphate. Thymol pre and co-treatment showed near normalized effects on all the biochemical parameters studied. Transmission electron microscopic findings and mitochondrial swelling studies confirmed our biochemical findings. The in vitro study also revealed the potent free-radical scavenging activity of thymol. Thus, thymol attenuates the involvement of ISO against oxidative stress and calcium uniporter malfunction associated with mitochondrial dysfunction in rats. PMID:26721194

  20. Underlying mitochondrial dysfunction triggers flutamide-induced oxidative liver injury in a mouse model of idiosyncratic drug toxicity

    SciTech Connect

    Kashimshetty, Rohini; Desai, Varsha G.; Kale, Vijay M.; Lee, Taewon; Moland, Carrie L.; Branham, William S.; New, Lee S.; Chan, Eric C.Y.; Younis, Husam; Boelsterli, Urs A.

    2009-07-15

    Flutamide, a widely used nonsteroidal anti-androgen, but not its bioisostere bicalutamide, has been associated with idiosyncratic drug-induced liver injury. Although the susceptibility factors are unknown, mitochondrial injury has emerged as a putative hazard of flutamide. To explore the role of mitochondrial sensitization in flutamide hepatotoxicity, we determined the effects of superimposed drug stress in a murine model of underlying mitochondrial abnormalities. Male wild-type or heterozygous Sod2{sup +/-} mice were injected intraperitoneously with flutamide (0, 30 or 100 mg/kg/day) for 28 days. A kinetic pilot study revealed that flutamide (100 mg/kg/day) caused approximately 10-fold greater exposure than the reported therapeutic mean plasma levels. Mutant (5/10), but not wild-type, mice in the high-dose group exhibited small foci of hepatocellular necrosis and an increased number of apoptotic hepatocytes. Hepatic GSSG/GSH, protein carbonyl levels, and serum lactate levels were significantly increased, suggesting oxidant stress and mitochondrial dysfunction. Measurement of mitochondrial superoxide in cultured hepatocytes demonstrated that mitochondria were a significant source of flutamide-enhanced oxidant stress. Indeed, mitochondria isolated from flutamide-treated Sod2{sup +/-} mice exhibited decreased aconitase activity as compared to vehicle controls. A transcriptomics analysis using MitoChips revealed that flutamide-treated Sod2{sup +/-} mice exhibited a selective decrease in the expression of all complexes I and III subunits encoded by mitochondrial DNA. In contrast, Sod2{sup +/-} mice receiving bicalutamide (50 mg/kg/day) did not reveal any hepatic changes. These results are compatible with our concept that flutamide targets hepatic mitochondria and exerts oxidant stress that can lead to overt hepatic injury in the presence of an underlying mitochondrial abnormality.

  1. Neuroprotective Effect of Lycopene Against PTZ-induced Kindling Seizures in Mice: Possible Behavioural, Biochemical and Mitochondrial Dysfunction.

    PubMed

    Bhardwaj, Manveen; Kumar, Anil

    2016-02-01

    Oxidative stress and mitochondrial dysfunction are the major contributing factors in the pathophysiology of various neurological disorders. Recently, antioxidant therapies aimed at reducing oxidative stress gained a considerable attention in epilepsy treatment. Lycopene, a carotenoid antioxidant, has received scientific interest in recent years. So, the present study has been designed to evaluate the neuroprotective effect of lycopene against the pentylenetetrazol (PTZ)-induced kindling epilepsy. Laca mice received lycopene (2.5, 5 and 10 mg/kg) and sodium valproate for a period of 29 days and PTZ (40 mg/kg i.p (Intraperitoneal)) injection on alternative days. Various behavioural (kindling score), biochemical parameters (lipid peroxidation, superoxide dismutase, reduced glutathione, catalase and nitrite) and mitochondrial enzyme complex activities (I, II and IV) were assessed in the brain. Results depicted that repeated administration of a sub-convulsive dose of PTZ (40 mg/kg) significantly increased kindling score, oxidative damage and impaired mitochondrial enzyme complex activities (I, II and IV) as compared with naive animals. Lycopene (5 and 10 mg/kg) and sodium valproate (100 mg/kg) treatment for a duration of 29 days significantly attenuated kindling score, reversed oxidative damage and restored mitochondrial enzyme complex activities (I, II and IV) as compared with control. Thus, present study demonstrates the neuroprotective potential of lycopene in PTZ-induced kindling in mice. PMID:26633078

  2. Mitochondrial Dysfunction in Cancer and Neurodegenerative Diseases: Spotlight on Fatty Acid Oxidation and Lipoperoxidation Products

    PubMed Central

    Barrera, Giuseppina; Gentile, Fabrizio; Pizzimenti, Stefania; Canuto, Rosa Angela; Daga, Martina; Arcaro, Alessia; Cetrangolo, Giovanni Paolo; Lepore, Alessio; Ferretti, Carlo; Dianzani, Chiara; Muzio, Giuliana

    2016-01-01

    In several human diseases, such as cancer and neurodegenerative diseases, the levels of reactive oxygen species (ROS), produced mainly by mitochondrial oxidative phosphorylation, is increased. In cancer cells, the increase of ROS production has been associated with mtDNA mutations that, in turn, seem to be functional in the alterations of the bioenergetics and the biosynthetic state of cancer cells. Moreover, ROS overproduction can enhance the peroxidation of fatty acids in mitochondrial membranes. In particular, the peroxidation of mitochondrial phospholipid cardiolipin leads to the formation of reactive aldehydes, such as 4-hydroxynonenal (HNE) and malondialdehyde (MDA), which are able to react with proteins and DNA. Covalent modifications of mitochondrial proteins by the products of lipid peroxidation (LPO) in the course of oxidative cell stress are involved in the mitochondrial dysfunctions observed in cancer and neurodegenerative diseases. Such modifications appear to affect negatively mitochondrial integrity and function, in particular energy metabolism, adenosine triphosphate (ATP) production, antioxidant defenses and stress responses. In neurodegenerative diseases, indirect confirmation for the pathogenetic relevance of LPO-dependent modifications of mitochondrial proteins comes from the disease phenotypes associated with their genetic alterations. PMID:26907355

  3. Chronic Cigarette Smoke Extract Treatment Selects For Apoptotic Dysfunction and Mitochondrial mutations in Minimally Transformed Oral Keratinocytes

    PubMed Central

    Chang, Steven S.; Jiang, Wei Wen; Smith, Ian; Glazer, Chad; Sun, Wen-Yue; Mithani, Suhail; Califano, Joseph A.

    2009-01-01

    Cigarette smoke demonstrates a carcinogenic effect through chronic exposure, not acute exposures. However, current cell line models study only the acute effects of cigarette smoke. Using a cell line model, we compared the effects of acute versus chronic cigarette-smoke-extract (CSE) on mitochondria in minimally-transformed oral keratinocytes (OKF6). OKF6 cells were treated with varying concentrations of CSE for 6-months. Cells were analyzed monthly by flow cytometry for mitochondrial-membrane-potential (MMP), cytochrome-c release, caspase-3 activation and viability after CSE-exposure. At each time point the same assays were performed after 24hrs of valinomycin (MMP depolarizing agent) treatment. The mitochondrial-DNA of chronically CSE-treated cells was sequenced. After 6-months of CSE-treatment, the cells were increasingly resistant to CSE-mediated and valinomycin induced cell death. In addition, chronic CSE-treatment caused chronic depolarization of MMP, cytochrome c release, and caspase activation. Cells grown in the presence of only CSE vapor also exhibited the same resistance and chronic baseline apoptotic activation. Mitochondrial DNA sequencing found that chronic CSE treated cells had more amino acid changing mitochondrial mutations than acutely treated cells. CSE treatment of normal cells select for apoptotic dysfunction as well as mitochondrial mutations. These findings suggest that chronic tobacco exposure induce carcinogenesis via selection of apoptosis resistance and mitochondrial mutation in addition to previously known genotoxic effects that were found by acute treatments. Chronic models of tobacco exposure on upper aerodigestive epithelia may be more insightful than models of acute exposure in studying head and neck carcinogenesis PMID:19634139

  4. Mitochondrial dysfunction in fibroblasts derived from patients with Niemann-Pick type C disease.

    PubMed

    Woś, Marcin; Szczepanowska, Joanna; Pikuła, Sławomir; Tylki-Szymańska, Anna; Zabłocki, Krzysztof; Bandorowicz-Pikuła, Joanna

    2016-03-01

    Mutations in the NPC1 or NPC2 genes lead to Niemann-Pick type C (NPC) disease, a rare lysosomal storage disorder characterized by progressive neurodegeneration. These mutations result in cholesterol and glycosphingolipid accumulation in the late endosomal/lysosomal compartment. Complications in the storage of cholesterol in NPC1 mutant cells are associated with other anomalies, such as altered distribution of intracellular organelles and properties of the plasma membrane. The pathomechanism of NPC disease is largely unknown. Interestingly, other storage diseases such as Gaucher and Farber diseases are accompanied by severe mitochondrial dysfunction. This prompted us to investigate the effect of absence or dysfunction of the NPC1 protein on mitochondrial properties to confirm or deny a putative relationship between NPC1 mutations and mitochondrial function. This study was performed on primary skin fibroblasts derived from skin biopsies of two NPC patients, carrying mutations in the NPC1 gene. We observed altered organization of mitochondria in NPC1 mutant cells, significant enrichment in mitochondrial cholesterol content, increased respiration, altered composition of the respiratory chain complex, and substantial reduction in cellular ATP level. Thus, a primary lysosomal defect in NPC1 mutant fibroblasts is accompanied by deregulation of the organization and function of the mitochondrial network. PMID:26869201

  5. Mitochondrial Dysfunction in Alzheimer's Disease and the Rationale for Bioenergetics Based Therapies.

    PubMed

    Onyango, Isaac G; Dennis, Jameel; Khan, Shaharyah M

    2016-03-01

    Alzheimer's disease (AD) is a debilitating neurodegenerative disorder characterized by the progressive loss of cholinergic neurons, leading to the onset of severe behavioral, motor and cognitive impairments. It is a pressing public health problem with no effective treatment. Existing therapies only provide symptomatic relief without being able to prevent, stop or reverse the pathologic process. While the molecular basis underlying this multifactorial neurodegenerative disorder remains a significant challenge, mitochondrial dysfunction appears to be a critical factor in the pathogenesis of this disease. It is therefore important to target mitochondrial dysfunction in the prodromal phase of AD to slow or prevent the neurodegenerative process and restore neuronal function. In this review, we discuss mechanisms of action and translational potential of current mitochondrial and bioenergetic therapeutics for AD including: mitochondrial enhancers to potentiate energy production; antioxidants to scavenge reactive oxygen species and reduce oxidative damage; glucose metabolism and substrate supply; and candidates that target apoptotic and mitophagy pathways to remove damaged mitochondria. While mitochondrial therapeutic strategies have shown promise at the preclinical stage, there has been little progress in clinical trials thus far. PMID:27114851

  6. Mitochondrial Dysfunction in Alzheimer’s Disease and the Rationale for Bioenergetics Based Therapies

    PubMed Central

    Onyango, Isaac G.; Dennis, Jameel; Khan, Shaharyah M.

    2016-01-01

    Alzheimer’s disease (AD) is a debilitating neurodegenerative disorder characterized by the progressive loss of cholinergic neurons, leading to the onset of severe behavioral, motor and cognitive impairments. It is a pressing public health problem with no effective treatment. Existing therapies only provide symptomatic relief without being able to prevent, stop or reverse the pathologic process. While the molecular basis underlying this multifactorial neurodegenerative disorder remains a significant challenge, mitochondrial dysfunction appears to be a critical factor in the pathogenesis of this disease. It is therefore important to target mitochondrial dysfunction in the prodromal phase of AD to slow or prevent the neurodegenerative process and restore neuronal function. In this review, we discuss mechanisms of action and translational potential of current mitochondrial and bioenergetic therapeutics for AD including: mitochondrial enhancers to potentiate energy production; antioxidants to scavenge reactive oxygen species and reduce oxidative damage; glucose metabolism and substrate supply; and candidates that target apoptotic and mitophagy pathways to remove damaged mitochondria. While mitochondrial therapeutic strategies have shown promise at the preclinical stage, there has been little progress in clinical trials thus far. PMID:27114851

  7. Brief Report: High Frequency of Biochemical Markers for Mitochondrial Dysfunction in Autism: No Association with the Mitochondrial Aspartate/Glutamate Carrier "SLC25A12" Gene

    ERIC Educational Resources Information Center

    Correia, Catarina; Coutinho, Ana M.; Diogo, Luisa; Grazina, Manuela; Marques, Carla; Miguel, Teresa; Ataide, Assuncao; Almeida, Joana; Borges, Luis; Oliveira, Catarina; Oliveira, Guiomar; Vicente, Astrid M.

    2006-01-01

    In the present study we confirm the previously reported high frequency of biochemical markers of mitochondrial dysfunction, namely hyperlactacidemia and increased lactate/pyruvate ratio, in a significant fraction of 210 autistic patients. We further examine the involvement of the mitochondrial aspartate/glutamate carrier gene ("SLC25A12") in…

  8. Humanin prevents brain mitochondrial dysfunction in a cardiac ischaemia-reperfusion injury model.

    PubMed

    Kumfu, Sirinart; Charununtakorn, Savitree T; Jaiwongkam, Thidarat; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2016-06-01

    What is the central question of this study? Myocardial ischaemia-reperfusion (I/R) injury causes interference in the systemic circulation and damages not only the heart but also several vital organs, including the brain. Recently, a novel peptide called humanin has been shown to exert potent neuroprotective effects. However, the effect of humanin on the brain during cardiac I/R injury has not yet been investigated. What is the main finding and its importance? The I/R injury caused blood-brain barrier breakdown, increased brain oxidative stress and resulted in mitochondrial dysfunction. Only the humanin treatment before ischaemia attenuated brain mitochondrial dysfunction, but it did not prevent blood-brain barrier breakdown or brain oxidative stress. Humanin treatment during ischaemia and in the reperfusion period provided no neuroprotection. These findings indicate that humanin exerted neuroprotection during cardiac I/R injury via improved brain mitochondrial function. Myocardial ischaemia-reperfusion (I/R) injury causes interference in the systemic circulation and damages not only the heart but also several vital organs, including the brain. Nevertheless, limited information is available regarding the effect of cardiac I/R injury on the brain, including blood-brain barrier (BBB) breakdown, brain oxidative stress and mitochondrial function. Recently, a novel peptide called humanin has been shown to exert potent neuroprotective effects. However, the effect of humanin on the brain during cardiac I/R injury has not yet been investigated. Forty-two male Wistar rats were divided into the following two groups: an I/R group, which was subjected to a 30 min left anterior descending coronary artery occlusion followed by 120 min reperfusion (I/R group; n = 36); and a sham group (n = 6). The I/R group was divided into six subgroups. Each subgroup was given either vehicle or humanin analogue (84 μg kg(-1) , i.v.) at three different time points, namely before

  9. Echinacoside Protects against 6-Hydroxydopamine-Induced Mitochondrial Dysfunction and Inflammatory Responses in PC12 Cells via Reducing ROS Production

    PubMed Central

    Wang, Yue-Hua; Xuan, Zhao-Hong; Tian, Shuo; Du, Guan-Hua

    2015-01-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive loss of dopaminergic (DA) neurons at the substantia nigra. Mitochondrial dysfunction and inflammatory responses are involved in the mechanism of cell damage in PD. 6-Hydroxydopamine (6-OHDA), a dopamine analog, specifically damages dopaminergic neurons. Echinacoside (ECH) is a phenylethanoid glycoside isolated from the stems of Cistanche salsa, showing a variety of neuroprotective effects in previous studies. The present study was to investigate its effect against 6-OHDA-induced neurotoxicity and possible mechanisms in PC12 cells. The results showed that 6-OHDA reduced cell viability, decreased oxidation-reduction activity, decreased mitochondrial membrane potential, and induced mitochondria-mediated apoptosis compared with untreated PC12 cells. However, echinacoside treatment significantly attenuated these changes induced by 6-OHDA. In addition, echinacoside also could significantly alleviate the inflammatory responses induced by 6-OHDA. Further research showed that echinacoside could reduce 6-OHDA-induced ROS production in PC12 cells. These results suggest that the underlying mechanism of echinacoside against 6-OHDA-induced neurotoxicity may be involve in attenuating mitochondrial dysfunction and inflammatory responses by reducing ROS production. PMID:25788961

  10. Oxidative stress–induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease

    PubMed Central

    Wiegman, Coen H.; Michaeloudes, Charalambos; Haji, Gulammehdi; Narang, Priyanka; Clarke, Colin J.; Russell, Kirsty E.; Bao, Wuping; Pavlidis, Stelios; Barnes, Peter J.; Kanerva, Justin; Bittner, Anton; Rao, Navin; Murphy, Michael P.; Kirkham, Paul A.; Chung, Kian Fan; Adcock, Ian M.; Brightling, Christopher E.; Davies, Donna E.; Finch, Donna K.; Fisher, Andrew J.; Gaw, Alasdair; Knox, Alan J.; Mayer, Ruth J.; Polkey, Michael; Salmon, Michael; Singh, David

    2015-01-01

    Background Inflammation and oxidative stress play critical roles in patients with chronic obstructive pulmonary disease (COPD). Mitochondrial oxidative stress might be involved in driving the oxidative stress–induced pathology. Objective We sought to determine the effects of oxidative stress on mitochondrial function in the pathophysiology of airway inflammation in ozone-exposed mice and human airway smooth muscle (ASM) cells. Methods Mice were exposed to ozone, and lung inflammation, airway hyperresponsiveness (AHR), and mitochondrial function were determined. Human ASM cells were isolated from bronchial biopsy specimens from healthy subjects, smokers, and patients with COPD. Inflammation and mitochondrial function in mice and human ASM cells were measured with and without the presence of the mitochondria-targeted antioxidant MitoQ. Results Mice exposed to ozone, a source of oxidative stress, had lung inflammation and AHR associated with mitochondrial dysfunction and reflected by decreased mitochondrial membrane potential (ΔΨm), increased mitochondrial oxidative stress, and reduced mitochondrial complex I, III, and V expression. Reversal of mitochondrial dysfunction by the mitochondria-targeted antioxidant MitoQ reduced inflammation and AHR. ASM cells from patients with COPD have reduced ΔΨm, adenosine triphosphate content, complex expression, basal and maximum respiration levels, and respiratory reserve capacity compared with those from healthy control subjects, whereas mitochondrial reactive oxygen species (ROS) levels were increased. Healthy smokers were intermediate between healthy nonsmokers and patients with COPD. Hydrogen peroxide induced mitochondrial dysfunction in ASM cells from healthy subjects. MitoQ and Tiron inhibited TGF-β–induced ASM cell proliferation and CXCL8 release. Conclusions Mitochondrial dysfunction in patients with COPD is associated with excessive mitochondrial ROS levels, which contribute to enhanced inflammation and cell

  11. Mitochondrial Protein Phosphorylation as a Regulatory Modality: Implications for Mitochondrial Dysfunction in Heart Failure

    PubMed Central

    O’Rourke, Brian; Van Eyk, Jennifer E.; Foster, D. Brian

    2014-01-01

    Phosphorylation of mitochondrial proteins has been recognized for decades, and the regulation of pyruvate- and branched-chain α-ketoacid dehydrogenases by an atypical kinase/phosphatase cascade is well established. More recently, the development of new mass spectrometry-based technologies has led to the discovery of many novel phosphorylation sites on a variety of mitochondrial targets. The evidence suggests that the major classes of kinase and several phosphatases may be present at the mitochondrial outer membrane, intermembrane space, inner membrane, and matrix, but many questions remain to be answered as to the location, timing, and reversibility of these phosphorylation events and whether they are functionally relevant. The authors review phosphorylation as a mitochondrial regulatory strategy and highlight its possible role in the pathophysiology of cardiac hypertrophy and failure. PMID:22103918

  12. Resveratrol attenuates methylglyoxal-induced mitochondrial dysfunction and apoptosis by Sestrin2 induction

    SciTech Connect

    Seo, Kyuhwa; Seo, Suho; Han, Jae Yun; Ki, Sung Hwan; Shin, Sang Mi

    2014-10-15

    Methylglyoxal is found in high levels in the blood and other tissues of diabetic patients and exerts deleterious effects on cells and tissues. Previously, we reported that resveratrol, a polyphenol in grapes, induced the expression of Sestrin2 (SESN2), a novel antioxidant protein, and inhibited hepatic lipogenesis. This study investigated whether resveratrol protects cells from the methylglyoxal-induced toxicity via SESN2 induction. Methylglyoxal significantly induced cell death in HepG2 cells. However, cells pretreated with resveratrol were rescued from methylglyoxal-induced apoptosis. Resveratrol attenuated glutathione (GSH) depletion and ROS production promoted by methylglyoxal. Moreover, mitochondrial damage was observed by methylglyoxal treatment, but resveratrol restored mitochondrial function, as evidenced by the observed lack of mitochondrial permeability transition and increased ADP/ATP ratio. Resveratrol treatment inhibited SESN2 depletion elicited by methylglyoxal. SESN2 overexpression repressed methylglyoxal-induced mitochondrial dysfunction and apoptosis. Likewise, rotenone-induced cytotoxicity was not observed in SESN2 overexpressed cells. Furthermore, siRNA knockdown of SESN2 reduced the ability of resveratrol to prevent methylglyoxal-induced mitochondrial permeability transition. In addition, when mice were exposed to methylglyoxal after infection of Ad-SESN2, the plasma levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and GSH depletion by methylglyoxal in liver was reduced in Ad-SESN2 infected mice. Our results demonstrated that resveratrol is capable of protecting cells from methylglyoxal-induced mitochondrial dysfunction and oxidative stress via SESN2 induction. - Highlights: • Resveratrol decreased methylglyoxal-induced apoptosis. • Resveratrol attenuated GSH depletion and ROS production promoted by methylglyoxal. • Resveratrol restored the mitochondrial function by Sestrin2 induction. • Induction of Sestrin2

  13. Neuronal calcium signaling, mitochondrial dysfunction and Alzheimer’s disease

    PubMed Central

    Supnet, Charlene; Bezprozvanny, Ilya

    2016-01-01

    Alzheimer disease (AD) is the most common neurodegenerative disorder that affects millions of ageing people worldwide. AD is characterized by extensive synaptic and neuronal loss which lead to impaired memory and cognitive decline. The cause of pathology in AD is not completely understood and no effective therapy so far has been developed. The accumulation of toxic amyloid-beta 42 (Aβ42) peptide oligomers and aggregates in AD brain has been proposed to be primarily responsible for the pathology of the disease, an idea dubbed ‘amyloid hypothesis’ of AD etiology. In addition to increase in Aβ42 levels, disturbances in neuronal calcium (Ca2+) signaling and alterations in expression levels of Ca2+ signaling proteins have been observed in animal models of familial AD and in studies of postmortem brain samples from sporadic AD patients. Based on these evidence ‘Ca2+ hypothesis of AD’ has been proposed. In particular, familal AD has been linked with enhanced Ca2+ release from the endoplasmic reticulum (ER) and elevated cytosolic Ca2+ levels. The augmented cytosolic Ca2+ levels can trigger signaling cascades that affect synaptic stability and function and can be detrimental to neuronal health, such as Ca2+-dependent phosphatase calcineurin and Ca2+-dependent proteases calpains. Here we review the latest results supporting ‘Ca2+ hypothesis’ of AD pathogenesis. We further argue that over long period of time supranormal cytosolic Ca2+ signaling can impaire mitochondrial function in AD neurons. We conclude that inhibitors and stablizers of neuronal Ca2+ signaling and mitochondrial function may have a therapeutic potential for treatment of AD. We discuss latest and planned AD therapeutic trials of agents targeting Ca2+ channels and mitochodria. PMID:20413848

  14. Critical role of c-jun N-terminal protein kinase in promoting mitochondrial dysfunction and acute liver injury

    PubMed Central

    Jang, Sehwan; Yu, Li-Rong; Abdelmegeed, Mohamed A.; Gao, Yuan; Banerjee, Atrayee; Song, Byoung-Joon

    2015-01-01

    The mechanism by which c-Jun N-terminal protein kinase (JNK) promotes tissue injury is poorly understood. Thus we aimed at studying the roles of JNK and its phospho-target proteins in mouse models of acute liver injury. Young male mice were exposed to a single dose of CCl4 (50 mg/kg, IP) and euthanized at different time points. Liver histology, blood alanine aminotransferase, and other enzyme activities were measured in CCl4-exposed mice without or with the highly-specific JNK inhibitors. Phosphoproteins were purified from control or CCl4-exposed mice and analyzed by differential mass-spectrometry followed by further characterizations of immunoprecipitation and activity measurements. JNK was activated within 1 h while liver damage was maximal at 24 h post-CCl4 injection. Markedly increased phosphorylation of many mitochondrial proteins was observed between 1 and 8 h following CCl4 exposure. Pretreatment with the selective JNK inhibitor SU3327 or the mitochondria-targeted antioxidant mito-TEMPO markedly reduced the levels of p-JNK, mitochondrial phosphoproteins and liver damage in CCl4-exposed mice. Differential proteomic analysis identified many phosphorylated mitochondrial proteins involved in anti-oxidant defense, electron transfer, energy supply, fatty acid oxidation, etc. Aldehyde dehydrogenase, NADH-ubiquinone oxidoreductase, and α-ketoglutarate dehydrogenase were phosphorylated in CCl4-exposed mice but dephosphorylated after SU3327 pretreatment. Consistently, the suppressed activities of these enzymes were restored by SU3327 pretreatment in CCl4-exposed mice. These data provide a novel mechanism by which JNK, rapidly activated by CCl4, promotes mitochondrial dysfunction and acute hepatotoxicity through robust phosphorylation of numerous mitochondrial proteins. PMID:26491845

  15. Oxidative Stress in Cancer-Prone Genetic Diseases in Pediatric Age: The Role of Mitochondrial Dysfunction.

    PubMed

    Perrone, Serafina; Lotti, Federica; Geronzi, Ursula; Guidoni, Elisa; Longini, Mariangela; Buonocore, Giuseppe

    2016-01-01

    Oxidative stress is a distinctive sign in several genetic disorders characterized by cancer predisposition, such as Ataxia-Telangiectasia, Fanconi Anemia, Down syndrome, progeroid syndromes, Beckwith-Wiedemann syndrome, and Costello syndrome. Recent literature unveiled new molecular mechanisms linking oxidative stress to the pathogenesis of these conditions, with particular regard to mitochondrial dysfunction. Since mitochondria are one of the major sites of ROS production as well as one of the major targets of their action, this dysfunction is thought to be the cause of the prooxidant status. Deeper insight of the pathogenesis of the syndromes raises the possibility to identify new possible therapeutic targets. In particular, the use of mitochondrial-targeted agents seems to be an appropriate clinical strategy in order to improve the quality of life and the life span of the patients. PMID:27239251

  16. Oxidative Stress in Cancer-Prone Genetic Diseases in Pediatric Age: The Role of Mitochondrial Dysfunction

    PubMed Central

    Longini, Mariangela; Buonocore, Giuseppe

    2016-01-01

    Oxidative stress is a distinctive sign in several genetic disorders characterized by cancer predisposition, such as Ataxia-Telangiectasia, Fanconi Anemia, Down syndrome, progeroid syndromes, Beckwith-Wiedemann syndrome, and Costello syndrome. Recent literature unveiled new molecular mechanisms linking oxidative stress to the pathogenesis of these conditions, with particular regard to mitochondrial dysfunction. Since mitochondria are one of the major sites of ROS production as well as one of the major targets of their action, this dysfunction is thought to be the cause of the prooxidant status. Deeper insight of the pathogenesis of the syndromes raises the possibility to identify new possible therapeutic targets. In particular, the use of mitochondrial-targeted agents seems to be an appropriate clinical strategy in order to improve the quality of life and the life span of the patients. PMID:27239251

  17. Norcantharidin induced DU145 cell apoptosis through ROS-mediated mitochondrial dysfunction and energy depletion.

    PubMed

    Shen, Bo; He, Pei-Jie; Shao, Chun-Lin

    2013-01-01

    Norcantharidin (NCTD), a demethylated analog of cantharidin derived from blister beetles, has attracted considerable attentions in recent years due to their definitely toxic properties and the noteworthy advantages in stimulating bone marrow and increasing the peripheral leukocytes. Hence, it is worth studying the anti-tumor effect of NCTD on human prostate cancer cells DU145. It was found that after the treatment of NCTD with different concentrations (25-100 μM), the cell proliferation was significantly inhibited, which led to the appearance of micronucleus (MN). Moreover, the cells could be killed in a dose-/time-dependent manner along with the reduction of PCNA (proliferating cell nuclear antigen) expression, destruction of mitochondrial membrane potential (MMP), down-regulation of MnSOD, induction of ROS, depletion of ATP, and activation of AMPK (Adenosine 5'-monophosphate -activated protein kinase) . In addition, a remarkable release of cytochrome c was found in the cells exposed to 100 μM NCTD and exogenous SOD-PEG could eliminate the generation of NCTD-induced MN. In conclusion, our studies indicated that NCTD could induce the collapse of MMP and mitochondria dysfunction. Accumulation of intercellular ROS could eventually switch on the apoptotic pathway by causing DNA damage and depleting ATP. PMID:24367681

  18. Oxidized Ferric and Ferryl Forms of Hemoglobin Trigger Mitochondrial Dysfunction and Injury in Alveolar Type I Cells.

    PubMed

    Chintagari, Narendranath Reddy; Jana, Sirsendu; Alayash, Abdu I

    2016-08-01

    Lung alveoli are lined by alveolar type (AT) 1 cells and cuboidal AT2 cells. The AT1 cells are likely to be exposed to cell-free hemoglobin (Hb) in multiple lung diseases; however, the role of Hb redox (reduction-oxidation) reactions and their precise contributions to AT1 cell injury are not well understood. Using mouse lung epithelial cells (E10) as an AT1 cell model, we demonstrate here that higher Hb oxidation states, ferric Hb (HbFe(3+)) and ferryl Hb (HbFe(4+)) and subsequent heme loss play a central role in the genesis of injury. Exposures to HbFe(2+) and HbFe(3+) for 24 hours induced expression of heme oxygenase (HO)-1 protein in E10 cells and HO-1 translocation in the purified mitochondrial fractions. Both of these effects were intensified with increasing oxidation states of Hb. Next, we examined the effects of Hb oxidation and free heme on mitochondrial bioenergetic function by measuring changes in the mitochondrial transmembrane potential and oxygen consumption rate. In contrast to HbFe(2+), HbFe(3+) reduced basal oxygen consumption rate, indicating compromised mitochondrial activity. However, HbFe(4+) exposure not only induced early expression of HO-1 but also caused mitochondrial dysfunction within 12 hours when compared with HbFe(2+) and HbFe(3+). Exposure to HbFe(4+) for 24 hours also caused mitochondrial depolarization in E10 cells. The deleterious effects of HbFe(3+) and HbFe(4+) were reversed by the addition of scavenger proteins, haptoglobin and hemopexin. Collectively, these data establish, for the first time, a central role for cell-free Hb in lung epithelial injury, and that these effects are mediated through the redox transition of Hb to higher oxidation states. PMID:26974230

  19. Implications of Altered Glutathione Metabolism in Aspirin-Induced Oxidative Stress and Mitochondrial Dysfunction in HepG2 Cells

    PubMed Central

    Raza, Haider; John, Annie

    2012-01-01

    We have previously reported that acetylsalicylic acid (aspirin, ASA) induces cell cycle arrest, oxidative stress and mitochondrial dysfunction in HepG2 cells. In the present study, we have further elucidated that altered glutathione (GSH)-redox metabolism in HepG2 cells play a critical role in ASA-induced cytotoxicity. Using selected doses and time point for ASA toxicity, we have demonstrated that when GSH synthesis is inhibited in HepG2 cells by buthionine sulfoximine (BSO), prior to ASA treatment, cytotoxicity of the drug is augmented. On the other hand, when GSH-depleted cells were treated with N-acetyl cysteine (NAC), cytotoxicity/apoptosis caused by ASA was attenuated with a significant recovery in oxidative stress, GSH homeostasis, DNA fragmentation and some of the mitochondrial functions. NAC treatment, however, had no significant effects on the drug-induced inhibition of mitochondrial aconitase activity and ATP synthesis in GSH-depleted cells. Our results have confirmed that aspirin increases apoptosis by increased reactive oxygen species production, loss of mitochondrial membrane potential and inhibition of mitochondrial respiratory functions. These effects were further amplified when GSH-depleted cells were treated with ASA. We have also shown that some of the effects of aspirin might be associated with reduced GSH homeostasis, as treatment of cells with NAC attenuated the effects of BSO and aspirin. Our results strongly suggest that GSH dependent redox homeostasis in HepG2 cells is critical in preserving mitochondrial functions and preventing oxidative stress associated complications caused by aspirin treatment. PMID:22558435

  20. Progesterone reduces brain mitochondrial dysfunction after transient focal ischemia in male and female mice.

    PubMed

    Gaignard, Pauline; Fréchou, Magalie; Schumacher, Michael; Thérond, Patrice; Mattern, Claudia; Slama, Abdelhamid; Guennoun, Rachida

    2016-03-01

    This study investigated the effect of intranasal administration of progesterone on the early brain mitochondrial respiratory chain dysfunction and oxidative damage after transient middle cerebral occlusion in male and female mice. We showed that progesterone (8 mg/kg at 1 h post-middle cerebral occlusion) restored the mitochondrial reduced glutathione pool and the nicotinamide adenine dinucleotide-linked respiration in both sexes. Progesterone also reversed the decrease of the flavin adenine dinucleotide-linked respiration, which was only observed in females. Our findings point to a sex difference in stroke effects on the brain respiratory chain and suggest that the actions of progesterone on mitochondrial function may participate in its neuroprotective properties. PMID:26661198

  1. Maternal Metabolic Syndrome Programs Mitochondrial Dysfunction via Germline Changes across Three Generations.

    PubMed

    Saben, Jessica L; Boudoures, Anna L; Asghar, Zeenat; Thompson, Alysha; Drury, Andrea; Zhang, Wendy; Chi, Maggie; Cusumano, Andrew; Scheaffer, Suzanne; Moley, Kelle H

    2016-06-28

    Maternal obesity impairs offspring health, but the responsible mechanisms are not fully established. To address this question, we fed female mice a high-fat/high-sugar diet from before conception until weaning and then followed the outcomes in the next three generations of offspring, all fed a control diet. We observed that female offspring born to obese mothers had impaired peripheral insulin signaling that was associated with mitochondrial dysfunction and altered mitochondrial dynamic and complex proteins in skeletal muscle. This mitochondrial phenotype persisted through the female germline and was passed down to the second and third generations. Our results indicate that maternal programming of metabolic disease can be passed through the female germline and that the transfer of aberrant oocyte mitochondria to subsequent generations may contribute to the increased risk for developing insulin resistance. PMID:27320925

  2. Fullerenol cytotoxicity in kidney cells is associated with cytoskeleton disruption, autophagic vacuole accumulation, and mitochondrial dysfunction

    SciTech Connect

    Johnson-Lyles, Denise N.; Peifley, Kimberly; Lockett, Stephen; Neun, Barry W.; Hansen, Matthew; Clogston, Jeffrey; Stern, Stephan T.; McNeil, Scott E.

    2010-11-01

    Water soluble fullerenes, such as the hydroxylated fullerene, fullerenol (C{sub 60}OH{sub x}), are currently under development for diagnostic and therapeutic biomedical applications in the field of nanotechnology. These molecules have been shown to undergo urinary clearance, yet there is limited data available on their renal biocompatibility. Here we examine the biological responses of renal proximal tubule cells (LLC-PK1) exposed to fullerenol. Fullerenol was found to be cytotoxic in the millimolar range, with viability assessed by the sulforhodamine B and trypan blue assays. Fullerenol-induced cell death was associated with cytoskeleton disruption and autophagic vacuole accumulation. Interaction with the autophagy pathway was evaluated in vitro by Lysotracker Red dye uptake, LC3-II marker expression and TEM. Fullerenol treatment also resulted in coincident loss of cellular mitochondrial membrane potential and ATP depletion, as measured by the Mitotracker Red dye and the luciferin-luciferase assays, respectively. Fullerenol-induced ATP depletion and loss of mitochondrial potential were partially ameliorated by co-treatment with the autophagy inhibitor, 3-methyladenine. In vitro fullerenol treatment did not result in appreciable oxidative stress, as measured by lipid peroxide and glutathione content. Based on these data, it is hypothesized that cytoskeleton disruption may be an initiating event in fullerenol cytotoxicity, leading to subsequent autophagy dysfunction and loss of mitochondrial capacity. As nanoparticle-induced cytoskeleton disruption, autophagic vacuole accumulation and mitochondrial dysfunction are commonly reported in the literature, the proposed mechanism may be relevant for a variety of nanomaterials.

  3. Mitochondria-Targeted Peptide Reverses Mitochondrial Dysfunction and Cognitive Deficits in Sepsis-Associated Encephalopathy.

    PubMed

    Wu, Jing; Zhang, Mingqiang; Hao, Shuangying; Jia, Ming; Ji, Muhuo; Qiu, Lili; Sun, Xiaoyan; Yang, Jianjun; Li, Kuanyu

    2015-08-01

    Sepsis-associated encephalopathy (SAE) is associated with increased mortality, morbidity, and long-term cognitive impairments. Its pathophysiology remains to be determined and an effective pharmacologic treatment is lacking. The goal of this study was to investigate the effects of the mitochondria-targeted peptide SS-31 on mitochondrial function and cognitive deficits in SAE mice. C57BL/6 male mice were randomly divided into sham, sham + SS-31, cecal ligation and puncture (CLP), and CLP + SS-31 groups. Peptide SS-31 (5 mg/kg) was intraperitoneally administrated immediately after operation and afterwards once daily for six consecutive days. Surviving mice were subjected to behavioral tests and the hippocampus was collected for biochemical analysis 7 days after operation. The results showed that CLP resulted in high mortality rate and cognitive deficits, representative characteristics of SAE. A physiological mechanistic investigation revealed that mitochondrial function of hippocampus was severely impaired, coupled with reactive oxygen species (ROS) generation, triggering neuronal apoptosis and inflammation. Notably, administration of peptide SS-31 protected the integrity of mitochondria, reversed the mitochondrial dysfunction, inhibited the apoptosis resulting from the release of cytochrome c, diminished the response of inflammation, and ultimately reversed the behavior deficits in the SAE mice. In conclusion, our data demonstrate that daily treatment with mitochondria-targeted peptide SS-31 reduces mortality rate and ameliorates cognitive deficits, which is possibly through a mechanism of reversing mitochondrial dysfunction and partial inhibition of neuronal apoptosis and inflammation in the hippocampus of the SAE mice. PMID:25288156

  4. Mitochondrial Dysfunction: The Road to Alpha-Synuclein Oligomerization in PD

    PubMed Central

    Esteves, A. R.; Arduíno, D. M.; Silva, D. F. F.; Oliveira, C. R.; Cardoso, S. M.

    2011-01-01

    While the etiology of Parkinson's disease remains largely elusive, there is accumulating evidence suggesting that mitochondrial dysfunction occurs prior to the onset of symptoms in Parkinson's disease. Mitochondria are remarkably primed to play a vital role in neuronal cell survival since they are key regulators of energy metabolism (as ATP producers), of intracellular calcium homeostasis, of NAD+/NADH ratio, and of endogenous reactive oxygen species production and programmed cell death. In this paper, we focus on mitochondrial dysfunction-mediated alpha-synuclein aggregation. We highlight some of the findings that provide proof of evidence for a mitochondrial metabolism control in Parkinson's disease, namely, mitochondrial regulation of microtubule-dependent cellular traffic and autophagic lysosomal pathway. The knowledge that microtubule alterations may lead to autophagic deficiency and may compromise the cellular degradation mechanisms that culminate in the progressive accumulation of aberrant protein aggregates shields new insights to the way we address Parkinson's disease. In line with this knowledge, an innovative window for new therapeutic strategies aimed to restore microtubule network may be unlocked. PMID:21318163

  5. Caudatin induces caspase-dependent apoptosis in human glioma cells with involvement of mitochondrial dysfunction and reactive oxygen species generation.

    PubMed

    Zhu, Liang-Zhen; Hou, Ya-Jun; Zhao, Ming; Yang, Ming-Feng; Fu, Xiao-Ting; Sun, Jing-Yi; Fu, Xiao-Yan; Shao, Lu-Rong; Zhang, Hui-Fang; Fan, Cun-Dong; Gao, Hong-Li; Sun, Bao-Liang

    2016-08-01

    Caudatin as one species of C-21 steroidal from Cynanchum bungei decne displays potential anticancer activity. However, the underlying mechanisms remain elusive. In the present study, the growth suppressive effect and mechanism of caudatin on human glioma U251 and U87 cells were evaluated in vitro. The results indicated that caudatin significantly inhibited U251 and U87 cell growth in both a time- and dose-dependent manner. Flow cytometry analysis revealed that caudatin-induced cell growth inhibition was achieved by induction of cell apoptosis, as convinced by the increase of Sub-G1 peak, PARP cleavage and activation of caspase-3, caspase-7 and caspase-9. Caudatin treatment also resulted in mitochondrial dysfunction which correlated with an imbalance of Bcl-2 family members. Further investigation revealed that caudatin triggered U251 cell apoptosis by inducing reactive oxygen species (ROS) generation through disturbing the redox homeostasis. Moreover, pretreatment of caspase inhibitors apparently weakens caudatin-induced cell killing, PARP cleavage and caspase activation and eventually reverses caudatin-mediated apoptosis. Importantly, caudatin significantly inhibited U251 tumour xenografts in vivo through induction of cell apoptosis involving the inhibition of cell proliferation and angiogenesis, which further validate its value in combating human glioma in vivo. Taken together, the results described above all suggest that caudatin inhibited human glioma cell growth by induction of caspase-dependent apoptosis with involvement of mitochondrial dysfunction and ROS generation. PMID:27184666

  6. Dysfunctional cardiac mitochondrial bioenergetic, lipidomic, and signaling in a murine model of Barth syndrome[S

    PubMed Central

    Kiebish, Michael A.; Yang, Kui; Liu, Xinping; Mancuso, David J.; Guan, Shaoping; Zhao, Zhongdan; Sims, Harold F.; Cerqua, Rebekah; Cade, W. Todd; Han, Xianlin; Gross, Richard W.

    2013-01-01

    Barth syndrome is a complex metabolic disorder caused by mutations in the mitochondrial transacylase tafazzin. Recently, an inducible tafazzin shRNA knockdown mouse model was generated to deconvolute the complex bioenergetic phenotype of this disease. To investigate the underlying cause of hemodynamic dysfunction in Barth syndrome, we interrogated the cardiac structural and signaling lipidome of this mouse model as well as its myocardial bioenergetic phenotype. A decrease in the distribution of cardiolipin molecular species and robust increases in monolysocardiolipin and dilysocardiolipin were demonstrated. Additionally, the contents of choline and ethanolamine glycerophospholipid molecular species containing precursors for lipid signaling at the sn-2 position were altered. Lipidomic analyses revealed specific dysregulation of HETEs and prostanoids, as well as oxidized linoleic and docosahexaenoic metabolites. Bioenergetic interrogation uncovered differential substrate utilization as well as decreases in Complex III and V activities. Transgenic expression of cardiolipin synthase or iPLA2γ ablation in tafazzin-deficient mice did not rescue the observed phenotype. These results underscore the complex nature of alterations in cardiolipin metabolism mediated by tafazzin loss of function. Collectively, we identified specific lipidomic, bioenergetic, and signaling alterations in a murine model that parallel those of Barth syndrome thereby providing novel insights into the pathophysiology of this debilitating disease. PMID:23410936

  7. DJ-1 binds to mitochondrial complex I and maintains its activity

    SciTech Connect

    Hayashi, Takuya; Ishimori, Chikako; Takahashi-Niki, Kazuko; Taira, Takahiro; Kim, Yun-chul; Maita, Hiroshi; Maita, Chinatsu; Ariga, Hiroyoshi; Iguchi-Ariga, Sanae M.M.

    2009-12-18

    Parkinson's disease (PD) is caused by neuronal cell death, and oxidative stress and mitochondrial dysfunction are thought to be responsible for onset of PD. DJ-1, a causative gene product of a familial form of Parkinson's disease, PARK7, plays roles in transcriptional regulation and anti-oxidative stress. The possible mitochondrial function of DJ-1 has been proposed, but its exact function remains unclear. In this study, we found that DJ-1 directly bound to NDUFA4 and ND1, nuclear and mitochondrial DNA-encoding subunits of mitochondrial complex I, respectively, and was colocalized with complex I and that complex I activity was reduced in DJ-1-knockdown NIH3T3 and HEK293 cells. These findings suggest that DJ-1 is an integral mitochondrial protein and that DJ-1 plays a role in maintenance of mitochondrial complex I activity.

  8. A Small Volatile Bacterial Molecule Triggers Mitochondrial Dysfunction in Murine Skeletal Muscle

    PubMed Central

    Tzika, A. Aria; Constantinou, Caterina; Bandyopadhaya, Arunava; Psychogios, Nikolaos; Lee, Sangseok; Mindrinos, Michael; Martyn, J. A. Jeevendra; Tompkins, Ronald G.; Rahme, Laurence G.

    2013-01-01

    Mitochondria integrate distinct signals that reflect specific threats to the host, including infection, tissue damage, and metabolic dysfunction; and play a key role in insulin resistance. We have found that the Pseudomonas aeruginosa quorum sensing infochemical, 2-amino acetophenone (2-AA), produced during acute and chronic infection in human tissues, including in the lungs of cystic fibrosis (CF) patients, acts as an interkingdom immunomodulatory signal that facilitates pathogen persistence, and host tolerance to infection. Transcriptome results have led to the hypothesis that 2-AA causes further harm to the host by triggering mitochondrial dysfunction in skeletal muscle. As normal skeletal muscle function is essential to survival, and is compromised in many chronic illnesses, including infections and CF-associated muscle wasting, we here determine the global effects of 2-AA on skeletal muscle using high-resolution magic-angle-spinning (HRMAS), proton (1H) nuclear magnetic resonance (NMR) metabolomics, in vivo 31P NMR, whole-genome expression analysis and functional studies. Our results show that 2-AA when injected into mice, induced a biological signature of insulin resistance as determined by 1H NMR analysis-, and dramatically altered insulin signaling, glucose transport, and mitochondrial function. Genes including Glut4, IRS1, PPAR-γ, PGC1 and Sirt1 were downregulated, whereas uncoupling protein UCP3 was up-regulated, in accordance with mitochondrial dysfunction. Although 2-AA did not alter high-energy phosphates or pH by in vivo 31P NMR analysis, it significantly reduced the rate of ATP synthesis. This affect was corroborated by results demonstrating down-regulation of the expression of genes involved in energy production and muscle function, and was further validated by muscle function studies. Together, these results further demonstrate that 2-AA, acts as a mediator of interkingdom modulation, and likely effects insulin resistance associated with a

  9. Acrolein cytotoxicity in hepatocytes involves endoplasmic reticulum stress, mitochondrial dysfunction and oxidative stress

    SciTech Connect

    Mohammad, Mohammad K.; Avila, Diana; Zhang, Jingwen; Barve, Shirish; Arteel, Gavin; McClain, Craig; Joshi-Barve, Swati

    2012-11-15

    Acrolein is a common environmental, food and water pollutant and a major component of cigarette smoke. Also, it is produced endogenously via lipid peroxidation and cellular metabolism of certain amino acids and drugs. Acrolein is cytotoxic to many cell types including hepatocytes; however the mechanisms are not fully understood. We examined the molecular mechanisms underlying acrolein hepatotoxicity in primary human hepatocytes and hepatoma cells. Acrolein, at pathophysiological concentrations, caused a dose-dependent loss of viability of hepatocytes. The death was apoptotic at moderate and necrotic at high concentrations of acrolein. Acrolein exposure rapidly and dramatically decreased intracellular glutathione and overall antioxidant capacity, and activated the stress-signaling MAP-kinases JNK, p42/44 and p38. Our data demonstrate for the first time in human hepatocytes, that acrolein triggered endoplasmic reticulum (ER) stress and activated eIF2α, ATF-3 and -4, and Gadd153/CHOP, resulting in cell death. Notably, the protective/adaptive component of ER stress was not activated, and acrolein failed to up-regulate the protective ER-chaperones, GRP78 and GRP94. Additionally, exposure to acrolein disrupted mitochondrial integrity/function, and led to the release of pro-apoptotic proteins and ATP depletion. Acrolein-induced cell death was attenuated by N-acetyl cysteine, phenyl-butyric acid, and caspase and JNK inhibitors. Our data demonstrate that exposure to acrolein induces a variety of stress responses in hepatocytes, including GSH depletion, oxidative stress, mitochondrial dysfunction and ER stress (without ER-protective responses) which together contribute to acrolein toxicity. Our study defines basic mechanisms underlying liver injury caused by reactive aldehyde pollutants such as acrolein. -- Highlights: ► Human primary hepatocytes and cultured cell lines are used. ► Multiple cell death signaling pathways are activated by acrolein. ► Novel finding of

  10. Current experience in testing mitochondrial nutrients in disorders featuring oxidative stress and mitochondrial dysfunction: rational design of chemoprevention trials.

    PubMed

    Pagano, Giovanni; Aiello Talamanca, Annarita; Castello, Giuseppe; Cordero, Mario D; d'Ischia, Marco; Gadaleta, Maria Nicola; Pallardó, Federico V; Petrović, Sandra; Tiano, Luca; Zatterale, Adriana

    2014-01-01

    An extensive number of pathologies are associated with mitochondrial dysfunction (MDF) and oxidative stress (OS). Thus, mitochondrial cofactors termed "mitochondrial nutrients" (MN), such as α-lipoic acid (ALA), Coenzyme Q10 (CoQ10), and l-carnitine (CARN) (or its derivatives) have been tested in a number of clinical trials, and this review is focused on the use of MN-based clinical trials. The papers reporting on MN-based clinical trials were retrieved in MedLine up to July 2014, and evaluated for the following endpoints: (a) treated diseases; (b) dosages, number of enrolled patients and duration of treatment; (c) trial success for each MN or MN combinations as reported by authors. The reports satisfying the above endpoints included total numbers of trials and frequencies of randomized, controlled studies, i.e., 81 trials testing ALA, 107 reports testing CoQ10, and 74 reports testing CARN, while only 7 reports were retrieved testing double MN associations, while no report was found testing a triple MN combination. A total of 28 reports tested MN associations with "classical" antioxidants, such as antioxidant nutrients or drugs. Combinations of MN showed better outcomes than individual MN, suggesting forthcoming clinical studies. The criteria in study design and monitoring MN-based clinical trials are discussed. PMID:25380523

  11. Current Experience in Testing Mitochondrial Nutrients in Disorders Featuring Oxidative Stress and Mitochondrial Dysfunction: Rational Design of Chemoprevention Trials

    PubMed Central

    Pagano, Giovanni; Aiello Talamanca, Annarita; Castello, Giuseppe; Cordero, Mario D.; d’Ischia, Marco; Gadaleta, Maria Nicola; Pallardó, Federico V.; Petrović, Sandra; Tiano, Luca; Zatterale, Adriana

    2014-01-01

    An extensive number of pathologies are associated with mitochondrial dysfunction (MDF) and oxidative stress (OS). Thus, mitochondrial cofactors termed “mitochondrial nutrients” (MN), such as α-lipoic acid (ALA), Coenzyme Q10 (CoQ10), and l-carnitine (CARN) (or its derivatives) have been tested in a number of clinical trials, and this review is focused on the use of MN-based clinical trials. The papers reporting on MN-based clinical trials were retrieved in MedLine up to July 2014, and evaluated for the following endpoints: (a) treated diseases; (b) dosages, number of enrolled patients and duration of treatment; (c) trial success for each MN or MN combinations as reported by authors. The reports satisfying the above endpoints included total numbers of trials and frequencies of randomized, controlled studies, i.e., 81 trials testing ALA, 107 reports testing CoQ10, and 74 reports testing CARN, while only 7 reports were retrieved testing double MN associations, while no report was found testing a triple MN combination. A total of 28 reports tested MN associations with “classical” antioxidants, such as antioxidant nutrients or drugs. Combinations of MN showed better outcomes than individual MN, suggesting forthcoming clinical studies. The criteria in study design and monitoring MN-based clinical trials are discussed. PMID:25380523

  12. Silybum marianum oil attenuates oxidative stress and ameliorates mitochondrial dysfunction in mice treated with D-galactose

    PubMed Central

    Zhu, Shu Yun; Dong, Ying; Tu, Jie; Zhou, Yue; Zhou, Xing Hua; Xu, Bin

    2014-01-01

    Background: Silybum marianum has been used as herbal medicine for the treatment of liver disease, liver cirrhosis, and to prevent liver cancer in Europe and Asia since ancient times. Silybum marianum oil (SMO), a by-product of silymarin production, is rich in essential fatty acids, phospholipids, sterols, and vitamin E. However, it has not been very good development and use. Objective: In the present study, we used olive oil as a control to investigate the antioxidant and anti-aging effect of SMO in D-galactose (D-gal)-induced aging mice. Materials and Methods: D-gal was injected intraperitoneally (500 mg/kg body weight daily) for 7 weeks while SMO was simultaneously administered orally. The triglycerides (TRIG) and cholesterol (CHOL) levels were estimated in the serum. Superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), monoamine oxidase (MAO), malondialdehyde (MDA), caspase-3, and Bcl-2 were determined in the liver and brain. The activities of Na+-K+-adenosine triphosphatase (ATPase), Ca2+-Mg2+-ATPase, membrane potential (ΔΨm), and membrane fluidity of the liver mitochondrial were estimated. Results: SMO decreased levels of TRIG and CHOL in aging mice. SMO administration elevated the activities of SOD, GSH-Px, and T-AOC, which are suppressed by aging. The levels of MAO and MDA in the liver and brain were reduced by SMO administration in aging mice. Enzyme linked immunosorbent assay showed that SMO significantly decreased the concentration of caspase-3 and improved the activity of Bcl-2 in the liver and brain of aging mice. Furthermore, SMO significantly attenuated the D-gal induced liver mitochondrial dysfunction by improving the activities of Na+-K+-ATPase, Ca2+-Mg2+-ATPase, membrane potential (ΔΨm), and membrane fluidity. Conclusion: These results indicate that SMO effectively attenuated oxidative damage and improved apoptosis related factors as well as liver mitochondrial dysfunction in aging mice. PMID:24914315

  13. Mitochondrial dysfunction and oxidative stress in patients with chronic kidney disease.

    PubMed

    Gamboa, Jorge L; Billings, Frederic T; Bojanowski, Matthew T; Gilliam, Laura A; Yu, Chang; Roshanravan, Baback; Roberts, L Jackson; Himmelfarb, Jonathan; Ikizler, T Alp; Brown, Nancy J

    2016-05-01

    Mitochondria abnormalities in skeletal muscle may contribute to frailty and sarcopenia, commonly present in patients with chronic kidney disease (CKD). Dysfunctional mitochondria are also a major source of oxidative stress and may contribute to cardiovascular disease in CKD We tested the hypothesis that mitochondrial structure and function worsens with the severity of CKD Mitochondrial volume density, mitochondrial DNA (mtDNA) copy number, BNIP3, and PGC1α protein expression were evaluated in skeletal muscle biopsies obtained from 27 subjects (17 controls and 10 with CKD stage 5 on hemodialysis). We also measured mtDNA copy number in peripheral blood mononuclear cells (PBMCs), plasma isofurans, and plasma F2-isoprostanes in 208 subjects divided into three groups: non-CKD (eGFR>60 mL/min), CKD stage 3-4 (eGFR 60-15 mL/min), and CKD stage 5 (on hemodialysis). Muscle biopsies from patients with CKD stage 5 revealed lower mitochondrial volume density, lower mtDNA copy number, and higher BNIP3 content than controls. mtDNA copy number in PBMCs was decreased with increasing severity of CKD: non-CKD (6.48, 95% CI 4.49-8.46), CKD stage 3-4 (3.30, 95% CI 0.85-5.75, P = 0.048 vs. non-CKD), and CKD stage 5 (1.93, 95% CI 0.27-3.59, P = 0.001 vs. non-CKD). Isofurans were higher in patients with CKD stage 5 (median 59.21 pg/mL, IQR 41.76-95.36) compared to patients with non-CKD (median 49.95 pg/mL, IQR 27.88-83.46, P = 0.001), whereas F2-isoprostanes did not differ among groups. Severity of CKD is associated with mitochondrial dysfunction and markers of oxidative stress. Mitochondrial abnormalities, which are common in skeletal muscle from patients with CKD stage 5, may explain the muscle dysfunction associated with frailty and sarcopenia in CKD Further studies are required to evaluate mitochondrial function in vivo in patients with different CKD stages. PMID:27162261

  14. Assessment of Mitochondrial Dysfunction and Monoamine Oxidase Contribution to Oxidative Stress in Human Diabetic Hearts.

    PubMed

    Duicu, O M; Lighezan, R; Sturza, A; Balica, R; Vaduva, A; Feier, H; Gaspar, M; Ionac, A; Noveanu, L; Borza, C; Muntean, D M; Mornos, C

    2016-01-01

    Mitochondria-related oxidative stress is a pathomechanism causally linked to coronary heart disease (CHD) and diabetes mellitus (DM). Recently, mitochondrial monoamine oxidases (MAOs) have emerged as novel sources of oxidative stress in the cardiovascular system and experimental diabetes. The present study was purported to assess the mitochondrial impairment and the contribution of MAOs-related oxidative stress to the cardiovascular dysfunction in coronary patients with/without DM. Right atrial appendages were obtained from 75 patients randomized into 3 groups: (1) Control (CTRL), valvular patients without CHD; (2) CHD, patients with confirmed CHD; and (3) CHD-DM, patients with CHD and DM. Mitochondrial respiration was measured by high-resolution respirometry and MAOs expression was evaluated by RT-PCR and immunohistochemistry. Hydrogen peroxide (H2O2) emission was assessed by confocal microscopy and spectrophotometrically. The impairment of mitochondrial respiration was substrate-independent in CHD-DM group. MAOs expression was comparable among the groups, with the predominance of MAO-B isoform but no significant differences regarding oxidative stress were detected by either method. Incubation of atrial samples with MAOs inhibitors significantly reduced the H2O2 in all groups. In conclusion, abnormal mitochondrial respiration occurs in CHD and is more severe in DM and MAOs contribute to oxidative stress in human diseased hearts with/without DM. PMID:27190576

  15. Mitochondrial dysfunction induced by ultra-small silver nanoclusters with a distinct toxic mechanism.

    PubMed

    Dong, Ping; Li, Jia-Han; Xu, Shi-Ping; Wu, Xiao-Juan; Xiang, Xun; Yang, Qi-Qi; Jin, Jian-Cheng; Liu, Yi; Jiang, Feng-Lei

    2016-05-01

    As noble metal nanoclusters (NCs) are widely employed in nanotechnology, their potential threats to human and environment are relatively less understood. Herein, the biological effects of ultra-small silver NCs coated by bovine serum albumin (BSA) (Ag-BSA NCs) on isolated rat liver mitochondria were investigated by testing mitochondrial swelling, membrane permeability, ROS generation, lipid peroxidation and respiration. It was found that Ag-BSA NCs induced mitochondrial dysfunction via synergistic effects of two different ways: (1) inducing mitochondrial membrane permeability transition (MPT) by interacting with the phospholipid bilayer of the mitochondrial membrane (not with specific MPT pore proteins); (2) damaging mitochondrial respiration by the generation of reactive oxygen species (ROS). As far as we know, this is the first report on the biological effects of ultra-small size nanoparticles (∼2 nm) at the sub-cellular level, which provides significant insights into the potential risks brought by the applications of NCs. It would inspire us to evaluate the potential threats of nanomaterials more comprehensively, even though they showed no obvious toxicity to cells or in vivo animal models. Noteworthy, a distinct toxic mechanism to mitochondria caused by Ag-BSA NCs was proposed and elucidated. PMID:26808252

  16. S-Nitrosylation of Critical Protein Thiols Mediates Protein Misfolding and Mitochondrial Dysfunction in Neurodegenerative Diseases

    PubMed Central

    Nakamura, Tomohiro

    2011-01-01

    Abstract Excessive nitrosative and oxidative stress is thought to trigger cellular signaling pathways leading to neurodegenerative conditions. Such redox dysregulation can result from many cellular events, including hyperactivation of the N-methyl-d-aspartate-type glutamate receptor, mitochondrial dysfunction, and cellular aging. Recently, we and our colleagues have shown that excessive generation of free radicals and related molecules, in particular nitric oxide species (NO), can trigger pathological production of misfolded proteins, abnormal mitochondrial dynamics (comprised of mitochondrial fission and fusion events), and apoptotic pathways in neuronal cells. Emerging evidence suggests that excessive NO production can contribute to these pathological processes, specifically by S-nitrosylation of specific target proteins. Here, we highlight examples of S-nitrosylated proteins that regulate misfolded protein accumulation and mitochondrial dynamics. For instance, in models of Parkinson's disease, these S-nitrosylation targets include parkin, a ubiquitin E3 ligase and neuroprotective molecule, and protein-disulfide isomerase, a chaperone enzyme for nascent protein folding. S-Nitrosylation of protein-disulfide isomerase may also be associated with mutant Cu/Zn superoxide dismutase toxicity in amyotrophic lateral sclerosis. Additionally, in models of Alzheimer's disease, excessive NO generation leads to the formation of S-nitrosylated dynamin-related protein 1 (forming SNO-Drp1), which contributes to abnormal mitochondrial fragmentation and resultant synaptic damage. Antioxid. Redox Signal. 14, 1479–1492. PMID:20812868

  17. Assessment of Mitochondrial Dysfunction and Monoamine Oxidase Contribution to Oxidative Stress in Human Diabetic Hearts

    PubMed Central

    Duicu, O. M.; Lighezan, R.; Sturza, A.; Balica, R.; Vaduva, A.; Feier, H.; Gaspar, M.; Ionac, A.; Noveanu, L.; Borza, C.; Muntean, D. M.; Mornos, C.

    2016-01-01

    Mitochondria-related oxidative stress is a pathomechanism causally linked to coronary heart disease (CHD) and diabetes mellitus (DM). Recently, mitochondrial monoamine oxidases (MAOs) have emerged as novel sources of oxidative stress in the cardiovascular system and experimental diabetes. The present study was purported to assess the mitochondrial impairment and the contribution of MAOs-related oxidative stress to the cardiovascular dysfunction in coronary patients with/without DM. Right atrial appendages were obtained from 75 patients randomized into 3 groups: (1) Control (CTRL), valvular patients without CHD; (2) CHD, patients with confirmed CHD; and (3) CHD-DM, patients with CHD and DM. Mitochondrial respiration was measured by high-resolution respirometry and MAOs expression was evaluated by RT-PCR and immunohistochemistry. Hydrogen peroxide (H2O2) emission was assessed by confocal microscopy and spectrophotometrically. The impairment of mitochondrial respiration was substrate-independent in CHD-DM group. MAOs expression was comparable among the groups, with the predominance of MAO-B isoform but no significant differences regarding oxidative stress were detected by either method. Incubation of atrial samples with MAOs inhibitors significantly reduced the H2O2 in all groups. In conclusion, abnormal mitochondrial respiration occurs in CHD and is more severe in DM and MAOs contribute to oxidative stress in human diseased hearts with/without DM. PMID:27190576

  18. Oxidative Stress and Mitochondrial Dysfunction across Broad-Ranging Pathologies: Toward Mitochondria-Targeted Clinical Strategies

    PubMed Central

    d'Ischia, Marco; Gadaleta, Maria Nicola; Pallardó, Federico V.; Petrović, Sandra; Tiano, Luca; Zatterale, Adriana

    2014-01-01

    Beyond the disorders recognized as mitochondrial diseases, abnormalities in function and/or ultrastructure of mitochondria have been reported in several unrelated pathologies. These encompass ageing, malformations, and a number of genetic or acquired diseases, as diabetes and cardiologic, haematologic, organ-specific (e.g., eye or liver), neurologic and psychiatric, autoimmune, and dermatologic disorders. The mechanistic grounds for mitochondrial dysfunction (MDF) along with the occurrence of oxidative stress (OS) have been investigated within the pathogenesis of individual disorders or in groups of interrelated disorders. We attempt to review broad-ranging pathologies that involve mitochondrial-specific deficiencies or rely on cytosol-derived prooxidant states or on autoimmune-induced mitochondrial damage. The established knowledge in these subjects warrants studies aimed at elucidating several open questions that are highlighted in the present review. The relevance of OS and MDF in different pathologies may establish the grounds for chemoprevention trials aimed at compensating OS/MDF by means of antioxidants and mitochondrial nutrients. PMID:24876913

  19. Mitochondrial dysfunction and loss of glutamate uptake in primary astrocytes exposed to titanium dioxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Wilson, Christina L.; Natarajan, Vaishaali; Hayward, Stephen L.; Khalimonchuk, Oleh; Kidambi, Srivatsan

    2015-11-01

    Titanium dioxide (TiO2) nanoparticles are currently the second most produced engineered nanomaterial in the world with vast usage in consumer products leading to recurrent human exposure. Animal studies indicate significant nanoparticle accumulation in the brain while cellular toxicity studies demonstrate negative effects on neuronal cell viability and function. However, the toxicological effects of nanoparticles on astrocytes, the most abundant cells in the brain, have not been extensively investigated. Therefore, we determined the sub-toxic effect of three different TiO2 nanoparticles (rutile, anatase and commercially available P25 TiO2 nanoparticles) on primary rat cortical astrocytes. We evaluated some events related to astrocyte functions and mitochondrial dysregulation: (1) glutamate uptake; (2) redox signaling mechanisms by measuring ROS production; (3) the expression patterns of dynamin-related proteins (DRPs) and mitofusins 1 and 2, whose expression is central to mitochondrial dynamics; and (4) mitochondrial morphology by MitoTracker® Red CMXRos staining. Anatase, rutile and P25 were found to have LC50 values of 88.22 +/- 10.56 ppm, 136.0 +/- 31.73 ppm and 62.37 +/- 9.06 ppm respectively indicating nanoparticle specific toxicity. All three TiO2 nanoparticles induced a significant loss in glutamate uptake indicative of a loss in vital astrocyte function. TiO2 nanoparticles also induced an increase in reactive oxygen species generation, and a decrease in mitochondrial membrane potential, suggesting mitochondrial damage. TiO2 nanoparticle exposure altered expression patterns of DRPs at low concentrations (25 ppm) and apoptotic fission at high concentrations (100 ppm). TiO2 nanoparticle exposure also resulted in changes to mitochondrial morphology confirmed by mitochondrial staining. Collectively, our data provide compelling evidence that TiO2 nanoparticle exposure has potential implications in astrocyte-mediated neurological dysfunction.Titanium dioxide (Ti

  20. Mitochondrial fragmentation in excitotoxicity requires ROCK activation.

    PubMed

    Martorell-Riera, Alejandro; Segarra-Mondejar, Marc; Reina, Manuel; Martínez-Estrada, Ofelia M; Soriano, Francesc X

    2015-01-01

    Mitochondria morphology constantly changes through fission and fusion processes that regulate mitochondrial function, and it therefore plays a prominent role in cellular homeostasis. Cell death progression is associated with mitochondrial fission. Fission is mediated by the mainly cytoplasmic Drp1, which is activated by different post-translational modifications and recruited to mitochondria to perform its function. Our research and other studies have shown that in the early moments of excitotoxic insult Drp1 must be nitrosylated to mediate mitochondrial fragmentation in neurons. Nonetheless, mitochondrial fission is a multistep process in which filamentous actin assembly/disassembly and myosin-mediated mitochondrial constriction play prominent roles. Here we establish that in addition to nitric oxide production, excitotoxicity-induced mitochondrial fragmentation also requires activation of the actomyosin regulator ROCK. Although ROCK1 has been shown to phosphorylate and activate Drp1, experiments using phosphor-mutant forms of Drp1 in primary cortical neurons indicate that in excitotoxic conditions, ROCK does not act directly on Drp1 to mediate fission, but may act on the actomyosin complex. Thus, these data indicate that a wider range of signaling pathways than those that target Drp1 are amenable to be inhibited to prevent mitochondrial fragmentation as therapeutic option. PMID:25789413

  1. Induction of apoptosis by Cordyceps militaris fraction in human chronic myeloid leukemia K562 cells involved with mitochondrial dysfunction

    PubMed Central

    Tian, Tian; Song, Liyan; Zheng, Qin; Hu, Xianjing; Yu, Rongmin

    2014-01-01

    Background: Cordyceps militaris is widely used for various ethno medical conditions including cancer and inflammation complications in traditional Chinese medicine. Objective: To investigate the in vitro antitumor activity of Cordyceps militaris fraction (CMF) and the molecular mechanism underlying the apoptosis it induces in human chronic myeloid leukemia K562 cells. Materials and Methods: CMF was prepared according to our previous report. Cell viability was assessed by MTT assay. The rate of apoptosis, distribution of cell cycle and loss of mitochondrial membrane potential were measured by flow cytometry. Caspase activities were analyzed by Western blot and oxygen consumption rate was recorded using the Oxytherm system. Results: The results demonstrated that CMF triggered growth inhibition in K562 cells with only minor toxicity on a normal human cell line and inhibited the proliferation of K562 cells in a dose- and time-dependent manner with IC50 value of 34.1 ± 2.0 μg/ml after 48 h incubation. This most likely resulted from cell cycle arrest at the S phase and the induction of apoptosis. In addition, CMF induced activation of caspase-3 and subsequent cleavage of poly ADP-ribose polymerase (PARP). The caspase signals may originate from mitochondrial dysfunction, which was supported by the finding of decreased mitochondria transmembrance potential and the lower oxygen consumption rate. Conclusion: CMF possessed the in vitro antitumor effect on K562 cells and CMF-induced apoptosis might be involved by the mitochondrial dysfunction and valuable to research and develop as a potential antitumor agency. PMID:25210321

  2. Proton magnetic resonance spectroscopy and MRI reveal no evidence for brain mitochondrial dysfunction in children with autism spectrum disorder.

    PubMed

    Corrigan, Neva M; Shaw, Dennis W W; Richards, Todd L; Estes, Annette M; Friedman, Seth D; Petropoulos, Helen; Artru, Alan A; Dager, Stephen R

    2012-01-01

    Brain mitochondrial dysfunction has been proposed as an etiologic factor in autism spectrum disorder (ASD). Proton magnetic resonance spectroscopic imaging ((1)HMRS) and MRI were used to assess for evidence of brain mitochondrial dysfunction in longitudinal samples of children with ASD or developmental delay (DD), and cross-sectionally in typically developing (TD) children at 3-4, 6-7 and 9-10 years-of-age. A total of 239 studies from 130 unique participants (54ASD, 22DD, 54TD) were acquired. (1)HMRS and MRI revealed no evidence for brain mitochondrial dysfunction in the children with ASD. Findings do not support a substantive role for brain mitochondrial abnormalities in the etiology or symptom expression of ASD, nor the widespread use of hyperbaric oxygen treatment that has been advocated on the basis of this proposed relationship. PMID:21404085

  3. CR108, a novel vitamin K3 derivative induces apoptosis and breast tumor inhibition by reactive oxygen species and mitochondrial dysfunction

    SciTech Connect

    Yang, Chun-Ru; Liao, Wei-Siang; Wu, Ya-Hui; Murugan, Kaliyappan; Chen, Chinpiao; Chao, Jui-I

    2013-12-15

    Vitamin K3 derivatives have been shown to exert anticancer activities. Here we show a novel vitamin K3 derivative (S)-2-(2-hydroxy-3-methylbutylthio)naphthalene-1,4-dione, which is named as CR108 that induces apoptosis and tumor inhibition through reactive oxygen species (ROS) and mitochondrial dysfunction in human breast cancer. CR108 is more effective on the breast cancer cell death than other vitamin K3 derivatives. Moreover, CR108 induced apoptosis in both the non-HER-2-overexpressed MCF-7 and HER-2-overexpressed BT-474 breast cancer cells. CR108 caused the loss of mitochondrial membrane potential, cytochrome c released from mitochondria to cytosol, and cleaved PARP proteins for apoptosis induction. CR108 markedly increased ROS levels in breast cancer cells. N-acetylcysteine (NAC), a general ROS scavenger, completely blocked the CR108-induced ROS levels, mitochondrial dysfunction and apoptosis. Interestingly, CR108 increased the phosphorylation of p38 MAP kinase but conversely inhibited the survivin protein expression. NAC treatment prevented the activation of p38 MAP kinase and rescued the survivin protein levels. SB202190, a specific p38 MAP kinase inhibitor, recovered the survivin protein levels and attenuated the cytotoxicity of CR108-treated cells. Furthermore, CR108 inhibited the xenografted human breast tumor growth in nude mice. Together, we demonstrate that CR108 is a novel vitamin K3 derivative that induces apoptosis and tumor inhibition by ROS production and mitochondrial dysfunction and associates with the phosphorylation of p38 MAP kinase and the inhibition of survivin in the human breast cancer. - Highlights: • CR108 is more effective on the cell death than other vitamin K3 derivatives. • CR108 induces apoptosis and tumor inhibition by ROS and mitochondrial dysfunction. • CR108 induces apoptosis by p38 kinase activation and survivin inhibition. • CR108 is a potent vitamin K3 analog that can develop for breast cancer therapy.

  4. Mitochondrial Dysfunction Induced by Different Organochalchogens Is Mediated by Thiol Oxidation and Is Not Dependent of the Classical Mitochondrial Permeability Transition Pore Opening

    PubMed Central

    Puntel, Robson L.; Roos, Daniel H.; Folmer, Vanderlei; Nogueira, Cristina W.; Galina, Antonio; Aschner, Michael; Rocha, João B. T.

    2010-01-01

    Ebselen (Ebs) and diphenyl diselenide [(PhSe)2] readily oxidize thiol groups. Here we studied mitochondrial swelling changes in mitochondrial potential (Δψm), NAD(P)H oxidation, reactive oxygen species production, protein aggregate formation, and oxygen consumption as ending points of their in vitro toxicity. Specifically, we tested the hypothesis that organochalchogens toxicity could be associated with mitochondrial dysfunction via oxidation of vicinal thiol groups that are known to be involved in the regulation of mitochondrial permeability (Petronilli et al. J. Biol. Chem., 269; 16638; 1994). Furthermore, we investigated the possible mechanism(s) by which these organochalchogens could disrupt liver mitochondrial function. Ebs and (PhSe)2 caused mitochondrial depolarization and swelling in a concentration-dependent manner. Furthermore, both organochalchogens caused rapid oxidation of the mitochondrial pyridine nucleotides (NAD(P)H) pool, likely reflecting the consequence and not the cause of increased mitochondrial permeability (Costantini, P., Chernyak, B. V., Petronilli, V., and Bernardi, P. (1996). Modulation of the mitochondrial permeability transition pore (PTP) by pyridine nucleotides and dithiol oxidation at two separate sites. J. Biol. Chem. 271, 6746–6751). The organochalchogens-induced mitochondrial dysfunction was prevented by the reducing agent dithiothreitol (DTT). Ebs- and (PhSe)2-induced mitochondrial depolarization and swelling were unchanged by ruthenium red (4μM), butylated hydroxytoluene (2.5μM), or cyclosporine A (1μM). N-ethylmaleimide enhanced the organochalchogens-induced mitochondrial depolarization, without affecting the magnitude of the swelling response. In contrast, iodoacetic acid did not modify the effects of Ebs or (PhSe)2 on the mitochondria. Additionally, Ebs and (PhSe)2 decreased the basal 2' 7' dichlorofluorescin diacetate (H2-DCFDA) oxidation and oxygen consumption rate in state 3 and increased it during the state 4 of

  5. Mitochondrial dysfunction in an Opa1(Q285STOP) mouse model of dominant optic atrophy results from Opa1 haploinsufficiency.

    PubMed

    Kushnareva, Y; Seong, Y; Andreyev, A Y; Kuwana, T; Kiosses, W B; Votruba, M; Newmeyer, D D

    2016-01-01

    Mutations in the opa1 (optic atrophy 1) gene lead to autosomal dominant optic atrophy (ADOA), a hereditary eye disease. This gene encodes the Opa1 protein, a mitochondrial dynamin-related GTPase required for mitochondrial fusion and the maintenance of normal crista structure. The majority of opa1 mutations encode truncated forms of the protein, lacking a complete GTPase domain. It is unclear whether the phenotype results from haploinsufficiency or rather a deleterious effect of truncated Opa1 protein. We studied a heterozygous Opa1 mutant mouse carrying a defective allele with a stop codon in the beginning of the GTPase domain at residue 285, a mutation that mimics human pathological mutations. Using an antibody raised against an N-terminal portion of Opa1, we found that the level of wild-type protein was decreased in the mutant mice, as predicted. However, no truncated Opa1 protein was expressed. In embryonic fibroblasts isolated from the mutant mice, this partial loss of Opa1 caused mitochondrial respiratory deficiency and a selective loss of respiratory Complex IV subunits. Furthermore, partial Opa1 deficiency resulted in a substantial resistance to endoplasmic reticulum stress-induced death. On the other hand, the enforced expression of truncated Opa1 protein in cells containing normal levels of wild-type protein did not cause mitochondrial defects. Moreover, cells expressing the truncated Opa1 protein showed reduced Bax activation in response to apoptotic stimuli. Taken together, our results exclude deleterious dominant-negative or gain-of-function mechanisms for this type of Opa1 mutation and affirm haploinsufficiency as the mechanism underlying mitochondrial dysfunction in ADOA. PMID:27468686

  6. FAM3A attenuates ER stress-induced mitochondrial dysfunction and apoptosis via CHOP-Wnt pathway.

    PubMed

    Song, Qing; Gou, Wen-Li; Zhang, Rong

    2016-03-01

    Endoplasmic reticulum (ER) stress is linked to several neurological disorders, and neuronal injury cascades initiated by excessive ER stress are mediated, in part, via mitochondrial dysfunction. In the present study, we identified FAM3A as an important regulator of ER stress-induced cell death in neuronal HT22 cells. The ER stress inductor tunicamycin (TM) significantly decreased the expression of FAM3A at both mRNA and protein levels, which was shown to be dependent on the induction of reactive oxygen species (ROS). Overexpression of FAM3A attenuated TM-induced apoptosis and activation of ER stress factors, but had no effect on ER calcium metabolism in HT22 cells. We also found decreased mitochondrial ROS generation, inhibited cytochrome c release and preserved mitochondrial membrane potential (MMP) in FAM3A overexpressed cells. In addition, the experiments using isolated mitochondria showed that overexpression of FAM3A attenuated mitochondrial swelling and loss of mitochondrial Ca(2+) buffering capacity after TM exposure. By using specific targeted small interfering RNA (siRNA) to knockdown the expression of the C/EBP homologous protein (CHOP), we found that FAM3A-induced protection and inhibition of ER stress was mediated by inverting TM-induced decrease of Wnt through the CHOP pathway. Our study demonstrates a pivotal role of FAM3A in protecting against TM-induced cytotoxicity via regulating CHOP-Wnt pathway, and suggests the therapeutic values of FAM3A overexpression against ER stress-associated neuronal injury. PMID:26939760

  7. Mitochondrial dysfunction in an Opa1Q285STOP mouse model of dominant optic atrophy results from Opa1 haploinsufficiency

    PubMed Central

    Kushnareva, Y; Seong, Y; Andreyev, A Y; Kuwana, T; Kiosses, W B; Votruba, M; Newmeyer, D D

    2016-01-01

    Mutations in the opa1 (optic atrophy 1) gene lead to autosomal dominant optic atrophy (ADOA), a hereditary eye disease. This gene encodes the Opa1 protein, a mitochondrial dynamin-related GTPase required for mitochondrial fusion and the maintenance of normal crista structure. The majority of opa1 mutations encode truncated forms of the protein, lacking a complete GTPase domain. It is unclear whether the phenotype results from haploinsufficiency or rather a deleterious effect of truncated Opa1 protein. We studied a heterozygous Opa1 mutant mouse carrying a defective allele with a stop codon in the beginning of the GTPase domain at residue 285, a mutation that mimics human pathological mutations. Using an antibody raised against an N-terminal portion of Opa1, we found that the level of wild-type protein was decreased in the mutant mice, as predicted. However, no truncated Opa1 protein was expressed. In embryonic fibroblasts isolated from the mutant mice, this partial loss of Opa1 caused mitochondrial respiratory deficiency and a selective loss of respiratory Complex IV subunits. Furthermore, partial Opa1 deficiency resulted in a substantial resistance to endoplasmic reticulum stress-induced death. On the other hand, the enforced expression of truncated Opa1 protein in cells containing normal levels of wild-type protein did not cause mitochondrial defects. Moreover, cells expressing the truncated Opa1 protein showed reduced Bax activation in response to apoptotic stimuli. Taken together, our results exclude deleterious dominant-negative or gain-of-function mechanisms for this type of Opa1 mutation and affirm haploinsufficiency as the mechanism underlying mitochondrial dysfunction in ADOA. PMID:27468686

  8. Preferential killing of human lung cancer cell lines with mitochondrial dysfunction by nonthermal dielectric barrier discharge plasma

    PubMed Central

    Panngom, K; Baik, K Y; Nam, M K; Han, J H; Rhim, H; Choi, E H

    2013-01-01

    The distinctive cellular and mitochondrial dysfunctions of two human lung cancer cell lines (H460 and HCC1588) from two human lung normal cell lines (MRC5 and L132) have been studied by dielectric barrier discharge (DBD) plasma treatment. This cytotoxicity is exposure time-dependent, which is strongly mediated by the large amount of H2O2 and NOx in culture media generated by DBD nonthermal plasma. It is found that the cell number of lung cancer cells has been reduced more than that of the lung normal cells. The mitochondrial vulnerability to reactive species in H460 may induce distinctively selective responses. Differential mitochondrial membrane potential decrease, mitochondrial enzymatic dysfunction, and mitochondrial morphological alteration are exhibited in two cell lines. These results suggest the nonthermal plasma treatment as an efficacious modality in lung cancer therapy. PMID:23703387

  9. Compensatory elevation of voluntary activity in mouse mutants with impaired mitochondrial energy metabolism

    PubMed Central

    Lapointe, Jérôme; G. Hughes, Bryan; Bigras, Eve; Hekimi, Siegfried

    2014-01-01

    Abstract Mitochondria play a crucial role in determining whole‐body metabolism and exercise capacity. Genetic mouse models of mild mitochondrial dysfunction provide an opportunity to understand how mitochondrial function affects these parameters. MCLK1 (a.k.a. Coq7) is an enzyme implicated in the biosynthesis of ubiquinone (UQ; Coenzyme Q). Low levels of MCLK1 in Mclk1+/− heterozygous mutants lead to abnormal sub‐mitochondrial distribution of UQ, impaired mitochondrial function, elevated mitochondrial oxidative stress, and increased lifespan. Here, we report that young Mclk1+/− males, but not females, show a significant decrease in whole‐body metabolic rate as measured by indirect calorimetry. Such a sex‐specific effect of mitochondrial dysfunction on energy metabolism has also been reported for heterozygous mice carrying a mutation for the gene encoding the “Rieske” protein of mitochondrial complex III (RISP+/P224S). We find that both Mclk1+/− and RISP+/P224S males are capable of restoring their defective metabolic rates by making significantly more voluntary use of a running wheel compared to wild type. However, this increase in voluntary activity does not reflect their exercise capacity, which we found to be impaired as revealed by a shorter treadmill distance run before exhaustion. In contrast to what is observed in Mclk1+/− and RISP+/P224S mutants, Sod2+/− mice with elevated oxidative stress and major mitochondrial dysfunction did not increase voluntary activity. Our study reveals a sex‐specific effect on how impaired mitochondrial function impacts whole‐body energy metabolism and locomotory behavior, and contributes to the understanding of the metabolic and behavioral consequences of mitochondrial disorders. PMID:25413331

  10. Platelet Mitochondrial Activity and Pesticide Exposure in Early Parkinson’s Disease

    PubMed Central

    Bronstein, Jeff M.; Paul, Kimberly; Yang, Laurice; Haas, Richard H.; Shults, Clifford W.; Le, Thuy; Ritz, Beate

    2015-01-01

    Background Mitochondrial dysfunction has been implicated in the pathogenesis of Parkinson’s disease (PD) but the cause of this dysfunction is unclear. Methods Platelet mitochondrial complex I and I/III (NADH cytochrome c reductase, NCCR) activities were measured in early PD patients and matched controls enrolled in a population based case-control study. Ambient agricultural pesticide exposures were assessed with a geographic information system and California Pesticide Use Registry. Results In contrast to some previous reports, we found no differences in complex I and I/III activities in subjects with PD and controls. We did find that NCCR activity correlated with subjects’ exposure to pesticides known to inhibit mitochondrial activity regardless of their diagnosis. Conclusions ETC activity is not altered in PD in this well-characterized cohort when compared to community-matched controls but appears to be affected by environmental toxins, such as mitochondria-inhibiting pesticides. PMID:25757798

  11. Isthmin targets cell-surface GRP78 and triggers apoptosis via induction of mitochondrial dysfunction.

    PubMed

    Chen, M; Zhang, Y; Yu, V C; Chong, Y-S; Yoshioka, T; Ge, R

    2014-05-01

    Isthmin (ISM) is a secreted 60-kDa protein that potently induces endothelial cell (EC) apoptosis. It suppresses tumor growth and angiogenesis in mice when stably overexpressed in cancer cells. Although αvβ5 integrin serves as a low-affinity receptor for ISM, the mechanism by which ISM mediates antiangiogenesis and apoptosis in ECs remain to be fully resolved. In this work, we report the identification of cell-surface glucose-regulated protein 78 kDa (GRP78) as a high-affinity receptor for ISM (Kd=8.6 nM). We demonstrated that ISM-GRP78 interaction triggers apoptosis not only in activated ECs but also in cancer cells expressing high level of cell-surface GRP78. Normal cells and benign tumor cells tend to express low level of cell-surface GRP78 and are resistant to ISM-induced apoptosis. Upon binding to GRP78, ISM is internalized into ECs through clathrin-dependent endocytosis that is essential for its proapoptotic activity. Once inside the cell, ISM co-targets with GRP78 to mitochondria where it interacts with ADP/ATP carriers on the inner membrane and blocks ATP transport from mitochondria to cytosol, thereby causing apoptosis. Hence, ISM is a novel proapoptotic ligand that targets cell-surface GRP78 to trigger apoptosis by inducing mitochondrial dysfunction. The restricted and high-level expression of cell-surface GRP78 on cancer cells and cancer ECs make them uniquely susceptible to ISM-targeted apoptosis. Indeed, systemic delivery of recombinant ISM potently suppressed subcutaneous 4T1 breast carcinoma and B16 melanoma growth in mice by eliciting apoptosis selectively in the cancer cells and cancer ECs. Together, this work reveals a novel ISM-GRP78 apoptosis pathway and demonstrates the potential of ISM as a cancer-specific and dual-targeting anticancer agent. PMID:24464222

  12. Association of mitochondrial allele 4216C with increased risk for sepsis-related organ dysfunction and shock after burn injury.

    PubMed

    Huebinger, Ryan M; Gomez, Ruben; McGee, Daphne; Chang, Ling-Yu; Bender, Jessica E; O'Keeffe, Terence; Burris, Agnes M; Friese, Susan M; Purdue, Gary F; Hunt, John L; Arnoldo, Brett D; Horton, Jureta W; Barber, Robert C

    2010-01-01

    Impaired mitochondrial activity has been linked to increased risk for clinical complications after injury. Furthermore, variant mitochondrial alleles have been identified and are thought to result in decreased mitochondrial activity. These include a nonsynonymous mitochondrial polymorphism (T4216C) in the nicotinamide adenine dinucleotide dehydrogenase 1 gene (ND1), encoding a key member of complex I within the electron transport chain, which is found almost exclusively among Caucasians. We hypothesized that burn patients carrying ND1 4216C are less able to generate the cellular energy necessary for an effective immune response and are at increased risk for infectious complications. The association between 4216C and outcome after burn injury was evaluated in a cohort of 175 Caucasian patients admitted to the Parkland Hospital with burns covering greater than or equal to 15% of their total body surface area or greater than or equal to 5% full-thickness burns under an institutional review board-approved protocol. To remove confounding unrelated to burn injury, individuals were excluded if they presented with significant non-burn-related trauma (Injury Severity Score > or =16), traumatic or anoxic brain injury, spinal cord injury, were HIV/AIDS positive, had active malignancy, or survived less than 48 h postadmission. Within this cohort of patients, carriage of the 4216C allele was significantly associated by unadjusted analysis with increased risk for sepsis-related organ dysfunction or septic shock (P = 0.011). After adjustment for full-thickness burn size, inhalation injury, age, and sex, carriage of the 4216C allele was associated with complicated sepsis (adjusted odds ratio = 3.7; 95% confidence interval, 1.5-9.1; P = 0.005), relative to carriers of the T allele. PMID:19487983

  13. Mitochondrial dysfunction in Parkinson disease: evidence in mutant PARK2 fibroblasts

    PubMed Central

    Zanellati, Maria C.; Monti, Valentina; Barzaghi, Chiara; Reale, Chiara; Nardocci, Nardo; Albanese, Alberto; Valente, Enza M.; Ghezzi, Daniele; Garavaglia, Barbara

    2015-01-01

    Mutations in PARK2, encoding Parkin, cause an autosomal recessive form of juvenile Parkinson Disease (JPD). The aim of the present study was to investigate the impact of PARK2 mutations on mitochondrial function and morphology in human skin fibroblasts. We analyzed cells obtained from four patients clinically characterized by JPD, harboring recessive mutations in PARK2. By quantitative PCR we found a reduction (<50%) of PARK2 transcript in all patients but one; however Western Blot analysis demonstrated the virtual absence of Parkin protein in all mutant fibroblasts. Respiration assays showed an increment of oxygen consumption, which was uncoupled to ATP cellular levels. This finding was probably due to presence of altered mitochondrial membrane potential (ΔΨm), confirmed by JC-1 analysis. The mitochondrial network was comparable between mutant and control cells but, interestingly, a “chain-like” network was found only in mutant fibroblasts. Dissipation of ΔΨm usually leads to mitochondrial fragmentation in healthy cells and eventually to mitophagy; however, this behavior was not observed in patients' fibroblasts. The absence of mitochondrial fragmentation in mutant Parkin fibroblasts could results in accumulation of damaged mitochondria not targeted to mitophagy. This condition should increase the oxidative stress and lead to cellular dysfunction and death. Our results suggest that PARK2 mutations cause mitochondrial impairment, in particular reduction in ATP cellular levels and alteration of ΔΨm, even in non-neuronal cells and confirm the hypothesis that Parkin holds a pivotal role in pro-fission events. PMID:25815004

  14. Erythropoietin and Its Derivates Modulate Mitochondrial Dysfunction after Diffuse Traumatic Brain Injury.

    PubMed

    Millet, Anne; Bouzat, Pierre; Trouve-Buisson, Thibaut; Batandier, Cécile; Pernet-Gallay, Karin; Gaide-Chevronnay, Lucie; Barbier, Emmanuel L; Debillon, Thierry; Fontaine, Eric; Payen, Jean-François

    2016-09-01

    Inhibiting the opening of mitochondrial permeability transition pore (mPTP), thereby maintaining the mitochondrial membrane potential and calcium homeostasis, could reduce the induction of cell death. Although recombinant human erythropoietin (rhEpo) and carbamylated erythropoietin (Cepo) were shown to prevent apoptosis after traumatic brain injury (TBI), their impact on mPTP is yet unknown. Thirty minutes after diffuse TBI (impact-acceleration model), rats were intravenously administered a saline solution (TBI-saline), 5000 UI/kg rhEpo (TBI-rhEpo) or 50 μg/kg Cepo (TBI-Cepo). A fourth group received no TBI insult (sham-operated) (n = 11 rats per group). Post-traumatic brain edema was measured using magnetic resonance imaging. A first series of experiments was conducted 2 h after TBI (or equivalent) to investigate the mitochondrial function with the determination of thresholds for mPTP opening and ultrastructural mitochondrial changes. In addition, the intramitochondrial calcium content [Caim] was measured. In a second series of experiments, brain cell apoptosis was assessed at 24 h post-injury. TBI-rhEpo and TBI-Cepo groups had a reduced brain edema compared with TBI-saline. They had higher threshold for mPTP opening with succinate as substrate: 120 (120-150) (median, interquartiles) and 100 (100-120) versus 80 (60-90) nmol calcium/mg protein in TBI-saline, respectively (p < 0.05). Similar findings were shown with glutamate-malate as substrate. TBI-rhEpo and Cepo groups had less morphological mitochondrial disruption in astrocytes. The elevation in [Caim] after TBI was not changed by rhEpo and Cepo treatment. Finally, rhEpo and Cepo reduced caspase-3 expression at 24 h post-injury. These results indicate that rhEpo and Cepo could modulate mitochondrial dysfunction after TBI. The mechanisms involved are discussed. PMID:26530102

  15. Mitochondrial Dysfunction Is the Focus of Quaternary Ammonium Surfactant Toxicity to Mammalian Epithelial Cells

    PubMed Central

    Inácio, Ângela S.; Costa, Gabriel N.; Domingues, Neuza S.; Santos, Maria S.; Moreno, António J. M.; Vaz, Winchil L. C.

    2013-01-01

    Surfactants have long been known to have microbicidal action and have been extensively used as antiseptics and disinfectants for a variety of general hygiene and clinical purposes. Among surfactants, quaternary ammonium compounds (QAC) are known to be the most useful antiseptics and disinfectants. However, our previous toxicological studies showed that QAC are also the most toxic surfactants for mammalian cells. An understanding of the mechanisms that underlie QAC toxicity is a crucial first step in their rational use and in the design and development of more effective and safer molecules. We show that QAC-induced toxicity is mediated primarily through mitochondrial dysfunction in mammalian columnar epithelial cell cultures in vitro. Toxic effects begin at sublethal concentrations and are characterized by mitochondrial fragmentation accompanied by decreased cellular energy charge. At very low concentrations, several QAC act on mitochondrial bioenergetics through a common mechanism of action, primarily by inhibiting mitochondrial respiration initiated at complex I and, to a lesser extent, by slowing down coupled ADP phosphorylation. The result is a reduction of cellular energy charge which, when reduced below 50% of its original value, induces apoptosis. The lethal effects are shown to be primarily a result of this process. At higher doses (closer to the critical micellar concentration), QAC induce the complete breakdown of cellular energy charge and necrotic cell death. PMID:23529737

  16. Platycodin D induced apoptosis and autophagy in PC-12 cells through mitochondrial dysfunction pathway

    NASA Astrophysics Data System (ADS)

    Zeng, Chuan-Chuan; Zhang, Cheng; Yao, Jun-Hua; Lai, Shang-Hai; Han, Bing-Jie; Li, Wei; Tang, Bing; Wan, Dan; Liu, Yun-Jun

    2016-11-01

    In this article, the in vitro cytotoxicity of platycodin D was evaluated in human PC-12, SGC-7901, BEL-7402, HeLa and A549 cancer cell lines. PC-12 cells were sensitive to platycodin D treatment, with an IC50 value of 13.5 ± 1.2 μM. Morphological and comet assays showed that platycodin D effectively induced apoptosis in PC-12 cells. Platycodin D increased the levels of reactive oxygen species (ROS) and induced a decrease in mitochondrial membrane potential. Platycodin D induced cell cycle arrest at the G0/G1 phase in the PC-12 cell line. Platycodin D can induce autophagy. In addition, platycodin D can down-regulate the expression of Bcl-2 and Bcl-x, and up-regulate the levels of Bid protein in the PC-12 cells. The results demonstrated that platycodin D induced PC-12 cell apoptosis through a ROS-mediated mitochondrial dysfunction pathway.

  17. Platycodin D induced apoptosis and autophagy in PC-12 cells through mitochondrial dysfunction pathway.

    PubMed

    Zeng, Chuan-Chuan; Zhang, Cheng; Yao, Jun-Hua; Lai, Shang-Hai; Han, Bing-Jie; Li, Wei; Tang, Bing; Wan, Dan; Liu, Yun-Jun

    2016-11-01

    In this article, the in vitro cytotoxicity of platycodin D was evaluated in human PC-12, SGC-7901, BEL-7402, HeLa and A549 cancer cell lines. PC-12 cells were sensitive to platycodin D treatment, with an IC50 value of 13.5±1.2μM. Morphological and comet assays showed that platycodin D effectively induced apoptosis in PC-12 cells. Platycodin D increased the levels of reactive oxygen species (ROS) and induced a decrease in mitochondrial membrane potential. Platycodin D induced cell cycle arrest at the G0/G1 phase in the PC-12 cell line. Platycodin D can induce autophagy. In addition, platycodin D can down-regulate the expression of Bcl-2 and Bcl-x, and up-regulate the levels of Bid protein in the PC-12 cells. The results demonstrated that platycodin D induced PC-12 cell apoptosis through a ROS-mediated mitochondrial dysfunction pathway. PMID:27294548

  18. Oxidative Stresses and Mitochondrial Dysfunction in Age-Related Hearing Loss

    PubMed Central

    Fujimoto, Chisato

    2014-01-01

    Age-related hearing loss (ARHL), the progressive loss of hearing associated with aging, is the most common sensory disorder in the elderly population. The pathology of ARHL includes the hair cells of the organ of Corti, stria vascularis, and afferent spiral ganglion neurons as well as the central auditory pathways. Many studies have suggested that the accumulation of mitochondrial DNA damage, the production of reactive oxygen species, and decreased antioxidant function are associated with subsequent cochlear senescence in response to aging stress. Mitochondria play a crucial role in the induction of intrinsic apoptosis in cochlear cells. ARHL can be prevented in laboratory animals by certain interventions, such as caloric restriction and supplementation with antioxidants. In this review, we will focus on previous research concerning the role of the oxidative stress and mitochondrial dysfunction in the pathology of ARHL in both animal models and humans and introduce concepts that have recently emerged regarding the mechanisms of the development of ARHL. PMID:25110550

  19. Loss of the RNA-binding protein TACO1 causes late-onset mitochondrial dysfunction in mice.

    PubMed

    Richman, Tara R; Spåhr, Henrik; Ermer, Judith A; Davies, Stefan M K; Viola, Helena M; Bates, Kristyn A; Papadimitriou, John; Hool, Livia C; Rodger, Jennifer; Larsson, Nils-Göran; Rackham, Oliver; Filipovska, Aleksandra

    2016-01-01

    The recognition and translation of mammalian mitochondrial mRNAs are poorly understood. To gain further insights into these processes in vivo, we characterized mice with a missense mutation that causes loss of the translational activator of cytochrome oxidase subunit I (TACO1). We report that TACO1 is not required for embryonic survival, although the mutant mice have substantially reduced COXI protein, causing an isolated complex IV deficiency. We show that TACO1 specifically binds the mt-Co1 mRNA and is required for translation of COXI through its association with the mitochondrial ribosome. We determined the atomic structure of TACO1, revealing three domains in the shape of a hook with a tunnel between domains 1 and 3. Mutations in the positively charged domain 1 reduce RNA binding by TACO1. The Taco1 mutant mice develop a late-onset visual impairment, motor dysfunction and cardiac hypertrophy and thus provide a useful model for future treatment trials for mitochondrial disease. PMID:27319982

  20. Loss of the RNA-binding protein TACO1 causes late-onset mitochondrial dysfunction in mice

    PubMed Central

    Richman, Tara R.; Spåhr, Henrik; Ermer, Judith A.; Davies, Stefan M. K.; Viola, Helena M.; Bates, Kristyn A.; Papadimitriou, John; Hool, Livia C.; Rodger, Jennifer; Larsson, Nils-Göran; Rackham, Oliver; Filipovska, Aleksandra

    2016-01-01

    The recognition and translation of mammalian mitochondrial mRNAs are poorly understood. To gain further insights into these processes in vivo, we characterized mice with a missense mutation that causes loss of the translational activator of cytochrome oxidase subunit I (TACO1). We report that TACO1 is not required for embryonic survival, although the mutant mice have substantially reduced COXI protein, causing an isolated complex IV deficiency. We show that TACO1 specifically binds the mt-Co1 mRNA and is required for translation of COXI through its association with the mitochondrial ribosome. We determined the atomic structure of TACO1, revealing three domains in the shape of a hook with a tunnel between domains 1 and 3. Mutations in the positively charged domain 1 reduce RNA binding by TACO1. The Taco1 mutant mice develop a late-onset visual impairment, motor dysfunction and cardiac hypertrophy and thus provide a useful model for future treatment trials for mitochondrial disease. PMID:27319982

  1. Gefitinib-mediated reactive oxygen specie (ROS) instigates mitochondrial dysfunction and drug resistance in lung cancer cells.

    PubMed

    Okon, Imoh S; Coughlan, Kathleen A; Zhang, Miao; Wang, Qiongxin; Zou, Ming-Hui

    2015-04-01

    Therapeutic benefits offered by tyrosine kinase inhibitors (TKIs), such as gefitinib (Iressa) and erlotinib (Tarceva), are limited due to the development of resistance, which contributes to treatment failure and cancer-related mortality. The aim of this study was to elucidate mechanistic insight into cellular perturbations that accompany acquired gefitinib resistance in lung cancer cells. Several lung adenocarcinoma (LAD) cell lines were screened to characterize epidermal growth factor receptor (EGFR) expression and mutation profile. To circumvent intrinsic variations between cell lines with respect to response to drug treatments, we generated gefitinib-resistant H1650 clone by long-term, chronic culture under gefitinib selection of parental cell line. Isogenic cells were analyzed by microarray, Western blot, flow cytometry, and confocal and transmission electron microscope. We observed that although chronic gefitinib treatment provided effective action against its primary target (aberrant EGFR activity), secondary effects resulted in increased cellular reactive oxygen species (ROS). Gefitinib-mediated ROS correlated with epithelial-mesenchymal transition, as well as striking perturbation of mitochondrial morphology and function. However, gefitinib treatment in the presence of ROS scavenger provided a partial rescue of mitochondrial aberrations. Furthermore, withdrawal of gefitinib from previously resistant clones correlated with normalized expression of epithelial-mesenchymal transition genes. These findings demonstrate that chronic gefitinib treatment promotes ROS and mitochondrial dysfunction in lung cancer cells. Antioxidants may alleviate ROS-mediated resistance. PMID:25681445

  2. High Glucose Causes Human Cardiac Progenitor Cell Dysfunction by Promoting Mitochondrial Fission: Role of a GLUT1 Blocker.

    PubMed

    Choi, He Yun; Park, Ji Hye; Jang, Woong Bi; Ji, Seung Taek; Jung, Seok Yun; Kim, Da Yeon; Kang, Songhwa; Kim, Yeon Ju; Yun, Jisoo; Kim, Jae Ho; Baek, Sang Hong; Kwon, Sang-Mo

    2016-07-01

    Cardiovascular disease is the most common cause of death in diabetic patients. Hyperglycemia is the primary characteristic of diabetes and is associated with many complications. The role of hyperglycemia in the dysfunction of human cardiac progenitor cells that can regenerate damaged cardiac tissue has been investigated, but the exact mechanism underlying this association is not clear. Thus, we examined whether hyperglycemia could regulate mitochondrial dynamics and lead to cardiac progenitor cell dysfunction, and whether blocking glucose uptake could rescue this dysfunction. High glucose in cardiac progenitor cells results in reduced cell viability and decreased expression of cell cycle-related molecules, including CDK2 and cyclin E. A tube formation assay revealed that hyperglycemia led to a significant decrease in the tube-forming ability of cardiac progenitor cells. Fluorescent labeling of cardiac progenitor cell mitochondria revealed that hyperglycemia alters mitochondrial dynamics and increases expression of fission-related proteins, including Fis1 and Drp1. Moreover, we showed that specific blockage of GLUT1 improved cell viability, tube formation, and regulation of mitochondrial dynamics in cardiac progenitor cells. To our knowledge, this study is the first to demonstrate that high glucose leads to cardiac progenitor cell dysfunction through an increase in mitochondrial fission, and that a GLUT1 blocker can rescue cardiac progenitor cell dysfunction and downregulation of mitochondrial fission. Combined therapy with cardiac progenitor cells and a GLUT1 blocker may provide a novel strategy for cardiac progenitor cell therapy in cardiovascular disease patients with diabetes. PMID:27350339

  3. High Glucose Causes Human Cardiac Progenitor Cell Dysfunction by Promoting Mitochondrial Fission: Role of a GLUT1 Blocker

    PubMed Central

    Choi, He Yun; Park, Ji Hye; Jang, Woong Bi; Ji, Seung Taek; Jung, Seok Yun; Kim, Da Yeon; Kang, Songhwa; Kim, Yeon Ju; Yun, Jisoo; Kim, Jae Ho; Baek, Sang Hong; Kwon, Sang-Mo

    2016-01-01

    Cardiovascular disease is the most common cause of death in diabetic patients. Hyperglycemia is the primary characteristic of diabetes and is associated with many complications. The role of hyperglycemia in the dysfunction of human cardiac progenitor cells that can regenerate damaged cardiac tissue has been investigated, but the exact mechanism underlying this association is not clear. Thus, we examined whether hyperglycemia could regulate mitochondrial dynamics and lead to cardiac progenitor cell dysfunction, and whether blocking glucose uptake could rescue this dysfunction. High glucose in cardiac progenitor cells results in reduced cell viability and decreased expression of cell cycle-related molecules, including CDK2 and cyclin E. A tube formation assay revealed that hyperglycemia led to a significant decrease in the tube-forming ability of cardiac progenitor cells. Fluorescent labeling of cardiac progenitor cell mitochondria revealed that hyperglycemia alters mitochondrial dynamics and increases expression of fission-related proteins, including Fis1 and Drp1. Moreover, we showed that specific blockage of GLUT1 improved cell viability, tube formation, and regulation of mitochondrial dynamics in cardiac progenitor cells. To our knowledge, this study is the first to demonstrate that high glucose leads to cardiac progenitor cell dysfunction through an increase in mitochondrial fission, and that a GLUT1 blocker can rescue cardiac progenitor cell dysfunction and downregulation of mitochondrial fission. Combined therapy with cardiac progenitor cells and a GLUT1 blocker may provide a novel strategy for cardiac progenitor cell therapy in cardiovascular disease patients with diabetes. PMID:27350339

  4. Macroautophagy and Cell Responses Related to Mitochondrial Dysfunction, Lipid Metabolism and Unconventional Secretion of Proteins

    PubMed Central

    Demine, Stéphane; Michel, Sébastien; Vannuvel, Kayleen; Wanet, Anaïs; Renard, Patricia; Arnould, Thierry

    2012-01-01

    Macroautophagy has important physiological roles and its cytoprotective or detrimental function is compromised in various diseases such as many cancers and metabolic diseases. However, the importance of autophagy for cell responses has also been demonstrated in many other physiological and pathological situations. In this review, we discuss some of the recently discovered mechanisms involved in specific and unspecific autophagy related to mitochondrial dysfunction and organelle degradation, lipid metabolism and lipophagy as well as recent findings and evidence that link autophagy to unconventional protein secretion. PMID:24710422

  5. α-Synuclein and Mitochondrial Dysfunction in Parkinson’s Disease

    PubMed Central

    Mullin, Stephen; Schapira, Anthony

    2014-01-01

    α-Synuclein (SNCA) is a substantive component of Lewy bodies, the pathological hallmark of Parkinson’s disease (PD). The discovery and subsequent derivation of its role in PD has led to a suprising but fruitful convergence of the fields of biochemistry and molecular genetics. In particular, the manipulation of the cell lines of a number of forms of familial PD has implicated SNCA in distinct and diverse biochemical pathways related to its pathogenesis. This current and rapidly evolving concept indicates PD is a disease in which interacting pathways of oxidative stress, mitochondrial dysfunction and impaired regulation of protein turnover interact to cause dopaminergic cell dysfunction and death. SNCA has a central role in these processes and manipulation of its expression, degradation and aggregation appear to be promising neuroprotective therapeutic targets. PMID:23361255

  6. Curcumin pretreatment attenuates inflammation and mitochondrial dysfunction in experimental stroke: The possible role of Sirt1 signaling.

    PubMed

    Miao, Yanping; Zhao, Sheng; Gao, Yang; Wang, Ruijun; Wu, Qiong; Wu, Hui; Luo, Tianyou

    2016-03-01

    The effects of curcumin (CCM) on cerebral ischemia/reperfusion injury are not well understood. The aim of this study was to investigate whether CCM attenuates inflammation and mitochondrial dysfunction in a rat model of cerebral ischemia/reperfusion injury and whether Sirt1 is involved in these potential protective effects. Sirtinol, a Sirt1 inhibitor, was used to elucidate the underlying mechanism. Rats were subjected to 2h of transient middle cerebral artery occlusion (MCAO), followed by reperfusion for 24h. Brain magnetic resonance imaging (MRI) was used to detect infarct volumes. Neurological scores and brain water content were also assessed. Levels of tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) in the brain were detected using commercial enzyme-linked immunosorbent assay (ELISA) kits. Expression of SIRT1, acetylated p53 (Ac-p53), Bcl-2, and Bax was measured by western blotting. Our results suggested that CCM exerted a neuroprotective effect, as shown by reduced infarct volumes and brain edema and improved neurological scores. CCM also exerted anti-inflammatory effects, as indicated by decreased TNF-α and IL-6 levels in the brain. CCM elevated mitochondrial membrane potential, mitochondrial complex I activity, and mitochondrial cytochrome c levels, but reduced cytosolic cytochrome c levels. Moreover, CCM upregulated SIRT1 and Bcl-2 expression and downregulated Ac-p53 and Bax expression. These effects of CCM were abolished by sirtinol. In conclusion, our results demonstrate that CCM treatment attenuates ischemic stroke-induced brain injury via activation of SIRT1. PMID:26639783

  7. Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy?

    PubMed Central

    Higgins, G C; Coughlan, M T

    2014-01-01

    Diabetic nephropathy (DN) is a progressive microvascular complication arising from diabetes. Within the kidney, the glomeruli, tubules, vessels and interstitium are disrupted, ultimately impairing renal function and leading to end-stage renal disease (ESRD). Current pharmacological therapies used in individuals with DN do not prevent the inevitable progression to ESRD; therefore, new targets of therapy are urgently required. Studies from animal models indicate that disturbances in mitochondrial homeostasis are central to the pathogenesis of DN. Since renal proximal tubule cells rely on oxidative phosphorylation to provide adequate ATP for tubular reabsorption, an impairment of mitochondrial bioenergetics can result in renal functional decline. Defects at the level of the electron transport chain have long been established in DN, promoting electron leakage and formation of superoxide radicals, mediating microinflammation and contributing to the renal lesion. More recent studies suggest that mitochondrial-associated proteins may be directly involved in the pathogenesis of tubulointerstitial fibrosis and glomerulosclerosis. An accumulation of fragmented mitochondria are found in the renal cortex in both humans and animals with DN, suggesting that in tandem with a shift in dynamics, mitochondrial clearance mechanisms may be impaired. The process of mitophagy is the selective targeting of damaged or dysfunctional mitochondria to autophagosomes for degradation through the autophagy pathway. The current review explores the concept that an impairment in the mitophagy system leads to the accelerated progression of renal pathology. A better understanding of the cellular and molecular events that govern mitophagy and dynamics in DN may lead to improved therapeutic strategies. Linked Articles This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue

  8. Mitochondrial ROS fire up T cell activation.

    PubMed

    Murphy, Michael P; Siegel, Richard M

    2013-02-21

    Metabolic reprogramming has emerged as an important feature of immune cell activation. Two new studies, including Sena et al. (2013) in this issue of Immunity, identify mitochondrial reactive oxygen species (ROS) arising from metabolic reprogramming as signaling molecules in T cell activation. PMID:23438817

  9. [Higher Brain Dysfunction in Mitochondrial Myopathy, Encephalopathy, Lactic Acidosis and Stroke-Like Episodes (MELAS)].

    PubMed

    Ichikawa, Hiroo

    2016-02-01

    Stroke-like episodes are one of the cardinal features of mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS), and occur in 84-99% of the patients. The affected areas detected on neuroimaging do not have classical vascular distribution, and involve predominantly the temporal, parietal and occipital lobes. Thus, the neurological symptoms including higher brain dysfunction correlate with this topographical distribution. In association with the occipital lobe involvement, the most frequent symptom is cortical blindness. Other symptoms have been occasionally reported in case reports: visual agnosia, prosopagnosia, cortical deafness, auditory agnosia, topographical disorientation, various types of aphasia, hemispatial neglect, and so on. On the other hand, cognitive decline associated with more diffuse brain impairment rather than with focal stroke-like lesions has been postulated. This condition is also known as mitochondrial dementia. Domains of cognitive dysfunction include abstract reasoning, verbal memory, visual memory, language (naming and fluency), executive or constructive functions, attention, and visuospatial function. Cognitive functions and intellectual abilities may decline from initially minimal cognitive impairment to dementia. To date, the neuropsychological and neurologic impairment has been reported to be associated with cerebral lactic acidosis as estimated by ventricular spectroscopic lactate levels. PMID:26873235

  10. Evidence linking oxidative stress, mitochondrial dysfunction, and inflammation in the brain of individuals with autism

    PubMed Central

    Rossignol, Daniel A.; Frye, Richard E.

    2014-01-01

    Autism spectrum disorders (ASDs) are a heterogeneous group of neurodevelopmental disorders that are defined solely on the basis of behavioral observations. Therefore, ASD has traditionally been framed as a behavioral disorder. However, evidence is accumulating that ASD is characterized by certain physiological abnormalities, including oxidative stress, mitochondrial dysfunction and immune dysregulation/inflammation. While these abnormalities have been reported in studies that have examined peripheral biomarkers such as blood and urine, more recent studies have also reported these abnormalities in brain tissue derived from individuals diagnosed with ASD as compared to brain tissue derived from control individuals. A majority of these brain tissue studies have been published since 2010. The brain regions found to contain these physiological abnormalities in individuals with ASD are involved in speech and auditory processing, social behavior, memory, and sensory and motor coordination. This manuscript examines the evidence linking oxidative stress, mitochondrial dysfunction and immune dysregulation/inflammation in the brain of ASD individuals, suggesting that ASD has a clear biological basis with features of known medical disorders. This understanding may lead to new testing and treatment strategies in individuals with ASD. PMID:24795645

  11. Mitochondrial dysfunction and defective autophagy in the pathogenesis of collagen VI muscular dystrophies.

    PubMed

    Bernardi, Paolo; Bonaldo, Paolo

    2013-05-01

    Ullrich Congenital Muscular Dystrophy (UCMD), Bethlem Myopathy (BM), and Congenital Myosclerosis are diseases caused by mutations in the genes encoding the extracellular matrix protein collagen VI. A dystrophic mouse model, where collagen VI synthesis was prevented by targeted inactivation of the Col6a1 gene, allowed the investigation of pathogenesis, which revealed the existence of a Ca(2+)-mediated dysfunction of mitochondria and sarcoplasmic reticulum, and of defective autophagy. Key events are dysregulation of the mitochondrial permeability transition pore, an inner membrane high-conductance channel that for prolonged open times causes mitochondrial dysfunction, and inadequate removal of defective mitochondria, which amplifies the damage. Consistently, the Col6a1(-/-) myopathic mice could be cured through inhibition of cyclophilin D, a matrix protein that sensitizes the pore to opening, and through stimulation of autophagy. Similar defects contribute to disease pathogenesis in patients irrespective of the genetic lesion causing the collagen VI defect. These studies indicate that permeability transition pore opening and defective autophagy represent key elements for skeletal muscle fiber death, and provide a rationale for the use of cyclosporin A and its nonimmunosuppressive derivatives in patients affected by collagen VI myopathies, a strategy that holds great promise for treatment. PMID:23580791

  12. Colistin-Induced Apoptosis of Neuroblastoma-2a Cells Involves the Generation of Reactive Oxygen Species, Mitochondrial Dysfunction, and Autophagy.

    PubMed

    Dai, Chongshan; Tang, Shusheng; Velkov, Tony; Xiao, Xilong

    2016-09-01

    Neurotoxicity remains a poorly characterized adverse effect associated with colistin therapy. The aim of the present study was to investigate the mechanism of colistin-induced neurotoxicity using the mouse neuroblastoma2a (N2a) cell line. Colistin treatment (0-200 μM) of N2a neuronal cells induced apoptotic cell death in a dose-dependent manner. Colistin-induced neurotoxicity was associated with a significant increase of reactive oxygen species (ROS) levels, with a concomitant decrease in the activities of superoxide dismutase (SOD), catalase (CAT), and the glutathione (GSH) levels. Mitochondrial dysfunction was evident from the dissipation of membrane potential and the increase of Bax/Bcl-2, followed by the release of cytochrome c (CytC). Caspase-3/7, -8, and -9 activations were also detected. Colistin-induced neurotoxicity significantly increased the gene expression of p53 (1.6-fold), Bax (3.3-fold), and caspase-8 (2.2-fold) (all p < 0.01). The formation of autophagic vacuoles was evident with the significant increases (all p < 0.05 or 0.01) of both of Beclin 1 and LC3B following colistin treatment (50-200 μM). Furthermore, inhibition of autophagy by pretreatment with chloroquine diphosphate (CQ) enhanced colistin-induced apoptosis via caspase activation, which could be attenuated by co-treatment with the pan-caspase inhibitor Z-VAD-FMK. In summary, our study reveals that colistin-induced neuronal cell death involves ROS-mediated oxidative stress and mitochondrial dysfunction, followed by caspase-dependent apoptosis and autophagy. A knowledge base of the neuronal signaling pathways involved in colistin-induced neurotoxicity will greatly facilitate the discovery of neuroprotective agents for use in combination with colistin to prevent this undesirable side effect. PMID:26316077

  13. Cognitive dysfunction and hypogonadotrophic hypogonadism in a Brazilian patient with mitochondrial neurogastrointestinal encephalomyopathy and a novel ECGF1 mutation.

    PubMed

    Carod-Artal, F J; Herrero, M D; Lara, M C; López-Gallardo, E; Ruiz-Pesini, E; Martí, R; Montoya, J

    2007-05-01

    Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is caused by mutations in the thymidine phosphorylase gene (ECGF1). We present the first detailed report of a Brazilian MNGIE patient, harboring a novel ECGF1 homozygous mutation (C4202A, leading to a premature stop codon, S471X). Multiple deletions and the T5814C change were found in mitochondrial DNA. Together with gastrointestinal symptoms, endocrine involvement and memory dysfunction, not reported in MNGIE to date, were the most preeminent features. PMID:17437622

  14. Mitochondrial Dysfunction in Human Leukemic Stem/Progenitor Cells upon Loss of RAC2

    PubMed Central

    Capala, Marta E.; Maat, Henny; Bonardi, Francesco; van den Boom, Vincent; Kuipers, Jeroen; Vellenga, Edo; Giepmans, Ben N. G.; Schuringa, Jan Jacob

    2015-01-01

    Leukemic stem cells (LSCs) reside within bone marrow niches that maintain their relatively quiescent state and convey resistance to conventional treatment. Many of the microenvironmental signals converge on RAC GTPases. Although it has become clear that RAC proteins fulfill important roles in the hematopoietic compartment, little has been revealed about the downstream effectors and molecular mechanisms. We observed that in BCR-ABL-transduced human hematopoietic stem/progenitor cells (HSPCs) depletion of RAC2 but not RAC1 induced a marked and immediate decrease in proliferation, progenitor frequency, cobblestone formation and replating capacity, indicative for reduced self-renewal. Cell cycle analyses showed reduced cell cycle activity in RAC2-depleted BCR-ABL leukemic cobblestones coinciding with an increased apoptosis. Moreover, a decrease in mitochondrial membrane potential was observed upon RAC2 downregulation, paralleled by severe mitochondrial ultrastructural malformations as determined by automated electron microscopy. Proteome analysis revealed that RAC2 specifically interacted with a set of mitochondrial proteins including mitochondrial transport proteins SAM50 and Metaxin 1, and interactions were confirmed in independent co-immunoprecipitation studies. Downregulation of SAM50 also impaired the proliferation and replating capacity of BCR-ABL-expressing cells, again associated with a decreased mitochondrial membrane potential. Taken together, these data suggest an important role for RAC2 in maintaining mitochondrial integrity. PMID:26016997

  15. Centella asiatica attenuates β-amyloid-induced oxidative stress and mitochondrial dysfunction

    PubMed Central

    Gray, Nora E.; Sampath, Harini; Zweig, Jonathan A.; Quinn, Joseph F.; Soumyanath, Amala

    2015-01-01

    Background We previously showed that a water extract of the medicinal plant Centella asiatica (CAW) attenuates β-amyloid (Aβ)-induced cognitive deficits in vivo, and prevents Aβ-induced cytotoxicity in vitro. Yet the neuroprotective mechanism of CAW is unknown. Objective The goal of this study was to identify biochemical pathways altered by CAW using in vitro models of Aβ toxicity. Methods The effects of CAW on aberrations in antioxidant response, calcium homeostasis and mitochondrial function induced by Aβ were evaluated in MC65 and SH-SY5Y neuroblastoma cells. Results CAW decreased intracellular ROS and calcium levels elevated in response to Aβ, and induced the expression of antioxidant response genes in both cell lines. In SH-SY5Y cells, CAW increased basal and maximal oxygen consumption without altering spare capacity, and attenuated Aβ-induced decreases in mitochondrial respiration. CAW also prevented Aβ –induced decreases in ATP and induced the expression of mitochondrial genes and proteins in both cell types. Caffeoylquinic acids from CAW were shown to have a similar effect on antioxidant and mitochondrial gene expression in neuroblastoma cells. Primary rat hippocampal neurons treated with CAW also showed an increase in mitochondrial and antioxidant gene expression. Conclusions These data suggest an effect of CAW on mitochondrial biogenesis, which in conjunction with activation of antioxidant response genes and normalizing calcium homeostasis, likely contributes to its neuroprotective action against Aβ toxicity. PMID:25633675

  16. Sildenafil Ameliorates Advanced Glycation End Products-Induced Mitochondrial Dysfunction in HT-22 Hippocampal Neuronal Cells

    PubMed Central

    Sung, Soon Ki; Woo, Jae Suk; Kim, Young Ha; Son, Dong Wuk; Lee, Sang Weon

    2016-01-01

    Objective Accumulation of advanced glycation end-products (AGE) and mitochondrial glycation is importantly implicated in the pathological changes of the brain associated with diabetic complications, Alzheimer disease, and aging. The present study was undertaken to determine whether sildenafil, a type 5 phosphodiesterase type (PDE-5) inhibitor, has beneficial effect on neuronal cells challenged with AGE-induced oxidative stress to preserve their mitochondrial functional integrity. Methods HT-22 hippocampal neuronal cells were exposed to AGE and changes in the mitochondrial functional parameters were determined. Pretreatment of cells with sildenafil effectively ameliorated these AGE-induced deterioration of mitochondrial functional integrity. Results AGE-treated cells lost their mitochondrial functional integrity which was estimated by their MTT reduction ability and intracellular ATP concentration. These cells exhibited stimulated generation of reactive oxygen species (ROS), disruption of mitochondrial membrane potential, induction of mitochondrial permeability transition, and release of the cytochrome C, activation of the caspase-3 accompanied by apoptosis. Western blot analyses and qRT-PCR demonstrated that sildenafil increased the expression level of the heme oxygenase-1 (HO-1). CoPP and bilirubin, an inducer of HO-1 and a metabolic product of HO-1, respectively, provided a similar protective effects. On the contrary, the HO-1 inhibitor ZnPP IX blocked the effect of sildenafil. Transfection with HO-1 siRNA significantly reduced the protective effect of sildenafil on the loss of MTT reduction ability and MPT induction in AGE-treated cells. Conclusion Taken together, our results suggested that sildenafil provides beneficial effect to protect the HT-22 hippocampal neuronal cells against AGE-induced deterioration of mitochondrial integrity, and upregulation of HO-1 is involved in the underlying mechanism. PMID:27226858

  17. [The study of biochemical mechanisms of mitochondrial dysfunction in rats' hepatocytes during experimental hyperhomocysteinemia].

    PubMed

    Medvedev, D V; Zvyagina, V I

    2016-01-01

    Methionine is an essential proteinogenic amino acid found in many foods. During its metabolism homocysteine is formed. With elevated level of homocysteine in the blood--hyperhomocysteinemia--increased risk of developing certain diseases, such as non-alcoholic fatty liver disease, is associated. There is evidence that the homocysteine is able to reduce the effect of nitric oxide and induce mitochondrial dysfunction. The present study investigates the relationship of the functional state of the liver cells mitochondria and the level of nitric oxide metabolites in them in experimental hyperhomocysteinemia caused by excessive intake of methionine. The experiment was conducted on 17 male Wistar rats with an initial weight of 220-270 g, rats were divided into 2 groups. A 25%. suspension of methionine was administered (in a dose of 1.5 g of methionine per kg body weight) two times a day for 21 days intragastrically (by gavage) to rats of the first group (n=9) while instead of drinking water animals received a 1% aqueous solution of methionine. Drinks daily volume of methionine solution was 17.2 [15.5; 18.1] ml. In the experiment 8 animals were used, in which severe hyperhomocysteinemia (> 100 mmol/l) was developed. The second group (n = 8) served as a control. These rats were administered suspension base containing no methionine (10% Tween-80, 1% starch, 89% water). The total homocysteine concentration was measured in blood serum by ELISA. In the suspension of liver mitochondria total protein was measured by Lowry method; the concentration of NO metabolites by screening method; succinate dehydrogenase activity--under the reaction of hexacyanoferrate (III) potassium reduction; lactate dehydrogenase activity--by decrease of NADH concentration in the reaction of pyruvate's reduction; activity of H(+)-ATPase--by measuring the inorganic phosphate; superoxide dismutase--by inhibition of quercetin auto-oxidation, the level of Ca(2+)--by reaction with Arsenazo III. Oxidative

  18. Oxidative damage of DNA induced by X-irradiation decreases the uterine endometrial receptivity which involves mitochondrial and lysosomal dysfunction

    PubMed Central

    Gao, Wei; Liang, Jin-Xiao; Liu, Shuai; Liu, Chang; Liu, Xiao-Fang; Wang, Xiao-Qi; Yan, Qiu

    2015-01-01

    X irradiation may lead to female infertility and the mechanism is still not clear. After X irradiation exposure, significantly morphological changes and functional decline in endometrial epithelial cells were observed. The mitochondrial and lysosomal dysfunction and oxidative DNA damage were noticed after X irradiation. In addition, pretreatment with NAC, NH4Cl or Pep A reduced the X irradiation induced damages. These studies demonstrate that the oxidative DNA damage which involved dysfunctional lysosomal and mitochondrial contribute to X irradiation-induced impaired receptive state of uterine endometrium and proper protective reagents can be helpful in improving endometrial function. PMID:26064230

  19. Cardiac and mitochondrial dysfunction following acute pulmonary exposure to mountaintop removal mining particulate matter.

    PubMed

    Nichols, Cody E; Shepherd, Danielle L; Knuckles, Travis L; Thapa, Dharendra; Stricker, Janelle C; Stapleton, Phoebe A; Minarchick, Valerie C; Erdely, Aaron; Zeidler-Erdely, Patti C; Alway, Stephen E; Nurkiewicz, Timothy R; Hollander, John M

    2015-12-15

    Throughout the United States, air pollution correlates with adverse health outcomes, and cardiovascular disease incidence is commonly increased following environmental exposure. In areas surrounding active mountaintop removal mines (MTM), a further increase in cardiovascular morbidity is observed and may be attributed in part to particulate matter (PM) released from the mine. The mitochondrion has been shown to be central in the etiology of many cardiovascular diseases, yet its roles in PM-related cardiovascular effects are not realized. In this study, we sought to elucidate the cardiac processes that are disrupted following exposure to mountaintop removal mining particulate matter (PM MTM). To address this question, we exposed male Sprague-Dawley rats to PM MTM, collected within one mile of an active MTM site, using intratracheal instillation. Twenty-four hours following exposure, we evaluated cardiac function, apoptotic indices, and mitochondrial function. PM MTM exposure elicited a significant decrease in ejection fraction and fractional shortening compared with controls. Investigation into the cellular impacts of PM MTM exposure identified a significant increase in mitochondrial-induced apoptotic signaling, as reflected by an increase in TUNEL-positive nuclei and increased caspase-3 and -9 activities. Finally, a significant increase in mitochondrial transition pore opening leading to decreased mitochondrial function was identified following exposure. In conclusion, our data suggest that pulmonary exposure to PM MTM increases cardiac mitochondrial-associated apoptotic signaling and decreases mitochondrial function concomitant with decreased cardiac function. These results suggest that increased cardiovascular disease incidence in populations surrounding MTM mines may be associated with increased cardiac cell apoptotic signaling and decreased mitochondrial function. PMID:26497962

  20. Mitochondrial and Metabolic Dysfunction in Renal Convoluted Tubules of Obese Mice: Protective Role of Melatonin

    PubMed Central

    Giugno, Lorena; Lavazza, Antonio; Reiter, Russel J.; Rodella, Luigi Fabrizio; Rezzani, Rita

    2014-01-01

    Obesity is a common and complex health problem, which impacts crucial organs; it is also considered an independent risk factor for chronic kidney disease. Few studies have analyzed the consequence of obesity in the renal proximal convoluted tubules, which are the major tubules involved in reabsorptive processes. For optimal performance of the kidney, energy is primarily provided by mitochondria. Melatonin, an indoleamine and antioxidant, has been identified in mitochondria, and there is considerable evidence regarding its essential role in the prevention of oxidative mitochondrial damage. In this study we evaluated the mechanism(s) of mitochondrial alterations in an animal model of obesity (ob/ob mice) and describe the beneficial effects of melatonin treatment on mitochondrial morphology and dynamics as influenced by mitofusin-2 and the intrinsic apoptotic cascade. Melatonin dissolved in 1% ethanol was added to the drinking water from postnatal week 5–13; the calculated dose of melatonin intake was 100 mg/kg body weight/day. Compared to control mice, obesity-related morphological alterations were apparent in the proximal tubules which contained round mitochondria with irregular, short cristae and cells with elevated apoptotic index. Melatonin supplementation in obese mice changed mitochondria shape and cristae organization of proximal tubules, enhanced mitofusin-2 expression, which in turn modulated the progression of the mitochondria-driven intrinsic apoptotic pathway. These changes possibly aid in reducing renal failure. The melatonin-mediated changes indicate its potential protective use against renal morphological damage and dysfunction associated with obesity and metabolic disease. PMID:25347680

  1. Chronic exposure to neonicotinoids increases neuronal vulnerability to mitochondrial dysfunction in the bumblebee (Bombus terrestris)

    PubMed Central

    Moffat, Christopher; Pacheco, Joao Goncalves; Sharp, Sheila; Samson, Andrew J.; Bollan, Karen A.; Huang, Jeffrey; Buckland, Stephen T.; Connolly, Christopher N.

    2015-01-01

    The global decline in the abundance and diversity of insect pollinators could result from habitat loss, disease, and pesticide exposure. The contribution of the neonicotinoid insecticides (e.g., clothianidin and imidacloprid) to this decline is controversial, and key to understanding their risk is whether the astonishingly low levels found in the nectar and pollen of plants is sufficient to deliver neuroactive levels to their site of action: the bee brain. Here we show that bumblebees (Bombus terrestris audax) fed field levels [10 nM, 2.1 ppb (w/w)] of neonicotinoid accumulate between 4 and 10 nM in their brains within 3 days. Acute (minutes) exposure of cultured neurons to 10 nM clothianidin, but not imidacloprid, causes a nicotinic acetylcholine receptor-dependent rapid mitochondrial depolarization. However, a chronic (2 days) exposure to 1 nM imidacloprid leads to a receptor-dependent increased sensitivity to a normally innocuous level of acetylcholine, which now also causes rapid mitochondrial depolarization in neurons. Finally, colonies exposed to this level of imidacloprid show deficits in colony growth and nest condition compared with untreated colonies. These findings provide a mechanistic explanation for the poor navigation and foraging observed in neonicotinoid treated bumblebee colonies.—Moffat, C., Pacheco, J. G., Sharp, S., Samson, A. J., Bollan, K. A., Huang, J., Buckland, S. T., Connolly, C. N. Chronic exposure to neonicotinoids increases neuronal vulnerability to mitochondrial dysfunction in the bumblebee (Bombus terrestris). PMID:25634958

  2. Mechanisms of MDMA (ecstasy)-induced oxidative stress, mitochondrial dysfunction, and organ damage.

    PubMed

    Song, Byoung-Joon; Moon, Kwan-Hoon; Upreti, Vijay V; Eddington, Natalie D; Lee, Insong J

    2010-08-01

    Despite numerous reports about the acute and sub-chronic toxicities caused by MDMA (3,4-methylenedioxymethamphetamine, ecstasy), the underlying mechanism of organ damage is poorly understood. The aim of this review is to present an update of the mechanistic studies on MDMA-mediated organ damage partly caused by increased oxidative/nitrosative stress. Because of the extensive reviews on MDMA-mediated oxidative stress and tissue damage, we specifically focus on the mechanisms and consequences of oxidative-modifications of mitochondrial proteins, leading to mitochondrial dysfunction. We briefly describe a method to systematically identify oxidatively-modified mitochondrial proteins in control and MDMA-exposed rats by using biotin-N-maleimide (biotin-NM) as a sensitive probe for oxidized proteins. We also describe various applications and advantages of this Cys-targeted proteomics method and alternative approaches to overcome potential limitations of this method in studying oxidized proteins from MDMA-exposed tissues. Finally we discuss the mechanism of synergistic drug-interaction between MDMA and other abused substances including alcohol (ethanol) as well as application of this redox-based proteomics method in translational studies for developing effective preventive and therapeutic agents against MDMA-induced organ damage. PMID:20420575

  3. Long-Term Exposure to AZT, but not d4T, Increases Endothelial Cell Oxidative Stress and Mitochondrial Dysfunction

    PubMed Central

    Kline, Erik R.; Bassit, Leda; Hernandez-Santiago, Brenda I.; Detorio, Mervi A.; Liang, Bill; Kleinhenz, Dean J.; Walp, Erik R.; Dikalov, Sergey; Jones, Dean P.; Schinazi, Raymond F.

    2009-01-01

    Nucleoside reverse transcriptase inhibitors (NRTIs), such as zidovudine (AZT) and stavudine (d4T), cause toxicities to numerous tissues, including the liver and vasculature. While much is known about hepatic NRTI toxicity, the mechanism of toxicity in endothelial cells is incompletely understood. Human aortic endothelial and HepG2 liver cells were exposed to 1 μM AZT or d4T for up to 5 weeks. Markers of oxidative stress, mitochondrial function, NRTI phosphorylation, mitochondrial DNA (mtDNA) levels, and cytotoxicity were monitored over time. In endothelial cells, AZT significantly oxidized glutathione redox potential, increased total cellular and mitochondrial-specific superoxide, decreased mitochondrial membrane potential, increased lactate release, and caused cell death from weeks 3 through 5. Toxicity occurred in the absence of di- and tri-phosphorylated AZT and mtDNA depletion. These data show that oxidative stress and mitochondrial dysfunction in endothelial cells occur with a physiologically relevant concentration of AZT, and require long-term exposure to develop. In contrast, d4T did not induce endothelial oxidative stress, mitochondrial dysfunction, or cytotoxicity despite the presence of d4T-triphosphate. Both drugs depleted mtDNA in HepG2 cells without causing cell death. Endothelial cells are more susceptible to AZT-induced toxicity than HepG2 cells, and AZT caused greater endothelial dysfunction than d4T because of its pro-oxidative effects. PMID:19067249

  4. Coronary endothelial dysfunction and mitochondrial reactive oxygen species in type 2 diabetic mice

    PubMed Central

    Cho, Young-Eun; Basu, Aninda; Dai, Anzhi; Heldak, Michael

    2013-01-01

    Endothelial cell (EC) dysfunction is implicated in cardiovascular diseases, including diabetes. The decrease in nitric oxide (NO) bioavailability is the hallmark of endothelial dysfunction, and it leads to attenuated vascular relaxation and atherosclerosis followed by a decrease in blood flow. In the heart, decreased coronary blood flow is responsible for insufficient oxygen supply to cardiomyocytes and, subsequently, increases the incidence of cardiac ischemia. In this study we investigate whether and how reactive oxygen species (ROS) in mitochondria contribute to coronary endothelial dysfunction in type 2 diabetic (T2D) mice. T2D was induced in mice by a high-fat diet combined with a single injection of low-dose streptozotocin. ACh-induced vascular relaxation was significantly attenuated in coronary arteries (CAs) from T2D mice compared with controls. The pharmacological approach reveals that NO-dependent, but not hyperpolarization- or prostacyclin-dependent, relaxation was decreased in CAs from T2D mice. Attenuated ACh-induced relaxation in CAs from T2D mice was restored toward control level by treatment with mitoTempol (a mitochondria-specific O2− scavenger). Coronary ECs isolated from T2D mice exhibited a significant increase in mitochondrial ROS concentration and decrease in SOD2 protein expression compared with coronary ECs isolated from control mice. Furthermore, protein ubiquitination of SOD2 was significantly increased in coronary ECs isolated from T2D mice. These results suggest that augmented SOD2 ubiquitination leads to the increase in mitochondrial ROS concentration in coronary ECs from T2D mice and attenuates coronary vascular relaxation in T2D mice. PMID:23986204

  5. Oestrogens ameliorate mitochondrial dysfunction in Leber’s hereditary optic neuropathy

    PubMed Central

    Giordano, Carla; Montopoli, Monica; Perli, Elena; Orlandi, Maurizia; Fantin, Marianna; Ross-Cisneros, Fred N.; Caparrotta, Laura; Martinuzzi, Andrea; Ragazzi, Eugenio; Ghelli, Anna; Sadun, Alfredo A.; d’Amati, Giulia

    2011-01-01

    Leber’s hereditary optic neuropathy, the most frequent mitochondrial disease due to mitochondrial DNA point mutations in complex I, is characterized by the selective degeneration of retinal ganglion cells, leading to optic atrophy and loss of central vision prevalently in young males. The current study investigated the reasons for the higher prevalence of Leber’s hereditary optic neuropathy in males, exploring the potential compensatory effects of oestrogens on mutant cell metabolism. Control and Leber’s hereditary optic neuropathy osteosarcoma-derived cybrids (11778/ND4, 3460/ND1 and 14484/ND6) were grown in glucose or glucose-free, galactose-supplemented medium. After having shown the nuclear and mitochondrial localization of oestrogen receptors in cybrids, experiments were carried out by adding 100 nM of 17β-oestradiol. In a set of experiments, cells were pre-incubated with the oestrogen receptor antagonist ICI 182780. Leber’s hereditary optic neuropathy cybrids in galactose medium presented overproduction of reactive oxygen species, which led to decrease in mitochondrial membrane potential, increased apoptotic rate, loss of cell viability and hyper-fragmented mitochondrial morphology compared with control cybrids. Treatment with 17β-oestradiol significantly rescued these pathological features and led to the activation of the antioxidant enzyme superoxide dismutase 2. In addition, 17β-oestradiol induced a general activation of mitochondrial biogenesis and a small although significant improvement in energetic competence. All these effects were oestrogen receptor mediated. Finally, we showed that the oestrogen receptor β localizes to the mitochondrial network of human retinal ganglion cells. Our results strongly support a metabolic basis for the unexplained male prevalence in Leber’s hereditary optic neuropathy and hold promises for a therapeutic use for oestrogen-like molecules. PMID:20943885

  6. Steatotic livers are susceptible to normothermic ischemia-reperfusion injury from mitochondrial Complex-I dysfunction

    PubMed Central

    Chu, Michael JJ; Premkumar, Rakesh; Hickey, Anthony JR; Jiang, Yannan; Delahunt, Brett; Phillips, Anthony RJ; Bartlett, Adam SJR

    2016-01-01

    AIM: To assess the effects of ischemic preconditioning (IPC, 10-min ischemia/10-min reperfusion) on steatotic liver mitochondrial function after normothermic ischemia-reperfusion injury (IRI). METHODS: Sixty male Sprague-Dawley rats were fed 8-wk with either control chow or high-fat/high-sucrose diet inducing > 60% mixed steatosis. Three groups (n = 10/group) for each dietary state were tested: (1) the IRI group underwent 60 min partial hepatic ischemia and 4 h reperfusion; (2) the IPC group underwent IPC prior to same standard IRI; and (3) sham underwent the same surgery without IRI or IPC. Hepatic mitochondrial function was analyzed by oxygraphs. Mitochondrial Complex-I, Complex-II enzyme activity, serum alanine aminotransferase (ALT), and histological injury were measured. RESULTS: Steatotic-IRI livers had a greater increase in ALT (2476 ± 166 vs 1457 ± 103 IU/L, P < 0.01) and histological injury following IRI compared to the lean liver group. Steatotic-IRI demonstrated lower Complex-I activity at baseline [78.4 ± 2.5 vs 116.4 ± 6.0 nmol/(min.mg protein), P < 0.001] and following IRI [28.0 ± 6.2 vs 104.3 ± 12.6 nmol/(min.mg protein), P < 0.001]. Steatotic-IRI also demonstrated impaired Complex-I function post-IRI compared to the lean liver IRI group. Complex-II activity was unaffected by hepatic steatosis or IRI. Lean liver mitochondrial function was unchanged following IRI. IPC normalized ALT and histological injury in steatotic livers but had no effect on overall steatotic liver mitochondrial function or individual mitochondrial complex enzyme activities. CONCLUSION: Warm IRI impairs steatotic liver Complex-I activity and function. The protective effects of IPC in steatotic livers may not be mediated through mitochondria. PMID:27217699

  7. Carnosic acid induces apoptosis associated with mitochondrial dysfunction and Akt inactivation in HepG2 cells.

    PubMed

    Xiang, Qisen; Ma, Yunfang; Dong, Jilin; Shen, Ruiling

    2015-02-01

    Carnosic acid (CA), a phenolic diterpene isolated from rosemary, shows potential benefits in health promotion and disease prevention. In the present study, the cytotoxic and apoptotic-inducing effects of CA on human hepatocellular carcinoma HepG2 cells were investigated. The MTT assay results indicated that CA decreased cell viability in HepG2 cells in a dose-dependent manner. Treatment with CA caused a rapid Caspase-3 activation and subsequently proteolytic cleavage of poly (ADP-ribose) polymerase (PARP), both of which were markers of cells undergoing apoptosis. CA also dissipated mitochondrial membrane potential and decreased the ratio of Bcl-2/Bax protein, which mediated cytosolic translocation of cytochrome c from the mitochondria. Furthermore, CA reduced the phosphorylation of Akt, which was partially inhibited by insulin, an activator of phosphatidylinositol 3-kinase (PI3K)/Akt signalling pathway. In conclusion, our data suggest that the mitochondrial dysfunction and deactivation of Akt may contribute to the apoptosis-inducing effects of CA. PMID:25265205

  8. Respiratory complex I dysfunction due to mitochondrial DNA mutations shifts the voltage threshold for opening of the permeability transition pore toward resting levels.

    PubMed

    Porcelli, Anna Maria; Angelin, Alessia; Ghelli, Anna; Mariani, Elisa; Martinuzzi, Andrea; Carelli, Valerio; Petronilli, Valeria; Bernardi, Paolo; Rugolo, Michela

    2009-01-23

    We have studied mitochondrial bioenergetics in HL180 cells (a cybrid line harboring the T14484C/ND6 and G14279A/ND6 mtDNA mutations of Leber hereditary optic neuropathy, leading to an approximately 50% decrease of ATP synthesis) and XTC.UC1 cells (derived from a thyroid oncocytoma bearing a disruptive frameshift mutation in MT-ND1, which impairs complex I assembly). The addition of rotenone to HL180 cells and of antimycin A to XTC.UC1 cells caused fast mitochondrial membrane depolarization that was prevented by treatment with cyclosporin A, intracellular Ca2+ chelators, and antioxidant. Both cell lines also displayed an anomalous response to oligomycin, with rapid onset of depolarization that was prevented by cyclosporin A and by overexpression of Bcl-2. These findings indicate that depolarization by respiratory chain inhibitors and oligomycin was due to opening of the mitochondrial permeability transition pore (PTP). A shift of the threshold voltage for PTP opening close to the resting potential may therefore be the underlying cause facilitating cell death in diseases affecting complex I activity. This study provides a unifying reading frame for previous observations on mitochondrial dysfunction, bioenergetic defects, and Ca2+ deregulation in mitochondrial diseases. Therapeutic strategies aimed at normalizing the PTP voltage threshold may be instrumental in ameliorating the course of complex I-dependent mitochondrial diseases. PMID:19047048

  9. Inorganic polyphosphate is a potent activator of the mitochondrial permeability transition pore in cardiac myocytes

    PubMed Central

    Seidlmayer, Lea K.; Gomez-Garcia, Maria R.; Blatter, Lothar A.; Pavlov, Evgeny

    2012-01-01

    Mitochondrial dysfunction caused by excessive Ca2+ accumulation is a major contributor to cardiac cell and tissue damage during myocardial infarction and ischemia–reperfusion injury (IRI). At the molecular level, mitochondrial dysfunction is induced by Ca2+-dependent opening of the mitochondrial permeability transition pore (mPTP) in the inner mitochondrial membrane, which leads to the dissipation of mitochondrial membrane potential (ΔΨm), disruption of adenosine triphosphate production, and ultimately cell death. Although the role of Ca2+ for induction of mPTP opening is established, the exact molecular mechanism of this process is not understood. The aim of the present study was to test the hypothesis that the adverse effect of mitochondrial Ca2+ accumulation is mediated by its interaction with inorganic polyphosphate (polyP), a polymer of orthophosphates linked by phosphoanhydride bonds. We found that cardiac mitochondria contained significant amounts (280 ± 60 pmol/mg of protein) of short-chain polyP with an average length of 25 orthophosphates. To test the role of polyP for mPTP activity, we investigated kinetics of Ca2+ uptake and release, ΔΨm and Ca2+-induced mPTP opening in polyP-depleted mitochondria. polyP depletion was achieved by mitochondria-targeted expression of a polyP-hydrolyzing enzyme. Depletion of polyP in mitochondria of rabbit ventricular myocytes led to significant inhibition of mPTP opening without affecting mitochondrial Ca2+ concentration by itself. This effect was observed when mitochondrial Ca2+ uptake was stimulated by increasing cytosolic [Ca2+] in permeabilized myocytes mimicking mitochondrial Ca2+ overload observed during IRI. Our findings suggest that inorganic polyP is a previously unrecognized major activator of mPTP. We propose that the adverse effect of polyphosphate might be caused by its ability to form stable complexes with Ca2+ and directly contribute to inner mitochondrial membrane permeabilization. PMID:22547663

  10. Superoxide-mediated activation of uncoupling protein 2 causes pancreatic β cell dysfunction

    PubMed Central

    Krauss, Stefan; Zhang, Chen-Yu; Scorrano, Luca; Dalgaard, Louise T.; St-Pierre, Julie; Grey, Shane T.; Lowell, Bradford B.

    2003-01-01

    Failure to secrete adequate amounts of insulin in response to increasing concentrations of glucose is an important feature of type 2 diabetes. The mechanism for loss of glucose responsiveness is unknown. Uncoupling protein 2 (UCP2), by virtue of its mitochondrial proton leak activity and consequent negative effect on ATP production, impairs glucose-stimulated insulin secretion. Of interest, it has recently been shown that superoxide, when added to isolated mitochondria, activates UCP2-mediated proton leak. Since obesity and chronic hyperglycemia increase mitochondrial superoxide production, as well as UCP2 expression in pancreatic β cells, a superoxide-UCP2 pathway could contribute importantly to obesity- and hyperglycemia-induced β cell dysfunction. This study demonstrates that endogenously produced mitochondrial superoxide activates UCP2-mediated proton leak, thus lowering ATP levels and impairing glucose-stimulated insulin secretion. Furthermore, hyperglycemia- and obesity-induced loss of glucose responsiveness is prevented by reduction of mitochondrial superoxide production or gene knockout of UCP2. Importantly, reduction of superoxide has no beneficial effect in the absence of UCP2, and superoxide levels are increased further in the absence of UCP2, demonstrating that the adverse effects of superoxide on β cell glucose sensing are caused by activation of UCP2. Therefore, superoxide-mediated activation of UCP2 could play an important role in the pathogenesis of β cell dysfunction and type 2 diabetes. PMID:14679178

  11. Converging Evidence of Mitochondrial Dysfunction in a Yeast Model of Homocysteine Metabolism Imbalance*

    PubMed Central

    Kumar, Arun; John, Lijo; Maity, Shuvadeep; Manchanda, Mini; Sharma, Abhay; Saini, Neeru; Chakraborty, Kausik; Sengupta, Shantanu

    2011-01-01

    An elevated level of homocysteine, a thiol amino acid, is associated with various complex disorders. The cellular effects of homocysteine and its precursors S-adenosylhomocysteine (AdoHcy) and S-adenosylmethionine (AdoMet) are, however, poorly understood. We used Saccharomyces cerevisiae as a model to understand the basis of pathogenicity induced by homocysteine and its precursors. Both homocysteine and AdoHcy but not AdoMet inhibited the growth of the str4Δ strain (which lacks the enzyme that converts homocysteine to cystathionine-mimicking vascular cells). Addition of AdoMet abrogated the inhibitory effect of AdoHcy but not that of homocysteine indicating that an increase in the AdoMet/AdoHcy ratio is sufficient to overcome the AdoHcy-mediated growth defect but not that of homocysteine. Also, the transcriptomic profile of AdoHcy and homocysteine showed gross dissimilarity based on gene enrichment analysis. Furthermore, compared with homocysteine, AdoHcy treatment caused a higher level of oxidative stress in the cells. However, unlike a previously reported response in wild type (Kumar, A., John, L., Alam, M. M., Gupta, A., Sharma, G., Pillai, B., and Sengupta, S. (2006) Biochem. J. 396, 61–69), the str4Δ strain did not exhibit an endoplasmic reticulum stress response. This suggests that homocysteine induces varied response depending on the flux of homocysteine metabolism. We also observed altered expression of mitochondrial genes, defective membrane potential, and fragmentation of the mitochondrial network together with the increased expression of fission genes indicating that the imbalance in homocysteine metabolism has a major effect on mitochondrial functions. Furthermore, treatment of cells with homocysteine or AdoHcy resulted in apoptosis as revealed by annexin V staining and TUNEL assay. Cumulatively, our results suggest that elevated levels of homocysteine lead to mitochondrial dysfunction, which could potentially initiate pro-apoptotic pathways, and

  12. Peripheral Blood Mitochondrial DNA as a Biomarker of Cerebral Mitochondrial Dysfunction following Traumatic Brain Injury in a Porcine Model

    PubMed Central

    Kilbaugh, Todd J.; Lvova, Maria; Karlsson, Michael; Zhang, Zhe; Leipzig, Jeremy; Wallace, Douglas C.; Margulies, Susan S.

    2015-01-01

    Background Traumatic brain injury (TBI) has been shown to activate the peripheral innate immune system and systemic inflammatory response, possibly through the central release of damage associated molecular patterns (DAMPs). Our main purpose was to gain an initial understanding of the peripheral mitochondrial response following TBI, and how this response could be utilized to determine cerebral mitochondrial bioenergetics. We hypothesized that TBI would increase peripheral whole blood relative mtDNA copy number, and that these alterations would be associated with cerebral mitochondrial bioenergetics triggered by TBI. Methodology Blood samples were obtained before, 6 h after, and 25 h after focal (controlled cortical impact injury: CCI) and diffuse (rapid non-impact rotational injury: RNR) TBI. PCR primers, unique to mtDNA, were identified by aligning segments of nuclear DNA (nDNA) to mtDNA, normalizing values to nuclear 16S rRNA, for a relative mtDNA copy number. Three unique mtDNA regions were selected, and PCR primers were designed within those regions, limited to 25-30 base pairs to further ensure sequence specificity, and measured utilizing qRT-PCR. Results Mean relative mtDNA copy numbers increased significantly at 6 and 25 hrs after following both focal and diffuse traumatic brain injury. Specifically, the mean relative mtDNA copy number from three mitochondrial-specific regions pre-injury was 0.84 ± 0.05. At 6 and 25 h after diffuse non-impact TBI, mean mtDNA copy number was significantly higher: 2.07 ± 0.19 (P < 0.0001) and 2.37 ± 0.42 (P < 0.001), respectively. Following focal impact TBI, relative mtDNA copy number was also significantly higher, 1.35 ± 0.12 (P < 0.0001) at 25 hours. Alterations in mitochondrial respiration in the hippocampus and cortex post-TBI correlated with changes in the relative mtDNA copy number measured in peripheral blood. Conclusions Alterations in peripheral blood relative mtDNA copy numbers may be a novel biosignature of

  13. The cellular and molecular progression of mitochondrial dysfunction induced by 2,4-dinitrophenol in developing zebrafish embryos

    PubMed Central

    Bestman, Jennifer E.; Stackley, Krista D.; Rahn, Jennifer J.; Williamson, Tucker J.; Chan, Sherine S. L.

    2015-01-01

    The etiology of mitochondrial disease is poorly understood. Furthermore, treatment options are limited, and diagnostic methods often lack the sensitivity to detect disease in its early stages. Disrupted oxidative phosphorylation (OXPHOS) that inhibits ATP production is a common phenotype of mitochondrial disorders that can be induced in zebrafish by exposure to 2,4-dinitrophenol (DNP), a FDA-banned weight-loss agent and EPA-regulated environmental toxicant, traditionally used in research labs as an uncoupler of OXPHOS. Despite the DNP-induced OXPHOS inhibition we observed using in vivo respirometry, the development of the DNP-treated and control zebrafish were largely similar during the first half of embryogenesis. During this period, DNP-treated embryos induced gene expression of mitochondrial and nuclear genes that stimulated the production of new mitochondria and increased glycolysis to yield normal levels of ATP. DNP-treated embryos were incapable of sustaining this mitochondrial biogenic response past mid-embryogenesis, as shown by significantly lowered ATP production and ATP levels, decreased gene expression, and the onset of developmental defects. Examining neural tissues commonly affected by mitochondrial disease, we found that DNP exposure also inhibited motor neuron axon arbor outgrowth and the proper formation of the retina. We observed and quantified the molecular and physiological progression of mitochondrial dysfunction during development with this new model of OXPHOS dysfunction, which has great potential for use in diagnostics and therapies for mitochondrial disease. PMID:25771346

  14. Scutellaria baicalensis Extracts and Flavonoids Protect Rat L6 Cells from Antimycin A-Induced Mitochondrial Dysfunction

    PubMed Central

    Im, A-Rang; Kim, Young-Hwa; Uddin, Md. Romij; Lee, Hye Won; Chae, Seong Wook; Kim, Yun Hee; Jung, Woo Suk; Kang, Bong Ju; Mun, Chun Sun; Lee, Mi-Young

    2012-01-01

    Antimycin A (AMA) damages mitochondria by inhibiting mitochondrial electron transport and can produce reactive oxygen species (ROS). ROS formation, aging, and reduction of mitochondrial biogenesis contribute to mitochondrial dysfunction. The present study sought to investigate extracts of Scutellaria baicalensis and its flavonoids (baicalin, baicalein, and wogonin), whether they could protect mitochondria against oxidative damage. The viability of L6 cells treated with AMA increased in the presence of flavonoids and extracts of S. baicalensis. ATP production decreased in the AMA treated group, but increased by 50% in cells treated with flavonoids (except wogonin) and extracts of S. baicalensis compared to AMA-treated group. AMA treatment caused a significant reduction (depolarized) in mitochondrial membrane potential (MMP), whereas flavonoid treatment induced a significant increase in MMP. Mitochondrial superoxide levels increased in AMA treated cells, whereas its levels decreased when cells were treated with flavonoids or extracts of S. baicalensis. L6 cells treated with flavonoids and extracts of S. baicalensis increased their levels of protein expression compared with AMA-treated cells, especially water extracts performed the highest levels of protein expression. These results suggest that the S. baicalensis extracts and flavonoids protect against AMA-induced mitochondrial dysfunction by increasing ATP production, upregulating MMP, and enhancing mitochondrial function. PMID:22969827

  15. Heart Failure and Mitochondrial Dysfunction: The Role of Mitochondrial Fission/Fusion Abnormalities and New Therapeutic Strategies

    PubMed Central

    Knowlton, A. A.; Chen, Le; Malik, Zulfiqar A.

    2013-01-01

    The treatment of heart failure has evolved during the last thirty years with recognition of neurohormonal activation and the effectiveness of its inhibition in improving quality of life and survival. Over the last twenty years there has been a revolution in the investigation of the mitochondrion with the development of new techniques and the finding that mitochondria are connected in networks and undergo constant division (fission) and fusion, even in cardiac myocytes. This has led to new molecular and cellular discoveries in heart failure, which offer the potential for the development of new molecular-based therapies. Reactive oxygen species (ROS) are an important cause of mitochondrial and cellular injury in heart failure, but there are other abnormalities, such as depressed mitochondrial fusion, that may eventually become targets of at least episodic treatment. The overall need for mitochondrial fission/fusion balance may preclude sustained change in either fission or fusion. In this review we will discuss current heart failure therapy and its impact on the mitochondria. In addition we will review some of the new drug targets under development. There is potential for effective, novel therapies for heart failure to arise from new molecular understanding. PMID:23884159

  16. Mitochondrial dysfunction and lipid peroxidation in rat frontal cortex by chronic NMDA administration can be partially prevented by lithium treatment.

    PubMed

    Kim, Helena K; Isaacs-Trepanier, Cameron; Elmi, Nika; Rapoport, Stanley I; Andreazza, Ana C

    2016-05-01

    Chronic N-methyl-d-aspartate (NMDA) administration to rats may be a model to investigate excitotoxicity mediated by glutamatergic hyperactivity, and lithium has been reported to be neuroprotective. We hypothesized that glutamatergic hyperactivity in chronic NMDA injected rats would cause mitochondrial dysfunction and lipid peroxidation in the brain, and that chronic lithium treatment would ameliorate some of these NMDA-induced alterations. Rats treated with lithium for 6 weeks were injected i.p. 25 mg/kg NMDA on a daily basis for the last 21 days of lithium treatment. Brain was removed and frontal cortex was analyzed. Chronic NMDA decreased brain levels of mitochondrial complex I and III, and increased levels of the lipid oxidation products, 8-isoprostane and 4-hydroxynonenal, compared with non-NMDA injected rats. Lithium treatment prevented the NMDA-induced increments in 8-isoprostane and 4-hydroxynonenal. Our findings suggest that increased chronic activation of NMDA receptors can induce alterations in electron transport chain complexes I and III and in lipid peroxidation in brain. The NMDA-induced changes may contribute to glutamate-mediated excitotoxicity, which plays a role in brain diseases such as bipolar disorder. Lithium treatment prevented changes in 8-isoprostane and 4-hydroxynonenal, which may contribute to lithium's reported neuroprotective effect and efficacy in bipolar disorder. PMID:26894301

  17. Increased levels of reduced cytochrome b and mitophagy components are required to trigger nonspecific autophagy following induced mitochondrial dysfunction.

    PubMed

    Deffieu, Maika; Bhatia-Kiššová, Ingrid; Salin, Bénédicte; Klionsky, Daniel J; Pinson, Benoît; Manon, Stéphen; Camougrand, Nadine

    2013-01-15

    Mitochondria are ess